Loading...
1/*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32#include "udfdecl.h"
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/pagemap.h>
36#include <linux/writeback.h>
37#include <linux/slab.h>
38#include <linux/crc-itu-t.h>
39#include <linux/mpage.h>
40#include <linux/uio.h>
41#include <linux/bio.h>
42
43#include "udf_i.h"
44#include "udf_sb.h"
45
46#define EXTENT_MERGE_SIZE 5
47
48#define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51
52#define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 FE_PERM_O_DELETE)
54
55static umode_t udf_convert_permissions(struct fileEntry *);
56static int udf_update_inode(struct inode *, int);
57static int udf_sync_inode(struct inode *inode);
58static int udf_alloc_i_data(struct inode *inode, size_t size);
59static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60static int8_t udf_insert_aext(struct inode *, struct extent_position,
61 struct kernel_lb_addr, uint32_t);
62static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63 struct kernel_long_ad *, int *);
64static void udf_prealloc_extents(struct inode *, int, int,
65 struct kernel_long_ad *, int *);
66static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68 int, struct extent_position *);
69static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70
71static void __udf_clear_extent_cache(struct inode *inode)
72{
73 struct udf_inode_info *iinfo = UDF_I(inode);
74
75 if (iinfo->cached_extent.lstart != -1) {
76 brelse(iinfo->cached_extent.epos.bh);
77 iinfo->cached_extent.lstart = -1;
78 }
79}
80
81/* Invalidate extent cache */
82static void udf_clear_extent_cache(struct inode *inode)
83{
84 struct udf_inode_info *iinfo = UDF_I(inode);
85
86 spin_lock(&iinfo->i_extent_cache_lock);
87 __udf_clear_extent_cache(inode);
88 spin_unlock(&iinfo->i_extent_cache_lock);
89}
90
91/* Return contents of extent cache */
92static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93 loff_t *lbcount, struct extent_position *pos)
94{
95 struct udf_inode_info *iinfo = UDF_I(inode);
96 int ret = 0;
97
98 spin_lock(&iinfo->i_extent_cache_lock);
99 if ((iinfo->cached_extent.lstart <= bcount) &&
100 (iinfo->cached_extent.lstart != -1)) {
101 /* Cache hit */
102 *lbcount = iinfo->cached_extent.lstart;
103 memcpy(pos, &iinfo->cached_extent.epos,
104 sizeof(struct extent_position));
105 if (pos->bh)
106 get_bh(pos->bh);
107 ret = 1;
108 }
109 spin_unlock(&iinfo->i_extent_cache_lock);
110 return ret;
111}
112
113/* Add extent to extent cache */
114static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115 struct extent_position *pos)
116{
117 struct udf_inode_info *iinfo = UDF_I(inode);
118
119 spin_lock(&iinfo->i_extent_cache_lock);
120 /* Invalidate previously cached extent */
121 __udf_clear_extent_cache(inode);
122 if (pos->bh)
123 get_bh(pos->bh);
124 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125 iinfo->cached_extent.lstart = estart;
126 switch (iinfo->i_alloc_type) {
127 case ICBTAG_FLAG_AD_SHORT:
128 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129 break;
130 case ICBTAG_FLAG_AD_LONG:
131 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132 break;
133 }
134 spin_unlock(&iinfo->i_extent_cache_lock);
135}
136
137void udf_evict_inode(struct inode *inode)
138{
139 struct udf_inode_info *iinfo = UDF_I(inode);
140 int want_delete = 0;
141
142 if (!inode->i_nlink && !is_bad_inode(inode)) {
143 want_delete = 1;
144 udf_setsize(inode, 0);
145 udf_update_inode(inode, IS_SYNC(inode));
146 }
147 truncate_inode_pages_final(&inode->i_data);
148 invalidate_inode_buffers(inode);
149 clear_inode(inode);
150 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
151 inode->i_size != iinfo->i_lenExtents) {
152 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
153 inode->i_ino, inode->i_mode,
154 (unsigned long long)inode->i_size,
155 (unsigned long long)iinfo->i_lenExtents);
156 }
157 kfree(iinfo->i_ext.i_data);
158 iinfo->i_ext.i_data = NULL;
159 udf_clear_extent_cache(inode);
160 if (want_delete) {
161 udf_free_inode(inode);
162 }
163}
164
165static void udf_write_failed(struct address_space *mapping, loff_t to)
166{
167 struct inode *inode = mapping->host;
168 struct udf_inode_info *iinfo = UDF_I(inode);
169 loff_t isize = inode->i_size;
170
171 if (to > isize) {
172 truncate_pagecache(inode, isize);
173 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
174 down_write(&iinfo->i_data_sem);
175 udf_clear_extent_cache(inode);
176 udf_truncate_extents(inode);
177 up_write(&iinfo->i_data_sem);
178 }
179 }
180}
181
182static int udf_writepage(struct page *page, struct writeback_control *wbc)
183{
184 return block_write_full_page(page, udf_get_block, wbc);
185}
186
187static int udf_writepages(struct address_space *mapping,
188 struct writeback_control *wbc)
189{
190 return mpage_writepages(mapping, wbc, udf_get_block);
191}
192
193static int udf_readpage(struct file *file, struct page *page)
194{
195 return mpage_readpage(page, udf_get_block);
196}
197
198static int udf_readpages(struct file *file, struct address_space *mapping,
199 struct list_head *pages, unsigned nr_pages)
200{
201 return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
202}
203
204static int udf_write_begin(struct file *file, struct address_space *mapping,
205 loff_t pos, unsigned len, unsigned flags,
206 struct page **pagep, void **fsdata)
207{
208 int ret;
209
210 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
211 if (unlikely(ret))
212 udf_write_failed(mapping, pos + len);
213 return ret;
214}
215
216static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
217{
218 struct file *file = iocb->ki_filp;
219 struct address_space *mapping = file->f_mapping;
220 struct inode *inode = mapping->host;
221 size_t count = iov_iter_count(iter);
222 ssize_t ret;
223
224 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
225 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
226 udf_write_failed(mapping, iocb->ki_pos + count);
227 return ret;
228}
229
230static sector_t udf_bmap(struct address_space *mapping, sector_t block)
231{
232 return generic_block_bmap(mapping, block, udf_get_block);
233}
234
235const struct address_space_operations udf_aops = {
236 .readpage = udf_readpage,
237 .readpages = udf_readpages,
238 .writepage = udf_writepage,
239 .writepages = udf_writepages,
240 .write_begin = udf_write_begin,
241 .write_end = generic_write_end,
242 .direct_IO = udf_direct_IO,
243 .bmap = udf_bmap,
244};
245
246/*
247 * Expand file stored in ICB to a normal one-block-file
248 *
249 * This function requires i_data_sem for writing and releases it.
250 * This function requires i_mutex held
251 */
252int udf_expand_file_adinicb(struct inode *inode)
253{
254 struct page *page;
255 char *kaddr;
256 struct udf_inode_info *iinfo = UDF_I(inode);
257 int err;
258 struct writeback_control udf_wbc = {
259 .sync_mode = WB_SYNC_NONE,
260 .nr_to_write = 1,
261 };
262
263 WARN_ON_ONCE(!inode_is_locked(inode));
264 if (!iinfo->i_lenAlloc) {
265 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
266 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
267 else
268 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
269 /* from now on we have normal address_space methods */
270 inode->i_data.a_ops = &udf_aops;
271 up_write(&iinfo->i_data_sem);
272 mark_inode_dirty(inode);
273 return 0;
274 }
275 /*
276 * Release i_data_sem so that we can lock a page - page lock ranks
277 * above i_data_sem. i_mutex still protects us against file changes.
278 */
279 up_write(&iinfo->i_data_sem);
280
281 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
282 if (!page)
283 return -ENOMEM;
284
285 if (!PageUptodate(page)) {
286 kaddr = kmap_atomic(page);
287 memset(kaddr + iinfo->i_lenAlloc, 0x00,
288 PAGE_SIZE - iinfo->i_lenAlloc);
289 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
290 iinfo->i_lenAlloc);
291 flush_dcache_page(page);
292 SetPageUptodate(page);
293 kunmap_atomic(kaddr);
294 }
295 down_write(&iinfo->i_data_sem);
296 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
297 iinfo->i_lenAlloc);
298 iinfo->i_lenAlloc = 0;
299 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
300 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
301 else
302 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
303 /* from now on we have normal address_space methods */
304 inode->i_data.a_ops = &udf_aops;
305 up_write(&iinfo->i_data_sem);
306 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
307 if (err) {
308 /* Restore everything back so that we don't lose data... */
309 lock_page(page);
310 down_write(&iinfo->i_data_sem);
311 kaddr = kmap_atomic(page);
312 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
313 inode->i_size);
314 kunmap_atomic(kaddr);
315 unlock_page(page);
316 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
317 inode->i_data.a_ops = &udf_adinicb_aops;
318 up_write(&iinfo->i_data_sem);
319 }
320 put_page(page);
321 mark_inode_dirty(inode);
322
323 return err;
324}
325
326struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
327 udf_pblk_t *block, int *err)
328{
329 udf_pblk_t newblock;
330 struct buffer_head *dbh = NULL;
331 struct kernel_lb_addr eloc;
332 uint8_t alloctype;
333 struct extent_position epos;
334
335 struct udf_fileident_bh sfibh, dfibh;
336 loff_t f_pos = udf_ext0_offset(inode);
337 int size = udf_ext0_offset(inode) + inode->i_size;
338 struct fileIdentDesc cfi, *sfi, *dfi;
339 struct udf_inode_info *iinfo = UDF_I(inode);
340
341 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
342 alloctype = ICBTAG_FLAG_AD_SHORT;
343 else
344 alloctype = ICBTAG_FLAG_AD_LONG;
345
346 if (!inode->i_size) {
347 iinfo->i_alloc_type = alloctype;
348 mark_inode_dirty(inode);
349 return NULL;
350 }
351
352 /* alloc block, and copy data to it */
353 *block = udf_new_block(inode->i_sb, inode,
354 iinfo->i_location.partitionReferenceNum,
355 iinfo->i_location.logicalBlockNum, err);
356 if (!(*block))
357 return NULL;
358 newblock = udf_get_pblock(inode->i_sb, *block,
359 iinfo->i_location.partitionReferenceNum,
360 0);
361 if (!newblock)
362 return NULL;
363 dbh = udf_tgetblk(inode->i_sb, newblock);
364 if (!dbh)
365 return NULL;
366 lock_buffer(dbh);
367 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
368 set_buffer_uptodate(dbh);
369 unlock_buffer(dbh);
370 mark_buffer_dirty_inode(dbh, inode);
371
372 sfibh.soffset = sfibh.eoffset =
373 f_pos & (inode->i_sb->s_blocksize - 1);
374 sfibh.sbh = sfibh.ebh = NULL;
375 dfibh.soffset = dfibh.eoffset = 0;
376 dfibh.sbh = dfibh.ebh = dbh;
377 while (f_pos < size) {
378 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
379 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
380 NULL, NULL, NULL);
381 if (!sfi) {
382 brelse(dbh);
383 return NULL;
384 }
385 iinfo->i_alloc_type = alloctype;
386 sfi->descTag.tagLocation = cpu_to_le32(*block);
387 dfibh.soffset = dfibh.eoffset;
388 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
389 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
390 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
391 sfi->fileIdent +
392 le16_to_cpu(sfi->lengthOfImpUse))) {
393 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
394 brelse(dbh);
395 return NULL;
396 }
397 }
398 mark_buffer_dirty_inode(dbh, inode);
399
400 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
401 iinfo->i_lenAlloc);
402 iinfo->i_lenAlloc = 0;
403 eloc.logicalBlockNum = *block;
404 eloc.partitionReferenceNum =
405 iinfo->i_location.partitionReferenceNum;
406 iinfo->i_lenExtents = inode->i_size;
407 epos.bh = NULL;
408 epos.block = iinfo->i_location;
409 epos.offset = udf_file_entry_alloc_offset(inode);
410 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
411 /* UniqueID stuff */
412
413 brelse(epos.bh);
414 mark_inode_dirty(inode);
415 return dbh;
416}
417
418static int udf_get_block(struct inode *inode, sector_t block,
419 struct buffer_head *bh_result, int create)
420{
421 int err, new;
422 sector_t phys = 0;
423 struct udf_inode_info *iinfo;
424
425 if (!create) {
426 phys = udf_block_map(inode, block);
427 if (phys)
428 map_bh(bh_result, inode->i_sb, phys);
429 return 0;
430 }
431
432 err = -EIO;
433 new = 0;
434 iinfo = UDF_I(inode);
435
436 down_write(&iinfo->i_data_sem);
437 if (block == iinfo->i_next_alloc_block + 1) {
438 iinfo->i_next_alloc_block++;
439 iinfo->i_next_alloc_goal++;
440 }
441
442 udf_clear_extent_cache(inode);
443 phys = inode_getblk(inode, block, &err, &new);
444 if (!phys)
445 goto abort;
446
447 if (new)
448 set_buffer_new(bh_result);
449 map_bh(bh_result, inode->i_sb, phys);
450
451abort:
452 up_write(&iinfo->i_data_sem);
453 return err;
454}
455
456static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
457 int create, int *err)
458{
459 struct buffer_head *bh;
460 struct buffer_head dummy;
461
462 dummy.b_state = 0;
463 dummy.b_blocknr = -1000;
464 *err = udf_get_block(inode, block, &dummy, create);
465 if (!*err && buffer_mapped(&dummy)) {
466 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
467 if (buffer_new(&dummy)) {
468 lock_buffer(bh);
469 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
470 set_buffer_uptodate(bh);
471 unlock_buffer(bh);
472 mark_buffer_dirty_inode(bh, inode);
473 }
474 return bh;
475 }
476
477 return NULL;
478}
479
480/* Extend the file with new blocks totaling 'new_block_bytes',
481 * return the number of extents added
482 */
483static int udf_do_extend_file(struct inode *inode,
484 struct extent_position *last_pos,
485 struct kernel_long_ad *last_ext,
486 loff_t new_block_bytes)
487{
488 uint32_t add;
489 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
490 struct super_block *sb = inode->i_sb;
491 struct kernel_lb_addr prealloc_loc = {};
492 uint32_t prealloc_len = 0;
493 struct udf_inode_info *iinfo;
494 int err;
495
496 /* The previous extent is fake and we should not extend by anything
497 * - there's nothing to do... */
498 if (!new_block_bytes && fake)
499 return 0;
500
501 iinfo = UDF_I(inode);
502 /* Round the last extent up to a multiple of block size */
503 if (last_ext->extLength & (sb->s_blocksize - 1)) {
504 last_ext->extLength =
505 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
506 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
507 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
508 iinfo->i_lenExtents =
509 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
510 ~(sb->s_blocksize - 1);
511 }
512
513 /* Last extent are just preallocated blocks? */
514 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
515 EXT_NOT_RECORDED_ALLOCATED) {
516 /* Save the extent so that we can reattach it to the end */
517 prealloc_loc = last_ext->extLocation;
518 prealloc_len = last_ext->extLength;
519 /* Mark the extent as a hole */
520 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
521 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
522 last_ext->extLocation.logicalBlockNum = 0;
523 last_ext->extLocation.partitionReferenceNum = 0;
524 }
525
526 /* Can we merge with the previous extent? */
527 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
528 EXT_NOT_RECORDED_NOT_ALLOCATED) {
529 add = (1 << 30) - sb->s_blocksize -
530 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
531 if (add > new_block_bytes)
532 add = new_block_bytes;
533 new_block_bytes -= add;
534 last_ext->extLength += add;
535 }
536
537 if (fake) {
538 udf_add_aext(inode, last_pos, &last_ext->extLocation,
539 last_ext->extLength, 1);
540 count++;
541 } else {
542 struct kernel_lb_addr tmploc;
543 uint32_t tmplen;
544
545 udf_write_aext(inode, last_pos, &last_ext->extLocation,
546 last_ext->extLength, 1);
547 /*
548 * We've rewritten the last extent but there may be empty
549 * indirect extent after it - enter it.
550 */
551 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
552 }
553
554 /* Managed to do everything necessary? */
555 if (!new_block_bytes)
556 goto out;
557
558 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
559 last_ext->extLocation.logicalBlockNum = 0;
560 last_ext->extLocation.partitionReferenceNum = 0;
561 add = (1 << 30) - sb->s_blocksize;
562 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
563
564 /* Create enough extents to cover the whole hole */
565 while (new_block_bytes > add) {
566 new_block_bytes -= add;
567 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
568 last_ext->extLength, 1);
569 if (err)
570 return err;
571 count++;
572 }
573 if (new_block_bytes) {
574 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
575 new_block_bytes;
576 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
577 last_ext->extLength, 1);
578 if (err)
579 return err;
580 count++;
581 }
582
583out:
584 /* Do we have some preallocated blocks saved? */
585 if (prealloc_len) {
586 err = udf_add_aext(inode, last_pos, &prealloc_loc,
587 prealloc_len, 1);
588 if (err)
589 return err;
590 last_ext->extLocation = prealloc_loc;
591 last_ext->extLength = prealloc_len;
592 count++;
593 }
594
595 /* last_pos should point to the last written extent... */
596 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
597 last_pos->offset -= sizeof(struct short_ad);
598 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
599 last_pos->offset -= sizeof(struct long_ad);
600 else
601 return -EIO;
602
603 return count;
604}
605
606/* Extend the final block of the file to final_block_len bytes */
607static void udf_do_extend_final_block(struct inode *inode,
608 struct extent_position *last_pos,
609 struct kernel_long_ad *last_ext,
610 uint32_t final_block_len)
611{
612 struct super_block *sb = inode->i_sb;
613 uint32_t added_bytes;
614
615 added_bytes = final_block_len -
616 (last_ext->extLength & (sb->s_blocksize - 1));
617 last_ext->extLength += added_bytes;
618 UDF_I(inode)->i_lenExtents += added_bytes;
619
620 udf_write_aext(inode, last_pos, &last_ext->extLocation,
621 last_ext->extLength, 1);
622}
623
624static int udf_extend_file(struct inode *inode, loff_t newsize)
625{
626
627 struct extent_position epos;
628 struct kernel_lb_addr eloc;
629 uint32_t elen;
630 int8_t etype;
631 struct super_block *sb = inode->i_sb;
632 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
633 unsigned long partial_final_block;
634 int adsize;
635 struct udf_inode_info *iinfo = UDF_I(inode);
636 struct kernel_long_ad extent;
637 int err = 0;
638 int within_final_block;
639
640 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
641 adsize = sizeof(struct short_ad);
642 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
643 adsize = sizeof(struct long_ad);
644 else
645 BUG();
646
647 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
648 within_final_block = (etype != -1);
649
650 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
651 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
652 /* File has no extents at all or has empty last
653 * indirect extent! Create a fake extent... */
654 extent.extLocation.logicalBlockNum = 0;
655 extent.extLocation.partitionReferenceNum = 0;
656 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
657 } else {
658 epos.offset -= adsize;
659 etype = udf_next_aext(inode, &epos, &extent.extLocation,
660 &extent.extLength, 0);
661 extent.extLength |= etype << 30;
662 }
663
664 partial_final_block = newsize & (sb->s_blocksize - 1);
665
666 /* File has extent covering the new size (could happen when extending
667 * inside a block)?
668 */
669 if (within_final_block) {
670 /* Extending file within the last file block */
671 udf_do_extend_final_block(inode, &epos, &extent,
672 partial_final_block);
673 } else {
674 loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
675 partial_final_block;
676 err = udf_do_extend_file(inode, &epos, &extent, add);
677 }
678
679 if (err < 0)
680 goto out;
681 err = 0;
682 iinfo->i_lenExtents = newsize;
683out:
684 brelse(epos.bh);
685 return err;
686}
687
688static sector_t inode_getblk(struct inode *inode, sector_t block,
689 int *err, int *new)
690{
691 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
692 struct extent_position prev_epos, cur_epos, next_epos;
693 int count = 0, startnum = 0, endnum = 0;
694 uint32_t elen = 0, tmpelen;
695 struct kernel_lb_addr eloc, tmpeloc;
696 int c = 1;
697 loff_t lbcount = 0, b_off = 0;
698 udf_pblk_t newblocknum, newblock;
699 sector_t offset = 0;
700 int8_t etype;
701 struct udf_inode_info *iinfo = UDF_I(inode);
702 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
703 int lastblock = 0;
704 bool isBeyondEOF;
705
706 *err = 0;
707 *new = 0;
708 prev_epos.offset = udf_file_entry_alloc_offset(inode);
709 prev_epos.block = iinfo->i_location;
710 prev_epos.bh = NULL;
711 cur_epos = next_epos = prev_epos;
712 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
713
714 /* find the extent which contains the block we are looking for.
715 alternate between laarr[0] and laarr[1] for locations of the
716 current extent, and the previous extent */
717 do {
718 if (prev_epos.bh != cur_epos.bh) {
719 brelse(prev_epos.bh);
720 get_bh(cur_epos.bh);
721 prev_epos.bh = cur_epos.bh;
722 }
723 if (cur_epos.bh != next_epos.bh) {
724 brelse(cur_epos.bh);
725 get_bh(next_epos.bh);
726 cur_epos.bh = next_epos.bh;
727 }
728
729 lbcount += elen;
730
731 prev_epos.block = cur_epos.block;
732 cur_epos.block = next_epos.block;
733
734 prev_epos.offset = cur_epos.offset;
735 cur_epos.offset = next_epos.offset;
736
737 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
738 if (etype == -1)
739 break;
740
741 c = !c;
742
743 laarr[c].extLength = (etype << 30) | elen;
744 laarr[c].extLocation = eloc;
745
746 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
747 pgoal = eloc.logicalBlockNum +
748 ((elen + inode->i_sb->s_blocksize - 1) >>
749 inode->i_sb->s_blocksize_bits);
750
751 count++;
752 } while (lbcount + elen <= b_off);
753
754 b_off -= lbcount;
755 offset = b_off >> inode->i_sb->s_blocksize_bits;
756 /*
757 * Move prev_epos and cur_epos into indirect extent if we are at
758 * the pointer to it
759 */
760 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
761 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
762
763 /* if the extent is allocated and recorded, return the block
764 if the extent is not a multiple of the blocksize, round up */
765
766 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
767 if (elen & (inode->i_sb->s_blocksize - 1)) {
768 elen = EXT_RECORDED_ALLOCATED |
769 ((elen + inode->i_sb->s_blocksize - 1) &
770 ~(inode->i_sb->s_blocksize - 1));
771 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
772 }
773 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
774 goto out_free;
775 }
776
777 /* Are we beyond EOF? */
778 if (etype == -1) {
779 int ret;
780 loff_t hole_len;
781 isBeyondEOF = true;
782 if (count) {
783 if (c)
784 laarr[0] = laarr[1];
785 startnum = 1;
786 } else {
787 /* Create a fake extent when there's not one */
788 memset(&laarr[0].extLocation, 0x00,
789 sizeof(struct kernel_lb_addr));
790 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
791 /* Will udf_do_extend_file() create real extent from
792 a fake one? */
793 startnum = (offset > 0);
794 }
795 /* Create extents for the hole between EOF and offset */
796 hole_len = (loff_t)offset << inode->i_blkbits;
797 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
798 if (ret < 0) {
799 *err = ret;
800 newblock = 0;
801 goto out_free;
802 }
803 c = 0;
804 offset = 0;
805 count += ret;
806 /* We are not covered by a preallocated extent? */
807 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
808 EXT_NOT_RECORDED_ALLOCATED) {
809 /* Is there any real extent? - otherwise we overwrite
810 * the fake one... */
811 if (count)
812 c = !c;
813 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
814 inode->i_sb->s_blocksize;
815 memset(&laarr[c].extLocation, 0x00,
816 sizeof(struct kernel_lb_addr));
817 count++;
818 }
819 endnum = c + 1;
820 lastblock = 1;
821 } else {
822 isBeyondEOF = false;
823 endnum = startnum = ((count > 2) ? 2 : count);
824
825 /* if the current extent is in position 0,
826 swap it with the previous */
827 if (!c && count != 1) {
828 laarr[2] = laarr[0];
829 laarr[0] = laarr[1];
830 laarr[1] = laarr[2];
831 c = 1;
832 }
833
834 /* if the current block is located in an extent,
835 read the next extent */
836 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
837 if (etype != -1) {
838 laarr[c + 1].extLength = (etype << 30) | elen;
839 laarr[c + 1].extLocation = eloc;
840 count++;
841 startnum++;
842 endnum++;
843 } else
844 lastblock = 1;
845 }
846
847 /* if the current extent is not recorded but allocated, get the
848 * block in the extent corresponding to the requested block */
849 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
850 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
851 else { /* otherwise, allocate a new block */
852 if (iinfo->i_next_alloc_block == block)
853 goal = iinfo->i_next_alloc_goal;
854
855 if (!goal) {
856 if (!(goal = pgoal)) /* XXX: what was intended here? */
857 goal = iinfo->i_location.logicalBlockNum + 1;
858 }
859
860 newblocknum = udf_new_block(inode->i_sb, inode,
861 iinfo->i_location.partitionReferenceNum,
862 goal, err);
863 if (!newblocknum) {
864 *err = -ENOSPC;
865 newblock = 0;
866 goto out_free;
867 }
868 if (isBeyondEOF)
869 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
870 }
871
872 /* if the extent the requsted block is located in contains multiple
873 * blocks, split the extent into at most three extents. blocks prior
874 * to requested block, requested block, and blocks after requested
875 * block */
876 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
877
878 /* We preallocate blocks only for regular files. It also makes sense
879 * for directories but there's a problem when to drop the
880 * preallocation. We might use some delayed work for that but I feel
881 * it's overengineering for a filesystem like UDF. */
882 if (S_ISREG(inode->i_mode))
883 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
884
885 /* merge any continuous blocks in laarr */
886 udf_merge_extents(inode, laarr, &endnum);
887
888 /* write back the new extents, inserting new extents if the new number
889 * of extents is greater than the old number, and deleting extents if
890 * the new number of extents is less than the old number */
891 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
892
893 newblock = udf_get_pblock(inode->i_sb, newblocknum,
894 iinfo->i_location.partitionReferenceNum, 0);
895 if (!newblock) {
896 *err = -EIO;
897 goto out_free;
898 }
899 *new = 1;
900 iinfo->i_next_alloc_block = block;
901 iinfo->i_next_alloc_goal = newblocknum;
902 inode->i_ctime = current_time(inode);
903
904 if (IS_SYNC(inode))
905 udf_sync_inode(inode);
906 else
907 mark_inode_dirty(inode);
908out_free:
909 brelse(prev_epos.bh);
910 brelse(cur_epos.bh);
911 brelse(next_epos.bh);
912 return newblock;
913}
914
915static void udf_split_extents(struct inode *inode, int *c, int offset,
916 udf_pblk_t newblocknum,
917 struct kernel_long_ad *laarr, int *endnum)
918{
919 unsigned long blocksize = inode->i_sb->s_blocksize;
920 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
921
922 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
923 (laarr[*c].extLength >> 30) ==
924 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
925 int curr = *c;
926 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
927 blocksize - 1) >> blocksize_bits;
928 int8_t etype = (laarr[curr].extLength >> 30);
929
930 if (blen == 1)
931 ;
932 else if (!offset || blen == offset + 1) {
933 laarr[curr + 2] = laarr[curr + 1];
934 laarr[curr + 1] = laarr[curr];
935 } else {
936 laarr[curr + 3] = laarr[curr + 1];
937 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
938 }
939
940 if (offset) {
941 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
942 udf_free_blocks(inode->i_sb, inode,
943 &laarr[curr].extLocation,
944 0, offset);
945 laarr[curr].extLength =
946 EXT_NOT_RECORDED_NOT_ALLOCATED |
947 (offset << blocksize_bits);
948 laarr[curr].extLocation.logicalBlockNum = 0;
949 laarr[curr].extLocation.
950 partitionReferenceNum = 0;
951 } else
952 laarr[curr].extLength = (etype << 30) |
953 (offset << blocksize_bits);
954 curr++;
955 (*c)++;
956 (*endnum)++;
957 }
958
959 laarr[curr].extLocation.logicalBlockNum = newblocknum;
960 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
961 laarr[curr].extLocation.partitionReferenceNum =
962 UDF_I(inode)->i_location.partitionReferenceNum;
963 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
964 blocksize;
965 curr++;
966
967 if (blen != offset + 1) {
968 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
969 laarr[curr].extLocation.logicalBlockNum +=
970 offset + 1;
971 laarr[curr].extLength = (etype << 30) |
972 ((blen - (offset + 1)) << blocksize_bits);
973 curr++;
974 (*endnum)++;
975 }
976 }
977}
978
979static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
980 struct kernel_long_ad *laarr,
981 int *endnum)
982{
983 int start, length = 0, currlength = 0, i;
984
985 if (*endnum >= (c + 1)) {
986 if (!lastblock)
987 return;
988 else
989 start = c;
990 } else {
991 if ((laarr[c + 1].extLength >> 30) ==
992 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
993 start = c + 1;
994 length = currlength =
995 (((laarr[c + 1].extLength &
996 UDF_EXTENT_LENGTH_MASK) +
997 inode->i_sb->s_blocksize - 1) >>
998 inode->i_sb->s_blocksize_bits);
999 } else
1000 start = c;
1001 }
1002
1003 for (i = start + 1; i <= *endnum; i++) {
1004 if (i == *endnum) {
1005 if (lastblock)
1006 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1007 } else if ((laarr[i].extLength >> 30) ==
1008 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1009 length += (((laarr[i].extLength &
1010 UDF_EXTENT_LENGTH_MASK) +
1011 inode->i_sb->s_blocksize - 1) >>
1012 inode->i_sb->s_blocksize_bits);
1013 } else
1014 break;
1015 }
1016
1017 if (length) {
1018 int next = laarr[start].extLocation.logicalBlockNum +
1019 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1020 inode->i_sb->s_blocksize - 1) >>
1021 inode->i_sb->s_blocksize_bits);
1022 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1023 laarr[start].extLocation.partitionReferenceNum,
1024 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1025 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1026 currlength);
1027 if (numalloc) {
1028 if (start == (c + 1))
1029 laarr[start].extLength +=
1030 (numalloc <<
1031 inode->i_sb->s_blocksize_bits);
1032 else {
1033 memmove(&laarr[c + 2], &laarr[c + 1],
1034 sizeof(struct long_ad) * (*endnum - (c + 1)));
1035 (*endnum)++;
1036 laarr[c + 1].extLocation.logicalBlockNum = next;
1037 laarr[c + 1].extLocation.partitionReferenceNum =
1038 laarr[c].extLocation.
1039 partitionReferenceNum;
1040 laarr[c + 1].extLength =
1041 EXT_NOT_RECORDED_ALLOCATED |
1042 (numalloc <<
1043 inode->i_sb->s_blocksize_bits);
1044 start = c + 1;
1045 }
1046
1047 for (i = start + 1; numalloc && i < *endnum; i++) {
1048 int elen = ((laarr[i].extLength &
1049 UDF_EXTENT_LENGTH_MASK) +
1050 inode->i_sb->s_blocksize - 1) >>
1051 inode->i_sb->s_blocksize_bits;
1052
1053 if (elen > numalloc) {
1054 laarr[i].extLength -=
1055 (numalloc <<
1056 inode->i_sb->s_blocksize_bits);
1057 numalloc = 0;
1058 } else {
1059 numalloc -= elen;
1060 if (*endnum > (i + 1))
1061 memmove(&laarr[i],
1062 &laarr[i + 1],
1063 sizeof(struct long_ad) *
1064 (*endnum - (i + 1)));
1065 i--;
1066 (*endnum)--;
1067 }
1068 }
1069 UDF_I(inode)->i_lenExtents +=
1070 numalloc << inode->i_sb->s_blocksize_bits;
1071 }
1072 }
1073}
1074
1075static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1076 int *endnum)
1077{
1078 int i;
1079 unsigned long blocksize = inode->i_sb->s_blocksize;
1080 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1081
1082 for (i = 0; i < (*endnum - 1); i++) {
1083 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1084 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1085
1086 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1087 (((li->extLength >> 30) ==
1088 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1089 ((lip1->extLocation.logicalBlockNum -
1090 li->extLocation.logicalBlockNum) ==
1091 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1092 blocksize - 1) >> blocksize_bits)))) {
1093
1094 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1095 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1096 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1097 lip1->extLength = (lip1->extLength -
1098 (li->extLength &
1099 UDF_EXTENT_LENGTH_MASK) +
1100 UDF_EXTENT_LENGTH_MASK) &
1101 ~(blocksize - 1);
1102 li->extLength = (li->extLength &
1103 UDF_EXTENT_FLAG_MASK) +
1104 (UDF_EXTENT_LENGTH_MASK + 1) -
1105 blocksize;
1106 lip1->extLocation.logicalBlockNum =
1107 li->extLocation.logicalBlockNum +
1108 ((li->extLength &
1109 UDF_EXTENT_LENGTH_MASK) >>
1110 blocksize_bits);
1111 } else {
1112 li->extLength = lip1->extLength +
1113 (((li->extLength &
1114 UDF_EXTENT_LENGTH_MASK) +
1115 blocksize - 1) & ~(blocksize - 1));
1116 if (*endnum > (i + 2))
1117 memmove(&laarr[i + 1], &laarr[i + 2],
1118 sizeof(struct long_ad) *
1119 (*endnum - (i + 2)));
1120 i--;
1121 (*endnum)--;
1122 }
1123 } else if (((li->extLength >> 30) ==
1124 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1125 ((lip1->extLength >> 30) ==
1126 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1127 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1128 ((li->extLength &
1129 UDF_EXTENT_LENGTH_MASK) +
1130 blocksize - 1) >> blocksize_bits);
1131 li->extLocation.logicalBlockNum = 0;
1132 li->extLocation.partitionReferenceNum = 0;
1133
1134 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1135 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1136 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1137 lip1->extLength = (lip1->extLength -
1138 (li->extLength &
1139 UDF_EXTENT_LENGTH_MASK) +
1140 UDF_EXTENT_LENGTH_MASK) &
1141 ~(blocksize - 1);
1142 li->extLength = (li->extLength &
1143 UDF_EXTENT_FLAG_MASK) +
1144 (UDF_EXTENT_LENGTH_MASK + 1) -
1145 blocksize;
1146 } else {
1147 li->extLength = lip1->extLength +
1148 (((li->extLength &
1149 UDF_EXTENT_LENGTH_MASK) +
1150 blocksize - 1) & ~(blocksize - 1));
1151 if (*endnum > (i + 2))
1152 memmove(&laarr[i + 1], &laarr[i + 2],
1153 sizeof(struct long_ad) *
1154 (*endnum - (i + 2)));
1155 i--;
1156 (*endnum)--;
1157 }
1158 } else if ((li->extLength >> 30) ==
1159 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1160 udf_free_blocks(inode->i_sb, inode,
1161 &li->extLocation, 0,
1162 ((li->extLength &
1163 UDF_EXTENT_LENGTH_MASK) +
1164 blocksize - 1) >> blocksize_bits);
1165 li->extLocation.logicalBlockNum = 0;
1166 li->extLocation.partitionReferenceNum = 0;
1167 li->extLength = (li->extLength &
1168 UDF_EXTENT_LENGTH_MASK) |
1169 EXT_NOT_RECORDED_NOT_ALLOCATED;
1170 }
1171 }
1172}
1173
1174static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1175 int startnum, int endnum,
1176 struct extent_position *epos)
1177{
1178 int start = 0, i;
1179 struct kernel_lb_addr tmploc;
1180 uint32_t tmplen;
1181
1182 if (startnum > endnum) {
1183 for (i = 0; i < (startnum - endnum); i++)
1184 udf_delete_aext(inode, *epos);
1185 } else if (startnum < endnum) {
1186 for (i = 0; i < (endnum - startnum); i++) {
1187 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1188 laarr[i].extLength);
1189 udf_next_aext(inode, epos, &laarr[i].extLocation,
1190 &laarr[i].extLength, 1);
1191 start++;
1192 }
1193 }
1194
1195 for (i = start; i < endnum; i++) {
1196 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1197 udf_write_aext(inode, epos, &laarr[i].extLocation,
1198 laarr[i].extLength, 1);
1199 }
1200}
1201
1202struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1203 int create, int *err)
1204{
1205 struct buffer_head *bh = NULL;
1206
1207 bh = udf_getblk(inode, block, create, err);
1208 if (!bh)
1209 return NULL;
1210
1211 if (buffer_uptodate(bh))
1212 return bh;
1213
1214 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1215
1216 wait_on_buffer(bh);
1217 if (buffer_uptodate(bh))
1218 return bh;
1219
1220 brelse(bh);
1221 *err = -EIO;
1222 return NULL;
1223}
1224
1225int udf_setsize(struct inode *inode, loff_t newsize)
1226{
1227 int err;
1228 struct udf_inode_info *iinfo;
1229 unsigned int bsize = i_blocksize(inode);
1230
1231 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1232 S_ISLNK(inode->i_mode)))
1233 return -EINVAL;
1234 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1235 return -EPERM;
1236
1237 iinfo = UDF_I(inode);
1238 if (newsize > inode->i_size) {
1239 down_write(&iinfo->i_data_sem);
1240 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1241 if (bsize <
1242 (udf_file_entry_alloc_offset(inode) + newsize)) {
1243 err = udf_expand_file_adinicb(inode);
1244 if (err)
1245 return err;
1246 down_write(&iinfo->i_data_sem);
1247 } else {
1248 iinfo->i_lenAlloc = newsize;
1249 goto set_size;
1250 }
1251 }
1252 err = udf_extend_file(inode, newsize);
1253 if (err) {
1254 up_write(&iinfo->i_data_sem);
1255 return err;
1256 }
1257set_size:
1258 up_write(&iinfo->i_data_sem);
1259 truncate_setsize(inode, newsize);
1260 } else {
1261 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1262 down_write(&iinfo->i_data_sem);
1263 udf_clear_extent_cache(inode);
1264 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1265 0x00, bsize - newsize -
1266 udf_file_entry_alloc_offset(inode));
1267 iinfo->i_lenAlloc = newsize;
1268 truncate_setsize(inode, newsize);
1269 up_write(&iinfo->i_data_sem);
1270 goto update_time;
1271 }
1272 err = block_truncate_page(inode->i_mapping, newsize,
1273 udf_get_block);
1274 if (err)
1275 return err;
1276 truncate_setsize(inode, newsize);
1277 down_write(&iinfo->i_data_sem);
1278 udf_clear_extent_cache(inode);
1279 err = udf_truncate_extents(inode);
1280 up_write(&iinfo->i_data_sem);
1281 if (err)
1282 return err;
1283 }
1284update_time:
1285 inode->i_mtime = inode->i_ctime = current_time(inode);
1286 if (IS_SYNC(inode))
1287 udf_sync_inode(inode);
1288 else
1289 mark_inode_dirty(inode);
1290 return 0;
1291}
1292
1293/*
1294 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1295 * arbitrary - just that we hopefully don't limit any real use of rewritten
1296 * inode on write-once media but avoid looping for too long on corrupted media.
1297 */
1298#define UDF_MAX_ICB_NESTING 1024
1299
1300static int udf_read_inode(struct inode *inode, bool hidden_inode)
1301{
1302 struct buffer_head *bh = NULL;
1303 struct fileEntry *fe;
1304 struct extendedFileEntry *efe;
1305 uint16_t ident;
1306 struct udf_inode_info *iinfo = UDF_I(inode);
1307 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1308 struct kernel_lb_addr *iloc = &iinfo->i_location;
1309 unsigned int link_count;
1310 unsigned int indirections = 0;
1311 int bs = inode->i_sb->s_blocksize;
1312 int ret = -EIO;
1313 uint32_t uid, gid;
1314
1315reread:
1316 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1317 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1318 iloc->partitionReferenceNum, sbi->s_partitions);
1319 return -EIO;
1320 }
1321
1322 if (iloc->logicalBlockNum >=
1323 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1324 udf_debug("block=%u, partition=%u out of range\n",
1325 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1326 return -EIO;
1327 }
1328
1329 /*
1330 * Set defaults, but the inode is still incomplete!
1331 * Note: get_new_inode() sets the following on a new inode:
1332 * i_sb = sb
1333 * i_no = ino
1334 * i_flags = sb->s_flags
1335 * i_state = 0
1336 * clean_inode(): zero fills and sets
1337 * i_count = 1
1338 * i_nlink = 1
1339 * i_op = NULL;
1340 */
1341 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1342 if (!bh) {
1343 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1344 return -EIO;
1345 }
1346
1347 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1348 ident != TAG_IDENT_USE) {
1349 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1350 inode->i_ino, ident);
1351 goto out;
1352 }
1353
1354 fe = (struct fileEntry *)bh->b_data;
1355 efe = (struct extendedFileEntry *)bh->b_data;
1356
1357 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1358 struct buffer_head *ibh;
1359
1360 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1361 if (ident == TAG_IDENT_IE && ibh) {
1362 struct kernel_lb_addr loc;
1363 struct indirectEntry *ie;
1364
1365 ie = (struct indirectEntry *)ibh->b_data;
1366 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1367
1368 if (ie->indirectICB.extLength) {
1369 brelse(ibh);
1370 memcpy(&iinfo->i_location, &loc,
1371 sizeof(struct kernel_lb_addr));
1372 if (++indirections > UDF_MAX_ICB_NESTING) {
1373 udf_err(inode->i_sb,
1374 "too many ICBs in ICB hierarchy"
1375 " (max %d supported)\n",
1376 UDF_MAX_ICB_NESTING);
1377 goto out;
1378 }
1379 brelse(bh);
1380 goto reread;
1381 }
1382 }
1383 brelse(ibh);
1384 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1385 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1386 le16_to_cpu(fe->icbTag.strategyType));
1387 goto out;
1388 }
1389 if (fe->icbTag.strategyType == cpu_to_le16(4))
1390 iinfo->i_strat4096 = 0;
1391 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1392 iinfo->i_strat4096 = 1;
1393
1394 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1395 ICBTAG_FLAG_AD_MASK;
1396 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1397 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1398 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1399 ret = -EIO;
1400 goto out;
1401 }
1402 iinfo->i_unique = 0;
1403 iinfo->i_lenEAttr = 0;
1404 iinfo->i_lenExtents = 0;
1405 iinfo->i_lenAlloc = 0;
1406 iinfo->i_next_alloc_block = 0;
1407 iinfo->i_next_alloc_goal = 0;
1408 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1409 iinfo->i_efe = 1;
1410 iinfo->i_use = 0;
1411 ret = udf_alloc_i_data(inode, bs -
1412 sizeof(struct extendedFileEntry));
1413 if (ret)
1414 goto out;
1415 memcpy(iinfo->i_ext.i_data,
1416 bh->b_data + sizeof(struct extendedFileEntry),
1417 bs - sizeof(struct extendedFileEntry));
1418 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1419 iinfo->i_efe = 0;
1420 iinfo->i_use = 0;
1421 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1422 if (ret)
1423 goto out;
1424 memcpy(iinfo->i_ext.i_data,
1425 bh->b_data + sizeof(struct fileEntry),
1426 bs - sizeof(struct fileEntry));
1427 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1428 iinfo->i_efe = 0;
1429 iinfo->i_use = 1;
1430 iinfo->i_lenAlloc = le32_to_cpu(
1431 ((struct unallocSpaceEntry *)bh->b_data)->
1432 lengthAllocDescs);
1433 ret = udf_alloc_i_data(inode, bs -
1434 sizeof(struct unallocSpaceEntry));
1435 if (ret)
1436 goto out;
1437 memcpy(iinfo->i_ext.i_data,
1438 bh->b_data + sizeof(struct unallocSpaceEntry),
1439 bs - sizeof(struct unallocSpaceEntry));
1440 return 0;
1441 }
1442
1443 ret = -EIO;
1444 read_lock(&sbi->s_cred_lock);
1445 uid = le32_to_cpu(fe->uid);
1446 if (uid == UDF_INVALID_ID ||
1447 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1448 inode->i_uid = sbi->s_uid;
1449 else
1450 i_uid_write(inode, uid);
1451
1452 gid = le32_to_cpu(fe->gid);
1453 if (gid == UDF_INVALID_ID ||
1454 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1455 inode->i_gid = sbi->s_gid;
1456 else
1457 i_gid_write(inode, gid);
1458
1459 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1460 sbi->s_fmode != UDF_INVALID_MODE)
1461 inode->i_mode = sbi->s_fmode;
1462 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1463 sbi->s_dmode != UDF_INVALID_MODE)
1464 inode->i_mode = sbi->s_dmode;
1465 else
1466 inode->i_mode = udf_convert_permissions(fe);
1467 inode->i_mode &= ~sbi->s_umask;
1468 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1469
1470 read_unlock(&sbi->s_cred_lock);
1471
1472 link_count = le16_to_cpu(fe->fileLinkCount);
1473 if (!link_count) {
1474 if (!hidden_inode) {
1475 ret = -ESTALE;
1476 goto out;
1477 }
1478 link_count = 1;
1479 }
1480 set_nlink(inode, link_count);
1481
1482 inode->i_size = le64_to_cpu(fe->informationLength);
1483 iinfo->i_lenExtents = inode->i_size;
1484
1485 if (iinfo->i_efe == 0) {
1486 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1487 (inode->i_sb->s_blocksize_bits - 9);
1488
1489 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1490 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1491 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1492
1493 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1494 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1495 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1496 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1497 iinfo->i_streamdir = 0;
1498 iinfo->i_lenStreams = 0;
1499 } else {
1500 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1501 (inode->i_sb->s_blocksize_bits - 9);
1502
1503 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1504 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1505 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1506 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1507
1508 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1509 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1510 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1511 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1512
1513 /* Named streams */
1514 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1515 iinfo->i_locStreamdir =
1516 lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1517 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1518 if (iinfo->i_lenStreams >= inode->i_size)
1519 iinfo->i_lenStreams -= inode->i_size;
1520 else
1521 iinfo->i_lenStreams = 0;
1522 }
1523 inode->i_generation = iinfo->i_unique;
1524
1525 /*
1526 * Sanity check length of allocation descriptors and extended attrs to
1527 * avoid integer overflows
1528 */
1529 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1530 goto out;
1531 /* Now do exact checks */
1532 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1533 goto out;
1534 /* Sanity checks for files in ICB so that we don't get confused later */
1535 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1536 /*
1537 * For file in ICB data is stored in allocation descriptor
1538 * so sizes should match
1539 */
1540 if (iinfo->i_lenAlloc != inode->i_size)
1541 goto out;
1542 /* File in ICB has to fit in there... */
1543 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1544 goto out;
1545 }
1546
1547 switch (fe->icbTag.fileType) {
1548 case ICBTAG_FILE_TYPE_DIRECTORY:
1549 inode->i_op = &udf_dir_inode_operations;
1550 inode->i_fop = &udf_dir_operations;
1551 inode->i_mode |= S_IFDIR;
1552 inc_nlink(inode);
1553 break;
1554 case ICBTAG_FILE_TYPE_REALTIME:
1555 case ICBTAG_FILE_TYPE_REGULAR:
1556 case ICBTAG_FILE_TYPE_UNDEF:
1557 case ICBTAG_FILE_TYPE_VAT20:
1558 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1559 inode->i_data.a_ops = &udf_adinicb_aops;
1560 else
1561 inode->i_data.a_ops = &udf_aops;
1562 inode->i_op = &udf_file_inode_operations;
1563 inode->i_fop = &udf_file_operations;
1564 inode->i_mode |= S_IFREG;
1565 break;
1566 case ICBTAG_FILE_TYPE_BLOCK:
1567 inode->i_mode |= S_IFBLK;
1568 break;
1569 case ICBTAG_FILE_TYPE_CHAR:
1570 inode->i_mode |= S_IFCHR;
1571 break;
1572 case ICBTAG_FILE_TYPE_FIFO:
1573 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1574 break;
1575 case ICBTAG_FILE_TYPE_SOCKET:
1576 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1577 break;
1578 case ICBTAG_FILE_TYPE_SYMLINK:
1579 inode->i_data.a_ops = &udf_symlink_aops;
1580 inode->i_op = &udf_symlink_inode_operations;
1581 inode_nohighmem(inode);
1582 inode->i_mode = S_IFLNK | 0777;
1583 break;
1584 case ICBTAG_FILE_TYPE_MAIN:
1585 udf_debug("METADATA FILE-----\n");
1586 break;
1587 case ICBTAG_FILE_TYPE_MIRROR:
1588 udf_debug("METADATA MIRROR FILE-----\n");
1589 break;
1590 case ICBTAG_FILE_TYPE_BITMAP:
1591 udf_debug("METADATA BITMAP FILE-----\n");
1592 break;
1593 default:
1594 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1595 inode->i_ino, fe->icbTag.fileType);
1596 goto out;
1597 }
1598 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1599 struct deviceSpec *dsea =
1600 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1601 if (dsea) {
1602 init_special_inode(inode, inode->i_mode,
1603 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1604 le32_to_cpu(dsea->minorDeviceIdent)));
1605 /* Developer ID ??? */
1606 } else
1607 goto out;
1608 }
1609 ret = 0;
1610out:
1611 brelse(bh);
1612 return ret;
1613}
1614
1615static int udf_alloc_i_data(struct inode *inode, size_t size)
1616{
1617 struct udf_inode_info *iinfo = UDF_I(inode);
1618 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1619 if (!iinfo->i_ext.i_data)
1620 return -ENOMEM;
1621 return 0;
1622}
1623
1624static umode_t udf_convert_permissions(struct fileEntry *fe)
1625{
1626 umode_t mode;
1627 uint32_t permissions;
1628 uint32_t flags;
1629
1630 permissions = le32_to_cpu(fe->permissions);
1631 flags = le16_to_cpu(fe->icbTag.flags);
1632
1633 mode = ((permissions) & 0007) |
1634 ((permissions >> 2) & 0070) |
1635 ((permissions >> 4) & 0700) |
1636 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1637 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1638 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1639
1640 return mode;
1641}
1642
1643void udf_update_extra_perms(struct inode *inode, umode_t mode)
1644{
1645 struct udf_inode_info *iinfo = UDF_I(inode);
1646
1647 /*
1648 * UDF 2.01 sec. 3.3.3.3 Note 2:
1649 * In Unix, delete permission tracks write
1650 */
1651 iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1652 if (mode & 0200)
1653 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1654 if (mode & 0020)
1655 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1656 if (mode & 0002)
1657 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1658}
1659
1660int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1661{
1662 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1663}
1664
1665static int udf_sync_inode(struct inode *inode)
1666{
1667 return udf_update_inode(inode, 1);
1668}
1669
1670static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1671{
1672 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1673 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1674 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1675 iinfo->i_crtime = time;
1676}
1677
1678static int udf_update_inode(struct inode *inode, int do_sync)
1679{
1680 struct buffer_head *bh = NULL;
1681 struct fileEntry *fe;
1682 struct extendedFileEntry *efe;
1683 uint64_t lb_recorded;
1684 uint32_t udfperms;
1685 uint16_t icbflags;
1686 uint16_t crclen;
1687 int err = 0;
1688 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1689 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1690 struct udf_inode_info *iinfo = UDF_I(inode);
1691
1692 bh = udf_tgetblk(inode->i_sb,
1693 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1694 if (!bh) {
1695 udf_debug("getblk failure\n");
1696 return -EIO;
1697 }
1698
1699 lock_buffer(bh);
1700 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1701 fe = (struct fileEntry *)bh->b_data;
1702 efe = (struct extendedFileEntry *)bh->b_data;
1703
1704 if (iinfo->i_use) {
1705 struct unallocSpaceEntry *use =
1706 (struct unallocSpaceEntry *)bh->b_data;
1707
1708 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1709 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1710 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1711 sizeof(struct unallocSpaceEntry));
1712 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1713 crclen = sizeof(struct unallocSpaceEntry);
1714
1715 goto finish;
1716 }
1717
1718 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1719 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1720 else
1721 fe->uid = cpu_to_le32(i_uid_read(inode));
1722
1723 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1724 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1725 else
1726 fe->gid = cpu_to_le32(i_gid_read(inode));
1727
1728 udfperms = ((inode->i_mode & 0007)) |
1729 ((inode->i_mode & 0070) << 2) |
1730 ((inode->i_mode & 0700) << 4);
1731
1732 udfperms |= iinfo->i_extraPerms;
1733 fe->permissions = cpu_to_le32(udfperms);
1734
1735 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1736 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1737 else
1738 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1739
1740 fe->informationLength = cpu_to_le64(inode->i_size);
1741
1742 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1743 struct regid *eid;
1744 struct deviceSpec *dsea =
1745 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1746 if (!dsea) {
1747 dsea = (struct deviceSpec *)
1748 udf_add_extendedattr(inode,
1749 sizeof(struct deviceSpec) +
1750 sizeof(struct regid), 12, 0x3);
1751 dsea->attrType = cpu_to_le32(12);
1752 dsea->attrSubtype = 1;
1753 dsea->attrLength = cpu_to_le32(
1754 sizeof(struct deviceSpec) +
1755 sizeof(struct regid));
1756 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1757 }
1758 eid = (struct regid *)dsea->impUse;
1759 memset(eid, 0, sizeof(*eid));
1760 strcpy(eid->ident, UDF_ID_DEVELOPER);
1761 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1762 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1763 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1764 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1765 }
1766
1767 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1768 lb_recorded = 0; /* No extents => no blocks! */
1769 else
1770 lb_recorded =
1771 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1772 (blocksize_bits - 9);
1773
1774 if (iinfo->i_efe == 0) {
1775 memcpy(bh->b_data + sizeof(struct fileEntry),
1776 iinfo->i_ext.i_data,
1777 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1778 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1779
1780 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1781 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1782 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1783 memset(&(fe->impIdent), 0, sizeof(struct regid));
1784 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1785 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1786 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1787 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1788 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1789 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1790 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1791 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1792 crclen = sizeof(struct fileEntry);
1793 } else {
1794 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1795 iinfo->i_ext.i_data,
1796 inode->i_sb->s_blocksize -
1797 sizeof(struct extendedFileEntry));
1798 efe->objectSize =
1799 cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1800 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1801
1802 if (iinfo->i_streamdir) {
1803 struct long_ad *icb_lad = &efe->streamDirectoryICB;
1804
1805 icb_lad->extLocation =
1806 cpu_to_lelb(iinfo->i_locStreamdir);
1807 icb_lad->extLength =
1808 cpu_to_le32(inode->i_sb->s_blocksize);
1809 }
1810
1811 udf_adjust_time(iinfo, inode->i_atime);
1812 udf_adjust_time(iinfo, inode->i_mtime);
1813 udf_adjust_time(iinfo, inode->i_ctime);
1814
1815 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1816 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1817 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1818 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1819
1820 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1821 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1822 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1823 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1824 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1825 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1826 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1827 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1828 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1829 crclen = sizeof(struct extendedFileEntry);
1830 }
1831
1832finish:
1833 if (iinfo->i_strat4096) {
1834 fe->icbTag.strategyType = cpu_to_le16(4096);
1835 fe->icbTag.strategyParameter = cpu_to_le16(1);
1836 fe->icbTag.numEntries = cpu_to_le16(2);
1837 } else {
1838 fe->icbTag.strategyType = cpu_to_le16(4);
1839 fe->icbTag.numEntries = cpu_to_le16(1);
1840 }
1841
1842 if (iinfo->i_use)
1843 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1844 else if (S_ISDIR(inode->i_mode))
1845 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1846 else if (S_ISREG(inode->i_mode))
1847 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1848 else if (S_ISLNK(inode->i_mode))
1849 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1850 else if (S_ISBLK(inode->i_mode))
1851 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1852 else if (S_ISCHR(inode->i_mode))
1853 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1854 else if (S_ISFIFO(inode->i_mode))
1855 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1856 else if (S_ISSOCK(inode->i_mode))
1857 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1858
1859 icbflags = iinfo->i_alloc_type |
1860 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1861 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1862 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1863 (le16_to_cpu(fe->icbTag.flags) &
1864 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1865 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1866
1867 fe->icbTag.flags = cpu_to_le16(icbflags);
1868 if (sbi->s_udfrev >= 0x0200)
1869 fe->descTag.descVersion = cpu_to_le16(3);
1870 else
1871 fe->descTag.descVersion = cpu_to_le16(2);
1872 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1873 fe->descTag.tagLocation = cpu_to_le32(
1874 iinfo->i_location.logicalBlockNum);
1875 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1876 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1877 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1878 crclen));
1879 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1880
1881 set_buffer_uptodate(bh);
1882 unlock_buffer(bh);
1883
1884 /* write the data blocks */
1885 mark_buffer_dirty(bh);
1886 if (do_sync) {
1887 sync_dirty_buffer(bh);
1888 if (buffer_write_io_error(bh)) {
1889 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1890 inode->i_ino);
1891 err = -EIO;
1892 }
1893 }
1894 brelse(bh);
1895
1896 return err;
1897}
1898
1899struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1900 bool hidden_inode)
1901{
1902 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1903 struct inode *inode = iget_locked(sb, block);
1904 int err;
1905
1906 if (!inode)
1907 return ERR_PTR(-ENOMEM);
1908
1909 if (!(inode->i_state & I_NEW))
1910 return inode;
1911
1912 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1913 err = udf_read_inode(inode, hidden_inode);
1914 if (err < 0) {
1915 iget_failed(inode);
1916 return ERR_PTR(err);
1917 }
1918 unlock_new_inode(inode);
1919
1920 return inode;
1921}
1922
1923int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1924 struct extent_position *epos)
1925{
1926 struct super_block *sb = inode->i_sb;
1927 struct buffer_head *bh;
1928 struct allocExtDesc *aed;
1929 struct extent_position nepos;
1930 struct kernel_lb_addr neloc;
1931 int ver, adsize;
1932
1933 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1934 adsize = sizeof(struct short_ad);
1935 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1936 adsize = sizeof(struct long_ad);
1937 else
1938 return -EIO;
1939
1940 neloc.logicalBlockNum = block;
1941 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1942
1943 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1944 if (!bh)
1945 return -EIO;
1946 lock_buffer(bh);
1947 memset(bh->b_data, 0x00, sb->s_blocksize);
1948 set_buffer_uptodate(bh);
1949 unlock_buffer(bh);
1950 mark_buffer_dirty_inode(bh, inode);
1951
1952 aed = (struct allocExtDesc *)(bh->b_data);
1953 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1954 aed->previousAllocExtLocation =
1955 cpu_to_le32(epos->block.logicalBlockNum);
1956 }
1957 aed->lengthAllocDescs = cpu_to_le32(0);
1958 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1959 ver = 3;
1960 else
1961 ver = 2;
1962 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1963 sizeof(struct tag));
1964
1965 nepos.block = neloc;
1966 nepos.offset = sizeof(struct allocExtDesc);
1967 nepos.bh = bh;
1968
1969 /*
1970 * Do we have to copy current last extent to make space for indirect
1971 * one?
1972 */
1973 if (epos->offset + adsize > sb->s_blocksize) {
1974 struct kernel_lb_addr cp_loc;
1975 uint32_t cp_len;
1976 int cp_type;
1977
1978 epos->offset -= adsize;
1979 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1980 cp_len |= ((uint32_t)cp_type) << 30;
1981
1982 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1983 udf_write_aext(inode, epos, &nepos.block,
1984 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1985 } else {
1986 __udf_add_aext(inode, epos, &nepos.block,
1987 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1988 }
1989
1990 brelse(epos->bh);
1991 *epos = nepos;
1992
1993 return 0;
1994}
1995
1996/*
1997 * Append extent at the given position - should be the first free one in inode
1998 * / indirect extent. This function assumes there is enough space in the inode
1999 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2000 */
2001int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2002 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2003{
2004 struct udf_inode_info *iinfo = UDF_I(inode);
2005 struct allocExtDesc *aed;
2006 int adsize;
2007
2008 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2009 adsize = sizeof(struct short_ad);
2010 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2011 adsize = sizeof(struct long_ad);
2012 else
2013 return -EIO;
2014
2015 if (!epos->bh) {
2016 WARN_ON(iinfo->i_lenAlloc !=
2017 epos->offset - udf_file_entry_alloc_offset(inode));
2018 } else {
2019 aed = (struct allocExtDesc *)epos->bh->b_data;
2020 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2021 epos->offset - sizeof(struct allocExtDesc));
2022 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2023 }
2024
2025 udf_write_aext(inode, epos, eloc, elen, inc);
2026
2027 if (!epos->bh) {
2028 iinfo->i_lenAlloc += adsize;
2029 mark_inode_dirty(inode);
2030 } else {
2031 aed = (struct allocExtDesc *)epos->bh->b_data;
2032 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2033 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2034 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2035 udf_update_tag(epos->bh->b_data,
2036 epos->offset + (inc ? 0 : adsize));
2037 else
2038 udf_update_tag(epos->bh->b_data,
2039 sizeof(struct allocExtDesc));
2040 mark_buffer_dirty_inode(epos->bh, inode);
2041 }
2042
2043 return 0;
2044}
2045
2046/*
2047 * Append extent at given position - should be the first free one in inode
2048 * / indirect extent. Takes care of allocating and linking indirect blocks.
2049 */
2050int udf_add_aext(struct inode *inode, struct extent_position *epos,
2051 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2052{
2053 int adsize;
2054 struct super_block *sb = inode->i_sb;
2055
2056 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2057 adsize = sizeof(struct short_ad);
2058 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2059 adsize = sizeof(struct long_ad);
2060 else
2061 return -EIO;
2062
2063 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2064 int err;
2065 udf_pblk_t new_block;
2066
2067 new_block = udf_new_block(sb, NULL,
2068 epos->block.partitionReferenceNum,
2069 epos->block.logicalBlockNum, &err);
2070 if (!new_block)
2071 return -ENOSPC;
2072
2073 err = udf_setup_indirect_aext(inode, new_block, epos);
2074 if (err)
2075 return err;
2076 }
2077
2078 return __udf_add_aext(inode, epos, eloc, elen, inc);
2079}
2080
2081void udf_write_aext(struct inode *inode, struct extent_position *epos,
2082 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2083{
2084 int adsize;
2085 uint8_t *ptr;
2086 struct short_ad *sad;
2087 struct long_ad *lad;
2088 struct udf_inode_info *iinfo = UDF_I(inode);
2089
2090 if (!epos->bh)
2091 ptr = iinfo->i_ext.i_data + epos->offset -
2092 udf_file_entry_alloc_offset(inode) +
2093 iinfo->i_lenEAttr;
2094 else
2095 ptr = epos->bh->b_data + epos->offset;
2096
2097 switch (iinfo->i_alloc_type) {
2098 case ICBTAG_FLAG_AD_SHORT:
2099 sad = (struct short_ad *)ptr;
2100 sad->extLength = cpu_to_le32(elen);
2101 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2102 adsize = sizeof(struct short_ad);
2103 break;
2104 case ICBTAG_FLAG_AD_LONG:
2105 lad = (struct long_ad *)ptr;
2106 lad->extLength = cpu_to_le32(elen);
2107 lad->extLocation = cpu_to_lelb(*eloc);
2108 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2109 adsize = sizeof(struct long_ad);
2110 break;
2111 default:
2112 return;
2113 }
2114
2115 if (epos->bh) {
2116 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2117 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2118 struct allocExtDesc *aed =
2119 (struct allocExtDesc *)epos->bh->b_data;
2120 udf_update_tag(epos->bh->b_data,
2121 le32_to_cpu(aed->lengthAllocDescs) +
2122 sizeof(struct allocExtDesc));
2123 }
2124 mark_buffer_dirty_inode(epos->bh, inode);
2125 } else {
2126 mark_inode_dirty(inode);
2127 }
2128
2129 if (inc)
2130 epos->offset += adsize;
2131}
2132
2133/*
2134 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2135 * someone does some weird stuff.
2136 */
2137#define UDF_MAX_INDIR_EXTS 16
2138
2139int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2140 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2141{
2142 int8_t etype;
2143 unsigned int indirections = 0;
2144
2145 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2146 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2147 udf_pblk_t block;
2148
2149 if (++indirections > UDF_MAX_INDIR_EXTS) {
2150 udf_err(inode->i_sb,
2151 "too many indirect extents in inode %lu\n",
2152 inode->i_ino);
2153 return -1;
2154 }
2155
2156 epos->block = *eloc;
2157 epos->offset = sizeof(struct allocExtDesc);
2158 brelse(epos->bh);
2159 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2160 epos->bh = udf_tread(inode->i_sb, block);
2161 if (!epos->bh) {
2162 udf_debug("reading block %u failed!\n", block);
2163 return -1;
2164 }
2165 }
2166
2167 return etype;
2168}
2169
2170int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2171 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2172{
2173 int alen;
2174 int8_t etype;
2175 uint8_t *ptr;
2176 struct short_ad *sad;
2177 struct long_ad *lad;
2178 struct udf_inode_info *iinfo = UDF_I(inode);
2179
2180 if (!epos->bh) {
2181 if (!epos->offset)
2182 epos->offset = udf_file_entry_alloc_offset(inode);
2183 ptr = iinfo->i_ext.i_data + epos->offset -
2184 udf_file_entry_alloc_offset(inode) +
2185 iinfo->i_lenEAttr;
2186 alen = udf_file_entry_alloc_offset(inode) +
2187 iinfo->i_lenAlloc;
2188 } else {
2189 if (!epos->offset)
2190 epos->offset = sizeof(struct allocExtDesc);
2191 ptr = epos->bh->b_data + epos->offset;
2192 alen = sizeof(struct allocExtDesc) +
2193 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2194 lengthAllocDescs);
2195 }
2196
2197 switch (iinfo->i_alloc_type) {
2198 case ICBTAG_FLAG_AD_SHORT:
2199 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2200 if (!sad)
2201 return -1;
2202 etype = le32_to_cpu(sad->extLength) >> 30;
2203 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2204 eloc->partitionReferenceNum =
2205 iinfo->i_location.partitionReferenceNum;
2206 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2207 break;
2208 case ICBTAG_FLAG_AD_LONG:
2209 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2210 if (!lad)
2211 return -1;
2212 etype = le32_to_cpu(lad->extLength) >> 30;
2213 *eloc = lelb_to_cpu(lad->extLocation);
2214 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2215 break;
2216 default:
2217 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2218 return -1;
2219 }
2220
2221 return etype;
2222}
2223
2224static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2225 struct kernel_lb_addr neloc, uint32_t nelen)
2226{
2227 struct kernel_lb_addr oeloc;
2228 uint32_t oelen;
2229 int8_t etype;
2230
2231 if (epos.bh)
2232 get_bh(epos.bh);
2233
2234 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2235 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2236 neloc = oeloc;
2237 nelen = (etype << 30) | oelen;
2238 }
2239 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2240 brelse(epos.bh);
2241
2242 return (nelen >> 30);
2243}
2244
2245int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2246{
2247 struct extent_position oepos;
2248 int adsize;
2249 int8_t etype;
2250 struct allocExtDesc *aed;
2251 struct udf_inode_info *iinfo;
2252 struct kernel_lb_addr eloc;
2253 uint32_t elen;
2254
2255 if (epos.bh) {
2256 get_bh(epos.bh);
2257 get_bh(epos.bh);
2258 }
2259
2260 iinfo = UDF_I(inode);
2261 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2262 adsize = sizeof(struct short_ad);
2263 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2264 adsize = sizeof(struct long_ad);
2265 else
2266 adsize = 0;
2267
2268 oepos = epos;
2269 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2270 return -1;
2271
2272 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2273 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2274 if (oepos.bh != epos.bh) {
2275 oepos.block = epos.block;
2276 brelse(oepos.bh);
2277 get_bh(epos.bh);
2278 oepos.bh = epos.bh;
2279 oepos.offset = epos.offset - adsize;
2280 }
2281 }
2282 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2283 elen = 0;
2284
2285 if (epos.bh != oepos.bh) {
2286 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2287 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2288 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2289 if (!oepos.bh) {
2290 iinfo->i_lenAlloc -= (adsize * 2);
2291 mark_inode_dirty(inode);
2292 } else {
2293 aed = (struct allocExtDesc *)oepos.bh->b_data;
2294 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2295 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2296 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2297 udf_update_tag(oepos.bh->b_data,
2298 oepos.offset - (2 * adsize));
2299 else
2300 udf_update_tag(oepos.bh->b_data,
2301 sizeof(struct allocExtDesc));
2302 mark_buffer_dirty_inode(oepos.bh, inode);
2303 }
2304 } else {
2305 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2306 if (!oepos.bh) {
2307 iinfo->i_lenAlloc -= adsize;
2308 mark_inode_dirty(inode);
2309 } else {
2310 aed = (struct allocExtDesc *)oepos.bh->b_data;
2311 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2312 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2313 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2314 udf_update_tag(oepos.bh->b_data,
2315 epos.offset - adsize);
2316 else
2317 udf_update_tag(oepos.bh->b_data,
2318 sizeof(struct allocExtDesc));
2319 mark_buffer_dirty_inode(oepos.bh, inode);
2320 }
2321 }
2322
2323 brelse(epos.bh);
2324 brelse(oepos.bh);
2325
2326 return (elen >> 30);
2327}
2328
2329int8_t inode_bmap(struct inode *inode, sector_t block,
2330 struct extent_position *pos, struct kernel_lb_addr *eloc,
2331 uint32_t *elen, sector_t *offset)
2332{
2333 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2334 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2335 int8_t etype;
2336 struct udf_inode_info *iinfo;
2337
2338 iinfo = UDF_I(inode);
2339 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2340 pos->offset = 0;
2341 pos->block = iinfo->i_location;
2342 pos->bh = NULL;
2343 }
2344 *elen = 0;
2345 do {
2346 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2347 if (etype == -1) {
2348 *offset = (bcount - lbcount) >> blocksize_bits;
2349 iinfo->i_lenExtents = lbcount;
2350 return -1;
2351 }
2352 lbcount += *elen;
2353 } while (lbcount <= bcount);
2354 /* update extent cache */
2355 udf_update_extent_cache(inode, lbcount - *elen, pos);
2356 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2357
2358 return etype;
2359}
2360
2361udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2362{
2363 struct kernel_lb_addr eloc;
2364 uint32_t elen;
2365 sector_t offset;
2366 struct extent_position epos = {};
2367 udf_pblk_t ret;
2368
2369 down_read(&UDF_I(inode)->i_data_sem);
2370
2371 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2372 (EXT_RECORDED_ALLOCATED >> 30))
2373 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2374 else
2375 ret = 0;
2376
2377 up_read(&UDF_I(inode)->i_data_sem);
2378 brelse(epos.bh);
2379
2380 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2381 return udf_fixed_to_variable(ret);
2382 else
2383 return ret;
2384}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * inode.c
4 *
5 * PURPOSE
6 * Inode handling routines for the OSTA-UDF(tm) filesystem.
7 *
8 * COPYRIGHT
9 * (C) 1998 Dave Boynton
10 * (C) 1998-2004 Ben Fennema
11 * (C) 1999-2000 Stelias Computing Inc
12 *
13 * HISTORY
14 *
15 * 10/04/98 dgb Added rudimentary directory functions
16 * 10/07/98 Fully working udf_block_map! It works!
17 * 11/25/98 bmap altered to better support extents
18 * 12/06/98 blf partition support in udf_iget, udf_block_map
19 * and udf_read_inode
20 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
21 * block boundaries (which is not actually allowed)
22 * 12/20/98 added support for strategy 4096
23 * 03/07/99 rewrote udf_block_map (again)
24 * New funcs, inode_bmap, udf_next_aext
25 * 04/19/99 Support for writing device EA's for major/minor #
26 */
27
28#include "udfdecl.h"
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/pagemap.h>
32#include <linux/writeback.h>
33#include <linux/slab.h>
34#include <linux/crc-itu-t.h>
35#include <linux/mpage.h>
36#include <linux/uio.h>
37#include <linux/bio.h>
38
39#include "udf_i.h"
40#include "udf_sb.h"
41
42#define EXTENT_MERGE_SIZE 5
43
44#define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
45 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
46 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
47
48#define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
49 FE_PERM_O_DELETE)
50
51struct udf_map_rq;
52
53static umode_t udf_convert_permissions(struct fileEntry *);
54static int udf_update_inode(struct inode *, int);
55static int udf_sync_inode(struct inode *inode);
56static int udf_alloc_i_data(struct inode *inode, size_t size);
57static int inode_getblk(struct inode *inode, struct udf_map_rq *map);
58static int udf_insert_aext(struct inode *, struct extent_position,
59 struct kernel_lb_addr, uint32_t);
60static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
61 struct kernel_long_ad *, int *);
62static void udf_prealloc_extents(struct inode *, int, int,
63 struct kernel_long_ad *, int *);
64static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
65static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
66 int, struct extent_position *);
67static int udf_get_block_wb(struct inode *inode, sector_t block,
68 struct buffer_head *bh_result, int create);
69
70static void __udf_clear_extent_cache(struct inode *inode)
71{
72 struct udf_inode_info *iinfo = UDF_I(inode);
73
74 if (iinfo->cached_extent.lstart != -1) {
75 brelse(iinfo->cached_extent.epos.bh);
76 iinfo->cached_extent.lstart = -1;
77 }
78}
79
80/* Invalidate extent cache */
81static void udf_clear_extent_cache(struct inode *inode)
82{
83 struct udf_inode_info *iinfo = UDF_I(inode);
84
85 spin_lock(&iinfo->i_extent_cache_lock);
86 __udf_clear_extent_cache(inode);
87 spin_unlock(&iinfo->i_extent_cache_lock);
88}
89
90/* Return contents of extent cache */
91static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
92 loff_t *lbcount, struct extent_position *pos)
93{
94 struct udf_inode_info *iinfo = UDF_I(inode);
95 int ret = 0;
96
97 spin_lock(&iinfo->i_extent_cache_lock);
98 if ((iinfo->cached_extent.lstart <= bcount) &&
99 (iinfo->cached_extent.lstart != -1)) {
100 /* Cache hit */
101 *lbcount = iinfo->cached_extent.lstart;
102 memcpy(pos, &iinfo->cached_extent.epos,
103 sizeof(struct extent_position));
104 if (pos->bh)
105 get_bh(pos->bh);
106 ret = 1;
107 }
108 spin_unlock(&iinfo->i_extent_cache_lock);
109 return ret;
110}
111
112/* Add extent to extent cache */
113static void udf_update_extent_cache(struct inode *inode, loff_t estart,
114 struct extent_position *pos)
115{
116 struct udf_inode_info *iinfo = UDF_I(inode);
117
118 spin_lock(&iinfo->i_extent_cache_lock);
119 /* Invalidate previously cached extent */
120 __udf_clear_extent_cache(inode);
121 if (pos->bh)
122 get_bh(pos->bh);
123 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
124 iinfo->cached_extent.lstart = estart;
125 switch (iinfo->i_alloc_type) {
126 case ICBTAG_FLAG_AD_SHORT:
127 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
128 break;
129 case ICBTAG_FLAG_AD_LONG:
130 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
131 break;
132 }
133 spin_unlock(&iinfo->i_extent_cache_lock);
134}
135
136void udf_evict_inode(struct inode *inode)
137{
138 struct udf_inode_info *iinfo = UDF_I(inode);
139 int want_delete = 0;
140
141 if (!is_bad_inode(inode)) {
142 if (!inode->i_nlink) {
143 want_delete = 1;
144 udf_setsize(inode, 0);
145 udf_update_inode(inode, IS_SYNC(inode));
146 }
147 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
148 inode->i_size != iinfo->i_lenExtents) {
149 udf_warn(inode->i_sb,
150 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
151 inode->i_ino, inode->i_mode,
152 (unsigned long long)inode->i_size,
153 (unsigned long long)iinfo->i_lenExtents);
154 }
155 }
156 truncate_inode_pages_final(&inode->i_data);
157 invalidate_inode_buffers(inode);
158 clear_inode(inode);
159 kfree(iinfo->i_data);
160 iinfo->i_data = NULL;
161 udf_clear_extent_cache(inode);
162 if (want_delete) {
163 udf_free_inode(inode);
164 }
165}
166
167static void udf_write_failed(struct address_space *mapping, loff_t to)
168{
169 struct inode *inode = mapping->host;
170 struct udf_inode_info *iinfo = UDF_I(inode);
171 loff_t isize = inode->i_size;
172
173 if (to > isize) {
174 truncate_pagecache(inode, isize);
175 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
176 down_write(&iinfo->i_data_sem);
177 udf_clear_extent_cache(inode);
178 udf_truncate_extents(inode);
179 up_write(&iinfo->i_data_sem);
180 }
181 }
182}
183
184static int udf_adinicb_writepage(struct folio *folio,
185 struct writeback_control *wbc, void *data)
186{
187 struct inode *inode = folio->mapping->host;
188 struct udf_inode_info *iinfo = UDF_I(inode);
189
190 BUG_ON(!folio_test_locked(folio));
191 BUG_ON(folio->index != 0);
192 memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0,
193 i_size_read(inode));
194 folio_unlock(folio);
195 mark_inode_dirty(inode);
196
197 return 0;
198}
199
200static int udf_writepages(struct address_space *mapping,
201 struct writeback_control *wbc)
202{
203 struct inode *inode = mapping->host;
204 struct udf_inode_info *iinfo = UDF_I(inode);
205
206 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
207 return mpage_writepages(mapping, wbc, udf_get_block_wb);
208 return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL);
209}
210
211static void udf_adinicb_readpage(struct page *page)
212{
213 struct inode *inode = page->mapping->host;
214 char *kaddr;
215 struct udf_inode_info *iinfo = UDF_I(inode);
216 loff_t isize = i_size_read(inode);
217
218 kaddr = kmap_local_page(page);
219 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, isize);
220 memset(kaddr + isize, 0, PAGE_SIZE - isize);
221 flush_dcache_page(page);
222 SetPageUptodate(page);
223 kunmap_local(kaddr);
224}
225
226static int udf_read_folio(struct file *file, struct folio *folio)
227{
228 struct udf_inode_info *iinfo = UDF_I(file_inode(file));
229
230 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
231 udf_adinicb_readpage(&folio->page);
232 folio_unlock(folio);
233 return 0;
234 }
235 return mpage_read_folio(folio, udf_get_block);
236}
237
238static void udf_readahead(struct readahead_control *rac)
239{
240 struct udf_inode_info *iinfo = UDF_I(rac->mapping->host);
241
242 /*
243 * No readahead needed for in-ICB files and udf_get_block() would get
244 * confused for such file anyway.
245 */
246 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
247 return;
248
249 mpage_readahead(rac, udf_get_block);
250}
251
252static int udf_write_begin(struct file *file, struct address_space *mapping,
253 loff_t pos, unsigned len,
254 struct page **pagep, void **fsdata)
255{
256 struct udf_inode_info *iinfo = UDF_I(file_inode(file));
257 struct page *page;
258 int ret;
259
260 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
261 ret = block_write_begin(mapping, pos, len, pagep,
262 udf_get_block);
263 if (unlikely(ret))
264 udf_write_failed(mapping, pos + len);
265 return ret;
266 }
267 if (WARN_ON_ONCE(pos >= PAGE_SIZE))
268 return -EIO;
269 page = grab_cache_page_write_begin(mapping, 0);
270 if (!page)
271 return -ENOMEM;
272 *pagep = page;
273 if (!PageUptodate(page))
274 udf_adinicb_readpage(page);
275 return 0;
276}
277
278static int udf_write_end(struct file *file, struct address_space *mapping,
279 loff_t pos, unsigned len, unsigned copied,
280 struct page *page, void *fsdata)
281{
282 struct inode *inode = file_inode(file);
283 loff_t last_pos;
284
285 if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
286 return generic_write_end(file, mapping, pos, len, copied, page,
287 fsdata);
288 last_pos = pos + copied;
289 if (last_pos > inode->i_size)
290 i_size_write(inode, last_pos);
291 set_page_dirty(page);
292 unlock_page(page);
293 put_page(page);
294
295 return copied;
296}
297
298static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
299{
300 struct file *file = iocb->ki_filp;
301 struct address_space *mapping = file->f_mapping;
302 struct inode *inode = mapping->host;
303 size_t count = iov_iter_count(iter);
304 ssize_t ret;
305
306 /* Fallback to buffered IO for in-ICB files */
307 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
308 return 0;
309 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
310 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
311 udf_write_failed(mapping, iocb->ki_pos + count);
312 return ret;
313}
314
315static sector_t udf_bmap(struct address_space *mapping, sector_t block)
316{
317 struct udf_inode_info *iinfo = UDF_I(mapping->host);
318
319 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
320 return -EINVAL;
321 return generic_block_bmap(mapping, block, udf_get_block);
322}
323
324const struct address_space_operations udf_aops = {
325 .dirty_folio = block_dirty_folio,
326 .invalidate_folio = block_invalidate_folio,
327 .read_folio = udf_read_folio,
328 .readahead = udf_readahead,
329 .writepages = udf_writepages,
330 .write_begin = udf_write_begin,
331 .write_end = udf_write_end,
332 .direct_IO = udf_direct_IO,
333 .bmap = udf_bmap,
334 .migrate_folio = buffer_migrate_folio,
335};
336
337/*
338 * Expand file stored in ICB to a normal one-block-file
339 *
340 * This function requires i_mutex held
341 */
342int udf_expand_file_adinicb(struct inode *inode)
343{
344 struct folio *folio;
345 struct udf_inode_info *iinfo = UDF_I(inode);
346 int err;
347
348 WARN_ON_ONCE(!inode_is_locked(inode));
349 if (!iinfo->i_lenAlloc) {
350 down_write(&iinfo->i_data_sem);
351 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
352 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
353 else
354 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
355 up_write(&iinfo->i_data_sem);
356 mark_inode_dirty(inode);
357 return 0;
358 }
359
360 folio = __filemap_get_folio(inode->i_mapping, 0,
361 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_KERNEL);
362 if (IS_ERR(folio))
363 return PTR_ERR(folio);
364
365 if (!folio_test_uptodate(folio))
366 udf_adinicb_readpage(&folio->page);
367 down_write(&iinfo->i_data_sem);
368 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
369 iinfo->i_lenAlloc);
370 iinfo->i_lenAlloc = 0;
371 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
372 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
373 else
374 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
375 folio_mark_dirty(folio);
376 folio_unlock(folio);
377 up_write(&iinfo->i_data_sem);
378 err = filemap_fdatawrite(inode->i_mapping);
379 if (err) {
380 /* Restore everything back so that we don't lose data... */
381 folio_lock(folio);
382 down_write(&iinfo->i_data_sem);
383 memcpy_from_folio(iinfo->i_data + iinfo->i_lenEAttr,
384 folio, 0, inode->i_size);
385 folio_unlock(folio);
386 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
387 iinfo->i_lenAlloc = inode->i_size;
388 up_write(&iinfo->i_data_sem);
389 }
390 folio_put(folio);
391 mark_inode_dirty(inode);
392
393 return err;
394}
395
396#define UDF_MAP_CREATE 0x01 /* Mapping can allocate new blocks */
397#define UDF_MAP_NOPREALLOC 0x02 /* Do not preallocate blocks */
398
399#define UDF_BLK_MAPPED 0x01 /* Block was successfully mapped */
400#define UDF_BLK_NEW 0x02 /* Block was freshly allocated */
401
402struct udf_map_rq {
403 sector_t lblk;
404 udf_pblk_t pblk;
405 int iflags; /* UDF_MAP_ flags determining behavior */
406 int oflags; /* UDF_BLK_ flags reporting results */
407};
408
409static int udf_map_block(struct inode *inode, struct udf_map_rq *map)
410{
411 int err;
412 struct udf_inode_info *iinfo = UDF_I(inode);
413
414 if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB))
415 return -EFSCORRUPTED;
416
417 map->oflags = 0;
418 if (!(map->iflags & UDF_MAP_CREATE)) {
419 struct kernel_lb_addr eloc;
420 uint32_t elen;
421 sector_t offset;
422 struct extent_position epos = {};
423
424 down_read(&iinfo->i_data_sem);
425 if (inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset)
426 == (EXT_RECORDED_ALLOCATED >> 30)) {
427 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc,
428 offset);
429 map->oflags |= UDF_BLK_MAPPED;
430 }
431 up_read(&iinfo->i_data_sem);
432 brelse(epos.bh);
433
434 return 0;
435 }
436
437 down_write(&iinfo->i_data_sem);
438 /*
439 * Block beyond EOF and prealloc extents? Just discard preallocation
440 * as it is not useful and complicates things.
441 */
442 if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents)
443 udf_discard_prealloc(inode);
444 udf_clear_extent_cache(inode);
445 err = inode_getblk(inode, map);
446 up_write(&iinfo->i_data_sem);
447 return err;
448}
449
450static int __udf_get_block(struct inode *inode, sector_t block,
451 struct buffer_head *bh_result, int flags)
452{
453 int err;
454 struct udf_map_rq map = {
455 .lblk = block,
456 .iflags = flags,
457 };
458
459 err = udf_map_block(inode, &map);
460 if (err < 0)
461 return err;
462 if (map.oflags & UDF_BLK_MAPPED) {
463 map_bh(bh_result, inode->i_sb, map.pblk);
464 if (map.oflags & UDF_BLK_NEW)
465 set_buffer_new(bh_result);
466 }
467 return 0;
468}
469
470int udf_get_block(struct inode *inode, sector_t block,
471 struct buffer_head *bh_result, int create)
472{
473 int flags = create ? UDF_MAP_CREATE : 0;
474
475 /*
476 * We preallocate blocks only for regular files. It also makes sense
477 * for directories but there's a problem when to drop the
478 * preallocation. We might use some delayed work for that but I feel
479 * it's overengineering for a filesystem like UDF.
480 */
481 if (!S_ISREG(inode->i_mode))
482 flags |= UDF_MAP_NOPREALLOC;
483 return __udf_get_block(inode, block, bh_result, flags);
484}
485
486/*
487 * We shouldn't be allocating blocks on page writeback since we allocate them
488 * on page fault. We can spot dirty buffers without allocated blocks though
489 * when truncate expands file. These however don't have valid data so we can
490 * safely ignore them. So never allocate blocks from page writeback.
491 */
492static int udf_get_block_wb(struct inode *inode, sector_t block,
493 struct buffer_head *bh_result, int create)
494{
495 return __udf_get_block(inode, block, bh_result, 0);
496}
497
498/* Extend the file with new blocks totaling 'new_block_bytes',
499 * return the number of extents added
500 */
501static int udf_do_extend_file(struct inode *inode,
502 struct extent_position *last_pos,
503 struct kernel_long_ad *last_ext,
504 loff_t new_block_bytes)
505{
506 uint32_t add;
507 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
508 struct super_block *sb = inode->i_sb;
509 struct udf_inode_info *iinfo;
510 int err;
511
512 /* The previous extent is fake and we should not extend by anything
513 * - there's nothing to do... */
514 if (!new_block_bytes && fake)
515 return 0;
516
517 iinfo = UDF_I(inode);
518 /* Round the last extent up to a multiple of block size */
519 if (last_ext->extLength & (sb->s_blocksize - 1)) {
520 last_ext->extLength =
521 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
522 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
523 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
524 iinfo->i_lenExtents =
525 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
526 ~(sb->s_blocksize - 1);
527 }
528
529 add = 0;
530 /* Can we merge with the previous extent? */
531 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
532 EXT_NOT_RECORDED_NOT_ALLOCATED) {
533 add = (1 << 30) - sb->s_blocksize -
534 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
535 if (add > new_block_bytes)
536 add = new_block_bytes;
537 new_block_bytes -= add;
538 last_ext->extLength += add;
539 }
540
541 if (fake) {
542 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
543 last_ext->extLength, 1);
544 if (err < 0)
545 goto out_err;
546 count++;
547 } else {
548 struct kernel_lb_addr tmploc;
549 uint32_t tmplen;
550
551 udf_write_aext(inode, last_pos, &last_ext->extLocation,
552 last_ext->extLength, 1);
553
554 /*
555 * We've rewritten the last extent. If we are going to add
556 * more extents, we may need to enter possible following
557 * empty indirect extent.
558 */
559 if (new_block_bytes)
560 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
561 }
562 iinfo->i_lenExtents += add;
563
564 /* Managed to do everything necessary? */
565 if (!new_block_bytes)
566 goto out;
567
568 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
569 last_ext->extLocation.logicalBlockNum = 0;
570 last_ext->extLocation.partitionReferenceNum = 0;
571 add = (1 << 30) - sb->s_blocksize;
572 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
573
574 /* Create enough extents to cover the whole hole */
575 while (new_block_bytes > add) {
576 new_block_bytes -= add;
577 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
578 last_ext->extLength, 1);
579 if (err)
580 goto out_err;
581 iinfo->i_lenExtents += add;
582 count++;
583 }
584 if (new_block_bytes) {
585 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
586 new_block_bytes;
587 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
588 last_ext->extLength, 1);
589 if (err)
590 goto out_err;
591 iinfo->i_lenExtents += new_block_bytes;
592 count++;
593 }
594
595out:
596 /* last_pos should point to the last written extent... */
597 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
598 last_pos->offset -= sizeof(struct short_ad);
599 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
600 last_pos->offset -= sizeof(struct long_ad);
601 else
602 return -EIO;
603
604 return count;
605out_err:
606 /* Remove extents we've created so far */
607 udf_clear_extent_cache(inode);
608 udf_truncate_extents(inode);
609 return err;
610}
611
612/* Extend the final block of the file to final_block_len bytes */
613static void udf_do_extend_final_block(struct inode *inode,
614 struct extent_position *last_pos,
615 struct kernel_long_ad *last_ext,
616 uint32_t new_elen)
617{
618 uint32_t added_bytes;
619
620 /*
621 * Extent already large enough? It may be already rounded up to block
622 * size...
623 */
624 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
625 return;
626 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
627 last_ext->extLength += added_bytes;
628 UDF_I(inode)->i_lenExtents += added_bytes;
629
630 udf_write_aext(inode, last_pos, &last_ext->extLocation,
631 last_ext->extLength, 1);
632}
633
634static int udf_extend_file(struct inode *inode, loff_t newsize)
635{
636
637 struct extent_position epos;
638 struct kernel_lb_addr eloc;
639 uint32_t elen;
640 int8_t etype;
641 struct super_block *sb = inode->i_sb;
642 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
643 loff_t new_elen;
644 int adsize;
645 struct udf_inode_info *iinfo = UDF_I(inode);
646 struct kernel_long_ad extent;
647 int err = 0;
648 bool within_last_ext;
649
650 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
651 adsize = sizeof(struct short_ad);
652 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
653 adsize = sizeof(struct long_ad);
654 else
655 BUG();
656
657 down_write(&iinfo->i_data_sem);
658 /*
659 * When creating hole in file, just don't bother with preserving
660 * preallocation. It likely won't be very useful anyway.
661 */
662 udf_discard_prealloc(inode);
663
664 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
665 within_last_ext = (etype != -1);
666 /* We don't expect extents past EOF... */
667 WARN_ON_ONCE(within_last_ext &&
668 elen > ((loff_t)offset + 1) << inode->i_blkbits);
669
670 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
671 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
672 /* File has no extents at all or has empty last
673 * indirect extent! Create a fake extent... */
674 extent.extLocation.logicalBlockNum = 0;
675 extent.extLocation.partitionReferenceNum = 0;
676 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
677 } else {
678 epos.offset -= adsize;
679 etype = udf_next_aext(inode, &epos, &extent.extLocation,
680 &extent.extLength, 0);
681 extent.extLength |= etype << 30;
682 }
683
684 new_elen = ((loff_t)offset << inode->i_blkbits) |
685 (newsize & (sb->s_blocksize - 1));
686
687 /* File has extent covering the new size (could happen when extending
688 * inside a block)?
689 */
690 if (within_last_ext) {
691 /* Extending file within the last file block */
692 udf_do_extend_final_block(inode, &epos, &extent, new_elen);
693 } else {
694 err = udf_do_extend_file(inode, &epos, &extent, new_elen);
695 }
696
697 if (err < 0)
698 goto out;
699 err = 0;
700out:
701 brelse(epos.bh);
702 up_write(&iinfo->i_data_sem);
703 return err;
704}
705
706static int inode_getblk(struct inode *inode, struct udf_map_rq *map)
707{
708 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
709 struct extent_position prev_epos, cur_epos, next_epos;
710 int count = 0, startnum = 0, endnum = 0;
711 uint32_t elen = 0, tmpelen;
712 struct kernel_lb_addr eloc, tmpeloc;
713 int c = 1;
714 loff_t lbcount = 0, b_off = 0;
715 udf_pblk_t newblocknum;
716 sector_t offset = 0;
717 int8_t etype;
718 struct udf_inode_info *iinfo = UDF_I(inode);
719 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
720 int lastblock = 0;
721 bool isBeyondEOF;
722 int ret = 0;
723
724 prev_epos.offset = udf_file_entry_alloc_offset(inode);
725 prev_epos.block = iinfo->i_location;
726 prev_epos.bh = NULL;
727 cur_epos = next_epos = prev_epos;
728 b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits;
729
730 /* find the extent which contains the block we are looking for.
731 alternate between laarr[0] and laarr[1] for locations of the
732 current extent, and the previous extent */
733 do {
734 if (prev_epos.bh != cur_epos.bh) {
735 brelse(prev_epos.bh);
736 get_bh(cur_epos.bh);
737 prev_epos.bh = cur_epos.bh;
738 }
739 if (cur_epos.bh != next_epos.bh) {
740 brelse(cur_epos.bh);
741 get_bh(next_epos.bh);
742 cur_epos.bh = next_epos.bh;
743 }
744
745 lbcount += elen;
746
747 prev_epos.block = cur_epos.block;
748 cur_epos.block = next_epos.block;
749
750 prev_epos.offset = cur_epos.offset;
751 cur_epos.offset = next_epos.offset;
752
753 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
754 if (etype == -1)
755 break;
756
757 c = !c;
758
759 laarr[c].extLength = (etype << 30) | elen;
760 laarr[c].extLocation = eloc;
761
762 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
763 pgoal = eloc.logicalBlockNum +
764 ((elen + inode->i_sb->s_blocksize - 1) >>
765 inode->i_sb->s_blocksize_bits);
766
767 count++;
768 } while (lbcount + elen <= b_off);
769
770 b_off -= lbcount;
771 offset = b_off >> inode->i_sb->s_blocksize_bits;
772 /*
773 * Move prev_epos and cur_epos into indirect extent if we are at
774 * the pointer to it
775 */
776 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
777 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
778
779 /* if the extent is allocated and recorded, return the block
780 if the extent is not a multiple of the blocksize, round up */
781
782 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
783 if (elen & (inode->i_sb->s_blocksize - 1)) {
784 elen = EXT_RECORDED_ALLOCATED |
785 ((elen + inode->i_sb->s_blocksize - 1) &
786 ~(inode->i_sb->s_blocksize - 1));
787 iinfo->i_lenExtents =
788 ALIGN(iinfo->i_lenExtents,
789 inode->i_sb->s_blocksize);
790 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
791 }
792 map->oflags = UDF_BLK_MAPPED;
793 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
794 goto out_free;
795 }
796
797 /* Are we beyond EOF and preallocated extent? */
798 if (etype == -1) {
799 loff_t hole_len;
800
801 isBeyondEOF = true;
802 if (count) {
803 if (c)
804 laarr[0] = laarr[1];
805 startnum = 1;
806 } else {
807 /* Create a fake extent when there's not one */
808 memset(&laarr[0].extLocation, 0x00,
809 sizeof(struct kernel_lb_addr));
810 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
811 /* Will udf_do_extend_file() create real extent from
812 a fake one? */
813 startnum = (offset > 0);
814 }
815 /* Create extents for the hole between EOF and offset */
816 hole_len = (loff_t)offset << inode->i_blkbits;
817 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
818 if (ret < 0)
819 goto out_free;
820 c = 0;
821 offset = 0;
822 count += ret;
823 /*
824 * Is there any real extent? - otherwise we overwrite the fake
825 * one...
826 */
827 if (count)
828 c = !c;
829 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
830 inode->i_sb->s_blocksize;
831 memset(&laarr[c].extLocation, 0x00,
832 sizeof(struct kernel_lb_addr));
833 count++;
834 endnum = c + 1;
835 lastblock = 1;
836 } else {
837 isBeyondEOF = false;
838 endnum = startnum = ((count > 2) ? 2 : count);
839
840 /* if the current extent is in position 0,
841 swap it with the previous */
842 if (!c && count != 1) {
843 laarr[2] = laarr[0];
844 laarr[0] = laarr[1];
845 laarr[1] = laarr[2];
846 c = 1;
847 }
848
849 /* if the current block is located in an extent,
850 read the next extent */
851 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
852 if (etype != -1) {
853 laarr[c + 1].extLength = (etype << 30) | elen;
854 laarr[c + 1].extLocation = eloc;
855 count++;
856 startnum++;
857 endnum++;
858 } else
859 lastblock = 1;
860 }
861
862 /* if the current extent is not recorded but allocated, get the
863 * block in the extent corresponding to the requested block */
864 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
865 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
866 else { /* otherwise, allocate a new block */
867 if (iinfo->i_next_alloc_block == map->lblk)
868 goal = iinfo->i_next_alloc_goal;
869
870 if (!goal) {
871 if (!(goal = pgoal)) /* XXX: what was intended here? */
872 goal = iinfo->i_location.logicalBlockNum + 1;
873 }
874
875 newblocknum = udf_new_block(inode->i_sb, inode,
876 iinfo->i_location.partitionReferenceNum,
877 goal, &ret);
878 if (!newblocknum)
879 goto out_free;
880 if (isBeyondEOF)
881 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
882 }
883
884 /* if the extent the requsted block is located in contains multiple
885 * blocks, split the extent into at most three extents. blocks prior
886 * to requested block, requested block, and blocks after requested
887 * block */
888 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
889
890 if (!(map->iflags & UDF_MAP_NOPREALLOC))
891 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
892
893 /* merge any continuous blocks in laarr */
894 udf_merge_extents(inode, laarr, &endnum);
895
896 /* write back the new extents, inserting new extents if the new number
897 * of extents is greater than the old number, and deleting extents if
898 * the new number of extents is less than the old number */
899 ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
900 if (ret < 0)
901 goto out_free;
902
903 map->pblk = udf_get_pblock(inode->i_sb, newblocknum,
904 iinfo->i_location.partitionReferenceNum, 0);
905 if (!map->pblk) {
906 ret = -EFSCORRUPTED;
907 goto out_free;
908 }
909 map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED;
910 iinfo->i_next_alloc_block = map->lblk + 1;
911 iinfo->i_next_alloc_goal = newblocknum + 1;
912 inode_set_ctime_current(inode);
913
914 if (IS_SYNC(inode))
915 udf_sync_inode(inode);
916 else
917 mark_inode_dirty(inode);
918 ret = 0;
919out_free:
920 brelse(prev_epos.bh);
921 brelse(cur_epos.bh);
922 brelse(next_epos.bh);
923 return ret;
924}
925
926static void udf_split_extents(struct inode *inode, int *c, int offset,
927 udf_pblk_t newblocknum,
928 struct kernel_long_ad *laarr, int *endnum)
929{
930 unsigned long blocksize = inode->i_sb->s_blocksize;
931 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
932
933 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
934 (laarr[*c].extLength >> 30) ==
935 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
936 int curr = *c;
937 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
938 blocksize - 1) >> blocksize_bits;
939 int8_t etype = (laarr[curr].extLength >> 30);
940
941 if (blen == 1)
942 ;
943 else if (!offset || blen == offset + 1) {
944 laarr[curr + 2] = laarr[curr + 1];
945 laarr[curr + 1] = laarr[curr];
946 } else {
947 laarr[curr + 3] = laarr[curr + 1];
948 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
949 }
950
951 if (offset) {
952 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
953 udf_free_blocks(inode->i_sb, inode,
954 &laarr[curr].extLocation,
955 0, offset);
956 laarr[curr].extLength =
957 EXT_NOT_RECORDED_NOT_ALLOCATED |
958 (offset << blocksize_bits);
959 laarr[curr].extLocation.logicalBlockNum = 0;
960 laarr[curr].extLocation.
961 partitionReferenceNum = 0;
962 } else
963 laarr[curr].extLength = (etype << 30) |
964 (offset << blocksize_bits);
965 curr++;
966 (*c)++;
967 (*endnum)++;
968 }
969
970 laarr[curr].extLocation.logicalBlockNum = newblocknum;
971 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
972 laarr[curr].extLocation.partitionReferenceNum =
973 UDF_I(inode)->i_location.partitionReferenceNum;
974 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
975 blocksize;
976 curr++;
977
978 if (blen != offset + 1) {
979 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
980 laarr[curr].extLocation.logicalBlockNum +=
981 offset + 1;
982 laarr[curr].extLength = (etype << 30) |
983 ((blen - (offset + 1)) << blocksize_bits);
984 curr++;
985 (*endnum)++;
986 }
987 }
988}
989
990static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
991 struct kernel_long_ad *laarr,
992 int *endnum)
993{
994 int start, length = 0, currlength = 0, i;
995
996 if (*endnum >= (c + 1)) {
997 if (!lastblock)
998 return;
999 else
1000 start = c;
1001 } else {
1002 if ((laarr[c + 1].extLength >> 30) ==
1003 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1004 start = c + 1;
1005 length = currlength =
1006 (((laarr[c + 1].extLength &
1007 UDF_EXTENT_LENGTH_MASK) +
1008 inode->i_sb->s_blocksize - 1) >>
1009 inode->i_sb->s_blocksize_bits);
1010 } else
1011 start = c;
1012 }
1013
1014 for (i = start + 1; i <= *endnum; i++) {
1015 if (i == *endnum) {
1016 if (lastblock)
1017 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1018 } else if ((laarr[i].extLength >> 30) ==
1019 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1020 length += (((laarr[i].extLength &
1021 UDF_EXTENT_LENGTH_MASK) +
1022 inode->i_sb->s_blocksize - 1) >>
1023 inode->i_sb->s_blocksize_bits);
1024 } else
1025 break;
1026 }
1027
1028 if (length) {
1029 int next = laarr[start].extLocation.logicalBlockNum +
1030 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1031 inode->i_sb->s_blocksize - 1) >>
1032 inode->i_sb->s_blocksize_bits);
1033 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1034 laarr[start].extLocation.partitionReferenceNum,
1035 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1036 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1037 currlength);
1038 if (numalloc) {
1039 if (start == (c + 1))
1040 laarr[start].extLength +=
1041 (numalloc <<
1042 inode->i_sb->s_blocksize_bits);
1043 else {
1044 memmove(&laarr[c + 2], &laarr[c + 1],
1045 sizeof(struct long_ad) * (*endnum - (c + 1)));
1046 (*endnum)++;
1047 laarr[c + 1].extLocation.logicalBlockNum = next;
1048 laarr[c + 1].extLocation.partitionReferenceNum =
1049 laarr[c].extLocation.
1050 partitionReferenceNum;
1051 laarr[c + 1].extLength =
1052 EXT_NOT_RECORDED_ALLOCATED |
1053 (numalloc <<
1054 inode->i_sb->s_blocksize_bits);
1055 start = c + 1;
1056 }
1057
1058 for (i = start + 1; numalloc && i < *endnum; i++) {
1059 int elen = ((laarr[i].extLength &
1060 UDF_EXTENT_LENGTH_MASK) +
1061 inode->i_sb->s_blocksize - 1) >>
1062 inode->i_sb->s_blocksize_bits;
1063
1064 if (elen > numalloc) {
1065 laarr[i].extLength -=
1066 (numalloc <<
1067 inode->i_sb->s_blocksize_bits);
1068 numalloc = 0;
1069 } else {
1070 numalloc -= elen;
1071 if (*endnum > (i + 1))
1072 memmove(&laarr[i],
1073 &laarr[i + 1],
1074 sizeof(struct long_ad) *
1075 (*endnum - (i + 1)));
1076 i--;
1077 (*endnum)--;
1078 }
1079 }
1080 UDF_I(inode)->i_lenExtents +=
1081 numalloc << inode->i_sb->s_blocksize_bits;
1082 }
1083 }
1084}
1085
1086static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1087 int *endnum)
1088{
1089 int i;
1090 unsigned long blocksize = inode->i_sb->s_blocksize;
1091 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1092
1093 for (i = 0; i < (*endnum - 1); i++) {
1094 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1095 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1096
1097 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1098 (((li->extLength >> 30) ==
1099 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1100 ((lip1->extLocation.logicalBlockNum -
1101 li->extLocation.logicalBlockNum) ==
1102 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1103 blocksize - 1) >> blocksize_bits)))) {
1104
1105 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1106 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1107 blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
1108 li->extLength = lip1->extLength +
1109 (((li->extLength &
1110 UDF_EXTENT_LENGTH_MASK) +
1111 blocksize - 1) & ~(blocksize - 1));
1112 if (*endnum > (i + 2))
1113 memmove(&laarr[i + 1], &laarr[i + 2],
1114 sizeof(struct long_ad) *
1115 (*endnum - (i + 2)));
1116 i--;
1117 (*endnum)--;
1118 }
1119 } else if (((li->extLength >> 30) ==
1120 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1121 ((lip1->extLength >> 30) ==
1122 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1123 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1124 ((li->extLength &
1125 UDF_EXTENT_LENGTH_MASK) +
1126 blocksize - 1) >> blocksize_bits);
1127 li->extLocation.logicalBlockNum = 0;
1128 li->extLocation.partitionReferenceNum = 0;
1129
1130 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1131 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1132 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1133 lip1->extLength = (lip1->extLength -
1134 (li->extLength &
1135 UDF_EXTENT_LENGTH_MASK) +
1136 UDF_EXTENT_LENGTH_MASK) &
1137 ~(blocksize - 1);
1138 li->extLength = (li->extLength &
1139 UDF_EXTENT_FLAG_MASK) +
1140 (UDF_EXTENT_LENGTH_MASK + 1) -
1141 blocksize;
1142 } else {
1143 li->extLength = lip1->extLength +
1144 (((li->extLength &
1145 UDF_EXTENT_LENGTH_MASK) +
1146 blocksize - 1) & ~(blocksize - 1));
1147 if (*endnum > (i + 2))
1148 memmove(&laarr[i + 1], &laarr[i + 2],
1149 sizeof(struct long_ad) *
1150 (*endnum - (i + 2)));
1151 i--;
1152 (*endnum)--;
1153 }
1154 } else if ((li->extLength >> 30) ==
1155 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1156 udf_free_blocks(inode->i_sb, inode,
1157 &li->extLocation, 0,
1158 ((li->extLength &
1159 UDF_EXTENT_LENGTH_MASK) +
1160 blocksize - 1) >> blocksize_bits);
1161 li->extLocation.logicalBlockNum = 0;
1162 li->extLocation.partitionReferenceNum = 0;
1163 li->extLength = (li->extLength &
1164 UDF_EXTENT_LENGTH_MASK) |
1165 EXT_NOT_RECORDED_NOT_ALLOCATED;
1166 }
1167 }
1168}
1169
1170static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1171 int startnum, int endnum,
1172 struct extent_position *epos)
1173{
1174 int start = 0, i;
1175 struct kernel_lb_addr tmploc;
1176 uint32_t tmplen;
1177 int err;
1178
1179 if (startnum > endnum) {
1180 for (i = 0; i < (startnum - endnum); i++)
1181 udf_delete_aext(inode, *epos);
1182 } else if (startnum < endnum) {
1183 for (i = 0; i < (endnum - startnum); i++) {
1184 err = udf_insert_aext(inode, *epos,
1185 laarr[i].extLocation,
1186 laarr[i].extLength);
1187 /*
1188 * If we fail here, we are likely corrupting the extent
1189 * list and leaking blocks. At least stop early to
1190 * limit the damage.
1191 */
1192 if (err < 0)
1193 return err;
1194 udf_next_aext(inode, epos, &laarr[i].extLocation,
1195 &laarr[i].extLength, 1);
1196 start++;
1197 }
1198 }
1199
1200 for (i = start; i < endnum; i++) {
1201 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1202 udf_write_aext(inode, epos, &laarr[i].extLocation,
1203 laarr[i].extLength, 1);
1204 }
1205 return 0;
1206}
1207
1208struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1209 int create, int *err)
1210{
1211 struct buffer_head *bh = NULL;
1212 struct udf_map_rq map = {
1213 .lblk = block,
1214 .iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0),
1215 };
1216
1217 *err = udf_map_block(inode, &map);
1218 if (*err || !(map.oflags & UDF_BLK_MAPPED))
1219 return NULL;
1220
1221 bh = sb_getblk(inode->i_sb, map.pblk);
1222 if (!bh) {
1223 *err = -ENOMEM;
1224 return NULL;
1225 }
1226 if (map.oflags & UDF_BLK_NEW) {
1227 lock_buffer(bh);
1228 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1229 set_buffer_uptodate(bh);
1230 unlock_buffer(bh);
1231 mark_buffer_dirty_inode(bh, inode);
1232 return bh;
1233 }
1234
1235 if (bh_read(bh, 0) >= 0)
1236 return bh;
1237
1238 brelse(bh);
1239 *err = -EIO;
1240 return NULL;
1241}
1242
1243int udf_setsize(struct inode *inode, loff_t newsize)
1244{
1245 int err = 0;
1246 struct udf_inode_info *iinfo;
1247 unsigned int bsize = i_blocksize(inode);
1248
1249 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1250 S_ISLNK(inode->i_mode)))
1251 return -EINVAL;
1252 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1253 return -EPERM;
1254
1255 filemap_invalidate_lock(inode->i_mapping);
1256 iinfo = UDF_I(inode);
1257 if (newsize > inode->i_size) {
1258 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1259 if (bsize >=
1260 (udf_file_entry_alloc_offset(inode) + newsize)) {
1261 down_write(&iinfo->i_data_sem);
1262 iinfo->i_lenAlloc = newsize;
1263 up_write(&iinfo->i_data_sem);
1264 goto set_size;
1265 }
1266 err = udf_expand_file_adinicb(inode);
1267 if (err)
1268 goto out_unlock;
1269 }
1270 err = udf_extend_file(inode, newsize);
1271 if (err)
1272 goto out_unlock;
1273set_size:
1274 truncate_setsize(inode, newsize);
1275 } else {
1276 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1277 down_write(&iinfo->i_data_sem);
1278 udf_clear_extent_cache(inode);
1279 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1280 0x00, bsize - newsize -
1281 udf_file_entry_alloc_offset(inode));
1282 iinfo->i_lenAlloc = newsize;
1283 truncate_setsize(inode, newsize);
1284 up_write(&iinfo->i_data_sem);
1285 goto update_time;
1286 }
1287 err = block_truncate_page(inode->i_mapping, newsize,
1288 udf_get_block);
1289 if (err)
1290 goto out_unlock;
1291 truncate_setsize(inode, newsize);
1292 down_write(&iinfo->i_data_sem);
1293 udf_clear_extent_cache(inode);
1294 err = udf_truncate_extents(inode);
1295 up_write(&iinfo->i_data_sem);
1296 if (err)
1297 goto out_unlock;
1298 }
1299update_time:
1300 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1301 if (IS_SYNC(inode))
1302 udf_sync_inode(inode);
1303 else
1304 mark_inode_dirty(inode);
1305out_unlock:
1306 filemap_invalidate_unlock(inode->i_mapping);
1307 return err;
1308}
1309
1310/*
1311 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1312 * arbitrary - just that we hopefully don't limit any real use of rewritten
1313 * inode on write-once media but avoid looping for too long on corrupted media.
1314 */
1315#define UDF_MAX_ICB_NESTING 1024
1316
1317static int udf_read_inode(struct inode *inode, bool hidden_inode)
1318{
1319 struct buffer_head *bh = NULL;
1320 struct fileEntry *fe;
1321 struct extendedFileEntry *efe;
1322 uint16_t ident;
1323 struct udf_inode_info *iinfo = UDF_I(inode);
1324 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1325 struct kernel_lb_addr *iloc = &iinfo->i_location;
1326 unsigned int link_count;
1327 unsigned int indirections = 0;
1328 int bs = inode->i_sb->s_blocksize;
1329 int ret = -EIO;
1330 uint32_t uid, gid;
1331 struct timespec64 ts;
1332
1333reread:
1334 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1335 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1336 iloc->partitionReferenceNum, sbi->s_partitions);
1337 return -EIO;
1338 }
1339
1340 if (iloc->logicalBlockNum >=
1341 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1342 udf_debug("block=%u, partition=%u out of range\n",
1343 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1344 return -EIO;
1345 }
1346
1347 /*
1348 * Set defaults, but the inode is still incomplete!
1349 * Note: get_new_inode() sets the following on a new inode:
1350 * i_sb = sb
1351 * i_no = ino
1352 * i_flags = sb->s_flags
1353 * i_state = 0
1354 * clean_inode(): zero fills and sets
1355 * i_count = 1
1356 * i_nlink = 1
1357 * i_op = NULL;
1358 */
1359 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1360 if (!bh) {
1361 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1362 return -EIO;
1363 }
1364
1365 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1366 ident != TAG_IDENT_USE) {
1367 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1368 inode->i_ino, ident);
1369 goto out;
1370 }
1371
1372 fe = (struct fileEntry *)bh->b_data;
1373 efe = (struct extendedFileEntry *)bh->b_data;
1374
1375 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1376 struct buffer_head *ibh;
1377
1378 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1379 if (ident == TAG_IDENT_IE && ibh) {
1380 struct kernel_lb_addr loc;
1381 struct indirectEntry *ie;
1382
1383 ie = (struct indirectEntry *)ibh->b_data;
1384 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1385
1386 if (ie->indirectICB.extLength) {
1387 brelse(ibh);
1388 memcpy(&iinfo->i_location, &loc,
1389 sizeof(struct kernel_lb_addr));
1390 if (++indirections > UDF_MAX_ICB_NESTING) {
1391 udf_err(inode->i_sb,
1392 "too many ICBs in ICB hierarchy"
1393 " (max %d supported)\n",
1394 UDF_MAX_ICB_NESTING);
1395 goto out;
1396 }
1397 brelse(bh);
1398 goto reread;
1399 }
1400 }
1401 brelse(ibh);
1402 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1403 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1404 le16_to_cpu(fe->icbTag.strategyType));
1405 goto out;
1406 }
1407 if (fe->icbTag.strategyType == cpu_to_le16(4))
1408 iinfo->i_strat4096 = 0;
1409 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1410 iinfo->i_strat4096 = 1;
1411
1412 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1413 ICBTAG_FLAG_AD_MASK;
1414 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1415 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1416 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1417 ret = -EIO;
1418 goto out;
1419 }
1420 iinfo->i_hidden = hidden_inode;
1421 iinfo->i_unique = 0;
1422 iinfo->i_lenEAttr = 0;
1423 iinfo->i_lenExtents = 0;
1424 iinfo->i_lenAlloc = 0;
1425 iinfo->i_next_alloc_block = 0;
1426 iinfo->i_next_alloc_goal = 0;
1427 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1428 iinfo->i_efe = 1;
1429 iinfo->i_use = 0;
1430 ret = udf_alloc_i_data(inode, bs -
1431 sizeof(struct extendedFileEntry));
1432 if (ret)
1433 goto out;
1434 memcpy(iinfo->i_data,
1435 bh->b_data + sizeof(struct extendedFileEntry),
1436 bs - sizeof(struct extendedFileEntry));
1437 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1438 iinfo->i_efe = 0;
1439 iinfo->i_use = 0;
1440 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1441 if (ret)
1442 goto out;
1443 memcpy(iinfo->i_data,
1444 bh->b_data + sizeof(struct fileEntry),
1445 bs - sizeof(struct fileEntry));
1446 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1447 iinfo->i_efe = 0;
1448 iinfo->i_use = 1;
1449 iinfo->i_lenAlloc = le32_to_cpu(
1450 ((struct unallocSpaceEntry *)bh->b_data)->
1451 lengthAllocDescs);
1452 ret = udf_alloc_i_data(inode, bs -
1453 sizeof(struct unallocSpaceEntry));
1454 if (ret)
1455 goto out;
1456 memcpy(iinfo->i_data,
1457 bh->b_data + sizeof(struct unallocSpaceEntry),
1458 bs - sizeof(struct unallocSpaceEntry));
1459 return 0;
1460 }
1461
1462 ret = -EIO;
1463 read_lock(&sbi->s_cred_lock);
1464 uid = le32_to_cpu(fe->uid);
1465 if (uid == UDF_INVALID_ID ||
1466 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1467 inode->i_uid = sbi->s_uid;
1468 else
1469 i_uid_write(inode, uid);
1470
1471 gid = le32_to_cpu(fe->gid);
1472 if (gid == UDF_INVALID_ID ||
1473 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1474 inode->i_gid = sbi->s_gid;
1475 else
1476 i_gid_write(inode, gid);
1477
1478 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1479 sbi->s_fmode != UDF_INVALID_MODE)
1480 inode->i_mode = sbi->s_fmode;
1481 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1482 sbi->s_dmode != UDF_INVALID_MODE)
1483 inode->i_mode = sbi->s_dmode;
1484 else
1485 inode->i_mode = udf_convert_permissions(fe);
1486 inode->i_mode &= ~sbi->s_umask;
1487 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1488
1489 read_unlock(&sbi->s_cred_lock);
1490
1491 link_count = le16_to_cpu(fe->fileLinkCount);
1492 if (!link_count) {
1493 if (!hidden_inode) {
1494 ret = -ESTALE;
1495 goto out;
1496 }
1497 link_count = 1;
1498 }
1499 set_nlink(inode, link_count);
1500
1501 inode->i_size = le64_to_cpu(fe->informationLength);
1502 iinfo->i_lenExtents = inode->i_size;
1503
1504 if (iinfo->i_efe == 0) {
1505 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1506 (inode->i_sb->s_blocksize_bits - 9);
1507
1508 udf_disk_stamp_to_time(&ts, fe->accessTime);
1509 inode_set_atime_to_ts(inode, ts);
1510 udf_disk_stamp_to_time(&ts, fe->modificationTime);
1511 inode_set_mtime_to_ts(inode, ts);
1512 udf_disk_stamp_to_time(&ts, fe->attrTime);
1513 inode_set_ctime_to_ts(inode, ts);
1514
1515 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1516 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1517 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1518 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1519 iinfo->i_streamdir = 0;
1520 iinfo->i_lenStreams = 0;
1521 } else {
1522 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1523 (inode->i_sb->s_blocksize_bits - 9);
1524
1525 udf_disk_stamp_to_time(&ts, efe->accessTime);
1526 inode_set_atime_to_ts(inode, ts);
1527 udf_disk_stamp_to_time(&ts, efe->modificationTime);
1528 inode_set_mtime_to_ts(inode, ts);
1529 udf_disk_stamp_to_time(&ts, efe->attrTime);
1530 inode_set_ctime_to_ts(inode, ts);
1531 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1532
1533 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1534 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1535 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1536 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1537
1538 /* Named streams */
1539 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1540 iinfo->i_locStreamdir =
1541 lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1542 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1543 if (iinfo->i_lenStreams >= inode->i_size)
1544 iinfo->i_lenStreams -= inode->i_size;
1545 else
1546 iinfo->i_lenStreams = 0;
1547 }
1548 inode->i_generation = iinfo->i_unique;
1549
1550 /*
1551 * Sanity check length of allocation descriptors and extended attrs to
1552 * avoid integer overflows
1553 */
1554 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1555 goto out;
1556 /* Now do exact checks */
1557 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1558 goto out;
1559 /* Sanity checks for files in ICB so that we don't get confused later */
1560 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1561 /*
1562 * For file in ICB data is stored in allocation descriptor
1563 * so sizes should match
1564 */
1565 if (iinfo->i_lenAlloc != inode->i_size)
1566 goto out;
1567 /* File in ICB has to fit in there... */
1568 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1569 goto out;
1570 }
1571
1572 switch (fe->icbTag.fileType) {
1573 case ICBTAG_FILE_TYPE_DIRECTORY:
1574 inode->i_op = &udf_dir_inode_operations;
1575 inode->i_fop = &udf_dir_operations;
1576 inode->i_mode |= S_IFDIR;
1577 inc_nlink(inode);
1578 break;
1579 case ICBTAG_FILE_TYPE_REALTIME:
1580 case ICBTAG_FILE_TYPE_REGULAR:
1581 case ICBTAG_FILE_TYPE_UNDEF:
1582 case ICBTAG_FILE_TYPE_VAT20:
1583 inode->i_data.a_ops = &udf_aops;
1584 inode->i_op = &udf_file_inode_operations;
1585 inode->i_fop = &udf_file_operations;
1586 inode->i_mode |= S_IFREG;
1587 break;
1588 case ICBTAG_FILE_TYPE_BLOCK:
1589 inode->i_mode |= S_IFBLK;
1590 break;
1591 case ICBTAG_FILE_TYPE_CHAR:
1592 inode->i_mode |= S_IFCHR;
1593 break;
1594 case ICBTAG_FILE_TYPE_FIFO:
1595 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1596 break;
1597 case ICBTAG_FILE_TYPE_SOCKET:
1598 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1599 break;
1600 case ICBTAG_FILE_TYPE_SYMLINK:
1601 inode->i_data.a_ops = &udf_symlink_aops;
1602 inode->i_op = &udf_symlink_inode_operations;
1603 inode_nohighmem(inode);
1604 inode->i_mode = S_IFLNK | 0777;
1605 break;
1606 case ICBTAG_FILE_TYPE_MAIN:
1607 udf_debug("METADATA FILE-----\n");
1608 break;
1609 case ICBTAG_FILE_TYPE_MIRROR:
1610 udf_debug("METADATA MIRROR FILE-----\n");
1611 break;
1612 case ICBTAG_FILE_TYPE_BITMAP:
1613 udf_debug("METADATA BITMAP FILE-----\n");
1614 break;
1615 default:
1616 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1617 inode->i_ino, fe->icbTag.fileType);
1618 goto out;
1619 }
1620 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1621 struct deviceSpec *dsea =
1622 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1623 if (dsea) {
1624 init_special_inode(inode, inode->i_mode,
1625 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1626 le32_to_cpu(dsea->minorDeviceIdent)));
1627 /* Developer ID ??? */
1628 } else
1629 goto out;
1630 }
1631 ret = 0;
1632out:
1633 brelse(bh);
1634 return ret;
1635}
1636
1637static int udf_alloc_i_data(struct inode *inode, size_t size)
1638{
1639 struct udf_inode_info *iinfo = UDF_I(inode);
1640 iinfo->i_data = kmalloc(size, GFP_KERNEL);
1641 if (!iinfo->i_data)
1642 return -ENOMEM;
1643 return 0;
1644}
1645
1646static umode_t udf_convert_permissions(struct fileEntry *fe)
1647{
1648 umode_t mode;
1649 uint32_t permissions;
1650 uint32_t flags;
1651
1652 permissions = le32_to_cpu(fe->permissions);
1653 flags = le16_to_cpu(fe->icbTag.flags);
1654
1655 mode = ((permissions) & 0007) |
1656 ((permissions >> 2) & 0070) |
1657 ((permissions >> 4) & 0700) |
1658 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1659 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1660 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1661
1662 return mode;
1663}
1664
1665void udf_update_extra_perms(struct inode *inode, umode_t mode)
1666{
1667 struct udf_inode_info *iinfo = UDF_I(inode);
1668
1669 /*
1670 * UDF 2.01 sec. 3.3.3.3 Note 2:
1671 * In Unix, delete permission tracks write
1672 */
1673 iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1674 if (mode & 0200)
1675 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1676 if (mode & 0020)
1677 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1678 if (mode & 0002)
1679 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1680}
1681
1682int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1683{
1684 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1685}
1686
1687static int udf_sync_inode(struct inode *inode)
1688{
1689 return udf_update_inode(inode, 1);
1690}
1691
1692static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1693{
1694 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1695 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1696 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1697 iinfo->i_crtime = time;
1698}
1699
1700static int udf_update_inode(struct inode *inode, int do_sync)
1701{
1702 struct buffer_head *bh = NULL;
1703 struct fileEntry *fe;
1704 struct extendedFileEntry *efe;
1705 uint64_t lb_recorded;
1706 uint32_t udfperms;
1707 uint16_t icbflags;
1708 uint16_t crclen;
1709 int err = 0;
1710 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1711 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1712 struct udf_inode_info *iinfo = UDF_I(inode);
1713
1714 bh = sb_getblk(inode->i_sb,
1715 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1716 if (!bh) {
1717 udf_debug("getblk failure\n");
1718 return -EIO;
1719 }
1720
1721 lock_buffer(bh);
1722 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1723 fe = (struct fileEntry *)bh->b_data;
1724 efe = (struct extendedFileEntry *)bh->b_data;
1725
1726 if (iinfo->i_use) {
1727 struct unallocSpaceEntry *use =
1728 (struct unallocSpaceEntry *)bh->b_data;
1729
1730 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1731 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1732 iinfo->i_data, inode->i_sb->s_blocksize -
1733 sizeof(struct unallocSpaceEntry));
1734 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1735 crclen = sizeof(struct unallocSpaceEntry);
1736
1737 goto finish;
1738 }
1739
1740 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1741 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1742 else
1743 fe->uid = cpu_to_le32(i_uid_read(inode));
1744
1745 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1746 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1747 else
1748 fe->gid = cpu_to_le32(i_gid_read(inode));
1749
1750 udfperms = ((inode->i_mode & 0007)) |
1751 ((inode->i_mode & 0070) << 2) |
1752 ((inode->i_mode & 0700) << 4);
1753
1754 udfperms |= iinfo->i_extraPerms;
1755 fe->permissions = cpu_to_le32(udfperms);
1756
1757 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1758 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1759 else {
1760 if (iinfo->i_hidden)
1761 fe->fileLinkCount = cpu_to_le16(0);
1762 else
1763 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1764 }
1765
1766 fe->informationLength = cpu_to_le64(inode->i_size);
1767
1768 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1769 struct regid *eid;
1770 struct deviceSpec *dsea =
1771 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1772 if (!dsea) {
1773 dsea = (struct deviceSpec *)
1774 udf_add_extendedattr(inode,
1775 sizeof(struct deviceSpec) +
1776 sizeof(struct regid), 12, 0x3);
1777 dsea->attrType = cpu_to_le32(12);
1778 dsea->attrSubtype = 1;
1779 dsea->attrLength = cpu_to_le32(
1780 sizeof(struct deviceSpec) +
1781 sizeof(struct regid));
1782 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1783 }
1784 eid = (struct regid *)dsea->impUse;
1785 memset(eid, 0, sizeof(*eid));
1786 strcpy(eid->ident, UDF_ID_DEVELOPER);
1787 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1788 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1789 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1790 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1791 }
1792
1793 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1794 lb_recorded = 0; /* No extents => no blocks! */
1795 else
1796 lb_recorded =
1797 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1798 (blocksize_bits - 9);
1799
1800 if (iinfo->i_efe == 0) {
1801 memcpy(bh->b_data + sizeof(struct fileEntry),
1802 iinfo->i_data,
1803 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1804 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1805
1806 udf_time_to_disk_stamp(&fe->accessTime, inode_get_atime(inode));
1807 udf_time_to_disk_stamp(&fe->modificationTime, inode_get_mtime(inode));
1808 udf_time_to_disk_stamp(&fe->attrTime, inode_get_ctime(inode));
1809 memset(&(fe->impIdent), 0, sizeof(struct regid));
1810 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1811 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1812 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1813 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1814 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1815 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1816 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1817 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1818 crclen = sizeof(struct fileEntry);
1819 } else {
1820 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1821 iinfo->i_data,
1822 inode->i_sb->s_blocksize -
1823 sizeof(struct extendedFileEntry));
1824 efe->objectSize =
1825 cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1826 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1827
1828 if (iinfo->i_streamdir) {
1829 struct long_ad *icb_lad = &efe->streamDirectoryICB;
1830
1831 icb_lad->extLocation =
1832 cpu_to_lelb(iinfo->i_locStreamdir);
1833 icb_lad->extLength =
1834 cpu_to_le32(inode->i_sb->s_blocksize);
1835 }
1836
1837 udf_adjust_time(iinfo, inode_get_atime(inode));
1838 udf_adjust_time(iinfo, inode_get_mtime(inode));
1839 udf_adjust_time(iinfo, inode_get_ctime(inode));
1840
1841 udf_time_to_disk_stamp(&efe->accessTime,
1842 inode_get_atime(inode));
1843 udf_time_to_disk_stamp(&efe->modificationTime,
1844 inode_get_mtime(inode));
1845 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1846 udf_time_to_disk_stamp(&efe->attrTime, inode_get_ctime(inode));
1847
1848 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1849 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1850 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1851 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1852 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1853 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1854 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1855 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1856 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1857 crclen = sizeof(struct extendedFileEntry);
1858 }
1859
1860finish:
1861 if (iinfo->i_strat4096) {
1862 fe->icbTag.strategyType = cpu_to_le16(4096);
1863 fe->icbTag.strategyParameter = cpu_to_le16(1);
1864 fe->icbTag.numEntries = cpu_to_le16(2);
1865 } else {
1866 fe->icbTag.strategyType = cpu_to_le16(4);
1867 fe->icbTag.numEntries = cpu_to_le16(1);
1868 }
1869
1870 if (iinfo->i_use)
1871 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1872 else if (S_ISDIR(inode->i_mode))
1873 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1874 else if (S_ISREG(inode->i_mode))
1875 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1876 else if (S_ISLNK(inode->i_mode))
1877 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1878 else if (S_ISBLK(inode->i_mode))
1879 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1880 else if (S_ISCHR(inode->i_mode))
1881 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1882 else if (S_ISFIFO(inode->i_mode))
1883 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1884 else if (S_ISSOCK(inode->i_mode))
1885 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1886
1887 icbflags = iinfo->i_alloc_type |
1888 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1889 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1890 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1891 (le16_to_cpu(fe->icbTag.flags) &
1892 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1893 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1894
1895 fe->icbTag.flags = cpu_to_le16(icbflags);
1896 if (sbi->s_udfrev >= 0x0200)
1897 fe->descTag.descVersion = cpu_to_le16(3);
1898 else
1899 fe->descTag.descVersion = cpu_to_le16(2);
1900 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1901 fe->descTag.tagLocation = cpu_to_le32(
1902 iinfo->i_location.logicalBlockNum);
1903 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1904 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1905 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1906 crclen));
1907 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1908
1909 set_buffer_uptodate(bh);
1910 unlock_buffer(bh);
1911
1912 /* write the data blocks */
1913 mark_buffer_dirty(bh);
1914 if (do_sync) {
1915 sync_dirty_buffer(bh);
1916 if (buffer_write_io_error(bh)) {
1917 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1918 inode->i_ino);
1919 err = -EIO;
1920 }
1921 }
1922 brelse(bh);
1923
1924 return err;
1925}
1926
1927struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1928 bool hidden_inode)
1929{
1930 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1931 struct inode *inode = iget_locked(sb, block);
1932 int err;
1933
1934 if (!inode)
1935 return ERR_PTR(-ENOMEM);
1936
1937 if (!(inode->i_state & I_NEW)) {
1938 if (UDF_I(inode)->i_hidden != hidden_inode) {
1939 iput(inode);
1940 return ERR_PTR(-EFSCORRUPTED);
1941 }
1942 return inode;
1943 }
1944
1945 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1946 err = udf_read_inode(inode, hidden_inode);
1947 if (err < 0) {
1948 iget_failed(inode);
1949 return ERR_PTR(err);
1950 }
1951 unlock_new_inode(inode);
1952
1953 return inode;
1954}
1955
1956int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1957 struct extent_position *epos)
1958{
1959 struct super_block *sb = inode->i_sb;
1960 struct buffer_head *bh;
1961 struct allocExtDesc *aed;
1962 struct extent_position nepos;
1963 struct kernel_lb_addr neloc;
1964 int ver, adsize;
1965
1966 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1967 adsize = sizeof(struct short_ad);
1968 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1969 adsize = sizeof(struct long_ad);
1970 else
1971 return -EIO;
1972
1973 neloc.logicalBlockNum = block;
1974 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1975
1976 bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1977 if (!bh)
1978 return -EIO;
1979 lock_buffer(bh);
1980 memset(bh->b_data, 0x00, sb->s_blocksize);
1981 set_buffer_uptodate(bh);
1982 unlock_buffer(bh);
1983 mark_buffer_dirty_inode(bh, inode);
1984
1985 aed = (struct allocExtDesc *)(bh->b_data);
1986 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1987 aed->previousAllocExtLocation =
1988 cpu_to_le32(epos->block.logicalBlockNum);
1989 }
1990 aed->lengthAllocDescs = cpu_to_le32(0);
1991 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1992 ver = 3;
1993 else
1994 ver = 2;
1995 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1996 sizeof(struct tag));
1997
1998 nepos.block = neloc;
1999 nepos.offset = sizeof(struct allocExtDesc);
2000 nepos.bh = bh;
2001
2002 /*
2003 * Do we have to copy current last extent to make space for indirect
2004 * one?
2005 */
2006 if (epos->offset + adsize > sb->s_blocksize) {
2007 struct kernel_lb_addr cp_loc;
2008 uint32_t cp_len;
2009 int cp_type;
2010
2011 epos->offset -= adsize;
2012 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
2013 cp_len |= ((uint32_t)cp_type) << 30;
2014
2015 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
2016 udf_write_aext(inode, epos, &nepos.block,
2017 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2018 } else {
2019 __udf_add_aext(inode, epos, &nepos.block,
2020 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2021 }
2022
2023 brelse(epos->bh);
2024 *epos = nepos;
2025
2026 return 0;
2027}
2028
2029/*
2030 * Append extent at the given position - should be the first free one in inode
2031 * / indirect extent. This function assumes there is enough space in the inode
2032 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2033 */
2034int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2035 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2036{
2037 struct udf_inode_info *iinfo = UDF_I(inode);
2038 struct allocExtDesc *aed;
2039 int adsize;
2040
2041 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2042 adsize = sizeof(struct short_ad);
2043 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2044 adsize = sizeof(struct long_ad);
2045 else
2046 return -EIO;
2047
2048 if (!epos->bh) {
2049 WARN_ON(iinfo->i_lenAlloc !=
2050 epos->offset - udf_file_entry_alloc_offset(inode));
2051 } else {
2052 aed = (struct allocExtDesc *)epos->bh->b_data;
2053 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2054 epos->offset - sizeof(struct allocExtDesc));
2055 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2056 }
2057
2058 udf_write_aext(inode, epos, eloc, elen, inc);
2059
2060 if (!epos->bh) {
2061 iinfo->i_lenAlloc += adsize;
2062 mark_inode_dirty(inode);
2063 } else {
2064 aed = (struct allocExtDesc *)epos->bh->b_data;
2065 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2066 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2067 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2068 udf_update_tag(epos->bh->b_data,
2069 epos->offset + (inc ? 0 : adsize));
2070 else
2071 udf_update_tag(epos->bh->b_data,
2072 sizeof(struct allocExtDesc));
2073 mark_buffer_dirty_inode(epos->bh, inode);
2074 }
2075
2076 return 0;
2077}
2078
2079/*
2080 * Append extent at given position - should be the first free one in inode
2081 * / indirect extent. Takes care of allocating and linking indirect blocks.
2082 */
2083int udf_add_aext(struct inode *inode, struct extent_position *epos,
2084 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2085{
2086 int adsize;
2087 struct super_block *sb = inode->i_sb;
2088
2089 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2090 adsize = sizeof(struct short_ad);
2091 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2092 adsize = sizeof(struct long_ad);
2093 else
2094 return -EIO;
2095
2096 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2097 int err;
2098 udf_pblk_t new_block;
2099
2100 new_block = udf_new_block(sb, NULL,
2101 epos->block.partitionReferenceNum,
2102 epos->block.logicalBlockNum, &err);
2103 if (!new_block)
2104 return -ENOSPC;
2105
2106 err = udf_setup_indirect_aext(inode, new_block, epos);
2107 if (err)
2108 return err;
2109 }
2110
2111 return __udf_add_aext(inode, epos, eloc, elen, inc);
2112}
2113
2114void udf_write_aext(struct inode *inode, struct extent_position *epos,
2115 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2116{
2117 int adsize;
2118 uint8_t *ptr;
2119 struct short_ad *sad;
2120 struct long_ad *lad;
2121 struct udf_inode_info *iinfo = UDF_I(inode);
2122
2123 if (!epos->bh)
2124 ptr = iinfo->i_data + epos->offset -
2125 udf_file_entry_alloc_offset(inode) +
2126 iinfo->i_lenEAttr;
2127 else
2128 ptr = epos->bh->b_data + epos->offset;
2129
2130 switch (iinfo->i_alloc_type) {
2131 case ICBTAG_FLAG_AD_SHORT:
2132 sad = (struct short_ad *)ptr;
2133 sad->extLength = cpu_to_le32(elen);
2134 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2135 adsize = sizeof(struct short_ad);
2136 break;
2137 case ICBTAG_FLAG_AD_LONG:
2138 lad = (struct long_ad *)ptr;
2139 lad->extLength = cpu_to_le32(elen);
2140 lad->extLocation = cpu_to_lelb(*eloc);
2141 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2142 adsize = sizeof(struct long_ad);
2143 break;
2144 default:
2145 return;
2146 }
2147
2148 if (epos->bh) {
2149 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2150 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2151 struct allocExtDesc *aed =
2152 (struct allocExtDesc *)epos->bh->b_data;
2153 udf_update_tag(epos->bh->b_data,
2154 le32_to_cpu(aed->lengthAllocDescs) +
2155 sizeof(struct allocExtDesc));
2156 }
2157 mark_buffer_dirty_inode(epos->bh, inode);
2158 } else {
2159 mark_inode_dirty(inode);
2160 }
2161
2162 if (inc)
2163 epos->offset += adsize;
2164}
2165
2166/*
2167 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2168 * someone does some weird stuff.
2169 */
2170#define UDF_MAX_INDIR_EXTS 16
2171
2172int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2173 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2174{
2175 int8_t etype;
2176 unsigned int indirections = 0;
2177
2178 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2179 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2180 udf_pblk_t block;
2181
2182 if (++indirections > UDF_MAX_INDIR_EXTS) {
2183 udf_err(inode->i_sb,
2184 "too many indirect extents in inode %lu\n",
2185 inode->i_ino);
2186 return -1;
2187 }
2188
2189 epos->block = *eloc;
2190 epos->offset = sizeof(struct allocExtDesc);
2191 brelse(epos->bh);
2192 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2193 epos->bh = sb_bread(inode->i_sb, block);
2194 if (!epos->bh) {
2195 udf_debug("reading block %u failed!\n", block);
2196 return -1;
2197 }
2198 }
2199
2200 return etype;
2201}
2202
2203int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2204 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2205{
2206 int alen;
2207 int8_t etype;
2208 uint8_t *ptr;
2209 struct short_ad *sad;
2210 struct long_ad *lad;
2211 struct udf_inode_info *iinfo = UDF_I(inode);
2212
2213 if (!epos->bh) {
2214 if (!epos->offset)
2215 epos->offset = udf_file_entry_alloc_offset(inode);
2216 ptr = iinfo->i_data + epos->offset -
2217 udf_file_entry_alloc_offset(inode) +
2218 iinfo->i_lenEAttr;
2219 alen = udf_file_entry_alloc_offset(inode) +
2220 iinfo->i_lenAlloc;
2221 } else {
2222 if (!epos->offset)
2223 epos->offset = sizeof(struct allocExtDesc);
2224 ptr = epos->bh->b_data + epos->offset;
2225 alen = sizeof(struct allocExtDesc) +
2226 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2227 lengthAllocDescs);
2228 }
2229
2230 switch (iinfo->i_alloc_type) {
2231 case ICBTAG_FLAG_AD_SHORT:
2232 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2233 if (!sad)
2234 return -1;
2235 etype = le32_to_cpu(sad->extLength) >> 30;
2236 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2237 eloc->partitionReferenceNum =
2238 iinfo->i_location.partitionReferenceNum;
2239 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2240 break;
2241 case ICBTAG_FLAG_AD_LONG:
2242 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2243 if (!lad)
2244 return -1;
2245 etype = le32_to_cpu(lad->extLength) >> 30;
2246 *eloc = lelb_to_cpu(lad->extLocation);
2247 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2248 break;
2249 default:
2250 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2251 return -1;
2252 }
2253
2254 return etype;
2255}
2256
2257static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2258 struct kernel_lb_addr neloc, uint32_t nelen)
2259{
2260 struct kernel_lb_addr oeloc;
2261 uint32_t oelen;
2262 int8_t etype;
2263 int err;
2264
2265 if (epos.bh)
2266 get_bh(epos.bh);
2267
2268 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2269 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2270 neloc = oeloc;
2271 nelen = (etype << 30) | oelen;
2272 }
2273 err = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2274 brelse(epos.bh);
2275
2276 return err;
2277}
2278
2279int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2280{
2281 struct extent_position oepos;
2282 int adsize;
2283 int8_t etype;
2284 struct allocExtDesc *aed;
2285 struct udf_inode_info *iinfo;
2286 struct kernel_lb_addr eloc;
2287 uint32_t elen;
2288
2289 if (epos.bh) {
2290 get_bh(epos.bh);
2291 get_bh(epos.bh);
2292 }
2293
2294 iinfo = UDF_I(inode);
2295 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2296 adsize = sizeof(struct short_ad);
2297 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2298 adsize = sizeof(struct long_ad);
2299 else
2300 adsize = 0;
2301
2302 oepos = epos;
2303 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2304 return -1;
2305
2306 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2307 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2308 if (oepos.bh != epos.bh) {
2309 oepos.block = epos.block;
2310 brelse(oepos.bh);
2311 get_bh(epos.bh);
2312 oepos.bh = epos.bh;
2313 oepos.offset = epos.offset - adsize;
2314 }
2315 }
2316 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2317 elen = 0;
2318
2319 if (epos.bh != oepos.bh) {
2320 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2321 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2322 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2323 if (!oepos.bh) {
2324 iinfo->i_lenAlloc -= (adsize * 2);
2325 mark_inode_dirty(inode);
2326 } else {
2327 aed = (struct allocExtDesc *)oepos.bh->b_data;
2328 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2329 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2330 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2331 udf_update_tag(oepos.bh->b_data,
2332 oepos.offset - (2 * adsize));
2333 else
2334 udf_update_tag(oepos.bh->b_data,
2335 sizeof(struct allocExtDesc));
2336 mark_buffer_dirty_inode(oepos.bh, inode);
2337 }
2338 } else {
2339 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2340 if (!oepos.bh) {
2341 iinfo->i_lenAlloc -= adsize;
2342 mark_inode_dirty(inode);
2343 } else {
2344 aed = (struct allocExtDesc *)oepos.bh->b_data;
2345 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2346 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2347 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2348 udf_update_tag(oepos.bh->b_data,
2349 epos.offset - adsize);
2350 else
2351 udf_update_tag(oepos.bh->b_data,
2352 sizeof(struct allocExtDesc));
2353 mark_buffer_dirty_inode(oepos.bh, inode);
2354 }
2355 }
2356
2357 brelse(epos.bh);
2358 brelse(oepos.bh);
2359
2360 return (elen >> 30);
2361}
2362
2363int8_t inode_bmap(struct inode *inode, sector_t block,
2364 struct extent_position *pos, struct kernel_lb_addr *eloc,
2365 uint32_t *elen, sector_t *offset)
2366{
2367 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2368 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2369 int8_t etype;
2370 struct udf_inode_info *iinfo;
2371
2372 iinfo = UDF_I(inode);
2373 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2374 pos->offset = 0;
2375 pos->block = iinfo->i_location;
2376 pos->bh = NULL;
2377 }
2378 *elen = 0;
2379 do {
2380 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2381 if (etype == -1) {
2382 *offset = (bcount - lbcount) >> blocksize_bits;
2383 iinfo->i_lenExtents = lbcount;
2384 return -1;
2385 }
2386 lbcount += *elen;
2387 } while (lbcount <= bcount);
2388 /* update extent cache */
2389 udf_update_extent_cache(inode, lbcount - *elen, pos);
2390 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2391
2392 return etype;
2393}