Linux Audio

Check our new training course

Loading...
v5.4
 
   1/*
   2 * inode.c
   3 *
   4 * PURPOSE
   5 *  Inode handling routines for the OSTA-UDF(tm) filesystem.
   6 *
   7 * COPYRIGHT
   8 *  This file is distributed under the terms of the GNU General Public
   9 *  License (GPL). Copies of the GPL can be obtained from:
  10 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
  11 *  Each contributing author retains all rights to their own work.
  12 *
  13 *  (C) 1998 Dave Boynton
  14 *  (C) 1998-2004 Ben Fennema
  15 *  (C) 1999-2000 Stelias Computing Inc
  16 *
  17 * HISTORY
  18 *
  19 *  10/04/98 dgb  Added rudimentary directory functions
  20 *  10/07/98      Fully working udf_block_map! It works!
  21 *  11/25/98      bmap altered to better support extents
  22 *  12/06/98 blf  partition support in udf_iget, udf_block_map
  23 *                and udf_read_inode
  24 *  12/12/98      rewrote udf_block_map to handle next extents and descs across
  25 *                block boundaries (which is not actually allowed)
  26 *  12/20/98      added support for strategy 4096
  27 *  03/07/99      rewrote udf_block_map (again)
  28 *                New funcs, inode_bmap, udf_next_aext
  29 *  04/19/99      Support for writing device EA's for major/minor #
  30 */
  31
  32#include "udfdecl.h"
  33#include <linux/mm.h>
  34#include <linux/module.h>
  35#include <linux/pagemap.h>
  36#include <linux/writeback.h>
  37#include <linux/slab.h>
  38#include <linux/crc-itu-t.h>
  39#include <linux/mpage.h>
  40#include <linux/uio.h>
  41#include <linux/bio.h>
  42
  43#include "udf_i.h"
  44#include "udf_sb.h"
  45
  46#define EXTENT_MERGE_SIZE 5
  47
  48#define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
  49			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
  50			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
  51
  52#define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
  53			 FE_PERM_O_DELETE)
  54
 
 
  55static umode_t udf_convert_permissions(struct fileEntry *);
  56static int udf_update_inode(struct inode *, int);
  57static int udf_sync_inode(struct inode *inode);
  58static int udf_alloc_i_data(struct inode *inode, size_t size);
  59static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
  60static int8_t udf_insert_aext(struct inode *, struct extent_position,
  61			      struct kernel_lb_addr, uint32_t);
  62static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
  63			      struct kernel_long_ad *, int *);
  64static void udf_prealloc_extents(struct inode *, int, int,
  65				 struct kernel_long_ad *, int *);
  66static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
  67static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
  68			       int, struct extent_position *);
  69static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
 
  70
  71static void __udf_clear_extent_cache(struct inode *inode)
  72{
  73	struct udf_inode_info *iinfo = UDF_I(inode);
  74
  75	if (iinfo->cached_extent.lstart != -1) {
  76		brelse(iinfo->cached_extent.epos.bh);
  77		iinfo->cached_extent.lstart = -1;
  78	}
  79}
  80
  81/* Invalidate extent cache */
  82static void udf_clear_extent_cache(struct inode *inode)
  83{
  84	struct udf_inode_info *iinfo = UDF_I(inode);
  85
  86	spin_lock(&iinfo->i_extent_cache_lock);
  87	__udf_clear_extent_cache(inode);
  88	spin_unlock(&iinfo->i_extent_cache_lock);
  89}
  90
  91/* Return contents of extent cache */
  92static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
  93				 loff_t *lbcount, struct extent_position *pos)
  94{
  95	struct udf_inode_info *iinfo = UDF_I(inode);
  96	int ret = 0;
  97
  98	spin_lock(&iinfo->i_extent_cache_lock);
  99	if ((iinfo->cached_extent.lstart <= bcount) &&
 100	    (iinfo->cached_extent.lstart != -1)) {
 101		/* Cache hit */
 102		*lbcount = iinfo->cached_extent.lstart;
 103		memcpy(pos, &iinfo->cached_extent.epos,
 104		       sizeof(struct extent_position));
 105		if (pos->bh)
 106			get_bh(pos->bh);
 107		ret = 1;
 108	}
 109	spin_unlock(&iinfo->i_extent_cache_lock);
 110	return ret;
 111}
 112
 113/* Add extent to extent cache */
 114static void udf_update_extent_cache(struct inode *inode, loff_t estart,
 115				    struct extent_position *pos)
 116{
 117	struct udf_inode_info *iinfo = UDF_I(inode);
 118
 119	spin_lock(&iinfo->i_extent_cache_lock);
 120	/* Invalidate previously cached extent */
 121	__udf_clear_extent_cache(inode);
 122	if (pos->bh)
 123		get_bh(pos->bh);
 124	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
 125	iinfo->cached_extent.lstart = estart;
 126	switch (iinfo->i_alloc_type) {
 127	case ICBTAG_FLAG_AD_SHORT:
 128		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
 129		break;
 130	case ICBTAG_FLAG_AD_LONG:
 131		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
 132		break;
 133	}
 134	spin_unlock(&iinfo->i_extent_cache_lock);
 135}
 136
 137void udf_evict_inode(struct inode *inode)
 138{
 139	struct udf_inode_info *iinfo = UDF_I(inode);
 140	int want_delete = 0;
 141
 142	if (!inode->i_nlink && !is_bad_inode(inode)) {
 143		want_delete = 1;
 144		udf_setsize(inode, 0);
 145		udf_update_inode(inode, IS_SYNC(inode));
 
 
 
 
 
 
 
 
 
 
 146	}
 147	truncate_inode_pages_final(&inode->i_data);
 148	invalidate_inode_buffers(inode);
 149	clear_inode(inode);
 150	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
 151	    inode->i_size != iinfo->i_lenExtents) {
 152		udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
 153			 inode->i_ino, inode->i_mode,
 154			 (unsigned long long)inode->i_size,
 155			 (unsigned long long)iinfo->i_lenExtents);
 156	}
 157	kfree(iinfo->i_ext.i_data);
 158	iinfo->i_ext.i_data = NULL;
 159	udf_clear_extent_cache(inode);
 160	if (want_delete) {
 161		udf_free_inode(inode);
 162	}
 163}
 164
 165static void udf_write_failed(struct address_space *mapping, loff_t to)
 166{
 167	struct inode *inode = mapping->host;
 168	struct udf_inode_info *iinfo = UDF_I(inode);
 169	loff_t isize = inode->i_size;
 170
 171	if (to > isize) {
 172		truncate_pagecache(inode, isize);
 173		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
 174			down_write(&iinfo->i_data_sem);
 175			udf_clear_extent_cache(inode);
 176			udf_truncate_extents(inode);
 177			up_write(&iinfo->i_data_sem);
 178		}
 179	}
 180}
 181
 182static int udf_writepage(struct page *page, struct writeback_control *wbc)
 
 183{
 184	return block_write_full_page(page, udf_get_block, wbc);
 
 
 
 
 
 
 
 
 
 
 185}
 186
 187static int udf_writepages(struct address_space *mapping,
 188			struct writeback_control *wbc)
 
 
 
 
 
 
 
 
 
 
 189{
 190	return mpage_writepages(mapping, wbc, udf_get_block);
 
 
 
 
 
 
 
 
 
 
 191}
 192
 193static int udf_readpage(struct file *file, struct page *page)
 194{
 195	return mpage_readpage(page, udf_get_block);
 
 
 
 
 
 
 
 196}
 197
 198static int udf_readpages(struct file *file, struct address_space *mapping,
 199			struct list_head *pages, unsigned nr_pages)
 200{
 201	return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
 
 
 
 
 
 
 
 
 
 202}
 203
 204static int udf_write_begin(struct file *file, struct address_space *mapping,
 205			loff_t pos, unsigned len, unsigned flags,
 206			struct page **pagep, void **fsdata)
 207{
 
 
 208	int ret;
 209
 210	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
 211	if (unlikely(ret))
 212		udf_write_failed(mapping, pos + len);
 213	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 214}
 215
 216static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 217{
 218	struct file *file = iocb->ki_filp;
 219	struct address_space *mapping = file->f_mapping;
 220	struct inode *inode = mapping->host;
 221	size_t count = iov_iter_count(iter);
 222	ssize_t ret;
 223
 
 
 
 224	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
 225	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
 226		udf_write_failed(mapping, iocb->ki_pos + count);
 227	return ret;
 228}
 229
 230static sector_t udf_bmap(struct address_space *mapping, sector_t block)
 231{
 
 
 
 
 232	return generic_block_bmap(mapping, block, udf_get_block);
 233}
 234
 235const struct address_space_operations udf_aops = {
 236	.readpage	= udf_readpage,
 237	.readpages	= udf_readpages,
 238	.writepage	= udf_writepage,
 
 239	.writepages	= udf_writepages,
 240	.write_begin	= udf_write_begin,
 241	.write_end	= generic_write_end,
 242	.direct_IO	= udf_direct_IO,
 243	.bmap		= udf_bmap,
 
 244};
 245
 246/*
 247 * Expand file stored in ICB to a normal one-block-file
 248 *
 249 * This function requires i_data_sem for writing and releases it.
 250 * This function requires i_mutex held
 251 */
 252int udf_expand_file_adinicb(struct inode *inode)
 253{
 254	struct page *page;
 255	char *kaddr;
 256	struct udf_inode_info *iinfo = UDF_I(inode);
 257	int err;
 258	struct writeback_control udf_wbc = {
 259		.sync_mode = WB_SYNC_NONE,
 260		.nr_to_write = 1,
 261	};
 262
 263	WARN_ON_ONCE(!inode_is_locked(inode));
 264	if (!iinfo->i_lenAlloc) {
 
 265		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 266			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 267		else
 268			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 269		/* from now on we have normal address_space methods */
 270		inode->i_data.a_ops = &udf_aops;
 271		up_write(&iinfo->i_data_sem);
 272		mark_inode_dirty(inode);
 273		return 0;
 274	}
 275	/*
 276	 * Release i_data_sem so that we can lock a page - page lock ranks
 277	 * above i_data_sem. i_mutex still protects us against file changes.
 278	 */
 279	up_write(&iinfo->i_data_sem);
 280
 281	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
 282	if (!page)
 283		return -ENOMEM;
 
 284
 285	if (!PageUptodate(page)) {
 286		kaddr = kmap_atomic(page);
 287		memset(kaddr + iinfo->i_lenAlloc, 0x00,
 288		       PAGE_SIZE - iinfo->i_lenAlloc);
 289		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
 290			iinfo->i_lenAlloc);
 291		flush_dcache_page(page);
 292		SetPageUptodate(page);
 293		kunmap_atomic(kaddr);
 294	}
 295	down_write(&iinfo->i_data_sem);
 296	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
 297	       iinfo->i_lenAlloc);
 298	iinfo->i_lenAlloc = 0;
 299	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 300		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 301	else
 302		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 303	/* from now on we have normal address_space methods */
 304	inode->i_data.a_ops = &udf_aops;
 305	up_write(&iinfo->i_data_sem);
 306	err = inode->i_data.a_ops->writepage(page, &udf_wbc);
 307	if (err) {
 308		/* Restore everything back so that we don't lose data... */
 309		lock_page(page);
 310		down_write(&iinfo->i_data_sem);
 311		kaddr = kmap_atomic(page);
 312		memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
 313		       inode->i_size);
 314		kunmap_atomic(kaddr);
 315		unlock_page(page);
 316		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 317		inode->i_data.a_ops = &udf_adinicb_aops;
 318		up_write(&iinfo->i_data_sem);
 319	}
 320	put_page(page);
 321	mark_inode_dirty(inode);
 322
 323	return err;
 324}
 325
 326struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
 327					    udf_pblk_t *block, int *err)
 328{
 329	udf_pblk_t newblock;
 330	struct buffer_head *dbh = NULL;
 331	struct kernel_lb_addr eloc;
 332	uint8_t alloctype;
 333	struct extent_position epos;
 334
 335	struct udf_fileident_bh sfibh, dfibh;
 336	loff_t f_pos = udf_ext0_offset(inode);
 337	int size = udf_ext0_offset(inode) + inode->i_size;
 338	struct fileIdentDesc cfi, *sfi, *dfi;
 339	struct udf_inode_info *iinfo = UDF_I(inode);
 340
 341	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 342		alloctype = ICBTAG_FLAG_AD_SHORT;
 343	else
 344		alloctype = ICBTAG_FLAG_AD_LONG;
 345
 346	if (!inode->i_size) {
 347		iinfo->i_alloc_type = alloctype;
 348		mark_inode_dirty(inode);
 349		return NULL;
 350	}
 351
 352	/* alloc block, and copy data to it */
 353	*block = udf_new_block(inode->i_sb, inode,
 354			       iinfo->i_location.partitionReferenceNum,
 355			       iinfo->i_location.logicalBlockNum, err);
 356	if (!(*block))
 357		return NULL;
 358	newblock = udf_get_pblock(inode->i_sb, *block,
 359				  iinfo->i_location.partitionReferenceNum,
 360				0);
 361	if (!newblock)
 362		return NULL;
 363	dbh = udf_tgetblk(inode->i_sb, newblock);
 364	if (!dbh)
 365		return NULL;
 366	lock_buffer(dbh);
 367	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
 368	set_buffer_uptodate(dbh);
 369	unlock_buffer(dbh);
 370	mark_buffer_dirty_inode(dbh, inode);
 371
 372	sfibh.soffset = sfibh.eoffset =
 373			f_pos & (inode->i_sb->s_blocksize - 1);
 374	sfibh.sbh = sfibh.ebh = NULL;
 375	dfibh.soffset = dfibh.eoffset = 0;
 376	dfibh.sbh = dfibh.ebh = dbh;
 377	while (f_pos < size) {
 378		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 379		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
 380					 NULL, NULL, NULL);
 381		if (!sfi) {
 382			brelse(dbh);
 383			return NULL;
 384		}
 385		iinfo->i_alloc_type = alloctype;
 386		sfi->descTag.tagLocation = cpu_to_le32(*block);
 387		dfibh.soffset = dfibh.eoffset;
 388		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
 389		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
 390		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
 391				 sfi->fileIdent +
 392					le16_to_cpu(sfi->lengthOfImpUse))) {
 393			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 394			brelse(dbh);
 395			return NULL;
 396		}
 397	}
 398	mark_buffer_dirty_inode(dbh, inode);
 399
 400	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
 401		iinfo->i_lenAlloc);
 402	iinfo->i_lenAlloc = 0;
 403	eloc.logicalBlockNum = *block;
 404	eloc.partitionReferenceNum =
 405				iinfo->i_location.partitionReferenceNum;
 406	iinfo->i_lenExtents = inode->i_size;
 407	epos.bh = NULL;
 408	epos.block = iinfo->i_location;
 409	epos.offset = udf_file_entry_alloc_offset(inode);
 410	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
 411	/* UniqueID stuff */
 412
 413	brelse(epos.bh);
 414	mark_inode_dirty(inode);
 415	return dbh;
 416}
 417
 418static int udf_get_block(struct inode *inode, sector_t block,
 419			 struct buffer_head *bh_result, int create)
 420{
 421	int err, new;
 422	sector_t phys = 0;
 423	struct udf_inode_info *iinfo;
 
 
 
 
 
 
 
 
 
 
 424
 425	if (!create) {
 426		phys = udf_block_map(inode, block);
 427		if (phys)
 428			map_bh(bh_result, inode->i_sb, phys);
 429		return 0;
 430	}
 431
 432	err = -EIO;
 433	new = 0;
 434	iinfo = UDF_I(inode);
 435
 436	down_write(&iinfo->i_data_sem);
 437	if (block == iinfo->i_next_alloc_block + 1) {
 438		iinfo->i_next_alloc_block++;
 439		iinfo->i_next_alloc_goal++;
 440	}
 441
 
 442	udf_clear_extent_cache(inode);
 443	phys = inode_getblk(inode, block, &err, &new);
 444	if (!phys)
 445		goto abort;
 446
 447	if (new)
 448		set_buffer_new(bh_result);
 449	map_bh(bh_result, inode->i_sb, phys);
 450
 451abort:
 452	up_write(&iinfo->i_data_sem);
 453	return err;
 454}
 455
 456static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
 457				      int create, int *err)
 458{
 459	struct buffer_head *bh;
 460	struct buffer_head dummy;
 
 
 
 461
 462	dummy.b_state = 0;
 463	dummy.b_blocknr = -1000;
 464	*err = udf_get_block(inode, block, &dummy, create);
 465	if (!*err && buffer_mapped(&dummy)) {
 466		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
 467		if (buffer_new(&dummy)) {
 468			lock_buffer(bh);
 469			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
 470			set_buffer_uptodate(bh);
 471			unlock_buffer(bh);
 472			mark_buffer_dirty_inode(bh, inode);
 473		}
 474		return bh;
 475	}
 
 
 476
 477	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 478}
 479
 480/* Extend the file with new blocks totaling 'new_block_bytes',
 481 * return the number of extents added
 482 */
 483static int udf_do_extend_file(struct inode *inode,
 484			      struct extent_position *last_pos,
 485			      struct kernel_long_ad *last_ext,
 486			      loff_t new_block_bytes)
 487{
 488	uint32_t add;
 489	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 490	struct super_block *sb = inode->i_sb;
 491	struct kernel_lb_addr prealloc_loc = {};
 492	uint32_t prealloc_len = 0;
 493	struct udf_inode_info *iinfo;
 494	int err;
 495
 496	/* The previous extent is fake and we should not extend by anything
 497	 * - there's nothing to do... */
 498	if (!new_block_bytes && fake)
 499		return 0;
 500
 501	iinfo = UDF_I(inode);
 502	/* Round the last extent up to a multiple of block size */
 503	if (last_ext->extLength & (sb->s_blocksize - 1)) {
 504		last_ext->extLength =
 505			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
 506			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
 507			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
 508		iinfo->i_lenExtents =
 509			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
 510			~(sb->s_blocksize - 1);
 511	}
 512
 513	/* Last extent are just preallocated blocks? */
 514	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 515						EXT_NOT_RECORDED_ALLOCATED) {
 516		/* Save the extent so that we can reattach it to the end */
 517		prealloc_loc = last_ext->extLocation;
 518		prealloc_len = last_ext->extLength;
 519		/* Mark the extent as a hole */
 520		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 521			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 522		last_ext->extLocation.logicalBlockNum = 0;
 523		last_ext->extLocation.partitionReferenceNum = 0;
 524	}
 525
 526	/* Can we merge with the previous extent? */
 527	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 528					EXT_NOT_RECORDED_NOT_ALLOCATED) {
 529		add = (1 << 30) - sb->s_blocksize -
 530			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 531		if (add > new_block_bytes)
 532			add = new_block_bytes;
 533		new_block_bytes -= add;
 534		last_ext->extLength += add;
 535	}
 536
 537	if (fake) {
 538		udf_add_aext(inode, last_pos, &last_ext->extLocation,
 539			     last_ext->extLength, 1);
 
 
 540		count++;
 541	} else {
 542		struct kernel_lb_addr tmploc;
 543		uint32_t tmplen;
 544
 545		udf_write_aext(inode, last_pos, &last_ext->extLocation,
 546				last_ext->extLength, 1);
 
 547		/*
 548		 * We've rewritten the last extent but there may be empty
 549		 * indirect extent after it - enter it.
 
 550		 */
 551		udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
 
 552	}
 
 553
 554	/* Managed to do everything necessary? */
 555	if (!new_block_bytes)
 556		goto out;
 557
 558	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
 559	last_ext->extLocation.logicalBlockNum = 0;
 560	last_ext->extLocation.partitionReferenceNum = 0;
 561	add = (1 << 30) - sb->s_blocksize;
 562	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
 563
 564	/* Create enough extents to cover the whole hole */
 565	while (new_block_bytes > add) {
 566		new_block_bytes -= add;
 567		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 568				   last_ext->extLength, 1);
 569		if (err)
 570			return err;
 
 571		count++;
 572	}
 573	if (new_block_bytes) {
 574		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 575			new_block_bytes;
 576		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 577				   last_ext->extLength, 1);
 578		if (err)
 579			return err;
 
 580		count++;
 581	}
 582
 583out:
 584	/* Do we have some preallocated blocks saved? */
 585	if (prealloc_len) {
 586		err = udf_add_aext(inode, last_pos, &prealloc_loc,
 587				   prealloc_len, 1);
 588		if (err)
 589			return err;
 590		last_ext->extLocation = prealloc_loc;
 591		last_ext->extLength = prealloc_len;
 592		count++;
 593	}
 594
 595	/* last_pos should point to the last written extent... */
 596	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 597		last_pos->offset -= sizeof(struct short_ad);
 598	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 599		last_pos->offset -= sizeof(struct long_ad);
 600	else
 601		return -EIO;
 602
 603	return count;
 
 
 
 
 
 604}
 605
 606/* Extend the final block of the file to final_block_len bytes */
 607static void udf_do_extend_final_block(struct inode *inode,
 608				      struct extent_position *last_pos,
 609				      struct kernel_long_ad *last_ext,
 610				      uint32_t final_block_len)
 611{
 612	struct super_block *sb = inode->i_sb;
 613	uint32_t added_bytes;
 614
 615	added_bytes = final_block_len -
 616		      (last_ext->extLength & (sb->s_blocksize - 1));
 
 
 
 
 
 617	last_ext->extLength += added_bytes;
 618	UDF_I(inode)->i_lenExtents += added_bytes;
 619
 620	udf_write_aext(inode, last_pos, &last_ext->extLocation,
 621			last_ext->extLength, 1);
 622}
 623
 624static int udf_extend_file(struct inode *inode, loff_t newsize)
 625{
 626
 627	struct extent_position epos;
 628	struct kernel_lb_addr eloc;
 629	uint32_t elen;
 630	int8_t etype;
 631	struct super_block *sb = inode->i_sb;
 632	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
 633	unsigned long partial_final_block;
 634	int adsize;
 635	struct udf_inode_info *iinfo = UDF_I(inode);
 636	struct kernel_long_ad extent;
 637	int err = 0;
 638	int within_final_block;
 639
 640	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 641		adsize = sizeof(struct short_ad);
 642	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 643		adsize = sizeof(struct long_ad);
 644	else
 645		BUG();
 646
 
 
 
 
 
 
 
 647	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
 648	within_final_block = (etype != -1);
 
 
 
 649
 650	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
 651	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
 652		/* File has no extents at all or has empty last
 653		 * indirect extent! Create a fake extent... */
 654		extent.extLocation.logicalBlockNum = 0;
 655		extent.extLocation.partitionReferenceNum = 0;
 656		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 657	} else {
 658		epos.offset -= adsize;
 659		etype = udf_next_aext(inode, &epos, &extent.extLocation,
 660				      &extent.extLength, 0);
 661		extent.extLength |= etype << 30;
 662	}
 663
 664	partial_final_block = newsize & (sb->s_blocksize - 1);
 
 665
 666	/* File has extent covering the new size (could happen when extending
 667	 * inside a block)?
 668	 */
 669	if (within_final_block) {
 670		/* Extending file within the last file block */
 671		udf_do_extend_final_block(inode, &epos, &extent,
 672					  partial_final_block);
 673	} else {
 674		loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
 675			     partial_final_block;
 676		err = udf_do_extend_file(inode, &epos, &extent, add);
 677	}
 678
 679	if (err < 0)
 680		goto out;
 681	err = 0;
 682	iinfo->i_lenExtents = newsize;
 683out:
 684	brelse(epos.bh);
 
 685	return err;
 686}
 687
 688static sector_t inode_getblk(struct inode *inode, sector_t block,
 689			     int *err, int *new)
 690{
 691	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
 692	struct extent_position prev_epos, cur_epos, next_epos;
 693	int count = 0, startnum = 0, endnum = 0;
 694	uint32_t elen = 0, tmpelen;
 695	struct kernel_lb_addr eloc, tmpeloc;
 696	int c = 1;
 697	loff_t lbcount = 0, b_off = 0;
 698	udf_pblk_t newblocknum, newblock;
 699	sector_t offset = 0;
 700	int8_t etype;
 701	struct udf_inode_info *iinfo = UDF_I(inode);
 702	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
 703	int lastblock = 0;
 704	bool isBeyondEOF;
 
 705
 706	*err = 0;
 707	*new = 0;
 708	prev_epos.offset = udf_file_entry_alloc_offset(inode);
 709	prev_epos.block = iinfo->i_location;
 710	prev_epos.bh = NULL;
 711	cur_epos = next_epos = prev_epos;
 712	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
 713
 714	/* find the extent which contains the block we are looking for.
 715	   alternate between laarr[0] and laarr[1] for locations of the
 716	   current extent, and the previous extent */
 717	do {
 718		if (prev_epos.bh != cur_epos.bh) {
 719			brelse(prev_epos.bh);
 720			get_bh(cur_epos.bh);
 721			prev_epos.bh = cur_epos.bh;
 722		}
 723		if (cur_epos.bh != next_epos.bh) {
 724			brelse(cur_epos.bh);
 725			get_bh(next_epos.bh);
 726			cur_epos.bh = next_epos.bh;
 727		}
 728
 729		lbcount += elen;
 730
 731		prev_epos.block = cur_epos.block;
 732		cur_epos.block = next_epos.block;
 733
 734		prev_epos.offset = cur_epos.offset;
 735		cur_epos.offset = next_epos.offset;
 736
 737		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
 738		if (etype == -1)
 739			break;
 740
 741		c = !c;
 742
 743		laarr[c].extLength = (etype << 30) | elen;
 744		laarr[c].extLocation = eloc;
 745
 746		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 747			pgoal = eloc.logicalBlockNum +
 748				((elen + inode->i_sb->s_blocksize - 1) >>
 749				 inode->i_sb->s_blocksize_bits);
 750
 751		count++;
 752	} while (lbcount + elen <= b_off);
 753
 754	b_off -= lbcount;
 755	offset = b_off >> inode->i_sb->s_blocksize_bits;
 756	/*
 757	 * Move prev_epos and cur_epos into indirect extent if we are at
 758	 * the pointer to it
 759	 */
 760	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
 761	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
 762
 763	/* if the extent is allocated and recorded, return the block
 764	   if the extent is not a multiple of the blocksize, round up */
 765
 766	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
 767		if (elen & (inode->i_sb->s_blocksize - 1)) {
 768			elen = EXT_RECORDED_ALLOCATED |
 769				((elen + inode->i_sb->s_blocksize - 1) &
 770				 ~(inode->i_sb->s_blocksize - 1));
 
 
 
 771			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
 772		}
 773		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
 
 774		goto out_free;
 775	}
 776
 777	/* Are we beyond EOF? */
 778	if (etype == -1) {
 779		int ret;
 780		loff_t hole_len;
 
 781		isBeyondEOF = true;
 782		if (count) {
 783			if (c)
 784				laarr[0] = laarr[1];
 785			startnum = 1;
 786		} else {
 787			/* Create a fake extent when there's not one */
 788			memset(&laarr[0].extLocation, 0x00,
 789				sizeof(struct kernel_lb_addr));
 790			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 791			/* Will udf_do_extend_file() create real extent from
 792			   a fake one? */
 793			startnum = (offset > 0);
 794		}
 795		/* Create extents for the hole between EOF and offset */
 796		hole_len = (loff_t)offset << inode->i_blkbits;
 797		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
 798		if (ret < 0) {
 799			*err = ret;
 800			newblock = 0;
 801			goto out_free;
 802		}
 803		c = 0;
 804		offset = 0;
 805		count += ret;
 806		/* We are not covered by a preallocated extent? */
 807		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
 808						EXT_NOT_RECORDED_ALLOCATED) {
 809			/* Is there any real extent? - otherwise we overwrite
 810			 * the fake one... */
 811			if (count)
 812				c = !c;
 813			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 814				inode->i_sb->s_blocksize;
 815			memset(&laarr[c].extLocation, 0x00,
 816				sizeof(struct kernel_lb_addr));
 817			count++;
 818		}
 819		endnum = c + 1;
 820		lastblock = 1;
 821	} else {
 822		isBeyondEOF = false;
 823		endnum = startnum = ((count > 2) ? 2 : count);
 824
 825		/* if the current extent is in position 0,
 826		   swap it with the previous */
 827		if (!c && count != 1) {
 828			laarr[2] = laarr[0];
 829			laarr[0] = laarr[1];
 830			laarr[1] = laarr[2];
 831			c = 1;
 832		}
 833
 834		/* if the current block is located in an extent,
 835		   read the next extent */
 836		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
 837		if (etype != -1) {
 838			laarr[c + 1].extLength = (etype << 30) | elen;
 839			laarr[c + 1].extLocation = eloc;
 840			count++;
 841			startnum++;
 842			endnum++;
 843		} else
 844			lastblock = 1;
 845	}
 846
 847	/* if the current extent is not recorded but allocated, get the
 848	 * block in the extent corresponding to the requested block */
 849	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 850		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
 851	else { /* otherwise, allocate a new block */
 852		if (iinfo->i_next_alloc_block == block)
 853			goal = iinfo->i_next_alloc_goal;
 854
 855		if (!goal) {
 856			if (!(goal = pgoal)) /* XXX: what was intended here? */
 857				goal = iinfo->i_location.logicalBlockNum + 1;
 858		}
 859
 860		newblocknum = udf_new_block(inode->i_sb, inode,
 861				iinfo->i_location.partitionReferenceNum,
 862				goal, err);
 863		if (!newblocknum) {
 864			*err = -ENOSPC;
 865			newblock = 0;
 866			goto out_free;
 867		}
 868		if (isBeyondEOF)
 869			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
 870	}
 871
 872	/* if the extent the requsted block is located in contains multiple
 873	 * blocks, split the extent into at most three extents. blocks prior
 874	 * to requested block, requested block, and blocks after requested
 875	 * block */
 876	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
 877
 878	/* We preallocate blocks only for regular files. It also makes sense
 879	 * for directories but there's a problem when to drop the
 880	 * preallocation. We might use some delayed work for that but I feel
 881	 * it's overengineering for a filesystem like UDF. */
 882	if (S_ISREG(inode->i_mode))
 883		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
 884
 885	/* merge any continuous blocks in laarr */
 886	udf_merge_extents(inode, laarr, &endnum);
 887
 888	/* write back the new extents, inserting new extents if the new number
 889	 * of extents is greater than the old number, and deleting extents if
 890	 * the new number of extents is less than the old number */
 891	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
 
 
 892
 893	newblock = udf_get_pblock(inode->i_sb, newblocknum,
 894				iinfo->i_location.partitionReferenceNum, 0);
 895	if (!newblock) {
 896		*err = -EIO;
 897		goto out_free;
 898	}
 899	*new = 1;
 900	iinfo->i_next_alloc_block = block;
 901	iinfo->i_next_alloc_goal = newblocknum;
 902	inode->i_ctime = current_time(inode);
 903
 904	if (IS_SYNC(inode))
 905		udf_sync_inode(inode);
 906	else
 907		mark_inode_dirty(inode);
 
 908out_free:
 909	brelse(prev_epos.bh);
 910	brelse(cur_epos.bh);
 911	brelse(next_epos.bh);
 912	return newblock;
 913}
 914
 915static void udf_split_extents(struct inode *inode, int *c, int offset,
 916			       udf_pblk_t newblocknum,
 917			       struct kernel_long_ad *laarr, int *endnum)
 918{
 919	unsigned long blocksize = inode->i_sb->s_blocksize;
 920	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 921
 922	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
 923	    (laarr[*c].extLength >> 30) ==
 924				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
 925		int curr = *c;
 926		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
 927			    blocksize - 1) >> blocksize_bits;
 928		int8_t etype = (laarr[curr].extLength >> 30);
 929
 930		if (blen == 1)
 931			;
 932		else if (!offset || blen == offset + 1) {
 933			laarr[curr + 2] = laarr[curr + 1];
 934			laarr[curr + 1] = laarr[curr];
 935		} else {
 936			laarr[curr + 3] = laarr[curr + 1];
 937			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
 938		}
 939
 940		if (offset) {
 941			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 942				udf_free_blocks(inode->i_sb, inode,
 943						&laarr[curr].extLocation,
 944						0, offset);
 945				laarr[curr].extLength =
 946					EXT_NOT_RECORDED_NOT_ALLOCATED |
 947					(offset << blocksize_bits);
 948				laarr[curr].extLocation.logicalBlockNum = 0;
 949				laarr[curr].extLocation.
 950						partitionReferenceNum = 0;
 951			} else
 952				laarr[curr].extLength = (etype << 30) |
 953					(offset << blocksize_bits);
 954			curr++;
 955			(*c)++;
 956			(*endnum)++;
 957		}
 958
 959		laarr[curr].extLocation.logicalBlockNum = newblocknum;
 960		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 961			laarr[curr].extLocation.partitionReferenceNum =
 962				UDF_I(inode)->i_location.partitionReferenceNum;
 963		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
 964			blocksize;
 965		curr++;
 966
 967		if (blen != offset + 1) {
 968			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 969				laarr[curr].extLocation.logicalBlockNum +=
 970								offset + 1;
 971			laarr[curr].extLength = (etype << 30) |
 972				((blen - (offset + 1)) << blocksize_bits);
 973			curr++;
 974			(*endnum)++;
 975		}
 976	}
 977}
 978
 979static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
 980				 struct kernel_long_ad *laarr,
 981				 int *endnum)
 982{
 983	int start, length = 0, currlength = 0, i;
 984
 985	if (*endnum >= (c + 1)) {
 986		if (!lastblock)
 987			return;
 988		else
 989			start = c;
 990	} else {
 991		if ((laarr[c + 1].extLength >> 30) ==
 992					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 993			start = c + 1;
 994			length = currlength =
 995				(((laarr[c + 1].extLength &
 996					UDF_EXTENT_LENGTH_MASK) +
 997				inode->i_sb->s_blocksize - 1) >>
 998				inode->i_sb->s_blocksize_bits);
 999		} else
1000			start = c;
1001	}
1002
1003	for (i = start + 1; i <= *endnum; i++) {
1004		if (i == *endnum) {
1005			if (lastblock)
1006				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1007		} else if ((laarr[i].extLength >> 30) ==
1008				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1009			length += (((laarr[i].extLength &
1010						UDF_EXTENT_LENGTH_MASK) +
1011				    inode->i_sb->s_blocksize - 1) >>
1012				    inode->i_sb->s_blocksize_bits);
1013		} else
1014			break;
1015	}
1016
1017	if (length) {
1018		int next = laarr[start].extLocation.logicalBlockNum +
1019			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1020			  inode->i_sb->s_blocksize - 1) >>
1021			  inode->i_sb->s_blocksize_bits);
1022		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1023				laarr[start].extLocation.partitionReferenceNum,
1024				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1025				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1026				currlength);
1027		if (numalloc) 	{
1028			if (start == (c + 1))
1029				laarr[start].extLength +=
1030					(numalloc <<
1031					 inode->i_sb->s_blocksize_bits);
1032			else {
1033				memmove(&laarr[c + 2], &laarr[c + 1],
1034					sizeof(struct long_ad) * (*endnum - (c + 1)));
1035				(*endnum)++;
1036				laarr[c + 1].extLocation.logicalBlockNum = next;
1037				laarr[c + 1].extLocation.partitionReferenceNum =
1038					laarr[c].extLocation.
1039							partitionReferenceNum;
1040				laarr[c + 1].extLength =
1041					EXT_NOT_RECORDED_ALLOCATED |
1042					(numalloc <<
1043					 inode->i_sb->s_blocksize_bits);
1044				start = c + 1;
1045			}
1046
1047			for (i = start + 1; numalloc && i < *endnum; i++) {
1048				int elen = ((laarr[i].extLength &
1049						UDF_EXTENT_LENGTH_MASK) +
1050					    inode->i_sb->s_blocksize - 1) >>
1051					    inode->i_sb->s_blocksize_bits;
1052
1053				if (elen > numalloc) {
1054					laarr[i].extLength -=
1055						(numalloc <<
1056						 inode->i_sb->s_blocksize_bits);
1057					numalloc = 0;
1058				} else {
1059					numalloc -= elen;
1060					if (*endnum > (i + 1))
1061						memmove(&laarr[i],
1062							&laarr[i + 1],
1063							sizeof(struct long_ad) *
1064							(*endnum - (i + 1)));
1065					i--;
1066					(*endnum)--;
1067				}
1068			}
1069			UDF_I(inode)->i_lenExtents +=
1070				numalloc << inode->i_sb->s_blocksize_bits;
1071		}
1072	}
1073}
1074
1075static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1076			      int *endnum)
1077{
1078	int i;
1079	unsigned long blocksize = inode->i_sb->s_blocksize;
1080	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1081
1082	for (i = 0; i < (*endnum - 1); i++) {
1083		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1084		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1085
1086		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1087			(((li->extLength >> 30) ==
1088				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1089			((lip1->extLocation.logicalBlockNum -
1090			  li->extLocation.logicalBlockNum) ==
1091			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1092			blocksize - 1) >> blocksize_bits)))) {
1093
1094			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1095				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1096				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1097				lip1->extLength = (lip1->extLength -
1098						  (li->extLength &
1099						   UDF_EXTENT_LENGTH_MASK) +
1100						   UDF_EXTENT_LENGTH_MASK) &
1101							~(blocksize - 1);
1102				li->extLength = (li->extLength &
1103						 UDF_EXTENT_FLAG_MASK) +
1104						(UDF_EXTENT_LENGTH_MASK + 1) -
1105						blocksize;
1106				lip1->extLocation.logicalBlockNum =
1107					li->extLocation.logicalBlockNum +
1108					((li->extLength &
1109						UDF_EXTENT_LENGTH_MASK) >>
1110						blocksize_bits);
1111			} else {
1112				li->extLength = lip1->extLength +
1113					(((li->extLength &
1114						UDF_EXTENT_LENGTH_MASK) +
1115					 blocksize - 1) & ~(blocksize - 1));
1116				if (*endnum > (i + 2))
1117					memmove(&laarr[i + 1], &laarr[i + 2],
1118						sizeof(struct long_ad) *
1119						(*endnum - (i + 2)));
1120				i--;
1121				(*endnum)--;
1122			}
1123		} else if (((li->extLength >> 30) ==
1124				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1125			   ((lip1->extLength >> 30) ==
1126				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1127			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1128					((li->extLength &
1129					  UDF_EXTENT_LENGTH_MASK) +
1130					 blocksize - 1) >> blocksize_bits);
1131			li->extLocation.logicalBlockNum = 0;
1132			li->extLocation.partitionReferenceNum = 0;
1133
1134			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1135			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1136			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1137				lip1->extLength = (lip1->extLength -
1138						   (li->extLength &
1139						   UDF_EXTENT_LENGTH_MASK) +
1140						   UDF_EXTENT_LENGTH_MASK) &
1141						   ~(blocksize - 1);
1142				li->extLength = (li->extLength &
1143						 UDF_EXTENT_FLAG_MASK) +
1144						(UDF_EXTENT_LENGTH_MASK + 1) -
1145						blocksize;
1146			} else {
1147				li->extLength = lip1->extLength +
1148					(((li->extLength &
1149						UDF_EXTENT_LENGTH_MASK) +
1150					  blocksize - 1) & ~(blocksize - 1));
1151				if (*endnum > (i + 2))
1152					memmove(&laarr[i + 1], &laarr[i + 2],
1153						sizeof(struct long_ad) *
1154						(*endnum - (i + 2)));
1155				i--;
1156				(*endnum)--;
1157			}
1158		} else if ((li->extLength >> 30) ==
1159					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1160			udf_free_blocks(inode->i_sb, inode,
1161					&li->extLocation, 0,
1162					((li->extLength &
1163						UDF_EXTENT_LENGTH_MASK) +
1164					 blocksize - 1) >> blocksize_bits);
1165			li->extLocation.logicalBlockNum = 0;
1166			li->extLocation.partitionReferenceNum = 0;
1167			li->extLength = (li->extLength &
1168						UDF_EXTENT_LENGTH_MASK) |
1169						EXT_NOT_RECORDED_NOT_ALLOCATED;
1170		}
1171	}
1172}
1173
1174static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1175			       int startnum, int endnum,
1176			       struct extent_position *epos)
1177{
1178	int start = 0, i;
1179	struct kernel_lb_addr tmploc;
1180	uint32_t tmplen;
 
1181
1182	if (startnum > endnum) {
1183		for (i = 0; i < (startnum - endnum); i++)
1184			udf_delete_aext(inode, *epos);
1185	} else if (startnum < endnum) {
1186		for (i = 0; i < (endnum - startnum); i++) {
1187			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1188					laarr[i].extLength);
 
 
 
 
 
 
 
 
1189			udf_next_aext(inode, epos, &laarr[i].extLocation,
1190				      &laarr[i].extLength, 1);
1191			start++;
1192		}
1193	}
1194
1195	for (i = start; i < endnum; i++) {
1196		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1197		udf_write_aext(inode, epos, &laarr[i].extLocation,
1198			       laarr[i].extLength, 1);
1199	}
 
1200}
1201
1202struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1203			      int create, int *err)
1204{
1205	struct buffer_head *bh = NULL;
 
 
 
 
1206
1207	bh = udf_getblk(inode, block, create, err);
1208	if (!bh)
1209		return NULL;
1210
1211	if (buffer_uptodate(bh))
 
 
 
 
 
 
 
 
 
 
1212		return bh;
 
1213
1214	ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1215
1216	wait_on_buffer(bh);
1217	if (buffer_uptodate(bh))
1218		return bh;
1219
1220	brelse(bh);
1221	*err = -EIO;
1222	return NULL;
1223}
1224
1225int udf_setsize(struct inode *inode, loff_t newsize)
1226{
1227	int err;
1228	struct udf_inode_info *iinfo;
1229	unsigned int bsize = i_blocksize(inode);
1230
1231	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1232	      S_ISLNK(inode->i_mode)))
1233		return -EINVAL;
1234	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1235		return -EPERM;
1236
 
1237	iinfo = UDF_I(inode);
1238	if (newsize > inode->i_size) {
1239		down_write(&iinfo->i_data_sem);
1240		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1241			if (bsize <
1242			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1243				err = udf_expand_file_adinicb(inode);
1244				if (err)
1245					return err;
1246				down_write(&iinfo->i_data_sem);
1247			} else {
1248				iinfo->i_lenAlloc = newsize;
 
1249				goto set_size;
1250			}
 
 
 
1251		}
1252		err = udf_extend_file(inode, newsize);
1253		if (err) {
1254			up_write(&iinfo->i_data_sem);
1255			return err;
1256		}
1257set_size:
1258		up_write(&iinfo->i_data_sem);
1259		truncate_setsize(inode, newsize);
1260	} else {
1261		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1262			down_write(&iinfo->i_data_sem);
1263			udf_clear_extent_cache(inode);
1264			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1265			       0x00, bsize - newsize -
1266			       udf_file_entry_alloc_offset(inode));
1267			iinfo->i_lenAlloc = newsize;
1268			truncate_setsize(inode, newsize);
1269			up_write(&iinfo->i_data_sem);
1270			goto update_time;
1271		}
1272		err = block_truncate_page(inode->i_mapping, newsize,
1273					  udf_get_block);
1274		if (err)
1275			return err;
1276		truncate_setsize(inode, newsize);
1277		down_write(&iinfo->i_data_sem);
1278		udf_clear_extent_cache(inode);
1279		err = udf_truncate_extents(inode);
1280		up_write(&iinfo->i_data_sem);
1281		if (err)
1282			return err;
1283	}
1284update_time:
1285	inode->i_mtime = inode->i_ctime = current_time(inode);
1286	if (IS_SYNC(inode))
1287		udf_sync_inode(inode);
1288	else
1289		mark_inode_dirty(inode);
1290	return 0;
 
 
1291}
1292
1293/*
1294 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1295 * arbitrary - just that we hopefully don't limit any real use of rewritten
1296 * inode on write-once media but avoid looping for too long on corrupted media.
1297 */
1298#define UDF_MAX_ICB_NESTING 1024
1299
1300static int udf_read_inode(struct inode *inode, bool hidden_inode)
1301{
1302	struct buffer_head *bh = NULL;
1303	struct fileEntry *fe;
1304	struct extendedFileEntry *efe;
1305	uint16_t ident;
1306	struct udf_inode_info *iinfo = UDF_I(inode);
1307	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1308	struct kernel_lb_addr *iloc = &iinfo->i_location;
1309	unsigned int link_count;
1310	unsigned int indirections = 0;
1311	int bs = inode->i_sb->s_blocksize;
1312	int ret = -EIO;
1313	uint32_t uid, gid;
 
1314
1315reread:
1316	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1317		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1318			  iloc->partitionReferenceNum, sbi->s_partitions);
1319		return -EIO;
1320	}
1321
1322	if (iloc->logicalBlockNum >=
1323	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1324		udf_debug("block=%u, partition=%u out of range\n",
1325			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1326		return -EIO;
1327	}
1328
1329	/*
1330	 * Set defaults, but the inode is still incomplete!
1331	 * Note: get_new_inode() sets the following on a new inode:
1332	 *      i_sb = sb
1333	 *      i_no = ino
1334	 *      i_flags = sb->s_flags
1335	 *      i_state = 0
1336	 * clean_inode(): zero fills and sets
1337	 *      i_count = 1
1338	 *      i_nlink = 1
1339	 *      i_op = NULL;
1340	 */
1341	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1342	if (!bh) {
1343		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1344		return -EIO;
1345	}
1346
1347	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1348	    ident != TAG_IDENT_USE) {
1349		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1350			inode->i_ino, ident);
1351		goto out;
1352	}
1353
1354	fe = (struct fileEntry *)bh->b_data;
1355	efe = (struct extendedFileEntry *)bh->b_data;
1356
1357	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1358		struct buffer_head *ibh;
1359
1360		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1361		if (ident == TAG_IDENT_IE && ibh) {
1362			struct kernel_lb_addr loc;
1363			struct indirectEntry *ie;
1364
1365			ie = (struct indirectEntry *)ibh->b_data;
1366			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1367
1368			if (ie->indirectICB.extLength) {
1369				brelse(ibh);
1370				memcpy(&iinfo->i_location, &loc,
1371				       sizeof(struct kernel_lb_addr));
1372				if (++indirections > UDF_MAX_ICB_NESTING) {
1373					udf_err(inode->i_sb,
1374						"too many ICBs in ICB hierarchy"
1375						" (max %d supported)\n",
1376						UDF_MAX_ICB_NESTING);
1377					goto out;
1378				}
1379				brelse(bh);
1380				goto reread;
1381			}
1382		}
1383		brelse(ibh);
1384	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1385		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1386			le16_to_cpu(fe->icbTag.strategyType));
1387		goto out;
1388	}
1389	if (fe->icbTag.strategyType == cpu_to_le16(4))
1390		iinfo->i_strat4096 = 0;
1391	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1392		iinfo->i_strat4096 = 1;
1393
1394	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1395							ICBTAG_FLAG_AD_MASK;
1396	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1397	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1398	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1399		ret = -EIO;
1400		goto out;
1401	}
 
1402	iinfo->i_unique = 0;
1403	iinfo->i_lenEAttr = 0;
1404	iinfo->i_lenExtents = 0;
1405	iinfo->i_lenAlloc = 0;
1406	iinfo->i_next_alloc_block = 0;
1407	iinfo->i_next_alloc_goal = 0;
1408	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1409		iinfo->i_efe = 1;
1410		iinfo->i_use = 0;
1411		ret = udf_alloc_i_data(inode, bs -
1412					sizeof(struct extendedFileEntry));
1413		if (ret)
1414			goto out;
1415		memcpy(iinfo->i_ext.i_data,
1416		       bh->b_data + sizeof(struct extendedFileEntry),
1417		       bs - sizeof(struct extendedFileEntry));
1418	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1419		iinfo->i_efe = 0;
1420		iinfo->i_use = 0;
1421		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1422		if (ret)
1423			goto out;
1424		memcpy(iinfo->i_ext.i_data,
1425		       bh->b_data + sizeof(struct fileEntry),
1426		       bs - sizeof(struct fileEntry));
1427	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1428		iinfo->i_efe = 0;
1429		iinfo->i_use = 1;
1430		iinfo->i_lenAlloc = le32_to_cpu(
1431				((struct unallocSpaceEntry *)bh->b_data)->
1432				 lengthAllocDescs);
1433		ret = udf_alloc_i_data(inode, bs -
1434					sizeof(struct unallocSpaceEntry));
1435		if (ret)
1436			goto out;
1437		memcpy(iinfo->i_ext.i_data,
1438		       bh->b_data + sizeof(struct unallocSpaceEntry),
1439		       bs - sizeof(struct unallocSpaceEntry));
1440		return 0;
1441	}
1442
1443	ret = -EIO;
1444	read_lock(&sbi->s_cred_lock);
1445	uid = le32_to_cpu(fe->uid);
1446	if (uid == UDF_INVALID_ID ||
1447	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1448		inode->i_uid = sbi->s_uid;
1449	else
1450		i_uid_write(inode, uid);
1451
1452	gid = le32_to_cpu(fe->gid);
1453	if (gid == UDF_INVALID_ID ||
1454	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1455		inode->i_gid = sbi->s_gid;
1456	else
1457		i_gid_write(inode, gid);
1458
1459	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1460			sbi->s_fmode != UDF_INVALID_MODE)
1461		inode->i_mode = sbi->s_fmode;
1462	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1463			sbi->s_dmode != UDF_INVALID_MODE)
1464		inode->i_mode = sbi->s_dmode;
1465	else
1466		inode->i_mode = udf_convert_permissions(fe);
1467	inode->i_mode &= ~sbi->s_umask;
1468	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1469
1470	read_unlock(&sbi->s_cred_lock);
1471
1472	link_count = le16_to_cpu(fe->fileLinkCount);
1473	if (!link_count) {
1474		if (!hidden_inode) {
1475			ret = -ESTALE;
1476			goto out;
1477		}
1478		link_count = 1;
1479	}
1480	set_nlink(inode, link_count);
1481
1482	inode->i_size = le64_to_cpu(fe->informationLength);
1483	iinfo->i_lenExtents = inode->i_size;
1484
1485	if (iinfo->i_efe == 0) {
1486		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1487			(inode->i_sb->s_blocksize_bits - 9);
1488
1489		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1490		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1491		udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
 
 
 
1492
1493		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1494		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1495		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1496		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1497		iinfo->i_streamdir = 0;
1498		iinfo->i_lenStreams = 0;
1499	} else {
1500		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1501		    (inode->i_sb->s_blocksize_bits - 9);
1502
1503		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1504		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
 
 
 
 
1505		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1506		udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1507
1508		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1509		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1510		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1511		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1512
1513		/* Named streams */
1514		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1515		iinfo->i_locStreamdir =
1516			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1517		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1518		if (iinfo->i_lenStreams >= inode->i_size)
1519			iinfo->i_lenStreams -= inode->i_size;
1520		else
1521			iinfo->i_lenStreams = 0;
1522	}
1523	inode->i_generation = iinfo->i_unique;
1524
1525	/*
1526	 * Sanity check length of allocation descriptors and extended attrs to
1527	 * avoid integer overflows
1528	 */
1529	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1530		goto out;
1531	/* Now do exact checks */
1532	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1533		goto out;
1534	/* Sanity checks for files in ICB so that we don't get confused later */
1535	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1536		/*
1537		 * For file in ICB data is stored in allocation descriptor
1538		 * so sizes should match
1539		 */
1540		if (iinfo->i_lenAlloc != inode->i_size)
1541			goto out;
1542		/* File in ICB has to fit in there... */
1543		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1544			goto out;
1545	}
1546
1547	switch (fe->icbTag.fileType) {
1548	case ICBTAG_FILE_TYPE_DIRECTORY:
1549		inode->i_op = &udf_dir_inode_operations;
1550		inode->i_fop = &udf_dir_operations;
1551		inode->i_mode |= S_IFDIR;
1552		inc_nlink(inode);
1553		break;
1554	case ICBTAG_FILE_TYPE_REALTIME:
1555	case ICBTAG_FILE_TYPE_REGULAR:
1556	case ICBTAG_FILE_TYPE_UNDEF:
1557	case ICBTAG_FILE_TYPE_VAT20:
1558		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1559			inode->i_data.a_ops = &udf_adinicb_aops;
1560		else
1561			inode->i_data.a_ops = &udf_aops;
1562		inode->i_op = &udf_file_inode_operations;
1563		inode->i_fop = &udf_file_operations;
1564		inode->i_mode |= S_IFREG;
1565		break;
1566	case ICBTAG_FILE_TYPE_BLOCK:
1567		inode->i_mode |= S_IFBLK;
1568		break;
1569	case ICBTAG_FILE_TYPE_CHAR:
1570		inode->i_mode |= S_IFCHR;
1571		break;
1572	case ICBTAG_FILE_TYPE_FIFO:
1573		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1574		break;
1575	case ICBTAG_FILE_TYPE_SOCKET:
1576		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1577		break;
1578	case ICBTAG_FILE_TYPE_SYMLINK:
1579		inode->i_data.a_ops = &udf_symlink_aops;
1580		inode->i_op = &udf_symlink_inode_operations;
1581		inode_nohighmem(inode);
1582		inode->i_mode = S_IFLNK | 0777;
1583		break;
1584	case ICBTAG_FILE_TYPE_MAIN:
1585		udf_debug("METADATA FILE-----\n");
1586		break;
1587	case ICBTAG_FILE_TYPE_MIRROR:
1588		udf_debug("METADATA MIRROR FILE-----\n");
1589		break;
1590	case ICBTAG_FILE_TYPE_BITMAP:
1591		udf_debug("METADATA BITMAP FILE-----\n");
1592		break;
1593	default:
1594		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1595			inode->i_ino, fe->icbTag.fileType);
1596		goto out;
1597	}
1598	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1599		struct deviceSpec *dsea =
1600			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1601		if (dsea) {
1602			init_special_inode(inode, inode->i_mode,
1603				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1604				      le32_to_cpu(dsea->minorDeviceIdent)));
1605			/* Developer ID ??? */
1606		} else
1607			goto out;
1608	}
1609	ret = 0;
1610out:
1611	brelse(bh);
1612	return ret;
1613}
1614
1615static int udf_alloc_i_data(struct inode *inode, size_t size)
1616{
1617	struct udf_inode_info *iinfo = UDF_I(inode);
1618	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1619	if (!iinfo->i_ext.i_data)
1620		return -ENOMEM;
1621	return 0;
1622}
1623
1624static umode_t udf_convert_permissions(struct fileEntry *fe)
1625{
1626	umode_t mode;
1627	uint32_t permissions;
1628	uint32_t flags;
1629
1630	permissions = le32_to_cpu(fe->permissions);
1631	flags = le16_to_cpu(fe->icbTag.flags);
1632
1633	mode =	((permissions) & 0007) |
1634		((permissions >> 2) & 0070) |
1635		((permissions >> 4) & 0700) |
1636		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1637		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1638		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1639
1640	return mode;
1641}
1642
1643void udf_update_extra_perms(struct inode *inode, umode_t mode)
1644{
1645	struct udf_inode_info *iinfo = UDF_I(inode);
1646
1647	/*
1648	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1649	 * In Unix, delete permission tracks write
1650	 */
1651	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1652	if (mode & 0200)
1653		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1654	if (mode & 0020)
1655		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1656	if (mode & 0002)
1657		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1658}
1659
1660int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1661{
1662	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1663}
1664
1665static int udf_sync_inode(struct inode *inode)
1666{
1667	return udf_update_inode(inode, 1);
1668}
1669
1670static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1671{
1672	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1673	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1674	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1675		iinfo->i_crtime = time;
1676}
1677
1678static int udf_update_inode(struct inode *inode, int do_sync)
1679{
1680	struct buffer_head *bh = NULL;
1681	struct fileEntry *fe;
1682	struct extendedFileEntry *efe;
1683	uint64_t lb_recorded;
1684	uint32_t udfperms;
1685	uint16_t icbflags;
1686	uint16_t crclen;
1687	int err = 0;
1688	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1689	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1690	struct udf_inode_info *iinfo = UDF_I(inode);
1691
1692	bh = udf_tgetblk(inode->i_sb,
1693			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1694	if (!bh) {
1695		udf_debug("getblk failure\n");
1696		return -EIO;
1697	}
1698
1699	lock_buffer(bh);
1700	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1701	fe = (struct fileEntry *)bh->b_data;
1702	efe = (struct extendedFileEntry *)bh->b_data;
1703
1704	if (iinfo->i_use) {
1705		struct unallocSpaceEntry *use =
1706			(struct unallocSpaceEntry *)bh->b_data;
1707
1708		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1709		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1710		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1711					sizeof(struct unallocSpaceEntry));
1712		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1713		crclen = sizeof(struct unallocSpaceEntry);
1714
1715		goto finish;
1716	}
1717
1718	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1719		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1720	else
1721		fe->uid = cpu_to_le32(i_uid_read(inode));
1722
1723	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1724		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1725	else
1726		fe->gid = cpu_to_le32(i_gid_read(inode));
1727
1728	udfperms = ((inode->i_mode & 0007)) |
1729		   ((inode->i_mode & 0070) << 2) |
1730		   ((inode->i_mode & 0700) << 4);
1731
1732	udfperms |= iinfo->i_extraPerms;
1733	fe->permissions = cpu_to_le32(udfperms);
1734
1735	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1736		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1737	else
1738		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
 
 
 
 
1739
1740	fe->informationLength = cpu_to_le64(inode->i_size);
1741
1742	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1743		struct regid *eid;
1744		struct deviceSpec *dsea =
1745			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1746		if (!dsea) {
1747			dsea = (struct deviceSpec *)
1748				udf_add_extendedattr(inode,
1749						     sizeof(struct deviceSpec) +
1750						     sizeof(struct regid), 12, 0x3);
1751			dsea->attrType = cpu_to_le32(12);
1752			dsea->attrSubtype = 1;
1753			dsea->attrLength = cpu_to_le32(
1754						sizeof(struct deviceSpec) +
1755						sizeof(struct regid));
1756			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1757		}
1758		eid = (struct regid *)dsea->impUse;
1759		memset(eid, 0, sizeof(*eid));
1760		strcpy(eid->ident, UDF_ID_DEVELOPER);
1761		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1762		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1763		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1764		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1765	}
1766
1767	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1768		lb_recorded = 0; /* No extents => no blocks! */
1769	else
1770		lb_recorded =
1771			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1772			(blocksize_bits - 9);
1773
1774	if (iinfo->i_efe == 0) {
1775		memcpy(bh->b_data + sizeof(struct fileEntry),
1776		       iinfo->i_ext.i_data,
1777		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1778		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1779
1780		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1781		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1782		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1783		memset(&(fe->impIdent), 0, sizeof(struct regid));
1784		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1785		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1786		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1787		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1788		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1789		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1790		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1791		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1792		crclen = sizeof(struct fileEntry);
1793	} else {
1794		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1795		       iinfo->i_ext.i_data,
1796		       inode->i_sb->s_blocksize -
1797					sizeof(struct extendedFileEntry));
1798		efe->objectSize =
1799			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1800		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1801
1802		if (iinfo->i_streamdir) {
1803			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1804
1805			icb_lad->extLocation =
1806				cpu_to_lelb(iinfo->i_locStreamdir);
1807			icb_lad->extLength =
1808				cpu_to_le32(inode->i_sb->s_blocksize);
1809		}
1810
1811		udf_adjust_time(iinfo, inode->i_atime);
1812		udf_adjust_time(iinfo, inode->i_mtime);
1813		udf_adjust_time(iinfo, inode->i_ctime);
1814
1815		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1816		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
 
 
1817		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1818		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1819
1820		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1821		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1822		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1823		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1824		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1825		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1826		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1827		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1828		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1829		crclen = sizeof(struct extendedFileEntry);
1830	}
1831
1832finish:
1833	if (iinfo->i_strat4096) {
1834		fe->icbTag.strategyType = cpu_to_le16(4096);
1835		fe->icbTag.strategyParameter = cpu_to_le16(1);
1836		fe->icbTag.numEntries = cpu_to_le16(2);
1837	} else {
1838		fe->icbTag.strategyType = cpu_to_le16(4);
1839		fe->icbTag.numEntries = cpu_to_le16(1);
1840	}
1841
1842	if (iinfo->i_use)
1843		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1844	else if (S_ISDIR(inode->i_mode))
1845		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1846	else if (S_ISREG(inode->i_mode))
1847		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1848	else if (S_ISLNK(inode->i_mode))
1849		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1850	else if (S_ISBLK(inode->i_mode))
1851		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1852	else if (S_ISCHR(inode->i_mode))
1853		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1854	else if (S_ISFIFO(inode->i_mode))
1855		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1856	else if (S_ISSOCK(inode->i_mode))
1857		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1858
1859	icbflags =	iinfo->i_alloc_type |
1860			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1861			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1862			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1863			(le16_to_cpu(fe->icbTag.flags) &
1864				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1865				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1866
1867	fe->icbTag.flags = cpu_to_le16(icbflags);
1868	if (sbi->s_udfrev >= 0x0200)
1869		fe->descTag.descVersion = cpu_to_le16(3);
1870	else
1871		fe->descTag.descVersion = cpu_to_le16(2);
1872	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1873	fe->descTag.tagLocation = cpu_to_le32(
1874					iinfo->i_location.logicalBlockNum);
1875	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1876	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1877	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1878						  crclen));
1879	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1880
1881	set_buffer_uptodate(bh);
1882	unlock_buffer(bh);
1883
1884	/* write the data blocks */
1885	mark_buffer_dirty(bh);
1886	if (do_sync) {
1887		sync_dirty_buffer(bh);
1888		if (buffer_write_io_error(bh)) {
1889			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1890				 inode->i_ino);
1891			err = -EIO;
1892		}
1893	}
1894	brelse(bh);
1895
1896	return err;
1897}
1898
1899struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1900			 bool hidden_inode)
1901{
1902	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1903	struct inode *inode = iget_locked(sb, block);
1904	int err;
1905
1906	if (!inode)
1907		return ERR_PTR(-ENOMEM);
1908
1909	if (!(inode->i_state & I_NEW))
 
 
 
 
1910		return inode;
 
1911
1912	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1913	err = udf_read_inode(inode, hidden_inode);
1914	if (err < 0) {
1915		iget_failed(inode);
1916		return ERR_PTR(err);
1917	}
1918	unlock_new_inode(inode);
1919
1920	return inode;
1921}
1922
1923int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1924			    struct extent_position *epos)
1925{
1926	struct super_block *sb = inode->i_sb;
1927	struct buffer_head *bh;
1928	struct allocExtDesc *aed;
1929	struct extent_position nepos;
1930	struct kernel_lb_addr neloc;
1931	int ver, adsize;
1932
1933	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1934		adsize = sizeof(struct short_ad);
1935	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1936		adsize = sizeof(struct long_ad);
1937	else
1938		return -EIO;
1939
1940	neloc.logicalBlockNum = block;
1941	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1942
1943	bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1944	if (!bh)
1945		return -EIO;
1946	lock_buffer(bh);
1947	memset(bh->b_data, 0x00, sb->s_blocksize);
1948	set_buffer_uptodate(bh);
1949	unlock_buffer(bh);
1950	mark_buffer_dirty_inode(bh, inode);
1951
1952	aed = (struct allocExtDesc *)(bh->b_data);
1953	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1954		aed->previousAllocExtLocation =
1955				cpu_to_le32(epos->block.logicalBlockNum);
1956	}
1957	aed->lengthAllocDescs = cpu_to_le32(0);
1958	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1959		ver = 3;
1960	else
1961		ver = 2;
1962	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1963		    sizeof(struct tag));
1964
1965	nepos.block = neloc;
1966	nepos.offset = sizeof(struct allocExtDesc);
1967	nepos.bh = bh;
1968
1969	/*
1970	 * Do we have to copy current last extent to make space for indirect
1971	 * one?
1972	 */
1973	if (epos->offset + adsize > sb->s_blocksize) {
1974		struct kernel_lb_addr cp_loc;
1975		uint32_t cp_len;
1976		int cp_type;
1977
1978		epos->offset -= adsize;
1979		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1980		cp_len |= ((uint32_t)cp_type) << 30;
1981
1982		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1983		udf_write_aext(inode, epos, &nepos.block,
1984			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1985	} else {
1986		__udf_add_aext(inode, epos, &nepos.block,
1987			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1988	}
1989
1990	brelse(epos->bh);
1991	*epos = nepos;
1992
1993	return 0;
1994}
1995
1996/*
1997 * Append extent at the given position - should be the first free one in inode
1998 * / indirect extent. This function assumes there is enough space in the inode
1999 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2000 */
2001int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2002		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2003{
2004	struct udf_inode_info *iinfo = UDF_I(inode);
2005	struct allocExtDesc *aed;
2006	int adsize;
2007
2008	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2009		adsize = sizeof(struct short_ad);
2010	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2011		adsize = sizeof(struct long_ad);
2012	else
2013		return -EIO;
2014
2015	if (!epos->bh) {
2016		WARN_ON(iinfo->i_lenAlloc !=
2017			epos->offset - udf_file_entry_alloc_offset(inode));
2018	} else {
2019		aed = (struct allocExtDesc *)epos->bh->b_data;
2020		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2021			epos->offset - sizeof(struct allocExtDesc));
2022		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2023	}
2024
2025	udf_write_aext(inode, epos, eloc, elen, inc);
2026
2027	if (!epos->bh) {
2028		iinfo->i_lenAlloc += adsize;
2029		mark_inode_dirty(inode);
2030	} else {
2031		aed = (struct allocExtDesc *)epos->bh->b_data;
2032		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2033		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2034				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2035			udf_update_tag(epos->bh->b_data,
2036					epos->offset + (inc ? 0 : adsize));
2037		else
2038			udf_update_tag(epos->bh->b_data,
2039					sizeof(struct allocExtDesc));
2040		mark_buffer_dirty_inode(epos->bh, inode);
2041	}
2042
2043	return 0;
2044}
2045
2046/*
2047 * Append extent at given position - should be the first free one in inode
2048 * / indirect extent. Takes care of allocating and linking indirect blocks.
2049 */
2050int udf_add_aext(struct inode *inode, struct extent_position *epos,
2051		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2052{
2053	int adsize;
2054	struct super_block *sb = inode->i_sb;
2055
2056	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2057		adsize = sizeof(struct short_ad);
2058	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2059		adsize = sizeof(struct long_ad);
2060	else
2061		return -EIO;
2062
2063	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2064		int err;
2065		udf_pblk_t new_block;
2066
2067		new_block = udf_new_block(sb, NULL,
2068					  epos->block.partitionReferenceNum,
2069					  epos->block.logicalBlockNum, &err);
2070		if (!new_block)
2071			return -ENOSPC;
2072
2073		err = udf_setup_indirect_aext(inode, new_block, epos);
2074		if (err)
2075			return err;
2076	}
2077
2078	return __udf_add_aext(inode, epos, eloc, elen, inc);
2079}
2080
2081void udf_write_aext(struct inode *inode, struct extent_position *epos,
2082		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2083{
2084	int adsize;
2085	uint8_t *ptr;
2086	struct short_ad *sad;
2087	struct long_ad *lad;
2088	struct udf_inode_info *iinfo = UDF_I(inode);
2089
2090	if (!epos->bh)
2091		ptr = iinfo->i_ext.i_data + epos->offset -
2092			udf_file_entry_alloc_offset(inode) +
2093			iinfo->i_lenEAttr;
2094	else
2095		ptr = epos->bh->b_data + epos->offset;
2096
2097	switch (iinfo->i_alloc_type) {
2098	case ICBTAG_FLAG_AD_SHORT:
2099		sad = (struct short_ad *)ptr;
2100		sad->extLength = cpu_to_le32(elen);
2101		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2102		adsize = sizeof(struct short_ad);
2103		break;
2104	case ICBTAG_FLAG_AD_LONG:
2105		lad = (struct long_ad *)ptr;
2106		lad->extLength = cpu_to_le32(elen);
2107		lad->extLocation = cpu_to_lelb(*eloc);
2108		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2109		adsize = sizeof(struct long_ad);
2110		break;
2111	default:
2112		return;
2113	}
2114
2115	if (epos->bh) {
2116		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2117		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2118			struct allocExtDesc *aed =
2119				(struct allocExtDesc *)epos->bh->b_data;
2120			udf_update_tag(epos->bh->b_data,
2121				       le32_to_cpu(aed->lengthAllocDescs) +
2122				       sizeof(struct allocExtDesc));
2123		}
2124		mark_buffer_dirty_inode(epos->bh, inode);
2125	} else {
2126		mark_inode_dirty(inode);
2127	}
2128
2129	if (inc)
2130		epos->offset += adsize;
2131}
2132
2133/*
2134 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2135 * someone does some weird stuff.
2136 */
2137#define UDF_MAX_INDIR_EXTS 16
2138
2139int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2140		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2141{
2142	int8_t etype;
2143	unsigned int indirections = 0;
2144
2145	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2146	       (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2147		udf_pblk_t block;
2148
2149		if (++indirections > UDF_MAX_INDIR_EXTS) {
2150			udf_err(inode->i_sb,
2151				"too many indirect extents in inode %lu\n",
2152				inode->i_ino);
2153			return -1;
2154		}
2155
2156		epos->block = *eloc;
2157		epos->offset = sizeof(struct allocExtDesc);
2158		brelse(epos->bh);
2159		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2160		epos->bh = udf_tread(inode->i_sb, block);
2161		if (!epos->bh) {
2162			udf_debug("reading block %u failed!\n", block);
2163			return -1;
2164		}
2165	}
2166
2167	return etype;
2168}
2169
2170int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2171			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2172{
2173	int alen;
2174	int8_t etype;
2175	uint8_t *ptr;
2176	struct short_ad *sad;
2177	struct long_ad *lad;
2178	struct udf_inode_info *iinfo = UDF_I(inode);
2179
2180	if (!epos->bh) {
2181		if (!epos->offset)
2182			epos->offset = udf_file_entry_alloc_offset(inode);
2183		ptr = iinfo->i_ext.i_data + epos->offset -
2184			udf_file_entry_alloc_offset(inode) +
2185			iinfo->i_lenEAttr;
2186		alen = udf_file_entry_alloc_offset(inode) +
2187							iinfo->i_lenAlloc;
2188	} else {
2189		if (!epos->offset)
2190			epos->offset = sizeof(struct allocExtDesc);
2191		ptr = epos->bh->b_data + epos->offset;
2192		alen = sizeof(struct allocExtDesc) +
2193			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2194							lengthAllocDescs);
2195	}
2196
2197	switch (iinfo->i_alloc_type) {
2198	case ICBTAG_FLAG_AD_SHORT:
2199		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2200		if (!sad)
2201			return -1;
2202		etype = le32_to_cpu(sad->extLength) >> 30;
2203		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2204		eloc->partitionReferenceNum =
2205				iinfo->i_location.partitionReferenceNum;
2206		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2207		break;
2208	case ICBTAG_FLAG_AD_LONG:
2209		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2210		if (!lad)
2211			return -1;
2212		etype = le32_to_cpu(lad->extLength) >> 30;
2213		*eloc = lelb_to_cpu(lad->extLocation);
2214		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2215		break;
2216	default:
2217		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2218		return -1;
2219	}
2220
2221	return etype;
2222}
2223
2224static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2225			      struct kernel_lb_addr neloc, uint32_t nelen)
2226{
2227	struct kernel_lb_addr oeloc;
2228	uint32_t oelen;
2229	int8_t etype;
 
2230
2231	if (epos.bh)
2232		get_bh(epos.bh);
2233
2234	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2235		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2236		neloc = oeloc;
2237		nelen = (etype << 30) | oelen;
2238	}
2239	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2240	brelse(epos.bh);
2241
2242	return (nelen >> 30);
2243}
2244
2245int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2246{
2247	struct extent_position oepos;
2248	int adsize;
2249	int8_t etype;
2250	struct allocExtDesc *aed;
2251	struct udf_inode_info *iinfo;
2252	struct kernel_lb_addr eloc;
2253	uint32_t elen;
2254
2255	if (epos.bh) {
2256		get_bh(epos.bh);
2257		get_bh(epos.bh);
2258	}
2259
2260	iinfo = UDF_I(inode);
2261	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2262		adsize = sizeof(struct short_ad);
2263	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2264		adsize = sizeof(struct long_ad);
2265	else
2266		adsize = 0;
2267
2268	oepos = epos;
2269	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2270		return -1;
2271
2272	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2273		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2274		if (oepos.bh != epos.bh) {
2275			oepos.block = epos.block;
2276			brelse(oepos.bh);
2277			get_bh(epos.bh);
2278			oepos.bh = epos.bh;
2279			oepos.offset = epos.offset - adsize;
2280		}
2281	}
2282	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2283	elen = 0;
2284
2285	if (epos.bh != oepos.bh) {
2286		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2287		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2288		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2289		if (!oepos.bh) {
2290			iinfo->i_lenAlloc -= (adsize * 2);
2291			mark_inode_dirty(inode);
2292		} else {
2293			aed = (struct allocExtDesc *)oepos.bh->b_data;
2294			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2295			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2296			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2297				udf_update_tag(oepos.bh->b_data,
2298						oepos.offset - (2 * adsize));
2299			else
2300				udf_update_tag(oepos.bh->b_data,
2301						sizeof(struct allocExtDesc));
2302			mark_buffer_dirty_inode(oepos.bh, inode);
2303		}
2304	} else {
2305		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2306		if (!oepos.bh) {
2307			iinfo->i_lenAlloc -= adsize;
2308			mark_inode_dirty(inode);
2309		} else {
2310			aed = (struct allocExtDesc *)oepos.bh->b_data;
2311			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2312			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2313			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2314				udf_update_tag(oepos.bh->b_data,
2315						epos.offset - adsize);
2316			else
2317				udf_update_tag(oepos.bh->b_data,
2318						sizeof(struct allocExtDesc));
2319			mark_buffer_dirty_inode(oepos.bh, inode);
2320		}
2321	}
2322
2323	brelse(epos.bh);
2324	brelse(oepos.bh);
2325
2326	return (elen >> 30);
2327}
2328
2329int8_t inode_bmap(struct inode *inode, sector_t block,
2330		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2331		  uint32_t *elen, sector_t *offset)
2332{
2333	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2334	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2335	int8_t etype;
2336	struct udf_inode_info *iinfo;
2337
2338	iinfo = UDF_I(inode);
2339	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2340		pos->offset = 0;
2341		pos->block = iinfo->i_location;
2342		pos->bh = NULL;
2343	}
2344	*elen = 0;
2345	do {
2346		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2347		if (etype == -1) {
2348			*offset = (bcount - lbcount) >> blocksize_bits;
2349			iinfo->i_lenExtents = lbcount;
2350			return -1;
2351		}
2352		lbcount += *elen;
2353	} while (lbcount <= bcount);
2354	/* update extent cache */
2355	udf_update_extent_cache(inode, lbcount - *elen, pos);
2356	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2357
2358	return etype;
2359}
2360
2361udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2362{
2363	struct kernel_lb_addr eloc;
2364	uint32_t elen;
2365	sector_t offset;
2366	struct extent_position epos = {};
2367	udf_pblk_t ret;
2368
2369	down_read(&UDF_I(inode)->i_data_sem);
2370
2371	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2372						(EXT_RECORDED_ALLOCATED >> 30))
2373		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2374	else
2375		ret = 0;
2376
2377	up_read(&UDF_I(inode)->i_data_sem);
2378	brelse(epos.bh);
2379
2380	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2381		return udf_fixed_to_variable(ret);
2382	else
2383		return ret;
2384}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * inode.c
   4 *
   5 * PURPOSE
   6 *  Inode handling routines for the OSTA-UDF(tm) filesystem.
   7 *
   8 * COPYRIGHT
 
 
 
 
 
   9 *  (C) 1998 Dave Boynton
  10 *  (C) 1998-2004 Ben Fennema
  11 *  (C) 1999-2000 Stelias Computing Inc
  12 *
  13 * HISTORY
  14 *
  15 *  10/04/98 dgb  Added rudimentary directory functions
  16 *  10/07/98      Fully working udf_block_map! It works!
  17 *  11/25/98      bmap altered to better support extents
  18 *  12/06/98 blf  partition support in udf_iget, udf_block_map
  19 *                and udf_read_inode
  20 *  12/12/98      rewrote udf_block_map to handle next extents and descs across
  21 *                block boundaries (which is not actually allowed)
  22 *  12/20/98      added support for strategy 4096
  23 *  03/07/99      rewrote udf_block_map (again)
  24 *                New funcs, inode_bmap, udf_next_aext
  25 *  04/19/99      Support for writing device EA's for major/minor #
  26 */
  27
  28#include "udfdecl.h"
  29#include <linux/mm.h>
  30#include <linux/module.h>
  31#include <linux/pagemap.h>
  32#include <linux/writeback.h>
  33#include <linux/slab.h>
  34#include <linux/crc-itu-t.h>
  35#include <linux/mpage.h>
  36#include <linux/uio.h>
  37#include <linux/bio.h>
  38
  39#include "udf_i.h"
  40#include "udf_sb.h"
  41
  42#define EXTENT_MERGE_SIZE 5
  43
  44#define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
  45			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
  46			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
  47
  48#define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
  49			 FE_PERM_O_DELETE)
  50
  51struct udf_map_rq;
  52
  53static umode_t udf_convert_permissions(struct fileEntry *);
  54static int udf_update_inode(struct inode *, int);
  55static int udf_sync_inode(struct inode *inode);
  56static int udf_alloc_i_data(struct inode *inode, size_t size);
  57static int inode_getblk(struct inode *inode, struct udf_map_rq *map);
  58static int udf_insert_aext(struct inode *, struct extent_position,
  59			   struct kernel_lb_addr, uint32_t);
  60static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
  61			      struct kernel_long_ad *, int *);
  62static void udf_prealloc_extents(struct inode *, int, int,
  63				 struct kernel_long_ad *, int *);
  64static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
  65static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
  66			      int, struct extent_position *);
  67static int udf_get_block_wb(struct inode *inode, sector_t block,
  68			    struct buffer_head *bh_result, int create);
  69
  70static void __udf_clear_extent_cache(struct inode *inode)
  71{
  72	struct udf_inode_info *iinfo = UDF_I(inode);
  73
  74	if (iinfo->cached_extent.lstart != -1) {
  75		brelse(iinfo->cached_extent.epos.bh);
  76		iinfo->cached_extent.lstart = -1;
  77	}
  78}
  79
  80/* Invalidate extent cache */
  81static void udf_clear_extent_cache(struct inode *inode)
  82{
  83	struct udf_inode_info *iinfo = UDF_I(inode);
  84
  85	spin_lock(&iinfo->i_extent_cache_lock);
  86	__udf_clear_extent_cache(inode);
  87	spin_unlock(&iinfo->i_extent_cache_lock);
  88}
  89
  90/* Return contents of extent cache */
  91static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
  92				 loff_t *lbcount, struct extent_position *pos)
  93{
  94	struct udf_inode_info *iinfo = UDF_I(inode);
  95	int ret = 0;
  96
  97	spin_lock(&iinfo->i_extent_cache_lock);
  98	if ((iinfo->cached_extent.lstart <= bcount) &&
  99	    (iinfo->cached_extent.lstart != -1)) {
 100		/* Cache hit */
 101		*lbcount = iinfo->cached_extent.lstart;
 102		memcpy(pos, &iinfo->cached_extent.epos,
 103		       sizeof(struct extent_position));
 104		if (pos->bh)
 105			get_bh(pos->bh);
 106		ret = 1;
 107	}
 108	spin_unlock(&iinfo->i_extent_cache_lock);
 109	return ret;
 110}
 111
 112/* Add extent to extent cache */
 113static void udf_update_extent_cache(struct inode *inode, loff_t estart,
 114				    struct extent_position *pos)
 115{
 116	struct udf_inode_info *iinfo = UDF_I(inode);
 117
 118	spin_lock(&iinfo->i_extent_cache_lock);
 119	/* Invalidate previously cached extent */
 120	__udf_clear_extent_cache(inode);
 121	if (pos->bh)
 122		get_bh(pos->bh);
 123	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
 124	iinfo->cached_extent.lstart = estart;
 125	switch (iinfo->i_alloc_type) {
 126	case ICBTAG_FLAG_AD_SHORT:
 127		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
 128		break;
 129	case ICBTAG_FLAG_AD_LONG:
 130		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
 131		break;
 132	}
 133	spin_unlock(&iinfo->i_extent_cache_lock);
 134}
 135
 136void udf_evict_inode(struct inode *inode)
 137{
 138	struct udf_inode_info *iinfo = UDF_I(inode);
 139	int want_delete = 0;
 140
 141	if (!is_bad_inode(inode)) {
 142		if (!inode->i_nlink) {
 143			want_delete = 1;
 144			udf_setsize(inode, 0);
 145			udf_update_inode(inode, IS_SYNC(inode));
 146		}
 147		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
 148		    inode->i_size != iinfo->i_lenExtents) {
 149			udf_warn(inode->i_sb,
 150				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
 151				 inode->i_ino, inode->i_mode,
 152				 (unsigned long long)inode->i_size,
 153				 (unsigned long long)iinfo->i_lenExtents);
 154		}
 155	}
 156	truncate_inode_pages_final(&inode->i_data);
 157	invalidate_inode_buffers(inode);
 158	clear_inode(inode);
 159	kfree(iinfo->i_data);
 160	iinfo->i_data = NULL;
 
 
 
 
 
 
 
 161	udf_clear_extent_cache(inode);
 162	if (want_delete) {
 163		udf_free_inode(inode);
 164	}
 165}
 166
 167static void udf_write_failed(struct address_space *mapping, loff_t to)
 168{
 169	struct inode *inode = mapping->host;
 170	struct udf_inode_info *iinfo = UDF_I(inode);
 171	loff_t isize = inode->i_size;
 172
 173	if (to > isize) {
 174		truncate_pagecache(inode, isize);
 175		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
 176			down_write(&iinfo->i_data_sem);
 177			udf_clear_extent_cache(inode);
 178			udf_truncate_extents(inode);
 179			up_write(&iinfo->i_data_sem);
 180		}
 181	}
 182}
 183
 184static int udf_adinicb_writepage(struct folio *folio,
 185				 struct writeback_control *wbc, void *data)
 186{
 187	struct inode *inode = folio->mapping->host;
 188	struct udf_inode_info *iinfo = UDF_I(inode);
 189
 190	BUG_ON(!folio_test_locked(folio));
 191	BUG_ON(folio->index != 0);
 192	memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0,
 193		       i_size_read(inode));
 194	folio_unlock(folio);
 195	mark_inode_dirty(inode);
 196
 197	return 0;
 198}
 199
 200static int udf_writepages(struct address_space *mapping,
 201			  struct writeback_control *wbc)
 202{
 203	struct inode *inode = mapping->host;
 204	struct udf_inode_info *iinfo = UDF_I(inode);
 205
 206	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
 207		return mpage_writepages(mapping, wbc, udf_get_block_wb);
 208	return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL);
 209}
 210
 211static void udf_adinicb_readpage(struct page *page)
 212{
 213	struct inode *inode = page->mapping->host;
 214	char *kaddr;
 215	struct udf_inode_info *iinfo = UDF_I(inode);
 216	loff_t isize = i_size_read(inode);
 217
 218	kaddr = kmap_local_page(page);
 219	memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, isize);
 220	memset(kaddr + isize, 0, PAGE_SIZE - isize);
 221	flush_dcache_page(page);
 222	SetPageUptodate(page);
 223	kunmap_local(kaddr);
 224}
 225
 226static int udf_read_folio(struct file *file, struct folio *folio)
 227{
 228	struct udf_inode_info *iinfo = UDF_I(file_inode(file));
 229
 230	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
 231		udf_adinicb_readpage(&folio->page);
 232		folio_unlock(folio);
 233		return 0;
 234	}
 235	return mpage_read_folio(folio, udf_get_block);
 236}
 237
 238static void udf_readahead(struct readahead_control *rac)
 
 239{
 240	struct udf_inode_info *iinfo = UDF_I(rac->mapping->host);
 241
 242	/*
 243	 * No readahead needed for in-ICB files and udf_get_block() would get
 244	 * confused for such file anyway.
 245	 */
 246	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
 247		return;
 248
 249	mpage_readahead(rac, udf_get_block);
 250}
 251
 252static int udf_write_begin(struct file *file, struct address_space *mapping,
 253			   loff_t pos, unsigned len,
 254			   struct page **pagep, void **fsdata)
 255{
 256	struct udf_inode_info *iinfo = UDF_I(file_inode(file));
 257	struct page *page;
 258	int ret;
 259
 260	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
 261		ret = block_write_begin(mapping, pos, len, pagep,
 262					udf_get_block);
 263		if (unlikely(ret))
 264			udf_write_failed(mapping, pos + len);
 265		return ret;
 266	}
 267	if (WARN_ON_ONCE(pos >= PAGE_SIZE))
 268		return -EIO;
 269	page = grab_cache_page_write_begin(mapping, 0);
 270	if (!page)
 271		return -ENOMEM;
 272	*pagep = page;
 273	if (!PageUptodate(page))
 274		udf_adinicb_readpage(page);
 275	return 0;
 276}
 277
 278static int udf_write_end(struct file *file, struct address_space *mapping,
 279			 loff_t pos, unsigned len, unsigned copied,
 280			 struct page *page, void *fsdata)
 281{
 282	struct inode *inode = file_inode(file);
 283	loff_t last_pos;
 284
 285	if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
 286		return generic_write_end(file, mapping, pos, len, copied, page,
 287					 fsdata);
 288	last_pos = pos + copied;
 289	if (last_pos > inode->i_size)
 290		i_size_write(inode, last_pos);
 291	set_page_dirty(page);
 292	unlock_page(page);
 293	put_page(page);
 294
 295	return copied;
 296}
 297
 298static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 299{
 300	struct file *file = iocb->ki_filp;
 301	struct address_space *mapping = file->f_mapping;
 302	struct inode *inode = mapping->host;
 303	size_t count = iov_iter_count(iter);
 304	ssize_t ret;
 305
 306	/* Fallback to buffered IO for in-ICB files */
 307	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
 308		return 0;
 309	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
 310	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
 311		udf_write_failed(mapping, iocb->ki_pos + count);
 312	return ret;
 313}
 314
 315static sector_t udf_bmap(struct address_space *mapping, sector_t block)
 316{
 317	struct udf_inode_info *iinfo = UDF_I(mapping->host);
 318
 319	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
 320		return -EINVAL;
 321	return generic_block_bmap(mapping, block, udf_get_block);
 322}
 323
 324const struct address_space_operations udf_aops = {
 325	.dirty_folio	= block_dirty_folio,
 326	.invalidate_folio = block_invalidate_folio,
 327	.read_folio	= udf_read_folio,
 328	.readahead	= udf_readahead,
 329	.writepages	= udf_writepages,
 330	.write_begin	= udf_write_begin,
 331	.write_end	= udf_write_end,
 332	.direct_IO	= udf_direct_IO,
 333	.bmap		= udf_bmap,
 334	.migrate_folio	= buffer_migrate_folio,
 335};
 336
 337/*
 338 * Expand file stored in ICB to a normal one-block-file
 339 *
 
 340 * This function requires i_mutex held
 341 */
 342int udf_expand_file_adinicb(struct inode *inode)
 343{
 344	struct folio *folio;
 
 345	struct udf_inode_info *iinfo = UDF_I(inode);
 346	int err;
 
 
 
 
 347
 348	WARN_ON_ONCE(!inode_is_locked(inode));
 349	if (!iinfo->i_lenAlloc) {
 350		down_write(&iinfo->i_data_sem);
 351		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 352			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 353		else
 354			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 
 
 355		up_write(&iinfo->i_data_sem);
 356		mark_inode_dirty(inode);
 357		return 0;
 358	}
 
 
 
 
 
 359
 360	folio = __filemap_get_folio(inode->i_mapping, 0,
 361			FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_KERNEL);
 362	if (IS_ERR(folio))
 363		return PTR_ERR(folio);
 364
 365	if (!folio_test_uptodate(folio))
 366		udf_adinicb_readpage(&folio->page);
 
 
 
 
 
 
 
 
 367	down_write(&iinfo->i_data_sem);
 368	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
 369	       iinfo->i_lenAlloc);
 370	iinfo->i_lenAlloc = 0;
 371	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 372		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 373	else
 374		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 375	folio_mark_dirty(folio);
 376	folio_unlock(folio);
 377	up_write(&iinfo->i_data_sem);
 378	err = filemap_fdatawrite(inode->i_mapping);
 379	if (err) {
 380		/* Restore everything back so that we don't lose data... */
 381		folio_lock(folio);
 382		down_write(&iinfo->i_data_sem);
 383		memcpy_from_folio(iinfo->i_data + iinfo->i_lenEAttr,
 384				folio, 0, inode->i_size);
 385		folio_unlock(folio);
 
 
 386		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 387		iinfo->i_lenAlloc = inode->i_size;
 388		up_write(&iinfo->i_data_sem);
 389	}
 390	folio_put(folio);
 391	mark_inode_dirty(inode);
 392
 393	return err;
 394}
 395
 396#define UDF_MAP_CREATE		0x01	/* Mapping can allocate new blocks */
 397#define UDF_MAP_NOPREALLOC	0x02	/* Do not preallocate blocks */
 
 
 
 
 
 
 398
 399#define UDF_BLK_MAPPED	0x01	/* Block was successfully mapped */
 400#define UDF_BLK_NEW	0x02	/* Block was freshly allocated */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 401
 402struct udf_map_rq {
 403	sector_t lblk;
 404	udf_pblk_t pblk;
 405	int iflags;		/* UDF_MAP_ flags determining behavior */
 406	int oflags;		/* UDF_BLK_ flags reporting results */
 407};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 408
 409static int udf_map_block(struct inode *inode, struct udf_map_rq *map)
 410{
 411	int err;
 412	struct udf_inode_info *iinfo = UDF_I(inode);
 
 
 
 
 
 
 
 
 413
 414	if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB))
 415		return -EFSCORRUPTED;
 
 
 416
 417	map->oflags = 0;
 418	if (!(map->iflags & UDF_MAP_CREATE)) {
 419		struct kernel_lb_addr eloc;
 420		uint32_t elen;
 421		sector_t offset;
 422		struct extent_position epos = {};
 423
 424		down_read(&iinfo->i_data_sem);
 425		if (inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset)
 426				== (EXT_RECORDED_ALLOCATED >> 30)) {
 427			map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc,
 428							offset);
 429			map->oflags |= UDF_BLK_MAPPED;
 430		}
 431		up_read(&iinfo->i_data_sem);
 432		brelse(epos.bh);
 433
 
 
 
 
 434		return 0;
 435	}
 436
 
 
 
 
 437	down_write(&iinfo->i_data_sem);
 438	/*
 439	 * Block beyond EOF and prealloc extents? Just discard preallocation
 440	 * as it is not useful and complicates things.
 441	 */
 442	if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents)
 443		udf_discard_prealloc(inode);
 444	udf_clear_extent_cache(inode);
 445	err = inode_getblk(inode, map);
 
 
 
 
 
 
 
 
 446	up_write(&iinfo->i_data_sem);
 447	return err;
 448}
 449
 450static int __udf_get_block(struct inode *inode, sector_t block,
 451			   struct buffer_head *bh_result, int flags)
 452{
 453	int err;
 454	struct udf_map_rq map = {
 455		.lblk = block,
 456		.iflags = flags,
 457	};
 458
 459	err = udf_map_block(inode, &map);
 460	if (err < 0)
 461		return err;
 462	if (map.oflags & UDF_BLK_MAPPED) {
 463		map_bh(bh_result, inode->i_sb, map.pblk);
 464		if (map.oflags & UDF_BLK_NEW)
 465			set_buffer_new(bh_result);
 
 
 
 
 
 
 466	}
 467	return 0;
 468}
 469
 470int udf_get_block(struct inode *inode, sector_t block,
 471		  struct buffer_head *bh_result, int create)
 472{
 473	int flags = create ? UDF_MAP_CREATE : 0;
 474
 475	/*
 476	 * We preallocate blocks only for regular files. It also makes sense
 477	 * for directories but there's a problem when to drop the
 478	 * preallocation. We might use some delayed work for that but I feel
 479	 * it's overengineering for a filesystem like UDF.
 480	 */
 481	if (!S_ISREG(inode->i_mode))
 482		flags |= UDF_MAP_NOPREALLOC;
 483	return __udf_get_block(inode, block, bh_result, flags);
 484}
 485
 486/*
 487 * We shouldn't be allocating blocks on page writeback since we allocate them
 488 * on page fault. We can spot dirty buffers without allocated blocks though
 489 * when truncate expands file. These however don't have valid data so we can
 490 * safely ignore them. So never allocate blocks from page writeback.
 491 */
 492static int udf_get_block_wb(struct inode *inode, sector_t block,
 493			    struct buffer_head *bh_result, int create)
 494{
 495	return __udf_get_block(inode, block, bh_result, 0);
 496}
 497
 498/* Extend the file with new blocks totaling 'new_block_bytes',
 499 * return the number of extents added
 500 */
 501static int udf_do_extend_file(struct inode *inode,
 502			      struct extent_position *last_pos,
 503			      struct kernel_long_ad *last_ext,
 504			      loff_t new_block_bytes)
 505{
 506	uint32_t add;
 507	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 508	struct super_block *sb = inode->i_sb;
 
 
 509	struct udf_inode_info *iinfo;
 510	int err;
 511
 512	/* The previous extent is fake and we should not extend by anything
 513	 * - there's nothing to do... */
 514	if (!new_block_bytes && fake)
 515		return 0;
 516
 517	iinfo = UDF_I(inode);
 518	/* Round the last extent up to a multiple of block size */
 519	if (last_ext->extLength & (sb->s_blocksize - 1)) {
 520		last_ext->extLength =
 521			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
 522			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
 523			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
 524		iinfo->i_lenExtents =
 525			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
 526			~(sb->s_blocksize - 1);
 527	}
 528
 529	add = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 530	/* Can we merge with the previous extent? */
 531	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 532					EXT_NOT_RECORDED_NOT_ALLOCATED) {
 533		add = (1 << 30) - sb->s_blocksize -
 534			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 535		if (add > new_block_bytes)
 536			add = new_block_bytes;
 537		new_block_bytes -= add;
 538		last_ext->extLength += add;
 539	}
 540
 541	if (fake) {
 542		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 543				   last_ext->extLength, 1);
 544		if (err < 0)
 545			goto out_err;
 546		count++;
 547	} else {
 548		struct kernel_lb_addr tmploc;
 549		uint32_t tmplen;
 550
 551		udf_write_aext(inode, last_pos, &last_ext->extLocation,
 552				last_ext->extLength, 1);
 553
 554		/*
 555		 * We've rewritten the last extent. If we are going to add
 556		 * more extents, we may need to enter possible following
 557		 * empty indirect extent.
 558		 */
 559		if (new_block_bytes)
 560			udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
 561	}
 562	iinfo->i_lenExtents += add;
 563
 564	/* Managed to do everything necessary? */
 565	if (!new_block_bytes)
 566		goto out;
 567
 568	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
 569	last_ext->extLocation.logicalBlockNum = 0;
 570	last_ext->extLocation.partitionReferenceNum = 0;
 571	add = (1 << 30) - sb->s_blocksize;
 572	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
 573
 574	/* Create enough extents to cover the whole hole */
 575	while (new_block_bytes > add) {
 576		new_block_bytes -= add;
 577		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 578				   last_ext->extLength, 1);
 579		if (err)
 580			goto out_err;
 581		iinfo->i_lenExtents += add;
 582		count++;
 583	}
 584	if (new_block_bytes) {
 585		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 586			new_block_bytes;
 587		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 588				   last_ext->extLength, 1);
 589		if (err)
 590			goto out_err;
 591		iinfo->i_lenExtents += new_block_bytes;
 592		count++;
 593	}
 594
 595out:
 
 
 
 
 
 
 
 
 
 
 
 596	/* last_pos should point to the last written extent... */
 597	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 598		last_pos->offset -= sizeof(struct short_ad);
 599	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 600		last_pos->offset -= sizeof(struct long_ad);
 601	else
 602		return -EIO;
 603
 604	return count;
 605out_err:
 606	/* Remove extents we've created so far */
 607	udf_clear_extent_cache(inode);
 608	udf_truncate_extents(inode);
 609	return err;
 610}
 611
 612/* Extend the final block of the file to final_block_len bytes */
 613static void udf_do_extend_final_block(struct inode *inode,
 614				      struct extent_position *last_pos,
 615				      struct kernel_long_ad *last_ext,
 616				      uint32_t new_elen)
 617{
 
 618	uint32_t added_bytes;
 619
 620	/*
 621	 * Extent already large enough? It may be already rounded up to block
 622	 * size...
 623	 */
 624	if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
 625		return;
 626	added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 627	last_ext->extLength += added_bytes;
 628	UDF_I(inode)->i_lenExtents += added_bytes;
 629
 630	udf_write_aext(inode, last_pos, &last_ext->extLocation,
 631			last_ext->extLength, 1);
 632}
 633
 634static int udf_extend_file(struct inode *inode, loff_t newsize)
 635{
 636
 637	struct extent_position epos;
 638	struct kernel_lb_addr eloc;
 639	uint32_t elen;
 640	int8_t etype;
 641	struct super_block *sb = inode->i_sb;
 642	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
 643	loff_t new_elen;
 644	int adsize;
 645	struct udf_inode_info *iinfo = UDF_I(inode);
 646	struct kernel_long_ad extent;
 647	int err = 0;
 648	bool within_last_ext;
 649
 650	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 651		adsize = sizeof(struct short_ad);
 652	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 653		adsize = sizeof(struct long_ad);
 654	else
 655		BUG();
 656
 657	down_write(&iinfo->i_data_sem);
 658	/*
 659	 * When creating hole in file, just don't bother with preserving
 660	 * preallocation. It likely won't be very useful anyway.
 661	 */
 662	udf_discard_prealloc(inode);
 663
 664	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
 665	within_last_ext = (etype != -1);
 666	/* We don't expect extents past EOF... */
 667	WARN_ON_ONCE(within_last_ext &&
 668		     elen > ((loff_t)offset + 1) << inode->i_blkbits);
 669
 670	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
 671	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
 672		/* File has no extents at all or has empty last
 673		 * indirect extent! Create a fake extent... */
 674		extent.extLocation.logicalBlockNum = 0;
 675		extent.extLocation.partitionReferenceNum = 0;
 676		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 677	} else {
 678		epos.offset -= adsize;
 679		etype = udf_next_aext(inode, &epos, &extent.extLocation,
 680				      &extent.extLength, 0);
 681		extent.extLength |= etype << 30;
 682	}
 683
 684	new_elen = ((loff_t)offset << inode->i_blkbits) |
 685					(newsize & (sb->s_blocksize - 1));
 686
 687	/* File has extent covering the new size (could happen when extending
 688	 * inside a block)?
 689	 */
 690	if (within_last_ext) {
 691		/* Extending file within the last file block */
 692		udf_do_extend_final_block(inode, &epos, &extent, new_elen);
 
 693	} else {
 694		err = udf_do_extend_file(inode, &epos, &extent, new_elen);
 
 
 695	}
 696
 697	if (err < 0)
 698		goto out;
 699	err = 0;
 
 700out:
 701	brelse(epos.bh);
 702	up_write(&iinfo->i_data_sem);
 703	return err;
 704}
 705
 706static int inode_getblk(struct inode *inode, struct udf_map_rq *map)
 
 707{
 708	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
 709	struct extent_position prev_epos, cur_epos, next_epos;
 710	int count = 0, startnum = 0, endnum = 0;
 711	uint32_t elen = 0, tmpelen;
 712	struct kernel_lb_addr eloc, tmpeloc;
 713	int c = 1;
 714	loff_t lbcount = 0, b_off = 0;
 715	udf_pblk_t newblocknum;
 716	sector_t offset = 0;
 717	int8_t etype;
 718	struct udf_inode_info *iinfo = UDF_I(inode);
 719	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
 720	int lastblock = 0;
 721	bool isBeyondEOF;
 722	int ret = 0;
 723
 
 
 724	prev_epos.offset = udf_file_entry_alloc_offset(inode);
 725	prev_epos.block = iinfo->i_location;
 726	prev_epos.bh = NULL;
 727	cur_epos = next_epos = prev_epos;
 728	b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits;
 729
 730	/* find the extent which contains the block we are looking for.
 731	   alternate between laarr[0] and laarr[1] for locations of the
 732	   current extent, and the previous extent */
 733	do {
 734		if (prev_epos.bh != cur_epos.bh) {
 735			brelse(prev_epos.bh);
 736			get_bh(cur_epos.bh);
 737			prev_epos.bh = cur_epos.bh;
 738		}
 739		if (cur_epos.bh != next_epos.bh) {
 740			brelse(cur_epos.bh);
 741			get_bh(next_epos.bh);
 742			cur_epos.bh = next_epos.bh;
 743		}
 744
 745		lbcount += elen;
 746
 747		prev_epos.block = cur_epos.block;
 748		cur_epos.block = next_epos.block;
 749
 750		prev_epos.offset = cur_epos.offset;
 751		cur_epos.offset = next_epos.offset;
 752
 753		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
 754		if (etype == -1)
 755			break;
 756
 757		c = !c;
 758
 759		laarr[c].extLength = (etype << 30) | elen;
 760		laarr[c].extLocation = eloc;
 761
 762		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 763			pgoal = eloc.logicalBlockNum +
 764				((elen + inode->i_sb->s_blocksize - 1) >>
 765				 inode->i_sb->s_blocksize_bits);
 766
 767		count++;
 768	} while (lbcount + elen <= b_off);
 769
 770	b_off -= lbcount;
 771	offset = b_off >> inode->i_sb->s_blocksize_bits;
 772	/*
 773	 * Move prev_epos and cur_epos into indirect extent if we are at
 774	 * the pointer to it
 775	 */
 776	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
 777	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
 778
 779	/* if the extent is allocated and recorded, return the block
 780	   if the extent is not a multiple of the blocksize, round up */
 781
 782	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
 783		if (elen & (inode->i_sb->s_blocksize - 1)) {
 784			elen = EXT_RECORDED_ALLOCATED |
 785				((elen + inode->i_sb->s_blocksize - 1) &
 786				 ~(inode->i_sb->s_blocksize - 1));
 787			iinfo->i_lenExtents =
 788				ALIGN(iinfo->i_lenExtents,
 789				      inode->i_sb->s_blocksize);
 790			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
 791		}
 792		map->oflags = UDF_BLK_MAPPED;
 793		map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
 794		goto out_free;
 795	}
 796
 797	/* Are we beyond EOF and preallocated extent? */
 798	if (etype == -1) {
 
 799		loff_t hole_len;
 800
 801		isBeyondEOF = true;
 802		if (count) {
 803			if (c)
 804				laarr[0] = laarr[1];
 805			startnum = 1;
 806		} else {
 807			/* Create a fake extent when there's not one */
 808			memset(&laarr[0].extLocation, 0x00,
 809				sizeof(struct kernel_lb_addr));
 810			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 811			/* Will udf_do_extend_file() create real extent from
 812			   a fake one? */
 813			startnum = (offset > 0);
 814		}
 815		/* Create extents for the hole between EOF and offset */
 816		hole_len = (loff_t)offset << inode->i_blkbits;
 817		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
 818		if (ret < 0)
 
 
 819			goto out_free;
 
 820		c = 0;
 821		offset = 0;
 822		count += ret;
 823		/*
 824		 * Is there any real extent? - otherwise we overwrite the fake
 825		 * one...
 826		 */
 827		if (count)
 828			c = !c;
 829		laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 830			inode->i_sb->s_blocksize;
 831		memset(&laarr[c].extLocation, 0x00,
 832			sizeof(struct kernel_lb_addr));
 833		count++;
 
 
 834		endnum = c + 1;
 835		lastblock = 1;
 836	} else {
 837		isBeyondEOF = false;
 838		endnum = startnum = ((count > 2) ? 2 : count);
 839
 840		/* if the current extent is in position 0,
 841		   swap it with the previous */
 842		if (!c && count != 1) {
 843			laarr[2] = laarr[0];
 844			laarr[0] = laarr[1];
 845			laarr[1] = laarr[2];
 846			c = 1;
 847		}
 848
 849		/* if the current block is located in an extent,
 850		   read the next extent */
 851		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
 852		if (etype != -1) {
 853			laarr[c + 1].extLength = (etype << 30) | elen;
 854			laarr[c + 1].extLocation = eloc;
 855			count++;
 856			startnum++;
 857			endnum++;
 858		} else
 859			lastblock = 1;
 860	}
 861
 862	/* if the current extent is not recorded but allocated, get the
 863	 * block in the extent corresponding to the requested block */
 864	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 865		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
 866	else { /* otherwise, allocate a new block */
 867		if (iinfo->i_next_alloc_block == map->lblk)
 868			goal = iinfo->i_next_alloc_goal;
 869
 870		if (!goal) {
 871			if (!(goal = pgoal)) /* XXX: what was intended here? */
 872				goal = iinfo->i_location.logicalBlockNum + 1;
 873		}
 874
 875		newblocknum = udf_new_block(inode->i_sb, inode,
 876				iinfo->i_location.partitionReferenceNum,
 877				goal, &ret);
 878		if (!newblocknum)
 
 
 879			goto out_free;
 
 880		if (isBeyondEOF)
 881			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
 882	}
 883
 884	/* if the extent the requsted block is located in contains multiple
 885	 * blocks, split the extent into at most three extents. blocks prior
 886	 * to requested block, requested block, and blocks after requested
 887	 * block */
 888	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
 889
 890	if (!(map->iflags & UDF_MAP_NOPREALLOC))
 
 
 
 
 891		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
 892
 893	/* merge any continuous blocks in laarr */
 894	udf_merge_extents(inode, laarr, &endnum);
 895
 896	/* write back the new extents, inserting new extents if the new number
 897	 * of extents is greater than the old number, and deleting extents if
 898	 * the new number of extents is less than the old number */
 899	ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
 900	if (ret < 0)
 901		goto out_free;
 902
 903	map->pblk = udf_get_pblock(inode->i_sb, newblocknum,
 904				iinfo->i_location.partitionReferenceNum, 0);
 905	if (!map->pblk) {
 906		ret = -EFSCORRUPTED;
 907		goto out_free;
 908	}
 909	map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED;
 910	iinfo->i_next_alloc_block = map->lblk + 1;
 911	iinfo->i_next_alloc_goal = newblocknum + 1;
 912	inode_set_ctime_current(inode);
 913
 914	if (IS_SYNC(inode))
 915		udf_sync_inode(inode);
 916	else
 917		mark_inode_dirty(inode);
 918	ret = 0;
 919out_free:
 920	brelse(prev_epos.bh);
 921	brelse(cur_epos.bh);
 922	brelse(next_epos.bh);
 923	return ret;
 924}
 925
 926static void udf_split_extents(struct inode *inode, int *c, int offset,
 927			       udf_pblk_t newblocknum,
 928			       struct kernel_long_ad *laarr, int *endnum)
 929{
 930	unsigned long blocksize = inode->i_sb->s_blocksize;
 931	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 932
 933	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
 934	    (laarr[*c].extLength >> 30) ==
 935				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
 936		int curr = *c;
 937		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
 938			    blocksize - 1) >> blocksize_bits;
 939		int8_t etype = (laarr[curr].extLength >> 30);
 940
 941		if (blen == 1)
 942			;
 943		else if (!offset || blen == offset + 1) {
 944			laarr[curr + 2] = laarr[curr + 1];
 945			laarr[curr + 1] = laarr[curr];
 946		} else {
 947			laarr[curr + 3] = laarr[curr + 1];
 948			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
 949		}
 950
 951		if (offset) {
 952			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 953				udf_free_blocks(inode->i_sb, inode,
 954						&laarr[curr].extLocation,
 955						0, offset);
 956				laarr[curr].extLength =
 957					EXT_NOT_RECORDED_NOT_ALLOCATED |
 958					(offset << blocksize_bits);
 959				laarr[curr].extLocation.logicalBlockNum = 0;
 960				laarr[curr].extLocation.
 961						partitionReferenceNum = 0;
 962			} else
 963				laarr[curr].extLength = (etype << 30) |
 964					(offset << blocksize_bits);
 965			curr++;
 966			(*c)++;
 967			(*endnum)++;
 968		}
 969
 970		laarr[curr].extLocation.logicalBlockNum = newblocknum;
 971		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 972			laarr[curr].extLocation.partitionReferenceNum =
 973				UDF_I(inode)->i_location.partitionReferenceNum;
 974		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
 975			blocksize;
 976		curr++;
 977
 978		if (blen != offset + 1) {
 979			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 980				laarr[curr].extLocation.logicalBlockNum +=
 981								offset + 1;
 982			laarr[curr].extLength = (etype << 30) |
 983				((blen - (offset + 1)) << blocksize_bits);
 984			curr++;
 985			(*endnum)++;
 986		}
 987	}
 988}
 989
 990static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
 991				 struct kernel_long_ad *laarr,
 992				 int *endnum)
 993{
 994	int start, length = 0, currlength = 0, i;
 995
 996	if (*endnum >= (c + 1)) {
 997		if (!lastblock)
 998			return;
 999		else
1000			start = c;
1001	} else {
1002		if ((laarr[c + 1].extLength >> 30) ==
1003					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1004			start = c + 1;
1005			length = currlength =
1006				(((laarr[c + 1].extLength &
1007					UDF_EXTENT_LENGTH_MASK) +
1008				inode->i_sb->s_blocksize - 1) >>
1009				inode->i_sb->s_blocksize_bits);
1010		} else
1011			start = c;
1012	}
1013
1014	for (i = start + 1; i <= *endnum; i++) {
1015		if (i == *endnum) {
1016			if (lastblock)
1017				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1018		} else if ((laarr[i].extLength >> 30) ==
1019				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1020			length += (((laarr[i].extLength &
1021						UDF_EXTENT_LENGTH_MASK) +
1022				    inode->i_sb->s_blocksize - 1) >>
1023				    inode->i_sb->s_blocksize_bits);
1024		} else
1025			break;
1026	}
1027
1028	if (length) {
1029		int next = laarr[start].extLocation.logicalBlockNum +
1030			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1031			  inode->i_sb->s_blocksize - 1) >>
1032			  inode->i_sb->s_blocksize_bits);
1033		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1034				laarr[start].extLocation.partitionReferenceNum,
1035				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1036				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1037				currlength);
1038		if (numalloc) 	{
1039			if (start == (c + 1))
1040				laarr[start].extLength +=
1041					(numalloc <<
1042					 inode->i_sb->s_blocksize_bits);
1043			else {
1044				memmove(&laarr[c + 2], &laarr[c + 1],
1045					sizeof(struct long_ad) * (*endnum - (c + 1)));
1046				(*endnum)++;
1047				laarr[c + 1].extLocation.logicalBlockNum = next;
1048				laarr[c + 1].extLocation.partitionReferenceNum =
1049					laarr[c].extLocation.
1050							partitionReferenceNum;
1051				laarr[c + 1].extLength =
1052					EXT_NOT_RECORDED_ALLOCATED |
1053					(numalloc <<
1054					 inode->i_sb->s_blocksize_bits);
1055				start = c + 1;
1056			}
1057
1058			for (i = start + 1; numalloc && i < *endnum; i++) {
1059				int elen = ((laarr[i].extLength &
1060						UDF_EXTENT_LENGTH_MASK) +
1061					    inode->i_sb->s_blocksize - 1) >>
1062					    inode->i_sb->s_blocksize_bits;
1063
1064				if (elen > numalloc) {
1065					laarr[i].extLength -=
1066						(numalloc <<
1067						 inode->i_sb->s_blocksize_bits);
1068					numalloc = 0;
1069				} else {
1070					numalloc -= elen;
1071					if (*endnum > (i + 1))
1072						memmove(&laarr[i],
1073							&laarr[i + 1],
1074							sizeof(struct long_ad) *
1075							(*endnum - (i + 1)));
1076					i--;
1077					(*endnum)--;
1078				}
1079			}
1080			UDF_I(inode)->i_lenExtents +=
1081				numalloc << inode->i_sb->s_blocksize_bits;
1082		}
1083	}
1084}
1085
1086static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1087			      int *endnum)
1088{
1089	int i;
1090	unsigned long blocksize = inode->i_sb->s_blocksize;
1091	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1092
1093	for (i = 0; i < (*endnum - 1); i++) {
1094		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1095		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1096
1097		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1098			(((li->extLength >> 30) ==
1099				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1100			((lip1->extLocation.logicalBlockNum -
1101			  li->extLocation.logicalBlockNum) ==
1102			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1103			blocksize - 1) >> blocksize_bits)))) {
1104
1105			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1106			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1107			     blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1108				li->extLength = lip1->extLength +
1109					(((li->extLength &
1110						UDF_EXTENT_LENGTH_MASK) +
1111					 blocksize - 1) & ~(blocksize - 1));
1112				if (*endnum > (i + 2))
1113					memmove(&laarr[i + 1], &laarr[i + 2],
1114						sizeof(struct long_ad) *
1115						(*endnum - (i + 2)));
1116				i--;
1117				(*endnum)--;
1118			}
1119		} else if (((li->extLength >> 30) ==
1120				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1121			   ((lip1->extLength >> 30) ==
1122				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1123			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1124					((li->extLength &
1125					  UDF_EXTENT_LENGTH_MASK) +
1126					 blocksize - 1) >> blocksize_bits);
1127			li->extLocation.logicalBlockNum = 0;
1128			li->extLocation.partitionReferenceNum = 0;
1129
1130			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1131			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1132			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1133				lip1->extLength = (lip1->extLength -
1134						   (li->extLength &
1135						   UDF_EXTENT_LENGTH_MASK) +
1136						   UDF_EXTENT_LENGTH_MASK) &
1137						   ~(blocksize - 1);
1138				li->extLength = (li->extLength &
1139						 UDF_EXTENT_FLAG_MASK) +
1140						(UDF_EXTENT_LENGTH_MASK + 1) -
1141						blocksize;
1142			} else {
1143				li->extLength = lip1->extLength +
1144					(((li->extLength &
1145						UDF_EXTENT_LENGTH_MASK) +
1146					  blocksize - 1) & ~(blocksize - 1));
1147				if (*endnum > (i + 2))
1148					memmove(&laarr[i + 1], &laarr[i + 2],
1149						sizeof(struct long_ad) *
1150						(*endnum - (i + 2)));
1151				i--;
1152				(*endnum)--;
1153			}
1154		} else if ((li->extLength >> 30) ==
1155					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1156			udf_free_blocks(inode->i_sb, inode,
1157					&li->extLocation, 0,
1158					((li->extLength &
1159						UDF_EXTENT_LENGTH_MASK) +
1160					 blocksize - 1) >> blocksize_bits);
1161			li->extLocation.logicalBlockNum = 0;
1162			li->extLocation.partitionReferenceNum = 0;
1163			li->extLength = (li->extLength &
1164						UDF_EXTENT_LENGTH_MASK) |
1165						EXT_NOT_RECORDED_NOT_ALLOCATED;
1166		}
1167	}
1168}
1169
1170static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1171			      int startnum, int endnum,
1172			      struct extent_position *epos)
1173{
1174	int start = 0, i;
1175	struct kernel_lb_addr tmploc;
1176	uint32_t tmplen;
1177	int err;
1178
1179	if (startnum > endnum) {
1180		for (i = 0; i < (startnum - endnum); i++)
1181			udf_delete_aext(inode, *epos);
1182	} else if (startnum < endnum) {
1183		for (i = 0; i < (endnum - startnum); i++) {
1184			err = udf_insert_aext(inode, *epos,
1185					      laarr[i].extLocation,
1186					      laarr[i].extLength);
1187			/*
1188			 * If we fail here, we are likely corrupting the extent
1189			 * list and leaking blocks. At least stop early to
1190			 * limit the damage.
1191			 */
1192			if (err < 0)
1193				return err;
1194			udf_next_aext(inode, epos, &laarr[i].extLocation,
1195				      &laarr[i].extLength, 1);
1196			start++;
1197		}
1198	}
1199
1200	for (i = start; i < endnum; i++) {
1201		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1202		udf_write_aext(inode, epos, &laarr[i].extLocation,
1203			       laarr[i].extLength, 1);
1204	}
1205	return 0;
1206}
1207
1208struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1209			      int create, int *err)
1210{
1211	struct buffer_head *bh = NULL;
1212	struct udf_map_rq map = {
1213		.lblk = block,
1214		.iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0),
1215	};
1216
1217	*err = udf_map_block(inode, &map);
1218	if (*err || !(map.oflags & UDF_BLK_MAPPED))
1219		return NULL;
1220
1221	bh = sb_getblk(inode->i_sb, map.pblk);
1222	if (!bh) {
1223		*err = -ENOMEM;
1224		return NULL;
1225	}
1226	if (map.oflags & UDF_BLK_NEW) {
1227		lock_buffer(bh);
1228		memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1229		set_buffer_uptodate(bh);
1230		unlock_buffer(bh);
1231		mark_buffer_dirty_inode(bh, inode);
1232		return bh;
1233	}
1234
1235	if (bh_read(bh, 0) >= 0)
 
 
 
1236		return bh;
1237
1238	brelse(bh);
1239	*err = -EIO;
1240	return NULL;
1241}
1242
1243int udf_setsize(struct inode *inode, loff_t newsize)
1244{
1245	int err = 0;
1246	struct udf_inode_info *iinfo;
1247	unsigned int bsize = i_blocksize(inode);
1248
1249	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1250	      S_ISLNK(inode->i_mode)))
1251		return -EINVAL;
1252	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1253		return -EPERM;
1254
1255	filemap_invalidate_lock(inode->i_mapping);
1256	iinfo = UDF_I(inode);
1257	if (newsize > inode->i_size) {
 
1258		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1259			if (bsize >=
1260			    (udf_file_entry_alloc_offset(inode) + newsize)) {
 
 
 
1261				down_write(&iinfo->i_data_sem);
 
1262				iinfo->i_lenAlloc = newsize;
1263				up_write(&iinfo->i_data_sem);
1264				goto set_size;
1265			}
1266			err = udf_expand_file_adinicb(inode);
1267			if (err)
1268				goto out_unlock;
1269		}
1270		err = udf_extend_file(inode, newsize);
1271		if (err)
1272			goto out_unlock;
 
 
1273set_size:
 
1274		truncate_setsize(inode, newsize);
1275	} else {
1276		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1277			down_write(&iinfo->i_data_sem);
1278			udf_clear_extent_cache(inode);
1279			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1280			       0x00, bsize - newsize -
1281			       udf_file_entry_alloc_offset(inode));
1282			iinfo->i_lenAlloc = newsize;
1283			truncate_setsize(inode, newsize);
1284			up_write(&iinfo->i_data_sem);
1285			goto update_time;
1286		}
1287		err = block_truncate_page(inode->i_mapping, newsize,
1288					  udf_get_block);
1289		if (err)
1290			goto out_unlock;
1291		truncate_setsize(inode, newsize);
1292		down_write(&iinfo->i_data_sem);
1293		udf_clear_extent_cache(inode);
1294		err = udf_truncate_extents(inode);
1295		up_write(&iinfo->i_data_sem);
1296		if (err)
1297			goto out_unlock;
1298	}
1299update_time:
1300	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1301	if (IS_SYNC(inode))
1302		udf_sync_inode(inode);
1303	else
1304		mark_inode_dirty(inode);
1305out_unlock:
1306	filemap_invalidate_unlock(inode->i_mapping);
1307	return err;
1308}
1309
1310/*
1311 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1312 * arbitrary - just that we hopefully don't limit any real use of rewritten
1313 * inode on write-once media but avoid looping for too long on corrupted media.
1314 */
1315#define UDF_MAX_ICB_NESTING 1024
1316
1317static int udf_read_inode(struct inode *inode, bool hidden_inode)
1318{
1319	struct buffer_head *bh = NULL;
1320	struct fileEntry *fe;
1321	struct extendedFileEntry *efe;
1322	uint16_t ident;
1323	struct udf_inode_info *iinfo = UDF_I(inode);
1324	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1325	struct kernel_lb_addr *iloc = &iinfo->i_location;
1326	unsigned int link_count;
1327	unsigned int indirections = 0;
1328	int bs = inode->i_sb->s_blocksize;
1329	int ret = -EIO;
1330	uint32_t uid, gid;
1331	struct timespec64 ts;
1332
1333reread:
1334	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1335		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1336			  iloc->partitionReferenceNum, sbi->s_partitions);
1337		return -EIO;
1338	}
1339
1340	if (iloc->logicalBlockNum >=
1341	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1342		udf_debug("block=%u, partition=%u out of range\n",
1343			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1344		return -EIO;
1345	}
1346
1347	/*
1348	 * Set defaults, but the inode is still incomplete!
1349	 * Note: get_new_inode() sets the following on a new inode:
1350	 *      i_sb = sb
1351	 *      i_no = ino
1352	 *      i_flags = sb->s_flags
1353	 *      i_state = 0
1354	 * clean_inode(): zero fills and sets
1355	 *      i_count = 1
1356	 *      i_nlink = 1
1357	 *      i_op = NULL;
1358	 */
1359	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1360	if (!bh) {
1361		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1362		return -EIO;
1363	}
1364
1365	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1366	    ident != TAG_IDENT_USE) {
1367		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1368			inode->i_ino, ident);
1369		goto out;
1370	}
1371
1372	fe = (struct fileEntry *)bh->b_data;
1373	efe = (struct extendedFileEntry *)bh->b_data;
1374
1375	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1376		struct buffer_head *ibh;
1377
1378		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1379		if (ident == TAG_IDENT_IE && ibh) {
1380			struct kernel_lb_addr loc;
1381			struct indirectEntry *ie;
1382
1383			ie = (struct indirectEntry *)ibh->b_data;
1384			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1385
1386			if (ie->indirectICB.extLength) {
1387				brelse(ibh);
1388				memcpy(&iinfo->i_location, &loc,
1389				       sizeof(struct kernel_lb_addr));
1390				if (++indirections > UDF_MAX_ICB_NESTING) {
1391					udf_err(inode->i_sb,
1392						"too many ICBs in ICB hierarchy"
1393						" (max %d supported)\n",
1394						UDF_MAX_ICB_NESTING);
1395					goto out;
1396				}
1397				brelse(bh);
1398				goto reread;
1399			}
1400		}
1401		brelse(ibh);
1402	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1403		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1404			le16_to_cpu(fe->icbTag.strategyType));
1405		goto out;
1406	}
1407	if (fe->icbTag.strategyType == cpu_to_le16(4))
1408		iinfo->i_strat4096 = 0;
1409	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1410		iinfo->i_strat4096 = 1;
1411
1412	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1413							ICBTAG_FLAG_AD_MASK;
1414	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1415	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1416	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1417		ret = -EIO;
1418		goto out;
1419	}
1420	iinfo->i_hidden = hidden_inode;
1421	iinfo->i_unique = 0;
1422	iinfo->i_lenEAttr = 0;
1423	iinfo->i_lenExtents = 0;
1424	iinfo->i_lenAlloc = 0;
1425	iinfo->i_next_alloc_block = 0;
1426	iinfo->i_next_alloc_goal = 0;
1427	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1428		iinfo->i_efe = 1;
1429		iinfo->i_use = 0;
1430		ret = udf_alloc_i_data(inode, bs -
1431					sizeof(struct extendedFileEntry));
1432		if (ret)
1433			goto out;
1434		memcpy(iinfo->i_data,
1435		       bh->b_data + sizeof(struct extendedFileEntry),
1436		       bs - sizeof(struct extendedFileEntry));
1437	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1438		iinfo->i_efe = 0;
1439		iinfo->i_use = 0;
1440		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1441		if (ret)
1442			goto out;
1443		memcpy(iinfo->i_data,
1444		       bh->b_data + sizeof(struct fileEntry),
1445		       bs - sizeof(struct fileEntry));
1446	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1447		iinfo->i_efe = 0;
1448		iinfo->i_use = 1;
1449		iinfo->i_lenAlloc = le32_to_cpu(
1450				((struct unallocSpaceEntry *)bh->b_data)->
1451				 lengthAllocDescs);
1452		ret = udf_alloc_i_data(inode, bs -
1453					sizeof(struct unallocSpaceEntry));
1454		if (ret)
1455			goto out;
1456		memcpy(iinfo->i_data,
1457		       bh->b_data + sizeof(struct unallocSpaceEntry),
1458		       bs - sizeof(struct unallocSpaceEntry));
1459		return 0;
1460	}
1461
1462	ret = -EIO;
1463	read_lock(&sbi->s_cred_lock);
1464	uid = le32_to_cpu(fe->uid);
1465	if (uid == UDF_INVALID_ID ||
1466	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1467		inode->i_uid = sbi->s_uid;
1468	else
1469		i_uid_write(inode, uid);
1470
1471	gid = le32_to_cpu(fe->gid);
1472	if (gid == UDF_INVALID_ID ||
1473	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1474		inode->i_gid = sbi->s_gid;
1475	else
1476		i_gid_write(inode, gid);
1477
1478	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1479			sbi->s_fmode != UDF_INVALID_MODE)
1480		inode->i_mode = sbi->s_fmode;
1481	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1482			sbi->s_dmode != UDF_INVALID_MODE)
1483		inode->i_mode = sbi->s_dmode;
1484	else
1485		inode->i_mode = udf_convert_permissions(fe);
1486	inode->i_mode &= ~sbi->s_umask;
1487	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1488
1489	read_unlock(&sbi->s_cred_lock);
1490
1491	link_count = le16_to_cpu(fe->fileLinkCount);
1492	if (!link_count) {
1493		if (!hidden_inode) {
1494			ret = -ESTALE;
1495			goto out;
1496		}
1497		link_count = 1;
1498	}
1499	set_nlink(inode, link_count);
1500
1501	inode->i_size = le64_to_cpu(fe->informationLength);
1502	iinfo->i_lenExtents = inode->i_size;
1503
1504	if (iinfo->i_efe == 0) {
1505		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1506			(inode->i_sb->s_blocksize_bits - 9);
1507
1508		udf_disk_stamp_to_time(&ts, fe->accessTime);
1509		inode_set_atime_to_ts(inode, ts);
1510		udf_disk_stamp_to_time(&ts, fe->modificationTime);
1511		inode_set_mtime_to_ts(inode, ts);
1512		udf_disk_stamp_to_time(&ts, fe->attrTime);
1513		inode_set_ctime_to_ts(inode, ts);
1514
1515		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1516		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1517		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1518		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1519		iinfo->i_streamdir = 0;
1520		iinfo->i_lenStreams = 0;
1521	} else {
1522		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1523		    (inode->i_sb->s_blocksize_bits - 9);
1524
1525		udf_disk_stamp_to_time(&ts, efe->accessTime);
1526		inode_set_atime_to_ts(inode, ts);
1527		udf_disk_stamp_to_time(&ts, efe->modificationTime);
1528		inode_set_mtime_to_ts(inode, ts);
1529		udf_disk_stamp_to_time(&ts, efe->attrTime);
1530		inode_set_ctime_to_ts(inode, ts);
1531		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
 
1532
1533		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1534		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1535		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1536		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1537
1538		/* Named streams */
1539		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1540		iinfo->i_locStreamdir =
1541			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1542		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1543		if (iinfo->i_lenStreams >= inode->i_size)
1544			iinfo->i_lenStreams -= inode->i_size;
1545		else
1546			iinfo->i_lenStreams = 0;
1547	}
1548	inode->i_generation = iinfo->i_unique;
1549
1550	/*
1551	 * Sanity check length of allocation descriptors and extended attrs to
1552	 * avoid integer overflows
1553	 */
1554	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1555		goto out;
1556	/* Now do exact checks */
1557	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1558		goto out;
1559	/* Sanity checks for files in ICB so that we don't get confused later */
1560	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1561		/*
1562		 * For file in ICB data is stored in allocation descriptor
1563		 * so sizes should match
1564		 */
1565		if (iinfo->i_lenAlloc != inode->i_size)
1566			goto out;
1567		/* File in ICB has to fit in there... */
1568		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1569			goto out;
1570	}
1571
1572	switch (fe->icbTag.fileType) {
1573	case ICBTAG_FILE_TYPE_DIRECTORY:
1574		inode->i_op = &udf_dir_inode_operations;
1575		inode->i_fop = &udf_dir_operations;
1576		inode->i_mode |= S_IFDIR;
1577		inc_nlink(inode);
1578		break;
1579	case ICBTAG_FILE_TYPE_REALTIME:
1580	case ICBTAG_FILE_TYPE_REGULAR:
1581	case ICBTAG_FILE_TYPE_UNDEF:
1582	case ICBTAG_FILE_TYPE_VAT20:
1583		inode->i_data.a_ops = &udf_aops;
 
 
 
1584		inode->i_op = &udf_file_inode_operations;
1585		inode->i_fop = &udf_file_operations;
1586		inode->i_mode |= S_IFREG;
1587		break;
1588	case ICBTAG_FILE_TYPE_BLOCK:
1589		inode->i_mode |= S_IFBLK;
1590		break;
1591	case ICBTAG_FILE_TYPE_CHAR:
1592		inode->i_mode |= S_IFCHR;
1593		break;
1594	case ICBTAG_FILE_TYPE_FIFO:
1595		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1596		break;
1597	case ICBTAG_FILE_TYPE_SOCKET:
1598		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1599		break;
1600	case ICBTAG_FILE_TYPE_SYMLINK:
1601		inode->i_data.a_ops = &udf_symlink_aops;
1602		inode->i_op = &udf_symlink_inode_operations;
1603		inode_nohighmem(inode);
1604		inode->i_mode = S_IFLNK | 0777;
1605		break;
1606	case ICBTAG_FILE_TYPE_MAIN:
1607		udf_debug("METADATA FILE-----\n");
1608		break;
1609	case ICBTAG_FILE_TYPE_MIRROR:
1610		udf_debug("METADATA MIRROR FILE-----\n");
1611		break;
1612	case ICBTAG_FILE_TYPE_BITMAP:
1613		udf_debug("METADATA BITMAP FILE-----\n");
1614		break;
1615	default:
1616		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1617			inode->i_ino, fe->icbTag.fileType);
1618		goto out;
1619	}
1620	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1621		struct deviceSpec *dsea =
1622			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1623		if (dsea) {
1624			init_special_inode(inode, inode->i_mode,
1625				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1626				      le32_to_cpu(dsea->minorDeviceIdent)));
1627			/* Developer ID ??? */
1628		} else
1629			goto out;
1630	}
1631	ret = 0;
1632out:
1633	brelse(bh);
1634	return ret;
1635}
1636
1637static int udf_alloc_i_data(struct inode *inode, size_t size)
1638{
1639	struct udf_inode_info *iinfo = UDF_I(inode);
1640	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1641	if (!iinfo->i_data)
1642		return -ENOMEM;
1643	return 0;
1644}
1645
1646static umode_t udf_convert_permissions(struct fileEntry *fe)
1647{
1648	umode_t mode;
1649	uint32_t permissions;
1650	uint32_t flags;
1651
1652	permissions = le32_to_cpu(fe->permissions);
1653	flags = le16_to_cpu(fe->icbTag.flags);
1654
1655	mode =	((permissions) & 0007) |
1656		((permissions >> 2) & 0070) |
1657		((permissions >> 4) & 0700) |
1658		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1659		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1660		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1661
1662	return mode;
1663}
1664
1665void udf_update_extra_perms(struct inode *inode, umode_t mode)
1666{
1667	struct udf_inode_info *iinfo = UDF_I(inode);
1668
1669	/*
1670	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1671	 * In Unix, delete permission tracks write
1672	 */
1673	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1674	if (mode & 0200)
1675		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1676	if (mode & 0020)
1677		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1678	if (mode & 0002)
1679		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1680}
1681
1682int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1683{
1684	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1685}
1686
1687static int udf_sync_inode(struct inode *inode)
1688{
1689	return udf_update_inode(inode, 1);
1690}
1691
1692static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1693{
1694	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1695	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1696	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1697		iinfo->i_crtime = time;
1698}
1699
1700static int udf_update_inode(struct inode *inode, int do_sync)
1701{
1702	struct buffer_head *bh = NULL;
1703	struct fileEntry *fe;
1704	struct extendedFileEntry *efe;
1705	uint64_t lb_recorded;
1706	uint32_t udfperms;
1707	uint16_t icbflags;
1708	uint16_t crclen;
1709	int err = 0;
1710	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1711	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1712	struct udf_inode_info *iinfo = UDF_I(inode);
1713
1714	bh = sb_getblk(inode->i_sb,
1715			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1716	if (!bh) {
1717		udf_debug("getblk failure\n");
1718		return -EIO;
1719	}
1720
1721	lock_buffer(bh);
1722	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1723	fe = (struct fileEntry *)bh->b_data;
1724	efe = (struct extendedFileEntry *)bh->b_data;
1725
1726	if (iinfo->i_use) {
1727		struct unallocSpaceEntry *use =
1728			(struct unallocSpaceEntry *)bh->b_data;
1729
1730		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1731		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1732		       iinfo->i_data, inode->i_sb->s_blocksize -
1733					sizeof(struct unallocSpaceEntry));
1734		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1735		crclen = sizeof(struct unallocSpaceEntry);
1736
1737		goto finish;
1738	}
1739
1740	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1741		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1742	else
1743		fe->uid = cpu_to_le32(i_uid_read(inode));
1744
1745	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1746		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1747	else
1748		fe->gid = cpu_to_le32(i_gid_read(inode));
1749
1750	udfperms = ((inode->i_mode & 0007)) |
1751		   ((inode->i_mode & 0070) << 2) |
1752		   ((inode->i_mode & 0700) << 4);
1753
1754	udfperms |= iinfo->i_extraPerms;
1755	fe->permissions = cpu_to_le32(udfperms);
1756
1757	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1758		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1759	else {
1760		if (iinfo->i_hidden)
1761			fe->fileLinkCount = cpu_to_le16(0);
1762		else
1763			fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1764	}
1765
1766	fe->informationLength = cpu_to_le64(inode->i_size);
1767
1768	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1769		struct regid *eid;
1770		struct deviceSpec *dsea =
1771			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1772		if (!dsea) {
1773			dsea = (struct deviceSpec *)
1774				udf_add_extendedattr(inode,
1775						     sizeof(struct deviceSpec) +
1776						     sizeof(struct regid), 12, 0x3);
1777			dsea->attrType = cpu_to_le32(12);
1778			dsea->attrSubtype = 1;
1779			dsea->attrLength = cpu_to_le32(
1780						sizeof(struct deviceSpec) +
1781						sizeof(struct regid));
1782			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1783		}
1784		eid = (struct regid *)dsea->impUse;
1785		memset(eid, 0, sizeof(*eid));
1786		strcpy(eid->ident, UDF_ID_DEVELOPER);
1787		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1788		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1789		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1790		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1791	}
1792
1793	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1794		lb_recorded = 0; /* No extents => no blocks! */
1795	else
1796		lb_recorded =
1797			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1798			(blocksize_bits - 9);
1799
1800	if (iinfo->i_efe == 0) {
1801		memcpy(bh->b_data + sizeof(struct fileEntry),
1802		       iinfo->i_data,
1803		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1804		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1805
1806		udf_time_to_disk_stamp(&fe->accessTime, inode_get_atime(inode));
1807		udf_time_to_disk_stamp(&fe->modificationTime, inode_get_mtime(inode));
1808		udf_time_to_disk_stamp(&fe->attrTime, inode_get_ctime(inode));
1809		memset(&(fe->impIdent), 0, sizeof(struct regid));
1810		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1811		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1812		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1813		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1814		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1815		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1816		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1817		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1818		crclen = sizeof(struct fileEntry);
1819	} else {
1820		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1821		       iinfo->i_data,
1822		       inode->i_sb->s_blocksize -
1823					sizeof(struct extendedFileEntry));
1824		efe->objectSize =
1825			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1826		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1827
1828		if (iinfo->i_streamdir) {
1829			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1830
1831			icb_lad->extLocation =
1832				cpu_to_lelb(iinfo->i_locStreamdir);
1833			icb_lad->extLength =
1834				cpu_to_le32(inode->i_sb->s_blocksize);
1835		}
1836
1837		udf_adjust_time(iinfo, inode_get_atime(inode));
1838		udf_adjust_time(iinfo, inode_get_mtime(inode));
1839		udf_adjust_time(iinfo, inode_get_ctime(inode));
1840
1841		udf_time_to_disk_stamp(&efe->accessTime,
1842				       inode_get_atime(inode));
1843		udf_time_to_disk_stamp(&efe->modificationTime,
1844				       inode_get_mtime(inode));
1845		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1846		udf_time_to_disk_stamp(&efe->attrTime, inode_get_ctime(inode));
1847
1848		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1849		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1850		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1851		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1852		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1853		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1854		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1855		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1856		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1857		crclen = sizeof(struct extendedFileEntry);
1858	}
1859
1860finish:
1861	if (iinfo->i_strat4096) {
1862		fe->icbTag.strategyType = cpu_to_le16(4096);
1863		fe->icbTag.strategyParameter = cpu_to_le16(1);
1864		fe->icbTag.numEntries = cpu_to_le16(2);
1865	} else {
1866		fe->icbTag.strategyType = cpu_to_le16(4);
1867		fe->icbTag.numEntries = cpu_to_le16(1);
1868	}
1869
1870	if (iinfo->i_use)
1871		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1872	else if (S_ISDIR(inode->i_mode))
1873		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1874	else if (S_ISREG(inode->i_mode))
1875		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1876	else if (S_ISLNK(inode->i_mode))
1877		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1878	else if (S_ISBLK(inode->i_mode))
1879		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1880	else if (S_ISCHR(inode->i_mode))
1881		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1882	else if (S_ISFIFO(inode->i_mode))
1883		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1884	else if (S_ISSOCK(inode->i_mode))
1885		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1886
1887	icbflags =	iinfo->i_alloc_type |
1888			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1889			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1890			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1891			(le16_to_cpu(fe->icbTag.flags) &
1892				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1893				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1894
1895	fe->icbTag.flags = cpu_to_le16(icbflags);
1896	if (sbi->s_udfrev >= 0x0200)
1897		fe->descTag.descVersion = cpu_to_le16(3);
1898	else
1899		fe->descTag.descVersion = cpu_to_le16(2);
1900	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1901	fe->descTag.tagLocation = cpu_to_le32(
1902					iinfo->i_location.logicalBlockNum);
1903	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1904	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1905	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1906						  crclen));
1907	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1908
1909	set_buffer_uptodate(bh);
1910	unlock_buffer(bh);
1911
1912	/* write the data blocks */
1913	mark_buffer_dirty(bh);
1914	if (do_sync) {
1915		sync_dirty_buffer(bh);
1916		if (buffer_write_io_error(bh)) {
1917			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1918				 inode->i_ino);
1919			err = -EIO;
1920		}
1921	}
1922	brelse(bh);
1923
1924	return err;
1925}
1926
1927struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1928			 bool hidden_inode)
1929{
1930	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1931	struct inode *inode = iget_locked(sb, block);
1932	int err;
1933
1934	if (!inode)
1935		return ERR_PTR(-ENOMEM);
1936
1937	if (!(inode->i_state & I_NEW)) {
1938		if (UDF_I(inode)->i_hidden != hidden_inode) {
1939			iput(inode);
1940			return ERR_PTR(-EFSCORRUPTED);
1941		}
1942		return inode;
1943	}
1944
1945	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1946	err = udf_read_inode(inode, hidden_inode);
1947	if (err < 0) {
1948		iget_failed(inode);
1949		return ERR_PTR(err);
1950	}
1951	unlock_new_inode(inode);
1952
1953	return inode;
1954}
1955
1956int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1957			    struct extent_position *epos)
1958{
1959	struct super_block *sb = inode->i_sb;
1960	struct buffer_head *bh;
1961	struct allocExtDesc *aed;
1962	struct extent_position nepos;
1963	struct kernel_lb_addr neloc;
1964	int ver, adsize;
1965
1966	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1967		adsize = sizeof(struct short_ad);
1968	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1969		adsize = sizeof(struct long_ad);
1970	else
1971		return -EIO;
1972
1973	neloc.logicalBlockNum = block;
1974	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1975
1976	bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1977	if (!bh)
1978		return -EIO;
1979	lock_buffer(bh);
1980	memset(bh->b_data, 0x00, sb->s_blocksize);
1981	set_buffer_uptodate(bh);
1982	unlock_buffer(bh);
1983	mark_buffer_dirty_inode(bh, inode);
1984
1985	aed = (struct allocExtDesc *)(bh->b_data);
1986	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1987		aed->previousAllocExtLocation =
1988				cpu_to_le32(epos->block.logicalBlockNum);
1989	}
1990	aed->lengthAllocDescs = cpu_to_le32(0);
1991	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1992		ver = 3;
1993	else
1994		ver = 2;
1995	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1996		    sizeof(struct tag));
1997
1998	nepos.block = neloc;
1999	nepos.offset = sizeof(struct allocExtDesc);
2000	nepos.bh = bh;
2001
2002	/*
2003	 * Do we have to copy current last extent to make space for indirect
2004	 * one?
2005	 */
2006	if (epos->offset + adsize > sb->s_blocksize) {
2007		struct kernel_lb_addr cp_loc;
2008		uint32_t cp_len;
2009		int cp_type;
2010
2011		epos->offset -= adsize;
2012		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
2013		cp_len |= ((uint32_t)cp_type) << 30;
2014
2015		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
2016		udf_write_aext(inode, epos, &nepos.block,
2017			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2018	} else {
2019		__udf_add_aext(inode, epos, &nepos.block,
2020			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2021	}
2022
2023	brelse(epos->bh);
2024	*epos = nepos;
2025
2026	return 0;
2027}
2028
2029/*
2030 * Append extent at the given position - should be the first free one in inode
2031 * / indirect extent. This function assumes there is enough space in the inode
2032 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2033 */
2034int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2035		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2036{
2037	struct udf_inode_info *iinfo = UDF_I(inode);
2038	struct allocExtDesc *aed;
2039	int adsize;
2040
2041	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2042		adsize = sizeof(struct short_ad);
2043	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2044		adsize = sizeof(struct long_ad);
2045	else
2046		return -EIO;
2047
2048	if (!epos->bh) {
2049		WARN_ON(iinfo->i_lenAlloc !=
2050			epos->offset - udf_file_entry_alloc_offset(inode));
2051	} else {
2052		aed = (struct allocExtDesc *)epos->bh->b_data;
2053		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2054			epos->offset - sizeof(struct allocExtDesc));
2055		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2056	}
2057
2058	udf_write_aext(inode, epos, eloc, elen, inc);
2059
2060	if (!epos->bh) {
2061		iinfo->i_lenAlloc += adsize;
2062		mark_inode_dirty(inode);
2063	} else {
2064		aed = (struct allocExtDesc *)epos->bh->b_data;
2065		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2066		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2067				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2068			udf_update_tag(epos->bh->b_data,
2069					epos->offset + (inc ? 0 : adsize));
2070		else
2071			udf_update_tag(epos->bh->b_data,
2072					sizeof(struct allocExtDesc));
2073		mark_buffer_dirty_inode(epos->bh, inode);
2074	}
2075
2076	return 0;
2077}
2078
2079/*
2080 * Append extent at given position - should be the first free one in inode
2081 * / indirect extent. Takes care of allocating and linking indirect blocks.
2082 */
2083int udf_add_aext(struct inode *inode, struct extent_position *epos,
2084		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2085{
2086	int adsize;
2087	struct super_block *sb = inode->i_sb;
2088
2089	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2090		adsize = sizeof(struct short_ad);
2091	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2092		adsize = sizeof(struct long_ad);
2093	else
2094		return -EIO;
2095
2096	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2097		int err;
2098		udf_pblk_t new_block;
2099
2100		new_block = udf_new_block(sb, NULL,
2101					  epos->block.partitionReferenceNum,
2102					  epos->block.logicalBlockNum, &err);
2103		if (!new_block)
2104			return -ENOSPC;
2105
2106		err = udf_setup_indirect_aext(inode, new_block, epos);
2107		if (err)
2108			return err;
2109	}
2110
2111	return __udf_add_aext(inode, epos, eloc, elen, inc);
2112}
2113
2114void udf_write_aext(struct inode *inode, struct extent_position *epos,
2115		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2116{
2117	int adsize;
2118	uint8_t *ptr;
2119	struct short_ad *sad;
2120	struct long_ad *lad;
2121	struct udf_inode_info *iinfo = UDF_I(inode);
2122
2123	if (!epos->bh)
2124		ptr = iinfo->i_data + epos->offset -
2125			udf_file_entry_alloc_offset(inode) +
2126			iinfo->i_lenEAttr;
2127	else
2128		ptr = epos->bh->b_data + epos->offset;
2129
2130	switch (iinfo->i_alloc_type) {
2131	case ICBTAG_FLAG_AD_SHORT:
2132		sad = (struct short_ad *)ptr;
2133		sad->extLength = cpu_to_le32(elen);
2134		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2135		adsize = sizeof(struct short_ad);
2136		break;
2137	case ICBTAG_FLAG_AD_LONG:
2138		lad = (struct long_ad *)ptr;
2139		lad->extLength = cpu_to_le32(elen);
2140		lad->extLocation = cpu_to_lelb(*eloc);
2141		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2142		adsize = sizeof(struct long_ad);
2143		break;
2144	default:
2145		return;
2146	}
2147
2148	if (epos->bh) {
2149		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2150		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2151			struct allocExtDesc *aed =
2152				(struct allocExtDesc *)epos->bh->b_data;
2153			udf_update_tag(epos->bh->b_data,
2154				       le32_to_cpu(aed->lengthAllocDescs) +
2155				       sizeof(struct allocExtDesc));
2156		}
2157		mark_buffer_dirty_inode(epos->bh, inode);
2158	} else {
2159		mark_inode_dirty(inode);
2160	}
2161
2162	if (inc)
2163		epos->offset += adsize;
2164}
2165
2166/*
2167 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2168 * someone does some weird stuff.
2169 */
2170#define UDF_MAX_INDIR_EXTS 16
2171
2172int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2173		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2174{
2175	int8_t etype;
2176	unsigned int indirections = 0;
2177
2178	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2179	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2180		udf_pblk_t block;
2181
2182		if (++indirections > UDF_MAX_INDIR_EXTS) {
2183			udf_err(inode->i_sb,
2184				"too many indirect extents in inode %lu\n",
2185				inode->i_ino);
2186			return -1;
2187		}
2188
2189		epos->block = *eloc;
2190		epos->offset = sizeof(struct allocExtDesc);
2191		brelse(epos->bh);
2192		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2193		epos->bh = sb_bread(inode->i_sb, block);
2194		if (!epos->bh) {
2195			udf_debug("reading block %u failed!\n", block);
2196			return -1;
2197		}
2198	}
2199
2200	return etype;
2201}
2202
2203int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2204			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2205{
2206	int alen;
2207	int8_t etype;
2208	uint8_t *ptr;
2209	struct short_ad *sad;
2210	struct long_ad *lad;
2211	struct udf_inode_info *iinfo = UDF_I(inode);
2212
2213	if (!epos->bh) {
2214		if (!epos->offset)
2215			epos->offset = udf_file_entry_alloc_offset(inode);
2216		ptr = iinfo->i_data + epos->offset -
2217			udf_file_entry_alloc_offset(inode) +
2218			iinfo->i_lenEAttr;
2219		alen = udf_file_entry_alloc_offset(inode) +
2220							iinfo->i_lenAlloc;
2221	} else {
2222		if (!epos->offset)
2223			epos->offset = sizeof(struct allocExtDesc);
2224		ptr = epos->bh->b_data + epos->offset;
2225		alen = sizeof(struct allocExtDesc) +
2226			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2227							lengthAllocDescs);
2228	}
2229
2230	switch (iinfo->i_alloc_type) {
2231	case ICBTAG_FLAG_AD_SHORT:
2232		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2233		if (!sad)
2234			return -1;
2235		etype = le32_to_cpu(sad->extLength) >> 30;
2236		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2237		eloc->partitionReferenceNum =
2238				iinfo->i_location.partitionReferenceNum;
2239		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2240		break;
2241	case ICBTAG_FLAG_AD_LONG:
2242		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2243		if (!lad)
2244			return -1;
2245		etype = le32_to_cpu(lad->extLength) >> 30;
2246		*eloc = lelb_to_cpu(lad->extLocation);
2247		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2248		break;
2249	default:
2250		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2251		return -1;
2252	}
2253
2254	return etype;
2255}
2256
2257static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2258			   struct kernel_lb_addr neloc, uint32_t nelen)
2259{
2260	struct kernel_lb_addr oeloc;
2261	uint32_t oelen;
2262	int8_t etype;
2263	int err;
2264
2265	if (epos.bh)
2266		get_bh(epos.bh);
2267
2268	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2269		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2270		neloc = oeloc;
2271		nelen = (etype << 30) | oelen;
2272	}
2273	err = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2274	brelse(epos.bh);
2275
2276	return err;
2277}
2278
2279int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2280{
2281	struct extent_position oepos;
2282	int adsize;
2283	int8_t etype;
2284	struct allocExtDesc *aed;
2285	struct udf_inode_info *iinfo;
2286	struct kernel_lb_addr eloc;
2287	uint32_t elen;
2288
2289	if (epos.bh) {
2290		get_bh(epos.bh);
2291		get_bh(epos.bh);
2292	}
2293
2294	iinfo = UDF_I(inode);
2295	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2296		adsize = sizeof(struct short_ad);
2297	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2298		adsize = sizeof(struct long_ad);
2299	else
2300		adsize = 0;
2301
2302	oepos = epos;
2303	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2304		return -1;
2305
2306	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2307		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2308		if (oepos.bh != epos.bh) {
2309			oepos.block = epos.block;
2310			brelse(oepos.bh);
2311			get_bh(epos.bh);
2312			oepos.bh = epos.bh;
2313			oepos.offset = epos.offset - adsize;
2314		}
2315	}
2316	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2317	elen = 0;
2318
2319	if (epos.bh != oepos.bh) {
2320		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2321		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2322		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2323		if (!oepos.bh) {
2324			iinfo->i_lenAlloc -= (adsize * 2);
2325			mark_inode_dirty(inode);
2326		} else {
2327			aed = (struct allocExtDesc *)oepos.bh->b_data;
2328			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2329			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2330			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2331				udf_update_tag(oepos.bh->b_data,
2332						oepos.offset - (2 * adsize));
2333			else
2334				udf_update_tag(oepos.bh->b_data,
2335						sizeof(struct allocExtDesc));
2336			mark_buffer_dirty_inode(oepos.bh, inode);
2337		}
2338	} else {
2339		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2340		if (!oepos.bh) {
2341			iinfo->i_lenAlloc -= adsize;
2342			mark_inode_dirty(inode);
2343		} else {
2344			aed = (struct allocExtDesc *)oepos.bh->b_data;
2345			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2346			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2347			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2348				udf_update_tag(oepos.bh->b_data,
2349						epos.offset - adsize);
2350			else
2351				udf_update_tag(oepos.bh->b_data,
2352						sizeof(struct allocExtDesc));
2353			mark_buffer_dirty_inode(oepos.bh, inode);
2354		}
2355	}
2356
2357	brelse(epos.bh);
2358	brelse(oepos.bh);
2359
2360	return (elen >> 30);
2361}
2362
2363int8_t inode_bmap(struct inode *inode, sector_t block,
2364		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2365		  uint32_t *elen, sector_t *offset)
2366{
2367	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2368	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2369	int8_t etype;
2370	struct udf_inode_info *iinfo;
2371
2372	iinfo = UDF_I(inode);
2373	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2374		pos->offset = 0;
2375		pos->block = iinfo->i_location;
2376		pos->bh = NULL;
2377	}
2378	*elen = 0;
2379	do {
2380		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2381		if (etype == -1) {
2382			*offset = (bcount - lbcount) >> blocksize_bits;
2383			iinfo->i_lenExtents = lbcount;
2384			return -1;
2385		}
2386		lbcount += *elen;
2387	} while (lbcount <= bcount);
2388	/* update extent cache */
2389	udf_update_extent_cache(inode, lbcount - *elen, pos);
2390	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2391
2392	return etype;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2393}