Loading...
1/*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32#include "udfdecl.h"
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/pagemap.h>
36#include <linux/writeback.h>
37#include <linux/slab.h>
38#include <linux/crc-itu-t.h>
39#include <linux/mpage.h>
40#include <linux/uio.h>
41#include <linux/bio.h>
42
43#include "udf_i.h"
44#include "udf_sb.h"
45
46#define EXTENT_MERGE_SIZE 5
47
48#define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51
52#define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 FE_PERM_O_DELETE)
54
55static umode_t udf_convert_permissions(struct fileEntry *);
56static int udf_update_inode(struct inode *, int);
57static int udf_sync_inode(struct inode *inode);
58static int udf_alloc_i_data(struct inode *inode, size_t size);
59static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60static int8_t udf_insert_aext(struct inode *, struct extent_position,
61 struct kernel_lb_addr, uint32_t);
62static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63 struct kernel_long_ad *, int *);
64static void udf_prealloc_extents(struct inode *, int, int,
65 struct kernel_long_ad *, int *);
66static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68 int, struct extent_position *);
69static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70
71static void __udf_clear_extent_cache(struct inode *inode)
72{
73 struct udf_inode_info *iinfo = UDF_I(inode);
74
75 if (iinfo->cached_extent.lstart != -1) {
76 brelse(iinfo->cached_extent.epos.bh);
77 iinfo->cached_extent.lstart = -1;
78 }
79}
80
81/* Invalidate extent cache */
82static void udf_clear_extent_cache(struct inode *inode)
83{
84 struct udf_inode_info *iinfo = UDF_I(inode);
85
86 spin_lock(&iinfo->i_extent_cache_lock);
87 __udf_clear_extent_cache(inode);
88 spin_unlock(&iinfo->i_extent_cache_lock);
89}
90
91/* Return contents of extent cache */
92static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93 loff_t *lbcount, struct extent_position *pos)
94{
95 struct udf_inode_info *iinfo = UDF_I(inode);
96 int ret = 0;
97
98 spin_lock(&iinfo->i_extent_cache_lock);
99 if ((iinfo->cached_extent.lstart <= bcount) &&
100 (iinfo->cached_extent.lstart != -1)) {
101 /* Cache hit */
102 *lbcount = iinfo->cached_extent.lstart;
103 memcpy(pos, &iinfo->cached_extent.epos,
104 sizeof(struct extent_position));
105 if (pos->bh)
106 get_bh(pos->bh);
107 ret = 1;
108 }
109 spin_unlock(&iinfo->i_extent_cache_lock);
110 return ret;
111}
112
113/* Add extent to extent cache */
114static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115 struct extent_position *pos)
116{
117 struct udf_inode_info *iinfo = UDF_I(inode);
118
119 spin_lock(&iinfo->i_extent_cache_lock);
120 /* Invalidate previously cached extent */
121 __udf_clear_extent_cache(inode);
122 if (pos->bh)
123 get_bh(pos->bh);
124 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125 iinfo->cached_extent.lstart = estart;
126 switch (iinfo->i_alloc_type) {
127 case ICBTAG_FLAG_AD_SHORT:
128 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129 break;
130 case ICBTAG_FLAG_AD_LONG:
131 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132 break;
133 }
134 spin_unlock(&iinfo->i_extent_cache_lock);
135}
136
137void udf_evict_inode(struct inode *inode)
138{
139 struct udf_inode_info *iinfo = UDF_I(inode);
140 int want_delete = 0;
141
142 if (!inode->i_nlink && !is_bad_inode(inode)) {
143 want_delete = 1;
144 udf_setsize(inode, 0);
145 udf_update_inode(inode, IS_SYNC(inode));
146 }
147 truncate_inode_pages_final(&inode->i_data);
148 invalidate_inode_buffers(inode);
149 clear_inode(inode);
150 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
151 inode->i_size != iinfo->i_lenExtents) {
152 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
153 inode->i_ino, inode->i_mode,
154 (unsigned long long)inode->i_size,
155 (unsigned long long)iinfo->i_lenExtents);
156 }
157 kfree(iinfo->i_ext.i_data);
158 iinfo->i_ext.i_data = NULL;
159 udf_clear_extent_cache(inode);
160 if (want_delete) {
161 udf_free_inode(inode);
162 }
163}
164
165static void udf_write_failed(struct address_space *mapping, loff_t to)
166{
167 struct inode *inode = mapping->host;
168 struct udf_inode_info *iinfo = UDF_I(inode);
169 loff_t isize = inode->i_size;
170
171 if (to > isize) {
172 truncate_pagecache(inode, isize);
173 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
174 down_write(&iinfo->i_data_sem);
175 udf_clear_extent_cache(inode);
176 udf_truncate_extents(inode);
177 up_write(&iinfo->i_data_sem);
178 }
179 }
180}
181
182static int udf_writepage(struct page *page, struct writeback_control *wbc)
183{
184 return block_write_full_page(page, udf_get_block, wbc);
185}
186
187static int udf_writepages(struct address_space *mapping,
188 struct writeback_control *wbc)
189{
190 return mpage_writepages(mapping, wbc, udf_get_block);
191}
192
193static int udf_readpage(struct file *file, struct page *page)
194{
195 return mpage_readpage(page, udf_get_block);
196}
197
198static int udf_readpages(struct file *file, struct address_space *mapping,
199 struct list_head *pages, unsigned nr_pages)
200{
201 return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
202}
203
204static int udf_write_begin(struct file *file, struct address_space *mapping,
205 loff_t pos, unsigned len, unsigned flags,
206 struct page **pagep, void **fsdata)
207{
208 int ret;
209
210 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
211 if (unlikely(ret))
212 udf_write_failed(mapping, pos + len);
213 return ret;
214}
215
216static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
217{
218 struct file *file = iocb->ki_filp;
219 struct address_space *mapping = file->f_mapping;
220 struct inode *inode = mapping->host;
221 size_t count = iov_iter_count(iter);
222 ssize_t ret;
223
224 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
225 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
226 udf_write_failed(mapping, iocb->ki_pos + count);
227 return ret;
228}
229
230static sector_t udf_bmap(struct address_space *mapping, sector_t block)
231{
232 return generic_block_bmap(mapping, block, udf_get_block);
233}
234
235const struct address_space_operations udf_aops = {
236 .readpage = udf_readpage,
237 .readpages = udf_readpages,
238 .writepage = udf_writepage,
239 .writepages = udf_writepages,
240 .write_begin = udf_write_begin,
241 .write_end = generic_write_end,
242 .direct_IO = udf_direct_IO,
243 .bmap = udf_bmap,
244};
245
246/*
247 * Expand file stored in ICB to a normal one-block-file
248 *
249 * This function requires i_data_sem for writing and releases it.
250 * This function requires i_mutex held
251 */
252int udf_expand_file_adinicb(struct inode *inode)
253{
254 struct page *page;
255 char *kaddr;
256 struct udf_inode_info *iinfo = UDF_I(inode);
257 int err;
258 struct writeback_control udf_wbc = {
259 .sync_mode = WB_SYNC_NONE,
260 .nr_to_write = 1,
261 };
262
263 WARN_ON_ONCE(!inode_is_locked(inode));
264 if (!iinfo->i_lenAlloc) {
265 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
266 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
267 else
268 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
269 /* from now on we have normal address_space methods */
270 inode->i_data.a_ops = &udf_aops;
271 up_write(&iinfo->i_data_sem);
272 mark_inode_dirty(inode);
273 return 0;
274 }
275 /*
276 * Release i_data_sem so that we can lock a page - page lock ranks
277 * above i_data_sem. i_mutex still protects us against file changes.
278 */
279 up_write(&iinfo->i_data_sem);
280
281 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
282 if (!page)
283 return -ENOMEM;
284
285 if (!PageUptodate(page)) {
286 kaddr = kmap_atomic(page);
287 memset(kaddr + iinfo->i_lenAlloc, 0x00,
288 PAGE_SIZE - iinfo->i_lenAlloc);
289 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
290 iinfo->i_lenAlloc);
291 flush_dcache_page(page);
292 SetPageUptodate(page);
293 kunmap_atomic(kaddr);
294 }
295 down_write(&iinfo->i_data_sem);
296 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
297 iinfo->i_lenAlloc);
298 iinfo->i_lenAlloc = 0;
299 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
300 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
301 else
302 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
303 /* from now on we have normal address_space methods */
304 inode->i_data.a_ops = &udf_aops;
305 up_write(&iinfo->i_data_sem);
306 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
307 if (err) {
308 /* Restore everything back so that we don't lose data... */
309 lock_page(page);
310 down_write(&iinfo->i_data_sem);
311 kaddr = kmap_atomic(page);
312 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
313 inode->i_size);
314 kunmap_atomic(kaddr);
315 unlock_page(page);
316 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
317 inode->i_data.a_ops = &udf_adinicb_aops;
318 up_write(&iinfo->i_data_sem);
319 }
320 put_page(page);
321 mark_inode_dirty(inode);
322
323 return err;
324}
325
326struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
327 udf_pblk_t *block, int *err)
328{
329 udf_pblk_t newblock;
330 struct buffer_head *dbh = NULL;
331 struct kernel_lb_addr eloc;
332 uint8_t alloctype;
333 struct extent_position epos;
334
335 struct udf_fileident_bh sfibh, dfibh;
336 loff_t f_pos = udf_ext0_offset(inode);
337 int size = udf_ext0_offset(inode) + inode->i_size;
338 struct fileIdentDesc cfi, *sfi, *dfi;
339 struct udf_inode_info *iinfo = UDF_I(inode);
340
341 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
342 alloctype = ICBTAG_FLAG_AD_SHORT;
343 else
344 alloctype = ICBTAG_FLAG_AD_LONG;
345
346 if (!inode->i_size) {
347 iinfo->i_alloc_type = alloctype;
348 mark_inode_dirty(inode);
349 return NULL;
350 }
351
352 /* alloc block, and copy data to it */
353 *block = udf_new_block(inode->i_sb, inode,
354 iinfo->i_location.partitionReferenceNum,
355 iinfo->i_location.logicalBlockNum, err);
356 if (!(*block))
357 return NULL;
358 newblock = udf_get_pblock(inode->i_sb, *block,
359 iinfo->i_location.partitionReferenceNum,
360 0);
361 if (!newblock)
362 return NULL;
363 dbh = udf_tgetblk(inode->i_sb, newblock);
364 if (!dbh)
365 return NULL;
366 lock_buffer(dbh);
367 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
368 set_buffer_uptodate(dbh);
369 unlock_buffer(dbh);
370 mark_buffer_dirty_inode(dbh, inode);
371
372 sfibh.soffset = sfibh.eoffset =
373 f_pos & (inode->i_sb->s_blocksize - 1);
374 sfibh.sbh = sfibh.ebh = NULL;
375 dfibh.soffset = dfibh.eoffset = 0;
376 dfibh.sbh = dfibh.ebh = dbh;
377 while (f_pos < size) {
378 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
379 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
380 NULL, NULL, NULL);
381 if (!sfi) {
382 brelse(dbh);
383 return NULL;
384 }
385 iinfo->i_alloc_type = alloctype;
386 sfi->descTag.tagLocation = cpu_to_le32(*block);
387 dfibh.soffset = dfibh.eoffset;
388 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
389 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
390 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
391 sfi->fileIdent +
392 le16_to_cpu(sfi->lengthOfImpUse))) {
393 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
394 brelse(dbh);
395 return NULL;
396 }
397 }
398 mark_buffer_dirty_inode(dbh, inode);
399
400 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
401 iinfo->i_lenAlloc);
402 iinfo->i_lenAlloc = 0;
403 eloc.logicalBlockNum = *block;
404 eloc.partitionReferenceNum =
405 iinfo->i_location.partitionReferenceNum;
406 iinfo->i_lenExtents = inode->i_size;
407 epos.bh = NULL;
408 epos.block = iinfo->i_location;
409 epos.offset = udf_file_entry_alloc_offset(inode);
410 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
411 /* UniqueID stuff */
412
413 brelse(epos.bh);
414 mark_inode_dirty(inode);
415 return dbh;
416}
417
418static int udf_get_block(struct inode *inode, sector_t block,
419 struct buffer_head *bh_result, int create)
420{
421 int err, new;
422 sector_t phys = 0;
423 struct udf_inode_info *iinfo;
424
425 if (!create) {
426 phys = udf_block_map(inode, block);
427 if (phys)
428 map_bh(bh_result, inode->i_sb, phys);
429 return 0;
430 }
431
432 err = -EIO;
433 new = 0;
434 iinfo = UDF_I(inode);
435
436 down_write(&iinfo->i_data_sem);
437 if (block == iinfo->i_next_alloc_block + 1) {
438 iinfo->i_next_alloc_block++;
439 iinfo->i_next_alloc_goal++;
440 }
441
442 udf_clear_extent_cache(inode);
443 phys = inode_getblk(inode, block, &err, &new);
444 if (!phys)
445 goto abort;
446
447 if (new)
448 set_buffer_new(bh_result);
449 map_bh(bh_result, inode->i_sb, phys);
450
451abort:
452 up_write(&iinfo->i_data_sem);
453 return err;
454}
455
456static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
457 int create, int *err)
458{
459 struct buffer_head *bh;
460 struct buffer_head dummy;
461
462 dummy.b_state = 0;
463 dummy.b_blocknr = -1000;
464 *err = udf_get_block(inode, block, &dummy, create);
465 if (!*err && buffer_mapped(&dummy)) {
466 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
467 if (buffer_new(&dummy)) {
468 lock_buffer(bh);
469 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
470 set_buffer_uptodate(bh);
471 unlock_buffer(bh);
472 mark_buffer_dirty_inode(bh, inode);
473 }
474 return bh;
475 }
476
477 return NULL;
478}
479
480/* Extend the file with new blocks totaling 'new_block_bytes',
481 * return the number of extents added
482 */
483static int udf_do_extend_file(struct inode *inode,
484 struct extent_position *last_pos,
485 struct kernel_long_ad *last_ext,
486 loff_t new_block_bytes)
487{
488 uint32_t add;
489 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
490 struct super_block *sb = inode->i_sb;
491 struct kernel_lb_addr prealloc_loc = {};
492 uint32_t prealloc_len = 0;
493 struct udf_inode_info *iinfo;
494 int err;
495
496 /* The previous extent is fake and we should not extend by anything
497 * - there's nothing to do... */
498 if (!new_block_bytes && fake)
499 return 0;
500
501 iinfo = UDF_I(inode);
502 /* Round the last extent up to a multiple of block size */
503 if (last_ext->extLength & (sb->s_blocksize - 1)) {
504 last_ext->extLength =
505 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
506 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
507 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
508 iinfo->i_lenExtents =
509 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
510 ~(sb->s_blocksize - 1);
511 }
512
513 /* Last extent are just preallocated blocks? */
514 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
515 EXT_NOT_RECORDED_ALLOCATED) {
516 /* Save the extent so that we can reattach it to the end */
517 prealloc_loc = last_ext->extLocation;
518 prealloc_len = last_ext->extLength;
519 /* Mark the extent as a hole */
520 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
521 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
522 last_ext->extLocation.logicalBlockNum = 0;
523 last_ext->extLocation.partitionReferenceNum = 0;
524 }
525
526 /* Can we merge with the previous extent? */
527 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
528 EXT_NOT_RECORDED_NOT_ALLOCATED) {
529 add = (1 << 30) - sb->s_blocksize -
530 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
531 if (add > new_block_bytes)
532 add = new_block_bytes;
533 new_block_bytes -= add;
534 last_ext->extLength += add;
535 }
536
537 if (fake) {
538 udf_add_aext(inode, last_pos, &last_ext->extLocation,
539 last_ext->extLength, 1);
540 count++;
541 } else {
542 struct kernel_lb_addr tmploc;
543 uint32_t tmplen;
544
545 udf_write_aext(inode, last_pos, &last_ext->extLocation,
546 last_ext->extLength, 1);
547 /*
548 * We've rewritten the last extent but there may be empty
549 * indirect extent after it - enter it.
550 */
551 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
552 }
553
554 /* Managed to do everything necessary? */
555 if (!new_block_bytes)
556 goto out;
557
558 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
559 last_ext->extLocation.logicalBlockNum = 0;
560 last_ext->extLocation.partitionReferenceNum = 0;
561 add = (1 << 30) - sb->s_blocksize;
562 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
563
564 /* Create enough extents to cover the whole hole */
565 while (new_block_bytes > add) {
566 new_block_bytes -= add;
567 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
568 last_ext->extLength, 1);
569 if (err)
570 return err;
571 count++;
572 }
573 if (new_block_bytes) {
574 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
575 new_block_bytes;
576 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
577 last_ext->extLength, 1);
578 if (err)
579 return err;
580 count++;
581 }
582
583out:
584 /* Do we have some preallocated blocks saved? */
585 if (prealloc_len) {
586 err = udf_add_aext(inode, last_pos, &prealloc_loc,
587 prealloc_len, 1);
588 if (err)
589 return err;
590 last_ext->extLocation = prealloc_loc;
591 last_ext->extLength = prealloc_len;
592 count++;
593 }
594
595 /* last_pos should point to the last written extent... */
596 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
597 last_pos->offset -= sizeof(struct short_ad);
598 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
599 last_pos->offset -= sizeof(struct long_ad);
600 else
601 return -EIO;
602
603 return count;
604}
605
606/* Extend the final block of the file to final_block_len bytes */
607static void udf_do_extend_final_block(struct inode *inode,
608 struct extent_position *last_pos,
609 struct kernel_long_ad *last_ext,
610 uint32_t final_block_len)
611{
612 struct super_block *sb = inode->i_sb;
613 uint32_t added_bytes;
614
615 added_bytes = final_block_len -
616 (last_ext->extLength & (sb->s_blocksize - 1));
617 last_ext->extLength += added_bytes;
618 UDF_I(inode)->i_lenExtents += added_bytes;
619
620 udf_write_aext(inode, last_pos, &last_ext->extLocation,
621 last_ext->extLength, 1);
622}
623
624static int udf_extend_file(struct inode *inode, loff_t newsize)
625{
626
627 struct extent_position epos;
628 struct kernel_lb_addr eloc;
629 uint32_t elen;
630 int8_t etype;
631 struct super_block *sb = inode->i_sb;
632 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
633 unsigned long partial_final_block;
634 int adsize;
635 struct udf_inode_info *iinfo = UDF_I(inode);
636 struct kernel_long_ad extent;
637 int err = 0;
638 int within_final_block;
639
640 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
641 adsize = sizeof(struct short_ad);
642 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
643 adsize = sizeof(struct long_ad);
644 else
645 BUG();
646
647 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
648 within_final_block = (etype != -1);
649
650 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
651 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
652 /* File has no extents at all or has empty last
653 * indirect extent! Create a fake extent... */
654 extent.extLocation.logicalBlockNum = 0;
655 extent.extLocation.partitionReferenceNum = 0;
656 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
657 } else {
658 epos.offset -= adsize;
659 etype = udf_next_aext(inode, &epos, &extent.extLocation,
660 &extent.extLength, 0);
661 extent.extLength |= etype << 30;
662 }
663
664 partial_final_block = newsize & (sb->s_blocksize - 1);
665
666 /* File has extent covering the new size (could happen when extending
667 * inside a block)?
668 */
669 if (within_final_block) {
670 /* Extending file within the last file block */
671 udf_do_extend_final_block(inode, &epos, &extent,
672 partial_final_block);
673 } else {
674 loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
675 partial_final_block;
676 err = udf_do_extend_file(inode, &epos, &extent, add);
677 }
678
679 if (err < 0)
680 goto out;
681 err = 0;
682 iinfo->i_lenExtents = newsize;
683out:
684 brelse(epos.bh);
685 return err;
686}
687
688static sector_t inode_getblk(struct inode *inode, sector_t block,
689 int *err, int *new)
690{
691 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
692 struct extent_position prev_epos, cur_epos, next_epos;
693 int count = 0, startnum = 0, endnum = 0;
694 uint32_t elen = 0, tmpelen;
695 struct kernel_lb_addr eloc, tmpeloc;
696 int c = 1;
697 loff_t lbcount = 0, b_off = 0;
698 udf_pblk_t newblocknum, newblock;
699 sector_t offset = 0;
700 int8_t etype;
701 struct udf_inode_info *iinfo = UDF_I(inode);
702 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
703 int lastblock = 0;
704 bool isBeyondEOF;
705
706 *err = 0;
707 *new = 0;
708 prev_epos.offset = udf_file_entry_alloc_offset(inode);
709 prev_epos.block = iinfo->i_location;
710 prev_epos.bh = NULL;
711 cur_epos = next_epos = prev_epos;
712 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
713
714 /* find the extent which contains the block we are looking for.
715 alternate between laarr[0] and laarr[1] for locations of the
716 current extent, and the previous extent */
717 do {
718 if (prev_epos.bh != cur_epos.bh) {
719 brelse(prev_epos.bh);
720 get_bh(cur_epos.bh);
721 prev_epos.bh = cur_epos.bh;
722 }
723 if (cur_epos.bh != next_epos.bh) {
724 brelse(cur_epos.bh);
725 get_bh(next_epos.bh);
726 cur_epos.bh = next_epos.bh;
727 }
728
729 lbcount += elen;
730
731 prev_epos.block = cur_epos.block;
732 cur_epos.block = next_epos.block;
733
734 prev_epos.offset = cur_epos.offset;
735 cur_epos.offset = next_epos.offset;
736
737 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
738 if (etype == -1)
739 break;
740
741 c = !c;
742
743 laarr[c].extLength = (etype << 30) | elen;
744 laarr[c].extLocation = eloc;
745
746 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
747 pgoal = eloc.logicalBlockNum +
748 ((elen + inode->i_sb->s_blocksize - 1) >>
749 inode->i_sb->s_blocksize_bits);
750
751 count++;
752 } while (lbcount + elen <= b_off);
753
754 b_off -= lbcount;
755 offset = b_off >> inode->i_sb->s_blocksize_bits;
756 /*
757 * Move prev_epos and cur_epos into indirect extent if we are at
758 * the pointer to it
759 */
760 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
761 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
762
763 /* if the extent is allocated and recorded, return the block
764 if the extent is not a multiple of the blocksize, round up */
765
766 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
767 if (elen & (inode->i_sb->s_blocksize - 1)) {
768 elen = EXT_RECORDED_ALLOCATED |
769 ((elen + inode->i_sb->s_blocksize - 1) &
770 ~(inode->i_sb->s_blocksize - 1));
771 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
772 }
773 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
774 goto out_free;
775 }
776
777 /* Are we beyond EOF? */
778 if (etype == -1) {
779 int ret;
780 loff_t hole_len;
781 isBeyondEOF = true;
782 if (count) {
783 if (c)
784 laarr[0] = laarr[1];
785 startnum = 1;
786 } else {
787 /* Create a fake extent when there's not one */
788 memset(&laarr[0].extLocation, 0x00,
789 sizeof(struct kernel_lb_addr));
790 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
791 /* Will udf_do_extend_file() create real extent from
792 a fake one? */
793 startnum = (offset > 0);
794 }
795 /* Create extents for the hole between EOF and offset */
796 hole_len = (loff_t)offset << inode->i_blkbits;
797 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
798 if (ret < 0) {
799 *err = ret;
800 newblock = 0;
801 goto out_free;
802 }
803 c = 0;
804 offset = 0;
805 count += ret;
806 /* We are not covered by a preallocated extent? */
807 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
808 EXT_NOT_RECORDED_ALLOCATED) {
809 /* Is there any real extent? - otherwise we overwrite
810 * the fake one... */
811 if (count)
812 c = !c;
813 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
814 inode->i_sb->s_blocksize;
815 memset(&laarr[c].extLocation, 0x00,
816 sizeof(struct kernel_lb_addr));
817 count++;
818 }
819 endnum = c + 1;
820 lastblock = 1;
821 } else {
822 isBeyondEOF = false;
823 endnum = startnum = ((count > 2) ? 2 : count);
824
825 /* if the current extent is in position 0,
826 swap it with the previous */
827 if (!c && count != 1) {
828 laarr[2] = laarr[0];
829 laarr[0] = laarr[1];
830 laarr[1] = laarr[2];
831 c = 1;
832 }
833
834 /* if the current block is located in an extent,
835 read the next extent */
836 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
837 if (etype != -1) {
838 laarr[c + 1].extLength = (etype << 30) | elen;
839 laarr[c + 1].extLocation = eloc;
840 count++;
841 startnum++;
842 endnum++;
843 } else
844 lastblock = 1;
845 }
846
847 /* if the current extent is not recorded but allocated, get the
848 * block in the extent corresponding to the requested block */
849 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
850 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
851 else { /* otherwise, allocate a new block */
852 if (iinfo->i_next_alloc_block == block)
853 goal = iinfo->i_next_alloc_goal;
854
855 if (!goal) {
856 if (!(goal = pgoal)) /* XXX: what was intended here? */
857 goal = iinfo->i_location.logicalBlockNum + 1;
858 }
859
860 newblocknum = udf_new_block(inode->i_sb, inode,
861 iinfo->i_location.partitionReferenceNum,
862 goal, err);
863 if (!newblocknum) {
864 *err = -ENOSPC;
865 newblock = 0;
866 goto out_free;
867 }
868 if (isBeyondEOF)
869 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
870 }
871
872 /* if the extent the requsted block is located in contains multiple
873 * blocks, split the extent into at most three extents. blocks prior
874 * to requested block, requested block, and blocks after requested
875 * block */
876 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
877
878 /* We preallocate blocks only for regular files. It also makes sense
879 * for directories but there's a problem when to drop the
880 * preallocation. We might use some delayed work for that but I feel
881 * it's overengineering for a filesystem like UDF. */
882 if (S_ISREG(inode->i_mode))
883 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
884
885 /* merge any continuous blocks in laarr */
886 udf_merge_extents(inode, laarr, &endnum);
887
888 /* write back the new extents, inserting new extents if the new number
889 * of extents is greater than the old number, and deleting extents if
890 * the new number of extents is less than the old number */
891 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
892
893 newblock = udf_get_pblock(inode->i_sb, newblocknum,
894 iinfo->i_location.partitionReferenceNum, 0);
895 if (!newblock) {
896 *err = -EIO;
897 goto out_free;
898 }
899 *new = 1;
900 iinfo->i_next_alloc_block = block;
901 iinfo->i_next_alloc_goal = newblocknum;
902 inode->i_ctime = current_time(inode);
903
904 if (IS_SYNC(inode))
905 udf_sync_inode(inode);
906 else
907 mark_inode_dirty(inode);
908out_free:
909 brelse(prev_epos.bh);
910 brelse(cur_epos.bh);
911 brelse(next_epos.bh);
912 return newblock;
913}
914
915static void udf_split_extents(struct inode *inode, int *c, int offset,
916 udf_pblk_t newblocknum,
917 struct kernel_long_ad *laarr, int *endnum)
918{
919 unsigned long blocksize = inode->i_sb->s_blocksize;
920 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
921
922 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
923 (laarr[*c].extLength >> 30) ==
924 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
925 int curr = *c;
926 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
927 blocksize - 1) >> blocksize_bits;
928 int8_t etype = (laarr[curr].extLength >> 30);
929
930 if (blen == 1)
931 ;
932 else if (!offset || blen == offset + 1) {
933 laarr[curr + 2] = laarr[curr + 1];
934 laarr[curr + 1] = laarr[curr];
935 } else {
936 laarr[curr + 3] = laarr[curr + 1];
937 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
938 }
939
940 if (offset) {
941 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
942 udf_free_blocks(inode->i_sb, inode,
943 &laarr[curr].extLocation,
944 0, offset);
945 laarr[curr].extLength =
946 EXT_NOT_RECORDED_NOT_ALLOCATED |
947 (offset << blocksize_bits);
948 laarr[curr].extLocation.logicalBlockNum = 0;
949 laarr[curr].extLocation.
950 partitionReferenceNum = 0;
951 } else
952 laarr[curr].extLength = (etype << 30) |
953 (offset << blocksize_bits);
954 curr++;
955 (*c)++;
956 (*endnum)++;
957 }
958
959 laarr[curr].extLocation.logicalBlockNum = newblocknum;
960 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
961 laarr[curr].extLocation.partitionReferenceNum =
962 UDF_I(inode)->i_location.partitionReferenceNum;
963 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
964 blocksize;
965 curr++;
966
967 if (blen != offset + 1) {
968 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
969 laarr[curr].extLocation.logicalBlockNum +=
970 offset + 1;
971 laarr[curr].extLength = (etype << 30) |
972 ((blen - (offset + 1)) << blocksize_bits);
973 curr++;
974 (*endnum)++;
975 }
976 }
977}
978
979static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
980 struct kernel_long_ad *laarr,
981 int *endnum)
982{
983 int start, length = 0, currlength = 0, i;
984
985 if (*endnum >= (c + 1)) {
986 if (!lastblock)
987 return;
988 else
989 start = c;
990 } else {
991 if ((laarr[c + 1].extLength >> 30) ==
992 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
993 start = c + 1;
994 length = currlength =
995 (((laarr[c + 1].extLength &
996 UDF_EXTENT_LENGTH_MASK) +
997 inode->i_sb->s_blocksize - 1) >>
998 inode->i_sb->s_blocksize_bits);
999 } else
1000 start = c;
1001 }
1002
1003 for (i = start + 1; i <= *endnum; i++) {
1004 if (i == *endnum) {
1005 if (lastblock)
1006 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1007 } else if ((laarr[i].extLength >> 30) ==
1008 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1009 length += (((laarr[i].extLength &
1010 UDF_EXTENT_LENGTH_MASK) +
1011 inode->i_sb->s_blocksize - 1) >>
1012 inode->i_sb->s_blocksize_bits);
1013 } else
1014 break;
1015 }
1016
1017 if (length) {
1018 int next = laarr[start].extLocation.logicalBlockNum +
1019 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1020 inode->i_sb->s_blocksize - 1) >>
1021 inode->i_sb->s_blocksize_bits);
1022 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1023 laarr[start].extLocation.partitionReferenceNum,
1024 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1025 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1026 currlength);
1027 if (numalloc) {
1028 if (start == (c + 1))
1029 laarr[start].extLength +=
1030 (numalloc <<
1031 inode->i_sb->s_blocksize_bits);
1032 else {
1033 memmove(&laarr[c + 2], &laarr[c + 1],
1034 sizeof(struct long_ad) * (*endnum - (c + 1)));
1035 (*endnum)++;
1036 laarr[c + 1].extLocation.logicalBlockNum = next;
1037 laarr[c + 1].extLocation.partitionReferenceNum =
1038 laarr[c].extLocation.
1039 partitionReferenceNum;
1040 laarr[c + 1].extLength =
1041 EXT_NOT_RECORDED_ALLOCATED |
1042 (numalloc <<
1043 inode->i_sb->s_blocksize_bits);
1044 start = c + 1;
1045 }
1046
1047 for (i = start + 1; numalloc && i < *endnum; i++) {
1048 int elen = ((laarr[i].extLength &
1049 UDF_EXTENT_LENGTH_MASK) +
1050 inode->i_sb->s_blocksize - 1) >>
1051 inode->i_sb->s_blocksize_bits;
1052
1053 if (elen > numalloc) {
1054 laarr[i].extLength -=
1055 (numalloc <<
1056 inode->i_sb->s_blocksize_bits);
1057 numalloc = 0;
1058 } else {
1059 numalloc -= elen;
1060 if (*endnum > (i + 1))
1061 memmove(&laarr[i],
1062 &laarr[i + 1],
1063 sizeof(struct long_ad) *
1064 (*endnum - (i + 1)));
1065 i--;
1066 (*endnum)--;
1067 }
1068 }
1069 UDF_I(inode)->i_lenExtents +=
1070 numalloc << inode->i_sb->s_blocksize_bits;
1071 }
1072 }
1073}
1074
1075static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1076 int *endnum)
1077{
1078 int i;
1079 unsigned long blocksize = inode->i_sb->s_blocksize;
1080 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1081
1082 for (i = 0; i < (*endnum - 1); i++) {
1083 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1084 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1085
1086 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1087 (((li->extLength >> 30) ==
1088 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1089 ((lip1->extLocation.logicalBlockNum -
1090 li->extLocation.logicalBlockNum) ==
1091 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1092 blocksize - 1) >> blocksize_bits)))) {
1093
1094 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1095 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1096 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1097 lip1->extLength = (lip1->extLength -
1098 (li->extLength &
1099 UDF_EXTENT_LENGTH_MASK) +
1100 UDF_EXTENT_LENGTH_MASK) &
1101 ~(blocksize - 1);
1102 li->extLength = (li->extLength &
1103 UDF_EXTENT_FLAG_MASK) +
1104 (UDF_EXTENT_LENGTH_MASK + 1) -
1105 blocksize;
1106 lip1->extLocation.logicalBlockNum =
1107 li->extLocation.logicalBlockNum +
1108 ((li->extLength &
1109 UDF_EXTENT_LENGTH_MASK) >>
1110 blocksize_bits);
1111 } else {
1112 li->extLength = lip1->extLength +
1113 (((li->extLength &
1114 UDF_EXTENT_LENGTH_MASK) +
1115 blocksize - 1) & ~(blocksize - 1));
1116 if (*endnum > (i + 2))
1117 memmove(&laarr[i + 1], &laarr[i + 2],
1118 sizeof(struct long_ad) *
1119 (*endnum - (i + 2)));
1120 i--;
1121 (*endnum)--;
1122 }
1123 } else if (((li->extLength >> 30) ==
1124 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1125 ((lip1->extLength >> 30) ==
1126 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1127 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1128 ((li->extLength &
1129 UDF_EXTENT_LENGTH_MASK) +
1130 blocksize - 1) >> blocksize_bits);
1131 li->extLocation.logicalBlockNum = 0;
1132 li->extLocation.partitionReferenceNum = 0;
1133
1134 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1135 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1136 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1137 lip1->extLength = (lip1->extLength -
1138 (li->extLength &
1139 UDF_EXTENT_LENGTH_MASK) +
1140 UDF_EXTENT_LENGTH_MASK) &
1141 ~(blocksize - 1);
1142 li->extLength = (li->extLength &
1143 UDF_EXTENT_FLAG_MASK) +
1144 (UDF_EXTENT_LENGTH_MASK + 1) -
1145 blocksize;
1146 } else {
1147 li->extLength = lip1->extLength +
1148 (((li->extLength &
1149 UDF_EXTENT_LENGTH_MASK) +
1150 blocksize - 1) & ~(blocksize - 1));
1151 if (*endnum > (i + 2))
1152 memmove(&laarr[i + 1], &laarr[i + 2],
1153 sizeof(struct long_ad) *
1154 (*endnum - (i + 2)));
1155 i--;
1156 (*endnum)--;
1157 }
1158 } else if ((li->extLength >> 30) ==
1159 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1160 udf_free_blocks(inode->i_sb, inode,
1161 &li->extLocation, 0,
1162 ((li->extLength &
1163 UDF_EXTENT_LENGTH_MASK) +
1164 blocksize - 1) >> blocksize_bits);
1165 li->extLocation.logicalBlockNum = 0;
1166 li->extLocation.partitionReferenceNum = 0;
1167 li->extLength = (li->extLength &
1168 UDF_EXTENT_LENGTH_MASK) |
1169 EXT_NOT_RECORDED_NOT_ALLOCATED;
1170 }
1171 }
1172}
1173
1174static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1175 int startnum, int endnum,
1176 struct extent_position *epos)
1177{
1178 int start = 0, i;
1179 struct kernel_lb_addr tmploc;
1180 uint32_t tmplen;
1181
1182 if (startnum > endnum) {
1183 for (i = 0; i < (startnum - endnum); i++)
1184 udf_delete_aext(inode, *epos);
1185 } else if (startnum < endnum) {
1186 for (i = 0; i < (endnum - startnum); i++) {
1187 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1188 laarr[i].extLength);
1189 udf_next_aext(inode, epos, &laarr[i].extLocation,
1190 &laarr[i].extLength, 1);
1191 start++;
1192 }
1193 }
1194
1195 for (i = start; i < endnum; i++) {
1196 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1197 udf_write_aext(inode, epos, &laarr[i].extLocation,
1198 laarr[i].extLength, 1);
1199 }
1200}
1201
1202struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1203 int create, int *err)
1204{
1205 struct buffer_head *bh = NULL;
1206
1207 bh = udf_getblk(inode, block, create, err);
1208 if (!bh)
1209 return NULL;
1210
1211 if (buffer_uptodate(bh))
1212 return bh;
1213
1214 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1215
1216 wait_on_buffer(bh);
1217 if (buffer_uptodate(bh))
1218 return bh;
1219
1220 brelse(bh);
1221 *err = -EIO;
1222 return NULL;
1223}
1224
1225int udf_setsize(struct inode *inode, loff_t newsize)
1226{
1227 int err;
1228 struct udf_inode_info *iinfo;
1229 unsigned int bsize = i_blocksize(inode);
1230
1231 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1232 S_ISLNK(inode->i_mode)))
1233 return -EINVAL;
1234 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1235 return -EPERM;
1236
1237 iinfo = UDF_I(inode);
1238 if (newsize > inode->i_size) {
1239 down_write(&iinfo->i_data_sem);
1240 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1241 if (bsize <
1242 (udf_file_entry_alloc_offset(inode) + newsize)) {
1243 err = udf_expand_file_adinicb(inode);
1244 if (err)
1245 return err;
1246 down_write(&iinfo->i_data_sem);
1247 } else {
1248 iinfo->i_lenAlloc = newsize;
1249 goto set_size;
1250 }
1251 }
1252 err = udf_extend_file(inode, newsize);
1253 if (err) {
1254 up_write(&iinfo->i_data_sem);
1255 return err;
1256 }
1257set_size:
1258 up_write(&iinfo->i_data_sem);
1259 truncate_setsize(inode, newsize);
1260 } else {
1261 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1262 down_write(&iinfo->i_data_sem);
1263 udf_clear_extent_cache(inode);
1264 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1265 0x00, bsize - newsize -
1266 udf_file_entry_alloc_offset(inode));
1267 iinfo->i_lenAlloc = newsize;
1268 truncate_setsize(inode, newsize);
1269 up_write(&iinfo->i_data_sem);
1270 goto update_time;
1271 }
1272 err = block_truncate_page(inode->i_mapping, newsize,
1273 udf_get_block);
1274 if (err)
1275 return err;
1276 truncate_setsize(inode, newsize);
1277 down_write(&iinfo->i_data_sem);
1278 udf_clear_extent_cache(inode);
1279 err = udf_truncate_extents(inode);
1280 up_write(&iinfo->i_data_sem);
1281 if (err)
1282 return err;
1283 }
1284update_time:
1285 inode->i_mtime = inode->i_ctime = current_time(inode);
1286 if (IS_SYNC(inode))
1287 udf_sync_inode(inode);
1288 else
1289 mark_inode_dirty(inode);
1290 return 0;
1291}
1292
1293/*
1294 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1295 * arbitrary - just that we hopefully don't limit any real use of rewritten
1296 * inode on write-once media but avoid looping for too long on corrupted media.
1297 */
1298#define UDF_MAX_ICB_NESTING 1024
1299
1300static int udf_read_inode(struct inode *inode, bool hidden_inode)
1301{
1302 struct buffer_head *bh = NULL;
1303 struct fileEntry *fe;
1304 struct extendedFileEntry *efe;
1305 uint16_t ident;
1306 struct udf_inode_info *iinfo = UDF_I(inode);
1307 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1308 struct kernel_lb_addr *iloc = &iinfo->i_location;
1309 unsigned int link_count;
1310 unsigned int indirections = 0;
1311 int bs = inode->i_sb->s_blocksize;
1312 int ret = -EIO;
1313 uint32_t uid, gid;
1314
1315reread:
1316 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1317 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1318 iloc->partitionReferenceNum, sbi->s_partitions);
1319 return -EIO;
1320 }
1321
1322 if (iloc->logicalBlockNum >=
1323 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1324 udf_debug("block=%u, partition=%u out of range\n",
1325 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1326 return -EIO;
1327 }
1328
1329 /*
1330 * Set defaults, but the inode is still incomplete!
1331 * Note: get_new_inode() sets the following on a new inode:
1332 * i_sb = sb
1333 * i_no = ino
1334 * i_flags = sb->s_flags
1335 * i_state = 0
1336 * clean_inode(): zero fills and sets
1337 * i_count = 1
1338 * i_nlink = 1
1339 * i_op = NULL;
1340 */
1341 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1342 if (!bh) {
1343 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1344 return -EIO;
1345 }
1346
1347 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1348 ident != TAG_IDENT_USE) {
1349 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1350 inode->i_ino, ident);
1351 goto out;
1352 }
1353
1354 fe = (struct fileEntry *)bh->b_data;
1355 efe = (struct extendedFileEntry *)bh->b_data;
1356
1357 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1358 struct buffer_head *ibh;
1359
1360 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1361 if (ident == TAG_IDENT_IE && ibh) {
1362 struct kernel_lb_addr loc;
1363 struct indirectEntry *ie;
1364
1365 ie = (struct indirectEntry *)ibh->b_data;
1366 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1367
1368 if (ie->indirectICB.extLength) {
1369 brelse(ibh);
1370 memcpy(&iinfo->i_location, &loc,
1371 sizeof(struct kernel_lb_addr));
1372 if (++indirections > UDF_MAX_ICB_NESTING) {
1373 udf_err(inode->i_sb,
1374 "too many ICBs in ICB hierarchy"
1375 " (max %d supported)\n",
1376 UDF_MAX_ICB_NESTING);
1377 goto out;
1378 }
1379 brelse(bh);
1380 goto reread;
1381 }
1382 }
1383 brelse(ibh);
1384 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1385 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1386 le16_to_cpu(fe->icbTag.strategyType));
1387 goto out;
1388 }
1389 if (fe->icbTag.strategyType == cpu_to_le16(4))
1390 iinfo->i_strat4096 = 0;
1391 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1392 iinfo->i_strat4096 = 1;
1393
1394 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1395 ICBTAG_FLAG_AD_MASK;
1396 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1397 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1398 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1399 ret = -EIO;
1400 goto out;
1401 }
1402 iinfo->i_unique = 0;
1403 iinfo->i_lenEAttr = 0;
1404 iinfo->i_lenExtents = 0;
1405 iinfo->i_lenAlloc = 0;
1406 iinfo->i_next_alloc_block = 0;
1407 iinfo->i_next_alloc_goal = 0;
1408 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1409 iinfo->i_efe = 1;
1410 iinfo->i_use = 0;
1411 ret = udf_alloc_i_data(inode, bs -
1412 sizeof(struct extendedFileEntry));
1413 if (ret)
1414 goto out;
1415 memcpy(iinfo->i_ext.i_data,
1416 bh->b_data + sizeof(struct extendedFileEntry),
1417 bs - sizeof(struct extendedFileEntry));
1418 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1419 iinfo->i_efe = 0;
1420 iinfo->i_use = 0;
1421 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1422 if (ret)
1423 goto out;
1424 memcpy(iinfo->i_ext.i_data,
1425 bh->b_data + sizeof(struct fileEntry),
1426 bs - sizeof(struct fileEntry));
1427 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1428 iinfo->i_efe = 0;
1429 iinfo->i_use = 1;
1430 iinfo->i_lenAlloc = le32_to_cpu(
1431 ((struct unallocSpaceEntry *)bh->b_data)->
1432 lengthAllocDescs);
1433 ret = udf_alloc_i_data(inode, bs -
1434 sizeof(struct unallocSpaceEntry));
1435 if (ret)
1436 goto out;
1437 memcpy(iinfo->i_ext.i_data,
1438 bh->b_data + sizeof(struct unallocSpaceEntry),
1439 bs - sizeof(struct unallocSpaceEntry));
1440 return 0;
1441 }
1442
1443 ret = -EIO;
1444 read_lock(&sbi->s_cred_lock);
1445 uid = le32_to_cpu(fe->uid);
1446 if (uid == UDF_INVALID_ID ||
1447 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1448 inode->i_uid = sbi->s_uid;
1449 else
1450 i_uid_write(inode, uid);
1451
1452 gid = le32_to_cpu(fe->gid);
1453 if (gid == UDF_INVALID_ID ||
1454 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1455 inode->i_gid = sbi->s_gid;
1456 else
1457 i_gid_write(inode, gid);
1458
1459 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1460 sbi->s_fmode != UDF_INVALID_MODE)
1461 inode->i_mode = sbi->s_fmode;
1462 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1463 sbi->s_dmode != UDF_INVALID_MODE)
1464 inode->i_mode = sbi->s_dmode;
1465 else
1466 inode->i_mode = udf_convert_permissions(fe);
1467 inode->i_mode &= ~sbi->s_umask;
1468 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1469
1470 read_unlock(&sbi->s_cred_lock);
1471
1472 link_count = le16_to_cpu(fe->fileLinkCount);
1473 if (!link_count) {
1474 if (!hidden_inode) {
1475 ret = -ESTALE;
1476 goto out;
1477 }
1478 link_count = 1;
1479 }
1480 set_nlink(inode, link_count);
1481
1482 inode->i_size = le64_to_cpu(fe->informationLength);
1483 iinfo->i_lenExtents = inode->i_size;
1484
1485 if (iinfo->i_efe == 0) {
1486 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1487 (inode->i_sb->s_blocksize_bits - 9);
1488
1489 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1490 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1491 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1492
1493 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1494 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1495 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1496 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1497 iinfo->i_streamdir = 0;
1498 iinfo->i_lenStreams = 0;
1499 } else {
1500 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1501 (inode->i_sb->s_blocksize_bits - 9);
1502
1503 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1504 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1505 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1506 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1507
1508 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1509 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1510 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1511 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1512
1513 /* Named streams */
1514 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1515 iinfo->i_locStreamdir =
1516 lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1517 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1518 if (iinfo->i_lenStreams >= inode->i_size)
1519 iinfo->i_lenStreams -= inode->i_size;
1520 else
1521 iinfo->i_lenStreams = 0;
1522 }
1523 inode->i_generation = iinfo->i_unique;
1524
1525 /*
1526 * Sanity check length of allocation descriptors and extended attrs to
1527 * avoid integer overflows
1528 */
1529 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1530 goto out;
1531 /* Now do exact checks */
1532 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1533 goto out;
1534 /* Sanity checks for files in ICB so that we don't get confused later */
1535 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1536 /*
1537 * For file in ICB data is stored in allocation descriptor
1538 * so sizes should match
1539 */
1540 if (iinfo->i_lenAlloc != inode->i_size)
1541 goto out;
1542 /* File in ICB has to fit in there... */
1543 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1544 goto out;
1545 }
1546
1547 switch (fe->icbTag.fileType) {
1548 case ICBTAG_FILE_TYPE_DIRECTORY:
1549 inode->i_op = &udf_dir_inode_operations;
1550 inode->i_fop = &udf_dir_operations;
1551 inode->i_mode |= S_IFDIR;
1552 inc_nlink(inode);
1553 break;
1554 case ICBTAG_FILE_TYPE_REALTIME:
1555 case ICBTAG_FILE_TYPE_REGULAR:
1556 case ICBTAG_FILE_TYPE_UNDEF:
1557 case ICBTAG_FILE_TYPE_VAT20:
1558 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1559 inode->i_data.a_ops = &udf_adinicb_aops;
1560 else
1561 inode->i_data.a_ops = &udf_aops;
1562 inode->i_op = &udf_file_inode_operations;
1563 inode->i_fop = &udf_file_operations;
1564 inode->i_mode |= S_IFREG;
1565 break;
1566 case ICBTAG_FILE_TYPE_BLOCK:
1567 inode->i_mode |= S_IFBLK;
1568 break;
1569 case ICBTAG_FILE_TYPE_CHAR:
1570 inode->i_mode |= S_IFCHR;
1571 break;
1572 case ICBTAG_FILE_TYPE_FIFO:
1573 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1574 break;
1575 case ICBTAG_FILE_TYPE_SOCKET:
1576 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1577 break;
1578 case ICBTAG_FILE_TYPE_SYMLINK:
1579 inode->i_data.a_ops = &udf_symlink_aops;
1580 inode->i_op = &udf_symlink_inode_operations;
1581 inode_nohighmem(inode);
1582 inode->i_mode = S_IFLNK | 0777;
1583 break;
1584 case ICBTAG_FILE_TYPE_MAIN:
1585 udf_debug("METADATA FILE-----\n");
1586 break;
1587 case ICBTAG_FILE_TYPE_MIRROR:
1588 udf_debug("METADATA MIRROR FILE-----\n");
1589 break;
1590 case ICBTAG_FILE_TYPE_BITMAP:
1591 udf_debug("METADATA BITMAP FILE-----\n");
1592 break;
1593 default:
1594 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1595 inode->i_ino, fe->icbTag.fileType);
1596 goto out;
1597 }
1598 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1599 struct deviceSpec *dsea =
1600 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1601 if (dsea) {
1602 init_special_inode(inode, inode->i_mode,
1603 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1604 le32_to_cpu(dsea->minorDeviceIdent)));
1605 /* Developer ID ??? */
1606 } else
1607 goto out;
1608 }
1609 ret = 0;
1610out:
1611 brelse(bh);
1612 return ret;
1613}
1614
1615static int udf_alloc_i_data(struct inode *inode, size_t size)
1616{
1617 struct udf_inode_info *iinfo = UDF_I(inode);
1618 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1619 if (!iinfo->i_ext.i_data)
1620 return -ENOMEM;
1621 return 0;
1622}
1623
1624static umode_t udf_convert_permissions(struct fileEntry *fe)
1625{
1626 umode_t mode;
1627 uint32_t permissions;
1628 uint32_t flags;
1629
1630 permissions = le32_to_cpu(fe->permissions);
1631 flags = le16_to_cpu(fe->icbTag.flags);
1632
1633 mode = ((permissions) & 0007) |
1634 ((permissions >> 2) & 0070) |
1635 ((permissions >> 4) & 0700) |
1636 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1637 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1638 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1639
1640 return mode;
1641}
1642
1643void udf_update_extra_perms(struct inode *inode, umode_t mode)
1644{
1645 struct udf_inode_info *iinfo = UDF_I(inode);
1646
1647 /*
1648 * UDF 2.01 sec. 3.3.3.3 Note 2:
1649 * In Unix, delete permission tracks write
1650 */
1651 iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1652 if (mode & 0200)
1653 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1654 if (mode & 0020)
1655 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1656 if (mode & 0002)
1657 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1658}
1659
1660int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1661{
1662 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1663}
1664
1665static int udf_sync_inode(struct inode *inode)
1666{
1667 return udf_update_inode(inode, 1);
1668}
1669
1670static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1671{
1672 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1673 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1674 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1675 iinfo->i_crtime = time;
1676}
1677
1678static int udf_update_inode(struct inode *inode, int do_sync)
1679{
1680 struct buffer_head *bh = NULL;
1681 struct fileEntry *fe;
1682 struct extendedFileEntry *efe;
1683 uint64_t lb_recorded;
1684 uint32_t udfperms;
1685 uint16_t icbflags;
1686 uint16_t crclen;
1687 int err = 0;
1688 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1689 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1690 struct udf_inode_info *iinfo = UDF_I(inode);
1691
1692 bh = udf_tgetblk(inode->i_sb,
1693 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1694 if (!bh) {
1695 udf_debug("getblk failure\n");
1696 return -EIO;
1697 }
1698
1699 lock_buffer(bh);
1700 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1701 fe = (struct fileEntry *)bh->b_data;
1702 efe = (struct extendedFileEntry *)bh->b_data;
1703
1704 if (iinfo->i_use) {
1705 struct unallocSpaceEntry *use =
1706 (struct unallocSpaceEntry *)bh->b_data;
1707
1708 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1709 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1710 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1711 sizeof(struct unallocSpaceEntry));
1712 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1713 crclen = sizeof(struct unallocSpaceEntry);
1714
1715 goto finish;
1716 }
1717
1718 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1719 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1720 else
1721 fe->uid = cpu_to_le32(i_uid_read(inode));
1722
1723 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1724 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1725 else
1726 fe->gid = cpu_to_le32(i_gid_read(inode));
1727
1728 udfperms = ((inode->i_mode & 0007)) |
1729 ((inode->i_mode & 0070) << 2) |
1730 ((inode->i_mode & 0700) << 4);
1731
1732 udfperms |= iinfo->i_extraPerms;
1733 fe->permissions = cpu_to_le32(udfperms);
1734
1735 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1736 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1737 else
1738 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1739
1740 fe->informationLength = cpu_to_le64(inode->i_size);
1741
1742 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1743 struct regid *eid;
1744 struct deviceSpec *dsea =
1745 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1746 if (!dsea) {
1747 dsea = (struct deviceSpec *)
1748 udf_add_extendedattr(inode,
1749 sizeof(struct deviceSpec) +
1750 sizeof(struct regid), 12, 0x3);
1751 dsea->attrType = cpu_to_le32(12);
1752 dsea->attrSubtype = 1;
1753 dsea->attrLength = cpu_to_le32(
1754 sizeof(struct deviceSpec) +
1755 sizeof(struct regid));
1756 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1757 }
1758 eid = (struct regid *)dsea->impUse;
1759 memset(eid, 0, sizeof(*eid));
1760 strcpy(eid->ident, UDF_ID_DEVELOPER);
1761 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1762 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1763 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1764 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1765 }
1766
1767 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1768 lb_recorded = 0; /* No extents => no blocks! */
1769 else
1770 lb_recorded =
1771 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1772 (blocksize_bits - 9);
1773
1774 if (iinfo->i_efe == 0) {
1775 memcpy(bh->b_data + sizeof(struct fileEntry),
1776 iinfo->i_ext.i_data,
1777 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1778 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1779
1780 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1781 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1782 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1783 memset(&(fe->impIdent), 0, sizeof(struct regid));
1784 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1785 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1786 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1787 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1788 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1789 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1790 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1791 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1792 crclen = sizeof(struct fileEntry);
1793 } else {
1794 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1795 iinfo->i_ext.i_data,
1796 inode->i_sb->s_blocksize -
1797 sizeof(struct extendedFileEntry));
1798 efe->objectSize =
1799 cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1800 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1801
1802 if (iinfo->i_streamdir) {
1803 struct long_ad *icb_lad = &efe->streamDirectoryICB;
1804
1805 icb_lad->extLocation =
1806 cpu_to_lelb(iinfo->i_locStreamdir);
1807 icb_lad->extLength =
1808 cpu_to_le32(inode->i_sb->s_blocksize);
1809 }
1810
1811 udf_adjust_time(iinfo, inode->i_atime);
1812 udf_adjust_time(iinfo, inode->i_mtime);
1813 udf_adjust_time(iinfo, inode->i_ctime);
1814
1815 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1816 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1817 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1818 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1819
1820 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1821 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1822 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1823 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1824 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1825 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1826 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1827 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1828 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1829 crclen = sizeof(struct extendedFileEntry);
1830 }
1831
1832finish:
1833 if (iinfo->i_strat4096) {
1834 fe->icbTag.strategyType = cpu_to_le16(4096);
1835 fe->icbTag.strategyParameter = cpu_to_le16(1);
1836 fe->icbTag.numEntries = cpu_to_le16(2);
1837 } else {
1838 fe->icbTag.strategyType = cpu_to_le16(4);
1839 fe->icbTag.numEntries = cpu_to_le16(1);
1840 }
1841
1842 if (iinfo->i_use)
1843 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1844 else if (S_ISDIR(inode->i_mode))
1845 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1846 else if (S_ISREG(inode->i_mode))
1847 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1848 else if (S_ISLNK(inode->i_mode))
1849 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1850 else if (S_ISBLK(inode->i_mode))
1851 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1852 else if (S_ISCHR(inode->i_mode))
1853 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1854 else if (S_ISFIFO(inode->i_mode))
1855 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1856 else if (S_ISSOCK(inode->i_mode))
1857 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1858
1859 icbflags = iinfo->i_alloc_type |
1860 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1861 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1862 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1863 (le16_to_cpu(fe->icbTag.flags) &
1864 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1865 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1866
1867 fe->icbTag.flags = cpu_to_le16(icbflags);
1868 if (sbi->s_udfrev >= 0x0200)
1869 fe->descTag.descVersion = cpu_to_le16(3);
1870 else
1871 fe->descTag.descVersion = cpu_to_le16(2);
1872 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1873 fe->descTag.tagLocation = cpu_to_le32(
1874 iinfo->i_location.logicalBlockNum);
1875 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1876 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1877 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1878 crclen));
1879 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1880
1881 set_buffer_uptodate(bh);
1882 unlock_buffer(bh);
1883
1884 /* write the data blocks */
1885 mark_buffer_dirty(bh);
1886 if (do_sync) {
1887 sync_dirty_buffer(bh);
1888 if (buffer_write_io_error(bh)) {
1889 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1890 inode->i_ino);
1891 err = -EIO;
1892 }
1893 }
1894 brelse(bh);
1895
1896 return err;
1897}
1898
1899struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1900 bool hidden_inode)
1901{
1902 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1903 struct inode *inode = iget_locked(sb, block);
1904 int err;
1905
1906 if (!inode)
1907 return ERR_PTR(-ENOMEM);
1908
1909 if (!(inode->i_state & I_NEW))
1910 return inode;
1911
1912 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1913 err = udf_read_inode(inode, hidden_inode);
1914 if (err < 0) {
1915 iget_failed(inode);
1916 return ERR_PTR(err);
1917 }
1918 unlock_new_inode(inode);
1919
1920 return inode;
1921}
1922
1923int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1924 struct extent_position *epos)
1925{
1926 struct super_block *sb = inode->i_sb;
1927 struct buffer_head *bh;
1928 struct allocExtDesc *aed;
1929 struct extent_position nepos;
1930 struct kernel_lb_addr neloc;
1931 int ver, adsize;
1932
1933 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1934 adsize = sizeof(struct short_ad);
1935 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1936 adsize = sizeof(struct long_ad);
1937 else
1938 return -EIO;
1939
1940 neloc.logicalBlockNum = block;
1941 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1942
1943 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1944 if (!bh)
1945 return -EIO;
1946 lock_buffer(bh);
1947 memset(bh->b_data, 0x00, sb->s_blocksize);
1948 set_buffer_uptodate(bh);
1949 unlock_buffer(bh);
1950 mark_buffer_dirty_inode(bh, inode);
1951
1952 aed = (struct allocExtDesc *)(bh->b_data);
1953 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1954 aed->previousAllocExtLocation =
1955 cpu_to_le32(epos->block.logicalBlockNum);
1956 }
1957 aed->lengthAllocDescs = cpu_to_le32(0);
1958 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1959 ver = 3;
1960 else
1961 ver = 2;
1962 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1963 sizeof(struct tag));
1964
1965 nepos.block = neloc;
1966 nepos.offset = sizeof(struct allocExtDesc);
1967 nepos.bh = bh;
1968
1969 /*
1970 * Do we have to copy current last extent to make space for indirect
1971 * one?
1972 */
1973 if (epos->offset + adsize > sb->s_blocksize) {
1974 struct kernel_lb_addr cp_loc;
1975 uint32_t cp_len;
1976 int cp_type;
1977
1978 epos->offset -= adsize;
1979 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1980 cp_len |= ((uint32_t)cp_type) << 30;
1981
1982 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1983 udf_write_aext(inode, epos, &nepos.block,
1984 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1985 } else {
1986 __udf_add_aext(inode, epos, &nepos.block,
1987 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1988 }
1989
1990 brelse(epos->bh);
1991 *epos = nepos;
1992
1993 return 0;
1994}
1995
1996/*
1997 * Append extent at the given position - should be the first free one in inode
1998 * / indirect extent. This function assumes there is enough space in the inode
1999 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2000 */
2001int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2002 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2003{
2004 struct udf_inode_info *iinfo = UDF_I(inode);
2005 struct allocExtDesc *aed;
2006 int adsize;
2007
2008 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2009 adsize = sizeof(struct short_ad);
2010 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2011 adsize = sizeof(struct long_ad);
2012 else
2013 return -EIO;
2014
2015 if (!epos->bh) {
2016 WARN_ON(iinfo->i_lenAlloc !=
2017 epos->offset - udf_file_entry_alloc_offset(inode));
2018 } else {
2019 aed = (struct allocExtDesc *)epos->bh->b_data;
2020 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2021 epos->offset - sizeof(struct allocExtDesc));
2022 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2023 }
2024
2025 udf_write_aext(inode, epos, eloc, elen, inc);
2026
2027 if (!epos->bh) {
2028 iinfo->i_lenAlloc += adsize;
2029 mark_inode_dirty(inode);
2030 } else {
2031 aed = (struct allocExtDesc *)epos->bh->b_data;
2032 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2033 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2034 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2035 udf_update_tag(epos->bh->b_data,
2036 epos->offset + (inc ? 0 : adsize));
2037 else
2038 udf_update_tag(epos->bh->b_data,
2039 sizeof(struct allocExtDesc));
2040 mark_buffer_dirty_inode(epos->bh, inode);
2041 }
2042
2043 return 0;
2044}
2045
2046/*
2047 * Append extent at given position - should be the first free one in inode
2048 * / indirect extent. Takes care of allocating and linking indirect blocks.
2049 */
2050int udf_add_aext(struct inode *inode, struct extent_position *epos,
2051 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2052{
2053 int adsize;
2054 struct super_block *sb = inode->i_sb;
2055
2056 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2057 adsize = sizeof(struct short_ad);
2058 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2059 adsize = sizeof(struct long_ad);
2060 else
2061 return -EIO;
2062
2063 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2064 int err;
2065 udf_pblk_t new_block;
2066
2067 new_block = udf_new_block(sb, NULL,
2068 epos->block.partitionReferenceNum,
2069 epos->block.logicalBlockNum, &err);
2070 if (!new_block)
2071 return -ENOSPC;
2072
2073 err = udf_setup_indirect_aext(inode, new_block, epos);
2074 if (err)
2075 return err;
2076 }
2077
2078 return __udf_add_aext(inode, epos, eloc, elen, inc);
2079}
2080
2081void udf_write_aext(struct inode *inode, struct extent_position *epos,
2082 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2083{
2084 int adsize;
2085 uint8_t *ptr;
2086 struct short_ad *sad;
2087 struct long_ad *lad;
2088 struct udf_inode_info *iinfo = UDF_I(inode);
2089
2090 if (!epos->bh)
2091 ptr = iinfo->i_ext.i_data + epos->offset -
2092 udf_file_entry_alloc_offset(inode) +
2093 iinfo->i_lenEAttr;
2094 else
2095 ptr = epos->bh->b_data + epos->offset;
2096
2097 switch (iinfo->i_alloc_type) {
2098 case ICBTAG_FLAG_AD_SHORT:
2099 sad = (struct short_ad *)ptr;
2100 sad->extLength = cpu_to_le32(elen);
2101 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2102 adsize = sizeof(struct short_ad);
2103 break;
2104 case ICBTAG_FLAG_AD_LONG:
2105 lad = (struct long_ad *)ptr;
2106 lad->extLength = cpu_to_le32(elen);
2107 lad->extLocation = cpu_to_lelb(*eloc);
2108 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2109 adsize = sizeof(struct long_ad);
2110 break;
2111 default:
2112 return;
2113 }
2114
2115 if (epos->bh) {
2116 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2117 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2118 struct allocExtDesc *aed =
2119 (struct allocExtDesc *)epos->bh->b_data;
2120 udf_update_tag(epos->bh->b_data,
2121 le32_to_cpu(aed->lengthAllocDescs) +
2122 sizeof(struct allocExtDesc));
2123 }
2124 mark_buffer_dirty_inode(epos->bh, inode);
2125 } else {
2126 mark_inode_dirty(inode);
2127 }
2128
2129 if (inc)
2130 epos->offset += adsize;
2131}
2132
2133/*
2134 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2135 * someone does some weird stuff.
2136 */
2137#define UDF_MAX_INDIR_EXTS 16
2138
2139int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2140 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2141{
2142 int8_t etype;
2143 unsigned int indirections = 0;
2144
2145 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2146 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2147 udf_pblk_t block;
2148
2149 if (++indirections > UDF_MAX_INDIR_EXTS) {
2150 udf_err(inode->i_sb,
2151 "too many indirect extents in inode %lu\n",
2152 inode->i_ino);
2153 return -1;
2154 }
2155
2156 epos->block = *eloc;
2157 epos->offset = sizeof(struct allocExtDesc);
2158 brelse(epos->bh);
2159 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2160 epos->bh = udf_tread(inode->i_sb, block);
2161 if (!epos->bh) {
2162 udf_debug("reading block %u failed!\n", block);
2163 return -1;
2164 }
2165 }
2166
2167 return etype;
2168}
2169
2170int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2171 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2172{
2173 int alen;
2174 int8_t etype;
2175 uint8_t *ptr;
2176 struct short_ad *sad;
2177 struct long_ad *lad;
2178 struct udf_inode_info *iinfo = UDF_I(inode);
2179
2180 if (!epos->bh) {
2181 if (!epos->offset)
2182 epos->offset = udf_file_entry_alloc_offset(inode);
2183 ptr = iinfo->i_ext.i_data + epos->offset -
2184 udf_file_entry_alloc_offset(inode) +
2185 iinfo->i_lenEAttr;
2186 alen = udf_file_entry_alloc_offset(inode) +
2187 iinfo->i_lenAlloc;
2188 } else {
2189 if (!epos->offset)
2190 epos->offset = sizeof(struct allocExtDesc);
2191 ptr = epos->bh->b_data + epos->offset;
2192 alen = sizeof(struct allocExtDesc) +
2193 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2194 lengthAllocDescs);
2195 }
2196
2197 switch (iinfo->i_alloc_type) {
2198 case ICBTAG_FLAG_AD_SHORT:
2199 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2200 if (!sad)
2201 return -1;
2202 etype = le32_to_cpu(sad->extLength) >> 30;
2203 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2204 eloc->partitionReferenceNum =
2205 iinfo->i_location.partitionReferenceNum;
2206 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2207 break;
2208 case ICBTAG_FLAG_AD_LONG:
2209 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2210 if (!lad)
2211 return -1;
2212 etype = le32_to_cpu(lad->extLength) >> 30;
2213 *eloc = lelb_to_cpu(lad->extLocation);
2214 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2215 break;
2216 default:
2217 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2218 return -1;
2219 }
2220
2221 return etype;
2222}
2223
2224static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2225 struct kernel_lb_addr neloc, uint32_t nelen)
2226{
2227 struct kernel_lb_addr oeloc;
2228 uint32_t oelen;
2229 int8_t etype;
2230
2231 if (epos.bh)
2232 get_bh(epos.bh);
2233
2234 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2235 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2236 neloc = oeloc;
2237 nelen = (etype << 30) | oelen;
2238 }
2239 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2240 brelse(epos.bh);
2241
2242 return (nelen >> 30);
2243}
2244
2245int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2246{
2247 struct extent_position oepos;
2248 int adsize;
2249 int8_t etype;
2250 struct allocExtDesc *aed;
2251 struct udf_inode_info *iinfo;
2252 struct kernel_lb_addr eloc;
2253 uint32_t elen;
2254
2255 if (epos.bh) {
2256 get_bh(epos.bh);
2257 get_bh(epos.bh);
2258 }
2259
2260 iinfo = UDF_I(inode);
2261 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2262 adsize = sizeof(struct short_ad);
2263 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2264 adsize = sizeof(struct long_ad);
2265 else
2266 adsize = 0;
2267
2268 oepos = epos;
2269 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2270 return -1;
2271
2272 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2273 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2274 if (oepos.bh != epos.bh) {
2275 oepos.block = epos.block;
2276 brelse(oepos.bh);
2277 get_bh(epos.bh);
2278 oepos.bh = epos.bh;
2279 oepos.offset = epos.offset - adsize;
2280 }
2281 }
2282 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2283 elen = 0;
2284
2285 if (epos.bh != oepos.bh) {
2286 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2287 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2288 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2289 if (!oepos.bh) {
2290 iinfo->i_lenAlloc -= (adsize * 2);
2291 mark_inode_dirty(inode);
2292 } else {
2293 aed = (struct allocExtDesc *)oepos.bh->b_data;
2294 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2295 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2296 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2297 udf_update_tag(oepos.bh->b_data,
2298 oepos.offset - (2 * adsize));
2299 else
2300 udf_update_tag(oepos.bh->b_data,
2301 sizeof(struct allocExtDesc));
2302 mark_buffer_dirty_inode(oepos.bh, inode);
2303 }
2304 } else {
2305 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2306 if (!oepos.bh) {
2307 iinfo->i_lenAlloc -= adsize;
2308 mark_inode_dirty(inode);
2309 } else {
2310 aed = (struct allocExtDesc *)oepos.bh->b_data;
2311 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2312 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2313 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2314 udf_update_tag(oepos.bh->b_data,
2315 epos.offset - adsize);
2316 else
2317 udf_update_tag(oepos.bh->b_data,
2318 sizeof(struct allocExtDesc));
2319 mark_buffer_dirty_inode(oepos.bh, inode);
2320 }
2321 }
2322
2323 brelse(epos.bh);
2324 brelse(oepos.bh);
2325
2326 return (elen >> 30);
2327}
2328
2329int8_t inode_bmap(struct inode *inode, sector_t block,
2330 struct extent_position *pos, struct kernel_lb_addr *eloc,
2331 uint32_t *elen, sector_t *offset)
2332{
2333 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2334 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2335 int8_t etype;
2336 struct udf_inode_info *iinfo;
2337
2338 iinfo = UDF_I(inode);
2339 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2340 pos->offset = 0;
2341 pos->block = iinfo->i_location;
2342 pos->bh = NULL;
2343 }
2344 *elen = 0;
2345 do {
2346 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2347 if (etype == -1) {
2348 *offset = (bcount - lbcount) >> blocksize_bits;
2349 iinfo->i_lenExtents = lbcount;
2350 return -1;
2351 }
2352 lbcount += *elen;
2353 } while (lbcount <= bcount);
2354 /* update extent cache */
2355 udf_update_extent_cache(inode, lbcount - *elen, pos);
2356 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2357
2358 return etype;
2359}
2360
2361udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2362{
2363 struct kernel_lb_addr eloc;
2364 uint32_t elen;
2365 sector_t offset;
2366 struct extent_position epos = {};
2367 udf_pblk_t ret;
2368
2369 down_read(&UDF_I(inode)->i_data_sem);
2370
2371 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2372 (EXT_RECORDED_ALLOCATED >> 30))
2373 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2374 else
2375 ret = 0;
2376
2377 up_read(&UDF_I(inode)->i_data_sem);
2378 brelse(epos.bh);
2379
2380 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2381 return udf_fixed_to_variable(ret);
2382 else
2383 return ret;
2384}
1/*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32#include "udfdecl.h"
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/pagemap.h>
36#include <linux/writeback.h>
37#include <linux/slab.h>
38#include <linux/crc-itu-t.h>
39#include <linux/mpage.h>
40#include <linux/uio.h>
41#include <linux/bio.h>
42
43#include "udf_i.h"
44#include "udf_sb.h"
45
46#define EXTENT_MERGE_SIZE 5
47
48#define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51
52#define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 FE_PERM_O_DELETE)
54
55static umode_t udf_convert_permissions(struct fileEntry *);
56static int udf_update_inode(struct inode *, int);
57static int udf_sync_inode(struct inode *inode);
58static int udf_alloc_i_data(struct inode *inode, size_t size);
59static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60static int8_t udf_insert_aext(struct inode *, struct extent_position,
61 struct kernel_lb_addr, uint32_t);
62static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63 struct kernel_long_ad *, int *);
64static void udf_prealloc_extents(struct inode *, int, int,
65 struct kernel_long_ad *, int *);
66static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68 int, struct extent_position *);
69static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70
71static void __udf_clear_extent_cache(struct inode *inode)
72{
73 struct udf_inode_info *iinfo = UDF_I(inode);
74
75 if (iinfo->cached_extent.lstart != -1) {
76 brelse(iinfo->cached_extent.epos.bh);
77 iinfo->cached_extent.lstart = -1;
78 }
79}
80
81/* Invalidate extent cache */
82static void udf_clear_extent_cache(struct inode *inode)
83{
84 struct udf_inode_info *iinfo = UDF_I(inode);
85
86 spin_lock(&iinfo->i_extent_cache_lock);
87 __udf_clear_extent_cache(inode);
88 spin_unlock(&iinfo->i_extent_cache_lock);
89}
90
91/* Return contents of extent cache */
92static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93 loff_t *lbcount, struct extent_position *pos)
94{
95 struct udf_inode_info *iinfo = UDF_I(inode);
96 int ret = 0;
97
98 spin_lock(&iinfo->i_extent_cache_lock);
99 if ((iinfo->cached_extent.lstart <= bcount) &&
100 (iinfo->cached_extent.lstart != -1)) {
101 /* Cache hit */
102 *lbcount = iinfo->cached_extent.lstart;
103 memcpy(pos, &iinfo->cached_extent.epos,
104 sizeof(struct extent_position));
105 if (pos->bh)
106 get_bh(pos->bh);
107 ret = 1;
108 }
109 spin_unlock(&iinfo->i_extent_cache_lock);
110 return ret;
111}
112
113/* Add extent to extent cache */
114static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115 struct extent_position *pos)
116{
117 struct udf_inode_info *iinfo = UDF_I(inode);
118
119 spin_lock(&iinfo->i_extent_cache_lock);
120 /* Invalidate previously cached extent */
121 __udf_clear_extent_cache(inode);
122 if (pos->bh)
123 get_bh(pos->bh);
124 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125 iinfo->cached_extent.lstart = estart;
126 switch (iinfo->i_alloc_type) {
127 case ICBTAG_FLAG_AD_SHORT:
128 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129 break;
130 case ICBTAG_FLAG_AD_LONG:
131 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132 break;
133 }
134 spin_unlock(&iinfo->i_extent_cache_lock);
135}
136
137void udf_evict_inode(struct inode *inode)
138{
139 struct udf_inode_info *iinfo = UDF_I(inode);
140 int want_delete = 0;
141
142 if (!is_bad_inode(inode)) {
143 if (!inode->i_nlink) {
144 want_delete = 1;
145 udf_setsize(inode, 0);
146 udf_update_inode(inode, IS_SYNC(inode));
147 }
148 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
149 inode->i_size != iinfo->i_lenExtents) {
150 udf_warn(inode->i_sb,
151 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
152 inode->i_ino, inode->i_mode,
153 (unsigned long long)inode->i_size,
154 (unsigned long long)iinfo->i_lenExtents);
155 }
156 }
157 truncate_inode_pages_final(&inode->i_data);
158 invalidate_inode_buffers(inode);
159 clear_inode(inode);
160 kfree(iinfo->i_data);
161 iinfo->i_data = NULL;
162 udf_clear_extent_cache(inode);
163 if (want_delete) {
164 udf_free_inode(inode);
165 }
166}
167
168static void udf_write_failed(struct address_space *mapping, loff_t to)
169{
170 struct inode *inode = mapping->host;
171 struct udf_inode_info *iinfo = UDF_I(inode);
172 loff_t isize = inode->i_size;
173
174 if (to > isize) {
175 truncate_pagecache(inode, isize);
176 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
177 down_write(&iinfo->i_data_sem);
178 udf_clear_extent_cache(inode);
179 udf_truncate_extents(inode);
180 up_write(&iinfo->i_data_sem);
181 }
182 }
183}
184
185static int udf_writepages(struct address_space *mapping,
186 struct writeback_control *wbc)
187{
188 return mpage_writepages(mapping, wbc, udf_get_block);
189}
190
191static int udf_read_folio(struct file *file, struct folio *folio)
192{
193 return mpage_read_folio(folio, udf_get_block);
194}
195
196static void udf_readahead(struct readahead_control *rac)
197{
198 mpage_readahead(rac, udf_get_block);
199}
200
201static int udf_write_begin(struct file *file, struct address_space *mapping,
202 loff_t pos, unsigned len,
203 struct page **pagep, void **fsdata)
204{
205 int ret;
206
207 ret = block_write_begin(mapping, pos, len, pagep, udf_get_block);
208 if (unlikely(ret))
209 udf_write_failed(mapping, pos + len);
210 return ret;
211}
212
213static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
214{
215 struct file *file = iocb->ki_filp;
216 struct address_space *mapping = file->f_mapping;
217 struct inode *inode = mapping->host;
218 size_t count = iov_iter_count(iter);
219 ssize_t ret;
220
221 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
222 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
223 udf_write_failed(mapping, iocb->ki_pos + count);
224 return ret;
225}
226
227static sector_t udf_bmap(struct address_space *mapping, sector_t block)
228{
229 return generic_block_bmap(mapping, block, udf_get_block);
230}
231
232const struct address_space_operations udf_aops = {
233 .dirty_folio = block_dirty_folio,
234 .invalidate_folio = block_invalidate_folio,
235 .read_folio = udf_read_folio,
236 .readahead = udf_readahead,
237 .writepages = udf_writepages,
238 .write_begin = udf_write_begin,
239 .write_end = generic_write_end,
240 .direct_IO = udf_direct_IO,
241 .bmap = udf_bmap,
242 .migrate_folio = buffer_migrate_folio,
243};
244
245/*
246 * Expand file stored in ICB to a normal one-block-file
247 *
248 * This function requires i_data_sem for writing and releases it.
249 * This function requires i_mutex held
250 */
251int udf_expand_file_adinicb(struct inode *inode)
252{
253 struct page *page;
254 char *kaddr;
255 struct udf_inode_info *iinfo = UDF_I(inode);
256 int err;
257
258 WARN_ON_ONCE(!inode_is_locked(inode));
259 if (!iinfo->i_lenAlloc) {
260 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
261 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
262 else
263 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
264 /* from now on we have normal address_space methods */
265 inode->i_data.a_ops = &udf_aops;
266 up_write(&iinfo->i_data_sem);
267 mark_inode_dirty(inode);
268 return 0;
269 }
270 /*
271 * Release i_data_sem so that we can lock a page - page lock ranks
272 * above i_data_sem. i_mutex still protects us against file changes.
273 */
274 up_write(&iinfo->i_data_sem);
275
276 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
277 if (!page)
278 return -ENOMEM;
279
280 if (!PageUptodate(page)) {
281 kaddr = kmap_atomic(page);
282 memset(kaddr + iinfo->i_lenAlloc, 0x00,
283 PAGE_SIZE - iinfo->i_lenAlloc);
284 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
285 iinfo->i_lenAlloc);
286 flush_dcache_page(page);
287 SetPageUptodate(page);
288 kunmap_atomic(kaddr);
289 }
290 down_write(&iinfo->i_data_sem);
291 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
292 iinfo->i_lenAlloc);
293 iinfo->i_lenAlloc = 0;
294 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
295 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
296 else
297 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
298 /* from now on we have normal address_space methods */
299 inode->i_data.a_ops = &udf_aops;
300 set_page_dirty(page);
301 unlock_page(page);
302 up_write(&iinfo->i_data_sem);
303 err = filemap_fdatawrite(inode->i_mapping);
304 if (err) {
305 /* Restore everything back so that we don't lose data... */
306 lock_page(page);
307 down_write(&iinfo->i_data_sem);
308 kaddr = kmap_atomic(page);
309 memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
310 kunmap_atomic(kaddr);
311 unlock_page(page);
312 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
313 inode->i_data.a_ops = &udf_adinicb_aops;
314 iinfo->i_lenAlloc = inode->i_size;
315 up_write(&iinfo->i_data_sem);
316 }
317 put_page(page);
318 mark_inode_dirty(inode);
319
320 return err;
321}
322
323struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
324 udf_pblk_t *block, int *err)
325{
326 udf_pblk_t newblock;
327 struct buffer_head *dbh = NULL;
328 struct kernel_lb_addr eloc;
329 uint8_t alloctype;
330 struct extent_position epos;
331
332 struct udf_fileident_bh sfibh, dfibh;
333 loff_t f_pos = udf_ext0_offset(inode);
334 int size = udf_ext0_offset(inode) + inode->i_size;
335 struct fileIdentDesc cfi, *sfi, *dfi;
336 struct udf_inode_info *iinfo = UDF_I(inode);
337
338 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
339 alloctype = ICBTAG_FLAG_AD_SHORT;
340 else
341 alloctype = ICBTAG_FLAG_AD_LONG;
342
343 if (!inode->i_size) {
344 iinfo->i_alloc_type = alloctype;
345 mark_inode_dirty(inode);
346 return NULL;
347 }
348
349 /* alloc block, and copy data to it */
350 *block = udf_new_block(inode->i_sb, inode,
351 iinfo->i_location.partitionReferenceNum,
352 iinfo->i_location.logicalBlockNum, err);
353 if (!(*block))
354 return NULL;
355 newblock = udf_get_pblock(inode->i_sb, *block,
356 iinfo->i_location.partitionReferenceNum,
357 0);
358 if (!newblock)
359 return NULL;
360 dbh = udf_tgetblk(inode->i_sb, newblock);
361 if (!dbh)
362 return NULL;
363 lock_buffer(dbh);
364 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
365 set_buffer_uptodate(dbh);
366 unlock_buffer(dbh);
367 mark_buffer_dirty_inode(dbh, inode);
368
369 sfibh.soffset = sfibh.eoffset =
370 f_pos & (inode->i_sb->s_blocksize - 1);
371 sfibh.sbh = sfibh.ebh = NULL;
372 dfibh.soffset = dfibh.eoffset = 0;
373 dfibh.sbh = dfibh.ebh = dbh;
374 while (f_pos < size) {
375 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
376 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
377 NULL, NULL, NULL);
378 if (!sfi) {
379 brelse(dbh);
380 return NULL;
381 }
382 iinfo->i_alloc_type = alloctype;
383 sfi->descTag.tagLocation = cpu_to_le32(*block);
384 dfibh.soffset = dfibh.eoffset;
385 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
386 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
387 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
388 udf_get_fi_ident(sfi))) {
389 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
390 brelse(dbh);
391 return NULL;
392 }
393 }
394 mark_buffer_dirty_inode(dbh, inode);
395
396 memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
397 iinfo->i_lenAlloc = 0;
398 eloc.logicalBlockNum = *block;
399 eloc.partitionReferenceNum =
400 iinfo->i_location.partitionReferenceNum;
401 iinfo->i_lenExtents = inode->i_size;
402 epos.bh = NULL;
403 epos.block = iinfo->i_location;
404 epos.offset = udf_file_entry_alloc_offset(inode);
405 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
406 /* UniqueID stuff */
407
408 brelse(epos.bh);
409 mark_inode_dirty(inode);
410 return dbh;
411}
412
413static int udf_get_block(struct inode *inode, sector_t block,
414 struct buffer_head *bh_result, int create)
415{
416 int err, new;
417 sector_t phys = 0;
418 struct udf_inode_info *iinfo;
419
420 if (!create) {
421 phys = udf_block_map(inode, block);
422 if (phys)
423 map_bh(bh_result, inode->i_sb, phys);
424 return 0;
425 }
426
427 err = -EIO;
428 new = 0;
429 iinfo = UDF_I(inode);
430
431 down_write(&iinfo->i_data_sem);
432 if (block == iinfo->i_next_alloc_block + 1) {
433 iinfo->i_next_alloc_block++;
434 iinfo->i_next_alloc_goal++;
435 }
436
437 /*
438 * Block beyond EOF and prealloc extents? Just discard preallocation
439 * as it is not useful and complicates things.
440 */
441 if (((loff_t)block) << inode->i_blkbits > iinfo->i_lenExtents)
442 udf_discard_prealloc(inode);
443 udf_clear_extent_cache(inode);
444 phys = inode_getblk(inode, block, &err, &new);
445 if (!phys)
446 goto abort;
447
448 if (new)
449 set_buffer_new(bh_result);
450 map_bh(bh_result, inode->i_sb, phys);
451
452abort:
453 up_write(&iinfo->i_data_sem);
454 return err;
455}
456
457static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
458 int create, int *err)
459{
460 struct buffer_head *bh;
461 struct buffer_head dummy;
462
463 dummy.b_state = 0;
464 dummy.b_blocknr = -1000;
465 *err = udf_get_block(inode, block, &dummy, create);
466 if (!*err && buffer_mapped(&dummy)) {
467 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
468 if (buffer_new(&dummy)) {
469 lock_buffer(bh);
470 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
471 set_buffer_uptodate(bh);
472 unlock_buffer(bh);
473 mark_buffer_dirty_inode(bh, inode);
474 }
475 return bh;
476 }
477
478 return NULL;
479}
480
481/* Extend the file with new blocks totaling 'new_block_bytes',
482 * return the number of extents added
483 */
484static int udf_do_extend_file(struct inode *inode,
485 struct extent_position *last_pos,
486 struct kernel_long_ad *last_ext,
487 loff_t new_block_bytes)
488{
489 uint32_t add;
490 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
491 struct super_block *sb = inode->i_sb;
492 struct udf_inode_info *iinfo;
493 int err;
494
495 /* The previous extent is fake and we should not extend by anything
496 * - there's nothing to do... */
497 if (!new_block_bytes && fake)
498 return 0;
499
500 iinfo = UDF_I(inode);
501 /* Round the last extent up to a multiple of block size */
502 if (last_ext->extLength & (sb->s_blocksize - 1)) {
503 last_ext->extLength =
504 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
505 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
506 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
507 iinfo->i_lenExtents =
508 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
509 ~(sb->s_blocksize - 1);
510 }
511
512 /* Can we merge with the previous extent? */
513 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
514 EXT_NOT_RECORDED_NOT_ALLOCATED) {
515 add = (1 << 30) - sb->s_blocksize -
516 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
517 if (add > new_block_bytes)
518 add = new_block_bytes;
519 new_block_bytes -= add;
520 last_ext->extLength += add;
521 }
522
523 if (fake) {
524 udf_add_aext(inode, last_pos, &last_ext->extLocation,
525 last_ext->extLength, 1);
526 count++;
527 } else {
528 struct kernel_lb_addr tmploc;
529 uint32_t tmplen;
530
531 udf_write_aext(inode, last_pos, &last_ext->extLocation,
532 last_ext->extLength, 1);
533
534 /*
535 * We've rewritten the last extent. If we are going to add
536 * more extents, we may need to enter possible following
537 * empty indirect extent.
538 */
539 if (new_block_bytes)
540 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
541 }
542
543 /* Managed to do everything necessary? */
544 if (!new_block_bytes)
545 goto out;
546
547 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
548 last_ext->extLocation.logicalBlockNum = 0;
549 last_ext->extLocation.partitionReferenceNum = 0;
550 add = (1 << 30) - sb->s_blocksize;
551 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
552
553 /* Create enough extents to cover the whole hole */
554 while (new_block_bytes > add) {
555 new_block_bytes -= add;
556 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
557 last_ext->extLength, 1);
558 if (err)
559 return err;
560 count++;
561 }
562 if (new_block_bytes) {
563 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
564 new_block_bytes;
565 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
566 last_ext->extLength, 1);
567 if (err)
568 return err;
569 count++;
570 }
571
572out:
573 /* last_pos should point to the last written extent... */
574 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
575 last_pos->offset -= sizeof(struct short_ad);
576 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
577 last_pos->offset -= sizeof(struct long_ad);
578 else
579 return -EIO;
580
581 return count;
582}
583
584/* Extend the final block of the file to final_block_len bytes */
585static void udf_do_extend_final_block(struct inode *inode,
586 struct extent_position *last_pos,
587 struct kernel_long_ad *last_ext,
588 uint32_t new_elen)
589{
590 uint32_t added_bytes;
591
592 /*
593 * Extent already large enough? It may be already rounded up to block
594 * size...
595 */
596 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
597 return;
598 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
599 last_ext->extLength += added_bytes;
600 UDF_I(inode)->i_lenExtents += added_bytes;
601
602 udf_write_aext(inode, last_pos, &last_ext->extLocation,
603 last_ext->extLength, 1);
604}
605
606static int udf_extend_file(struct inode *inode, loff_t newsize)
607{
608
609 struct extent_position epos;
610 struct kernel_lb_addr eloc;
611 uint32_t elen;
612 int8_t etype;
613 struct super_block *sb = inode->i_sb;
614 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
615 loff_t new_elen;
616 int adsize;
617 struct udf_inode_info *iinfo = UDF_I(inode);
618 struct kernel_long_ad extent;
619 int err = 0;
620 bool within_last_ext;
621
622 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
623 adsize = sizeof(struct short_ad);
624 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
625 adsize = sizeof(struct long_ad);
626 else
627 BUG();
628
629 /*
630 * When creating hole in file, just don't bother with preserving
631 * preallocation. It likely won't be very useful anyway.
632 */
633 udf_discard_prealloc(inode);
634
635 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
636 within_last_ext = (etype != -1);
637 /* We don't expect extents past EOF... */
638 WARN_ON_ONCE(within_last_ext &&
639 elen > ((loff_t)offset + 1) << inode->i_blkbits);
640
641 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
642 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
643 /* File has no extents at all or has empty last
644 * indirect extent! Create a fake extent... */
645 extent.extLocation.logicalBlockNum = 0;
646 extent.extLocation.partitionReferenceNum = 0;
647 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
648 } else {
649 epos.offset -= adsize;
650 etype = udf_next_aext(inode, &epos, &extent.extLocation,
651 &extent.extLength, 0);
652 extent.extLength |= etype << 30;
653 }
654
655 new_elen = ((loff_t)offset << inode->i_blkbits) |
656 (newsize & (sb->s_blocksize - 1));
657
658 /* File has extent covering the new size (could happen when extending
659 * inside a block)?
660 */
661 if (within_last_ext) {
662 /* Extending file within the last file block */
663 udf_do_extend_final_block(inode, &epos, &extent, new_elen);
664 } else {
665 err = udf_do_extend_file(inode, &epos, &extent, new_elen);
666 }
667
668 if (err < 0)
669 goto out;
670 err = 0;
671 iinfo->i_lenExtents = newsize;
672out:
673 brelse(epos.bh);
674 return err;
675}
676
677static sector_t inode_getblk(struct inode *inode, sector_t block,
678 int *err, int *new)
679{
680 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
681 struct extent_position prev_epos, cur_epos, next_epos;
682 int count = 0, startnum = 0, endnum = 0;
683 uint32_t elen = 0, tmpelen;
684 struct kernel_lb_addr eloc, tmpeloc;
685 int c = 1;
686 loff_t lbcount = 0, b_off = 0;
687 udf_pblk_t newblocknum, newblock = 0;
688 sector_t offset = 0;
689 int8_t etype;
690 struct udf_inode_info *iinfo = UDF_I(inode);
691 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
692 int lastblock = 0;
693 bool isBeyondEOF;
694
695 *err = 0;
696 *new = 0;
697 prev_epos.offset = udf_file_entry_alloc_offset(inode);
698 prev_epos.block = iinfo->i_location;
699 prev_epos.bh = NULL;
700 cur_epos = next_epos = prev_epos;
701 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
702
703 /* find the extent which contains the block we are looking for.
704 alternate between laarr[0] and laarr[1] for locations of the
705 current extent, and the previous extent */
706 do {
707 if (prev_epos.bh != cur_epos.bh) {
708 brelse(prev_epos.bh);
709 get_bh(cur_epos.bh);
710 prev_epos.bh = cur_epos.bh;
711 }
712 if (cur_epos.bh != next_epos.bh) {
713 brelse(cur_epos.bh);
714 get_bh(next_epos.bh);
715 cur_epos.bh = next_epos.bh;
716 }
717
718 lbcount += elen;
719
720 prev_epos.block = cur_epos.block;
721 cur_epos.block = next_epos.block;
722
723 prev_epos.offset = cur_epos.offset;
724 cur_epos.offset = next_epos.offset;
725
726 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
727 if (etype == -1)
728 break;
729
730 c = !c;
731
732 laarr[c].extLength = (etype << 30) | elen;
733 laarr[c].extLocation = eloc;
734
735 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
736 pgoal = eloc.logicalBlockNum +
737 ((elen + inode->i_sb->s_blocksize - 1) >>
738 inode->i_sb->s_blocksize_bits);
739
740 count++;
741 } while (lbcount + elen <= b_off);
742
743 b_off -= lbcount;
744 offset = b_off >> inode->i_sb->s_blocksize_bits;
745 /*
746 * Move prev_epos and cur_epos into indirect extent if we are at
747 * the pointer to it
748 */
749 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
750 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
751
752 /* if the extent is allocated and recorded, return the block
753 if the extent is not a multiple of the blocksize, round up */
754
755 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
756 if (elen & (inode->i_sb->s_blocksize - 1)) {
757 elen = EXT_RECORDED_ALLOCATED |
758 ((elen + inode->i_sb->s_blocksize - 1) &
759 ~(inode->i_sb->s_blocksize - 1));
760 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
761 }
762 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
763 goto out_free;
764 }
765
766 /* Are we beyond EOF and preallocated extent? */
767 if (etype == -1) {
768 int ret;
769 loff_t hole_len;
770
771 isBeyondEOF = true;
772 if (count) {
773 if (c)
774 laarr[0] = laarr[1];
775 startnum = 1;
776 } else {
777 /* Create a fake extent when there's not one */
778 memset(&laarr[0].extLocation, 0x00,
779 sizeof(struct kernel_lb_addr));
780 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
781 /* Will udf_do_extend_file() create real extent from
782 a fake one? */
783 startnum = (offset > 0);
784 }
785 /* Create extents for the hole between EOF and offset */
786 hole_len = (loff_t)offset << inode->i_blkbits;
787 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
788 if (ret < 0) {
789 *err = ret;
790 goto out_free;
791 }
792 c = 0;
793 offset = 0;
794 count += ret;
795 /* We are not covered by a preallocated extent? */
796 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
797 EXT_NOT_RECORDED_ALLOCATED) {
798 /* Is there any real extent? - otherwise we overwrite
799 * the fake one... */
800 if (count)
801 c = !c;
802 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
803 inode->i_sb->s_blocksize;
804 memset(&laarr[c].extLocation, 0x00,
805 sizeof(struct kernel_lb_addr));
806 count++;
807 }
808 endnum = c + 1;
809 lastblock = 1;
810 } else {
811 isBeyondEOF = false;
812 endnum = startnum = ((count > 2) ? 2 : count);
813
814 /* if the current extent is in position 0,
815 swap it with the previous */
816 if (!c && count != 1) {
817 laarr[2] = laarr[0];
818 laarr[0] = laarr[1];
819 laarr[1] = laarr[2];
820 c = 1;
821 }
822
823 /* if the current block is located in an extent,
824 read the next extent */
825 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
826 if (etype != -1) {
827 laarr[c + 1].extLength = (etype << 30) | elen;
828 laarr[c + 1].extLocation = eloc;
829 count++;
830 startnum++;
831 endnum++;
832 } else
833 lastblock = 1;
834 }
835
836 /* if the current extent is not recorded but allocated, get the
837 * block in the extent corresponding to the requested block */
838 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
839 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
840 else { /* otherwise, allocate a new block */
841 if (iinfo->i_next_alloc_block == block)
842 goal = iinfo->i_next_alloc_goal;
843
844 if (!goal) {
845 if (!(goal = pgoal)) /* XXX: what was intended here? */
846 goal = iinfo->i_location.logicalBlockNum + 1;
847 }
848
849 newblocknum = udf_new_block(inode->i_sb, inode,
850 iinfo->i_location.partitionReferenceNum,
851 goal, err);
852 if (!newblocknum) {
853 *err = -ENOSPC;
854 goto out_free;
855 }
856 if (isBeyondEOF)
857 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
858 }
859
860 /* if the extent the requsted block is located in contains multiple
861 * blocks, split the extent into at most three extents. blocks prior
862 * to requested block, requested block, and blocks after requested
863 * block */
864 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
865
866 /* We preallocate blocks only for regular files. It also makes sense
867 * for directories but there's a problem when to drop the
868 * preallocation. We might use some delayed work for that but I feel
869 * it's overengineering for a filesystem like UDF. */
870 if (S_ISREG(inode->i_mode))
871 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
872
873 /* merge any continuous blocks in laarr */
874 udf_merge_extents(inode, laarr, &endnum);
875
876 /* write back the new extents, inserting new extents if the new number
877 * of extents is greater than the old number, and deleting extents if
878 * the new number of extents is less than the old number */
879 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
880
881 newblock = udf_get_pblock(inode->i_sb, newblocknum,
882 iinfo->i_location.partitionReferenceNum, 0);
883 if (!newblock) {
884 *err = -EIO;
885 goto out_free;
886 }
887 *new = 1;
888 iinfo->i_next_alloc_block = block;
889 iinfo->i_next_alloc_goal = newblocknum;
890 inode->i_ctime = current_time(inode);
891
892 if (IS_SYNC(inode))
893 udf_sync_inode(inode);
894 else
895 mark_inode_dirty(inode);
896out_free:
897 brelse(prev_epos.bh);
898 brelse(cur_epos.bh);
899 brelse(next_epos.bh);
900 return newblock;
901}
902
903static void udf_split_extents(struct inode *inode, int *c, int offset,
904 udf_pblk_t newblocknum,
905 struct kernel_long_ad *laarr, int *endnum)
906{
907 unsigned long blocksize = inode->i_sb->s_blocksize;
908 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
909
910 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
911 (laarr[*c].extLength >> 30) ==
912 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
913 int curr = *c;
914 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
915 blocksize - 1) >> blocksize_bits;
916 int8_t etype = (laarr[curr].extLength >> 30);
917
918 if (blen == 1)
919 ;
920 else if (!offset || blen == offset + 1) {
921 laarr[curr + 2] = laarr[curr + 1];
922 laarr[curr + 1] = laarr[curr];
923 } else {
924 laarr[curr + 3] = laarr[curr + 1];
925 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
926 }
927
928 if (offset) {
929 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
930 udf_free_blocks(inode->i_sb, inode,
931 &laarr[curr].extLocation,
932 0, offset);
933 laarr[curr].extLength =
934 EXT_NOT_RECORDED_NOT_ALLOCATED |
935 (offset << blocksize_bits);
936 laarr[curr].extLocation.logicalBlockNum = 0;
937 laarr[curr].extLocation.
938 partitionReferenceNum = 0;
939 } else
940 laarr[curr].extLength = (etype << 30) |
941 (offset << blocksize_bits);
942 curr++;
943 (*c)++;
944 (*endnum)++;
945 }
946
947 laarr[curr].extLocation.logicalBlockNum = newblocknum;
948 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
949 laarr[curr].extLocation.partitionReferenceNum =
950 UDF_I(inode)->i_location.partitionReferenceNum;
951 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
952 blocksize;
953 curr++;
954
955 if (blen != offset + 1) {
956 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
957 laarr[curr].extLocation.logicalBlockNum +=
958 offset + 1;
959 laarr[curr].extLength = (etype << 30) |
960 ((blen - (offset + 1)) << blocksize_bits);
961 curr++;
962 (*endnum)++;
963 }
964 }
965}
966
967static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
968 struct kernel_long_ad *laarr,
969 int *endnum)
970{
971 int start, length = 0, currlength = 0, i;
972
973 if (*endnum >= (c + 1)) {
974 if (!lastblock)
975 return;
976 else
977 start = c;
978 } else {
979 if ((laarr[c + 1].extLength >> 30) ==
980 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
981 start = c + 1;
982 length = currlength =
983 (((laarr[c + 1].extLength &
984 UDF_EXTENT_LENGTH_MASK) +
985 inode->i_sb->s_blocksize - 1) >>
986 inode->i_sb->s_blocksize_bits);
987 } else
988 start = c;
989 }
990
991 for (i = start + 1; i <= *endnum; i++) {
992 if (i == *endnum) {
993 if (lastblock)
994 length += UDF_DEFAULT_PREALLOC_BLOCKS;
995 } else if ((laarr[i].extLength >> 30) ==
996 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
997 length += (((laarr[i].extLength &
998 UDF_EXTENT_LENGTH_MASK) +
999 inode->i_sb->s_blocksize - 1) >>
1000 inode->i_sb->s_blocksize_bits);
1001 } else
1002 break;
1003 }
1004
1005 if (length) {
1006 int next = laarr[start].extLocation.logicalBlockNum +
1007 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1008 inode->i_sb->s_blocksize - 1) >>
1009 inode->i_sb->s_blocksize_bits);
1010 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1011 laarr[start].extLocation.partitionReferenceNum,
1012 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1013 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1014 currlength);
1015 if (numalloc) {
1016 if (start == (c + 1))
1017 laarr[start].extLength +=
1018 (numalloc <<
1019 inode->i_sb->s_blocksize_bits);
1020 else {
1021 memmove(&laarr[c + 2], &laarr[c + 1],
1022 sizeof(struct long_ad) * (*endnum - (c + 1)));
1023 (*endnum)++;
1024 laarr[c + 1].extLocation.logicalBlockNum = next;
1025 laarr[c + 1].extLocation.partitionReferenceNum =
1026 laarr[c].extLocation.
1027 partitionReferenceNum;
1028 laarr[c + 1].extLength =
1029 EXT_NOT_RECORDED_ALLOCATED |
1030 (numalloc <<
1031 inode->i_sb->s_blocksize_bits);
1032 start = c + 1;
1033 }
1034
1035 for (i = start + 1; numalloc && i < *endnum; i++) {
1036 int elen = ((laarr[i].extLength &
1037 UDF_EXTENT_LENGTH_MASK) +
1038 inode->i_sb->s_blocksize - 1) >>
1039 inode->i_sb->s_blocksize_bits;
1040
1041 if (elen > numalloc) {
1042 laarr[i].extLength -=
1043 (numalloc <<
1044 inode->i_sb->s_blocksize_bits);
1045 numalloc = 0;
1046 } else {
1047 numalloc -= elen;
1048 if (*endnum > (i + 1))
1049 memmove(&laarr[i],
1050 &laarr[i + 1],
1051 sizeof(struct long_ad) *
1052 (*endnum - (i + 1)));
1053 i--;
1054 (*endnum)--;
1055 }
1056 }
1057 UDF_I(inode)->i_lenExtents +=
1058 numalloc << inode->i_sb->s_blocksize_bits;
1059 }
1060 }
1061}
1062
1063static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1064 int *endnum)
1065{
1066 int i;
1067 unsigned long blocksize = inode->i_sb->s_blocksize;
1068 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1069
1070 for (i = 0; i < (*endnum - 1); i++) {
1071 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1072 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1073
1074 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1075 (((li->extLength >> 30) ==
1076 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1077 ((lip1->extLocation.logicalBlockNum -
1078 li->extLocation.logicalBlockNum) ==
1079 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1080 blocksize - 1) >> blocksize_bits)))) {
1081
1082 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1083 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1084 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1085 lip1->extLength = (lip1->extLength -
1086 (li->extLength &
1087 UDF_EXTENT_LENGTH_MASK) +
1088 UDF_EXTENT_LENGTH_MASK) &
1089 ~(blocksize - 1);
1090 li->extLength = (li->extLength &
1091 UDF_EXTENT_FLAG_MASK) +
1092 (UDF_EXTENT_LENGTH_MASK + 1) -
1093 blocksize;
1094 lip1->extLocation.logicalBlockNum =
1095 li->extLocation.logicalBlockNum +
1096 ((li->extLength &
1097 UDF_EXTENT_LENGTH_MASK) >>
1098 blocksize_bits);
1099 } else {
1100 li->extLength = lip1->extLength +
1101 (((li->extLength &
1102 UDF_EXTENT_LENGTH_MASK) +
1103 blocksize - 1) & ~(blocksize - 1));
1104 if (*endnum > (i + 2))
1105 memmove(&laarr[i + 1], &laarr[i + 2],
1106 sizeof(struct long_ad) *
1107 (*endnum - (i + 2)));
1108 i--;
1109 (*endnum)--;
1110 }
1111 } else if (((li->extLength >> 30) ==
1112 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1113 ((lip1->extLength >> 30) ==
1114 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1115 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1116 ((li->extLength &
1117 UDF_EXTENT_LENGTH_MASK) +
1118 blocksize - 1) >> blocksize_bits);
1119 li->extLocation.logicalBlockNum = 0;
1120 li->extLocation.partitionReferenceNum = 0;
1121
1122 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1123 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1124 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1125 lip1->extLength = (lip1->extLength -
1126 (li->extLength &
1127 UDF_EXTENT_LENGTH_MASK) +
1128 UDF_EXTENT_LENGTH_MASK) &
1129 ~(blocksize - 1);
1130 li->extLength = (li->extLength &
1131 UDF_EXTENT_FLAG_MASK) +
1132 (UDF_EXTENT_LENGTH_MASK + 1) -
1133 blocksize;
1134 } else {
1135 li->extLength = lip1->extLength +
1136 (((li->extLength &
1137 UDF_EXTENT_LENGTH_MASK) +
1138 blocksize - 1) & ~(blocksize - 1));
1139 if (*endnum > (i + 2))
1140 memmove(&laarr[i + 1], &laarr[i + 2],
1141 sizeof(struct long_ad) *
1142 (*endnum - (i + 2)));
1143 i--;
1144 (*endnum)--;
1145 }
1146 } else if ((li->extLength >> 30) ==
1147 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1148 udf_free_blocks(inode->i_sb, inode,
1149 &li->extLocation, 0,
1150 ((li->extLength &
1151 UDF_EXTENT_LENGTH_MASK) +
1152 blocksize - 1) >> blocksize_bits);
1153 li->extLocation.logicalBlockNum = 0;
1154 li->extLocation.partitionReferenceNum = 0;
1155 li->extLength = (li->extLength &
1156 UDF_EXTENT_LENGTH_MASK) |
1157 EXT_NOT_RECORDED_NOT_ALLOCATED;
1158 }
1159 }
1160}
1161
1162static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1163 int startnum, int endnum,
1164 struct extent_position *epos)
1165{
1166 int start = 0, i;
1167 struct kernel_lb_addr tmploc;
1168 uint32_t tmplen;
1169
1170 if (startnum > endnum) {
1171 for (i = 0; i < (startnum - endnum); i++)
1172 udf_delete_aext(inode, *epos);
1173 } else if (startnum < endnum) {
1174 for (i = 0; i < (endnum - startnum); i++) {
1175 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1176 laarr[i].extLength);
1177 udf_next_aext(inode, epos, &laarr[i].extLocation,
1178 &laarr[i].extLength, 1);
1179 start++;
1180 }
1181 }
1182
1183 for (i = start; i < endnum; i++) {
1184 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1185 udf_write_aext(inode, epos, &laarr[i].extLocation,
1186 laarr[i].extLength, 1);
1187 }
1188}
1189
1190struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1191 int create, int *err)
1192{
1193 struct buffer_head *bh = NULL;
1194
1195 bh = udf_getblk(inode, block, create, err);
1196 if (!bh)
1197 return NULL;
1198
1199 if (bh_read(bh, 0) >= 0)
1200 return bh;
1201
1202 brelse(bh);
1203 *err = -EIO;
1204 return NULL;
1205}
1206
1207int udf_setsize(struct inode *inode, loff_t newsize)
1208{
1209 int err;
1210 struct udf_inode_info *iinfo;
1211 unsigned int bsize = i_blocksize(inode);
1212
1213 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1214 S_ISLNK(inode->i_mode)))
1215 return -EINVAL;
1216 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1217 return -EPERM;
1218
1219 iinfo = UDF_I(inode);
1220 if (newsize > inode->i_size) {
1221 down_write(&iinfo->i_data_sem);
1222 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1223 if (bsize <
1224 (udf_file_entry_alloc_offset(inode) + newsize)) {
1225 err = udf_expand_file_adinicb(inode);
1226 if (err)
1227 return err;
1228 down_write(&iinfo->i_data_sem);
1229 } else {
1230 iinfo->i_lenAlloc = newsize;
1231 goto set_size;
1232 }
1233 }
1234 err = udf_extend_file(inode, newsize);
1235 if (err) {
1236 up_write(&iinfo->i_data_sem);
1237 return err;
1238 }
1239set_size:
1240 up_write(&iinfo->i_data_sem);
1241 truncate_setsize(inode, newsize);
1242 } else {
1243 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1244 down_write(&iinfo->i_data_sem);
1245 udf_clear_extent_cache(inode);
1246 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1247 0x00, bsize - newsize -
1248 udf_file_entry_alloc_offset(inode));
1249 iinfo->i_lenAlloc = newsize;
1250 truncate_setsize(inode, newsize);
1251 up_write(&iinfo->i_data_sem);
1252 goto update_time;
1253 }
1254 err = block_truncate_page(inode->i_mapping, newsize,
1255 udf_get_block);
1256 if (err)
1257 return err;
1258 truncate_setsize(inode, newsize);
1259 down_write(&iinfo->i_data_sem);
1260 udf_clear_extent_cache(inode);
1261 err = udf_truncate_extents(inode);
1262 up_write(&iinfo->i_data_sem);
1263 if (err)
1264 return err;
1265 }
1266update_time:
1267 inode->i_mtime = inode->i_ctime = current_time(inode);
1268 if (IS_SYNC(inode))
1269 udf_sync_inode(inode);
1270 else
1271 mark_inode_dirty(inode);
1272 return 0;
1273}
1274
1275/*
1276 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1277 * arbitrary - just that we hopefully don't limit any real use of rewritten
1278 * inode on write-once media but avoid looping for too long on corrupted media.
1279 */
1280#define UDF_MAX_ICB_NESTING 1024
1281
1282static int udf_read_inode(struct inode *inode, bool hidden_inode)
1283{
1284 struct buffer_head *bh = NULL;
1285 struct fileEntry *fe;
1286 struct extendedFileEntry *efe;
1287 uint16_t ident;
1288 struct udf_inode_info *iinfo = UDF_I(inode);
1289 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1290 struct kernel_lb_addr *iloc = &iinfo->i_location;
1291 unsigned int link_count;
1292 unsigned int indirections = 0;
1293 int bs = inode->i_sb->s_blocksize;
1294 int ret = -EIO;
1295 uint32_t uid, gid;
1296
1297reread:
1298 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1299 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1300 iloc->partitionReferenceNum, sbi->s_partitions);
1301 return -EIO;
1302 }
1303
1304 if (iloc->logicalBlockNum >=
1305 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1306 udf_debug("block=%u, partition=%u out of range\n",
1307 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1308 return -EIO;
1309 }
1310
1311 /*
1312 * Set defaults, but the inode is still incomplete!
1313 * Note: get_new_inode() sets the following on a new inode:
1314 * i_sb = sb
1315 * i_no = ino
1316 * i_flags = sb->s_flags
1317 * i_state = 0
1318 * clean_inode(): zero fills and sets
1319 * i_count = 1
1320 * i_nlink = 1
1321 * i_op = NULL;
1322 */
1323 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1324 if (!bh) {
1325 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1326 return -EIO;
1327 }
1328
1329 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1330 ident != TAG_IDENT_USE) {
1331 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1332 inode->i_ino, ident);
1333 goto out;
1334 }
1335
1336 fe = (struct fileEntry *)bh->b_data;
1337 efe = (struct extendedFileEntry *)bh->b_data;
1338
1339 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1340 struct buffer_head *ibh;
1341
1342 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1343 if (ident == TAG_IDENT_IE && ibh) {
1344 struct kernel_lb_addr loc;
1345 struct indirectEntry *ie;
1346
1347 ie = (struct indirectEntry *)ibh->b_data;
1348 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1349
1350 if (ie->indirectICB.extLength) {
1351 brelse(ibh);
1352 memcpy(&iinfo->i_location, &loc,
1353 sizeof(struct kernel_lb_addr));
1354 if (++indirections > UDF_MAX_ICB_NESTING) {
1355 udf_err(inode->i_sb,
1356 "too many ICBs in ICB hierarchy"
1357 " (max %d supported)\n",
1358 UDF_MAX_ICB_NESTING);
1359 goto out;
1360 }
1361 brelse(bh);
1362 goto reread;
1363 }
1364 }
1365 brelse(ibh);
1366 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1367 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1368 le16_to_cpu(fe->icbTag.strategyType));
1369 goto out;
1370 }
1371 if (fe->icbTag.strategyType == cpu_to_le16(4))
1372 iinfo->i_strat4096 = 0;
1373 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1374 iinfo->i_strat4096 = 1;
1375
1376 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1377 ICBTAG_FLAG_AD_MASK;
1378 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1379 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1380 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1381 ret = -EIO;
1382 goto out;
1383 }
1384 iinfo->i_unique = 0;
1385 iinfo->i_lenEAttr = 0;
1386 iinfo->i_lenExtents = 0;
1387 iinfo->i_lenAlloc = 0;
1388 iinfo->i_next_alloc_block = 0;
1389 iinfo->i_next_alloc_goal = 0;
1390 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1391 iinfo->i_efe = 1;
1392 iinfo->i_use = 0;
1393 ret = udf_alloc_i_data(inode, bs -
1394 sizeof(struct extendedFileEntry));
1395 if (ret)
1396 goto out;
1397 memcpy(iinfo->i_data,
1398 bh->b_data + sizeof(struct extendedFileEntry),
1399 bs - sizeof(struct extendedFileEntry));
1400 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1401 iinfo->i_efe = 0;
1402 iinfo->i_use = 0;
1403 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1404 if (ret)
1405 goto out;
1406 memcpy(iinfo->i_data,
1407 bh->b_data + sizeof(struct fileEntry),
1408 bs - sizeof(struct fileEntry));
1409 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1410 iinfo->i_efe = 0;
1411 iinfo->i_use = 1;
1412 iinfo->i_lenAlloc = le32_to_cpu(
1413 ((struct unallocSpaceEntry *)bh->b_data)->
1414 lengthAllocDescs);
1415 ret = udf_alloc_i_data(inode, bs -
1416 sizeof(struct unallocSpaceEntry));
1417 if (ret)
1418 goto out;
1419 memcpy(iinfo->i_data,
1420 bh->b_data + sizeof(struct unallocSpaceEntry),
1421 bs - sizeof(struct unallocSpaceEntry));
1422 return 0;
1423 }
1424
1425 ret = -EIO;
1426 read_lock(&sbi->s_cred_lock);
1427 uid = le32_to_cpu(fe->uid);
1428 if (uid == UDF_INVALID_ID ||
1429 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1430 inode->i_uid = sbi->s_uid;
1431 else
1432 i_uid_write(inode, uid);
1433
1434 gid = le32_to_cpu(fe->gid);
1435 if (gid == UDF_INVALID_ID ||
1436 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1437 inode->i_gid = sbi->s_gid;
1438 else
1439 i_gid_write(inode, gid);
1440
1441 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1442 sbi->s_fmode != UDF_INVALID_MODE)
1443 inode->i_mode = sbi->s_fmode;
1444 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1445 sbi->s_dmode != UDF_INVALID_MODE)
1446 inode->i_mode = sbi->s_dmode;
1447 else
1448 inode->i_mode = udf_convert_permissions(fe);
1449 inode->i_mode &= ~sbi->s_umask;
1450 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1451
1452 read_unlock(&sbi->s_cred_lock);
1453
1454 link_count = le16_to_cpu(fe->fileLinkCount);
1455 if (!link_count) {
1456 if (!hidden_inode) {
1457 ret = -ESTALE;
1458 goto out;
1459 }
1460 link_count = 1;
1461 }
1462 set_nlink(inode, link_count);
1463
1464 inode->i_size = le64_to_cpu(fe->informationLength);
1465 iinfo->i_lenExtents = inode->i_size;
1466
1467 if (iinfo->i_efe == 0) {
1468 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1469 (inode->i_sb->s_blocksize_bits - 9);
1470
1471 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1472 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1473 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1474
1475 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1476 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1477 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1478 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1479 iinfo->i_streamdir = 0;
1480 iinfo->i_lenStreams = 0;
1481 } else {
1482 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1483 (inode->i_sb->s_blocksize_bits - 9);
1484
1485 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1486 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1487 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1488 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1489
1490 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1491 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1492 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1493 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1494
1495 /* Named streams */
1496 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1497 iinfo->i_locStreamdir =
1498 lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1499 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1500 if (iinfo->i_lenStreams >= inode->i_size)
1501 iinfo->i_lenStreams -= inode->i_size;
1502 else
1503 iinfo->i_lenStreams = 0;
1504 }
1505 inode->i_generation = iinfo->i_unique;
1506
1507 /*
1508 * Sanity check length of allocation descriptors and extended attrs to
1509 * avoid integer overflows
1510 */
1511 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1512 goto out;
1513 /* Now do exact checks */
1514 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1515 goto out;
1516 /* Sanity checks for files in ICB so that we don't get confused later */
1517 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1518 /*
1519 * For file in ICB data is stored in allocation descriptor
1520 * so sizes should match
1521 */
1522 if (iinfo->i_lenAlloc != inode->i_size)
1523 goto out;
1524 /* File in ICB has to fit in there... */
1525 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1526 goto out;
1527 }
1528
1529 switch (fe->icbTag.fileType) {
1530 case ICBTAG_FILE_TYPE_DIRECTORY:
1531 inode->i_op = &udf_dir_inode_operations;
1532 inode->i_fop = &udf_dir_operations;
1533 inode->i_mode |= S_IFDIR;
1534 inc_nlink(inode);
1535 break;
1536 case ICBTAG_FILE_TYPE_REALTIME:
1537 case ICBTAG_FILE_TYPE_REGULAR:
1538 case ICBTAG_FILE_TYPE_UNDEF:
1539 case ICBTAG_FILE_TYPE_VAT20:
1540 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1541 inode->i_data.a_ops = &udf_adinicb_aops;
1542 else
1543 inode->i_data.a_ops = &udf_aops;
1544 inode->i_op = &udf_file_inode_operations;
1545 inode->i_fop = &udf_file_operations;
1546 inode->i_mode |= S_IFREG;
1547 break;
1548 case ICBTAG_FILE_TYPE_BLOCK:
1549 inode->i_mode |= S_IFBLK;
1550 break;
1551 case ICBTAG_FILE_TYPE_CHAR:
1552 inode->i_mode |= S_IFCHR;
1553 break;
1554 case ICBTAG_FILE_TYPE_FIFO:
1555 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1556 break;
1557 case ICBTAG_FILE_TYPE_SOCKET:
1558 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1559 break;
1560 case ICBTAG_FILE_TYPE_SYMLINK:
1561 inode->i_data.a_ops = &udf_symlink_aops;
1562 inode->i_op = &udf_symlink_inode_operations;
1563 inode_nohighmem(inode);
1564 inode->i_mode = S_IFLNK | 0777;
1565 break;
1566 case ICBTAG_FILE_TYPE_MAIN:
1567 udf_debug("METADATA FILE-----\n");
1568 break;
1569 case ICBTAG_FILE_TYPE_MIRROR:
1570 udf_debug("METADATA MIRROR FILE-----\n");
1571 break;
1572 case ICBTAG_FILE_TYPE_BITMAP:
1573 udf_debug("METADATA BITMAP FILE-----\n");
1574 break;
1575 default:
1576 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1577 inode->i_ino, fe->icbTag.fileType);
1578 goto out;
1579 }
1580 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1581 struct deviceSpec *dsea =
1582 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1583 if (dsea) {
1584 init_special_inode(inode, inode->i_mode,
1585 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1586 le32_to_cpu(dsea->minorDeviceIdent)));
1587 /* Developer ID ??? */
1588 } else
1589 goto out;
1590 }
1591 ret = 0;
1592out:
1593 brelse(bh);
1594 return ret;
1595}
1596
1597static int udf_alloc_i_data(struct inode *inode, size_t size)
1598{
1599 struct udf_inode_info *iinfo = UDF_I(inode);
1600 iinfo->i_data = kmalloc(size, GFP_KERNEL);
1601 if (!iinfo->i_data)
1602 return -ENOMEM;
1603 return 0;
1604}
1605
1606static umode_t udf_convert_permissions(struct fileEntry *fe)
1607{
1608 umode_t mode;
1609 uint32_t permissions;
1610 uint32_t flags;
1611
1612 permissions = le32_to_cpu(fe->permissions);
1613 flags = le16_to_cpu(fe->icbTag.flags);
1614
1615 mode = ((permissions) & 0007) |
1616 ((permissions >> 2) & 0070) |
1617 ((permissions >> 4) & 0700) |
1618 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1619 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1620 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1621
1622 return mode;
1623}
1624
1625void udf_update_extra_perms(struct inode *inode, umode_t mode)
1626{
1627 struct udf_inode_info *iinfo = UDF_I(inode);
1628
1629 /*
1630 * UDF 2.01 sec. 3.3.3.3 Note 2:
1631 * In Unix, delete permission tracks write
1632 */
1633 iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1634 if (mode & 0200)
1635 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1636 if (mode & 0020)
1637 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1638 if (mode & 0002)
1639 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1640}
1641
1642int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1643{
1644 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1645}
1646
1647static int udf_sync_inode(struct inode *inode)
1648{
1649 return udf_update_inode(inode, 1);
1650}
1651
1652static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1653{
1654 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1655 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1656 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1657 iinfo->i_crtime = time;
1658}
1659
1660static int udf_update_inode(struct inode *inode, int do_sync)
1661{
1662 struct buffer_head *bh = NULL;
1663 struct fileEntry *fe;
1664 struct extendedFileEntry *efe;
1665 uint64_t lb_recorded;
1666 uint32_t udfperms;
1667 uint16_t icbflags;
1668 uint16_t crclen;
1669 int err = 0;
1670 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1671 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1672 struct udf_inode_info *iinfo = UDF_I(inode);
1673
1674 bh = udf_tgetblk(inode->i_sb,
1675 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1676 if (!bh) {
1677 udf_debug("getblk failure\n");
1678 return -EIO;
1679 }
1680
1681 lock_buffer(bh);
1682 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1683 fe = (struct fileEntry *)bh->b_data;
1684 efe = (struct extendedFileEntry *)bh->b_data;
1685
1686 if (iinfo->i_use) {
1687 struct unallocSpaceEntry *use =
1688 (struct unallocSpaceEntry *)bh->b_data;
1689
1690 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1691 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1692 iinfo->i_data, inode->i_sb->s_blocksize -
1693 sizeof(struct unallocSpaceEntry));
1694 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1695 crclen = sizeof(struct unallocSpaceEntry);
1696
1697 goto finish;
1698 }
1699
1700 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1701 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1702 else
1703 fe->uid = cpu_to_le32(i_uid_read(inode));
1704
1705 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1706 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1707 else
1708 fe->gid = cpu_to_le32(i_gid_read(inode));
1709
1710 udfperms = ((inode->i_mode & 0007)) |
1711 ((inode->i_mode & 0070) << 2) |
1712 ((inode->i_mode & 0700) << 4);
1713
1714 udfperms |= iinfo->i_extraPerms;
1715 fe->permissions = cpu_to_le32(udfperms);
1716
1717 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1718 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1719 else
1720 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1721
1722 fe->informationLength = cpu_to_le64(inode->i_size);
1723
1724 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1725 struct regid *eid;
1726 struct deviceSpec *dsea =
1727 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1728 if (!dsea) {
1729 dsea = (struct deviceSpec *)
1730 udf_add_extendedattr(inode,
1731 sizeof(struct deviceSpec) +
1732 sizeof(struct regid), 12, 0x3);
1733 dsea->attrType = cpu_to_le32(12);
1734 dsea->attrSubtype = 1;
1735 dsea->attrLength = cpu_to_le32(
1736 sizeof(struct deviceSpec) +
1737 sizeof(struct regid));
1738 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1739 }
1740 eid = (struct regid *)dsea->impUse;
1741 memset(eid, 0, sizeof(*eid));
1742 strcpy(eid->ident, UDF_ID_DEVELOPER);
1743 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1744 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1745 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1746 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1747 }
1748
1749 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1750 lb_recorded = 0; /* No extents => no blocks! */
1751 else
1752 lb_recorded =
1753 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1754 (blocksize_bits - 9);
1755
1756 if (iinfo->i_efe == 0) {
1757 memcpy(bh->b_data + sizeof(struct fileEntry),
1758 iinfo->i_data,
1759 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1760 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1761
1762 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1763 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1764 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1765 memset(&(fe->impIdent), 0, sizeof(struct regid));
1766 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1767 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1768 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1769 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1770 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1771 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1772 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1773 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1774 crclen = sizeof(struct fileEntry);
1775 } else {
1776 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1777 iinfo->i_data,
1778 inode->i_sb->s_blocksize -
1779 sizeof(struct extendedFileEntry));
1780 efe->objectSize =
1781 cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1782 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1783
1784 if (iinfo->i_streamdir) {
1785 struct long_ad *icb_lad = &efe->streamDirectoryICB;
1786
1787 icb_lad->extLocation =
1788 cpu_to_lelb(iinfo->i_locStreamdir);
1789 icb_lad->extLength =
1790 cpu_to_le32(inode->i_sb->s_blocksize);
1791 }
1792
1793 udf_adjust_time(iinfo, inode->i_atime);
1794 udf_adjust_time(iinfo, inode->i_mtime);
1795 udf_adjust_time(iinfo, inode->i_ctime);
1796
1797 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1798 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1799 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1800 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1801
1802 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1803 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1804 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1805 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1806 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1807 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1808 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1809 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1810 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1811 crclen = sizeof(struct extendedFileEntry);
1812 }
1813
1814finish:
1815 if (iinfo->i_strat4096) {
1816 fe->icbTag.strategyType = cpu_to_le16(4096);
1817 fe->icbTag.strategyParameter = cpu_to_le16(1);
1818 fe->icbTag.numEntries = cpu_to_le16(2);
1819 } else {
1820 fe->icbTag.strategyType = cpu_to_le16(4);
1821 fe->icbTag.numEntries = cpu_to_le16(1);
1822 }
1823
1824 if (iinfo->i_use)
1825 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1826 else if (S_ISDIR(inode->i_mode))
1827 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1828 else if (S_ISREG(inode->i_mode))
1829 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1830 else if (S_ISLNK(inode->i_mode))
1831 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1832 else if (S_ISBLK(inode->i_mode))
1833 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1834 else if (S_ISCHR(inode->i_mode))
1835 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1836 else if (S_ISFIFO(inode->i_mode))
1837 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1838 else if (S_ISSOCK(inode->i_mode))
1839 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1840
1841 icbflags = iinfo->i_alloc_type |
1842 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1843 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1844 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1845 (le16_to_cpu(fe->icbTag.flags) &
1846 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1847 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1848
1849 fe->icbTag.flags = cpu_to_le16(icbflags);
1850 if (sbi->s_udfrev >= 0x0200)
1851 fe->descTag.descVersion = cpu_to_le16(3);
1852 else
1853 fe->descTag.descVersion = cpu_to_le16(2);
1854 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1855 fe->descTag.tagLocation = cpu_to_le32(
1856 iinfo->i_location.logicalBlockNum);
1857 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1858 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1859 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1860 crclen));
1861 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1862
1863 set_buffer_uptodate(bh);
1864 unlock_buffer(bh);
1865
1866 /* write the data blocks */
1867 mark_buffer_dirty(bh);
1868 if (do_sync) {
1869 sync_dirty_buffer(bh);
1870 if (buffer_write_io_error(bh)) {
1871 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1872 inode->i_ino);
1873 err = -EIO;
1874 }
1875 }
1876 brelse(bh);
1877
1878 return err;
1879}
1880
1881struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1882 bool hidden_inode)
1883{
1884 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1885 struct inode *inode = iget_locked(sb, block);
1886 int err;
1887
1888 if (!inode)
1889 return ERR_PTR(-ENOMEM);
1890
1891 if (!(inode->i_state & I_NEW))
1892 return inode;
1893
1894 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1895 err = udf_read_inode(inode, hidden_inode);
1896 if (err < 0) {
1897 iget_failed(inode);
1898 return ERR_PTR(err);
1899 }
1900 unlock_new_inode(inode);
1901
1902 return inode;
1903}
1904
1905int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1906 struct extent_position *epos)
1907{
1908 struct super_block *sb = inode->i_sb;
1909 struct buffer_head *bh;
1910 struct allocExtDesc *aed;
1911 struct extent_position nepos;
1912 struct kernel_lb_addr neloc;
1913 int ver, adsize;
1914
1915 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1916 adsize = sizeof(struct short_ad);
1917 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1918 adsize = sizeof(struct long_ad);
1919 else
1920 return -EIO;
1921
1922 neloc.logicalBlockNum = block;
1923 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1924
1925 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1926 if (!bh)
1927 return -EIO;
1928 lock_buffer(bh);
1929 memset(bh->b_data, 0x00, sb->s_blocksize);
1930 set_buffer_uptodate(bh);
1931 unlock_buffer(bh);
1932 mark_buffer_dirty_inode(bh, inode);
1933
1934 aed = (struct allocExtDesc *)(bh->b_data);
1935 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1936 aed->previousAllocExtLocation =
1937 cpu_to_le32(epos->block.logicalBlockNum);
1938 }
1939 aed->lengthAllocDescs = cpu_to_le32(0);
1940 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1941 ver = 3;
1942 else
1943 ver = 2;
1944 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1945 sizeof(struct tag));
1946
1947 nepos.block = neloc;
1948 nepos.offset = sizeof(struct allocExtDesc);
1949 nepos.bh = bh;
1950
1951 /*
1952 * Do we have to copy current last extent to make space for indirect
1953 * one?
1954 */
1955 if (epos->offset + adsize > sb->s_blocksize) {
1956 struct kernel_lb_addr cp_loc;
1957 uint32_t cp_len;
1958 int cp_type;
1959
1960 epos->offset -= adsize;
1961 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1962 cp_len |= ((uint32_t)cp_type) << 30;
1963
1964 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1965 udf_write_aext(inode, epos, &nepos.block,
1966 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1967 } else {
1968 __udf_add_aext(inode, epos, &nepos.block,
1969 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1970 }
1971
1972 brelse(epos->bh);
1973 *epos = nepos;
1974
1975 return 0;
1976}
1977
1978/*
1979 * Append extent at the given position - should be the first free one in inode
1980 * / indirect extent. This function assumes there is enough space in the inode
1981 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1982 */
1983int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1984 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1985{
1986 struct udf_inode_info *iinfo = UDF_I(inode);
1987 struct allocExtDesc *aed;
1988 int adsize;
1989
1990 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1991 adsize = sizeof(struct short_ad);
1992 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1993 adsize = sizeof(struct long_ad);
1994 else
1995 return -EIO;
1996
1997 if (!epos->bh) {
1998 WARN_ON(iinfo->i_lenAlloc !=
1999 epos->offset - udf_file_entry_alloc_offset(inode));
2000 } else {
2001 aed = (struct allocExtDesc *)epos->bh->b_data;
2002 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2003 epos->offset - sizeof(struct allocExtDesc));
2004 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2005 }
2006
2007 udf_write_aext(inode, epos, eloc, elen, inc);
2008
2009 if (!epos->bh) {
2010 iinfo->i_lenAlloc += adsize;
2011 mark_inode_dirty(inode);
2012 } else {
2013 aed = (struct allocExtDesc *)epos->bh->b_data;
2014 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2015 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2016 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2017 udf_update_tag(epos->bh->b_data,
2018 epos->offset + (inc ? 0 : adsize));
2019 else
2020 udf_update_tag(epos->bh->b_data,
2021 sizeof(struct allocExtDesc));
2022 mark_buffer_dirty_inode(epos->bh, inode);
2023 }
2024
2025 return 0;
2026}
2027
2028/*
2029 * Append extent at given position - should be the first free one in inode
2030 * / indirect extent. Takes care of allocating and linking indirect blocks.
2031 */
2032int udf_add_aext(struct inode *inode, struct extent_position *epos,
2033 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2034{
2035 int adsize;
2036 struct super_block *sb = inode->i_sb;
2037
2038 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2039 adsize = sizeof(struct short_ad);
2040 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2041 adsize = sizeof(struct long_ad);
2042 else
2043 return -EIO;
2044
2045 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2046 int err;
2047 udf_pblk_t new_block;
2048
2049 new_block = udf_new_block(sb, NULL,
2050 epos->block.partitionReferenceNum,
2051 epos->block.logicalBlockNum, &err);
2052 if (!new_block)
2053 return -ENOSPC;
2054
2055 err = udf_setup_indirect_aext(inode, new_block, epos);
2056 if (err)
2057 return err;
2058 }
2059
2060 return __udf_add_aext(inode, epos, eloc, elen, inc);
2061}
2062
2063void udf_write_aext(struct inode *inode, struct extent_position *epos,
2064 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2065{
2066 int adsize;
2067 uint8_t *ptr;
2068 struct short_ad *sad;
2069 struct long_ad *lad;
2070 struct udf_inode_info *iinfo = UDF_I(inode);
2071
2072 if (!epos->bh)
2073 ptr = iinfo->i_data + epos->offset -
2074 udf_file_entry_alloc_offset(inode) +
2075 iinfo->i_lenEAttr;
2076 else
2077 ptr = epos->bh->b_data + epos->offset;
2078
2079 switch (iinfo->i_alloc_type) {
2080 case ICBTAG_FLAG_AD_SHORT:
2081 sad = (struct short_ad *)ptr;
2082 sad->extLength = cpu_to_le32(elen);
2083 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2084 adsize = sizeof(struct short_ad);
2085 break;
2086 case ICBTAG_FLAG_AD_LONG:
2087 lad = (struct long_ad *)ptr;
2088 lad->extLength = cpu_to_le32(elen);
2089 lad->extLocation = cpu_to_lelb(*eloc);
2090 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2091 adsize = sizeof(struct long_ad);
2092 break;
2093 default:
2094 return;
2095 }
2096
2097 if (epos->bh) {
2098 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2099 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2100 struct allocExtDesc *aed =
2101 (struct allocExtDesc *)epos->bh->b_data;
2102 udf_update_tag(epos->bh->b_data,
2103 le32_to_cpu(aed->lengthAllocDescs) +
2104 sizeof(struct allocExtDesc));
2105 }
2106 mark_buffer_dirty_inode(epos->bh, inode);
2107 } else {
2108 mark_inode_dirty(inode);
2109 }
2110
2111 if (inc)
2112 epos->offset += adsize;
2113}
2114
2115/*
2116 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2117 * someone does some weird stuff.
2118 */
2119#define UDF_MAX_INDIR_EXTS 16
2120
2121int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2122 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2123{
2124 int8_t etype;
2125 unsigned int indirections = 0;
2126
2127 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2128 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2129 udf_pblk_t block;
2130
2131 if (++indirections > UDF_MAX_INDIR_EXTS) {
2132 udf_err(inode->i_sb,
2133 "too many indirect extents in inode %lu\n",
2134 inode->i_ino);
2135 return -1;
2136 }
2137
2138 epos->block = *eloc;
2139 epos->offset = sizeof(struct allocExtDesc);
2140 brelse(epos->bh);
2141 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2142 epos->bh = udf_tread(inode->i_sb, block);
2143 if (!epos->bh) {
2144 udf_debug("reading block %u failed!\n", block);
2145 return -1;
2146 }
2147 }
2148
2149 return etype;
2150}
2151
2152int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2153 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2154{
2155 int alen;
2156 int8_t etype;
2157 uint8_t *ptr;
2158 struct short_ad *sad;
2159 struct long_ad *lad;
2160 struct udf_inode_info *iinfo = UDF_I(inode);
2161
2162 if (!epos->bh) {
2163 if (!epos->offset)
2164 epos->offset = udf_file_entry_alloc_offset(inode);
2165 ptr = iinfo->i_data + epos->offset -
2166 udf_file_entry_alloc_offset(inode) +
2167 iinfo->i_lenEAttr;
2168 alen = udf_file_entry_alloc_offset(inode) +
2169 iinfo->i_lenAlloc;
2170 } else {
2171 if (!epos->offset)
2172 epos->offset = sizeof(struct allocExtDesc);
2173 ptr = epos->bh->b_data + epos->offset;
2174 alen = sizeof(struct allocExtDesc) +
2175 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2176 lengthAllocDescs);
2177 }
2178
2179 switch (iinfo->i_alloc_type) {
2180 case ICBTAG_FLAG_AD_SHORT:
2181 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2182 if (!sad)
2183 return -1;
2184 etype = le32_to_cpu(sad->extLength) >> 30;
2185 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2186 eloc->partitionReferenceNum =
2187 iinfo->i_location.partitionReferenceNum;
2188 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2189 break;
2190 case ICBTAG_FLAG_AD_LONG:
2191 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2192 if (!lad)
2193 return -1;
2194 etype = le32_to_cpu(lad->extLength) >> 30;
2195 *eloc = lelb_to_cpu(lad->extLocation);
2196 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2197 break;
2198 default:
2199 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2200 return -1;
2201 }
2202
2203 return etype;
2204}
2205
2206static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2207 struct kernel_lb_addr neloc, uint32_t nelen)
2208{
2209 struct kernel_lb_addr oeloc;
2210 uint32_t oelen;
2211 int8_t etype;
2212
2213 if (epos.bh)
2214 get_bh(epos.bh);
2215
2216 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2217 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2218 neloc = oeloc;
2219 nelen = (etype << 30) | oelen;
2220 }
2221 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2222 brelse(epos.bh);
2223
2224 return (nelen >> 30);
2225}
2226
2227int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2228{
2229 struct extent_position oepos;
2230 int adsize;
2231 int8_t etype;
2232 struct allocExtDesc *aed;
2233 struct udf_inode_info *iinfo;
2234 struct kernel_lb_addr eloc;
2235 uint32_t elen;
2236
2237 if (epos.bh) {
2238 get_bh(epos.bh);
2239 get_bh(epos.bh);
2240 }
2241
2242 iinfo = UDF_I(inode);
2243 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2244 adsize = sizeof(struct short_ad);
2245 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2246 adsize = sizeof(struct long_ad);
2247 else
2248 adsize = 0;
2249
2250 oepos = epos;
2251 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2252 return -1;
2253
2254 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2255 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2256 if (oepos.bh != epos.bh) {
2257 oepos.block = epos.block;
2258 brelse(oepos.bh);
2259 get_bh(epos.bh);
2260 oepos.bh = epos.bh;
2261 oepos.offset = epos.offset - adsize;
2262 }
2263 }
2264 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2265 elen = 0;
2266
2267 if (epos.bh != oepos.bh) {
2268 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2269 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2270 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2271 if (!oepos.bh) {
2272 iinfo->i_lenAlloc -= (adsize * 2);
2273 mark_inode_dirty(inode);
2274 } else {
2275 aed = (struct allocExtDesc *)oepos.bh->b_data;
2276 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2277 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2278 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2279 udf_update_tag(oepos.bh->b_data,
2280 oepos.offset - (2 * adsize));
2281 else
2282 udf_update_tag(oepos.bh->b_data,
2283 sizeof(struct allocExtDesc));
2284 mark_buffer_dirty_inode(oepos.bh, inode);
2285 }
2286 } else {
2287 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2288 if (!oepos.bh) {
2289 iinfo->i_lenAlloc -= adsize;
2290 mark_inode_dirty(inode);
2291 } else {
2292 aed = (struct allocExtDesc *)oepos.bh->b_data;
2293 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2294 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2295 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2296 udf_update_tag(oepos.bh->b_data,
2297 epos.offset - adsize);
2298 else
2299 udf_update_tag(oepos.bh->b_data,
2300 sizeof(struct allocExtDesc));
2301 mark_buffer_dirty_inode(oepos.bh, inode);
2302 }
2303 }
2304
2305 brelse(epos.bh);
2306 brelse(oepos.bh);
2307
2308 return (elen >> 30);
2309}
2310
2311int8_t inode_bmap(struct inode *inode, sector_t block,
2312 struct extent_position *pos, struct kernel_lb_addr *eloc,
2313 uint32_t *elen, sector_t *offset)
2314{
2315 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2316 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2317 int8_t etype;
2318 struct udf_inode_info *iinfo;
2319
2320 iinfo = UDF_I(inode);
2321 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2322 pos->offset = 0;
2323 pos->block = iinfo->i_location;
2324 pos->bh = NULL;
2325 }
2326 *elen = 0;
2327 do {
2328 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2329 if (etype == -1) {
2330 *offset = (bcount - lbcount) >> blocksize_bits;
2331 iinfo->i_lenExtents = lbcount;
2332 return -1;
2333 }
2334 lbcount += *elen;
2335 } while (lbcount <= bcount);
2336 /* update extent cache */
2337 udf_update_extent_cache(inode, lbcount - *elen, pos);
2338 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2339
2340 return etype;
2341}
2342
2343udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2344{
2345 struct kernel_lb_addr eloc;
2346 uint32_t elen;
2347 sector_t offset;
2348 struct extent_position epos = {};
2349 udf_pblk_t ret;
2350
2351 down_read(&UDF_I(inode)->i_data_sem);
2352
2353 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2354 (EXT_RECORDED_ALLOCATED >> 30))
2355 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2356 else
2357 ret = 0;
2358
2359 up_read(&UDF_I(inode)->i_data_sem);
2360 brelse(epos.bh);
2361
2362 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2363 return udf_fixed_to_variable(ret);
2364 else
2365 return ret;
2366}