Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/sort.h>
   9#include "ctree.h"
  10#include "delayed-ref.h"
  11#include "transaction.h"
  12#include "qgroup.h"
  13#include "space-info.h"
  14
  15struct kmem_cache *btrfs_delayed_ref_head_cachep;
  16struct kmem_cache *btrfs_delayed_tree_ref_cachep;
  17struct kmem_cache *btrfs_delayed_data_ref_cachep;
  18struct kmem_cache *btrfs_delayed_extent_op_cachep;
  19/*
  20 * delayed back reference update tracking.  For subvolume trees
  21 * we queue up extent allocations and backref maintenance for
  22 * delayed processing.   This avoids deep call chains where we
  23 * add extents in the middle of btrfs_search_slot, and it allows
  24 * us to buffer up frequently modified backrefs in an rb tree instead
  25 * of hammering updates on the extent allocation tree.
  26 */
  27
  28bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
  29{
  30	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
  31	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
  32	bool ret = false;
  33	u64 reserved;
  34
  35	spin_lock(&global_rsv->lock);
  36	reserved = global_rsv->reserved;
  37	spin_unlock(&global_rsv->lock);
  38
  39	/*
  40	 * Since the global reserve is just kind of magic we don't really want
  41	 * to rely on it to save our bacon, so if our size is more than the
  42	 * delayed_refs_rsv and the global rsv then it's time to think about
  43	 * bailing.
  44	 */
  45	spin_lock(&delayed_refs_rsv->lock);
  46	reserved += delayed_refs_rsv->reserved;
  47	if (delayed_refs_rsv->size >= reserved)
  48		ret = true;
  49	spin_unlock(&delayed_refs_rsv->lock);
  50	return ret;
  51}
  52
  53int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
  54{
  55	u64 num_entries =
  56		atomic_read(&trans->transaction->delayed_refs.num_entries);
  57	u64 avg_runtime;
  58	u64 val;
  59
  60	smp_mb();
  61	avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
  62	val = num_entries * avg_runtime;
  63	if (val >= NSEC_PER_SEC)
  64		return 1;
  65	if (val >= NSEC_PER_SEC / 2)
  66		return 2;
  67
  68	return btrfs_check_space_for_delayed_refs(trans->fs_info);
  69}
  70
  71/**
  72 * btrfs_delayed_refs_rsv_release - release a ref head's reservation.
  73 * @fs_info - the fs_info for our fs.
  74 * @nr - the number of items to drop.
  75 *
  76 * This drops the delayed ref head's count from the delayed refs rsv and frees
  77 * any excess reservation we had.
  78 */
  79void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
  80{
  81	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
  82	u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, nr);
  83	u64 released = 0;
  84
  85	released = __btrfs_block_rsv_release(fs_info, block_rsv, num_bytes,
  86					     NULL);
  87	if (released)
  88		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
  89					      0, released, 0);
  90}
  91
  92/*
  93 * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv
  94 * @trans - the trans that may have generated delayed refs
  95 *
  96 * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
  97 * it'll calculate the additional size and add it to the delayed_refs_rsv.
  98 */
  99void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
 100{
 101	struct btrfs_fs_info *fs_info = trans->fs_info;
 102	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 103	u64 num_bytes;
 104
 105	if (!trans->delayed_ref_updates)
 106		return;
 107
 108	num_bytes = btrfs_calc_insert_metadata_size(fs_info,
 109						    trans->delayed_ref_updates);
 110	spin_lock(&delayed_rsv->lock);
 111	delayed_rsv->size += num_bytes;
 112	delayed_rsv->full = 0;
 113	spin_unlock(&delayed_rsv->lock);
 114	trans->delayed_ref_updates = 0;
 115}
 116
 117/**
 118 * btrfs_migrate_to_delayed_refs_rsv - transfer bytes to our delayed refs rsv.
 119 * @fs_info - the fs info for our fs.
 120 * @src - the source block rsv to transfer from.
 121 * @num_bytes - the number of bytes to transfer.
 122 *
 123 * This transfers up to the num_bytes amount from the src rsv to the
 124 * delayed_refs_rsv.  Any extra bytes are returned to the space info.
 125 */
 126void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
 127				       struct btrfs_block_rsv *src,
 128				       u64 num_bytes)
 129{
 130	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 131	u64 to_free = 0;
 132
 133	spin_lock(&src->lock);
 134	src->reserved -= num_bytes;
 135	src->size -= num_bytes;
 136	spin_unlock(&src->lock);
 137
 138	spin_lock(&delayed_refs_rsv->lock);
 139	if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
 140		u64 delta = delayed_refs_rsv->size -
 141			delayed_refs_rsv->reserved;
 142		if (num_bytes > delta) {
 143			to_free = num_bytes - delta;
 144			num_bytes = delta;
 145		}
 146	} else {
 147		to_free = num_bytes;
 148		num_bytes = 0;
 149	}
 150
 151	if (num_bytes)
 152		delayed_refs_rsv->reserved += num_bytes;
 153	if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
 154		delayed_refs_rsv->full = 1;
 155	spin_unlock(&delayed_refs_rsv->lock);
 156
 157	if (num_bytes)
 158		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 159					      0, num_bytes, 1);
 160	if (to_free)
 161		btrfs_space_info_free_bytes_may_use(fs_info,
 162				delayed_refs_rsv->space_info, to_free);
 163}
 164
 165/**
 166 * btrfs_delayed_refs_rsv_refill - refill based on our delayed refs usage.
 167 * @fs_info - the fs_info for our fs.
 168 * @flush - control how we can flush for this reservation.
 169 *
 170 * This will refill the delayed block_rsv up to 1 items size worth of space and
 171 * will return -ENOSPC if we can't make the reservation.
 172 */
 173int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
 174				  enum btrfs_reserve_flush_enum flush)
 175{
 176	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
 177	u64 limit = btrfs_calc_insert_metadata_size(fs_info, 1);
 178	u64 num_bytes = 0;
 179	int ret = -ENOSPC;
 180
 181	spin_lock(&block_rsv->lock);
 182	if (block_rsv->reserved < block_rsv->size) {
 183		num_bytes = block_rsv->size - block_rsv->reserved;
 184		num_bytes = min(num_bytes, limit);
 185	}
 186	spin_unlock(&block_rsv->lock);
 187
 188	if (!num_bytes)
 189		return 0;
 190
 191	ret = btrfs_reserve_metadata_bytes(fs_info->extent_root, block_rsv,
 192					   num_bytes, flush);
 193	if (ret)
 194		return ret;
 195	btrfs_block_rsv_add_bytes(block_rsv, num_bytes, 0);
 196	trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 197				      0, num_bytes, 1);
 198	return 0;
 199}
 200
 201/*
 202 * compare two delayed tree backrefs with same bytenr and type
 203 */
 204static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
 205			  struct btrfs_delayed_tree_ref *ref2)
 206{
 207	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
 208		if (ref1->root < ref2->root)
 209			return -1;
 210		if (ref1->root > ref2->root)
 211			return 1;
 212	} else {
 213		if (ref1->parent < ref2->parent)
 214			return -1;
 215		if (ref1->parent > ref2->parent)
 216			return 1;
 217	}
 218	return 0;
 219}
 220
 221/*
 222 * compare two delayed data backrefs with same bytenr and type
 223 */
 224static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
 225			  struct btrfs_delayed_data_ref *ref2)
 226{
 227	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
 228		if (ref1->root < ref2->root)
 229			return -1;
 230		if (ref1->root > ref2->root)
 231			return 1;
 232		if (ref1->objectid < ref2->objectid)
 233			return -1;
 234		if (ref1->objectid > ref2->objectid)
 235			return 1;
 236		if (ref1->offset < ref2->offset)
 237			return -1;
 238		if (ref1->offset > ref2->offset)
 239			return 1;
 240	} else {
 241		if (ref1->parent < ref2->parent)
 242			return -1;
 243		if (ref1->parent > ref2->parent)
 244			return 1;
 245	}
 246	return 0;
 247}
 248
 249static int comp_refs(struct btrfs_delayed_ref_node *ref1,
 250		     struct btrfs_delayed_ref_node *ref2,
 251		     bool check_seq)
 
 
 
 252{
 253	int ret = 0;
 254
 
 
 
 
 
 
 
 
 255	if (ref1->type < ref2->type)
 256		return -1;
 257	if (ref1->type > ref2->type)
 258		return 1;
 
 
 
 
 
 259	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
 260	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
 261		ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
 262				     btrfs_delayed_node_to_tree_ref(ref2));
 263	else
 264		ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
 265				     btrfs_delayed_node_to_data_ref(ref2));
 266	if (ret)
 267		return ret;
 268	if (check_seq) {
 269		if (ref1->seq < ref2->seq)
 270			return -1;
 271		if (ref1->seq > ref2->seq)
 272			return 1;
 273	}
 
 274	return 0;
 275}
 276
 277/* insert a new ref to head ref rbtree */
 278static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
 279						   struct rb_node *node)
 280{
 281	struct rb_node **p = &root->rb_root.rb_node;
 282	struct rb_node *parent_node = NULL;
 283	struct btrfs_delayed_ref_head *entry;
 284	struct btrfs_delayed_ref_head *ins;
 285	u64 bytenr;
 286	bool leftmost = true;
 287
 288	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
 289	bytenr = ins->bytenr;
 290	while (*p) {
 291		parent_node = *p;
 292		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
 293				 href_node);
 294
 295		if (bytenr < entry->bytenr) {
 296			p = &(*p)->rb_left;
 297		} else if (bytenr > entry->bytenr) {
 298			p = &(*p)->rb_right;
 299			leftmost = false;
 300		} else {
 301			return entry;
 302		}
 303	}
 304
 305	rb_link_node(node, parent_node, p);
 306	rb_insert_color_cached(node, root, leftmost);
 307	return NULL;
 308}
 309
 310static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
 311		struct btrfs_delayed_ref_node *ins)
 312{
 313	struct rb_node **p = &root->rb_root.rb_node;
 314	struct rb_node *node = &ins->ref_node;
 315	struct rb_node *parent_node = NULL;
 316	struct btrfs_delayed_ref_node *entry;
 317	bool leftmost = true;
 
 318
 
 319	while (*p) {
 320		int comp;
 321
 322		parent_node = *p;
 323		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
 324				 ref_node);
 325		comp = comp_refs(ins, entry, true);
 326		if (comp < 0) {
 
 327			p = &(*p)->rb_left;
 328		} else if (comp > 0) {
 329			p = &(*p)->rb_right;
 330			leftmost = false;
 331		} else {
 332			return entry;
 333		}
 334	}
 335
 336	rb_link_node(node, parent_node, p);
 337	rb_insert_color_cached(node, root, leftmost);
 338	return NULL;
 339}
 340
 341static struct btrfs_delayed_ref_head *find_first_ref_head(
 342		struct btrfs_delayed_ref_root *dr)
 343{
 344	struct rb_node *n;
 345	struct btrfs_delayed_ref_head *entry;
 346
 347	n = rb_first_cached(&dr->href_root);
 348	if (!n)
 349		return NULL;
 350
 351	entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 352
 353	return entry;
 354}
 355
 356/*
 357 * Find a head entry based on bytenr. This returns the delayed ref head if it
 358 * was able to find one, or NULL if nothing was in that spot.  If return_bigger
 359 * is given, the next bigger entry is returned if no exact match is found.
 360 */
 361static struct btrfs_delayed_ref_head *find_ref_head(
 362		struct btrfs_delayed_ref_root *dr, u64 bytenr,
 363		bool return_bigger)
 
 
 364{
 365	struct rb_root *root = &dr->href_root.rb_root;
 366	struct rb_node *n;
 367	struct btrfs_delayed_ref_head *entry;
 
 368
 
 369	n = root->rb_node;
 370	entry = NULL;
 371	while (n) {
 372		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 
 
 
 373
 374		if (bytenr < entry->bytenr)
 375			n = n->rb_left;
 376		else if (bytenr > entry->bytenr)
 
 
 
 
 
 
 
 
 
 377			n = n->rb_right;
 378		else
 379			return entry;
 380	}
 381	if (entry && return_bigger) {
 382		if (bytenr > entry->bytenr) {
 383			n = rb_next(&entry->href_node);
 384			if (!n)
 385				return NULL;
 386			entry = rb_entry(n, struct btrfs_delayed_ref_head,
 387					 href_node);
 
 
 
 388		}
 389		return entry;
 390	}
 391	return NULL;
 392}
 393
 394int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
 395			   struct btrfs_delayed_ref_head *head)
 396{
 397	lockdep_assert_held(&delayed_refs->lock);
 
 
 
 398	if (mutex_trylock(&head->mutex))
 399		return 0;
 400
 401	refcount_inc(&head->refs);
 402	spin_unlock(&delayed_refs->lock);
 403
 404	mutex_lock(&head->mutex);
 405	spin_lock(&delayed_refs->lock);
 406	if (RB_EMPTY_NODE(&head->href_node)) {
 407		mutex_unlock(&head->mutex);
 408		btrfs_put_delayed_ref_head(head);
 409		return -EAGAIN;
 410	}
 411	btrfs_put_delayed_ref_head(head);
 412	return 0;
 413}
 414
 415static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
 416				    struct btrfs_delayed_ref_root *delayed_refs,
 417				    struct btrfs_delayed_ref_head *head,
 418				    struct btrfs_delayed_ref_node *ref)
 419{
 420	lockdep_assert_held(&head->lock);
 421	rb_erase_cached(&ref->ref_node, &head->ref_tree);
 422	RB_CLEAR_NODE(&ref->ref_node);
 423	if (!list_empty(&ref->add_list))
 424		list_del(&ref->add_list);
 425	ref->in_tree = 0;
 426	btrfs_put_delayed_ref(ref);
 427	atomic_dec(&delayed_refs->num_entries);
 428}
 429
 430static bool merge_ref(struct btrfs_trans_handle *trans,
 431		      struct btrfs_delayed_ref_root *delayed_refs,
 432		      struct btrfs_delayed_ref_head *head,
 433		      struct btrfs_delayed_ref_node *ref,
 434		      u64 seq)
 435{
 436	struct btrfs_delayed_ref_node *next;
 437	struct rb_node *node = rb_next(&ref->ref_node);
 438	bool done = false;
 439
 440	while (!done && node) {
 441		int mod;
 442
 443		next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 444		node = rb_next(node);
 445		if (seq && next->seq >= seq)
 446			break;
 447		if (comp_refs(ref, next, false))
 448			break;
 449
 450		if (ref->action == next->action) {
 451			mod = next->ref_mod;
 452		} else {
 453			if (ref->ref_mod < next->ref_mod) {
 454				swap(ref, next);
 455				done = true;
 456			}
 457			mod = -next->ref_mod;
 458		}
 459
 460		drop_delayed_ref(trans, delayed_refs, head, next);
 461		ref->ref_mod += mod;
 462		if (ref->ref_mod == 0) {
 463			drop_delayed_ref(trans, delayed_refs, head, ref);
 464			done = true;
 465		} else {
 466			/*
 467			 * Can't have multiples of the same ref on a tree block.
 468			 */
 469			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
 470				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
 471		}
 472	}
 473
 474	return done;
 475}
 476
 477void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
 478			      struct btrfs_delayed_ref_root *delayed_refs,
 479			      struct btrfs_delayed_ref_head *head)
 480{
 481	struct btrfs_fs_info *fs_info = trans->fs_info;
 482	struct btrfs_delayed_ref_node *ref;
 483	struct rb_node *node;
 484	u64 seq = 0;
 485
 486	lockdep_assert_held(&head->lock);
 487
 488	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
 489		return;
 490
 491	/* We don't have too many refs to merge for data. */
 492	if (head->is_data)
 493		return;
 494
 495	spin_lock(&fs_info->tree_mod_seq_lock);
 496	if (!list_empty(&fs_info->tree_mod_seq_list)) {
 497		struct seq_list *elem;
 498
 499		elem = list_first_entry(&fs_info->tree_mod_seq_list,
 500					struct seq_list, list);
 501		seq = elem->seq;
 502	}
 503	spin_unlock(&fs_info->tree_mod_seq_lock);
 504
 505again:
 506	for (node = rb_first_cached(&head->ref_tree); node;
 507	     node = rb_next(node)) {
 508		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 509		if (seq && ref->seq >= seq)
 510			continue;
 511		if (merge_ref(trans, delayed_refs, head, ref, seq))
 512			goto again;
 513	}
 514}
 515
 516int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
 517{
 518	struct seq_list *elem;
 519	int ret = 0;
 520
 521	spin_lock(&fs_info->tree_mod_seq_lock);
 522	if (!list_empty(&fs_info->tree_mod_seq_list)) {
 523		elem = list_first_entry(&fs_info->tree_mod_seq_list,
 524					struct seq_list, list);
 525		if (seq >= elem->seq) {
 526			btrfs_debug(fs_info,
 527				"holding back delayed_ref %#x.%x, lowest is %#x.%x",
 528				(u32)(seq >> 32), (u32)seq,
 529				(u32)(elem->seq >> 32), (u32)elem->seq);
 530			ret = 1;
 531		}
 
 532	}
 533
 534	spin_unlock(&fs_info->tree_mod_seq_lock);
 535	return ret;
 536}
 537
 538struct btrfs_delayed_ref_head *btrfs_select_ref_head(
 539		struct btrfs_delayed_ref_root *delayed_refs)
 540{
 541	struct btrfs_delayed_ref_head *head;
 542
 543again:
 544	head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
 545			     true);
 546	if (!head && delayed_refs->run_delayed_start != 0) {
 547		delayed_refs->run_delayed_start = 0;
 548		head = find_first_ref_head(delayed_refs);
 549	}
 550	if (!head)
 551		return NULL;
 552
 553	while (head->processing) {
 554		struct rb_node *node;
 555
 556		node = rb_next(&head->href_node);
 557		if (!node) {
 558			if (delayed_refs->run_delayed_start == 0)
 559				return NULL;
 560			delayed_refs->run_delayed_start = 0;
 561			goto again;
 562		}
 563		head = rb_entry(node, struct btrfs_delayed_ref_head,
 564				href_node);
 565	}
 566
 567	head->processing = 1;
 568	WARN_ON(delayed_refs->num_heads_ready == 0);
 569	delayed_refs->num_heads_ready--;
 570	delayed_refs->run_delayed_start = head->bytenr +
 571		head->num_bytes;
 572	return head;
 573}
 574
 575void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
 576			   struct btrfs_delayed_ref_head *head)
 577{
 578	lockdep_assert_held(&delayed_refs->lock);
 579	lockdep_assert_held(&head->lock);
 580
 581	rb_erase_cached(&head->href_node, &delayed_refs->href_root);
 582	RB_CLEAR_NODE(&head->href_node);
 583	atomic_dec(&delayed_refs->num_entries);
 584	delayed_refs->num_heads--;
 585	if (head->processing == 0)
 586		delayed_refs->num_heads_ready--;
 587}
 588
 589/*
 590 * Helper to insert the ref_node to the tail or merge with tail.
 
 
 591 *
 592 * Return 0 for insert.
 593 * Return >0 for merge.
 594 */
 595static int insert_delayed_ref(struct btrfs_trans_handle *trans,
 596			      struct btrfs_delayed_ref_root *root,
 597			      struct btrfs_delayed_ref_head *href,
 598			      struct btrfs_delayed_ref_node *ref)
 
 599{
 600	struct btrfs_delayed_ref_node *exist;
 601	int mod;
 602	int ret = 0;
 603
 604	spin_lock(&href->lock);
 605	exist = tree_insert(&href->ref_tree, ref);
 606	if (!exist)
 607		goto inserted;
 608
 609	/* Now we are sure we can merge */
 610	ret = 1;
 611	if (exist->action == ref->action) {
 612		mod = ref->ref_mod;
 
 
 
 
 
 
 
 613	} else {
 614		/* Need to change action */
 615		if (exist->ref_mod < ref->ref_mod) {
 616			exist->action = ref->action;
 617			mod = -exist->ref_mod;
 618			exist->ref_mod = ref->ref_mod;
 619			if (ref->action == BTRFS_ADD_DELAYED_REF)
 620				list_add_tail(&exist->add_list,
 621					      &href->ref_add_list);
 622			else if (ref->action == BTRFS_DROP_DELAYED_REF) {
 623				ASSERT(!list_empty(&exist->add_list));
 624				list_del(&exist->add_list);
 625			} else {
 626				ASSERT(0);
 627			}
 628		} else
 629			mod = -ref->ref_mod;
 630	}
 631	exist->ref_mod += mod;
 632
 633	/* remove existing tail if its ref_mod is zero */
 634	if (exist->ref_mod == 0)
 635		drop_delayed_ref(trans, root, href, exist);
 636	spin_unlock(&href->lock);
 637	return ret;
 638inserted:
 639	if (ref->action == BTRFS_ADD_DELAYED_REF)
 640		list_add_tail(&ref->add_list, &href->ref_add_list);
 641	atomic_inc(&root->num_entries);
 642	spin_unlock(&href->lock);
 643	return ret;
 644}
 645
 646/*
 647 * helper function to update the accounting in the head ref
 648 * existing and update must have the same bytenr
 649 */
 650static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
 651			 struct btrfs_delayed_ref_head *existing,
 652			 struct btrfs_delayed_ref_head *update,
 653			 int *old_ref_mod_ret)
 654{
 655	struct btrfs_delayed_ref_root *delayed_refs =
 656		&trans->transaction->delayed_refs;
 657	struct btrfs_fs_info *fs_info = trans->fs_info;
 658	int old_ref_mod;
 
 659
 660	BUG_ON(existing->is_data != update->is_data);
 661
 662	spin_lock(&existing->lock);
 663	if (update->must_insert_reserved) {
 664		/* if the extent was freed and then
 665		 * reallocated before the delayed ref
 666		 * entries were processed, we can end up
 667		 * with an existing head ref without
 668		 * the must_insert_reserved flag set.
 669		 * Set it again here
 670		 */
 671		existing->must_insert_reserved = update->must_insert_reserved;
 672
 673		/*
 674		 * update the num_bytes so we make sure the accounting
 675		 * is done correctly
 676		 */
 677		existing->num_bytes = update->num_bytes;
 678
 679	}
 680
 681	if (update->extent_op) {
 682		if (!existing->extent_op) {
 683			existing->extent_op = update->extent_op;
 684		} else {
 685			if (update->extent_op->update_key) {
 686				memcpy(&existing->extent_op->key,
 687				       &update->extent_op->key,
 688				       sizeof(update->extent_op->key));
 689				existing->extent_op->update_key = true;
 690			}
 691			if (update->extent_op->update_flags) {
 692				existing->extent_op->flags_to_set |=
 693					update->extent_op->flags_to_set;
 694				existing->extent_op->update_flags = true;
 695			}
 696			btrfs_free_delayed_extent_op(update->extent_op);
 697		}
 698	}
 699	/*
 700	 * update the reference mod on the head to reflect this new operation,
 701	 * only need the lock for this case cause we could be processing it
 702	 * currently, for refs we just added we know we're a-ok.
 703	 */
 704	old_ref_mod = existing->total_ref_mod;
 705	if (old_ref_mod_ret)
 706		*old_ref_mod_ret = old_ref_mod;
 707	existing->ref_mod += update->ref_mod;
 708	existing->total_ref_mod += update->ref_mod;
 709
 710	/*
 711	 * If we are going to from a positive ref mod to a negative or vice
 712	 * versa we need to make sure to adjust pending_csums accordingly.
 713	 */
 714	if (existing->is_data) {
 715		u64 csum_leaves =
 716			btrfs_csum_bytes_to_leaves(fs_info,
 717						   existing->num_bytes);
 718
 719		if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
 720			delayed_refs->pending_csums -= existing->num_bytes;
 721			btrfs_delayed_refs_rsv_release(fs_info, csum_leaves);
 722		}
 723		if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
 724			delayed_refs->pending_csums += existing->num_bytes;
 725			trans->delayed_ref_updates += csum_leaves;
 726		}
 727	}
 728	spin_unlock(&existing->lock);
 729}
 730
 731static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
 732				  struct btrfs_qgroup_extent_record *qrecord,
 733				  u64 bytenr, u64 num_bytes, u64 ref_root,
 734				  u64 reserved, int action, bool is_data,
 735				  bool is_system)
 
 
 
 
 
 736{
 
 
 
 737	int count_mod = 1;
 738	int must_insert_reserved = 0;
 739
 740	/* If reserved is provided, it must be a data extent. */
 741	BUG_ON(!is_data && reserved);
 742
 743	/*
 744	 * The head node stores the sum of all the mods, so dropping a ref
 745	 * should drop the sum in the head node by one.
 746	 */
 747	if (action == BTRFS_UPDATE_DELAYED_HEAD)
 748		count_mod = 0;
 749	else if (action == BTRFS_DROP_DELAYED_REF)
 750		count_mod = -1;
 751
 752	/*
 753	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the reserved
 754	 * accounting when the extent is finally added, or if a later
 755	 * modification deletes the delayed ref without ever inserting the
 756	 * extent into the extent allocation tree.  ref->must_insert_reserved
 757	 * is the flag used to record that accounting mods are required.
 
 758	 *
 759	 * Once we record must_insert_reserved, switch the action to
 760	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
 761	 */
 762	if (action == BTRFS_ADD_DELAYED_EXTENT)
 763		must_insert_reserved = 1;
 764	else
 765		must_insert_reserved = 0;
 766
 767	refcount_set(&head_ref->refs, 1);
 768	head_ref->bytenr = bytenr;
 769	head_ref->num_bytes = num_bytes;
 770	head_ref->ref_mod = count_mod;
 
 
 
 
 
 
 
 
 
 
 771	head_ref->must_insert_reserved = must_insert_reserved;
 772	head_ref->is_data = is_data;
 773	head_ref->is_system = is_system;
 774	head_ref->ref_tree = RB_ROOT_CACHED;
 775	INIT_LIST_HEAD(&head_ref->ref_add_list);
 776	RB_CLEAR_NODE(&head_ref->href_node);
 777	head_ref->processing = 0;
 778	head_ref->total_ref_mod = count_mod;
 779	spin_lock_init(&head_ref->lock);
 780	mutex_init(&head_ref->mutex);
 781
 782	if (qrecord) {
 783		if (ref_root && reserved) {
 784			qrecord->data_rsv = reserved;
 785			qrecord->data_rsv_refroot = ref_root;
 786		}
 787		qrecord->bytenr = bytenr;
 788		qrecord->num_bytes = num_bytes;
 789		qrecord->old_roots = NULL;
 
 
 
 
 
 
 
 
 790	}
 791}
 792
 793/*
 794 * helper function to actually insert a head node into the rbtree.
 795 * this does all the dirty work in terms of maintaining the correct
 796 * overall modification count.
 797 */
 798static noinline struct btrfs_delayed_ref_head *
 799add_delayed_ref_head(struct btrfs_trans_handle *trans,
 800		     struct btrfs_delayed_ref_head *head_ref,
 801		     struct btrfs_qgroup_extent_record *qrecord,
 802		     int action, int *qrecord_inserted_ret,
 803		     int *old_ref_mod, int *new_ref_mod)
 804{
 805	struct btrfs_delayed_ref_head *existing;
 
 806	struct btrfs_delayed_ref_root *delayed_refs;
 807	int qrecord_inserted = 0;
 
 
 
 808
 809	delayed_refs = &trans->transaction->delayed_refs;
 810
 811	/* Record qgroup extent info if provided */
 812	if (qrecord) {
 813		if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
 814					delayed_refs, qrecord))
 815			kfree(qrecord);
 816		else
 817			qrecord_inserted = 1;
 818	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 819
 820	trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
 
 
 821
 822	existing = htree_insert(&delayed_refs->href_root,
 823				&head_ref->href_node);
 824	if (existing) {
 825		update_existing_head_ref(trans, existing, head_ref,
 826					 old_ref_mod);
 827		/*
 828		 * we've updated the existing ref, free the newly
 829		 * allocated ref
 830		 */
 831		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 832		head_ref = existing;
 833	} else {
 834		if (old_ref_mod)
 835			*old_ref_mod = 0;
 836		if (head_ref->is_data && head_ref->ref_mod < 0) {
 837			delayed_refs->pending_csums += head_ref->num_bytes;
 838			trans->delayed_ref_updates +=
 839				btrfs_csum_bytes_to_leaves(trans->fs_info,
 840							   head_ref->num_bytes);
 841		}
 842		delayed_refs->num_heads++;
 843		delayed_refs->num_heads_ready++;
 844		atomic_inc(&delayed_refs->num_entries);
 845		trans->delayed_ref_updates++;
 846	}
 847	if (qrecord_inserted_ret)
 848		*qrecord_inserted_ret = qrecord_inserted;
 849	if (new_ref_mod)
 850		*new_ref_mod = head_ref->total_ref_mod;
 851
 852	return head_ref;
 853}
 854
 855/*
 856 * init_delayed_ref_common - Initialize the structure which represents a
 857 *			     modification to a an extent.
 858 *
 859 * @fs_info:    Internal to the mounted filesystem mount structure.
 860 *
 861 * @ref:	The structure which is going to be initialized.
 862 *
 863 * @bytenr:	The logical address of the extent for which a modification is
 864 *		going to be recorded.
 865 *
 866 * @num_bytes:  Size of the extent whose modification is being recorded.
 867 *
 868 * @ref_root:	The id of the root where this modification has originated, this
 869 *		can be either one of the well-known metadata trees or the
 870 *		subvolume id which references this extent.
 871 *
 872 * @action:	Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
 873 *		BTRFS_ADD_DELAYED_EXTENT
 874 *
 875 * @ref_type:	Holds the type of the extent which is being recorded, can be
 876 *		one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
 877 *		when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
 878 *		BTRFS_EXTENT_DATA_REF_KEY when recording data extent
 879 */
 880static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
 881				    struct btrfs_delayed_ref_node *ref,
 882				    u64 bytenr, u64 num_bytes, u64 ref_root,
 883				    int action, u8 ref_type)
 
 
 884{
 
 
 
 885	u64 seq = 0;
 886
 887	if (action == BTRFS_ADD_DELAYED_EXTENT)
 888		action = BTRFS_ADD_DELAYED_REF;
 889
 890	if (is_fstree(ref_root))
 891		seq = atomic64_read(&fs_info->tree_mod_seq);
 892
 893	refcount_set(&ref->refs, 1);
 
 894	ref->bytenr = bytenr;
 895	ref->num_bytes = num_bytes;
 896	ref->ref_mod = 1;
 897	ref->action = action;
 898	ref->is_head = 0;
 899	ref->in_tree = 1;
 
 
 
 900	ref->seq = seq;
 901	ref->type = ref_type;
 902	RB_CLEAR_NODE(&ref->ref_node);
 903	INIT_LIST_HEAD(&ref->add_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 904}
 905
 906/*
 907 * add a delayed tree ref.  This does all of the accounting required
 908 * to make sure the delayed ref is eventually processed before this
 909 * transaction commits.
 910 */
 911int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
 912			       struct btrfs_ref *generic_ref,
 
 
 913			       struct btrfs_delayed_extent_op *extent_op,
 914			       int *old_ref_mod, int *new_ref_mod)
 915{
 916	struct btrfs_fs_info *fs_info = trans->fs_info;
 917	struct btrfs_delayed_tree_ref *ref;
 918	struct btrfs_delayed_ref_head *head_ref;
 919	struct btrfs_delayed_ref_root *delayed_refs;
 920	struct btrfs_qgroup_extent_record *record = NULL;
 921	int qrecord_inserted;
 922	bool is_system;
 923	int action = generic_ref->action;
 924	int level = generic_ref->tree_ref.level;
 925	int ret;
 926	u64 bytenr = generic_ref->bytenr;
 927	u64 num_bytes = generic_ref->len;
 928	u64 parent = generic_ref->parent;
 929	u8 ref_type;
 930
 931	is_system = (generic_ref->real_root == BTRFS_CHUNK_TREE_OBJECTID);
 932
 933	ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
 934	BUG_ON(extent_op && extent_op->is_data);
 935	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
 936	if (!ref)
 937		return -ENOMEM;
 938
 939	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
 940	if (!head_ref) {
 941		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 942		return -ENOMEM;
 943	}
 944
 945	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
 946	    is_fstree(generic_ref->real_root) &&
 947	    is_fstree(generic_ref->tree_ref.root) &&
 948	    !generic_ref->skip_qgroup) {
 949		record = kzalloc(sizeof(*record), GFP_NOFS);
 950		if (!record) {
 951			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 952			kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 953			return -ENOMEM;
 954		}
 955	}
 956
 957	if (parent)
 958		ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
 959	else
 960		ref_type = BTRFS_TREE_BLOCK_REF_KEY;
 961
 962	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
 963				generic_ref->tree_ref.root, action, ref_type);
 964	ref->root = generic_ref->tree_ref.root;
 965	ref->parent = parent;
 966	ref->level = level;
 967
 968	init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
 969			      generic_ref->tree_ref.root, 0, action, false,
 970			      is_system);
 971	head_ref->extent_op = extent_op;
 972
 973	delayed_refs = &trans->transaction->delayed_refs;
 974	spin_lock(&delayed_refs->lock);
 975
 976	/*
 977	 * insert both the head node and the new ref without dropping
 978	 * the spin lock
 979	 */
 980	head_ref = add_delayed_ref_head(trans, head_ref, record,
 981					action, &qrecord_inserted,
 982					old_ref_mod, new_ref_mod);
 983
 984	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
 
 
 
 
 
 985	spin_unlock(&delayed_refs->lock);
 986
 987	/*
 988	 * Need to update the delayed_refs_rsv with any changes we may have
 989	 * made.
 990	 */
 991	btrfs_update_delayed_refs_rsv(trans);
 992
 993	trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
 994				   action == BTRFS_ADD_DELAYED_EXTENT ?
 995				   BTRFS_ADD_DELAYED_REF : action);
 996	if (ret > 0)
 997		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 998
 999	if (qrecord_inserted)
1000		btrfs_qgroup_trace_extent_post(fs_info, record);
1001
1002	return 0;
1003}
1004
1005/*
1006 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1007 */
1008int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1009			       struct btrfs_ref *generic_ref,
1010			       u64 reserved, int *old_ref_mod,
1011			       int *new_ref_mod)
 
 
 
1012{
1013	struct btrfs_fs_info *fs_info = trans->fs_info;
1014	struct btrfs_delayed_data_ref *ref;
1015	struct btrfs_delayed_ref_head *head_ref;
1016	struct btrfs_delayed_ref_root *delayed_refs;
1017	struct btrfs_qgroup_extent_record *record = NULL;
1018	int qrecord_inserted;
1019	int action = generic_ref->action;
1020	int ret;
1021	u64 bytenr = generic_ref->bytenr;
1022	u64 num_bytes = generic_ref->len;
1023	u64 parent = generic_ref->parent;
1024	u64 ref_root = generic_ref->data_ref.ref_root;
1025	u64 owner = generic_ref->data_ref.ino;
1026	u64 offset = generic_ref->data_ref.offset;
1027	u8 ref_type;
1028
1029	ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1030	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1031	if (!ref)
1032		return -ENOMEM;
1033
1034	if (parent)
1035	        ref_type = BTRFS_SHARED_DATA_REF_KEY;
1036	else
1037	        ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1038	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1039				ref_root, action, ref_type);
1040	ref->root = ref_root;
1041	ref->parent = parent;
1042	ref->objectid = owner;
1043	ref->offset = offset;
1044
1045
1046	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1047	if (!head_ref) {
1048		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1049		return -ENOMEM;
1050	}
1051
1052	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
1053	    is_fstree(ref_root) &&
1054	    is_fstree(generic_ref->real_root) &&
1055	    !generic_ref->skip_qgroup) {
1056		record = kzalloc(sizeof(*record), GFP_NOFS);
1057		if (!record) {
1058			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1059			kmem_cache_free(btrfs_delayed_ref_head_cachep,
1060					head_ref);
1061			return -ENOMEM;
1062		}
1063	}
1064
1065	init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1066			      reserved, action, true, false);
1067	head_ref->extent_op = NULL;
1068
1069	delayed_refs = &trans->transaction->delayed_refs;
1070	spin_lock(&delayed_refs->lock);
1071
1072	/*
1073	 * insert both the head node and the new ref without dropping
1074	 * the spin lock
1075	 */
1076	head_ref = add_delayed_ref_head(trans, head_ref, record,
1077					action, &qrecord_inserted,
1078					old_ref_mod, new_ref_mod);
1079
1080	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
 
 
 
 
 
1081	spin_unlock(&delayed_refs->lock);
1082
1083	/*
1084	 * Need to update the delayed_refs_rsv with any changes we may have
1085	 * made.
1086	 */
1087	btrfs_update_delayed_refs_rsv(trans);
1088
1089	trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1090				   action == BTRFS_ADD_DELAYED_EXTENT ?
1091				   BTRFS_ADD_DELAYED_REF : action);
1092	if (ret > 0)
1093		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1094
1095
1096	if (qrecord_inserted)
1097		return btrfs_qgroup_trace_extent_post(fs_info, record);
1098	return 0;
1099}
1100
1101int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
 
1102				u64 bytenr, u64 num_bytes,
1103				struct btrfs_delayed_extent_op *extent_op)
1104{
1105	struct btrfs_delayed_ref_head *head_ref;
1106	struct btrfs_delayed_ref_root *delayed_refs;
1107
1108	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1109	if (!head_ref)
1110		return -ENOMEM;
1111
1112	init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1113			      BTRFS_UPDATE_DELAYED_HEAD, extent_op->is_data,
1114			      false);
1115	head_ref->extent_op = extent_op;
1116
1117	delayed_refs = &trans->transaction->delayed_refs;
1118	spin_lock(&delayed_refs->lock);
1119
1120	add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1121			     NULL, NULL, NULL);
 
1122
 
 
1123	spin_unlock(&delayed_refs->lock);
1124
1125	/*
1126	 * Need to update the delayed_refs_rsv with any changes we may have
1127	 * made.
1128	 */
1129	btrfs_update_delayed_refs_rsv(trans);
1130	return 0;
1131}
1132
1133/*
1134 * This does a simple search for the head node for a given extent.  Returns the
1135 * head node if found, or NULL if not.
 
1136 */
1137struct btrfs_delayed_ref_head *
1138btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1139{
1140	lockdep_assert_held(&delayed_refs->lock);
1141
1142	return find_ref_head(delayed_refs, bytenr, false);
1143}
1144
1145void __cold btrfs_delayed_ref_exit(void)
1146{
1147	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1148	kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1149	kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1150	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1151}
1152
1153int __init btrfs_delayed_ref_init(void)
1154{
1155	btrfs_delayed_ref_head_cachep = kmem_cache_create(
1156				"btrfs_delayed_ref_head",
1157				sizeof(struct btrfs_delayed_ref_head), 0,
1158				SLAB_MEM_SPREAD, NULL);
1159	if (!btrfs_delayed_ref_head_cachep)
1160		goto fail;
1161
1162	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1163				"btrfs_delayed_tree_ref",
1164				sizeof(struct btrfs_delayed_tree_ref), 0,
1165				SLAB_MEM_SPREAD, NULL);
1166	if (!btrfs_delayed_tree_ref_cachep)
1167		goto fail;
1168
1169	btrfs_delayed_data_ref_cachep = kmem_cache_create(
1170				"btrfs_delayed_data_ref",
1171				sizeof(struct btrfs_delayed_data_ref), 0,
1172				SLAB_MEM_SPREAD, NULL);
1173	if (!btrfs_delayed_data_ref_cachep)
1174		goto fail;
1175
1176	btrfs_delayed_extent_op_cachep = kmem_cache_create(
1177				"btrfs_delayed_extent_op",
1178				sizeof(struct btrfs_delayed_extent_op), 0,
1179				SLAB_MEM_SPREAD, NULL);
1180	if (!btrfs_delayed_extent_op_cachep)
1181		goto fail;
1182
1183	return 0;
1184fail:
1185	btrfs_delayed_ref_exit();
1186	return -ENOMEM;
 
1187}
v3.5.6
 
  1/*
  2 * Copyright (C) 2009 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 19#include <linux/sched.h>
 20#include <linux/slab.h>
 21#include <linux/sort.h>
 22#include "ctree.h"
 23#include "delayed-ref.h"
 24#include "transaction.h"
 
 
 25
 
 
 
 
 26/*
 27 * delayed back reference update tracking.  For subvolume trees
 28 * we queue up extent allocations and backref maintenance for
 29 * delayed processing.   This avoids deep call chains where we
 30 * add extents in the middle of btrfs_search_slot, and it allows
 31 * us to buffer up frequently modified backrefs in an rb tree instead
 32 * of hammering updates on the extent allocation tree.
 33 */
 34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 35/*
 36 * compare two delayed tree backrefs with same bytenr and type
 37 */
 38static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref2,
 39			  struct btrfs_delayed_tree_ref *ref1)
 40{
 41	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
 42		if (ref1->root < ref2->root)
 43			return -1;
 44		if (ref1->root > ref2->root)
 45			return 1;
 46	} else {
 47		if (ref1->parent < ref2->parent)
 48			return -1;
 49		if (ref1->parent > ref2->parent)
 50			return 1;
 51	}
 52	return 0;
 53}
 54
 55/*
 56 * compare two delayed data backrefs with same bytenr and type
 57 */
 58static int comp_data_refs(struct btrfs_delayed_data_ref *ref2,
 59			  struct btrfs_delayed_data_ref *ref1)
 60{
 61	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
 62		if (ref1->root < ref2->root)
 63			return -1;
 64		if (ref1->root > ref2->root)
 65			return 1;
 66		if (ref1->objectid < ref2->objectid)
 67			return -1;
 68		if (ref1->objectid > ref2->objectid)
 69			return 1;
 70		if (ref1->offset < ref2->offset)
 71			return -1;
 72		if (ref1->offset > ref2->offset)
 73			return 1;
 74	} else {
 75		if (ref1->parent < ref2->parent)
 76			return -1;
 77		if (ref1->parent > ref2->parent)
 78			return 1;
 79	}
 80	return 0;
 81}
 82
 83/*
 84 * entries in the rb tree are ordered by the byte number of the extent,
 85 * type of the delayed backrefs and content of delayed backrefs.
 86 */
 87static int comp_entry(struct btrfs_delayed_ref_node *ref2,
 88		      struct btrfs_delayed_ref_node *ref1)
 89{
 90	if (ref1->bytenr < ref2->bytenr)
 91		return -1;
 92	if (ref1->bytenr > ref2->bytenr)
 93		return 1;
 94	if (ref1->is_head && ref2->is_head)
 95		return 0;
 96	if (ref2->is_head)
 97		return -1;
 98	if (ref1->is_head)
 99		return 1;
100	if (ref1->type < ref2->type)
101		return -1;
102	if (ref1->type > ref2->type)
103		return 1;
104	/* merging of sequenced refs is not allowed */
105	if (ref1->seq < ref2->seq)
106		return -1;
107	if (ref1->seq > ref2->seq)
108		return 1;
109	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
110	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY) {
111		return comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref2),
112				      btrfs_delayed_node_to_tree_ref(ref1));
113	} else if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY ||
114		   ref1->type == BTRFS_SHARED_DATA_REF_KEY) {
115		return comp_data_refs(btrfs_delayed_node_to_data_ref(ref2),
116				      btrfs_delayed_node_to_data_ref(ref1));
 
 
 
 
 
 
117	}
118	BUG();
119	return 0;
120}
121
122/*
123 * insert a new ref into the rbtree.  This returns any existing refs
124 * for the same (bytenr,parent) tuple, or NULL if the new node was properly
125 * inserted.
126 */
127static struct btrfs_delayed_ref_node *tree_insert(struct rb_root *root,
128						  struct rb_node *node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129{
130	struct rb_node **p = &root->rb_node;
 
131	struct rb_node *parent_node = NULL;
132	struct btrfs_delayed_ref_node *entry;
133	struct btrfs_delayed_ref_node *ins;
134	int cmp;
135
136	ins = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
137	while (*p) {
 
 
138		parent_node = *p;
139		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
140				 rb_node);
141
142		cmp = comp_entry(entry, ins);
143		if (cmp < 0)
144			p = &(*p)->rb_left;
145		else if (cmp > 0)
146			p = &(*p)->rb_right;
147		else
 
148			return entry;
 
149	}
150
151	rb_link_node(node, parent_node, p);
152	rb_insert_color(node, root);
153	return NULL;
154}
155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
156/*
157 * find an head entry based on bytenr. This returns the delayed ref
158 * head if it was able to find one, or NULL if nothing was in that spot.
159 * If return_bigger is given, the next bigger entry is returned if no exact
160 * match is found.
161 */
162static struct btrfs_delayed_ref_node *find_ref_head(struct rb_root *root,
163				  u64 bytenr,
164				  struct btrfs_delayed_ref_node **last,
165				  int return_bigger)
166{
 
167	struct rb_node *n;
168	struct btrfs_delayed_ref_node *entry;
169	int cmp = 0;
170
171again:
172	n = root->rb_node;
173	entry = NULL;
174	while (n) {
175		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
176		WARN_ON(!entry->in_tree);
177		if (last)
178			*last = entry;
179
180		if (bytenr < entry->bytenr)
181			cmp = -1;
182		else if (bytenr > entry->bytenr)
183			cmp = 1;
184		else if (!btrfs_delayed_ref_is_head(entry))
185			cmp = 1;
186		else
187			cmp = 0;
188
189		if (cmp < 0)
190			n = n->rb_left;
191		else if (cmp > 0)
192			n = n->rb_right;
193		else
194			return entry;
195	}
196	if (entry && return_bigger) {
197		if (cmp > 0) {
198			n = rb_next(&entry->rb_node);
199			if (!n)
200				n = rb_first(root);
201			entry = rb_entry(n, struct btrfs_delayed_ref_node,
202					 rb_node);
203			bytenr = entry->bytenr;
204			return_bigger = 0;
205			goto again;
206		}
207		return entry;
208	}
209	return NULL;
210}
211
212int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans,
213			   struct btrfs_delayed_ref_head *head)
214{
215	struct btrfs_delayed_ref_root *delayed_refs;
216
217	delayed_refs = &trans->transaction->delayed_refs;
218	assert_spin_locked(&delayed_refs->lock);
219	if (mutex_trylock(&head->mutex))
220		return 0;
221
222	atomic_inc(&head->node.refs);
223	spin_unlock(&delayed_refs->lock);
224
225	mutex_lock(&head->mutex);
226	spin_lock(&delayed_refs->lock);
227	if (!head->node.in_tree) {
228		mutex_unlock(&head->mutex);
229		btrfs_put_delayed_ref(&head->node);
230		return -EAGAIN;
231	}
232	btrfs_put_delayed_ref(&head->node);
233	return 0;
234}
235
236int btrfs_check_delayed_seq(struct btrfs_delayed_ref_root *delayed_refs,
237			    u64 seq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238{
239	struct seq_list *elem;
 
 
 
 
 
 
 
 
 
 
 
 
240
241	assert_spin_locked(&delayed_refs->lock);
242	if (list_empty(&delayed_refs->seq_head))
243		return 0;
 
 
 
 
 
 
244
245	elem = list_first_entry(&delayed_refs->seq_head, struct seq_list, list);
246	if (seq >= elem->seq) {
247		pr_debug("holding back delayed_ref %llu, lowest is %llu (%p)\n",
248			 seq, elem->seq, delayed_refs);
249		return 1;
 
 
 
 
 
 
 
250	}
251	return 0;
 
252}
253
254int btrfs_find_ref_cluster(struct btrfs_trans_handle *trans,
255			   struct list_head *cluster, u64 start)
 
256{
257	int count = 0;
258	struct btrfs_delayed_ref_root *delayed_refs;
259	struct rb_node *node;
260	struct btrfs_delayed_ref_node *ref;
261	struct btrfs_delayed_ref_head *head;
 
 
 
 
262
263	delayed_refs = &trans->transaction->delayed_refs;
264	if (start == 0) {
265		node = rb_first(&delayed_refs->root);
266	} else {
267		ref = NULL;
268		find_ref_head(&delayed_refs->root, start + 1, &ref, 1);
269		if (ref) {
270			node = &ref->rb_node;
271		} else
272			node = rb_first(&delayed_refs->root);
 
273	}
 
 
274again:
275	while (node && count < 32) {
276		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
277		if (btrfs_delayed_ref_is_head(ref)) {
278			head = btrfs_delayed_node_to_head(ref);
279			if (list_empty(&head->cluster)) {
280				list_add_tail(&head->cluster, cluster);
281				delayed_refs->run_delayed_start =
282					head->node.bytenr;
283				count++;
284
285				WARN_ON(delayed_refs->num_heads_ready == 0);
286				delayed_refs->num_heads_ready--;
287			} else if (count) {
288				/* the goal of the clustering is to find extents
289				 * that are likely to end up in the same extent
290				 * leaf on disk.  So, we don't want them spread
291				 * all over the tree.  Stop now if we've hit
292				 * a head that was already in use
293				 */
294				break;
295			}
 
 
 
 
296		}
297		node = rb_next(node);
298	}
299	if (count) {
300		return 0;
301	} else if (start) {
302		/*
303		 * we've gone to the end of the rbtree without finding any
304		 * clusters.  start from the beginning and try again
305		 */
306		start = 0;
307		node = rb_first(&delayed_refs->root);
308		goto again;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
309	}
310	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311}
312
313/*
314 * helper function to update an extent delayed ref in the
315 * rbtree.  existing and update must both have the same
316 * bytenr and parent
317 *
318 * This may free existing if the update cancels out whatever
319 * operation it was doing.
320 */
321static noinline void
322update_existing_ref(struct btrfs_trans_handle *trans,
323		    struct btrfs_delayed_ref_root *delayed_refs,
324		    struct btrfs_delayed_ref_node *existing,
325		    struct btrfs_delayed_ref_node *update)
326{
327	if (update->action != existing->action) {
328		/*
329		 * this is effectively undoing either an add or a
330		 * drop.  We decrement the ref_mod, and if it goes
331		 * down to zero we just delete the entry without
332		 * every changing the extent allocation tree.
333		 */
334		existing->ref_mod--;
335		if (existing->ref_mod == 0) {
336			rb_erase(&existing->rb_node,
337				 &delayed_refs->root);
338			existing->in_tree = 0;
339			btrfs_put_delayed_ref(existing);
340			delayed_refs->num_entries--;
341			if (trans->delayed_ref_updates)
342				trans->delayed_ref_updates--;
343		} else {
344			WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
345				existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
346		}
347	} else {
348		WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
349			existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
350		/*
351		 * the action on the existing ref matches
352		 * the action on the ref we're trying to add.
353		 * Bump the ref_mod by one so the backref that
354		 * is eventually added/removed has the correct
355		 * reference count
356		 */
357		existing->ref_mod += update->ref_mod;
 
 
 
 
 
 
358	}
 
 
 
 
 
 
 
 
 
 
 
 
 
359}
360
361/*
362 * helper function to update the accounting in the head ref
363 * existing and update must have the same bytenr
364 */
365static noinline void
366update_existing_head_ref(struct btrfs_delayed_ref_node *existing,
367			 struct btrfs_delayed_ref_node *update)
368{
369	struct btrfs_delayed_ref_head *existing_ref;
370	struct btrfs_delayed_ref_head *ref;
371
372	existing_ref = btrfs_delayed_node_to_head(existing);
373	ref = btrfs_delayed_node_to_head(update);
374	BUG_ON(existing_ref->is_data != ref->is_data);
375
376	if (ref->must_insert_reserved) {
 
 
 
377		/* if the extent was freed and then
378		 * reallocated before the delayed ref
379		 * entries were processed, we can end up
380		 * with an existing head ref without
381		 * the must_insert_reserved flag set.
382		 * Set it again here
383		 */
384		existing_ref->must_insert_reserved = ref->must_insert_reserved;
385
386		/*
387		 * update the num_bytes so we make sure the accounting
388		 * is done correctly
389		 */
390		existing->num_bytes = update->num_bytes;
391
392	}
393
394	if (ref->extent_op) {
395		if (!existing_ref->extent_op) {
396			existing_ref->extent_op = ref->extent_op;
397		} else {
398			if (ref->extent_op->update_key) {
399				memcpy(&existing_ref->extent_op->key,
400				       &ref->extent_op->key,
401				       sizeof(ref->extent_op->key));
402				existing_ref->extent_op->update_key = 1;
403			}
404			if (ref->extent_op->update_flags) {
405				existing_ref->extent_op->flags_to_set |=
406					ref->extent_op->flags_to_set;
407				existing_ref->extent_op->update_flags = 1;
408			}
409			kfree(ref->extent_op);
410		}
411	}
412	/*
413	 * update the reference mod on the head to reflect this new operation
 
 
414	 */
 
 
 
415	existing->ref_mod += update->ref_mod;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
416}
417
418/*
419 * helper function to actually insert a head node into the rbtree.
420 * this does all the dirty work in terms of maintaining the correct
421 * overall modification count.
422 */
423static noinline void add_delayed_ref_head(struct btrfs_fs_info *fs_info,
424					struct btrfs_trans_handle *trans,
425					struct btrfs_delayed_ref_node *ref,
426					u64 bytenr, u64 num_bytes,
427					int action, int is_data)
428{
429	struct btrfs_delayed_ref_node *existing;
430	struct btrfs_delayed_ref_head *head_ref = NULL;
431	struct btrfs_delayed_ref_root *delayed_refs;
432	int count_mod = 1;
433	int must_insert_reserved = 0;
434
 
 
 
435	/*
436	 * the head node stores the sum of all the mods, so dropping a ref
437	 * should drop the sum in the head node by one.
438	 */
439	if (action == BTRFS_UPDATE_DELAYED_HEAD)
440		count_mod = 0;
441	else if (action == BTRFS_DROP_DELAYED_REF)
442		count_mod = -1;
443
444	/*
445	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update
446	 * the reserved accounting when the extent is finally added, or
447	 * if a later modification deletes the delayed ref without ever
448	 * inserting the extent into the extent allocation tree.
449	 * ref->must_insert_reserved is the flag used to record
450	 * that accounting mods are required.
451	 *
452	 * Once we record must_insert_reserved, switch the action to
453	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
454	 */
455	if (action == BTRFS_ADD_DELAYED_EXTENT)
456		must_insert_reserved = 1;
457	else
458		must_insert_reserved = 0;
459
460	delayed_refs = &trans->transaction->delayed_refs;
461
462	/* first set the basic ref node struct up */
463	atomic_set(&ref->refs, 1);
464	ref->bytenr = bytenr;
465	ref->num_bytes = num_bytes;
466	ref->ref_mod = count_mod;
467	ref->type  = 0;
468	ref->action  = 0;
469	ref->is_head = 1;
470	ref->in_tree = 1;
471	ref->seq = 0;
472
473	head_ref = btrfs_delayed_node_to_head(ref);
474	head_ref->must_insert_reserved = must_insert_reserved;
475	head_ref->is_data = is_data;
476
477	INIT_LIST_HEAD(&head_ref->cluster);
 
 
 
 
 
478	mutex_init(&head_ref->mutex);
479
480	trace_btrfs_delayed_ref_head(ref, head_ref, action);
481
482	existing = tree_insert(&delayed_refs->root, &ref->rb_node);
483
484	if (existing) {
485		update_existing_head_ref(existing, ref);
486		/*
487		 * we've updated the existing ref, free the newly
488		 * allocated ref
489		 */
490		kfree(head_ref);
491	} else {
492		delayed_refs->num_heads++;
493		delayed_refs->num_heads_ready++;
494		delayed_refs->num_entries++;
495		trans->delayed_ref_updates++;
496	}
497}
498
499/*
500 * helper to insert a delayed tree ref into the rbtree.
 
 
501 */
502static noinline void add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
503					 struct btrfs_trans_handle *trans,
504					 struct btrfs_delayed_ref_node *ref,
505					 u64 bytenr, u64 num_bytes, u64 parent,
506					 u64 ref_root, int level, int action,
507					 int for_cow)
508{
509	struct btrfs_delayed_ref_node *existing;
510	struct btrfs_delayed_tree_ref *full_ref;
511	struct btrfs_delayed_ref_root *delayed_refs;
512	u64 seq = 0;
513
514	if (action == BTRFS_ADD_DELAYED_EXTENT)
515		action = BTRFS_ADD_DELAYED_REF;
516
517	delayed_refs = &trans->transaction->delayed_refs;
518
519	/* first set the basic ref node struct up */
520	atomic_set(&ref->refs, 1);
521	ref->bytenr = bytenr;
522	ref->num_bytes = num_bytes;
523	ref->ref_mod = 1;
524	ref->action = action;
525	ref->is_head = 0;
526	ref->in_tree = 1;
527
528	if (is_fstree(ref_root))
529		seq = inc_delayed_seq(delayed_refs);
530	ref->seq = seq;
531
532	full_ref = btrfs_delayed_node_to_tree_ref(ref);
533	full_ref->parent = parent;
534	full_ref->root = ref_root;
535	if (parent)
536		ref->type = BTRFS_SHARED_BLOCK_REF_KEY;
537	else
538		ref->type = BTRFS_TREE_BLOCK_REF_KEY;
539	full_ref->level = level;
540
541	trace_btrfs_delayed_tree_ref(ref, full_ref, action);
542
543	existing = tree_insert(&delayed_refs->root, &ref->rb_node);
544
 
 
545	if (existing) {
546		update_existing_ref(trans, delayed_refs, existing, ref);
 
547		/*
548		 * we've updated the existing ref, free the newly
549		 * allocated ref
550		 */
551		kfree(full_ref);
 
552	} else {
553		delayed_refs->num_entries++;
 
 
 
 
 
 
 
 
 
 
554		trans->delayed_ref_updates++;
555	}
 
 
 
 
 
 
556}
557
558/*
559 * helper to insert a delayed data ref into the rbtree.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
560 */
561static noinline void add_delayed_data_ref(struct btrfs_fs_info *fs_info,
562					 struct btrfs_trans_handle *trans,
563					 struct btrfs_delayed_ref_node *ref,
564					 u64 bytenr, u64 num_bytes, u64 parent,
565					 u64 ref_root, u64 owner, u64 offset,
566					 int action, int for_cow)
567{
568	struct btrfs_delayed_ref_node *existing;
569	struct btrfs_delayed_data_ref *full_ref;
570	struct btrfs_delayed_ref_root *delayed_refs;
571	u64 seq = 0;
572
573	if (action == BTRFS_ADD_DELAYED_EXTENT)
574		action = BTRFS_ADD_DELAYED_REF;
575
576	delayed_refs = &trans->transaction->delayed_refs;
 
577
578	/* first set the basic ref node struct up */
579	atomic_set(&ref->refs, 1);
580	ref->bytenr = bytenr;
581	ref->num_bytes = num_bytes;
582	ref->ref_mod = 1;
583	ref->action = action;
584	ref->is_head = 0;
585	ref->in_tree = 1;
586
587	if (is_fstree(ref_root))
588		seq = inc_delayed_seq(delayed_refs);
589	ref->seq = seq;
590
591	full_ref = btrfs_delayed_node_to_data_ref(ref);
592	full_ref->parent = parent;
593	full_ref->root = ref_root;
594	if (parent)
595		ref->type = BTRFS_SHARED_DATA_REF_KEY;
596	else
597		ref->type = BTRFS_EXTENT_DATA_REF_KEY;
598
599	full_ref->objectid = owner;
600	full_ref->offset = offset;
601
602	trace_btrfs_delayed_data_ref(ref, full_ref, action);
603
604	existing = tree_insert(&delayed_refs->root, &ref->rb_node);
605
606	if (existing) {
607		update_existing_ref(trans, delayed_refs, existing, ref);
608		/*
609		 * we've updated the existing ref, free the newly
610		 * allocated ref
611		 */
612		kfree(full_ref);
613	} else {
614		delayed_refs->num_entries++;
615		trans->delayed_ref_updates++;
616	}
617}
618
619/*
620 * add a delayed tree ref.  This does all of the accounting required
621 * to make sure the delayed ref is eventually processed before this
622 * transaction commits.
623 */
624int btrfs_add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
625			       struct btrfs_trans_handle *trans,
626			       u64 bytenr, u64 num_bytes, u64 parent,
627			       u64 ref_root,  int level, int action,
628			       struct btrfs_delayed_extent_op *extent_op,
629			       int for_cow)
630{
 
631	struct btrfs_delayed_tree_ref *ref;
632	struct btrfs_delayed_ref_head *head_ref;
633	struct btrfs_delayed_ref_root *delayed_refs;
 
 
 
 
 
 
 
 
 
 
 
 
634
 
635	BUG_ON(extent_op && extent_op->is_data);
636	ref = kmalloc(sizeof(*ref), GFP_NOFS);
637	if (!ref)
638		return -ENOMEM;
639
640	head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
641	if (!head_ref) {
642		kfree(ref);
643		return -ENOMEM;
644	}
645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
646	head_ref->extent_op = extent_op;
647
648	delayed_refs = &trans->transaction->delayed_refs;
649	spin_lock(&delayed_refs->lock);
650
651	/*
652	 * insert both the head node and the new ref without dropping
653	 * the spin lock
654	 */
655	add_delayed_ref_head(fs_info, trans, &head_ref->node, bytenr,
656				   num_bytes, action, 0);
 
657
658	add_delayed_tree_ref(fs_info, trans, &ref->node, bytenr,
659				   num_bytes, parent, ref_root, level, action,
660				   for_cow);
661	if (!is_fstree(ref_root) &&
662	    waitqueue_active(&delayed_refs->seq_wait))
663		wake_up(&delayed_refs->seq_wait);
664	spin_unlock(&delayed_refs->lock);
665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
666	return 0;
667}
668
669/*
670 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
671 */
672int btrfs_add_delayed_data_ref(struct btrfs_fs_info *fs_info,
673			       struct btrfs_trans_handle *trans,
674			       u64 bytenr, u64 num_bytes,
675			       u64 parent, u64 ref_root,
676			       u64 owner, u64 offset, int action,
677			       struct btrfs_delayed_extent_op *extent_op,
678			       int for_cow)
679{
 
680	struct btrfs_delayed_data_ref *ref;
681	struct btrfs_delayed_ref_head *head_ref;
682	struct btrfs_delayed_ref_root *delayed_refs;
 
 
 
 
 
 
 
 
 
 
 
683
684	BUG_ON(extent_op && !extent_op->is_data);
685	ref = kmalloc(sizeof(*ref), GFP_NOFS);
686	if (!ref)
687		return -ENOMEM;
688
689	head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
 
 
 
 
 
 
 
 
 
 
 
 
690	if (!head_ref) {
691		kfree(ref);
692		return -ENOMEM;
693	}
694
695	head_ref->extent_op = extent_op;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
696
697	delayed_refs = &trans->transaction->delayed_refs;
698	spin_lock(&delayed_refs->lock);
699
700	/*
701	 * insert both the head node and the new ref without dropping
702	 * the spin lock
703	 */
704	add_delayed_ref_head(fs_info, trans, &head_ref->node, bytenr,
705				   num_bytes, action, 1);
 
706
707	add_delayed_data_ref(fs_info, trans, &ref->node, bytenr,
708				   num_bytes, parent, ref_root, owner, offset,
709				   action, for_cow);
710	if (!is_fstree(ref_root) &&
711	    waitqueue_active(&delayed_refs->seq_wait))
712		wake_up(&delayed_refs->seq_wait);
713	spin_unlock(&delayed_refs->lock);
714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
715	return 0;
716}
717
718int btrfs_add_delayed_extent_op(struct btrfs_fs_info *fs_info,
719				struct btrfs_trans_handle *trans,
720				u64 bytenr, u64 num_bytes,
721				struct btrfs_delayed_extent_op *extent_op)
722{
723	struct btrfs_delayed_ref_head *head_ref;
724	struct btrfs_delayed_ref_root *delayed_refs;
725
726	head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
727	if (!head_ref)
728		return -ENOMEM;
729
 
 
 
730	head_ref->extent_op = extent_op;
731
732	delayed_refs = &trans->transaction->delayed_refs;
733	spin_lock(&delayed_refs->lock);
734
735	add_delayed_ref_head(fs_info, trans, &head_ref->node, bytenr,
736				   num_bytes, BTRFS_UPDATE_DELAYED_HEAD,
737				   extent_op->is_data);
738
739	if (waitqueue_active(&delayed_refs->seq_wait))
740		wake_up(&delayed_refs->seq_wait);
741	spin_unlock(&delayed_refs->lock);
 
 
 
 
 
 
742	return 0;
743}
744
745/*
746 * this does a simple search for the head node for a given extent.
747 * It must be called with the delayed ref spinlock held, and it returns
748 * the head node if any where found, or NULL if not.
749 */
750struct btrfs_delayed_ref_head *
751btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr)
 
 
 
 
 
 
 
752{
753	struct btrfs_delayed_ref_node *ref;
754	struct btrfs_delayed_ref_root *delayed_refs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
755
756	delayed_refs = &trans->transaction->delayed_refs;
757	ref = find_ref_head(&delayed_refs->root, bytenr, NULL, 0);
758	if (ref)
759		return btrfs_delayed_node_to_head(ref);
760	return NULL;
761}