Loading...
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include <drm/drm_vma_manager.h>
29#include <drm/i915_drm.h>
30#include <linux/dma-fence-array.h>
31#include <linux/kthread.h>
32#include <linux/dma-resv.h>
33#include <linux/shmem_fs.h>
34#include <linux/slab.h>
35#include <linux/stop_machine.h>
36#include <linux/swap.h>
37#include <linux/pci.h>
38#include <linux/dma-buf.h>
39#include <linux/mman.h>
40
41#include "display/intel_display.h"
42#include "display/intel_frontbuffer.h"
43
44#include "gem/i915_gem_clflush.h"
45#include "gem/i915_gem_context.h"
46#include "gem/i915_gem_ioctls.h"
47#include "gem/i915_gem_pm.h"
48#include "gem/i915_gemfs.h"
49#include "gt/intel_engine_user.h"
50#include "gt/intel_gt.h"
51#include "gt/intel_gt_pm.h"
52#include "gt/intel_mocs.h"
53#include "gt/intel_reset.h"
54#include "gt/intel_renderstate.h"
55#include "gt/intel_workarounds.h"
56
57#include "i915_drv.h"
58#include "i915_scatterlist.h"
59#include "i915_trace.h"
60#include "i915_vgpu.h"
61
62#include "intel_pm.h"
63
64static int
65insert_mappable_node(struct i915_ggtt *ggtt,
66 struct drm_mm_node *node, u32 size)
67{
68 memset(node, 0, sizeof(*node));
69 return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
70 size, 0, I915_COLOR_UNEVICTABLE,
71 0, ggtt->mappable_end,
72 DRM_MM_INSERT_LOW);
73}
74
75static void
76remove_mappable_node(struct drm_mm_node *node)
77{
78 drm_mm_remove_node(node);
79}
80
81int
82i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
83 struct drm_file *file)
84{
85 struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
86 struct drm_i915_gem_get_aperture *args = data;
87 struct i915_vma *vma;
88 u64 pinned;
89
90 mutex_lock(&ggtt->vm.mutex);
91
92 pinned = ggtt->vm.reserved;
93 list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
94 if (i915_vma_is_pinned(vma))
95 pinned += vma->node.size;
96
97 mutex_unlock(&ggtt->vm.mutex);
98
99 args->aper_size = ggtt->vm.total;
100 args->aper_available_size = args->aper_size - pinned;
101
102 return 0;
103}
104
105int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
106 unsigned long flags)
107{
108 struct i915_vma *vma;
109 LIST_HEAD(still_in_list);
110 int ret = 0;
111
112 lockdep_assert_held(&obj->base.dev->struct_mutex);
113
114 spin_lock(&obj->vma.lock);
115 while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
116 struct i915_vma,
117 obj_link))) {
118 list_move_tail(&vma->obj_link, &still_in_list);
119 spin_unlock(&obj->vma.lock);
120
121 ret = -EBUSY;
122 if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
123 !i915_vma_is_active(vma))
124 ret = i915_vma_unbind(vma);
125
126 spin_lock(&obj->vma.lock);
127 }
128 list_splice(&still_in_list, &obj->vma.list);
129 spin_unlock(&obj->vma.lock);
130
131 return ret;
132}
133
134static int
135i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
136 struct drm_i915_gem_pwrite *args,
137 struct drm_file *file)
138{
139 void *vaddr = obj->phys_handle->vaddr + args->offset;
140 char __user *user_data = u64_to_user_ptr(args->data_ptr);
141
142 /*
143 * We manually control the domain here and pretend that it
144 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
145 */
146 intel_frontbuffer_invalidate(obj->frontbuffer, ORIGIN_CPU);
147
148 if (copy_from_user(vaddr, user_data, args->size))
149 return -EFAULT;
150
151 drm_clflush_virt_range(vaddr, args->size);
152 intel_gt_chipset_flush(&to_i915(obj->base.dev)->gt);
153
154 intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_CPU);
155 return 0;
156}
157
158static int
159i915_gem_create(struct drm_file *file,
160 struct drm_i915_private *dev_priv,
161 u64 *size_p,
162 u32 *handle_p)
163{
164 struct drm_i915_gem_object *obj;
165 u32 handle;
166 u64 size;
167 int ret;
168
169 size = round_up(*size_p, PAGE_SIZE);
170 if (size == 0)
171 return -EINVAL;
172
173 /* Allocate the new object */
174 obj = i915_gem_object_create_shmem(dev_priv, size);
175 if (IS_ERR(obj))
176 return PTR_ERR(obj);
177
178 ret = drm_gem_handle_create(file, &obj->base, &handle);
179 /* drop reference from allocate - handle holds it now */
180 i915_gem_object_put(obj);
181 if (ret)
182 return ret;
183
184 *handle_p = handle;
185 *size_p = size;
186 return 0;
187}
188
189int
190i915_gem_dumb_create(struct drm_file *file,
191 struct drm_device *dev,
192 struct drm_mode_create_dumb *args)
193{
194 int cpp = DIV_ROUND_UP(args->bpp, 8);
195 u32 format;
196
197 switch (cpp) {
198 case 1:
199 format = DRM_FORMAT_C8;
200 break;
201 case 2:
202 format = DRM_FORMAT_RGB565;
203 break;
204 case 4:
205 format = DRM_FORMAT_XRGB8888;
206 break;
207 default:
208 return -EINVAL;
209 }
210
211 /* have to work out size/pitch and return them */
212 args->pitch = ALIGN(args->width * cpp, 64);
213
214 /* align stride to page size so that we can remap */
215 if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
216 DRM_FORMAT_MOD_LINEAR))
217 args->pitch = ALIGN(args->pitch, 4096);
218
219 args->size = args->pitch * args->height;
220 return i915_gem_create(file, to_i915(dev),
221 &args->size, &args->handle);
222}
223
224/**
225 * Creates a new mm object and returns a handle to it.
226 * @dev: drm device pointer
227 * @data: ioctl data blob
228 * @file: drm file pointer
229 */
230int
231i915_gem_create_ioctl(struct drm_device *dev, void *data,
232 struct drm_file *file)
233{
234 struct drm_i915_private *dev_priv = to_i915(dev);
235 struct drm_i915_gem_create *args = data;
236
237 i915_gem_flush_free_objects(dev_priv);
238
239 return i915_gem_create(file, dev_priv,
240 &args->size, &args->handle);
241}
242
243static int
244shmem_pread(struct page *page, int offset, int len, char __user *user_data,
245 bool needs_clflush)
246{
247 char *vaddr;
248 int ret;
249
250 vaddr = kmap(page);
251
252 if (needs_clflush)
253 drm_clflush_virt_range(vaddr + offset, len);
254
255 ret = __copy_to_user(user_data, vaddr + offset, len);
256
257 kunmap(page);
258
259 return ret ? -EFAULT : 0;
260}
261
262static int
263i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
264 struct drm_i915_gem_pread *args)
265{
266 unsigned int needs_clflush;
267 unsigned int idx, offset;
268 struct dma_fence *fence;
269 char __user *user_data;
270 u64 remain;
271 int ret;
272
273 ret = i915_gem_object_prepare_read(obj, &needs_clflush);
274 if (ret)
275 return ret;
276
277 fence = i915_gem_object_lock_fence(obj);
278 i915_gem_object_finish_access(obj);
279 if (!fence)
280 return -ENOMEM;
281
282 remain = args->size;
283 user_data = u64_to_user_ptr(args->data_ptr);
284 offset = offset_in_page(args->offset);
285 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
286 struct page *page = i915_gem_object_get_page(obj, idx);
287 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
288
289 ret = shmem_pread(page, offset, length, user_data,
290 needs_clflush);
291 if (ret)
292 break;
293
294 remain -= length;
295 user_data += length;
296 offset = 0;
297 }
298
299 i915_gem_object_unlock_fence(obj, fence);
300 return ret;
301}
302
303static inline bool
304gtt_user_read(struct io_mapping *mapping,
305 loff_t base, int offset,
306 char __user *user_data, int length)
307{
308 void __iomem *vaddr;
309 unsigned long unwritten;
310
311 /* We can use the cpu mem copy function because this is X86. */
312 vaddr = io_mapping_map_atomic_wc(mapping, base);
313 unwritten = __copy_to_user_inatomic(user_data,
314 (void __force *)vaddr + offset,
315 length);
316 io_mapping_unmap_atomic(vaddr);
317 if (unwritten) {
318 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
319 unwritten = copy_to_user(user_data,
320 (void __force *)vaddr + offset,
321 length);
322 io_mapping_unmap(vaddr);
323 }
324 return unwritten;
325}
326
327static int
328i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
329 const struct drm_i915_gem_pread *args)
330{
331 struct drm_i915_private *i915 = to_i915(obj->base.dev);
332 struct i915_ggtt *ggtt = &i915->ggtt;
333 intel_wakeref_t wakeref;
334 struct drm_mm_node node;
335 struct dma_fence *fence;
336 void __user *user_data;
337 struct i915_vma *vma;
338 u64 remain, offset;
339 int ret;
340
341 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
342 if (ret)
343 return ret;
344
345 wakeref = intel_runtime_pm_get(&i915->runtime_pm);
346 vma = ERR_PTR(-ENODEV);
347 if (!i915_gem_object_is_tiled(obj))
348 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
349 PIN_MAPPABLE |
350 PIN_NONBLOCK /* NOWARN */ |
351 PIN_NOEVICT);
352 if (!IS_ERR(vma)) {
353 node.start = i915_ggtt_offset(vma);
354 node.allocated = false;
355 } else {
356 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
357 if (ret)
358 goto out_unlock;
359 GEM_BUG_ON(!node.allocated);
360 }
361
362 mutex_unlock(&i915->drm.struct_mutex);
363
364 ret = i915_gem_object_lock_interruptible(obj);
365 if (ret)
366 goto out_unpin;
367
368 ret = i915_gem_object_set_to_gtt_domain(obj, false);
369 if (ret) {
370 i915_gem_object_unlock(obj);
371 goto out_unpin;
372 }
373
374 fence = i915_gem_object_lock_fence(obj);
375 i915_gem_object_unlock(obj);
376 if (!fence) {
377 ret = -ENOMEM;
378 goto out_unpin;
379 }
380
381 user_data = u64_to_user_ptr(args->data_ptr);
382 remain = args->size;
383 offset = args->offset;
384
385 while (remain > 0) {
386 /* Operation in this page
387 *
388 * page_base = page offset within aperture
389 * page_offset = offset within page
390 * page_length = bytes to copy for this page
391 */
392 u32 page_base = node.start;
393 unsigned page_offset = offset_in_page(offset);
394 unsigned page_length = PAGE_SIZE - page_offset;
395 page_length = remain < page_length ? remain : page_length;
396 if (node.allocated) {
397 ggtt->vm.insert_page(&ggtt->vm,
398 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
399 node.start, I915_CACHE_NONE, 0);
400 } else {
401 page_base += offset & PAGE_MASK;
402 }
403
404 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
405 user_data, page_length)) {
406 ret = -EFAULT;
407 break;
408 }
409
410 remain -= page_length;
411 user_data += page_length;
412 offset += page_length;
413 }
414
415 i915_gem_object_unlock_fence(obj, fence);
416out_unpin:
417 mutex_lock(&i915->drm.struct_mutex);
418 if (node.allocated) {
419 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
420 remove_mappable_node(&node);
421 } else {
422 i915_vma_unpin(vma);
423 }
424out_unlock:
425 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
426 mutex_unlock(&i915->drm.struct_mutex);
427
428 return ret;
429}
430
431/**
432 * Reads data from the object referenced by handle.
433 * @dev: drm device pointer
434 * @data: ioctl data blob
435 * @file: drm file pointer
436 *
437 * On error, the contents of *data are undefined.
438 */
439int
440i915_gem_pread_ioctl(struct drm_device *dev, void *data,
441 struct drm_file *file)
442{
443 struct drm_i915_gem_pread *args = data;
444 struct drm_i915_gem_object *obj;
445 int ret;
446
447 if (args->size == 0)
448 return 0;
449
450 if (!access_ok(u64_to_user_ptr(args->data_ptr),
451 args->size))
452 return -EFAULT;
453
454 obj = i915_gem_object_lookup(file, args->handle);
455 if (!obj)
456 return -ENOENT;
457
458 /* Bounds check source. */
459 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
460 ret = -EINVAL;
461 goto out;
462 }
463
464 trace_i915_gem_object_pread(obj, args->offset, args->size);
465
466 ret = i915_gem_object_wait(obj,
467 I915_WAIT_INTERRUPTIBLE,
468 MAX_SCHEDULE_TIMEOUT);
469 if (ret)
470 goto out;
471
472 ret = i915_gem_object_pin_pages(obj);
473 if (ret)
474 goto out;
475
476 ret = i915_gem_shmem_pread(obj, args);
477 if (ret == -EFAULT || ret == -ENODEV)
478 ret = i915_gem_gtt_pread(obj, args);
479
480 i915_gem_object_unpin_pages(obj);
481out:
482 i915_gem_object_put(obj);
483 return ret;
484}
485
486/* This is the fast write path which cannot handle
487 * page faults in the source data
488 */
489
490static inline bool
491ggtt_write(struct io_mapping *mapping,
492 loff_t base, int offset,
493 char __user *user_data, int length)
494{
495 void __iomem *vaddr;
496 unsigned long unwritten;
497
498 /* We can use the cpu mem copy function because this is X86. */
499 vaddr = io_mapping_map_atomic_wc(mapping, base);
500 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
501 user_data, length);
502 io_mapping_unmap_atomic(vaddr);
503 if (unwritten) {
504 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
505 unwritten = copy_from_user((void __force *)vaddr + offset,
506 user_data, length);
507 io_mapping_unmap(vaddr);
508 }
509
510 return unwritten;
511}
512
513/**
514 * This is the fast pwrite path, where we copy the data directly from the
515 * user into the GTT, uncached.
516 * @obj: i915 GEM object
517 * @args: pwrite arguments structure
518 */
519static int
520i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
521 const struct drm_i915_gem_pwrite *args)
522{
523 struct drm_i915_private *i915 = to_i915(obj->base.dev);
524 struct i915_ggtt *ggtt = &i915->ggtt;
525 struct intel_runtime_pm *rpm = &i915->runtime_pm;
526 intel_wakeref_t wakeref;
527 struct drm_mm_node node;
528 struct dma_fence *fence;
529 struct i915_vma *vma;
530 u64 remain, offset;
531 void __user *user_data;
532 int ret;
533
534 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
535 if (ret)
536 return ret;
537
538 if (i915_gem_object_has_struct_page(obj)) {
539 /*
540 * Avoid waking the device up if we can fallback, as
541 * waking/resuming is very slow (worst-case 10-100 ms
542 * depending on PCI sleeps and our own resume time).
543 * This easily dwarfs any performance advantage from
544 * using the cache bypass of indirect GGTT access.
545 */
546 wakeref = intel_runtime_pm_get_if_in_use(rpm);
547 if (!wakeref) {
548 ret = -EFAULT;
549 goto out_unlock;
550 }
551 } else {
552 /* No backing pages, no fallback, we must force GGTT access */
553 wakeref = intel_runtime_pm_get(rpm);
554 }
555
556 vma = ERR_PTR(-ENODEV);
557 if (!i915_gem_object_is_tiled(obj))
558 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
559 PIN_MAPPABLE |
560 PIN_NONBLOCK /* NOWARN */ |
561 PIN_NOEVICT);
562 if (!IS_ERR(vma)) {
563 node.start = i915_ggtt_offset(vma);
564 node.allocated = false;
565 } else {
566 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
567 if (ret)
568 goto out_rpm;
569 GEM_BUG_ON(!node.allocated);
570 }
571
572 mutex_unlock(&i915->drm.struct_mutex);
573
574 ret = i915_gem_object_lock_interruptible(obj);
575 if (ret)
576 goto out_unpin;
577
578 ret = i915_gem_object_set_to_gtt_domain(obj, true);
579 if (ret) {
580 i915_gem_object_unlock(obj);
581 goto out_unpin;
582 }
583
584 fence = i915_gem_object_lock_fence(obj);
585 i915_gem_object_unlock(obj);
586 if (!fence) {
587 ret = -ENOMEM;
588 goto out_unpin;
589 }
590
591 intel_frontbuffer_invalidate(obj->frontbuffer, ORIGIN_CPU);
592
593 user_data = u64_to_user_ptr(args->data_ptr);
594 offset = args->offset;
595 remain = args->size;
596 while (remain) {
597 /* Operation in this page
598 *
599 * page_base = page offset within aperture
600 * page_offset = offset within page
601 * page_length = bytes to copy for this page
602 */
603 u32 page_base = node.start;
604 unsigned int page_offset = offset_in_page(offset);
605 unsigned int page_length = PAGE_SIZE - page_offset;
606 page_length = remain < page_length ? remain : page_length;
607 if (node.allocated) {
608 /* flush the write before we modify the GGTT */
609 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
610 ggtt->vm.insert_page(&ggtt->vm,
611 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
612 node.start, I915_CACHE_NONE, 0);
613 wmb(); /* flush modifications to the GGTT (insert_page) */
614 } else {
615 page_base += offset & PAGE_MASK;
616 }
617 /* If we get a fault while copying data, then (presumably) our
618 * source page isn't available. Return the error and we'll
619 * retry in the slow path.
620 * If the object is non-shmem backed, we retry again with the
621 * path that handles page fault.
622 */
623 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
624 user_data, page_length)) {
625 ret = -EFAULT;
626 break;
627 }
628
629 remain -= page_length;
630 user_data += page_length;
631 offset += page_length;
632 }
633 intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_CPU);
634
635 i915_gem_object_unlock_fence(obj, fence);
636out_unpin:
637 mutex_lock(&i915->drm.struct_mutex);
638 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
639 if (node.allocated) {
640 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
641 remove_mappable_node(&node);
642 } else {
643 i915_vma_unpin(vma);
644 }
645out_rpm:
646 intel_runtime_pm_put(rpm, wakeref);
647out_unlock:
648 mutex_unlock(&i915->drm.struct_mutex);
649 return ret;
650}
651
652/* Per-page copy function for the shmem pwrite fastpath.
653 * Flushes invalid cachelines before writing to the target if
654 * needs_clflush_before is set and flushes out any written cachelines after
655 * writing if needs_clflush is set.
656 */
657static int
658shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
659 bool needs_clflush_before,
660 bool needs_clflush_after)
661{
662 char *vaddr;
663 int ret;
664
665 vaddr = kmap(page);
666
667 if (needs_clflush_before)
668 drm_clflush_virt_range(vaddr + offset, len);
669
670 ret = __copy_from_user(vaddr + offset, user_data, len);
671 if (!ret && needs_clflush_after)
672 drm_clflush_virt_range(vaddr + offset, len);
673
674 kunmap(page);
675
676 return ret ? -EFAULT : 0;
677}
678
679static int
680i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
681 const struct drm_i915_gem_pwrite *args)
682{
683 unsigned int partial_cacheline_write;
684 unsigned int needs_clflush;
685 unsigned int offset, idx;
686 struct dma_fence *fence;
687 void __user *user_data;
688 u64 remain;
689 int ret;
690
691 ret = i915_gem_object_prepare_write(obj, &needs_clflush);
692 if (ret)
693 return ret;
694
695 fence = i915_gem_object_lock_fence(obj);
696 i915_gem_object_finish_access(obj);
697 if (!fence)
698 return -ENOMEM;
699
700 /* If we don't overwrite a cacheline completely we need to be
701 * careful to have up-to-date data by first clflushing. Don't
702 * overcomplicate things and flush the entire patch.
703 */
704 partial_cacheline_write = 0;
705 if (needs_clflush & CLFLUSH_BEFORE)
706 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
707
708 user_data = u64_to_user_ptr(args->data_ptr);
709 remain = args->size;
710 offset = offset_in_page(args->offset);
711 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
712 struct page *page = i915_gem_object_get_page(obj, idx);
713 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
714
715 ret = shmem_pwrite(page, offset, length, user_data,
716 (offset | length) & partial_cacheline_write,
717 needs_clflush & CLFLUSH_AFTER);
718 if (ret)
719 break;
720
721 remain -= length;
722 user_data += length;
723 offset = 0;
724 }
725
726 intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_CPU);
727 i915_gem_object_unlock_fence(obj, fence);
728
729 return ret;
730}
731
732/**
733 * Writes data to the object referenced by handle.
734 * @dev: drm device
735 * @data: ioctl data blob
736 * @file: drm file
737 *
738 * On error, the contents of the buffer that were to be modified are undefined.
739 */
740int
741i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
742 struct drm_file *file)
743{
744 struct drm_i915_gem_pwrite *args = data;
745 struct drm_i915_gem_object *obj;
746 int ret;
747
748 if (args->size == 0)
749 return 0;
750
751 if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
752 return -EFAULT;
753
754 obj = i915_gem_object_lookup(file, args->handle);
755 if (!obj)
756 return -ENOENT;
757
758 /* Bounds check destination. */
759 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
760 ret = -EINVAL;
761 goto err;
762 }
763
764 /* Writes not allowed into this read-only object */
765 if (i915_gem_object_is_readonly(obj)) {
766 ret = -EINVAL;
767 goto err;
768 }
769
770 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
771
772 ret = -ENODEV;
773 if (obj->ops->pwrite)
774 ret = obj->ops->pwrite(obj, args);
775 if (ret != -ENODEV)
776 goto err;
777
778 ret = i915_gem_object_wait(obj,
779 I915_WAIT_INTERRUPTIBLE |
780 I915_WAIT_ALL,
781 MAX_SCHEDULE_TIMEOUT);
782 if (ret)
783 goto err;
784
785 ret = i915_gem_object_pin_pages(obj);
786 if (ret)
787 goto err;
788
789 ret = -EFAULT;
790 /* We can only do the GTT pwrite on untiled buffers, as otherwise
791 * it would end up going through the fenced access, and we'll get
792 * different detiling behavior between reading and writing.
793 * pread/pwrite currently are reading and writing from the CPU
794 * perspective, requiring manual detiling by the client.
795 */
796 if (!i915_gem_object_has_struct_page(obj) ||
797 cpu_write_needs_clflush(obj))
798 /* Note that the gtt paths might fail with non-page-backed user
799 * pointers (e.g. gtt mappings when moving data between
800 * textures). Fallback to the shmem path in that case.
801 */
802 ret = i915_gem_gtt_pwrite_fast(obj, args);
803
804 if (ret == -EFAULT || ret == -ENOSPC) {
805 if (obj->phys_handle)
806 ret = i915_gem_phys_pwrite(obj, args, file);
807 else
808 ret = i915_gem_shmem_pwrite(obj, args);
809 }
810
811 i915_gem_object_unpin_pages(obj);
812err:
813 i915_gem_object_put(obj);
814 return ret;
815}
816
817/**
818 * Called when user space has done writes to this buffer
819 * @dev: drm device
820 * @data: ioctl data blob
821 * @file: drm file
822 */
823int
824i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
825 struct drm_file *file)
826{
827 struct drm_i915_gem_sw_finish *args = data;
828 struct drm_i915_gem_object *obj;
829
830 obj = i915_gem_object_lookup(file, args->handle);
831 if (!obj)
832 return -ENOENT;
833
834 /*
835 * Proxy objects are barred from CPU access, so there is no
836 * need to ban sw_finish as it is a nop.
837 */
838
839 /* Pinned buffers may be scanout, so flush the cache */
840 i915_gem_object_flush_if_display(obj);
841 i915_gem_object_put(obj);
842
843 return 0;
844}
845
846void i915_gem_runtime_suspend(struct drm_i915_private *i915)
847{
848 struct drm_i915_gem_object *obj, *on;
849 int i;
850
851 /*
852 * Only called during RPM suspend. All users of the userfault_list
853 * must be holding an RPM wakeref to ensure that this can not
854 * run concurrently with themselves (and use the struct_mutex for
855 * protection between themselves).
856 */
857
858 list_for_each_entry_safe(obj, on,
859 &i915->ggtt.userfault_list, userfault_link)
860 __i915_gem_object_release_mmap(obj);
861
862 /*
863 * The fence will be lost when the device powers down. If any were
864 * in use by hardware (i.e. they are pinned), we should not be powering
865 * down! All other fences will be reacquired by the user upon waking.
866 */
867 for (i = 0; i < i915->ggtt.num_fences; i++) {
868 struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
869
870 /*
871 * Ideally we want to assert that the fence register is not
872 * live at this point (i.e. that no piece of code will be
873 * trying to write through fence + GTT, as that both violates
874 * our tracking of activity and associated locking/barriers,
875 * but also is illegal given that the hw is powered down).
876 *
877 * Previously we used reg->pin_count as a "liveness" indicator.
878 * That is not sufficient, and we need a more fine-grained
879 * tool if we want to have a sanity check here.
880 */
881
882 if (!reg->vma)
883 continue;
884
885 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
886 reg->dirty = true;
887 }
888}
889
890static long
891wait_for_timelines(struct drm_i915_private *i915,
892 unsigned int wait, long timeout)
893{
894 struct intel_gt_timelines *timelines = &i915->gt.timelines;
895 struct intel_timeline *tl;
896 unsigned long flags;
897
898 spin_lock_irqsave(&timelines->lock, flags);
899 list_for_each_entry(tl, &timelines->active_list, link) {
900 struct i915_request *rq;
901
902 rq = i915_active_request_get_unlocked(&tl->last_request);
903 if (!rq)
904 continue;
905
906 spin_unlock_irqrestore(&timelines->lock, flags);
907
908 /*
909 * "Race-to-idle".
910 *
911 * Switching to the kernel context is often used a synchronous
912 * step prior to idling, e.g. in suspend for flushing all
913 * current operations to memory before sleeping. These we
914 * want to complete as quickly as possible to avoid prolonged
915 * stalls, so allow the gpu to boost to maximum clocks.
916 */
917 if (wait & I915_WAIT_FOR_IDLE_BOOST)
918 gen6_rps_boost(rq);
919
920 timeout = i915_request_wait(rq, wait, timeout);
921 i915_request_put(rq);
922 if (timeout < 0)
923 return timeout;
924
925 /* restart after reacquiring the lock */
926 spin_lock_irqsave(&timelines->lock, flags);
927 tl = list_entry(&timelines->active_list, typeof(*tl), link);
928 }
929 spin_unlock_irqrestore(&timelines->lock, flags);
930
931 return timeout;
932}
933
934int i915_gem_wait_for_idle(struct drm_i915_private *i915,
935 unsigned int flags, long timeout)
936{
937 /* If the device is asleep, we have no requests outstanding */
938 if (!intel_gt_pm_is_awake(&i915->gt))
939 return 0;
940
941 GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
942 flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
943 timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
944
945 timeout = wait_for_timelines(i915, flags, timeout);
946 if (timeout < 0)
947 return timeout;
948
949 if (flags & I915_WAIT_LOCKED) {
950 lockdep_assert_held(&i915->drm.struct_mutex);
951
952 i915_retire_requests(i915);
953 }
954
955 return 0;
956}
957
958struct i915_vma *
959i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
960 const struct i915_ggtt_view *view,
961 u64 size,
962 u64 alignment,
963 u64 flags)
964{
965 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
966 struct i915_address_space *vm = &dev_priv->ggtt.vm;
967
968 return i915_gem_object_pin(obj, vm, view, size, alignment,
969 flags | PIN_GLOBAL);
970}
971
972struct i915_vma *
973i915_gem_object_pin(struct drm_i915_gem_object *obj,
974 struct i915_address_space *vm,
975 const struct i915_ggtt_view *view,
976 u64 size,
977 u64 alignment,
978 u64 flags)
979{
980 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
981 struct i915_vma *vma;
982 int ret;
983
984 lockdep_assert_held(&obj->base.dev->struct_mutex);
985
986 if (i915_gem_object_never_bind_ggtt(obj))
987 return ERR_PTR(-ENODEV);
988
989 if (flags & PIN_MAPPABLE &&
990 (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
991 /* If the required space is larger than the available
992 * aperture, we will not able to find a slot for the
993 * object and unbinding the object now will be in
994 * vain. Worse, doing so may cause us to ping-pong
995 * the object in and out of the Global GTT and
996 * waste a lot of cycles under the mutex.
997 */
998 if (obj->base.size > dev_priv->ggtt.mappable_end)
999 return ERR_PTR(-E2BIG);
1000
1001 /* If NONBLOCK is set the caller is optimistically
1002 * trying to cache the full object within the mappable
1003 * aperture, and *must* have a fallback in place for
1004 * situations where we cannot bind the object. We
1005 * can be a little more lax here and use the fallback
1006 * more often to avoid costly migrations of ourselves
1007 * and other objects within the aperture.
1008 *
1009 * Half-the-aperture is used as a simple heuristic.
1010 * More interesting would to do search for a free
1011 * block prior to making the commitment to unbind.
1012 * That caters for the self-harm case, and with a
1013 * little more heuristics (e.g. NOFAULT, NOEVICT)
1014 * we could try to minimise harm to others.
1015 */
1016 if (flags & PIN_NONBLOCK &&
1017 obj->base.size > dev_priv->ggtt.mappable_end / 2)
1018 return ERR_PTR(-ENOSPC);
1019 }
1020
1021 vma = i915_vma_instance(obj, vm, view);
1022 if (IS_ERR(vma))
1023 return vma;
1024
1025 if (i915_vma_misplaced(vma, size, alignment, flags)) {
1026 if (flags & PIN_NONBLOCK) {
1027 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
1028 return ERR_PTR(-ENOSPC);
1029
1030 if (flags & PIN_MAPPABLE &&
1031 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
1032 return ERR_PTR(-ENOSPC);
1033 }
1034
1035 WARN(i915_vma_is_pinned(vma),
1036 "bo is already pinned in ggtt with incorrect alignment:"
1037 " offset=%08x, req.alignment=%llx,"
1038 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
1039 i915_ggtt_offset(vma), alignment,
1040 !!(flags & PIN_MAPPABLE),
1041 i915_vma_is_map_and_fenceable(vma));
1042 ret = i915_vma_unbind(vma);
1043 if (ret)
1044 return ERR_PTR(ret);
1045 }
1046
1047 if (vma->fence && !i915_gem_object_is_tiled(obj)) {
1048 mutex_lock(&vma->vm->mutex);
1049 ret = i915_vma_revoke_fence(vma);
1050 mutex_unlock(&vma->vm->mutex);
1051 if (ret)
1052 return ERR_PTR(ret);
1053 }
1054
1055 ret = i915_vma_pin(vma, size, alignment, flags);
1056 if (ret)
1057 return ERR_PTR(ret);
1058
1059 return vma;
1060}
1061
1062int
1063i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1064 struct drm_file *file_priv)
1065{
1066 struct drm_i915_private *i915 = to_i915(dev);
1067 struct drm_i915_gem_madvise *args = data;
1068 struct drm_i915_gem_object *obj;
1069 int err;
1070
1071 switch (args->madv) {
1072 case I915_MADV_DONTNEED:
1073 case I915_MADV_WILLNEED:
1074 break;
1075 default:
1076 return -EINVAL;
1077 }
1078
1079 obj = i915_gem_object_lookup(file_priv, args->handle);
1080 if (!obj)
1081 return -ENOENT;
1082
1083 err = mutex_lock_interruptible(&obj->mm.lock);
1084 if (err)
1085 goto out;
1086
1087 if (i915_gem_object_has_pages(obj) &&
1088 i915_gem_object_is_tiled(obj) &&
1089 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
1090 if (obj->mm.madv == I915_MADV_WILLNEED) {
1091 GEM_BUG_ON(!obj->mm.quirked);
1092 __i915_gem_object_unpin_pages(obj);
1093 obj->mm.quirked = false;
1094 }
1095 if (args->madv == I915_MADV_WILLNEED) {
1096 GEM_BUG_ON(obj->mm.quirked);
1097 __i915_gem_object_pin_pages(obj);
1098 obj->mm.quirked = true;
1099 }
1100 }
1101
1102 if (obj->mm.madv != __I915_MADV_PURGED)
1103 obj->mm.madv = args->madv;
1104
1105 if (i915_gem_object_has_pages(obj)) {
1106 struct list_head *list;
1107
1108 if (i915_gem_object_is_shrinkable(obj)) {
1109 unsigned long flags;
1110
1111 spin_lock_irqsave(&i915->mm.obj_lock, flags);
1112
1113 if (obj->mm.madv != I915_MADV_WILLNEED)
1114 list = &i915->mm.purge_list;
1115 else
1116 list = &i915->mm.shrink_list;
1117 list_move_tail(&obj->mm.link, list);
1118
1119 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1120 }
1121 }
1122
1123 /* if the object is no longer attached, discard its backing storage */
1124 if (obj->mm.madv == I915_MADV_DONTNEED &&
1125 !i915_gem_object_has_pages(obj))
1126 i915_gem_object_truncate(obj);
1127
1128 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1129 mutex_unlock(&obj->mm.lock);
1130
1131out:
1132 i915_gem_object_put(obj);
1133 return err;
1134}
1135
1136void i915_gem_sanitize(struct drm_i915_private *i915)
1137{
1138 intel_wakeref_t wakeref;
1139
1140 GEM_TRACE("\n");
1141
1142 wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1143 intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL);
1144
1145 /*
1146 * As we have just resumed the machine and woken the device up from
1147 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
1148 * back to defaults, recovering from whatever wedged state we left it
1149 * in and so worth trying to use the device once more.
1150 */
1151 if (intel_gt_is_wedged(&i915->gt))
1152 intel_gt_unset_wedged(&i915->gt);
1153
1154 /*
1155 * If we inherit context state from the BIOS or earlier occupants
1156 * of the GPU, the GPU may be in an inconsistent state when we
1157 * try to take over. The only way to remove the earlier state
1158 * is by resetting. However, resetting on earlier gen is tricky as
1159 * it may impact the display and we are uncertain about the stability
1160 * of the reset, so this could be applied to even earlier gen.
1161 */
1162 intel_gt_sanitize(&i915->gt, false);
1163
1164 intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL);
1165 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1166}
1167
1168static void init_unused_ring(struct intel_gt *gt, u32 base)
1169{
1170 struct intel_uncore *uncore = gt->uncore;
1171
1172 intel_uncore_write(uncore, RING_CTL(base), 0);
1173 intel_uncore_write(uncore, RING_HEAD(base), 0);
1174 intel_uncore_write(uncore, RING_TAIL(base), 0);
1175 intel_uncore_write(uncore, RING_START(base), 0);
1176}
1177
1178static void init_unused_rings(struct intel_gt *gt)
1179{
1180 struct drm_i915_private *i915 = gt->i915;
1181
1182 if (IS_I830(i915)) {
1183 init_unused_ring(gt, PRB1_BASE);
1184 init_unused_ring(gt, SRB0_BASE);
1185 init_unused_ring(gt, SRB1_BASE);
1186 init_unused_ring(gt, SRB2_BASE);
1187 init_unused_ring(gt, SRB3_BASE);
1188 } else if (IS_GEN(i915, 2)) {
1189 init_unused_ring(gt, SRB0_BASE);
1190 init_unused_ring(gt, SRB1_BASE);
1191 } else if (IS_GEN(i915, 3)) {
1192 init_unused_ring(gt, PRB1_BASE);
1193 init_unused_ring(gt, PRB2_BASE);
1194 }
1195}
1196
1197int i915_gem_init_hw(struct drm_i915_private *i915)
1198{
1199 struct intel_uncore *uncore = &i915->uncore;
1200 struct intel_gt *gt = &i915->gt;
1201 int ret;
1202
1203 BUG_ON(!i915->kernel_context);
1204 ret = intel_gt_terminally_wedged(gt);
1205 if (ret)
1206 return ret;
1207
1208 gt->last_init_time = ktime_get();
1209
1210 /* Double layer security blanket, see i915_gem_init() */
1211 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1212
1213 if (HAS_EDRAM(i915) && INTEL_GEN(i915) < 9)
1214 intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
1215
1216 if (IS_HASWELL(i915))
1217 intel_uncore_write(uncore,
1218 MI_PREDICATE_RESULT_2,
1219 IS_HSW_GT3(i915) ?
1220 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
1221
1222 /* Apply the GT workarounds... */
1223 intel_gt_apply_workarounds(gt);
1224 /* ...and determine whether they are sticking. */
1225 intel_gt_verify_workarounds(gt, "init");
1226
1227 intel_gt_init_swizzling(gt);
1228
1229 /*
1230 * At least 830 can leave some of the unused rings
1231 * "active" (ie. head != tail) after resume which
1232 * will prevent c3 entry. Makes sure all unused rings
1233 * are totally idle.
1234 */
1235 init_unused_rings(gt);
1236
1237 ret = i915_ppgtt_init_hw(gt);
1238 if (ret) {
1239 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
1240 goto out;
1241 }
1242
1243 /* We can't enable contexts until all firmware is loaded */
1244 ret = intel_uc_init_hw(>->uc);
1245 if (ret) {
1246 i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
1247 goto out;
1248 }
1249
1250 intel_mocs_init(gt);
1251
1252out:
1253 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1254 return ret;
1255}
1256
1257static int __intel_engines_record_defaults(struct drm_i915_private *i915)
1258{
1259 struct i915_request *requests[I915_NUM_ENGINES] = {};
1260 struct intel_engine_cs *engine;
1261 enum intel_engine_id id;
1262 int err = 0;
1263
1264 /*
1265 * As we reset the gpu during very early sanitisation, the current
1266 * register state on the GPU should reflect its defaults values.
1267 * We load a context onto the hw (with restore-inhibit), then switch
1268 * over to a second context to save that default register state. We
1269 * can then prime every new context with that state so they all start
1270 * from the same default HW values.
1271 */
1272
1273 for_each_engine(engine, i915, id) {
1274 struct intel_context *ce;
1275 struct i915_request *rq;
1276
1277 /* We must be able to switch to something! */
1278 GEM_BUG_ON(!engine->kernel_context);
1279 engine->serial++; /* force the kernel context switch */
1280
1281 ce = intel_context_create(i915->kernel_context, engine);
1282 if (IS_ERR(ce)) {
1283 err = PTR_ERR(ce);
1284 goto out;
1285 }
1286
1287 rq = intel_context_create_request(ce);
1288 if (IS_ERR(rq)) {
1289 err = PTR_ERR(rq);
1290 intel_context_put(ce);
1291 goto out;
1292 }
1293
1294 err = intel_engine_emit_ctx_wa(rq);
1295 if (err)
1296 goto err_rq;
1297
1298 /*
1299 * Failing to program the MOCS is non-fatal.The system will not
1300 * run at peak performance. So warn the user and carry on.
1301 */
1302 err = intel_mocs_emit(rq);
1303 if (err)
1304 dev_notice(i915->drm.dev,
1305 "Failed to program MOCS registers; expect performance issues.\n");
1306
1307 err = intel_renderstate_emit(rq);
1308 if (err)
1309 goto err_rq;
1310
1311err_rq:
1312 requests[id] = i915_request_get(rq);
1313 i915_request_add(rq);
1314 if (err)
1315 goto out;
1316 }
1317
1318 /* Flush the default context image to memory, and enable powersaving. */
1319 if (!i915_gem_load_power_context(i915)) {
1320 err = -EIO;
1321 goto out;
1322 }
1323
1324 for (id = 0; id < ARRAY_SIZE(requests); id++) {
1325 struct i915_request *rq;
1326 struct i915_vma *state;
1327 void *vaddr;
1328
1329 rq = requests[id];
1330 if (!rq)
1331 continue;
1332
1333 /* We want to be able to unbind the state from the GGTT */
1334 GEM_BUG_ON(intel_context_is_pinned(rq->hw_context));
1335
1336 state = rq->hw_context->state;
1337 if (!state)
1338 continue;
1339
1340 /*
1341 * As we will hold a reference to the logical state, it will
1342 * not be torn down with the context, and importantly the
1343 * object will hold onto its vma (making it possible for a
1344 * stray GTT write to corrupt our defaults). Unmap the vma
1345 * from the GTT to prevent such accidents and reclaim the
1346 * space.
1347 */
1348 err = i915_vma_unbind(state);
1349 if (err)
1350 goto out;
1351
1352 i915_gem_object_lock(state->obj);
1353 err = i915_gem_object_set_to_cpu_domain(state->obj, false);
1354 i915_gem_object_unlock(state->obj);
1355 if (err)
1356 goto out;
1357
1358 i915_gem_object_set_cache_coherency(state->obj, I915_CACHE_LLC);
1359
1360 /* Check we can acquire the image of the context state */
1361 vaddr = i915_gem_object_pin_map(state->obj, I915_MAP_FORCE_WB);
1362 if (IS_ERR(vaddr)) {
1363 err = PTR_ERR(vaddr);
1364 goto out;
1365 }
1366
1367 rq->engine->default_state = i915_gem_object_get(state->obj);
1368 i915_gem_object_unpin_map(state->obj);
1369 }
1370
1371out:
1372 /*
1373 * If we have to abandon now, we expect the engines to be idle
1374 * and ready to be torn-down. The quickest way we can accomplish
1375 * this is by declaring ourselves wedged.
1376 */
1377 if (err)
1378 intel_gt_set_wedged(&i915->gt);
1379
1380 for (id = 0; id < ARRAY_SIZE(requests); id++) {
1381 struct intel_context *ce;
1382 struct i915_request *rq;
1383
1384 rq = requests[id];
1385 if (!rq)
1386 continue;
1387
1388 ce = rq->hw_context;
1389 i915_request_put(rq);
1390 intel_context_put(ce);
1391 }
1392 return err;
1393}
1394
1395static int
1396i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
1397{
1398 return intel_gt_init_scratch(&i915->gt, size);
1399}
1400
1401static void i915_gem_fini_scratch(struct drm_i915_private *i915)
1402{
1403 intel_gt_fini_scratch(&i915->gt);
1404}
1405
1406static int intel_engines_verify_workarounds(struct drm_i915_private *i915)
1407{
1408 struct intel_engine_cs *engine;
1409 enum intel_engine_id id;
1410 int err = 0;
1411
1412 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1413 return 0;
1414
1415 for_each_engine(engine, i915, id) {
1416 if (intel_engine_verify_workarounds(engine, "load"))
1417 err = -EIO;
1418 }
1419
1420 return err;
1421}
1422
1423int i915_gem_init(struct drm_i915_private *dev_priv)
1424{
1425 int ret;
1426
1427 /* We need to fallback to 4K pages if host doesn't support huge gtt. */
1428 if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1429 mkwrite_device_info(dev_priv)->page_sizes =
1430 I915_GTT_PAGE_SIZE_4K;
1431
1432 intel_timelines_init(dev_priv);
1433
1434 ret = i915_gem_init_userptr(dev_priv);
1435 if (ret)
1436 return ret;
1437
1438 intel_uc_fetch_firmwares(&dev_priv->gt.uc);
1439 intel_wopcm_init(&dev_priv->wopcm);
1440
1441 /* This is just a security blanket to placate dragons.
1442 * On some systems, we very sporadically observe that the first TLBs
1443 * used by the CS may be stale, despite us poking the TLB reset. If
1444 * we hold the forcewake during initialisation these problems
1445 * just magically go away.
1446 */
1447 mutex_lock(&dev_priv->drm.struct_mutex);
1448 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1449
1450 ret = i915_init_ggtt(dev_priv);
1451 if (ret) {
1452 GEM_BUG_ON(ret == -EIO);
1453 goto err_unlock;
1454 }
1455
1456 ret = i915_gem_init_scratch(dev_priv,
1457 IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE);
1458 if (ret) {
1459 GEM_BUG_ON(ret == -EIO);
1460 goto err_ggtt;
1461 }
1462
1463 ret = intel_engines_setup(dev_priv);
1464 if (ret) {
1465 GEM_BUG_ON(ret == -EIO);
1466 goto err_unlock;
1467 }
1468
1469 ret = i915_gem_contexts_init(dev_priv);
1470 if (ret) {
1471 GEM_BUG_ON(ret == -EIO);
1472 goto err_scratch;
1473 }
1474
1475 ret = intel_engines_init(dev_priv);
1476 if (ret) {
1477 GEM_BUG_ON(ret == -EIO);
1478 goto err_context;
1479 }
1480
1481 intel_init_gt_powersave(dev_priv);
1482
1483 intel_uc_init(&dev_priv->gt.uc);
1484
1485 ret = i915_gem_init_hw(dev_priv);
1486 if (ret)
1487 goto err_uc_init;
1488
1489 /* Only when the HW is re-initialised, can we replay the requests */
1490 ret = intel_gt_resume(&dev_priv->gt);
1491 if (ret)
1492 goto err_init_hw;
1493
1494 /*
1495 * Despite its name intel_init_clock_gating applies both display
1496 * clock gating workarounds; GT mmio workarounds and the occasional
1497 * GT power context workaround. Worse, sometimes it includes a context
1498 * register workaround which we need to apply before we record the
1499 * default HW state for all contexts.
1500 *
1501 * FIXME: break up the workarounds and apply them at the right time!
1502 */
1503 intel_init_clock_gating(dev_priv);
1504
1505 ret = intel_engines_verify_workarounds(dev_priv);
1506 if (ret)
1507 goto err_gt;
1508
1509 ret = __intel_engines_record_defaults(dev_priv);
1510 if (ret)
1511 goto err_gt;
1512
1513 ret = i915_inject_load_error(dev_priv, -ENODEV);
1514 if (ret)
1515 goto err_gt;
1516
1517 ret = i915_inject_load_error(dev_priv, -EIO);
1518 if (ret)
1519 goto err_gt;
1520
1521 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1522 mutex_unlock(&dev_priv->drm.struct_mutex);
1523
1524 return 0;
1525
1526 /*
1527 * Unwinding is complicated by that we want to handle -EIO to mean
1528 * disable GPU submission but keep KMS alive. We want to mark the
1529 * HW as irrevisibly wedged, but keep enough state around that the
1530 * driver doesn't explode during runtime.
1531 */
1532err_gt:
1533 mutex_unlock(&dev_priv->drm.struct_mutex);
1534
1535 intel_gt_set_wedged(&dev_priv->gt);
1536 i915_gem_suspend(dev_priv);
1537 i915_gem_suspend_late(dev_priv);
1538
1539 i915_gem_drain_workqueue(dev_priv);
1540
1541 mutex_lock(&dev_priv->drm.struct_mutex);
1542err_init_hw:
1543 intel_uc_fini_hw(&dev_priv->gt.uc);
1544err_uc_init:
1545 if (ret != -EIO) {
1546 intel_uc_fini(&dev_priv->gt.uc);
1547 intel_cleanup_gt_powersave(dev_priv);
1548 intel_engines_cleanup(dev_priv);
1549 }
1550err_context:
1551 if (ret != -EIO)
1552 i915_gem_contexts_fini(dev_priv);
1553err_scratch:
1554 i915_gem_fini_scratch(dev_priv);
1555err_ggtt:
1556err_unlock:
1557 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1558 mutex_unlock(&dev_priv->drm.struct_mutex);
1559
1560 if (ret != -EIO) {
1561 intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1562 i915_gem_cleanup_userptr(dev_priv);
1563 intel_timelines_fini(dev_priv);
1564 }
1565
1566 if (ret == -EIO) {
1567 mutex_lock(&dev_priv->drm.struct_mutex);
1568
1569 /*
1570 * Allow engines or uC initialisation to fail by marking the GPU
1571 * as wedged. But we only want to do this when the GPU is angry,
1572 * for all other failure, such as an allocation failure, bail.
1573 */
1574 if (!intel_gt_is_wedged(&dev_priv->gt)) {
1575 i915_probe_error(dev_priv,
1576 "Failed to initialize GPU, declaring it wedged!\n");
1577 intel_gt_set_wedged(&dev_priv->gt);
1578 }
1579
1580 /* Minimal basic recovery for KMS */
1581 ret = i915_ggtt_enable_hw(dev_priv);
1582 i915_gem_restore_gtt_mappings(dev_priv);
1583 i915_gem_restore_fences(dev_priv);
1584 intel_init_clock_gating(dev_priv);
1585
1586 mutex_unlock(&dev_priv->drm.struct_mutex);
1587 }
1588
1589 i915_gem_drain_freed_objects(dev_priv);
1590 return ret;
1591}
1592
1593void i915_gem_driver_register(struct drm_i915_private *i915)
1594{
1595 i915_gem_driver_register__shrinker(i915);
1596
1597 intel_engines_driver_register(i915);
1598}
1599
1600void i915_gem_driver_unregister(struct drm_i915_private *i915)
1601{
1602 i915_gem_driver_unregister__shrinker(i915);
1603}
1604
1605void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1606{
1607 GEM_BUG_ON(dev_priv->gt.awake);
1608
1609 intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1610
1611 i915_gem_suspend_late(dev_priv);
1612 intel_disable_gt_powersave(dev_priv);
1613
1614 /* Flush any outstanding unpin_work. */
1615 i915_gem_drain_workqueue(dev_priv);
1616
1617 mutex_lock(&dev_priv->drm.struct_mutex);
1618 intel_uc_fini_hw(&dev_priv->gt.uc);
1619 intel_uc_fini(&dev_priv->gt.uc);
1620 mutex_unlock(&dev_priv->drm.struct_mutex);
1621
1622 i915_gem_drain_freed_objects(dev_priv);
1623}
1624
1625void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1626{
1627 mutex_lock(&dev_priv->drm.struct_mutex);
1628 intel_engines_cleanup(dev_priv);
1629 i915_gem_contexts_fini(dev_priv);
1630 i915_gem_fini_scratch(dev_priv);
1631 mutex_unlock(&dev_priv->drm.struct_mutex);
1632
1633 intel_wa_list_free(&dev_priv->gt_wa_list);
1634
1635 intel_cleanup_gt_powersave(dev_priv);
1636
1637 intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1638 i915_gem_cleanup_userptr(dev_priv);
1639 intel_timelines_fini(dev_priv);
1640
1641 i915_gem_drain_freed_objects(dev_priv);
1642
1643 WARN_ON(!list_empty(&dev_priv->contexts.list));
1644}
1645
1646void i915_gem_init_mmio(struct drm_i915_private *i915)
1647{
1648 i915_gem_sanitize(i915);
1649}
1650
1651static void i915_gem_init__mm(struct drm_i915_private *i915)
1652{
1653 spin_lock_init(&i915->mm.obj_lock);
1654
1655 init_llist_head(&i915->mm.free_list);
1656
1657 INIT_LIST_HEAD(&i915->mm.purge_list);
1658 INIT_LIST_HEAD(&i915->mm.shrink_list);
1659
1660 i915_gem_init__objects(i915);
1661}
1662
1663int i915_gem_init_early(struct drm_i915_private *dev_priv)
1664{
1665 int err;
1666
1667 i915_gem_init__mm(dev_priv);
1668 i915_gem_init__pm(dev_priv);
1669
1670 spin_lock_init(&dev_priv->fb_tracking.lock);
1671
1672 err = i915_gemfs_init(dev_priv);
1673 if (err)
1674 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
1675
1676 return 0;
1677}
1678
1679void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1680{
1681 i915_gem_drain_freed_objects(dev_priv);
1682 GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1683 GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1684 WARN_ON(dev_priv->mm.shrink_count);
1685
1686 i915_gemfs_fini(dev_priv);
1687}
1688
1689int i915_gem_freeze(struct drm_i915_private *dev_priv)
1690{
1691 /* Discard all purgeable objects, let userspace recover those as
1692 * required after resuming.
1693 */
1694 i915_gem_shrink_all(dev_priv);
1695
1696 return 0;
1697}
1698
1699int i915_gem_freeze_late(struct drm_i915_private *i915)
1700{
1701 struct drm_i915_gem_object *obj;
1702 intel_wakeref_t wakeref;
1703
1704 /*
1705 * Called just before we write the hibernation image.
1706 *
1707 * We need to update the domain tracking to reflect that the CPU
1708 * will be accessing all the pages to create and restore from the
1709 * hibernation, and so upon restoration those pages will be in the
1710 * CPU domain.
1711 *
1712 * To make sure the hibernation image contains the latest state,
1713 * we update that state just before writing out the image.
1714 *
1715 * To try and reduce the hibernation image, we manually shrink
1716 * the objects as well, see i915_gem_freeze()
1717 */
1718
1719 wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1720
1721 i915_gem_shrink(i915, -1UL, NULL, ~0);
1722 i915_gem_drain_freed_objects(i915);
1723
1724 list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
1725 i915_gem_object_lock(obj);
1726 WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
1727 i915_gem_object_unlock(obj);
1728 }
1729
1730 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1731
1732 return 0;
1733}
1734
1735void i915_gem_release(struct drm_device *dev, struct drm_file *file)
1736{
1737 struct drm_i915_file_private *file_priv = file->driver_priv;
1738 struct i915_request *request;
1739
1740 /* Clean up our request list when the client is going away, so that
1741 * later retire_requests won't dereference our soon-to-be-gone
1742 * file_priv.
1743 */
1744 spin_lock(&file_priv->mm.lock);
1745 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
1746 request->file_priv = NULL;
1747 spin_unlock(&file_priv->mm.lock);
1748}
1749
1750int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1751{
1752 struct drm_i915_file_private *file_priv;
1753 int ret;
1754
1755 DRM_DEBUG("\n");
1756
1757 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1758 if (!file_priv)
1759 return -ENOMEM;
1760
1761 file->driver_priv = file_priv;
1762 file_priv->dev_priv = i915;
1763 file_priv->file = file;
1764
1765 spin_lock_init(&file_priv->mm.lock);
1766 INIT_LIST_HEAD(&file_priv->mm.request_list);
1767
1768 file_priv->bsd_engine = -1;
1769 file_priv->hang_timestamp = jiffies;
1770
1771 ret = i915_gem_context_open(i915, file);
1772 if (ret)
1773 kfree(file_priv);
1774
1775 return ret;
1776}
1777
1778#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1779#include "selftests/mock_gem_device.c"
1780#include "selftests/i915_gem.c"
1781#endif
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include <linux/dma-fence-array.h>
29#include <linux/kthread.h>
30#include <linux/dma-resv.h>
31#include <linux/shmem_fs.h>
32#include <linux/slab.h>
33#include <linux/stop_machine.h>
34#include <linux/swap.h>
35#include <linux/pci.h>
36#include <linux/dma-buf.h>
37#include <linux/mman.h>
38
39#include <drm/drm_cache.h>
40#include <drm/drm_vma_manager.h>
41
42#include "display/intel_display.h"
43
44#include "gem/i915_gem_clflush.h"
45#include "gem/i915_gem_context.h"
46#include "gem/i915_gem_ioctls.h"
47#include "gem/i915_gem_mman.h"
48#include "gem/i915_gem_object_frontbuffer.h"
49#include "gem/i915_gem_pm.h"
50#include "gem/i915_gem_region.h"
51#include "gt/intel_engine_user.h"
52#include "gt/intel_gt.h"
53#include "gt/intel_gt_pm.h"
54#include "gt/intel_workarounds.h"
55
56#include "i915_drv.h"
57#include "i915_file_private.h"
58#include "i915_trace.h"
59#include "i915_vgpu.h"
60#include "intel_clock_gating.h"
61
62static int
63insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
64{
65 int err;
66
67 err = mutex_lock_interruptible(&ggtt->vm.mutex);
68 if (err)
69 return err;
70
71 memset(node, 0, sizeof(*node));
72 err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
73 size, 0, I915_COLOR_UNEVICTABLE,
74 0, ggtt->mappable_end,
75 DRM_MM_INSERT_LOW);
76
77 mutex_unlock(&ggtt->vm.mutex);
78
79 return err;
80}
81
82static void
83remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
84{
85 mutex_lock(&ggtt->vm.mutex);
86 drm_mm_remove_node(node);
87 mutex_unlock(&ggtt->vm.mutex);
88}
89
90int
91i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
92 struct drm_file *file)
93{
94 struct drm_i915_private *i915 = to_i915(dev);
95 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
96 struct drm_i915_gem_get_aperture *args = data;
97 struct i915_vma *vma;
98 u64 pinned;
99
100 if (mutex_lock_interruptible(&ggtt->vm.mutex))
101 return -EINTR;
102
103 pinned = ggtt->vm.reserved;
104 list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
105 if (i915_vma_is_pinned(vma))
106 pinned += vma->node.size;
107
108 mutex_unlock(&ggtt->vm.mutex);
109
110 args->aper_size = ggtt->vm.total;
111 args->aper_available_size = args->aper_size - pinned;
112
113 return 0;
114}
115
116int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
117 unsigned long flags)
118{
119 struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
120 bool vm_trylock = !!(flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK);
121 LIST_HEAD(still_in_list);
122 intel_wakeref_t wakeref;
123 struct i915_vma *vma;
124 int ret;
125
126 assert_object_held(obj);
127
128 if (list_empty(&obj->vma.list))
129 return 0;
130
131 /*
132 * As some machines use ACPI to handle runtime-resume callbacks, and
133 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
134 * as they are required by the shrinker. Ergo, we wake the device up
135 * first just in case.
136 */
137 wakeref = intel_runtime_pm_get(rpm);
138
139try_again:
140 ret = 0;
141 spin_lock(&obj->vma.lock);
142 while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
143 struct i915_vma,
144 obj_link))) {
145 list_move_tail(&vma->obj_link, &still_in_list);
146 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
147 continue;
148
149 if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
150 ret = -EBUSY;
151 break;
152 }
153
154 /*
155 * Requiring the vm destructor to take the object lock
156 * before destroying a vma would help us eliminate the
157 * i915_vm_tryget() here, AND thus also the barrier stuff
158 * at the end. That's an easy fix, but sleeping locks in
159 * a kthread should generally be avoided.
160 */
161 ret = -EAGAIN;
162 if (!i915_vm_tryget(vma->vm))
163 break;
164
165 spin_unlock(&obj->vma.lock);
166
167 /*
168 * Since i915_vma_parked() takes the object lock
169 * before vma destruction, it won't race us here,
170 * and destroy the vma from under us.
171 */
172
173 ret = -EBUSY;
174 if (flags & I915_GEM_OBJECT_UNBIND_ASYNC) {
175 assert_object_held(vma->obj);
176 ret = i915_vma_unbind_async(vma, vm_trylock);
177 }
178
179 if (ret == -EBUSY && (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
180 !i915_vma_is_active(vma))) {
181 if (vm_trylock) {
182 if (mutex_trylock(&vma->vm->mutex)) {
183 ret = __i915_vma_unbind(vma);
184 mutex_unlock(&vma->vm->mutex);
185 }
186 } else {
187 ret = i915_vma_unbind(vma);
188 }
189 }
190
191 i915_vm_put(vma->vm);
192 spin_lock(&obj->vma.lock);
193 }
194 list_splice_init(&still_in_list, &obj->vma.list);
195 spin_unlock(&obj->vma.lock);
196
197 if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
198 rcu_barrier(); /* flush the i915_vm_release() */
199 goto try_again;
200 }
201
202 intel_runtime_pm_put(rpm, wakeref);
203
204 return ret;
205}
206
207static int
208shmem_pread(struct page *page, int offset, int len, char __user *user_data,
209 bool needs_clflush)
210{
211 char *vaddr;
212 int ret;
213
214 vaddr = kmap(page);
215
216 if (needs_clflush)
217 drm_clflush_virt_range(vaddr + offset, len);
218
219 ret = __copy_to_user(user_data, vaddr + offset, len);
220
221 kunmap(page);
222
223 return ret ? -EFAULT : 0;
224}
225
226static int
227i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
228 struct drm_i915_gem_pread *args)
229{
230 unsigned int needs_clflush;
231 char __user *user_data;
232 unsigned long offset;
233 pgoff_t idx;
234 u64 remain;
235 int ret;
236
237 ret = i915_gem_object_lock_interruptible(obj, NULL);
238 if (ret)
239 return ret;
240
241 ret = i915_gem_object_pin_pages(obj);
242 if (ret)
243 goto err_unlock;
244
245 ret = i915_gem_object_prepare_read(obj, &needs_clflush);
246 if (ret)
247 goto err_unpin;
248
249 i915_gem_object_finish_access(obj);
250 i915_gem_object_unlock(obj);
251
252 remain = args->size;
253 user_data = u64_to_user_ptr(args->data_ptr);
254 offset = offset_in_page(args->offset);
255 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
256 struct page *page = i915_gem_object_get_page(obj, idx);
257 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
258
259 ret = shmem_pread(page, offset, length, user_data,
260 needs_clflush);
261 if (ret)
262 break;
263
264 remain -= length;
265 user_data += length;
266 offset = 0;
267 }
268
269 i915_gem_object_unpin_pages(obj);
270 return ret;
271
272err_unpin:
273 i915_gem_object_unpin_pages(obj);
274err_unlock:
275 i915_gem_object_unlock(obj);
276 return ret;
277}
278
279static inline bool
280gtt_user_read(struct io_mapping *mapping,
281 loff_t base, int offset,
282 char __user *user_data, int length)
283{
284 void __iomem *vaddr;
285 unsigned long unwritten;
286
287 /* We can use the cpu mem copy function because this is X86. */
288 vaddr = io_mapping_map_atomic_wc(mapping, base);
289 unwritten = __copy_to_user_inatomic(user_data,
290 (void __force *)vaddr + offset,
291 length);
292 io_mapping_unmap_atomic(vaddr);
293 if (unwritten) {
294 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
295 unwritten = copy_to_user(user_data,
296 (void __force *)vaddr + offset,
297 length);
298 io_mapping_unmap(vaddr);
299 }
300 return unwritten;
301}
302
303static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
304 struct drm_mm_node *node,
305 bool write)
306{
307 struct drm_i915_private *i915 = to_i915(obj->base.dev);
308 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
309 struct i915_vma *vma;
310 struct i915_gem_ww_ctx ww;
311 int ret;
312
313 i915_gem_ww_ctx_init(&ww, true);
314retry:
315 vma = ERR_PTR(-ENODEV);
316 ret = i915_gem_object_lock(obj, &ww);
317 if (ret)
318 goto err_ww;
319
320 ret = i915_gem_object_set_to_gtt_domain(obj, write);
321 if (ret)
322 goto err_ww;
323
324 if (!i915_gem_object_is_tiled(obj))
325 vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
326 PIN_MAPPABLE |
327 PIN_NONBLOCK /* NOWARN */ |
328 PIN_NOEVICT);
329 if (vma == ERR_PTR(-EDEADLK)) {
330 ret = -EDEADLK;
331 goto err_ww;
332 } else if (!IS_ERR(vma)) {
333 node->start = i915_ggtt_offset(vma);
334 node->flags = 0;
335 } else {
336 ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
337 if (ret)
338 goto err_ww;
339 GEM_BUG_ON(!drm_mm_node_allocated(node));
340 vma = NULL;
341 }
342
343 ret = i915_gem_object_pin_pages(obj);
344 if (ret) {
345 if (drm_mm_node_allocated(node)) {
346 ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
347 remove_mappable_node(ggtt, node);
348 } else {
349 i915_vma_unpin(vma);
350 }
351 }
352
353err_ww:
354 if (ret == -EDEADLK) {
355 ret = i915_gem_ww_ctx_backoff(&ww);
356 if (!ret)
357 goto retry;
358 }
359 i915_gem_ww_ctx_fini(&ww);
360
361 return ret ? ERR_PTR(ret) : vma;
362}
363
364static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
365 struct drm_mm_node *node,
366 struct i915_vma *vma)
367{
368 struct drm_i915_private *i915 = to_i915(obj->base.dev);
369 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
370
371 i915_gem_object_unpin_pages(obj);
372 if (drm_mm_node_allocated(node)) {
373 ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
374 remove_mappable_node(ggtt, node);
375 } else {
376 i915_vma_unpin(vma);
377 }
378}
379
380static int
381i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
382 const struct drm_i915_gem_pread *args)
383{
384 struct drm_i915_private *i915 = to_i915(obj->base.dev);
385 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
386 unsigned long remain, offset;
387 intel_wakeref_t wakeref;
388 struct drm_mm_node node;
389 void __user *user_data;
390 struct i915_vma *vma;
391 int ret = 0;
392
393 if (overflows_type(args->size, remain) ||
394 overflows_type(args->offset, offset))
395 return -EINVAL;
396
397 wakeref = intel_runtime_pm_get(&i915->runtime_pm);
398
399 vma = i915_gem_gtt_prepare(obj, &node, false);
400 if (IS_ERR(vma)) {
401 ret = PTR_ERR(vma);
402 goto out_rpm;
403 }
404
405 user_data = u64_to_user_ptr(args->data_ptr);
406 remain = args->size;
407 offset = args->offset;
408
409 while (remain > 0) {
410 /* Operation in this page
411 *
412 * page_base = page offset within aperture
413 * page_offset = offset within page
414 * page_length = bytes to copy for this page
415 */
416 u32 page_base = node.start;
417 unsigned page_offset = offset_in_page(offset);
418 unsigned page_length = PAGE_SIZE - page_offset;
419 page_length = remain < page_length ? remain : page_length;
420 if (drm_mm_node_allocated(&node)) {
421 ggtt->vm.insert_page(&ggtt->vm,
422 i915_gem_object_get_dma_address(obj,
423 offset >> PAGE_SHIFT),
424 node.start,
425 i915_gem_get_pat_index(i915,
426 I915_CACHE_NONE), 0);
427 } else {
428 page_base += offset & PAGE_MASK;
429 }
430
431 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
432 user_data, page_length)) {
433 ret = -EFAULT;
434 break;
435 }
436
437 remain -= page_length;
438 user_data += page_length;
439 offset += page_length;
440 }
441
442 i915_gem_gtt_cleanup(obj, &node, vma);
443out_rpm:
444 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
445 return ret;
446}
447
448/**
449 * i915_gem_pread_ioctl - Reads data from the object referenced by handle.
450 * @dev: drm device pointer
451 * @data: ioctl data blob
452 * @file: drm file pointer
453 *
454 * On error, the contents of *data are undefined.
455 */
456int
457i915_gem_pread_ioctl(struct drm_device *dev, void *data,
458 struct drm_file *file)
459{
460 struct drm_i915_private *i915 = to_i915(dev);
461 struct drm_i915_gem_pread *args = data;
462 struct drm_i915_gem_object *obj;
463 int ret;
464
465 /* PREAD is disallowed for all platforms after TGL-LP. This also
466 * covers all platforms with local memory.
467 */
468 if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
469 return -EOPNOTSUPP;
470
471 if (args->size == 0)
472 return 0;
473
474 if (!access_ok(u64_to_user_ptr(args->data_ptr),
475 args->size))
476 return -EFAULT;
477
478 obj = i915_gem_object_lookup(file, args->handle);
479 if (!obj)
480 return -ENOENT;
481
482 /* Bounds check source. */
483 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
484 ret = -EINVAL;
485 goto out;
486 }
487
488 trace_i915_gem_object_pread(obj, args->offset, args->size);
489 ret = -ENODEV;
490 if (obj->ops->pread)
491 ret = obj->ops->pread(obj, args);
492 if (ret != -ENODEV)
493 goto out;
494
495 ret = i915_gem_object_wait(obj,
496 I915_WAIT_INTERRUPTIBLE,
497 MAX_SCHEDULE_TIMEOUT);
498 if (ret)
499 goto out;
500
501 ret = i915_gem_shmem_pread(obj, args);
502 if (ret == -EFAULT || ret == -ENODEV)
503 ret = i915_gem_gtt_pread(obj, args);
504
505out:
506 i915_gem_object_put(obj);
507 return ret;
508}
509
510/* This is the fast write path which cannot handle
511 * page faults in the source data
512 */
513
514static inline bool
515ggtt_write(struct io_mapping *mapping,
516 loff_t base, int offset,
517 char __user *user_data, int length)
518{
519 void __iomem *vaddr;
520 unsigned long unwritten;
521
522 /* We can use the cpu mem copy function because this is X86. */
523 vaddr = io_mapping_map_atomic_wc(mapping, base);
524 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
525 user_data, length);
526 io_mapping_unmap_atomic(vaddr);
527 if (unwritten) {
528 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
529 unwritten = copy_from_user((void __force *)vaddr + offset,
530 user_data, length);
531 io_mapping_unmap(vaddr);
532 }
533
534 return unwritten;
535}
536
537/**
538 * i915_gem_gtt_pwrite_fast - This is the fast pwrite path, where we copy the data directly from the
539 * user into the GTT, uncached.
540 * @obj: i915 GEM object
541 * @args: pwrite arguments structure
542 */
543static int
544i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
545 const struct drm_i915_gem_pwrite *args)
546{
547 struct drm_i915_private *i915 = to_i915(obj->base.dev);
548 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
549 struct intel_runtime_pm *rpm = &i915->runtime_pm;
550 unsigned long remain, offset;
551 intel_wakeref_t wakeref;
552 struct drm_mm_node node;
553 struct i915_vma *vma;
554 void __user *user_data;
555 int ret = 0;
556
557 if (overflows_type(args->size, remain) ||
558 overflows_type(args->offset, offset))
559 return -EINVAL;
560
561 if (i915_gem_object_has_struct_page(obj)) {
562 /*
563 * Avoid waking the device up if we can fallback, as
564 * waking/resuming is very slow (worst-case 10-100 ms
565 * depending on PCI sleeps and our own resume time).
566 * This easily dwarfs any performance advantage from
567 * using the cache bypass of indirect GGTT access.
568 */
569 wakeref = intel_runtime_pm_get_if_in_use(rpm);
570 if (!wakeref)
571 return -EFAULT;
572 } else {
573 /* No backing pages, no fallback, we must force GGTT access */
574 wakeref = intel_runtime_pm_get(rpm);
575 }
576
577 vma = i915_gem_gtt_prepare(obj, &node, true);
578 if (IS_ERR(vma)) {
579 ret = PTR_ERR(vma);
580 goto out_rpm;
581 }
582
583 i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
584
585 user_data = u64_to_user_ptr(args->data_ptr);
586 offset = args->offset;
587 remain = args->size;
588 while (remain) {
589 /* Operation in this page
590 *
591 * page_base = page offset within aperture
592 * page_offset = offset within page
593 * page_length = bytes to copy for this page
594 */
595 u32 page_base = node.start;
596 unsigned int page_offset = offset_in_page(offset);
597 unsigned int page_length = PAGE_SIZE - page_offset;
598 page_length = remain < page_length ? remain : page_length;
599 if (drm_mm_node_allocated(&node)) {
600 /* flush the write before we modify the GGTT */
601 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
602 ggtt->vm.insert_page(&ggtt->vm,
603 i915_gem_object_get_dma_address(obj,
604 offset >> PAGE_SHIFT),
605 node.start,
606 i915_gem_get_pat_index(i915,
607 I915_CACHE_NONE), 0);
608 wmb(); /* flush modifications to the GGTT (insert_page) */
609 } else {
610 page_base += offset & PAGE_MASK;
611 }
612 /* If we get a fault while copying data, then (presumably) our
613 * source page isn't available. Return the error and we'll
614 * retry in the slow path.
615 * If the object is non-shmem backed, we retry again with the
616 * path that handles page fault.
617 */
618 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
619 user_data, page_length)) {
620 ret = -EFAULT;
621 break;
622 }
623
624 remain -= page_length;
625 user_data += page_length;
626 offset += page_length;
627 }
628
629 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
630 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
631
632 i915_gem_gtt_cleanup(obj, &node, vma);
633out_rpm:
634 intel_runtime_pm_put(rpm, wakeref);
635 return ret;
636}
637
638/* Per-page copy function for the shmem pwrite fastpath.
639 * Flushes invalid cachelines before writing to the target if
640 * needs_clflush_before is set and flushes out any written cachelines after
641 * writing if needs_clflush is set.
642 */
643static int
644shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
645 bool needs_clflush_before,
646 bool needs_clflush_after)
647{
648 char *vaddr;
649 int ret;
650
651 vaddr = kmap(page);
652
653 if (needs_clflush_before)
654 drm_clflush_virt_range(vaddr + offset, len);
655
656 ret = __copy_from_user(vaddr + offset, user_data, len);
657 if (!ret && needs_clflush_after)
658 drm_clflush_virt_range(vaddr + offset, len);
659
660 kunmap(page);
661
662 return ret ? -EFAULT : 0;
663}
664
665static int
666i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
667 const struct drm_i915_gem_pwrite *args)
668{
669 unsigned int partial_cacheline_write;
670 unsigned int needs_clflush;
671 void __user *user_data;
672 unsigned long offset;
673 pgoff_t idx;
674 u64 remain;
675 int ret;
676
677 ret = i915_gem_object_lock_interruptible(obj, NULL);
678 if (ret)
679 return ret;
680
681 ret = i915_gem_object_pin_pages(obj);
682 if (ret)
683 goto err_unlock;
684
685 ret = i915_gem_object_prepare_write(obj, &needs_clflush);
686 if (ret)
687 goto err_unpin;
688
689 i915_gem_object_finish_access(obj);
690 i915_gem_object_unlock(obj);
691
692 /* If we don't overwrite a cacheline completely we need to be
693 * careful to have up-to-date data by first clflushing. Don't
694 * overcomplicate things and flush the entire patch.
695 */
696 partial_cacheline_write = 0;
697 if (needs_clflush & CLFLUSH_BEFORE)
698 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
699
700 user_data = u64_to_user_ptr(args->data_ptr);
701 remain = args->size;
702 offset = offset_in_page(args->offset);
703 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
704 struct page *page = i915_gem_object_get_page(obj, idx);
705 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
706
707 ret = shmem_pwrite(page, offset, length, user_data,
708 (offset | length) & partial_cacheline_write,
709 needs_clflush & CLFLUSH_AFTER);
710 if (ret)
711 break;
712
713 remain -= length;
714 user_data += length;
715 offset = 0;
716 }
717
718 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
719
720 i915_gem_object_unpin_pages(obj);
721 return ret;
722
723err_unpin:
724 i915_gem_object_unpin_pages(obj);
725err_unlock:
726 i915_gem_object_unlock(obj);
727 return ret;
728}
729
730/**
731 * i915_gem_pwrite_ioctl - Writes data to the object referenced by handle.
732 * @dev: drm device
733 * @data: ioctl data blob
734 * @file: drm file
735 *
736 * On error, the contents of the buffer that were to be modified are undefined.
737 */
738int
739i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
740 struct drm_file *file)
741{
742 struct drm_i915_private *i915 = to_i915(dev);
743 struct drm_i915_gem_pwrite *args = data;
744 struct drm_i915_gem_object *obj;
745 int ret;
746
747 /* PWRITE is disallowed for all platforms after TGL-LP. This also
748 * covers all platforms with local memory.
749 */
750 if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
751 return -EOPNOTSUPP;
752
753 if (args->size == 0)
754 return 0;
755
756 if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
757 return -EFAULT;
758
759 obj = i915_gem_object_lookup(file, args->handle);
760 if (!obj)
761 return -ENOENT;
762
763 /* Bounds check destination. */
764 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
765 ret = -EINVAL;
766 goto err;
767 }
768
769 /* Writes not allowed into this read-only object */
770 if (i915_gem_object_is_readonly(obj)) {
771 ret = -EINVAL;
772 goto err;
773 }
774
775 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
776
777 ret = -ENODEV;
778 if (obj->ops->pwrite)
779 ret = obj->ops->pwrite(obj, args);
780 if (ret != -ENODEV)
781 goto err;
782
783 ret = i915_gem_object_wait(obj,
784 I915_WAIT_INTERRUPTIBLE |
785 I915_WAIT_ALL,
786 MAX_SCHEDULE_TIMEOUT);
787 if (ret)
788 goto err;
789
790 ret = -EFAULT;
791 /* We can only do the GTT pwrite on untiled buffers, as otherwise
792 * it would end up going through the fenced access, and we'll get
793 * different detiling behavior between reading and writing.
794 * pread/pwrite currently are reading and writing from the CPU
795 * perspective, requiring manual detiling by the client.
796 */
797 if (!i915_gem_object_has_struct_page(obj) ||
798 i915_gem_cpu_write_needs_clflush(obj))
799 /* Note that the gtt paths might fail with non-page-backed user
800 * pointers (e.g. gtt mappings when moving data between
801 * textures). Fallback to the shmem path in that case.
802 */
803 ret = i915_gem_gtt_pwrite_fast(obj, args);
804
805 if (ret == -EFAULT || ret == -ENOSPC) {
806 if (i915_gem_object_has_struct_page(obj))
807 ret = i915_gem_shmem_pwrite(obj, args);
808 }
809
810err:
811 i915_gem_object_put(obj);
812 return ret;
813}
814
815/**
816 * i915_gem_sw_finish_ioctl - Called when user space has done writes to this buffer
817 * @dev: drm device
818 * @data: ioctl data blob
819 * @file: drm file
820 */
821int
822i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
823 struct drm_file *file)
824{
825 struct drm_i915_gem_sw_finish *args = data;
826 struct drm_i915_gem_object *obj;
827
828 obj = i915_gem_object_lookup(file, args->handle);
829 if (!obj)
830 return -ENOENT;
831
832 /*
833 * Proxy objects are barred from CPU access, so there is no
834 * need to ban sw_finish as it is a nop.
835 */
836
837 /* Pinned buffers may be scanout, so flush the cache */
838 i915_gem_object_flush_if_display(obj);
839 i915_gem_object_put(obj);
840
841 return 0;
842}
843
844void i915_gem_runtime_suspend(struct drm_i915_private *i915)
845{
846 struct drm_i915_gem_object *obj, *on;
847 int i;
848
849 /*
850 * Only called during RPM suspend. All users of the userfault_list
851 * must be holding an RPM wakeref to ensure that this can not
852 * run concurrently with themselves (and use the struct_mutex for
853 * protection between themselves).
854 */
855
856 list_for_each_entry_safe(obj, on,
857 &to_gt(i915)->ggtt->userfault_list, userfault_link)
858 __i915_gem_object_release_mmap_gtt(obj);
859
860 list_for_each_entry_safe(obj, on,
861 &i915->runtime_pm.lmem_userfault_list, userfault_link)
862 i915_gem_object_runtime_pm_release_mmap_offset(obj);
863
864 /*
865 * The fence will be lost when the device powers down. If any were
866 * in use by hardware (i.e. they are pinned), we should not be powering
867 * down! All other fences will be reacquired by the user upon waking.
868 */
869 for (i = 0; i < to_gt(i915)->ggtt->num_fences; i++) {
870 struct i915_fence_reg *reg = &to_gt(i915)->ggtt->fence_regs[i];
871
872 /*
873 * Ideally we want to assert that the fence register is not
874 * live at this point (i.e. that no piece of code will be
875 * trying to write through fence + GTT, as that both violates
876 * our tracking of activity and associated locking/barriers,
877 * but also is illegal given that the hw is powered down).
878 *
879 * Previously we used reg->pin_count as a "liveness" indicator.
880 * That is not sufficient, and we need a more fine-grained
881 * tool if we want to have a sanity check here.
882 */
883
884 if (!reg->vma)
885 continue;
886
887 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
888 reg->dirty = true;
889 }
890}
891
892static void discard_ggtt_vma(struct i915_vma *vma)
893{
894 struct drm_i915_gem_object *obj = vma->obj;
895
896 spin_lock(&obj->vma.lock);
897 if (!RB_EMPTY_NODE(&vma->obj_node)) {
898 rb_erase(&vma->obj_node, &obj->vma.tree);
899 RB_CLEAR_NODE(&vma->obj_node);
900 }
901 spin_unlock(&obj->vma.lock);
902}
903
904struct i915_vma *
905i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
906 struct i915_gem_ww_ctx *ww,
907 const struct i915_gtt_view *view,
908 u64 size, u64 alignment, u64 flags)
909{
910 struct drm_i915_private *i915 = to_i915(obj->base.dev);
911 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
912 struct i915_vma *vma;
913 int ret;
914
915 GEM_WARN_ON(!ww);
916
917 if (flags & PIN_MAPPABLE &&
918 (!view || view->type == I915_GTT_VIEW_NORMAL)) {
919 /*
920 * If the required space is larger than the available
921 * aperture, we will not able to find a slot for the
922 * object and unbinding the object now will be in
923 * vain. Worse, doing so may cause us to ping-pong
924 * the object in and out of the Global GTT and
925 * waste a lot of cycles under the mutex.
926 */
927 if (obj->base.size > ggtt->mappable_end)
928 return ERR_PTR(-E2BIG);
929
930 /*
931 * If NONBLOCK is set the caller is optimistically
932 * trying to cache the full object within the mappable
933 * aperture, and *must* have a fallback in place for
934 * situations where we cannot bind the object. We
935 * can be a little more lax here and use the fallback
936 * more often to avoid costly migrations of ourselves
937 * and other objects within the aperture.
938 *
939 * Half-the-aperture is used as a simple heuristic.
940 * More interesting would to do search for a free
941 * block prior to making the commitment to unbind.
942 * That caters for the self-harm case, and with a
943 * little more heuristics (e.g. NOFAULT, NOEVICT)
944 * we could try to minimise harm to others.
945 */
946 if (flags & PIN_NONBLOCK &&
947 obj->base.size > ggtt->mappable_end / 2)
948 return ERR_PTR(-ENOSPC);
949 }
950
951new_vma:
952 vma = i915_vma_instance(obj, &ggtt->vm, view);
953 if (IS_ERR(vma))
954 return vma;
955
956 if (i915_vma_misplaced(vma, size, alignment, flags)) {
957 if (flags & PIN_NONBLOCK) {
958 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
959 return ERR_PTR(-ENOSPC);
960
961 /*
962 * If this misplaced vma is too big (i.e, at-least
963 * half the size of aperture) or hasn't been pinned
964 * mappable before, we ignore the misplacement when
965 * PIN_NONBLOCK is set in order to avoid the ping-pong
966 * issue described above. In other words, we try to
967 * avoid the costly operation of unbinding this vma
968 * from the GGTT and rebinding it back because there
969 * may not be enough space for this vma in the aperture.
970 */
971 if (flags & PIN_MAPPABLE &&
972 (vma->fence_size > ggtt->mappable_end / 2 ||
973 !i915_vma_is_map_and_fenceable(vma)))
974 return ERR_PTR(-ENOSPC);
975 }
976
977 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
978 discard_ggtt_vma(vma);
979 goto new_vma;
980 }
981
982 ret = i915_vma_unbind(vma);
983 if (ret)
984 return ERR_PTR(ret);
985 }
986
987 ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
988
989 if (ret)
990 return ERR_PTR(ret);
991
992 if (vma->fence && !i915_gem_object_is_tiled(obj)) {
993 mutex_lock(&ggtt->vm.mutex);
994 i915_vma_revoke_fence(vma);
995 mutex_unlock(&ggtt->vm.mutex);
996 }
997
998 ret = i915_vma_wait_for_bind(vma);
999 if (ret) {
1000 i915_vma_unpin(vma);
1001 return ERR_PTR(ret);
1002 }
1003
1004 return vma;
1005}
1006
1007struct i915_vma * __must_check
1008i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
1009 const struct i915_gtt_view *view,
1010 u64 size, u64 alignment, u64 flags)
1011{
1012 struct i915_gem_ww_ctx ww;
1013 struct i915_vma *ret;
1014 int err;
1015
1016 for_i915_gem_ww(&ww, err, true) {
1017 err = i915_gem_object_lock(obj, &ww);
1018 if (err)
1019 continue;
1020
1021 ret = i915_gem_object_ggtt_pin_ww(obj, &ww, view, size,
1022 alignment, flags);
1023 if (IS_ERR(ret))
1024 err = PTR_ERR(ret);
1025 }
1026
1027 return err ? ERR_PTR(err) : ret;
1028}
1029
1030int
1031i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1032 struct drm_file *file_priv)
1033{
1034 struct drm_i915_private *i915 = to_i915(dev);
1035 struct drm_i915_gem_madvise *args = data;
1036 struct drm_i915_gem_object *obj;
1037 int err;
1038
1039 switch (args->madv) {
1040 case I915_MADV_DONTNEED:
1041 case I915_MADV_WILLNEED:
1042 break;
1043 default:
1044 return -EINVAL;
1045 }
1046
1047 obj = i915_gem_object_lookup(file_priv, args->handle);
1048 if (!obj)
1049 return -ENOENT;
1050
1051 err = i915_gem_object_lock_interruptible(obj, NULL);
1052 if (err)
1053 goto out;
1054
1055 if (i915_gem_object_has_pages(obj) &&
1056 i915_gem_object_is_tiled(obj) &&
1057 i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) {
1058 if (obj->mm.madv == I915_MADV_WILLNEED) {
1059 GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
1060 i915_gem_object_clear_tiling_quirk(obj);
1061 i915_gem_object_make_shrinkable(obj);
1062 }
1063 if (args->madv == I915_MADV_WILLNEED) {
1064 GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
1065 i915_gem_object_make_unshrinkable(obj);
1066 i915_gem_object_set_tiling_quirk(obj);
1067 }
1068 }
1069
1070 if (obj->mm.madv != __I915_MADV_PURGED) {
1071 obj->mm.madv = args->madv;
1072 if (obj->ops->adjust_lru)
1073 obj->ops->adjust_lru(obj);
1074 }
1075
1076 if (i915_gem_object_has_pages(obj) ||
1077 i915_gem_object_has_self_managed_shrink_list(obj)) {
1078 unsigned long flags;
1079
1080 spin_lock_irqsave(&i915->mm.obj_lock, flags);
1081 if (!list_empty(&obj->mm.link)) {
1082 struct list_head *list;
1083
1084 if (obj->mm.madv != I915_MADV_WILLNEED)
1085 list = &i915->mm.purge_list;
1086 else
1087 list = &i915->mm.shrink_list;
1088 list_move_tail(&obj->mm.link, list);
1089
1090 }
1091 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1092 }
1093
1094 /* if the object is no longer attached, discard its backing storage */
1095 if (obj->mm.madv == I915_MADV_DONTNEED &&
1096 !i915_gem_object_has_pages(obj))
1097 i915_gem_object_truncate(obj);
1098
1099 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1100
1101 i915_gem_object_unlock(obj);
1102out:
1103 i915_gem_object_put(obj);
1104 return err;
1105}
1106
1107/*
1108 * A single pass should suffice to release all the freed objects (along most
1109 * call paths), but be a little more paranoid in that freeing the objects does
1110 * take a little amount of time, during which the rcu callbacks could have added
1111 * new objects into the freed list, and armed the work again.
1112 */
1113void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
1114{
1115 while (atomic_read(&i915->mm.free_count)) {
1116 flush_work(&i915->mm.free_work);
1117 drain_workqueue(i915->bdev.wq);
1118 rcu_barrier();
1119 }
1120}
1121
1122/*
1123 * Similar to objects above (see i915_gem_drain_freed-objects), in general we
1124 * have workers that are armed by RCU and then rearm themselves in their
1125 * callbacks. To be paranoid, we need to drain the workqueue a second time after
1126 * waiting for the RCU grace period so that we catch work queued via RCU from
1127 * the first pass. As neither drain_workqueue() nor flush_workqueue() report a
1128 * result, we make an assumption that we only don't require more than 3 passes
1129 * to catch all _recursive_ RCU delayed work.
1130 */
1131void i915_gem_drain_workqueue(struct drm_i915_private *i915)
1132{
1133 int i;
1134
1135 for (i = 0; i < 3; i++) {
1136 flush_workqueue(i915->wq);
1137 rcu_barrier();
1138 i915_gem_drain_freed_objects(i915);
1139 }
1140
1141 drain_workqueue(i915->wq);
1142}
1143
1144int i915_gem_init(struct drm_i915_private *dev_priv)
1145{
1146 struct intel_gt *gt;
1147 unsigned int i;
1148 int ret;
1149
1150 /*
1151 * In the proccess of replacing cache_level with pat_index a tricky
1152 * dependency is created on the definition of the enum i915_cache_level.
1153 * in case this enum is changed, PTE encode would be broken.
1154 * Add a WARNING here. And remove when we completely quit using this
1155 * enum
1156 */
1157 BUILD_BUG_ON(I915_CACHE_NONE != 0 ||
1158 I915_CACHE_LLC != 1 ||
1159 I915_CACHE_L3_LLC != 2 ||
1160 I915_CACHE_WT != 3 ||
1161 I915_MAX_CACHE_LEVEL != 4);
1162
1163 /* We need to fallback to 4K pages if host doesn't support huge gtt. */
1164 if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1165 RUNTIME_INFO(dev_priv)->page_sizes = I915_GTT_PAGE_SIZE_4K;
1166
1167 for_each_gt(gt, dev_priv, i) {
1168 intel_uc_fetch_firmwares(>->uc);
1169 intel_wopcm_init(>->wopcm);
1170 if (GRAPHICS_VER(dev_priv) >= 8)
1171 setup_private_pat(gt);
1172 }
1173
1174 ret = i915_init_ggtt(dev_priv);
1175 if (ret) {
1176 GEM_BUG_ON(ret == -EIO);
1177 goto err_unlock;
1178 }
1179
1180 /*
1181 * Despite its name intel_clock_gating_init applies both display
1182 * clock gating workarounds; GT mmio workarounds and the occasional
1183 * GT power context workaround. Worse, sometimes it includes a context
1184 * register workaround which we need to apply before we record the
1185 * default HW state for all contexts.
1186 *
1187 * FIXME: break up the workarounds and apply them at the right time!
1188 */
1189 intel_clock_gating_init(dev_priv);
1190
1191 for_each_gt(gt, dev_priv, i) {
1192 ret = intel_gt_init(gt);
1193 if (ret)
1194 goto err_unlock;
1195 }
1196
1197 /*
1198 * Register engines early to ensure the engine list is in its final
1199 * rb-tree form, lowering the amount of code that has to deal with
1200 * the intermediate llist state.
1201 */
1202 intel_engines_driver_register(dev_priv);
1203
1204 return 0;
1205
1206 /*
1207 * Unwinding is complicated by that we want to handle -EIO to mean
1208 * disable GPU submission but keep KMS alive. We want to mark the
1209 * HW as irrevisibly wedged, but keep enough state around that the
1210 * driver doesn't explode during runtime.
1211 */
1212err_unlock:
1213 i915_gem_drain_workqueue(dev_priv);
1214
1215 if (ret != -EIO) {
1216 for_each_gt(gt, dev_priv, i) {
1217 intel_gt_driver_remove(gt);
1218 intel_gt_driver_release(gt);
1219 intel_uc_cleanup_firmwares(>->uc);
1220 }
1221 }
1222
1223 if (ret == -EIO) {
1224 /*
1225 * Allow engines or uC initialisation to fail by marking the GPU
1226 * as wedged. But we only want to do this when the GPU is angry,
1227 * for all other failure, such as an allocation failure, bail.
1228 */
1229 for_each_gt(gt, dev_priv, i) {
1230 if (!intel_gt_is_wedged(gt)) {
1231 i915_probe_error(dev_priv,
1232 "Failed to initialize GPU, declaring it wedged!\n");
1233 intel_gt_set_wedged(gt);
1234 }
1235 }
1236
1237 /* Minimal basic recovery for KMS */
1238 ret = i915_ggtt_enable_hw(dev_priv);
1239 i915_ggtt_resume(to_gt(dev_priv)->ggtt);
1240 intel_clock_gating_init(dev_priv);
1241 }
1242
1243 i915_gem_drain_freed_objects(dev_priv);
1244
1245 return ret;
1246}
1247
1248void i915_gem_driver_register(struct drm_i915_private *i915)
1249{
1250 i915_gem_driver_register__shrinker(i915);
1251}
1252
1253void i915_gem_driver_unregister(struct drm_i915_private *i915)
1254{
1255 i915_gem_driver_unregister__shrinker(i915);
1256}
1257
1258void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1259{
1260 struct intel_gt *gt;
1261 unsigned int i;
1262
1263 i915_gem_suspend_late(dev_priv);
1264 for_each_gt(gt, dev_priv, i)
1265 intel_gt_driver_remove(gt);
1266 dev_priv->uabi_engines = RB_ROOT;
1267
1268 /* Flush any outstanding unpin_work. */
1269 i915_gem_drain_workqueue(dev_priv);
1270}
1271
1272void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1273{
1274 struct intel_gt *gt;
1275 unsigned int i;
1276
1277 for_each_gt(gt, dev_priv, i) {
1278 intel_gt_driver_release(gt);
1279 intel_uc_cleanup_firmwares(>->uc);
1280 }
1281
1282 /* Flush any outstanding work, including i915_gem_context.release_work. */
1283 i915_gem_drain_workqueue(dev_priv);
1284
1285 drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1286}
1287
1288static void i915_gem_init__mm(struct drm_i915_private *i915)
1289{
1290 spin_lock_init(&i915->mm.obj_lock);
1291
1292 init_llist_head(&i915->mm.free_list);
1293
1294 INIT_LIST_HEAD(&i915->mm.purge_list);
1295 INIT_LIST_HEAD(&i915->mm.shrink_list);
1296
1297 i915_gem_init__objects(i915);
1298}
1299
1300void i915_gem_init_early(struct drm_i915_private *dev_priv)
1301{
1302 i915_gem_init__mm(dev_priv);
1303 i915_gem_init__contexts(dev_priv);
1304}
1305
1306void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1307{
1308 i915_gem_drain_workqueue(dev_priv);
1309 GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1310 GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1311 drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1312}
1313
1314int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1315{
1316 struct drm_i915_file_private *file_priv;
1317 struct i915_drm_client *client;
1318 int ret = -ENOMEM;
1319
1320 drm_dbg(&i915->drm, "\n");
1321
1322 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1323 if (!file_priv)
1324 goto err_alloc;
1325
1326 client = i915_drm_client_alloc();
1327 if (!client)
1328 goto err_client;
1329
1330 file->driver_priv = file_priv;
1331 file_priv->i915 = i915;
1332 file_priv->file = file;
1333 file_priv->client = client;
1334
1335 file_priv->bsd_engine = -1;
1336 file_priv->hang_timestamp = jiffies;
1337
1338 ret = i915_gem_context_open(i915, file);
1339 if (ret)
1340 goto err_context;
1341
1342 return 0;
1343
1344err_context:
1345 i915_drm_client_put(client);
1346err_client:
1347 kfree(file_priv);
1348err_alloc:
1349 return ret;
1350}
1351
1352#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1353#include "selftests/mock_gem_device.c"
1354#include "selftests/i915_gem.c"
1355#endif