Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Artem Bityutskiy (Битюцкий Артём)
   8 *          Adrian Hunter
   9 */
  10
  11/*
  12 * This file implements UBIFS journal.
  13 *
  14 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
  15 * length and position, while a bud logical eraseblock is any LEB in the main
  16 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
  17 * contains only references to buds and some other stuff like commit
  18 * start node. The idea is that when we commit the journal, we do
  19 * not copy the data, the buds just become indexed. Since after the commit the
  20 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
  21 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
  22 * become leafs in the future.
  23 *
  24 * The journal is multi-headed because we want to write data to the journal as
  25 * optimally as possible. It is nice to have nodes belonging to the same inode
  26 * in one LEB, so we may write data owned by different inodes to different
  27 * journal heads, although at present only one data head is used.
  28 *
  29 * For recovery reasons, the base head contains all inode nodes, all directory
  30 * entry nodes and all truncate nodes. This means that the other heads contain
  31 * only data nodes.
  32 *
  33 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
  34 * time of commit, the bud is retained to continue to be used in the journal,
  35 * even though the "front" of the LEB is now indexed. In that case, the log
  36 * reference contains the offset where the bud starts for the purposes of the
  37 * journal.
  38 *
  39 * The journal size has to be limited, because the larger is the journal, the
  40 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
  41 * takes (indexing in the TNC).
  42 *
  43 * All the journal write operations like 'ubifs_jnl_update()' here, which write
  44 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
  45 * unclean reboots. Should the unclean reboot happen, the recovery code drops
  46 * all the nodes.
  47 */
  48
  49#include "ubifs.h"
  50
  51/**
  52 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
  53 * @ino: the inode to zero out
  54 */
  55static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
  56{
  57	memset(ino->padding1, 0, 4);
  58	memset(ino->padding2, 0, 26);
  59}
  60
  61/**
  62 * zero_dent_node_unused - zero out unused fields of an on-flash directory
  63 *                         entry node.
  64 * @dent: the directory entry to zero out
  65 */
  66static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
  67{
  68	dent->padding1 = 0;
  69}
  70
  71/**
  72 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
  73 *                         node.
  74 * @trun: the truncation node to zero out
  75 */
  76static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
  77{
  78	memset(trun->padding, 0, 12);
  79}
  80
  81static void ubifs_add_auth_dirt(struct ubifs_info *c, int lnum)
  82{
  83	if (ubifs_authenticated(c))
  84		ubifs_add_dirt(c, lnum, ubifs_auth_node_sz(c));
  85}
  86
  87/**
  88 * reserve_space - reserve space in the journal.
  89 * @c: UBIFS file-system description object
  90 * @jhead: journal head number
  91 * @len: node length
  92 *
  93 * This function reserves space in journal head @head. If the reservation
  94 * succeeded, the journal head stays locked and later has to be unlocked using
  95 * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to
  96 * be done, and other negative error codes in case of other failures.
  97 */
  98static int reserve_space(struct ubifs_info *c, int jhead, int len)
  99{
 100	int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
 101	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
 102
 103	/*
 104	 * Typically, the base head has smaller nodes written to it, so it is
 105	 * better to try to allocate space at the ends of eraseblocks. This is
 106	 * what the squeeze parameter does.
 107	 */
 108	ubifs_assert(c, !c->ro_media && !c->ro_mount);
 109	squeeze = (jhead == BASEHD);
 110again:
 111	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 112
 113	if (c->ro_error) {
 114		err = -EROFS;
 115		goto out_unlock;
 116	}
 117
 118	avail = c->leb_size - wbuf->offs - wbuf->used;
 119	if (wbuf->lnum != -1 && avail >= len)
 120		return 0;
 121
 122	/*
 123	 * Write buffer wasn't seek'ed or there is no enough space - look for an
 124	 * LEB with some empty space.
 125	 */
 126	lnum = ubifs_find_free_space(c, len, &offs, squeeze);
 127	if (lnum >= 0)
 128		goto out;
 129
 130	err = lnum;
 131	if (err != -ENOSPC)
 132		goto out_unlock;
 133
 134	/*
 135	 * No free space, we have to run garbage collector to make
 136	 * some. But the write-buffer mutex has to be unlocked because
 137	 * GC also takes it.
 138	 */
 139	dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
 140	mutex_unlock(&wbuf->io_mutex);
 141
 142	lnum = ubifs_garbage_collect(c, 0);
 143	if (lnum < 0) {
 144		err = lnum;
 145		if (err != -ENOSPC)
 146			return err;
 147
 148		/*
 149		 * GC could not make a free LEB. But someone else may
 150		 * have allocated new bud for this journal head,
 151		 * because we dropped @wbuf->io_mutex, so try once
 152		 * again.
 153		 */
 154		dbg_jnl("GC couldn't make a free LEB for jhead %s",
 155			dbg_jhead(jhead));
 156		if (retries++ < 2) {
 157			dbg_jnl("retry (%d)", retries);
 158			goto again;
 159		}
 160
 161		dbg_jnl("return -ENOSPC");
 162		return err;
 163	}
 164
 165	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 166	dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
 167	avail = c->leb_size - wbuf->offs - wbuf->used;
 168
 169	if (wbuf->lnum != -1 && avail >= len) {
 170		/*
 171		 * Someone else has switched the journal head and we have
 172		 * enough space now. This happens when more than one process is
 173		 * trying to write to the same journal head at the same time.
 174		 */
 175		dbg_jnl("return LEB %d back, already have LEB %d:%d",
 176			lnum, wbuf->lnum, wbuf->offs + wbuf->used);
 177		err = ubifs_return_leb(c, lnum);
 178		if (err)
 179			goto out_unlock;
 180		return 0;
 181	}
 182
 183	offs = 0;
 184
 185out:
 186	/*
 187	 * Make sure we synchronize the write-buffer before we add the new bud
 188	 * to the log. Otherwise we may have a power cut after the log
 189	 * reference node for the last bud (@lnum) is written but before the
 190	 * write-buffer data are written to the next-to-last bud
 191	 * (@wbuf->lnum). And the effect would be that the recovery would see
 192	 * that there is corruption in the next-to-last bud.
 193	 */
 194	err = ubifs_wbuf_sync_nolock(wbuf);
 195	if (err)
 196		goto out_return;
 197	err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
 198	if (err)
 199		goto out_return;
 200	err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
 201	if (err)
 202		goto out_unlock;
 203
 204	return 0;
 205
 206out_unlock:
 207	mutex_unlock(&wbuf->io_mutex);
 208	return err;
 209
 210out_return:
 211	/* An error occurred and the LEB has to be returned to lprops */
 212	ubifs_assert(c, err < 0);
 213	err1 = ubifs_return_leb(c, lnum);
 214	if (err1 && err == -EAGAIN)
 215		/*
 216		 * Return original error code only if it is not %-EAGAIN,
 217		 * which is not really an error. Otherwise, return the error
 218		 * code of 'ubifs_return_leb()'.
 219		 */
 220		err = err1;
 221	mutex_unlock(&wbuf->io_mutex);
 222	return err;
 223}
 224
 225static int ubifs_hash_nodes(struct ubifs_info *c, void *node,
 226			     int len, struct shash_desc *hash)
 227{
 228	int auth_node_size = ubifs_auth_node_sz(c);
 229	int err;
 230
 231	while (1) {
 232		const struct ubifs_ch *ch = node;
 233		int nodelen = le32_to_cpu(ch->len);
 234
 235		ubifs_assert(c, len >= auth_node_size);
 236
 237		if (len == auth_node_size)
 238			break;
 239
 240		ubifs_assert(c, len > nodelen);
 241		ubifs_assert(c, ch->magic == cpu_to_le32(UBIFS_NODE_MAGIC));
 242
 243		err = ubifs_shash_update(c, hash, (void *)node, nodelen);
 244		if (err)
 245			return err;
 246
 247		node += ALIGN(nodelen, 8);
 248		len -= ALIGN(nodelen, 8);
 249	}
 250
 251	return ubifs_prepare_auth_node(c, node, hash);
 252}
 253
 254/**
 255 * write_head - write data to a journal head.
 256 * @c: UBIFS file-system description object
 257 * @jhead: journal head
 258 * @buf: buffer to write
 259 * @len: length to write
 260 * @lnum: LEB number written is returned here
 261 * @offs: offset written is returned here
 262 * @sync: non-zero if the write-buffer has to by synchronized
 263 *
 264 * This function writes data to the reserved space of journal head @jhead.
 265 * Returns zero in case of success and a negative error code in case of
 266 * failure.
 267 */
 268static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
 269		      int *lnum, int *offs, int sync)
 270{
 271	int err;
 272	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
 273
 274	ubifs_assert(c, jhead != GCHD);
 275
 276	*lnum = c->jheads[jhead].wbuf.lnum;
 277	*offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
 278	dbg_jnl("jhead %s, LEB %d:%d, len %d",
 279		dbg_jhead(jhead), *lnum, *offs, len);
 280
 281	if (ubifs_authenticated(c)) {
 282		err = ubifs_hash_nodes(c, buf, len, c->jheads[jhead].log_hash);
 283		if (err)
 284			return err;
 285	}
 286
 287	err = ubifs_wbuf_write_nolock(wbuf, buf, len);
 288	if (err)
 289		return err;
 290	if (sync)
 291		err = ubifs_wbuf_sync_nolock(wbuf);
 292	return err;
 293}
 294
 295/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 296 * make_reservation - reserve journal space.
 297 * @c: UBIFS file-system description object
 298 * @jhead: journal head
 299 * @len: how many bytes to reserve
 300 *
 301 * This function makes space reservation in journal head @jhead. The function
 302 * takes the commit lock and locks the journal head, and the caller has to
 303 * unlock the head and finish the reservation with 'finish_reservation()'.
 304 * Returns zero in case of success and a negative error code in case of
 305 * failure.
 306 *
 307 * Note, the journal head may be unlocked as soon as the data is written, while
 308 * the commit lock has to be released after the data has been added to the
 309 * TNC.
 310 */
 311static int make_reservation(struct ubifs_info *c, int jhead, int len)
 312{
 313	int err, cmt_retries = 0, nospc_retries = 0;
 
 314
 315again:
 316	down_read(&c->commit_sem);
 317	err = reserve_space(c, jhead, len);
 318	if (!err)
 319		/* c->commit_sem will get released via finish_reservation(). */
 320		return 0;
 
 321	up_read(&c->commit_sem);
 322
 323	if (err == -ENOSPC) {
 324		/*
 325		 * GC could not make any progress. We should try to commit
 326		 * once because it could make some dirty space and GC would
 327		 * make progress, so make the error -EAGAIN so that the below
 328		 * will commit and re-try.
 329		 */
 330		if (nospc_retries++ < 2) {
 331			dbg_jnl("no space, retry");
 332			err = -EAGAIN;
 333		}
 334
 335		/*
 336		 * This means that the budgeting is incorrect. We always have
 337		 * to be able to write to the media, because all operations are
 338		 * budgeted. Deletions are not budgeted, though, but we reserve
 339		 * an extra LEB for them.
 340		 */
 341	}
 342
 343	if (err != -EAGAIN)
 344		goto out;
 345
 346	/*
 347	 * -EAGAIN means that the journal is full or too large, or the above
 348	 * code wants to do one commit. Do this and re-try.
 349	 */
 350	if (cmt_retries > 128) {
 351		/*
 352		 * This should not happen unless the journal size limitations
 353		 * are too tough.
 
 
 
 
 354		 */
 355		ubifs_err(c, "stuck in space allocation");
 
 356		err = -ENOSPC;
 357		goto out;
 358	} else if (cmt_retries > 32)
 359		ubifs_warn(c, "too many space allocation re-tries (%d)",
 360			   cmt_retries);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 361
 362	dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
 363		cmt_retries);
 364	cmt_retries += 1;
 365
 366	err = ubifs_run_commit(c);
 367	if (err)
 368		return err;
 369	goto again;
 370
 371out:
 372	ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
 373		  len, jhead, err);
 374	if (err == -ENOSPC) {
 375		/* This are some budgeting problems, print useful information */
 376		down_write(&c->commit_sem);
 377		dump_stack();
 378		ubifs_dump_budg(c, &c->bi);
 379		ubifs_dump_lprops(c);
 380		cmt_retries = dbg_check_lprops(c);
 381		up_write(&c->commit_sem);
 382	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 383	return err;
 384}
 385
 386/**
 387 * release_head - release a journal head.
 388 * @c: UBIFS file-system description object
 389 * @jhead: journal head
 390 *
 391 * This function releases journal head @jhead which was locked by
 392 * the 'make_reservation()' function. It has to be called after each successful
 393 * 'make_reservation()' invocation.
 394 */
 395static inline void release_head(struct ubifs_info *c, int jhead)
 396{
 397	mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
 398}
 399
 400/**
 401 * finish_reservation - finish a reservation.
 402 * @c: UBIFS file-system description object
 403 *
 404 * This function finishes journal space reservation. It must be called after
 405 * 'make_reservation()'.
 406 */
 407static void finish_reservation(struct ubifs_info *c)
 408{
 409	up_read(&c->commit_sem);
 410}
 411
 412/**
 413 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
 414 * @mode: inode mode
 415 */
 416static int get_dent_type(int mode)
 417{
 418	switch (mode & S_IFMT) {
 419	case S_IFREG:
 420		return UBIFS_ITYPE_REG;
 421	case S_IFDIR:
 422		return UBIFS_ITYPE_DIR;
 423	case S_IFLNK:
 424		return UBIFS_ITYPE_LNK;
 425	case S_IFBLK:
 426		return UBIFS_ITYPE_BLK;
 427	case S_IFCHR:
 428		return UBIFS_ITYPE_CHR;
 429	case S_IFIFO:
 430		return UBIFS_ITYPE_FIFO;
 431	case S_IFSOCK:
 432		return UBIFS_ITYPE_SOCK;
 433	default:
 434		BUG();
 435	}
 436	return 0;
 437}
 438
 439/**
 440 * pack_inode - pack an inode node.
 441 * @c: UBIFS file-system description object
 442 * @ino: buffer in which to pack inode node
 443 * @inode: inode to pack
 444 * @last: indicates the last node of the group
 445 */
 446static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
 447		       const struct inode *inode, int last)
 448{
 449	int data_len = 0, last_reference = !inode->i_nlink;
 450	struct ubifs_inode *ui = ubifs_inode(inode);
 451
 452	ino->ch.node_type = UBIFS_INO_NODE;
 453	ino_key_init_flash(c, &ino->key, inode->i_ino);
 454	ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
 455	ino->atime_sec  = cpu_to_le64(inode->i_atime.tv_sec);
 456	ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
 457	ino->ctime_sec  = cpu_to_le64(inode->i_ctime.tv_sec);
 458	ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
 459	ino->mtime_sec  = cpu_to_le64(inode->i_mtime.tv_sec);
 460	ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
 461	ino->uid   = cpu_to_le32(i_uid_read(inode));
 462	ino->gid   = cpu_to_le32(i_gid_read(inode));
 463	ino->mode  = cpu_to_le32(inode->i_mode);
 464	ino->flags = cpu_to_le32(ui->flags);
 465	ino->size  = cpu_to_le64(ui->ui_size);
 466	ino->nlink = cpu_to_le32(inode->i_nlink);
 467	ino->compr_type  = cpu_to_le16(ui->compr_type);
 468	ino->data_len    = cpu_to_le32(ui->data_len);
 469	ino->xattr_cnt   = cpu_to_le32(ui->xattr_cnt);
 470	ino->xattr_size  = cpu_to_le32(ui->xattr_size);
 471	ino->xattr_names = cpu_to_le32(ui->xattr_names);
 472	zero_ino_node_unused(ino);
 473
 474	/*
 475	 * Drop the attached data if this is a deletion inode, the data is not
 476	 * needed anymore.
 477	 */
 478	if (!last_reference) {
 479		memcpy(ino->data, ui->data, ui->data_len);
 480		data_len = ui->data_len;
 481	}
 482
 483	ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
 484}
 485
 486/**
 487 * mark_inode_clean - mark UBIFS inode as clean.
 488 * @c: UBIFS file-system description object
 489 * @ui: UBIFS inode to mark as clean
 490 *
 491 * This helper function marks UBIFS inode @ui as clean by cleaning the
 492 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
 493 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
 494 * just do nothing.
 495 */
 496static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
 497{
 498	if (ui->dirty)
 499		ubifs_release_dirty_inode_budget(c, ui);
 500	ui->dirty = 0;
 501}
 502
 503static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent)
 504{
 505	if (c->double_hash)
 506		dent->cookie = prandom_u32();
 507	else
 508		dent->cookie = 0;
 509}
 510
 511/**
 512 * ubifs_jnl_update - update inode.
 513 * @c: UBIFS file-system description object
 514 * @dir: parent inode or host inode in case of extended attributes
 515 * @nm: directory entry name
 516 * @inode: inode to update
 517 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
 518 * @xent: non-zero if the directory entry is an extended attribute entry
 519 *
 520 * This function updates an inode by writing a directory entry (or extended
 521 * attribute entry), the inode itself, and the parent directory inode (or the
 522 * host inode) to the journal.
 523 *
 524 * The function writes the host inode @dir last, which is important in case of
 525 * extended attributes. Indeed, then we guarantee that if the host inode gets
 526 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
 527 * the extended attribute inode gets flushed too. And this is exactly what the
 528 * user expects - synchronizing the host inode synchronizes its extended
 529 * attributes. Similarly, this guarantees that if @dir is synchronized, its
 530 * directory entry corresponding to @nm gets synchronized too.
 531 *
 532 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
 533 * function synchronizes the write-buffer.
 534 *
 535 * This function marks the @dir and @inode inodes as clean and returns zero on
 536 * success. In case of failure, a negative error code is returned.
 537 */
 538int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
 539		     const struct fscrypt_name *nm, const struct inode *inode,
 540		     int deletion, int xent)
 541{
 542	int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
 543	int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
 544	int last_reference = !!(deletion && inode->i_nlink == 0);
 545	struct ubifs_inode *ui = ubifs_inode(inode);
 546	struct ubifs_inode *host_ui = ubifs_inode(dir);
 547	struct ubifs_dent_node *dent;
 548	struct ubifs_ino_node *ino;
 549	union ubifs_key dent_key, ino_key;
 550	u8 hash_dent[UBIFS_HASH_ARR_SZ];
 551	u8 hash_ino[UBIFS_HASH_ARR_SZ];
 552	u8 hash_ino_host[UBIFS_HASH_ARR_SZ];
 553
 554	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
 555
 556	dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
 557	ilen = UBIFS_INO_NODE_SZ;
 558
 559	/*
 560	 * If the last reference to the inode is being deleted, then there is
 561	 * no need to attach and write inode data, it is being deleted anyway.
 562	 * And if the inode is being deleted, no need to synchronize
 563	 * write-buffer even if the inode is synchronous.
 564	 */
 565	if (!last_reference) {
 566		ilen += ui->data_len;
 567		sync |= IS_SYNC(inode);
 568	}
 569
 570	aligned_dlen = ALIGN(dlen, 8);
 571	aligned_ilen = ALIGN(ilen, 8);
 572
 573	len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
 574	/* Make sure to also account for extended attributes */
 575	if (ubifs_authenticated(c))
 576		len += ALIGN(host_ui->data_len, 8) + ubifs_auth_node_sz(c);
 577	else
 578		len += host_ui->data_len;
 579
 580	dent = kzalloc(len, GFP_NOFS);
 581	if (!dent)
 582		return -ENOMEM;
 583
 584	/* Make reservation before allocating sequence numbers */
 585	err = make_reservation(c, BASEHD, len);
 586	if (err)
 587		goto out_free;
 588
 589	if (!xent) {
 590		dent->ch.node_type = UBIFS_DENT_NODE;
 591		if (nm->hash)
 592			dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash);
 593		else
 594			dent_key_init(c, &dent_key, dir->i_ino, nm);
 595	} else {
 596		dent->ch.node_type = UBIFS_XENT_NODE;
 597		xent_key_init(c, &dent_key, dir->i_ino, nm);
 598	}
 599
 600	key_write(c, &dent_key, dent->key);
 601	dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
 602	dent->type = get_dent_type(inode->i_mode);
 603	dent->nlen = cpu_to_le16(fname_len(nm));
 604	memcpy(dent->name, fname_name(nm), fname_len(nm));
 605	dent->name[fname_len(nm)] = '\0';
 606	set_dent_cookie(c, dent);
 607
 608	zero_dent_node_unused(dent);
 609	ubifs_prep_grp_node(c, dent, dlen, 0);
 610	err = ubifs_node_calc_hash(c, dent, hash_dent);
 611	if (err)
 612		goto out_release;
 613
 614	ino = (void *)dent + aligned_dlen;
 615	pack_inode(c, ino, inode, 0);
 616	err = ubifs_node_calc_hash(c, ino, hash_ino);
 617	if (err)
 618		goto out_release;
 619
 620	ino = (void *)ino + aligned_ilen;
 621	pack_inode(c, ino, dir, 1);
 622	err = ubifs_node_calc_hash(c, ino, hash_ino_host);
 623	if (err)
 624		goto out_release;
 625
 626	if (last_reference) {
 627		err = ubifs_add_orphan(c, inode->i_ino);
 628		if (err) {
 629			release_head(c, BASEHD);
 630			goto out_finish;
 631		}
 632		ui->del_cmtno = c->cmt_no;
 
 633	}
 634
 635	err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
 636	if (err)
 637		goto out_release;
 638	if (!sync) {
 639		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
 640
 641		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
 642		ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
 643	}
 644	release_head(c, BASEHD);
 645	kfree(dent);
 646	ubifs_add_auth_dirt(c, lnum);
 647
 648	if (deletion) {
 649		if (nm->hash)
 650			err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash);
 651		else
 652			err = ubifs_tnc_remove_nm(c, &dent_key, nm);
 653		if (err)
 654			goto out_ro;
 655		err = ubifs_add_dirt(c, lnum, dlen);
 656	} else
 657		err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen,
 658				       hash_dent, nm);
 659	if (err)
 660		goto out_ro;
 661
 662	/*
 663	 * Note, we do not remove the inode from TNC even if the last reference
 664	 * to it has just been deleted, because the inode may still be opened.
 665	 * Instead, the inode has been added to orphan lists and the orphan
 666	 * subsystem will take further care about it.
 667	 */
 668	ino_key_init(c, &ino_key, inode->i_ino);
 669	ino_offs = dent_offs + aligned_dlen;
 670	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen, hash_ino);
 671	if (err)
 672		goto out_ro;
 673
 674	ino_key_init(c, &ino_key, dir->i_ino);
 675	ino_offs += aligned_ilen;
 676	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
 677			    UBIFS_INO_NODE_SZ + host_ui->data_len, hash_ino_host);
 678	if (err)
 679		goto out_ro;
 680
 681	finish_reservation(c);
 682	spin_lock(&ui->ui_lock);
 683	ui->synced_i_size = ui->ui_size;
 684	spin_unlock(&ui->ui_lock);
 685	if (xent) {
 686		spin_lock(&host_ui->ui_lock);
 687		host_ui->synced_i_size = host_ui->ui_size;
 688		spin_unlock(&host_ui->ui_lock);
 689	}
 690	mark_inode_clean(c, ui);
 691	mark_inode_clean(c, host_ui);
 692	return 0;
 693
 694out_finish:
 695	finish_reservation(c);
 696out_free:
 697	kfree(dent);
 698	return err;
 699
 700out_release:
 701	release_head(c, BASEHD);
 702	kfree(dent);
 703out_ro:
 704	ubifs_ro_mode(c, err);
 705	if (last_reference)
 706		ubifs_delete_orphan(c, inode->i_ino);
 707	finish_reservation(c);
 708	return err;
 709}
 710
 711/**
 712 * ubifs_jnl_write_data - write a data node to the journal.
 713 * @c: UBIFS file-system description object
 714 * @inode: inode the data node belongs to
 715 * @key: node key
 716 * @buf: buffer to write
 717 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
 718 *
 719 * This function writes a data node to the journal. Returns %0 if the data node
 720 * was successfully written, and a negative error code in case of failure.
 721 */
 722int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
 723			 const union ubifs_key *key, const void *buf, int len)
 724{
 725	struct ubifs_data_node *data;
 726	int err, lnum, offs, compr_type, out_len, compr_len, auth_len;
 727	int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
 728	int write_len;
 729	struct ubifs_inode *ui = ubifs_inode(inode);
 730	bool encrypted = ubifs_crypt_is_encrypted(inode);
 731	u8 hash[UBIFS_HASH_ARR_SZ];
 732
 733	dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
 734		(unsigned long)key_inum(c, key), key_block(c, key), len);
 735	ubifs_assert(c, len <= UBIFS_BLOCK_SIZE);
 736
 737	if (encrypted)
 738		dlen += UBIFS_CIPHER_BLOCK_SIZE;
 739
 740	auth_len = ubifs_auth_node_sz(c);
 741
 742	data = kmalloc(dlen + auth_len, GFP_NOFS | __GFP_NOWARN);
 743	if (!data) {
 744		/*
 745		 * Fall-back to the write reserve buffer. Note, we might be
 746		 * currently on the memory reclaim path, when the kernel is
 747		 * trying to free some memory by writing out dirty pages. The
 748		 * write reserve buffer helps us to guarantee that we are
 749		 * always able to write the data.
 750		 */
 751		allocated = 0;
 752		mutex_lock(&c->write_reserve_mutex);
 753		data = c->write_reserve_buf;
 754	}
 755
 756	data->ch.node_type = UBIFS_DATA_NODE;
 757	key_write(c, key, &data->key);
 758	data->size = cpu_to_le32(len);
 759
 760	if (!(ui->flags & UBIFS_COMPR_FL))
 761		/* Compression is disabled for this inode */
 762		compr_type = UBIFS_COMPR_NONE;
 763	else
 764		compr_type = ui->compr_type;
 765
 766	out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
 767	ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type);
 768	ubifs_assert(c, compr_len <= UBIFS_BLOCK_SIZE);
 769
 770	if (encrypted) {
 771		err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key));
 772		if (err)
 773			goto out_free;
 774
 775	} else {
 776		data->compr_size = 0;
 777		out_len = compr_len;
 778	}
 779
 780	dlen = UBIFS_DATA_NODE_SZ + out_len;
 781	if (ubifs_authenticated(c))
 782		write_len = ALIGN(dlen, 8) + auth_len;
 783	else
 784		write_len = dlen;
 785
 786	data->compr_type = cpu_to_le16(compr_type);
 787
 788	/* Make reservation before allocating sequence numbers */
 789	err = make_reservation(c, DATAHD, write_len);
 790	if (err)
 791		goto out_free;
 792
 793	ubifs_prepare_node(c, data, dlen, 0);
 794	err = write_head(c, DATAHD, data, write_len, &lnum, &offs, 0);
 795	if (err)
 796		goto out_release;
 797
 798	err = ubifs_node_calc_hash(c, data, hash);
 799	if (err)
 800		goto out_release;
 801
 802	ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
 803	release_head(c, DATAHD);
 804
 805	ubifs_add_auth_dirt(c, lnum);
 806
 807	err = ubifs_tnc_add(c, key, lnum, offs, dlen, hash);
 808	if (err)
 809		goto out_ro;
 810
 811	finish_reservation(c);
 812	if (!allocated)
 813		mutex_unlock(&c->write_reserve_mutex);
 814	else
 815		kfree(data);
 816	return 0;
 817
 818out_release:
 819	release_head(c, DATAHD);
 820out_ro:
 821	ubifs_ro_mode(c, err);
 822	finish_reservation(c);
 823out_free:
 824	if (!allocated)
 825		mutex_unlock(&c->write_reserve_mutex);
 826	else
 827		kfree(data);
 828	return err;
 829}
 830
 831/**
 832 * ubifs_jnl_write_inode - flush inode to the journal.
 833 * @c: UBIFS file-system description object
 834 * @inode: inode to flush
 835 *
 836 * This function writes inode @inode to the journal. If the inode is
 837 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
 838 * success and a negative error code in case of failure.
 839 */
 840int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
 841{
 842	int err, lnum, offs;
 843	struct ubifs_ino_node *ino, *ino_start;
 844	struct ubifs_inode *ui = ubifs_inode(inode);
 845	int sync = 0, write_len = 0, ilen = UBIFS_INO_NODE_SZ;
 846	int last_reference = !inode->i_nlink;
 847	int kill_xattrs = ui->xattr_cnt && last_reference;
 848	u8 hash[UBIFS_HASH_ARR_SZ];
 849
 850	dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
 851
 852	/*
 853	 * If the inode is being deleted, do not write the attached data. No
 854	 * need to synchronize the write-buffer either.
 855	 */
 856	if (!last_reference) {
 857		ilen += ui->data_len;
 858		sync = IS_SYNC(inode);
 859	} else if (kill_xattrs) {
 860		write_len += UBIFS_INO_NODE_SZ * ui->xattr_cnt;
 861	}
 862
 863	if (ubifs_authenticated(c))
 864		write_len += ALIGN(ilen, 8) + ubifs_auth_node_sz(c);
 865	else
 866		write_len += ilen;
 867
 868	ino_start = ino = kmalloc(write_len, GFP_NOFS);
 869	if (!ino)
 870		return -ENOMEM;
 871
 872	/* Make reservation before allocating sequence numbers */
 873	err = make_reservation(c, BASEHD, write_len);
 874	if (err)
 875		goto out_free;
 876
 877	if (kill_xattrs) {
 878		union ubifs_key key;
 879		struct fscrypt_name nm = {0};
 880		struct inode *xino;
 881		struct ubifs_dent_node *xent, *pxent = NULL;
 882
 883		if (ui->xattr_cnt >= ubifs_xattr_max_cnt(c)) {
 
 884			ubifs_err(c, "Cannot delete inode, it has too much xattrs!");
 885			goto out_release;
 886		}
 887
 888		lowest_xent_key(c, &key, inode->i_ino);
 889		while (1) {
 890			xent = ubifs_tnc_next_ent(c, &key, &nm);
 891			if (IS_ERR(xent)) {
 892				err = PTR_ERR(xent);
 893				if (err == -ENOENT)
 894					break;
 895
 
 896				goto out_release;
 897			}
 898
 899			fname_name(&nm) = xent->name;
 900			fname_len(&nm) = le16_to_cpu(xent->nlen);
 901
 902			xino = ubifs_iget(c->vfs_sb, xent->inum);
 903			if (IS_ERR(xino)) {
 904				err = PTR_ERR(xino);
 905				ubifs_err(c, "dead directory entry '%s', error %d",
 906					  xent->name, err);
 907				ubifs_ro_mode(c, err);
 
 
 908				goto out_release;
 909			}
 910			ubifs_assert(c, ubifs_inode(xino)->xattr);
 911
 912			clear_nlink(xino);
 913			pack_inode(c, ino, xino, 0);
 914			ino = (void *)ino + UBIFS_INO_NODE_SZ;
 915			iput(xino);
 916
 917			kfree(pxent);
 918			pxent = xent;
 919			key_read(c, &xent->key, &key);
 920		}
 921		kfree(pxent);
 922	}
 923
 924	pack_inode(c, ino, inode, 1);
 925	err = ubifs_node_calc_hash(c, ino, hash);
 926	if (err)
 927		goto out_release;
 928
 929	err = write_head(c, BASEHD, ino_start, write_len, &lnum, &offs, sync);
 930	if (err)
 931		goto out_release;
 932	if (!sync)
 933		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
 934					  inode->i_ino);
 935	release_head(c, BASEHD);
 936
 937	ubifs_add_auth_dirt(c, lnum);
 938
 939	if (last_reference) {
 940		err = ubifs_tnc_remove_ino(c, inode->i_ino);
 941		if (err)
 942			goto out_ro;
 943		ubifs_delete_orphan(c, inode->i_ino);
 944		err = ubifs_add_dirt(c, lnum, write_len);
 945	} else {
 946		union ubifs_key key;
 947
 
 
 948		ino_key_init(c, &key, inode->i_ino);
 949		err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash);
 950	}
 951	if (err)
 952		goto out_ro;
 953
 954	finish_reservation(c);
 955	spin_lock(&ui->ui_lock);
 956	ui->synced_i_size = ui->ui_size;
 957	spin_unlock(&ui->ui_lock);
 958	kfree(ino_start);
 959	return 0;
 960
 961out_release:
 962	release_head(c, BASEHD);
 963out_ro:
 964	ubifs_ro_mode(c, err);
 965	finish_reservation(c);
 966out_free:
 967	kfree(ino_start);
 968	return err;
 969}
 970
 971/**
 972 * ubifs_jnl_delete_inode - delete an inode.
 973 * @c: UBIFS file-system description object
 974 * @inode: inode to delete
 975 *
 976 * This function deletes inode @inode which includes removing it from orphans,
 977 * deleting it from TNC and, in some cases, writing a deletion inode to the
 978 * journal.
 979 *
 980 * When regular file inodes are unlinked or a directory inode is removed, the
 981 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
 982 * direntry to the media, and adds the inode to orphans. After this, when the
 983 * last reference to this inode has been dropped, this function is called. In
 984 * general, it has to write one more deletion inode to the media, because if
 985 * a commit happened between 'ubifs_jnl_update()' and
 986 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
 987 * anymore, and in fact it might not be on the flash anymore, because it might
 988 * have been garbage-collected already. And for optimization reasons UBIFS does
 989 * not read the orphan area if it has been unmounted cleanly, so it would have
 990 * no indication in the journal that there is a deleted inode which has to be
 991 * removed from TNC.
 992 *
 993 * However, if there was no commit between 'ubifs_jnl_update()' and
 994 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
 995 * inode to the media for the second time. And this is quite a typical case.
 996 *
 997 * This function returns zero in case of success and a negative error code in
 998 * case of failure.
 999 */
1000int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
1001{
1002	int err;
1003	struct ubifs_inode *ui = ubifs_inode(inode);
1004
1005	ubifs_assert(c, inode->i_nlink == 0);
1006
1007	if (ui->xattr_cnt || ui->del_cmtno != c->cmt_no)
1008		/* A commit happened for sure or inode hosts xattrs */
1009		return ubifs_jnl_write_inode(c, inode);
1010
1011	down_read(&c->commit_sem);
1012	/*
1013	 * Check commit number again, because the first test has been done
1014	 * without @c->commit_sem, so a commit might have happened.
1015	 */
1016	if (ui->del_cmtno != c->cmt_no) {
1017		up_read(&c->commit_sem);
1018		return ubifs_jnl_write_inode(c, inode);
1019	}
1020
1021	err = ubifs_tnc_remove_ino(c, inode->i_ino);
1022	if (err)
1023		ubifs_ro_mode(c, err);
1024	else
1025		ubifs_delete_orphan(c, inode->i_ino);
1026	up_read(&c->commit_sem);
1027	return err;
1028}
1029
1030/**
1031 * ubifs_jnl_xrename - cross rename two directory entries.
1032 * @c: UBIFS file-system description object
1033 * @fst_dir: parent inode of 1st directory entry to exchange
1034 * @fst_inode: 1st inode to exchange
1035 * @fst_nm: name of 1st inode to exchange
1036 * @snd_dir: parent inode of 2nd directory entry to exchange
1037 * @snd_inode: 2nd inode to exchange
1038 * @snd_nm: name of 2nd inode to exchange
1039 * @sync: non-zero if the write-buffer has to be synchronized
1040 *
1041 * This function implements the cross rename operation which may involve
1042 * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
1043 * and returns zero on success. In case of failure, a negative error code is
1044 * returned.
1045 */
1046int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
1047		      const struct inode *fst_inode,
1048		      const struct fscrypt_name *fst_nm,
1049		      const struct inode *snd_dir,
1050		      const struct inode *snd_inode,
1051		      const struct fscrypt_name *snd_nm, int sync)
1052{
1053	union ubifs_key key;
1054	struct ubifs_dent_node *dent1, *dent2;
1055	int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
1056	int aligned_dlen1, aligned_dlen2;
1057	int twoparents = (fst_dir != snd_dir);
1058	void *p;
1059	u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1060	u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1061	u8 hash_p1[UBIFS_HASH_ARR_SZ];
1062	u8 hash_p2[UBIFS_HASH_ARR_SZ];
1063
1064	ubifs_assert(c, ubifs_inode(fst_dir)->data_len == 0);
1065	ubifs_assert(c, ubifs_inode(snd_dir)->data_len == 0);
1066	ubifs_assert(c, mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
1067	ubifs_assert(c, mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
1068
1069	dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
1070	dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
1071	aligned_dlen1 = ALIGN(dlen1, 8);
1072	aligned_dlen2 = ALIGN(dlen2, 8);
1073
1074	len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
1075	if (twoparents)
1076		len += plen;
1077
1078	len += ubifs_auth_node_sz(c);
1079
1080	dent1 = kzalloc(len, GFP_NOFS);
1081	if (!dent1)
1082		return -ENOMEM;
1083
1084	/* Make reservation before allocating sequence numbers */
1085	err = make_reservation(c, BASEHD, len);
1086	if (err)
1087		goto out_free;
1088
1089	/* Make new dent for 1st entry */
1090	dent1->ch.node_type = UBIFS_DENT_NODE;
1091	dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm);
1092	dent1->inum = cpu_to_le64(fst_inode->i_ino);
1093	dent1->type = get_dent_type(fst_inode->i_mode);
1094	dent1->nlen = cpu_to_le16(fname_len(snd_nm));
1095	memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
1096	dent1->name[fname_len(snd_nm)] = '\0';
1097	set_dent_cookie(c, dent1);
1098	zero_dent_node_unused(dent1);
1099	ubifs_prep_grp_node(c, dent1, dlen1, 0);
1100	err = ubifs_node_calc_hash(c, dent1, hash_dent1);
1101	if (err)
1102		goto out_release;
1103
1104	/* Make new dent for 2nd entry */
1105	dent2 = (void *)dent1 + aligned_dlen1;
1106	dent2->ch.node_type = UBIFS_DENT_NODE;
1107	dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm);
1108	dent2->inum = cpu_to_le64(snd_inode->i_ino);
1109	dent2->type = get_dent_type(snd_inode->i_mode);
1110	dent2->nlen = cpu_to_le16(fname_len(fst_nm));
1111	memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
1112	dent2->name[fname_len(fst_nm)] = '\0';
1113	set_dent_cookie(c, dent2);
1114	zero_dent_node_unused(dent2);
1115	ubifs_prep_grp_node(c, dent2, dlen2, 0);
1116	err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1117	if (err)
1118		goto out_release;
1119
1120	p = (void *)dent2 + aligned_dlen2;
1121	if (!twoparents) {
1122		pack_inode(c, p, fst_dir, 1);
1123		err = ubifs_node_calc_hash(c, p, hash_p1);
1124		if (err)
1125			goto out_release;
1126	} else {
1127		pack_inode(c, p, fst_dir, 0);
1128		err = ubifs_node_calc_hash(c, p, hash_p1);
1129		if (err)
1130			goto out_release;
1131		p += ALIGN(plen, 8);
1132		pack_inode(c, p, snd_dir, 1);
1133		err = ubifs_node_calc_hash(c, p, hash_p2);
1134		if (err)
1135			goto out_release;
1136	}
1137
1138	err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
1139	if (err)
1140		goto out_release;
1141	if (!sync) {
1142		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1143
1144		ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
1145		ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
1146	}
1147	release_head(c, BASEHD);
1148
1149	ubifs_add_auth_dirt(c, lnum);
1150
1151	dent_key_init(c, &key, snd_dir->i_ino, snd_nm);
1152	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, snd_nm);
1153	if (err)
1154		goto out_ro;
1155
1156	offs += aligned_dlen1;
1157	dent_key_init(c, &key, fst_dir->i_ino, fst_nm);
1158	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, fst_nm);
1159	if (err)
1160		goto out_ro;
1161
1162	offs += aligned_dlen2;
1163
1164	ino_key_init(c, &key, fst_dir->i_ino);
1165	err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p1);
1166	if (err)
1167		goto out_ro;
1168
1169	if (twoparents) {
1170		offs += ALIGN(plen, 8);
1171		ino_key_init(c, &key, snd_dir->i_ino);
1172		err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p2);
1173		if (err)
1174			goto out_ro;
1175	}
1176
1177	finish_reservation(c);
1178
1179	mark_inode_clean(c, ubifs_inode(fst_dir));
1180	if (twoparents)
1181		mark_inode_clean(c, ubifs_inode(snd_dir));
1182	kfree(dent1);
1183	return 0;
1184
1185out_release:
1186	release_head(c, BASEHD);
1187out_ro:
1188	ubifs_ro_mode(c, err);
1189	finish_reservation(c);
1190out_free:
1191	kfree(dent1);
1192	return err;
1193}
1194
1195/**
1196 * ubifs_jnl_rename - rename a directory entry.
1197 * @c: UBIFS file-system description object
1198 * @old_dir: parent inode of directory entry to rename
1199 * @old_dentry: directory entry to rename
 
1200 * @new_dir: parent inode of directory entry to rename
1201 * @new_dentry: new directory entry (or directory entry to replace)
 
 
 
1202 * @sync: non-zero if the write-buffer has to be synchronized
1203 *
1204 * This function implements the re-name operation which may involve writing up
1205 * to 4 inodes and 2 directory entries. It marks the written inodes as clean
1206 * and returns zero on success. In case of failure, a negative error code is
1207 * returned.
1208 */
1209int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1210		     const struct inode *old_inode,
1211		     const struct fscrypt_name *old_nm,
1212		     const struct inode *new_dir,
1213		     const struct inode *new_inode,
1214		     const struct fscrypt_name *new_nm,
1215		     const struct inode *whiteout, int sync)
1216{
1217	void *p;
1218	union ubifs_key key;
1219	struct ubifs_dent_node *dent, *dent2;
1220	int err, dlen1, dlen2, ilen, lnum, offs, len;
1221	int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1222	int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1223	int move = (old_dir != new_dir);
1224	struct ubifs_inode *uninitialized_var(new_ui);
1225	u8 hash_old_dir[UBIFS_HASH_ARR_SZ];
1226	u8 hash_new_dir[UBIFS_HASH_ARR_SZ];
1227	u8 hash_new_inode[UBIFS_HASH_ARR_SZ];
 
1228	u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1229	u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1230
1231	ubifs_assert(c, ubifs_inode(old_dir)->data_len == 0);
1232	ubifs_assert(c, ubifs_inode(new_dir)->data_len == 0);
1233	ubifs_assert(c, mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1234	ubifs_assert(c, mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1235
1236	dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
1237	dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
1238	if (new_inode) {
1239		new_ui = ubifs_inode(new_inode);
1240		ubifs_assert(c, mutex_is_locked(&new_ui->ui_mutex));
1241		ilen = UBIFS_INO_NODE_SZ;
1242		if (!last_reference)
1243			ilen += new_ui->data_len;
1244	} else
1245		ilen = 0;
1246
 
 
 
 
 
 
 
 
 
 
1247	aligned_dlen1 = ALIGN(dlen1, 8);
1248	aligned_dlen2 = ALIGN(dlen2, 8);
1249	len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
 
1250	if (move)
1251		len += plen;
1252
1253	len += ubifs_auth_node_sz(c);
1254
1255	dent = kzalloc(len, GFP_NOFS);
1256	if (!dent)
1257		return -ENOMEM;
1258
1259	/* Make reservation before allocating sequence numbers */
1260	err = make_reservation(c, BASEHD, len);
1261	if (err)
1262		goto out_free;
1263
1264	/* Make new dent */
1265	dent->ch.node_type = UBIFS_DENT_NODE;
1266	dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm);
1267	dent->inum = cpu_to_le64(old_inode->i_ino);
1268	dent->type = get_dent_type(old_inode->i_mode);
1269	dent->nlen = cpu_to_le16(fname_len(new_nm));
1270	memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
1271	dent->name[fname_len(new_nm)] = '\0';
1272	set_dent_cookie(c, dent);
1273	zero_dent_node_unused(dent);
1274	ubifs_prep_grp_node(c, dent, dlen1, 0);
1275	err = ubifs_node_calc_hash(c, dent, hash_dent1);
1276	if (err)
1277		goto out_release;
1278
1279	dent2 = (void *)dent + aligned_dlen1;
1280	dent2->ch.node_type = UBIFS_DENT_NODE;
1281	dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm);
1282
1283	if (whiteout) {
1284		dent2->inum = cpu_to_le64(whiteout->i_ino);
1285		dent2->type = get_dent_type(whiteout->i_mode);
1286	} else {
1287		/* Make deletion dent */
1288		dent2->inum = 0;
1289		dent2->type = DT_UNKNOWN;
1290	}
1291	dent2->nlen = cpu_to_le16(fname_len(old_nm));
1292	memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
1293	dent2->name[fname_len(old_nm)] = '\0';
1294	set_dent_cookie(c, dent2);
1295	zero_dent_node_unused(dent2);
1296	ubifs_prep_grp_node(c, dent2, dlen2, 0);
1297	err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1298	if (err)
1299		goto out_release;
1300
1301	p = (void *)dent2 + aligned_dlen2;
1302	if (new_inode) {
1303		pack_inode(c, p, new_inode, 0);
1304		err = ubifs_node_calc_hash(c, p, hash_new_inode);
1305		if (err)
1306			goto out_release;
1307
1308		p += ALIGN(ilen, 8);
1309	}
1310
 
 
 
 
 
 
 
 
 
1311	if (!move) {
1312		pack_inode(c, p, old_dir, 1);
1313		err = ubifs_node_calc_hash(c, p, hash_old_dir);
1314		if (err)
1315			goto out_release;
1316	} else {
1317		pack_inode(c, p, old_dir, 0);
1318		err = ubifs_node_calc_hash(c, p, hash_old_dir);
1319		if (err)
1320			goto out_release;
1321
1322		p += ALIGN(plen, 8);
1323		pack_inode(c, p, new_dir, 1);
1324		err = ubifs_node_calc_hash(c, p, hash_new_dir);
1325		if (err)
1326			goto out_release;
1327	}
1328
1329	if (last_reference) {
1330		err = ubifs_add_orphan(c, new_inode->i_ino);
1331		if (err) {
1332			release_head(c, BASEHD);
1333			goto out_finish;
1334		}
1335		new_ui->del_cmtno = c->cmt_no;
 
1336	}
1337
1338	err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1339	if (err)
1340		goto out_release;
1341	if (!sync) {
1342		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1343
1344		ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1345		ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1346		if (new_inode)
1347			ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1348						  new_inode->i_ino);
 
 
 
1349	}
1350	release_head(c, BASEHD);
1351
1352	ubifs_add_auth_dirt(c, lnum);
1353
1354	dent_key_init(c, &key, new_dir->i_ino, new_nm);
1355	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, new_nm);
1356	if (err)
1357		goto out_ro;
1358
1359	offs += aligned_dlen1;
1360	if (whiteout) {
1361		dent_key_init(c, &key, old_dir->i_ino, old_nm);
1362		err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, old_nm);
1363		if (err)
1364			goto out_ro;
1365
1366		ubifs_delete_orphan(c, whiteout->i_ino);
1367	} else {
1368		err = ubifs_add_dirt(c, lnum, dlen2);
1369		if (err)
1370			goto out_ro;
1371
1372		dent_key_init(c, &key, old_dir->i_ino, old_nm);
1373		err = ubifs_tnc_remove_nm(c, &key, old_nm);
1374		if (err)
1375			goto out_ro;
1376	}
1377
1378	offs += aligned_dlen2;
1379	if (new_inode) {
1380		ino_key_init(c, &key, new_inode->i_ino);
1381		err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash_new_inode);
1382		if (err)
1383			goto out_ro;
1384		offs += ALIGN(ilen, 8);
1385	}
1386
 
 
 
 
 
 
 
 
 
1387	ino_key_init(c, &key, old_dir->i_ino);
1388	err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_old_dir);
1389	if (err)
1390		goto out_ro;
1391
1392	if (move) {
1393		offs += ALIGN(plen, 8);
1394		ino_key_init(c, &key, new_dir->i_ino);
1395		err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_new_dir);
1396		if (err)
1397			goto out_ro;
1398	}
1399
1400	finish_reservation(c);
1401	if (new_inode) {
1402		mark_inode_clean(c, new_ui);
1403		spin_lock(&new_ui->ui_lock);
1404		new_ui->synced_i_size = new_ui->ui_size;
1405		spin_unlock(&new_ui->ui_lock);
1406	}
 
 
 
 
 
1407	mark_inode_clean(c, ubifs_inode(old_dir));
1408	if (move)
1409		mark_inode_clean(c, ubifs_inode(new_dir));
1410	kfree(dent);
1411	return 0;
1412
1413out_release:
1414	release_head(c, BASEHD);
1415out_ro:
1416	ubifs_ro_mode(c, err);
1417	if (last_reference)
1418		ubifs_delete_orphan(c, new_inode->i_ino);
1419out_finish:
1420	finish_reservation(c);
1421out_free:
1422	kfree(dent);
1423	return err;
1424}
1425
1426/**
1427 * truncate_data_node - re-compress/encrypt a truncated data node.
1428 * @c: UBIFS file-system description object
1429 * @inode: inode which referes to the data node
1430 * @block: data block number
1431 * @dn: data node to re-compress
1432 * @new_len: new length
 
1433 *
1434 * This function is used when an inode is truncated and the last data node of
1435 * the inode has to be re-compressed/encrypted and re-written.
1436 */
1437static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
1438			      unsigned int block, struct ubifs_data_node *dn,
1439			      int *new_len)
1440{
1441	void *buf;
1442	int err, dlen, compr_type, out_len, old_dlen;
1443
1444	out_len = le32_to_cpu(dn->size);
1445	buf = kmalloc_array(out_len, WORST_COMPR_FACTOR, GFP_NOFS);
1446	if (!buf)
1447		return -ENOMEM;
1448
1449	dlen = old_dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
 
1450	compr_type = le16_to_cpu(dn->compr_type);
1451
1452	if (ubifs_crypt_is_encrypted(inode)) {
1453		err = ubifs_decrypt(inode, dn, &dlen, block);
1454		if (err)
1455			goto out;
1456	}
1457
1458	if (compr_type == UBIFS_COMPR_NONE) {
1459		out_len = *new_len;
1460	} else {
1461		err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type);
1462		if (err)
1463			goto out;
1464
1465		ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1466	}
1467
1468	if (ubifs_crypt_is_encrypted(inode)) {
1469		err = ubifs_encrypt(inode, dn, out_len, &old_dlen, block);
1470		if (err)
1471			goto out;
1472
1473		out_len = old_dlen;
1474	} else {
1475		dn->compr_size = 0;
1476	}
1477
1478	ubifs_assert(c, out_len <= UBIFS_BLOCK_SIZE);
1479	dn->compr_type = cpu_to_le16(compr_type);
1480	dn->size = cpu_to_le32(*new_len);
1481	*new_len = UBIFS_DATA_NODE_SZ + out_len;
1482	err = 0;
1483out:
1484	kfree(buf);
1485	return err;
1486}
1487
1488/**
1489 * ubifs_jnl_truncate - update the journal for a truncation.
1490 * @c: UBIFS file-system description object
1491 * @inode: inode to truncate
1492 * @old_size: old size
1493 * @new_size: new size
1494 *
1495 * When the size of a file decreases due to truncation, a truncation node is
1496 * written, the journal tree is updated, and the last data block is re-written
1497 * if it has been affected. The inode is also updated in order to synchronize
1498 * the new inode size.
1499 *
1500 * This function marks the inode as clean and returns zero on success. In case
1501 * of failure, a negative error code is returned.
1502 */
1503int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1504		       loff_t old_size, loff_t new_size)
1505{
1506	union ubifs_key key, to_key;
1507	struct ubifs_ino_node *ino;
1508	struct ubifs_trun_node *trun;
1509	struct ubifs_data_node *uninitialized_var(dn);
1510	int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
 
1511	struct ubifs_inode *ui = ubifs_inode(inode);
1512	ino_t inum = inode->i_ino;
1513	unsigned int blk;
1514	u8 hash_ino[UBIFS_HASH_ARR_SZ];
1515	u8 hash_dn[UBIFS_HASH_ARR_SZ];
1516
1517	dbg_jnl("ino %lu, size %lld -> %lld",
1518		(unsigned long)inum, old_size, new_size);
1519	ubifs_assert(c, !ui->data_len);
1520	ubifs_assert(c, S_ISREG(inode->i_mode));
1521	ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
1522
1523	sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1524	     UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
 
 
1525
1526	sz += ubifs_auth_node_sz(c);
 
1527
1528	ino = kmalloc(sz, GFP_NOFS);
1529	if (!ino)
1530		return -ENOMEM;
1531
1532	trun = (void *)ino + UBIFS_INO_NODE_SZ;
1533	trun->ch.node_type = UBIFS_TRUN_NODE;
1534	trun->inum = cpu_to_le32(inum);
1535	trun->old_size = cpu_to_le64(old_size);
1536	trun->new_size = cpu_to_le64(new_size);
1537	zero_trun_node_unused(trun);
1538
1539	dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1540	if (dlen) {
1541		/* Get last data block so it can be truncated */
1542		dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1543		blk = new_size >> UBIFS_BLOCK_SHIFT;
1544		data_key_init(c, &key, inum, blk);
1545		dbg_jnlk(&key, "last block key ");
1546		err = ubifs_tnc_lookup(c, &key, dn);
1547		if (err == -ENOENT)
1548			dlen = 0; /* Not found (so it is a hole) */
1549		else if (err)
1550			goto out_free;
1551		else {
1552			int dn_len = le32_to_cpu(dn->size);
1553
1554			if (dn_len <= 0 || dn_len > UBIFS_BLOCK_SIZE) {
1555				ubifs_err(c, "bad data node (block %u, inode %lu)",
1556					  blk, inode->i_ino);
1557				ubifs_dump_node(c, dn);
 
1558				goto out_free;
1559			}
1560
1561			if (dn_len <= dlen)
1562				dlen = 0; /* Nothing to do */
1563			else {
1564				err = truncate_data_node(c, inode, blk, dn, &dlen);
 
1565				if (err)
1566					goto out_free;
1567			}
1568		}
1569	}
1570
1571	/* Must make reservation before allocating sequence numbers */
1572	len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1573
1574	if (ubifs_authenticated(c))
1575		len += ALIGN(dlen, 8) + ubifs_auth_node_sz(c);
1576	else
1577		len += dlen;
1578
1579	err = make_reservation(c, BASEHD, len);
1580	if (err)
1581		goto out_free;
1582
1583	pack_inode(c, ino, inode, 0);
1584	err = ubifs_node_calc_hash(c, ino, hash_ino);
1585	if (err)
1586		goto out_release;
1587
1588	ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1589	if (dlen) {
1590		ubifs_prep_grp_node(c, dn, dlen, 1);
1591		err = ubifs_node_calc_hash(c, dn, hash_dn);
1592		if (err)
1593			goto out_release;
1594	}
1595
1596	err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1597	if (err)
1598		goto out_release;
1599	if (!sync)
1600		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1601	release_head(c, BASEHD);
1602
1603	ubifs_add_auth_dirt(c, lnum);
1604
1605	if (dlen) {
1606		sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1607		err = ubifs_tnc_add(c, &key, lnum, sz, dlen, hash_dn);
1608		if (err)
1609			goto out_ro;
1610	}
1611
1612	ino_key_init(c, &key, inum);
1613	err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ, hash_ino);
1614	if (err)
1615		goto out_ro;
1616
1617	err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1618	if (err)
1619		goto out_ro;
1620
1621	bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1622	blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1623	data_key_init(c, &key, inum, blk);
1624
1625	bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1626	blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1627	data_key_init(c, &to_key, inum, blk);
1628
1629	err = ubifs_tnc_remove_range(c, &key, &to_key);
1630	if (err)
1631		goto out_ro;
1632
1633	finish_reservation(c);
1634	spin_lock(&ui->ui_lock);
1635	ui->synced_i_size = ui->ui_size;
1636	spin_unlock(&ui->ui_lock);
1637	mark_inode_clean(c, ui);
1638	kfree(ino);
1639	return 0;
1640
1641out_release:
1642	release_head(c, BASEHD);
1643out_ro:
1644	ubifs_ro_mode(c, err);
1645	finish_reservation(c);
1646out_free:
1647	kfree(ino);
1648	return err;
1649}
1650
1651
1652/**
1653 * ubifs_jnl_delete_xattr - delete an extended attribute.
1654 * @c: UBIFS file-system description object
1655 * @host: host inode
1656 * @inode: extended attribute inode
1657 * @nm: extended attribute entry name
1658 *
1659 * This function delete an extended attribute which is very similar to
1660 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1661 * updates the target inode. Returns zero in case of success and a negative
1662 * error code in case of failure.
1663 */
1664int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1665			   const struct inode *inode,
1666			   const struct fscrypt_name *nm)
1667{
1668	int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen, write_len;
1669	struct ubifs_dent_node *xent;
1670	struct ubifs_ino_node *ino;
1671	union ubifs_key xent_key, key1, key2;
1672	int sync = IS_DIRSYNC(host);
1673	struct ubifs_inode *host_ui = ubifs_inode(host);
1674	u8 hash[UBIFS_HASH_ARR_SZ];
1675
1676	ubifs_assert(c, inode->i_nlink == 0);
1677	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1678
1679	/*
1680	 * Since we are deleting the inode, we do not bother to attach any data
1681	 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1682	 */
1683	xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
1684	aligned_xlen = ALIGN(xlen, 8);
1685	hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1686	len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1687
1688	write_len = len + ubifs_auth_node_sz(c);
1689
1690	xent = kzalloc(write_len, GFP_NOFS);
1691	if (!xent)
1692		return -ENOMEM;
1693
1694	/* Make reservation before allocating sequence numbers */
1695	err = make_reservation(c, BASEHD, write_len);
1696	if (err) {
1697		kfree(xent);
1698		return err;
1699	}
1700
1701	xent->ch.node_type = UBIFS_XENT_NODE;
1702	xent_key_init(c, &xent_key, host->i_ino, nm);
1703	key_write(c, &xent_key, xent->key);
1704	xent->inum = 0;
1705	xent->type = get_dent_type(inode->i_mode);
1706	xent->nlen = cpu_to_le16(fname_len(nm));
1707	memcpy(xent->name, fname_name(nm), fname_len(nm));
1708	xent->name[fname_len(nm)] = '\0';
1709	zero_dent_node_unused(xent);
1710	ubifs_prep_grp_node(c, xent, xlen, 0);
1711
1712	ino = (void *)xent + aligned_xlen;
1713	pack_inode(c, ino, inode, 0);
1714	ino = (void *)ino + UBIFS_INO_NODE_SZ;
1715	pack_inode(c, ino, host, 1);
1716	err = ubifs_node_calc_hash(c, ino, hash);
1717	if (err)
1718		goto out_release;
1719
1720	err = write_head(c, BASEHD, xent, write_len, &lnum, &xent_offs, sync);
1721	if (!sync && !err)
1722		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1723	release_head(c, BASEHD);
1724
1725	ubifs_add_auth_dirt(c, lnum);
1726	kfree(xent);
1727	if (err)
1728		goto out_ro;
1729
1730	/* Remove the extended attribute entry from TNC */
1731	err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1732	if (err)
1733		goto out_ro;
1734	err = ubifs_add_dirt(c, lnum, xlen);
1735	if (err)
1736		goto out_ro;
1737
1738	/*
1739	 * Remove all nodes belonging to the extended attribute inode from TNC.
1740	 * Well, there actually must be only one node - the inode itself.
1741	 */
1742	lowest_ino_key(c, &key1, inode->i_ino);
1743	highest_ino_key(c, &key2, inode->i_ino);
1744	err = ubifs_tnc_remove_range(c, &key1, &key2);
1745	if (err)
1746		goto out_ro;
1747	err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1748	if (err)
1749		goto out_ro;
1750
1751	/* And update TNC with the new host inode position */
1752	ino_key_init(c, &key1, host->i_ino);
1753	err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen, hash);
1754	if (err)
1755		goto out_ro;
1756
1757	finish_reservation(c);
1758	spin_lock(&host_ui->ui_lock);
1759	host_ui->synced_i_size = host_ui->ui_size;
1760	spin_unlock(&host_ui->ui_lock);
1761	mark_inode_clean(c, host_ui);
1762	return 0;
1763
1764out_release:
1765	kfree(xent);
1766	release_head(c, BASEHD);
1767out_ro:
1768	ubifs_ro_mode(c, err);
1769	finish_reservation(c);
1770	return err;
1771}
1772
1773/**
1774 * ubifs_jnl_change_xattr - change an extended attribute.
1775 * @c: UBIFS file-system description object
1776 * @inode: extended attribute inode
1777 * @host: host inode
1778 *
1779 * This function writes the updated version of an extended attribute inode and
1780 * the host inode to the journal (to the base head). The host inode is written
1781 * after the extended attribute inode in order to guarantee that the extended
1782 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1783 * consequently, the write-buffer is synchronized. This function returns zero
1784 * in case of success and a negative error code in case of failure.
1785 */
1786int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1787			   const struct inode *host)
1788{
1789	int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1790	struct ubifs_inode *host_ui = ubifs_inode(host);
1791	struct ubifs_ino_node *ino;
1792	union ubifs_key key;
1793	int sync = IS_DIRSYNC(host);
1794	u8 hash_host[UBIFS_HASH_ARR_SZ];
1795	u8 hash[UBIFS_HASH_ARR_SZ];
1796
1797	dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1798	ubifs_assert(c, host->i_nlink > 0);
1799	ubifs_assert(c, inode->i_nlink > 0);
1800	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1801
1802	len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1803	len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1804	aligned_len1 = ALIGN(len1, 8);
1805	aligned_len = aligned_len1 + ALIGN(len2, 8);
1806
1807	aligned_len += ubifs_auth_node_sz(c);
1808
1809	ino = kzalloc(aligned_len, GFP_NOFS);
1810	if (!ino)
1811		return -ENOMEM;
1812
1813	/* Make reservation before allocating sequence numbers */
1814	err = make_reservation(c, BASEHD, aligned_len);
1815	if (err)
1816		goto out_free;
1817
1818	pack_inode(c, ino, host, 0);
1819	err = ubifs_node_calc_hash(c, ino, hash_host);
1820	if (err)
1821		goto out_release;
1822	pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1823	err = ubifs_node_calc_hash(c, (void *)ino + aligned_len1, hash);
1824	if (err)
1825		goto out_release;
1826
1827	err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1828	if (!sync && !err) {
1829		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1830
1831		ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1832		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1833	}
1834	release_head(c, BASEHD);
1835	if (err)
1836		goto out_ro;
1837
1838	ubifs_add_auth_dirt(c, lnum);
1839
1840	ino_key_init(c, &key, host->i_ino);
1841	err = ubifs_tnc_add(c, &key, lnum, offs, len1, hash_host);
1842	if (err)
1843		goto out_ro;
1844
1845	ino_key_init(c, &key, inode->i_ino);
1846	err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2, hash);
1847	if (err)
1848		goto out_ro;
1849
1850	finish_reservation(c);
1851	spin_lock(&host_ui->ui_lock);
1852	host_ui->synced_i_size = host_ui->ui_size;
1853	spin_unlock(&host_ui->ui_lock);
1854	mark_inode_clean(c, host_ui);
1855	kfree(ino);
1856	return 0;
1857
1858out_release:
1859	release_head(c, BASEHD);
1860out_ro:
1861	ubifs_ro_mode(c, err);
1862	finish_reservation(c);
1863out_free:
1864	kfree(ino);
1865	return err;
1866}
1867
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Artem Bityutskiy (Битюцкий Артём)
   8 *          Adrian Hunter
   9 */
  10
  11/*
  12 * This file implements UBIFS journal.
  13 *
  14 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
  15 * length and position, while a bud logical eraseblock is any LEB in the main
  16 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
  17 * contains only references to buds and some other stuff like commit
  18 * start node. The idea is that when we commit the journal, we do
  19 * not copy the data, the buds just become indexed. Since after the commit the
  20 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
  21 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
  22 * become leafs in the future.
  23 *
  24 * The journal is multi-headed because we want to write data to the journal as
  25 * optimally as possible. It is nice to have nodes belonging to the same inode
  26 * in one LEB, so we may write data owned by different inodes to different
  27 * journal heads, although at present only one data head is used.
  28 *
  29 * For recovery reasons, the base head contains all inode nodes, all directory
  30 * entry nodes and all truncate nodes. This means that the other heads contain
  31 * only data nodes.
  32 *
  33 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
  34 * time of commit, the bud is retained to continue to be used in the journal,
  35 * even though the "front" of the LEB is now indexed. In that case, the log
  36 * reference contains the offset where the bud starts for the purposes of the
  37 * journal.
  38 *
  39 * The journal size has to be limited, because the larger is the journal, the
  40 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
  41 * takes (indexing in the TNC).
  42 *
  43 * All the journal write operations like 'ubifs_jnl_update()' here, which write
  44 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
  45 * unclean reboots. Should the unclean reboot happen, the recovery code drops
  46 * all the nodes.
  47 */
  48
  49#include "ubifs.h"
  50
  51/**
  52 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
  53 * @ino: the inode to zero out
  54 */
  55static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
  56{
  57	memset(ino->padding1, 0, 4);
  58	memset(ino->padding2, 0, 26);
  59}
  60
  61/**
  62 * zero_dent_node_unused - zero out unused fields of an on-flash directory
  63 *                         entry node.
  64 * @dent: the directory entry to zero out
  65 */
  66static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
  67{
  68	dent->padding1 = 0;
  69}
  70
  71/**
  72 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
  73 *                         node.
  74 * @trun: the truncation node to zero out
  75 */
  76static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
  77{
  78	memset(trun->padding, 0, 12);
  79}
  80
  81static void ubifs_add_auth_dirt(struct ubifs_info *c, int lnum)
  82{
  83	if (ubifs_authenticated(c))
  84		ubifs_add_dirt(c, lnum, ubifs_auth_node_sz(c));
  85}
  86
  87/**
  88 * reserve_space - reserve space in the journal.
  89 * @c: UBIFS file-system description object
  90 * @jhead: journal head number
  91 * @len: node length
  92 *
  93 * This function reserves space in journal head @head. If the reservation
  94 * succeeded, the journal head stays locked and later has to be unlocked using
  95 * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to
  96 * be done, and other negative error codes in case of other failures.
  97 */
  98static int reserve_space(struct ubifs_info *c, int jhead, int len)
  99{
 100	int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
 101	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
 102
 103	/*
 104	 * Typically, the base head has smaller nodes written to it, so it is
 105	 * better to try to allocate space at the ends of eraseblocks. This is
 106	 * what the squeeze parameter does.
 107	 */
 108	ubifs_assert(c, !c->ro_media && !c->ro_mount);
 109	squeeze = (jhead == BASEHD);
 110again:
 111	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 112
 113	if (c->ro_error) {
 114		err = -EROFS;
 115		goto out_unlock;
 116	}
 117
 118	avail = c->leb_size - wbuf->offs - wbuf->used;
 119	if (wbuf->lnum != -1 && avail >= len)
 120		return 0;
 121
 122	/*
 123	 * Write buffer wasn't seek'ed or there is no enough space - look for an
 124	 * LEB with some empty space.
 125	 */
 126	lnum = ubifs_find_free_space(c, len, &offs, squeeze);
 127	if (lnum >= 0)
 128		goto out;
 129
 130	err = lnum;
 131	if (err != -ENOSPC)
 132		goto out_unlock;
 133
 134	/*
 135	 * No free space, we have to run garbage collector to make
 136	 * some. But the write-buffer mutex has to be unlocked because
 137	 * GC also takes it.
 138	 */
 139	dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
 140	mutex_unlock(&wbuf->io_mutex);
 141
 142	lnum = ubifs_garbage_collect(c, 0);
 143	if (lnum < 0) {
 144		err = lnum;
 145		if (err != -ENOSPC)
 146			return err;
 147
 148		/*
 149		 * GC could not make a free LEB. But someone else may
 150		 * have allocated new bud for this journal head,
 151		 * because we dropped @wbuf->io_mutex, so try once
 152		 * again.
 153		 */
 154		dbg_jnl("GC couldn't make a free LEB for jhead %s",
 155			dbg_jhead(jhead));
 156		if (retries++ < 2) {
 157			dbg_jnl("retry (%d)", retries);
 158			goto again;
 159		}
 160
 161		dbg_jnl("return -ENOSPC");
 162		return err;
 163	}
 164
 165	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 166	dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
 167	avail = c->leb_size - wbuf->offs - wbuf->used;
 168
 169	if (wbuf->lnum != -1 && avail >= len) {
 170		/*
 171		 * Someone else has switched the journal head and we have
 172		 * enough space now. This happens when more than one process is
 173		 * trying to write to the same journal head at the same time.
 174		 */
 175		dbg_jnl("return LEB %d back, already have LEB %d:%d",
 176			lnum, wbuf->lnum, wbuf->offs + wbuf->used);
 177		err = ubifs_return_leb(c, lnum);
 178		if (err)
 179			goto out_unlock;
 180		return 0;
 181	}
 182
 183	offs = 0;
 184
 185out:
 186	/*
 187	 * Make sure we synchronize the write-buffer before we add the new bud
 188	 * to the log. Otherwise we may have a power cut after the log
 189	 * reference node for the last bud (@lnum) is written but before the
 190	 * write-buffer data are written to the next-to-last bud
 191	 * (@wbuf->lnum). And the effect would be that the recovery would see
 192	 * that there is corruption in the next-to-last bud.
 193	 */
 194	err = ubifs_wbuf_sync_nolock(wbuf);
 195	if (err)
 196		goto out_return;
 197	err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
 198	if (err)
 199		goto out_return;
 200	err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
 201	if (err)
 202		goto out_unlock;
 203
 204	return 0;
 205
 206out_unlock:
 207	mutex_unlock(&wbuf->io_mutex);
 208	return err;
 209
 210out_return:
 211	/* An error occurred and the LEB has to be returned to lprops */
 212	ubifs_assert(c, err < 0);
 213	err1 = ubifs_return_leb(c, lnum);
 214	if (err1 && err == -EAGAIN)
 215		/*
 216		 * Return original error code only if it is not %-EAGAIN,
 217		 * which is not really an error. Otherwise, return the error
 218		 * code of 'ubifs_return_leb()'.
 219		 */
 220		err = err1;
 221	mutex_unlock(&wbuf->io_mutex);
 222	return err;
 223}
 224
 225static int ubifs_hash_nodes(struct ubifs_info *c, void *node,
 226			     int len, struct shash_desc *hash)
 227{
 228	int auth_node_size = ubifs_auth_node_sz(c);
 229	int err;
 230
 231	while (1) {
 232		const struct ubifs_ch *ch = node;
 233		int nodelen = le32_to_cpu(ch->len);
 234
 235		ubifs_assert(c, len >= auth_node_size);
 236
 237		if (len == auth_node_size)
 238			break;
 239
 240		ubifs_assert(c, len > nodelen);
 241		ubifs_assert(c, ch->magic == cpu_to_le32(UBIFS_NODE_MAGIC));
 242
 243		err = ubifs_shash_update(c, hash, (void *)node, nodelen);
 244		if (err)
 245			return err;
 246
 247		node += ALIGN(nodelen, 8);
 248		len -= ALIGN(nodelen, 8);
 249	}
 250
 251	return ubifs_prepare_auth_node(c, node, hash);
 252}
 253
 254/**
 255 * write_head - write data to a journal head.
 256 * @c: UBIFS file-system description object
 257 * @jhead: journal head
 258 * @buf: buffer to write
 259 * @len: length to write
 260 * @lnum: LEB number written is returned here
 261 * @offs: offset written is returned here
 262 * @sync: non-zero if the write-buffer has to by synchronized
 263 *
 264 * This function writes data to the reserved space of journal head @jhead.
 265 * Returns zero in case of success and a negative error code in case of
 266 * failure.
 267 */
 268static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
 269		      int *lnum, int *offs, int sync)
 270{
 271	int err;
 272	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
 273
 274	ubifs_assert(c, jhead != GCHD);
 275
 276	*lnum = c->jheads[jhead].wbuf.lnum;
 277	*offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
 278	dbg_jnl("jhead %s, LEB %d:%d, len %d",
 279		dbg_jhead(jhead), *lnum, *offs, len);
 280
 281	if (ubifs_authenticated(c)) {
 282		err = ubifs_hash_nodes(c, buf, len, c->jheads[jhead].log_hash);
 283		if (err)
 284			return err;
 285	}
 286
 287	err = ubifs_wbuf_write_nolock(wbuf, buf, len);
 288	if (err)
 289		return err;
 290	if (sync)
 291		err = ubifs_wbuf_sync_nolock(wbuf);
 292	return err;
 293}
 294
 295/**
 296 * __queue_and_wait - queue a task and wait until the task is waked up.
 297 * @c: UBIFS file-system description object
 298 *
 299 * This function adds current task in queue and waits until the task is waked
 300 * up. This function should be called with @c->reserve_space_wq locked.
 301 */
 302static void __queue_and_wait(struct ubifs_info *c)
 303{
 304	DEFINE_WAIT(wait);
 305
 306	__add_wait_queue_entry_tail_exclusive(&c->reserve_space_wq, &wait);
 307	set_current_state(TASK_UNINTERRUPTIBLE);
 308	spin_unlock(&c->reserve_space_wq.lock);
 309
 310	schedule();
 311	finish_wait(&c->reserve_space_wq, &wait);
 312}
 313
 314/**
 315 * wait_for_reservation - try queuing current task to wait until waked up.
 316 * @c: UBIFS file-system description object
 317 *
 318 * This function queues current task to wait until waked up, if queuing is
 319 * started(@c->need_wait_space is not %0). Returns %true if current task is
 320 * added in queue, otherwise %false is returned.
 321 */
 322static bool wait_for_reservation(struct ubifs_info *c)
 323{
 324	if (likely(atomic_read(&c->need_wait_space) == 0))
 325		/* Quick path to check whether queuing is started. */
 326		return false;
 327
 328	spin_lock(&c->reserve_space_wq.lock);
 329	if (atomic_read(&c->need_wait_space) == 0) {
 330		/* Queuing is not started, don't queue current task. */
 331		spin_unlock(&c->reserve_space_wq.lock);
 332		return false;
 333	}
 334
 335	__queue_and_wait(c);
 336	return true;
 337}
 338
 339/**
 340 * wake_up_reservation - wake up first task in queue or stop queuing.
 341 * @c: UBIFS file-system description object
 342 *
 343 * This function wakes up the first task in queue if it exists, or stops
 344 * queuing if no tasks in queue.
 345 */
 346static void wake_up_reservation(struct ubifs_info *c)
 347{
 348	spin_lock(&c->reserve_space_wq.lock);
 349	if (waitqueue_active(&c->reserve_space_wq))
 350		wake_up_locked(&c->reserve_space_wq);
 351	else
 352		/*
 353		 * Compared with wait_for_reservation(), set @c->need_wait_space
 354		 * under the protection of wait queue lock, which can avoid that
 355		 * @c->need_wait_space is set to 0 after new task queued.
 356		 */
 357		atomic_set(&c->need_wait_space, 0);
 358	spin_unlock(&c->reserve_space_wq.lock);
 359}
 360
 361/**
 362 * wake_up_reservation - add current task in queue or start queuing.
 363 * @c: UBIFS file-system description object
 364 *
 365 * This function starts queuing if queuing is not started, otherwise adds
 366 * current task in queue.
 367 */
 368static void add_or_start_queue(struct ubifs_info *c)
 369{
 370	spin_lock(&c->reserve_space_wq.lock);
 371	if (atomic_cmpxchg(&c->need_wait_space, 0, 1) == 0) {
 372		/* Starts queuing, task can go on directly. */
 373		spin_unlock(&c->reserve_space_wq.lock);
 374		return;
 375	}
 376
 377	/*
 378	 * There are at least two tasks have retried more than 32 times
 379	 * at certain point, first task has started queuing, just queue
 380	 * the left tasks.
 381	 */
 382	__queue_and_wait(c);
 383}
 384
 385/**
 386 * make_reservation - reserve journal space.
 387 * @c: UBIFS file-system description object
 388 * @jhead: journal head
 389 * @len: how many bytes to reserve
 390 *
 391 * This function makes space reservation in journal head @jhead. The function
 392 * takes the commit lock and locks the journal head, and the caller has to
 393 * unlock the head and finish the reservation with 'finish_reservation()'.
 394 * Returns zero in case of success and a negative error code in case of
 395 * failure.
 396 *
 397 * Note, the journal head may be unlocked as soon as the data is written, while
 398 * the commit lock has to be released after the data has been added to the
 399 * TNC.
 400 */
 401static int make_reservation(struct ubifs_info *c, int jhead, int len)
 402{
 403	int err, cmt_retries = 0, nospc_retries = 0;
 404	bool blocked = wait_for_reservation(c);
 405
 406again:
 407	down_read(&c->commit_sem);
 408	err = reserve_space(c, jhead, len);
 409	if (!err) {
 410		/* c->commit_sem will get released via finish_reservation(). */
 411		goto out_wake_up;
 412	}
 413	up_read(&c->commit_sem);
 414
 415	if (err == -ENOSPC) {
 416		/*
 417		 * GC could not make any progress. We should try to commit
 418		 * because it could make some dirty space and GC would make
 419		 * progress, so make the error -EAGAIN so that the below
 420		 * will commit and re-try.
 421		 */
 422		nospc_retries++;
 423		dbg_jnl("no space, retry");
 424		err = -EAGAIN;
 
 
 
 
 
 
 
 
 425	}
 426
 427	if (err != -EAGAIN)
 428		goto out;
 429
 430	/*
 431	 * -EAGAIN means that the journal is full or too large, or the above
 432	 * code wants to do one commit. Do this and re-try.
 433	 */
 434	if (cmt_retries > 128) {
 435		/*
 436		 * This should not happen unless:
 437		 * 1. The journal size limitations are too tough.
 438		 * 2. The budgeting is incorrect. We always have to be able to
 439		 *    write to the media, because all operations are budgeted.
 440		 *    Deletions are not budgeted, though, but we reserve an
 441		 *    extra LEB for them.
 442		 */
 443		ubifs_err(c, "stuck in space allocation, nospc_retries %d",
 444			  nospc_retries);
 445		err = -ENOSPC;
 446		goto out;
 447	} else if (cmt_retries > 32) {
 448		/*
 449		 * It's almost impossible to happen, unless there are many tasks
 450		 * making reservation concurrently and someone task has retried
 451		 * gc + commit for many times, generated available space during
 452		 * this period are grabbed by other tasks.
 453		 * But if it happens, start queuing up all tasks that will make
 454		 * space reservation, then there is only one task making space
 455		 * reservation at any time, and it can always make success under
 456		 * the premise of correct budgeting.
 457		 */
 458		ubifs_warn(c, "too many space allocation cmt_retries (%d) "
 459			   "nospc_retries (%d), start queuing tasks",
 460			   cmt_retries, nospc_retries);
 461
 462		if (!blocked) {
 463			blocked = true;
 464			add_or_start_queue(c);
 465		}
 466	}
 467
 468	dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
 469		cmt_retries);
 470	cmt_retries += 1;
 471
 472	err = ubifs_run_commit(c);
 473	if (err)
 474		goto out_wake_up;
 475	goto again;
 476
 477out:
 478	ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
 479		  len, jhead, err);
 480	if (err == -ENOSPC) {
 481		/* This are some budgeting problems, print useful information */
 482		down_write(&c->commit_sem);
 483		dump_stack();
 484		ubifs_dump_budg(c, &c->bi);
 485		ubifs_dump_lprops(c);
 486		cmt_retries = dbg_check_lprops(c);
 487		up_write(&c->commit_sem);
 488	}
 489out_wake_up:
 490	if (blocked) {
 491		/*
 492		 * Only tasks that have ever started queuing or ever been queued
 493		 * can wake up other queued tasks, which can make sure that
 494		 * there is only one task waked up to make space reservation.
 495		 * For example:
 496		 *      task A          task B           task C
 497		 *                 make_reservation  make_reservation
 498		 * reserve_space // 0
 499		 * wake_up_reservation
 500		 *                  atomic_cmpxchg // 0, start queuing
 501		 *                  reserve_space
 502		 *                                    wait_for_reservation
 503		 *                                     __queue_and_wait
 504		 *                                      add_wait_queue
 505		 *  if (blocked) // false
 506		 *  // So that task C won't be waked up to race with task B
 507		 */
 508		wake_up_reservation(c);
 509	}
 510	return err;
 511}
 512
 513/**
 514 * release_head - release a journal head.
 515 * @c: UBIFS file-system description object
 516 * @jhead: journal head
 517 *
 518 * This function releases journal head @jhead which was locked by
 519 * the 'make_reservation()' function. It has to be called after each successful
 520 * 'make_reservation()' invocation.
 521 */
 522static inline void release_head(struct ubifs_info *c, int jhead)
 523{
 524	mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
 525}
 526
 527/**
 528 * finish_reservation - finish a reservation.
 529 * @c: UBIFS file-system description object
 530 *
 531 * This function finishes journal space reservation. It must be called after
 532 * 'make_reservation()'.
 533 */
 534static void finish_reservation(struct ubifs_info *c)
 535{
 536	up_read(&c->commit_sem);
 537}
 538
 539/**
 540 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
 541 * @mode: inode mode
 542 */
 543static int get_dent_type(int mode)
 544{
 545	switch (mode & S_IFMT) {
 546	case S_IFREG:
 547		return UBIFS_ITYPE_REG;
 548	case S_IFDIR:
 549		return UBIFS_ITYPE_DIR;
 550	case S_IFLNK:
 551		return UBIFS_ITYPE_LNK;
 552	case S_IFBLK:
 553		return UBIFS_ITYPE_BLK;
 554	case S_IFCHR:
 555		return UBIFS_ITYPE_CHR;
 556	case S_IFIFO:
 557		return UBIFS_ITYPE_FIFO;
 558	case S_IFSOCK:
 559		return UBIFS_ITYPE_SOCK;
 560	default:
 561		BUG();
 562	}
 563	return 0;
 564}
 565
 566/**
 567 * pack_inode - pack an inode node.
 568 * @c: UBIFS file-system description object
 569 * @ino: buffer in which to pack inode node
 570 * @inode: inode to pack
 571 * @last: indicates the last node of the group
 572 */
 573static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
 574		       const struct inode *inode, int last)
 575{
 576	int data_len = 0, last_reference = !inode->i_nlink;
 577	struct ubifs_inode *ui = ubifs_inode(inode);
 578
 579	ino->ch.node_type = UBIFS_INO_NODE;
 580	ino_key_init_flash(c, &ino->key, inode->i_ino);
 581	ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
 582	ino->atime_sec  = cpu_to_le64(inode_get_atime_sec(inode));
 583	ino->atime_nsec = cpu_to_le32(inode_get_atime_nsec(inode));
 584	ino->ctime_sec  = cpu_to_le64(inode_get_ctime_sec(inode));
 585	ino->ctime_nsec = cpu_to_le32(inode_get_ctime_nsec(inode));
 586	ino->mtime_sec  = cpu_to_le64(inode_get_mtime_sec(inode));
 587	ino->mtime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode));
 588	ino->uid   = cpu_to_le32(i_uid_read(inode));
 589	ino->gid   = cpu_to_le32(i_gid_read(inode));
 590	ino->mode  = cpu_to_le32(inode->i_mode);
 591	ino->flags = cpu_to_le32(ui->flags);
 592	ino->size  = cpu_to_le64(ui->ui_size);
 593	ino->nlink = cpu_to_le32(inode->i_nlink);
 594	ino->compr_type  = cpu_to_le16(ui->compr_type);
 595	ino->data_len    = cpu_to_le32(ui->data_len);
 596	ino->xattr_cnt   = cpu_to_le32(ui->xattr_cnt);
 597	ino->xattr_size  = cpu_to_le32(ui->xattr_size);
 598	ino->xattr_names = cpu_to_le32(ui->xattr_names);
 599	zero_ino_node_unused(ino);
 600
 601	/*
 602	 * Drop the attached data if this is a deletion inode, the data is not
 603	 * needed anymore.
 604	 */
 605	if (!last_reference) {
 606		memcpy(ino->data, ui->data, ui->data_len);
 607		data_len = ui->data_len;
 608	}
 609
 610	ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
 611}
 612
 613/**
 614 * mark_inode_clean - mark UBIFS inode as clean.
 615 * @c: UBIFS file-system description object
 616 * @ui: UBIFS inode to mark as clean
 617 *
 618 * This helper function marks UBIFS inode @ui as clean by cleaning the
 619 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
 620 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
 621 * just do nothing.
 622 */
 623static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
 624{
 625	if (ui->dirty)
 626		ubifs_release_dirty_inode_budget(c, ui);
 627	ui->dirty = 0;
 628}
 629
 630static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent)
 631{
 632	if (c->double_hash)
 633		dent->cookie = (__force __le32) get_random_u32();
 634	else
 635		dent->cookie = 0;
 636}
 637
 638/**
 639 * ubifs_jnl_update - update inode.
 640 * @c: UBIFS file-system description object
 641 * @dir: parent inode or host inode in case of extended attributes
 642 * @nm: directory entry name
 643 * @inode: inode to update
 644 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
 645 * @xent: non-zero if the directory entry is an extended attribute entry
 646 *
 647 * This function updates an inode by writing a directory entry (or extended
 648 * attribute entry), the inode itself, and the parent directory inode (or the
 649 * host inode) to the journal.
 650 *
 651 * The function writes the host inode @dir last, which is important in case of
 652 * extended attributes. Indeed, then we guarantee that if the host inode gets
 653 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
 654 * the extended attribute inode gets flushed too. And this is exactly what the
 655 * user expects - synchronizing the host inode synchronizes its extended
 656 * attributes. Similarly, this guarantees that if @dir is synchronized, its
 657 * directory entry corresponding to @nm gets synchronized too.
 658 *
 659 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
 660 * function synchronizes the write-buffer.
 661 *
 662 * This function marks the @dir and @inode inodes as clean and returns zero on
 663 * success. In case of failure, a negative error code is returned.
 664 */
 665int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
 666		     const struct fscrypt_name *nm, const struct inode *inode,
 667		     int deletion, int xent)
 668{
 669	int err, dlen, ilen, len, lnum, ino_offs, dent_offs, orphan_added = 0;
 670	int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
 671	int last_reference = !!(deletion && inode->i_nlink == 0);
 672	struct ubifs_inode *ui = ubifs_inode(inode);
 673	struct ubifs_inode *host_ui = ubifs_inode(dir);
 674	struct ubifs_dent_node *dent;
 675	struct ubifs_ino_node *ino;
 676	union ubifs_key dent_key, ino_key;
 677	u8 hash_dent[UBIFS_HASH_ARR_SZ];
 678	u8 hash_ino[UBIFS_HASH_ARR_SZ];
 679	u8 hash_ino_host[UBIFS_HASH_ARR_SZ];
 680
 681	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
 682
 683	dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
 684	ilen = UBIFS_INO_NODE_SZ;
 685
 686	/*
 687	 * If the last reference to the inode is being deleted, then there is
 688	 * no need to attach and write inode data, it is being deleted anyway.
 689	 * And if the inode is being deleted, no need to synchronize
 690	 * write-buffer even if the inode is synchronous.
 691	 */
 692	if (!last_reference) {
 693		ilen += ui->data_len;
 694		sync |= IS_SYNC(inode);
 695	}
 696
 697	aligned_dlen = ALIGN(dlen, 8);
 698	aligned_ilen = ALIGN(ilen, 8);
 699
 700	len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
 701	/* Make sure to also account for extended attributes */
 702	if (ubifs_authenticated(c))
 703		len += ALIGN(host_ui->data_len, 8) + ubifs_auth_node_sz(c);
 704	else
 705		len += host_ui->data_len;
 706
 707	dent = kzalloc(len, GFP_NOFS);
 708	if (!dent)
 709		return -ENOMEM;
 710
 711	/* Make reservation before allocating sequence numbers */
 712	err = make_reservation(c, BASEHD, len);
 713	if (err)
 714		goto out_free;
 715
 716	if (!xent) {
 717		dent->ch.node_type = UBIFS_DENT_NODE;
 718		if (fname_name(nm) == NULL)
 719			dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash);
 720		else
 721			dent_key_init(c, &dent_key, dir->i_ino, nm);
 722	} else {
 723		dent->ch.node_type = UBIFS_XENT_NODE;
 724		xent_key_init(c, &dent_key, dir->i_ino, nm);
 725	}
 726
 727	key_write(c, &dent_key, dent->key);
 728	dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
 729	dent->type = get_dent_type(inode->i_mode);
 730	dent->nlen = cpu_to_le16(fname_len(nm));
 731	memcpy(dent->name, fname_name(nm), fname_len(nm));
 732	dent->name[fname_len(nm)] = '\0';
 733	set_dent_cookie(c, dent);
 734
 735	zero_dent_node_unused(dent);
 736	ubifs_prep_grp_node(c, dent, dlen, 0);
 737	err = ubifs_node_calc_hash(c, dent, hash_dent);
 738	if (err)
 739		goto out_release;
 740
 741	ino = (void *)dent + aligned_dlen;
 742	pack_inode(c, ino, inode, 0);
 743	err = ubifs_node_calc_hash(c, ino, hash_ino);
 744	if (err)
 745		goto out_release;
 746
 747	ino = (void *)ino + aligned_ilen;
 748	pack_inode(c, ino, dir, 1);
 749	err = ubifs_node_calc_hash(c, ino, hash_ino_host);
 750	if (err)
 751		goto out_release;
 752
 753	if (last_reference) {
 754		err = ubifs_add_orphan(c, inode->i_ino);
 755		if (err) {
 756			release_head(c, BASEHD);
 757			goto out_finish;
 758		}
 759		ui->del_cmtno = c->cmt_no;
 760		orphan_added = 1;
 761	}
 762
 763	err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
 764	if (err)
 765		goto out_release;
 766	if (!sync) {
 767		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
 768
 769		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
 770		ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
 771	}
 772	release_head(c, BASEHD);
 773	kfree(dent);
 774	ubifs_add_auth_dirt(c, lnum);
 775
 776	if (deletion) {
 777		if (fname_name(nm) == NULL)
 778			err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash);
 779		else
 780			err = ubifs_tnc_remove_nm(c, &dent_key, nm);
 781		if (err)
 782			goto out_ro;
 783		err = ubifs_add_dirt(c, lnum, dlen);
 784	} else
 785		err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen,
 786				       hash_dent, nm);
 787	if (err)
 788		goto out_ro;
 789
 790	/*
 791	 * Note, we do not remove the inode from TNC even if the last reference
 792	 * to it has just been deleted, because the inode may still be opened.
 793	 * Instead, the inode has been added to orphan lists and the orphan
 794	 * subsystem will take further care about it.
 795	 */
 796	ino_key_init(c, &ino_key, inode->i_ino);
 797	ino_offs = dent_offs + aligned_dlen;
 798	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen, hash_ino);
 799	if (err)
 800		goto out_ro;
 801
 802	ino_key_init(c, &ino_key, dir->i_ino);
 803	ino_offs += aligned_ilen;
 804	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
 805			    UBIFS_INO_NODE_SZ + host_ui->data_len, hash_ino_host);
 806	if (err)
 807		goto out_ro;
 808
 809	finish_reservation(c);
 810	spin_lock(&ui->ui_lock);
 811	ui->synced_i_size = ui->ui_size;
 812	spin_unlock(&ui->ui_lock);
 813	if (xent) {
 814		spin_lock(&host_ui->ui_lock);
 815		host_ui->synced_i_size = host_ui->ui_size;
 816		spin_unlock(&host_ui->ui_lock);
 817	}
 818	mark_inode_clean(c, ui);
 819	mark_inode_clean(c, host_ui);
 820	return 0;
 821
 822out_finish:
 823	finish_reservation(c);
 824out_free:
 825	kfree(dent);
 826	return err;
 827
 828out_release:
 829	release_head(c, BASEHD);
 830	kfree(dent);
 831out_ro:
 832	ubifs_ro_mode(c, err);
 833	if (orphan_added)
 834		ubifs_delete_orphan(c, inode->i_ino);
 835	finish_reservation(c);
 836	return err;
 837}
 838
 839/**
 840 * ubifs_jnl_write_data - write a data node to the journal.
 841 * @c: UBIFS file-system description object
 842 * @inode: inode the data node belongs to
 843 * @key: node key
 844 * @buf: buffer to write
 845 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
 846 *
 847 * This function writes a data node to the journal. Returns %0 if the data node
 848 * was successfully written, and a negative error code in case of failure.
 849 */
 850int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
 851			 const union ubifs_key *key, const void *buf, int len)
 852{
 853	struct ubifs_data_node *data;
 854	int err, lnum, offs, compr_type, out_len, compr_len, auth_len;
 855	int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
 856	int write_len;
 857	struct ubifs_inode *ui = ubifs_inode(inode);
 858	bool encrypted = IS_ENCRYPTED(inode);
 859	u8 hash[UBIFS_HASH_ARR_SZ];
 860
 861	dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
 862		(unsigned long)key_inum(c, key), key_block(c, key), len);
 863	ubifs_assert(c, len <= UBIFS_BLOCK_SIZE);
 864
 865	if (encrypted)
 866		dlen += UBIFS_CIPHER_BLOCK_SIZE;
 867
 868	auth_len = ubifs_auth_node_sz(c);
 869
 870	data = kmalloc(dlen + auth_len, GFP_NOFS | __GFP_NOWARN);
 871	if (!data) {
 872		/*
 873		 * Fall-back to the write reserve buffer. Note, we might be
 874		 * currently on the memory reclaim path, when the kernel is
 875		 * trying to free some memory by writing out dirty pages. The
 876		 * write reserve buffer helps us to guarantee that we are
 877		 * always able to write the data.
 878		 */
 879		allocated = 0;
 880		mutex_lock(&c->write_reserve_mutex);
 881		data = c->write_reserve_buf;
 882	}
 883
 884	data->ch.node_type = UBIFS_DATA_NODE;
 885	key_write(c, key, &data->key);
 886	data->size = cpu_to_le32(len);
 887
 888	if (!(ui->flags & UBIFS_COMPR_FL))
 889		/* Compression is disabled for this inode */
 890		compr_type = UBIFS_COMPR_NONE;
 891	else
 892		compr_type = ui->compr_type;
 893
 894	out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
 895	ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type);
 896	ubifs_assert(c, compr_len <= UBIFS_BLOCK_SIZE);
 897
 898	if (encrypted) {
 899		err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key));
 900		if (err)
 901			goto out_free;
 902
 903	} else {
 904		data->compr_size = 0;
 905		out_len = compr_len;
 906	}
 907
 908	dlen = UBIFS_DATA_NODE_SZ + out_len;
 909	if (ubifs_authenticated(c))
 910		write_len = ALIGN(dlen, 8) + auth_len;
 911	else
 912		write_len = dlen;
 913
 914	data->compr_type = cpu_to_le16(compr_type);
 915
 916	/* Make reservation before allocating sequence numbers */
 917	err = make_reservation(c, DATAHD, write_len);
 918	if (err)
 919		goto out_free;
 920
 921	ubifs_prepare_node(c, data, dlen, 0);
 922	err = write_head(c, DATAHD, data, write_len, &lnum, &offs, 0);
 923	if (err)
 924		goto out_release;
 925
 926	err = ubifs_node_calc_hash(c, data, hash);
 927	if (err)
 928		goto out_release;
 929
 930	ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
 931	release_head(c, DATAHD);
 932
 933	ubifs_add_auth_dirt(c, lnum);
 934
 935	err = ubifs_tnc_add(c, key, lnum, offs, dlen, hash);
 936	if (err)
 937		goto out_ro;
 938
 939	finish_reservation(c);
 940	if (!allocated)
 941		mutex_unlock(&c->write_reserve_mutex);
 942	else
 943		kfree(data);
 944	return 0;
 945
 946out_release:
 947	release_head(c, DATAHD);
 948out_ro:
 949	ubifs_ro_mode(c, err);
 950	finish_reservation(c);
 951out_free:
 952	if (!allocated)
 953		mutex_unlock(&c->write_reserve_mutex);
 954	else
 955		kfree(data);
 956	return err;
 957}
 958
 959/**
 960 * ubifs_jnl_write_inode - flush inode to the journal.
 961 * @c: UBIFS file-system description object
 962 * @inode: inode to flush
 963 *
 964 * This function writes inode @inode to the journal. If the inode is
 965 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
 966 * success and a negative error code in case of failure.
 967 */
 968int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
 969{
 970	int err, lnum, offs;
 971	struct ubifs_ino_node *ino, *ino_start;
 972	struct ubifs_inode *ui = ubifs_inode(inode);
 973	int sync = 0, write_len = 0, ilen = UBIFS_INO_NODE_SZ;
 974	int last_reference = !inode->i_nlink;
 975	int kill_xattrs = ui->xattr_cnt && last_reference;
 976	u8 hash[UBIFS_HASH_ARR_SZ];
 977
 978	dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
 979
 980	/*
 981	 * If the inode is being deleted, do not write the attached data. No
 982	 * need to synchronize the write-buffer either.
 983	 */
 984	if (!last_reference) {
 985		ilen += ui->data_len;
 986		sync = IS_SYNC(inode);
 987	} else if (kill_xattrs) {
 988		write_len += UBIFS_INO_NODE_SZ * ui->xattr_cnt;
 989	}
 990
 991	if (ubifs_authenticated(c))
 992		write_len += ALIGN(ilen, 8) + ubifs_auth_node_sz(c);
 993	else
 994		write_len += ilen;
 995
 996	ino_start = ino = kmalloc(write_len, GFP_NOFS);
 997	if (!ino)
 998		return -ENOMEM;
 999
1000	/* Make reservation before allocating sequence numbers */
1001	err = make_reservation(c, BASEHD, write_len);
1002	if (err)
1003		goto out_free;
1004
1005	if (kill_xattrs) {
1006		union ubifs_key key;
1007		struct fscrypt_name nm = {0};
1008		struct inode *xino;
1009		struct ubifs_dent_node *xent, *pxent = NULL;
1010
1011		if (ui->xattr_cnt > ubifs_xattr_max_cnt(c)) {
1012			err = -EPERM;
1013			ubifs_err(c, "Cannot delete inode, it has too much xattrs!");
1014			goto out_release;
1015		}
1016
1017		lowest_xent_key(c, &key, inode->i_ino);
1018		while (1) {
1019			xent = ubifs_tnc_next_ent(c, &key, &nm);
1020			if (IS_ERR(xent)) {
1021				err = PTR_ERR(xent);
1022				if (err == -ENOENT)
1023					break;
1024
1025				kfree(pxent);
1026				goto out_release;
1027			}
1028
1029			fname_name(&nm) = xent->name;
1030			fname_len(&nm) = le16_to_cpu(xent->nlen);
1031
1032			xino = ubifs_iget(c->vfs_sb, le64_to_cpu(xent->inum));
1033			if (IS_ERR(xino)) {
1034				err = PTR_ERR(xino);
1035				ubifs_err(c, "dead directory entry '%s', error %d",
1036					  xent->name, err);
1037				ubifs_ro_mode(c, err);
1038				kfree(pxent);
1039				kfree(xent);
1040				goto out_release;
1041			}
1042			ubifs_assert(c, ubifs_inode(xino)->xattr);
1043
1044			clear_nlink(xino);
1045			pack_inode(c, ino, xino, 0);
1046			ino = (void *)ino + UBIFS_INO_NODE_SZ;
1047			iput(xino);
1048
1049			kfree(pxent);
1050			pxent = xent;
1051			key_read(c, &xent->key, &key);
1052		}
1053		kfree(pxent);
1054	}
1055
1056	pack_inode(c, ino, inode, 1);
1057	err = ubifs_node_calc_hash(c, ino, hash);
1058	if (err)
1059		goto out_release;
1060
1061	err = write_head(c, BASEHD, ino_start, write_len, &lnum, &offs, sync);
1062	if (err)
1063		goto out_release;
1064	if (!sync)
1065		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1066					  inode->i_ino);
1067	release_head(c, BASEHD);
1068
 
 
1069	if (last_reference) {
1070		err = ubifs_tnc_remove_ino(c, inode->i_ino);
1071		if (err)
1072			goto out_ro;
1073		ubifs_delete_orphan(c, inode->i_ino);
1074		err = ubifs_add_dirt(c, lnum, write_len);
1075	} else {
1076		union ubifs_key key;
1077
1078		ubifs_add_auth_dirt(c, lnum);
1079
1080		ino_key_init(c, &key, inode->i_ino);
1081		err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash);
1082	}
1083	if (err)
1084		goto out_ro;
1085
1086	finish_reservation(c);
1087	spin_lock(&ui->ui_lock);
1088	ui->synced_i_size = ui->ui_size;
1089	spin_unlock(&ui->ui_lock);
1090	kfree(ino_start);
1091	return 0;
1092
1093out_release:
1094	release_head(c, BASEHD);
1095out_ro:
1096	ubifs_ro_mode(c, err);
1097	finish_reservation(c);
1098out_free:
1099	kfree(ino_start);
1100	return err;
1101}
1102
1103/**
1104 * ubifs_jnl_delete_inode - delete an inode.
1105 * @c: UBIFS file-system description object
1106 * @inode: inode to delete
1107 *
1108 * This function deletes inode @inode which includes removing it from orphans,
1109 * deleting it from TNC and, in some cases, writing a deletion inode to the
1110 * journal.
1111 *
1112 * When regular file inodes are unlinked or a directory inode is removed, the
1113 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
1114 * direntry to the media, and adds the inode to orphans. After this, when the
1115 * last reference to this inode has been dropped, this function is called. In
1116 * general, it has to write one more deletion inode to the media, because if
1117 * a commit happened between 'ubifs_jnl_update()' and
1118 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
1119 * anymore, and in fact it might not be on the flash anymore, because it might
1120 * have been garbage-collected already. And for optimization reasons UBIFS does
1121 * not read the orphan area if it has been unmounted cleanly, so it would have
1122 * no indication in the journal that there is a deleted inode which has to be
1123 * removed from TNC.
1124 *
1125 * However, if there was no commit between 'ubifs_jnl_update()' and
1126 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
1127 * inode to the media for the second time. And this is quite a typical case.
1128 *
1129 * This function returns zero in case of success and a negative error code in
1130 * case of failure.
1131 */
1132int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
1133{
1134	int err;
1135	struct ubifs_inode *ui = ubifs_inode(inode);
1136
1137	ubifs_assert(c, inode->i_nlink == 0);
1138
1139	if (ui->xattr_cnt || ui->del_cmtno != c->cmt_no)
1140		/* A commit happened for sure or inode hosts xattrs */
1141		return ubifs_jnl_write_inode(c, inode);
1142
1143	down_read(&c->commit_sem);
1144	/*
1145	 * Check commit number again, because the first test has been done
1146	 * without @c->commit_sem, so a commit might have happened.
1147	 */
1148	if (ui->del_cmtno != c->cmt_no) {
1149		up_read(&c->commit_sem);
1150		return ubifs_jnl_write_inode(c, inode);
1151	}
1152
1153	err = ubifs_tnc_remove_ino(c, inode->i_ino);
1154	if (err)
1155		ubifs_ro_mode(c, err);
1156	else
1157		ubifs_delete_orphan(c, inode->i_ino);
1158	up_read(&c->commit_sem);
1159	return err;
1160}
1161
1162/**
1163 * ubifs_jnl_xrename - cross rename two directory entries.
1164 * @c: UBIFS file-system description object
1165 * @fst_dir: parent inode of 1st directory entry to exchange
1166 * @fst_inode: 1st inode to exchange
1167 * @fst_nm: name of 1st inode to exchange
1168 * @snd_dir: parent inode of 2nd directory entry to exchange
1169 * @snd_inode: 2nd inode to exchange
1170 * @snd_nm: name of 2nd inode to exchange
1171 * @sync: non-zero if the write-buffer has to be synchronized
1172 *
1173 * This function implements the cross rename operation which may involve
1174 * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
1175 * and returns zero on success. In case of failure, a negative error code is
1176 * returned.
1177 */
1178int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
1179		      const struct inode *fst_inode,
1180		      const struct fscrypt_name *fst_nm,
1181		      const struct inode *snd_dir,
1182		      const struct inode *snd_inode,
1183		      const struct fscrypt_name *snd_nm, int sync)
1184{
1185	union ubifs_key key;
1186	struct ubifs_dent_node *dent1, *dent2;
1187	int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
1188	int aligned_dlen1, aligned_dlen2;
1189	int twoparents = (fst_dir != snd_dir);
1190	void *p;
1191	u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1192	u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1193	u8 hash_p1[UBIFS_HASH_ARR_SZ];
1194	u8 hash_p2[UBIFS_HASH_ARR_SZ];
1195
1196	ubifs_assert(c, ubifs_inode(fst_dir)->data_len == 0);
1197	ubifs_assert(c, ubifs_inode(snd_dir)->data_len == 0);
1198	ubifs_assert(c, mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
1199	ubifs_assert(c, mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
1200
1201	dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
1202	dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
1203	aligned_dlen1 = ALIGN(dlen1, 8);
1204	aligned_dlen2 = ALIGN(dlen2, 8);
1205
1206	len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
1207	if (twoparents)
1208		len += plen;
1209
1210	len += ubifs_auth_node_sz(c);
1211
1212	dent1 = kzalloc(len, GFP_NOFS);
1213	if (!dent1)
1214		return -ENOMEM;
1215
1216	/* Make reservation before allocating sequence numbers */
1217	err = make_reservation(c, BASEHD, len);
1218	if (err)
1219		goto out_free;
1220
1221	/* Make new dent for 1st entry */
1222	dent1->ch.node_type = UBIFS_DENT_NODE;
1223	dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm);
1224	dent1->inum = cpu_to_le64(fst_inode->i_ino);
1225	dent1->type = get_dent_type(fst_inode->i_mode);
1226	dent1->nlen = cpu_to_le16(fname_len(snd_nm));
1227	memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
1228	dent1->name[fname_len(snd_nm)] = '\0';
1229	set_dent_cookie(c, dent1);
1230	zero_dent_node_unused(dent1);
1231	ubifs_prep_grp_node(c, dent1, dlen1, 0);
1232	err = ubifs_node_calc_hash(c, dent1, hash_dent1);
1233	if (err)
1234		goto out_release;
1235
1236	/* Make new dent for 2nd entry */
1237	dent2 = (void *)dent1 + aligned_dlen1;
1238	dent2->ch.node_type = UBIFS_DENT_NODE;
1239	dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm);
1240	dent2->inum = cpu_to_le64(snd_inode->i_ino);
1241	dent2->type = get_dent_type(snd_inode->i_mode);
1242	dent2->nlen = cpu_to_le16(fname_len(fst_nm));
1243	memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
1244	dent2->name[fname_len(fst_nm)] = '\0';
1245	set_dent_cookie(c, dent2);
1246	zero_dent_node_unused(dent2);
1247	ubifs_prep_grp_node(c, dent2, dlen2, 0);
1248	err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1249	if (err)
1250		goto out_release;
1251
1252	p = (void *)dent2 + aligned_dlen2;
1253	if (!twoparents) {
1254		pack_inode(c, p, fst_dir, 1);
1255		err = ubifs_node_calc_hash(c, p, hash_p1);
1256		if (err)
1257			goto out_release;
1258	} else {
1259		pack_inode(c, p, fst_dir, 0);
1260		err = ubifs_node_calc_hash(c, p, hash_p1);
1261		if (err)
1262			goto out_release;
1263		p += ALIGN(plen, 8);
1264		pack_inode(c, p, snd_dir, 1);
1265		err = ubifs_node_calc_hash(c, p, hash_p2);
1266		if (err)
1267			goto out_release;
1268	}
1269
1270	err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
1271	if (err)
1272		goto out_release;
1273	if (!sync) {
1274		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1275
1276		ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
1277		ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
1278	}
1279	release_head(c, BASEHD);
1280
1281	ubifs_add_auth_dirt(c, lnum);
1282
1283	dent_key_init(c, &key, snd_dir->i_ino, snd_nm);
1284	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, snd_nm);
1285	if (err)
1286		goto out_ro;
1287
1288	offs += aligned_dlen1;
1289	dent_key_init(c, &key, fst_dir->i_ino, fst_nm);
1290	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, fst_nm);
1291	if (err)
1292		goto out_ro;
1293
1294	offs += aligned_dlen2;
1295
1296	ino_key_init(c, &key, fst_dir->i_ino);
1297	err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p1);
1298	if (err)
1299		goto out_ro;
1300
1301	if (twoparents) {
1302		offs += ALIGN(plen, 8);
1303		ino_key_init(c, &key, snd_dir->i_ino);
1304		err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p2);
1305		if (err)
1306			goto out_ro;
1307	}
1308
1309	finish_reservation(c);
1310
1311	mark_inode_clean(c, ubifs_inode(fst_dir));
1312	if (twoparents)
1313		mark_inode_clean(c, ubifs_inode(snd_dir));
1314	kfree(dent1);
1315	return 0;
1316
1317out_release:
1318	release_head(c, BASEHD);
1319out_ro:
1320	ubifs_ro_mode(c, err);
1321	finish_reservation(c);
1322out_free:
1323	kfree(dent1);
1324	return err;
1325}
1326
1327/**
1328 * ubifs_jnl_rename - rename a directory entry.
1329 * @c: UBIFS file-system description object
1330 * @old_dir: parent inode of directory entry to rename
1331 * @old_inode: directory entry's inode to rename
1332 * @old_nm: name of the old directory entry to rename
1333 * @new_dir: parent inode of directory entry to rename
1334 * @new_inode: new directory entry's inode (or directory entry's inode to
1335 *		replace)
1336 * @new_nm: new name of the new directory entry
1337 * @whiteout: whiteout inode
1338 * @sync: non-zero if the write-buffer has to be synchronized
1339 *
1340 * This function implements the re-name operation which may involve writing up
1341 * to 4 inodes(new inode, whiteout inode, old and new parent directory inodes)
1342 * and 2 directory entries. It marks the written inodes as clean and returns
1343 * zero on success. In case of failure, a negative error code is returned.
1344 */
1345int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1346		     const struct inode *old_inode,
1347		     const struct fscrypt_name *old_nm,
1348		     const struct inode *new_dir,
1349		     const struct inode *new_inode,
1350		     const struct fscrypt_name *new_nm,
1351		     const struct inode *whiteout, int sync)
1352{
1353	void *p;
1354	union ubifs_key key;
1355	struct ubifs_dent_node *dent, *dent2;
1356	int err, dlen1, dlen2, ilen, wlen, lnum, offs, len, orphan_added = 0;
1357	int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1358	int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1359	int move = (old_dir != new_dir);
1360	struct ubifs_inode *new_ui, *whiteout_ui;
1361	u8 hash_old_dir[UBIFS_HASH_ARR_SZ];
1362	u8 hash_new_dir[UBIFS_HASH_ARR_SZ];
1363	u8 hash_new_inode[UBIFS_HASH_ARR_SZ];
1364	u8 hash_whiteout_inode[UBIFS_HASH_ARR_SZ];
1365	u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1366	u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1367
1368	ubifs_assert(c, ubifs_inode(old_dir)->data_len == 0);
1369	ubifs_assert(c, ubifs_inode(new_dir)->data_len == 0);
1370	ubifs_assert(c, mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1371	ubifs_assert(c, mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1372
1373	dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
1374	dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
1375	if (new_inode) {
1376		new_ui = ubifs_inode(new_inode);
1377		ubifs_assert(c, mutex_is_locked(&new_ui->ui_mutex));
1378		ilen = UBIFS_INO_NODE_SZ;
1379		if (!last_reference)
1380			ilen += new_ui->data_len;
1381	} else
1382		ilen = 0;
1383
1384	if (whiteout) {
1385		whiteout_ui = ubifs_inode(whiteout);
1386		ubifs_assert(c, mutex_is_locked(&whiteout_ui->ui_mutex));
1387		ubifs_assert(c, whiteout->i_nlink == 1);
1388		ubifs_assert(c, !whiteout_ui->dirty);
1389		wlen = UBIFS_INO_NODE_SZ;
1390		wlen += whiteout_ui->data_len;
1391	} else
1392		wlen = 0;
1393
1394	aligned_dlen1 = ALIGN(dlen1, 8);
1395	aligned_dlen2 = ALIGN(dlen2, 8);
1396	len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) +
1397	      ALIGN(wlen, 8) + ALIGN(plen, 8);
1398	if (move)
1399		len += plen;
1400
1401	len += ubifs_auth_node_sz(c);
1402
1403	dent = kzalloc(len, GFP_NOFS);
1404	if (!dent)
1405		return -ENOMEM;
1406
1407	/* Make reservation before allocating sequence numbers */
1408	err = make_reservation(c, BASEHD, len);
1409	if (err)
1410		goto out_free;
1411
1412	/* Make new dent */
1413	dent->ch.node_type = UBIFS_DENT_NODE;
1414	dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm);
1415	dent->inum = cpu_to_le64(old_inode->i_ino);
1416	dent->type = get_dent_type(old_inode->i_mode);
1417	dent->nlen = cpu_to_le16(fname_len(new_nm));
1418	memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
1419	dent->name[fname_len(new_nm)] = '\0';
1420	set_dent_cookie(c, dent);
1421	zero_dent_node_unused(dent);
1422	ubifs_prep_grp_node(c, dent, dlen1, 0);
1423	err = ubifs_node_calc_hash(c, dent, hash_dent1);
1424	if (err)
1425		goto out_release;
1426
1427	dent2 = (void *)dent + aligned_dlen1;
1428	dent2->ch.node_type = UBIFS_DENT_NODE;
1429	dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm);
1430
1431	if (whiteout) {
1432		dent2->inum = cpu_to_le64(whiteout->i_ino);
1433		dent2->type = get_dent_type(whiteout->i_mode);
1434	} else {
1435		/* Make deletion dent */
1436		dent2->inum = 0;
1437		dent2->type = DT_UNKNOWN;
1438	}
1439	dent2->nlen = cpu_to_le16(fname_len(old_nm));
1440	memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
1441	dent2->name[fname_len(old_nm)] = '\0';
1442	set_dent_cookie(c, dent2);
1443	zero_dent_node_unused(dent2);
1444	ubifs_prep_grp_node(c, dent2, dlen2, 0);
1445	err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1446	if (err)
1447		goto out_release;
1448
1449	p = (void *)dent2 + aligned_dlen2;
1450	if (new_inode) {
1451		pack_inode(c, p, new_inode, 0);
1452		err = ubifs_node_calc_hash(c, p, hash_new_inode);
1453		if (err)
1454			goto out_release;
1455
1456		p += ALIGN(ilen, 8);
1457	}
1458
1459	if (whiteout) {
1460		pack_inode(c, p, whiteout, 0);
1461		err = ubifs_node_calc_hash(c, p, hash_whiteout_inode);
1462		if (err)
1463			goto out_release;
1464
1465		p += ALIGN(wlen, 8);
1466	}
1467
1468	if (!move) {
1469		pack_inode(c, p, old_dir, 1);
1470		err = ubifs_node_calc_hash(c, p, hash_old_dir);
1471		if (err)
1472			goto out_release;
1473	} else {
1474		pack_inode(c, p, old_dir, 0);
1475		err = ubifs_node_calc_hash(c, p, hash_old_dir);
1476		if (err)
1477			goto out_release;
1478
1479		p += ALIGN(plen, 8);
1480		pack_inode(c, p, new_dir, 1);
1481		err = ubifs_node_calc_hash(c, p, hash_new_dir);
1482		if (err)
1483			goto out_release;
1484	}
1485
1486	if (last_reference) {
1487		err = ubifs_add_orphan(c, new_inode->i_ino);
1488		if (err) {
1489			release_head(c, BASEHD);
1490			goto out_finish;
1491		}
1492		new_ui->del_cmtno = c->cmt_no;
1493		orphan_added = 1;
1494	}
1495
1496	err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1497	if (err)
1498		goto out_release;
1499	if (!sync) {
1500		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1501
1502		ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1503		ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1504		if (new_inode)
1505			ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1506						  new_inode->i_ino);
1507		if (whiteout)
1508			ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1509						  whiteout->i_ino);
1510	}
1511	release_head(c, BASEHD);
1512
1513	ubifs_add_auth_dirt(c, lnum);
1514
1515	dent_key_init(c, &key, new_dir->i_ino, new_nm);
1516	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, new_nm);
1517	if (err)
1518		goto out_ro;
1519
1520	offs += aligned_dlen1;
1521	if (whiteout) {
1522		dent_key_init(c, &key, old_dir->i_ino, old_nm);
1523		err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, old_nm);
1524		if (err)
1525			goto out_ro;
 
 
1526	} else {
1527		err = ubifs_add_dirt(c, lnum, dlen2);
1528		if (err)
1529			goto out_ro;
1530
1531		dent_key_init(c, &key, old_dir->i_ino, old_nm);
1532		err = ubifs_tnc_remove_nm(c, &key, old_nm);
1533		if (err)
1534			goto out_ro;
1535	}
1536
1537	offs += aligned_dlen2;
1538	if (new_inode) {
1539		ino_key_init(c, &key, new_inode->i_ino);
1540		err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash_new_inode);
1541		if (err)
1542			goto out_ro;
1543		offs += ALIGN(ilen, 8);
1544	}
1545
1546	if (whiteout) {
1547		ino_key_init(c, &key, whiteout->i_ino);
1548		err = ubifs_tnc_add(c, &key, lnum, offs, wlen,
1549				    hash_whiteout_inode);
1550		if (err)
1551			goto out_ro;
1552		offs += ALIGN(wlen, 8);
1553	}
1554
1555	ino_key_init(c, &key, old_dir->i_ino);
1556	err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_old_dir);
1557	if (err)
1558		goto out_ro;
1559
1560	if (move) {
1561		offs += ALIGN(plen, 8);
1562		ino_key_init(c, &key, new_dir->i_ino);
1563		err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_new_dir);
1564		if (err)
1565			goto out_ro;
1566	}
1567
1568	finish_reservation(c);
1569	if (new_inode) {
1570		mark_inode_clean(c, new_ui);
1571		spin_lock(&new_ui->ui_lock);
1572		new_ui->synced_i_size = new_ui->ui_size;
1573		spin_unlock(&new_ui->ui_lock);
1574	}
1575	/*
1576	 * No need to mark whiteout inode clean.
1577	 * Whiteout doesn't have non-zero size, no need to update
1578	 * synced_i_size for whiteout_ui.
1579	 */
1580	mark_inode_clean(c, ubifs_inode(old_dir));
1581	if (move)
1582		mark_inode_clean(c, ubifs_inode(new_dir));
1583	kfree(dent);
1584	return 0;
1585
1586out_release:
1587	release_head(c, BASEHD);
1588out_ro:
1589	ubifs_ro_mode(c, err);
1590	if (orphan_added)
1591		ubifs_delete_orphan(c, new_inode->i_ino);
1592out_finish:
1593	finish_reservation(c);
1594out_free:
1595	kfree(dent);
1596	return err;
1597}
1598
1599/**
1600 * truncate_data_node - re-compress/encrypt a truncated data node.
1601 * @c: UBIFS file-system description object
1602 * @inode: inode which refers to the data node
1603 * @block: data block number
1604 * @dn: data node to re-compress
1605 * @new_len: new length
1606 * @dn_size: size of the data node @dn in memory
1607 *
1608 * This function is used when an inode is truncated and the last data node of
1609 * the inode has to be re-compressed/encrypted and re-written.
1610 */
1611static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
1612			      unsigned int block, struct ubifs_data_node *dn,
1613			      int *new_len, int dn_size)
1614{
1615	void *buf;
1616	int err, dlen, compr_type, out_len, data_size;
1617
1618	out_len = le32_to_cpu(dn->size);
1619	buf = kmalloc_array(out_len, WORST_COMPR_FACTOR, GFP_NOFS);
1620	if (!buf)
1621		return -ENOMEM;
1622
1623	dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1624	data_size = dn_size - UBIFS_DATA_NODE_SZ;
1625	compr_type = le16_to_cpu(dn->compr_type);
1626
1627	if (IS_ENCRYPTED(inode)) {
1628		err = ubifs_decrypt(inode, dn, &dlen, block);
1629		if (err)
1630			goto out;
1631	}
1632
1633	if (compr_type == UBIFS_COMPR_NONE) {
1634		out_len = *new_len;
1635	} else {
1636		err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type);
1637		if (err)
1638			goto out;
1639
1640		ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1641	}
1642
1643	if (IS_ENCRYPTED(inode)) {
1644		err = ubifs_encrypt(inode, dn, out_len, &data_size, block);
1645		if (err)
1646			goto out;
1647
1648		out_len = data_size;
1649	} else {
1650		dn->compr_size = 0;
1651	}
1652
1653	ubifs_assert(c, out_len <= UBIFS_BLOCK_SIZE);
1654	dn->compr_type = cpu_to_le16(compr_type);
1655	dn->size = cpu_to_le32(*new_len);
1656	*new_len = UBIFS_DATA_NODE_SZ + out_len;
1657	err = 0;
1658out:
1659	kfree(buf);
1660	return err;
1661}
1662
1663/**
1664 * ubifs_jnl_truncate - update the journal for a truncation.
1665 * @c: UBIFS file-system description object
1666 * @inode: inode to truncate
1667 * @old_size: old size
1668 * @new_size: new size
1669 *
1670 * When the size of a file decreases due to truncation, a truncation node is
1671 * written, the journal tree is updated, and the last data block is re-written
1672 * if it has been affected. The inode is also updated in order to synchronize
1673 * the new inode size.
1674 *
1675 * This function marks the inode as clean and returns zero on success. In case
1676 * of failure, a negative error code is returned.
1677 */
1678int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1679		       loff_t old_size, loff_t new_size)
1680{
1681	union ubifs_key key, to_key;
1682	struct ubifs_ino_node *ino;
1683	struct ubifs_trun_node *trun;
1684	struct ubifs_data_node *dn;
1685	int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1686	int dn_size;
1687	struct ubifs_inode *ui = ubifs_inode(inode);
1688	ino_t inum = inode->i_ino;
1689	unsigned int blk;
1690	u8 hash_ino[UBIFS_HASH_ARR_SZ];
1691	u8 hash_dn[UBIFS_HASH_ARR_SZ];
1692
1693	dbg_jnl("ino %lu, size %lld -> %lld",
1694		(unsigned long)inum, old_size, new_size);
1695	ubifs_assert(c, !ui->data_len);
1696	ubifs_assert(c, S_ISREG(inode->i_mode));
1697	ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
1698
1699	dn_size = COMPRESSED_DATA_NODE_BUF_SZ;
1700
1701	if (IS_ENCRYPTED(inode))
1702		dn_size += UBIFS_CIPHER_BLOCK_SIZE;
1703
1704	sz =  UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1705		dn_size + ubifs_auth_node_sz(c);
1706
1707	ino = kmalloc(sz, GFP_NOFS);
1708	if (!ino)
1709		return -ENOMEM;
1710
1711	trun = (void *)ino + UBIFS_INO_NODE_SZ;
1712	trun->ch.node_type = UBIFS_TRUN_NODE;
1713	trun->inum = cpu_to_le32(inum);
1714	trun->old_size = cpu_to_le64(old_size);
1715	trun->new_size = cpu_to_le64(new_size);
1716	zero_trun_node_unused(trun);
1717
1718	dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1719	if (dlen) {
1720		/* Get last data block so it can be truncated */
1721		dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1722		blk = new_size >> UBIFS_BLOCK_SHIFT;
1723		data_key_init(c, &key, inum, blk);
1724		dbg_jnlk(&key, "last block key ");
1725		err = ubifs_tnc_lookup(c, &key, dn);
1726		if (err == -ENOENT)
1727			dlen = 0; /* Not found (so it is a hole) */
1728		else if (err)
1729			goto out_free;
1730		else {
1731			int dn_len = le32_to_cpu(dn->size);
1732
1733			if (dn_len <= 0 || dn_len > UBIFS_BLOCK_SIZE) {
1734				ubifs_err(c, "bad data node (block %u, inode %lu)",
1735					  blk, inode->i_ino);
1736				ubifs_dump_node(c, dn, dn_size);
1737				err = -EUCLEAN;
1738				goto out_free;
1739			}
1740
1741			if (dn_len <= dlen)
1742				dlen = 0; /* Nothing to do */
1743			else {
1744				err = truncate_data_node(c, inode, blk, dn,
1745						&dlen, dn_size);
1746				if (err)
1747					goto out_free;
1748			}
1749		}
1750	}
1751
1752	/* Must make reservation before allocating sequence numbers */
1753	len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1754
1755	if (ubifs_authenticated(c))
1756		len += ALIGN(dlen, 8) + ubifs_auth_node_sz(c);
1757	else
1758		len += dlen;
1759
1760	err = make_reservation(c, BASEHD, len);
1761	if (err)
1762		goto out_free;
1763
1764	pack_inode(c, ino, inode, 0);
1765	err = ubifs_node_calc_hash(c, ino, hash_ino);
1766	if (err)
1767		goto out_release;
1768
1769	ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1770	if (dlen) {
1771		ubifs_prep_grp_node(c, dn, dlen, 1);
1772		err = ubifs_node_calc_hash(c, dn, hash_dn);
1773		if (err)
1774			goto out_release;
1775	}
1776
1777	err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1778	if (err)
1779		goto out_release;
1780	if (!sync)
1781		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1782	release_head(c, BASEHD);
1783
1784	ubifs_add_auth_dirt(c, lnum);
1785
1786	if (dlen) {
1787		sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1788		err = ubifs_tnc_add(c, &key, lnum, sz, dlen, hash_dn);
1789		if (err)
1790			goto out_ro;
1791	}
1792
1793	ino_key_init(c, &key, inum);
1794	err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ, hash_ino);
1795	if (err)
1796		goto out_ro;
1797
1798	err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1799	if (err)
1800		goto out_ro;
1801
1802	bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1803	blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1804	data_key_init(c, &key, inum, blk);
1805
1806	bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1807	blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1808	data_key_init(c, &to_key, inum, blk);
1809
1810	err = ubifs_tnc_remove_range(c, &key, &to_key);
1811	if (err)
1812		goto out_ro;
1813
1814	finish_reservation(c);
1815	spin_lock(&ui->ui_lock);
1816	ui->synced_i_size = ui->ui_size;
1817	spin_unlock(&ui->ui_lock);
1818	mark_inode_clean(c, ui);
1819	kfree(ino);
1820	return 0;
1821
1822out_release:
1823	release_head(c, BASEHD);
1824out_ro:
1825	ubifs_ro_mode(c, err);
1826	finish_reservation(c);
1827out_free:
1828	kfree(ino);
1829	return err;
1830}
1831
1832
1833/**
1834 * ubifs_jnl_delete_xattr - delete an extended attribute.
1835 * @c: UBIFS file-system description object
1836 * @host: host inode
1837 * @inode: extended attribute inode
1838 * @nm: extended attribute entry name
1839 *
1840 * This function delete an extended attribute which is very similar to
1841 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1842 * updates the target inode. Returns zero in case of success and a negative
1843 * error code in case of failure.
1844 */
1845int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1846			   const struct inode *inode,
1847			   const struct fscrypt_name *nm)
1848{
1849	int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen, write_len;
1850	struct ubifs_dent_node *xent;
1851	struct ubifs_ino_node *ino;
1852	union ubifs_key xent_key, key1, key2;
1853	int sync = IS_DIRSYNC(host);
1854	struct ubifs_inode *host_ui = ubifs_inode(host);
1855	u8 hash[UBIFS_HASH_ARR_SZ];
1856
1857	ubifs_assert(c, inode->i_nlink == 0);
1858	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1859
1860	/*
1861	 * Since we are deleting the inode, we do not bother to attach any data
1862	 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1863	 */
1864	xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
1865	aligned_xlen = ALIGN(xlen, 8);
1866	hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1867	len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1868
1869	write_len = len + ubifs_auth_node_sz(c);
1870
1871	xent = kzalloc(write_len, GFP_NOFS);
1872	if (!xent)
1873		return -ENOMEM;
1874
1875	/* Make reservation before allocating sequence numbers */
1876	err = make_reservation(c, BASEHD, write_len);
1877	if (err) {
1878		kfree(xent);
1879		return err;
1880	}
1881
1882	xent->ch.node_type = UBIFS_XENT_NODE;
1883	xent_key_init(c, &xent_key, host->i_ino, nm);
1884	key_write(c, &xent_key, xent->key);
1885	xent->inum = 0;
1886	xent->type = get_dent_type(inode->i_mode);
1887	xent->nlen = cpu_to_le16(fname_len(nm));
1888	memcpy(xent->name, fname_name(nm), fname_len(nm));
1889	xent->name[fname_len(nm)] = '\0';
1890	zero_dent_node_unused(xent);
1891	ubifs_prep_grp_node(c, xent, xlen, 0);
1892
1893	ino = (void *)xent + aligned_xlen;
1894	pack_inode(c, ino, inode, 0);
1895	ino = (void *)ino + UBIFS_INO_NODE_SZ;
1896	pack_inode(c, ino, host, 1);
1897	err = ubifs_node_calc_hash(c, ino, hash);
1898	if (err)
1899		goto out_release;
1900
1901	err = write_head(c, BASEHD, xent, write_len, &lnum, &xent_offs, sync);
1902	if (!sync && !err)
1903		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1904	release_head(c, BASEHD);
1905
1906	ubifs_add_auth_dirt(c, lnum);
1907	kfree(xent);
1908	if (err)
1909		goto out_ro;
1910
1911	/* Remove the extended attribute entry from TNC */
1912	err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1913	if (err)
1914		goto out_ro;
1915	err = ubifs_add_dirt(c, lnum, xlen);
1916	if (err)
1917		goto out_ro;
1918
1919	/*
1920	 * Remove all nodes belonging to the extended attribute inode from TNC.
1921	 * Well, there actually must be only one node - the inode itself.
1922	 */
1923	lowest_ino_key(c, &key1, inode->i_ino);
1924	highest_ino_key(c, &key2, inode->i_ino);
1925	err = ubifs_tnc_remove_range(c, &key1, &key2);
1926	if (err)
1927		goto out_ro;
1928	err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1929	if (err)
1930		goto out_ro;
1931
1932	/* And update TNC with the new host inode position */
1933	ino_key_init(c, &key1, host->i_ino);
1934	err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen, hash);
1935	if (err)
1936		goto out_ro;
1937
1938	finish_reservation(c);
1939	spin_lock(&host_ui->ui_lock);
1940	host_ui->synced_i_size = host_ui->ui_size;
1941	spin_unlock(&host_ui->ui_lock);
1942	mark_inode_clean(c, host_ui);
1943	return 0;
1944
1945out_release:
1946	kfree(xent);
1947	release_head(c, BASEHD);
1948out_ro:
1949	ubifs_ro_mode(c, err);
1950	finish_reservation(c);
1951	return err;
1952}
1953
1954/**
1955 * ubifs_jnl_change_xattr - change an extended attribute.
1956 * @c: UBIFS file-system description object
1957 * @inode: extended attribute inode
1958 * @host: host inode
1959 *
1960 * This function writes the updated version of an extended attribute inode and
1961 * the host inode to the journal (to the base head). The host inode is written
1962 * after the extended attribute inode in order to guarantee that the extended
1963 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1964 * consequently, the write-buffer is synchronized. This function returns zero
1965 * in case of success and a negative error code in case of failure.
1966 */
1967int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1968			   const struct inode *host)
1969{
1970	int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1971	struct ubifs_inode *host_ui = ubifs_inode(host);
1972	struct ubifs_ino_node *ino;
1973	union ubifs_key key;
1974	int sync = IS_DIRSYNC(host);
1975	u8 hash_host[UBIFS_HASH_ARR_SZ];
1976	u8 hash[UBIFS_HASH_ARR_SZ];
1977
1978	dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
 
1979	ubifs_assert(c, inode->i_nlink > 0);
1980	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1981
1982	len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1983	len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1984	aligned_len1 = ALIGN(len1, 8);
1985	aligned_len = aligned_len1 + ALIGN(len2, 8);
1986
1987	aligned_len += ubifs_auth_node_sz(c);
1988
1989	ino = kzalloc(aligned_len, GFP_NOFS);
1990	if (!ino)
1991		return -ENOMEM;
1992
1993	/* Make reservation before allocating sequence numbers */
1994	err = make_reservation(c, BASEHD, aligned_len);
1995	if (err)
1996		goto out_free;
1997
1998	pack_inode(c, ino, host, 0);
1999	err = ubifs_node_calc_hash(c, ino, hash_host);
2000	if (err)
2001		goto out_release;
2002	pack_inode(c, (void *)ino + aligned_len1, inode, 1);
2003	err = ubifs_node_calc_hash(c, (void *)ino + aligned_len1, hash);
2004	if (err)
2005		goto out_release;
2006
2007	err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
2008	if (!sync && !err) {
2009		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
2010
2011		ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
2012		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
2013	}
2014	release_head(c, BASEHD);
2015	if (err)
2016		goto out_ro;
2017
2018	ubifs_add_auth_dirt(c, lnum);
2019
2020	ino_key_init(c, &key, host->i_ino);
2021	err = ubifs_tnc_add(c, &key, lnum, offs, len1, hash_host);
2022	if (err)
2023		goto out_ro;
2024
2025	ino_key_init(c, &key, inode->i_ino);
2026	err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2, hash);
2027	if (err)
2028		goto out_ro;
2029
2030	finish_reservation(c);
2031	spin_lock(&host_ui->ui_lock);
2032	host_ui->synced_i_size = host_ui->ui_size;
2033	spin_unlock(&host_ui->ui_lock);
2034	mark_inode_clean(c, host_ui);
2035	kfree(ino);
2036	return 0;
2037
2038out_release:
2039	release_head(c, BASEHD);
2040out_ro:
2041	ubifs_ro_mode(c, err);
2042	finish_reservation(c);
2043out_free:
2044	kfree(ino);
2045	return err;
2046}
2047