Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
   4 *
   5 *  Copyright (C) 2002 - 2011  Paul Mundt
   6 *  Copyright (C) 2015 Glider bvba
   7 *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
   8 *
   9 * based off of the old drivers/char/sh-sci.c by:
  10 *
  11 *   Copyright (C) 1999, 2000  Niibe Yutaka
  12 *   Copyright (C) 2000  Sugioka Toshinobu
  13 *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
  14 *   Modified to support SecureEdge. David McCullough (2002)
  15 *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
  16 *   Removed SH7300 support (Jul 2007).
  17 */
  18#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  19#define SUPPORT_SYSRQ
  20#endif
  21
  22#undef DEBUG
  23
  24#include <linux/clk.h>
  25#include <linux/console.h>
  26#include <linux/ctype.h>
  27#include <linux/cpufreq.h>
  28#include <linux/delay.h>
  29#include <linux/dmaengine.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/err.h>
  32#include <linux/errno.h>
  33#include <linux/init.h>
  34#include <linux/interrupt.h>
  35#include <linux/ioport.h>
  36#include <linux/ktime.h>
  37#include <linux/major.h>
 
  38#include <linux/module.h>
  39#include <linux/mm.h>
  40#include <linux/of.h>
  41#include <linux/of_device.h>
  42#include <linux/platform_device.h>
  43#include <linux/pm_runtime.h>
 
  44#include <linux/scatterlist.h>
  45#include <linux/serial.h>
  46#include <linux/serial_sci.h>
  47#include <linux/sh_dma.h>
  48#include <linux/slab.h>
  49#include <linux/string.h>
  50#include <linux/sysrq.h>
  51#include <linux/timer.h>
  52#include <linux/tty.h>
  53#include <linux/tty_flip.h>
  54
  55#ifdef CONFIG_SUPERH
  56#include <asm/sh_bios.h>
 
  57#endif
  58
  59#include "serial_mctrl_gpio.h"
  60#include "sh-sci.h"
  61
  62/* Offsets into the sci_port->irqs array */
  63enum {
  64	SCIx_ERI_IRQ,
  65	SCIx_RXI_IRQ,
  66	SCIx_TXI_IRQ,
  67	SCIx_BRI_IRQ,
  68	SCIx_DRI_IRQ,
  69	SCIx_TEI_IRQ,
  70	SCIx_NR_IRQS,
  71
  72	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
  73};
  74
  75#define SCIx_IRQ_IS_MUXED(port)			\
  76	((port)->irqs[SCIx_ERI_IRQ] ==	\
  77	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
  78	((port)->irqs[SCIx_ERI_IRQ] &&	\
  79	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
  80
  81enum SCI_CLKS {
  82	SCI_FCK,		/* Functional Clock */
  83	SCI_SCK,		/* Optional External Clock */
  84	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
  85	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
  86	SCI_NUM_CLKS
  87};
  88
  89/* Bit x set means sampling rate x + 1 is supported */
  90#define SCI_SR(x)		BIT((x) - 1)
  91#define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
  92
  93#define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
  94				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
  95				SCI_SR(19) | SCI_SR(27)
  96
  97#define min_sr(_port)		ffs((_port)->sampling_rate_mask)
  98#define max_sr(_port)		fls((_port)->sampling_rate_mask)
  99
 100/* Iterate over all supported sampling rates, from high to low */
 101#define for_each_sr(_sr, _port)						\
 102	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
 103		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
 104
 105struct plat_sci_reg {
 106	u8 offset, size;
 107};
 108
 109struct sci_port_params {
 110	const struct plat_sci_reg regs[SCIx_NR_REGS];
 111	unsigned int fifosize;
 112	unsigned int overrun_reg;
 113	unsigned int overrun_mask;
 114	unsigned int sampling_rate_mask;
 115	unsigned int error_mask;
 116	unsigned int error_clear;
 117};
 118
 119struct sci_port {
 120	struct uart_port	port;
 121
 122	/* Platform configuration */
 123	const struct sci_port_params *params;
 124	const struct plat_sci_port *cfg;
 125	unsigned int		sampling_rate_mask;
 126	resource_size_t		reg_size;
 127	struct mctrl_gpios	*gpios;
 128
 129	/* Clocks */
 130	struct clk		*clks[SCI_NUM_CLKS];
 131	unsigned long		clk_rates[SCI_NUM_CLKS];
 132
 133	int			irqs[SCIx_NR_IRQS];
 134	char			*irqstr[SCIx_NR_IRQS];
 135
 136	struct dma_chan			*chan_tx;
 137	struct dma_chan			*chan_rx;
 138
 139#ifdef CONFIG_SERIAL_SH_SCI_DMA
 140	struct dma_chan			*chan_tx_saved;
 141	struct dma_chan			*chan_rx_saved;
 142	dma_cookie_t			cookie_tx;
 143	dma_cookie_t			cookie_rx[2];
 144	dma_cookie_t			active_rx;
 145	dma_addr_t			tx_dma_addr;
 146	unsigned int			tx_dma_len;
 147	struct scatterlist		sg_rx[2];
 148	void				*rx_buf[2];
 149	size_t				buf_len_rx;
 150	struct work_struct		work_tx;
 151	struct hrtimer			rx_timer;
 152	unsigned int			rx_timeout;	/* microseconds */
 153#endif
 154	unsigned int			rx_frame;
 155	int				rx_trigger;
 156	struct timer_list		rx_fifo_timer;
 157	int				rx_fifo_timeout;
 158	u16				hscif_tot;
 159
 160	bool has_rtscts;
 161	bool autorts;
 162};
 163
 164#define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
 165
 166static struct sci_port sci_ports[SCI_NPORTS];
 167static unsigned long sci_ports_in_use;
 168static struct uart_driver sci_uart_driver;
 169
 170static inline struct sci_port *
 171to_sci_port(struct uart_port *uart)
 172{
 173	return container_of(uart, struct sci_port, port);
 174}
 175
 176static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
 177	/*
 178	 * Common SCI definitions, dependent on the port's regshift
 179	 * value.
 180	 */
 181	[SCIx_SCI_REGTYPE] = {
 182		.regs = {
 183			[SCSMR]		= { 0x00,  8 },
 184			[SCBRR]		= { 0x01,  8 },
 185			[SCSCR]		= { 0x02,  8 },
 186			[SCxTDR]	= { 0x03,  8 },
 187			[SCxSR]		= { 0x04,  8 },
 188			[SCxRDR]	= { 0x05,  8 },
 189		},
 190		.fifosize = 1,
 191		.overrun_reg = SCxSR,
 192		.overrun_mask = SCI_ORER,
 193		.sampling_rate_mask = SCI_SR(32),
 194		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
 195		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
 196	},
 197
 198	/*
 199	 * Common definitions for legacy IrDA ports.
 200	 */
 201	[SCIx_IRDA_REGTYPE] = {
 202		.regs = {
 203			[SCSMR]		= { 0x00,  8 },
 204			[SCBRR]		= { 0x02,  8 },
 205			[SCSCR]		= { 0x04,  8 },
 206			[SCxTDR]	= { 0x06,  8 },
 207			[SCxSR]		= { 0x08, 16 },
 208			[SCxRDR]	= { 0x0a,  8 },
 209			[SCFCR]		= { 0x0c,  8 },
 210			[SCFDR]		= { 0x0e, 16 },
 211		},
 212		.fifosize = 1,
 213		.overrun_reg = SCxSR,
 214		.overrun_mask = SCI_ORER,
 215		.sampling_rate_mask = SCI_SR(32),
 216		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
 217		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
 218	},
 219
 220	/*
 221	 * Common SCIFA definitions.
 222	 */
 223	[SCIx_SCIFA_REGTYPE] = {
 224		.regs = {
 225			[SCSMR]		= { 0x00, 16 },
 226			[SCBRR]		= { 0x04,  8 },
 227			[SCSCR]		= { 0x08, 16 },
 228			[SCxTDR]	= { 0x20,  8 },
 229			[SCxSR]		= { 0x14, 16 },
 230			[SCxRDR]	= { 0x24,  8 },
 231			[SCFCR]		= { 0x18, 16 },
 232			[SCFDR]		= { 0x1c, 16 },
 233			[SCPCR]		= { 0x30, 16 },
 234			[SCPDR]		= { 0x34, 16 },
 235		},
 236		.fifosize = 64,
 237		.overrun_reg = SCxSR,
 238		.overrun_mask = SCIFA_ORER,
 239		.sampling_rate_mask = SCI_SR_SCIFAB,
 240		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 241		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 242	},
 243
 244	/*
 245	 * Common SCIFB definitions.
 246	 */
 247	[SCIx_SCIFB_REGTYPE] = {
 248		.regs = {
 249			[SCSMR]		= { 0x00, 16 },
 250			[SCBRR]		= { 0x04,  8 },
 251			[SCSCR]		= { 0x08, 16 },
 252			[SCxTDR]	= { 0x40,  8 },
 253			[SCxSR]		= { 0x14, 16 },
 254			[SCxRDR]	= { 0x60,  8 },
 255			[SCFCR]		= { 0x18, 16 },
 256			[SCTFDR]	= { 0x38, 16 },
 257			[SCRFDR]	= { 0x3c, 16 },
 258			[SCPCR]		= { 0x30, 16 },
 259			[SCPDR]		= { 0x34, 16 },
 260		},
 261		.fifosize = 256,
 262		.overrun_reg = SCxSR,
 263		.overrun_mask = SCIFA_ORER,
 264		.sampling_rate_mask = SCI_SR_SCIFAB,
 265		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 266		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 267	},
 268
 269	/*
 270	 * Common SH-2(A) SCIF definitions for ports with FIFO data
 271	 * count registers.
 272	 */
 273	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
 274		.regs = {
 275			[SCSMR]		= { 0x00, 16 },
 276			[SCBRR]		= { 0x04,  8 },
 277			[SCSCR]		= { 0x08, 16 },
 278			[SCxTDR]	= { 0x0c,  8 },
 279			[SCxSR]		= { 0x10, 16 },
 280			[SCxRDR]	= { 0x14,  8 },
 281			[SCFCR]		= { 0x18, 16 },
 282			[SCFDR]		= { 0x1c, 16 },
 283			[SCSPTR]	= { 0x20, 16 },
 284			[SCLSR]		= { 0x24, 16 },
 285		},
 286		.fifosize = 16,
 287		.overrun_reg = SCLSR,
 288		.overrun_mask = SCLSR_ORER,
 289		.sampling_rate_mask = SCI_SR(32),
 290		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 291		.error_clear = SCIF_ERROR_CLEAR,
 292	},
 293
 294	/*
 295	 * The "SCIFA" that is in RZ/T and RZ/A2.
 296	 * It looks like a normal SCIF with FIFO data, but with a
 297	 * compressed address space. Also, the break out of interrupts
 298	 * are different: ERI/BRI, RXI, TXI, TEI, DRI.
 299	 */
 300	[SCIx_RZ_SCIFA_REGTYPE] = {
 301		.regs = {
 302			[SCSMR]		= { 0x00, 16 },
 303			[SCBRR]		= { 0x02,  8 },
 304			[SCSCR]		= { 0x04, 16 },
 305			[SCxTDR]	= { 0x06,  8 },
 306			[SCxSR]		= { 0x08, 16 },
 307			[SCxRDR]	= { 0x0A,  8 },
 308			[SCFCR]		= { 0x0C, 16 },
 309			[SCFDR]		= { 0x0E, 16 },
 310			[SCSPTR]	= { 0x10, 16 },
 311			[SCLSR]		= { 0x12, 16 },
 
 312		},
 313		.fifosize = 16,
 314		.overrun_reg = SCLSR,
 315		.overrun_mask = SCLSR_ORER,
 316		.sampling_rate_mask = SCI_SR(32),
 317		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 318		.error_clear = SCIF_ERROR_CLEAR,
 319	},
 320
 321	/*
 322	 * Common SH-3 SCIF definitions.
 323	 */
 324	[SCIx_SH3_SCIF_REGTYPE] = {
 325		.regs = {
 326			[SCSMR]		= { 0x00,  8 },
 327			[SCBRR]		= { 0x02,  8 },
 328			[SCSCR]		= { 0x04,  8 },
 329			[SCxTDR]	= { 0x06,  8 },
 330			[SCxSR]		= { 0x08, 16 },
 331			[SCxRDR]	= { 0x0a,  8 },
 332			[SCFCR]		= { 0x0c,  8 },
 333			[SCFDR]		= { 0x0e, 16 },
 334		},
 335		.fifosize = 16,
 336		.overrun_reg = SCLSR,
 337		.overrun_mask = SCLSR_ORER,
 338		.sampling_rate_mask = SCI_SR(32),
 339		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 340		.error_clear = SCIF_ERROR_CLEAR,
 341	},
 342
 343	/*
 344	 * Common SH-4(A) SCIF(B) definitions.
 345	 */
 346	[SCIx_SH4_SCIF_REGTYPE] = {
 347		.regs = {
 348			[SCSMR]		= { 0x00, 16 },
 349			[SCBRR]		= { 0x04,  8 },
 350			[SCSCR]		= { 0x08, 16 },
 351			[SCxTDR]	= { 0x0c,  8 },
 352			[SCxSR]		= { 0x10, 16 },
 353			[SCxRDR]	= { 0x14,  8 },
 354			[SCFCR]		= { 0x18, 16 },
 355			[SCFDR]		= { 0x1c, 16 },
 356			[SCSPTR]	= { 0x20, 16 },
 357			[SCLSR]		= { 0x24, 16 },
 358		},
 359		.fifosize = 16,
 360		.overrun_reg = SCLSR,
 361		.overrun_mask = SCLSR_ORER,
 362		.sampling_rate_mask = SCI_SR(32),
 363		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 364		.error_clear = SCIF_ERROR_CLEAR,
 365	},
 366
 367	/*
 368	 * Common SCIF definitions for ports with a Baud Rate Generator for
 369	 * External Clock (BRG).
 370	 */
 371	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
 372		.regs = {
 373			[SCSMR]		= { 0x00, 16 },
 374			[SCBRR]		= { 0x04,  8 },
 375			[SCSCR]		= { 0x08, 16 },
 376			[SCxTDR]	= { 0x0c,  8 },
 377			[SCxSR]		= { 0x10, 16 },
 378			[SCxRDR]	= { 0x14,  8 },
 379			[SCFCR]		= { 0x18, 16 },
 380			[SCFDR]		= { 0x1c, 16 },
 381			[SCSPTR]	= { 0x20, 16 },
 382			[SCLSR]		= { 0x24, 16 },
 383			[SCDL]		= { 0x30, 16 },
 384			[SCCKS]		= { 0x34, 16 },
 385		},
 386		.fifosize = 16,
 387		.overrun_reg = SCLSR,
 388		.overrun_mask = SCLSR_ORER,
 389		.sampling_rate_mask = SCI_SR(32),
 390		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 391		.error_clear = SCIF_ERROR_CLEAR,
 392	},
 393
 394	/*
 395	 * Common HSCIF definitions.
 396	 */
 397	[SCIx_HSCIF_REGTYPE] = {
 398		.regs = {
 399			[SCSMR]		= { 0x00, 16 },
 400			[SCBRR]		= { 0x04,  8 },
 401			[SCSCR]		= { 0x08, 16 },
 402			[SCxTDR]	= { 0x0c,  8 },
 403			[SCxSR]		= { 0x10, 16 },
 404			[SCxRDR]	= { 0x14,  8 },
 405			[SCFCR]		= { 0x18, 16 },
 406			[SCFDR]		= { 0x1c, 16 },
 407			[SCSPTR]	= { 0x20, 16 },
 408			[SCLSR]		= { 0x24, 16 },
 409			[HSSRR]		= { 0x40, 16 },
 410			[SCDL]		= { 0x30, 16 },
 411			[SCCKS]		= { 0x34, 16 },
 412			[HSRTRGR]	= { 0x54, 16 },
 413			[HSTTRGR]	= { 0x58, 16 },
 414		},
 415		.fifosize = 128,
 416		.overrun_reg = SCLSR,
 417		.overrun_mask = SCLSR_ORER,
 418		.sampling_rate_mask = SCI_SR_RANGE(8, 32),
 419		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 420		.error_clear = SCIF_ERROR_CLEAR,
 421	},
 422
 423	/*
 424	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
 425	 * register.
 426	 */
 427	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
 428		.regs = {
 429			[SCSMR]		= { 0x00, 16 },
 430			[SCBRR]		= { 0x04,  8 },
 431			[SCSCR]		= { 0x08, 16 },
 432			[SCxTDR]	= { 0x0c,  8 },
 433			[SCxSR]		= { 0x10, 16 },
 434			[SCxRDR]	= { 0x14,  8 },
 435			[SCFCR]		= { 0x18, 16 },
 436			[SCFDR]		= { 0x1c, 16 },
 437			[SCLSR]		= { 0x24, 16 },
 438		},
 439		.fifosize = 16,
 440		.overrun_reg = SCLSR,
 441		.overrun_mask = SCLSR_ORER,
 442		.sampling_rate_mask = SCI_SR(32),
 443		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 444		.error_clear = SCIF_ERROR_CLEAR,
 445	},
 446
 447	/*
 448	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
 449	 * count registers.
 450	 */
 451	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
 452		.regs = {
 453			[SCSMR]		= { 0x00, 16 },
 454			[SCBRR]		= { 0x04,  8 },
 455			[SCSCR]		= { 0x08, 16 },
 456			[SCxTDR]	= { 0x0c,  8 },
 457			[SCxSR]		= { 0x10, 16 },
 458			[SCxRDR]	= { 0x14,  8 },
 459			[SCFCR]		= { 0x18, 16 },
 460			[SCFDR]		= { 0x1c, 16 },
 461			[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
 462			[SCRFDR]	= { 0x20, 16 },
 463			[SCSPTR]	= { 0x24, 16 },
 464			[SCLSR]		= { 0x28, 16 },
 465		},
 466		.fifosize = 16,
 467		.overrun_reg = SCLSR,
 468		.overrun_mask = SCLSR_ORER,
 469		.sampling_rate_mask = SCI_SR(32),
 470		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 471		.error_clear = SCIF_ERROR_CLEAR,
 472	},
 473
 474	/*
 475	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
 476	 * registers.
 477	 */
 478	[SCIx_SH7705_SCIF_REGTYPE] = {
 479		.regs = {
 480			[SCSMR]		= { 0x00, 16 },
 481			[SCBRR]		= { 0x04,  8 },
 482			[SCSCR]		= { 0x08, 16 },
 483			[SCxTDR]	= { 0x20,  8 },
 484			[SCxSR]		= { 0x14, 16 },
 485			[SCxRDR]	= { 0x24,  8 },
 486			[SCFCR]		= { 0x18, 16 },
 487			[SCFDR]		= { 0x1c, 16 },
 488		},
 489		.fifosize = 64,
 490		.overrun_reg = SCxSR,
 491		.overrun_mask = SCIFA_ORER,
 492		.sampling_rate_mask = SCI_SR(16),
 493		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 494		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 495	},
 496};
 497
 498#define sci_getreg(up, offset)		(&to_sci_port(up)->params->regs[offset])
 499
 500/*
 501 * The "offset" here is rather misleading, in that it refers to an enum
 502 * value relative to the port mapping rather than the fixed offset
 503 * itself, which needs to be manually retrieved from the platform's
 504 * register map for the given port.
 505 */
 506static unsigned int sci_serial_in(struct uart_port *p, int offset)
 507{
 508	const struct plat_sci_reg *reg = sci_getreg(p, offset);
 509
 510	if (reg->size == 8)
 511		return ioread8(p->membase + (reg->offset << p->regshift));
 512	else if (reg->size == 16)
 513		return ioread16(p->membase + (reg->offset << p->regshift));
 514	else
 515		WARN(1, "Invalid register access\n");
 516
 517	return 0;
 518}
 519
 520static void sci_serial_out(struct uart_port *p, int offset, int value)
 521{
 522	const struct plat_sci_reg *reg = sci_getreg(p, offset);
 523
 524	if (reg->size == 8)
 525		iowrite8(value, p->membase + (reg->offset << p->regshift));
 526	else if (reg->size == 16)
 527		iowrite16(value, p->membase + (reg->offset << p->regshift));
 528	else
 529		WARN(1, "Invalid register access\n");
 530}
 531
 532static void sci_port_enable(struct sci_port *sci_port)
 533{
 534	unsigned int i;
 535
 536	if (!sci_port->port.dev)
 537		return;
 538
 539	pm_runtime_get_sync(sci_port->port.dev);
 540
 541	for (i = 0; i < SCI_NUM_CLKS; i++) {
 542		clk_prepare_enable(sci_port->clks[i]);
 543		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
 544	}
 545	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
 546}
 547
 548static void sci_port_disable(struct sci_port *sci_port)
 549{
 550	unsigned int i;
 551
 552	if (!sci_port->port.dev)
 553		return;
 554
 555	for (i = SCI_NUM_CLKS; i-- > 0; )
 556		clk_disable_unprepare(sci_port->clks[i]);
 557
 558	pm_runtime_put_sync(sci_port->port.dev);
 559}
 560
 561static inline unsigned long port_rx_irq_mask(struct uart_port *port)
 562{
 563	/*
 564	 * Not all ports (such as SCIFA) will support REIE. Rather than
 565	 * special-casing the port type, we check the port initialization
 566	 * IRQ enable mask to see whether the IRQ is desired at all. If
 567	 * it's unset, it's logically inferred that there's no point in
 568	 * testing for it.
 569	 */
 570	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
 571}
 572
 573static void sci_start_tx(struct uart_port *port)
 574{
 575	struct sci_port *s = to_sci_port(port);
 576	unsigned short ctrl;
 577
 578#ifdef CONFIG_SERIAL_SH_SCI_DMA
 579	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 580		u16 new, scr = serial_port_in(port, SCSCR);
 581		if (s->chan_tx)
 582			new = scr | SCSCR_TDRQE;
 583		else
 584			new = scr & ~SCSCR_TDRQE;
 585		if (new != scr)
 586			serial_port_out(port, SCSCR, new);
 587	}
 588
 589	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
 590	    dma_submit_error(s->cookie_tx)) {
 
 
 
 
 591		s->cookie_tx = 0;
 592		schedule_work(&s->work_tx);
 593	}
 594#endif
 595
 596	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 
 597		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
 598		ctrl = serial_port_in(port, SCSCR);
 599		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
 
 
 
 
 
 
 
 
 
 600	}
 601}
 602
 603static void sci_stop_tx(struct uart_port *port)
 604{
 605	unsigned short ctrl;
 606
 607	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
 608	ctrl = serial_port_in(port, SCSCR);
 609
 610	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 611		ctrl &= ~SCSCR_TDRQE;
 612
 613	ctrl &= ~SCSCR_TIE;
 614
 615	serial_port_out(port, SCSCR, ctrl);
 
 
 
 
 
 
 
 
 616}
 617
 618static void sci_start_rx(struct uart_port *port)
 619{
 620	unsigned short ctrl;
 621
 622	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
 623
 624	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 625		ctrl &= ~SCSCR_RDRQE;
 626
 627	serial_port_out(port, SCSCR, ctrl);
 628}
 629
 630static void sci_stop_rx(struct uart_port *port)
 631{
 632	unsigned short ctrl;
 633
 634	ctrl = serial_port_in(port, SCSCR);
 635
 636	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 637		ctrl &= ~SCSCR_RDRQE;
 638
 639	ctrl &= ~port_rx_irq_mask(port);
 640
 641	serial_port_out(port, SCSCR, ctrl);
 642}
 643
 644static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
 645{
 646	if (port->type == PORT_SCI) {
 647		/* Just store the mask */
 648		serial_port_out(port, SCxSR, mask);
 649	} else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
 650		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
 651		/* Only clear the status bits we want to clear */
 652		serial_port_out(port, SCxSR,
 653				serial_port_in(port, SCxSR) & mask);
 654	} else {
 655		/* Store the mask, clear parity/framing errors */
 656		serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
 657	}
 658}
 659
 660#if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
 661    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
 662
 663#ifdef CONFIG_CONSOLE_POLL
 664static int sci_poll_get_char(struct uart_port *port)
 665{
 666	unsigned short status;
 667	int c;
 668
 669	do {
 670		status = serial_port_in(port, SCxSR);
 671		if (status & SCxSR_ERRORS(port)) {
 672			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
 673			continue;
 674		}
 675		break;
 676	} while (1);
 677
 678	if (!(status & SCxSR_RDxF(port)))
 679		return NO_POLL_CHAR;
 680
 681	c = serial_port_in(port, SCxRDR);
 682
 683	/* Dummy read */
 684	serial_port_in(port, SCxSR);
 685	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 686
 687	return c;
 688}
 689#endif
 690
 691static void sci_poll_put_char(struct uart_port *port, unsigned char c)
 692{
 693	unsigned short status;
 694
 695	do {
 696		status = serial_port_in(port, SCxSR);
 697	} while (!(status & SCxSR_TDxE(port)));
 698
 699	serial_port_out(port, SCxTDR, c);
 700	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
 701}
 702#endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
 703	  CONFIG_SERIAL_SH_SCI_EARLYCON */
 704
 705static void sci_init_pins(struct uart_port *port, unsigned int cflag)
 706{
 707	struct sci_port *s = to_sci_port(port);
 708
 709	/*
 710	 * Use port-specific handler if provided.
 711	 */
 712	if (s->cfg->ops && s->cfg->ops->init_pins) {
 713		s->cfg->ops->init_pins(port, cflag);
 714		return;
 715	}
 716
 717	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 718		u16 data = serial_port_in(port, SCPDR);
 719		u16 ctrl = serial_port_in(port, SCPCR);
 720
 721		/* Enable RXD and TXD pin functions */
 722		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
 723		if (to_sci_port(port)->has_rtscts) {
 724			/* RTS# is output, active low, unless autorts */
 725			if (!(port->mctrl & TIOCM_RTS)) {
 726				ctrl |= SCPCR_RTSC;
 727				data |= SCPDR_RTSD;
 728			} else if (!s->autorts) {
 729				ctrl |= SCPCR_RTSC;
 730				data &= ~SCPDR_RTSD;
 731			} else {
 732				/* Enable RTS# pin function */
 733				ctrl &= ~SCPCR_RTSC;
 734			}
 735			/* Enable CTS# pin function */
 736			ctrl &= ~SCPCR_CTSC;
 737		}
 738		serial_port_out(port, SCPDR, data);
 739		serial_port_out(port, SCPCR, ctrl);
 740	} else if (sci_getreg(port, SCSPTR)->size) {
 741		u16 status = serial_port_in(port, SCSPTR);
 742
 743		/* RTS# is always output; and active low, unless autorts */
 744		status |= SCSPTR_RTSIO;
 745		if (!(port->mctrl & TIOCM_RTS))
 746			status |= SCSPTR_RTSDT;
 747		else if (!s->autorts)
 748			status &= ~SCSPTR_RTSDT;
 749		/* CTS# and SCK are inputs */
 750		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
 751		serial_port_out(port, SCSPTR, status);
 752	}
 753}
 754
 755static int sci_txfill(struct uart_port *port)
 756{
 757	struct sci_port *s = to_sci_port(port);
 758	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
 759	const struct plat_sci_reg *reg;
 760
 761	reg = sci_getreg(port, SCTFDR);
 762	if (reg->size)
 763		return serial_port_in(port, SCTFDR) & fifo_mask;
 764
 765	reg = sci_getreg(port, SCFDR);
 766	if (reg->size)
 767		return serial_port_in(port, SCFDR) >> 8;
 768
 769	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
 770}
 771
 772static int sci_txroom(struct uart_port *port)
 773{
 774	return port->fifosize - sci_txfill(port);
 775}
 776
 777static int sci_rxfill(struct uart_port *port)
 778{
 779	struct sci_port *s = to_sci_port(port);
 780	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
 781	const struct plat_sci_reg *reg;
 782
 783	reg = sci_getreg(port, SCRFDR);
 784	if (reg->size)
 785		return serial_port_in(port, SCRFDR) & fifo_mask;
 786
 787	reg = sci_getreg(port, SCFDR);
 788	if (reg->size)
 789		return serial_port_in(port, SCFDR) & fifo_mask;
 790
 791	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
 792}
 793
 794/* ********************************************************************** *
 795 *                   the interrupt related routines                       *
 796 * ********************************************************************** */
 797
 798static void sci_transmit_chars(struct uart_port *port)
 799{
 800	struct circ_buf *xmit = &port->state->xmit;
 801	unsigned int stopped = uart_tx_stopped(port);
 802	unsigned short status;
 803	unsigned short ctrl;
 804	int count;
 805
 806	status = serial_port_in(port, SCxSR);
 807	if (!(status & SCxSR_TDxE(port))) {
 808		ctrl = serial_port_in(port, SCSCR);
 809		if (uart_circ_empty(xmit))
 810			ctrl &= ~SCSCR_TIE;
 811		else
 812			ctrl |= SCSCR_TIE;
 813		serial_port_out(port, SCSCR, ctrl);
 814		return;
 815	}
 816
 817	count = sci_txroom(port);
 818
 819	do {
 820		unsigned char c;
 821
 822		if (port->x_char) {
 823			c = port->x_char;
 824			port->x_char = 0;
 825		} else if (!uart_circ_empty(xmit) && !stopped) {
 826			c = xmit->buf[xmit->tail];
 827			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
 
 
 
 
 
 828		} else {
 829			break;
 830		}
 831
 832		serial_port_out(port, SCxTDR, c);
 833
 834		port->icount.tx++;
 835	} while (--count > 0);
 836
 837	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
 838
 839	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 840		uart_write_wakeup(port);
 841	if (uart_circ_empty(xmit))
 842		sci_stop_tx(port);
 
 
 
 
 
 843
 
 
 844}
 845
 846/* On SH3, SCIF may read end-of-break as a space->mark char */
 847#define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
 848
 849static void sci_receive_chars(struct uart_port *port)
 850{
 851	struct tty_port *tport = &port->state->port;
 852	int i, count, copied = 0;
 853	unsigned short status;
 854	unsigned char flag;
 855
 856	status = serial_port_in(port, SCxSR);
 857	if (!(status & SCxSR_RDxF(port)))
 858		return;
 859
 860	while (1) {
 861		/* Don't copy more bytes than there is room for in the buffer */
 862		count = tty_buffer_request_room(tport, sci_rxfill(port));
 863
 864		/* If for any reason we can't copy more data, we're done! */
 865		if (count == 0)
 866			break;
 867
 868		if (port->type == PORT_SCI) {
 869			char c = serial_port_in(port, SCxRDR);
 870			if (uart_handle_sysrq_char(port, c))
 871				count = 0;
 872			else
 873				tty_insert_flip_char(tport, c, TTY_NORMAL);
 874		} else {
 875			for (i = 0; i < count; i++) {
 876				char c = serial_port_in(port, SCxRDR);
 877
 878				status = serial_port_in(port, SCxSR);
 
 
 
 
 
 
 
 879				if (uart_handle_sysrq_char(port, c)) {
 880					count--; i--;
 881					continue;
 882				}
 883
 884				/* Store data and status */
 885				if (status & SCxSR_FER(port)) {
 886					flag = TTY_FRAME;
 887					port->icount.frame++;
 888					dev_notice(port->dev, "frame error\n");
 889				} else if (status & SCxSR_PER(port)) {
 890					flag = TTY_PARITY;
 891					port->icount.parity++;
 892					dev_notice(port->dev, "parity error\n");
 893				} else
 894					flag = TTY_NORMAL;
 895
 896				tty_insert_flip_char(tport, c, flag);
 897			}
 898		}
 899
 900		serial_port_in(port, SCxSR); /* dummy read */
 901		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 902
 903		copied += count;
 904		port->icount.rx += count;
 905	}
 906
 907	if (copied) {
 908		/* Tell the rest of the system the news. New characters! */
 909		tty_flip_buffer_push(tport);
 910	} else {
 911		/* TTY buffers full; read from RX reg to prevent lockup */
 912		serial_port_in(port, SCxRDR);
 913		serial_port_in(port, SCxSR); /* dummy read */
 914		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 915	}
 916}
 917
 918static int sci_handle_errors(struct uart_port *port)
 919{
 920	int copied = 0;
 921	unsigned short status = serial_port_in(port, SCxSR);
 922	struct tty_port *tport = &port->state->port;
 923	struct sci_port *s = to_sci_port(port);
 924
 925	/* Handle overruns */
 926	if (status & s->params->overrun_mask) {
 927		port->icount.overrun++;
 928
 929		/* overrun error */
 930		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
 931			copied++;
 932
 933		dev_notice(port->dev, "overrun error\n");
 934	}
 935
 936	if (status & SCxSR_FER(port)) {
 937		/* frame error */
 938		port->icount.frame++;
 939
 940		if (tty_insert_flip_char(tport, 0, TTY_FRAME))
 941			copied++;
 942
 943		dev_notice(port->dev, "frame error\n");
 944	}
 945
 946	if (status & SCxSR_PER(port)) {
 947		/* parity error */
 948		port->icount.parity++;
 949
 950		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
 951			copied++;
 952
 953		dev_notice(port->dev, "parity error\n");
 954	}
 955
 956	if (copied)
 957		tty_flip_buffer_push(tport);
 958
 959	return copied;
 960}
 961
 962static int sci_handle_fifo_overrun(struct uart_port *port)
 963{
 964	struct tty_port *tport = &port->state->port;
 965	struct sci_port *s = to_sci_port(port);
 966	const struct plat_sci_reg *reg;
 967	int copied = 0;
 968	u16 status;
 969
 970	reg = sci_getreg(port, s->params->overrun_reg);
 971	if (!reg->size)
 972		return 0;
 973
 974	status = serial_port_in(port, s->params->overrun_reg);
 975	if (status & s->params->overrun_mask) {
 976		status &= ~s->params->overrun_mask;
 977		serial_port_out(port, s->params->overrun_reg, status);
 978
 979		port->icount.overrun++;
 980
 981		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
 982		tty_flip_buffer_push(tport);
 983
 984		dev_dbg(port->dev, "overrun error\n");
 985		copied++;
 986	}
 987
 988	return copied;
 989}
 990
 991static int sci_handle_breaks(struct uart_port *port)
 992{
 993	int copied = 0;
 994	unsigned short status = serial_port_in(port, SCxSR);
 995	struct tty_port *tport = &port->state->port;
 996
 997	if (uart_handle_break(port))
 998		return 0;
 999
1000	if (status & SCxSR_BRK(port)) {
1001		port->icount.brk++;
1002
1003		/* Notify of BREAK */
1004		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1005			copied++;
1006
1007		dev_dbg(port->dev, "BREAK detected\n");
1008	}
1009
1010	if (copied)
1011		tty_flip_buffer_push(tport);
1012
1013	copied += sci_handle_fifo_overrun(port);
1014
1015	return copied;
1016}
1017
1018static int scif_set_rtrg(struct uart_port *port, int rx_trig)
1019{
1020	unsigned int bits;
1021
 
 
1022	if (rx_trig < 1)
1023		rx_trig = 1;
1024	if (rx_trig >= port->fifosize)
1025		rx_trig = port->fifosize;
1026
1027	/* HSCIF can be set to an arbitrary level. */
1028	if (sci_getreg(port, HSRTRGR)->size) {
1029		serial_port_out(port, HSRTRGR, rx_trig);
1030		return rx_trig;
1031	}
1032
1033	switch (port->type) {
1034	case PORT_SCIF:
1035		if (rx_trig < 4) {
1036			bits = 0;
1037			rx_trig = 1;
1038		} else if (rx_trig < 8) {
1039			bits = SCFCR_RTRG0;
1040			rx_trig = 4;
1041		} else if (rx_trig < 14) {
1042			bits = SCFCR_RTRG1;
1043			rx_trig = 8;
1044		} else {
1045			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1046			rx_trig = 14;
1047		}
1048		break;
1049	case PORT_SCIFA:
1050	case PORT_SCIFB:
1051		if (rx_trig < 16) {
1052			bits = 0;
1053			rx_trig = 1;
1054		} else if (rx_trig < 32) {
1055			bits = SCFCR_RTRG0;
1056			rx_trig = 16;
1057		} else if (rx_trig < 48) {
1058			bits = SCFCR_RTRG1;
1059			rx_trig = 32;
1060		} else {
1061			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1062			rx_trig = 48;
1063		}
1064		break;
1065	default:
1066		WARN(1, "unknown FIFO configuration");
1067		return 1;
1068	}
1069
1070	serial_port_out(port, SCFCR,
1071		(serial_port_in(port, SCFCR) &
1072		~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1073
1074	return rx_trig;
1075}
1076
1077static int scif_rtrg_enabled(struct uart_port *port)
1078{
1079	if (sci_getreg(port, HSRTRGR)->size)
1080		return serial_port_in(port, HSRTRGR) != 0;
1081	else
1082		return (serial_port_in(port, SCFCR) &
1083			(SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1084}
1085
1086static void rx_fifo_timer_fn(struct timer_list *t)
1087{
1088	struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1089	struct uart_port *port = &s->port;
1090
1091	dev_dbg(port->dev, "Rx timed out\n");
1092	scif_set_rtrg(port, 1);
1093}
1094
1095static ssize_t rx_fifo_trigger_show(struct device *dev,
1096				    struct device_attribute *attr, char *buf)
1097{
1098	struct uart_port *port = dev_get_drvdata(dev);
1099	struct sci_port *sci = to_sci_port(port);
1100
1101	return sprintf(buf, "%d\n", sci->rx_trigger);
1102}
1103
1104static ssize_t rx_fifo_trigger_store(struct device *dev,
1105				     struct device_attribute *attr,
1106				     const char *buf, size_t count)
1107{
1108	struct uart_port *port = dev_get_drvdata(dev);
1109	struct sci_port *sci = to_sci_port(port);
1110	int ret;
1111	long r;
1112
1113	ret = kstrtol(buf, 0, &r);
1114	if (ret)
1115		return ret;
1116
1117	sci->rx_trigger = scif_set_rtrg(port, r);
1118	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1119		scif_set_rtrg(port, 1);
1120
1121	return count;
1122}
1123
1124static DEVICE_ATTR_RW(rx_fifo_trigger);
1125
1126static ssize_t rx_fifo_timeout_show(struct device *dev,
1127			       struct device_attribute *attr,
1128			       char *buf)
1129{
1130	struct uart_port *port = dev_get_drvdata(dev);
1131	struct sci_port *sci = to_sci_port(port);
1132	int v;
1133
1134	if (port->type == PORT_HSCIF)
1135		v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1136	else
1137		v = sci->rx_fifo_timeout;
1138
1139	return sprintf(buf, "%d\n", v);
1140}
1141
1142static ssize_t rx_fifo_timeout_store(struct device *dev,
1143				struct device_attribute *attr,
1144				const char *buf,
1145				size_t count)
1146{
1147	struct uart_port *port = dev_get_drvdata(dev);
1148	struct sci_port *sci = to_sci_port(port);
1149	int ret;
1150	long r;
1151
1152	ret = kstrtol(buf, 0, &r);
1153	if (ret)
1154		return ret;
1155
1156	if (port->type == PORT_HSCIF) {
1157		if (r < 0 || r > 3)
1158			return -EINVAL;
1159		sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1160	} else {
1161		sci->rx_fifo_timeout = r;
1162		scif_set_rtrg(port, 1);
1163		if (r > 0)
1164			timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1165	}
1166
1167	return count;
1168}
1169
1170static DEVICE_ATTR_RW(rx_fifo_timeout);
1171
1172
1173#ifdef CONFIG_SERIAL_SH_SCI_DMA
1174static void sci_dma_tx_complete(void *arg)
1175{
1176	struct sci_port *s = arg;
1177	struct uart_port *port = &s->port;
1178	struct circ_buf *xmit = &port->state->xmit;
1179	unsigned long flags;
1180
1181	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1182
1183	spin_lock_irqsave(&port->lock, flags);
1184
1185	xmit->tail += s->tx_dma_len;
1186	xmit->tail &= UART_XMIT_SIZE - 1;
1187
1188	port->icount.tx += s->tx_dma_len;
1189
1190	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1191		uart_write_wakeup(port);
1192
1193	if (!uart_circ_empty(xmit)) {
1194		s->cookie_tx = 0;
1195		schedule_work(&s->work_tx);
1196	} else {
1197		s->cookie_tx = -EINVAL;
1198		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1199			u16 ctrl = serial_port_in(port, SCSCR);
1200			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
 
 
 
 
 
 
1201		}
1202	}
1203
1204	spin_unlock_irqrestore(&port->lock, flags);
1205}
1206
1207/* Locking: called with port lock held */
1208static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1209{
1210	struct uart_port *port = &s->port;
1211	struct tty_port *tport = &port->state->port;
1212	int copied;
1213
1214	copied = tty_insert_flip_string(tport, buf, count);
1215	if (copied < count)
1216		port->icount.buf_overrun++;
1217
1218	port->icount.rx += copied;
1219
1220	return copied;
1221}
1222
1223static int sci_dma_rx_find_active(struct sci_port *s)
1224{
1225	unsigned int i;
1226
1227	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1228		if (s->active_rx == s->cookie_rx[i])
1229			return i;
1230
1231	return -1;
1232}
1233
1234static void sci_dma_rx_chan_invalidate(struct sci_port *s)
1235{
1236	unsigned int i;
1237
1238	s->chan_rx = NULL;
1239	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1240		s->cookie_rx[i] = -EINVAL;
1241	s->active_rx = 0;
1242}
1243
1244static void sci_dma_rx_release(struct sci_port *s)
1245{
1246	struct dma_chan *chan = s->chan_rx_saved;
 
 
1247
 
1248	s->chan_rx_saved = NULL;
1249	sci_dma_rx_chan_invalidate(s);
 
 
1250	dmaengine_terminate_sync(chan);
1251	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1252			  sg_dma_address(&s->sg_rx[0]));
1253	dma_release_channel(chan);
1254}
1255
1256static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1257{
1258	long sec = usec / 1000000;
1259	long nsec = (usec % 1000000) * 1000;
1260	ktime_t t = ktime_set(sec, nsec);
1261
1262	hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1263}
1264
1265static void sci_dma_rx_reenable_irq(struct sci_port *s)
1266{
1267	struct uart_port *port = &s->port;
1268	u16 scr;
1269
1270	/* Direct new serial port interrupts back to CPU */
1271	scr = serial_port_in(port, SCSCR);
1272	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1273		scr &= ~SCSCR_RDRQE;
1274		enable_irq(s->irqs[SCIx_RXI_IRQ]);
 
 
 
 
1275	}
1276	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1277}
1278
1279static void sci_dma_rx_complete(void *arg)
1280{
1281	struct sci_port *s = arg;
1282	struct dma_chan *chan = s->chan_rx;
1283	struct uart_port *port = &s->port;
1284	struct dma_async_tx_descriptor *desc;
1285	unsigned long flags;
1286	int active, count = 0;
1287
1288	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1289		s->active_rx);
1290
1291	spin_lock_irqsave(&port->lock, flags);
1292
1293	active = sci_dma_rx_find_active(s);
1294	if (active >= 0)
1295		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1296
1297	start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1298
1299	if (count)
1300		tty_flip_buffer_push(&port->state->port);
1301
1302	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1303				       DMA_DEV_TO_MEM,
1304				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1305	if (!desc)
1306		goto fail;
1307
1308	desc->callback = sci_dma_rx_complete;
1309	desc->callback_param = s;
1310	s->cookie_rx[active] = dmaengine_submit(desc);
1311	if (dma_submit_error(s->cookie_rx[active]))
1312		goto fail;
1313
1314	s->active_rx = s->cookie_rx[!active];
1315
1316	dma_async_issue_pending(chan);
1317
1318	spin_unlock_irqrestore(&port->lock, flags);
1319	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1320		__func__, s->cookie_rx[active], active, s->active_rx);
1321	return;
1322
1323fail:
1324	spin_unlock_irqrestore(&port->lock, flags);
1325	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1326	/* Switch to PIO */
1327	spin_lock_irqsave(&port->lock, flags);
1328	dmaengine_terminate_async(chan);
1329	sci_dma_rx_chan_invalidate(s);
1330	sci_dma_rx_reenable_irq(s);
1331	spin_unlock_irqrestore(&port->lock, flags);
1332}
1333
1334static void sci_dma_tx_release(struct sci_port *s)
1335{
1336	struct dma_chan *chan = s->chan_tx_saved;
1337
1338	cancel_work_sync(&s->work_tx);
1339	s->chan_tx_saved = s->chan_tx = NULL;
1340	s->cookie_tx = -EINVAL;
1341	dmaengine_terminate_sync(chan);
1342	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1343			 DMA_TO_DEVICE);
1344	dma_release_channel(chan);
1345}
1346
1347static int sci_dma_rx_submit(struct sci_port *s, bool port_lock_held)
1348{
1349	struct dma_chan *chan = s->chan_rx;
1350	struct uart_port *port = &s->port;
1351	unsigned long flags;
1352	int i;
1353
1354	for (i = 0; i < 2; i++) {
1355		struct scatterlist *sg = &s->sg_rx[i];
1356		struct dma_async_tx_descriptor *desc;
1357
1358		desc = dmaengine_prep_slave_sg(chan,
1359			sg, 1, DMA_DEV_TO_MEM,
1360			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1361		if (!desc)
1362			goto fail;
1363
1364		desc->callback = sci_dma_rx_complete;
1365		desc->callback_param = s;
1366		s->cookie_rx[i] = dmaengine_submit(desc);
1367		if (dma_submit_error(s->cookie_rx[i]))
1368			goto fail;
1369
1370	}
1371
1372	s->active_rx = s->cookie_rx[0];
1373
1374	dma_async_issue_pending(chan);
1375	return 0;
1376
1377fail:
1378	/* Switch to PIO */
1379	if (!port_lock_held)
1380		spin_lock_irqsave(&port->lock, flags);
1381	if (i)
1382		dmaengine_terminate_async(chan);
1383	sci_dma_rx_chan_invalidate(s);
1384	sci_start_rx(port);
1385	if (!port_lock_held)
1386		spin_unlock_irqrestore(&port->lock, flags);
1387	return -EAGAIN;
1388}
1389
1390static void sci_dma_tx_work_fn(struct work_struct *work)
1391{
1392	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1393	struct dma_async_tx_descriptor *desc;
1394	struct dma_chan *chan = s->chan_tx;
1395	struct uart_port *port = &s->port;
1396	struct circ_buf *xmit = &port->state->xmit;
1397	unsigned long flags;
1398	dma_addr_t buf;
1399	int head, tail;
1400
1401	/*
1402	 * DMA is idle now.
1403	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1404	 * offsets and lengths. Since it is a circular buffer, we have to
1405	 * transmit till the end, and then the rest. Take the port lock to get a
1406	 * consistent xmit buffer state.
1407	 */
1408	spin_lock_irq(&port->lock);
1409	head = xmit->head;
1410	tail = xmit->tail;
1411	buf = s->tx_dma_addr + (tail & (UART_XMIT_SIZE - 1));
1412	s->tx_dma_len = min_t(unsigned int,
1413		CIRC_CNT(head, tail, UART_XMIT_SIZE),
1414		CIRC_CNT_TO_END(head, tail, UART_XMIT_SIZE));
1415	if (!s->tx_dma_len) {
1416		/* Transmit buffer has been flushed */
1417		spin_unlock_irq(&port->lock);
1418		return;
1419	}
1420
1421	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1422					   DMA_MEM_TO_DEV,
1423					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1424	if (!desc) {
1425		spin_unlock_irq(&port->lock);
1426		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1427		goto switch_to_pio;
1428	}
1429
1430	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1431				   DMA_TO_DEVICE);
1432
1433	desc->callback = sci_dma_tx_complete;
1434	desc->callback_param = s;
1435	s->cookie_tx = dmaengine_submit(desc);
1436	if (dma_submit_error(s->cookie_tx)) {
1437		spin_unlock_irq(&port->lock);
1438		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1439		goto switch_to_pio;
1440	}
1441
1442	spin_unlock_irq(&port->lock);
1443	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1444		__func__, xmit->buf, tail, head, s->cookie_tx);
1445
1446	dma_async_issue_pending(chan);
1447	return;
1448
1449switch_to_pio:
1450	spin_lock_irqsave(&port->lock, flags);
1451	s->chan_tx = NULL;
1452	sci_start_tx(port);
1453	spin_unlock_irqrestore(&port->lock, flags);
1454	return;
1455}
1456
1457static enum hrtimer_restart sci_dma_rx_timer_fn(struct hrtimer *t)
1458{
1459	struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1460	struct dma_chan *chan = s->chan_rx;
1461	struct uart_port *port = &s->port;
1462	struct dma_tx_state state;
1463	enum dma_status status;
1464	unsigned long flags;
1465	unsigned int read;
1466	int active, count;
1467
1468	dev_dbg(port->dev, "DMA Rx timed out\n");
1469
1470	spin_lock_irqsave(&port->lock, flags);
1471
1472	active = sci_dma_rx_find_active(s);
1473	if (active < 0) {
1474		spin_unlock_irqrestore(&port->lock, flags);
1475		return HRTIMER_NORESTART;
1476	}
1477
1478	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1479	if (status == DMA_COMPLETE) {
1480		spin_unlock_irqrestore(&port->lock, flags);
1481		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1482			s->active_rx, active);
1483
1484		/* Let packet complete handler take care of the packet */
1485		return HRTIMER_NORESTART;
1486	}
1487
1488	dmaengine_pause(chan);
1489
1490	/*
1491	 * sometimes DMA transfer doesn't stop even if it is stopped and
1492	 * data keeps on coming until transaction is complete so check
1493	 * for DMA_COMPLETE again
1494	 * Let packet complete handler take care of the packet
1495	 */
1496	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1497	if (status == DMA_COMPLETE) {
1498		spin_unlock_irqrestore(&port->lock, flags);
1499		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1500		return HRTIMER_NORESTART;
1501	}
1502
1503	/* Handle incomplete DMA receive */
1504	dmaengine_terminate_async(s->chan_rx);
1505	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1506
1507	if (read) {
1508		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1509		if (count)
1510			tty_flip_buffer_push(&port->state->port);
1511	}
1512
1513	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 
1514		sci_dma_rx_submit(s, true);
1515
1516	sci_dma_rx_reenable_irq(s);
1517
1518	spin_unlock_irqrestore(&port->lock, flags);
1519
1520	return HRTIMER_NORESTART;
1521}
1522
1523static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1524					     enum dma_transfer_direction dir)
1525{
1526	struct dma_chan *chan;
1527	struct dma_slave_config cfg;
1528	int ret;
1529
1530	chan = dma_request_slave_channel(port->dev,
1531					 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1532	if (!chan) {
1533		dev_dbg(port->dev, "dma_request_slave_channel failed\n");
1534		return NULL;
1535	}
1536
1537	memset(&cfg, 0, sizeof(cfg));
1538	cfg.direction = dir;
1539	if (dir == DMA_MEM_TO_DEV) {
1540		cfg.dst_addr = port->mapbase +
1541			(sci_getreg(port, SCxTDR)->offset << port->regshift);
1542		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1543	} else {
1544		cfg.src_addr = port->mapbase +
1545			(sci_getreg(port, SCxRDR)->offset << port->regshift);
1546		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1547	}
1548
1549	ret = dmaengine_slave_config(chan, &cfg);
1550	if (ret) {
1551		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1552		dma_release_channel(chan);
1553		return NULL;
1554	}
1555
1556	return chan;
1557}
1558
1559static void sci_request_dma(struct uart_port *port)
1560{
1561	struct sci_port *s = to_sci_port(port);
1562	struct dma_chan *chan;
1563
1564	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1565
1566	/*
1567	 * DMA on console may interfere with Kernel log messages which use
1568	 * plain putchar(). So, simply don't use it with a console.
1569	 */
1570	if (uart_console(port))
1571		return;
1572
1573	if (!port->dev->of_node)
1574		return;
1575
1576	s->cookie_tx = -EINVAL;
1577
1578	/*
1579	 * Don't request a dma channel if no channel was specified
1580	 * in the device tree.
1581	 */
1582	if (!of_find_property(port->dev->of_node, "dmas", NULL))
1583		return;
1584
1585	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1586	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1587	if (chan) {
1588		/* UART circular tx buffer is an aligned page. */
1589		s->tx_dma_addr = dma_map_single(chan->device->dev,
1590						port->state->xmit.buf,
1591						UART_XMIT_SIZE,
1592						DMA_TO_DEVICE);
1593		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1594			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1595			dma_release_channel(chan);
1596		} else {
1597			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1598				__func__, UART_XMIT_SIZE,
1599				port->state->xmit.buf, &s->tx_dma_addr);
1600
1601			INIT_WORK(&s->work_tx, sci_dma_tx_work_fn);
1602			s->chan_tx_saved = s->chan_tx = chan;
1603		}
1604	}
1605
1606	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1607	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1608	if (chan) {
1609		unsigned int i;
1610		dma_addr_t dma;
1611		void *buf;
1612
1613		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1614		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1615					 &dma, GFP_KERNEL);
1616		if (!buf) {
1617			dev_warn(port->dev,
1618				 "Failed to allocate Rx dma buffer, using PIO\n");
1619			dma_release_channel(chan);
1620			return;
1621		}
1622
1623		for (i = 0; i < 2; i++) {
1624			struct scatterlist *sg = &s->sg_rx[i];
1625
1626			sg_init_table(sg, 1);
1627			s->rx_buf[i] = buf;
1628			sg_dma_address(sg) = dma;
1629			sg_dma_len(sg) = s->buf_len_rx;
1630
1631			buf += s->buf_len_rx;
1632			dma += s->buf_len_rx;
1633		}
1634
1635		hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1636		s->rx_timer.function = sci_dma_rx_timer_fn;
1637
1638		s->chan_rx_saved = s->chan_rx = chan;
1639
1640		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 
1641			sci_dma_rx_submit(s, false);
1642	}
1643}
1644
1645static void sci_free_dma(struct uart_port *port)
1646{
1647	struct sci_port *s = to_sci_port(port);
1648
1649	if (s->chan_tx_saved)
1650		sci_dma_tx_release(s);
1651	if (s->chan_rx_saved)
1652		sci_dma_rx_release(s);
1653}
1654
1655static void sci_flush_buffer(struct uart_port *port)
1656{
1657	struct sci_port *s = to_sci_port(port);
1658
1659	/*
1660	 * In uart_flush_buffer(), the xmit circular buffer has just been
1661	 * cleared, so we have to reset tx_dma_len accordingly, and stop any
1662	 * pending transfers
1663	 */
1664	s->tx_dma_len = 0;
1665	if (s->chan_tx) {
1666		dmaengine_terminate_async(s->chan_tx);
1667		s->cookie_tx = -EINVAL;
1668	}
1669}
1670#else /* !CONFIG_SERIAL_SH_SCI_DMA */
1671static inline void sci_request_dma(struct uart_port *port)
1672{
1673}
1674
1675static inline void sci_free_dma(struct uart_port *port)
1676{
1677}
1678
1679#define sci_flush_buffer	NULL
1680#endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1681
1682static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1683{
1684	struct uart_port *port = ptr;
1685	struct sci_port *s = to_sci_port(port);
1686
1687#ifdef CONFIG_SERIAL_SH_SCI_DMA
1688	if (s->chan_rx) {
1689		u16 scr = serial_port_in(port, SCSCR);
1690		u16 ssr = serial_port_in(port, SCxSR);
1691
1692		/* Disable future Rx interrupts */
1693		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1694			disable_irq_nosync(irq);
1695			scr |= SCSCR_RDRQE;
 
 
 
 
 
 
1696		} else {
1697			if (sci_dma_rx_submit(s, false) < 0)
1698				goto handle_pio;
1699
1700			scr &= ~SCSCR_RIE;
1701		}
1702		serial_port_out(port, SCSCR, scr);
1703		/* Clear current interrupt */
1704		serial_port_out(port, SCxSR,
1705				ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1706		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1707			jiffies, s->rx_timeout);
1708		start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1709
1710		return IRQ_HANDLED;
1711	}
1712
1713handle_pio:
1714#endif
1715
1716	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1717		if (!scif_rtrg_enabled(port))
1718			scif_set_rtrg(port, s->rx_trigger);
1719
1720		mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1721			  s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1722	}
1723
1724	/* I think sci_receive_chars has to be called irrespective
1725	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1726	 * to be disabled?
1727	 */
1728	sci_receive_chars(port);
1729
1730	return IRQ_HANDLED;
1731}
1732
1733static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1734{
1735	struct uart_port *port = ptr;
1736	unsigned long flags;
1737
1738	spin_lock_irqsave(&port->lock, flags);
1739	sci_transmit_chars(port);
1740	spin_unlock_irqrestore(&port->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1741
1742	return IRQ_HANDLED;
1743}
1744
1745static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1746{
1747	struct uart_port *port = ptr;
1748
1749	/* Handle BREAKs */
1750	sci_handle_breaks(port);
 
 
 
 
1751	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1752
1753	return IRQ_HANDLED;
1754}
1755
1756static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1757{
1758	struct uart_port *port = ptr;
1759	struct sci_port *s = to_sci_port(port);
1760
1761	if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) {
1762		/* Break and Error interrupts are muxed */
1763		unsigned short ssr_status = serial_port_in(port, SCxSR);
1764
1765		/* Break Interrupt */
1766		if (ssr_status & SCxSR_BRK(port))
1767			sci_br_interrupt(irq, ptr);
1768
1769		/* Break only? */
1770		if (!(ssr_status & SCxSR_ERRORS(port)))
1771			return IRQ_HANDLED;
1772	}
1773
1774	/* Handle errors */
1775	if (port->type == PORT_SCI) {
1776		if (sci_handle_errors(port)) {
1777			/* discard character in rx buffer */
1778			serial_port_in(port, SCxSR);
1779			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1780		}
1781	} else {
1782		sci_handle_fifo_overrun(port);
1783		if (!s->chan_rx)
1784			sci_receive_chars(port);
1785	}
1786
1787	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1788
1789	/* Kick the transmission */
1790	if (!s->chan_tx)
1791		sci_tx_interrupt(irq, ptr);
1792
1793	return IRQ_HANDLED;
1794}
1795
1796static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1797{
1798	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1799	struct uart_port *port = ptr;
1800	struct sci_port *s = to_sci_port(port);
1801	irqreturn_t ret = IRQ_NONE;
1802
1803	ssr_status = serial_port_in(port, SCxSR);
1804	scr_status = serial_port_in(port, SCSCR);
1805	if (s->params->overrun_reg == SCxSR)
1806		orer_status = ssr_status;
1807	else if (sci_getreg(port, s->params->overrun_reg)->size)
1808		orer_status = serial_port_in(port, s->params->overrun_reg);
1809
1810	err_enabled = scr_status & port_rx_irq_mask(port);
1811
1812	/* Tx Interrupt */
1813	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1814	    !s->chan_tx)
1815		ret = sci_tx_interrupt(irq, ptr);
1816
1817	/*
1818	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1819	 * DR flags
1820	 */
1821	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1822	    (scr_status & SCSCR_RIE))
1823		ret = sci_rx_interrupt(irq, ptr);
1824
1825	/* Error Interrupt */
1826	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1827		ret = sci_er_interrupt(irq, ptr);
1828
1829	/* Break Interrupt */
1830	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
 
1831		ret = sci_br_interrupt(irq, ptr);
1832
1833	/* Overrun Interrupt */
1834	if (orer_status & s->params->overrun_mask) {
1835		sci_handle_fifo_overrun(port);
1836		ret = IRQ_HANDLED;
1837	}
1838
1839	return ret;
1840}
1841
1842static const struct sci_irq_desc {
1843	const char	*desc;
1844	irq_handler_t	handler;
1845} sci_irq_desc[] = {
1846	/*
1847	 * Split out handlers, the default case.
1848	 */
1849	[SCIx_ERI_IRQ] = {
1850		.desc = "rx err",
1851		.handler = sci_er_interrupt,
1852	},
1853
1854	[SCIx_RXI_IRQ] = {
1855		.desc = "rx full",
1856		.handler = sci_rx_interrupt,
1857	},
1858
1859	[SCIx_TXI_IRQ] = {
1860		.desc = "tx empty",
1861		.handler = sci_tx_interrupt,
1862	},
1863
1864	[SCIx_BRI_IRQ] = {
1865		.desc = "break",
1866		.handler = sci_br_interrupt,
1867	},
1868
1869	[SCIx_DRI_IRQ] = {
1870		.desc = "rx ready",
1871		.handler = sci_rx_interrupt,
1872	},
1873
1874	[SCIx_TEI_IRQ] = {
1875		.desc = "tx end",
1876		.handler = sci_tx_interrupt,
1877	},
1878
1879	/*
1880	 * Special muxed handler.
1881	 */
1882	[SCIx_MUX_IRQ] = {
1883		.desc = "mux",
1884		.handler = sci_mpxed_interrupt,
1885	},
1886};
1887
1888static int sci_request_irq(struct sci_port *port)
1889{
1890	struct uart_port *up = &port->port;
1891	int i, j, w, ret = 0;
1892
1893	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1894		const struct sci_irq_desc *desc;
1895		int irq;
1896
1897		/* Check if already registered (muxed) */
1898		for (w = 0; w < i; w++)
1899			if (port->irqs[w] == port->irqs[i])
1900				w = i + 1;
1901		if (w > i)
1902			continue;
1903
1904		if (SCIx_IRQ_IS_MUXED(port)) {
1905			i = SCIx_MUX_IRQ;
1906			irq = up->irq;
1907		} else {
1908			irq = port->irqs[i];
1909
1910			/*
1911			 * Certain port types won't support all of the
1912			 * available interrupt sources.
1913			 */
1914			if (unlikely(irq < 0))
1915				continue;
1916		}
1917
1918		desc = sci_irq_desc + i;
1919		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1920					    dev_name(up->dev), desc->desc);
1921		if (!port->irqstr[j]) {
1922			ret = -ENOMEM;
1923			goto out_nomem;
1924		}
1925
1926		ret = request_irq(irq, desc->handler, up->irqflags,
1927				  port->irqstr[j], port);
1928		if (unlikely(ret)) {
1929			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1930			goto out_noirq;
1931		}
1932	}
1933
1934	return 0;
1935
1936out_noirq:
1937	while (--i >= 0)
1938		free_irq(port->irqs[i], port);
1939
1940out_nomem:
1941	while (--j >= 0)
1942		kfree(port->irqstr[j]);
1943
1944	return ret;
1945}
1946
1947static void sci_free_irq(struct sci_port *port)
1948{
1949	int i, j;
1950
1951	/*
1952	 * Intentionally in reverse order so we iterate over the muxed
1953	 * IRQ first.
1954	 */
1955	for (i = 0; i < SCIx_NR_IRQS; i++) {
1956		int irq = port->irqs[i];
1957
1958		/*
1959		 * Certain port types won't support all of the available
1960		 * interrupt sources.
1961		 */
1962		if (unlikely(irq < 0))
1963			continue;
1964
1965		/* Check if already freed (irq was muxed) */
1966		for (j = 0; j < i; j++)
1967			if (port->irqs[j] == irq)
1968				j = i + 1;
1969		if (j > i)
1970			continue;
1971
1972		free_irq(port->irqs[i], port);
1973		kfree(port->irqstr[i]);
1974
1975		if (SCIx_IRQ_IS_MUXED(port)) {
1976			/* If there's only one IRQ, we're done. */
1977			return;
1978		}
1979	}
1980}
1981
1982static unsigned int sci_tx_empty(struct uart_port *port)
1983{
1984	unsigned short status = serial_port_in(port, SCxSR);
1985	unsigned short in_tx_fifo = sci_txfill(port);
1986
1987	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1988}
1989
1990static void sci_set_rts(struct uart_port *port, bool state)
1991{
1992	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1993		u16 data = serial_port_in(port, SCPDR);
1994
1995		/* Active low */
1996		if (state)
1997			data &= ~SCPDR_RTSD;
1998		else
1999			data |= SCPDR_RTSD;
2000		serial_port_out(port, SCPDR, data);
2001
2002		/* RTS# is output */
2003		serial_port_out(port, SCPCR,
2004				serial_port_in(port, SCPCR) | SCPCR_RTSC);
2005	} else if (sci_getreg(port, SCSPTR)->size) {
2006		u16 ctrl = serial_port_in(port, SCSPTR);
2007
2008		/* Active low */
2009		if (state)
2010			ctrl &= ~SCSPTR_RTSDT;
2011		else
2012			ctrl |= SCSPTR_RTSDT;
2013		serial_port_out(port, SCSPTR, ctrl);
2014	}
2015}
2016
2017static bool sci_get_cts(struct uart_port *port)
2018{
2019	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2020		/* Active low */
2021		return !(serial_port_in(port, SCPDR) & SCPDR_CTSD);
2022	} else if (sci_getreg(port, SCSPTR)->size) {
2023		/* Active low */
2024		return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT);
2025	}
2026
2027	return true;
2028}
2029
2030/*
2031 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
2032 * CTS/RTS is supported in hardware by at least one port and controlled
2033 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
2034 * handled via the ->init_pins() op, which is a bit of a one-way street,
2035 * lacking any ability to defer pin control -- this will later be
2036 * converted over to the GPIO framework).
2037 *
2038 * Other modes (such as loopback) are supported generically on certain
2039 * port types, but not others. For these it's sufficient to test for the
2040 * existence of the support register and simply ignore the port type.
2041 */
2042static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
2043{
2044	struct sci_port *s = to_sci_port(port);
2045
2046	if (mctrl & TIOCM_LOOP) {
2047		const struct plat_sci_reg *reg;
2048
2049		/*
2050		 * Standard loopback mode for SCFCR ports.
2051		 */
2052		reg = sci_getreg(port, SCFCR);
2053		if (reg->size)
2054			serial_port_out(port, SCFCR,
2055					serial_port_in(port, SCFCR) |
2056					SCFCR_LOOP);
2057	}
2058
2059	mctrl_gpio_set(s->gpios, mctrl);
2060
2061	if (!s->has_rtscts)
2062		return;
2063
2064	if (!(mctrl & TIOCM_RTS)) {
2065		/* Disable Auto RTS */
2066		serial_port_out(port, SCFCR,
2067				serial_port_in(port, SCFCR) & ~SCFCR_MCE);
2068
2069		/* Clear RTS */
2070		sci_set_rts(port, 0);
2071	} else if (s->autorts) {
2072		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2073			/* Enable RTS# pin function */
2074			serial_port_out(port, SCPCR,
2075				serial_port_in(port, SCPCR) & ~SCPCR_RTSC);
2076		}
2077
2078		/* Enable Auto RTS */
2079		serial_port_out(port, SCFCR,
2080				serial_port_in(port, SCFCR) | SCFCR_MCE);
2081	} else {
2082		/* Set RTS */
2083		sci_set_rts(port, 1);
2084	}
2085}
2086
2087static unsigned int sci_get_mctrl(struct uart_port *port)
2088{
2089	struct sci_port *s = to_sci_port(port);
2090	struct mctrl_gpios *gpios = s->gpios;
2091	unsigned int mctrl = 0;
2092
2093	mctrl_gpio_get(gpios, &mctrl);
2094
2095	/*
2096	 * CTS/RTS is handled in hardware when supported, while nothing
2097	 * else is wired up.
2098	 */
2099	if (s->autorts) {
2100		if (sci_get_cts(port))
2101			mctrl |= TIOCM_CTS;
2102	} else if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS)) {
2103		mctrl |= TIOCM_CTS;
2104	}
2105	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR))
2106		mctrl |= TIOCM_DSR;
2107	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD))
2108		mctrl |= TIOCM_CAR;
2109
2110	return mctrl;
2111}
2112
2113static void sci_enable_ms(struct uart_port *port)
2114{
2115	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2116}
2117
2118static void sci_break_ctl(struct uart_port *port, int break_state)
2119{
2120	unsigned short scscr, scsptr;
2121	unsigned long flags;
2122
2123	/* check wheter the port has SCSPTR */
2124	if (!sci_getreg(port, SCSPTR)->size) {
2125		/*
2126		 * Not supported by hardware. Most parts couple break and rx
2127		 * interrupts together, with break detection always enabled.
2128		 */
2129		return;
2130	}
2131
2132	spin_lock_irqsave(&port->lock, flags);
2133	scsptr = serial_port_in(port, SCSPTR);
2134	scscr = serial_port_in(port, SCSCR);
2135
2136	if (break_state == -1) {
2137		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2138		scscr &= ~SCSCR_TE;
2139	} else {
2140		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2141		scscr |= SCSCR_TE;
2142	}
2143
2144	serial_port_out(port, SCSPTR, scsptr);
2145	serial_port_out(port, SCSCR, scscr);
2146	spin_unlock_irqrestore(&port->lock, flags);
2147}
2148
2149static int sci_startup(struct uart_port *port)
2150{
2151	struct sci_port *s = to_sci_port(port);
2152	int ret;
2153
2154	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2155
2156	sci_request_dma(port);
2157
2158	ret = sci_request_irq(s);
2159	if (unlikely(ret < 0)) {
2160		sci_free_dma(port);
2161		return ret;
2162	}
2163
2164	return 0;
2165}
2166
2167static void sci_shutdown(struct uart_port *port)
2168{
2169	struct sci_port *s = to_sci_port(port);
2170	unsigned long flags;
2171	u16 scr;
2172
2173	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2174
2175	s->autorts = false;
2176	mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2177
2178	spin_lock_irqsave(&port->lock, flags);
2179	sci_stop_rx(port);
2180	sci_stop_tx(port);
2181	/*
2182	 * Stop RX and TX, disable related interrupts, keep clock source
2183	 * and HSCIF TOT bits
2184	 */
2185	scr = serial_port_in(port, SCSCR);
2186	serial_port_out(port, SCSCR, scr &
2187			(SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2188	spin_unlock_irqrestore(&port->lock, flags);
2189
2190#ifdef CONFIG_SERIAL_SH_SCI_DMA
2191	if (s->chan_rx_saved) {
2192		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2193			port->line);
2194		hrtimer_cancel(&s->rx_timer);
2195	}
2196#endif
2197
2198	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0)
2199		del_timer_sync(&s->rx_fifo_timer);
2200	sci_free_irq(s);
2201	sci_free_dma(port);
2202}
2203
2204static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2205			unsigned int *srr)
2206{
2207	unsigned long freq = s->clk_rates[SCI_SCK];
2208	int err, min_err = INT_MAX;
2209	unsigned int sr;
2210
2211	if (s->port.type != PORT_HSCIF)
2212		freq *= 2;
2213
2214	for_each_sr(sr, s) {
2215		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2216		if (abs(err) >= abs(min_err))
2217			continue;
2218
2219		min_err = err;
2220		*srr = sr - 1;
2221
2222		if (!err)
2223			break;
2224	}
2225
2226	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2227		*srr + 1);
2228	return min_err;
2229}
2230
2231static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2232			unsigned long freq, unsigned int *dlr,
2233			unsigned int *srr)
2234{
2235	int err, min_err = INT_MAX;
2236	unsigned int sr, dl;
2237
2238	if (s->port.type != PORT_HSCIF)
2239		freq *= 2;
2240
2241	for_each_sr(sr, s) {
2242		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2243		dl = clamp(dl, 1U, 65535U);
2244
2245		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2246		if (abs(err) >= abs(min_err))
2247			continue;
2248
2249		min_err = err;
2250		*dlr = dl;
2251		*srr = sr - 1;
2252
2253		if (!err)
2254			break;
2255	}
2256
2257	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2258		min_err, *dlr, *srr + 1);
2259	return min_err;
2260}
2261
2262/* calculate sample rate, BRR, and clock select */
2263static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2264			  unsigned int *brr, unsigned int *srr,
2265			  unsigned int *cks)
2266{
2267	unsigned long freq = s->clk_rates[SCI_FCK];
2268	unsigned int sr, br, prediv, scrate, c;
2269	int err, min_err = INT_MAX;
2270
2271	if (s->port.type != PORT_HSCIF)
2272		freq *= 2;
2273
2274	/*
2275	 * Find the combination of sample rate and clock select with the
2276	 * smallest deviation from the desired baud rate.
2277	 * Prefer high sample rates to maximise the receive margin.
2278	 *
2279	 * M: Receive margin (%)
2280	 * N: Ratio of bit rate to clock (N = sampling rate)
2281	 * D: Clock duty (D = 0 to 1.0)
2282	 * L: Frame length (L = 9 to 12)
2283	 * F: Absolute value of clock frequency deviation
2284	 *
2285	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2286	 *      (|D - 0.5| / N * (1 + F))|
2287	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2288	 */
2289	for_each_sr(sr, s) {
2290		for (c = 0; c <= 3; c++) {
2291			/* integerized formulas from HSCIF documentation */
2292			prediv = sr * (1 << (2 * c + 1));
2293
2294			/*
2295			 * We need to calculate:
2296			 *
2297			 *     br = freq / (prediv * bps) clamped to [1..256]
2298			 *     err = freq / (br * prediv) - bps
2299			 *
2300			 * Watch out for overflow when calculating the desired
2301			 * sampling clock rate!
2302			 */
2303			if (bps > UINT_MAX / prediv)
2304				break;
2305
2306			scrate = prediv * bps;
2307			br = DIV_ROUND_CLOSEST(freq, scrate);
2308			br = clamp(br, 1U, 256U);
2309
2310			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2311			if (abs(err) >= abs(min_err))
2312				continue;
2313
2314			min_err = err;
2315			*brr = br - 1;
2316			*srr = sr - 1;
2317			*cks = c;
2318
2319			if (!err)
2320				goto found;
2321		}
2322	}
2323
2324found:
2325	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2326		min_err, *brr, *srr + 1, *cks);
2327	return min_err;
2328}
2329
2330static void sci_reset(struct uart_port *port)
2331{
2332	const struct plat_sci_reg *reg;
2333	unsigned int status;
2334	struct sci_port *s = to_sci_port(port);
2335
2336	serial_port_out(port, SCSCR, s->hscif_tot);	/* TE=0, RE=0, CKE1=0 */
2337
2338	reg = sci_getreg(port, SCFCR);
2339	if (reg->size)
2340		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2341
2342	sci_clear_SCxSR(port,
2343			SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2344			SCxSR_BREAK_CLEAR(port));
2345	if (sci_getreg(port, SCLSR)->size) {
2346		status = serial_port_in(port, SCLSR);
2347		status &= ~(SCLSR_TO | SCLSR_ORER);
2348		serial_port_out(port, SCLSR, status);
2349	}
2350
2351	if (s->rx_trigger > 1) {
2352		if (s->rx_fifo_timeout) {
2353			scif_set_rtrg(port, 1);
2354			timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2355		} else {
2356			if (port->type == PORT_SCIFA ||
2357			    port->type == PORT_SCIFB)
2358				scif_set_rtrg(port, 1);
2359			else
2360				scif_set_rtrg(port, s->rx_trigger);
2361		}
2362	}
2363}
2364
2365static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2366			    struct ktermios *old)
2367{
2368	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2369	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2370	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2371	struct sci_port *s = to_sci_port(port);
2372	const struct plat_sci_reg *reg;
2373	int min_err = INT_MAX, err;
2374	unsigned long max_freq = 0;
2375	int best_clk = -1;
2376	unsigned long flags;
2377
2378	if ((termios->c_cflag & CSIZE) == CS7)
2379		smr_val |= SCSMR_CHR;
 
 
 
 
2380	if (termios->c_cflag & PARENB)
2381		smr_val |= SCSMR_PE;
2382	if (termios->c_cflag & PARODD)
2383		smr_val |= SCSMR_PE | SCSMR_ODD;
2384	if (termios->c_cflag & CSTOPB)
2385		smr_val |= SCSMR_STOP;
2386
2387	/*
2388	 * earlyprintk comes here early on with port->uartclk set to zero.
2389	 * the clock framework is not up and running at this point so here
2390	 * we assume that 115200 is the maximum baud rate. please note that
2391	 * the baud rate is not programmed during earlyprintk - it is assumed
2392	 * that the previous boot loader has enabled required clocks and
2393	 * setup the baud rate generator hardware for us already.
2394	 */
2395	if (!port->uartclk) {
2396		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2397		goto done;
2398	}
2399
2400	for (i = 0; i < SCI_NUM_CLKS; i++)
2401		max_freq = max(max_freq, s->clk_rates[i]);
2402
2403	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2404	if (!baud)
2405		goto done;
2406
2407	/*
2408	 * There can be multiple sources for the sampling clock.  Find the one
2409	 * that gives us the smallest deviation from the desired baud rate.
2410	 */
2411
2412	/* Optional Undivided External Clock */
2413	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2414	    port->type != PORT_SCIFB) {
2415		err = sci_sck_calc(s, baud, &srr1);
2416		if (abs(err) < abs(min_err)) {
2417			best_clk = SCI_SCK;
2418			scr_val = SCSCR_CKE1;
2419			sccks = SCCKS_CKS;
2420			min_err = err;
2421			srr = srr1;
2422			if (!err)
2423				goto done;
2424		}
2425	}
2426
2427	/* Optional BRG Frequency Divided External Clock */
2428	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2429		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2430				   &srr1);
2431		if (abs(err) < abs(min_err)) {
2432			best_clk = SCI_SCIF_CLK;
2433			scr_val = SCSCR_CKE1;
2434			sccks = 0;
2435			min_err = err;
2436			dl = dl1;
2437			srr = srr1;
2438			if (!err)
2439				goto done;
2440		}
2441	}
2442
2443	/* Optional BRG Frequency Divided Internal Clock */
2444	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2445		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2446				   &srr1);
2447		if (abs(err) < abs(min_err)) {
2448			best_clk = SCI_BRG_INT;
2449			scr_val = SCSCR_CKE1;
2450			sccks = SCCKS_XIN;
2451			min_err = err;
2452			dl = dl1;
2453			srr = srr1;
2454			if (!min_err)
2455				goto done;
2456		}
2457	}
2458
2459	/* Divided Functional Clock using standard Bit Rate Register */
2460	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2461	if (abs(err) < abs(min_err)) {
2462		best_clk = SCI_FCK;
2463		scr_val = 0;
2464		min_err = err;
2465		brr = brr1;
2466		srr = srr1;
2467		cks = cks1;
2468	}
2469
2470done:
2471	if (best_clk >= 0)
2472		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2473			s->clks[best_clk], baud, min_err);
2474
2475	sci_port_enable(s);
2476
2477	/*
2478	 * Program the optional External Baud Rate Generator (BRG) first.
2479	 * It controls the mux to select (H)SCK or frequency divided clock.
2480	 */
2481	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2482		serial_port_out(port, SCDL, dl);
2483		serial_port_out(port, SCCKS, sccks);
2484	}
2485
2486	spin_lock_irqsave(&port->lock, flags);
2487
2488	sci_reset(port);
2489
2490	uart_update_timeout(port, termios->c_cflag, baud);
2491
2492	/* byte size and parity */
2493	switch (termios->c_cflag & CSIZE) {
2494	case CS5:
2495		bits = 7;
2496		break;
2497	case CS6:
2498		bits = 8;
2499		break;
2500	case CS7:
2501		bits = 9;
2502		break;
2503	default:
2504		bits = 10;
2505		break;
2506	}
2507
2508	if (termios->c_cflag & CSTOPB)
2509		bits++;
2510	if (termios->c_cflag & PARENB)
2511		bits++;
2512
2513	if (best_clk >= 0) {
2514		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2515			switch (srr + 1) {
2516			case 5:  smr_val |= SCSMR_SRC_5;  break;
2517			case 7:  smr_val |= SCSMR_SRC_7;  break;
2518			case 11: smr_val |= SCSMR_SRC_11; break;
2519			case 13: smr_val |= SCSMR_SRC_13; break;
2520			case 16: smr_val |= SCSMR_SRC_16; break;
2521			case 17: smr_val |= SCSMR_SRC_17; break;
2522			case 19: smr_val |= SCSMR_SRC_19; break;
2523			case 27: smr_val |= SCSMR_SRC_27; break;
2524			}
2525		smr_val |= cks;
2526		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2527		serial_port_out(port, SCSMR, smr_val);
2528		serial_port_out(port, SCBRR, brr);
2529		if (sci_getreg(port, HSSRR)->size) {
2530			unsigned int hssrr = srr | HSCIF_SRE;
2531			/* Calculate deviation from intended rate at the
2532			 * center of the last stop bit in sampling clocks.
2533			 */
2534			int last_stop = bits * 2 - 1;
2535			int deviation = DIV_ROUND_CLOSEST(min_err * last_stop *
2536							  (int)(srr + 1),
2537							  2 * (int)baud);
2538
2539			if (abs(deviation) >= 2) {
2540				/* At least two sampling clocks off at the
2541				 * last stop bit; we can increase the error
2542				 * margin by shifting the sampling point.
2543				 */
2544				int shift = clamp(deviation / 2, -8, 7);
2545
2546				hssrr |= (shift << HSCIF_SRHP_SHIFT) &
2547					 HSCIF_SRHP_MASK;
2548				hssrr |= HSCIF_SRDE;
2549			}
2550			serial_port_out(port, HSSRR, hssrr);
2551		}
2552
2553		/* Wait one bit interval */
2554		udelay((1000000 + (baud - 1)) / baud);
2555	} else {
2556		/* Don't touch the bit rate configuration */
2557		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2558		smr_val |= serial_port_in(port, SCSMR) &
2559			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2560		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2561		serial_port_out(port, SCSMR, smr_val);
2562	}
2563
2564	sci_init_pins(port, termios->c_cflag);
2565
2566	port->status &= ~UPSTAT_AUTOCTS;
2567	s->autorts = false;
2568	reg = sci_getreg(port, SCFCR);
2569	if (reg->size) {
2570		unsigned short ctrl = serial_port_in(port, SCFCR);
2571
2572		if ((port->flags & UPF_HARD_FLOW) &&
2573		    (termios->c_cflag & CRTSCTS)) {
2574			/* There is no CTS interrupt to restart the hardware */
2575			port->status |= UPSTAT_AUTOCTS;
2576			/* MCE is enabled when RTS is raised */
2577			s->autorts = true;
2578		}
2579
2580		/*
2581		 * As we've done a sci_reset() above, ensure we don't
2582		 * interfere with the FIFOs while toggling MCE. As the
2583		 * reset values could still be set, simply mask them out.
2584		 */
2585		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2586
2587		serial_port_out(port, SCFCR, ctrl);
2588	}
2589	if (port->flags & UPF_HARD_FLOW) {
2590		/* Refresh (Auto) RTS */
2591		sci_set_mctrl(port, port->mctrl);
2592	}
2593
2594	scr_val |= SCSCR_RE | SCSCR_TE |
2595		   (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2596	serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
 
 
 
 
 
 
2597	if ((srr + 1 == 5) &&
2598	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2599		/*
2600		 * In asynchronous mode, when the sampling rate is 1/5, first
2601		 * received data may become invalid on some SCIFA and SCIFB.
2602		 * To avoid this problem wait more than 1 serial data time (1
2603		 * bit time x serial data number) after setting SCSCR.RE = 1.
2604		 */
2605		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2606	}
2607
2608	/*
2609	 * Calculate delay for 2 DMA buffers (4 FIFO).
2610	 * See serial_core.c::uart_update_timeout().
2611	 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2612	 * function calculates 1 jiffie for the data plus 5 jiffies for the
2613	 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2614	 * buffers (4 FIFO sizes), but when performing a faster transfer, the
2615	 * value obtained by this formula is too small. Therefore, if the value
2616	 * is smaller than 20ms, use 20ms as the timeout value for DMA.
2617	 */
2618	s->rx_frame = (10000 * bits) / (baud / 100);
2619#ifdef CONFIG_SERIAL_SH_SCI_DMA
2620	s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2621	if (s->rx_timeout < 20)
2622		s->rx_timeout = 20;
2623#endif
2624
2625	if ((termios->c_cflag & CREAD) != 0)
2626		sci_start_rx(port);
2627
2628	spin_unlock_irqrestore(&port->lock, flags);
2629
2630	sci_port_disable(s);
2631
2632	if (UART_ENABLE_MS(port, termios->c_cflag))
2633		sci_enable_ms(port);
2634}
2635
2636static void sci_pm(struct uart_port *port, unsigned int state,
2637		   unsigned int oldstate)
2638{
2639	struct sci_port *sci_port = to_sci_port(port);
2640
2641	switch (state) {
2642	case UART_PM_STATE_OFF:
2643		sci_port_disable(sci_port);
2644		break;
2645	default:
2646		sci_port_enable(sci_port);
2647		break;
2648	}
2649}
2650
2651static const char *sci_type(struct uart_port *port)
2652{
2653	switch (port->type) {
2654	case PORT_IRDA:
2655		return "irda";
2656	case PORT_SCI:
2657		return "sci";
2658	case PORT_SCIF:
2659		return "scif";
2660	case PORT_SCIFA:
2661		return "scifa";
2662	case PORT_SCIFB:
2663		return "scifb";
2664	case PORT_HSCIF:
2665		return "hscif";
2666	}
2667
2668	return NULL;
2669}
2670
2671static int sci_remap_port(struct uart_port *port)
2672{
2673	struct sci_port *sport = to_sci_port(port);
2674
2675	/*
2676	 * Nothing to do if there's already an established membase.
2677	 */
2678	if (port->membase)
2679		return 0;
2680
2681	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2682		port->membase = ioremap_nocache(port->mapbase, sport->reg_size);
2683		if (unlikely(!port->membase)) {
2684			dev_err(port->dev, "can't remap port#%d\n", port->line);
2685			return -ENXIO;
2686		}
2687	} else {
2688		/*
2689		 * For the simple (and majority of) cases where we don't
2690		 * need to do any remapping, just cast the cookie
2691		 * directly.
2692		 */
2693		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2694	}
2695
2696	return 0;
2697}
2698
2699static void sci_release_port(struct uart_port *port)
2700{
2701	struct sci_port *sport = to_sci_port(port);
2702
2703	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2704		iounmap(port->membase);
2705		port->membase = NULL;
2706	}
2707
2708	release_mem_region(port->mapbase, sport->reg_size);
2709}
2710
2711static int sci_request_port(struct uart_port *port)
2712{
2713	struct resource *res;
2714	struct sci_port *sport = to_sci_port(port);
2715	int ret;
2716
2717	res = request_mem_region(port->mapbase, sport->reg_size,
2718				 dev_name(port->dev));
2719	if (unlikely(res == NULL)) {
2720		dev_err(port->dev, "request_mem_region failed.");
2721		return -EBUSY;
2722	}
2723
2724	ret = sci_remap_port(port);
2725	if (unlikely(ret != 0)) {
2726		release_resource(res);
2727		return ret;
2728	}
2729
2730	return 0;
2731}
2732
2733static void sci_config_port(struct uart_port *port, int flags)
2734{
2735	if (flags & UART_CONFIG_TYPE) {
2736		struct sci_port *sport = to_sci_port(port);
2737
2738		port->type = sport->cfg->type;
2739		sci_request_port(port);
2740	}
2741}
2742
2743static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2744{
2745	if (ser->baud_base < 2400)
2746		/* No paper tape reader for Mitch.. */
2747		return -EINVAL;
2748
2749	return 0;
2750}
2751
2752static const struct uart_ops sci_uart_ops = {
2753	.tx_empty	= sci_tx_empty,
2754	.set_mctrl	= sci_set_mctrl,
2755	.get_mctrl	= sci_get_mctrl,
2756	.start_tx	= sci_start_tx,
2757	.stop_tx	= sci_stop_tx,
2758	.stop_rx	= sci_stop_rx,
2759	.enable_ms	= sci_enable_ms,
2760	.break_ctl	= sci_break_ctl,
2761	.startup	= sci_startup,
2762	.shutdown	= sci_shutdown,
2763	.flush_buffer	= sci_flush_buffer,
2764	.set_termios	= sci_set_termios,
2765	.pm		= sci_pm,
2766	.type		= sci_type,
2767	.release_port	= sci_release_port,
2768	.request_port	= sci_request_port,
2769	.config_port	= sci_config_port,
2770	.verify_port	= sci_verify_port,
2771#ifdef CONFIG_CONSOLE_POLL
2772	.poll_get_char	= sci_poll_get_char,
2773	.poll_put_char	= sci_poll_put_char,
2774#endif
2775};
2776
2777static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2778{
2779	const char *clk_names[] = {
2780		[SCI_FCK] = "fck",
2781		[SCI_SCK] = "sck",
2782		[SCI_BRG_INT] = "brg_int",
2783		[SCI_SCIF_CLK] = "scif_clk",
2784	};
2785	struct clk *clk;
2786	unsigned int i;
2787
2788	if (sci_port->cfg->type == PORT_HSCIF)
2789		clk_names[SCI_SCK] = "hsck";
2790
2791	for (i = 0; i < SCI_NUM_CLKS; i++) {
2792		clk = devm_clk_get(dev, clk_names[i]);
2793		if (PTR_ERR(clk) == -EPROBE_DEFER)
2794			return -EPROBE_DEFER;
2795
2796		if (IS_ERR(clk) && i == SCI_FCK) {
2797			/*
2798			 * "fck" used to be called "sci_ick", and we need to
2799			 * maintain DT backward compatibility.
2800			 */
2801			clk = devm_clk_get(dev, "sci_ick");
2802			if (PTR_ERR(clk) == -EPROBE_DEFER)
2803				return -EPROBE_DEFER;
2804
2805			if (!IS_ERR(clk))
2806				goto found;
2807
 
2808			/*
2809			 * Not all SH platforms declare a clock lookup entry
2810			 * for SCI devices, in which case we need to get the
2811			 * global "peripheral_clk" clock.
2812			 */
2813			clk = devm_clk_get(dev, "peripheral_clk");
2814			if (!IS_ERR(clk))
2815				goto found;
2816
2817			dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2818				PTR_ERR(clk));
2819			return PTR_ERR(clk);
2820		}
2821
2822found:
2823		if (IS_ERR(clk))
2824			dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2825				PTR_ERR(clk));
2826		else
2827			dev_dbg(dev, "clk %s is %pC rate %lu\n", clk_names[i],
2828				clk, clk_get_rate(clk));
2829		sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2830	}
2831	return 0;
2832}
2833
2834static const struct sci_port_params *
2835sci_probe_regmap(const struct plat_sci_port *cfg)
2836{
2837	unsigned int regtype;
2838
2839	if (cfg->regtype != SCIx_PROBE_REGTYPE)
2840		return &sci_port_params[cfg->regtype];
2841
2842	switch (cfg->type) {
2843	case PORT_SCI:
2844		regtype = SCIx_SCI_REGTYPE;
2845		break;
2846	case PORT_IRDA:
2847		regtype = SCIx_IRDA_REGTYPE;
2848		break;
2849	case PORT_SCIFA:
2850		regtype = SCIx_SCIFA_REGTYPE;
2851		break;
2852	case PORT_SCIFB:
2853		regtype = SCIx_SCIFB_REGTYPE;
2854		break;
2855	case PORT_SCIF:
2856		/*
2857		 * The SH-4 is a bit of a misnomer here, although that's
2858		 * where this particular port layout originated. This
2859		 * configuration (or some slight variation thereof)
2860		 * remains the dominant model for all SCIFs.
2861		 */
2862		regtype = SCIx_SH4_SCIF_REGTYPE;
2863		break;
2864	case PORT_HSCIF:
2865		regtype = SCIx_HSCIF_REGTYPE;
2866		break;
2867	default:
2868		pr_err("Can't probe register map for given port\n");
2869		return NULL;
2870	}
2871
2872	return &sci_port_params[regtype];
2873}
2874
2875static int sci_init_single(struct platform_device *dev,
2876			   struct sci_port *sci_port, unsigned int index,
2877			   const struct plat_sci_port *p, bool early)
2878{
2879	struct uart_port *port = &sci_port->port;
2880	const struct resource *res;
2881	unsigned int i;
2882	int ret;
2883
2884	sci_port->cfg	= p;
2885
2886	port->ops	= &sci_uart_ops;
2887	port->iotype	= UPIO_MEM;
2888	port->line	= index;
 
2889
2890	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2891	if (res == NULL)
2892		return -ENOMEM;
2893
2894	port->mapbase = res->start;
2895	sci_port->reg_size = resource_size(res);
2896
2897	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) {
2898		if (i)
2899			sci_port->irqs[i] = platform_get_irq_optional(dev, i);
2900		else
2901			sci_port->irqs[i] = platform_get_irq(dev, i);
2902	}
2903
 
 
 
 
 
 
 
2904	/* The SCI generates several interrupts. They can be muxed together or
2905	 * connected to different interrupt lines. In the muxed case only one
2906	 * interrupt resource is specified as there is only one interrupt ID.
2907	 * In the non-muxed case, up to 6 interrupt signals might be generated
2908	 * from the SCI, however those signals might have their own individual
2909	 * interrupt ID numbers, or muxed together with another interrupt.
2910	 */
2911	if (sci_port->irqs[0] < 0)
2912		return -ENXIO;
2913
2914	if (sci_port->irqs[1] < 0)
2915		for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++)
2916			sci_port->irqs[i] = sci_port->irqs[0];
2917
2918	sci_port->params = sci_probe_regmap(p);
2919	if (unlikely(sci_port->params == NULL))
2920		return -EINVAL;
2921
2922	switch (p->type) {
2923	case PORT_SCIFB:
2924		sci_port->rx_trigger = 48;
2925		break;
2926	case PORT_HSCIF:
2927		sci_port->rx_trigger = 64;
2928		break;
2929	case PORT_SCIFA:
2930		sci_port->rx_trigger = 32;
2931		break;
2932	case PORT_SCIF:
2933		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
2934			/* RX triggering not implemented for this IP */
2935			sci_port->rx_trigger = 1;
2936		else
2937			sci_port->rx_trigger = 8;
2938		break;
2939	default:
2940		sci_port->rx_trigger = 1;
2941		break;
2942	}
2943
2944	sci_port->rx_fifo_timeout = 0;
2945	sci_port->hscif_tot = 0;
2946
2947	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2948	 * match the SoC datasheet, this should be investigated. Let platform
2949	 * data override the sampling rate for now.
2950	 */
2951	sci_port->sampling_rate_mask = p->sampling_rate
2952				     ? SCI_SR(p->sampling_rate)
2953				     : sci_port->params->sampling_rate_mask;
2954
2955	if (!early) {
2956		ret = sci_init_clocks(sci_port, &dev->dev);
2957		if (ret < 0)
2958			return ret;
2959
2960		port->dev = &dev->dev;
2961
2962		pm_runtime_enable(&dev->dev);
2963	}
2964
2965	port->type		= p->type;
2966	port->flags		= UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
2967	port->fifosize		= sci_port->params->fifosize;
2968
2969	if (port->type == PORT_SCI) {
2970		if (sci_port->reg_size >= 0x20)
2971			port->regshift = 2;
2972		else
2973			port->regshift = 1;
2974	}
2975
2976	/*
2977	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2978	 * for the multi-IRQ ports, which is where we are primarily
2979	 * concerned with the shutdown path synchronization.
2980	 *
2981	 * For the muxed case there's nothing more to do.
2982	 */
2983	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2984	port->irqflags		= 0;
2985
2986	port->serial_in		= sci_serial_in;
2987	port->serial_out	= sci_serial_out;
2988
2989	return 0;
2990}
2991
2992static void sci_cleanup_single(struct sci_port *port)
2993{
2994	pm_runtime_disable(port->port.dev);
2995}
2996
2997#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
2998    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
2999static void serial_console_putchar(struct uart_port *port, int ch)
3000{
3001	sci_poll_put_char(port, ch);
3002}
3003
3004/*
3005 *	Print a string to the serial port trying not to disturb
3006 *	any possible real use of the port...
3007 */
3008static void serial_console_write(struct console *co, const char *s,
3009				 unsigned count)
3010{
3011	struct sci_port *sci_port = &sci_ports[co->index];
3012	struct uart_port *port = &sci_port->port;
3013	unsigned short bits, ctrl, ctrl_temp;
3014	unsigned long flags;
3015	int locked = 1;
3016
3017#if defined(SUPPORT_SYSRQ)
3018	if (port->sysrq)
3019		locked = 0;
 
 
3020	else
3021#endif
3022	if (oops_in_progress)
3023		locked = spin_trylock_irqsave(&port->lock, flags);
3024	else
3025		spin_lock_irqsave(&port->lock, flags);
3026
3027	/* first save SCSCR then disable interrupts, keep clock source */
3028	ctrl = serial_port_in(port, SCSCR);
3029	ctrl_temp = SCSCR_RE | SCSCR_TE |
3030		    (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
3031		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
3032	serial_port_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
3033
3034	uart_console_write(port, s, count, serial_console_putchar);
3035
3036	/* wait until fifo is empty and last bit has been transmitted */
3037	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
3038	while ((serial_port_in(port, SCxSR) & bits) != bits)
3039		cpu_relax();
3040
3041	/* restore the SCSCR */
3042	serial_port_out(port, SCSCR, ctrl);
3043
3044	if (locked)
3045		spin_unlock_irqrestore(&port->lock, flags);
3046}
3047
3048static int serial_console_setup(struct console *co, char *options)
3049{
3050	struct sci_port *sci_port;
3051	struct uart_port *port;
3052	int baud = 115200;
3053	int bits = 8;
3054	int parity = 'n';
3055	int flow = 'n';
3056	int ret;
3057
3058	/*
3059	 * Refuse to handle any bogus ports.
3060	 */
3061	if (co->index < 0 || co->index >= SCI_NPORTS)
3062		return -ENODEV;
3063
3064	sci_port = &sci_ports[co->index];
3065	port = &sci_port->port;
3066
3067	/*
3068	 * Refuse to handle uninitialized ports.
3069	 */
3070	if (!port->ops)
3071		return -ENODEV;
3072
3073	ret = sci_remap_port(port);
3074	if (unlikely(ret != 0))
3075		return ret;
3076
3077	if (options)
3078		uart_parse_options(options, &baud, &parity, &bits, &flow);
3079
3080	return uart_set_options(port, co, baud, parity, bits, flow);
3081}
3082
3083static struct console serial_console = {
3084	.name		= "ttySC",
3085	.device		= uart_console_device,
3086	.write		= serial_console_write,
3087	.setup		= serial_console_setup,
3088	.flags		= CON_PRINTBUFFER,
3089	.index		= -1,
3090	.data		= &sci_uart_driver,
3091};
3092
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3093static struct console early_serial_console = {
3094	.name           = "early_ttySC",
3095	.write          = serial_console_write,
 
3096	.flags          = CON_PRINTBUFFER,
3097	.index		= -1,
3098};
3099
3100static char early_serial_buf[32];
3101
3102static int sci_probe_earlyprintk(struct platform_device *pdev)
3103{
3104	const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
3105
3106	if (early_serial_console.data)
3107		return -EEXIST;
3108
3109	early_serial_console.index = pdev->id;
3110
3111	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
3112
3113	serial_console_setup(&early_serial_console, early_serial_buf);
3114
3115	if (!strstr(early_serial_buf, "keep"))
3116		early_serial_console.flags |= CON_BOOT;
3117
3118	register_console(&early_serial_console);
3119	return 0;
3120}
 
3121
3122#define SCI_CONSOLE	(&serial_console)
3123
3124#else
3125static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3126{
3127	return -EINVAL;
3128}
3129
3130#define SCI_CONSOLE	NULL
3131
3132#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3133
3134static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3135
3136static DEFINE_MUTEX(sci_uart_registration_lock);
3137static struct uart_driver sci_uart_driver = {
3138	.owner		= THIS_MODULE,
3139	.driver_name	= "sci",
3140	.dev_name	= "ttySC",
3141	.major		= SCI_MAJOR,
3142	.minor		= SCI_MINOR_START,
3143	.nr		= SCI_NPORTS,
3144	.cons		= SCI_CONSOLE,
3145};
3146
3147static int sci_remove(struct platform_device *dev)
3148{
3149	struct sci_port *port = platform_get_drvdata(dev);
3150	unsigned int type = port->port.type;	/* uart_remove_... clears it */
3151
3152	sci_ports_in_use &= ~BIT(port->port.line);
3153	uart_remove_one_port(&sci_uart_driver, &port->port);
3154
3155	sci_cleanup_single(port);
3156
3157	if (port->port.fifosize > 1)
3158		device_remove_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3159	if (type == PORT_SCIFA || type == PORT_SCIFB || type == PORT_HSCIF)
3160		device_remove_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3161
3162	return 0;
3163}
3164
3165
3166#define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
3167#define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
3168#define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
3169
3170static const struct of_device_id of_sci_match[] = {
3171	/* SoC-specific types */
3172	{
3173		.compatible = "renesas,scif-r7s72100",
3174		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3175	},
3176	{
3177		.compatible = "renesas,scif-r7s9210",
3178		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3179	},
 
 
 
 
3180	/* Family-specific types */
3181	{
3182		.compatible = "renesas,rcar-gen1-scif",
3183		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3184	}, {
3185		.compatible = "renesas,rcar-gen2-scif",
3186		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3187	}, {
3188		.compatible = "renesas,rcar-gen3-scif",
3189		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
 
 
 
3190	},
3191	/* Generic types */
3192	{
3193		.compatible = "renesas,scif",
3194		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3195	}, {
3196		.compatible = "renesas,scifa",
3197		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3198	}, {
3199		.compatible = "renesas,scifb",
3200		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3201	}, {
3202		.compatible = "renesas,hscif",
3203		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3204	}, {
3205		.compatible = "renesas,sci",
3206		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3207	}, {
3208		/* Terminator */
3209	},
3210};
3211MODULE_DEVICE_TABLE(of, of_sci_match);
3212
 
 
 
 
 
3213static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3214					  unsigned int *dev_id)
3215{
3216	struct device_node *np = pdev->dev.of_node;
 
3217	struct plat_sci_port *p;
3218	struct sci_port *sp;
3219	const void *data;
3220	int id;
3221
3222	if (!IS_ENABLED(CONFIG_OF) || !np)
3223		return NULL;
3224
3225	data = of_device_get_match_data(&pdev->dev);
3226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3227	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3228	if (!p)
3229		return NULL;
3230
3231	/* Get the line number from the aliases node. */
3232	id = of_alias_get_id(np, "serial");
3233	if (id < 0 && ~sci_ports_in_use)
3234		id = ffz(sci_ports_in_use);
3235	if (id < 0) {
3236		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3237		return NULL;
3238	}
3239	if (id >= ARRAY_SIZE(sci_ports)) {
3240		dev_err(&pdev->dev, "serial%d out of range\n", id);
3241		return NULL;
3242	}
3243
3244	sp = &sci_ports[id];
3245	*dev_id = id;
3246
3247	p->type = SCI_OF_TYPE(data);
3248	p->regtype = SCI_OF_REGTYPE(data);
3249
3250	sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3251
3252	return p;
3253}
3254
3255static int sci_probe_single(struct platform_device *dev,
3256				      unsigned int index,
3257				      struct plat_sci_port *p,
3258				      struct sci_port *sciport)
3259{
3260	int ret;
3261
3262	/* Sanity check */
3263	if (unlikely(index >= SCI_NPORTS)) {
3264		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3265			   index+1, SCI_NPORTS);
3266		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3267		return -EINVAL;
3268	}
3269	BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8);
3270	if (sci_ports_in_use & BIT(index))
3271		return -EBUSY;
3272
3273	mutex_lock(&sci_uart_registration_lock);
3274	if (!sci_uart_driver.state) {
3275		ret = uart_register_driver(&sci_uart_driver);
3276		if (ret) {
3277			mutex_unlock(&sci_uart_registration_lock);
3278			return ret;
3279		}
3280	}
3281	mutex_unlock(&sci_uart_registration_lock);
3282
3283	ret = sci_init_single(dev, sciport, index, p, false);
3284	if (ret)
3285		return ret;
3286
3287	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3288	if (IS_ERR(sciport->gpios))
3289		return PTR_ERR(sciport->gpios);
3290
3291	if (sciport->has_rtscts) {
3292		if (mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_CTS) ||
3293		    mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_RTS)) {
3294			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3295			return -EINVAL;
3296		}
3297		sciport->port.flags |= UPF_HARD_FLOW;
3298	}
3299
3300	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3301	if (ret) {
3302		sci_cleanup_single(sciport);
3303		return ret;
3304	}
3305
3306	return 0;
3307}
3308
3309static int sci_probe(struct platform_device *dev)
3310{
3311	struct plat_sci_port *p;
3312	struct sci_port *sp;
3313	unsigned int dev_id;
3314	int ret;
3315
3316	/*
3317	 * If we've come here via earlyprintk initialization, head off to
3318	 * the special early probe. We don't have sufficient device state
3319	 * to make it beyond this yet.
3320	 */
3321	if (is_early_platform_device(dev))
 
3322		return sci_probe_earlyprintk(dev);
 
3323
3324	if (dev->dev.of_node) {
3325		p = sci_parse_dt(dev, &dev_id);
3326		if (p == NULL)
3327			return -EINVAL;
3328	} else {
3329		p = dev->dev.platform_data;
3330		if (p == NULL) {
3331			dev_err(&dev->dev, "no platform data supplied\n");
3332			return -EINVAL;
3333		}
3334
3335		dev_id = dev->id;
3336	}
3337
3338	sp = &sci_ports[dev_id];
3339	platform_set_drvdata(dev, sp);
3340
3341	ret = sci_probe_single(dev, dev_id, p, sp);
3342	if (ret)
3343		return ret;
3344
3345	if (sp->port.fifosize > 1) {
3346		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3347		if (ret)
3348			return ret;
3349	}
3350	if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3351	    sp->port.type == PORT_HSCIF) {
3352		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3353		if (ret) {
3354			if (sp->port.fifosize > 1) {
3355				device_remove_file(&dev->dev,
3356						   &dev_attr_rx_fifo_trigger);
3357			}
3358			return ret;
3359		}
3360	}
3361
3362#ifdef CONFIG_SH_STANDARD_BIOS
3363	sh_bios_gdb_detach();
3364#endif
3365
3366	sci_ports_in_use |= BIT(dev_id);
3367	return 0;
3368}
3369
3370static __maybe_unused int sci_suspend(struct device *dev)
3371{
3372	struct sci_port *sport = dev_get_drvdata(dev);
3373
3374	if (sport)
3375		uart_suspend_port(&sci_uart_driver, &sport->port);
3376
3377	return 0;
3378}
3379
3380static __maybe_unused int sci_resume(struct device *dev)
3381{
3382	struct sci_port *sport = dev_get_drvdata(dev);
3383
3384	if (sport)
3385		uart_resume_port(&sci_uart_driver, &sport->port);
3386
3387	return 0;
3388}
3389
3390static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3391
3392static struct platform_driver sci_driver = {
3393	.probe		= sci_probe,
3394	.remove		= sci_remove,
3395	.driver		= {
3396		.name	= "sh-sci",
3397		.pm	= &sci_dev_pm_ops,
3398		.of_match_table = of_match_ptr(of_sci_match),
3399	},
3400};
3401
3402static int __init sci_init(void)
3403{
3404	pr_info("%s\n", banner);
3405
3406	return platform_driver_register(&sci_driver);
3407}
3408
3409static void __exit sci_exit(void)
3410{
3411	platform_driver_unregister(&sci_driver);
3412
3413	if (sci_uart_driver.state)
3414		uart_unregister_driver(&sci_uart_driver);
3415}
3416
3417#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
3418early_platform_init_buffer("earlyprintk", &sci_driver,
3419			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3420#endif
3421#ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3422static struct plat_sci_port port_cfg __initdata;
3423
3424static int __init early_console_setup(struct earlycon_device *device,
3425				      int type)
3426{
3427	if (!device->port.membase)
3428		return -ENODEV;
3429
3430	device->port.serial_in = sci_serial_in;
3431	device->port.serial_out	= sci_serial_out;
3432	device->port.type = type;
3433	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3434	port_cfg.type = type;
3435	sci_ports[0].cfg = &port_cfg;
3436	sci_ports[0].params = sci_probe_regmap(&port_cfg);
3437	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3438	sci_serial_out(&sci_ports[0].port, SCSCR,
3439		       SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3440
3441	device->con->write = serial_console_write;
3442	return 0;
3443}
3444static int __init sci_early_console_setup(struct earlycon_device *device,
3445					  const char *opt)
3446{
3447	return early_console_setup(device, PORT_SCI);
3448}
3449static int __init scif_early_console_setup(struct earlycon_device *device,
3450					  const char *opt)
3451{
3452	return early_console_setup(device, PORT_SCIF);
3453}
3454static int __init rzscifa_early_console_setup(struct earlycon_device *device,
3455					  const char *opt)
3456{
3457	port_cfg.regtype = SCIx_RZ_SCIFA_REGTYPE;
3458	return early_console_setup(device, PORT_SCIF);
3459}
 
3460static int __init scifa_early_console_setup(struct earlycon_device *device,
3461					  const char *opt)
3462{
3463	return early_console_setup(device, PORT_SCIFA);
3464}
3465static int __init scifb_early_console_setup(struct earlycon_device *device,
3466					  const char *opt)
3467{
3468	return early_console_setup(device, PORT_SCIFB);
3469}
3470static int __init hscif_early_console_setup(struct earlycon_device *device,
3471					  const char *opt)
3472{
3473	return early_console_setup(device, PORT_HSCIF);
3474}
3475
3476OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3477OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3478OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup);
 
3479OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3480OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3481OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3482#endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3483
3484module_init(sci_init);
3485module_exit(sci_exit);
3486
3487MODULE_LICENSE("GPL");
3488MODULE_ALIAS("platform:sh-sci");
3489MODULE_AUTHOR("Paul Mundt");
3490MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
   4 *
   5 *  Copyright (C) 2002 - 2011  Paul Mundt
   6 *  Copyright (C) 2015 Glider bvba
   7 *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
   8 *
   9 * based off of the old drivers/char/sh-sci.c by:
  10 *
  11 *   Copyright (C) 1999, 2000  Niibe Yutaka
  12 *   Copyright (C) 2000  Sugioka Toshinobu
  13 *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
  14 *   Modified to support SecureEdge. David McCullough (2002)
  15 *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
  16 *   Removed SH7300 support (Jul 2007).
  17 */
 
 
 
 
  18#undef DEBUG
  19
  20#include <linux/clk.h>
  21#include <linux/console.h>
  22#include <linux/ctype.h>
  23#include <linux/cpufreq.h>
  24#include <linux/delay.h>
  25#include <linux/dmaengine.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/err.h>
  28#include <linux/errno.h>
  29#include <linux/init.h>
  30#include <linux/interrupt.h>
  31#include <linux/ioport.h>
  32#include <linux/ktime.h>
  33#include <linux/major.h>
  34#include <linux/minmax.h>
  35#include <linux/module.h>
  36#include <linux/mm.h>
  37#include <linux/of.h>
 
  38#include <linux/platform_device.h>
  39#include <linux/pm_runtime.h>
  40#include <linux/reset.h>
  41#include <linux/scatterlist.h>
  42#include <linux/serial.h>
  43#include <linux/serial_sci.h>
  44#include <linux/sh_dma.h>
  45#include <linux/slab.h>
  46#include <linux/string.h>
  47#include <linux/sysrq.h>
  48#include <linux/timer.h>
  49#include <linux/tty.h>
  50#include <linux/tty_flip.h>
  51
  52#ifdef CONFIG_SUPERH
  53#include <asm/sh_bios.h>
  54#include <asm/platform_early.h>
  55#endif
  56
  57#include "serial_mctrl_gpio.h"
  58#include "sh-sci.h"
  59
  60/* Offsets into the sci_port->irqs array */
  61enum {
  62	SCIx_ERI_IRQ,
  63	SCIx_RXI_IRQ,
  64	SCIx_TXI_IRQ,
  65	SCIx_BRI_IRQ,
  66	SCIx_DRI_IRQ,
  67	SCIx_TEI_IRQ,
  68	SCIx_NR_IRQS,
  69
  70	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
  71};
  72
  73#define SCIx_IRQ_IS_MUXED(port)			\
  74	((port)->irqs[SCIx_ERI_IRQ] ==	\
  75	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
  76	((port)->irqs[SCIx_ERI_IRQ] &&	\
  77	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
  78
  79enum SCI_CLKS {
  80	SCI_FCK,		/* Functional Clock */
  81	SCI_SCK,		/* Optional External Clock */
  82	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
  83	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
  84	SCI_NUM_CLKS
  85};
  86
  87/* Bit x set means sampling rate x + 1 is supported */
  88#define SCI_SR(x)		BIT((x) - 1)
  89#define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
  90
  91#define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
  92				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
  93				SCI_SR(19) | SCI_SR(27)
  94
  95#define min_sr(_port)		ffs((_port)->sampling_rate_mask)
  96#define max_sr(_port)		fls((_port)->sampling_rate_mask)
  97
  98/* Iterate over all supported sampling rates, from high to low */
  99#define for_each_sr(_sr, _port)						\
 100	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
 101		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
 102
 103struct plat_sci_reg {
 104	u8 offset, size;
 105};
 106
 107struct sci_port_params {
 108	const struct plat_sci_reg regs[SCIx_NR_REGS];
 109	unsigned int fifosize;
 110	unsigned int overrun_reg;
 111	unsigned int overrun_mask;
 112	unsigned int sampling_rate_mask;
 113	unsigned int error_mask;
 114	unsigned int error_clear;
 115};
 116
 117struct sci_port {
 118	struct uart_port	port;
 119
 120	/* Platform configuration */
 121	const struct sci_port_params *params;
 122	const struct plat_sci_port *cfg;
 123	unsigned int		sampling_rate_mask;
 124	resource_size_t		reg_size;
 125	struct mctrl_gpios	*gpios;
 126
 127	/* Clocks */
 128	struct clk		*clks[SCI_NUM_CLKS];
 129	unsigned long		clk_rates[SCI_NUM_CLKS];
 130
 131	int			irqs[SCIx_NR_IRQS];
 132	char			*irqstr[SCIx_NR_IRQS];
 133
 134	struct dma_chan			*chan_tx;
 135	struct dma_chan			*chan_rx;
 136
 137#ifdef CONFIG_SERIAL_SH_SCI_DMA
 138	struct dma_chan			*chan_tx_saved;
 139	struct dma_chan			*chan_rx_saved;
 140	dma_cookie_t			cookie_tx;
 141	dma_cookie_t			cookie_rx[2];
 142	dma_cookie_t			active_rx;
 143	dma_addr_t			tx_dma_addr;
 144	unsigned int			tx_dma_len;
 145	struct scatterlist		sg_rx[2];
 146	void				*rx_buf[2];
 147	size_t				buf_len_rx;
 148	struct work_struct		work_tx;
 149	struct hrtimer			rx_timer;
 150	unsigned int			rx_timeout;	/* microseconds */
 151#endif
 152	unsigned int			rx_frame;
 153	int				rx_trigger;
 154	struct timer_list		rx_fifo_timer;
 155	int				rx_fifo_timeout;
 156	u16				hscif_tot;
 157
 158	bool has_rtscts;
 159	bool autorts;
 160};
 161
 162#define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
 163
 164static struct sci_port sci_ports[SCI_NPORTS];
 165static unsigned long sci_ports_in_use;
 166static struct uart_driver sci_uart_driver;
 167
 168static inline struct sci_port *
 169to_sci_port(struct uart_port *uart)
 170{
 171	return container_of(uart, struct sci_port, port);
 172}
 173
 174static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
 175	/*
 176	 * Common SCI definitions, dependent on the port's regshift
 177	 * value.
 178	 */
 179	[SCIx_SCI_REGTYPE] = {
 180		.regs = {
 181			[SCSMR]		= { 0x00,  8 },
 182			[SCBRR]		= { 0x01,  8 },
 183			[SCSCR]		= { 0x02,  8 },
 184			[SCxTDR]	= { 0x03,  8 },
 185			[SCxSR]		= { 0x04,  8 },
 186			[SCxRDR]	= { 0x05,  8 },
 187		},
 188		.fifosize = 1,
 189		.overrun_reg = SCxSR,
 190		.overrun_mask = SCI_ORER,
 191		.sampling_rate_mask = SCI_SR(32),
 192		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
 193		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
 194	},
 195
 196	/*
 197	 * Common definitions for legacy IrDA ports.
 198	 */
 199	[SCIx_IRDA_REGTYPE] = {
 200		.regs = {
 201			[SCSMR]		= { 0x00,  8 },
 202			[SCBRR]		= { 0x02,  8 },
 203			[SCSCR]		= { 0x04,  8 },
 204			[SCxTDR]	= { 0x06,  8 },
 205			[SCxSR]		= { 0x08, 16 },
 206			[SCxRDR]	= { 0x0a,  8 },
 207			[SCFCR]		= { 0x0c,  8 },
 208			[SCFDR]		= { 0x0e, 16 },
 209		},
 210		.fifosize = 1,
 211		.overrun_reg = SCxSR,
 212		.overrun_mask = SCI_ORER,
 213		.sampling_rate_mask = SCI_SR(32),
 214		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
 215		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
 216	},
 217
 218	/*
 219	 * Common SCIFA definitions.
 220	 */
 221	[SCIx_SCIFA_REGTYPE] = {
 222		.regs = {
 223			[SCSMR]		= { 0x00, 16 },
 224			[SCBRR]		= { 0x04,  8 },
 225			[SCSCR]		= { 0x08, 16 },
 226			[SCxTDR]	= { 0x20,  8 },
 227			[SCxSR]		= { 0x14, 16 },
 228			[SCxRDR]	= { 0x24,  8 },
 229			[SCFCR]		= { 0x18, 16 },
 230			[SCFDR]		= { 0x1c, 16 },
 231			[SCPCR]		= { 0x30, 16 },
 232			[SCPDR]		= { 0x34, 16 },
 233		},
 234		.fifosize = 64,
 235		.overrun_reg = SCxSR,
 236		.overrun_mask = SCIFA_ORER,
 237		.sampling_rate_mask = SCI_SR_SCIFAB,
 238		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 239		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 240	},
 241
 242	/*
 243	 * Common SCIFB definitions.
 244	 */
 245	[SCIx_SCIFB_REGTYPE] = {
 246		.regs = {
 247			[SCSMR]		= { 0x00, 16 },
 248			[SCBRR]		= { 0x04,  8 },
 249			[SCSCR]		= { 0x08, 16 },
 250			[SCxTDR]	= { 0x40,  8 },
 251			[SCxSR]		= { 0x14, 16 },
 252			[SCxRDR]	= { 0x60,  8 },
 253			[SCFCR]		= { 0x18, 16 },
 254			[SCTFDR]	= { 0x38, 16 },
 255			[SCRFDR]	= { 0x3c, 16 },
 256			[SCPCR]		= { 0x30, 16 },
 257			[SCPDR]		= { 0x34, 16 },
 258		},
 259		.fifosize = 256,
 260		.overrun_reg = SCxSR,
 261		.overrun_mask = SCIFA_ORER,
 262		.sampling_rate_mask = SCI_SR_SCIFAB,
 263		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 264		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 265	},
 266
 267	/*
 268	 * Common SH-2(A) SCIF definitions for ports with FIFO data
 269	 * count registers.
 270	 */
 271	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
 272		.regs = {
 273			[SCSMR]		= { 0x00, 16 },
 274			[SCBRR]		= { 0x04,  8 },
 275			[SCSCR]		= { 0x08, 16 },
 276			[SCxTDR]	= { 0x0c,  8 },
 277			[SCxSR]		= { 0x10, 16 },
 278			[SCxRDR]	= { 0x14,  8 },
 279			[SCFCR]		= { 0x18, 16 },
 280			[SCFDR]		= { 0x1c, 16 },
 281			[SCSPTR]	= { 0x20, 16 },
 282			[SCLSR]		= { 0x24, 16 },
 283		},
 284		.fifosize = 16,
 285		.overrun_reg = SCLSR,
 286		.overrun_mask = SCLSR_ORER,
 287		.sampling_rate_mask = SCI_SR(32),
 288		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 289		.error_clear = SCIF_ERROR_CLEAR,
 290	},
 291
 292	/*
 293	 * The "SCIFA" that is in RZ/A2, RZ/G2L and RZ/T.
 294	 * It looks like a normal SCIF with FIFO data, but with a
 295	 * compressed address space. Also, the break out of interrupts
 296	 * are different: ERI/BRI, RXI, TXI, TEI, DRI.
 297	 */
 298	[SCIx_RZ_SCIFA_REGTYPE] = {
 299		.regs = {
 300			[SCSMR]		= { 0x00, 16 },
 301			[SCBRR]		= { 0x02,  8 },
 302			[SCSCR]		= { 0x04, 16 },
 303			[SCxTDR]	= { 0x06,  8 },
 304			[SCxSR]		= { 0x08, 16 },
 305			[SCxRDR]	= { 0x0A,  8 },
 306			[SCFCR]		= { 0x0C, 16 },
 307			[SCFDR]		= { 0x0E, 16 },
 308			[SCSPTR]	= { 0x10, 16 },
 309			[SCLSR]		= { 0x12, 16 },
 310			[SEMR]		= { 0x14, 8 },
 311		},
 312		.fifosize = 16,
 313		.overrun_reg = SCLSR,
 314		.overrun_mask = SCLSR_ORER,
 315		.sampling_rate_mask = SCI_SR(32),
 316		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 317		.error_clear = SCIF_ERROR_CLEAR,
 318	},
 319
 320	/*
 321	 * Common SH-3 SCIF definitions.
 322	 */
 323	[SCIx_SH3_SCIF_REGTYPE] = {
 324		.regs = {
 325			[SCSMR]		= { 0x00,  8 },
 326			[SCBRR]		= { 0x02,  8 },
 327			[SCSCR]		= { 0x04,  8 },
 328			[SCxTDR]	= { 0x06,  8 },
 329			[SCxSR]		= { 0x08, 16 },
 330			[SCxRDR]	= { 0x0a,  8 },
 331			[SCFCR]		= { 0x0c,  8 },
 332			[SCFDR]		= { 0x0e, 16 },
 333		},
 334		.fifosize = 16,
 335		.overrun_reg = SCLSR,
 336		.overrun_mask = SCLSR_ORER,
 337		.sampling_rate_mask = SCI_SR(32),
 338		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 339		.error_clear = SCIF_ERROR_CLEAR,
 340	},
 341
 342	/*
 343	 * Common SH-4(A) SCIF(B) definitions.
 344	 */
 345	[SCIx_SH4_SCIF_REGTYPE] = {
 346		.regs = {
 347			[SCSMR]		= { 0x00, 16 },
 348			[SCBRR]		= { 0x04,  8 },
 349			[SCSCR]		= { 0x08, 16 },
 350			[SCxTDR]	= { 0x0c,  8 },
 351			[SCxSR]		= { 0x10, 16 },
 352			[SCxRDR]	= { 0x14,  8 },
 353			[SCFCR]		= { 0x18, 16 },
 354			[SCFDR]		= { 0x1c, 16 },
 355			[SCSPTR]	= { 0x20, 16 },
 356			[SCLSR]		= { 0x24, 16 },
 357		},
 358		.fifosize = 16,
 359		.overrun_reg = SCLSR,
 360		.overrun_mask = SCLSR_ORER,
 361		.sampling_rate_mask = SCI_SR(32),
 362		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 363		.error_clear = SCIF_ERROR_CLEAR,
 364	},
 365
 366	/*
 367	 * Common SCIF definitions for ports with a Baud Rate Generator for
 368	 * External Clock (BRG).
 369	 */
 370	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
 371		.regs = {
 372			[SCSMR]		= { 0x00, 16 },
 373			[SCBRR]		= { 0x04,  8 },
 374			[SCSCR]		= { 0x08, 16 },
 375			[SCxTDR]	= { 0x0c,  8 },
 376			[SCxSR]		= { 0x10, 16 },
 377			[SCxRDR]	= { 0x14,  8 },
 378			[SCFCR]		= { 0x18, 16 },
 379			[SCFDR]		= { 0x1c, 16 },
 380			[SCSPTR]	= { 0x20, 16 },
 381			[SCLSR]		= { 0x24, 16 },
 382			[SCDL]		= { 0x30, 16 },
 383			[SCCKS]		= { 0x34, 16 },
 384		},
 385		.fifosize = 16,
 386		.overrun_reg = SCLSR,
 387		.overrun_mask = SCLSR_ORER,
 388		.sampling_rate_mask = SCI_SR(32),
 389		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 390		.error_clear = SCIF_ERROR_CLEAR,
 391	},
 392
 393	/*
 394	 * Common HSCIF definitions.
 395	 */
 396	[SCIx_HSCIF_REGTYPE] = {
 397		.regs = {
 398			[SCSMR]		= { 0x00, 16 },
 399			[SCBRR]		= { 0x04,  8 },
 400			[SCSCR]		= { 0x08, 16 },
 401			[SCxTDR]	= { 0x0c,  8 },
 402			[SCxSR]		= { 0x10, 16 },
 403			[SCxRDR]	= { 0x14,  8 },
 404			[SCFCR]		= { 0x18, 16 },
 405			[SCFDR]		= { 0x1c, 16 },
 406			[SCSPTR]	= { 0x20, 16 },
 407			[SCLSR]		= { 0x24, 16 },
 408			[HSSRR]		= { 0x40, 16 },
 409			[SCDL]		= { 0x30, 16 },
 410			[SCCKS]		= { 0x34, 16 },
 411			[HSRTRGR]	= { 0x54, 16 },
 412			[HSTTRGR]	= { 0x58, 16 },
 413		},
 414		.fifosize = 128,
 415		.overrun_reg = SCLSR,
 416		.overrun_mask = SCLSR_ORER,
 417		.sampling_rate_mask = SCI_SR_RANGE(8, 32),
 418		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 419		.error_clear = SCIF_ERROR_CLEAR,
 420	},
 421
 422	/*
 423	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
 424	 * register.
 425	 */
 426	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
 427		.regs = {
 428			[SCSMR]		= { 0x00, 16 },
 429			[SCBRR]		= { 0x04,  8 },
 430			[SCSCR]		= { 0x08, 16 },
 431			[SCxTDR]	= { 0x0c,  8 },
 432			[SCxSR]		= { 0x10, 16 },
 433			[SCxRDR]	= { 0x14,  8 },
 434			[SCFCR]		= { 0x18, 16 },
 435			[SCFDR]		= { 0x1c, 16 },
 436			[SCLSR]		= { 0x24, 16 },
 437		},
 438		.fifosize = 16,
 439		.overrun_reg = SCLSR,
 440		.overrun_mask = SCLSR_ORER,
 441		.sampling_rate_mask = SCI_SR(32),
 442		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 443		.error_clear = SCIF_ERROR_CLEAR,
 444	},
 445
 446	/*
 447	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
 448	 * count registers.
 449	 */
 450	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
 451		.regs = {
 452			[SCSMR]		= { 0x00, 16 },
 453			[SCBRR]		= { 0x04,  8 },
 454			[SCSCR]		= { 0x08, 16 },
 455			[SCxTDR]	= { 0x0c,  8 },
 456			[SCxSR]		= { 0x10, 16 },
 457			[SCxRDR]	= { 0x14,  8 },
 458			[SCFCR]		= { 0x18, 16 },
 459			[SCFDR]		= { 0x1c, 16 },
 460			[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
 461			[SCRFDR]	= { 0x20, 16 },
 462			[SCSPTR]	= { 0x24, 16 },
 463			[SCLSR]		= { 0x28, 16 },
 464		},
 465		.fifosize = 16,
 466		.overrun_reg = SCLSR,
 467		.overrun_mask = SCLSR_ORER,
 468		.sampling_rate_mask = SCI_SR(32),
 469		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 470		.error_clear = SCIF_ERROR_CLEAR,
 471	},
 472
 473	/*
 474	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
 475	 * registers.
 476	 */
 477	[SCIx_SH7705_SCIF_REGTYPE] = {
 478		.regs = {
 479			[SCSMR]		= { 0x00, 16 },
 480			[SCBRR]		= { 0x04,  8 },
 481			[SCSCR]		= { 0x08, 16 },
 482			[SCxTDR]	= { 0x20,  8 },
 483			[SCxSR]		= { 0x14, 16 },
 484			[SCxRDR]	= { 0x24,  8 },
 485			[SCFCR]		= { 0x18, 16 },
 486			[SCFDR]		= { 0x1c, 16 },
 487		},
 488		.fifosize = 64,
 489		.overrun_reg = SCxSR,
 490		.overrun_mask = SCIFA_ORER,
 491		.sampling_rate_mask = SCI_SR(16),
 492		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 493		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 494	},
 495};
 496
 497#define sci_getreg(up, offset)		(&to_sci_port(up)->params->regs[offset])
 498
 499/*
 500 * The "offset" here is rather misleading, in that it refers to an enum
 501 * value relative to the port mapping rather than the fixed offset
 502 * itself, which needs to be manually retrieved from the platform's
 503 * register map for the given port.
 504 */
 505static unsigned int sci_serial_in(struct uart_port *p, int offset)
 506{
 507	const struct plat_sci_reg *reg = sci_getreg(p, offset);
 508
 509	if (reg->size == 8)
 510		return ioread8(p->membase + (reg->offset << p->regshift));
 511	else if (reg->size == 16)
 512		return ioread16(p->membase + (reg->offset << p->regshift));
 513	else
 514		WARN(1, "Invalid register access\n");
 515
 516	return 0;
 517}
 518
 519static void sci_serial_out(struct uart_port *p, int offset, int value)
 520{
 521	const struct plat_sci_reg *reg = sci_getreg(p, offset);
 522
 523	if (reg->size == 8)
 524		iowrite8(value, p->membase + (reg->offset << p->regshift));
 525	else if (reg->size == 16)
 526		iowrite16(value, p->membase + (reg->offset << p->regshift));
 527	else
 528		WARN(1, "Invalid register access\n");
 529}
 530
 531static void sci_port_enable(struct sci_port *sci_port)
 532{
 533	unsigned int i;
 534
 535	if (!sci_port->port.dev)
 536		return;
 537
 538	pm_runtime_get_sync(sci_port->port.dev);
 539
 540	for (i = 0; i < SCI_NUM_CLKS; i++) {
 541		clk_prepare_enable(sci_port->clks[i]);
 542		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
 543	}
 544	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
 545}
 546
 547static void sci_port_disable(struct sci_port *sci_port)
 548{
 549	unsigned int i;
 550
 551	if (!sci_port->port.dev)
 552		return;
 553
 554	for (i = SCI_NUM_CLKS; i-- > 0; )
 555		clk_disable_unprepare(sci_port->clks[i]);
 556
 557	pm_runtime_put_sync(sci_port->port.dev);
 558}
 559
 560static inline unsigned long port_rx_irq_mask(struct uart_port *port)
 561{
 562	/*
 563	 * Not all ports (such as SCIFA) will support REIE. Rather than
 564	 * special-casing the port type, we check the port initialization
 565	 * IRQ enable mask to see whether the IRQ is desired at all. If
 566	 * it's unset, it's logically inferred that there's no point in
 567	 * testing for it.
 568	 */
 569	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
 570}
 571
 572static void sci_start_tx(struct uart_port *port)
 573{
 574	struct sci_port *s = to_sci_port(port);
 575	unsigned short ctrl;
 576
 577#ifdef CONFIG_SERIAL_SH_SCI_DMA
 578	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 579		u16 new, scr = sci_serial_in(port, SCSCR);
 580		if (s->chan_tx)
 581			new = scr | SCSCR_TDRQE;
 582		else
 583			new = scr & ~SCSCR_TDRQE;
 584		if (new != scr)
 585			sci_serial_out(port, SCSCR, new);
 586	}
 587
 588	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
 589	    dma_submit_error(s->cookie_tx)) {
 590		if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
 591			/* Switch irq from SCIF to DMA */
 592			disable_irq_nosync(s->irqs[SCIx_TXI_IRQ]);
 593
 594		s->cookie_tx = 0;
 595		schedule_work(&s->work_tx);
 596	}
 597#endif
 598
 599	if (!s->chan_tx || s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE ||
 600	    port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 601		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
 602		ctrl = sci_serial_in(port, SCSCR);
 603
 604		/*
 605		 * For SCI, TE (transmit enable) must be set after setting TIE
 606		 * (transmit interrupt enable) or in the same instruction to start
 607		 * the transmit process.
 608		 */
 609		if (port->type == PORT_SCI)
 610			ctrl |= SCSCR_TE;
 611
 612		sci_serial_out(port, SCSCR, ctrl | SCSCR_TIE);
 613	}
 614}
 615
 616static void sci_stop_tx(struct uart_port *port)
 617{
 618	unsigned short ctrl;
 619
 620	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
 621	ctrl = sci_serial_in(port, SCSCR);
 622
 623	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 624		ctrl &= ~SCSCR_TDRQE;
 625
 626	ctrl &= ~SCSCR_TIE;
 627
 628	sci_serial_out(port, SCSCR, ctrl);
 629
 630#ifdef CONFIG_SERIAL_SH_SCI_DMA
 631	if (to_sci_port(port)->chan_tx &&
 632	    !dma_submit_error(to_sci_port(port)->cookie_tx)) {
 633		dmaengine_terminate_async(to_sci_port(port)->chan_tx);
 634		to_sci_port(port)->cookie_tx = -EINVAL;
 635	}
 636#endif
 637}
 638
 639static void sci_start_rx(struct uart_port *port)
 640{
 641	unsigned short ctrl;
 642
 643	ctrl = sci_serial_in(port, SCSCR) | port_rx_irq_mask(port);
 644
 645	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 646		ctrl &= ~SCSCR_RDRQE;
 647
 648	sci_serial_out(port, SCSCR, ctrl);
 649}
 650
 651static void sci_stop_rx(struct uart_port *port)
 652{
 653	unsigned short ctrl;
 654
 655	ctrl = sci_serial_in(port, SCSCR);
 656
 657	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 658		ctrl &= ~SCSCR_RDRQE;
 659
 660	ctrl &= ~port_rx_irq_mask(port);
 661
 662	sci_serial_out(port, SCSCR, ctrl);
 663}
 664
 665static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
 666{
 667	if (port->type == PORT_SCI) {
 668		/* Just store the mask */
 669		sci_serial_out(port, SCxSR, mask);
 670	} else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
 671		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
 672		/* Only clear the status bits we want to clear */
 673		sci_serial_out(port, SCxSR, sci_serial_in(port, SCxSR) & mask);
 
 674	} else {
 675		/* Store the mask, clear parity/framing errors */
 676		sci_serial_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
 677	}
 678}
 679
 680#if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
 681    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
 682
 683#ifdef CONFIG_CONSOLE_POLL
 684static int sci_poll_get_char(struct uart_port *port)
 685{
 686	unsigned short status;
 687	int c;
 688
 689	do {
 690		status = sci_serial_in(port, SCxSR);
 691		if (status & SCxSR_ERRORS(port)) {
 692			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
 693			continue;
 694		}
 695		break;
 696	} while (1);
 697
 698	if (!(status & SCxSR_RDxF(port)))
 699		return NO_POLL_CHAR;
 700
 701	c = sci_serial_in(port, SCxRDR);
 702
 703	/* Dummy read */
 704	sci_serial_in(port, SCxSR);
 705	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 706
 707	return c;
 708}
 709#endif
 710
 711static void sci_poll_put_char(struct uart_port *port, unsigned char c)
 712{
 713	unsigned short status;
 714
 715	do {
 716		status = sci_serial_in(port, SCxSR);
 717	} while (!(status & SCxSR_TDxE(port)));
 718
 719	sci_serial_out(port, SCxTDR, c);
 720	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
 721}
 722#endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
 723	  CONFIG_SERIAL_SH_SCI_EARLYCON */
 724
 725static void sci_init_pins(struct uart_port *port, unsigned int cflag)
 726{
 727	struct sci_port *s = to_sci_port(port);
 728
 729	/*
 730	 * Use port-specific handler if provided.
 731	 */
 732	if (s->cfg->ops && s->cfg->ops->init_pins) {
 733		s->cfg->ops->init_pins(port, cflag);
 734		return;
 735	}
 736
 737	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 738		u16 data = sci_serial_in(port, SCPDR);
 739		u16 ctrl = sci_serial_in(port, SCPCR);
 740
 741		/* Enable RXD and TXD pin functions */
 742		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
 743		if (to_sci_port(port)->has_rtscts) {
 744			/* RTS# is output, active low, unless autorts */
 745			if (!(port->mctrl & TIOCM_RTS)) {
 746				ctrl |= SCPCR_RTSC;
 747				data |= SCPDR_RTSD;
 748			} else if (!s->autorts) {
 749				ctrl |= SCPCR_RTSC;
 750				data &= ~SCPDR_RTSD;
 751			} else {
 752				/* Enable RTS# pin function */
 753				ctrl &= ~SCPCR_RTSC;
 754			}
 755			/* Enable CTS# pin function */
 756			ctrl &= ~SCPCR_CTSC;
 757		}
 758		sci_serial_out(port, SCPDR, data);
 759		sci_serial_out(port, SCPCR, ctrl);
 760	} else if (sci_getreg(port, SCSPTR)->size) {
 761		u16 status = sci_serial_in(port, SCSPTR);
 762
 763		/* RTS# is always output; and active low, unless autorts */
 764		status |= SCSPTR_RTSIO;
 765		if (!(port->mctrl & TIOCM_RTS))
 766			status |= SCSPTR_RTSDT;
 767		else if (!s->autorts)
 768			status &= ~SCSPTR_RTSDT;
 769		/* CTS# and SCK are inputs */
 770		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
 771		sci_serial_out(port, SCSPTR, status);
 772	}
 773}
 774
 775static int sci_txfill(struct uart_port *port)
 776{
 777	struct sci_port *s = to_sci_port(port);
 778	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
 779	const struct plat_sci_reg *reg;
 780
 781	reg = sci_getreg(port, SCTFDR);
 782	if (reg->size)
 783		return sci_serial_in(port, SCTFDR) & fifo_mask;
 784
 785	reg = sci_getreg(port, SCFDR);
 786	if (reg->size)
 787		return sci_serial_in(port, SCFDR) >> 8;
 788
 789	return !(sci_serial_in(port, SCxSR) & SCI_TDRE);
 790}
 791
 792static int sci_txroom(struct uart_port *port)
 793{
 794	return port->fifosize - sci_txfill(port);
 795}
 796
 797static int sci_rxfill(struct uart_port *port)
 798{
 799	struct sci_port *s = to_sci_port(port);
 800	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
 801	const struct plat_sci_reg *reg;
 802
 803	reg = sci_getreg(port, SCRFDR);
 804	if (reg->size)
 805		return sci_serial_in(port, SCRFDR) & fifo_mask;
 806
 807	reg = sci_getreg(port, SCFDR);
 808	if (reg->size)
 809		return sci_serial_in(port, SCFDR) & fifo_mask;
 810
 811	return (sci_serial_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
 812}
 813
 814/* ********************************************************************** *
 815 *                   the interrupt related routines                       *
 816 * ********************************************************************** */
 817
 818static void sci_transmit_chars(struct uart_port *port)
 819{
 820	struct circ_buf *xmit = &port->state->xmit;
 821	unsigned int stopped = uart_tx_stopped(port);
 822	unsigned short status;
 823	unsigned short ctrl;
 824	int count;
 825
 826	status = sci_serial_in(port, SCxSR);
 827	if (!(status & SCxSR_TDxE(port))) {
 828		ctrl = sci_serial_in(port, SCSCR);
 829		if (uart_circ_empty(xmit))
 830			ctrl &= ~SCSCR_TIE;
 831		else
 832			ctrl |= SCSCR_TIE;
 833		sci_serial_out(port, SCSCR, ctrl);
 834		return;
 835	}
 836
 837	count = sci_txroom(port);
 838
 839	do {
 840		unsigned char c;
 841
 842		if (port->x_char) {
 843			c = port->x_char;
 844			port->x_char = 0;
 845		} else if (!uart_circ_empty(xmit) && !stopped) {
 846			c = xmit->buf[xmit->tail];
 847			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
 848		} else if (port->type == PORT_SCI && uart_circ_empty(xmit)) {
 849			ctrl = sci_serial_in(port, SCSCR);
 850			ctrl &= ~SCSCR_TE;
 851			sci_serial_out(port, SCSCR, ctrl);
 852			return;
 853		} else {
 854			break;
 855		}
 856
 857		sci_serial_out(port, SCxTDR, c);
 858
 859		port->icount.tx++;
 860	} while (--count > 0);
 861
 862	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
 863
 864	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 865		uart_write_wakeup(port);
 866	if (uart_circ_empty(xmit)) {
 867		if (port->type == PORT_SCI) {
 868			ctrl = sci_serial_in(port, SCSCR);
 869			ctrl &= ~SCSCR_TIE;
 870			ctrl |= SCSCR_TEIE;
 871			sci_serial_out(port, SCSCR, ctrl);
 872		}
 873
 874		sci_stop_tx(port);
 875	}
 876}
 877
 
 
 
 878static void sci_receive_chars(struct uart_port *port)
 879{
 880	struct tty_port *tport = &port->state->port;
 881	int i, count, copied = 0;
 882	unsigned short status;
 883	unsigned char flag;
 884
 885	status = sci_serial_in(port, SCxSR);
 886	if (!(status & SCxSR_RDxF(port)))
 887		return;
 888
 889	while (1) {
 890		/* Don't copy more bytes than there is room for in the buffer */
 891		count = tty_buffer_request_room(tport, sci_rxfill(port));
 892
 893		/* If for any reason we can't copy more data, we're done! */
 894		if (count == 0)
 895			break;
 896
 897		if (port->type == PORT_SCI) {
 898			char c = sci_serial_in(port, SCxRDR);
 899			if (uart_handle_sysrq_char(port, c))
 900				count = 0;
 901			else
 902				tty_insert_flip_char(tport, c, TTY_NORMAL);
 903		} else {
 904			for (i = 0; i < count; i++) {
 905				char c;
 906
 907				if (port->type == PORT_SCIF ||
 908				    port->type == PORT_HSCIF) {
 909					status = sci_serial_in(port, SCxSR);
 910					c = sci_serial_in(port, SCxRDR);
 911				} else {
 912					c = sci_serial_in(port, SCxRDR);
 913					status = sci_serial_in(port, SCxSR);
 914				}
 915				if (uart_handle_sysrq_char(port, c)) {
 916					count--; i--;
 917					continue;
 918				}
 919
 920				/* Store data and status */
 921				if (status & SCxSR_FER(port)) {
 922					flag = TTY_FRAME;
 923					port->icount.frame++;
 
 924				} else if (status & SCxSR_PER(port)) {
 925					flag = TTY_PARITY;
 926					port->icount.parity++;
 
 927				} else
 928					flag = TTY_NORMAL;
 929
 930				tty_insert_flip_char(tport, c, flag);
 931			}
 932		}
 933
 934		sci_serial_in(port, SCxSR); /* dummy read */
 935		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 936
 937		copied += count;
 938		port->icount.rx += count;
 939	}
 940
 941	if (copied) {
 942		/* Tell the rest of the system the news. New characters! */
 943		tty_flip_buffer_push(tport);
 944	} else {
 945		/* TTY buffers full; read from RX reg to prevent lockup */
 946		sci_serial_in(port, SCxRDR);
 947		sci_serial_in(port, SCxSR); /* dummy read */
 948		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 949	}
 950}
 951
 952static int sci_handle_errors(struct uart_port *port)
 953{
 954	int copied = 0;
 955	unsigned short status = sci_serial_in(port, SCxSR);
 956	struct tty_port *tport = &port->state->port;
 957	struct sci_port *s = to_sci_port(port);
 958
 959	/* Handle overruns */
 960	if (status & s->params->overrun_mask) {
 961		port->icount.overrun++;
 962
 963		/* overrun error */
 964		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
 965			copied++;
 
 
 966	}
 967
 968	if (status & SCxSR_FER(port)) {
 969		/* frame error */
 970		port->icount.frame++;
 971
 972		if (tty_insert_flip_char(tport, 0, TTY_FRAME))
 973			copied++;
 
 
 974	}
 975
 976	if (status & SCxSR_PER(port)) {
 977		/* parity error */
 978		port->icount.parity++;
 979
 980		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
 981			copied++;
 
 
 982	}
 983
 984	if (copied)
 985		tty_flip_buffer_push(tport);
 986
 987	return copied;
 988}
 989
 990static int sci_handle_fifo_overrun(struct uart_port *port)
 991{
 992	struct tty_port *tport = &port->state->port;
 993	struct sci_port *s = to_sci_port(port);
 994	const struct plat_sci_reg *reg;
 995	int copied = 0;
 996	u16 status;
 997
 998	reg = sci_getreg(port, s->params->overrun_reg);
 999	if (!reg->size)
1000		return 0;
1001
1002	status = sci_serial_in(port, s->params->overrun_reg);
1003	if (status & s->params->overrun_mask) {
1004		status &= ~s->params->overrun_mask;
1005		sci_serial_out(port, s->params->overrun_reg, status);
1006
1007		port->icount.overrun++;
1008
1009		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
1010		tty_flip_buffer_push(tport);
 
 
1011		copied++;
1012	}
1013
1014	return copied;
1015}
1016
1017static int sci_handle_breaks(struct uart_port *port)
1018{
1019	int copied = 0;
1020	unsigned short status = sci_serial_in(port, SCxSR);
1021	struct tty_port *tport = &port->state->port;
1022
1023	if (uart_handle_break(port))
1024		return 0;
1025
1026	if (status & SCxSR_BRK(port)) {
1027		port->icount.brk++;
1028
1029		/* Notify of BREAK */
1030		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1031			copied++;
 
 
1032	}
1033
1034	if (copied)
1035		tty_flip_buffer_push(tport);
1036
1037	copied += sci_handle_fifo_overrun(port);
1038
1039	return copied;
1040}
1041
1042static int scif_set_rtrg(struct uart_port *port, int rx_trig)
1043{
1044	unsigned int bits;
1045
1046	if (rx_trig >= port->fifosize)
1047		rx_trig = port->fifosize - 1;
1048	if (rx_trig < 1)
1049		rx_trig = 1;
 
 
1050
1051	/* HSCIF can be set to an arbitrary level. */
1052	if (sci_getreg(port, HSRTRGR)->size) {
1053		sci_serial_out(port, HSRTRGR, rx_trig);
1054		return rx_trig;
1055	}
1056
1057	switch (port->type) {
1058	case PORT_SCIF:
1059		if (rx_trig < 4) {
1060			bits = 0;
1061			rx_trig = 1;
1062		} else if (rx_trig < 8) {
1063			bits = SCFCR_RTRG0;
1064			rx_trig = 4;
1065		} else if (rx_trig < 14) {
1066			bits = SCFCR_RTRG1;
1067			rx_trig = 8;
1068		} else {
1069			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1070			rx_trig = 14;
1071		}
1072		break;
1073	case PORT_SCIFA:
1074	case PORT_SCIFB:
1075		if (rx_trig < 16) {
1076			bits = 0;
1077			rx_trig = 1;
1078		} else if (rx_trig < 32) {
1079			bits = SCFCR_RTRG0;
1080			rx_trig = 16;
1081		} else if (rx_trig < 48) {
1082			bits = SCFCR_RTRG1;
1083			rx_trig = 32;
1084		} else {
1085			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1086			rx_trig = 48;
1087		}
1088		break;
1089	default:
1090		WARN(1, "unknown FIFO configuration");
1091		return 1;
1092	}
1093
1094	sci_serial_out(port, SCFCR,
1095		       (sci_serial_in(port, SCFCR) &
1096			~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1097
1098	return rx_trig;
1099}
1100
1101static int scif_rtrg_enabled(struct uart_port *port)
1102{
1103	if (sci_getreg(port, HSRTRGR)->size)
1104		return sci_serial_in(port, HSRTRGR) != 0;
1105	else
1106		return (sci_serial_in(port, SCFCR) &
1107			(SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1108}
1109
1110static void rx_fifo_timer_fn(struct timer_list *t)
1111{
1112	struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1113	struct uart_port *port = &s->port;
1114
1115	dev_dbg(port->dev, "Rx timed out\n");
1116	scif_set_rtrg(port, 1);
1117}
1118
1119static ssize_t rx_fifo_trigger_show(struct device *dev,
1120				    struct device_attribute *attr, char *buf)
1121{
1122	struct uart_port *port = dev_get_drvdata(dev);
1123	struct sci_port *sci = to_sci_port(port);
1124
1125	return sprintf(buf, "%d\n", sci->rx_trigger);
1126}
1127
1128static ssize_t rx_fifo_trigger_store(struct device *dev,
1129				     struct device_attribute *attr,
1130				     const char *buf, size_t count)
1131{
1132	struct uart_port *port = dev_get_drvdata(dev);
1133	struct sci_port *sci = to_sci_port(port);
1134	int ret;
1135	long r;
1136
1137	ret = kstrtol(buf, 0, &r);
1138	if (ret)
1139		return ret;
1140
1141	sci->rx_trigger = scif_set_rtrg(port, r);
1142	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1143		scif_set_rtrg(port, 1);
1144
1145	return count;
1146}
1147
1148static DEVICE_ATTR_RW(rx_fifo_trigger);
1149
1150static ssize_t rx_fifo_timeout_show(struct device *dev,
1151			       struct device_attribute *attr,
1152			       char *buf)
1153{
1154	struct uart_port *port = dev_get_drvdata(dev);
1155	struct sci_port *sci = to_sci_port(port);
1156	int v;
1157
1158	if (port->type == PORT_HSCIF)
1159		v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1160	else
1161		v = sci->rx_fifo_timeout;
1162
1163	return sprintf(buf, "%d\n", v);
1164}
1165
1166static ssize_t rx_fifo_timeout_store(struct device *dev,
1167				struct device_attribute *attr,
1168				const char *buf,
1169				size_t count)
1170{
1171	struct uart_port *port = dev_get_drvdata(dev);
1172	struct sci_port *sci = to_sci_port(port);
1173	int ret;
1174	long r;
1175
1176	ret = kstrtol(buf, 0, &r);
1177	if (ret)
1178		return ret;
1179
1180	if (port->type == PORT_HSCIF) {
1181		if (r < 0 || r > 3)
1182			return -EINVAL;
1183		sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1184	} else {
1185		sci->rx_fifo_timeout = r;
1186		scif_set_rtrg(port, 1);
1187		if (r > 0)
1188			timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1189	}
1190
1191	return count;
1192}
1193
1194static DEVICE_ATTR_RW(rx_fifo_timeout);
1195
1196
1197#ifdef CONFIG_SERIAL_SH_SCI_DMA
1198static void sci_dma_tx_complete(void *arg)
1199{
1200	struct sci_port *s = arg;
1201	struct uart_port *port = &s->port;
1202	struct circ_buf *xmit = &port->state->xmit;
1203	unsigned long flags;
1204
1205	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1206
1207	uart_port_lock_irqsave(port, &flags);
 
 
 
1208
1209	uart_xmit_advance(port, s->tx_dma_len);
1210
1211	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1212		uart_write_wakeup(port);
1213
1214	if (!uart_circ_empty(xmit)) {
1215		s->cookie_tx = 0;
1216		schedule_work(&s->work_tx);
1217	} else {
1218		s->cookie_tx = -EINVAL;
1219		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1220		    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1221			u16 ctrl = sci_serial_in(port, SCSCR);
1222			sci_serial_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1223			if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1224				/* Switch irq from DMA to SCIF */
1225				dmaengine_pause(s->chan_tx_saved);
1226				enable_irq(s->irqs[SCIx_TXI_IRQ]);
1227			}
1228		}
1229	}
1230
1231	uart_port_unlock_irqrestore(port, flags);
1232}
1233
1234/* Locking: called with port lock held */
1235static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1236{
1237	struct uart_port *port = &s->port;
1238	struct tty_port *tport = &port->state->port;
1239	int copied;
1240
1241	copied = tty_insert_flip_string(tport, buf, count);
1242	if (copied < count)
1243		port->icount.buf_overrun++;
1244
1245	port->icount.rx += copied;
1246
1247	return copied;
1248}
1249
1250static int sci_dma_rx_find_active(struct sci_port *s)
1251{
1252	unsigned int i;
1253
1254	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1255		if (s->active_rx == s->cookie_rx[i])
1256			return i;
1257
1258	return -1;
1259}
1260
1261static void sci_dma_rx_chan_invalidate(struct sci_port *s)
1262{
1263	unsigned int i;
1264
1265	s->chan_rx = NULL;
1266	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1267		s->cookie_rx[i] = -EINVAL;
1268	s->active_rx = 0;
1269}
1270
1271static void sci_dma_rx_release(struct sci_port *s)
1272{
1273	struct dma_chan *chan = s->chan_rx_saved;
1274	struct uart_port *port = &s->port;
1275	unsigned long flags;
1276
1277	uart_port_lock_irqsave(port, &flags);
1278	s->chan_rx_saved = NULL;
1279	sci_dma_rx_chan_invalidate(s);
1280	uart_port_unlock_irqrestore(port, flags);
1281
1282	dmaengine_terminate_sync(chan);
1283	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1284			  sg_dma_address(&s->sg_rx[0]));
1285	dma_release_channel(chan);
1286}
1287
1288static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1289{
1290	long sec = usec / 1000000;
1291	long nsec = (usec % 1000000) * 1000;
1292	ktime_t t = ktime_set(sec, nsec);
1293
1294	hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1295}
1296
1297static void sci_dma_rx_reenable_irq(struct sci_port *s)
1298{
1299	struct uart_port *port = &s->port;
1300	u16 scr;
1301
1302	/* Direct new serial port interrupts back to CPU */
1303	scr = sci_serial_in(port, SCSCR);
1304	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1305	    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1306		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1307		if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1308			scif_set_rtrg(port, s->rx_trigger);
1309		else
1310			scr &= ~SCSCR_RDRQE;
1311	}
1312	sci_serial_out(port, SCSCR, scr | SCSCR_RIE);
1313}
1314
1315static void sci_dma_rx_complete(void *arg)
1316{
1317	struct sci_port *s = arg;
1318	struct dma_chan *chan = s->chan_rx;
1319	struct uart_port *port = &s->port;
1320	struct dma_async_tx_descriptor *desc;
1321	unsigned long flags;
1322	int active, count = 0;
1323
1324	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1325		s->active_rx);
1326
1327	uart_port_lock_irqsave(port, &flags);
1328
1329	active = sci_dma_rx_find_active(s);
1330	if (active >= 0)
1331		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1332
1333	start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1334
1335	if (count)
1336		tty_flip_buffer_push(&port->state->port);
1337
1338	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1339				       DMA_DEV_TO_MEM,
1340				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1341	if (!desc)
1342		goto fail;
1343
1344	desc->callback = sci_dma_rx_complete;
1345	desc->callback_param = s;
1346	s->cookie_rx[active] = dmaengine_submit(desc);
1347	if (dma_submit_error(s->cookie_rx[active]))
1348		goto fail;
1349
1350	s->active_rx = s->cookie_rx[!active];
1351
1352	dma_async_issue_pending(chan);
1353
1354	uart_port_unlock_irqrestore(port, flags);
1355	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1356		__func__, s->cookie_rx[active], active, s->active_rx);
1357	return;
1358
1359fail:
1360	uart_port_unlock_irqrestore(port, flags);
1361	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1362	/* Switch to PIO */
1363	uart_port_lock_irqsave(port, &flags);
1364	dmaengine_terminate_async(chan);
1365	sci_dma_rx_chan_invalidate(s);
1366	sci_dma_rx_reenable_irq(s);
1367	uart_port_unlock_irqrestore(port, flags);
1368}
1369
1370static void sci_dma_tx_release(struct sci_port *s)
1371{
1372	struct dma_chan *chan = s->chan_tx_saved;
1373
1374	cancel_work_sync(&s->work_tx);
1375	s->chan_tx_saved = s->chan_tx = NULL;
1376	s->cookie_tx = -EINVAL;
1377	dmaengine_terminate_sync(chan);
1378	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1379			 DMA_TO_DEVICE);
1380	dma_release_channel(chan);
1381}
1382
1383static int sci_dma_rx_submit(struct sci_port *s, bool port_lock_held)
1384{
1385	struct dma_chan *chan = s->chan_rx;
1386	struct uart_port *port = &s->port;
1387	unsigned long flags;
1388	int i;
1389
1390	for (i = 0; i < 2; i++) {
1391		struct scatterlist *sg = &s->sg_rx[i];
1392		struct dma_async_tx_descriptor *desc;
1393
1394		desc = dmaengine_prep_slave_sg(chan,
1395			sg, 1, DMA_DEV_TO_MEM,
1396			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1397		if (!desc)
1398			goto fail;
1399
1400		desc->callback = sci_dma_rx_complete;
1401		desc->callback_param = s;
1402		s->cookie_rx[i] = dmaengine_submit(desc);
1403		if (dma_submit_error(s->cookie_rx[i]))
1404			goto fail;
1405
1406	}
1407
1408	s->active_rx = s->cookie_rx[0];
1409
1410	dma_async_issue_pending(chan);
1411	return 0;
1412
1413fail:
1414	/* Switch to PIO */
1415	if (!port_lock_held)
1416		uart_port_lock_irqsave(port, &flags);
1417	if (i)
1418		dmaengine_terminate_async(chan);
1419	sci_dma_rx_chan_invalidate(s);
1420	sci_start_rx(port);
1421	if (!port_lock_held)
1422		uart_port_unlock_irqrestore(port, flags);
1423	return -EAGAIN;
1424}
1425
1426static void sci_dma_tx_work_fn(struct work_struct *work)
1427{
1428	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1429	struct dma_async_tx_descriptor *desc;
1430	struct dma_chan *chan = s->chan_tx;
1431	struct uart_port *port = &s->port;
1432	struct circ_buf *xmit = &port->state->xmit;
1433	unsigned long flags;
1434	dma_addr_t buf;
1435	int head, tail;
1436
1437	/*
1438	 * DMA is idle now.
1439	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1440	 * offsets and lengths. Since it is a circular buffer, we have to
1441	 * transmit till the end, and then the rest. Take the port lock to get a
1442	 * consistent xmit buffer state.
1443	 */
1444	uart_port_lock_irq(port);
1445	head = xmit->head;
1446	tail = xmit->tail;
1447	buf = s->tx_dma_addr + tail;
1448	s->tx_dma_len = CIRC_CNT_TO_END(head, tail, UART_XMIT_SIZE);
 
 
1449	if (!s->tx_dma_len) {
1450		/* Transmit buffer has been flushed */
1451		uart_port_unlock_irq(port);
1452		return;
1453	}
1454
1455	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1456					   DMA_MEM_TO_DEV,
1457					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1458	if (!desc) {
1459		uart_port_unlock_irq(port);
1460		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1461		goto switch_to_pio;
1462	}
1463
1464	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1465				   DMA_TO_DEVICE);
1466
1467	desc->callback = sci_dma_tx_complete;
1468	desc->callback_param = s;
1469	s->cookie_tx = dmaengine_submit(desc);
1470	if (dma_submit_error(s->cookie_tx)) {
1471		uart_port_unlock_irq(port);
1472		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1473		goto switch_to_pio;
1474	}
1475
1476	uart_port_unlock_irq(port);
1477	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1478		__func__, xmit->buf, tail, head, s->cookie_tx);
1479
1480	dma_async_issue_pending(chan);
1481	return;
1482
1483switch_to_pio:
1484	uart_port_lock_irqsave(port, &flags);
1485	s->chan_tx = NULL;
1486	sci_start_tx(port);
1487	uart_port_unlock_irqrestore(port, flags);
1488	return;
1489}
1490
1491static enum hrtimer_restart sci_dma_rx_timer_fn(struct hrtimer *t)
1492{
1493	struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1494	struct dma_chan *chan = s->chan_rx;
1495	struct uart_port *port = &s->port;
1496	struct dma_tx_state state;
1497	enum dma_status status;
1498	unsigned long flags;
1499	unsigned int read;
1500	int active, count;
1501
1502	dev_dbg(port->dev, "DMA Rx timed out\n");
1503
1504	uart_port_lock_irqsave(port, &flags);
1505
1506	active = sci_dma_rx_find_active(s);
1507	if (active < 0) {
1508		uart_port_unlock_irqrestore(port, flags);
1509		return HRTIMER_NORESTART;
1510	}
1511
1512	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1513	if (status == DMA_COMPLETE) {
1514		uart_port_unlock_irqrestore(port, flags);
1515		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1516			s->active_rx, active);
1517
1518		/* Let packet complete handler take care of the packet */
1519		return HRTIMER_NORESTART;
1520	}
1521
1522	dmaengine_pause(chan);
1523
1524	/*
1525	 * sometimes DMA transfer doesn't stop even if it is stopped and
1526	 * data keeps on coming until transaction is complete so check
1527	 * for DMA_COMPLETE again
1528	 * Let packet complete handler take care of the packet
1529	 */
1530	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1531	if (status == DMA_COMPLETE) {
1532		uart_port_unlock_irqrestore(port, flags);
1533		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1534		return HRTIMER_NORESTART;
1535	}
1536
1537	/* Handle incomplete DMA receive */
1538	dmaengine_terminate_async(s->chan_rx);
1539	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1540
1541	if (read) {
1542		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1543		if (count)
1544			tty_flip_buffer_push(&port->state->port);
1545	}
1546
1547	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1548	    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1549		sci_dma_rx_submit(s, true);
1550
1551	sci_dma_rx_reenable_irq(s);
1552
1553	uart_port_unlock_irqrestore(port, flags);
1554
1555	return HRTIMER_NORESTART;
1556}
1557
1558static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1559					     enum dma_transfer_direction dir)
1560{
1561	struct dma_chan *chan;
1562	struct dma_slave_config cfg;
1563	int ret;
1564
1565	chan = dma_request_chan(port->dev, dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1566	if (IS_ERR(chan)) {
1567		dev_dbg(port->dev, "dma_request_chan failed\n");
 
1568		return NULL;
1569	}
1570
1571	memset(&cfg, 0, sizeof(cfg));
1572	cfg.direction = dir;
1573	cfg.dst_addr = port->mapbase +
1574		(sci_getreg(port, SCxTDR)->offset << port->regshift);
1575	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1576	cfg.src_addr = port->mapbase +
1577		(sci_getreg(port, SCxRDR)->offset << port->regshift);
1578	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 
 
 
1579
1580	ret = dmaengine_slave_config(chan, &cfg);
1581	if (ret) {
1582		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1583		dma_release_channel(chan);
1584		return NULL;
1585	}
1586
1587	return chan;
1588}
1589
1590static void sci_request_dma(struct uart_port *port)
1591{
1592	struct sci_port *s = to_sci_port(port);
1593	struct dma_chan *chan;
1594
1595	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1596
1597	/*
1598	 * DMA on console may interfere with Kernel log messages which use
1599	 * plain putchar(). So, simply don't use it with a console.
1600	 */
1601	if (uart_console(port))
1602		return;
1603
1604	if (!port->dev->of_node)
1605		return;
1606
1607	s->cookie_tx = -EINVAL;
1608
1609	/*
1610	 * Don't request a dma channel if no channel was specified
1611	 * in the device tree.
1612	 */
1613	if (!of_property_present(port->dev->of_node, "dmas"))
1614		return;
1615
1616	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1617	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1618	if (chan) {
1619		/* UART circular tx buffer is an aligned page. */
1620		s->tx_dma_addr = dma_map_single(chan->device->dev,
1621						port->state->xmit.buf,
1622						UART_XMIT_SIZE,
1623						DMA_TO_DEVICE);
1624		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1625			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1626			dma_release_channel(chan);
1627		} else {
1628			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1629				__func__, UART_XMIT_SIZE,
1630				port->state->xmit.buf, &s->tx_dma_addr);
1631
1632			INIT_WORK(&s->work_tx, sci_dma_tx_work_fn);
1633			s->chan_tx_saved = s->chan_tx = chan;
1634		}
1635	}
1636
1637	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1638	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1639	if (chan) {
1640		unsigned int i;
1641		dma_addr_t dma;
1642		void *buf;
1643
1644		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1645		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1646					 &dma, GFP_KERNEL);
1647		if (!buf) {
1648			dev_warn(port->dev,
1649				 "Failed to allocate Rx dma buffer, using PIO\n");
1650			dma_release_channel(chan);
1651			return;
1652		}
1653
1654		for (i = 0; i < 2; i++) {
1655			struct scatterlist *sg = &s->sg_rx[i];
1656
1657			sg_init_table(sg, 1);
1658			s->rx_buf[i] = buf;
1659			sg_dma_address(sg) = dma;
1660			sg_dma_len(sg) = s->buf_len_rx;
1661
1662			buf += s->buf_len_rx;
1663			dma += s->buf_len_rx;
1664		}
1665
1666		hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1667		s->rx_timer.function = sci_dma_rx_timer_fn;
1668
1669		s->chan_rx_saved = s->chan_rx = chan;
1670
1671		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1672		    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1673			sci_dma_rx_submit(s, false);
1674	}
1675}
1676
1677static void sci_free_dma(struct uart_port *port)
1678{
1679	struct sci_port *s = to_sci_port(port);
1680
1681	if (s->chan_tx_saved)
1682		sci_dma_tx_release(s);
1683	if (s->chan_rx_saved)
1684		sci_dma_rx_release(s);
1685}
1686
1687static void sci_flush_buffer(struct uart_port *port)
1688{
1689	struct sci_port *s = to_sci_port(port);
1690
1691	/*
1692	 * In uart_flush_buffer(), the xmit circular buffer has just been
1693	 * cleared, so we have to reset tx_dma_len accordingly, and stop any
1694	 * pending transfers
1695	 */
1696	s->tx_dma_len = 0;
1697	if (s->chan_tx) {
1698		dmaengine_terminate_async(s->chan_tx);
1699		s->cookie_tx = -EINVAL;
1700	}
1701}
1702#else /* !CONFIG_SERIAL_SH_SCI_DMA */
1703static inline void sci_request_dma(struct uart_port *port)
1704{
1705}
1706
1707static inline void sci_free_dma(struct uart_port *port)
1708{
1709}
1710
1711#define sci_flush_buffer	NULL
1712#endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1713
1714static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1715{
1716	struct uart_port *port = ptr;
1717	struct sci_port *s = to_sci_port(port);
1718
1719#ifdef CONFIG_SERIAL_SH_SCI_DMA
1720	if (s->chan_rx) {
1721		u16 scr = sci_serial_in(port, SCSCR);
1722		u16 ssr = sci_serial_in(port, SCxSR);
1723
1724		/* Disable future Rx interrupts */
1725		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1726		    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1727			disable_irq_nosync(s->irqs[SCIx_RXI_IRQ]);
1728			if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1729				scif_set_rtrg(port, 1);
1730				scr |= SCSCR_RIE;
1731			} else {
1732				scr |= SCSCR_RDRQE;
1733			}
1734		} else {
1735			if (sci_dma_rx_submit(s, false) < 0)
1736				goto handle_pio;
1737
1738			scr &= ~SCSCR_RIE;
1739		}
1740		sci_serial_out(port, SCSCR, scr);
1741		/* Clear current interrupt */
1742		sci_serial_out(port, SCxSR,
1743			       ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1744		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1745			jiffies, s->rx_timeout);
1746		start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1747
1748		return IRQ_HANDLED;
1749	}
1750
1751handle_pio:
1752#endif
1753
1754	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1755		if (!scif_rtrg_enabled(port))
1756			scif_set_rtrg(port, s->rx_trigger);
1757
1758		mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1759			  s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1760	}
1761
1762	/* I think sci_receive_chars has to be called irrespective
1763	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1764	 * to be disabled?
1765	 */
1766	sci_receive_chars(port);
1767
1768	return IRQ_HANDLED;
1769}
1770
1771static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1772{
1773	struct uart_port *port = ptr;
1774	unsigned long flags;
1775
1776	uart_port_lock_irqsave(port, &flags);
1777	sci_transmit_chars(port);
1778	uart_port_unlock_irqrestore(port, flags);
1779
1780	return IRQ_HANDLED;
1781}
1782
1783static irqreturn_t sci_tx_end_interrupt(int irq, void *ptr)
1784{
1785	struct uart_port *port = ptr;
1786	unsigned long flags;
1787	unsigned short ctrl;
1788
1789	if (port->type != PORT_SCI)
1790		return sci_tx_interrupt(irq, ptr);
1791
1792	uart_port_lock_irqsave(port, &flags);
1793	ctrl = sci_serial_in(port, SCSCR);
1794	ctrl &= ~(SCSCR_TE | SCSCR_TEIE);
1795	sci_serial_out(port, SCSCR, ctrl);
1796	uart_port_unlock_irqrestore(port, flags);
1797
1798	return IRQ_HANDLED;
1799}
1800
1801static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1802{
1803	struct uart_port *port = ptr;
1804
1805	/* Handle BREAKs */
1806	sci_handle_breaks(port);
1807
1808	/* drop invalid character received before break was detected */
1809	sci_serial_in(port, SCxRDR);
1810
1811	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1812
1813	return IRQ_HANDLED;
1814}
1815
1816static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1817{
1818	struct uart_port *port = ptr;
1819	struct sci_port *s = to_sci_port(port);
1820
1821	if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) {
1822		/* Break and Error interrupts are muxed */
1823		unsigned short ssr_status = sci_serial_in(port, SCxSR);
1824
1825		/* Break Interrupt */
1826		if (ssr_status & SCxSR_BRK(port))
1827			sci_br_interrupt(irq, ptr);
1828
1829		/* Break only? */
1830		if (!(ssr_status & SCxSR_ERRORS(port)))
1831			return IRQ_HANDLED;
1832	}
1833
1834	/* Handle errors */
1835	if (port->type == PORT_SCI) {
1836		if (sci_handle_errors(port)) {
1837			/* discard character in rx buffer */
1838			sci_serial_in(port, SCxSR);
1839			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1840		}
1841	} else {
1842		sci_handle_fifo_overrun(port);
1843		if (!s->chan_rx)
1844			sci_receive_chars(port);
1845	}
1846
1847	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1848
1849	/* Kick the transmission */
1850	if (!s->chan_tx)
1851		sci_tx_interrupt(irq, ptr);
1852
1853	return IRQ_HANDLED;
1854}
1855
1856static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1857{
1858	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1859	struct uart_port *port = ptr;
1860	struct sci_port *s = to_sci_port(port);
1861	irqreturn_t ret = IRQ_NONE;
1862
1863	ssr_status = sci_serial_in(port, SCxSR);
1864	scr_status = sci_serial_in(port, SCSCR);
1865	if (s->params->overrun_reg == SCxSR)
1866		orer_status = ssr_status;
1867	else if (sci_getreg(port, s->params->overrun_reg)->size)
1868		orer_status = sci_serial_in(port, s->params->overrun_reg);
1869
1870	err_enabled = scr_status & port_rx_irq_mask(port);
1871
1872	/* Tx Interrupt */
1873	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1874	    !s->chan_tx)
1875		ret = sci_tx_interrupt(irq, ptr);
1876
1877	/*
1878	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1879	 * DR flags
1880	 */
1881	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1882	    (scr_status & SCSCR_RIE))
1883		ret = sci_rx_interrupt(irq, ptr);
1884
1885	/* Error Interrupt */
1886	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1887		ret = sci_er_interrupt(irq, ptr);
1888
1889	/* Break Interrupt */
1890	if (s->irqs[SCIx_ERI_IRQ] != s->irqs[SCIx_BRI_IRQ] &&
1891	    (ssr_status & SCxSR_BRK(port)) && err_enabled)
1892		ret = sci_br_interrupt(irq, ptr);
1893
1894	/* Overrun Interrupt */
1895	if (orer_status & s->params->overrun_mask) {
1896		sci_handle_fifo_overrun(port);
1897		ret = IRQ_HANDLED;
1898	}
1899
1900	return ret;
1901}
1902
1903static const struct sci_irq_desc {
1904	const char	*desc;
1905	irq_handler_t	handler;
1906} sci_irq_desc[] = {
1907	/*
1908	 * Split out handlers, the default case.
1909	 */
1910	[SCIx_ERI_IRQ] = {
1911		.desc = "rx err",
1912		.handler = sci_er_interrupt,
1913	},
1914
1915	[SCIx_RXI_IRQ] = {
1916		.desc = "rx full",
1917		.handler = sci_rx_interrupt,
1918	},
1919
1920	[SCIx_TXI_IRQ] = {
1921		.desc = "tx empty",
1922		.handler = sci_tx_interrupt,
1923	},
1924
1925	[SCIx_BRI_IRQ] = {
1926		.desc = "break",
1927		.handler = sci_br_interrupt,
1928	},
1929
1930	[SCIx_DRI_IRQ] = {
1931		.desc = "rx ready",
1932		.handler = sci_rx_interrupt,
1933	},
1934
1935	[SCIx_TEI_IRQ] = {
1936		.desc = "tx end",
1937		.handler = sci_tx_end_interrupt,
1938	},
1939
1940	/*
1941	 * Special muxed handler.
1942	 */
1943	[SCIx_MUX_IRQ] = {
1944		.desc = "mux",
1945		.handler = sci_mpxed_interrupt,
1946	},
1947};
1948
1949static int sci_request_irq(struct sci_port *port)
1950{
1951	struct uart_port *up = &port->port;
1952	int i, j, w, ret = 0;
1953
1954	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1955		const struct sci_irq_desc *desc;
1956		int irq;
1957
1958		/* Check if already registered (muxed) */
1959		for (w = 0; w < i; w++)
1960			if (port->irqs[w] == port->irqs[i])
1961				w = i + 1;
1962		if (w > i)
1963			continue;
1964
1965		if (SCIx_IRQ_IS_MUXED(port)) {
1966			i = SCIx_MUX_IRQ;
1967			irq = up->irq;
1968		} else {
1969			irq = port->irqs[i];
1970
1971			/*
1972			 * Certain port types won't support all of the
1973			 * available interrupt sources.
1974			 */
1975			if (unlikely(irq < 0))
1976				continue;
1977		}
1978
1979		desc = sci_irq_desc + i;
1980		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1981					    dev_name(up->dev), desc->desc);
1982		if (!port->irqstr[j]) {
1983			ret = -ENOMEM;
1984			goto out_nomem;
1985		}
1986
1987		ret = request_irq(irq, desc->handler, up->irqflags,
1988				  port->irqstr[j], port);
1989		if (unlikely(ret)) {
1990			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1991			goto out_noirq;
1992		}
1993	}
1994
1995	return 0;
1996
1997out_noirq:
1998	while (--i >= 0)
1999		free_irq(port->irqs[i], port);
2000
2001out_nomem:
2002	while (--j >= 0)
2003		kfree(port->irqstr[j]);
2004
2005	return ret;
2006}
2007
2008static void sci_free_irq(struct sci_port *port)
2009{
2010	int i, j;
2011
2012	/*
2013	 * Intentionally in reverse order so we iterate over the muxed
2014	 * IRQ first.
2015	 */
2016	for (i = 0; i < SCIx_NR_IRQS; i++) {
2017		int irq = port->irqs[i];
2018
2019		/*
2020		 * Certain port types won't support all of the available
2021		 * interrupt sources.
2022		 */
2023		if (unlikely(irq < 0))
2024			continue;
2025
2026		/* Check if already freed (irq was muxed) */
2027		for (j = 0; j < i; j++)
2028			if (port->irqs[j] == irq)
2029				j = i + 1;
2030		if (j > i)
2031			continue;
2032
2033		free_irq(port->irqs[i], port);
2034		kfree(port->irqstr[i]);
2035
2036		if (SCIx_IRQ_IS_MUXED(port)) {
2037			/* If there's only one IRQ, we're done. */
2038			return;
2039		}
2040	}
2041}
2042
2043static unsigned int sci_tx_empty(struct uart_port *port)
2044{
2045	unsigned short status = sci_serial_in(port, SCxSR);
2046	unsigned short in_tx_fifo = sci_txfill(port);
2047
2048	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
2049}
2050
2051static void sci_set_rts(struct uart_port *port, bool state)
2052{
2053	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2054		u16 data = sci_serial_in(port, SCPDR);
2055
2056		/* Active low */
2057		if (state)
2058			data &= ~SCPDR_RTSD;
2059		else
2060			data |= SCPDR_RTSD;
2061		sci_serial_out(port, SCPDR, data);
2062
2063		/* RTS# is output */
2064		sci_serial_out(port, SCPCR,
2065			       sci_serial_in(port, SCPCR) | SCPCR_RTSC);
2066	} else if (sci_getreg(port, SCSPTR)->size) {
2067		u16 ctrl = sci_serial_in(port, SCSPTR);
2068
2069		/* Active low */
2070		if (state)
2071			ctrl &= ~SCSPTR_RTSDT;
2072		else
2073			ctrl |= SCSPTR_RTSDT;
2074		sci_serial_out(port, SCSPTR, ctrl);
2075	}
2076}
2077
2078static bool sci_get_cts(struct uart_port *port)
2079{
2080	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2081		/* Active low */
2082		return !(sci_serial_in(port, SCPDR) & SCPDR_CTSD);
2083	} else if (sci_getreg(port, SCSPTR)->size) {
2084		/* Active low */
2085		return !(sci_serial_in(port, SCSPTR) & SCSPTR_CTSDT);
2086	}
2087
2088	return true;
2089}
2090
2091/*
2092 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
2093 * CTS/RTS is supported in hardware by at least one port and controlled
2094 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
2095 * handled via the ->init_pins() op, which is a bit of a one-way street,
2096 * lacking any ability to defer pin control -- this will later be
2097 * converted over to the GPIO framework).
2098 *
2099 * Other modes (such as loopback) are supported generically on certain
2100 * port types, but not others. For these it's sufficient to test for the
2101 * existence of the support register and simply ignore the port type.
2102 */
2103static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
2104{
2105	struct sci_port *s = to_sci_port(port);
2106
2107	if (mctrl & TIOCM_LOOP) {
2108		const struct plat_sci_reg *reg;
2109
2110		/*
2111		 * Standard loopback mode for SCFCR ports.
2112		 */
2113		reg = sci_getreg(port, SCFCR);
2114		if (reg->size)
2115			sci_serial_out(port, SCFCR,
2116				       sci_serial_in(port, SCFCR) | SCFCR_LOOP);
 
2117	}
2118
2119	mctrl_gpio_set(s->gpios, mctrl);
2120
2121	if (!s->has_rtscts)
2122		return;
2123
2124	if (!(mctrl & TIOCM_RTS)) {
2125		/* Disable Auto RTS */
2126		sci_serial_out(port, SCFCR,
2127			       sci_serial_in(port, SCFCR) & ~SCFCR_MCE);
2128
2129		/* Clear RTS */
2130		sci_set_rts(port, 0);
2131	} else if (s->autorts) {
2132		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2133			/* Enable RTS# pin function */
2134			sci_serial_out(port, SCPCR,
2135				sci_serial_in(port, SCPCR) & ~SCPCR_RTSC);
2136		}
2137
2138		/* Enable Auto RTS */
2139		sci_serial_out(port, SCFCR,
2140			       sci_serial_in(port, SCFCR) | SCFCR_MCE);
2141	} else {
2142		/* Set RTS */
2143		sci_set_rts(port, 1);
2144	}
2145}
2146
2147static unsigned int sci_get_mctrl(struct uart_port *port)
2148{
2149	struct sci_port *s = to_sci_port(port);
2150	struct mctrl_gpios *gpios = s->gpios;
2151	unsigned int mctrl = 0;
2152
2153	mctrl_gpio_get(gpios, &mctrl);
2154
2155	/*
2156	 * CTS/RTS is handled in hardware when supported, while nothing
2157	 * else is wired up.
2158	 */
2159	if (s->autorts) {
2160		if (sci_get_cts(port))
2161			mctrl |= TIOCM_CTS;
2162	} else if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS)) {
2163		mctrl |= TIOCM_CTS;
2164	}
2165	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR))
2166		mctrl |= TIOCM_DSR;
2167	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD))
2168		mctrl |= TIOCM_CAR;
2169
2170	return mctrl;
2171}
2172
2173static void sci_enable_ms(struct uart_port *port)
2174{
2175	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2176}
2177
2178static void sci_break_ctl(struct uart_port *port, int break_state)
2179{
2180	unsigned short scscr, scsptr;
2181	unsigned long flags;
2182
2183	/* check whether the port has SCSPTR */
2184	if (!sci_getreg(port, SCSPTR)->size) {
2185		/*
2186		 * Not supported by hardware. Most parts couple break and rx
2187		 * interrupts together, with break detection always enabled.
2188		 */
2189		return;
2190	}
2191
2192	uart_port_lock_irqsave(port, &flags);
2193	scsptr = sci_serial_in(port, SCSPTR);
2194	scscr = sci_serial_in(port, SCSCR);
2195
2196	if (break_state == -1) {
2197		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2198		scscr &= ~SCSCR_TE;
2199	} else {
2200		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2201		scscr |= SCSCR_TE;
2202	}
2203
2204	sci_serial_out(port, SCSPTR, scsptr);
2205	sci_serial_out(port, SCSCR, scscr);
2206	uart_port_unlock_irqrestore(port, flags);
2207}
2208
2209static int sci_startup(struct uart_port *port)
2210{
2211	struct sci_port *s = to_sci_port(port);
2212	int ret;
2213
2214	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2215
2216	sci_request_dma(port);
2217
2218	ret = sci_request_irq(s);
2219	if (unlikely(ret < 0)) {
2220		sci_free_dma(port);
2221		return ret;
2222	}
2223
2224	return 0;
2225}
2226
2227static void sci_shutdown(struct uart_port *port)
2228{
2229	struct sci_port *s = to_sci_port(port);
2230	unsigned long flags;
2231	u16 scr;
2232
2233	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2234
2235	s->autorts = false;
2236	mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2237
2238	uart_port_lock_irqsave(port, &flags);
2239	sci_stop_rx(port);
2240	sci_stop_tx(port);
2241	/*
2242	 * Stop RX and TX, disable related interrupts, keep clock source
2243	 * and HSCIF TOT bits
2244	 */
2245	scr = sci_serial_in(port, SCSCR);
2246	sci_serial_out(port, SCSCR,
2247		       scr & (SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2248	uart_port_unlock_irqrestore(port, flags);
2249
2250#ifdef CONFIG_SERIAL_SH_SCI_DMA
2251	if (s->chan_rx_saved) {
2252		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2253			port->line);
2254		hrtimer_cancel(&s->rx_timer);
2255	}
2256#endif
2257
2258	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0)
2259		del_timer_sync(&s->rx_fifo_timer);
2260	sci_free_irq(s);
2261	sci_free_dma(port);
2262}
2263
2264static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2265			unsigned int *srr)
2266{
2267	unsigned long freq = s->clk_rates[SCI_SCK];
2268	int err, min_err = INT_MAX;
2269	unsigned int sr;
2270
2271	if (s->port.type != PORT_HSCIF)
2272		freq *= 2;
2273
2274	for_each_sr(sr, s) {
2275		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2276		if (abs(err) >= abs(min_err))
2277			continue;
2278
2279		min_err = err;
2280		*srr = sr - 1;
2281
2282		if (!err)
2283			break;
2284	}
2285
2286	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2287		*srr + 1);
2288	return min_err;
2289}
2290
2291static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2292			unsigned long freq, unsigned int *dlr,
2293			unsigned int *srr)
2294{
2295	int err, min_err = INT_MAX;
2296	unsigned int sr, dl;
2297
2298	if (s->port.type != PORT_HSCIF)
2299		freq *= 2;
2300
2301	for_each_sr(sr, s) {
2302		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2303		dl = clamp(dl, 1U, 65535U);
2304
2305		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2306		if (abs(err) >= abs(min_err))
2307			continue;
2308
2309		min_err = err;
2310		*dlr = dl;
2311		*srr = sr - 1;
2312
2313		if (!err)
2314			break;
2315	}
2316
2317	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2318		min_err, *dlr, *srr + 1);
2319	return min_err;
2320}
2321
2322/* calculate sample rate, BRR, and clock select */
2323static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2324			  unsigned int *brr, unsigned int *srr,
2325			  unsigned int *cks)
2326{
2327	unsigned long freq = s->clk_rates[SCI_FCK];
2328	unsigned int sr, br, prediv, scrate, c;
2329	int err, min_err = INT_MAX;
2330
2331	if (s->port.type != PORT_HSCIF)
2332		freq *= 2;
2333
2334	/*
2335	 * Find the combination of sample rate and clock select with the
2336	 * smallest deviation from the desired baud rate.
2337	 * Prefer high sample rates to maximise the receive margin.
2338	 *
2339	 * M: Receive margin (%)
2340	 * N: Ratio of bit rate to clock (N = sampling rate)
2341	 * D: Clock duty (D = 0 to 1.0)
2342	 * L: Frame length (L = 9 to 12)
2343	 * F: Absolute value of clock frequency deviation
2344	 *
2345	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2346	 *      (|D - 0.5| / N * (1 + F))|
2347	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2348	 */
2349	for_each_sr(sr, s) {
2350		for (c = 0; c <= 3; c++) {
2351			/* integerized formulas from HSCIF documentation */
2352			prediv = sr << (2 * c + 1);
2353
2354			/*
2355			 * We need to calculate:
2356			 *
2357			 *     br = freq / (prediv * bps) clamped to [1..256]
2358			 *     err = freq / (br * prediv) - bps
2359			 *
2360			 * Watch out for overflow when calculating the desired
2361			 * sampling clock rate!
2362			 */
2363			if (bps > UINT_MAX / prediv)
2364				break;
2365
2366			scrate = prediv * bps;
2367			br = DIV_ROUND_CLOSEST(freq, scrate);
2368			br = clamp(br, 1U, 256U);
2369
2370			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2371			if (abs(err) >= abs(min_err))
2372				continue;
2373
2374			min_err = err;
2375			*brr = br - 1;
2376			*srr = sr - 1;
2377			*cks = c;
2378
2379			if (!err)
2380				goto found;
2381		}
2382	}
2383
2384found:
2385	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2386		min_err, *brr, *srr + 1, *cks);
2387	return min_err;
2388}
2389
2390static void sci_reset(struct uart_port *port)
2391{
2392	const struct plat_sci_reg *reg;
2393	unsigned int status;
2394	struct sci_port *s = to_sci_port(port);
2395
2396	sci_serial_out(port, SCSCR, s->hscif_tot);	/* TE=0, RE=0, CKE1=0 */
2397
2398	reg = sci_getreg(port, SCFCR);
2399	if (reg->size)
2400		sci_serial_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2401
2402	sci_clear_SCxSR(port,
2403			SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2404			SCxSR_BREAK_CLEAR(port));
2405	if (sci_getreg(port, SCLSR)->size) {
2406		status = sci_serial_in(port, SCLSR);
2407		status &= ~(SCLSR_TO | SCLSR_ORER);
2408		sci_serial_out(port, SCLSR, status);
2409	}
2410
2411	if (s->rx_trigger > 1) {
2412		if (s->rx_fifo_timeout) {
2413			scif_set_rtrg(port, 1);
2414			timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2415		} else {
2416			if (port->type == PORT_SCIFA ||
2417			    port->type == PORT_SCIFB)
2418				scif_set_rtrg(port, 1);
2419			else
2420				scif_set_rtrg(port, s->rx_trigger);
2421		}
2422	}
2423}
2424
2425static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2426		            const struct ktermios *old)
2427{
2428	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2429	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2430	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2431	struct sci_port *s = to_sci_port(port);
2432	const struct plat_sci_reg *reg;
2433	int min_err = INT_MAX, err;
2434	unsigned long max_freq = 0;
2435	int best_clk = -1;
2436	unsigned long flags;
2437
2438	if ((termios->c_cflag & CSIZE) == CS7) {
2439		smr_val |= SCSMR_CHR;
2440	} else {
2441		termios->c_cflag &= ~CSIZE;
2442		termios->c_cflag |= CS8;
2443	}
2444	if (termios->c_cflag & PARENB)
2445		smr_val |= SCSMR_PE;
2446	if (termios->c_cflag & PARODD)
2447		smr_val |= SCSMR_PE | SCSMR_ODD;
2448	if (termios->c_cflag & CSTOPB)
2449		smr_val |= SCSMR_STOP;
2450
2451	/*
2452	 * earlyprintk comes here early on with port->uartclk set to zero.
2453	 * the clock framework is not up and running at this point so here
2454	 * we assume that 115200 is the maximum baud rate. please note that
2455	 * the baud rate is not programmed during earlyprintk - it is assumed
2456	 * that the previous boot loader has enabled required clocks and
2457	 * setup the baud rate generator hardware for us already.
2458	 */
2459	if (!port->uartclk) {
2460		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2461		goto done;
2462	}
2463
2464	for (i = 0; i < SCI_NUM_CLKS; i++)
2465		max_freq = max(max_freq, s->clk_rates[i]);
2466
2467	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2468	if (!baud)
2469		goto done;
2470
2471	/*
2472	 * There can be multiple sources for the sampling clock.  Find the one
2473	 * that gives us the smallest deviation from the desired baud rate.
2474	 */
2475
2476	/* Optional Undivided External Clock */
2477	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2478	    port->type != PORT_SCIFB) {
2479		err = sci_sck_calc(s, baud, &srr1);
2480		if (abs(err) < abs(min_err)) {
2481			best_clk = SCI_SCK;
2482			scr_val = SCSCR_CKE1;
2483			sccks = SCCKS_CKS;
2484			min_err = err;
2485			srr = srr1;
2486			if (!err)
2487				goto done;
2488		}
2489	}
2490
2491	/* Optional BRG Frequency Divided External Clock */
2492	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2493		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2494				   &srr1);
2495		if (abs(err) < abs(min_err)) {
2496			best_clk = SCI_SCIF_CLK;
2497			scr_val = SCSCR_CKE1;
2498			sccks = 0;
2499			min_err = err;
2500			dl = dl1;
2501			srr = srr1;
2502			if (!err)
2503				goto done;
2504		}
2505	}
2506
2507	/* Optional BRG Frequency Divided Internal Clock */
2508	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2509		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2510				   &srr1);
2511		if (abs(err) < abs(min_err)) {
2512			best_clk = SCI_BRG_INT;
2513			scr_val = SCSCR_CKE1;
2514			sccks = SCCKS_XIN;
2515			min_err = err;
2516			dl = dl1;
2517			srr = srr1;
2518			if (!min_err)
2519				goto done;
2520		}
2521	}
2522
2523	/* Divided Functional Clock using standard Bit Rate Register */
2524	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2525	if (abs(err) < abs(min_err)) {
2526		best_clk = SCI_FCK;
2527		scr_val = 0;
2528		min_err = err;
2529		brr = brr1;
2530		srr = srr1;
2531		cks = cks1;
2532	}
2533
2534done:
2535	if (best_clk >= 0)
2536		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2537			s->clks[best_clk], baud, min_err);
2538
2539	sci_port_enable(s);
2540
2541	/*
2542	 * Program the optional External Baud Rate Generator (BRG) first.
2543	 * It controls the mux to select (H)SCK or frequency divided clock.
2544	 */
2545	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2546		sci_serial_out(port, SCDL, dl);
2547		sci_serial_out(port, SCCKS, sccks);
2548	}
2549
2550	uart_port_lock_irqsave(port, &flags);
2551
2552	sci_reset(port);
2553
2554	uart_update_timeout(port, termios->c_cflag, baud);
2555
2556	/* byte size and parity */
2557	bits = tty_get_frame_size(termios->c_cflag);
 
 
 
 
 
 
 
 
 
 
 
 
 
2558
2559	if (sci_getreg(port, SEMR)->size)
2560		sci_serial_out(port, SEMR, 0);
 
 
2561
2562	if (best_clk >= 0) {
2563		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2564			switch (srr + 1) {
2565			case 5:  smr_val |= SCSMR_SRC_5;  break;
2566			case 7:  smr_val |= SCSMR_SRC_7;  break;
2567			case 11: smr_val |= SCSMR_SRC_11; break;
2568			case 13: smr_val |= SCSMR_SRC_13; break;
2569			case 16: smr_val |= SCSMR_SRC_16; break;
2570			case 17: smr_val |= SCSMR_SRC_17; break;
2571			case 19: smr_val |= SCSMR_SRC_19; break;
2572			case 27: smr_val |= SCSMR_SRC_27; break;
2573			}
2574		smr_val |= cks;
2575		sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2576		sci_serial_out(port, SCSMR, smr_val);
2577		sci_serial_out(port, SCBRR, brr);
2578		if (sci_getreg(port, HSSRR)->size) {
2579			unsigned int hssrr = srr | HSCIF_SRE;
2580			/* Calculate deviation from intended rate at the
2581			 * center of the last stop bit in sampling clocks.
2582			 */
2583			int last_stop = bits * 2 - 1;
2584			int deviation = DIV_ROUND_CLOSEST(min_err * last_stop *
2585							  (int)(srr + 1),
2586							  2 * (int)baud);
2587
2588			if (abs(deviation) >= 2) {
2589				/* At least two sampling clocks off at the
2590				 * last stop bit; we can increase the error
2591				 * margin by shifting the sampling point.
2592				 */
2593				int shift = clamp(deviation / 2, -8, 7);
2594
2595				hssrr |= (shift << HSCIF_SRHP_SHIFT) &
2596					 HSCIF_SRHP_MASK;
2597				hssrr |= HSCIF_SRDE;
2598			}
2599			sci_serial_out(port, HSSRR, hssrr);
2600		}
2601
2602		/* Wait one bit interval */
2603		udelay((1000000 + (baud - 1)) / baud);
2604	} else {
2605		/* Don't touch the bit rate configuration */
2606		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2607		smr_val |= sci_serial_in(port, SCSMR) &
2608			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2609		sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2610		sci_serial_out(port, SCSMR, smr_val);
2611	}
2612
2613	sci_init_pins(port, termios->c_cflag);
2614
2615	port->status &= ~UPSTAT_AUTOCTS;
2616	s->autorts = false;
2617	reg = sci_getreg(port, SCFCR);
2618	if (reg->size) {
2619		unsigned short ctrl = sci_serial_in(port, SCFCR);
2620
2621		if ((port->flags & UPF_HARD_FLOW) &&
2622		    (termios->c_cflag & CRTSCTS)) {
2623			/* There is no CTS interrupt to restart the hardware */
2624			port->status |= UPSTAT_AUTOCTS;
2625			/* MCE is enabled when RTS is raised */
2626			s->autorts = true;
2627		}
2628
2629		/*
2630		 * As we've done a sci_reset() above, ensure we don't
2631		 * interfere with the FIFOs while toggling MCE. As the
2632		 * reset values could still be set, simply mask them out.
2633		 */
2634		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2635
2636		sci_serial_out(port, SCFCR, ctrl);
2637	}
2638	if (port->flags & UPF_HARD_FLOW) {
2639		/* Refresh (Auto) RTS */
2640		sci_set_mctrl(port, port->mctrl);
2641	}
2642
2643	/*
2644	 * For SCI, TE (transmit enable) must be set after setting TIE
2645	 * (transmit interrupt enable) or in the same instruction to
2646	 * start the transmitting process. So skip setting TE here for SCI.
2647	 */
2648	if (port->type != PORT_SCI)
2649		scr_val |= SCSCR_TE;
2650	scr_val |= SCSCR_RE | (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2651	sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2652	if ((srr + 1 == 5) &&
2653	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2654		/*
2655		 * In asynchronous mode, when the sampling rate is 1/5, first
2656		 * received data may become invalid on some SCIFA and SCIFB.
2657		 * To avoid this problem wait more than 1 serial data time (1
2658		 * bit time x serial data number) after setting SCSCR.RE = 1.
2659		 */
2660		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2661	}
2662
2663	/* Calculate delay for 2 DMA buffers (4 FIFO). */
 
 
 
 
 
 
 
 
 
2664	s->rx_frame = (10000 * bits) / (baud / 100);
2665#ifdef CONFIG_SERIAL_SH_SCI_DMA
2666	s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
 
 
2667#endif
2668
2669	if ((termios->c_cflag & CREAD) != 0)
2670		sci_start_rx(port);
2671
2672	uart_port_unlock_irqrestore(port, flags);
2673
2674	sci_port_disable(s);
2675
2676	if (UART_ENABLE_MS(port, termios->c_cflag))
2677		sci_enable_ms(port);
2678}
2679
2680static void sci_pm(struct uart_port *port, unsigned int state,
2681		   unsigned int oldstate)
2682{
2683	struct sci_port *sci_port = to_sci_port(port);
2684
2685	switch (state) {
2686	case UART_PM_STATE_OFF:
2687		sci_port_disable(sci_port);
2688		break;
2689	default:
2690		sci_port_enable(sci_port);
2691		break;
2692	}
2693}
2694
2695static const char *sci_type(struct uart_port *port)
2696{
2697	switch (port->type) {
2698	case PORT_IRDA:
2699		return "irda";
2700	case PORT_SCI:
2701		return "sci";
2702	case PORT_SCIF:
2703		return "scif";
2704	case PORT_SCIFA:
2705		return "scifa";
2706	case PORT_SCIFB:
2707		return "scifb";
2708	case PORT_HSCIF:
2709		return "hscif";
2710	}
2711
2712	return NULL;
2713}
2714
2715static int sci_remap_port(struct uart_port *port)
2716{
2717	struct sci_port *sport = to_sci_port(port);
2718
2719	/*
2720	 * Nothing to do if there's already an established membase.
2721	 */
2722	if (port->membase)
2723		return 0;
2724
2725	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2726		port->membase = ioremap(port->mapbase, sport->reg_size);
2727		if (unlikely(!port->membase)) {
2728			dev_err(port->dev, "can't remap port#%d\n", port->line);
2729			return -ENXIO;
2730		}
2731	} else {
2732		/*
2733		 * For the simple (and majority of) cases where we don't
2734		 * need to do any remapping, just cast the cookie
2735		 * directly.
2736		 */
2737		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2738	}
2739
2740	return 0;
2741}
2742
2743static void sci_release_port(struct uart_port *port)
2744{
2745	struct sci_port *sport = to_sci_port(port);
2746
2747	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2748		iounmap(port->membase);
2749		port->membase = NULL;
2750	}
2751
2752	release_mem_region(port->mapbase, sport->reg_size);
2753}
2754
2755static int sci_request_port(struct uart_port *port)
2756{
2757	struct resource *res;
2758	struct sci_port *sport = to_sci_port(port);
2759	int ret;
2760
2761	res = request_mem_region(port->mapbase, sport->reg_size,
2762				 dev_name(port->dev));
2763	if (unlikely(res == NULL)) {
2764		dev_err(port->dev, "request_mem_region failed.");
2765		return -EBUSY;
2766	}
2767
2768	ret = sci_remap_port(port);
2769	if (unlikely(ret != 0)) {
2770		release_resource(res);
2771		return ret;
2772	}
2773
2774	return 0;
2775}
2776
2777static void sci_config_port(struct uart_port *port, int flags)
2778{
2779	if (flags & UART_CONFIG_TYPE) {
2780		struct sci_port *sport = to_sci_port(port);
2781
2782		port->type = sport->cfg->type;
2783		sci_request_port(port);
2784	}
2785}
2786
2787static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2788{
2789	if (ser->baud_base < 2400)
2790		/* No paper tape reader for Mitch.. */
2791		return -EINVAL;
2792
2793	return 0;
2794}
2795
2796static const struct uart_ops sci_uart_ops = {
2797	.tx_empty	= sci_tx_empty,
2798	.set_mctrl	= sci_set_mctrl,
2799	.get_mctrl	= sci_get_mctrl,
2800	.start_tx	= sci_start_tx,
2801	.stop_tx	= sci_stop_tx,
2802	.stop_rx	= sci_stop_rx,
2803	.enable_ms	= sci_enable_ms,
2804	.break_ctl	= sci_break_ctl,
2805	.startup	= sci_startup,
2806	.shutdown	= sci_shutdown,
2807	.flush_buffer	= sci_flush_buffer,
2808	.set_termios	= sci_set_termios,
2809	.pm		= sci_pm,
2810	.type		= sci_type,
2811	.release_port	= sci_release_port,
2812	.request_port	= sci_request_port,
2813	.config_port	= sci_config_port,
2814	.verify_port	= sci_verify_port,
2815#ifdef CONFIG_CONSOLE_POLL
2816	.poll_get_char	= sci_poll_get_char,
2817	.poll_put_char	= sci_poll_put_char,
2818#endif
2819};
2820
2821static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2822{
2823	const char *clk_names[] = {
2824		[SCI_FCK] = "fck",
2825		[SCI_SCK] = "sck",
2826		[SCI_BRG_INT] = "brg_int",
2827		[SCI_SCIF_CLK] = "scif_clk",
2828	};
2829	struct clk *clk;
2830	unsigned int i;
2831
2832	if (sci_port->cfg->type == PORT_HSCIF)
2833		clk_names[SCI_SCK] = "hsck";
2834
2835	for (i = 0; i < SCI_NUM_CLKS; i++) {
2836		clk = devm_clk_get_optional(dev, clk_names[i]);
2837		if (IS_ERR(clk))
2838			return PTR_ERR(clk);
 
 
 
 
 
 
 
 
 
 
 
 
2839
2840		if (!clk && i == SCI_FCK) {
2841			/*
2842			 * Not all SH platforms declare a clock lookup entry
2843			 * for SCI devices, in which case we need to get the
2844			 * global "peripheral_clk" clock.
2845			 */
2846			clk = devm_clk_get(dev, "peripheral_clk");
2847			if (IS_ERR(clk))
2848				return dev_err_probe(dev, PTR_ERR(clk),
2849						     "failed to get %s\n",
2850						     clk_names[i]);
 
 
2851		}
2852
2853		if (!clk)
2854			dev_dbg(dev, "failed to get %s\n", clk_names[i]);
 
 
2855		else
2856			dev_dbg(dev, "clk %s is %pC rate %lu\n", clk_names[i],
2857				clk, clk_get_rate(clk));
2858		sci_port->clks[i] = clk;
2859	}
2860	return 0;
2861}
2862
2863static const struct sci_port_params *
2864sci_probe_regmap(const struct plat_sci_port *cfg)
2865{
2866	unsigned int regtype;
2867
2868	if (cfg->regtype != SCIx_PROBE_REGTYPE)
2869		return &sci_port_params[cfg->regtype];
2870
2871	switch (cfg->type) {
2872	case PORT_SCI:
2873		regtype = SCIx_SCI_REGTYPE;
2874		break;
2875	case PORT_IRDA:
2876		regtype = SCIx_IRDA_REGTYPE;
2877		break;
2878	case PORT_SCIFA:
2879		regtype = SCIx_SCIFA_REGTYPE;
2880		break;
2881	case PORT_SCIFB:
2882		regtype = SCIx_SCIFB_REGTYPE;
2883		break;
2884	case PORT_SCIF:
2885		/*
2886		 * The SH-4 is a bit of a misnomer here, although that's
2887		 * where this particular port layout originated. This
2888		 * configuration (or some slight variation thereof)
2889		 * remains the dominant model for all SCIFs.
2890		 */
2891		regtype = SCIx_SH4_SCIF_REGTYPE;
2892		break;
2893	case PORT_HSCIF:
2894		regtype = SCIx_HSCIF_REGTYPE;
2895		break;
2896	default:
2897		pr_err("Can't probe register map for given port\n");
2898		return NULL;
2899	}
2900
2901	return &sci_port_params[regtype];
2902}
2903
2904static int sci_init_single(struct platform_device *dev,
2905			   struct sci_port *sci_port, unsigned int index,
2906			   const struct plat_sci_port *p, bool early)
2907{
2908	struct uart_port *port = &sci_port->port;
2909	const struct resource *res;
2910	unsigned int i;
2911	int ret;
2912
2913	sci_port->cfg	= p;
2914
2915	port->ops	= &sci_uart_ops;
2916	port->iotype	= UPIO_MEM;
2917	port->line	= index;
2918	port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_SH_SCI_CONSOLE);
2919
2920	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2921	if (res == NULL)
2922		return -ENOMEM;
2923
2924	port->mapbase = res->start;
2925	sci_port->reg_size = resource_size(res);
2926
2927	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) {
2928		if (i)
2929			sci_port->irqs[i] = platform_get_irq_optional(dev, i);
2930		else
2931			sci_port->irqs[i] = platform_get_irq(dev, i);
2932	}
2933
2934	/*
2935	 * The fourth interrupt on SCI port is transmit end interrupt, so
2936	 * shuffle the interrupts.
2937	 */
2938	if (p->type == PORT_SCI)
2939		swap(sci_port->irqs[SCIx_BRI_IRQ], sci_port->irqs[SCIx_TEI_IRQ]);
2940
2941	/* The SCI generates several interrupts. They can be muxed together or
2942	 * connected to different interrupt lines. In the muxed case only one
2943	 * interrupt resource is specified as there is only one interrupt ID.
2944	 * In the non-muxed case, up to 6 interrupt signals might be generated
2945	 * from the SCI, however those signals might have their own individual
2946	 * interrupt ID numbers, or muxed together with another interrupt.
2947	 */
2948	if (sci_port->irqs[0] < 0)
2949		return -ENXIO;
2950
2951	if (sci_port->irqs[1] < 0)
2952		for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++)
2953			sci_port->irqs[i] = sci_port->irqs[0];
2954
2955	sci_port->params = sci_probe_regmap(p);
2956	if (unlikely(sci_port->params == NULL))
2957		return -EINVAL;
2958
2959	switch (p->type) {
2960	case PORT_SCIFB:
2961		sci_port->rx_trigger = 48;
2962		break;
2963	case PORT_HSCIF:
2964		sci_port->rx_trigger = 64;
2965		break;
2966	case PORT_SCIFA:
2967		sci_port->rx_trigger = 32;
2968		break;
2969	case PORT_SCIF:
2970		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
2971			/* RX triggering not implemented for this IP */
2972			sci_port->rx_trigger = 1;
2973		else
2974			sci_port->rx_trigger = 8;
2975		break;
2976	default:
2977		sci_port->rx_trigger = 1;
2978		break;
2979	}
2980
2981	sci_port->rx_fifo_timeout = 0;
2982	sci_port->hscif_tot = 0;
2983
2984	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2985	 * match the SoC datasheet, this should be investigated. Let platform
2986	 * data override the sampling rate for now.
2987	 */
2988	sci_port->sampling_rate_mask = p->sampling_rate
2989				     ? SCI_SR(p->sampling_rate)
2990				     : sci_port->params->sampling_rate_mask;
2991
2992	if (!early) {
2993		ret = sci_init_clocks(sci_port, &dev->dev);
2994		if (ret < 0)
2995			return ret;
2996
2997		port->dev = &dev->dev;
2998
2999		pm_runtime_enable(&dev->dev);
3000	}
3001
3002	port->type		= p->type;
3003	port->flags		= UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
3004	port->fifosize		= sci_port->params->fifosize;
3005
3006	if (port->type == PORT_SCI && !dev->dev.of_node) {
3007		if (sci_port->reg_size >= 0x20)
3008			port->regshift = 2;
3009		else
3010			port->regshift = 1;
3011	}
3012
3013	/*
3014	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
3015	 * for the multi-IRQ ports, which is where we are primarily
3016	 * concerned with the shutdown path synchronization.
3017	 *
3018	 * For the muxed case there's nothing more to do.
3019	 */
3020	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
3021	port->irqflags		= 0;
3022
 
 
 
3023	return 0;
3024}
3025
3026static void sci_cleanup_single(struct sci_port *port)
3027{
3028	pm_runtime_disable(port->port.dev);
3029}
3030
3031#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
3032    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
3033static void serial_console_putchar(struct uart_port *port, unsigned char ch)
3034{
3035	sci_poll_put_char(port, ch);
3036}
3037
3038/*
3039 *	Print a string to the serial port trying not to disturb
3040 *	any possible real use of the port...
3041 */
3042static void serial_console_write(struct console *co, const char *s,
3043				 unsigned count)
3044{
3045	struct sci_port *sci_port = &sci_ports[co->index];
3046	struct uart_port *port = &sci_port->port;
3047	unsigned short bits, ctrl, ctrl_temp;
3048	unsigned long flags;
3049	int locked = 1;
3050
 
3051	if (port->sysrq)
3052		locked = 0;
3053	else if (oops_in_progress)
3054		locked = uart_port_trylock_irqsave(port, &flags);
3055	else
3056		uart_port_lock_irqsave(port, &flags);
 
 
 
 
3057
3058	/* first save SCSCR then disable interrupts, keep clock source */
3059	ctrl = sci_serial_in(port, SCSCR);
3060	ctrl_temp = SCSCR_RE | SCSCR_TE |
3061		    (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
3062		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
3063	sci_serial_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
3064
3065	uart_console_write(port, s, count, serial_console_putchar);
3066
3067	/* wait until fifo is empty and last bit has been transmitted */
3068	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
3069	while ((sci_serial_in(port, SCxSR) & bits) != bits)
3070		cpu_relax();
3071
3072	/* restore the SCSCR */
3073	sci_serial_out(port, SCSCR, ctrl);
3074
3075	if (locked)
3076		uart_port_unlock_irqrestore(port, flags);
3077}
3078
3079static int serial_console_setup(struct console *co, char *options)
3080{
3081	struct sci_port *sci_port;
3082	struct uart_port *port;
3083	int baud = 115200;
3084	int bits = 8;
3085	int parity = 'n';
3086	int flow = 'n';
3087	int ret;
3088
3089	/*
3090	 * Refuse to handle any bogus ports.
3091	 */
3092	if (co->index < 0 || co->index >= SCI_NPORTS)
3093		return -ENODEV;
3094
3095	sci_port = &sci_ports[co->index];
3096	port = &sci_port->port;
3097
3098	/*
3099	 * Refuse to handle uninitialized ports.
3100	 */
3101	if (!port->ops)
3102		return -ENODEV;
3103
3104	ret = sci_remap_port(port);
3105	if (unlikely(ret != 0))
3106		return ret;
3107
3108	if (options)
3109		uart_parse_options(options, &baud, &parity, &bits, &flow);
3110
3111	return uart_set_options(port, co, baud, parity, bits, flow);
3112}
3113
3114static struct console serial_console = {
3115	.name		= "ttySC",
3116	.device		= uart_console_device,
3117	.write		= serial_console_write,
3118	.setup		= serial_console_setup,
3119	.flags		= CON_PRINTBUFFER,
3120	.index		= -1,
3121	.data		= &sci_uart_driver,
3122};
3123
3124#ifdef CONFIG_SUPERH
3125static char early_serial_buf[32];
3126
3127static int early_serial_console_setup(struct console *co, char *options)
3128{
3129	/*
3130	 * This early console is always registered using the earlyprintk=
3131	 * parameter, which does not call add_preferred_console(). Thus
3132	 * @options is always NULL and the options for this early console
3133	 * are passed using a custom buffer.
3134	 */
3135	WARN_ON(options);
3136
3137	return serial_console_setup(co, early_serial_buf);
3138}
3139
3140static struct console early_serial_console = {
3141	.name           = "early_ttySC",
3142	.write          = serial_console_write,
3143	.setup		= early_serial_console_setup,
3144	.flags          = CON_PRINTBUFFER,
3145	.index		= -1,
3146};
3147
 
 
3148static int sci_probe_earlyprintk(struct platform_device *pdev)
3149{
3150	const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
3151
3152	if (early_serial_console.data)
3153		return -EEXIST;
3154
3155	early_serial_console.index = pdev->id;
3156
3157	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
3158
 
 
3159	if (!strstr(early_serial_buf, "keep"))
3160		early_serial_console.flags |= CON_BOOT;
3161
3162	register_console(&early_serial_console);
3163	return 0;
3164}
3165#endif
3166
3167#define SCI_CONSOLE	(&serial_console)
3168
3169#else
3170static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3171{
3172	return -EINVAL;
3173}
3174
3175#define SCI_CONSOLE	NULL
3176
3177#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3178
3179static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3180
3181static DEFINE_MUTEX(sci_uart_registration_lock);
3182static struct uart_driver sci_uart_driver = {
3183	.owner		= THIS_MODULE,
3184	.driver_name	= "sci",
3185	.dev_name	= "ttySC",
3186	.major		= SCI_MAJOR,
3187	.minor		= SCI_MINOR_START,
3188	.nr		= SCI_NPORTS,
3189	.cons		= SCI_CONSOLE,
3190};
3191
3192static void sci_remove(struct platform_device *dev)
3193{
3194	struct sci_port *port = platform_get_drvdata(dev);
3195	unsigned int type = port->port.type;	/* uart_remove_... clears it */
3196
3197	sci_ports_in_use &= ~BIT(port->port.line);
3198	uart_remove_one_port(&sci_uart_driver, &port->port);
3199
3200	sci_cleanup_single(port);
3201
3202	if (port->port.fifosize > 1)
3203		device_remove_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3204	if (type == PORT_SCIFA || type == PORT_SCIFB || type == PORT_HSCIF)
3205		device_remove_file(&dev->dev, &dev_attr_rx_fifo_timeout);
 
 
3206}
3207
3208
3209#define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
3210#define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
3211#define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
3212
3213static const struct of_device_id of_sci_match[] __maybe_unused = {
3214	/* SoC-specific types */
3215	{
3216		.compatible = "renesas,scif-r7s72100",
3217		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3218	},
3219	{
3220		.compatible = "renesas,scif-r7s9210",
3221		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3222	},
3223	{
3224		.compatible = "renesas,scif-r9a07g044",
3225		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3226	},
3227	/* Family-specific types */
3228	{
3229		.compatible = "renesas,rcar-gen1-scif",
3230		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3231	}, {
3232		.compatible = "renesas,rcar-gen2-scif",
3233		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3234	}, {
3235		.compatible = "renesas,rcar-gen3-scif",
3236		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3237	}, {
3238		.compatible = "renesas,rcar-gen4-scif",
3239		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3240	},
3241	/* Generic types */
3242	{
3243		.compatible = "renesas,scif",
3244		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3245	}, {
3246		.compatible = "renesas,scifa",
3247		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3248	}, {
3249		.compatible = "renesas,scifb",
3250		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3251	}, {
3252		.compatible = "renesas,hscif",
3253		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3254	}, {
3255		.compatible = "renesas,sci",
3256		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3257	}, {
3258		/* Terminator */
3259	},
3260};
3261MODULE_DEVICE_TABLE(of, of_sci_match);
3262
3263static void sci_reset_control_assert(void *data)
3264{
3265	reset_control_assert(data);
3266}
3267
3268static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3269					  unsigned int *dev_id)
3270{
3271	struct device_node *np = pdev->dev.of_node;
3272	struct reset_control *rstc;
3273	struct plat_sci_port *p;
3274	struct sci_port *sp;
3275	const void *data;
3276	int id, ret;
3277
3278	if (!IS_ENABLED(CONFIG_OF) || !np)
3279		return ERR_PTR(-EINVAL);
3280
3281	data = of_device_get_match_data(&pdev->dev);
3282
3283	rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
3284	if (IS_ERR(rstc))
3285		return ERR_PTR(dev_err_probe(&pdev->dev, PTR_ERR(rstc),
3286					     "failed to get reset ctrl\n"));
3287
3288	ret = reset_control_deassert(rstc);
3289	if (ret) {
3290		dev_err(&pdev->dev, "failed to deassert reset %d\n", ret);
3291		return ERR_PTR(ret);
3292	}
3293
3294	ret = devm_add_action_or_reset(&pdev->dev, sci_reset_control_assert, rstc);
3295	if (ret) {
3296		dev_err(&pdev->dev, "failed to register assert devm action, %d\n",
3297			ret);
3298		return ERR_PTR(ret);
3299	}
3300
3301	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3302	if (!p)
3303		return ERR_PTR(-ENOMEM);
3304
3305	/* Get the line number from the aliases node. */
3306	id = of_alias_get_id(np, "serial");
3307	if (id < 0 && ~sci_ports_in_use)
3308		id = ffz(sci_ports_in_use);
3309	if (id < 0) {
3310		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3311		return ERR_PTR(-EINVAL);
3312	}
3313	if (id >= ARRAY_SIZE(sci_ports)) {
3314		dev_err(&pdev->dev, "serial%d out of range\n", id);
3315		return ERR_PTR(-EINVAL);
3316	}
3317
3318	sp = &sci_ports[id];
3319	*dev_id = id;
3320
3321	p->type = SCI_OF_TYPE(data);
3322	p->regtype = SCI_OF_REGTYPE(data);
3323
3324	sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3325
3326	return p;
3327}
3328
3329static int sci_probe_single(struct platform_device *dev,
3330				      unsigned int index,
3331				      struct plat_sci_port *p,
3332				      struct sci_port *sciport)
3333{
3334	int ret;
3335
3336	/* Sanity check */
3337	if (unlikely(index >= SCI_NPORTS)) {
3338		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3339			   index+1, SCI_NPORTS);
3340		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3341		return -EINVAL;
3342	}
3343	BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8);
3344	if (sci_ports_in_use & BIT(index))
3345		return -EBUSY;
3346
3347	mutex_lock(&sci_uart_registration_lock);
3348	if (!sci_uart_driver.state) {
3349		ret = uart_register_driver(&sci_uart_driver);
3350		if (ret) {
3351			mutex_unlock(&sci_uart_registration_lock);
3352			return ret;
3353		}
3354	}
3355	mutex_unlock(&sci_uart_registration_lock);
3356
3357	ret = sci_init_single(dev, sciport, index, p, false);
3358	if (ret)
3359		return ret;
3360
3361	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3362	if (IS_ERR(sciport->gpios))
3363		return PTR_ERR(sciport->gpios);
3364
3365	if (sciport->has_rtscts) {
3366		if (mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_CTS) ||
3367		    mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_RTS)) {
3368			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3369			return -EINVAL;
3370		}
3371		sciport->port.flags |= UPF_HARD_FLOW;
3372	}
3373
3374	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3375	if (ret) {
3376		sci_cleanup_single(sciport);
3377		return ret;
3378	}
3379
3380	return 0;
3381}
3382
3383static int sci_probe(struct platform_device *dev)
3384{
3385	struct plat_sci_port *p;
3386	struct sci_port *sp;
3387	unsigned int dev_id;
3388	int ret;
3389
3390	/*
3391	 * If we've come here via earlyprintk initialization, head off to
3392	 * the special early probe. We don't have sufficient device state
3393	 * to make it beyond this yet.
3394	 */
3395#ifdef CONFIG_SUPERH
3396	if (is_sh_early_platform_device(dev))
3397		return sci_probe_earlyprintk(dev);
3398#endif
3399
3400	if (dev->dev.of_node) {
3401		p = sci_parse_dt(dev, &dev_id);
3402		if (IS_ERR(p))
3403			return PTR_ERR(p);
3404	} else {
3405		p = dev->dev.platform_data;
3406		if (p == NULL) {
3407			dev_err(&dev->dev, "no platform data supplied\n");
3408			return -EINVAL;
3409		}
3410
3411		dev_id = dev->id;
3412	}
3413
3414	sp = &sci_ports[dev_id];
3415	platform_set_drvdata(dev, sp);
3416
3417	ret = sci_probe_single(dev, dev_id, p, sp);
3418	if (ret)
3419		return ret;
3420
3421	if (sp->port.fifosize > 1) {
3422		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3423		if (ret)
3424			return ret;
3425	}
3426	if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3427	    sp->port.type == PORT_HSCIF) {
3428		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3429		if (ret) {
3430			if (sp->port.fifosize > 1) {
3431				device_remove_file(&dev->dev,
3432						   &dev_attr_rx_fifo_trigger);
3433			}
3434			return ret;
3435		}
3436	}
3437
3438#ifdef CONFIG_SH_STANDARD_BIOS
3439	sh_bios_gdb_detach();
3440#endif
3441
3442	sci_ports_in_use |= BIT(dev_id);
3443	return 0;
3444}
3445
3446static __maybe_unused int sci_suspend(struct device *dev)
3447{
3448	struct sci_port *sport = dev_get_drvdata(dev);
3449
3450	if (sport)
3451		uart_suspend_port(&sci_uart_driver, &sport->port);
3452
3453	return 0;
3454}
3455
3456static __maybe_unused int sci_resume(struct device *dev)
3457{
3458	struct sci_port *sport = dev_get_drvdata(dev);
3459
3460	if (sport)
3461		uart_resume_port(&sci_uart_driver, &sport->port);
3462
3463	return 0;
3464}
3465
3466static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3467
3468static struct platform_driver sci_driver = {
3469	.probe		= sci_probe,
3470	.remove_new	= sci_remove,
3471	.driver		= {
3472		.name	= "sh-sci",
3473		.pm	= &sci_dev_pm_ops,
3474		.of_match_table = of_match_ptr(of_sci_match),
3475	},
3476};
3477
3478static int __init sci_init(void)
3479{
3480	pr_info("%s\n", banner);
3481
3482	return platform_driver_register(&sci_driver);
3483}
3484
3485static void __exit sci_exit(void)
3486{
3487	platform_driver_unregister(&sci_driver);
3488
3489	if (sci_uart_driver.state)
3490		uart_unregister_driver(&sci_uart_driver);
3491}
3492
3493#if defined(CONFIG_SUPERH) && defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
3494sh_early_platform_init_buffer("earlyprintk", &sci_driver,
3495			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3496#endif
3497#ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3498static struct plat_sci_port port_cfg __initdata;
3499
3500static int __init early_console_setup(struct earlycon_device *device,
3501				      int type)
3502{
3503	if (!device->port.membase)
3504		return -ENODEV;
3505
 
 
3506	device->port.type = type;
3507	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3508	port_cfg.type = type;
3509	sci_ports[0].cfg = &port_cfg;
3510	sci_ports[0].params = sci_probe_regmap(&port_cfg);
3511	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3512	sci_serial_out(&sci_ports[0].port, SCSCR,
3513		       SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3514
3515	device->con->write = serial_console_write;
3516	return 0;
3517}
3518static int __init sci_early_console_setup(struct earlycon_device *device,
3519					  const char *opt)
3520{
3521	return early_console_setup(device, PORT_SCI);
3522}
3523static int __init scif_early_console_setup(struct earlycon_device *device,
3524					  const char *opt)
3525{
3526	return early_console_setup(device, PORT_SCIF);
3527}
3528static int __init rzscifa_early_console_setup(struct earlycon_device *device,
3529					  const char *opt)
3530{
3531	port_cfg.regtype = SCIx_RZ_SCIFA_REGTYPE;
3532	return early_console_setup(device, PORT_SCIF);
3533}
3534
3535static int __init scifa_early_console_setup(struct earlycon_device *device,
3536					  const char *opt)
3537{
3538	return early_console_setup(device, PORT_SCIFA);
3539}
3540static int __init scifb_early_console_setup(struct earlycon_device *device,
3541					  const char *opt)
3542{
3543	return early_console_setup(device, PORT_SCIFB);
3544}
3545static int __init hscif_early_console_setup(struct earlycon_device *device,
3546					  const char *opt)
3547{
3548	return early_console_setup(device, PORT_HSCIF);
3549}
3550
3551OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3552OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3553OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup);
3554OF_EARLYCON_DECLARE(scif, "renesas,scif-r9a07g044", rzscifa_early_console_setup);
3555OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3556OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3557OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3558#endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3559
3560module_init(sci_init);
3561module_exit(sci_exit);
3562
3563MODULE_LICENSE("GPL");
3564MODULE_ALIAS("platform:sh-sci");
3565MODULE_AUTHOR("Paul Mundt");
3566MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");