Loading...
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include <drm/drm_vma_manager.h>
29#include <drm/i915_drm.h>
30#include <linux/dma-fence-array.h>
31#include <linux/kthread.h>
32#include <linux/dma-resv.h>
33#include <linux/shmem_fs.h>
34#include <linux/slab.h>
35#include <linux/stop_machine.h>
36#include <linux/swap.h>
37#include <linux/pci.h>
38#include <linux/dma-buf.h>
39#include <linux/mman.h>
40
41#include "display/intel_display.h"
42#include "display/intel_frontbuffer.h"
43
44#include "gem/i915_gem_clflush.h"
45#include "gem/i915_gem_context.h"
46#include "gem/i915_gem_ioctls.h"
47#include "gem/i915_gem_pm.h"
48#include "gem/i915_gemfs.h"
49#include "gt/intel_engine_user.h"
50#include "gt/intel_gt.h"
51#include "gt/intel_gt_pm.h"
52#include "gt/intel_mocs.h"
53#include "gt/intel_reset.h"
54#include "gt/intel_renderstate.h"
55#include "gt/intel_workarounds.h"
56
57#include "i915_drv.h"
58#include "i915_scatterlist.h"
59#include "i915_trace.h"
60#include "i915_vgpu.h"
61
62#include "intel_pm.h"
63
64static int
65insert_mappable_node(struct i915_ggtt *ggtt,
66 struct drm_mm_node *node, u32 size)
67{
68 memset(node, 0, sizeof(*node));
69 return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
70 size, 0, I915_COLOR_UNEVICTABLE,
71 0, ggtt->mappable_end,
72 DRM_MM_INSERT_LOW);
73}
74
75static void
76remove_mappable_node(struct drm_mm_node *node)
77{
78 drm_mm_remove_node(node);
79}
80
81int
82i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
83 struct drm_file *file)
84{
85 struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
86 struct drm_i915_gem_get_aperture *args = data;
87 struct i915_vma *vma;
88 u64 pinned;
89
90 mutex_lock(&ggtt->vm.mutex);
91
92 pinned = ggtt->vm.reserved;
93 list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
94 if (i915_vma_is_pinned(vma))
95 pinned += vma->node.size;
96
97 mutex_unlock(&ggtt->vm.mutex);
98
99 args->aper_size = ggtt->vm.total;
100 args->aper_available_size = args->aper_size - pinned;
101
102 return 0;
103}
104
105int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
106 unsigned long flags)
107{
108 struct i915_vma *vma;
109 LIST_HEAD(still_in_list);
110 int ret = 0;
111
112 lockdep_assert_held(&obj->base.dev->struct_mutex);
113
114 spin_lock(&obj->vma.lock);
115 while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
116 struct i915_vma,
117 obj_link))) {
118 list_move_tail(&vma->obj_link, &still_in_list);
119 spin_unlock(&obj->vma.lock);
120
121 ret = -EBUSY;
122 if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
123 !i915_vma_is_active(vma))
124 ret = i915_vma_unbind(vma);
125
126 spin_lock(&obj->vma.lock);
127 }
128 list_splice(&still_in_list, &obj->vma.list);
129 spin_unlock(&obj->vma.lock);
130
131 return ret;
132}
133
134static int
135i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
136 struct drm_i915_gem_pwrite *args,
137 struct drm_file *file)
138{
139 void *vaddr = obj->phys_handle->vaddr + args->offset;
140 char __user *user_data = u64_to_user_ptr(args->data_ptr);
141
142 /*
143 * We manually control the domain here and pretend that it
144 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
145 */
146 intel_frontbuffer_invalidate(obj->frontbuffer, ORIGIN_CPU);
147
148 if (copy_from_user(vaddr, user_data, args->size))
149 return -EFAULT;
150
151 drm_clflush_virt_range(vaddr, args->size);
152 intel_gt_chipset_flush(&to_i915(obj->base.dev)->gt);
153
154 intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_CPU);
155 return 0;
156}
157
158static int
159i915_gem_create(struct drm_file *file,
160 struct drm_i915_private *dev_priv,
161 u64 *size_p,
162 u32 *handle_p)
163{
164 struct drm_i915_gem_object *obj;
165 u32 handle;
166 u64 size;
167 int ret;
168
169 size = round_up(*size_p, PAGE_SIZE);
170 if (size == 0)
171 return -EINVAL;
172
173 /* Allocate the new object */
174 obj = i915_gem_object_create_shmem(dev_priv, size);
175 if (IS_ERR(obj))
176 return PTR_ERR(obj);
177
178 ret = drm_gem_handle_create(file, &obj->base, &handle);
179 /* drop reference from allocate - handle holds it now */
180 i915_gem_object_put(obj);
181 if (ret)
182 return ret;
183
184 *handle_p = handle;
185 *size_p = size;
186 return 0;
187}
188
189int
190i915_gem_dumb_create(struct drm_file *file,
191 struct drm_device *dev,
192 struct drm_mode_create_dumb *args)
193{
194 int cpp = DIV_ROUND_UP(args->bpp, 8);
195 u32 format;
196
197 switch (cpp) {
198 case 1:
199 format = DRM_FORMAT_C8;
200 break;
201 case 2:
202 format = DRM_FORMAT_RGB565;
203 break;
204 case 4:
205 format = DRM_FORMAT_XRGB8888;
206 break;
207 default:
208 return -EINVAL;
209 }
210
211 /* have to work out size/pitch and return them */
212 args->pitch = ALIGN(args->width * cpp, 64);
213
214 /* align stride to page size so that we can remap */
215 if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
216 DRM_FORMAT_MOD_LINEAR))
217 args->pitch = ALIGN(args->pitch, 4096);
218
219 args->size = args->pitch * args->height;
220 return i915_gem_create(file, to_i915(dev),
221 &args->size, &args->handle);
222}
223
224/**
225 * Creates a new mm object and returns a handle to it.
226 * @dev: drm device pointer
227 * @data: ioctl data blob
228 * @file: drm file pointer
229 */
230int
231i915_gem_create_ioctl(struct drm_device *dev, void *data,
232 struct drm_file *file)
233{
234 struct drm_i915_private *dev_priv = to_i915(dev);
235 struct drm_i915_gem_create *args = data;
236
237 i915_gem_flush_free_objects(dev_priv);
238
239 return i915_gem_create(file, dev_priv,
240 &args->size, &args->handle);
241}
242
243static int
244shmem_pread(struct page *page, int offset, int len, char __user *user_data,
245 bool needs_clflush)
246{
247 char *vaddr;
248 int ret;
249
250 vaddr = kmap(page);
251
252 if (needs_clflush)
253 drm_clflush_virt_range(vaddr + offset, len);
254
255 ret = __copy_to_user(user_data, vaddr + offset, len);
256
257 kunmap(page);
258
259 return ret ? -EFAULT : 0;
260}
261
262static int
263i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
264 struct drm_i915_gem_pread *args)
265{
266 unsigned int needs_clflush;
267 unsigned int idx, offset;
268 struct dma_fence *fence;
269 char __user *user_data;
270 u64 remain;
271 int ret;
272
273 ret = i915_gem_object_prepare_read(obj, &needs_clflush);
274 if (ret)
275 return ret;
276
277 fence = i915_gem_object_lock_fence(obj);
278 i915_gem_object_finish_access(obj);
279 if (!fence)
280 return -ENOMEM;
281
282 remain = args->size;
283 user_data = u64_to_user_ptr(args->data_ptr);
284 offset = offset_in_page(args->offset);
285 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
286 struct page *page = i915_gem_object_get_page(obj, idx);
287 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
288
289 ret = shmem_pread(page, offset, length, user_data,
290 needs_clflush);
291 if (ret)
292 break;
293
294 remain -= length;
295 user_data += length;
296 offset = 0;
297 }
298
299 i915_gem_object_unlock_fence(obj, fence);
300 return ret;
301}
302
303static inline bool
304gtt_user_read(struct io_mapping *mapping,
305 loff_t base, int offset,
306 char __user *user_data, int length)
307{
308 void __iomem *vaddr;
309 unsigned long unwritten;
310
311 /* We can use the cpu mem copy function because this is X86. */
312 vaddr = io_mapping_map_atomic_wc(mapping, base);
313 unwritten = __copy_to_user_inatomic(user_data,
314 (void __force *)vaddr + offset,
315 length);
316 io_mapping_unmap_atomic(vaddr);
317 if (unwritten) {
318 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
319 unwritten = copy_to_user(user_data,
320 (void __force *)vaddr + offset,
321 length);
322 io_mapping_unmap(vaddr);
323 }
324 return unwritten;
325}
326
327static int
328i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
329 const struct drm_i915_gem_pread *args)
330{
331 struct drm_i915_private *i915 = to_i915(obj->base.dev);
332 struct i915_ggtt *ggtt = &i915->ggtt;
333 intel_wakeref_t wakeref;
334 struct drm_mm_node node;
335 struct dma_fence *fence;
336 void __user *user_data;
337 struct i915_vma *vma;
338 u64 remain, offset;
339 int ret;
340
341 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
342 if (ret)
343 return ret;
344
345 wakeref = intel_runtime_pm_get(&i915->runtime_pm);
346 vma = ERR_PTR(-ENODEV);
347 if (!i915_gem_object_is_tiled(obj))
348 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
349 PIN_MAPPABLE |
350 PIN_NONBLOCK /* NOWARN */ |
351 PIN_NOEVICT);
352 if (!IS_ERR(vma)) {
353 node.start = i915_ggtt_offset(vma);
354 node.allocated = false;
355 } else {
356 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
357 if (ret)
358 goto out_unlock;
359 GEM_BUG_ON(!node.allocated);
360 }
361
362 mutex_unlock(&i915->drm.struct_mutex);
363
364 ret = i915_gem_object_lock_interruptible(obj);
365 if (ret)
366 goto out_unpin;
367
368 ret = i915_gem_object_set_to_gtt_domain(obj, false);
369 if (ret) {
370 i915_gem_object_unlock(obj);
371 goto out_unpin;
372 }
373
374 fence = i915_gem_object_lock_fence(obj);
375 i915_gem_object_unlock(obj);
376 if (!fence) {
377 ret = -ENOMEM;
378 goto out_unpin;
379 }
380
381 user_data = u64_to_user_ptr(args->data_ptr);
382 remain = args->size;
383 offset = args->offset;
384
385 while (remain > 0) {
386 /* Operation in this page
387 *
388 * page_base = page offset within aperture
389 * page_offset = offset within page
390 * page_length = bytes to copy for this page
391 */
392 u32 page_base = node.start;
393 unsigned page_offset = offset_in_page(offset);
394 unsigned page_length = PAGE_SIZE - page_offset;
395 page_length = remain < page_length ? remain : page_length;
396 if (node.allocated) {
397 ggtt->vm.insert_page(&ggtt->vm,
398 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
399 node.start, I915_CACHE_NONE, 0);
400 } else {
401 page_base += offset & PAGE_MASK;
402 }
403
404 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
405 user_data, page_length)) {
406 ret = -EFAULT;
407 break;
408 }
409
410 remain -= page_length;
411 user_data += page_length;
412 offset += page_length;
413 }
414
415 i915_gem_object_unlock_fence(obj, fence);
416out_unpin:
417 mutex_lock(&i915->drm.struct_mutex);
418 if (node.allocated) {
419 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
420 remove_mappable_node(&node);
421 } else {
422 i915_vma_unpin(vma);
423 }
424out_unlock:
425 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
426 mutex_unlock(&i915->drm.struct_mutex);
427
428 return ret;
429}
430
431/**
432 * Reads data from the object referenced by handle.
433 * @dev: drm device pointer
434 * @data: ioctl data blob
435 * @file: drm file pointer
436 *
437 * On error, the contents of *data are undefined.
438 */
439int
440i915_gem_pread_ioctl(struct drm_device *dev, void *data,
441 struct drm_file *file)
442{
443 struct drm_i915_gem_pread *args = data;
444 struct drm_i915_gem_object *obj;
445 int ret;
446
447 if (args->size == 0)
448 return 0;
449
450 if (!access_ok(u64_to_user_ptr(args->data_ptr),
451 args->size))
452 return -EFAULT;
453
454 obj = i915_gem_object_lookup(file, args->handle);
455 if (!obj)
456 return -ENOENT;
457
458 /* Bounds check source. */
459 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
460 ret = -EINVAL;
461 goto out;
462 }
463
464 trace_i915_gem_object_pread(obj, args->offset, args->size);
465
466 ret = i915_gem_object_wait(obj,
467 I915_WAIT_INTERRUPTIBLE,
468 MAX_SCHEDULE_TIMEOUT);
469 if (ret)
470 goto out;
471
472 ret = i915_gem_object_pin_pages(obj);
473 if (ret)
474 goto out;
475
476 ret = i915_gem_shmem_pread(obj, args);
477 if (ret == -EFAULT || ret == -ENODEV)
478 ret = i915_gem_gtt_pread(obj, args);
479
480 i915_gem_object_unpin_pages(obj);
481out:
482 i915_gem_object_put(obj);
483 return ret;
484}
485
486/* This is the fast write path which cannot handle
487 * page faults in the source data
488 */
489
490static inline bool
491ggtt_write(struct io_mapping *mapping,
492 loff_t base, int offset,
493 char __user *user_data, int length)
494{
495 void __iomem *vaddr;
496 unsigned long unwritten;
497
498 /* We can use the cpu mem copy function because this is X86. */
499 vaddr = io_mapping_map_atomic_wc(mapping, base);
500 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
501 user_data, length);
502 io_mapping_unmap_atomic(vaddr);
503 if (unwritten) {
504 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
505 unwritten = copy_from_user((void __force *)vaddr + offset,
506 user_data, length);
507 io_mapping_unmap(vaddr);
508 }
509
510 return unwritten;
511}
512
513/**
514 * This is the fast pwrite path, where we copy the data directly from the
515 * user into the GTT, uncached.
516 * @obj: i915 GEM object
517 * @args: pwrite arguments structure
518 */
519static int
520i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
521 const struct drm_i915_gem_pwrite *args)
522{
523 struct drm_i915_private *i915 = to_i915(obj->base.dev);
524 struct i915_ggtt *ggtt = &i915->ggtt;
525 struct intel_runtime_pm *rpm = &i915->runtime_pm;
526 intel_wakeref_t wakeref;
527 struct drm_mm_node node;
528 struct dma_fence *fence;
529 struct i915_vma *vma;
530 u64 remain, offset;
531 void __user *user_data;
532 int ret;
533
534 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
535 if (ret)
536 return ret;
537
538 if (i915_gem_object_has_struct_page(obj)) {
539 /*
540 * Avoid waking the device up if we can fallback, as
541 * waking/resuming is very slow (worst-case 10-100 ms
542 * depending on PCI sleeps and our own resume time).
543 * This easily dwarfs any performance advantage from
544 * using the cache bypass of indirect GGTT access.
545 */
546 wakeref = intel_runtime_pm_get_if_in_use(rpm);
547 if (!wakeref) {
548 ret = -EFAULT;
549 goto out_unlock;
550 }
551 } else {
552 /* No backing pages, no fallback, we must force GGTT access */
553 wakeref = intel_runtime_pm_get(rpm);
554 }
555
556 vma = ERR_PTR(-ENODEV);
557 if (!i915_gem_object_is_tiled(obj))
558 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
559 PIN_MAPPABLE |
560 PIN_NONBLOCK /* NOWARN */ |
561 PIN_NOEVICT);
562 if (!IS_ERR(vma)) {
563 node.start = i915_ggtt_offset(vma);
564 node.allocated = false;
565 } else {
566 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
567 if (ret)
568 goto out_rpm;
569 GEM_BUG_ON(!node.allocated);
570 }
571
572 mutex_unlock(&i915->drm.struct_mutex);
573
574 ret = i915_gem_object_lock_interruptible(obj);
575 if (ret)
576 goto out_unpin;
577
578 ret = i915_gem_object_set_to_gtt_domain(obj, true);
579 if (ret) {
580 i915_gem_object_unlock(obj);
581 goto out_unpin;
582 }
583
584 fence = i915_gem_object_lock_fence(obj);
585 i915_gem_object_unlock(obj);
586 if (!fence) {
587 ret = -ENOMEM;
588 goto out_unpin;
589 }
590
591 intel_frontbuffer_invalidate(obj->frontbuffer, ORIGIN_CPU);
592
593 user_data = u64_to_user_ptr(args->data_ptr);
594 offset = args->offset;
595 remain = args->size;
596 while (remain) {
597 /* Operation in this page
598 *
599 * page_base = page offset within aperture
600 * page_offset = offset within page
601 * page_length = bytes to copy for this page
602 */
603 u32 page_base = node.start;
604 unsigned int page_offset = offset_in_page(offset);
605 unsigned int page_length = PAGE_SIZE - page_offset;
606 page_length = remain < page_length ? remain : page_length;
607 if (node.allocated) {
608 /* flush the write before we modify the GGTT */
609 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
610 ggtt->vm.insert_page(&ggtt->vm,
611 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
612 node.start, I915_CACHE_NONE, 0);
613 wmb(); /* flush modifications to the GGTT (insert_page) */
614 } else {
615 page_base += offset & PAGE_MASK;
616 }
617 /* If we get a fault while copying data, then (presumably) our
618 * source page isn't available. Return the error and we'll
619 * retry in the slow path.
620 * If the object is non-shmem backed, we retry again with the
621 * path that handles page fault.
622 */
623 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
624 user_data, page_length)) {
625 ret = -EFAULT;
626 break;
627 }
628
629 remain -= page_length;
630 user_data += page_length;
631 offset += page_length;
632 }
633 intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_CPU);
634
635 i915_gem_object_unlock_fence(obj, fence);
636out_unpin:
637 mutex_lock(&i915->drm.struct_mutex);
638 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
639 if (node.allocated) {
640 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
641 remove_mappable_node(&node);
642 } else {
643 i915_vma_unpin(vma);
644 }
645out_rpm:
646 intel_runtime_pm_put(rpm, wakeref);
647out_unlock:
648 mutex_unlock(&i915->drm.struct_mutex);
649 return ret;
650}
651
652/* Per-page copy function for the shmem pwrite fastpath.
653 * Flushes invalid cachelines before writing to the target if
654 * needs_clflush_before is set and flushes out any written cachelines after
655 * writing if needs_clflush is set.
656 */
657static int
658shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
659 bool needs_clflush_before,
660 bool needs_clflush_after)
661{
662 char *vaddr;
663 int ret;
664
665 vaddr = kmap(page);
666
667 if (needs_clflush_before)
668 drm_clflush_virt_range(vaddr + offset, len);
669
670 ret = __copy_from_user(vaddr + offset, user_data, len);
671 if (!ret && needs_clflush_after)
672 drm_clflush_virt_range(vaddr + offset, len);
673
674 kunmap(page);
675
676 return ret ? -EFAULT : 0;
677}
678
679static int
680i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
681 const struct drm_i915_gem_pwrite *args)
682{
683 unsigned int partial_cacheline_write;
684 unsigned int needs_clflush;
685 unsigned int offset, idx;
686 struct dma_fence *fence;
687 void __user *user_data;
688 u64 remain;
689 int ret;
690
691 ret = i915_gem_object_prepare_write(obj, &needs_clflush);
692 if (ret)
693 return ret;
694
695 fence = i915_gem_object_lock_fence(obj);
696 i915_gem_object_finish_access(obj);
697 if (!fence)
698 return -ENOMEM;
699
700 /* If we don't overwrite a cacheline completely we need to be
701 * careful to have up-to-date data by first clflushing. Don't
702 * overcomplicate things and flush the entire patch.
703 */
704 partial_cacheline_write = 0;
705 if (needs_clflush & CLFLUSH_BEFORE)
706 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
707
708 user_data = u64_to_user_ptr(args->data_ptr);
709 remain = args->size;
710 offset = offset_in_page(args->offset);
711 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
712 struct page *page = i915_gem_object_get_page(obj, idx);
713 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
714
715 ret = shmem_pwrite(page, offset, length, user_data,
716 (offset | length) & partial_cacheline_write,
717 needs_clflush & CLFLUSH_AFTER);
718 if (ret)
719 break;
720
721 remain -= length;
722 user_data += length;
723 offset = 0;
724 }
725
726 intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_CPU);
727 i915_gem_object_unlock_fence(obj, fence);
728
729 return ret;
730}
731
732/**
733 * Writes data to the object referenced by handle.
734 * @dev: drm device
735 * @data: ioctl data blob
736 * @file: drm file
737 *
738 * On error, the contents of the buffer that were to be modified are undefined.
739 */
740int
741i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
742 struct drm_file *file)
743{
744 struct drm_i915_gem_pwrite *args = data;
745 struct drm_i915_gem_object *obj;
746 int ret;
747
748 if (args->size == 0)
749 return 0;
750
751 if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
752 return -EFAULT;
753
754 obj = i915_gem_object_lookup(file, args->handle);
755 if (!obj)
756 return -ENOENT;
757
758 /* Bounds check destination. */
759 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
760 ret = -EINVAL;
761 goto err;
762 }
763
764 /* Writes not allowed into this read-only object */
765 if (i915_gem_object_is_readonly(obj)) {
766 ret = -EINVAL;
767 goto err;
768 }
769
770 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
771
772 ret = -ENODEV;
773 if (obj->ops->pwrite)
774 ret = obj->ops->pwrite(obj, args);
775 if (ret != -ENODEV)
776 goto err;
777
778 ret = i915_gem_object_wait(obj,
779 I915_WAIT_INTERRUPTIBLE |
780 I915_WAIT_ALL,
781 MAX_SCHEDULE_TIMEOUT);
782 if (ret)
783 goto err;
784
785 ret = i915_gem_object_pin_pages(obj);
786 if (ret)
787 goto err;
788
789 ret = -EFAULT;
790 /* We can only do the GTT pwrite on untiled buffers, as otherwise
791 * it would end up going through the fenced access, and we'll get
792 * different detiling behavior between reading and writing.
793 * pread/pwrite currently are reading and writing from the CPU
794 * perspective, requiring manual detiling by the client.
795 */
796 if (!i915_gem_object_has_struct_page(obj) ||
797 cpu_write_needs_clflush(obj))
798 /* Note that the gtt paths might fail with non-page-backed user
799 * pointers (e.g. gtt mappings when moving data between
800 * textures). Fallback to the shmem path in that case.
801 */
802 ret = i915_gem_gtt_pwrite_fast(obj, args);
803
804 if (ret == -EFAULT || ret == -ENOSPC) {
805 if (obj->phys_handle)
806 ret = i915_gem_phys_pwrite(obj, args, file);
807 else
808 ret = i915_gem_shmem_pwrite(obj, args);
809 }
810
811 i915_gem_object_unpin_pages(obj);
812err:
813 i915_gem_object_put(obj);
814 return ret;
815}
816
817/**
818 * Called when user space has done writes to this buffer
819 * @dev: drm device
820 * @data: ioctl data blob
821 * @file: drm file
822 */
823int
824i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
825 struct drm_file *file)
826{
827 struct drm_i915_gem_sw_finish *args = data;
828 struct drm_i915_gem_object *obj;
829
830 obj = i915_gem_object_lookup(file, args->handle);
831 if (!obj)
832 return -ENOENT;
833
834 /*
835 * Proxy objects are barred from CPU access, so there is no
836 * need to ban sw_finish as it is a nop.
837 */
838
839 /* Pinned buffers may be scanout, so flush the cache */
840 i915_gem_object_flush_if_display(obj);
841 i915_gem_object_put(obj);
842
843 return 0;
844}
845
846void i915_gem_runtime_suspend(struct drm_i915_private *i915)
847{
848 struct drm_i915_gem_object *obj, *on;
849 int i;
850
851 /*
852 * Only called during RPM suspend. All users of the userfault_list
853 * must be holding an RPM wakeref to ensure that this can not
854 * run concurrently with themselves (and use the struct_mutex for
855 * protection between themselves).
856 */
857
858 list_for_each_entry_safe(obj, on,
859 &i915->ggtt.userfault_list, userfault_link)
860 __i915_gem_object_release_mmap(obj);
861
862 /*
863 * The fence will be lost when the device powers down. If any were
864 * in use by hardware (i.e. they are pinned), we should not be powering
865 * down! All other fences will be reacquired by the user upon waking.
866 */
867 for (i = 0; i < i915->ggtt.num_fences; i++) {
868 struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
869
870 /*
871 * Ideally we want to assert that the fence register is not
872 * live at this point (i.e. that no piece of code will be
873 * trying to write through fence + GTT, as that both violates
874 * our tracking of activity and associated locking/barriers,
875 * but also is illegal given that the hw is powered down).
876 *
877 * Previously we used reg->pin_count as a "liveness" indicator.
878 * That is not sufficient, and we need a more fine-grained
879 * tool if we want to have a sanity check here.
880 */
881
882 if (!reg->vma)
883 continue;
884
885 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
886 reg->dirty = true;
887 }
888}
889
890static long
891wait_for_timelines(struct drm_i915_private *i915,
892 unsigned int wait, long timeout)
893{
894 struct intel_gt_timelines *timelines = &i915->gt.timelines;
895 struct intel_timeline *tl;
896 unsigned long flags;
897
898 spin_lock_irqsave(&timelines->lock, flags);
899 list_for_each_entry(tl, &timelines->active_list, link) {
900 struct i915_request *rq;
901
902 rq = i915_active_request_get_unlocked(&tl->last_request);
903 if (!rq)
904 continue;
905
906 spin_unlock_irqrestore(&timelines->lock, flags);
907
908 /*
909 * "Race-to-idle".
910 *
911 * Switching to the kernel context is often used a synchronous
912 * step prior to idling, e.g. in suspend for flushing all
913 * current operations to memory before sleeping. These we
914 * want to complete as quickly as possible to avoid prolonged
915 * stalls, so allow the gpu to boost to maximum clocks.
916 */
917 if (wait & I915_WAIT_FOR_IDLE_BOOST)
918 gen6_rps_boost(rq);
919
920 timeout = i915_request_wait(rq, wait, timeout);
921 i915_request_put(rq);
922 if (timeout < 0)
923 return timeout;
924
925 /* restart after reacquiring the lock */
926 spin_lock_irqsave(&timelines->lock, flags);
927 tl = list_entry(&timelines->active_list, typeof(*tl), link);
928 }
929 spin_unlock_irqrestore(&timelines->lock, flags);
930
931 return timeout;
932}
933
934int i915_gem_wait_for_idle(struct drm_i915_private *i915,
935 unsigned int flags, long timeout)
936{
937 /* If the device is asleep, we have no requests outstanding */
938 if (!intel_gt_pm_is_awake(&i915->gt))
939 return 0;
940
941 GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
942 flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
943 timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
944
945 timeout = wait_for_timelines(i915, flags, timeout);
946 if (timeout < 0)
947 return timeout;
948
949 if (flags & I915_WAIT_LOCKED) {
950 lockdep_assert_held(&i915->drm.struct_mutex);
951
952 i915_retire_requests(i915);
953 }
954
955 return 0;
956}
957
958struct i915_vma *
959i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
960 const struct i915_ggtt_view *view,
961 u64 size,
962 u64 alignment,
963 u64 flags)
964{
965 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
966 struct i915_address_space *vm = &dev_priv->ggtt.vm;
967
968 return i915_gem_object_pin(obj, vm, view, size, alignment,
969 flags | PIN_GLOBAL);
970}
971
972struct i915_vma *
973i915_gem_object_pin(struct drm_i915_gem_object *obj,
974 struct i915_address_space *vm,
975 const struct i915_ggtt_view *view,
976 u64 size,
977 u64 alignment,
978 u64 flags)
979{
980 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
981 struct i915_vma *vma;
982 int ret;
983
984 lockdep_assert_held(&obj->base.dev->struct_mutex);
985
986 if (i915_gem_object_never_bind_ggtt(obj))
987 return ERR_PTR(-ENODEV);
988
989 if (flags & PIN_MAPPABLE &&
990 (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
991 /* If the required space is larger than the available
992 * aperture, we will not able to find a slot for the
993 * object and unbinding the object now will be in
994 * vain. Worse, doing so may cause us to ping-pong
995 * the object in and out of the Global GTT and
996 * waste a lot of cycles under the mutex.
997 */
998 if (obj->base.size > dev_priv->ggtt.mappable_end)
999 return ERR_PTR(-E2BIG);
1000
1001 /* If NONBLOCK is set the caller is optimistically
1002 * trying to cache the full object within the mappable
1003 * aperture, and *must* have a fallback in place for
1004 * situations where we cannot bind the object. We
1005 * can be a little more lax here and use the fallback
1006 * more often to avoid costly migrations of ourselves
1007 * and other objects within the aperture.
1008 *
1009 * Half-the-aperture is used as a simple heuristic.
1010 * More interesting would to do search for a free
1011 * block prior to making the commitment to unbind.
1012 * That caters for the self-harm case, and with a
1013 * little more heuristics (e.g. NOFAULT, NOEVICT)
1014 * we could try to minimise harm to others.
1015 */
1016 if (flags & PIN_NONBLOCK &&
1017 obj->base.size > dev_priv->ggtt.mappable_end / 2)
1018 return ERR_PTR(-ENOSPC);
1019 }
1020
1021 vma = i915_vma_instance(obj, vm, view);
1022 if (IS_ERR(vma))
1023 return vma;
1024
1025 if (i915_vma_misplaced(vma, size, alignment, flags)) {
1026 if (flags & PIN_NONBLOCK) {
1027 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
1028 return ERR_PTR(-ENOSPC);
1029
1030 if (flags & PIN_MAPPABLE &&
1031 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
1032 return ERR_PTR(-ENOSPC);
1033 }
1034
1035 WARN(i915_vma_is_pinned(vma),
1036 "bo is already pinned in ggtt with incorrect alignment:"
1037 " offset=%08x, req.alignment=%llx,"
1038 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
1039 i915_ggtt_offset(vma), alignment,
1040 !!(flags & PIN_MAPPABLE),
1041 i915_vma_is_map_and_fenceable(vma));
1042 ret = i915_vma_unbind(vma);
1043 if (ret)
1044 return ERR_PTR(ret);
1045 }
1046
1047 if (vma->fence && !i915_gem_object_is_tiled(obj)) {
1048 mutex_lock(&vma->vm->mutex);
1049 ret = i915_vma_revoke_fence(vma);
1050 mutex_unlock(&vma->vm->mutex);
1051 if (ret)
1052 return ERR_PTR(ret);
1053 }
1054
1055 ret = i915_vma_pin(vma, size, alignment, flags);
1056 if (ret)
1057 return ERR_PTR(ret);
1058
1059 return vma;
1060}
1061
1062int
1063i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1064 struct drm_file *file_priv)
1065{
1066 struct drm_i915_private *i915 = to_i915(dev);
1067 struct drm_i915_gem_madvise *args = data;
1068 struct drm_i915_gem_object *obj;
1069 int err;
1070
1071 switch (args->madv) {
1072 case I915_MADV_DONTNEED:
1073 case I915_MADV_WILLNEED:
1074 break;
1075 default:
1076 return -EINVAL;
1077 }
1078
1079 obj = i915_gem_object_lookup(file_priv, args->handle);
1080 if (!obj)
1081 return -ENOENT;
1082
1083 err = mutex_lock_interruptible(&obj->mm.lock);
1084 if (err)
1085 goto out;
1086
1087 if (i915_gem_object_has_pages(obj) &&
1088 i915_gem_object_is_tiled(obj) &&
1089 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
1090 if (obj->mm.madv == I915_MADV_WILLNEED) {
1091 GEM_BUG_ON(!obj->mm.quirked);
1092 __i915_gem_object_unpin_pages(obj);
1093 obj->mm.quirked = false;
1094 }
1095 if (args->madv == I915_MADV_WILLNEED) {
1096 GEM_BUG_ON(obj->mm.quirked);
1097 __i915_gem_object_pin_pages(obj);
1098 obj->mm.quirked = true;
1099 }
1100 }
1101
1102 if (obj->mm.madv != __I915_MADV_PURGED)
1103 obj->mm.madv = args->madv;
1104
1105 if (i915_gem_object_has_pages(obj)) {
1106 struct list_head *list;
1107
1108 if (i915_gem_object_is_shrinkable(obj)) {
1109 unsigned long flags;
1110
1111 spin_lock_irqsave(&i915->mm.obj_lock, flags);
1112
1113 if (obj->mm.madv != I915_MADV_WILLNEED)
1114 list = &i915->mm.purge_list;
1115 else
1116 list = &i915->mm.shrink_list;
1117 list_move_tail(&obj->mm.link, list);
1118
1119 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1120 }
1121 }
1122
1123 /* if the object is no longer attached, discard its backing storage */
1124 if (obj->mm.madv == I915_MADV_DONTNEED &&
1125 !i915_gem_object_has_pages(obj))
1126 i915_gem_object_truncate(obj);
1127
1128 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1129 mutex_unlock(&obj->mm.lock);
1130
1131out:
1132 i915_gem_object_put(obj);
1133 return err;
1134}
1135
1136void i915_gem_sanitize(struct drm_i915_private *i915)
1137{
1138 intel_wakeref_t wakeref;
1139
1140 GEM_TRACE("\n");
1141
1142 wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1143 intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL);
1144
1145 /*
1146 * As we have just resumed the machine and woken the device up from
1147 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
1148 * back to defaults, recovering from whatever wedged state we left it
1149 * in and so worth trying to use the device once more.
1150 */
1151 if (intel_gt_is_wedged(&i915->gt))
1152 intel_gt_unset_wedged(&i915->gt);
1153
1154 /*
1155 * If we inherit context state from the BIOS or earlier occupants
1156 * of the GPU, the GPU may be in an inconsistent state when we
1157 * try to take over. The only way to remove the earlier state
1158 * is by resetting. However, resetting on earlier gen is tricky as
1159 * it may impact the display and we are uncertain about the stability
1160 * of the reset, so this could be applied to even earlier gen.
1161 */
1162 intel_gt_sanitize(&i915->gt, false);
1163
1164 intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL);
1165 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1166}
1167
1168static void init_unused_ring(struct intel_gt *gt, u32 base)
1169{
1170 struct intel_uncore *uncore = gt->uncore;
1171
1172 intel_uncore_write(uncore, RING_CTL(base), 0);
1173 intel_uncore_write(uncore, RING_HEAD(base), 0);
1174 intel_uncore_write(uncore, RING_TAIL(base), 0);
1175 intel_uncore_write(uncore, RING_START(base), 0);
1176}
1177
1178static void init_unused_rings(struct intel_gt *gt)
1179{
1180 struct drm_i915_private *i915 = gt->i915;
1181
1182 if (IS_I830(i915)) {
1183 init_unused_ring(gt, PRB1_BASE);
1184 init_unused_ring(gt, SRB0_BASE);
1185 init_unused_ring(gt, SRB1_BASE);
1186 init_unused_ring(gt, SRB2_BASE);
1187 init_unused_ring(gt, SRB3_BASE);
1188 } else if (IS_GEN(i915, 2)) {
1189 init_unused_ring(gt, SRB0_BASE);
1190 init_unused_ring(gt, SRB1_BASE);
1191 } else if (IS_GEN(i915, 3)) {
1192 init_unused_ring(gt, PRB1_BASE);
1193 init_unused_ring(gt, PRB2_BASE);
1194 }
1195}
1196
1197int i915_gem_init_hw(struct drm_i915_private *i915)
1198{
1199 struct intel_uncore *uncore = &i915->uncore;
1200 struct intel_gt *gt = &i915->gt;
1201 int ret;
1202
1203 BUG_ON(!i915->kernel_context);
1204 ret = intel_gt_terminally_wedged(gt);
1205 if (ret)
1206 return ret;
1207
1208 gt->last_init_time = ktime_get();
1209
1210 /* Double layer security blanket, see i915_gem_init() */
1211 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1212
1213 if (HAS_EDRAM(i915) && INTEL_GEN(i915) < 9)
1214 intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
1215
1216 if (IS_HASWELL(i915))
1217 intel_uncore_write(uncore,
1218 MI_PREDICATE_RESULT_2,
1219 IS_HSW_GT3(i915) ?
1220 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
1221
1222 /* Apply the GT workarounds... */
1223 intel_gt_apply_workarounds(gt);
1224 /* ...and determine whether they are sticking. */
1225 intel_gt_verify_workarounds(gt, "init");
1226
1227 intel_gt_init_swizzling(gt);
1228
1229 /*
1230 * At least 830 can leave some of the unused rings
1231 * "active" (ie. head != tail) after resume which
1232 * will prevent c3 entry. Makes sure all unused rings
1233 * are totally idle.
1234 */
1235 init_unused_rings(gt);
1236
1237 ret = i915_ppgtt_init_hw(gt);
1238 if (ret) {
1239 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
1240 goto out;
1241 }
1242
1243 /* We can't enable contexts until all firmware is loaded */
1244 ret = intel_uc_init_hw(>->uc);
1245 if (ret) {
1246 i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
1247 goto out;
1248 }
1249
1250 intel_mocs_init(gt);
1251
1252out:
1253 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1254 return ret;
1255}
1256
1257static int __intel_engines_record_defaults(struct drm_i915_private *i915)
1258{
1259 struct i915_request *requests[I915_NUM_ENGINES] = {};
1260 struct intel_engine_cs *engine;
1261 enum intel_engine_id id;
1262 int err = 0;
1263
1264 /*
1265 * As we reset the gpu during very early sanitisation, the current
1266 * register state on the GPU should reflect its defaults values.
1267 * We load a context onto the hw (with restore-inhibit), then switch
1268 * over to a second context to save that default register state. We
1269 * can then prime every new context with that state so they all start
1270 * from the same default HW values.
1271 */
1272
1273 for_each_engine(engine, i915, id) {
1274 struct intel_context *ce;
1275 struct i915_request *rq;
1276
1277 /* We must be able to switch to something! */
1278 GEM_BUG_ON(!engine->kernel_context);
1279 engine->serial++; /* force the kernel context switch */
1280
1281 ce = intel_context_create(i915->kernel_context, engine);
1282 if (IS_ERR(ce)) {
1283 err = PTR_ERR(ce);
1284 goto out;
1285 }
1286
1287 rq = intel_context_create_request(ce);
1288 if (IS_ERR(rq)) {
1289 err = PTR_ERR(rq);
1290 intel_context_put(ce);
1291 goto out;
1292 }
1293
1294 err = intel_engine_emit_ctx_wa(rq);
1295 if (err)
1296 goto err_rq;
1297
1298 /*
1299 * Failing to program the MOCS is non-fatal.The system will not
1300 * run at peak performance. So warn the user and carry on.
1301 */
1302 err = intel_mocs_emit(rq);
1303 if (err)
1304 dev_notice(i915->drm.dev,
1305 "Failed to program MOCS registers; expect performance issues.\n");
1306
1307 err = intel_renderstate_emit(rq);
1308 if (err)
1309 goto err_rq;
1310
1311err_rq:
1312 requests[id] = i915_request_get(rq);
1313 i915_request_add(rq);
1314 if (err)
1315 goto out;
1316 }
1317
1318 /* Flush the default context image to memory, and enable powersaving. */
1319 if (!i915_gem_load_power_context(i915)) {
1320 err = -EIO;
1321 goto out;
1322 }
1323
1324 for (id = 0; id < ARRAY_SIZE(requests); id++) {
1325 struct i915_request *rq;
1326 struct i915_vma *state;
1327 void *vaddr;
1328
1329 rq = requests[id];
1330 if (!rq)
1331 continue;
1332
1333 /* We want to be able to unbind the state from the GGTT */
1334 GEM_BUG_ON(intel_context_is_pinned(rq->hw_context));
1335
1336 state = rq->hw_context->state;
1337 if (!state)
1338 continue;
1339
1340 /*
1341 * As we will hold a reference to the logical state, it will
1342 * not be torn down with the context, and importantly the
1343 * object will hold onto its vma (making it possible for a
1344 * stray GTT write to corrupt our defaults). Unmap the vma
1345 * from the GTT to prevent such accidents and reclaim the
1346 * space.
1347 */
1348 err = i915_vma_unbind(state);
1349 if (err)
1350 goto out;
1351
1352 i915_gem_object_lock(state->obj);
1353 err = i915_gem_object_set_to_cpu_domain(state->obj, false);
1354 i915_gem_object_unlock(state->obj);
1355 if (err)
1356 goto out;
1357
1358 i915_gem_object_set_cache_coherency(state->obj, I915_CACHE_LLC);
1359
1360 /* Check we can acquire the image of the context state */
1361 vaddr = i915_gem_object_pin_map(state->obj, I915_MAP_FORCE_WB);
1362 if (IS_ERR(vaddr)) {
1363 err = PTR_ERR(vaddr);
1364 goto out;
1365 }
1366
1367 rq->engine->default_state = i915_gem_object_get(state->obj);
1368 i915_gem_object_unpin_map(state->obj);
1369 }
1370
1371out:
1372 /*
1373 * If we have to abandon now, we expect the engines to be idle
1374 * and ready to be torn-down. The quickest way we can accomplish
1375 * this is by declaring ourselves wedged.
1376 */
1377 if (err)
1378 intel_gt_set_wedged(&i915->gt);
1379
1380 for (id = 0; id < ARRAY_SIZE(requests); id++) {
1381 struct intel_context *ce;
1382 struct i915_request *rq;
1383
1384 rq = requests[id];
1385 if (!rq)
1386 continue;
1387
1388 ce = rq->hw_context;
1389 i915_request_put(rq);
1390 intel_context_put(ce);
1391 }
1392 return err;
1393}
1394
1395static int
1396i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
1397{
1398 return intel_gt_init_scratch(&i915->gt, size);
1399}
1400
1401static void i915_gem_fini_scratch(struct drm_i915_private *i915)
1402{
1403 intel_gt_fini_scratch(&i915->gt);
1404}
1405
1406static int intel_engines_verify_workarounds(struct drm_i915_private *i915)
1407{
1408 struct intel_engine_cs *engine;
1409 enum intel_engine_id id;
1410 int err = 0;
1411
1412 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1413 return 0;
1414
1415 for_each_engine(engine, i915, id) {
1416 if (intel_engine_verify_workarounds(engine, "load"))
1417 err = -EIO;
1418 }
1419
1420 return err;
1421}
1422
1423int i915_gem_init(struct drm_i915_private *dev_priv)
1424{
1425 int ret;
1426
1427 /* We need to fallback to 4K pages if host doesn't support huge gtt. */
1428 if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1429 mkwrite_device_info(dev_priv)->page_sizes =
1430 I915_GTT_PAGE_SIZE_4K;
1431
1432 intel_timelines_init(dev_priv);
1433
1434 ret = i915_gem_init_userptr(dev_priv);
1435 if (ret)
1436 return ret;
1437
1438 intel_uc_fetch_firmwares(&dev_priv->gt.uc);
1439 intel_wopcm_init(&dev_priv->wopcm);
1440
1441 /* This is just a security blanket to placate dragons.
1442 * On some systems, we very sporadically observe that the first TLBs
1443 * used by the CS may be stale, despite us poking the TLB reset. If
1444 * we hold the forcewake during initialisation these problems
1445 * just magically go away.
1446 */
1447 mutex_lock(&dev_priv->drm.struct_mutex);
1448 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1449
1450 ret = i915_init_ggtt(dev_priv);
1451 if (ret) {
1452 GEM_BUG_ON(ret == -EIO);
1453 goto err_unlock;
1454 }
1455
1456 ret = i915_gem_init_scratch(dev_priv,
1457 IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE);
1458 if (ret) {
1459 GEM_BUG_ON(ret == -EIO);
1460 goto err_ggtt;
1461 }
1462
1463 ret = intel_engines_setup(dev_priv);
1464 if (ret) {
1465 GEM_BUG_ON(ret == -EIO);
1466 goto err_unlock;
1467 }
1468
1469 ret = i915_gem_contexts_init(dev_priv);
1470 if (ret) {
1471 GEM_BUG_ON(ret == -EIO);
1472 goto err_scratch;
1473 }
1474
1475 ret = intel_engines_init(dev_priv);
1476 if (ret) {
1477 GEM_BUG_ON(ret == -EIO);
1478 goto err_context;
1479 }
1480
1481 intel_init_gt_powersave(dev_priv);
1482
1483 intel_uc_init(&dev_priv->gt.uc);
1484
1485 ret = i915_gem_init_hw(dev_priv);
1486 if (ret)
1487 goto err_uc_init;
1488
1489 /* Only when the HW is re-initialised, can we replay the requests */
1490 ret = intel_gt_resume(&dev_priv->gt);
1491 if (ret)
1492 goto err_init_hw;
1493
1494 /*
1495 * Despite its name intel_init_clock_gating applies both display
1496 * clock gating workarounds; GT mmio workarounds and the occasional
1497 * GT power context workaround. Worse, sometimes it includes a context
1498 * register workaround which we need to apply before we record the
1499 * default HW state for all contexts.
1500 *
1501 * FIXME: break up the workarounds and apply them at the right time!
1502 */
1503 intel_init_clock_gating(dev_priv);
1504
1505 ret = intel_engines_verify_workarounds(dev_priv);
1506 if (ret)
1507 goto err_gt;
1508
1509 ret = __intel_engines_record_defaults(dev_priv);
1510 if (ret)
1511 goto err_gt;
1512
1513 ret = i915_inject_load_error(dev_priv, -ENODEV);
1514 if (ret)
1515 goto err_gt;
1516
1517 ret = i915_inject_load_error(dev_priv, -EIO);
1518 if (ret)
1519 goto err_gt;
1520
1521 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1522 mutex_unlock(&dev_priv->drm.struct_mutex);
1523
1524 return 0;
1525
1526 /*
1527 * Unwinding is complicated by that we want to handle -EIO to mean
1528 * disable GPU submission but keep KMS alive. We want to mark the
1529 * HW as irrevisibly wedged, but keep enough state around that the
1530 * driver doesn't explode during runtime.
1531 */
1532err_gt:
1533 mutex_unlock(&dev_priv->drm.struct_mutex);
1534
1535 intel_gt_set_wedged(&dev_priv->gt);
1536 i915_gem_suspend(dev_priv);
1537 i915_gem_suspend_late(dev_priv);
1538
1539 i915_gem_drain_workqueue(dev_priv);
1540
1541 mutex_lock(&dev_priv->drm.struct_mutex);
1542err_init_hw:
1543 intel_uc_fini_hw(&dev_priv->gt.uc);
1544err_uc_init:
1545 if (ret != -EIO) {
1546 intel_uc_fini(&dev_priv->gt.uc);
1547 intel_cleanup_gt_powersave(dev_priv);
1548 intel_engines_cleanup(dev_priv);
1549 }
1550err_context:
1551 if (ret != -EIO)
1552 i915_gem_contexts_fini(dev_priv);
1553err_scratch:
1554 i915_gem_fini_scratch(dev_priv);
1555err_ggtt:
1556err_unlock:
1557 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1558 mutex_unlock(&dev_priv->drm.struct_mutex);
1559
1560 if (ret != -EIO) {
1561 intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1562 i915_gem_cleanup_userptr(dev_priv);
1563 intel_timelines_fini(dev_priv);
1564 }
1565
1566 if (ret == -EIO) {
1567 mutex_lock(&dev_priv->drm.struct_mutex);
1568
1569 /*
1570 * Allow engines or uC initialisation to fail by marking the GPU
1571 * as wedged. But we only want to do this when the GPU is angry,
1572 * for all other failure, such as an allocation failure, bail.
1573 */
1574 if (!intel_gt_is_wedged(&dev_priv->gt)) {
1575 i915_probe_error(dev_priv,
1576 "Failed to initialize GPU, declaring it wedged!\n");
1577 intel_gt_set_wedged(&dev_priv->gt);
1578 }
1579
1580 /* Minimal basic recovery for KMS */
1581 ret = i915_ggtt_enable_hw(dev_priv);
1582 i915_gem_restore_gtt_mappings(dev_priv);
1583 i915_gem_restore_fences(dev_priv);
1584 intel_init_clock_gating(dev_priv);
1585
1586 mutex_unlock(&dev_priv->drm.struct_mutex);
1587 }
1588
1589 i915_gem_drain_freed_objects(dev_priv);
1590 return ret;
1591}
1592
1593void i915_gem_driver_register(struct drm_i915_private *i915)
1594{
1595 i915_gem_driver_register__shrinker(i915);
1596
1597 intel_engines_driver_register(i915);
1598}
1599
1600void i915_gem_driver_unregister(struct drm_i915_private *i915)
1601{
1602 i915_gem_driver_unregister__shrinker(i915);
1603}
1604
1605void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1606{
1607 GEM_BUG_ON(dev_priv->gt.awake);
1608
1609 intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1610
1611 i915_gem_suspend_late(dev_priv);
1612 intel_disable_gt_powersave(dev_priv);
1613
1614 /* Flush any outstanding unpin_work. */
1615 i915_gem_drain_workqueue(dev_priv);
1616
1617 mutex_lock(&dev_priv->drm.struct_mutex);
1618 intel_uc_fini_hw(&dev_priv->gt.uc);
1619 intel_uc_fini(&dev_priv->gt.uc);
1620 mutex_unlock(&dev_priv->drm.struct_mutex);
1621
1622 i915_gem_drain_freed_objects(dev_priv);
1623}
1624
1625void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1626{
1627 mutex_lock(&dev_priv->drm.struct_mutex);
1628 intel_engines_cleanup(dev_priv);
1629 i915_gem_contexts_fini(dev_priv);
1630 i915_gem_fini_scratch(dev_priv);
1631 mutex_unlock(&dev_priv->drm.struct_mutex);
1632
1633 intel_wa_list_free(&dev_priv->gt_wa_list);
1634
1635 intel_cleanup_gt_powersave(dev_priv);
1636
1637 intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1638 i915_gem_cleanup_userptr(dev_priv);
1639 intel_timelines_fini(dev_priv);
1640
1641 i915_gem_drain_freed_objects(dev_priv);
1642
1643 WARN_ON(!list_empty(&dev_priv->contexts.list));
1644}
1645
1646void i915_gem_init_mmio(struct drm_i915_private *i915)
1647{
1648 i915_gem_sanitize(i915);
1649}
1650
1651static void i915_gem_init__mm(struct drm_i915_private *i915)
1652{
1653 spin_lock_init(&i915->mm.obj_lock);
1654
1655 init_llist_head(&i915->mm.free_list);
1656
1657 INIT_LIST_HEAD(&i915->mm.purge_list);
1658 INIT_LIST_HEAD(&i915->mm.shrink_list);
1659
1660 i915_gem_init__objects(i915);
1661}
1662
1663int i915_gem_init_early(struct drm_i915_private *dev_priv)
1664{
1665 int err;
1666
1667 i915_gem_init__mm(dev_priv);
1668 i915_gem_init__pm(dev_priv);
1669
1670 spin_lock_init(&dev_priv->fb_tracking.lock);
1671
1672 err = i915_gemfs_init(dev_priv);
1673 if (err)
1674 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
1675
1676 return 0;
1677}
1678
1679void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1680{
1681 i915_gem_drain_freed_objects(dev_priv);
1682 GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1683 GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1684 WARN_ON(dev_priv->mm.shrink_count);
1685
1686 i915_gemfs_fini(dev_priv);
1687}
1688
1689int i915_gem_freeze(struct drm_i915_private *dev_priv)
1690{
1691 /* Discard all purgeable objects, let userspace recover those as
1692 * required after resuming.
1693 */
1694 i915_gem_shrink_all(dev_priv);
1695
1696 return 0;
1697}
1698
1699int i915_gem_freeze_late(struct drm_i915_private *i915)
1700{
1701 struct drm_i915_gem_object *obj;
1702 intel_wakeref_t wakeref;
1703
1704 /*
1705 * Called just before we write the hibernation image.
1706 *
1707 * We need to update the domain tracking to reflect that the CPU
1708 * will be accessing all the pages to create and restore from the
1709 * hibernation, and so upon restoration those pages will be in the
1710 * CPU domain.
1711 *
1712 * To make sure the hibernation image contains the latest state,
1713 * we update that state just before writing out the image.
1714 *
1715 * To try and reduce the hibernation image, we manually shrink
1716 * the objects as well, see i915_gem_freeze()
1717 */
1718
1719 wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1720
1721 i915_gem_shrink(i915, -1UL, NULL, ~0);
1722 i915_gem_drain_freed_objects(i915);
1723
1724 list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
1725 i915_gem_object_lock(obj);
1726 WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
1727 i915_gem_object_unlock(obj);
1728 }
1729
1730 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1731
1732 return 0;
1733}
1734
1735void i915_gem_release(struct drm_device *dev, struct drm_file *file)
1736{
1737 struct drm_i915_file_private *file_priv = file->driver_priv;
1738 struct i915_request *request;
1739
1740 /* Clean up our request list when the client is going away, so that
1741 * later retire_requests won't dereference our soon-to-be-gone
1742 * file_priv.
1743 */
1744 spin_lock(&file_priv->mm.lock);
1745 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
1746 request->file_priv = NULL;
1747 spin_unlock(&file_priv->mm.lock);
1748}
1749
1750int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1751{
1752 struct drm_i915_file_private *file_priv;
1753 int ret;
1754
1755 DRM_DEBUG("\n");
1756
1757 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1758 if (!file_priv)
1759 return -ENOMEM;
1760
1761 file->driver_priv = file_priv;
1762 file_priv->dev_priv = i915;
1763 file_priv->file = file;
1764
1765 spin_lock_init(&file_priv->mm.lock);
1766 INIT_LIST_HEAD(&file_priv->mm.request_list);
1767
1768 file_priv->bsd_engine = -1;
1769 file_priv->hang_timestamp = jiffies;
1770
1771 ret = i915_gem_context_open(i915, file);
1772 if (ret)
1773 kfree(file_priv);
1774
1775 return ret;
1776}
1777
1778#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1779#include "selftests/mock_gem_device.c"
1780#include "selftests/i915_gem.c"
1781#endif
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
32#include "i915_trace.h"
33#include "intel_drv.h"
34#include <linux/shmem_fs.h>
35#include <linux/slab.h>
36#include <linux/swap.h>
37#include <linux/pci.h>
38#include <linux/dma-buf.h>
39
40static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
44 unsigned alignment,
45 bool map_and_fenceable);
46static int i915_gem_phys_pwrite(struct drm_device *dev,
47 struct drm_i915_gem_object *obj,
48 struct drm_i915_gem_pwrite *args,
49 struct drm_file *file);
50
51static void i915_gem_write_fence(struct drm_device *dev, int reg,
52 struct drm_i915_gem_object *obj);
53static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54 struct drm_i915_fence_reg *fence,
55 bool enable);
56
57static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58 struct shrink_control *sc);
59static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
60
61static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
62{
63 if (obj->tiling_mode)
64 i915_gem_release_mmap(obj);
65
66 /* As we do not have an associated fence register, we will force
67 * a tiling change if we ever need to acquire one.
68 */
69 obj->fence_dirty = false;
70 obj->fence_reg = I915_FENCE_REG_NONE;
71}
72
73/* some bookkeeping */
74static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76{
77 dev_priv->mm.object_count++;
78 dev_priv->mm.object_memory += size;
79}
80
81static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
82 size_t size)
83{
84 dev_priv->mm.object_count--;
85 dev_priv->mm.object_memory -= size;
86}
87
88static int
89i915_gem_wait_for_error(struct drm_device *dev)
90{
91 struct drm_i915_private *dev_priv = dev->dev_private;
92 struct completion *x = &dev_priv->error_completion;
93 unsigned long flags;
94 int ret;
95
96 if (!atomic_read(&dev_priv->mm.wedged))
97 return 0;
98
99 ret = wait_for_completion_interruptible(x);
100 if (ret)
101 return ret;
102
103 if (atomic_read(&dev_priv->mm.wedged)) {
104 /* GPU is hung, bump the completion count to account for
105 * the token we just consumed so that we never hit zero and
106 * end up waiting upon a subsequent completion event that
107 * will never happen.
108 */
109 spin_lock_irqsave(&x->wait.lock, flags);
110 x->done++;
111 spin_unlock_irqrestore(&x->wait.lock, flags);
112 }
113 return 0;
114}
115
116int i915_mutex_lock_interruptible(struct drm_device *dev)
117{
118 int ret;
119
120 ret = i915_gem_wait_for_error(dev);
121 if (ret)
122 return ret;
123
124 ret = mutex_lock_interruptible(&dev->struct_mutex);
125 if (ret)
126 return ret;
127
128 WARN_ON(i915_verify_lists(dev));
129 return 0;
130}
131
132static inline bool
133i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
134{
135 return !obj->active;
136}
137
138int
139i915_gem_init_ioctl(struct drm_device *dev, void *data,
140 struct drm_file *file)
141{
142 struct drm_i915_gem_init *args = data;
143
144 if (drm_core_check_feature(dev, DRIVER_MODESET))
145 return -ENODEV;
146
147 if (args->gtt_start >= args->gtt_end ||
148 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
149 return -EINVAL;
150
151 /* GEM with user mode setting was never supported on ilk and later. */
152 if (INTEL_INFO(dev)->gen >= 5)
153 return -ENODEV;
154
155 mutex_lock(&dev->struct_mutex);
156 i915_gem_init_global_gtt(dev, args->gtt_start,
157 args->gtt_end, args->gtt_end);
158 mutex_unlock(&dev->struct_mutex);
159
160 return 0;
161}
162
163int
164i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
165 struct drm_file *file)
166{
167 struct drm_i915_private *dev_priv = dev->dev_private;
168 struct drm_i915_gem_get_aperture *args = data;
169 struct drm_i915_gem_object *obj;
170 size_t pinned;
171
172 pinned = 0;
173 mutex_lock(&dev->struct_mutex);
174 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
175 if (obj->pin_count)
176 pinned += obj->gtt_space->size;
177 mutex_unlock(&dev->struct_mutex);
178
179 args->aper_size = dev_priv->mm.gtt_total;
180 args->aper_available_size = args->aper_size - pinned;
181
182 return 0;
183}
184
185static int
186i915_gem_create(struct drm_file *file,
187 struct drm_device *dev,
188 uint64_t size,
189 uint32_t *handle_p)
190{
191 struct drm_i915_gem_object *obj;
192 int ret;
193 u32 handle;
194
195 size = roundup(size, PAGE_SIZE);
196 if (size == 0)
197 return -EINVAL;
198
199 /* Allocate the new object */
200 obj = i915_gem_alloc_object(dev, size);
201 if (obj == NULL)
202 return -ENOMEM;
203
204 ret = drm_gem_handle_create(file, &obj->base, &handle);
205 if (ret) {
206 drm_gem_object_release(&obj->base);
207 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
208 kfree(obj);
209 return ret;
210 }
211
212 /* drop reference from allocate - handle holds it now */
213 drm_gem_object_unreference(&obj->base);
214 trace_i915_gem_object_create(obj);
215
216 *handle_p = handle;
217 return 0;
218}
219
220int
221i915_gem_dumb_create(struct drm_file *file,
222 struct drm_device *dev,
223 struct drm_mode_create_dumb *args)
224{
225 /* have to work out size/pitch and return them */
226 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
227 args->size = args->pitch * args->height;
228 return i915_gem_create(file, dev,
229 args->size, &args->handle);
230}
231
232int i915_gem_dumb_destroy(struct drm_file *file,
233 struct drm_device *dev,
234 uint32_t handle)
235{
236 return drm_gem_handle_delete(file, handle);
237}
238
239/**
240 * Creates a new mm object and returns a handle to it.
241 */
242int
243i915_gem_create_ioctl(struct drm_device *dev, void *data,
244 struct drm_file *file)
245{
246 struct drm_i915_gem_create *args = data;
247
248 return i915_gem_create(file, dev,
249 args->size, &args->handle);
250}
251
252static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
253{
254 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
255
256 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
257 obj->tiling_mode != I915_TILING_NONE;
258}
259
260static inline int
261__copy_to_user_swizzled(char __user *cpu_vaddr,
262 const char *gpu_vaddr, int gpu_offset,
263 int length)
264{
265 int ret, cpu_offset = 0;
266
267 while (length > 0) {
268 int cacheline_end = ALIGN(gpu_offset + 1, 64);
269 int this_length = min(cacheline_end - gpu_offset, length);
270 int swizzled_gpu_offset = gpu_offset ^ 64;
271
272 ret = __copy_to_user(cpu_vaddr + cpu_offset,
273 gpu_vaddr + swizzled_gpu_offset,
274 this_length);
275 if (ret)
276 return ret + length;
277
278 cpu_offset += this_length;
279 gpu_offset += this_length;
280 length -= this_length;
281 }
282
283 return 0;
284}
285
286static inline int
287__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
288 const char __user *cpu_vaddr,
289 int length)
290{
291 int ret, cpu_offset = 0;
292
293 while (length > 0) {
294 int cacheline_end = ALIGN(gpu_offset + 1, 64);
295 int this_length = min(cacheline_end - gpu_offset, length);
296 int swizzled_gpu_offset = gpu_offset ^ 64;
297
298 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
299 cpu_vaddr + cpu_offset,
300 this_length);
301 if (ret)
302 return ret + length;
303
304 cpu_offset += this_length;
305 gpu_offset += this_length;
306 length -= this_length;
307 }
308
309 return 0;
310}
311
312/* Per-page copy function for the shmem pread fastpath.
313 * Flushes invalid cachelines before reading the target if
314 * needs_clflush is set. */
315static int
316shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
317 char __user *user_data,
318 bool page_do_bit17_swizzling, bool needs_clflush)
319{
320 char *vaddr;
321 int ret;
322
323 if (unlikely(page_do_bit17_swizzling))
324 return -EINVAL;
325
326 vaddr = kmap_atomic(page);
327 if (needs_clflush)
328 drm_clflush_virt_range(vaddr + shmem_page_offset,
329 page_length);
330 ret = __copy_to_user_inatomic(user_data,
331 vaddr + shmem_page_offset,
332 page_length);
333 kunmap_atomic(vaddr);
334
335 return ret;
336}
337
338static void
339shmem_clflush_swizzled_range(char *addr, unsigned long length,
340 bool swizzled)
341{
342 if (unlikely(swizzled)) {
343 unsigned long start = (unsigned long) addr;
344 unsigned long end = (unsigned long) addr + length;
345
346 /* For swizzling simply ensure that we always flush both
347 * channels. Lame, but simple and it works. Swizzled
348 * pwrite/pread is far from a hotpath - current userspace
349 * doesn't use it at all. */
350 start = round_down(start, 128);
351 end = round_up(end, 128);
352
353 drm_clflush_virt_range((void *)start, end - start);
354 } else {
355 drm_clflush_virt_range(addr, length);
356 }
357
358}
359
360/* Only difference to the fast-path function is that this can handle bit17
361 * and uses non-atomic copy and kmap functions. */
362static int
363shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
364 char __user *user_data,
365 bool page_do_bit17_swizzling, bool needs_clflush)
366{
367 char *vaddr;
368 int ret;
369
370 vaddr = kmap(page);
371 if (needs_clflush)
372 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
373 page_length,
374 page_do_bit17_swizzling);
375
376 if (page_do_bit17_swizzling)
377 ret = __copy_to_user_swizzled(user_data,
378 vaddr, shmem_page_offset,
379 page_length);
380 else
381 ret = __copy_to_user(user_data,
382 vaddr + shmem_page_offset,
383 page_length);
384 kunmap(page);
385
386 return ret;
387}
388
389static int
390i915_gem_shmem_pread(struct drm_device *dev,
391 struct drm_i915_gem_object *obj,
392 struct drm_i915_gem_pread *args,
393 struct drm_file *file)
394{
395 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
396 char __user *user_data;
397 ssize_t remain;
398 loff_t offset;
399 int shmem_page_offset, page_length, ret = 0;
400 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
401 int hit_slowpath = 0;
402 int prefaulted = 0;
403 int needs_clflush = 0;
404 int release_page;
405
406 user_data = (char __user *) (uintptr_t) args->data_ptr;
407 remain = args->size;
408
409 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
410
411 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
412 /* If we're not in the cpu read domain, set ourself into the gtt
413 * read domain and manually flush cachelines (if required). This
414 * optimizes for the case when the gpu will dirty the data
415 * anyway again before the next pread happens. */
416 if (obj->cache_level == I915_CACHE_NONE)
417 needs_clflush = 1;
418 ret = i915_gem_object_set_to_gtt_domain(obj, false);
419 if (ret)
420 return ret;
421 }
422
423 offset = args->offset;
424
425 while (remain > 0) {
426 struct page *page;
427
428 /* Operation in this page
429 *
430 * shmem_page_offset = offset within page in shmem file
431 * page_length = bytes to copy for this page
432 */
433 shmem_page_offset = offset_in_page(offset);
434 page_length = remain;
435 if ((shmem_page_offset + page_length) > PAGE_SIZE)
436 page_length = PAGE_SIZE - shmem_page_offset;
437
438 if (obj->pages) {
439 page = obj->pages[offset >> PAGE_SHIFT];
440 release_page = 0;
441 } else {
442 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
443 if (IS_ERR(page)) {
444 ret = PTR_ERR(page);
445 goto out;
446 }
447 release_page = 1;
448 }
449
450 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
451 (page_to_phys(page) & (1 << 17)) != 0;
452
453 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
454 user_data, page_do_bit17_swizzling,
455 needs_clflush);
456 if (ret == 0)
457 goto next_page;
458
459 hit_slowpath = 1;
460 page_cache_get(page);
461 mutex_unlock(&dev->struct_mutex);
462
463 if (!prefaulted) {
464 ret = fault_in_multipages_writeable(user_data, remain);
465 /* Userspace is tricking us, but we've already clobbered
466 * its pages with the prefault and promised to write the
467 * data up to the first fault. Hence ignore any errors
468 * and just continue. */
469 (void)ret;
470 prefaulted = 1;
471 }
472
473 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
474 user_data, page_do_bit17_swizzling,
475 needs_clflush);
476
477 mutex_lock(&dev->struct_mutex);
478 page_cache_release(page);
479next_page:
480 mark_page_accessed(page);
481 if (release_page)
482 page_cache_release(page);
483
484 if (ret) {
485 ret = -EFAULT;
486 goto out;
487 }
488
489 remain -= page_length;
490 user_data += page_length;
491 offset += page_length;
492 }
493
494out:
495 if (hit_slowpath) {
496 /* Fixup: Kill any reinstated backing storage pages */
497 if (obj->madv == __I915_MADV_PURGED)
498 i915_gem_object_truncate(obj);
499 }
500
501 return ret;
502}
503
504/**
505 * Reads data from the object referenced by handle.
506 *
507 * On error, the contents of *data are undefined.
508 */
509int
510i915_gem_pread_ioctl(struct drm_device *dev, void *data,
511 struct drm_file *file)
512{
513 struct drm_i915_gem_pread *args = data;
514 struct drm_i915_gem_object *obj;
515 int ret = 0;
516
517 if (args->size == 0)
518 return 0;
519
520 if (!access_ok(VERIFY_WRITE,
521 (char __user *)(uintptr_t)args->data_ptr,
522 args->size))
523 return -EFAULT;
524
525 ret = i915_mutex_lock_interruptible(dev);
526 if (ret)
527 return ret;
528
529 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
530 if (&obj->base == NULL) {
531 ret = -ENOENT;
532 goto unlock;
533 }
534
535 /* Bounds check source. */
536 if (args->offset > obj->base.size ||
537 args->size > obj->base.size - args->offset) {
538 ret = -EINVAL;
539 goto out;
540 }
541
542 /* prime objects have no backing filp to GEM pread/pwrite
543 * pages from.
544 */
545 if (!obj->base.filp) {
546 ret = -EINVAL;
547 goto out;
548 }
549
550 trace_i915_gem_object_pread(obj, args->offset, args->size);
551
552 ret = i915_gem_shmem_pread(dev, obj, args, file);
553
554out:
555 drm_gem_object_unreference(&obj->base);
556unlock:
557 mutex_unlock(&dev->struct_mutex);
558 return ret;
559}
560
561/* This is the fast write path which cannot handle
562 * page faults in the source data
563 */
564
565static inline int
566fast_user_write(struct io_mapping *mapping,
567 loff_t page_base, int page_offset,
568 char __user *user_data,
569 int length)
570{
571 void __iomem *vaddr_atomic;
572 void *vaddr;
573 unsigned long unwritten;
574
575 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
576 /* We can use the cpu mem copy function because this is X86. */
577 vaddr = (void __force*)vaddr_atomic + page_offset;
578 unwritten = __copy_from_user_inatomic_nocache(vaddr,
579 user_data, length);
580 io_mapping_unmap_atomic(vaddr_atomic);
581 return unwritten;
582}
583
584/**
585 * This is the fast pwrite path, where we copy the data directly from the
586 * user into the GTT, uncached.
587 */
588static int
589i915_gem_gtt_pwrite_fast(struct drm_device *dev,
590 struct drm_i915_gem_object *obj,
591 struct drm_i915_gem_pwrite *args,
592 struct drm_file *file)
593{
594 drm_i915_private_t *dev_priv = dev->dev_private;
595 ssize_t remain;
596 loff_t offset, page_base;
597 char __user *user_data;
598 int page_offset, page_length, ret;
599
600 ret = i915_gem_object_pin(obj, 0, true);
601 if (ret)
602 goto out;
603
604 ret = i915_gem_object_set_to_gtt_domain(obj, true);
605 if (ret)
606 goto out_unpin;
607
608 ret = i915_gem_object_put_fence(obj);
609 if (ret)
610 goto out_unpin;
611
612 user_data = (char __user *) (uintptr_t) args->data_ptr;
613 remain = args->size;
614
615 offset = obj->gtt_offset + args->offset;
616
617 while (remain > 0) {
618 /* Operation in this page
619 *
620 * page_base = page offset within aperture
621 * page_offset = offset within page
622 * page_length = bytes to copy for this page
623 */
624 page_base = offset & PAGE_MASK;
625 page_offset = offset_in_page(offset);
626 page_length = remain;
627 if ((page_offset + remain) > PAGE_SIZE)
628 page_length = PAGE_SIZE - page_offset;
629
630 /* If we get a fault while copying data, then (presumably) our
631 * source page isn't available. Return the error and we'll
632 * retry in the slow path.
633 */
634 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
635 page_offset, user_data, page_length)) {
636 ret = -EFAULT;
637 goto out_unpin;
638 }
639
640 remain -= page_length;
641 user_data += page_length;
642 offset += page_length;
643 }
644
645out_unpin:
646 i915_gem_object_unpin(obj);
647out:
648 return ret;
649}
650
651/* Per-page copy function for the shmem pwrite fastpath.
652 * Flushes invalid cachelines before writing to the target if
653 * needs_clflush_before is set and flushes out any written cachelines after
654 * writing if needs_clflush is set. */
655static int
656shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
657 char __user *user_data,
658 bool page_do_bit17_swizzling,
659 bool needs_clflush_before,
660 bool needs_clflush_after)
661{
662 char *vaddr;
663 int ret;
664
665 if (unlikely(page_do_bit17_swizzling))
666 return -EINVAL;
667
668 vaddr = kmap_atomic(page);
669 if (needs_clflush_before)
670 drm_clflush_virt_range(vaddr + shmem_page_offset,
671 page_length);
672 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
673 user_data,
674 page_length);
675 if (needs_clflush_after)
676 drm_clflush_virt_range(vaddr + shmem_page_offset,
677 page_length);
678 kunmap_atomic(vaddr);
679
680 return ret;
681}
682
683/* Only difference to the fast-path function is that this can handle bit17
684 * and uses non-atomic copy and kmap functions. */
685static int
686shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
687 char __user *user_data,
688 bool page_do_bit17_swizzling,
689 bool needs_clflush_before,
690 bool needs_clflush_after)
691{
692 char *vaddr;
693 int ret;
694
695 vaddr = kmap(page);
696 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
697 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
698 page_length,
699 page_do_bit17_swizzling);
700 if (page_do_bit17_swizzling)
701 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
702 user_data,
703 page_length);
704 else
705 ret = __copy_from_user(vaddr + shmem_page_offset,
706 user_data,
707 page_length);
708 if (needs_clflush_after)
709 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
710 page_length,
711 page_do_bit17_swizzling);
712 kunmap(page);
713
714 return ret;
715}
716
717static int
718i915_gem_shmem_pwrite(struct drm_device *dev,
719 struct drm_i915_gem_object *obj,
720 struct drm_i915_gem_pwrite *args,
721 struct drm_file *file)
722{
723 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
724 ssize_t remain;
725 loff_t offset;
726 char __user *user_data;
727 int shmem_page_offset, page_length, ret = 0;
728 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
729 int hit_slowpath = 0;
730 int needs_clflush_after = 0;
731 int needs_clflush_before = 0;
732 int release_page;
733
734 user_data = (char __user *) (uintptr_t) args->data_ptr;
735 remain = args->size;
736
737 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
738
739 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
740 /* If we're not in the cpu write domain, set ourself into the gtt
741 * write domain and manually flush cachelines (if required). This
742 * optimizes for the case when the gpu will use the data
743 * right away and we therefore have to clflush anyway. */
744 if (obj->cache_level == I915_CACHE_NONE)
745 needs_clflush_after = 1;
746 ret = i915_gem_object_set_to_gtt_domain(obj, true);
747 if (ret)
748 return ret;
749 }
750 /* Same trick applies for invalidate partially written cachelines before
751 * writing. */
752 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
753 && obj->cache_level == I915_CACHE_NONE)
754 needs_clflush_before = 1;
755
756 offset = args->offset;
757 obj->dirty = 1;
758
759 while (remain > 0) {
760 struct page *page;
761 int partial_cacheline_write;
762
763 /* Operation in this page
764 *
765 * shmem_page_offset = offset within page in shmem file
766 * page_length = bytes to copy for this page
767 */
768 shmem_page_offset = offset_in_page(offset);
769
770 page_length = remain;
771 if ((shmem_page_offset + page_length) > PAGE_SIZE)
772 page_length = PAGE_SIZE - shmem_page_offset;
773
774 /* If we don't overwrite a cacheline completely we need to be
775 * careful to have up-to-date data by first clflushing. Don't
776 * overcomplicate things and flush the entire patch. */
777 partial_cacheline_write = needs_clflush_before &&
778 ((shmem_page_offset | page_length)
779 & (boot_cpu_data.x86_clflush_size - 1));
780
781 if (obj->pages) {
782 page = obj->pages[offset >> PAGE_SHIFT];
783 release_page = 0;
784 } else {
785 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
786 if (IS_ERR(page)) {
787 ret = PTR_ERR(page);
788 goto out;
789 }
790 release_page = 1;
791 }
792
793 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
794 (page_to_phys(page) & (1 << 17)) != 0;
795
796 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
797 user_data, page_do_bit17_swizzling,
798 partial_cacheline_write,
799 needs_clflush_after);
800 if (ret == 0)
801 goto next_page;
802
803 hit_slowpath = 1;
804 page_cache_get(page);
805 mutex_unlock(&dev->struct_mutex);
806
807 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
808 user_data, page_do_bit17_swizzling,
809 partial_cacheline_write,
810 needs_clflush_after);
811
812 mutex_lock(&dev->struct_mutex);
813 page_cache_release(page);
814next_page:
815 set_page_dirty(page);
816 mark_page_accessed(page);
817 if (release_page)
818 page_cache_release(page);
819
820 if (ret) {
821 ret = -EFAULT;
822 goto out;
823 }
824
825 remain -= page_length;
826 user_data += page_length;
827 offset += page_length;
828 }
829
830out:
831 if (hit_slowpath) {
832 /* Fixup: Kill any reinstated backing storage pages */
833 if (obj->madv == __I915_MADV_PURGED)
834 i915_gem_object_truncate(obj);
835 /* and flush dirty cachelines in case the object isn't in the cpu write
836 * domain anymore. */
837 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
838 i915_gem_clflush_object(obj);
839 intel_gtt_chipset_flush();
840 }
841 }
842
843 if (needs_clflush_after)
844 intel_gtt_chipset_flush();
845
846 return ret;
847}
848
849/**
850 * Writes data to the object referenced by handle.
851 *
852 * On error, the contents of the buffer that were to be modified are undefined.
853 */
854int
855i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
856 struct drm_file *file)
857{
858 struct drm_i915_gem_pwrite *args = data;
859 struct drm_i915_gem_object *obj;
860 int ret;
861
862 if (args->size == 0)
863 return 0;
864
865 if (!access_ok(VERIFY_READ,
866 (char __user *)(uintptr_t)args->data_ptr,
867 args->size))
868 return -EFAULT;
869
870 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
871 args->size);
872 if (ret)
873 return -EFAULT;
874
875 ret = i915_mutex_lock_interruptible(dev);
876 if (ret)
877 return ret;
878
879 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
880 if (&obj->base == NULL) {
881 ret = -ENOENT;
882 goto unlock;
883 }
884
885 /* Bounds check destination. */
886 if (args->offset > obj->base.size ||
887 args->size > obj->base.size - args->offset) {
888 ret = -EINVAL;
889 goto out;
890 }
891
892 /* prime objects have no backing filp to GEM pread/pwrite
893 * pages from.
894 */
895 if (!obj->base.filp) {
896 ret = -EINVAL;
897 goto out;
898 }
899
900 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
901
902 ret = -EFAULT;
903 /* We can only do the GTT pwrite on untiled buffers, as otherwise
904 * it would end up going through the fenced access, and we'll get
905 * different detiling behavior between reading and writing.
906 * pread/pwrite currently are reading and writing from the CPU
907 * perspective, requiring manual detiling by the client.
908 */
909 if (obj->phys_obj) {
910 ret = i915_gem_phys_pwrite(dev, obj, args, file);
911 goto out;
912 }
913
914 if (obj->gtt_space &&
915 obj->cache_level == I915_CACHE_NONE &&
916 obj->tiling_mode == I915_TILING_NONE &&
917 obj->map_and_fenceable &&
918 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
919 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
920 /* Note that the gtt paths might fail with non-page-backed user
921 * pointers (e.g. gtt mappings when moving data between
922 * textures). Fallback to the shmem path in that case. */
923 }
924
925 if (ret == -EFAULT)
926 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
927
928out:
929 drm_gem_object_unreference(&obj->base);
930unlock:
931 mutex_unlock(&dev->struct_mutex);
932 return ret;
933}
934
935/**
936 * Called when user space prepares to use an object with the CPU, either
937 * through the mmap ioctl's mapping or a GTT mapping.
938 */
939int
940i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
941 struct drm_file *file)
942{
943 struct drm_i915_gem_set_domain *args = data;
944 struct drm_i915_gem_object *obj;
945 uint32_t read_domains = args->read_domains;
946 uint32_t write_domain = args->write_domain;
947 int ret;
948
949 /* Only handle setting domains to types used by the CPU. */
950 if (write_domain & I915_GEM_GPU_DOMAINS)
951 return -EINVAL;
952
953 if (read_domains & I915_GEM_GPU_DOMAINS)
954 return -EINVAL;
955
956 /* Having something in the write domain implies it's in the read
957 * domain, and only that read domain. Enforce that in the request.
958 */
959 if (write_domain != 0 && read_domains != write_domain)
960 return -EINVAL;
961
962 ret = i915_mutex_lock_interruptible(dev);
963 if (ret)
964 return ret;
965
966 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
967 if (&obj->base == NULL) {
968 ret = -ENOENT;
969 goto unlock;
970 }
971
972 if (read_domains & I915_GEM_DOMAIN_GTT) {
973 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
974
975 /* Silently promote "you're not bound, there was nothing to do"
976 * to success, since the client was just asking us to
977 * make sure everything was done.
978 */
979 if (ret == -EINVAL)
980 ret = 0;
981 } else {
982 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
983 }
984
985 drm_gem_object_unreference(&obj->base);
986unlock:
987 mutex_unlock(&dev->struct_mutex);
988 return ret;
989}
990
991/**
992 * Called when user space has done writes to this buffer
993 */
994int
995i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
996 struct drm_file *file)
997{
998 struct drm_i915_gem_sw_finish *args = data;
999 struct drm_i915_gem_object *obj;
1000 int ret = 0;
1001
1002 ret = i915_mutex_lock_interruptible(dev);
1003 if (ret)
1004 return ret;
1005
1006 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1007 if (&obj->base == NULL) {
1008 ret = -ENOENT;
1009 goto unlock;
1010 }
1011
1012 /* Pinned buffers may be scanout, so flush the cache */
1013 if (obj->pin_count)
1014 i915_gem_object_flush_cpu_write_domain(obj);
1015
1016 drm_gem_object_unreference(&obj->base);
1017unlock:
1018 mutex_unlock(&dev->struct_mutex);
1019 return ret;
1020}
1021
1022/**
1023 * Maps the contents of an object, returning the address it is mapped
1024 * into.
1025 *
1026 * While the mapping holds a reference on the contents of the object, it doesn't
1027 * imply a ref on the object itself.
1028 */
1029int
1030i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1031 struct drm_file *file)
1032{
1033 struct drm_i915_gem_mmap *args = data;
1034 struct drm_gem_object *obj;
1035 unsigned long addr;
1036
1037 obj = drm_gem_object_lookup(dev, file, args->handle);
1038 if (obj == NULL)
1039 return -ENOENT;
1040
1041 /* prime objects have no backing filp to GEM mmap
1042 * pages from.
1043 */
1044 if (!obj->filp) {
1045 drm_gem_object_unreference_unlocked(obj);
1046 return -EINVAL;
1047 }
1048
1049 addr = vm_mmap(obj->filp, 0, args->size,
1050 PROT_READ | PROT_WRITE, MAP_SHARED,
1051 args->offset);
1052 drm_gem_object_unreference_unlocked(obj);
1053 if (IS_ERR((void *)addr))
1054 return addr;
1055
1056 args->addr_ptr = (uint64_t) addr;
1057
1058 return 0;
1059}
1060
1061/**
1062 * i915_gem_fault - fault a page into the GTT
1063 * vma: VMA in question
1064 * vmf: fault info
1065 *
1066 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1067 * from userspace. The fault handler takes care of binding the object to
1068 * the GTT (if needed), allocating and programming a fence register (again,
1069 * only if needed based on whether the old reg is still valid or the object
1070 * is tiled) and inserting a new PTE into the faulting process.
1071 *
1072 * Note that the faulting process may involve evicting existing objects
1073 * from the GTT and/or fence registers to make room. So performance may
1074 * suffer if the GTT working set is large or there are few fence registers
1075 * left.
1076 */
1077int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1078{
1079 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1080 struct drm_device *dev = obj->base.dev;
1081 drm_i915_private_t *dev_priv = dev->dev_private;
1082 pgoff_t page_offset;
1083 unsigned long pfn;
1084 int ret = 0;
1085 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1086
1087 /* We don't use vmf->pgoff since that has the fake offset */
1088 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1089 PAGE_SHIFT;
1090
1091 ret = i915_mutex_lock_interruptible(dev);
1092 if (ret)
1093 goto out;
1094
1095 trace_i915_gem_object_fault(obj, page_offset, true, write);
1096
1097 /* Now bind it into the GTT if needed */
1098 if (!obj->map_and_fenceable) {
1099 ret = i915_gem_object_unbind(obj);
1100 if (ret)
1101 goto unlock;
1102 }
1103 if (!obj->gtt_space) {
1104 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1105 if (ret)
1106 goto unlock;
1107
1108 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1109 if (ret)
1110 goto unlock;
1111 }
1112
1113 if (!obj->has_global_gtt_mapping)
1114 i915_gem_gtt_bind_object(obj, obj->cache_level);
1115
1116 ret = i915_gem_object_get_fence(obj);
1117 if (ret)
1118 goto unlock;
1119
1120 if (i915_gem_object_is_inactive(obj))
1121 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1122
1123 obj->fault_mappable = true;
1124
1125 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1126 page_offset;
1127
1128 /* Finally, remap it using the new GTT offset */
1129 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1130unlock:
1131 mutex_unlock(&dev->struct_mutex);
1132out:
1133 switch (ret) {
1134 case -EIO:
1135 case -EAGAIN:
1136 /* Give the error handler a chance to run and move the
1137 * objects off the GPU active list. Next time we service the
1138 * fault, we should be able to transition the page into the
1139 * GTT without touching the GPU (and so avoid further
1140 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1141 * with coherency, just lost writes.
1142 */
1143 set_need_resched();
1144 case 0:
1145 case -ERESTARTSYS:
1146 case -EINTR:
1147 return VM_FAULT_NOPAGE;
1148 case -ENOMEM:
1149 return VM_FAULT_OOM;
1150 default:
1151 return VM_FAULT_SIGBUS;
1152 }
1153}
1154
1155/**
1156 * i915_gem_release_mmap - remove physical page mappings
1157 * @obj: obj in question
1158 *
1159 * Preserve the reservation of the mmapping with the DRM core code, but
1160 * relinquish ownership of the pages back to the system.
1161 *
1162 * It is vital that we remove the page mapping if we have mapped a tiled
1163 * object through the GTT and then lose the fence register due to
1164 * resource pressure. Similarly if the object has been moved out of the
1165 * aperture, than pages mapped into userspace must be revoked. Removing the
1166 * mapping will then trigger a page fault on the next user access, allowing
1167 * fixup by i915_gem_fault().
1168 */
1169void
1170i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1171{
1172 if (!obj->fault_mappable)
1173 return;
1174
1175 if (obj->base.dev->dev_mapping)
1176 unmap_mapping_range(obj->base.dev->dev_mapping,
1177 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1178 obj->base.size, 1);
1179
1180 obj->fault_mappable = false;
1181}
1182
1183static uint32_t
1184i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1185{
1186 uint32_t gtt_size;
1187
1188 if (INTEL_INFO(dev)->gen >= 4 ||
1189 tiling_mode == I915_TILING_NONE)
1190 return size;
1191
1192 /* Previous chips need a power-of-two fence region when tiling */
1193 if (INTEL_INFO(dev)->gen == 3)
1194 gtt_size = 1024*1024;
1195 else
1196 gtt_size = 512*1024;
1197
1198 while (gtt_size < size)
1199 gtt_size <<= 1;
1200
1201 return gtt_size;
1202}
1203
1204/**
1205 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1206 * @obj: object to check
1207 *
1208 * Return the required GTT alignment for an object, taking into account
1209 * potential fence register mapping.
1210 */
1211static uint32_t
1212i915_gem_get_gtt_alignment(struct drm_device *dev,
1213 uint32_t size,
1214 int tiling_mode)
1215{
1216 /*
1217 * Minimum alignment is 4k (GTT page size), but might be greater
1218 * if a fence register is needed for the object.
1219 */
1220 if (INTEL_INFO(dev)->gen >= 4 ||
1221 tiling_mode == I915_TILING_NONE)
1222 return 4096;
1223
1224 /*
1225 * Previous chips need to be aligned to the size of the smallest
1226 * fence register that can contain the object.
1227 */
1228 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1229}
1230
1231/**
1232 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1233 * unfenced object
1234 * @dev: the device
1235 * @size: size of the object
1236 * @tiling_mode: tiling mode of the object
1237 *
1238 * Return the required GTT alignment for an object, only taking into account
1239 * unfenced tiled surface requirements.
1240 */
1241uint32_t
1242i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1243 uint32_t size,
1244 int tiling_mode)
1245{
1246 /*
1247 * Minimum alignment is 4k (GTT page size) for sane hw.
1248 */
1249 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1250 tiling_mode == I915_TILING_NONE)
1251 return 4096;
1252
1253 /* Previous hardware however needs to be aligned to a power-of-two
1254 * tile height. The simplest method for determining this is to reuse
1255 * the power-of-tile object size.
1256 */
1257 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1258}
1259
1260int
1261i915_gem_mmap_gtt(struct drm_file *file,
1262 struct drm_device *dev,
1263 uint32_t handle,
1264 uint64_t *offset)
1265{
1266 struct drm_i915_private *dev_priv = dev->dev_private;
1267 struct drm_i915_gem_object *obj;
1268 int ret;
1269
1270 ret = i915_mutex_lock_interruptible(dev);
1271 if (ret)
1272 return ret;
1273
1274 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1275 if (&obj->base == NULL) {
1276 ret = -ENOENT;
1277 goto unlock;
1278 }
1279
1280 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1281 ret = -E2BIG;
1282 goto out;
1283 }
1284
1285 if (obj->madv != I915_MADV_WILLNEED) {
1286 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1287 ret = -EINVAL;
1288 goto out;
1289 }
1290
1291 if (!obj->base.map_list.map) {
1292 ret = drm_gem_create_mmap_offset(&obj->base);
1293 if (ret)
1294 goto out;
1295 }
1296
1297 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1298
1299out:
1300 drm_gem_object_unreference(&obj->base);
1301unlock:
1302 mutex_unlock(&dev->struct_mutex);
1303 return ret;
1304}
1305
1306/**
1307 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1308 * @dev: DRM device
1309 * @data: GTT mapping ioctl data
1310 * @file: GEM object info
1311 *
1312 * Simply returns the fake offset to userspace so it can mmap it.
1313 * The mmap call will end up in drm_gem_mmap(), which will set things
1314 * up so we can get faults in the handler above.
1315 *
1316 * The fault handler will take care of binding the object into the GTT
1317 * (since it may have been evicted to make room for something), allocating
1318 * a fence register, and mapping the appropriate aperture address into
1319 * userspace.
1320 */
1321int
1322i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1323 struct drm_file *file)
1324{
1325 struct drm_i915_gem_mmap_gtt *args = data;
1326
1327 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1328}
1329
1330int
1331i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1332 gfp_t gfpmask)
1333{
1334 int page_count, i;
1335 struct address_space *mapping;
1336 struct inode *inode;
1337 struct page *page;
1338
1339 if (obj->pages || obj->sg_table)
1340 return 0;
1341
1342 /* Get the list of pages out of our struct file. They'll be pinned
1343 * at this point until we release them.
1344 */
1345 page_count = obj->base.size / PAGE_SIZE;
1346 BUG_ON(obj->pages != NULL);
1347 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1348 if (obj->pages == NULL)
1349 return -ENOMEM;
1350
1351 inode = obj->base.filp->f_path.dentry->d_inode;
1352 mapping = inode->i_mapping;
1353 gfpmask |= mapping_gfp_mask(mapping);
1354
1355 for (i = 0; i < page_count; i++) {
1356 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1357 if (IS_ERR(page))
1358 goto err_pages;
1359
1360 obj->pages[i] = page;
1361 }
1362
1363 if (i915_gem_object_needs_bit17_swizzle(obj))
1364 i915_gem_object_do_bit_17_swizzle(obj);
1365
1366 return 0;
1367
1368err_pages:
1369 while (i--)
1370 page_cache_release(obj->pages[i]);
1371
1372 drm_free_large(obj->pages);
1373 obj->pages = NULL;
1374 return PTR_ERR(page);
1375}
1376
1377static void
1378i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1379{
1380 int page_count = obj->base.size / PAGE_SIZE;
1381 int i;
1382
1383 if (!obj->pages)
1384 return;
1385
1386 BUG_ON(obj->madv == __I915_MADV_PURGED);
1387
1388 if (i915_gem_object_needs_bit17_swizzle(obj))
1389 i915_gem_object_save_bit_17_swizzle(obj);
1390
1391 if (obj->madv == I915_MADV_DONTNEED)
1392 obj->dirty = 0;
1393
1394 for (i = 0; i < page_count; i++) {
1395 if (obj->dirty)
1396 set_page_dirty(obj->pages[i]);
1397
1398 if (obj->madv == I915_MADV_WILLNEED)
1399 mark_page_accessed(obj->pages[i]);
1400
1401 page_cache_release(obj->pages[i]);
1402 }
1403 obj->dirty = 0;
1404
1405 drm_free_large(obj->pages);
1406 obj->pages = NULL;
1407}
1408
1409void
1410i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1411 struct intel_ring_buffer *ring,
1412 u32 seqno)
1413{
1414 struct drm_device *dev = obj->base.dev;
1415 struct drm_i915_private *dev_priv = dev->dev_private;
1416
1417 BUG_ON(ring == NULL);
1418 obj->ring = ring;
1419
1420 /* Add a reference if we're newly entering the active list. */
1421 if (!obj->active) {
1422 drm_gem_object_reference(&obj->base);
1423 obj->active = 1;
1424 }
1425
1426 /* Move from whatever list we were on to the tail of execution. */
1427 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1428 list_move_tail(&obj->ring_list, &ring->active_list);
1429
1430 obj->last_rendering_seqno = seqno;
1431
1432 if (obj->fenced_gpu_access) {
1433 obj->last_fenced_seqno = seqno;
1434
1435 /* Bump MRU to take account of the delayed flush */
1436 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1437 struct drm_i915_fence_reg *reg;
1438
1439 reg = &dev_priv->fence_regs[obj->fence_reg];
1440 list_move_tail(®->lru_list,
1441 &dev_priv->mm.fence_list);
1442 }
1443 }
1444}
1445
1446static void
1447i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1448{
1449 list_del_init(&obj->ring_list);
1450 obj->last_rendering_seqno = 0;
1451 obj->last_fenced_seqno = 0;
1452}
1453
1454static void
1455i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1456{
1457 struct drm_device *dev = obj->base.dev;
1458 drm_i915_private_t *dev_priv = dev->dev_private;
1459
1460 BUG_ON(!obj->active);
1461 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1462
1463 i915_gem_object_move_off_active(obj);
1464}
1465
1466static void
1467i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1468{
1469 struct drm_device *dev = obj->base.dev;
1470 struct drm_i915_private *dev_priv = dev->dev_private;
1471
1472 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1473
1474 BUG_ON(!list_empty(&obj->gpu_write_list));
1475 BUG_ON(!obj->active);
1476 obj->ring = NULL;
1477
1478 i915_gem_object_move_off_active(obj);
1479 obj->fenced_gpu_access = false;
1480
1481 obj->active = 0;
1482 obj->pending_gpu_write = false;
1483 drm_gem_object_unreference(&obj->base);
1484
1485 WARN_ON(i915_verify_lists(dev));
1486}
1487
1488/* Immediately discard the backing storage */
1489static void
1490i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1491{
1492 struct inode *inode;
1493
1494 /* Our goal here is to return as much of the memory as
1495 * is possible back to the system as we are called from OOM.
1496 * To do this we must instruct the shmfs to drop all of its
1497 * backing pages, *now*.
1498 */
1499 inode = obj->base.filp->f_path.dentry->d_inode;
1500 shmem_truncate_range(inode, 0, (loff_t)-1);
1501
1502 if (obj->base.map_list.map)
1503 drm_gem_free_mmap_offset(&obj->base);
1504
1505 obj->madv = __I915_MADV_PURGED;
1506}
1507
1508static inline int
1509i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1510{
1511 return obj->madv == I915_MADV_DONTNEED;
1512}
1513
1514static void
1515i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1516 uint32_t flush_domains)
1517{
1518 struct drm_i915_gem_object *obj, *next;
1519
1520 list_for_each_entry_safe(obj, next,
1521 &ring->gpu_write_list,
1522 gpu_write_list) {
1523 if (obj->base.write_domain & flush_domains) {
1524 uint32_t old_write_domain = obj->base.write_domain;
1525
1526 obj->base.write_domain = 0;
1527 list_del_init(&obj->gpu_write_list);
1528 i915_gem_object_move_to_active(obj, ring,
1529 i915_gem_next_request_seqno(ring));
1530
1531 trace_i915_gem_object_change_domain(obj,
1532 obj->base.read_domains,
1533 old_write_domain);
1534 }
1535 }
1536}
1537
1538static u32
1539i915_gem_get_seqno(struct drm_device *dev)
1540{
1541 drm_i915_private_t *dev_priv = dev->dev_private;
1542 u32 seqno = dev_priv->next_seqno;
1543
1544 /* reserve 0 for non-seqno */
1545 if (++dev_priv->next_seqno == 0)
1546 dev_priv->next_seqno = 1;
1547
1548 return seqno;
1549}
1550
1551u32
1552i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1553{
1554 if (ring->outstanding_lazy_request == 0)
1555 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1556
1557 return ring->outstanding_lazy_request;
1558}
1559
1560int
1561i915_add_request(struct intel_ring_buffer *ring,
1562 struct drm_file *file,
1563 struct drm_i915_gem_request *request)
1564{
1565 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1566 uint32_t seqno;
1567 u32 request_ring_position;
1568 int was_empty;
1569 int ret;
1570
1571 BUG_ON(request == NULL);
1572 seqno = i915_gem_next_request_seqno(ring);
1573
1574 /* Record the position of the start of the request so that
1575 * should we detect the updated seqno part-way through the
1576 * GPU processing the request, we never over-estimate the
1577 * position of the head.
1578 */
1579 request_ring_position = intel_ring_get_tail(ring);
1580
1581 ret = ring->add_request(ring, &seqno);
1582 if (ret)
1583 return ret;
1584
1585 trace_i915_gem_request_add(ring, seqno);
1586
1587 request->seqno = seqno;
1588 request->ring = ring;
1589 request->tail = request_ring_position;
1590 request->emitted_jiffies = jiffies;
1591 was_empty = list_empty(&ring->request_list);
1592 list_add_tail(&request->list, &ring->request_list);
1593
1594 if (file) {
1595 struct drm_i915_file_private *file_priv = file->driver_priv;
1596
1597 spin_lock(&file_priv->mm.lock);
1598 request->file_priv = file_priv;
1599 list_add_tail(&request->client_list,
1600 &file_priv->mm.request_list);
1601 spin_unlock(&file_priv->mm.lock);
1602 }
1603
1604 ring->outstanding_lazy_request = 0;
1605
1606 if (!dev_priv->mm.suspended) {
1607 if (i915_enable_hangcheck) {
1608 mod_timer(&dev_priv->hangcheck_timer,
1609 jiffies +
1610 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1611 }
1612 if (was_empty)
1613 queue_delayed_work(dev_priv->wq,
1614 &dev_priv->mm.retire_work, HZ);
1615 }
1616 return 0;
1617}
1618
1619static inline void
1620i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1621{
1622 struct drm_i915_file_private *file_priv = request->file_priv;
1623
1624 if (!file_priv)
1625 return;
1626
1627 spin_lock(&file_priv->mm.lock);
1628 if (request->file_priv) {
1629 list_del(&request->client_list);
1630 request->file_priv = NULL;
1631 }
1632 spin_unlock(&file_priv->mm.lock);
1633}
1634
1635static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1636 struct intel_ring_buffer *ring)
1637{
1638 while (!list_empty(&ring->request_list)) {
1639 struct drm_i915_gem_request *request;
1640
1641 request = list_first_entry(&ring->request_list,
1642 struct drm_i915_gem_request,
1643 list);
1644
1645 list_del(&request->list);
1646 i915_gem_request_remove_from_client(request);
1647 kfree(request);
1648 }
1649
1650 while (!list_empty(&ring->active_list)) {
1651 struct drm_i915_gem_object *obj;
1652
1653 obj = list_first_entry(&ring->active_list,
1654 struct drm_i915_gem_object,
1655 ring_list);
1656
1657 obj->base.write_domain = 0;
1658 list_del_init(&obj->gpu_write_list);
1659 i915_gem_object_move_to_inactive(obj);
1660 }
1661}
1662
1663static void i915_gem_reset_fences(struct drm_device *dev)
1664{
1665 struct drm_i915_private *dev_priv = dev->dev_private;
1666 int i;
1667
1668 for (i = 0; i < dev_priv->num_fence_regs; i++) {
1669 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1670
1671 i915_gem_write_fence(dev, i, NULL);
1672
1673 if (reg->obj)
1674 i915_gem_object_fence_lost(reg->obj);
1675
1676 reg->pin_count = 0;
1677 reg->obj = NULL;
1678 INIT_LIST_HEAD(®->lru_list);
1679 }
1680
1681 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1682}
1683
1684void i915_gem_reset(struct drm_device *dev)
1685{
1686 struct drm_i915_private *dev_priv = dev->dev_private;
1687 struct drm_i915_gem_object *obj;
1688 struct intel_ring_buffer *ring;
1689 int i;
1690
1691 for_each_ring(ring, dev_priv, i)
1692 i915_gem_reset_ring_lists(dev_priv, ring);
1693
1694 /* Remove anything from the flushing lists. The GPU cache is likely
1695 * to be lost on reset along with the data, so simply move the
1696 * lost bo to the inactive list.
1697 */
1698 while (!list_empty(&dev_priv->mm.flushing_list)) {
1699 obj = list_first_entry(&dev_priv->mm.flushing_list,
1700 struct drm_i915_gem_object,
1701 mm_list);
1702
1703 obj->base.write_domain = 0;
1704 list_del_init(&obj->gpu_write_list);
1705 i915_gem_object_move_to_inactive(obj);
1706 }
1707
1708 /* Move everything out of the GPU domains to ensure we do any
1709 * necessary invalidation upon reuse.
1710 */
1711 list_for_each_entry(obj,
1712 &dev_priv->mm.inactive_list,
1713 mm_list)
1714 {
1715 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1716 }
1717
1718 /* The fence registers are invalidated so clear them out */
1719 i915_gem_reset_fences(dev);
1720}
1721
1722/**
1723 * This function clears the request list as sequence numbers are passed.
1724 */
1725void
1726i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1727{
1728 uint32_t seqno;
1729 int i;
1730
1731 if (list_empty(&ring->request_list))
1732 return;
1733
1734 WARN_ON(i915_verify_lists(ring->dev));
1735
1736 seqno = ring->get_seqno(ring);
1737
1738 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1739 if (seqno >= ring->sync_seqno[i])
1740 ring->sync_seqno[i] = 0;
1741
1742 while (!list_empty(&ring->request_list)) {
1743 struct drm_i915_gem_request *request;
1744
1745 request = list_first_entry(&ring->request_list,
1746 struct drm_i915_gem_request,
1747 list);
1748
1749 if (!i915_seqno_passed(seqno, request->seqno))
1750 break;
1751
1752 trace_i915_gem_request_retire(ring, request->seqno);
1753 /* We know the GPU must have read the request to have
1754 * sent us the seqno + interrupt, so use the position
1755 * of tail of the request to update the last known position
1756 * of the GPU head.
1757 */
1758 ring->last_retired_head = request->tail;
1759
1760 list_del(&request->list);
1761 i915_gem_request_remove_from_client(request);
1762 kfree(request);
1763 }
1764
1765 /* Move any buffers on the active list that are no longer referenced
1766 * by the ringbuffer to the flushing/inactive lists as appropriate.
1767 */
1768 while (!list_empty(&ring->active_list)) {
1769 struct drm_i915_gem_object *obj;
1770
1771 obj = list_first_entry(&ring->active_list,
1772 struct drm_i915_gem_object,
1773 ring_list);
1774
1775 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1776 break;
1777
1778 if (obj->base.write_domain != 0)
1779 i915_gem_object_move_to_flushing(obj);
1780 else
1781 i915_gem_object_move_to_inactive(obj);
1782 }
1783
1784 if (unlikely(ring->trace_irq_seqno &&
1785 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1786 ring->irq_put(ring);
1787 ring->trace_irq_seqno = 0;
1788 }
1789
1790 WARN_ON(i915_verify_lists(ring->dev));
1791}
1792
1793void
1794i915_gem_retire_requests(struct drm_device *dev)
1795{
1796 drm_i915_private_t *dev_priv = dev->dev_private;
1797 struct intel_ring_buffer *ring;
1798 int i;
1799
1800 for_each_ring(ring, dev_priv, i)
1801 i915_gem_retire_requests_ring(ring);
1802}
1803
1804static void
1805i915_gem_retire_work_handler(struct work_struct *work)
1806{
1807 drm_i915_private_t *dev_priv;
1808 struct drm_device *dev;
1809 struct intel_ring_buffer *ring;
1810 bool idle;
1811 int i;
1812
1813 dev_priv = container_of(work, drm_i915_private_t,
1814 mm.retire_work.work);
1815 dev = dev_priv->dev;
1816
1817 /* Come back later if the device is busy... */
1818 if (!mutex_trylock(&dev->struct_mutex)) {
1819 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1820 return;
1821 }
1822
1823 i915_gem_retire_requests(dev);
1824
1825 /* Send a periodic flush down the ring so we don't hold onto GEM
1826 * objects indefinitely.
1827 */
1828 idle = true;
1829 for_each_ring(ring, dev_priv, i) {
1830 if (!list_empty(&ring->gpu_write_list)) {
1831 struct drm_i915_gem_request *request;
1832 int ret;
1833
1834 ret = i915_gem_flush_ring(ring,
1835 0, I915_GEM_GPU_DOMAINS);
1836 request = kzalloc(sizeof(*request), GFP_KERNEL);
1837 if (ret || request == NULL ||
1838 i915_add_request(ring, NULL, request))
1839 kfree(request);
1840 }
1841
1842 idle &= list_empty(&ring->request_list);
1843 }
1844
1845 if (!dev_priv->mm.suspended && !idle)
1846 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1847
1848 mutex_unlock(&dev->struct_mutex);
1849}
1850
1851static int
1852i915_gem_check_wedge(struct drm_i915_private *dev_priv)
1853{
1854 BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1855
1856 if (atomic_read(&dev_priv->mm.wedged)) {
1857 struct completion *x = &dev_priv->error_completion;
1858 bool recovery_complete;
1859 unsigned long flags;
1860
1861 /* Give the error handler a chance to run. */
1862 spin_lock_irqsave(&x->wait.lock, flags);
1863 recovery_complete = x->done > 0;
1864 spin_unlock_irqrestore(&x->wait.lock, flags);
1865
1866 return recovery_complete ? -EIO : -EAGAIN;
1867 }
1868
1869 return 0;
1870}
1871
1872/*
1873 * Compare seqno against outstanding lazy request. Emit a request if they are
1874 * equal.
1875 */
1876static int
1877i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1878{
1879 int ret = 0;
1880
1881 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1882
1883 if (seqno == ring->outstanding_lazy_request) {
1884 struct drm_i915_gem_request *request;
1885
1886 request = kzalloc(sizeof(*request), GFP_KERNEL);
1887 if (request == NULL)
1888 return -ENOMEM;
1889
1890 ret = i915_add_request(ring, NULL, request);
1891 if (ret) {
1892 kfree(request);
1893 return ret;
1894 }
1895
1896 BUG_ON(seqno != request->seqno);
1897 }
1898
1899 return ret;
1900}
1901
1902static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1903 bool interruptible)
1904{
1905 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1906 int ret = 0;
1907
1908 if (i915_seqno_passed(ring->get_seqno(ring), seqno))
1909 return 0;
1910
1911 trace_i915_gem_request_wait_begin(ring, seqno);
1912 if (WARN_ON(!ring->irq_get(ring)))
1913 return -ENODEV;
1914
1915#define EXIT_COND \
1916 (i915_seqno_passed(ring->get_seqno(ring), seqno) || \
1917 atomic_read(&dev_priv->mm.wedged))
1918
1919 if (interruptible)
1920 ret = wait_event_interruptible(ring->irq_queue,
1921 EXIT_COND);
1922 else
1923 wait_event(ring->irq_queue, EXIT_COND);
1924
1925 ring->irq_put(ring);
1926 trace_i915_gem_request_wait_end(ring, seqno);
1927#undef EXIT_COND
1928
1929 return ret;
1930}
1931
1932/**
1933 * Waits for a sequence number to be signaled, and cleans up the
1934 * request and object lists appropriately for that event.
1935 */
1936int
1937i915_wait_request(struct intel_ring_buffer *ring,
1938 uint32_t seqno)
1939{
1940 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1941 int ret = 0;
1942
1943 BUG_ON(seqno == 0);
1944
1945 ret = i915_gem_check_wedge(dev_priv);
1946 if (ret)
1947 return ret;
1948
1949 ret = i915_gem_check_olr(ring, seqno);
1950 if (ret)
1951 return ret;
1952
1953 ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible);
1954 if (atomic_read(&dev_priv->mm.wedged))
1955 ret = -EAGAIN;
1956
1957 return ret;
1958}
1959
1960/**
1961 * Ensures that all rendering to the object has completed and the object is
1962 * safe to unbind from the GTT or access from the CPU.
1963 */
1964int
1965i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
1966{
1967 int ret;
1968
1969 /* This function only exists to support waiting for existing rendering,
1970 * not for emitting required flushes.
1971 */
1972 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
1973
1974 /* If there is rendering queued on the buffer being evicted, wait for
1975 * it.
1976 */
1977 if (obj->active) {
1978 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
1979 if (ret)
1980 return ret;
1981 i915_gem_retire_requests_ring(obj->ring);
1982 }
1983
1984 return 0;
1985}
1986
1987/**
1988 * i915_gem_object_sync - sync an object to a ring.
1989 *
1990 * @obj: object which may be in use on another ring.
1991 * @to: ring we wish to use the object on. May be NULL.
1992 *
1993 * This code is meant to abstract object synchronization with the GPU.
1994 * Calling with NULL implies synchronizing the object with the CPU
1995 * rather than a particular GPU ring.
1996 *
1997 * Returns 0 if successful, else propagates up the lower layer error.
1998 */
1999int
2000i915_gem_object_sync(struct drm_i915_gem_object *obj,
2001 struct intel_ring_buffer *to)
2002{
2003 struct intel_ring_buffer *from = obj->ring;
2004 u32 seqno;
2005 int ret, idx;
2006
2007 if (from == NULL || to == from)
2008 return 0;
2009
2010 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2011 return i915_gem_object_wait_rendering(obj);
2012
2013 idx = intel_ring_sync_index(from, to);
2014
2015 seqno = obj->last_rendering_seqno;
2016 if (seqno <= from->sync_seqno[idx])
2017 return 0;
2018
2019 ret = i915_gem_check_olr(obj->ring, seqno);
2020 if (ret)
2021 return ret;
2022
2023 ret = to->sync_to(to, from, seqno);
2024 if (!ret)
2025 from->sync_seqno[idx] = seqno;
2026
2027 return ret;
2028}
2029
2030static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2031{
2032 u32 old_write_domain, old_read_domains;
2033
2034 /* Act a barrier for all accesses through the GTT */
2035 mb();
2036
2037 /* Force a pagefault for domain tracking on next user access */
2038 i915_gem_release_mmap(obj);
2039
2040 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2041 return;
2042
2043 old_read_domains = obj->base.read_domains;
2044 old_write_domain = obj->base.write_domain;
2045
2046 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2047 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2048
2049 trace_i915_gem_object_change_domain(obj,
2050 old_read_domains,
2051 old_write_domain);
2052}
2053
2054/**
2055 * Unbinds an object from the GTT aperture.
2056 */
2057int
2058i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2059{
2060 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2061 int ret = 0;
2062
2063 if (obj->gtt_space == NULL)
2064 return 0;
2065
2066 if (obj->pin_count)
2067 return -EBUSY;
2068
2069 ret = i915_gem_object_finish_gpu(obj);
2070 if (ret)
2071 return ret;
2072 /* Continue on if we fail due to EIO, the GPU is hung so we
2073 * should be safe and we need to cleanup or else we might
2074 * cause memory corruption through use-after-free.
2075 */
2076
2077 i915_gem_object_finish_gtt(obj);
2078
2079 /* Move the object to the CPU domain to ensure that
2080 * any possible CPU writes while it's not in the GTT
2081 * are flushed when we go to remap it.
2082 */
2083 if (ret == 0)
2084 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2085 if (ret == -ERESTARTSYS)
2086 return ret;
2087 if (ret) {
2088 /* In the event of a disaster, abandon all caches and
2089 * hope for the best.
2090 */
2091 i915_gem_clflush_object(obj);
2092 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2093 }
2094
2095 /* release the fence reg _after_ flushing */
2096 ret = i915_gem_object_put_fence(obj);
2097 if (ret)
2098 return ret;
2099
2100 trace_i915_gem_object_unbind(obj);
2101
2102 if (obj->has_global_gtt_mapping)
2103 i915_gem_gtt_unbind_object(obj);
2104 if (obj->has_aliasing_ppgtt_mapping) {
2105 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2106 obj->has_aliasing_ppgtt_mapping = 0;
2107 }
2108 i915_gem_gtt_finish_object(obj);
2109
2110 i915_gem_object_put_pages_gtt(obj);
2111
2112 list_del_init(&obj->gtt_list);
2113 list_del_init(&obj->mm_list);
2114 /* Avoid an unnecessary call to unbind on rebind. */
2115 obj->map_and_fenceable = true;
2116
2117 drm_mm_put_block(obj->gtt_space);
2118 obj->gtt_space = NULL;
2119 obj->gtt_offset = 0;
2120
2121 if (i915_gem_object_is_purgeable(obj))
2122 i915_gem_object_truncate(obj);
2123
2124 return ret;
2125}
2126
2127int
2128i915_gem_flush_ring(struct intel_ring_buffer *ring,
2129 uint32_t invalidate_domains,
2130 uint32_t flush_domains)
2131{
2132 int ret;
2133
2134 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2135 return 0;
2136
2137 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2138
2139 ret = ring->flush(ring, invalidate_domains, flush_domains);
2140 if (ret)
2141 return ret;
2142
2143 if (flush_domains & I915_GEM_GPU_DOMAINS)
2144 i915_gem_process_flushing_list(ring, flush_domains);
2145
2146 return 0;
2147}
2148
2149static int i915_ring_idle(struct intel_ring_buffer *ring)
2150{
2151 int ret;
2152
2153 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2154 return 0;
2155
2156 if (!list_empty(&ring->gpu_write_list)) {
2157 ret = i915_gem_flush_ring(ring,
2158 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2159 if (ret)
2160 return ret;
2161 }
2162
2163 return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2164}
2165
2166int i915_gpu_idle(struct drm_device *dev)
2167{
2168 drm_i915_private_t *dev_priv = dev->dev_private;
2169 struct intel_ring_buffer *ring;
2170 int ret, i;
2171
2172 /* Flush everything onto the inactive list. */
2173 for_each_ring(ring, dev_priv, i) {
2174 ret = i915_ring_idle(ring);
2175 if (ret)
2176 return ret;
2177
2178 /* Is the device fubar? */
2179 if (WARN_ON(!list_empty(&ring->gpu_write_list)))
2180 return -EBUSY;
2181 }
2182
2183 return 0;
2184}
2185
2186static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2187 struct drm_i915_gem_object *obj)
2188{
2189 drm_i915_private_t *dev_priv = dev->dev_private;
2190 uint64_t val;
2191
2192 if (obj) {
2193 u32 size = obj->gtt_space->size;
2194
2195 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2196 0xfffff000) << 32;
2197 val |= obj->gtt_offset & 0xfffff000;
2198 val |= (uint64_t)((obj->stride / 128) - 1) <<
2199 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2200
2201 if (obj->tiling_mode == I915_TILING_Y)
2202 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2203 val |= I965_FENCE_REG_VALID;
2204 } else
2205 val = 0;
2206
2207 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2208 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2209}
2210
2211static void i965_write_fence_reg(struct drm_device *dev, int reg,
2212 struct drm_i915_gem_object *obj)
2213{
2214 drm_i915_private_t *dev_priv = dev->dev_private;
2215 uint64_t val;
2216
2217 if (obj) {
2218 u32 size = obj->gtt_space->size;
2219
2220 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2221 0xfffff000) << 32;
2222 val |= obj->gtt_offset & 0xfffff000;
2223 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2224 if (obj->tiling_mode == I915_TILING_Y)
2225 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2226 val |= I965_FENCE_REG_VALID;
2227 } else
2228 val = 0;
2229
2230 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2231 POSTING_READ(FENCE_REG_965_0 + reg * 8);
2232}
2233
2234static void i915_write_fence_reg(struct drm_device *dev, int reg,
2235 struct drm_i915_gem_object *obj)
2236{
2237 drm_i915_private_t *dev_priv = dev->dev_private;
2238 u32 val;
2239
2240 if (obj) {
2241 u32 size = obj->gtt_space->size;
2242 int pitch_val;
2243 int tile_width;
2244
2245 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2246 (size & -size) != size ||
2247 (obj->gtt_offset & (size - 1)),
2248 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2249 obj->gtt_offset, obj->map_and_fenceable, size);
2250
2251 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2252 tile_width = 128;
2253 else
2254 tile_width = 512;
2255
2256 /* Note: pitch better be a power of two tile widths */
2257 pitch_val = obj->stride / tile_width;
2258 pitch_val = ffs(pitch_val) - 1;
2259
2260 val = obj->gtt_offset;
2261 if (obj->tiling_mode == I915_TILING_Y)
2262 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2263 val |= I915_FENCE_SIZE_BITS(size);
2264 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2265 val |= I830_FENCE_REG_VALID;
2266 } else
2267 val = 0;
2268
2269 if (reg < 8)
2270 reg = FENCE_REG_830_0 + reg * 4;
2271 else
2272 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2273
2274 I915_WRITE(reg, val);
2275 POSTING_READ(reg);
2276}
2277
2278static void i830_write_fence_reg(struct drm_device *dev, int reg,
2279 struct drm_i915_gem_object *obj)
2280{
2281 drm_i915_private_t *dev_priv = dev->dev_private;
2282 uint32_t val;
2283
2284 if (obj) {
2285 u32 size = obj->gtt_space->size;
2286 uint32_t pitch_val;
2287
2288 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2289 (size & -size) != size ||
2290 (obj->gtt_offset & (size - 1)),
2291 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2292 obj->gtt_offset, size);
2293
2294 pitch_val = obj->stride / 128;
2295 pitch_val = ffs(pitch_val) - 1;
2296
2297 val = obj->gtt_offset;
2298 if (obj->tiling_mode == I915_TILING_Y)
2299 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2300 val |= I830_FENCE_SIZE_BITS(size);
2301 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2302 val |= I830_FENCE_REG_VALID;
2303 } else
2304 val = 0;
2305
2306 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2307 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2308}
2309
2310static void i915_gem_write_fence(struct drm_device *dev, int reg,
2311 struct drm_i915_gem_object *obj)
2312{
2313 switch (INTEL_INFO(dev)->gen) {
2314 case 7:
2315 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2316 case 5:
2317 case 4: i965_write_fence_reg(dev, reg, obj); break;
2318 case 3: i915_write_fence_reg(dev, reg, obj); break;
2319 case 2: i830_write_fence_reg(dev, reg, obj); break;
2320 default: break;
2321 }
2322}
2323
2324static inline int fence_number(struct drm_i915_private *dev_priv,
2325 struct drm_i915_fence_reg *fence)
2326{
2327 return fence - dev_priv->fence_regs;
2328}
2329
2330static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2331 struct drm_i915_fence_reg *fence,
2332 bool enable)
2333{
2334 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2335 int reg = fence_number(dev_priv, fence);
2336
2337 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2338
2339 if (enable) {
2340 obj->fence_reg = reg;
2341 fence->obj = obj;
2342 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2343 } else {
2344 obj->fence_reg = I915_FENCE_REG_NONE;
2345 fence->obj = NULL;
2346 list_del_init(&fence->lru_list);
2347 }
2348}
2349
2350static int
2351i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2352{
2353 int ret;
2354
2355 if (obj->fenced_gpu_access) {
2356 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2357 ret = i915_gem_flush_ring(obj->ring,
2358 0, obj->base.write_domain);
2359 if (ret)
2360 return ret;
2361 }
2362
2363 obj->fenced_gpu_access = false;
2364 }
2365
2366 if (obj->last_fenced_seqno) {
2367 ret = i915_wait_request(obj->ring, obj->last_fenced_seqno);
2368 if (ret)
2369 return ret;
2370
2371 obj->last_fenced_seqno = 0;
2372 }
2373
2374 /* Ensure that all CPU reads are completed before installing a fence
2375 * and all writes before removing the fence.
2376 */
2377 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2378 mb();
2379
2380 return 0;
2381}
2382
2383int
2384i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2385{
2386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2387 int ret;
2388
2389 ret = i915_gem_object_flush_fence(obj);
2390 if (ret)
2391 return ret;
2392
2393 if (obj->fence_reg == I915_FENCE_REG_NONE)
2394 return 0;
2395
2396 i915_gem_object_update_fence(obj,
2397 &dev_priv->fence_regs[obj->fence_reg],
2398 false);
2399 i915_gem_object_fence_lost(obj);
2400
2401 return 0;
2402}
2403
2404static struct drm_i915_fence_reg *
2405i915_find_fence_reg(struct drm_device *dev)
2406{
2407 struct drm_i915_private *dev_priv = dev->dev_private;
2408 struct drm_i915_fence_reg *reg, *avail;
2409 int i;
2410
2411 /* First try to find a free reg */
2412 avail = NULL;
2413 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2414 reg = &dev_priv->fence_regs[i];
2415 if (!reg->obj)
2416 return reg;
2417
2418 if (!reg->pin_count)
2419 avail = reg;
2420 }
2421
2422 if (avail == NULL)
2423 return NULL;
2424
2425 /* None available, try to steal one or wait for a user to finish */
2426 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2427 if (reg->pin_count)
2428 continue;
2429
2430 return reg;
2431 }
2432
2433 return NULL;
2434}
2435
2436/**
2437 * i915_gem_object_get_fence - set up fencing for an object
2438 * @obj: object to map through a fence reg
2439 *
2440 * When mapping objects through the GTT, userspace wants to be able to write
2441 * to them without having to worry about swizzling if the object is tiled.
2442 * This function walks the fence regs looking for a free one for @obj,
2443 * stealing one if it can't find any.
2444 *
2445 * It then sets up the reg based on the object's properties: address, pitch
2446 * and tiling format.
2447 *
2448 * For an untiled surface, this removes any existing fence.
2449 */
2450int
2451i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2452{
2453 struct drm_device *dev = obj->base.dev;
2454 struct drm_i915_private *dev_priv = dev->dev_private;
2455 bool enable = obj->tiling_mode != I915_TILING_NONE;
2456 struct drm_i915_fence_reg *reg;
2457 int ret;
2458
2459 /* Have we updated the tiling parameters upon the object and so
2460 * will need to serialise the write to the associated fence register?
2461 */
2462 if (obj->fence_dirty) {
2463 ret = i915_gem_object_flush_fence(obj);
2464 if (ret)
2465 return ret;
2466 }
2467
2468 /* Just update our place in the LRU if our fence is getting reused. */
2469 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2470 reg = &dev_priv->fence_regs[obj->fence_reg];
2471 if (!obj->fence_dirty) {
2472 list_move_tail(®->lru_list,
2473 &dev_priv->mm.fence_list);
2474 return 0;
2475 }
2476 } else if (enable) {
2477 reg = i915_find_fence_reg(dev);
2478 if (reg == NULL)
2479 return -EDEADLK;
2480
2481 if (reg->obj) {
2482 struct drm_i915_gem_object *old = reg->obj;
2483
2484 ret = i915_gem_object_flush_fence(old);
2485 if (ret)
2486 return ret;
2487
2488 i915_gem_object_fence_lost(old);
2489 }
2490 } else
2491 return 0;
2492
2493 i915_gem_object_update_fence(obj, reg, enable);
2494 obj->fence_dirty = false;
2495
2496 return 0;
2497}
2498
2499/**
2500 * Finds free space in the GTT aperture and binds the object there.
2501 */
2502static int
2503i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2504 unsigned alignment,
2505 bool map_and_fenceable)
2506{
2507 struct drm_device *dev = obj->base.dev;
2508 drm_i915_private_t *dev_priv = dev->dev_private;
2509 struct drm_mm_node *free_space;
2510 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2511 u32 size, fence_size, fence_alignment, unfenced_alignment;
2512 bool mappable, fenceable;
2513 int ret;
2514
2515 if (obj->madv != I915_MADV_WILLNEED) {
2516 DRM_ERROR("Attempting to bind a purgeable object\n");
2517 return -EINVAL;
2518 }
2519
2520 fence_size = i915_gem_get_gtt_size(dev,
2521 obj->base.size,
2522 obj->tiling_mode);
2523 fence_alignment = i915_gem_get_gtt_alignment(dev,
2524 obj->base.size,
2525 obj->tiling_mode);
2526 unfenced_alignment =
2527 i915_gem_get_unfenced_gtt_alignment(dev,
2528 obj->base.size,
2529 obj->tiling_mode);
2530
2531 if (alignment == 0)
2532 alignment = map_and_fenceable ? fence_alignment :
2533 unfenced_alignment;
2534 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2535 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2536 return -EINVAL;
2537 }
2538
2539 size = map_and_fenceable ? fence_size : obj->base.size;
2540
2541 /* If the object is bigger than the entire aperture, reject it early
2542 * before evicting everything in a vain attempt to find space.
2543 */
2544 if (obj->base.size >
2545 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2546 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2547 return -E2BIG;
2548 }
2549
2550 search_free:
2551 if (map_and_fenceable)
2552 free_space =
2553 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2554 size, alignment, 0,
2555 dev_priv->mm.gtt_mappable_end,
2556 0);
2557 else
2558 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2559 size, alignment, 0);
2560
2561 if (free_space != NULL) {
2562 if (map_and_fenceable)
2563 obj->gtt_space =
2564 drm_mm_get_block_range_generic(free_space,
2565 size, alignment, 0,
2566 dev_priv->mm.gtt_mappable_end,
2567 0);
2568 else
2569 obj->gtt_space =
2570 drm_mm_get_block(free_space, size, alignment);
2571 }
2572 if (obj->gtt_space == NULL) {
2573 /* If the gtt is empty and we're still having trouble
2574 * fitting our object in, we're out of memory.
2575 */
2576 ret = i915_gem_evict_something(dev, size, alignment,
2577 map_and_fenceable);
2578 if (ret)
2579 return ret;
2580
2581 goto search_free;
2582 }
2583
2584 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2585 if (ret) {
2586 drm_mm_put_block(obj->gtt_space);
2587 obj->gtt_space = NULL;
2588
2589 if (ret == -ENOMEM) {
2590 /* first try to reclaim some memory by clearing the GTT */
2591 ret = i915_gem_evict_everything(dev, false);
2592 if (ret) {
2593 /* now try to shrink everyone else */
2594 if (gfpmask) {
2595 gfpmask = 0;
2596 goto search_free;
2597 }
2598
2599 return -ENOMEM;
2600 }
2601
2602 goto search_free;
2603 }
2604
2605 return ret;
2606 }
2607
2608 ret = i915_gem_gtt_prepare_object(obj);
2609 if (ret) {
2610 i915_gem_object_put_pages_gtt(obj);
2611 drm_mm_put_block(obj->gtt_space);
2612 obj->gtt_space = NULL;
2613
2614 if (i915_gem_evict_everything(dev, false))
2615 return ret;
2616
2617 goto search_free;
2618 }
2619
2620 if (!dev_priv->mm.aliasing_ppgtt)
2621 i915_gem_gtt_bind_object(obj, obj->cache_level);
2622
2623 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2624 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2625
2626 /* Assert that the object is not currently in any GPU domain. As it
2627 * wasn't in the GTT, there shouldn't be any way it could have been in
2628 * a GPU cache
2629 */
2630 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2631 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2632
2633 obj->gtt_offset = obj->gtt_space->start;
2634
2635 fenceable =
2636 obj->gtt_space->size == fence_size &&
2637 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2638
2639 mappable =
2640 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2641
2642 obj->map_and_fenceable = mappable && fenceable;
2643
2644 trace_i915_gem_object_bind(obj, map_and_fenceable);
2645 return 0;
2646}
2647
2648void
2649i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2650{
2651 /* If we don't have a page list set up, then we're not pinned
2652 * to GPU, and we can ignore the cache flush because it'll happen
2653 * again at bind time.
2654 */
2655 if (obj->pages == NULL)
2656 return;
2657
2658 /* If the GPU is snooping the contents of the CPU cache,
2659 * we do not need to manually clear the CPU cache lines. However,
2660 * the caches are only snooped when the render cache is
2661 * flushed/invalidated. As we always have to emit invalidations
2662 * and flushes when moving into and out of the RENDER domain, correct
2663 * snooping behaviour occurs naturally as the result of our domain
2664 * tracking.
2665 */
2666 if (obj->cache_level != I915_CACHE_NONE)
2667 return;
2668
2669 trace_i915_gem_object_clflush(obj);
2670
2671 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2672}
2673
2674/** Flushes any GPU write domain for the object if it's dirty. */
2675static int
2676i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2677{
2678 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2679 return 0;
2680
2681 /* Queue the GPU write cache flushing we need. */
2682 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2683}
2684
2685/** Flushes the GTT write domain for the object if it's dirty. */
2686static void
2687i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2688{
2689 uint32_t old_write_domain;
2690
2691 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2692 return;
2693
2694 /* No actual flushing is required for the GTT write domain. Writes
2695 * to it immediately go to main memory as far as we know, so there's
2696 * no chipset flush. It also doesn't land in render cache.
2697 *
2698 * However, we do have to enforce the order so that all writes through
2699 * the GTT land before any writes to the device, such as updates to
2700 * the GATT itself.
2701 */
2702 wmb();
2703
2704 old_write_domain = obj->base.write_domain;
2705 obj->base.write_domain = 0;
2706
2707 trace_i915_gem_object_change_domain(obj,
2708 obj->base.read_domains,
2709 old_write_domain);
2710}
2711
2712/** Flushes the CPU write domain for the object if it's dirty. */
2713static void
2714i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2715{
2716 uint32_t old_write_domain;
2717
2718 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2719 return;
2720
2721 i915_gem_clflush_object(obj);
2722 intel_gtt_chipset_flush();
2723 old_write_domain = obj->base.write_domain;
2724 obj->base.write_domain = 0;
2725
2726 trace_i915_gem_object_change_domain(obj,
2727 obj->base.read_domains,
2728 old_write_domain);
2729}
2730
2731/**
2732 * Moves a single object to the GTT read, and possibly write domain.
2733 *
2734 * This function returns when the move is complete, including waiting on
2735 * flushes to occur.
2736 */
2737int
2738i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2739{
2740 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2741 uint32_t old_write_domain, old_read_domains;
2742 int ret;
2743
2744 /* Not valid to be called on unbound objects. */
2745 if (obj->gtt_space == NULL)
2746 return -EINVAL;
2747
2748 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2749 return 0;
2750
2751 ret = i915_gem_object_flush_gpu_write_domain(obj);
2752 if (ret)
2753 return ret;
2754
2755 if (obj->pending_gpu_write || write) {
2756 ret = i915_gem_object_wait_rendering(obj);
2757 if (ret)
2758 return ret;
2759 }
2760
2761 i915_gem_object_flush_cpu_write_domain(obj);
2762
2763 old_write_domain = obj->base.write_domain;
2764 old_read_domains = obj->base.read_domains;
2765
2766 /* It should now be out of any other write domains, and we can update
2767 * the domain values for our changes.
2768 */
2769 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2770 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2771 if (write) {
2772 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2773 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2774 obj->dirty = 1;
2775 }
2776
2777 trace_i915_gem_object_change_domain(obj,
2778 old_read_domains,
2779 old_write_domain);
2780
2781 /* And bump the LRU for this access */
2782 if (i915_gem_object_is_inactive(obj))
2783 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2784
2785 return 0;
2786}
2787
2788int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2789 enum i915_cache_level cache_level)
2790{
2791 struct drm_device *dev = obj->base.dev;
2792 drm_i915_private_t *dev_priv = dev->dev_private;
2793 int ret;
2794
2795 if (obj->cache_level == cache_level)
2796 return 0;
2797
2798 if (obj->pin_count) {
2799 DRM_DEBUG("can not change the cache level of pinned objects\n");
2800 return -EBUSY;
2801 }
2802
2803 if (obj->gtt_space) {
2804 ret = i915_gem_object_finish_gpu(obj);
2805 if (ret)
2806 return ret;
2807
2808 i915_gem_object_finish_gtt(obj);
2809
2810 /* Before SandyBridge, you could not use tiling or fence
2811 * registers with snooped memory, so relinquish any fences
2812 * currently pointing to our region in the aperture.
2813 */
2814 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2815 ret = i915_gem_object_put_fence(obj);
2816 if (ret)
2817 return ret;
2818 }
2819
2820 if (obj->has_global_gtt_mapping)
2821 i915_gem_gtt_bind_object(obj, cache_level);
2822 if (obj->has_aliasing_ppgtt_mapping)
2823 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2824 obj, cache_level);
2825 }
2826
2827 if (cache_level == I915_CACHE_NONE) {
2828 u32 old_read_domains, old_write_domain;
2829
2830 /* If we're coming from LLC cached, then we haven't
2831 * actually been tracking whether the data is in the
2832 * CPU cache or not, since we only allow one bit set
2833 * in obj->write_domain and have been skipping the clflushes.
2834 * Just set it to the CPU cache for now.
2835 */
2836 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2837 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2838
2839 old_read_domains = obj->base.read_domains;
2840 old_write_domain = obj->base.write_domain;
2841
2842 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2843 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2844
2845 trace_i915_gem_object_change_domain(obj,
2846 old_read_domains,
2847 old_write_domain);
2848 }
2849
2850 obj->cache_level = cache_level;
2851 return 0;
2852}
2853
2854/*
2855 * Prepare buffer for display plane (scanout, cursors, etc).
2856 * Can be called from an uninterruptible phase (modesetting) and allows
2857 * any flushes to be pipelined (for pageflips).
2858 */
2859int
2860i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2861 u32 alignment,
2862 struct intel_ring_buffer *pipelined)
2863{
2864 u32 old_read_domains, old_write_domain;
2865 int ret;
2866
2867 ret = i915_gem_object_flush_gpu_write_domain(obj);
2868 if (ret)
2869 return ret;
2870
2871 if (pipelined != obj->ring) {
2872 ret = i915_gem_object_sync(obj, pipelined);
2873 if (ret)
2874 return ret;
2875 }
2876
2877 /* The display engine is not coherent with the LLC cache on gen6. As
2878 * a result, we make sure that the pinning that is about to occur is
2879 * done with uncached PTEs. This is lowest common denominator for all
2880 * chipsets.
2881 *
2882 * However for gen6+, we could do better by using the GFDT bit instead
2883 * of uncaching, which would allow us to flush all the LLC-cached data
2884 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
2885 */
2886 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
2887 if (ret)
2888 return ret;
2889
2890 /* As the user may map the buffer once pinned in the display plane
2891 * (e.g. libkms for the bootup splash), we have to ensure that we
2892 * always use map_and_fenceable for all scanout buffers.
2893 */
2894 ret = i915_gem_object_pin(obj, alignment, true);
2895 if (ret)
2896 return ret;
2897
2898 i915_gem_object_flush_cpu_write_domain(obj);
2899
2900 old_write_domain = obj->base.write_domain;
2901 old_read_domains = obj->base.read_domains;
2902
2903 /* It should now be out of any other write domains, and we can update
2904 * the domain values for our changes.
2905 */
2906 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2907 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2908
2909 trace_i915_gem_object_change_domain(obj,
2910 old_read_domains,
2911 old_write_domain);
2912
2913 return 0;
2914}
2915
2916int
2917i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
2918{
2919 int ret;
2920
2921 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
2922 return 0;
2923
2924 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2925 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2926 if (ret)
2927 return ret;
2928 }
2929
2930 ret = i915_gem_object_wait_rendering(obj);
2931 if (ret)
2932 return ret;
2933
2934 /* Ensure that we invalidate the GPU's caches and TLBs. */
2935 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2936 return 0;
2937}
2938
2939/**
2940 * Moves a single object to the CPU read, and possibly write domain.
2941 *
2942 * This function returns when the move is complete, including waiting on
2943 * flushes to occur.
2944 */
2945int
2946i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
2947{
2948 uint32_t old_write_domain, old_read_domains;
2949 int ret;
2950
2951 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
2952 return 0;
2953
2954 ret = i915_gem_object_flush_gpu_write_domain(obj);
2955 if (ret)
2956 return ret;
2957
2958 if (write || obj->pending_gpu_write) {
2959 ret = i915_gem_object_wait_rendering(obj);
2960 if (ret)
2961 return ret;
2962 }
2963
2964 i915_gem_object_flush_gtt_write_domain(obj);
2965
2966 old_write_domain = obj->base.write_domain;
2967 old_read_domains = obj->base.read_domains;
2968
2969 /* Flush the CPU cache if it's still invalid. */
2970 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2971 i915_gem_clflush_object(obj);
2972
2973 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2974 }
2975
2976 /* It should now be out of any other write domains, and we can update
2977 * the domain values for our changes.
2978 */
2979 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2980
2981 /* If we're writing through the CPU, then the GPU read domains will
2982 * need to be invalidated at next use.
2983 */
2984 if (write) {
2985 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2986 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2987 }
2988
2989 trace_i915_gem_object_change_domain(obj,
2990 old_read_domains,
2991 old_write_domain);
2992
2993 return 0;
2994}
2995
2996/* Throttle our rendering by waiting until the ring has completed our requests
2997 * emitted over 20 msec ago.
2998 *
2999 * Note that if we were to use the current jiffies each time around the loop,
3000 * we wouldn't escape the function with any frames outstanding if the time to
3001 * render a frame was over 20ms.
3002 *
3003 * This should get us reasonable parallelism between CPU and GPU but also
3004 * relatively low latency when blocking on a particular request to finish.
3005 */
3006static int
3007i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3008{
3009 struct drm_i915_private *dev_priv = dev->dev_private;
3010 struct drm_i915_file_private *file_priv = file->driver_priv;
3011 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3012 struct drm_i915_gem_request *request;
3013 struct intel_ring_buffer *ring = NULL;
3014 u32 seqno = 0;
3015 int ret;
3016
3017 if (atomic_read(&dev_priv->mm.wedged))
3018 return -EIO;
3019
3020 spin_lock(&file_priv->mm.lock);
3021 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3022 if (time_after_eq(request->emitted_jiffies, recent_enough))
3023 break;
3024
3025 ring = request->ring;
3026 seqno = request->seqno;
3027 }
3028 spin_unlock(&file_priv->mm.lock);
3029
3030 if (seqno == 0)
3031 return 0;
3032
3033 ret = __wait_seqno(ring, seqno, true);
3034 if (ret == 0)
3035 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3036
3037 return ret;
3038}
3039
3040int
3041i915_gem_object_pin(struct drm_i915_gem_object *obj,
3042 uint32_t alignment,
3043 bool map_and_fenceable)
3044{
3045 int ret;
3046
3047 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3048 return -EBUSY;
3049
3050 if (obj->gtt_space != NULL) {
3051 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3052 (map_and_fenceable && !obj->map_and_fenceable)) {
3053 WARN(obj->pin_count,
3054 "bo is already pinned with incorrect alignment:"
3055 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3056 " obj->map_and_fenceable=%d\n",
3057 obj->gtt_offset, alignment,
3058 map_and_fenceable,
3059 obj->map_and_fenceable);
3060 ret = i915_gem_object_unbind(obj);
3061 if (ret)
3062 return ret;
3063 }
3064 }
3065
3066 if (obj->gtt_space == NULL) {
3067 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3068 map_and_fenceable);
3069 if (ret)
3070 return ret;
3071 }
3072
3073 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3074 i915_gem_gtt_bind_object(obj, obj->cache_level);
3075
3076 obj->pin_count++;
3077 obj->pin_mappable |= map_and_fenceable;
3078
3079 return 0;
3080}
3081
3082void
3083i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3084{
3085 BUG_ON(obj->pin_count == 0);
3086 BUG_ON(obj->gtt_space == NULL);
3087
3088 if (--obj->pin_count == 0)
3089 obj->pin_mappable = false;
3090}
3091
3092int
3093i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3094 struct drm_file *file)
3095{
3096 struct drm_i915_gem_pin *args = data;
3097 struct drm_i915_gem_object *obj;
3098 int ret;
3099
3100 ret = i915_mutex_lock_interruptible(dev);
3101 if (ret)
3102 return ret;
3103
3104 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3105 if (&obj->base == NULL) {
3106 ret = -ENOENT;
3107 goto unlock;
3108 }
3109
3110 if (obj->madv != I915_MADV_WILLNEED) {
3111 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3112 ret = -EINVAL;
3113 goto out;
3114 }
3115
3116 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3117 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3118 args->handle);
3119 ret = -EINVAL;
3120 goto out;
3121 }
3122
3123 obj->user_pin_count++;
3124 obj->pin_filp = file;
3125 if (obj->user_pin_count == 1) {
3126 ret = i915_gem_object_pin(obj, args->alignment, true);
3127 if (ret)
3128 goto out;
3129 }
3130
3131 /* XXX - flush the CPU caches for pinned objects
3132 * as the X server doesn't manage domains yet
3133 */
3134 i915_gem_object_flush_cpu_write_domain(obj);
3135 args->offset = obj->gtt_offset;
3136out:
3137 drm_gem_object_unreference(&obj->base);
3138unlock:
3139 mutex_unlock(&dev->struct_mutex);
3140 return ret;
3141}
3142
3143int
3144i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3145 struct drm_file *file)
3146{
3147 struct drm_i915_gem_pin *args = data;
3148 struct drm_i915_gem_object *obj;
3149 int ret;
3150
3151 ret = i915_mutex_lock_interruptible(dev);
3152 if (ret)
3153 return ret;
3154
3155 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3156 if (&obj->base == NULL) {
3157 ret = -ENOENT;
3158 goto unlock;
3159 }
3160
3161 if (obj->pin_filp != file) {
3162 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3163 args->handle);
3164 ret = -EINVAL;
3165 goto out;
3166 }
3167 obj->user_pin_count--;
3168 if (obj->user_pin_count == 0) {
3169 obj->pin_filp = NULL;
3170 i915_gem_object_unpin(obj);
3171 }
3172
3173out:
3174 drm_gem_object_unreference(&obj->base);
3175unlock:
3176 mutex_unlock(&dev->struct_mutex);
3177 return ret;
3178}
3179
3180int
3181i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3182 struct drm_file *file)
3183{
3184 struct drm_i915_gem_busy *args = data;
3185 struct drm_i915_gem_object *obj;
3186 int ret;
3187
3188 ret = i915_mutex_lock_interruptible(dev);
3189 if (ret)
3190 return ret;
3191
3192 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3193 if (&obj->base == NULL) {
3194 ret = -ENOENT;
3195 goto unlock;
3196 }
3197
3198 /* Count all active objects as busy, even if they are currently not used
3199 * by the gpu. Users of this interface expect objects to eventually
3200 * become non-busy without any further actions, therefore emit any
3201 * necessary flushes here.
3202 */
3203 args->busy = obj->active;
3204 if (args->busy) {
3205 /* Unconditionally flush objects, even when the gpu still uses this
3206 * object. Userspace calling this function indicates that it wants to
3207 * use this buffer rather sooner than later, so issuing the required
3208 * flush earlier is beneficial.
3209 */
3210 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3211 ret = i915_gem_flush_ring(obj->ring,
3212 0, obj->base.write_domain);
3213 } else {
3214 ret = i915_gem_check_olr(obj->ring,
3215 obj->last_rendering_seqno);
3216 }
3217
3218 /* Update the active list for the hardware's current position.
3219 * Otherwise this only updates on a delayed timer or when irqs
3220 * are actually unmasked, and our working set ends up being
3221 * larger than required.
3222 */
3223 i915_gem_retire_requests_ring(obj->ring);
3224
3225 args->busy = obj->active;
3226 }
3227
3228 drm_gem_object_unreference(&obj->base);
3229unlock:
3230 mutex_unlock(&dev->struct_mutex);
3231 return ret;
3232}
3233
3234int
3235i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3236 struct drm_file *file_priv)
3237{
3238 return i915_gem_ring_throttle(dev, file_priv);
3239}
3240
3241int
3242i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3243 struct drm_file *file_priv)
3244{
3245 struct drm_i915_gem_madvise *args = data;
3246 struct drm_i915_gem_object *obj;
3247 int ret;
3248
3249 switch (args->madv) {
3250 case I915_MADV_DONTNEED:
3251 case I915_MADV_WILLNEED:
3252 break;
3253 default:
3254 return -EINVAL;
3255 }
3256
3257 ret = i915_mutex_lock_interruptible(dev);
3258 if (ret)
3259 return ret;
3260
3261 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3262 if (&obj->base == NULL) {
3263 ret = -ENOENT;
3264 goto unlock;
3265 }
3266
3267 if (obj->pin_count) {
3268 ret = -EINVAL;
3269 goto out;
3270 }
3271
3272 if (obj->madv != __I915_MADV_PURGED)
3273 obj->madv = args->madv;
3274
3275 /* if the object is no longer bound, discard its backing storage */
3276 if (i915_gem_object_is_purgeable(obj) &&
3277 obj->gtt_space == NULL)
3278 i915_gem_object_truncate(obj);
3279
3280 args->retained = obj->madv != __I915_MADV_PURGED;
3281
3282out:
3283 drm_gem_object_unreference(&obj->base);
3284unlock:
3285 mutex_unlock(&dev->struct_mutex);
3286 return ret;
3287}
3288
3289struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3290 size_t size)
3291{
3292 struct drm_i915_private *dev_priv = dev->dev_private;
3293 struct drm_i915_gem_object *obj;
3294 struct address_space *mapping;
3295 u32 mask;
3296
3297 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3298 if (obj == NULL)
3299 return NULL;
3300
3301 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3302 kfree(obj);
3303 return NULL;
3304 }
3305
3306 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3307 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3308 /* 965gm cannot relocate objects above 4GiB. */
3309 mask &= ~__GFP_HIGHMEM;
3310 mask |= __GFP_DMA32;
3311 }
3312
3313 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3314 mapping_set_gfp_mask(mapping, mask);
3315
3316 i915_gem_info_add_obj(dev_priv, size);
3317
3318 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3319 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3320
3321 if (HAS_LLC(dev)) {
3322 /* On some devices, we can have the GPU use the LLC (the CPU
3323 * cache) for about a 10% performance improvement
3324 * compared to uncached. Graphics requests other than
3325 * display scanout are coherent with the CPU in
3326 * accessing this cache. This means in this mode we
3327 * don't need to clflush on the CPU side, and on the
3328 * GPU side we only need to flush internal caches to
3329 * get data visible to the CPU.
3330 *
3331 * However, we maintain the display planes as UC, and so
3332 * need to rebind when first used as such.
3333 */
3334 obj->cache_level = I915_CACHE_LLC;
3335 } else
3336 obj->cache_level = I915_CACHE_NONE;
3337
3338 obj->base.driver_private = NULL;
3339 obj->fence_reg = I915_FENCE_REG_NONE;
3340 INIT_LIST_HEAD(&obj->mm_list);
3341 INIT_LIST_HEAD(&obj->gtt_list);
3342 INIT_LIST_HEAD(&obj->ring_list);
3343 INIT_LIST_HEAD(&obj->exec_list);
3344 INIT_LIST_HEAD(&obj->gpu_write_list);
3345 obj->madv = I915_MADV_WILLNEED;
3346 /* Avoid an unnecessary call to unbind on the first bind. */
3347 obj->map_and_fenceable = true;
3348
3349 return obj;
3350}
3351
3352int i915_gem_init_object(struct drm_gem_object *obj)
3353{
3354 BUG();
3355
3356 return 0;
3357}
3358
3359void i915_gem_free_object(struct drm_gem_object *gem_obj)
3360{
3361 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3362 struct drm_device *dev = obj->base.dev;
3363 drm_i915_private_t *dev_priv = dev->dev_private;
3364
3365 trace_i915_gem_object_destroy(obj);
3366
3367 if (gem_obj->import_attach)
3368 drm_prime_gem_destroy(gem_obj, obj->sg_table);
3369
3370 if (obj->phys_obj)
3371 i915_gem_detach_phys_object(dev, obj);
3372
3373 obj->pin_count = 0;
3374 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3375 bool was_interruptible;
3376
3377 was_interruptible = dev_priv->mm.interruptible;
3378 dev_priv->mm.interruptible = false;
3379
3380 WARN_ON(i915_gem_object_unbind(obj));
3381
3382 dev_priv->mm.interruptible = was_interruptible;
3383 }
3384
3385 if (obj->base.map_list.map)
3386 drm_gem_free_mmap_offset(&obj->base);
3387
3388 drm_gem_object_release(&obj->base);
3389 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3390
3391 kfree(obj->bit_17);
3392 kfree(obj);
3393}
3394
3395int
3396i915_gem_idle(struct drm_device *dev)
3397{
3398 drm_i915_private_t *dev_priv = dev->dev_private;
3399 int ret;
3400
3401 mutex_lock(&dev->struct_mutex);
3402
3403 if (dev_priv->mm.suspended) {
3404 mutex_unlock(&dev->struct_mutex);
3405 return 0;
3406 }
3407
3408 ret = i915_gpu_idle(dev);
3409 if (ret) {
3410 mutex_unlock(&dev->struct_mutex);
3411 return ret;
3412 }
3413 i915_gem_retire_requests(dev);
3414
3415 /* Under UMS, be paranoid and evict. */
3416 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3417 i915_gem_evict_everything(dev, false);
3418
3419 i915_gem_reset_fences(dev);
3420
3421 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3422 * We need to replace this with a semaphore, or something.
3423 * And not confound mm.suspended!
3424 */
3425 dev_priv->mm.suspended = 1;
3426 del_timer_sync(&dev_priv->hangcheck_timer);
3427
3428 i915_kernel_lost_context(dev);
3429 i915_gem_cleanup_ringbuffer(dev);
3430
3431 mutex_unlock(&dev->struct_mutex);
3432
3433 /* Cancel the retire work handler, which should be idle now. */
3434 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3435
3436 return 0;
3437}
3438
3439void i915_gem_init_swizzling(struct drm_device *dev)
3440{
3441 drm_i915_private_t *dev_priv = dev->dev_private;
3442
3443 if (INTEL_INFO(dev)->gen < 5 ||
3444 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3445 return;
3446
3447 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3448 DISP_TILE_SURFACE_SWIZZLING);
3449
3450 if (IS_GEN5(dev))
3451 return;
3452
3453 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3454 if (IS_GEN6(dev))
3455 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3456 else
3457 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3458}
3459
3460void i915_gem_init_ppgtt(struct drm_device *dev)
3461{
3462 drm_i915_private_t *dev_priv = dev->dev_private;
3463 uint32_t pd_offset;
3464 struct intel_ring_buffer *ring;
3465 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3466 uint32_t __iomem *pd_addr;
3467 uint32_t pd_entry;
3468 int i;
3469
3470 if (!dev_priv->mm.aliasing_ppgtt)
3471 return;
3472
3473
3474 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3475 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3476 dma_addr_t pt_addr;
3477
3478 if (dev_priv->mm.gtt->needs_dmar)
3479 pt_addr = ppgtt->pt_dma_addr[i];
3480 else
3481 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3482
3483 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3484 pd_entry |= GEN6_PDE_VALID;
3485
3486 writel(pd_entry, pd_addr + i);
3487 }
3488 readl(pd_addr);
3489
3490 pd_offset = ppgtt->pd_offset;
3491 pd_offset /= 64; /* in cachelines, */
3492 pd_offset <<= 16;
3493
3494 if (INTEL_INFO(dev)->gen == 6) {
3495 uint32_t ecochk, gab_ctl, ecobits;
3496
3497 ecobits = I915_READ(GAC_ECO_BITS);
3498 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3499
3500 gab_ctl = I915_READ(GAB_CTL);
3501 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3502
3503 ecochk = I915_READ(GAM_ECOCHK);
3504 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3505 ECOCHK_PPGTT_CACHE64B);
3506 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3507 } else if (INTEL_INFO(dev)->gen >= 7) {
3508 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3509 /* GFX_MODE is per-ring on gen7+ */
3510 }
3511
3512 for_each_ring(ring, dev_priv, i) {
3513 if (INTEL_INFO(dev)->gen >= 7)
3514 I915_WRITE(RING_MODE_GEN7(ring),
3515 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3516
3517 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3518 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3519 }
3520}
3521
3522int
3523i915_gem_init_hw(struct drm_device *dev)
3524{
3525 drm_i915_private_t *dev_priv = dev->dev_private;
3526 int ret;
3527
3528 i915_gem_init_swizzling(dev);
3529
3530 ret = intel_init_render_ring_buffer(dev);
3531 if (ret)
3532 return ret;
3533
3534 if (HAS_BSD(dev)) {
3535 ret = intel_init_bsd_ring_buffer(dev);
3536 if (ret)
3537 goto cleanup_render_ring;
3538 }
3539
3540 if (HAS_BLT(dev)) {
3541 ret = intel_init_blt_ring_buffer(dev);
3542 if (ret)
3543 goto cleanup_bsd_ring;
3544 }
3545
3546 dev_priv->next_seqno = 1;
3547
3548 i915_gem_init_ppgtt(dev);
3549
3550 return 0;
3551
3552cleanup_bsd_ring:
3553 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3554cleanup_render_ring:
3555 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3556 return ret;
3557}
3558
3559static bool
3560intel_enable_ppgtt(struct drm_device *dev)
3561{
3562 if (i915_enable_ppgtt >= 0)
3563 return i915_enable_ppgtt;
3564
3565#ifdef CONFIG_INTEL_IOMMU
3566 /* Disable ppgtt on SNB if VT-d is on. */
3567 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3568 return false;
3569#endif
3570
3571 return true;
3572}
3573
3574int i915_gem_init(struct drm_device *dev)
3575{
3576 struct drm_i915_private *dev_priv = dev->dev_private;
3577 unsigned long gtt_size, mappable_size;
3578 int ret;
3579
3580 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3581 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3582
3583 mutex_lock(&dev->struct_mutex);
3584 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3585 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3586 * aperture accordingly when using aliasing ppgtt. */
3587 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3588
3589 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3590
3591 ret = i915_gem_init_aliasing_ppgtt(dev);
3592 if (ret) {
3593 mutex_unlock(&dev->struct_mutex);
3594 return ret;
3595 }
3596 } else {
3597 /* Let GEM Manage all of the aperture.
3598 *
3599 * However, leave one page at the end still bound to the scratch
3600 * page. There are a number of places where the hardware
3601 * apparently prefetches past the end of the object, and we've
3602 * seen multiple hangs with the GPU head pointer stuck in a
3603 * batchbuffer bound at the last page of the aperture. One page
3604 * should be enough to keep any prefetching inside of the
3605 * aperture.
3606 */
3607 i915_gem_init_global_gtt(dev, 0, mappable_size,
3608 gtt_size);
3609 }
3610
3611 ret = i915_gem_init_hw(dev);
3612 mutex_unlock(&dev->struct_mutex);
3613 if (ret) {
3614 i915_gem_cleanup_aliasing_ppgtt(dev);
3615 return ret;
3616 }
3617
3618 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3619 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3620 dev_priv->dri1.allow_batchbuffer = 1;
3621 return 0;
3622}
3623
3624void
3625i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3626{
3627 drm_i915_private_t *dev_priv = dev->dev_private;
3628 struct intel_ring_buffer *ring;
3629 int i;
3630
3631 for_each_ring(ring, dev_priv, i)
3632 intel_cleanup_ring_buffer(ring);
3633}
3634
3635int
3636i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3637 struct drm_file *file_priv)
3638{
3639 drm_i915_private_t *dev_priv = dev->dev_private;
3640 int ret;
3641
3642 if (drm_core_check_feature(dev, DRIVER_MODESET))
3643 return 0;
3644
3645 if (atomic_read(&dev_priv->mm.wedged)) {
3646 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3647 atomic_set(&dev_priv->mm.wedged, 0);
3648 }
3649
3650 mutex_lock(&dev->struct_mutex);
3651 dev_priv->mm.suspended = 0;
3652
3653 ret = i915_gem_init_hw(dev);
3654 if (ret != 0) {
3655 mutex_unlock(&dev->struct_mutex);
3656 return ret;
3657 }
3658
3659 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3660 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3661 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3662 mutex_unlock(&dev->struct_mutex);
3663
3664 ret = drm_irq_install(dev);
3665 if (ret)
3666 goto cleanup_ringbuffer;
3667
3668 return 0;
3669
3670cleanup_ringbuffer:
3671 mutex_lock(&dev->struct_mutex);
3672 i915_gem_cleanup_ringbuffer(dev);
3673 dev_priv->mm.suspended = 1;
3674 mutex_unlock(&dev->struct_mutex);
3675
3676 return ret;
3677}
3678
3679int
3680i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3681 struct drm_file *file_priv)
3682{
3683 if (drm_core_check_feature(dev, DRIVER_MODESET))
3684 return 0;
3685
3686 drm_irq_uninstall(dev);
3687 return i915_gem_idle(dev);
3688}
3689
3690void
3691i915_gem_lastclose(struct drm_device *dev)
3692{
3693 int ret;
3694
3695 if (drm_core_check_feature(dev, DRIVER_MODESET))
3696 return;
3697
3698 ret = i915_gem_idle(dev);
3699 if (ret)
3700 DRM_ERROR("failed to idle hardware: %d\n", ret);
3701}
3702
3703static void
3704init_ring_lists(struct intel_ring_buffer *ring)
3705{
3706 INIT_LIST_HEAD(&ring->active_list);
3707 INIT_LIST_HEAD(&ring->request_list);
3708 INIT_LIST_HEAD(&ring->gpu_write_list);
3709}
3710
3711void
3712i915_gem_load(struct drm_device *dev)
3713{
3714 int i;
3715 drm_i915_private_t *dev_priv = dev->dev_private;
3716
3717 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3718 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3719 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3720 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3721 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3722 for (i = 0; i < I915_NUM_RINGS; i++)
3723 init_ring_lists(&dev_priv->ring[i]);
3724 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3725 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3726 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3727 i915_gem_retire_work_handler);
3728 init_completion(&dev_priv->error_completion);
3729
3730 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3731 if (IS_GEN3(dev)) {
3732 I915_WRITE(MI_ARB_STATE,
3733 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
3734 }
3735
3736 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3737
3738 /* Old X drivers will take 0-2 for front, back, depth buffers */
3739 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3740 dev_priv->fence_reg_start = 3;
3741
3742 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3743 dev_priv->num_fence_regs = 16;
3744 else
3745 dev_priv->num_fence_regs = 8;
3746
3747 /* Initialize fence registers to zero */
3748 i915_gem_reset_fences(dev);
3749
3750 i915_gem_detect_bit_6_swizzle(dev);
3751 init_waitqueue_head(&dev_priv->pending_flip_queue);
3752
3753 dev_priv->mm.interruptible = true;
3754
3755 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3756 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3757 register_shrinker(&dev_priv->mm.inactive_shrinker);
3758}
3759
3760/*
3761 * Create a physically contiguous memory object for this object
3762 * e.g. for cursor + overlay regs
3763 */
3764static int i915_gem_init_phys_object(struct drm_device *dev,
3765 int id, int size, int align)
3766{
3767 drm_i915_private_t *dev_priv = dev->dev_private;
3768 struct drm_i915_gem_phys_object *phys_obj;
3769 int ret;
3770
3771 if (dev_priv->mm.phys_objs[id - 1] || !size)
3772 return 0;
3773
3774 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3775 if (!phys_obj)
3776 return -ENOMEM;
3777
3778 phys_obj->id = id;
3779
3780 phys_obj->handle = drm_pci_alloc(dev, size, align);
3781 if (!phys_obj->handle) {
3782 ret = -ENOMEM;
3783 goto kfree_obj;
3784 }
3785#ifdef CONFIG_X86
3786 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3787#endif
3788
3789 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3790
3791 return 0;
3792kfree_obj:
3793 kfree(phys_obj);
3794 return ret;
3795}
3796
3797static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3798{
3799 drm_i915_private_t *dev_priv = dev->dev_private;
3800 struct drm_i915_gem_phys_object *phys_obj;
3801
3802 if (!dev_priv->mm.phys_objs[id - 1])
3803 return;
3804
3805 phys_obj = dev_priv->mm.phys_objs[id - 1];
3806 if (phys_obj->cur_obj) {
3807 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3808 }
3809
3810#ifdef CONFIG_X86
3811 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3812#endif
3813 drm_pci_free(dev, phys_obj->handle);
3814 kfree(phys_obj);
3815 dev_priv->mm.phys_objs[id - 1] = NULL;
3816}
3817
3818void i915_gem_free_all_phys_object(struct drm_device *dev)
3819{
3820 int i;
3821
3822 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3823 i915_gem_free_phys_object(dev, i);
3824}
3825
3826void i915_gem_detach_phys_object(struct drm_device *dev,
3827 struct drm_i915_gem_object *obj)
3828{
3829 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3830 char *vaddr;
3831 int i;
3832 int page_count;
3833
3834 if (!obj->phys_obj)
3835 return;
3836 vaddr = obj->phys_obj->handle->vaddr;
3837
3838 page_count = obj->base.size / PAGE_SIZE;
3839 for (i = 0; i < page_count; i++) {
3840 struct page *page = shmem_read_mapping_page(mapping, i);
3841 if (!IS_ERR(page)) {
3842 char *dst = kmap_atomic(page);
3843 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3844 kunmap_atomic(dst);
3845
3846 drm_clflush_pages(&page, 1);
3847
3848 set_page_dirty(page);
3849 mark_page_accessed(page);
3850 page_cache_release(page);
3851 }
3852 }
3853 intel_gtt_chipset_flush();
3854
3855 obj->phys_obj->cur_obj = NULL;
3856 obj->phys_obj = NULL;
3857}
3858
3859int
3860i915_gem_attach_phys_object(struct drm_device *dev,
3861 struct drm_i915_gem_object *obj,
3862 int id,
3863 int align)
3864{
3865 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3866 drm_i915_private_t *dev_priv = dev->dev_private;
3867 int ret = 0;
3868 int page_count;
3869 int i;
3870
3871 if (id > I915_MAX_PHYS_OBJECT)
3872 return -EINVAL;
3873
3874 if (obj->phys_obj) {
3875 if (obj->phys_obj->id == id)
3876 return 0;
3877 i915_gem_detach_phys_object(dev, obj);
3878 }
3879
3880 /* create a new object */
3881 if (!dev_priv->mm.phys_objs[id - 1]) {
3882 ret = i915_gem_init_phys_object(dev, id,
3883 obj->base.size, align);
3884 if (ret) {
3885 DRM_ERROR("failed to init phys object %d size: %zu\n",
3886 id, obj->base.size);
3887 return ret;
3888 }
3889 }
3890
3891 /* bind to the object */
3892 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3893 obj->phys_obj->cur_obj = obj;
3894
3895 page_count = obj->base.size / PAGE_SIZE;
3896
3897 for (i = 0; i < page_count; i++) {
3898 struct page *page;
3899 char *dst, *src;
3900
3901 page = shmem_read_mapping_page(mapping, i);
3902 if (IS_ERR(page))
3903 return PTR_ERR(page);
3904
3905 src = kmap_atomic(page);
3906 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3907 memcpy(dst, src, PAGE_SIZE);
3908 kunmap_atomic(src);
3909
3910 mark_page_accessed(page);
3911 page_cache_release(page);
3912 }
3913
3914 return 0;
3915}
3916
3917static int
3918i915_gem_phys_pwrite(struct drm_device *dev,
3919 struct drm_i915_gem_object *obj,
3920 struct drm_i915_gem_pwrite *args,
3921 struct drm_file *file_priv)
3922{
3923 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
3924 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
3925
3926 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
3927 unsigned long unwritten;
3928
3929 /* The physical object once assigned is fixed for the lifetime
3930 * of the obj, so we can safely drop the lock and continue
3931 * to access vaddr.
3932 */
3933 mutex_unlock(&dev->struct_mutex);
3934 unwritten = copy_from_user(vaddr, user_data, args->size);
3935 mutex_lock(&dev->struct_mutex);
3936 if (unwritten)
3937 return -EFAULT;
3938 }
3939
3940 intel_gtt_chipset_flush();
3941 return 0;
3942}
3943
3944void i915_gem_release(struct drm_device *dev, struct drm_file *file)
3945{
3946 struct drm_i915_file_private *file_priv = file->driver_priv;
3947
3948 /* Clean up our request list when the client is going away, so that
3949 * later retire_requests won't dereference our soon-to-be-gone
3950 * file_priv.
3951 */
3952 spin_lock(&file_priv->mm.lock);
3953 while (!list_empty(&file_priv->mm.request_list)) {
3954 struct drm_i915_gem_request *request;
3955
3956 request = list_first_entry(&file_priv->mm.request_list,
3957 struct drm_i915_gem_request,
3958 client_list);
3959 list_del(&request->client_list);
3960 request->file_priv = NULL;
3961 }
3962 spin_unlock(&file_priv->mm.lock);
3963}
3964
3965static int
3966i915_gpu_is_active(struct drm_device *dev)
3967{
3968 drm_i915_private_t *dev_priv = dev->dev_private;
3969 int lists_empty;
3970
3971 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
3972 list_empty(&dev_priv->mm.active_list);
3973
3974 return !lists_empty;
3975}
3976
3977static int
3978i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
3979{
3980 struct drm_i915_private *dev_priv =
3981 container_of(shrinker,
3982 struct drm_i915_private,
3983 mm.inactive_shrinker);
3984 struct drm_device *dev = dev_priv->dev;
3985 struct drm_i915_gem_object *obj, *next;
3986 int nr_to_scan = sc->nr_to_scan;
3987 int cnt;
3988
3989 if (!mutex_trylock(&dev->struct_mutex))
3990 return 0;
3991
3992 /* "fast-path" to count number of available objects */
3993 if (nr_to_scan == 0) {
3994 cnt = 0;
3995 list_for_each_entry(obj,
3996 &dev_priv->mm.inactive_list,
3997 mm_list)
3998 cnt++;
3999 mutex_unlock(&dev->struct_mutex);
4000 return cnt / 100 * sysctl_vfs_cache_pressure;
4001 }
4002
4003rescan:
4004 /* first scan for clean buffers */
4005 i915_gem_retire_requests(dev);
4006
4007 list_for_each_entry_safe(obj, next,
4008 &dev_priv->mm.inactive_list,
4009 mm_list) {
4010 if (i915_gem_object_is_purgeable(obj)) {
4011 if (i915_gem_object_unbind(obj) == 0 &&
4012 --nr_to_scan == 0)
4013 break;
4014 }
4015 }
4016
4017 /* second pass, evict/count anything still on the inactive list */
4018 cnt = 0;
4019 list_for_each_entry_safe(obj, next,
4020 &dev_priv->mm.inactive_list,
4021 mm_list) {
4022 if (nr_to_scan &&
4023 i915_gem_object_unbind(obj) == 0)
4024 nr_to_scan--;
4025 else
4026 cnt++;
4027 }
4028
4029 if (nr_to_scan && i915_gpu_is_active(dev)) {
4030 /*
4031 * We are desperate for pages, so as a last resort, wait
4032 * for the GPU to finish and discard whatever we can.
4033 * This has a dramatic impact to reduce the number of
4034 * OOM-killer events whilst running the GPU aggressively.
4035 */
4036 if (i915_gpu_idle(dev) == 0)
4037 goto rescan;
4038 }
4039 mutex_unlock(&dev->struct_mutex);
4040 return cnt / 100 * sysctl_vfs_cache_pressure;
4041}