Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11/*
12 * This file implements UBIFS journal.
13 *
14 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
15 * length and position, while a bud logical eraseblock is any LEB in the main
16 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
17 * contains only references to buds and some other stuff like commit
18 * start node. The idea is that when we commit the journal, we do
19 * not copy the data, the buds just become indexed. Since after the commit the
20 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
21 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
22 * become leafs in the future.
23 *
24 * The journal is multi-headed because we want to write data to the journal as
25 * optimally as possible. It is nice to have nodes belonging to the same inode
26 * in one LEB, so we may write data owned by different inodes to different
27 * journal heads, although at present only one data head is used.
28 *
29 * For recovery reasons, the base head contains all inode nodes, all directory
30 * entry nodes and all truncate nodes. This means that the other heads contain
31 * only data nodes.
32 *
33 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
34 * time of commit, the bud is retained to continue to be used in the journal,
35 * even though the "front" of the LEB is now indexed. In that case, the log
36 * reference contains the offset where the bud starts for the purposes of the
37 * journal.
38 *
39 * The journal size has to be limited, because the larger is the journal, the
40 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
41 * takes (indexing in the TNC).
42 *
43 * All the journal write operations like 'ubifs_jnl_update()' here, which write
44 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
45 * unclean reboots. Should the unclean reboot happen, the recovery code drops
46 * all the nodes.
47 */
48
49#include "ubifs.h"
50
51/**
52 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
53 * @ino: the inode to zero out
54 */
55static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
56{
57 memset(ino->padding1, 0, 4);
58 memset(ino->padding2, 0, 26);
59}
60
61/**
62 * zero_dent_node_unused - zero out unused fields of an on-flash directory
63 * entry node.
64 * @dent: the directory entry to zero out
65 */
66static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
67{
68 dent->padding1 = 0;
69}
70
71/**
72 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
73 * node.
74 * @trun: the truncation node to zero out
75 */
76static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
77{
78 memset(trun->padding, 0, 12);
79}
80
81static void ubifs_add_auth_dirt(struct ubifs_info *c, int lnum)
82{
83 if (ubifs_authenticated(c))
84 ubifs_add_dirt(c, lnum, ubifs_auth_node_sz(c));
85}
86
87/**
88 * reserve_space - reserve space in the journal.
89 * @c: UBIFS file-system description object
90 * @jhead: journal head number
91 * @len: node length
92 *
93 * This function reserves space in journal head @head. If the reservation
94 * succeeded, the journal head stays locked and later has to be unlocked using
95 * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to
96 * be done, and other negative error codes in case of other failures.
97 */
98static int reserve_space(struct ubifs_info *c, int jhead, int len)
99{
100 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
101 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
102
103 /*
104 * Typically, the base head has smaller nodes written to it, so it is
105 * better to try to allocate space at the ends of eraseblocks. This is
106 * what the squeeze parameter does.
107 */
108 ubifs_assert(c, !c->ro_media && !c->ro_mount);
109 squeeze = (jhead == BASEHD);
110again:
111 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
112
113 if (c->ro_error) {
114 err = -EROFS;
115 goto out_unlock;
116 }
117
118 avail = c->leb_size - wbuf->offs - wbuf->used;
119 if (wbuf->lnum != -1 && avail >= len)
120 return 0;
121
122 /*
123 * Write buffer wasn't seek'ed or there is no enough space - look for an
124 * LEB with some empty space.
125 */
126 lnum = ubifs_find_free_space(c, len, &offs, squeeze);
127 if (lnum >= 0)
128 goto out;
129
130 err = lnum;
131 if (err != -ENOSPC)
132 goto out_unlock;
133
134 /*
135 * No free space, we have to run garbage collector to make
136 * some. But the write-buffer mutex has to be unlocked because
137 * GC also takes it.
138 */
139 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
140 mutex_unlock(&wbuf->io_mutex);
141
142 lnum = ubifs_garbage_collect(c, 0);
143 if (lnum < 0) {
144 err = lnum;
145 if (err != -ENOSPC)
146 return err;
147
148 /*
149 * GC could not make a free LEB. But someone else may
150 * have allocated new bud for this journal head,
151 * because we dropped @wbuf->io_mutex, so try once
152 * again.
153 */
154 dbg_jnl("GC couldn't make a free LEB for jhead %s",
155 dbg_jhead(jhead));
156 if (retries++ < 2) {
157 dbg_jnl("retry (%d)", retries);
158 goto again;
159 }
160
161 dbg_jnl("return -ENOSPC");
162 return err;
163 }
164
165 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
166 dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
167 avail = c->leb_size - wbuf->offs - wbuf->used;
168
169 if (wbuf->lnum != -1 && avail >= len) {
170 /*
171 * Someone else has switched the journal head and we have
172 * enough space now. This happens when more than one process is
173 * trying to write to the same journal head at the same time.
174 */
175 dbg_jnl("return LEB %d back, already have LEB %d:%d",
176 lnum, wbuf->lnum, wbuf->offs + wbuf->used);
177 err = ubifs_return_leb(c, lnum);
178 if (err)
179 goto out_unlock;
180 return 0;
181 }
182
183 offs = 0;
184
185out:
186 /*
187 * Make sure we synchronize the write-buffer before we add the new bud
188 * to the log. Otherwise we may have a power cut after the log
189 * reference node for the last bud (@lnum) is written but before the
190 * write-buffer data are written to the next-to-last bud
191 * (@wbuf->lnum). And the effect would be that the recovery would see
192 * that there is corruption in the next-to-last bud.
193 */
194 err = ubifs_wbuf_sync_nolock(wbuf);
195 if (err)
196 goto out_return;
197 err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
198 if (err)
199 goto out_return;
200 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
201 if (err)
202 goto out_unlock;
203
204 return 0;
205
206out_unlock:
207 mutex_unlock(&wbuf->io_mutex);
208 return err;
209
210out_return:
211 /* An error occurred and the LEB has to be returned to lprops */
212 ubifs_assert(c, err < 0);
213 err1 = ubifs_return_leb(c, lnum);
214 if (err1 && err == -EAGAIN)
215 /*
216 * Return original error code only if it is not %-EAGAIN,
217 * which is not really an error. Otherwise, return the error
218 * code of 'ubifs_return_leb()'.
219 */
220 err = err1;
221 mutex_unlock(&wbuf->io_mutex);
222 return err;
223}
224
225static int ubifs_hash_nodes(struct ubifs_info *c, void *node,
226 int len, struct shash_desc *hash)
227{
228 int auth_node_size = ubifs_auth_node_sz(c);
229 int err;
230
231 while (1) {
232 const struct ubifs_ch *ch = node;
233 int nodelen = le32_to_cpu(ch->len);
234
235 ubifs_assert(c, len >= auth_node_size);
236
237 if (len == auth_node_size)
238 break;
239
240 ubifs_assert(c, len > nodelen);
241 ubifs_assert(c, ch->magic == cpu_to_le32(UBIFS_NODE_MAGIC));
242
243 err = ubifs_shash_update(c, hash, (void *)node, nodelen);
244 if (err)
245 return err;
246
247 node += ALIGN(nodelen, 8);
248 len -= ALIGN(nodelen, 8);
249 }
250
251 return ubifs_prepare_auth_node(c, node, hash);
252}
253
254/**
255 * write_head - write data to a journal head.
256 * @c: UBIFS file-system description object
257 * @jhead: journal head
258 * @buf: buffer to write
259 * @len: length to write
260 * @lnum: LEB number written is returned here
261 * @offs: offset written is returned here
262 * @sync: non-zero if the write-buffer has to by synchronized
263 *
264 * This function writes data to the reserved space of journal head @jhead.
265 * Returns zero in case of success and a negative error code in case of
266 * failure.
267 */
268static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
269 int *lnum, int *offs, int sync)
270{
271 int err;
272 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
273
274 ubifs_assert(c, jhead != GCHD);
275
276 *lnum = c->jheads[jhead].wbuf.lnum;
277 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
278 dbg_jnl("jhead %s, LEB %d:%d, len %d",
279 dbg_jhead(jhead), *lnum, *offs, len);
280
281 if (ubifs_authenticated(c)) {
282 err = ubifs_hash_nodes(c, buf, len, c->jheads[jhead].log_hash);
283 if (err)
284 return err;
285 }
286
287 err = ubifs_wbuf_write_nolock(wbuf, buf, len);
288 if (err)
289 return err;
290 if (sync)
291 err = ubifs_wbuf_sync_nolock(wbuf);
292 return err;
293}
294
295/**
296 * make_reservation - reserve journal space.
297 * @c: UBIFS file-system description object
298 * @jhead: journal head
299 * @len: how many bytes to reserve
300 *
301 * This function makes space reservation in journal head @jhead. The function
302 * takes the commit lock and locks the journal head, and the caller has to
303 * unlock the head and finish the reservation with 'finish_reservation()'.
304 * Returns zero in case of success and a negative error code in case of
305 * failure.
306 *
307 * Note, the journal head may be unlocked as soon as the data is written, while
308 * the commit lock has to be released after the data has been added to the
309 * TNC.
310 */
311static int make_reservation(struct ubifs_info *c, int jhead, int len)
312{
313 int err, cmt_retries = 0, nospc_retries = 0;
314
315again:
316 down_read(&c->commit_sem);
317 err = reserve_space(c, jhead, len);
318 if (!err)
319 /* c->commit_sem will get released via finish_reservation(). */
320 return 0;
321 up_read(&c->commit_sem);
322
323 if (err == -ENOSPC) {
324 /*
325 * GC could not make any progress. We should try to commit
326 * once because it could make some dirty space and GC would
327 * make progress, so make the error -EAGAIN so that the below
328 * will commit and re-try.
329 */
330 if (nospc_retries++ < 2) {
331 dbg_jnl("no space, retry");
332 err = -EAGAIN;
333 }
334
335 /*
336 * This means that the budgeting is incorrect. We always have
337 * to be able to write to the media, because all operations are
338 * budgeted. Deletions are not budgeted, though, but we reserve
339 * an extra LEB for them.
340 */
341 }
342
343 if (err != -EAGAIN)
344 goto out;
345
346 /*
347 * -EAGAIN means that the journal is full or too large, or the above
348 * code wants to do one commit. Do this and re-try.
349 */
350 if (cmt_retries > 128) {
351 /*
352 * This should not happen unless the journal size limitations
353 * are too tough.
354 */
355 ubifs_err(c, "stuck in space allocation");
356 err = -ENOSPC;
357 goto out;
358 } else if (cmt_retries > 32)
359 ubifs_warn(c, "too many space allocation re-tries (%d)",
360 cmt_retries);
361
362 dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
363 cmt_retries);
364 cmt_retries += 1;
365
366 err = ubifs_run_commit(c);
367 if (err)
368 return err;
369 goto again;
370
371out:
372 ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
373 len, jhead, err);
374 if (err == -ENOSPC) {
375 /* This are some budgeting problems, print useful information */
376 down_write(&c->commit_sem);
377 dump_stack();
378 ubifs_dump_budg(c, &c->bi);
379 ubifs_dump_lprops(c);
380 cmt_retries = dbg_check_lprops(c);
381 up_write(&c->commit_sem);
382 }
383 return err;
384}
385
386/**
387 * release_head - release a journal head.
388 * @c: UBIFS file-system description object
389 * @jhead: journal head
390 *
391 * This function releases journal head @jhead which was locked by
392 * the 'make_reservation()' function. It has to be called after each successful
393 * 'make_reservation()' invocation.
394 */
395static inline void release_head(struct ubifs_info *c, int jhead)
396{
397 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
398}
399
400/**
401 * finish_reservation - finish a reservation.
402 * @c: UBIFS file-system description object
403 *
404 * This function finishes journal space reservation. It must be called after
405 * 'make_reservation()'.
406 */
407static void finish_reservation(struct ubifs_info *c)
408{
409 up_read(&c->commit_sem);
410}
411
412/**
413 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
414 * @mode: inode mode
415 */
416static int get_dent_type(int mode)
417{
418 switch (mode & S_IFMT) {
419 case S_IFREG:
420 return UBIFS_ITYPE_REG;
421 case S_IFDIR:
422 return UBIFS_ITYPE_DIR;
423 case S_IFLNK:
424 return UBIFS_ITYPE_LNK;
425 case S_IFBLK:
426 return UBIFS_ITYPE_BLK;
427 case S_IFCHR:
428 return UBIFS_ITYPE_CHR;
429 case S_IFIFO:
430 return UBIFS_ITYPE_FIFO;
431 case S_IFSOCK:
432 return UBIFS_ITYPE_SOCK;
433 default:
434 BUG();
435 }
436 return 0;
437}
438
439/**
440 * pack_inode - pack an inode node.
441 * @c: UBIFS file-system description object
442 * @ino: buffer in which to pack inode node
443 * @inode: inode to pack
444 * @last: indicates the last node of the group
445 */
446static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
447 const struct inode *inode, int last)
448{
449 int data_len = 0, last_reference = !inode->i_nlink;
450 struct ubifs_inode *ui = ubifs_inode(inode);
451
452 ino->ch.node_type = UBIFS_INO_NODE;
453 ino_key_init_flash(c, &ino->key, inode->i_ino);
454 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
455 ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec);
456 ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
457 ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec);
458 ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
459 ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec);
460 ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
461 ino->uid = cpu_to_le32(i_uid_read(inode));
462 ino->gid = cpu_to_le32(i_gid_read(inode));
463 ino->mode = cpu_to_le32(inode->i_mode);
464 ino->flags = cpu_to_le32(ui->flags);
465 ino->size = cpu_to_le64(ui->ui_size);
466 ino->nlink = cpu_to_le32(inode->i_nlink);
467 ino->compr_type = cpu_to_le16(ui->compr_type);
468 ino->data_len = cpu_to_le32(ui->data_len);
469 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt);
470 ino->xattr_size = cpu_to_le32(ui->xattr_size);
471 ino->xattr_names = cpu_to_le32(ui->xattr_names);
472 zero_ino_node_unused(ino);
473
474 /*
475 * Drop the attached data if this is a deletion inode, the data is not
476 * needed anymore.
477 */
478 if (!last_reference) {
479 memcpy(ino->data, ui->data, ui->data_len);
480 data_len = ui->data_len;
481 }
482
483 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
484}
485
486/**
487 * mark_inode_clean - mark UBIFS inode as clean.
488 * @c: UBIFS file-system description object
489 * @ui: UBIFS inode to mark as clean
490 *
491 * This helper function marks UBIFS inode @ui as clean by cleaning the
492 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
493 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
494 * just do nothing.
495 */
496static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
497{
498 if (ui->dirty)
499 ubifs_release_dirty_inode_budget(c, ui);
500 ui->dirty = 0;
501}
502
503static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent)
504{
505 if (c->double_hash)
506 dent->cookie = prandom_u32();
507 else
508 dent->cookie = 0;
509}
510
511/**
512 * ubifs_jnl_update - update inode.
513 * @c: UBIFS file-system description object
514 * @dir: parent inode or host inode in case of extended attributes
515 * @nm: directory entry name
516 * @inode: inode to update
517 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
518 * @xent: non-zero if the directory entry is an extended attribute entry
519 *
520 * This function updates an inode by writing a directory entry (or extended
521 * attribute entry), the inode itself, and the parent directory inode (or the
522 * host inode) to the journal.
523 *
524 * The function writes the host inode @dir last, which is important in case of
525 * extended attributes. Indeed, then we guarantee that if the host inode gets
526 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
527 * the extended attribute inode gets flushed too. And this is exactly what the
528 * user expects - synchronizing the host inode synchronizes its extended
529 * attributes. Similarly, this guarantees that if @dir is synchronized, its
530 * directory entry corresponding to @nm gets synchronized too.
531 *
532 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
533 * function synchronizes the write-buffer.
534 *
535 * This function marks the @dir and @inode inodes as clean and returns zero on
536 * success. In case of failure, a negative error code is returned.
537 */
538int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
539 const struct fscrypt_name *nm, const struct inode *inode,
540 int deletion, int xent)
541{
542 int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
543 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
544 int last_reference = !!(deletion && inode->i_nlink == 0);
545 struct ubifs_inode *ui = ubifs_inode(inode);
546 struct ubifs_inode *host_ui = ubifs_inode(dir);
547 struct ubifs_dent_node *dent;
548 struct ubifs_ino_node *ino;
549 union ubifs_key dent_key, ino_key;
550 u8 hash_dent[UBIFS_HASH_ARR_SZ];
551 u8 hash_ino[UBIFS_HASH_ARR_SZ];
552 u8 hash_ino_host[UBIFS_HASH_ARR_SZ];
553
554 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
555
556 dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
557 ilen = UBIFS_INO_NODE_SZ;
558
559 /*
560 * If the last reference to the inode is being deleted, then there is
561 * no need to attach and write inode data, it is being deleted anyway.
562 * And if the inode is being deleted, no need to synchronize
563 * write-buffer even if the inode is synchronous.
564 */
565 if (!last_reference) {
566 ilen += ui->data_len;
567 sync |= IS_SYNC(inode);
568 }
569
570 aligned_dlen = ALIGN(dlen, 8);
571 aligned_ilen = ALIGN(ilen, 8);
572
573 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
574 /* Make sure to also account for extended attributes */
575 if (ubifs_authenticated(c))
576 len += ALIGN(host_ui->data_len, 8) + ubifs_auth_node_sz(c);
577 else
578 len += host_ui->data_len;
579
580 dent = kzalloc(len, GFP_NOFS);
581 if (!dent)
582 return -ENOMEM;
583
584 /* Make reservation before allocating sequence numbers */
585 err = make_reservation(c, BASEHD, len);
586 if (err)
587 goto out_free;
588
589 if (!xent) {
590 dent->ch.node_type = UBIFS_DENT_NODE;
591 if (nm->hash)
592 dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash);
593 else
594 dent_key_init(c, &dent_key, dir->i_ino, nm);
595 } else {
596 dent->ch.node_type = UBIFS_XENT_NODE;
597 xent_key_init(c, &dent_key, dir->i_ino, nm);
598 }
599
600 key_write(c, &dent_key, dent->key);
601 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
602 dent->type = get_dent_type(inode->i_mode);
603 dent->nlen = cpu_to_le16(fname_len(nm));
604 memcpy(dent->name, fname_name(nm), fname_len(nm));
605 dent->name[fname_len(nm)] = '\0';
606 set_dent_cookie(c, dent);
607
608 zero_dent_node_unused(dent);
609 ubifs_prep_grp_node(c, dent, dlen, 0);
610 err = ubifs_node_calc_hash(c, dent, hash_dent);
611 if (err)
612 goto out_release;
613
614 ino = (void *)dent + aligned_dlen;
615 pack_inode(c, ino, inode, 0);
616 err = ubifs_node_calc_hash(c, ino, hash_ino);
617 if (err)
618 goto out_release;
619
620 ino = (void *)ino + aligned_ilen;
621 pack_inode(c, ino, dir, 1);
622 err = ubifs_node_calc_hash(c, ino, hash_ino_host);
623 if (err)
624 goto out_release;
625
626 if (last_reference) {
627 err = ubifs_add_orphan(c, inode->i_ino);
628 if (err) {
629 release_head(c, BASEHD);
630 goto out_finish;
631 }
632 ui->del_cmtno = c->cmt_no;
633 }
634
635 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
636 if (err)
637 goto out_release;
638 if (!sync) {
639 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
640
641 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
642 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
643 }
644 release_head(c, BASEHD);
645 kfree(dent);
646 ubifs_add_auth_dirt(c, lnum);
647
648 if (deletion) {
649 if (nm->hash)
650 err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash);
651 else
652 err = ubifs_tnc_remove_nm(c, &dent_key, nm);
653 if (err)
654 goto out_ro;
655 err = ubifs_add_dirt(c, lnum, dlen);
656 } else
657 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen,
658 hash_dent, nm);
659 if (err)
660 goto out_ro;
661
662 /*
663 * Note, we do not remove the inode from TNC even if the last reference
664 * to it has just been deleted, because the inode may still be opened.
665 * Instead, the inode has been added to orphan lists and the orphan
666 * subsystem will take further care about it.
667 */
668 ino_key_init(c, &ino_key, inode->i_ino);
669 ino_offs = dent_offs + aligned_dlen;
670 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen, hash_ino);
671 if (err)
672 goto out_ro;
673
674 ino_key_init(c, &ino_key, dir->i_ino);
675 ino_offs += aligned_ilen;
676 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
677 UBIFS_INO_NODE_SZ + host_ui->data_len, hash_ino_host);
678 if (err)
679 goto out_ro;
680
681 finish_reservation(c);
682 spin_lock(&ui->ui_lock);
683 ui->synced_i_size = ui->ui_size;
684 spin_unlock(&ui->ui_lock);
685 if (xent) {
686 spin_lock(&host_ui->ui_lock);
687 host_ui->synced_i_size = host_ui->ui_size;
688 spin_unlock(&host_ui->ui_lock);
689 }
690 mark_inode_clean(c, ui);
691 mark_inode_clean(c, host_ui);
692 return 0;
693
694out_finish:
695 finish_reservation(c);
696out_free:
697 kfree(dent);
698 return err;
699
700out_release:
701 release_head(c, BASEHD);
702 kfree(dent);
703out_ro:
704 ubifs_ro_mode(c, err);
705 if (last_reference)
706 ubifs_delete_orphan(c, inode->i_ino);
707 finish_reservation(c);
708 return err;
709}
710
711/**
712 * ubifs_jnl_write_data - write a data node to the journal.
713 * @c: UBIFS file-system description object
714 * @inode: inode the data node belongs to
715 * @key: node key
716 * @buf: buffer to write
717 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
718 *
719 * This function writes a data node to the journal. Returns %0 if the data node
720 * was successfully written, and a negative error code in case of failure.
721 */
722int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
723 const union ubifs_key *key, const void *buf, int len)
724{
725 struct ubifs_data_node *data;
726 int err, lnum, offs, compr_type, out_len, compr_len, auth_len;
727 int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
728 int write_len;
729 struct ubifs_inode *ui = ubifs_inode(inode);
730 bool encrypted = ubifs_crypt_is_encrypted(inode);
731 u8 hash[UBIFS_HASH_ARR_SZ];
732
733 dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
734 (unsigned long)key_inum(c, key), key_block(c, key), len);
735 ubifs_assert(c, len <= UBIFS_BLOCK_SIZE);
736
737 if (encrypted)
738 dlen += UBIFS_CIPHER_BLOCK_SIZE;
739
740 auth_len = ubifs_auth_node_sz(c);
741
742 data = kmalloc(dlen + auth_len, GFP_NOFS | __GFP_NOWARN);
743 if (!data) {
744 /*
745 * Fall-back to the write reserve buffer. Note, we might be
746 * currently on the memory reclaim path, when the kernel is
747 * trying to free some memory by writing out dirty pages. The
748 * write reserve buffer helps us to guarantee that we are
749 * always able to write the data.
750 */
751 allocated = 0;
752 mutex_lock(&c->write_reserve_mutex);
753 data = c->write_reserve_buf;
754 }
755
756 data->ch.node_type = UBIFS_DATA_NODE;
757 key_write(c, key, &data->key);
758 data->size = cpu_to_le32(len);
759
760 if (!(ui->flags & UBIFS_COMPR_FL))
761 /* Compression is disabled for this inode */
762 compr_type = UBIFS_COMPR_NONE;
763 else
764 compr_type = ui->compr_type;
765
766 out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
767 ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type);
768 ubifs_assert(c, compr_len <= UBIFS_BLOCK_SIZE);
769
770 if (encrypted) {
771 err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key));
772 if (err)
773 goto out_free;
774
775 } else {
776 data->compr_size = 0;
777 out_len = compr_len;
778 }
779
780 dlen = UBIFS_DATA_NODE_SZ + out_len;
781 if (ubifs_authenticated(c))
782 write_len = ALIGN(dlen, 8) + auth_len;
783 else
784 write_len = dlen;
785
786 data->compr_type = cpu_to_le16(compr_type);
787
788 /* Make reservation before allocating sequence numbers */
789 err = make_reservation(c, DATAHD, write_len);
790 if (err)
791 goto out_free;
792
793 ubifs_prepare_node(c, data, dlen, 0);
794 err = write_head(c, DATAHD, data, write_len, &lnum, &offs, 0);
795 if (err)
796 goto out_release;
797
798 err = ubifs_node_calc_hash(c, data, hash);
799 if (err)
800 goto out_release;
801
802 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
803 release_head(c, DATAHD);
804
805 ubifs_add_auth_dirt(c, lnum);
806
807 err = ubifs_tnc_add(c, key, lnum, offs, dlen, hash);
808 if (err)
809 goto out_ro;
810
811 finish_reservation(c);
812 if (!allocated)
813 mutex_unlock(&c->write_reserve_mutex);
814 else
815 kfree(data);
816 return 0;
817
818out_release:
819 release_head(c, DATAHD);
820out_ro:
821 ubifs_ro_mode(c, err);
822 finish_reservation(c);
823out_free:
824 if (!allocated)
825 mutex_unlock(&c->write_reserve_mutex);
826 else
827 kfree(data);
828 return err;
829}
830
831/**
832 * ubifs_jnl_write_inode - flush inode to the journal.
833 * @c: UBIFS file-system description object
834 * @inode: inode to flush
835 *
836 * This function writes inode @inode to the journal. If the inode is
837 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
838 * success and a negative error code in case of failure.
839 */
840int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
841{
842 int err, lnum, offs;
843 struct ubifs_ino_node *ino, *ino_start;
844 struct ubifs_inode *ui = ubifs_inode(inode);
845 int sync = 0, write_len = 0, ilen = UBIFS_INO_NODE_SZ;
846 int last_reference = !inode->i_nlink;
847 int kill_xattrs = ui->xattr_cnt && last_reference;
848 u8 hash[UBIFS_HASH_ARR_SZ];
849
850 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
851
852 /*
853 * If the inode is being deleted, do not write the attached data. No
854 * need to synchronize the write-buffer either.
855 */
856 if (!last_reference) {
857 ilen += ui->data_len;
858 sync = IS_SYNC(inode);
859 } else if (kill_xattrs) {
860 write_len += UBIFS_INO_NODE_SZ * ui->xattr_cnt;
861 }
862
863 if (ubifs_authenticated(c))
864 write_len += ALIGN(ilen, 8) + ubifs_auth_node_sz(c);
865 else
866 write_len += ilen;
867
868 ino_start = ino = kmalloc(write_len, GFP_NOFS);
869 if (!ino)
870 return -ENOMEM;
871
872 /* Make reservation before allocating sequence numbers */
873 err = make_reservation(c, BASEHD, write_len);
874 if (err)
875 goto out_free;
876
877 if (kill_xattrs) {
878 union ubifs_key key;
879 struct fscrypt_name nm = {0};
880 struct inode *xino;
881 struct ubifs_dent_node *xent, *pxent = NULL;
882
883 if (ui->xattr_cnt >= ubifs_xattr_max_cnt(c)) {
884 ubifs_err(c, "Cannot delete inode, it has too much xattrs!");
885 goto out_release;
886 }
887
888 lowest_xent_key(c, &key, inode->i_ino);
889 while (1) {
890 xent = ubifs_tnc_next_ent(c, &key, &nm);
891 if (IS_ERR(xent)) {
892 err = PTR_ERR(xent);
893 if (err == -ENOENT)
894 break;
895
896 goto out_release;
897 }
898
899 fname_name(&nm) = xent->name;
900 fname_len(&nm) = le16_to_cpu(xent->nlen);
901
902 xino = ubifs_iget(c->vfs_sb, xent->inum);
903 if (IS_ERR(xino)) {
904 err = PTR_ERR(xino);
905 ubifs_err(c, "dead directory entry '%s', error %d",
906 xent->name, err);
907 ubifs_ro_mode(c, err);
908 goto out_release;
909 }
910 ubifs_assert(c, ubifs_inode(xino)->xattr);
911
912 clear_nlink(xino);
913 pack_inode(c, ino, xino, 0);
914 ino = (void *)ino + UBIFS_INO_NODE_SZ;
915 iput(xino);
916
917 kfree(pxent);
918 pxent = xent;
919 key_read(c, &xent->key, &key);
920 }
921 kfree(pxent);
922 }
923
924 pack_inode(c, ino, inode, 1);
925 err = ubifs_node_calc_hash(c, ino, hash);
926 if (err)
927 goto out_release;
928
929 err = write_head(c, BASEHD, ino_start, write_len, &lnum, &offs, sync);
930 if (err)
931 goto out_release;
932 if (!sync)
933 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
934 inode->i_ino);
935 release_head(c, BASEHD);
936
937 ubifs_add_auth_dirt(c, lnum);
938
939 if (last_reference) {
940 err = ubifs_tnc_remove_ino(c, inode->i_ino);
941 if (err)
942 goto out_ro;
943 ubifs_delete_orphan(c, inode->i_ino);
944 err = ubifs_add_dirt(c, lnum, write_len);
945 } else {
946 union ubifs_key key;
947
948 ino_key_init(c, &key, inode->i_ino);
949 err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash);
950 }
951 if (err)
952 goto out_ro;
953
954 finish_reservation(c);
955 spin_lock(&ui->ui_lock);
956 ui->synced_i_size = ui->ui_size;
957 spin_unlock(&ui->ui_lock);
958 kfree(ino_start);
959 return 0;
960
961out_release:
962 release_head(c, BASEHD);
963out_ro:
964 ubifs_ro_mode(c, err);
965 finish_reservation(c);
966out_free:
967 kfree(ino_start);
968 return err;
969}
970
971/**
972 * ubifs_jnl_delete_inode - delete an inode.
973 * @c: UBIFS file-system description object
974 * @inode: inode to delete
975 *
976 * This function deletes inode @inode which includes removing it from orphans,
977 * deleting it from TNC and, in some cases, writing a deletion inode to the
978 * journal.
979 *
980 * When regular file inodes are unlinked or a directory inode is removed, the
981 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
982 * direntry to the media, and adds the inode to orphans. After this, when the
983 * last reference to this inode has been dropped, this function is called. In
984 * general, it has to write one more deletion inode to the media, because if
985 * a commit happened between 'ubifs_jnl_update()' and
986 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
987 * anymore, and in fact it might not be on the flash anymore, because it might
988 * have been garbage-collected already. And for optimization reasons UBIFS does
989 * not read the orphan area if it has been unmounted cleanly, so it would have
990 * no indication in the journal that there is a deleted inode which has to be
991 * removed from TNC.
992 *
993 * However, if there was no commit between 'ubifs_jnl_update()' and
994 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
995 * inode to the media for the second time. And this is quite a typical case.
996 *
997 * This function returns zero in case of success and a negative error code in
998 * case of failure.
999 */
1000int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
1001{
1002 int err;
1003 struct ubifs_inode *ui = ubifs_inode(inode);
1004
1005 ubifs_assert(c, inode->i_nlink == 0);
1006
1007 if (ui->xattr_cnt || ui->del_cmtno != c->cmt_no)
1008 /* A commit happened for sure or inode hosts xattrs */
1009 return ubifs_jnl_write_inode(c, inode);
1010
1011 down_read(&c->commit_sem);
1012 /*
1013 * Check commit number again, because the first test has been done
1014 * without @c->commit_sem, so a commit might have happened.
1015 */
1016 if (ui->del_cmtno != c->cmt_no) {
1017 up_read(&c->commit_sem);
1018 return ubifs_jnl_write_inode(c, inode);
1019 }
1020
1021 err = ubifs_tnc_remove_ino(c, inode->i_ino);
1022 if (err)
1023 ubifs_ro_mode(c, err);
1024 else
1025 ubifs_delete_orphan(c, inode->i_ino);
1026 up_read(&c->commit_sem);
1027 return err;
1028}
1029
1030/**
1031 * ubifs_jnl_xrename - cross rename two directory entries.
1032 * @c: UBIFS file-system description object
1033 * @fst_dir: parent inode of 1st directory entry to exchange
1034 * @fst_inode: 1st inode to exchange
1035 * @fst_nm: name of 1st inode to exchange
1036 * @snd_dir: parent inode of 2nd directory entry to exchange
1037 * @snd_inode: 2nd inode to exchange
1038 * @snd_nm: name of 2nd inode to exchange
1039 * @sync: non-zero if the write-buffer has to be synchronized
1040 *
1041 * This function implements the cross rename operation which may involve
1042 * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
1043 * and returns zero on success. In case of failure, a negative error code is
1044 * returned.
1045 */
1046int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
1047 const struct inode *fst_inode,
1048 const struct fscrypt_name *fst_nm,
1049 const struct inode *snd_dir,
1050 const struct inode *snd_inode,
1051 const struct fscrypt_name *snd_nm, int sync)
1052{
1053 union ubifs_key key;
1054 struct ubifs_dent_node *dent1, *dent2;
1055 int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
1056 int aligned_dlen1, aligned_dlen2;
1057 int twoparents = (fst_dir != snd_dir);
1058 void *p;
1059 u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1060 u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1061 u8 hash_p1[UBIFS_HASH_ARR_SZ];
1062 u8 hash_p2[UBIFS_HASH_ARR_SZ];
1063
1064 ubifs_assert(c, ubifs_inode(fst_dir)->data_len == 0);
1065 ubifs_assert(c, ubifs_inode(snd_dir)->data_len == 0);
1066 ubifs_assert(c, mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
1067 ubifs_assert(c, mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
1068
1069 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
1070 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
1071 aligned_dlen1 = ALIGN(dlen1, 8);
1072 aligned_dlen2 = ALIGN(dlen2, 8);
1073
1074 len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
1075 if (twoparents)
1076 len += plen;
1077
1078 len += ubifs_auth_node_sz(c);
1079
1080 dent1 = kzalloc(len, GFP_NOFS);
1081 if (!dent1)
1082 return -ENOMEM;
1083
1084 /* Make reservation before allocating sequence numbers */
1085 err = make_reservation(c, BASEHD, len);
1086 if (err)
1087 goto out_free;
1088
1089 /* Make new dent for 1st entry */
1090 dent1->ch.node_type = UBIFS_DENT_NODE;
1091 dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm);
1092 dent1->inum = cpu_to_le64(fst_inode->i_ino);
1093 dent1->type = get_dent_type(fst_inode->i_mode);
1094 dent1->nlen = cpu_to_le16(fname_len(snd_nm));
1095 memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
1096 dent1->name[fname_len(snd_nm)] = '\0';
1097 set_dent_cookie(c, dent1);
1098 zero_dent_node_unused(dent1);
1099 ubifs_prep_grp_node(c, dent1, dlen1, 0);
1100 err = ubifs_node_calc_hash(c, dent1, hash_dent1);
1101 if (err)
1102 goto out_release;
1103
1104 /* Make new dent for 2nd entry */
1105 dent2 = (void *)dent1 + aligned_dlen1;
1106 dent2->ch.node_type = UBIFS_DENT_NODE;
1107 dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm);
1108 dent2->inum = cpu_to_le64(snd_inode->i_ino);
1109 dent2->type = get_dent_type(snd_inode->i_mode);
1110 dent2->nlen = cpu_to_le16(fname_len(fst_nm));
1111 memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
1112 dent2->name[fname_len(fst_nm)] = '\0';
1113 set_dent_cookie(c, dent2);
1114 zero_dent_node_unused(dent2);
1115 ubifs_prep_grp_node(c, dent2, dlen2, 0);
1116 err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1117 if (err)
1118 goto out_release;
1119
1120 p = (void *)dent2 + aligned_dlen2;
1121 if (!twoparents) {
1122 pack_inode(c, p, fst_dir, 1);
1123 err = ubifs_node_calc_hash(c, p, hash_p1);
1124 if (err)
1125 goto out_release;
1126 } else {
1127 pack_inode(c, p, fst_dir, 0);
1128 err = ubifs_node_calc_hash(c, p, hash_p1);
1129 if (err)
1130 goto out_release;
1131 p += ALIGN(plen, 8);
1132 pack_inode(c, p, snd_dir, 1);
1133 err = ubifs_node_calc_hash(c, p, hash_p2);
1134 if (err)
1135 goto out_release;
1136 }
1137
1138 err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
1139 if (err)
1140 goto out_release;
1141 if (!sync) {
1142 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1143
1144 ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
1145 ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
1146 }
1147 release_head(c, BASEHD);
1148
1149 ubifs_add_auth_dirt(c, lnum);
1150
1151 dent_key_init(c, &key, snd_dir->i_ino, snd_nm);
1152 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, snd_nm);
1153 if (err)
1154 goto out_ro;
1155
1156 offs += aligned_dlen1;
1157 dent_key_init(c, &key, fst_dir->i_ino, fst_nm);
1158 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, fst_nm);
1159 if (err)
1160 goto out_ro;
1161
1162 offs += aligned_dlen2;
1163
1164 ino_key_init(c, &key, fst_dir->i_ino);
1165 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p1);
1166 if (err)
1167 goto out_ro;
1168
1169 if (twoparents) {
1170 offs += ALIGN(plen, 8);
1171 ino_key_init(c, &key, snd_dir->i_ino);
1172 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p2);
1173 if (err)
1174 goto out_ro;
1175 }
1176
1177 finish_reservation(c);
1178
1179 mark_inode_clean(c, ubifs_inode(fst_dir));
1180 if (twoparents)
1181 mark_inode_clean(c, ubifs_inode(snd_dir));
1182 kfree(dent1);
1183 return 0;
1184
1185out_release:
1186 release_head(c, BASEHD);
1187out_ro:
1188 ubifs_ro_mode(c, err);
1189 finish_reservation(c);
1190out_free:
1191 kfree(dent1);
1192 return err;
1193}
1194
1195/**
1196 * ubifs_jnl_rename - rename a directory entry.
1197 * @c: UBIFS file-system description object
1198 * @old_dir: parent inode of directory entry to rename
1199 * @old_dentry: directory entry to rename
1200 * @new_dir: parent inode of directory entry to rename
1201 * @new_dentry: new directory entry (or directory entry to replace)
1202 * @sync: non-zero if the write-buffer has to be synchronized
1203 *
1204 * This function implements the re-name operation which may involve writing up
1205 * to 4 inodes and 2 directory entries. It marks the written inodes as clean
1206 * and returns zero on success. In case of failure, a negative error code is
1207 * returned.
1208 */
1209int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1210 const struct inode *old_inode,
1211 const struct fscrypt_name *old_nm,
1212 const struct inode *new_dir,
1213 const struct inode *new_inode,
1214 const struct fscrypt_name *new_nm,
1215 const struct inode *whiteout, int sync)
1216{
1217 void *p;
1218 union ubifs_key key;
1219 struct ubifs_dent_node *dent, *dent2;
1220 int err, dlen1, dlen2, ilen, lnum, offs, len;
1221 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1222 int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1223 int move = (old_dir != new_dir);
1224 struct ubifs_inode *uninitialized_var(new_ui);
1225 u8 hash_old_dir[UBIFS_HASH_ARR_SZ];
1226 u8 hash_new_dir[UBIFS_HASH_ARR_SZ];
1227 u8 hash_new_inode[UBIFS_HASH_ARR_SZ];
1228 u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1229 u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1230
1231 ubifs_assert(c, ubifs_inode(old_dir)->data_len == 0);
1232 ubifs_assert(c, ubifs_inode(new_dir)->data_len == 0);
1233 ubifs_assert(c, mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1234 ubifs_assert(c, mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1235
1236 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
1237 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
1238 if (new_inode) {
1239 new_ui = ubifs_inode(new_inode);
1240 ubifs_assert(c, mutex_is_locked(&new_ui->ui_mutex));
1241 ilen = UBIFS_INO_NODE_SZ;
1242 if (!last_reference)
1243 ilen += new_ui->data_len;
1244 } else
1245 ilen = 0;
1246
1247 aligned_dlen1 = ALIGN(dlen1, 8);
1248 aligned_dlen2 = ALIGN(dlen2, 8);
1249 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
1250 if (move)
1251 len += plen;
1252
1253 len += ubifs_auth_node_sz(c);
1254
1255 dent = kzalloc(len, GFP_NOFS);
1256 if (!dent)
1257 return -ENOMEM;
1258
1259 /* Make reservation before allocating sequence numbers */
1260 err = make_reservation(c, BASEHD, len);
1261 if (err)
1262 goto out_free;
1263
1264 /* Make new dent */
1265 dent->ch.node_type = UBIFS_DENT_NODE;
1266 dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm);
1267 dent->inum = cpu_to_le64(old_inode->i_ino);
1268 dent->type = get_dent_type(old_inode->i_mode);
1269 dent->nlen = cpu_to_le16(fname_len(new_nm));
1270 memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
1271 dent->name[fname_len(new_nm)] = '\0';
1272 set_dent_cookie(c, dent);
1273 zero_dent_node_unused(dent);
1274 ubifs_prep_grp_node(c, dent, dlen1, 0);
1275 err = ubifs_node_calc_hash(c, dent, hash_dent1);
1276 if (err)
1277 goto out_release;
1278
1279 dent2 = (void *)dent + aligned_dlen1;
1280 dent2->ch.node_type = UBIFS_DENT_NODE;
1281 dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm);
1282
1283 if (whiteout) {
1284 dent2->inum = cpu_to_le64(whiteout->i_ino);
1285 dent2->type = get_dent_type(whiteout->i_mode);
1286 } else {
1287 /* Make deletion dent */
1288 dent2->inum = 0;
1289 dent2->type = DT_UNKNOWN;
1290 }
1291 dent2->nlen = cpu_to_le16(fname_len(old_nm));
1292 memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
1293 dent2->name[fname_len(old_nm)] = '\0';
1294 set_dent_cookie(c, dent2);
1295 zero_dent_node_unused(dent2);
1296 ubifs_prep_grp_node(c, dent2, dlen2, 0);
1297 err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1298 if (err)
1299 goto out_release;
1300
1301 p = (void *)dent2 + aligned_dlen2;
1302 if (new_inode) {
1303 pack_inode(c, p, new_inode, 0);
1304 err = ubifs_node_calc_hash(c, p, hash_new_inode);
1305 if (err)
1306 goto out_release;
1307
1308 p += ALIGN(ilen, 8);
1309 }
1310
1311 if (!move) {
1312 pack_inode(c, p, old_dir, 1);
1313 err = ubifs_node_calc_hash(c, p, hash_old_dir);
1314 if (err)
1315 goto out_release;
1316 } else {
1317 pack_inode(c, p, old_dir, 0);
1318 err = ubifs_node_calc_hash(c, p, hash_old_dir);
1319 if (err)
1320 goto out_release;
1321
1322 p += ALIGN(plen, 8);
1323 pack_inode(c, p, new_dir, 1);
1324 err = ubifs_node_calc_hash(c, p, hash_new_dir);
1325 if (err)
1326 goto out_release;
1327 }
1328
1329 if (last_reference) {
1330 err = ubifs_add_orphan(c, new_inode->i_ino);
1331 if (err) {
1332 release_head(c, BASEHD);
1333 goto out_finish;
1334 }
1335 new_ui->del_cmtno = c->cmt_no;
1336 }
1337
1338 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1339 if (err)
1340 goto out_release;
1341 if (!sync) {
1342 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1343
1344 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1345 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1346 if (new_inode)
1347 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1348 new_inode->i_ino);
1349 }
1350 release_head(c, BASEHD);
1351
1352 ubifs_add_auth_dirt(c, lnum);
1353
1354 dent_key_init(c, &key, new_dir->i_ino, new_nm);
1355 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, new_nm);
1356 if (err)
1357 goto out_ro;
1358
1359 offs += aligned_dlen1;
1360 if (whiteout) {
1361 dent_key_init(c, &key, old_dir->i_ino, old_nm);
1362 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, old_nm);
1363 if (err)
1364 goto out_ro;
1365
1366 ubifs_delete_orphan(c, whiteout->i_ino);
1367 } else {
1368 err = ubifs_add_dirt(c, lnum, dlen2);
1369 if (err)
1370 goto out_ro;
1371
1372 dent_key_init(c, &key, old_dir->i_ino, old_nm);
1373 err = ubifs_tnc_remove_nm(c, &key, old_nm);
1374 if (err)
1375 goto out_ro;
1376 }
1377
1378 offs += aligned_dlen2;
1379 if (new_inode) {
1380 ino_key_init(c, &key, new_inode->i_ino);
1381 err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash_new_inode);
1382 if (err)
1383 goto out_ro;
1384 offs += ALIGN(ilen, 8);
1385 }
1386
1387 ino_key_init(c, &key, old_dir->i_ino);
1388 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_old_dir);
1389 if (err)
1390 goto out_ro;
1391
1392 if (move) {
1393 offs += ALIGN(plen, 8);
1394 ino_key_init(c, &key, new_dir->i_ino);
1395 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_new_dir);
1396 if (err)
1397 goto out_ro;
1398 }
1399
1400 finish_reservation(c);
1401 if (new_inode) {
1402 mark_inode_clean(c, new_ui);
1403 spin_lock(&new_ui->ui_lock);
1404 new_ui->synced_i_size = new_ui->ui_size;
1405 spin_unlock(&new_ui->ui_lock);
1406 }
1407 mark_inode_clean(c, ubifs_inode(old_dir));
1408 if (move)
1409 mark_inode_clean(c, ubifs_inode(new_dir));
1410 kfree(dent);
1411 return 0;
1412
1413out_release:
1414 release_head(c, BASEHD);
1415out_ro:
1416 ubifs_ro_mode(c, err);
1417 if (last_reference)
1418 ubifs_delete_orphan(c, new_inode->i_ino);
1419out_finish:
1420 finish_reservation(c);
1421out_free:
1422 kfree(dent);
1423 return err;
1424}
1425
1426/**
1427 * truncate_data_node - re-compress/encrypt a truncated data node.
1428 * @c: UBIFS file-system description object
1429 * @inode: inode which referes to the data node
1430 * @block: data block number
1431 * @dn: data node to re-compress
1432 * @new_len: new length
1433 *
1434 * This function is used when an inode is truncated and the last data node of
1435 * the inode has to be re-compressed/encrypted and re-written.
1436 */
1437static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
1438 unsigned int block, struct ubifs_data_node *dn,
1439 int *new_len)
1440{
1441 void *buf;
1442 int err, dlen, compr_type, out_len, old_dlen;
1443
1444 out_len = le32_to_cpu(dn->size);
1445 buf = kmalloc_array(out_len, WORST_COMPR_FACTOR, GFP_NOFS);
1446 if (!buf)
1447 return -ENOMEM;
1448
1449 dlen = old_dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1450 compr_type = le16_to_cpu(dn->compr_type);
1451
1452 if (ubifs_crypt_is_encrypted(inode)) {
1453 err = ubifs_decrypt(inode, dn, &dlen, block);
1454 if (err)
1455 goto out;
1456 }
1457
1458 if (compr_type == UBIFS_COMPR_NONE) {
1459 out_len = *new_len;
1460 } else {
1461 err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type);
1462 if (err)
1463 goto out;
1464
1465 ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1466 }
1467
1468 if (ubifs_crypt_is_encrypted(inode)) {
1469 err = ubifs_encrypt(inode, dn, out_len, &old_dlen, block);
1470 if (err)
1471 goto out;
1472
1473 out_len = old_dlen;
1474 } else {
1475 dn->compr_size = 0;
1476 }
1477
1478 ubifs_assert(c, out_len <= UBIFS_BLOCK_SIZE);
1479 dn->compr_type = cpu_to_le16(compr_type);
1480 dn->size = cpu_to_le32(*new_len);
1481 *new_len = UBIFS_DATA_NODE_SZ + out_len;
1482 err = 0;
1483out:
1484 kfree(buf);
1485 return err;
1486}
1487
1488/**
1489 * ubifs_jnl_truncate - update the journal for a truncation.
1490 * @c: UBIFS file-system description object
1491 * @inode: inode to truncate
1492 * @old_size: old size
1493 * @new_size: new size
1494 *
1495 * When the size of a file decreases due to truncation, a truncation node is
1496 * written, the journal tree is updated, and the last data block is re-written
1497 * if it has been affected. The inode is also updated in order to synchronize
1498 * the new inode size.
1499 *
1500 * This function marks the inode as clean and returns zero on success. In case
1501 * of failure, a negative error code is returned.
1502 */
1503int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1504 loff_t old_size, loff_t new_size)
1505{
1506 union ubifs_key key, to_key;
1507 struct ubifs_ino_node *ino;
1508 struct ubifs_trun_node *trun;
1509 struct ubifs_data_node *uninitialized_var(dn);
1510 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1511 struct ubifs_inode *ui = ubifs_inode(inode);
1512 ino_t inum = inode->i_ino;
1513 unsigned int blk;
1514 u8 hash_ino[UBIFS_HASH_ARR_SZ];
1515 u8 hash_dn[UBIFS_HASH_ARR_SZ];
1516
1517 dbg_jnl("ino %lu, size %lld -> %lld",
1518 (unsigned long)inum, old_size, new_size);
1519 ubifs_assert(c, !ui->data_len);
1520 ubifs_assert(c, S_ISREG(inode->i_mode));
1521 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
1522
1523 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1524 UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1525
1526 sz += ubifs_auth_node_sz(c);
1527
1528 ino = kmalloc(sz, GFP_NOFS);
1529 if (!ino)
1530 return -ENOMEM;
1531
1532 trun = (void *)ino + UBIFS_INO_NODE_SZ;
1533 trun->ch.node_type = UBIFS_TRUN_NODE;
1534 trun->inum = cpu_to_le32(inum);
1535 trun->old_size = cpu_to_le64(old_size);
1536 trun->new_size = cpu_to_le64(new_size);
1537 zero_trun_node_unused(trun);
1538
1539 dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1540 if (dlen) {
1541 /* Get last data block so it can be truncated */
1542 dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1543 blk = new_size >> UBIFS_BLOCK_SHIFT;
1544 data_key_init(c, &key, inum, blk);
1545 dbg_jnlk(&key, "last block key ");
1546 err = ubifs_tnc_lookup(c, &key, dn);
1547 if (err == -ENOENT)
1548 dlen = 0; /* Not found (so it is a hole) */
1549 else if (err)
1550 goto out_free;
1551 else {
1552 int dn_len = le32_to_cpu(dn->size);
1553
1554 if (dn_len <= 0 || dn_len > UBIFS_BLOCK_SIZE) {
1555 ubifs_err(c, "bad data node (block %u, inode %lu)",
1556 blk, inode->i_ino);
1557 ubifs_dump_node(c, dn);
1558 goto out_free;
1559 }
1560
1561 if (dn_len <= dlen)
1562 dlen = 0; /* Nothing to do */
1563 else {
1564 err = truncate_data_node(c, inode, blk, dn, &dlen);
1565 if (err)
1566 goto out_free;
1567 }
1568 }
1569 }
1570
1571 /* Must make reservation before allocating sequence numbers */
1572 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1573
1574 if (ubifs_authenticated(c))
1575 len += ALIGN(dlen, 8) + ubifs_auth_node_sz(c);
1576 else
1577 len += dlen;
1578
1579 err = make_reservation(c, BASEHD, len);
1580 if (err)
1581 goto out_free;
1582
1583 pack_inode(c, ino, inode, 0);
1584 err = ubifs_node_calc_hash(c, ino, hash_ino);
1585 if (err)
1586 goto out_release;
1587
1588 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1589 if (dlen) {
1590 ubifs_prep_grp_node(c, dn, dlen, 1);
1591 err = ubifs_node_calc_hash(c, dn, hash_dn);
1592 if (err)
1593 goto out_release;
1594 }
1595
1596 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1597 if (err)
1598 goto out_release;
1599 if (!sync)
1600 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1601 release_head(c, BASEHD);
1602
1603 ubifs_add_auth_dirt(c, lnum);
1604
1605 if (dlen) {
1606 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1607 err = ubifs_tnc_add(c, &key, lnum, sz, dlen, hash_dn);
1608 if (err)
1609 goto out_ro;
1610 }
1611
1612 ino_key_init(c, &key, inum);
1613 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ, hash_ino);
1614 if (err)
1615 goto out_ro;
1616
1617 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1618 if (err)
1619 goto out_ro;
1620
1621 bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1622 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1623 data_key_init(c, &key, inum, blk);
1624
1625 bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1626 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1627 data_key_init(c, &to_key, inum, blk);
1628
1629 err = ubifs_tnc_remove_range(c, &key, &to_key);
1630 if (err)
1631 goto out_ro;
1632
1633 finish_reservation(c);
1634 spin_lock(&ui->ui_lock);
1635 ui->synced_i_size = ui->ui_size;
1636 spin_unlock(&ui->ui_lock);
1637 mark_inode_clean(c, ui);
1638 kfree(ino);
1639 return 0;
1640
1641out_release:
1642 release_head(c, BASEHD);
1643out_ro:
1644 ubifs_ro_mode(c, err);
1645 finish_reservation(c);
1646out_free:
1647 kfree(ino);
1648 return err;
1649}
1650
1651
1652/**
1653 * ubifs_jnl_delete_xattr - delete an extended attribute.
1654 * @c: UBIFS file-system description object
1655 * @host: host inode
1656 * @inode: extended attribute inode
1657 * @nm: extended attribute entry name
1658 *
1659 * This function delete an extended attribute which is very similar to
1660 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1661 * updates the target inode. Returns zero in case of success and a negative
1662 * error code in case of failure.
1663 */
1664int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1665 const struct inode *inode,
1666 const struct fscrypt_name *nm)
1667{
1668 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen, write_len;
1669 struct ubifs_dent_node *xent;
1670 struct ubifs_ino_node *ino;
1671 union ubifs_key xent_key, key1, key2;
1672 int sync = IS_DIRSYNC(host);
1673 struct ubifs_inode *host_ui = ubifs_inode(host);
1674 u8 hash[UBIFS_HASH_ARR_SZ];
1675
1676 ubifs_assert(c, inode->i_nlink == 0);
1677 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1678
1679 /*
1680 * Since we are deleting the inode, we do not bother to attach any data
1681 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1682 */
1683 xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
1684 aligned_xlen = ALIGN(xlen, 8);
1685 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1686 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1687
1688 write_len = len + ubifs_auth_node_sz(c);
1689
1690 xent = kzalloc(write_len, GFP_NOFS);
1691 if (!xent)
1692 return -ENOMEM;
1693
1694 /* Make reservation before allocating sequence numbers */
1695 err = make_reservation(c, BASEHD, write_len);
1696 if (err) {
1697 kfree(xent);
1698 return err;
1699 }
1700
1701 xent->ch.node_type = UBIFS_XENT_NODE;
1702 xent_key_init(c, &xent_key, host->i_ino, nm);
1703 key_write(c, &xent_key, xent->key);
1704 xent->inum = 0;
1705 xent->type = get_dent_type(inode->i_mode);
1706 xent->nlen = cpu_to_le16(fname_len(nm));
1707 memcpy(xent->name, fname_name(nm), fname_len(nm));
1708 xent->name[fname_len(nm)] = '\0';
1709 zero_dent_node_unused(xent);
1710 ubifs_prep_grp_node(c, xent, xlen, 0);
1711
1712 ino = (void *)xent + aligned_xlen;
1713 pack_inode(c, ino, inode, 0);
1714 ino = (void *)ino + UBIFS_INO_NODE_SZ;
1715 pack_inode(c, ino, host, 1);
1716 err = ubifs_node_calc_hash(c, ino, hash);
1717 if (err)
1718 goto out_release;
1719
1720 err = write_head(c, BASEHD, xent, write_len, &lnum, &xent_offs, sync);
1721 if (!sync && !err)
1722 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1723 release_head(c, BASEHD);
1724
1725 ubifs_add_auth_dirt(c, lnum);
1726 kfree(xent);
1727 if (err)
1728 goto out_ro;
1729
1730 /* Remove the extended attribute entry from TNC */
1731 err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1732 if (err)
1733 goto out_ro;
1734 err = ubifs_add_dirt(c, lnum, xlen);
1735 if (err)
1736 goto out_ro;
1737
1738 /*
1739 * Remove all nodes belonging to the extended attribute inode from TNC.
1740 * Well, there actually must be only one node - the inode itself.
1741 */
1742 lowest_ino_key(c, &key1, inode->i_ino);
1743 highest_ino_key(c, &key2, inode->i_ino);
1744 err = ubifs_tnc_remove_range(c, &key1, &key2);
1745 if (err)
1746 goto out_ro;
1747 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1748 if (err)
1749 goto out_ro;
1750
1751 /* And update TNC with the new host inode position */
1752 ino_key_init(c, &key1, host->i_ino);
1753 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen, hash);
1754 if (err)
1755 goto out_ro;
1756
1757 finish_reservation(c);
1758 spin_lock(&host_ui->ui_lock);
1759 host_ui->synced_i_size = host_ui->ui_size;
1760 spin_unlock(&host_ui->ui_lock);
1761 mark_inode_clean(c, host_ui);
1762 return 0;
1763
1764out_release:
1765 kfree(xent);
1766 release_head(c, BASEHD);
1767out_ro:
1768 ubifs_ro_mode(c, err);
1769 finish_reservation(c);
1770 return err;
1771}
1772
1773/**
1774 * ubifs_jnl_change_xattr - change an extended attribute.
1775 * @c: UBIFS file-system description object
1776 * @inode: extended attribute inode
1777 * @host: host inode
1778 *
1779 * This function writes the updated version of an extended attribute inode and
1780 * the host inode to the journal (to the base head). The host inode is written
1781 * after the extended attribute inode in order to guarantee that the extended
1782 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1783 * consequently, the write-buffer is synchronized. This function returns zero
1784 * in case of success and a negative error code in case of failure.
1785 */
1786int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1787 const struct inode *host)
1788{
1789 int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1790 struct ubifs_inode *host_ui = ubifs_inode(host);
1791 struct ubifs_ino_node *ino;
1792 union ubifs_key key;
1793 int sync = IS_DIRSYNC(host);
1794 u8 hash_host[UBIFS_HASH_ARR_SZ];
1795 u8 hash[UBIFS_HASH_ARR_SZ];
1796
1797 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1798 ubifs_assert(c, host->i_nlink > 0);
1799 ubifs_assert(c, inode->i_nlink > 0);
1800 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1801
1802 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1803 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1804 aligned_len1 = ALIGN(len1, 8);
1805 aligned_len = aligned_len1 + ALIGN(len2, 8);
1806
1807 aligned_len += ubifs_auth_node_sz(c);
1808
1809 ino = kzalloc(aligned_len, GFP_NOFS);
1810 if (!ino)
1811 return -ENOMEM;
1812
1813 /* Make reservation before allocating sequence numbers */
1814 err = make_reservation(c, BASEHD, aligned_len);
1815 if (err)
1816 goto out_free;
1817
1818 pack_inode(c, ino, host, 0);
1819 err = ubifs_node_calc_hash(c, ino, hash_host);
1820 if (err)
1821 goto out_release;
1822 pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1823 err = ubifs_node_calc_hash(c, (void *)ino + aligned_len1, hash);
1824 if (err)
1825 goto out_release;
1826
1827 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1828 if (!sync && !err) {
1829 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1830
1831 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1832 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1833 }
1834 release_head(c, BASEHD);
1835 if (err)
1836 goto out_ro;
1837
1838 ubifs_add_auth_dirt(c, lnum);
1839
1840 ino_key_init(c, &key, host->i_ino);
1841 err = ubifs_tnc_add(c, &key, lnum, offs, len1, hash_host);
1842 if (err)
1843 goto out_ro;
1844
1845 ino_key_init(c, &key, inode->i_ino);
1846 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2, hash);
1847 if (err)
1848 goto out_ro;
1849
1850 finish_reservation(c);
1851 spin_lock(&host_ui->ui_lock);
1852 host_ui->synced_i_size = host_ui->ui_size;
1853 spin_unlock(&host_ui->ui_lock);
1854 mark_inode_clean(c, host_ui);
1855 kfree(ino);
1856 return 0;
1857
1858out_release:
1859 release_head(c, BASEHD);
1860out_ro:
1861 ubifs_ro_mode(c, err);
1862 finish_reservation(c);
1863out_free:
1864 kfree(ino);
1865 return err;
1866}
1867
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11/*
12 * This file implements UBIFS journal.
13 *
14 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
15 * length and position, while a bud logical eraseblock is any LEB in the main
16 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
17 * contains only references to buds and some other stuff like commit
18 * start node. The idea is that when we commit the journal, we do
19 * not copy the data, the buds just become indexed. Since after the commit the
20 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
21 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
22 * become leafs in the future.
23 *
24 * The journal is multi-headed because we want to write data to the journal as
25 * optimally as possible. It is nice to have nodes belonging to the same inode
26 * in one LEB, so we may write data owned by different inodes to different
27 * journal heads, although at present only one data head is used.
28 *
29 * For recovery reasons, the base head contains all inode nodes, all directory
30 * entry nodes and all truncate nodes. This means that the other heads contain
31 * only data nodes.
32 *
33 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
34 * time of commit, the bud is retained to continue to be used in the journal,
35 * even though the "front" of the LEB is now indexed. In that case, the log
36 * reference contains the offset where the bud starts for the purposes of the
37 * journal.
38 *
39 * The journal size has to be limited, because the larger is the journal, the
40 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
41 * takes (indexing in the TNC).
42 *
43 * All the journal write operations like 'ubifs_jnl_update()' here, which write
44 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
45 * unclean reboots. Should the unclean reboot happen, the recovery code drops
46 * all the nodes.
47 */
48
49#include "ubifs.h"
50
51/**
52 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
53 * @ino: the inode to zero out
54 */
55static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
56{
57 memset(ino->padding1, 0, 4);
58 memset(ino->padding2, 0, 26);
59}
60
61/**
62 * zero_dent_node_unused - zero out unused fields of an on-flash directory
63 * entry node.
64 * @dent: the directory entry to zero out
65 */
66static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
67{
68 dent->padding1 = 0;
69}
70
71/**
72 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
73 * node.
74 * @trun: the truncation node to zero out
75 */
76static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
77{
78 memset(trun->padding, 0, 12);
79}
80
81static void ubifs_add_auth_dirt(struct ubifs_info *c, int lnum)
82{
83 if (ubifs_authenticated(c))
84 ubifs_add_dirt(c, lnum, ubifs_auth_node_sz(c));
85}
86
87/**
88 * reserve_space - reserve space in the journal.
89 * @c: UBIFS file-system description object
90 * @jhead: journal head number
91 * @len: node length
92 *
93 * This function reserves space in journal head @head. If the reservation
94 * succeeded, the journal head stays locked and later has to be unlocked using
95 * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to
96 * be done, and other negative error codes in case of other failures.
97 */
98static int reserve_space(struct ubifs_info *c, int jhead, int len)
99{
100 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
101 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
102
103 /*
104 * Typically, the base head has smaller nodes written to it, so it is
105 * better to try to allocate space at the ends of eraseblocks. This is
106 * what the squeeze parameter does.
107 */
108 ubifs_assert(c, !c->ro_media && !c->ro_mount);
109 squeeze = (jhead == BASEHD);
110again:
111 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
112
113 if (c->ro_error) {
114 err = -EROFS;
115 goto out_unlock;
116 }
117
118 avail = c->leb_size - wbuf->offs - wbuf->used;
119 if (wbuf->lnum != -1 && avail >= len)
120 return 0;
121
122 /*
123 * Write buffer wasn't seek'ed or there is no enough space - look for an
124 * LEB with some empty space.
125 */
126 lnum = ubifs_find_free_space(c, len, &offs, squeeze);
127 if (lnum >= 0)
128 goto out;
129
130 err = lnum;
131 if (err != -ENOSPC)
132 goto out_unlock;
133
134 /*
135 * No free space, we have to run garbage collector to make
136 * some. But the write-buffer mutex has to be unlocked because
137 * GC also takes it.
138 */
139 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
140 mutex_unlock(&wbuf->io_mutex);
141
142 lnum = ubifs_garbage_collect(c, 0);
143 if (lnum < 0) {
144 err = lnum;
145 if (err != -ENOSPC)
146 return err;
147
148 /*
149 * GC could not make a free LEB. But someone else may
150 * have allocated new bud for this journal head,
151 * because we dropped @wbuf->io_mutex, so try once
152 * again.
153 */
154 dbg_jnl("GC couldn't make a free LEB for jhead %s",
155 dbg_jhead(jhead));
156 if (retries++ < 2) {
157 dbg_jnl("retry (%d)", retries);
158 goto again;
159 }
160
161 dbg_jnl("return -ENOSPC");
162 return err;
163 }
164
165 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
166 dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
167 avail = c->leb_size - wbuf->offs - wbuf->used;
168
169 if (wbuf->lnum != -1 && avail >= len) {
170 /*
171 * Someone else has switched the journal head and we have
172 * enough space now. This happens when more than one process is
173 * trying to write to the same journal head at the same time.
174 */
175 dbg_jnl("return LEB %d back, already have LEB %d:%d",
176 lnum, wbuf->lnum, wbuf->offs + wbuf->used);
177 err = ubifs_return_leb(c, lnum);
178 if (err)
179 goto out_unlock;
180 return 0;
181 }
182
183 offs = 0;
184
185out:
186 /*
187 * Make sure we synchronize the write-buffer before we add the new bud
188 * to the log. Otherwise we may have a power cut after the log
189 * reference node for the last bud (@lnum) is written but before the
190 * write-buffer data are written to the next-to-last bud
191 * (@wbuf->lnum). And the effect would be that the recovery would see
192 * that there is corruption in the next-to-last bud.
193 */
194 err = ubifs_wbuf_sync_nolock(wbuf);
195 if (err)
196 goto out_return;
197 err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
198 if (err)
199 goto out_return;
200 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
201 if (err)
202 goto out_unlock;
203
204 return 0;
205
206out_unlock:
207 mutex_unlock(&wbuf->io_mutex);
208 return err;
209
210out_return:
211 /* An error occurred and the LEB has to be returned to lprops */
212 ubifs_assert(c, err < 0);
213 err1 = ubifs_return_leb(c, lnum);
214 if (err1 && err == -EAGAIN)
215 /*
216 * Return original error code only if it is not %-EAGAIN,
217 * which is not really an error. Otherwise, return the error
218 * code of 'ubifs_return_leb()'.
219 */
220 err = err1;
221 mutex_unlock(&wbuf->io_mutex);
222 return err;
223}
224
225static int ubifs_hash_nodes(struct ubifs_info *c, void *node,
226 int len, struct shash_desc *hash)
227{
228 int auth_node_size = ubifs_auth_node_sz(c);
229 int err;
230
231 while (1) {
232 const struct ubifs_ch *ch = node;
233 int nodelen = le32_to_cpu(ch->len);
234
235 ubifs_assert(c, len >= auth_node_size);
236
237 if (len == auth_node_size)
238 break;
239
240 ubifs_assert(c, len > nodelen);
241 ubifs_assert(c, ch->magic == cpu_to_le32(UBIFS_NODE_MAGIC));
242
243 err = ubifs_shash_update(c, hash, (void *)node, nodelen);
244 if (err)
245 return err;
246
247 node += ALIGN(nodelen, 8);
248 len -= ALIGN(nodelen, 8);
249 }
250
251 return ubifs_prepare_auth_node(c, node, hash);
252}
253
254/**
255 * write_head - write data to a journal head.
256 * @c: UBIFS file-system description object
257 * @jhead: journal head
258 * @buf: buffer to write
259 * @len: length to write
260 * @lnum: LEB number written is returned here
261 * @offs: offset written is returned here
262 * @sync: non-zero if the write-buffer has to by synchronized
263 *
264 * This function writes data to the reserved space of journal head @jhead.
265 * Returns zero in case of success and a negative error code in case of
266 * failure.
267 */
268static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
269 int *lnum, int *offs, int sync)
270{
271 int err;
272 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
273
274 ubifs_assert(c, jhead != GCHD);
275
276 *lnum = c->jheads[jhead].wbuf.lnum;
277 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
278 dbg_jnl("jhead %s, LEB %d:%d, len %d",
279 dbg_jhead(jhead), *lnum, *offs, len);
280
281 if (ubifs_authenticated(c)) {
282 err = ubifs_hash_nodes(c, buf, len, c->jheads[jhead].log_hash);
283 if (err)
284 return err;
285 }
286
287 err = ubifs_wbuf_write_nolock(wbuf, buf, len);
288 if (err)
289 return err;
290 if (sync)
291 err = ubifs_wbuf_sync_nolock(wbuf);
292 return err;
293}
294
295/**
296 * __queue_and_wait - queue a task and wait until the task is waked up.
297 * @c: UBIFS file-system description object
298 *
299 * This function adds current task in queue and waits until the task is waked
300 * up. This function should be called with @c->reserve_space_wq locked.
301 */
302static void __queue_and_wait(struct ubifs_info *c)
303{
304 DEFINE_WAIT(wait);
305
306 __add_wait_queue_entry_tail_exclusive(&c->reserve_space_wq, &wait);
307 set_current_state(TASK_UNINTERRUPTIBLE);
308 spin_unlock(&c->reserve_space_wq.lock);
309
310 schedule();
311 finish_wait(&c->reserve_space_wq, &wait);
312}
313
314/**
315 * wait_for_reservation - try queuing current task to wait until waked up.
316 * @c: UBIFS file-system description object
317 *
318 * This function queues current task to wait until waked up, if queuing is
319 * started(@c->need_wait_space is not %0). Returns %true if current task is
320 * added in queue, otherwise %false is returned.
321 */
322static bool wait_for_reservation(struct ubifs_info *c)
323{
324 if (likely(atomic_read(&c->need_wait_space) == 0))
325 /* Quick path to check whether queuing is started. */
326 return false;
327
328 spin_lock(&c->reserve_space_wq.lock);
329 if (atomic_read(&c->need_wait_space) == 0) {
330 /* Queuing is not started, don't queue current task. */
331 spin_unlock(&c->reserve_space_wq.lock);
332 return false;
333 }
334
335 __queue_and_wait(c);
336 return true;
337}
338
339/**
340 * wake_up_reservation - wake up first task in queue or stop queuing.
341 * @c: UBIFS file-system description object
342 *
343 * This function wakes up the first task in queue if it exists, or stops
344 * queuing if no tasks in queue.
345 */
346static void wake_up_reservation(struct ubifs_info *c)
347{
348 spin_lock(&c->reserve_space_wq.lock);
349 if (waitqueue_active(&c->reserve_space_wq))
350 wake_up_locked(&c->reserve_space_wq);
351 else
352 /*
353 * Compared with wait_for_reservation(), set @c->need_wait_space
354 * under the protection of wait queue lock, which can avoid that
355 * @c->need_wait_space is set to 0 after new task queued.
356 */
357 atomic_set(&c->need_wait_space, 0);
358 spin_unlock(&c->reserve_space_wq.lock);
359}
360
361/**
362 * wake_up_reservation - add current task in queue or start queuing.
363 * @c: UBIFS file-system description object
364 *
365 * This function starts queuing if queuing is not started, otherwise adds
366 * current task in queue.
367 */
368static void add_or_start_queue(struct ubifs_info *c)
369{
370 spin_lock(&c->reserve_space_wq.lock);
371 if (atomic_cmpxchg(&c->need_wait_space, 0, 1) == 0) {
372 /* Starts queuing, task can go on directly. */
373 spin_unlock(&c->reserve_space_wq.lock);
374 return;
375 }
376
377 /*
378 * There are at least two tasks have retried more than 32 times
379 * at certain point, first task has started queuing, just queue
380 * the left tasks.
381 */
382 __queue_and_wait(c);
383}
384
385/**
386 * make_reservation - reserve journal space.
387 * @c: UBIFS file-system description object
388 * @jhead: journal head
389 * @len: how many bytes to reserve
390 *
391 * This function makes space reservation in journal head @jhead. The function
392 * takes the commit lock and locks the journal head, and the caller has to
393 * unlock the head and finish the reservation with 'finish_reservation()'.
394 * Returns zero in case of success and a negative error code in case of
395 * failure.
396 *
397 * Note, the journal head may be unlocked as soon as the data is written, while
398 * the commit lock has to be released after the data has been added to the
399 * TNC.
400 */
401static int make_reservation(struct ubifs_info *c, int jhead, int len)
402{
403 int err, cmt_retries = 0, nospc_retries = 0;
404 bool blocked = wait_for_reservation(c);
405
406again:
407 down_read(&c->commit_sem);
408 err = reserve_space(c, jhead, len);
409 if (!err) {
410 /* c->commit_sem will get released via finish_reservation(). */
411 goto out_wake_up;
412 }
413 up_read(&c->commit_sem);
414
415 if (err == -ENOSPC) {
416 /*
417 * GC could not make any progress. We should try to commit
418 * because it could make some dirty space and GC would make
419 * progress, so make the error -EAGAIN so that the below
420 * will commit and re-try.
421 */
422 nospc_retries++;
423 dbg_jnl("no space, retry");
424 err = -EAGAIN;
425 }
426
427 if (err != -EAGAIN)
428 goto out;
429
430 /*
431 * -EAGAIN means that the journal is full or too large, or the above
432 * code wants to do one commit. Do this and re-try.
433 */
434 if (cmt_retries > 128) {
435 /*
436 * This should not happen unless:
437 * 1. The journal size limitations are too tough.
438 * 2. The budgeting is incorrect. We always have to be able to
439 * write to the media, because all operations are budgeted.
440 * Deletions are not budgeted, though, but we reserve an
441 * extra LEB for them.
442 */
443 ubifs_err(c, "stuck in space allocation, nospc_retries %d",
444 nospc_retries);
445 err = -ENOSPC;
446 goto out;
447 } else if (cmt_retries > 32) {
448 /*
449 * It's almost impossible to happen, unless there are many tasks
450 * making reservation concurrently and someone task has retried
451 * gc + commit for many times, generated available space during
452 * this period are grabbed by other tasks.
453 * But if it happens, start queuing up all tasks that will make
454 * space reservation, then there is only one task making space
455 * reservation at any time, and it can always make success under
456 * the premise of correct budgeting.
457 */
458 ubifs_warn(c, "too many space allocation cmt_retries (%d) "
459 "nospc_retries (%d), start queuing tasks",
460 cmt_retries, nospc_retries);
461
462 if (!blocked) {
463 blocked = true;
464 add_or_start_queue(c);
465 }
466 }
467
468 dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
469 cmt_retries);
470 cmt_retries += 1;
471
472 err = ubifs_run_commit(c);
473 if (err)
474 goto out_wake_up;
475 goto again;
476
477out:
478 ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
479 len, jhead, err);
480 if (err == -ENOSPC) {
481 /* This are some budgeting problems, print useful information */
482 down_write(&c->commit_sem);
483 dump_stack();
484 ubifs_dump_budg(c, &c->bi);
485 ubifs_dump_lprops(c);
486 cmt_retries = dbg_check_lprops(c);
487 up_write(&c->commit_sem);
488 }
489out_wake_up:
490 if (blocked) {
491 /*
492 * Only tasks that have ever started queuing or ever been queued
493 * can wake up other queued tasks, which can make sure that
494 * there is only one task waked up to make space reservation.
495 * For example:
496 * task A task B task C
497 * make_reservation make_reservation
498 * reserve_space // 0
499 * wake_up_reservation
500 * atomic_cmpxchg // 0, start queuing
501 * reserve_space
502 * wait_for_reservation
503 * __queue_and_wait
504 * add_wait_queue
505 * if (blocked) // false
506 * // So that task C won't be waked up to race with task B
507 */
508 wake_up_reservation(c);
509 }
510 return err;
511}
512
513/**
514 * release_head - release a journal head.
515 * @c: UBIFS file-system description object
516 * @jhead: journal head
517 *
518 * This function releases journal head @jhead which was locked by
519 * the 'make_reservation()' function. It has to be called after each successful
520 * 'make_reservation()' invocation.
521 */
522static inline void release_head(struct ubifs_info *c, int jhead)
523{
524 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
525}
526
527/**
528 * finish_reservation - finish a reservation.
529 * @c: UBIFS file-system description object
530 *
531 * This function finishes journal space reservation. It must be called after
532 * 'make_reservation()'.
533 */
534static void finish_reservation(struct ubifs_info *c)
535{
536 up_read(&c->commit_sem);
537}
538
539/**
540 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
541 * @mode: inode mode
542 */
543static int get_dent_type(int mode)
544{
545 switch (mode & S_IFMT) {
546 case S_IFREG:
547 return UBIFS_ITYPE_REG;
548 case S_IFDIR:
549 return UBIFS_ITYPE_DIR;
550 case S_IFLNK:
551 return UBIFS_ITYPE_LNK;
552 case S_IFBLK:
553 return UBIFS_ITYPE_BLK;
554 case S_IFCHR:
555 return UBIFS_ITYPE_CHR;
556 case S_IFIFO:
557 return UBIFS_ITYPE_FIFO;
558 case S_IFSOCK:
559 return UBIFS_ITYPE_SOCK;
560 default:
561 BUG();
562 }
563 return 0;
564}
565
566/**
567 * pack_inode - pack an inode node.
568 * @c: UBIFS file-system description object
569 * @ino: buffer in which to pack inode node
570 * @inode: inode to pack
571 * @last: indicates the last node of the group
572 */
573static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
574 const struct inode *inode, int last)
575{
576 int data_len = 0, last_reference = !inode->i_nlink;
577 struct ubifs_inode *ui = ubifs_inode(inode);
578
579 ino->ch.node_type = UBIFS_INO_NODE;
580 ino_key_init_flash(c, &ino->key, inode->i_ino);
581 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
582 ino->atime_sec = cpu_to_le64(inode_get_atime_sec(inode));
583 ino->atime_nsec = cpu_to_le32(inode_get_atime_nsec(inode));
584 ino->ctime_sec = cpu_to_le64(inode_get_ctime_sec(inode));
585 ino->ctime_nsec = cpu_to_le32(inode_get_ctime_nsec(inode));
586 ino->mtime_sec = cpu_to_le64(inode_get_mtime_sec(inode));
587 ino->mtime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode));
588 ino->uid = cpu_to_le32(i_uid_read(inode));
589 ino->gid = cpu_to_le32(i_gid_read(inode));
590 ino->mode = cpu_to_le32(inode->i_mode);
591 ino->flags = cpu_to_le32(ui->flags);
592 ino->size = cpu_to_le64(ui->ui_size);
593 ino->nlink = cpu_to_le32(inode->i_nlink);
594 ino->compr_type = cpu_to_le16(ui->compr_type);
595 ino->data_len = cpu_to_le32(ui->data_len);
596 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt);
597 ino->xattr_size = cpu_to_le32(ui->xattr_size);
598 ino->xattr_names = cpu_to_le32(ui->xattr_names);
599 zero_ino_node_unused(ino);
600
601 /*
602 * Drop the attached data if this is a deletion inode, the data is not
603 * needed anymore.
604 */
605 if (!last_reference) {
606 memcpy(ino->data, ui->data, ui->data_len);
607 data_len = ui->data_len;
608 }
609
610 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
611}
612
613/**
614 * mark_inode_clean - mark UBIFS inode as clean.
615 * @c: UBIFS file-system description object
616 * @ui: UBIFS inode to mark as clean
617 *
618 * This helper function marks UBIFS inode @ui as clean by cleaning the
619 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
620 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
621 * just do nothing.
622 */
623static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
624{
625 if (ui->dirty)
626 ubifs_release_dirty_inode_budget(c, ui);
627 ui->dirty = 0;
628}
629
630static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent)
631{
632 if (c->double_hash)
633 dent->cookie = (__force __le32) get_random_u32();
634 else
635 dent->cookie = 0;
636}
637
638/**
639 * ubifs_jnl_update - update inode.
640 * @c: UBIFS file-system description object
641 * @dir: parent inode or host inode in case of extended attributes
642 * @nm: directory entry name
643 * @inode: inode to update
644 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
645 * @xent: non-zero if the directory entry is an extended attribute entry
646 *
647 * This function updates an inode by writing a directory entry (or extended
648 * attribute entry), the inode itself, and the parent directory inode (or the
649 * host inode) to the journal.
650 *
651 * The function writes the host inode @dir last, which is important in case of
652 * extended attributes. Indeed, then we guarantee that if the host inode gets
653 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
654 * the extended attribute inode gets flushed too. And this is exactly what the
655 * user expects - synchronizing the host inode synchronizes its extended
656 * attributes. Similarly, this guarantees that if @dir is synchronized, its
657 * directory entry corresponding to @nm gets synchronized too.
658 *
659 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
660 * function synchronizes the write-buffer.
661 *
662 * This function marks the @dir and @inode inodes as clean and returns zero on
663 * success. In case of failure, a negative error code is returned.
664 */
665int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
666 const struct fscrypt_name *nm, const struct inode *inode,
667 int deletion, int xent)
668{
669 int err, dlen, ilen, len, lnum, ino_offs, dent_offs, orphan_added = 0;
670 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
671 int last_reference = !!(deletion && inode->i_nlink == 0);
672 struct ubifs_inode *ui = ubifs_inode(inode);
673 struct ubifs_inode *host_ui = ubifs_inode(dir);
674 struct ubifs_dent_node *dent;
675 struct ubifs_ino_node *ino;
676 union ubifs_key dent_key, ino_key;
677 u8 hash_dent[UBIFS_HASH_ARR_SZ];
678 u8 hash_ino[UBIFS_HASH_ARR_SZ];
679 u8 hash_ino_host[UBIFS_HASH_ARR_SZ];
680
681 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
682
683 dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
684 ilen = UBIFS_INO_NODE_SZ;
685
686 /*
687 * If the last reference to the inode is being deleted, then there is
688 * no need to attach and write inode data, it is being deleted anyway.
689 * And if the inode is being deleted, no need to synchronize
690 * write-buffer even if the inode is synchronous.
691 */
692 if (!last_reference) {
693 ilen += ui->data_len;
694 sync |= IS_SYNC(inode);
695 }
696
697 aligned_dlen = ALIGN(dlen, 8);
698 aligned_ilen = ALIGN(ilen, 8);
699
700 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
701 /* Make sure to also account for extended attributes */
702 if (ubifs_authenticated(c))
703 len += ALIGN(host_ui->data_len, 8) + ubifs_auth_node_sz(c);
704 else
705 len += host_ui->data_len;
706
707 dent = kzalloc(len, GFP_NOFS);
708 if (!dent)
709 return -ENOMEM;
710
711 /* Make reservation before allocating sequence numbers */
712 err = make_reservation(c, BASEHD, len);
713 if (err)
714 goto out_free;
715
716 if (!xent) {
717 dent->ch.node_type = UBIFS_DENT_NODE;
718 if (fname_name(nm) == NULL)
719 dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash);
720 else
721 dent_key_init(c, &dent_key, dir->i_ino, nm);
722 } else {
723 dent->ch.node_type = UBIFS_XENT_NODE;
724 xent_key_init(c, &dent_key, dir->i_ino, nm);
725 }
726
727 key_write(c, &dent_key, dent->key);
728 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
729 dent->type = get_dent_type(inode->i_mode);
730 dent->nlen = cpu_to_le16(fname_len(nm));
731 memcpy(dent->name, fname_name(nm), fname_len(nm));
732 dent->name[fname_len(nm)] = '\0';
733 set_dent_cookie(c, dent);
734
735 zero_dent_node_unused(dent);
736 ubifs_prep_grp_node(c, dent, dlen, 0);
737 err = ubifs_node_calc_hash(c, dent, hash_dent);
738 if (err)
739 goto out_release;
740
741 ino = (void *)dent + aligned_dlen;
742 pack_inode(c, ino, inode, 0);
743 err = ubifs_node_calc_hash(c, ino, hash_ino);
744 if (err)
745 goto out_release;
746
747 ino = (void *)ino + aligned_ilen;
748 pack_inode(c, ino, dir, 1);
749 err = ubifs_node_calc_hash(c, ino, hash_ino_host);
750 if (err)
751 goto out_release;
752
753 if (last_reference) {
754 err = ubifs_add_orphan(c, inode->i_ino);
755 if (err) {
756 release_head(c, BASEHD);
757 goto out_finish;
758 }
759 ui->del_cmtno = c->cmt_no;
760 orphan_added = 1;
761 }
762
763 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
764 if (err)
765 goto out_release;
766 if (!sync) {
767 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
768
769 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
770 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
771 }
772 release_head(c, BASEHD);
773 kfree(dent);
774 ubifs_add_auth_dirt(c, lnum);
775
776 if (deletion) {
777 if (fname_name(nm) == NULL)
778 err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash);
779 else
780 err = ubifs_tnc_remove_nm(c, &dent_key, nm);
781 if (err)
782 goto out_ro;
783 err = ubifs_add_dirt(c, lnum, dlen);
784 } else
785 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen,
786 hash_dent, nm);
787 if (err)
788 goto out_ro;
789
790 /*
791 * Note, we do not remove the inode from TNC even if the last reference
792 * to it has just been deleted, because the inode may still be opened.
793 * Instead, the inode has been added to orphan lists and the orphan
794 * subsystem will take further care about it.
795 */
796 ino_key_init(c, &ino_key, inode->i_ino);
797 ino_offs = dent_offs + aligned_dlen;
798 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen, hash_ino);
799 if (err)
800 goto out_ro;
801
802 ino_key_init(c, &ino_key, dir->i_ino);
803 ino_offs += aligned_ilen;
804 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
805 UBIFS_INO_NODE_SZ + host_ui->data_len, hash_ino_host);
806 if (err)
807 goto out_ro;
808
809 finish_reservation(c);
810 spin_lock(&ui->ui_lock);
811 ui->synced_i_size = ui->ui_size;
812 spin_unlock(&ui->ui_lock);
813 if (xent) {
814 spin_lock(&host_ui->ui_lock);
815 host_ui->synced_i_size = host_ui->ui_size;
816 spin_unlock(&host_ui->ui_lock);
817 }
818 mark_inode_clean(c, ui);
819 mark_inode_clean(c, host_ui);
820 return 0;
821
822out_finish:
823 finish_reservation(c);
824out_free:
825 kfree(dent);
826 return err;
827
828out_release:
829 release_head(c, BASEHD);
830 kfree(dent);
831out_ro:
832 ubifs_ro_mode(c, err);
833 if (orphan_added)
834 ubifs_delete_orphan(c, inode->i_ino);
835 finish_reservation(c);
836 return err;
837}
838
839/**
840 * ubifs_jnl_write_data - write a data node to the journal.
841 * @c: UBIFS file-system description object
842 * @inode: inode the data node belongs to
843 * @key: node key
844 * @buf: buffer to write
845 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
846 *
847 * This function writes a data node to the journal. Returns %0 if the data node
848 * was successfully written, and a negative error code in case of failure.
849 */
850int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
851 const union ubifs_key *key, const void *buf, int len)
852{
853 struct ubifs_data_node *data;
854 int err, lnum, offs, compr_type, out_len, compr_len, auth_len;
855 int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
856 int write_len;
857 struct ubifs_inode *ui = ubifs_inode(inode);
858 bool encrypted = IS_ENCRYPTED(inode);
859 u8 hash[UBIFS_HASH_ARR_SZ];
860
861 dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
862 (unsigned long)key_inum(c, key), key_block(c, key), len);
863 ubifs_assert(c, len <= UBIFS_BLOCK_SIZE);
864
865 if (encrypted)
866 dlen += UBIFS_CIPHER_BLOCK_SIZE;
867
868 auth_len = ubifs_auth_node_sz(c);
869
870 data = kmalloc(dlen + auth_len, GFP_NOFS | __GFP_NOWARN);
871 if (!data) {
872 /*
873 * Fall-back to the write reserve buffer. Note, we might be
874 * currently on the memory reclaim path, when the kernel is
875 * trying to free some memory by writing out dirty pages. The
876 * write reserve buffer helps us to guarantee that we are
877 * always able to write the data.
878 */
879 allocated = 0;
880 mutex_lock(&c->write_reserve_mutex);
881 data = c->write_reserve_buf;
882 }
883
884 data->ch.node_type = UBIFS_DATA_NODE;
885 key_write(c, key, &data->key);
886 data->size = cpu_to_le32(len);
887
888 if (!(ui->flags & UBIFS_COMPR_FL))
889 /* Compression is disabled for this inode */
890 compr_type = UBIFS_COMPR_NONE;
891 else
892 compr_type = ui->compr_type;
893
894 out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
895 ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type);
896 ubifs_assert(c, compr_len <= UBIFS_BLOCK_SIZE);
897
898 if (encrypted) {
899 err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key));
900 if (err)
901 goto out_free;
902
903 } else {
904 data->compr_size = 0;
905 out_len = compr_len;
906 }
907
908 dlen = UBIFS_DATA_NODE_SZ + out_len;
909 if (ubifs_authenticated(c))
910 write_len = ALIGN(dlen, 8) + auth_len;
911 else
912 write_len = dlen;
913
914 data->compr_type = cpu_to_le16(compr_type);
915
916 /* Make reservation before allocating sequence numbers */
917 err = make_reservation(c, DATAHD, write_len);
918 if (err)
919 goto out_free;
920
921 ubifs_prepare_node(c, data, dlen, 0);
922 err = write_head(c, DATAHD, data, write_len, &lnum, &offs, 0);
923 if (err)
924 goto out_release;
925
926 err = ubifs_node_calc_hash(c, data, hash);
927 if (err)
928 goto out_release;
929
930 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
931 release_head(c, DATAHD);
932
933 ubifs_add_auth_dirt(c, lnum);
934
935 err = ubifs_tnc_add(c, key, lnum, offs, dlen, hash);
936 if (err)
937 goto out_ro;
938
939 finish_reservation(c);
940 if (!allocated)
941 mutex_unlock(&c->write_reserve_mutex);
942 else
943 kfree(data);
944 return 0;
945
946out_release:
947 release_head(c, DATAHD);
948out_ro:
949 ubifs_ro_mode(c, err);
950 finish_reservation(c);
951out_free:
952 if (!allocated)
953 mutex_unlock(&c->write_reserve_mutex);
954 else
955 kfree(data);
956 return err;
957}
958
959/**
960 * ubifs_jnl_write_inode - flush inode to the journal.
961 * @c: UBIFS file-system description object
962 * @inode: inode to flush
963 *
964 * This function writes inode @inode to the journal. If the inode is
965 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
966 * success and a negative error code in case of failure.
967 */
968int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
969{
970 int err, lnum, offs;
971 struct ubifs_ino_node *ino, *ino_start;
972 struct ubifs_inode *ui = ubifs_inode(inode);
973 int sync = 0, write_len = 0, ilen = UBIFS_INO_NODE_SZ;
974 int last_reference = !inode->i_nlink;
975 int kill_xattrs = ui->xattr_cnt && last_reference;
976 u8 hash[UBIFS_HASH_ARR_SZ];
977
978 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
979
980 /*
981 * If the inode is being deleted, do not write the attached data. No
982 * need to synchronize the write-buffer either.
983 */
984 if (!last_reference) {
985 ilen += ui->data_len;
986 sync = IS_SYNC(inode);
987 } else if (kill_xattrs) {
988 write_len += UBIFS_INO_NODE_SZ * ui->xattr_cnt;
989 }
990
991 if (ubifs_authenticated(c))
992 write_len += ALIGN(ilen, 8) + ubifs_auth_node_sz(c);
993 else
994 write_len += ilen;
995
996 ino_start = ino = kmalloc(write_len, GFP_NOFS);
997 if (!ino)
998 return -ENOMEM;
999
1000 /* Make reservation before allocating sequence numbers */
1001 err = make_reservation(c, BASEHD, write_len);
1002 if (err)
1003 goto out_free;
1004
1005 if (kill_xattrs) {
1006 union ubifs_key key;
1007 struct fscrypt_name nm = {0};
1008 struct inode *xino;
1009 struct ubifs_dent_node *xent, *pxent = NULL;
1010
1011 if (ui->xattr_cnt > ubifs_xattr_max_cnt(c)) {
1012 err = -EPERM;
1013 ubifs_err(c, "Cannot delete inode, it has too much xattrs!");
1014 goto out_release;
1015 }
1016
1017 lowest_xent_key(c, &key, inode->i_ino);
1018 while (1) {
1019 xent = ubifs_tnc_next_ent(c, &key, &nm);
1020 if (IS_ERR(xent)) {
1021 err = PTR_ERR(xent);
1022 if (err == -ENOENT)
1023 break;
1024
1025 kfree(pxent);
1026 goto out_release;
1027 }
1028
1029 fname_name(&nm) = xent->name;
1030 fname_len(&nm) = le16_to_cpu(xent->nlen);
1031
1032 xino = ubifs_iget(c->vfs_sb, le64_to_cpu(xent->inum));
1033 if (IS_ERR(xino)) {
1034 err = PTR_ERR(xino);
1035 ubifs_err(c, "dead directory entry '%s', error %d",
1036 xent->name, err);
1037 ubifs_ro_mode(c, err);
1038 kfree(pxent);
1039 kfree(xent);
1040 goto out_release;
1041 }
1042 ubifs_assert(c, ubifs_inode(xino)->xattr);
1043
1044 clear_nlink(xino);
1045 pack_inode(c, ino, xino, 0);
1046 ino = (void *)ino + UBIFS_INO_NODE_SZ;
1047 iput(xino);
1048
1049 kfree(pxent);
1050 pxent = xent;
1051 key_read(c, &xent->key, &key);
1052 }
1053 kfree(pxent);
1054 }
1055
1056 pack_inode(c, ino, inode, 1);
1057 err = ubifs_node_calc_hash(c, ino, hash);
1058 if (err)
1059 goto out_release;
1060
1061 err = write_head(c, BASEHD, ino_start, write_len, &lnum, &offs, sync);
1062 if (err)
1063 goto out_release;
1064 if (!sync)
1065 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1066 inode->i_ino);
1067 release_head(c, BASEHD);
1068
1069 if (last_reference) {
1070 err = ubifs_tnc_remove_ino(c, inode->i_ino);
1071 if (err)
1072 goto out_ro;
1073 ubifs_delete_orphan(c, inode->i_ino);
1074 err = ubifs_add_dirt(c, lnum, write_len);
1075 } else {
1076 union ubifs_key key;
1077
1078 ubifs_add_auth_dirt(c, lnum);
1079
1080 ino_key_init(c, &key, inode->i_ino);
1081 err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash);
1082 }
1083 if (err)
1084 goto out_ro;
1085
1086 finish_reservation(c);
1087 spin_lock(&ui->ui_lock);
1088 ui->synced_i_size = ui->ui_size;
1089 spin_unlock(&ui->ui_lock);
1090 kfree(ino_start);
1091 return 0;
1092
1093out_release:
1094 release_head(c, BASEHD);
1095out_ro:
1096 ubifs_ro_mode(c, err);
1097 finish_reservation(c);
1098out_free:
1099 kfree(ino_start);
1100 return err;
1101}
1102
1103/**
1104 * ubifs_jnl_delete_inode - delete an inode.
1105 * @c: UBIFS file-system description object
1106 * @inode: inode to delete
1107 *
1108 * This function deletes inode @inode which includes removing it from orphans,
1109 * deleting it from TNC and, in some cases, writing a deletion inode to the
1110 * journal.
1111 *
1112 * When regular file inodes are unlinked or a directory inode is removed, the
1113 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
1114 * direntry to the media, and adds the inode to orphans. After this, when the
1115 * last reference to this inode has been dropped, this function is called. In
1116 * general, it has to write one more deletion inode to the media, because if
1117 * a commit happened between 'ubifs_jnl_update()' and
1118 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
1119 * anymore, and in fact it might not be on the flash anymore, because it might
1120 * have been garbage-collected already. And for optimization reasons UBIFS does
1121 * not read the orphan area if it has been unmounted cleanly, so it would have
1122 * no indication in the journal that there is a deleted inode which has to be
1123 * removed from TNC.
1124 *
1125 * However, if there was no commit between 'ubifs_jnl_update()' and
1126 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
1127 * inode to the media for the second time. And this is quite a typical case.
1128 *
1129 * This function returns zero in case of success and a negative error code in
1130 * case of failure.
1131 */
1132int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
1133{
1134 int err;
1135 struct ubifs_inode *ui = ubifs_inode(inode);
1136
1137 ubifs_assert(c, inode->i_nlink == 0);
1138
1139 if (ui->xattr_cnt || ui->del_cmtno != c->cmt_no)
1140 /* A commit happened for sure or inode hosts xattrs */
1141 return ubifs_jnl_write_inode(c, inode);
1142
1143 down_read(&c->commit_sem);
1144 /*
1145 * Check commit number again, because the first test has been done
1146 * without @c->commit_sem, so a commit might have happened.
1147 */
1148 if (ui->del_cmtno != c->cmt_no) {
1149 up_read(&c->commit_sem);
1150 return ubifs_jnl_write_inode(c, inode);
1151 }
1152
1153 err = ubifs_tnc_remove_ino(c, inode->i_ino);
1154 if (err)
1155 ubifs_ro_mode(c, err);
1156 else
1157 ubifs_delete_orphan(c, inode->i_ino);
1158 up_read(&c->commit_sem);
1159 return err;
1160}
1161
1162/**
1163 * ubifs_jnl_xrename - cross rename two directory entries.
1164 * @c: UBIFS file-system description object
1165 * @fst_dir: parent inode of 1st directory entry to exchange
1166 * @fst_inode: 1st inode to exchange
1167 * @fst_nm: name of 1st inode to exchange
1168 * @snd_dir: parent inode of 2nd directory entry to exchange
1169 * @snd_inode: 2nd inode to exchange
1170 * @snd_nm: name of 2nd inode to exchange
1171 * @sync: non-zero if the write-buffer has to be synchronized
1172 *
1173 * This function implements the cross rename operation which may involve
1174 * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
1175 * and returns zero on success. In case of failure, a negative error code is
1176 * returned.
1177 */
1178int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
1179 const struct inode *fst_inode,
1180 const struct fscrypt_name *fst_nm,
1181 const struct inode *snd_dir,
1182 const struct inode *snd_inode,
1183 const struct fscrypt_name *snd_nm, int sync)
1184{
1185 union ubifs_key key;
1186 struct ubifs_dent_node *dent1, *dent2;
1187 int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
1188 int aligned_dlen1, aligned_dlen2;
1189 int twoparents = (fst_dir != snd_dir);
1190 void *p;
1191 u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1192 u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1193 u8 hash_p1[UBIFS_HASH_ARR_SZ];
1194 u8 hash_p2[UBIFS_HASH_ARR_SZ];
1195
1196 ubifs_assert(c, ubifs_inode(fst_dir)->data_len == 0);
1197 ubifs_assert(c, ubifs_inode(snd_dir)->data_len == 0);
1198 ubifs_assert(c, mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
1199 ubifs_assert(c, mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
1200
1201 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
1202 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
1203 aligned_dlen1 = ALIGN(dlen1, 8);
1204 aligned_dlen2 = ALIGN(dlen2, 8);
1205
1206 len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
1207 if (twoparents)
1208 len += plen;
1209
1210 len += ubifs_auth_node_sz(c);
1211
1212 dent1 = kzalloc(len, GFP_NOFS);
1213 if (!dent1)
1214 return -ENOMEM;
1215
1216 /* Make reservation before allocating sequence numbers */
1217 err = make_reservation(c, BASEHD, len);
1218 if (err)
1219 goto out_free;
1220
1221 /* Make new dent for 1st entry */
1222 dent1->ch.node_type = UBIFS_DENT_NODE;
1223 dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm);
1224 dent1->inum = cpu_to_le64(fst_inode->i_ino);
1225 dent1->type = get_dent_type(fst_inode->i_mode);
1226 dent1->nlen = cpu_to_le16(fname_len(snd_nm));
1227 memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
1228 dent1->name[fname_len(snd_nm)] = '\0';
1229 set_dent_cookie(c, dent1);
1230 zero_dent_node_unused(dent1);
1231 ubifs_prep_grp_node(c, dent1, dlen1, 0);
1232 err = ubifs_node_calc_hash(c, dent1, hash_dent1);
1233 if (err)
1234 goto out_release;
1235
1236 /* Make new dent for 2nd entry */
1237 dent2 = (void *)dent1 + aligned_dlen1;
1238 dent2->ch.node_type = UBIFS_DENT_NODE;
1239 dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm);
1240 dent2->inum = cpu_to_le64(snd_inode->i_ino);
1241 dent2->type = get_dent_type(snd_inode->i_mode);
1242 dent2->nlen = cpu_to_le16(fname_len(fst_nm));
1243 memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
1244 dent2->name[fname_len(fst_nm)] = '\0';
1245 set_dent_cookie(c, dent2);
1246 zero_dent_node_unused(dent2);
1247 ubifs_prep_grp_node(c, dent2, dlen2, 0);
1248 err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1249 if (err)
1250 goto out_release;
1251
1252 p = (void *)dent2 + aligned_dlen2;
1253 if (!twoparents) {
1254 pack_inode(c, p, fst_dir, 1);
1255 err = ubifs_node_calc_hash(c, p, hash_p1);
1256 if (err)
1257 goto out_release;
1258 } else {
1259 pack_inode(c, p, fst_dir, 0);
1260 err = ubifs_node_calc_hash(c, p, hash_p1);
1261 if (err)
1262 goto out_release;
1263 p += ALIGN(plen, 8);
1264 pack_inode(c, p, snd_dir, 1);
1265 err = ubifs_node_calc_hash(c, p, hash_p2);
1266 if (err)
1267 goto out_release;
1268 }
1269
1270 err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
1271 if (err)
1272 goto out_release;
1273 if (!sync) {
1274 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1275
1276 ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
1277 ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
1278 }
1279 release_head(c, BASEHD);
1280
1281 ubifs_add_auth_dirt(c, lnum);
1282
1283 dent_key_init(c, &key, snd_dir->i_ino, snd_nm);
1284 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, snd_nm);
1285 if (err)
1286 goto out_ro;
1287
1288 offs += aligned_dlen1;
1289 dent_key_init(c, &key, fst_dir->i_ino, fst_nm);
1290 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, fst_nm);
1291 if (err)
1292 goto out_ro;
1293
1294 offs += aligned_dlen2;
1295
1296 ino_key_init(c, &key, fst_dir->i_ino);
1297 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p1);
1298 if (err)
1299 goto out_ro;
1300
1301 if (twoparents) {
1302 offs += ALIGN(plen, 8);
1303 ino_key_init(c, &key, snd_dir->i_ino);
1304 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p2);
1305 if (err)
1306 goto out_ro;
1307 }
1308
1309 finish_reservation(c);
1310
1311 mark_inode_clean(c, ubifs_inode(fst_dir));
1312 if (twoparents)
1313 mark_inode_clean(c, ubifs_inode(snd_dir));
1314 kfree(dent1);
1315 return 0;
1316
1317out_release:
1318 release_head(c, BASEHD);
1319out_ro:
1320 ubifs_ro_mode(c, err);
1321 finish_reservation(c);
1322out_free:
1323 kfree(dent1);
1324 return err;
1325}
1326
1327/**
1328 * ubifs_jnl_rename - rename a directory entry.
1329 * @c: UBIFS file-system description object
1330 * @old_dir: parent inode of directory entry to rename
1331 * @old_inode: directory entry's inode to rename
1332 * @old_nm: name of the old directory entry to rename
1333 * @new_dir: parent inode of directory entry to rename
1334 * @new_inode: new directory entry's inode (or directory entry's inode to
1335 * replace)
1336 * @new_nm: new name of the new directory entry
1337 * @whiteout: whiteout inode
1338 * @sync: non-zero if the write-buffer has to be synchronized
1339 *
1340 * This function implements the re-name operation which may involve writing up
1341 * to 4 inodes(new inode, whiteout inode, old and new parent directory inodes)
1342 * and 2 directory entries. It marks the written inodes as clean and returns
1343 * zero on success. In case of failure, a negative error code is returned.
1344 */
1345int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1346 const struct inode *old_inode,
1347 const struct fscrypt_name *old_nm,
1348 const struct inode *new_dir,
1349 const struct inode *new_inode,
1350 const struct fscrypt_name *new_nm,
1351 const struct inode *whiteout, int sync)
1352{
1353 void *p;
1354 union ubifs_key key;
1355 struct ubifs_dent_node *dent, *dent2;
1356 int err, dlen1, dlen2, ilen, wlen, lnum, offs, len, orphan_added = 0;
1357 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1358 int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1359 int move = (old_dir != new_dir);
1360 struct ubifs_inode *new_ui, *whiteout_ui;
1361 u8 hash_old_dir[UBIFS_HASH_ARR_SZ];
1362 u8 hash_new_dir[UBIFS_HASH_ARR_SZ];
1363 u8 hash_new_inode[UBIFS_HASH_ARR_SZ];
1364 u8 hash_whiteout_inode[UBIFS_HASH_ARR_SZ];
1365 u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1366 u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1367
1368 ubifs_assert(c, ubifs_inode(old_dir)->data_len == 0);
1369 ubifs_assert(c, ubifs_inode(new_dir)->data_len == 0);
1370 ubifs_assert(c, mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1371 ubifs_assert(c, mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1372
1373 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
1374 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
1375 if (new_inode) {
1376 new_ui = ubifs_inode(new_inode);
1377 ubifs_assert(c, mutex_is_locked(&new_ui->ui_mutex));
1378 ilen = UBIFS_INO_NODE_SZ;
1379 if (!last_reference)
1380 ilen += new_ui->data_len;
1381 } else
1382 ilen = 0;
1383
1384 if (whiteout) {
1385 whiteout_ui = ubifs_inode(whiteout);
1386 ubifs_assert(c, mutex_is_locked(&whiteout_ui->ui_mutex));
1387 ubifs_assert(c, whiteout->i_nlink == 1);
1388 ubifs_assert(c, !whiteout_ui->dirty);
1389 wlen = UBIFS_INO_NODE_SZ;
1390 wlen += whiteout_ui->data_len;
1391 } else
1392 wlen = 0;
1393
1394 aligned_dlen1 = ALIGN(dlen1, 8);
1395 aligned_dlen2 = ALIGN(dlen2, 8);
1396 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) +
1397 ALIGN(wlen, 8) + ALIGN(plen, 8);
1398 if (move)
1399 len += plen;
1400
1401 len += ubifs_auth_node_sz(c);
1402
1403 dent = kzalloc(len, GFP_NOFS);
1404 if (!dent)
1405 return -ENOMEM;
1406
1407 /* Make reservation before allocating sequence numbers */
1408 err = make_reservation(c, BASEHD, len);
1409 if (err)
1410 goto out_free;
1411
1412 /* Make new dent */
1413 dent->ch.node_type = UBIFS_DENT_NODE;
1414 dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm);
1415 dent->inum = cpu_to_le64(old_inode->i_ino);
1416 dent->type = get_dent_type(old_inode->i_mode);
1417 dent->nlen = cpu_to_le16(fname_len(new_nm));
1418 memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
1419 dent->name[fname_len(new_nm)] = '\0';
1420 set_dent_cookie(c, dent);
1421 zero_dent_node_unused(dent);
1422 ubifs_prep_grp_node(c, dent, dlen1, 0);
1423 err = ubifs_node_calc_hash(c, dent, hash_dent1);
1424 if (err)
1425 goto out_release;
1426
1427 dent2 = (void *)dent + aligned_dlen1;
1428 dent2->ch.node_type = UBIFS_DENT_NODE;
1429 dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm);
1430
1431 if (whiteout) {
1432 dent2->inum = cpu_to_le64(whiteout->i_ino);
1433 dent2->type = get_dent_type(whiteout->i_mode);
1434 } else {
1435 /* Make deletion dent */
1436 dent2->inum = 0;
1437 dent2->type = DT_UNKNOWN;
1438 }
1439 dent2->nlen = cpu_to_le16(fname_len(old_nm));
1440 memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
1441 dent2->name[fname_len(old_nm)] = '\0';
1442 set_dent_cookie(c, dent2);
1443 zero_dent_node_unused(dent2);
1444 ubifs_prep_grp_node(c, dent2, dlen2, 0);
1445 err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1446 if (err)
1447 goto out_release;
1448
1449 p = (void *)dent2 + aligned_dlen2;
1450 if (new_inode) {
1451 pack_inode(c, p, new_inode, 0);
1452 err = ubifs_node_calc_hash(c, p, hash_new_inode);
1453 if (err)
1454 goto out_release;
1455
1456 p += ALIGN(ilen, 8);
1457 }
1458
1459 if (whiteout) {
1460 pack_inode(c, p, whiteout, 0);
1461 err = ubifs_node_calc_hash(c, p, hash_whiteout_inode);
1462 if (err)
1463 goto out_release;
1464
1465 p += ALIGN(wlen, 8);
1466 }
1467
1468 if (!move) {
1469 pack_inode(c, p, old_dir, 1);
1470 err = ubifs_node_calc_hash(c, p, hash_old_dir);
1471 if (err)
1472 goto out_release;
1473 } else {
1474 pack_inode(c, p, old_dir, 0);
1475 err = ubifs_node_calc_hash(c, p, hash_old_dir);
1476 if (err)
1477 goto out_release;
1478
1479 p += ALIGN(plen, 8);
1480 pack_inode(c, p, new_dir, 1);
1481 err = ubifs_node_calc_hash(c, p, hash_new_dir);
1482 if (err)
1483 goto out_release;
1484 }
1485
1486 if (last_reference) {
1487 err = ubifs_add_orphan(c, new_inode->i_ino);
1488 if (err) {
1489 release_head(c, BASEHD);
1490 goto out_finish;
1491 }
1492 new_ui->del_cmtno = c->cmt_no;
1493 orphan_added = 1;
1494 }
1495
1496 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1497 if (err)
1498 goto out_release;
1499 if (!sync) {
1500 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1501
1502 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1503 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1504 if (new_inode)
1505 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1506 new_inode->i_ino);
1507 if (whiteout)
1508 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1509 whiteout->i_ino);
1510 }
1511 release_head(c, BASEHD);
1512
1513 ubifs_add_auth_dirt(c, lnum);
1514
1515 dent_key_init(c, &key, new_dir->i_ino, new_nm);
1516 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, new_nm);
1517 if (err)
1518 goto out_ro;
1519
1520 offs += aligned_dlen1;
1521 if (whiteout) {
1522 dent_key_init(c, &key, old_dir->i_ino, old_nm);
1523 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, old_nm);
1524 if (err)
1525 goto out_ro;
1526 } else {
1527 err = ubifs_add_dirt(c, lnum, dlen2);
1528 if (err)
1529 goto out_ro;
1530
1531 dent_key_init(c, &key, old_dir->i_ino, old_nm);
1532 err = ubifs_tnc_remove_nm(c, &key, old_nm);
1533 if (err)
1534 goto out_ro;
1535 }
1536
1537 offs += aligned_dlen2;
1538 if (new_inode) {
1539 ino_key_init(c, &key, new_inode->i_ino);
1540 err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash_new_inode);
1541 if (err)
1542 goto out_ro;
1543 offs += ALIGN(ilen, 8);
1544 }
1545
1546 if (whiteout) {
1547 ino_key_init(c, &key, whiteout->i_ino);
1548 err = ubifs_tnc_add(c, &key, lnum, offs, wlen,
1549 hash_whiteout_inode);
1550 if (err)
1551 goto out_ro;
1552 offs += ALIGN(wlen, 8);
1553 }
1554
1555 ino_key_init(c, &key, old_dir->i_ino);
1556 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_old_dir);
1557 if (err)
1558 goto out_ro;
1559
1560 if (move) {
1561 offs += ALIGN(plen, 8);
1562 ino_key_init(c, &key, new_dir->i_ino);
1563 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_new_dir);
1564 if (err)
1565 goto out_ro;
1566 }
1567
1568 finish_reservation(c);
1569 if (new_inode) {
1570 mark_inode_clean(c, new_ui);
1571 spin_lock(&new_ui->ui_lock);
1572 new_ui->synced_i_size = new_ui->ui_size;
1573 spin_unlock(&new_ui->ui_lock);
1574 }
1575 /*
1576 * No need to mark whiteout inode clean.
1577 * Whiteout doesn't have non-zero size, no need to update
1578 * synced_i_size for whiteout_ui.
1579 */
1580 mark_inode_clean(c, ubifs_inode(old_dir));
1581 if (move)
1582 mark_inode_clean(c, ubifs_inode(new_dir));
1583 kfree(dent);
1584 return 0;
1585
1586out_release:
1587 release_head(c, BASEHD);
1588out_ro:
1589 ubifs_ro_mode(c, err);
1590 if (orphan_added)
1591 ubifs_delete_orphan(c, new_inode->i_ino);
1592out_finish:
1593 finish_reservation(c);
1594out_free:
1595 kfree(dent);
1596 return err;
1597}
1598
1599/**
1600 * truncate_data_node - re-compress/encrypt a truncated data node.
1601 * @c: UBIFS file-system description object
1602 * @inode: inode which refers to the data node
1603 * @block: data block number
1604 * @dn: data node to re-compress
1605 * @new_len: new length
1606 * @dn_size: size of the data node @dn in memory
1607 *
1608 * This function is used when an inode is truncated and the last data node of
1609 * the inode has to be re-compressed/encrypted and re-written.
1610 */
1611static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
1612 unsigned int block, struct ubifs_data_node *dn,
1613 int *new_len, int dn_size)
1614{
1615 void *buf;
1616 int err, dlen, compr_type, out_len, data_size;
1617
1618 out_len = le32_to_cpu(dn->size);
1619 buf = kmalloc_array(out_len, WORST_COMPR_FACTOR, GFP_NOFS);
1620 if (!buf)
1621 return -ENOMEM;
1622
1623 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1624 data_size = dn_size - UBIFS_DATA_NODE_SZ;
1625 compr_type = le16_to_cpu(dn->compr_type);
1626
1627 if (IS_ENCRYPTED(inode)) {
1628 err = ubifs_decrypt(inode, dn, &dlen, block);
1629 if (err)
1630 goto out;
1631 }
1632
1633 if (compr_type == UBIFS_COMPR_NONE) {
1634 out_len = *new_len;
1635 } else {
1636 err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type);
1637 if (err)
1638 goto out;
1639
1640 ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1641 }
1642
1643 if (IS_ENCRYPTED(inode)) {
1644 err = ubifs_encrypt(inode, dn, out_len, &data_size, block);
1645 if (err)
1646 goto out;
1647
1648 out_len = data_size;
1649 } else {
1650 dn->compr_size = 0;
1651 }
1652
1653 ubifs_assert(c, out_len <= UBIFS_BLOCK_SIZE);
1654 dn->compr_type = cpu_to_le16(compr_type);
1655 dn->size = cpu_to_le32(*new_len);
1656 *new_len = UBIFS_DATA_NODE_SZ + out_len;
1657 err = 0;
1658out:
1659 kfree(buf);
1660 return err;
1661}
1662
1663/**
1664 * ubifs_jnl_truncate - update the journal for a truncation.
1665 * @c: UBIFS file-system description object
1666 * @inode: inode to truncate
1667 * @old_size: old size
1668 * @new_size: new size
1669 *
1670 * When the size of a file decreases due to truncation, a truncation node is
1671 * written, the journal tree is updated, and the last data block is re-written
1672 * if it has been affected. The inode is also updated in order to synchronize
1673 * the new inode size.
1674 *
1675 * This function marks the inode as clean and returns zero on success. In case
1676 * of failure, a negative error code is returned.
1677 */
1678int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1679 loff_t old_size, loff_t new_size)
1680{
1681 union ubifs_key key, to_key;
1682 struct ubifs_ino_node *ino;
1683 struct ubifs_trun_node *trun;
1684 struct ubifs_data_node *dn;
1685 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1686 int dn_size;
1687 struct ubifs_inode *ui = ubifs_inode(inode);
1688 ino_t inum = inode->i_ino;
1689 unsigned int blk;
1690 u8 hash_ino[UBIFS_HASH_ARR_SZ];
1691 u8 hash_dn[UBIFS_HASH_ARR_SZ];
1692
1693 dbg_jnl("ino %lu, size %lld -> %lld",
1694 (unsigned long)inum, old_size, new_size);
1695 ubifs_assert(c, !ui->data_len);
1696 ubifs_assert(c, S_ISREG(inode->i_mode));
1697 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
1698
1699 dn_size = COMPRESSED_DATA_NODE_BUF_SZ;
1700
1701 if (IS_ENCRYPTED(inode))
1702 dn_size += UBIFS_CIPHER_BLOCK_SIZE;
1703
1704 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1705 dn_size + ubifs_auth_node_sz(c);
1706
1707 ino = kmalloc(sz, GFP_NOFS);
1708 if (!ino)
1709 return -ENOMEM;
1710
1711 trun = (void *)ino + UBIFS_INO_NODE_SZ;
1712 trun->ch.node_type = UBIFS_TRUN_NODE;
1713 trun->inum = cpu_to_le32(inum);
1714 trun->old_size = cpu_to_le64(old_size);
1715 trun->new_size = cpu_to_le64(new_size);
1716 zero_trun_node_unused(trun);
1717
1718 dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1719 if (dlen) {
1720 /* Get last data block so it can be truncated */
1721 dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1722 blk = new_size >> UBIFS_BLOCK_SHIFT;
1723 data_key_init(c, &key, inum, blk);
1724 dbg_jnlk(&key, "last block key ");
1725 err = ubifs_tnc_lookup(c, &key, dn);
1726 if (err == -ENOENT)
1727 dlen = 0; /* Not found (so it is a hole) */
1728 else if (err)
1729 goto out_free;
1730 else {
1731 int dn_len = le32_to_cpu(dn->size);
1732
1733 if (dn_len <= 0 || dn_len > UBIFS_BLOCK_SIZE) {
1734 ubifs_err(c, "bad data node (block %u, inode %lu)",
1735 blk, inode->i_ino);
1736 ubifs_dump_node(c, dn, dn_size);
1737 err = -EUCLEAN;
1738 goto out_free;
1739 }
1740
1741 if (dn_len <= dlen)
1742 dlen = 0; /* Nothing to do */
1743 else {
1744 err = truncate_data_node(c, inode, blk, dn,
1745 &dlen, dn_size);
1746 if (err)
1747 goto out_free;
1748 }
1749 }
1750 }
1751
1752 /* Must make reservation before allocating sequence numbers */
1753 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1754
1755 if (ubifs_authenticated(c))
1756 len += ALIGN(dlen, 8) + ubifs_auth_node_sz(c);
1757 else
1758 len += dlen;
1759
1760 err = make_reservation(c, BASEHD, len);
1761 if (err)
1762 goto out_free;
1763
1764 pack_inode(c, ino, inode, 0);
1765 err = ubifs_node_calc_hash(c, ino, hash_ino);
1766 if (err)
1767 goto out_release;
1768
1769 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1770 if (dlen) {
1771 ubifs_prep_grp_node(c, dn, dlen, 1);
1772 err = ubifs_node_calc_hash(c, dn, hash_dn);
1773 if (err)
1774 goto out_release;
1775 }
1776
1777 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1778 if (err)
1779 goto out_release;
1780 if (!sync)
1781 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1782 release_head(c, BASEHD);
1783
1784 ubifs_add_auth_dirt(c, lnum);
1785
1786 if (dlen) {
1787 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1788 err = ubifs_tnc_add(c, &key, lnum, sz, dlen, hash_dn);
1789 if (err)
1790 goto out_ro;
1791 }
1792
1793 ino_key_init(c, &key, inum);
1794 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ, hash_ino);
1795 if (err)
1796 goto out_ro;
1797
1798 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1799 if (err)
1800 goto out_ro;
1801
1802 bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1803 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1804 data_key_init(c, &key, inum, blk);
1805
1806 bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1807 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1808 data_key_init(c, &to_key, inum, blk);
1809
1810 err = ubifs_tnc_remove_range(c, &key, &to_key);
1811 if (err)
1812 goto out_ro;
1813
1814 finish_reservation(c);
1815 spin_lock(&ui->ui_lock);
1816 ui->synced_i_size = ui->ui_size;
1817 spin_unlock(&ui->ui_lock);
1818 mark_inode_clean(c, ui);
1819 kfree(ino);
1820 return 0;
1821
1822out_release:
1823 release_head(c, BASEHD);
1824out_ro:
1825 ubifs_ro_mode(c, err);
1826 finish_reservation(c);
1827out_free:
1828 kfree(ino);
1829 return err;
1830}
1831
1832
1833/**
1834 * ubifs_jnl_delete_xattr - delete an extended attribute.
1835 * @c: UBIFS file-system description object
1836 * @host: host inode
1837 * @inode: extended attribute inode
1838 * @nm: extended attribute entry name
1839 *
1840 * This function delete an extended attribute which is very similar to
1841 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1842 * updates the target inode. Returns zero in case of success and a negative
1843 * error code in case of failure.
1844 */
1845int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1846 const struct inode *inode,
1847 const struct fscrypt_name *nm)
1848{
1849 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen, write_len;
1850 struct ubifs_dent_node *xent;
1851 struct ubifs_ino_node *ino;
1852 union ubifs_key xent_key, key1, key2;
1853 int sync = IS_DIRSYNC(host);
1854 struct ubifs_inode *host_ui = ubifs_inode(host);
1855 u8 hash[UBIFS_HASH_ARR_SZ];
1856
1857 ubifs_assert(c, inode->i_nlink == 0);
1858 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1859
1860 /*
1861 * Since we are deleting the inode, we do not bother to attach any data
1862 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1863 */
1864 xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
1865 aligned_xlen = ALIGN(xlen, 8);
1866 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1867 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1868
1869 write_len = len + ubifs_auth_node_sz(c);
1870
1871 xent = kzalloc(write_len, GFP_NOFS);
1872 if (!xent)
1873 return -ENOMEM;
1874
1875 /* Make reservation before allocating sequence numbers */
1876 err = make_reservation(c, BASEHD, write_len);
1877 if (err) {
1878 kfree(xent);
1879 return err;
1880 }
1881
1882 xent->ch.node_type = UBIFS_XENT_NODE;
1883 xent_key_init(c, &xent_key, host->i_ino, nm);
1884 key_write(c, &xent_key, xent->key);
1885 xent->inum = 0;
1886 xent->type = get_dent_type(inode->i_mode);
1887 xent->nlen = cpu_to_le16(fname_len(nm));
1888 memcpy(xent->name, fname_name(nm), fname_len(nm));
1889 xent->name[fname_len(nm)] = '\0';
1890 zero_dent_node_unused(xent);
1891 ubifs_prep_grp_node(c, xent, xlen, 0);
1892
1893 ino = (void *)xent + aligned_xlen;
1894 pack_inode(c, ino, inode, 0);
1895 ino = (void *)ino + UBIFS_INO_NODE_SZ;
1896 pack_inode(c, ino, host, 1);
1897 err = ubifs_node_calc_hash(c, ino, hash);
1898 if (err)
1899 goto out_release;
1900
1901 err = write_head(c, BASEHD, xent, write_len, &lnum, &xent_offs, sync);
1902 if (!sync && !err)
1903 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1904 release_head(c, BASEHD);
1905
1906 ubifs_add_auth_dirt(c, lnum);
1907 kfree(xent);
1908 if (err)
1909 goto out_ro;
1910
1911 /* Remove the extended attribute entry from TNC */
1912 err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1913 if (err)
1914 goto out_ro;
1915 err = ubifs_add_dirt(c, lnum, xlen);
1916 if (err)
1917 goto out_ro;
1918
1919 /*
1920 * Remove all nodes belonging to the extended attribute inode from TNC.
1921 * Well, there actually must be only one node - the inode itself.
1922 */
1923 lowest_ino_key(c, &key1, inode->i_ino);
1924 highest_ino_key(c, &key2, inode->i_ino);
1925 err = ubifs_tnc_remove_range(c, &key1, &key2);
1926 if (err)
1927 goto out_ro;
1928 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1929 if (err)
1930 goto out_ro;
1931
1932 /* And update TNC with the new host inode position */
1933 ino_key_init(c, &key1, host->i_ino);
1934 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen, hash);
1935 if (err)
1936 goto out_ro;
1937
1938 finish_reservation(c);
1939 spin_lock(&host_ui->ui_lock);
1940 host_ui->synced_i_size = host_ui->ui_size;
1941 spin_unlock(&host_ui->ui_lock);
1942 mark_inode_clean(c, host_ui);
1943 return 0;
1944
1945out_release:
1946 kfree(xent);
1947 release_head(c, BASEHD);
1948out_ro:
1949 ubifs_ro_mode(c, err);
1950 finish_reservation(c);
1951 return err;
1952}
1953
1954/**
1955 * ubifs_jnl_change_xattr - change an extended attribute.
1956 * @c: UBIFS file-system description object
1957 * @inode: extended attribute inode
1958 * @host: host inode
1959 *
1960 * This function writes the updated version of an extended attribute inode and
1961 * the host inode to the journal (to the base head). The host inode is written
1962 * after the extended attribute inode in order to guarantee that the extended
1963 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1964 * consequently, the write-buffer is synchronized. This function returns zero
1965 * in case of success and a negative error code in case of failure.
1966 */
1967int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1968 const struct inode *host)
1969{
1970 int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1971 struct ubifs_inode *host_ui = ubifs_inode(host);
1972 struct ubifs_ino_node *ino;
1973 union ubifs_key key;
1974 int sync = IS_DIRSYNC(host);
1975 u8 hash_host[UBIFS_HASH_ARR_SZ];
1976 u8 hash[UBIFS_HASH_ARR_SZ];
1977
1978 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1979 ubifs_assert(c, inode->i_nlink > 0);
1980 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1981
1982 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1983 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1984 aligned_len1 = ALIGN(len1, 8);
1985 aligned_len = aligned_len1 + ALIGN(len2, 8);
1986
1987 aligned_len += ubifs_auth_node_sz(c);
1988
1989 ino = kzalloc(aligned_len, GFP_NOFS);
1990 if (!ino)
1991 return -ENOMEM;
1992
1993 /* Make reservation before allocating sequence numbers */
1994 err = make_reservation(c, BASEHD, aligned_len);
1995 if (err)
1996 goto out_free;
1997
1998 pack_inode(c, ino, host, 0);
1999 err = ubifs_node_calc_hash(c, ino, hash_host);
2000 if (err)
2001 goto out_release;
2002 pack_inode(c, (void *)ino + aligned_len1, inode, 1);
2003 err = ubifs_node_calc_hash(c, (void *)ino + aligned_len1, hash);
2004 if (err)
2005 goto out_release;
2006
2007 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
2008 if (!sync && !err) {
2009 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
2010
2011 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
2012 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
2013 }
2014 release_head(c, BASEHD);
2015 if (err)
2016 goto out_ro;
2017
2018 ubifs_add_auth_dirt(c, lnum);
2019
2020 ino_key_init(c, &key, host->i_ino);
2021 err = ubifs_tnc_add(c, &key, lnum, offs, len1, hash_host);
2022 if (err)
2023 goto out_ro;
2024
2025 ino_key_init(c, &key, inode->i_ino);
2026 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2, hash);
2027 if (err)
2028 goto out_ro;
2029
2030 finish_reservation(c);
2031 spin_lock(&host_ui->ui_lock);
2032 host_ui->synced_i_size = host_ui->ui_size;
2033 spin_unlock(&host_ui->ui_lock);
2034 mark_inode_clean(c, host_ui);
2035 kfree(ino);
2036 return 0;
2037
2038out_release:
2039 release_head(c, BASEHD);
2040out_ro:
2041 ubifs_ro_mode(c, err);
2042 finish_reservation(c);
2043out_free:
2044 kfree(ino);
2045 return err;
2046}
2047