Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11/*
12 * This file implements UBIFS journal.
13 *
14 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
15 * length and position, while a bud logical eraseblock is any LEB in the main
16 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
17 * contains only references to buds and some other stuff like commit
18 * start node. The idea is that when we commit the journal, we do
19 * not copy the data, the buds just become indexed. Since after the commit the
20 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
21 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
22 * become leafs in the future.
23 *
24 * The journal is multi-headed because we want to write data to the journal as
25 * optimally as possible. It is nice to have nodes belonging to the same inode
26 * in one LEB, so we may write data owned by different inodes to different
27 * journal heads, although at present only one data head is used.
28 *
29 * For recovery reasons, the base head contains all inode nodes, all directory
30 * entry nodes and all truncate nodes. This means that the other heads contain
31 * only data nodes.
32 *
33 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
34 * time of commit, the bud is retained to continue to be used in the journal,
35 * even though the "front" of the LEB is now indexed. In that case, the log
36 * reference contains the offset where the bud starts for the purposes of the
37 * journal.
38 *
39 * The journal size has to be limited, because the larger is the journal, the
40 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
41 * takes (indexing in the TNC).
42 *
43 * All the journal write operations like 'ubifs_jnl_update()' here, which write
44 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
45 * unclean reboots. Should the unclean reboot happen, the recovery code drops
46 * all the nodes.
47 */
48
49#include "ubifs.h"
50
51/**
52 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
53 * @ino: the inode to zero out
54 */
55static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
56{
57 memset(ino->padding1, 0, 4);
58 memset(ino->padding2, 0, 26);
59}
60
61/**
62 * zero_dent_node_unused - zero out unused fields of an on-flash directory
63 * entry node.
64 * @dent: the directory entry to zero out
65 */
66static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
67{
68 dent->padding1 = 0;
69}
70
71/**
72 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
73 * node.
74 * @trun: the truncation node to zero out
75 */
76static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
77{
78 memset(trun->padding, 0, 12);
79}
80
81static void ubifs_add_auth_dirt(struct ubifs_info *c, int lnum)
82{
83 if (ubifs_authenticated(c))
84 ubifs_add_dirt(c, lnum, ubifs_auth_node_sz(c));
85}
86
87/**
88 * reserve_space - reserve space in the journal.
89 * @c: UBIFS file-system description object
90 * @jhead: journal head number
91 * @len: node length
92 *
93 * This function reserves space in journal head @head. If the reservation
94 * succeeded, the journal head stays locked and later has to be unlocked using
95 * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to
96 * be done, and other negative error codes in case of other failures.
97 */
98static int reserve_space(struct ubifs_info *c, int jhead, int len)
99{
100 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
101 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
102
103 /*
104 * Typically, the base head has smaller nodes written to it, so it is
105 * better to try to allocate space at the ends of eraseblocks. This is
106 * what the squeeze parameter does.
107 */
108 ubifs_assert(c, !c->ro_media && !c->ro_mount);
109 squeeze = (jhead == BASEHD);
110again:
111 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
112
113 if (c->ro_error) {
114 err = -EROFS;
115 goto out_unlock;
116 }
117
118 avail = c->leb_size - wbuf->offs - wbuf->used;
119 if (wbuf->lnum != -1 && avail >= len)
120 return 0;
121
122 /*
123 * Write buffer wasn't seek'ed or there is no enough space - look for an
124 * LEB with some empty space.
125 */
126 lnum = ubifs_find_free_space(c, len, &offs, squeeze);
127 if (lnum >= 0)
128 goto out;
129
130 err = lnum;
131 if (err != -ENOSPC)
132 goto out_unlock;
133
134 /*
135 * No free space, we have to run garbage collector to make
136 * some. But the write-buffer mutex has to be unlocked because
137 * GC also takes it.
138 */
139 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
140 mutex_unlock(&wbuf->io_mutex);
141
142 lnum = ubifs_garbage_collect(c, 0);
143 if (lnum < 0) {
144 err = lnum;
145 if (err != -ENOSPC)
146 return err;
147
148 /*
149 * GC could not make a free LEB. But someone else may
150 * have allocated new bud for this journal head,
151 * because we dropped @wbuf->io_mutex, so try once
152 * again.
153 */
154 dbg_jnl("GC couldn't make a free LEB for jhead %s",
155 dbg_jhead(jhead));
156 if (retries++ < 2) {
157 dbg_jnl("retry (%d)", retries);
158 goto again;
159 }
160
161 dbg_jnl("return -ENOSPC");
162 return err;
163 }
164
165 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
166 dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
167 avail = c->leb_size - wbuf->offs - wbuf->used;
168
169 if (wbuf->lnum != -1 && avail >= len) {
170 /*
171 * Someone else has switched the journal head and we have
172 * enough space now. This happens when more than one process is
173 * trying to write to the same journal head at the same time.
174 */
175 dbg_jnl("return LEB %d back, already have LEB %d:%d",
176 lnum, wbuf->lnum, wbuf->offs + wbuf->used);
177 err = ubifs_return_leb(c, lnum);
178 if (err)
179 goto out_unlock;
180 return 0;
181 }
182
183 offs = 0;
184
185out:
186 /*
187 * Make sure we synchronize the write-buffer before we add the new bud
188 * to the log. Otherwise we may have a power cut after the log
189 * reference node for the last bud (@lnum) is written but before the
190 * write-buffer data are written to the next-to-last bud
191 * (@wbuf->lnum). And the effect would be that the recovery would see
192 * that there is corruption in the next-to-last bud.
193 */
194 err = ubifs_wbuf_sync_nolock(wbuf);
195 if (err)
196 goto out_return;
197 err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
198 if (err)
199 goto out_return;
200 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
201 if (err)
202 goto out_unlock;
203
204 return 0;
205
206out_unlock:
207 mutex_unlock(&wbuf->io_mutex);
208 return err;
209
210out_return:
211 /* An error occurred and the LEB has to be returned to lprops */
212 ubifs_assert(c, err < 0);
213 err1 = ubifs_return_leb(c, lnum);
214 if (err1 && err == -EAGAIN)
215 /*
216 * Return original error code only if it is not %-EAGAIN,
217 * which is not really an error. Otherwise, return the error
218 * code of 'ubifs_return_leb()'.
219 */
220 err = err1;
221 mutex_unlock(&wbuf->io_mutex);
222 return err;
223}
224
225static int ubifs_hash_nodes(struct ubifs_info *c, void *node,
226 int len, struct shash_desc *hash)
227{
228 int auth_node_size = ubifs_auth_node_sz(c);
229 int err;
230
231 while (1) {
232 const struct ubifs_ch *ch = node;
233 int nodelen = le32_to_cpu(ch->len);
234
235 ubifs_assert(c, len >= auth_node_size);
236
237 if (len == auth_node_size)
238 break;
239
240 ubifs_assert(c, len > nodelen);
241 ubifs_assert(c, ch->magic == cpu_to_le32(UBIFS_NODE_MAGIC));
242
243 err = ubifs_shash_update(c, hash, (void *)node, nodelen);
244 if (err)
245 return err;
246
247 node += ALIGN(nodelen, 8);
248 len -= ALIGN(nodelen, 8);
249 }
250
251 return ubifs_prepare_auth_node(c, node, hash);
252}
253
254/**
255 * write_head - write data to a journal head.
256 * @c: UBIFS file-system description object
257 * @jhead: journal head
258 * @buf: buffer to write
259 * @len: length to write
260 * @lnum: LEB number written is returned here
261 * @offs: offset written is returned here
262 * @sync: non-zero if the write-buffer has to by synchronized
263 *
264 * This function writes data to the reserved space of journal head @jhead.
265 * Returns zero in case of success and a negative error code in case of
266 * failure.
267 */
268static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
269 int *lnum, int *offs, int sync)
270{
271 int err;
272 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
273
274 ubifs_assert(c, jhead != GCHD);
275
276 *lnum = c->jheads[jhead].wbuf.lnum;
277 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
278 dbg_jnl("jhead %s, LEB %d:%d, len %d",
279 dbg_jhead(jhead), *lnum, *offs, len);
280
281 if (ubifs_authenticated(c)) {
282 err = ubifs_hash_nodes(c, buf, len, c->jheads[jhead].log_hash);
283 if (err)
284 return err;
285 }
286
287 err = ubifs_wbuf_write_nolock(wbuf, buf, len);
288 if (err)
289 return err;
290 if (sync)
291 err = ubifs_wbuf_sync_nolock(wbuf);
292 return err;
293}
294
295/**
296 * make_reservation - reserve journal space.
297 * @c: UBIFS file-system description object
298 * @jhead: journal head
299 * @len: how many bytes to reserve
300 *
301 * This function makes space reservation in journal head @jhead. The function
302 * takes the commit lock and locks the journal head, and the caller has to
303 * unlock the head and finish the reservation with 'finish_reservation()'.
304 * Returns zero in case of success and a negative error code in case of
305 * failure.
306 *
307 * Note, the journal head may be unlocked as soon as the data is written, while
308 * the commit lock has to be released after the data has been added to the
309 * TNC.
310 */
311static int make_reservation(struct ubifs_info *c, int jhead, int len)
312{
313 int err, cmt_retries = 0, nospc_retries = 0;
314
315again:
316 down_read(&c->commit_sem);
317 err = reserve_space(c, jhead, len);
318 if (!err)
319 /* c->commit_sem will get released via finish_reservation(). */
320 return 0;
321 up_read(&c->commit_sem);
322
323 if (err == -ENOSPC) {
324 /*
325 * GC could not make any progress. We should try to commit
326 * once because it could make some dirty space and GC would
327 * make progress, so make the error -EAGAIN so that the below
328 * will commit and re-try.
329 */
330 if (nospc_retries++ < 2) {
331 dbg_jnl("no space, retry");
332 err = -EAGAIN;
333 }
334
335 /*
336 * This means that the budgeting is incorrect. We always have
337 * to be able to write to the media, because all operations are
338 * budgeted. Deletions are not budgeted, though, but we reserve
339 * an extra LEB for them.
340 */
341 }
342
343 if (err != -EAGAIN)
344 goto out;
345
346 /*
347 * -EAGAIN means that the journal is full or too large, or the above
348 * code wants to do one commit. Do this and re-try.
349 */
350 if (cmt_retries > 128) {
351 /*
352 * This should not happen unless the journal size limitations
353 * are too tough.
354 */
355 ubifs_err(c, "stuck in space allocation");
356 err = -ENOSPC;
357 goto out;
358 } else if (cmt_retries > 32)
359 ubifs_warn(c, "too many space allocation re-tries (%d)",
360 cmt_retries);
361
362 dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
363 cmt_retries);
364 cmt_retries += 1;
365
366 err = ubifs_run_commit(c);
367 if (err)
368 return err;
369 goto again;
370
371out:
372 ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
373 len, jhead, err);
374 if (err == -ENOSPC) {
375 /* This are some budgeting problems, print useful information */
376 down_write(&c->commit_sem);
377 dump_stack();
378 ubifs_dump_budg(c, &c->bi);
379 ubifs_dump_lprops(c);
380 cmt_retries = dbg_check_lprops(c);
381 up_write(&c->commit_sem);
382 }
383 return err;
384}
385
386/**
387 * release_head - release a journal head.
388 * @c: UBIFS file-system description object
389 * @jhead: journal head
390 *
391 * This function releases journal head @jhead which was locked by
392 * the 'make_reservation()' function. It has to be called after each successful
393 * 'make_reservation()' invocation.
394 */
395static inline void release_head(struct ubifs_info *c, int jhead)
396{
397 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
398}
399
400/**
401 * finish_reservation - finish a reservation.
402 * @c: UBIFS file-system description object
403 *
404 * This function finishes journal space reservation. It must be called after
405 * 'make_reservation()'.
406 */
407static void finish_reservation(struct ubifs_info *c)
408{
409 up_read(&c->commit_sem);
410}
411
412/**
413 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
414 * @mode: inode mode
415 */
416static int get_dent_type(int mode)
417{
418 switch (mode & S_IFMT) {
419 case S_IFREG:
420 return UBIFS_ITYPE_REG;
421 case S_IFDIR:
422 return UBIFS_ITYPE_DIR;
423 case S_IFLNK:
424 return UBIFS_ITYPE_LNK;
425 case S_IFBLK:
426 return UBIFS_ITYPE_BLK;
427 case S_IFCHR:
428 return UBIFS_ITYPE_CHR;
429 case S_IFIFO:
430 return UBIFS_ITYPE_FIFO;
431 case S_IFSOCK:
432 return UBIFS_ITYPE_SOCK;
433 default:
434 BUG();
435 }
436 return 0;
437}
438
439/**
440 * pack_inode - pack an inode node.
441 * @c: UBIFS file-system description object
442 * @ino: buffer in which to pack inode node
443 * @inode: inode to pack
444 * @last: indicates the last node of the group
445 */
446static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
447 const struct inode *inode, int last)
448{
449 int data_len = 0, last_reference = !inode->i_nlink;
450 struct ubifs_inode *ui = ubifs_inode(inode);
451
452 ino->ch.node_type = UBIFS_INO_NODE;
453 ino_key_init_flash(c, &ino->key, inode->i_ino);
454 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
455 ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec);
456 ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
457 ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec);
458 ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
459 ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec);
460 ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
461 ino->uid = cpu_to_le32(i_uid_read(inode));
462 ino->gid = cpu_to_le32(i_gid_read(inode));
463 ino->mode = cpu_to_le32(inode->i_mode);
464 ino->flags = cpu_to_le32(ui->flags);
465 ino->size = cpu_to_le64(ui->ui_size);
466 ino->nlink = cpu_to_le32(inode->i_nlink);
467 ino->compr_type = cpu_to_le16(ui->compr_type);
468 ino->data_len = cpu_to_le32(ui->data_len);
469 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt);
470 ino->xattr_size = cpu_to_le32(ui->xattr_size);
471 ino->xattr_names = cpu_to_le32(ui->xattr_names);
472 zero_ino_node_unused(ino);
473
474 /*
475 * Drop the attached data if this is a deletion inode, the data is not
476 * needed anymore.
477 */
478 if (!last_reference) {
479 memcpy(ino->data, ui->data, ui->data_len);
480 data_len = ui->data_len;
481 }
482
483 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
484}
485
486/**
487 * mark_inode_clean - mark UBIFS inode as clean.
488 * @c: UBIFS file-system description object
489 * @ui: UBIFS inode to mark as clean
490 *
491 * This helper function marks UBIFS inode @ui as clean by cleaning the
492 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
493 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
494 * just do nothing.
495 */
496static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
497{
498 if (ui->dirty)
499 ubifs_release_dirty_inode_budget(c, ui);
500 ui->dirty = 0;
501}
502
503static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent)
504{
505 if (c->double_hash)
506 dent->cookie = prandom_u32();
507 else
508 dent->cookie = 0;
509}
510
511/**
512 * ubifs_jnl_update - update inode.
513 * @c: UBIFS file-system description object
514 * @dir: parent inode or host inode in case of extended attributes
515 * @nm: directory entry name
516 * @inode: inode to update
517 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
518 * @xent: non-zero if the directory entry is an extended attribute entry
519 *
520 * This function updates an inode by writing a directory entry (or extended
521 * attribute entry), the inode itself, and the parent directory inode (or the
522 * host inode) to the journal.
523 *
524 * The function writes the host inode @dir last, which is important in case of
525 * extended attributes. Indeed, then we guarantee that if the host inode gets
526 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
527 * the extended attribute inode gets flushed too. And this is exactly what the
528 * user expects - synchronizing the host inode synchronizes its extended
529 * attributes. Similarly, this guarantees that if @dir is synchronized, its
530 * directory entry corresponding to @nm gets synchronized too.
531 *
532 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
533 * function synchronizes the write-buffer.
534 *
535 * This function marks the @dir and @inode inodes as clean and returns zero on
536 * success. In case of failure, a negative error code is returned.
537 */
538int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
539 const struct fscrypt_name *nm, const struct inode *inode,
540 int deletion, int xent)
541{
542 int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
543 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
544 int last_reference = !!(deletion && inode->i_nlink == 0);
545 struct ubifs_inode *ui = ubifs_inode(inode);
546 struct ubifs_inode *host_ui = ubifs_inode(dir);
547 struct ubifs_dent_node *dent;
548 struct ubifs_ino_node *ino;
549 union ubifs_key dent_key, ino_key;
550 u8 hash_dent[UBIFS_HASH_ARR_SZ];
551 u8 hash_ino[UBIFS_HASH_ARR_SZ];
552 u8 hash_ino_host[UBIFS_HASH_ARR_SZ];
553
554 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
555
556 dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
557 ilen = UBIFS_INO_NODE_SZ;
558
559 /*
560 * If the last reference to the inode is being deleted, then there is
561 * no need to attach and write inode data, it is being deleted anyway.
562 * And if the inode is being deleted, no need to synchronize
563 * write-buffer even if the inode is synchronous.
564 */
565 if (!last_reference) {
566 ilen += ui->data_len;
567 sync |= IS_SYNC(inode);
568 }
569
570 aligned_dlen = ALIGN(dlen, 8);
571 aligned_ilen = ALIGN(ilen, 8);
572
573 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
574 /* Make sure to also account for extended attributes */
575 if (ubifs_authenticated(c))
576 len += ALIGN(host_ui->data_len, 8) + ubifs_auth_node_sz(c);
577 else
578 len += host_ui->data_len;
579
580 dent = kzalloc(len, GFP_NOFS);
581 if (!dent)
582 return -ENOMEM;
583
584 /* Make reservation before allocating sequence numbers */
585 err = make_reservation(c, BASEHD, len);
586 if (err)
587 goto out_free;
588
589 if (!xent) {
590 dent->ch.node_type = UBIFS_DENT_NODE;
591 if (nm->hash)
592 dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash);
593 else
594 dent_key_init(c, &dent_key, dir->i_ino, nm);
595 } else {
596 dent->ch.node_type = UBIFS_XENT_NODE;
597 xent_key_init(c, &dent_key, dir->i_ino, nm);
598 }
599
600 key_write(c, &dent_key, dent->key);
601 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
602 dent->type = get_dent_type(inode->i_mode);
603 dent->nlen = cpu_to_le16(fname_len(nm));
604 memcpy(dent->name, fname_name(nm), fname_len(nm));
605 dent->name[fname_len(nm)] = '\0';
606 set_dent_cookie(c, dent);
607
608 zero_dent_node_unused(dent);
609 ubifs_prep_grp_node(c, dent, dlen, 0);
610 err = ubifs_node_calc_hash(c, dent, hash_dent);
611 if (err)
612 goto out_release;
613
614 ino = (void *)dent + aligned_dlen;
615 pack_inode(c, ino, inode, 0);
616 err = ubifs_node_calc_hash(c, ino, hash_ino);
617 if (err)
618 goto out_release;
619
620 ino = (void *)ino + aligned_ilen;
621 pack_inode(c, ino, dir, 1);
622 err = ubifs_node_calc_hash(c, ino, hash_ino_host);
623 if (err)
624 goto out_release;
625
626 if (last_reference) {
627 err = ubifs_add_orphan(c, inode->i_ino);
628 if (err) {
629 release_head(c, BASEHD);
630 goto out_finish;
631 }
632 ui->del_cmtno = c->cmt_no;
633 }
634
635 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
636 if (err)
637 goto out_release;
638 if (!sync) {
639 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
640
641 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
642 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
643 }
644 release_head(c, BASEHD);
645 kfree(dent);
646 ubifs_add_auth_dirt(c, lnum);
647
648 if (deletion) {
649 if (nm->hash)
650 err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash);
651 else
652 err = ubifs_tnc_remove_nm(c, &dent_key, nm);
653 if (err)
654 goto out_ro;
655 err = ubifs_add_dirt(c, lnum, dlen);
656 } else
657 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen,
658 hash_dent, nm);
659 if (err)
660 goto out_ro;
661
662 /*
663 * Note, we do not remove the inode from TNC even if the last reference
664 * to it has just been deleted, because the inode may still be opened.
665 * Instead, the inode has been added to orphan lists and the orphan
666 * subsystem will take further care about it.
667 */
668 ino_key_init(c, &ino_key, inode->i_ino);
669 ino_offs = dent_offs + aligned_dlen;
670 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen, hash_ino);
671 if (err)
672 goto out_ro;
673
674 ino_key_init(c, &ino_key, dir->i_ino);
675 ino_offs += aligned_ilen;
676 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
677 UBIFS_INO_NODE_SZ + host_ui->data_len, hash_ino_host);
678 if (err)
679 goto out_ro;
680
681 finish_reservation(c);
682 spin_lock(&ui->ui_lock);
683 ui->synced_i_size = ui->ui_size;
684 spin_unlock(&ui->ui_lock);
685 if (xent) {
686 spin_lock(&host_ui->ui_lock);
687 host_ui->synced_i_size = host_ui->ui_size;
688 spin_unlock(&host_ui->ui_lock);
689 }
690 mark_inode_clean(c, ui);
691 mark_inode_clean(c, host_ui);
692 return 0;
693
694out_finish:
695 finish_reservation(c);
696out_free:
697 kfree(dent);
698 return err;
699
700out_release:
701 release_head(c, BASEHD);
702 kfree(dent);
703out_ro:
704 ubifs_ro_mode(c, err);
705 if (last_reference)
706 ubifs_delete_orphan(c, inode->i_ino);
707 finish_reservation(c);
708 return err;
709}
710
711/**
712 * ubifs_jnl_write_data - write a data node to the journal.
713 * @c: UBIFS file-system description object
714 * @inode: inode the data node belongs to
715 * @key: node key
716 * @buf: buffer to write
717 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
718 *
719 * This function writes a data node to the journal. Returns %0 if the data node
720 * was successfully written, and a negative error code in case of failure.
721 */
722int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
723 const union ubifs_key *key, const void *buf, int len)
724{
725 struct ubifs_data_node *data;
726 int err, lnum, offs, compr_type, out_len, compr_len, auth_len;
727 int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
728 int write_len;
729 struct ubifs_inode *ui = ubifs_inode(inode);
730 bool encrypted = ubifs_crypt_is_encrypted(inode);
731 u8 hash[UBIFS_HASH_ARR_SZ];
732
733 dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
734 (unsigned long)key_inum(c, key), key_block(c, key), len);
735 ubifs_assert(c, len <= UBIFS_BLOCK_SIZE);
736
737 if (encrypted)
738 dlen += UBIFS_CIPHER_BLOCK_SIZE;
739
740 auth_len = ubifs_auth_node_sz(c);
741
742 data = kmalloc(dlen + auth_len, GFP_NOFS | __GFP_NOWARN);
743 if (!data) {
744 /*
745 * Fall-back to the write reserve buffer. Note, we might be
746 * currently on the memory reclaim path, when the kernel is
747 * trying to free some memory by writing out dirty pages. The
748 * write reserve buffer helps us to guarantee that we are
749 * always able to write the data.
750 */
751 allocated = 0;
752 mutex_lock(&c->write_reserve_mutex);
753 data = c->write_reserve_buf;
754 }
755
756 data->ch.node_type = UBIFS_DATA_NODE;
757 key_write(c, key, &data->key);
758 data->size = cpu_to_le32(len);
759
760 if (!(ui->flags & UBIFS_COMPR_FL))
761 /* Compression is disabled for this inode */
762 compr_type = UBIFS_COMPR_NONE;
763 else
764 compr_type = ui->compr_type;
765
766 out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
767 ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type);
768 ubifs_assert(c, compr_len <= UBIFS_BLOCK_SIZE);
769
770 if (encrypted) {
771 err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key));
772 if (err)
773 goto out_free;
774
775 } else {
776 data->compr_size = 0;
777 out_len = compr_len;
778 }
779
780 dlen = UBIFS_DATA_NODE_SZ + out_len;
781 if (ubifs_authenticated(c))
782 write_len = ALIGN(dlen, 8) + auth_len;
783 else
784 write_len = dlen;
785
786 data->compr_type = cpu_to_le16(compr_type);
787
788 /* Make reservation before allocating sequence numbers */
789 err = make_reservation(c, DATAHD, write_len);
790 if (err)
791 goto out_free;
792
793 ubifs_prepare_node(c, data, dlen, 0);
794 err = write_head(c, DATAHD, data, write_len, &lnum, &offs, 0);
795 if (err)
796 goto out_release;
797
798 err = ubifs_node_calc_hash(c, data, hash);
799 if (err)
800 goto out_release;
801
802 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
803 release_head(c, DATAHD);
804
805 ubifs_add_auth_dirt(c, lnum);
806
807 err = ubifs_tnc_add(c, key, lnum, offs, dlen, hash);
808 if (err)
809 goto out_ro;
810
811 finish_reservation(c);
812 if (!allocated)
813 mutex_unlock(&c->write_reserve_mutex);
814 else
815 kfree(data);
816 return 0;
817
818out_release:
819 release_head(c, DATAHD);
820out_ro:
821 ubifs_ro_mode(c, err);
822 finish_reservation(c);
823out_free:
824 if (!allocated)
825 mutex_unlock(&c->write_reserve_mutex);
826 else
827 kfree(data);
828 return err;
829}
830
831/**
832 * ubifs_jnl_write_inode - flush inode to the journal.
833 * @c: UBIFS file-system description object
834 * @inode: inode to flush
835 *
836 * This function writes inode @inode to the journal. If the inode is
837 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
838 * success and a negative error code in case of failure.
839 */
840int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
841{
842 int err, lnum, offs;
843 struct ubifs_ino_node *ino, *ino_start;
844 struct ubifs_inode *ui = ubifs_inode(inode);
845 int sync = 0, write_len = 0, ilen = UBIFS_INO_NODE_SZ;
846 int last_reference = !inode->i_nlink;
847 int kill_xattrs = ui->xattr_cnt && last_reference;
848 u8 hash[UBIFS_HASH_ARR_SZ];
849
850 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
851
852 /*
853 * If the inode is being deleted, do not write the attached data. No
854 * need to synchronize the write-buffer either.
855 */
856 if (!last_reference) {
857 ilen += ui->data_len;
858 sync = IS_SYNC(inode);
859 } else if (kill_xattrs) {
860 write_len += UBIFS_INO_NODE_SZ * ui->xattr_cnt;
861 }
862
863 if (ubifs_authenticated(c))
864 write_len += ALIGN(ilen, 8) + ubifs_auth_node_sz(c);
865 else
866 write_len += ilen;
867
868 ino_start = ino = kmalloc(write_len, GFP_NOFS);
869 if (!ino)
870 return -ENOMEM;
871
872 /* Make reservation before allocating sequence numbers */
873 err = make_reservation(c, BASEHD, write_len);
874 if (err)
875 goto out_free;
876
877 if (kill_xattrs) {
878 union ubifs_key key;
879 struct fscrypt_name nm = {0};
880 struct inode *xino;
881 struct ubifs_dent_node *xent, *pxent = NULL;
882
883 if (ui->xattr_cnt >= ubifs_xattr_max_cnt(c)) {
884 ubifs_err(c, "Cannot delete inode, it has too much xattrs!");
885 goto out_release;
886 }
887
888 lowest_xent_key(c, &key, inode->i_ino);
889 while (1) {
890 xent = ubifs_tnc_next_ent(c, &key, &nm);
891 if (IS_ERR(xent)) {
892 err = PTR_ERR(xent);
893 if (err == -ENOENT)
894 break;
895
896 goto out_release;
897 }
898
899 fname_name(&nm) = xent->name;
900 fname_len(&nm) = le16_to_cpu(xent->nlen);
901
902 xino = ubifs_iget(c->vfs_sb, xent->inum);
903 if (IS_ERR(xino)) {
904 err = PTR_ERR(xino);
905 ubifs_err(c, "dead directory entry '%s', error %d",
906 xent->name, err);
907 ubifs_ro_mode(c, err);
908 goto out_release;
909 }
910 ubifs_assert(c, ubifs_inode(xino)->xattr);
911
912 clear_nlink(xino);
913 pack_inode(c, ino, xino, 0);
914 ino = (void *)ino + UBIFS_INO_NODE_SZ;
915 iput(xino);
916
917 kfree(pxent);
918 pxent = xent;
919 key_read(c, &xent->key, &key);
920 }
921 kfree(pxent);
922 }
923
924 pack_inode(c, ino, inode, 1);
925 err = ubifs_node_calc_hash(c, ino, hash);
926 if (err)
927 goto out_release;
928
929 err = write_head(c, BASEHD, ino_start, write_len, &lnum, &offs, sync);
930 if (err)
931 goto out_release;
932 if (!sync)
933 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
934 inode->i_ino);
935 release_head(c, BASEHD);
936
937 ubifs_add_auth_dirt(c, lnum);
938
939 if (last_reference) {
940 err = ubifs_tnc_remove_ino(c, inode->i_ino);
941 if (err)
942 goto out_ro;
943 ubifs_delete_orphan(c, inode->i_ino);
944 err = ubifs_add_dirt(c, lnum, write_len);
945 } else {
946 union ubifs_key key;
947
948 ino_key_init(c, &key, inode->i_ino);
949 err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash);
950 }
951 if (err)
952 goto out_ro;
953
954 finish_reservation(c);
955 spin_lock(&ui->ui_lock);
956 ui->synced_i_size = ui->ui_size;
957 spin_unlock(&ui->ui_lock);
958 kfree(ino_start);
959 return 0;
960
961out_release:
962 release_head(c, BASEHD);
963out_ro:
964 ubifs_ro_mode(c, err);
965 finish_reservation(c);
966out_free:
967 kfree(ino_start);
968 return err;
969}
970
971/**
972 * ubifs_jnl_delete_inode - delete an inode.
973 * @c: UBIFS file-system description object
974 * @inode: inode to delete
975 *
976 * This function deletes inode @inode which includes removing it from orphans,
977 * deleting it from TNC and, in some cases, writing a deletion inode to the
978 * journal.
979 *
980 * When regular file inodes are unlinked or a directory inode is removed, the
981 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
982 * direntry to the media, and adds the inode to orphans. After this, when the
983 * last reference to this inode has been dropped, this function is called. In
984 * general, it has to write one more deletion inode to the media, because if
985 * a commit happened between 'ubifs_jnl_update()' and
986 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
987 * anymore, and in fact it might not be on the flash anymore, because it might
988 * have been garbage-collected already. And for optimization reasons UBIFS does
989 * not read the orphan area if it has been unmounted cleanly, so it would have
990 * no indication in the journal that there is a deleted inode which has to be
991 * removed from TNC.
992 *
993 * However, if there was no commit between 'ubifs_jnl_update()' and
994 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
995 * inode to the media for the second time. And this is quite a typical case.
996 *
997 * This function returns zero in case of success and a negative error code in
998 * case of failure.
999 */
1000int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
1001{
1002 int err;
1003 struct ubifs_inode *ui = ubifs_inode(inode);
1004
1005 ubifs_assert(c, inode->i_nlink == 0);
1006
1007 if (ui->xattr_cnt || ui->del_cmtno != c->cmt_no)
1008 /* A commit happened for sure or inode hosts xattrs */
1009 return ubifs_jnl_write_inode(c, inode);
1010
1011 down_read(&c->commit_sem);
1012 /*
1013 * Check commit number again, because the first test has been done
1014 * without @c->commit_sem, so a commit might have happened.
1015 */
1016 if (ui->del_cmtno != c->cmt_no) {
1017 up_read(&c->commit_sem);
1018 return ubifs_jnl_write_inode(c, inode);
1019 }
1020
1021 err = ubifs_tnc_remove_ino(c, inode->i_ino);
1022 if (err)
1023 ubifs_ro_mode(c, err);
1024 else
1025 ubifs_delete_orphan(c, inode->i_ino);
1026 up_read(&c->commit_sem);
1027 return err;
1028}
1029
1030/**
1031 * ubifs_jnl_xrename - cross rename two directory entries.
1032 * @c: UBIFS file-system description object
1033 * @fst_dir: parent inode of 1st directory entry to exchange
1034 * @fst_inode: 1st inode to exchange
1035 * @fst_nm: name of 1st inode to exchange
1036 * @snd_dir: parent inode of 2nd directory entry to exchange
1037 * @snd_inode: 2nd inode to exchange
1038 * @snd_nm: name of 2nd inode to exchange
1039 * @sync: non-zero if the write-buffer has to be synchronized
1040 *
1041 * This function implements the cross rename operation which may involve
1042 * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
1043 * and returns zero on success. In case of failure, a negative error code is
1044 * returned.
1045 */
1046int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
1047 const struct inode *fst_inode,
1048 const struct fscrypt_name *fst_nm,
1049 const struct inode *snd_dir,
1050 const struct inode *snd_inode,
1051 const struct fscrypt_name *snd_nm, int sync)
1052{
1053 union ubifs_key key;
1054 struct ubifs_dent_node *dent1, *dent2;
1055 int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
1056 int aligned_dlen1, aligned_dlen2;
1057 int twoparents = (fst_dir != snd_dir);
1058 void *p;
1059 u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1060 u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1061 u8 hash_p1[UBIFS_HASH_ARR_SZ];
1062 u8 hash_p2[UBIFS_HASH_ARR_SZ];
1063
1064 ubifs_assert(c, ubifs_inode(fst_dir)->data_len == 0);
1065 ubifs_assert(c, ubifs_inode(snd_dir)->data_len == 0);
1066 ubifs_assert(c, mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
1067 ubifs_assert(c, mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
1068
1069 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
1070 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
1071 aligned_dlen1 = ALIGN(dlen1, 8);
1072 aligned_dlen2 = ALIGN(dlen2, 8);
1073
1074 len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
1075 if (twoparents)
1076 len += plen;
1077
1078 len += ubifs_auth_node_sz(c);
1079
1080 dent1 = kzalloc(len, GFP_NOFS);
1081 if (!dent1)
1082 return -ENOMEM;
1083
1084 /* Make reservation before allocating sequence numbers */
1085 err = make_reservation(c, BASEHD, len);
1086 if (err)
1087 goto out_free;
1088
1089 /* Make new dent for 1st entry */
1090 dent1->ch.node_type = UBIFS_DENT_NODE;
1091 dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm);
1092 dent1->inum = cpu_to_le64(fst_inode->i_ino);
1093 dent1->type = get_dent_type(fst_inode->i_mode);
1094 dent1->nlen = cpu_to_le16(fname_len(snd_nm));
1095 memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
1096 dent1->name[fname_len(snd_nm)] = '\0';
1097 set_dent_cookie(c, dent1);
1098 zero_dent_node_unused(dent1);
1099 ubifs_prep_grp_node(c, dent1, dlen1, 0);
1100 err = ubifs_node_calc_hash(c, dent1, hash_dent1);
1101 if (err)
1102 goto out_release;
1103
1104 /* Make new dent for 2nd entry */
1105 dent2 = (void *)dent1 + aligned_dlen1;
1106 dent2->ch.node_type = UBIFS_DENT_NODE;
1107 dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm);
1108 dent2->inum = cpu_to_le64(snd_inode->i_ino);
1109 dent2->type = get_dent_type(snd_inode->i_mode);
1110 dent2->nlen = cpu_to_le16(fname_len(fst_nm));
1111 memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
1112 dent2->name[fname_len(fst_nm)] = '\0';
1113 set_dent_cookie(c, dent2);
1114 zero_dent_node_unused(dent2);
1115 ubifs_prep_grp_node(c, dent2, dlen2, 0);
1116 err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1117 if (err)
1118 goto out_release;
1119
1120 p = (void *)dent2 + aligned_dlen2;
1121 if (!twoparents) {
1122 pack_inode(c, p, fst_dir, 1);
1123 err = ubifs_node_calc_hash(c, p, hash_p1);
1124 if (err)
1125 goto out_release;
1126 } else {
1127 pack_inode(c, p, fst_dir, 0);
1128 err = ubifs_node_calc_hash(c, p, hash_p1);
1129 if (err)
1130 goto out_release;
1131 p += ALIGN(plen, 8);
1132 pack_inode(c, p, snd_dir, 1);
1133 err = ubifs_node_calc_hash(c, p, hash_p2);
1134 if (err)
1135 goto out_release;
1136 }
1137
1138 err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
1139 if (err)
1140 goto out_release;
1141 if (!sync) {
1142 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1143
1144 ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
1145 ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
1146 }
1147 release_head(c, BASEHD);
1148
1149 ubifs_add_auth_dirt(c, lnum);
1150
1151 dent_key_init(c, &key, snd_dir->i_ino, snd_nm);
1152 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, snd_nm);
1153 if (err)
1154 goto out_ro;
1155
1156 offs += aligned_dlen1;
1157 dent_key_init(c, &key, fst_dir->i_ino, fst_nm);
1158 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, fst_nm);
1159 if (err)
1160 goto out_ro;
1161
1162 offs += aligned_dlen2;
1163
1164 ino_key_init(c, &key, fst_dir->i_ino);
1165 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p1);
1166 if (err)
1167 goto out_ro;
1168
1169 if (twoparents) {
1170 offs += ALIGN(plen, 8);
1171 ino_key_init(c, &key, snd_dir->i_ino);
1172 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p2);
1173 if (err)
1174 goto out_ro;
1175 }
1176
1177 finish_reservation(c);
1178
1179 mark_inode_clean(c, ubifs_inode(fst_dir));
1180 if (twoparents)
1181 mark_inode_clean(c, ubifs_inode(snd_dir));
1182 kfree(dent1);
1183 return 0;
1184
1185out_release:
1186 release_head(c, BASEHD);
1187out_ro:
1188 ubifs_ro_mode(c, err);
1189 finish_reservation(c);
1190out_free:
1191 kfree(dent1);
1192 return err;
1193}
1194
1195/**
1196 * ubifs_jnl_rename - rename a directory entry.
1197 * @c: UBIFS file-system description object
1198 * @old_dir: parent inode of directory entry to rename
1199 * @old_dentry: directory entry to rename
1200 * @new_dir: parent inode of directory entry to rename
1201 * @new_dentry: new directory entry (or directory entry to replace)
1202 * @sync: non-zero if the write-buffer has to be synchronized
1203 *
1204 * This function implements the re-name operation which may involve writing up
1205 * to 4 inodes and 2 directory entries. It marks the written inodes as clean
1206 * and returns zero on success. In case of failure, a negative error code is
1207 * returned.
1208 */
1209int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1210 const struct inode *old_inode,
1211 const struct fscrypt_name *old_nm,
1212 const struct inode *new_dir,
1213 const struct inode *new_inode,
1214 const struct fscrypt_name *new_nm,
1215 const struct inode *whiteout, int sync)
1216{
1217 void *p;
1218 union ubifs_key key;
1219 struct ubifs_dent_node *dent, *dent2;
1220 int err, dlen1, dlen2, ilen, lnum, offs, len;
1221 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1222 int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1223 int move = (old_dir != new_dir);
1224 struct ubifs_inode *uninitialized_var(new_ui);
1225 u8 hash_old_dir[UBIFS_HASH_ARR_SZ];
1226 u8 hash_new_dir[UBIFS_HASH_ARR_SZ];
1227 u8 hash_new_inode[UBIFS_HASH_ARR_SZ];
1228 u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1229 u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1230
1231 ubifs_assert(c, ubifs_inode(old_dir)->data_len == 0);
1232 ubifs_assert(c, ubifs_inode(new_dir)->data_len == 0);
1233 ubifs_assert(c, mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1234 ubifs_assert(c, mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1235
1236 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
1237 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
1238 if (new_inode) {
1239 new_ui = ubifs_inode(new_inode);
1240 ubifs_assert(c, mutex_is_locked(&new_ui->ui_mutex));
1241 ilen = UBIFS_INO_NODE_SZ;
1242 if (!last_reference)
1243 ilen += new_ui->data_len;
1244 } else
1245 ilen = 0;
1246
1247 aligned_dlen1 = ALIGN(dlen1, 8);
1248 aligned_dlen2 = ALIGN(dlen2, 8);
1249 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
1250 if (move)
1251 len += plen;
1252
1253 len += ubifs_auth_node_sz(c);
1254
1255 dent = kzalloc(len, GFP_NOFS);
1256 if (!dent)
1257 return -ENOMEM;
1258
1259 /* Make reservation before allocating sequence numbers */
1260 err = make_reservation(c, BASEHD, len);
1261 if (err)
1262 goto out_free;
1263
1264 /* Make new dent */
1265 dent->ch.node_type = UBIFS_DENT_NODE;
1266 dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm);
1267 dent->inum = cpu_to_le64(old_inode->i_ino);
1268 dent->type = get_dent_type(old_inode->i_mode);
1269 dent->nlen = cpu_to_le16(fname_len(new_nm));
1270 memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
1271 dent->name[fname_len(new_nm)] = '\0';
1272 set_dent_cookie(c, dent);
1273 zero_dent_node_unused(dent);
1274 ubifs_prep_grp_node(c, dent, dlen1, 0);
1275 err = ubifs_node_calc_hash(c, dent, hash_dent1);
1276 if (err)
1277 goto out_release;
1278
1279 dent2 = (void *)dent + aligned_dlen1;
1280 dent2->ch.node_type = UBIFS_DENT_NODE;
1281 dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm);
1282
1283 if (whiteout) {
1284 dent2->inum = cpu_to_le64(whiteout->i_ino);
1285 dent2->type = get_dent_type(whiteout->i_mode);
1286 } else {
1287 /* Make deletion dent */
1288 dent2->inum = 0;
1289 dent2->type = DT_UNKNOWN;
1290 }
1291 dent2->nlen = cpu_to_le16(fname_len(old_nm));
1292 memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
1293 dent2->name[fname_len(old_nm)] = '\0';
1294 set_dent_cookie(c, dent2);
1295 zero_dent_node_unused(dent2);
1296 ubifs_prep_grp_node(c, dent2, dlen2, 0);
1297 err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1298 if (err)
1299 goto out_release;
1300
1301 p = (void *)dent2 + aligned_dlen2;
1302 if (new_inode) {
1303 pack_inode(c, p, new_inode, 0);
1304 err = ubifs_node_calc_hash(c, p, hash_new_inode);
1305 if (err)
1306 goto out_release;
1307
1308 p += ALIGN(ilen, 8);
1309 }
1310
1311 if (!move) {
1312 pack_inode(c, p, old_dir, 1);
1313 err = ubifs_node_calc_hash(c, p, hash_old_dir);
1314 if (err)
1315 goto out_release;
1316 } else {
1317 pack_inode(c, p, old_dir, 0);
1318 err = ubifs_node_calc_hash(c, p, hash_old_dir);
1319 if (err)
1320 goto out_release;
1321
1322 p += ALIGN(plen, 8);
1323 pack_inode(c, p, new_dir, 1);
1324 err = ubifs_node_calc_hash(c, p, hash_new_dir);
1325 if (err)
1326 goto out_release;
1327 }
1328
1329 if (last_reference) {
1330 err = ubifs_add_orphan(c, new_inode->i_ino);
1331 if (err) {
1332 release_head(c, BASEHD);
1333 goto out_finish;
1334 }
1335 new_ui->del_cmtno = c->cmt_no;
1336 }
1337
1338 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1339 if (err)
1340 goto out_release;
1341 if (!sync) {
1342 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1343
1344 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1345 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1346 if (new_inode)
1347 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1348 new_inode->i_ino);
1349 }
1350 release_head(c, BASEHD);
1351
1352 ubifs_add_auth_dirt(c, lnum);
1353
1354 dent_key_init(c, &key, new_dir->i_ino, new_nm);
1355 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, new_nm);
1356 if (err)
1357 goto out_ro;
1358
1359 offs += aligned_dlen1;
1360 if (whiteout) {
1361 dent_key_init(c, &key, old_dir->i_ino, old_nm);
1362 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, old_nm);
1363 if (err)
1364 goto out_ro;
1365
1366 ubifs_delete_orphan(c, whiteout->i_ino);
1367 } else {
1368 err = ubifs_add_dirt(c, lnum, dlen2);
1369 if (err)
1370 goto out_ro;
1371
1372 dent_key_init(c, &key, old_dir->i_ino, old_nm);
1373 err = ubifs_tnc_remove_nm(c, &key, old_nm);
1374 if (err)
1375 goto out_ro;
1376 }
1377
1378 offs += aligned_dlen2;
1379 if (new_inode) {
1380 ino_key_init(c, &key, new_inode->i_ino);
1381 err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash_new_inode);
1382 if (err)
1383 goto out_ro;
1384 offs += ALIGN(ilen, 8);
1385 }
1386
1387 ino_key_init(c, &key, old_dir->i_ino);
1388 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_old_dir);
1389 if (err)
1390 goto out_ro;
1391
1392 if (move) {
1393 offs += ALIGN(plen, 8);
1394 ino_key_init(c, &key, new_dir->i_ino);
1395 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_new_dir);
1396 if (err)
1397 goto out_ro;
1398 }
1399
1400 finish_reservation(c);
1401 if (new_inode) {
1402 mark_inode_clean(c, new_ui);
1403 spin_lock(&new_ui->ui_lock);
1404 new_ui->synced_i_size = new_ui->ui_size;
1405 spin_unlock(&new_ui->ui_lock);
1406 }
1407 mark_inode_clean(c, ubifs_inode(old_dir));
1408 if (move)
1409 mark_inode_clean(c, ubifs_inode(new_dir));
1410 kfree(dent);
1411 return 0;
1412
1413out_release:
1414 release_head(c, BASEHD);
1415out_ro:
1416 ubifs_ro_mode(c, err);
1417 if (last_reference)
1418 ubifs_delete_orphan(c, new_inode->i_ino);
1419out_finish:
1420 finish_reservation(c);
1421out_free:
1422 kfree(dent);
1423 return err;
1424}
1425
1426/**
1427 * truncate_data_node - re-compress/encrypt a truncated data node.
1428 * @c: UBIFS file-system description object
1429 * @inode: inode which referes to the data node
1430 * @block: data block number
1431 * @dn: data node to re-compress
1432 * @new_len: new length
1433 *
1434 * This function is used when an inode is truncated and the last data node of
1435 * the inode has to be re-compressed/encrypted and re-written.
1436 */
1437static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
1438 unsigned int block, struct ubifs_data_node *dn,
1439 int *new_len)
1440{
1441 void *buf;
1442 int err, dlen, compr_type, out_len, old_dlen;
1443
1444 out_len = le32_to_cpu(dn->size);
1445 buf = kmalloc_array(out_len, WORST_COMPR_FACTOR, GFP_NOFS);
1446 if (!buf)
1447 return -ENOMEM;
1448
1449 dlen = old_dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1450 compr_type = le16_to_cpu(dn->compr_type);
1451
1452 if (ubifs_crypt_is_encrypted(inode)) {
1453 err = ubifs_decrypt(inode, dn, &dlen, block);
1454 if (err)
1455 goto out;
1456 }
1457
1458 if (compr_type == UBIFS_COMPR_NONE) {
1459 out_len = *new_len;
1460 } else {
1461 err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type);
1462 if (err)
1463 goto out;
1464
1465 ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1466 }
1467
1468 if (ubifs_crypt_is_encrypted(inode)) {
1469 err = ubifs_encrypt(inode, dn, out_len, &old_dlen, block);
1470 if (err)
1471 goto out;
1472
1473 out_len = old_dlen;
1474 } else {
1475 dn->compr_size = 0;
1476 }
1477
1478 ubifs_assert(c, out_len <= UBIFS_BLOCK_SIZE);
1479 dn->compr_type = cpu_to_le16(compr_type);
1480 dn->size = cpu_to_le32(*new_len);
1481 *new_len = UBIFS_DATA_NODE_SZ + out_len;
1482 err = 0;
1483out:
1484 kfree(buf);
1485 return err;
1486}
1487
1488/**
1489 * ubifs_jnl_truncate - update the journal for a truncation.
1490 * @c: UBIFS file-system description object
1491 * @inode: inode to truncate
1492 * @old_size: old size
1493 * @new_size: new size
1494 *
1495 * When the size of a file decreases due to truncation, a truncation node is
1496 * written, the journal tree is updated, and the last data block is re-written
1497 * if it has been affected. The inode is also updated in order to synchronize
1498 * the new inode size.
1499 *
1500 * This function marks the inode as clean and returns zero on success. In case
1501 * of failure, a negative error code is returned.
1502 */
1503int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1504 loff_t old_size, loff_t new_size)
1505{
1506 union ubifs_key key, to_key;
1507 struct ubifs_ino_node *ino;
1508 struct ubifs_trun_node *trun;
1509 struct ubifs_data_node *uninitialized_var(dn);
1510 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1511 struct ubifs_inode *ui = ubifs_inode(inode);
1512 ino_t inum = inode->i_ino;
1513 unsigned int blk;
1514 u8 hash_ino[UBIFS_HASH_ARR_SZ];
1515 u8 hash_dn[UBIFS_HASH_ARR_SZ];
1516
1517 dbg_jnl("ino %lu, size %lld -> %lld",
1518 (unsigned long)inum, old_size, new_size);
1519 ubifs_assert(c, !ui->data_len);
1520 ubifs_assert(c, S_ISREG(inode->i_mode));
1521 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
1522
1523 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1524 UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1525
1526 sz += ubifs_auth_node_sz(c);
1527
1528 ino = kmalloc(sz, GFP_NOFS);
1529 if (!ino)
1530 return -ENOMEM;
1531
1532 trun = (void *)ino + UBIFS_INO_NODE_SZ;
1533 trun->ch.node_type = UBIFS_TRUN_NODE;
1534 trun->inum = cpu_to_le32(inum);
1535 trun->old_size = cpu_to_le64(old_size);
1536 trun->new_size = cpu_to_le64(new_size);
1537 zero_trun_node_unused(trun);
1538
1539 dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1540 if (dlen) {
1541 /* Get last data block so it can be truncated */
1542 dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1543 blk = new_size >> UBIFS_BLOCK_SHIFT;
1544 data_key_init(c, &key, inum, blk);
1545 dbg_jnlk(&key, "last block key ");
1546 err = ubifs_tnc_lookup(c, &key, dn);
1547 if (err == -ENOENT)
1548 dlen = 0; /* Not found (so it is a hole) */
1549 else if (err)
1550 goto out_free;
1551 else {
1552 int dn_len = le32_to_cpu(dn->size);
1553
1554 if (dn_len <= 0 || dn_len > UBIFS_BLOCK_SIZE) {
1555 ubifs_err(c, "bad data node (block %u, inode %lu)",
1556 blk, inode->i_ino);
1557 ubifs_dump_node(c, dn);
1558 goto out_free;
1559 }
1560
1561 if (dn_len <= dlen)
1562 dlen = 0; /* Nothing to do */
1563 else {
1564 err = truncate_data_node(c, inode, blk, dn, &dlen);
1565 if (err)
1566 goto out_free;
1567 }
1568 }
1569 }
1570
1571 /* Must make reservation before allocating sequence numbers */
1572 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1573
1574 if (ubifs_authenticated(c))
1575 len += ALIGN(dlen, 8) + ubifs_auth_node_sz(c);
1576 else
1577 len += dlen;
1578
1579 err = make_reservation(c, BASEHD, len);
1580 if (err)
1581 goto out_free;
1582
1583 pack_inode(c, ino, inode, 0);
1584 err = ubifs_node_calc_hash(c, ino, hash_ino);
1585 if (err)
1586 goto out_release;
1587
1588 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1589 if (dlen) {
1590 ubifs_prep_grp_node(c, dn, dlen, 1);
1591 err = ubifs_node_calc_hash(c, dn, hash_dn);
1592 if (err)
1593 goto out_release;
1594 }
1595
1596 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1597 if (err)
1598 goto out_release;
1599 if (!sync)
1600 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1601 release_head(c, BASEHD);
1602
1603 ubifs_add_auth_dirt(c, lnum);
1604
1605 if (dlen) {
1606 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1607 err = ubifs_tnc_add(c, &key, lnum, sz, dlen, hash_dn);
1608 if (err)
1609 goto out_ro;
1610 }
1611
1612 ino_key_init(c, &key, inum);
1613 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ, hash_ino);
1614 if (err)
1615 goto out_ro;
1616
1617 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1618 if (err)
1619 goto out_ro;
1620
1621 bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1622 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1623 data_key_init(c, &key, inum, blk);
1624
1625 bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1626 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1627 data_key_init(c, &to_key, inum, blk);
1628
1629 err = ubifs_tnc_remove_range(c, &key, &to_key);
1630 if (err)
1631 goto out_ro;
1632
1633 finish_reservation(c);
1634 spin_lock(&ui->ui_lock);
1635 ui->synced_i_size = ui->ui_size;
1636 spin_unlock(&ui->ui_lock);
1637 mark_inode_clean(c, ui);
1638 kfree(ino);
1639 return 0;
1640
1641out_release:
1642 release_head(c, BASEHD);
1643out_ro:
1644 ubifs_ro_mode(c, err);
1645 finish_reservation(c);
1646out_free:
1647 kfree(ino);
1648 return err;
1649}
1650
1651
1652/**
1653 * ubifs_jnl_delete_xattr - delete an extended attribute.
1654 * @c: UBIFS file-system description object
1655 * @host: host inode
1656 * @inode: extended attribute inode
1657 * @nm: extended attribute entry name
1658 *
1659 * This function delete an extended attribute which is very similar to
1660 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1661 * updates the target inode. Returns zero in case of success and a negative
1662 * error code in case of failure.
1663 */
1664int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1665 const struct inode *inode,
1666 const struct fscrypt_name *nm)
1667{
1668 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen, write_len;
1669 struct ubifs_dent_node *xent;
1670 struct ubifs_ino_node *ino;
1671 union ubifs_key xent_key, key1, key2;
1672 int sync = IS_DIRSYNC(host);
1673 struct ubifs_inode *host_ui = ubifs_inode(host);
1674 u8 hash[UBIFS_HASH_ARR_SZ];
1675
1676 ubifs_assert(c, inode->i_nlink == 0);
1677 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1678
1679 /*
1680 * Since we are deleting the inode, we do not bother to attach any data
1681 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1682 */
1683 xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
1684 aligned_xlen = ALIGN(xlen, 8);
1685 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1686 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1687
1688 write_len = len + ubifs_auth_node_sz(c);
1689
1690 xent = kzalloc(write_len, GFP_NOFS);
1691 if (!xent)
1692 return -ENOMEM;
1693
1694 /* Make reservation before allocating sequence numbers */
1695 err = make_reservation(c, BASEHD, write_len);
1696 if (err) {
1697 kfree(xent);
1698 return err;
1699 }
1700
1701 xent->ch.node_type = UBIFS_XENT_NODE;
1702 xent_key_init(c, &xent_key, host->i_ino, nm);
1703 key_write(c, &xent_key, xent->key);
1704 xent->inum = 0;
1705 xent->type = get_dent_type(inode->i_mode);
1706 xent->nlen = cpu_to_le16(fname_len(nm));
1707 memcpy(xent->name, fname_name(nm), fname_len(nm));
1708 xent->name[fname_len(nm)] = '\0';
1709 zero_dent_node_unused(xent);
1710 ubifs_prep_grp_node(c, xent, xlen, 0);
1711
1712 ino = (void *)xent + aligned_xlen;
1713 pack_inode(c, ino, inode, 0);
1714 ino = (void *)ino + UBIFS_INO_NODE_SZ;
1715 pack_inode(c, ino, host, 1);
1716 err = ubifs_node_calc_hash(c, ino, hash);
1717 if (err)
1718 goto out_release;
1719
1720 err = write_head(c, BASEHD, xent, write_len, &lnum, &xent_offs, sync);
1721 if (!sync && !err)
1722 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1723 release_head(c, BASEHD);
1724
1725 ubifs_add_auth_dirt(c, lnum);
1726 kfree(xent);
1727 if (err)
1728 goto out_ro;
1729
1730 /* Remove the extended attribute entry from TNC */
1731 err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1732 if (err)
1733 goto out_ro;
1734 err = ubifs_add_dirt(c, lnum, xlen);
1735 if (err)
1736 goto out_ro;
1737
1738 /*
1739 * Remove all nodes belonging to the extended attribute inode from TNC.
1740 * Well, there actually must be only one node - the inode itself.
1741 */
1742 lowest_ino_key(c, &key1, inode->i_ino);
1743 highest_ino_key(c, &key2, inode->i_ino);
1744 err = ubifs_tnc_remove_range(c, &key1, &key2);
1745 if (err)
1746 goto out_ro;
1747 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1748 if (err)
1749 goto out_ro;
1750
1751 /* And update TNC with the new host inode position */
1752 ino_key_init(c, &key1, host->i_ino);
1753 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen, hash);
1754 if (err)
1755 goto out_ro;
1756
1757 finish_reservation(c);
1758 spin_lock(&host_ui->ui_lock);
1759 host_ui->synced_i_size = host_ui->ui_size;
1760 spin_unlock(&host_ui->ui_lock);
1761 mark_inode_clean(c, host_ui);
1762 return 0;
1763
1764out_release:
1765 kfree(xent);
1766 release_head(c, BASEHD);
1767out_ro:
1768 ubifs_ro_mode(c, err);
1769 finish_reservation(c);
1770 return err;
1771}
1772
1773/**
1774 * ubifs_jnl_change_xattr - change an extended attribute.
1775 * @c: UBIFS file-system description object
1776 * @inode: extended attribute inode
1777 * @host: host inode
1778 *
1779 * This function writes the updated version of an extended attribute inode and
1780 * the host inode to the journal (to the base head). The host inode is written
1781 * after the extended attribute inode in order to guarantee that the extended
1782 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1783 * consequently, the write-buffer is synchronized. This function returns zero
1784 * in case of success and a negative error code in case of failure.
1785 */
1786int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1787 const struct inode *host)
1788{
1789 int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1790 struct ubifs_inode *host_ui = ubifs_inode(host);
1791 struct ubifs_ino_node *ino;
1792 union ubifs_key key;
1793 int sync = IS_DIRSYNC(host);
1794 u8 hash_host[UBIFS_HASH_ARR_SZ];
1795 u8 hash[UBIFS_HASH_ARR_SZ];
1796
1797 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1798 ubifs_assert(c, host->i_nlink > 0);
1799 ubifs_assert(c, inode->i_nlink > 0);
1800 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1801
1802 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1803 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1804 aligned_len1 = ALIGN(len1, 8);
1805 aligned_len = aligned_len1 + ALIGN(len2, 8);
1806
1807 aligned_len += ubifs_auth_node_sz(c);
1808
1809 ino = kzalloc(aligned_len, GFP_NOFS);
1810 if (!ino)
1811 return -ENOMEM;
1812
1813 /* Make reservation before allocating sequence numbers */
1814 err = make_reservation(c, BASEHD, aligned_len);
1815 if (err)
1816 goto out_free;
1817
1818 pack_inode(c, ino, host, 0);
1819 err = ubifs_node_calc_hash(c, ino, hash_host);
1820 if (err)
1821 goto out_release;
1822 pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1823 err = ubifs_node_calc_hash(c, (void *)ino + aligned_len1, hash);
1824 if (err)
1825 goto out_release;
1826
1827 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1828 if (!sync && !err) {
1829 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1830
1831 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1832 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1833 }
1834 release_head(c, BASEHD);
1835 if (err)
1836 goto out_ro;
1837
1838 ubifs_add_auth_dirt(c, lnum);
1839
1840 ino_key_init(c, &key, host->i_ino);
1841 err = ubifs_tnc_add(c, &key, lnum, offs, len1, hash_host);
1842 if (err)
1843 goto out_ro;
1844
1845 ino_key_init(c, &key, inode->i_ino);
1846 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2, hash);
1847 if (err)
1848 goto out_ro;
1849
1850 finish_reservation(c);
1851 spin_lock(&host_ui->ui_lock);
1852 host_ui->synced_i_size = host_ui->ui_size;
1853 spin_unlock(&host_ui->ui_lock);
1854 mark_inode_clean(c, host_ui);
1855 kfree(ino);
1856 return 0;
1857
1858out_release:
1859 release_head(c, BASEHD);
1860out_ro:
1861 ubifs_ro_mode(c, err);
1862 finish_reservation(c);
1863out_free:
1864 kfree(ino);
1865 return err;
1866}
1867
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements UBIFS journal.
25 *
26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
27 * length and position, while a bud logical eraseblock is any LEB in the main
28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
29 * contains only references to buds and some other stuff like commit
30 * start node. The idea is that when we commit the journal, we do
31 * not copy the data, the buds just become indexed. Since after the commit the
32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
34 * become leafs in the future.
35 *
36 * The journal is multi-headed because we want to write data to the journal as
37 * optimally as possible. It is nice to have nodes belonging to the same inode
38 * in one LEB, so we may write data owned by different inodes to different
39 * journal heads, although at present only one data head is used.
40 *
41 * For recovery reasons, the base head contains all inode nodes, all directory
42 * entry nodes and all truncate nodes. This means that the other heads contain
43 * only data nodes.
44 *
45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
46 * time of commit, the bud is retained to continue to be used in the journal,
47 * even though the "front" of the LEB is now indexed. In that case, the log
48 * reference contains the offset where the bud starts for the purposes of the
49 * journal.
50 *
51 * The journal size has to be limited, because the larger is the journal, the
52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
53 * takes (indexing in the TNC).
54 *
55 * All the journal write operations like 'ubifs_jnl_update()' here, which write
56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
57 * unclean reboots. Should the unclean reboot happen, the recovery code drops
58 * all the nodes.
59 */
60
61#include "ubifs.h"
62
63/**
64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
65 * @ino: the inode to zero out
66 */
67static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
68{
69 memset(ino->padding1, 0, 4);
70 memset(ino->padding2, 0, 26);
71}
72
73/**
74 * zero_dent_node_unused - zero out unused fields of an on-flash directory
75 * entry node.
76 * @dent: the directory entry to zero out
77 */
78static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
79{
80 dent->padding1 = 0;
81}
82
83/**
84 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
85 * node.
86 * @trun: the truncation node to zero out
87 */
88static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
89{
90 memset(trun->padding, 0, 12);
91}
92
93/**
94 * reserve_space - reserve space in the journal.
95 * @c: UBIFS file-system description object
96 * @jhead: journal head number
97 * @len: node length
98 *
99 * This function reserves space in journal head @head. If the reservation
100 * succeeded, the journal head stays locked and later has to be unlocked using
101 * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock
102 * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and
103 * other negative error codes in case of other failures.
104 */
105static int reserve_space(struct ubifs_info *c, int jhead, int len)
106{
107 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
108 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
109
110 /*
111 * Typically, the base head has smaller nodes written to it, so it is
112 * better to try to allocate space at the ends of eraseblocks. This is
113 * what the squeeze parameter does.
114 */
115 ubifs_assert(!c->ro_media && !c->ro_mount);
116 squeeze = (jhead == BASEHD);
117again:
118 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
119
120 if (c->ro_error) {
121 err = -EROFS;
122 goto out_unlock;
123 }
124
125 avail = c->leb_size - wbuf->offs - wbuf->used;
126 if (wbuf->lnum != -1 && avail >= len)
127 return 0;
128
129 /*
130 * Write buffer wasn't seek'ed or there is no enough space - look for an
131 * LEB with some empty space.
132 */
133 lnum = ubifs_find_free_space(c, len, &offs, squeeze);
134 if (lnum >= 0)
135 goto out;
136
137 err = lnum;
138 if (err != -ENOSPC)
139 goto out_unlock;
140
141 /*
142 * No free space, we have to run garbage collector to make
143 * some. But the write-buffer mutex has to be unlocked because
144 * GC also takes it.
145 */
146 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
147 mutex_unlock(&wbuf->io_mutex);
148
149 lnum = ubifs_garbage_collect(c, 0);
150 if (lnum < 0) {
151 err = lnum;
152 if (err != -ENOSPC)
153 return err;
154
155 /*
156 * GC could not make a free LEB. But someone else may
157 * have allocated new bud for this journal head,
158 * because we dropped @wbuf->io_mutex, so try once
159 * again.
160 */
161 dbg_jnl("GC couldn't make a free LEB for jhead %s",
162 dbg_jhead(jhead));
163 if (retries++ < 2) {
164 dbg_jnl("retry (%d)", retries);
165 goto again;
166 }
167
168 dbg_jnl("return -ENOSPC");
169 return err;
170 }
171
172 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
173 dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
174 avail = c->leb_size - wbuf->offs - wbuf->used;
175
176 if (wbuf->lnum != -1 && avail >= len) {
177 /*
178 * Someone else has switched the journal head and we have
179 * enough space now. This happens when more than one process is
180 * trying to write to the same journal head at the same time.
181 */
182 dbg_jnl("return LEB %d back, already have LEB %d:%d",
183 lnum, wbuf->lnum, wbuf->offs + wbuf->used);
184 err = ubifs_return_leb(c, lnum);
185 if (err)
186 goto out_unlock;
187 return 0;
188 }
189
190 offs = 0;
191
192out:
193 /*
194 * Make sure we synchronize the write-buffer before we add the new bud
195 * to the log. Otherwise we may have a power cut after the log
196 * reference node for the last bud (@lnum) is written but before the
197 * write-buffer data are written to the next-to-last bud
198 * (@wbuf->lnum). And the effect would be that the recovery would see
199 * that there is corruption in the next-to-last bud.
200 */
201 err = ubifs_wbuf_sync_nolock(wbuf);
202 if (err)
203 goto out_return;
204 err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
205 if (err)
206 goto out_return;
207 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
208 if (err)
209 goto out_unlock;
210
211 return 0;
212
213out_unlock:
214 mutex_unlock(&wbuf->io_mutex);
215 return err;
216
217out_return:
218 /* An error occurred and the LEB has to be returned to lprops */
219 ubifs_assert(err < 0);
220 err1 = ubifs_return_leb(c, lnum);
221 if (err1 && err == -EAGAIN)
222 /*
223 * Return original error code only if it is not %-EAGAIN,
224 * which is not really an error. Otherwise, return the error
225 * code of 'ubifs_return_leb()'.
226 */
227 err = err1;
228 mutex_unlock(&wbuf->io_mutex);
229 return err;
230}
231
232/**
233 * write_node - write node to a journal head.
234 * @c: UBIFS file-system description object
235 * @jhead: journal head
236 * @node: node to write
237 * @len: node length
238 * @lnum: LEB number written is returned here
239 * @offs: offset written is returned here
240 *
241 * This function writes a node to reserved space of journal head @jhead.
242 * Returns zero in case of success and a negative error code in case of
243 * failure.
244 */
245static int write_node(struct ubifs_info *c, int jhead, void *node, int len,
246 int *lnum, int *offs)
247{
248 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
249
250 ubifs_assert(jhead != GCHD);
251
252 *lnum = c->jheads[jhead].wbuf.lnum;
253 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
254
255 dbg_jnl("jhead %s, LEB %d:%d, len %d",
256 dbg_jhead(jhead), *lnum, *offs, len);
257 ubifs_prepare_node(c, node, len, 0);
258
259 return ubifs_wbuf_write_nolock(wbuf, node, len);
260}
261
262/**
263 * write_head - write data to a journal head.
264 * @c: UBIFS file-system description object
265 * @jhead: journal head
266 * @buf: buffer to write
267 * @len: length to write
268 * @lnum: LEB number written is returned here
269 * @offs: offset written is returned here
270 * @sync: non-zero if the write-buffer has to by synchronized
271 *
272 * This function is the same as 'write_node()' but it does not assume the
273 * buffer it is writing is a node, so it does not prepare it (which means
274 * initializing common header and calculating CRC).
275 */
276static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
277 int *lnum, int *offs, int sync)
278{
279 int err;
280 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
281
282 ubifs_assert(jhead != GCHD);
283
284 *lnum = c->jheads[jhead].wbuf.lnum;
285 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
286 dbg_jnl("jhead %s, LEB %d:%d, len %d",
287 dbg_jhead(jhead), *lnum, *offs, len);
288
289 err = ubifs_wbuf_write_nolock(wbuf, buf, len);
290 if (err)
291 return err;
292 if (sync)
293 err = ubifs_wbuf_sync_nolock(wbuf);
294 return err;
295}
296
297/**
298 * make_reservation - reserve journal space.
299 * @c: UBIFS file-system description object
300 * @jhead: journal head
301 * @len: how many bytes to reserve
302 *
303 * This function makes space reservation in journal head @jhead. The function
304 * takes the commit lock and locks the journal head, and the caller has to
305 * unlock the head and finish the reservation with 'finish_reservation()'.
306 * Returns zero in case of success and a negative error code in case of
307 * failure.
308 *
309 * Note, the journal head may be unlocked as soon as the data is written, while
310 * the commit lock has to be released after the data has been added to the
311 * TNC.
312 */
313static int make_reservation(struct ubifs_info *c, int jhead, int len)
314{
315 int err, cmt_retries = 0, nospc_retries = 0;
316
317again:
318 down_read(&c->commit_sem);
319 err = reserve_space(c, jhead, len);
320 if (!err)
321 return 0;
322 up_read(&c->commit_sem);
323
324 if (err == -ENOSPC) {
325 /*
326 * GC could not make any progress. We should try to commit
327 * once because it could make some dirty space and GC would
328 * make progress, so make the error -EAGAIN so that the below
329 * will commit and re-try.
330 */
331 if (nospc_retries++ < 2) {
332 dbg_jnl("no space, retry");
333 err = -EAGAIN;
334 }
335
336 /*
337 * This means that the budgeting is incorrect. We always have
338 * to be able to write to the media, because all operations are
339 * budgeted. Deletions are not budgeted, though, but we reserve
340 * an extra LEB for them.
341 */
342 }
343
344 if (err != -EAGAIN)
345 goto out;
346
347 /*
348 * -EAGAIN means that the journal is full or too large, or the above
349 * code wants to do one commit. Do this and re-try.
350 */
351 if (cmt_retries > 128) {
352 /*
353 * This should not happen unless the journal size limitations
354 * are too tough.
355 */
356 ubifs_err(c, "stuck in space allocation");
357 err = -ENOSPC;
358 goto out;
359 } else if (cmt_retries > 32)
360 ubifs_warn(c, "too many space allocation re-tries (%d)",
361 cmt_retries);
362
363 dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
364 cmt_retries);
365 cmt_retries += 1;
366
367 err = ubifs_run_commit(c);
368 if (err)
369 return err;
370 goto again;
371
372out:
373 ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
374 len, jhead, err);
375 if (err == -ENOSPC) {
376 /* This are some budgeting problems, print useful information */
377 down_write(&c->commit_sem);
378 dump_stack();
379 ubifs_dump_budg(c, &c->bi);
380 ubifs_dump_lprops(c);
381 cmt_retries = dbg_check_lprops(c);
382 up_write(&c->commit_sem);
383 }
384 return err;
385}
386
387/**
388 * release_head - release a journal head.
389 * @c: UBIFS file-system description object
390 * @jhead: journal head
391 *
392 * This function releases journal head @jhead which was locked by
393 * the 'make_reservation()' function. It has to be called after each successful
394 * 'make_reservation()' invocation.
395 */
396static inline void release_head(struct ubifs_info *c, int jhead)
397{
398 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
399}
400
401/**
402 * finish_reservation - finish a reservation.
403 * @c: UBIFS file-system description object
404 *
405 * This function finishes journal space reservation. It must be called after
406 * 'make_reservation()'.
407 */
408static void finish_reservation(struct ubifs_info *c)
409{
410 up_read(&c->commit_sem);
411}
412
413/**
414 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
415 * @mode: inode mode
416 */
417static int get_dent_type(int mode)
418{
419 switch (mode & S_IFMT) {
420 case S_IFREG:
421 return UBIFS_ITYPE_REG;
422 case S_IFDIR:
423 return UBIFS_ITYPE_DIR;
424 case S_IFLNK:
425 return UBIFS_ITYPE_LNK;
426 case S_IFBLK:
427 return UBIFS_ITYPE_BLK;
428 case S_IFCHR:
429 return UBIFS_ITYPE_CHR;
430 case S_IFIFO:
431 return UBIFS_ITYPE_FIFO;
432 case S_IFSOCK:
433 return UBIFS_ITYPE_SOCK;
434 default:
435 BUG();
436 }
437 return 0;
438}
439
440/**
441 * pack_inode - pack an inode node.
442 * @c: UBIFS file-system description object
443 * @ino: buffer in which to pack inode node
444 * @inode: inode to pack
445 * @last: indicates the last node of the group
446 */
447static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
448 const struct inode *inode, int last)
449{
450 int data_len = 0, last_reference = !inode->i_nlink;
451 struct ubifs_inode *ui = ubifs_inode(inode);
452
453 ino->ch.node_type = UBIFS_INO_NODE;
454 ino_key_init_flash(c, &ino->key, inode->i_ino);
455 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
456 ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec);
457 ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
458 ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec);
459 ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
460 ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec);
461 ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
462 ino->uid = cpu_to_le32(i_uid_read(inode));
463 ino->gid = cpu_to_le32(i_gid_read(inode));
464 ino->mode = cpu_to_le32(inode->i_mode);
465 ino->flags = cpu_to_le32(ui->flags);
466 ino->size = cpu_to_le64(ui->ui_size);
467 ino->nlink = cpu_to_le32(inode->i_nlink);
468 ino->compr_type = cpu_to_le16(ui->compr_type);
469 ino->data_len = cpu_to_le32(ui->data_len);
470 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt);
471 ino->xattr_size = cpu_to_le32(ui->xattr_size);
472 ino->xattr_names = cpu_to_le32(ui->xattr_names);
473 zero_ino_node_unused(ino);
474
475 /*
476 * Drop the attached data if this is a deletion inode, the data is not
477 * needed anymore.
478 */
479 if (!last_reference) {
480 memcpy(ino->data, ui->data, ui->data_len);
481 data_len = ui->data_len;
482 }
483
484 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
485}
486
487/**
488 * mark_inode_clean - mark UBIFS inode as clean.
489 * @c: UBIFS file-system description object
490 * @ui: UBIFS inode to mark as clean
491 *
492 * This helper function marks UBIFS inode @ui as clean by cleaning the
493 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
494 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
495 * just do nothing.
496 */
497static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
498{
499 if (ui->dirty)
500 ubifs_release_dirty_inode_budget(c, ui);
501 ui->dirty = 0;
502}
503
504static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent)
505{
506 if (c->double_hash)
507 dent->cookie = prandom_u32();
508 else
509 dent->cookie = 0;
510}
511
512/**
513 * ubifs_jnl_update - update inode.
514 * @c: UBIFS file-system description object
515 * @dir: parent inode or host inode in case of extended attributes
516 * @nm: directory entry name
517 * @inode: inode to update
518 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
519 * @xent: non-zero if the directory entry is an extended attribute entry
520 *
521 * This function updates an inode by writing a directory entry (or extended
522 * attribute entry), the inode itself, and the parent directory inode (or the
523 * host inode) to the journal.
524 *
525 * The function writes the host inode @dir last, which is important in case of
526 * extended attributes. Indeed, then we guarantee that if the host inode gets
527 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
528 * the extended attribute inode gets flushed too. And this is exactly what the
529 * user expects - synchronizing the host inode synchronizes its extended
530 * attributes. Similarly, this guarantees that if @dir is synchronized, its
531 * directory entry corresponding to @nm gets synchronized too.
532 *
533 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
534 * function synchronizes the write-buffer.
535 *
536 * This function marks the @dir and @inode inodes as clean and returns zero on
537 * success. In case of failure, a negative error code is returned.
538 */
539int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
540 const struct fscrypt_name *nm, const struct inode *inode,
541 int deletion, int xent)
542{
543 int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
544 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
545 int last_reference = !!(deletion && inode->i_nlink == 0);
546 struct ubifs_inode *ui = ubifs_inode(inode);
547 struct ubifs_inode *host_ui = ubifs_inode(dir);
548 struct ubifs_dent_node *dent;
549 struct ubifs_ino_node *ino;
550 union ubifs_key dent_key, ino_key;
551
552 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
553
554 dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
555 ilen = UBIFS_INO_NODE_SZ;
556
557 /*
558 * If the last reference to the inode is being deleted, then there is
559 * no need to attach and write inode data, it is being deleted anyway.
560 * And if the inode is being deleted, no need to synchronize
561 * write-buffer even if the inode is synchronous.
562 */
563 if (!last_reference) {
564 ilen += ui->data_len;
565 sync |= IS_SYNC(inode);
566 }
567
568 aligned_dlen = ALIGN(dlen, 8);
569 aligned_ilen = ALIGN(ilen, 8);
570
571 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
572 /* Make sure to also account for extended attributes */
573 len += host_ui->data_len;
574
575 dent = kzalloc(len, GFP_NOFS);
576 if (!dent)
577 return -ENOMEM;
578
579 /* Make reservation before allocating sequence numbers */
580 err = make_reservation(c, BASEHD, len);
581 if (err)
582 goto out_free;
583
584 if (!xent) {
585 dent->ch.node_type = UBIFS_DENT_NODE;
586 if (nm->hash)
587 dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash);
588 else
589 dent_key_init(c, &dent_key, dir->i_ino, nm);
590 } else {
591 dent->ch.node_type = UBIFS_XENT_NODE;
592 xent_key_init(c, &dent_key, dir->i_ino, nm);
593 }
594
595 key_write(c, &dent_key, dent->key);
596 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
597 dent->type = get_dent_type(inode->i_mode);
598 dent->nlen = cpu_to_le16(fname_len(nm));
599 memcpy(dent->name, fname_name(nm), fname_len(nm));
600 dent->name[fname_len(nm)] = '\0';
601 set_dent_cookie(c, dent);
602
603 zero_dent_node_unused(dent);
604 ubifs_prep_grp_node(c, dent, dlen, 0);
605
606 ino = (void *)dent + aligned_dlen;
607 pack_inode(c, ino, inode, 0);
608 ino = (void *)ino + aligned_ilen;
609 pack_inode(c, ino, dir, 1);
610
611 if (last_reference) {
612 err = ubifs_add_orphan(c, inode->i_ino);
613 if (err) {
614 release_head(c, BASEHD);
615 goto out_finish;
616 }
617 ui->del_cmtno = c->cmt_no;
618 }
619
620 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
621 if (err)
622 goto out_release;
623 if (!sync) {
624 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
625
626 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
627 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
628 }
629 release_head(c, BASEHD);
630 kfree(dent);
631
632 if (deletion) {
633 if (nm->hash)
634 err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash);
635 else
636 err = ubifs_tnc_remove_nm(c, &dent_key, nm);
637 if (err)
638 goto out_ro;
639 err = ubifs_add_dirt(c, lnum, dlen);
640 } else
641 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm);
642 if (err)
643 goto out_ro;
644
645 /*
646 * Note, we do not remove the inode from TNC even if the last reference
647 * to it has just been deleted, because the inode may still be opened.
648 * Instead, the inode has been added to orphan lists and the orphan
649 * subsystem will take further care about it.
650 */
651 ino_key_init(c, &ino_key, inode->i_ino);
652 ino_offs = dent_offs + aligned_dlen;
653 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen);
654 if (err)
655 goto out_ro;
656
657 ino_key_init(c, &ino_key, dir->i_ino);
658 ino_offs += aligned_ilen;
659 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
660 UBIFS_INO_NODE_SZ + host_ui->data_len);
661 if (err)
662 goto out_ro;
663
664 finish_reservation(c);
665 spin_lock(&ui->ui_lock);
666 ui->synced_i_size = ui->ui_size;
667 spin_unlock(&ui->ui_lock);
668 mark_inode_clean(c, ui);
669 mark_inode_clean(c, host_ui);
670 return 0;
671
672out_finish:
673 finish_reservation(c);
674out_free:
675 kfree(dent);
676 return err;
677
678out_release:
679 release_head(c, BASEHD);
680 kfree(dent);
681out_ro:
682 ubifs_ro_mode(c, err);
683 if (last_reference)
684 ubifs_delete_orphan(c, inode->i_ino);
685 finish_reservation(c);
686 return err;
687}
688
689/**
690 * ubifs_jnl_write_data - write a data node to the journal.
691 * @c: UBIFS file-system description object
692 * @inode: inode the data node belongs to
693 * @key: node key
694 * @buf: buffer to write
695 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
696 *
697 * This function writes a data node to the journal. Returns %0 if the data node
698 * was successfully written, and a negative error code in case of failure.
699 */
700int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
701 const union ubifs_key *key, const void *buf, int len)
702{
703 struct ubifs_data_node *data;
704 int err, lnum, offs, compr_type, out_len, compr_len;
705 int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
706 struct ubifs_inode *ui = ubifs_inode(inode);
707 bool encrypted = ubifs_crypt_is_encrypted(inode);
708
709 dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
710 (unsigned long)key_inum(c, key), key_block(c, key), len);
711 ubifs_assert(len <= UBIFS_BLOCK_SIZE);
712
713 if (encrypted)
714 dlen += UBIFS_CIPHER_BLOCK_SIZE;
715
716 data = kmalloc(dlen, GFP_NOFS | __GFP_NOWARN);
717 if (!data) {
718 /*
719 * Fall-back to the write reserve buffer. Note, we might be
720 * currently on the memory reclaim path, when the kernel is
721 * trying to free some memory by writing out dirty pages. The
722 * write reserve buffer helps us to guarantee that we are
723 * always able to write the data.
724 */
725 allocated = 0;
726 mutex_lock(&c->write_reserve_mutex);
727 data = c->write_reserve_buf;
728 }
729
730 data->ch.node_type = UBIFS_DATA_NODE;
731 key_write(c, key, &data->key);
732 data->size = cpu_to_le32(len);
733
734 if (!(ui->flags & UBIFS_COMPR_FL))
735 /* Compression is disabled for this inode */
736 compr_type = UBIFS_COMPR_NONE;
737 else
738 compr_type = ui->compr_type;
739
740 out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
741 ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type);
742 ubifs_assert(compr_len <= UBIFS_BLOCK_SIZE);
743
744 if (encrypted) {
745 err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key));
746 if (err)
747 goto out_free;
748
749 } else {
750 data->compr_size = 0;
751 out_len = compr_len;
752 }
753
754 dlen = UBIFS_DATA_NODE_SZ + out_len;
755 data->compr_type = cpu_to_le16(compr_type);
756
757 /* Make reservation before allocating sequence numbers */
758 err = make_reservation(c, DATAHD, dlen);
759 if (err)
760 goto out_free;
761
762 err = write_node(c, DATAHD, data, dlen, &lnum, &offs);
763 if (err)
764 goto out_release;
765 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
766 release_head(c, DATAHD);
767
768 err = ubifs_tnc_add(c, key, lnum, offs, dlen);
769 if (err)
770 goto out_ro;
771
772 finish_reservation(c);
773 if (!allocated)
774 mutex_unlock(&c->write_reserve_mutex);
775 else
776 kfree(data);
777 return 0;
778
779out_release:
780 release_head(c, DATAHD);
781out_ro:
782 ubifs_ro_mode(c, err);
783 finish_reservation(c);
784out_free:
785 if (!allocated)
786 mutex_unlock(&c->write_reserve_mutex);
787 else
788 kfree(data);
789 return err;
790}
791
792/**
793 * ubifs_jnl_write_inode - flush inode to the journal.
794 * @c: UBIFS file-system description object
795 * @inode: inode to flush
796 *
797 * This function writes inode @inode to the journal. If the inode is
798 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
799 * success and a negative error code in case of failure.
800 */
801int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
802{
803 int err, lnum, offs;
804 struct ubifs_ino_node *ino;
805 struct ubifs_inode *ui = ubifs_inode(inode);
806 int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink;
807
808 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
809
810 /*
811 * If the inode is being deleted, do not write the attached data. No
812 * need to synchronize the write-buffer either.
813 */
814 if (!last_reference) {
815 len += ui->data_len;
816 sync = IS_SYNC(inode);
817 }
818 ino = kmalloc(len, GFP_NOFS);
819 if (!ino)
820 return -ENOMEM;
821
822 /* Make reservation before allocating sequence numbers */
823 err = make_reservation(c, BASEHD, len);
824 if (err)
825 goto out_free;
826
827 pack_inode(c, ino, inode, 1);
828 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
829 if (err)
830 goto out_release;
831 if (!sync)
832 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
833 inode->i_ino);
834 release_head(c, BASEHD);
835
836 if (last_reference) {
837 err = ubifs_tnc_remove_ino(c, inode->i_ino);
838 if (err)
839 goto out_ro;
840 ubifs_delete_orphan(c, inode->i_ino);
841 err = ubifs_add_dirt(c, lnum, len);
842 } else {
843 union ubifs_key key;
844
845 ino_key_init(c, &key, inode->i_ino);
846 err = ubifs_tnc_add(c, &key, lnum, offs, len);
847 }
848 if (err)
849 goto out_ro;
850
851 finish_reservation(c);
852 spin_lock(&ui->ui_lock);
853 ui->synced_i_size = ui->ui_size;
854 spin_unlock(&ui->ui_lock);
855 kfree(ino);
856 return 0;
857
858out_release:
859 release_head(c, BASEHD);
860out_ro:
861 ubifs_ro_mode(c, err);
862 finish_reservation(c);
863out_free:
864 kfree(ino);
865 return err;
866}
867
868/**
869 * ubifs_jnl_delete_inode - delete an inode.
870 * @c: UBIFS file-system description object
871 * @inode: inode to delete
872 *
873 * This function deletes inode @inode which includes removing it from orphans,
874 * deleting it from TNC and, in some cases, writing a deletion inode to the
875 * journal.
876 *
877 * When regular file inodes are unlinked or a directory inode is removed, the
878 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
879 * direntry to the media, and adds the inode to orphans. After this, when the
880 * last reference to this inode has been dropped, this function is called. In
881 * general, it has to write one more deletion inode to the media, because if
882 * a commit happened between 'ubifs_jnl_update()' and
883 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
884 * anymore, and in fact it might not be on the flash anymore, because it might
885 * have been garbage-collected already. And for optimization reasons UBIFS does
886 * not read the orphan area if it has been unmounted cleanly, so it would have
887 * no indication in the journal that there is a deleted inode which has to be
888 * removed from TNC.
889 *
890 * However, if there was no commit between 'ubifs_jnl_update()' and
891 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
892 * inode to the media for the second time. And this is quite a typical case.
893 *
894 * This function returns zero in case of success and a negative error code in
895 * case of failure.
896 */
897int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
898{
899 int err;
900 struct ubifs_inode *ui = ubifs_inode(inode);
901
902 ubifs_assert(inode->i_nlink == 0);
903
904 if (ui->del_cmtno != c->cmt_no)
905 /* A commit happened for sure */
906 return ubifs_jnl_write_inode(c, inode);
907
908 down_read(&c->commit_sem);
909 /*
910 * Check commit number again, because the first test has been done
911 * without @c->commit_sem, so a commit might have happened.
912 */
913 if (ui->del_cmtno != c->cmt_no) {
914 up_read(&c->commit_sem);
915 return ubifs_jnl_write_inode(c, inode);
916 }
917
918 err = ubifs_tnc_remove_ino(c, inode->i_ino);
919 if (err)
920 ubifs_ro_mode(c, err);
921 else
922 ubifs_delete_orphan(c, inode->i_ino);
923 up_read(&c->commit_sem);
924 return err;
925}
926
927/**
928 * ubifs_jnl_xrename - cross rename two directory entries.
929 * @c: UBIFS file-system description object
930 * @fst_dir: parent inode of 1st directory entry to exchange
931 * @fst_inode: 1st inode to exchange
932 * @fst_nm: name of 1st inode to exchange
933 * @snd_dir: parent inode of 2nd directory entry to exchange
934 * @snd_inode: 2nd inode to exchange
935 * @snd_nm: name of 2nd inode to exchange
936 * @sync: non-zero if the write-buffer has to be synchronized
937 *
938 * This function implements the cross rename operation which may involve
939 * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
940 * and returns zero on success. In case of failure, a negative error code is
941 * returned.
942 */
943int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
944 const struct inode *fst_inode,
945 const struct fscrypt_name *fst_nm,
946 const struct inode *snd_dir,
947 const struct inode *snd_inode,
948 const struct fscrypt_name *snd_nm, int sync)
949{
950 union ubifs_key key;
951 struct ubifs_dent_node *dent1, *dent2;
952 int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
953 int aligned_dlen1, aligned_dlen2;
954 int twoparents = (fst_dir != snd_dir);
955 void *p;
956
957 ubifs_assert(ubifs_inode(fst_dir)->data_len == 0);
958 ubifs_assert(ubifs_inode(snd_dir)->data_len == 0);
959 ubifs_assert(mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
960 ubifs_assert(mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
961
962 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
963 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
964 aligned_dlen1 = ALIGN(dlen1, 8);
965 aligned_dlen2 = ALIGN(dlen2, 8);
966
967 len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
968 if (twoparents)
969 len += plen;
970
971 dent1 = kzalloc(len, GFP_NOFS);
972 if (!dent1)
973 return -ENOMEM;
974
975 /* Make reservation before allocating sequence numbers */
976 err = make_reservation(c, BASEHD, len);
977 if (err)
978 goto out_free;
979
980 /* Make new dent for 1st entry */
981 dent1->ch.node_type = UBIFS_DENT_NODE;
982 dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm);
983 dent1->inum = cpu_to_le64(fst_inode->i_ino);
984 dent1->type = get_dent_type(fst_inode->i_mode);
985 dent1->nlen = cpu_to_le16(fname_len(snd_nm));
986 memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
987 dent1->name[fname_len(snd_nm)] = '\0';
988 set_dent_cookie(c, dent1);
989 zero_dent_node_unused(dent1);
990 ubifs_prep_grp_node(c, dent1, dlen1, 0);
991
992 /* Make new dent for 2nd entry */
993 dent2 = (void *)dent1 + aligned_dlen1;
994 dent2->ch.node_type = UBIFS_DENT_NODE;
995 dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm);
996 dent2->inum = cpu_to_le64(snd_inode->i_ino);
997 dent2->type = get_dent_type(snd_inode->i_mode);
998 dent2->nlen = cpu_to_le16(fname_len(fst_nm));
999 memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
1000 dent2->name[fname_len(fst_nm)] = '\0';
1001 set_dent_cookie(c, dent2);
1002 zero_dent_node_unused(dent2);
1003 ubifs_prep_grp_node(c, dent2, dlen2, 0);
1004
1005 p = (void *)dent2 + aligned_dlen2;
1006 if (!twoparents)
1007 pack_inode(c, p, fst_dir, 1);
1008 else {
1009 pack_inode(c, p, fst_dir, 0);
1010 p += ALIGN(plen, 8);
1011 pack_inode(c, p, snd_dir, 1);
1012 }
1013
1014 err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
1015 if (err)
1016 goto out_release;
1017 if (!sync) {
1018 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1019
1020 ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
1021 ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
1022 }
1023 release_head(c, BASEHD);
1024
1025 dent_key_init(c, &key, snd_dir->i_ino, snd_nm);
1026 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, snd_nm);
1027 if (err)
1028 goto out_ro;
1029
1030 offs += aligned_dlen1;
1031 dent_key_init(c, &key, fst_dir->i_ino, fst_nm);
1032 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, fst_nm);
1033 if (err)
1034 goto out_ro;
1035
1036 offs += aligned_dlen2;
1037
1038 ino_key_init(c, &key, fst_dir->i_ino);
1039 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1040 if (err)
1041 goto out_ro;
1042
1043 if (twoparents) {
1044 offs += ALIGN(plen, 8);
1045 ino_key_init(c, &key, snd_dir->i_ino);
1046 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1047 if (err)
1048 goto out_ro;
1049 }
1050
1051 finish_reservation(c);
1052
1053 mark_inode_clean(c, ubifs_inode(fst_dir));
1054 if (twoparents)
1055 mark_inode_clean(c, ubifs_inode(snd_dir));
1056 kfree(dent1);
1057 return 0;
1058
1059out_release:
1060 release_head(c, BASEHD);
1061out_ro:
1062 ubifs_ro_mode(c, err);
1063 finish_reservation(c);
1064out_free:
1065 kfree(dent1);
1066 return err;
1067}
1068
1069/**
1070 * ubifs_jnl_rename - rename a directory entry.
1071 * @c: UBIFS file-system description object
1072 * @old_dir: parent inode of directory entry to rename
1073 * @old_dentry: directory entry to rename
1074 * @new_dir: parent inode of directory entry to rename
1075 * @new_dentry: new directory entry (or directory entry to replace)
1076 * @sync: non-zero if the write-buffer has to be synchronized
1077 *
1078 * This function implements the re-name operation which may involve writing up
1079 * to 4 inodes and 2 directory entries. It marks the written inodes as clean
1080 * and returns zero on success. In case of failure, a negative error code is
1081 * returned.
1082 */
1083int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1084 const struct inode *old_inode,
1085 const struct fscrypt_name *old_nm,
1086 const struct inode *new_dir,
1087 const struct inode *new_inode,
1088 const struct fscrypt_name *new_nm,
1089 const struct inode *whiteout, int sync)
1090{
1091 void *p;
1092 union ubifs_key key;
1093 struct ubifs_dent_node *dent, *dent2;
1094 int err, dlen1, dlen2, ilen, lnum, offs, len;
1095 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1096 int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1097 int move = (old_dir != new_dir);
1098 struct ubifs_inode *uninitialized_var(new_ui);
1099
1100 ubifs_assert(ubifs_inode(old_dir)->data_len == 0);
1101 ubifs_assert(ubifs_inode(new_dir)->data_len == 0);
1102 ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1103 ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1104
1105 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
1106 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
1107 if (new_inode) {
1108 new_ui = ubifs_inode(new_inode);
1109 ubifs_assert(mutex_is_locked(&new_ui->ui_mutex));
1110 ilen = UBIFS_INO_NODE_SZ;
1111 if (!last_reference)
1112 ilen += new_ui->data_len;
1113 } else
1114 ilen = 0;
1115
1116 aligned_dlen1 = ALIGN(dlen1, 8);
1117 aligned_dlen2 = ALIGN(dlen2, 8);
1118 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
1119 if (move)
1120 len += plen;
1121 dent = kzalloc(len, GFP_NOFS);
1122 if (!dent)
1123 return -ENOMEM;
1124
1125 /* Make reservation before allocating sequence numbers */
1126 err = make_reservation(c, BASEHD, len);
1127 if (err)
1128 goto out_free;
1129
1130 /* Make new dent */
1131 dent->ch.node_type = UBIFS_DENT_NODE;
1132 dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm);
1133 dent->inum = cpu_to_le64(old_inode->i_ino);
1134 dent->type = get_dent_type(old_inode->i_mode);
1135 dent->nlen = cpu_to_le16(fname_len(new_nm));
1136 memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
1137 dent->name[fname_len(new_nm)] = '\0';
1138 set_dent_cookie(c, dent);
1139 zero_dent_node_unused(dent);
1140 ubifs_prep_grp_node(c, dent, dlen1, 0);
1141
1142 dent2 = (void *)dent + aligned_dlen1;
1143 dent2->ch.node_type = UBIFS_DENT_NODE;
1144 dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm);
1145
1146 if (whiteout) {
1147 dent2->inum = cpu_to_le64(whiteout->i_ino);
1148 dent2->type = get_dent_type(whiteout->i_mode);
1149 } else {
1150 /* Make deletion dent */
1151 dent2->inum = 0;
1152 dent2->type = DT_UNKNOWN;
1153 }
1154 dent2->nlen = cpu_to_le16(fname_len(old_nm));
1155 memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
1156 dent2->name[fname_len(old_nm)] = '\0';
1157 set_dent_cookie(c, dent2);
1158 zero_dent_node_unused(dent2);
1159 ubifs_prep_grp_node(c, dent2, dlen2, 0);
1160
1161 p = (void *)dent2 + aligned_dlen2;
1162 if (new_inode) {
1163 pack_inode(c, p, new_inode, 0);
1164 p += ALIGN(ilen, 8);
1165 }
1166
1167 if (!move)
1168 pack_inode(c, p, old_dir, 1);
1169 else {
1170 pack_inode(c, p, old_dir, 0);
1171 p += ALIGN(plen, 8);
1172 pack_inode(c, p, new_dir, 1);
1173 }
1174
1175 if (last_reference) {
1176 err = ubifs_add_orphan(c, new_inode->i_ino);
1177 if (err) {
1178 release_head(c, BASEHD);
1179 goto out_finish;
1180 }
1181 new_ui->del_cmtno = c->cmt_no;
1182 }
1183
1184 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1185 if (err)
1186 goto out_release;
1187 if (!sync) {
1188 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1189
1190 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1191 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1192 if (new_inode)
1193 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1194 new_inode->i_ino);
1195 }
1196 release_head(c, BASEHD);
1197
1198 dent_key_init(c, &key, new_dir->i_ino, new_nm);
1199 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, new_nm);
1200 if (err)
1201 goto out_ro;
1202
1203 offs += aligned_dlen1;
1204 if (whiteout) {
1205 dent_key_init(c, &key, old_dir->i_ino, old_nm);
1206 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, old_nm);
1207 if (err)
1208 goto out_ro;
1209
1210 ubifs_delete_orphan(c, whiteout->i_ino);
1211 } else {
1212 err = ubifs_add_dirt(c, lnum, dlen2);
1213 if (err)
1214 goto out_ro;
1215
1216 dent_key_init(c, &key, old_dir->i_ino, old_nm);
1217 err = ubifs_tnc_remove_nm(c, &key, old_nm);
1218 if (err)
1219 goto out_ro;
1220 }
1221
1222 offs += aligned_dlen2;
1223 if (new_inode) {
1224 ino_key_init(c, &key, new_inode->i_ino);
1225 err = ubifs_tnc_add(c, &key, lnum, offs, ilen);
1226 if (err)
1227 goto out_ro;
1228 offs += ALIGN(ilen, 8);
1229 }
1230
1231 ino_key_init(c, &key, old_dir->i_ino);
1232 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1233 if (err)
1234 goto out_ro;
1235
1236 if (move) {
1237 offs += ALIGN(plen, 8);
1238 ino_key_init(c, &key, new_dir->i_ino);
1239 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1240 if (err)
1241 goto out_ro;
1242 }
1243
1244 finish_reservation(c);
1245 if (new_inode) {
1246 mark_inode_clean(c, new_ui);
1247 spin_lock(&new_ui->ui_lock);
1248 new_ui->synced_i_size = new_ui->ui_size;
1249 spin_unlock(&new_ui->ui_lock);
1250 }
1251 mark_inode_clean(c, ubifs_inode(old_dir));
1252 if (move)
1253 mark_inode_clean(c, ubifs_inode(new_dir));
1254 kfree(dent);
1255 return 0;
1256
1257out_release:
1258 release_head(c, BASEHD);
1259out_ro:
1260 ubifs_ro_mode(c, err);
1261 if (last_reference)
1262 ubifs_delete_orphan(c, new_inode->i_ino);
1263out_finish:
1264 finish_reservation(c);
1265out_free:
1266 kfree(dent);
1267 return err;
1268}
1269
1270/**
1271 * truncate_data_node - re-compress/encrypt a truncated data node.
1272 * @c: UBIFS file-system description object
1273 * @inode: inode which referes to the data node
1274 * @block: data block number
1275 * @dn: data node to re-compress
1276 * @new_len: new length
1277 *
1278 * This function is used when an inode is truncated and the last data node of
1279 * the inode has to be re-compressed/encrypted and re-written.
1280 */
1281static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
1282 unsigned int block, struct ubifs_data_node *dn,
1283 int *new_len)
1284{
1285 void *buf;
1286 int err, dlen, compr_type, out_len, old_dlen;
1287
1288 out_len = le32_to_cpu(dn->size);
1289 buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS);
1290 if (!buf)
1291 return -ENOMEM;
1292
1293 dlen = old_dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1294 compr_type = le16_to_cpu(dn->compr_type);
1295
1296 if (ubifs_crypt_is_encrypted(inode)) {
1297 err = ubifs_decrypt(inode, dn, &dlen, block);
1298 if (err)
1299 goto out;
1300 }
1301
1302 if (compr_type == UBIFS_COMPR_NONE) {
1303 out_len = *new_len;
1304 } else {
1305 err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type);
1306 if (err)
1307 goto out;
1308
1309 ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1310 }
1311
1312 if (ubifs_crypt_is_encrypted(inode)) {
1313 err = ubifs_encrypt(inode, dn, out_len, &old_dlen, block);
1314 if (err)
1315 goto out;
1316
1317 out_len = old_dlen;
1318 } else {
1319 dn->compr_size = 0;
1320 }
1321
1322 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
1323 dn->compr_type = cpu_to_le16(compr_type);
1324 dn->size = cpu_to_le32(*new_len);
1325 *new_len = UBIFS_DATA_NODE_SZ + out_len;
1326 err = 0;
1327out:
1328 kfree(buf);
1329 return err;
1330}
1331
1332/**
1333 * ubifs_jnl_truncate - update the journal for a truncation.
1334 * @c: UBIFS file-system description object
1335 * @inode: inode to truncate
1336 * @old_size: old size
1337 * @new_size: new size
1338 *
1339 * When the size of a file decreases due to truncation, a truncation node is
1340 * written, the journal tree is updated, and the last data block is re-written
1341 * if it has been affected. The inode is also updated in order to synchronize
1342 * the new inode size.
1343 *
1344 * This function marks the inode as clean and returns zero on success. In case
1345 * of failure, a negative error code is returned.
1346 */
1347int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1348 loff_t old_size, loff_t new_size)
1349{
1350 union ubifs_key key, to_key;
1351 struct ubifs_ino_node *ino;
1352 struct ubifs_trun_node *trun;
1353 struct ubifs_data_node *uninitialized_var(dn);
1354 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1355 struct ubifs_inode *ui = ubifs_inode(inode);
1356 ino_t inum = inode->i_ino;
1357 unsigned int blk;
1358
1359 dbg_jnl("ino %lu, size %lld -> %lld",
1360 (unsigned long)inum, old_size, new_size);
1361 ubifs_assert(!ui->data_len);
1362 ubifs_assert(S_ISREG(inode->i_mode));
1363 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
1364
1365 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1366 UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1367 ino = kmalloc(sz, GFP_NOFS);
1368 if (!ino)
1369 return -ENOMEM;
1370
1371 trun = (void *)ino + UBIFS_INO_NODE_SZ;
1372 trun->ch.node_type = UBIFS_TRUN_NODE;
1373 trun->inum = cpu_to_le32(inum);
1374 trun->old_size = cpu_to_le64(old_size);
1375 trun->new_size = cpu_to_le64(new_size);
1376 zero_trun_node_unused(trun);
1377
1378 dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1379 if (dlen) {
1380 /* Get last data block so it can be truncated */
1381 dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1382 blk = new_size >> UBIFS_BLOCK_SHIFT;
1383 data_key_init(c, &key, inum, blk);
1384 dbg_jnlk(&key, "last block key ");
1385 err = ubifs_tnc_lookup(c, &key, dn);
1386 if (err == -ENOENT)
1387 dlen = 0; /* Not found (so it is a hole) */
1388 else if (err)
1389 goto out_free;
1390 else {
1391 if (le32_to_cpu(dn->size) <= dlen)
1392 dlen = 0; /* Nothing to do */
1393 else {
1394 err = truncate_data_node(c, inode, blk, dn, &dlen);
1395 if (err)
1396 goto out_free;
1397 }
1398 }
1399 }
1400
1401 /* Must make reservation before allocating sequence numbers */
1402 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1403 if (dlen)
1404 len += dlen;
1405 err = make_reservation(c, BASEHD, len);
1406 if (err)
1407 goto out_free;
1408
1409 pack_inode(c, ino, inode, 0);
1410 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1411 if (dlen)
1412 ubifs_prep_grp_node(c, dn, dlen, 1);
1413
1414 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1415 if (err)
1416 goto out_release;
1417 if (!sync)
1418 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1419 release_head(c, BASEHD);
1420
1421 if (dlen) {
1422 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1423 err = ubifs_tnc_add(c, &key, lnum, sz, dlen);
1424 if (err)
1425 goto out_ro;
1426 }
1427
1428 ino_key_init(c, &key, inum);
1429 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ);
1430 if (err)
1431 goto out_ro;
1432
1433 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1434 if (err)
1435 goto out_ro;
1436
1437 bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1438 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1439 data_key_init(c, &key, inum, blk);
1440
1441 bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1442 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1443 data_key_init(c, &to_key, inum, blk);
1444
1445 err = ubifs_tnc_remove_range(c, &key, &to_key);
1446 if (err)
1447 goto out_ro;
1448
1449 finish_reservation(c);
1450 spin_lock(&ui->ui_lock);
1451 ui->synced_i_size = ui->ui_size;
1452 spin_unlock(&ui->ui_lock);
1453 mark_inode_clean(c, ui);
1454 kfree(ino);
1455 return 0;
1456
1457out_release:
1458 release_head(c, BASEHD);
1459out_ro:
1460 ubifs_ro_mode(c, err);
1461 finish_reservation(c);
1462out_free:
1463 kfree(ino);
1464 return err;
1465}
1466
1467
1468/**
1469 * ubifs_jnl_delete_xattr - delete an extended attribute.
1470 * @c: UBIFS file-system description object
1471 * @host: host inode
1472 * @inode: extended attribute inode
1473 * @nm: extended attribute entry name
1474 *
1475 * This function delete an extended attribute which is very similar to
1476 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1477 * updates the target inode. Returns zero in case of success and a negative
1478 * error code in case of failure.
1479 */
1480int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1481 const struct inode *inode,
1482 const struct fscrypt_name *nm)
1483{
1484 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen;
1485 struct ubifs_dent_node *xent;
1486 struct ubifs_ino_node *ino;
1487 union ubifs_key xent_key, key1, key2;
1488 int sync = IS_DIRSYNC(host);
1489 struct ubifs_inode *host_ui = ubifs_inode(host);
1490
1491 ubifs_assert(inode->i_nlink == 0);
1492 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1493
1494 /*
1495 * Since we are deleting the inode, we do not bother to attach any data
1496 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1497 */
1498 xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
1499 aligned_xlen = ALIGN(xlen, 8);
1500 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1501 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1502
1503 xent = kzalloc(len, GFP_NOFS);
1504 if (!xent)
1505 return -ENOMEM;
1506
1507 /* Make reservation before allocating sequence numbers */
1508 err = make_reservation(c, BASEHD, len);
1509 if (err) {
1510 kfree(xent);
1511 return err;
1512 }
1513
1514 xent->ch.node_type = UBIFS_XENT_NODE;
1515 xent_key_init(c, &xent_key, host->i_ino, nm);
1516 key_write(c, &xent_key, xent->key);
1517 xent->inum = 0;
1518 xent->type = get_dent_type(inode->i_mode);
1519 xent->nlen = cpu_to_le16(fname_len(nm));
1520 memcpy(xent->name, fname_name(nm), fname_len(nm));
1521 xent->name[fname_len(nm)] = '\0';
1522 zero_dent_node_unused(xent);
1523 ubifs_prep_grp_node(c, xent, xlen, 0);
1524
1525 ino = (void *)xent + aligned_xlen;
1526 pack_inode(c, ino, inode, 0);
1527 ino = (void *)ino + UBIFS_INO_NODE_SZ;
1528 pack_inode(c, ino, host, 1);
1529
1530 err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync);
1531 if (!sync && !err)
1532 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1533 release_head(c, BASEHD);
1534 kfree(xent);
1535 if (err)
1536 goto out_ro;
1537
1538 /* Remove the extended attribute entry from TNC */
1539 err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1540 if (err)
1541 goto out_ro;
1542 err = ubifs_add_dirt(c, lnum, xlen);
1543 if (err)
1544 goto out_ro;
1545
1546 /*
1547 * Remove all nodes belonging to the extended attribute inode from TNC.
1548 * Well, there actually must be only one node - the inode itself.
1549 */
1550 lowest_ino_key(c, &key1, inode->i_ino);
1551 highest_ino_key(c, &key2, inode->i_ino);
1552 err = ubifs_tnc_remove_range(c, &key1, &key2);
1553 if (err)
1554 goto out_ro;
1555 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1556 if (err)
1557 goto out_ro;
1558
1559 /* And update TNC with the new host inode position */
1560 ino_key_init(c, &key1, host->i_ino);
1561 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen);
1562 if (err)
1563 goto out_ro;
1564
1565 finish_reservation(c);
1566 spin_lock(&host_ui->ui_lock);
1567 host_ui->synced_i_size = host_ui->ui_size;
1568 spin_unlock(&host_ui->ui_lock);
1569 mark_inode_clean(c, host_ui);
1570 return 0;
1571
1572out_ro:
1573 ubifs_ro_mode(c, err);
1574 finish_reservation(c);
1575 return err;
1576}
1577
1578/**
1579 * ubifs_jnl_change_xattr - change an extended attribute.
1580 * @c: UBIFS file-system description object
1581 * @inode: extended attribute inode
1582 * @host: host inode
1583 *
1584 * This function writes the updated version of an extended attribute inode and
1585 * the host inode to the journal (to the base head). The host inode is written
1586 * after the extended attribute inode in order to guarantee that the extended
1587 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1588 * consequently, the write-buffer is synchronized. This function returns zero
1589 * in case of success and a negative error code in case of failure.
1590 */
1591int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1592 const struct inode *host)
1593{
1594 int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1595 struct ubifs_inode *host_ui = ubifs_inode(host);
1596 struct ubifs_ino_node *ino;
1597 union ubifs_key key;
1598 int sync = IS_DIRSYNC(host);
1599
1600 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1601 ubifs_assert(host->i_nlink > 0);
1602 ubifs_assert(inode->i_nlink > 0);
1603 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1604
1605 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1606 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1607 aligned_len1 = ALIGN(len1, 8);
1608 aligned_len = aligned_len1 + ALIGN(len2, 8);
1609
1610 ino = kzalloc(aligned_len, GFP_NOFS);
1611 if (!ino)
1612 return -ENOMEM;
1613
1614 /* Make reservation before allocating sequence numbers */
1615 err = make_reservation(c, BASEHD, aligned_len);
1616 if (err)
1617 goto out_free;
1618
1619 pack_inode(c, ino, host, 0);
1620 pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1621
1622 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1623 if (!sync && !err) {
1624 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1625
1626 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1627 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1628 }
1629 release_head(c, BASEHD);
1630 if (err)
1631 goto out_ro;
1632
1633 ino_key_init(c, &key, host->i_ino);
1634 err = ubifs_tnc_add(c, &key, lnum, offs, len1);
1635 if (err)
1636 goto out_ro;
1637
1638 ino_key_init(c, &key, inode->i_ino);
1639 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2);
1640 if (err)
1641 goto out_ro;
1642
1643 finish_reservation(c);
1644 spin_lock(&host_ui->ui_lock);
1645 host_ui->synced_i_size = host_ui->ui_size;
1646 spin_unlock(&host_ui->ui_lock);
1647 mark_inode_clean(c, host_ui);
1648 kfree(ino);
1649 return 0;
1650
1651out_ro:
1652 ubifs_ro_mode(c, err);
1653 finish_reservation(c);
1654out_free:
1655 kfree(ino);
1656 return err;
1657}
1658