Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 * Authors: Artem Bityutskiy (Битюцкий Артём)
   8 *          Adrian Hunter
   9 */
  10
  11/*
  12 * This file implements UBIFS journal.
  13 *
  14 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
  15 * length and position, while a bud logical eraseblock is any LEB in the main
  16 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
  17 * contains only references to buds and some other stuff like commit
  18 * start node. The idea is that when we commit the journal, we do
  19 * not copy the data, the buds just become indexed. Since after the commit the
  20 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
  21 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
  22 * become leafs in the future.
  23 *
  24 * The journal is multi-headed because we want to write data to the journal as
  25 * optimally as possible. It is nice to have nodes belonging to the same inode
  26 * in one LEB, so we may write data owned by different inodes to different
  27 * journal heads, although at present only one data head is used.
  28 *
  29 * For recovery reasons, the base head contains all inode nodes, all directory
  30 * entry nodes and all truncate nodes. This means that the other heads contain
  31 * only data nodes.
  32 *
  33 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
  34 * time of commit, the bud is retained to continue to be used in the journal,
  35 * even though the "front" of the LEB is now indexed. In that case, the log
  36 * reference contains the offset where the bud starts for the purposes of the
  37 * journal.
  38 *
  39 * The journal size has to be limited, because the larger is the journal, the
  40 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
  41 * takes (indexing in the TNC).
  42 *
  43 * All the journal write operations like 'ubifs_jnl_update()' here, which write
  44 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
  45 * unclean reboots. Should the unclean reboot happen, the recovery code drops
  46 * all the nodes.
  47 */
  48
  49#include "ubifs.h"
  50
  51/**
  52 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
  53 * @ino: the inode to zero out
  54 */
  55static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
  56{
  57	memset(ino->padding1, 0, 4);
  58	memset(ino->padding2, 0, 26);
  59}
  60
  61/**
  62 * zero_dent_node_unused - zero out unused fields of an on-flash directory
  63 *                         entry node.
  64 * @dent: the directory entry to zero out
  65 */
  66static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
  67{
  68	dent->padding1 = 0;
 
 
 
 
 
 
 
 
 
 
  69}
  70
  71/**
  72 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
  73 *                         node.
  74 * @trun: the truncation node to zero out
  75 */
  76static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
  77{
  78	memset(trun->padding, 0, 12);
  79}
  80
  81static void ubifs_add_auth_dirt(struct ubifs_info *c, int lnum)
  82{
  83	if (ubifs_authenticated(c))
  84		ubifs_add_dirt(c, lnum, ubifs_auth_node_sz(c));
  85}
  86
  87/**
  88 * reserve_space - reserve space in the journal.
  89 * @c: UBIFS file-system description object
  90 * @jhead: journal head number
  91 * @len: node length
  92 *
  93 * This function reserves space in journal head @head. If the reservation
  94 * succeeded, the journal head stays locked and later has to be unlocked using
  95 * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to
  96 * be done, and other negative error codes in case of other failures.
 
  97 */
  98static int reserve_space(struct ubifs_info *c, int jhead, int len)
  99{
 100	int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
 101	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
 102
 103	/*
 104	 * Typically, the base head has smaller nodes written to it, so it is
 105	 * better to try to allocate space at the ends of eraseblocks. This is
 106	 * what the squeeze parameter does.
 107	 */
 108	ubifs_assert(c, !c->ro_media && !c->ro_mount);
 109	squeeze = (jhead == BASEHD);
 110again:
 111	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 112
 113	if (c->ro_error) {
 114		err = -EROFS;
 115		goto out_unlock;
 116	}
 117
 118	avail = c->leb_size - wbuf->offs - wbuf->used;
 119	if (wbuf->lnum != -1 && avail >= len)
 120		return 0;
 121
 122	/*
 123	 * Write buffer wasn't seek'ed or there is no enough space - look for an
 124	 * LEB with some empty space.
 125	 */
 126	lnum = ubifs_find_free_space(c, len, &offs, squeeze);
 127	if (lnum >= 0)
 128		goto out;
 129
 130	err = lnum;
 131	if (err != -ENOSPC)
 132		goto out_unlock;
 133
 134	/*
 135	 * No free space, we have to run garbage collector to make
 136	 * some. But the write-buffer mutex has to be unlocked because
 137	 * GC also takes it.
 138	 */
 139	dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
 140	mutex_unlock(&wbuf->io_mutex);
 141
 142	lnum = ubifs_garbage_collect(c, 0);
 143	if (lnum < 0) {
 144		err = lnum;
 145		if (err != -ENOSPC)
 146			return err;
 147
 148		/*
 149		 * GC could not make a free LEB. But someone else may
 150		 * have allocated new bud for this journal head,
 151		 * because we dropped @wbuf->io_mutex, so try once
 152		 * again.
 153		 */
 154		dbg_jnl("GC couldn't make a free LEB for jhead %s",
 155			dbg_jhead(jhead));
 156		if (retries++ < 2) {
 157			dbg_jnl("retry (%d)", retries);
 158			goto again;
 159		}
 160
 161		dbg_jnl("return -ENOSPC");
 162		return err;
 163	}
 164
 165	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 166	dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
 167	avail = c->leb_size - wbuf->offs - wbuf->used;
 168
 169	if (wbuf->lnum != -1 && avail >= len) {
 170		/*
 171		 * Someone else has switched the journal head and we have
 172		 * enough space now. This happens when more than one process is
 173		 * trying to write to the same journal head at the same time.
 174		 */
 175		dbg_jnl("return LEB %d back, already have LEB %d:%d",
 176			lnum, wbuf->lnum, wbuf->offs + wbuf->used);
 177		err = ubifs_return_leb(c, lnum);
 178		if (err)
 179			goto out_unlock;
 180		return 0;
 181	}
 182
 183	offs = 0;
 184
 185out:
 186	/*
 187	 * Make sure we synchronize the write-buffer before we add the new bud
 188	 * to the log. Otherwise we may have a power cut after the log
 189	 * reference node for the last bud (@lnum) is written but before the
 190	 * write-buffer data are written to the next-to-last bud
 191	 * (@wbuf->lnum). And the effect would be that the recovery would see
 192	 * that there is corruption in the next-to-last bud.
 193	 */
 194	err = ubifs_wbuf_sync_nolock(wbuf);
 195	if (err)
 196		goto out_return;
 197	err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
 198	if (err)
 199		goto out_return;
 200	err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
 201	if (err)
 202		goto out_unlock;
 203
 204	return 0;
 205
 206out_unlock:
 207	mutex_unlock(&wbuf->io_mutex);
 208	return err;
 209
 210out_return:
 211	/* An error occurred and the LEB has to be returned to lprops */
 212	ubifs_assert(c, err < 0);
 213	err1 = ubifs_return_leb(c, lnum);
 214	if (err1 && err == -EAGAIN)
 215		/*
 216		 * Return original error code only if it is not %-EAGAIN,
 217		 * which is not really an error. Otherwise, return the error
 218		 * code of 'ubifs_return_leb()'.
 219		 */
 220		err = err1;
 221	mutex_unlock(&wbuf->io_mutex);
 222	return err;
 223}
 224
 225static int ubifs_hash_nodes(struct ubifs_info *c, void *node,
 226			     int len, struct shash_desc *hash)
 
 
 
 
 
 
 
 
 
 
 
 
 
 227{
 228	int auth_node_size = ubifs_auth_node_sz(c);
 229	int err;
 230
 231	while (1) {
 232		const struct ubifs_ch *ch = node;
 233		int nodelen = le32_to_cpu(ch->len);
 234
 235		ubifs_assert(c, len >= auth_node_size);
 236
 237		if (len == auth_node_size)
 238			break;
 239
 240		ubifs_assert(c, len > nodelen);
 241		ubifs_assert(c, ch->magic == cpu_to_le32(UBIFS_NODE_MAGIC));
 242
 243		err = ubifs_shash_update(c, hash, (void *)node, nodelen);
 244		if (err)
 245			return err;
 246
 247		node += ALIGN(nodelen, 8);
 248		len -= ALIGN(nodelen, 8);
 249	}
 250
 251	return ubifs_prepare_auth_node(c, node, hash);
 252}
 253
 254/**
 255 * write_head - write data to a journal head.
 256 * @c: UBIFS file-system description object
 257 * @jhead: journal head
 258 * @buf: buffer to write
 259 * @len: length to write
 260 * @lnum: LEB number written is returned here
 261 * @offs: offset written is returned here
 262 * @sync: non-zero if the write-buffer has to by synchronized
 263 *
 264 * This function writes data to the reserved space of journal head @jhead.
 265 * Returns zero in case of success and a negative error code in case of
 266 * failure.
 267 */
 268static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
 269		      int *lnum, int *offs, int sync)
 270{
 271	int err;
 272	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
 273
 274	ubifs_assert(c, jhead != GCHD);
 275
 276	*lnum = c->jheads[jhead].wbuf.lnum;
 277	*offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
 278	dbg_jnl("jhead %s, LEB %d:%d, len %d",
 279		dbg_jhead(jhead), *lnum, *offs, len);
 280
 281	if (ubifs_authenticated(c)) {
 282		err = ubifs_hash_nodes(c, buf, len, c->jheads[jhead].log_hash);
 283		if (err)
 284			return err;
 285	}
 286
 287	err = ubifs_wbuf_write_nolock(wbuf, buf, len);
 288	if (err)
 289		return err;
 290	if (sync)
 291		err = ubifs_wbuf_sync_nolock(wbuf);
 292	return err;
 293}
 294
 295/**
 296 * make_reservation - reserve journal space.
 297 * @c: UBIFS file-system description object
 298 * @jhead: journal head
 299 * @len: how many bytes to reserve
 300 *
 301 * This function makes space reservation in journal head @jhead. The function
 302 * takes the commit lock and locks the journal head, and the caller has to
 303 * unlock the head and finish the reservation with 'finish_reservation()'.
 304 * Returns zero in case of success and a negative error code in case of
 305 * failure.
 306 *
 307 * Note, the journal head may be unlocked as soon as the data is written, while
 308 * the commit lock has to be released after the data has been added to the
 309 * TNC.
 310 */
 311static int make_reservation(struct ubifs_info *c, int jhead, int len)
 312{
 313	int err, cmt_retries = 0, nospc_retries = 0;
 314
 315again:
 316	down_read(&c->commit_sem);
 317	err = reserve_space(c, jhead, len);
 318	if (!err)
 319		/* c->commit_sem will get released via finish_reservation(). */
 320		return 0;
 321	up_read(&c->commit_sem);
 322
 323	if (err == -ENOSPC) {
 324		/*
 325		 * GC could not make any progress. We should try to commit
 326		 * once because it could make some dirty space and GC would
 327		 * make progress, so make the error -EAGAIN so that the below
 328		 * will commit and re-try.
 329		 */
 330		if (nospc_retries++ < 2) {
 331			dbg_jnl("no space, retry");
 332			err = -EAGAIN;
 333		}
 334
 335		/*
 336		 * This means that the budgeting is incorrect. We always have
 337		 * to be able to write to the media, because all operations are
 338		 * budgeted. Deletions are not budgeted, though, but we reserve
 339		 * an extra LEB for them.
 340		 */
 341	}
 342
 343	if (err != -EAGAIN)
 344		goto out;
 345
 346	/*
 347	 * -EAGAIN means that the journal is full or too large, or the above
 348	 * code wants to do one commit. Do this and re-try.
 349	 */
 350	if (cmt_retries > 128) {
 351		/*
 352		 * This should not happen unless the journal size limitations
 353		 * are too tough.
 354		 */
 355		ubifs_err(c, "stuck in space allocation");
 356		err = -ENOSPC;
 357		goto out;
 358	} else if (cmt_retries > 32)
 359		ubifs_warn(c, "too many space allocation re-tries (%d)",
 360			   cmt_retries);
 361
 362	dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
 363		cmt_retries);
 364	cmt_retries += 1;
 365
 366	err = ubifs_run_commit(c);
 367	if (err)
 368		return err;
 369	goto again;
 370
 371out:
 372	ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
 373		  len, jhead, err);
 374	if (err == -ENOSPC) {
 375		/* This are some budgeting problems, print useful information */
 376		down_write(&c->commit_sem);
 377		dump_stack();
 378		ubifs_dump_budg(c, &c->bi);
 379		ubifs_dump_lprops(c);
 380		cmt_retries = dbg_check_lprops(c);
 381		up_write(&c->commit_sem);
 382	}
 383	return err;
 384}
 385
 386/**
 387 * release_head - release a journal head.
 388 * @c: UBIFS file-system description object
 389 * @jhead: journal head
 390 *
 391 * This function releases journal head @jhead which was locked by
 392 * the 'make_reservation()' function. It has to be called after each successful
 393 * 'make_reservation()' invocation.
 394 */
 395static inline void release_head(struct ubifs_info *c, int jhead)
 396{
 397	mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
 398}
 399
 400/**
 401 * finish_reservation - finish a reservation.
 402 * @c: UBIFS file-system description object
 403 *
 404 * This function finishes journal space reservation. It must be called after
 405 * 'make_reservation()'.
 406 */
 407static void finish_reservation(struct ubifs_info *c)
 408{
 409	up_read(&c->commit_sem);
 410}
 411
 412/**
 413 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
 414 * @mode: inode mode
 415 */
 416static int get_dent_type(int mode)
 417{
 418	switch (mode & S_IFMT) {
 419	case S_IFREG:
 420		return UBIFS_ITYPE_REG;
 421	case S_IFDIR:
 422		return UBIFS_ITYPE_DIR;
 423	case S_IFLNK:
 424		return UBIFS_ITYPE_LNK;
 425	case S_IFBLK:
 426		return UBIFS_ITYPE_BLK;
 427	case S_IFCHR:
 428		return UBIFS_ITYPE_CHR;
 429	case S_IFIFO:
 430		return UBIFS_ITYPE_FIFO;
 431	case S_IFSOCK:
 432		return UBIFS_ITYPE_SOCK;
 433	default:
 434		BUG();
 435	}
 436	return 0;
 437}
 438
 439/**
 440 * pack_inode - pack an inode node.
 441 * @c: UBIFS file-system description object
 442 * @ino: buffer in which to pack inode node
 443 * @inode: inode to pack
 444 * @last: indicates the last node of the group
 445 */
 446static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
 447		       const struct inode *inode, int last)
 448{
 449	int data_len = 0, last_reference = !inode->i_nlink;
 450	struct ubifs_inode *ui = ubifs_inode(inode);
 451
 452	ino->ch.node_type = UBIFS_INO_NODE;
 453	ino_key_init_flash(c, &ino->key, inode->i_ino);
 454	ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
 455	ino->atime_sec  = cpu_to_le64(inode->i_atime.tv_sec);
 456	ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
 457	ino->ctime_sec  = cpu_to_le64(inode->i_ctime.tv_sec);
 458	ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
 459	ino->mtime_sec  = cpu_to_le64(inode->i_mtime.tv_sec);
 460	ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
 461	ino->uid   = cpu_to_le32(i_uid_read(inode));
 462	ino->gid   = cpu_to_le32(i_gid_read(inode));
 463	ino->mode  = cpu_to_le32(inode->i_mode);
 464	ino->flags = cpu_to_le32(ui->flags);
 465	ino->size  = cpu_to_le64(ui->ui_size);
 466	ino->nlink = cpu_to_le32(inode->i_nlink);
 467	ino->compr_type  = cpu_to_le16(ui->compr_type);
 468	ino->data_len    = cpu_to_le32(ui->data_len);
 469	ino->xattr_cnt   = cpu_to_le32(ui->xattr_cnt);
 470	ino->xattr_size  = cpu_to_le32(ui->xattr_size);
 471	ino->xattr_names = cpu_to_le32(ui->xattr_names);
 472	zero_ino_node_unused(ino);
 473
 474	/*
 475	 * Drop the attached data if this is a deletion inode, the data is not
 476	 * needed anymore.
 477	 */
 478	if (!last_reference) {
 479		memcpy(ino->data, ui->data, ui->data_len);
 480		data_len = ui->data_len;
 481	}
 482
 483	ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
 484}
 485
 486/**
 487 * mark_inode_clean - mark UBIFS inode as clean.
 488 * @c: UBIFS file-system description object
 489 * @ui: UBIFS inode to mark as clean
 490 *
 491 * This helper function marks UBIFS inode @ui as clean by cleaning the
 492 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
 493 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
 494 * just do nothing.
 495 */
 496static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
 497{
 498	if (ui->dirty)
 499		ubifs_release_dirty_inode_budget(c, ui);
 500	ui->dirty = 0;
 501}
 502
 503static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent)
 504{
 505	if (c->double_hash)
 506		dent->cookie = prandom_u32();
 507	else
 508		dent->cookie = 0;
 509}
 510
 511/**
 512 * ubifs_jnl_update - update inode.
 513 * @c: UBIFS file-system description object
 514 * @dir: parent inode or host inode in case of extended attributes
 515 * @nm: directory entry name
 516 * @inode: inode to update
 517 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
 518 * @xent: non-zero if the directory entry is an extended attribute entry
 519 *
 520 * This function updates an inode by writing a directory entry (or extended
 521 * attribute entry), the inode itself, and the parent directory inode (or the
 522 * host inode) to the journal.
 523 *
 524 * The function writes the host inode @dir last, which is important in case of
 525 * extended attributes. Indeed, then we guarantee that if the host inode gets
 526 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
 527 * the extended attribute inode gets flushed too. And this is exactly what the
 528 * user expects - synchronizing the host inode synchronizes its extended
 529 * attributes. Similarly, this guarantees that if @dir is synchronized, its
 530 * directory entry corresponding to @nm gets synchronized too.
 531 *
 532 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
 533 * function synchronizes the write-buffer.
 534 *
 535 * This function marks the @dir and @inode inodes as clean and returns zero on
 536 * success. In case of failure, a negative error code is returned.
 537 */
 538int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
 539		     const struct fscrypt_name *nm, const struct inode *inode,
 540		     int deletion, int xent)
 541{
 542	int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
 543	int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
 544	int last_reference = !!(deletion && inode->i_nlink == 0);
 545	struct ubifs_inode *ui = ubifs_inode(inode);
 546	struct ubifs_inode *host_ui = ubifs_inode(dir);
 547	struct ubifs_dent_node *dent;
 548	struct ubifs_ino_node *ino;
 549	union ubifs_key dent_key, ino_key;
 550	u8 hash_dent[UBIFS_HASH_ARR_SZ];
 551	u8 hash_ino[UBIFS_HASH_ARR_SZ];
 552	u8 hash_ino_host[UBIFS_HASH_ARR_SZ];
 553
 554	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
 
 
 555
 556	dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
 557	ilen = UBIFS_INO_NODE_SZ;
 558
 559	/*
 560	 * If the last reference to the inode is being deleted, then there is
 561	 * no need to attach and write inode data, it is being deleted anyway.
 562	 * And if the inode is being deleted, no need to synchronize
 563	 * write-buffer even if the inode is synchronous.
 564	 */
 565	if (!last_reference) {
 566		ilen += ui->data_len;
 567		sync |= IS_SYNC(inode);
 568	}
 569
 570	aligned_dlen = ALIGN(dlen, 8);
 571	aligned_ilen = ALIGN(ilen, 8);
 572
 573	len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
 574	/* Make sure to also account for extended attributes */
 575	if (ubifs_authenticated(c))
 576		len += ALIGN(host_ui->data_len, 8) + ubifs_auth_node_sz(c);
 577	else
 578		len += host_ui->data_len;
 579
 580	dent = kzalloc(len, GFP_NOFS);
 581	if (!dent)
 582		return -ENOMEM;
 583
 584	/* Make reservation before allocating sequence numbers */
 585	err = make_reservation(c, BASEHD, len);
 586	if (err)
 587		goto out_free;
 588
 589	if (!xent) {
 590		dent->ch.node_type = UBIFS_DENT_NODE;
 591		if (nm->hash)
 592			dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash);
 593		else
 594			dent_key_init(c, &dent_key, dir->i_ino, nm);
 595	} else {
 596		dent->ch.node_type = UBIFS_XENT_NODE;
 597		xent_key_init(c, &dent_key, dir->i_ino, nm);
 598	}
 599
 600	key_write(c, &dent_key, dent->key);
 601	dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
 602	dent->type = get_dent_type(inode->i_mode);
 603	dent->nlen = cpu_to_le16(fname_len(nm));
 604	memcpy(dent->name, fname_name(nm), fname_len(nm));
 605	dent->name[fname_len(nm)] = '\0';
 606	set_dent_cookie(c, dent);
 607
 608	zero_dent_node_unused(dent);
 609	ubifs_prep_grp_node(c, dent, dlen, 0);
 610	err = ubifs_node_calc_hash(c, dent, hash_dent);
 611	if (err)
 612		goto out_release;
 613
 614	ino = (void *)dent + aligned_dlen;
 615	pack_inode(c, ino, inode, 0);
 616	err = ubifs_node_calc_hash(c, ino, hash_ino);
 617	if (err)
 618		goto out_release;
 619
 620	ino = (void *)ino + aligned_ilen;
 621	pack_inode(c, ino, dir, 1);
 622	err = ubifs_node_calc_hash(c, ino, hash_ino_host);
 623	if (err)
 624		goto out_release;
 625
 626	if (last_reference) {
 627		err = ubifs_add_orphan(c, inode->i_ino);
 628		if (err) {
 629			release_head(c, BASEHD);
 630			goto out_finish;
 631		}
 632		ui->del_cmtno = c->cmt_no;
 633	}
 634
 635	err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
 636	if (err)
 637		goto out_release;
 638	if (!sync) {
 639		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
 640
 641		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
 642		ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
 643	}
 644	release_head(c, BASEHD);
 645	kfree(dent);
 646	ubifs_add_auth_dirt(c, lnum);
 647
 648	if (deletion) {
 649		if (nm->hash)
 650			err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash);
 651		else
 652			err = ubifs_tnc_remove_nm(c, &dent_key, nm);
 653		if (err)
 654			goto out_ro;
 655		err = ubifs_add_dirt(c, lnum, dlen);
 656	} else
 657		err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen,
 658				       hash_dent, nm);
 659	if (err)
 660		goto out_ro;
 661
 662	/*
 663	 * Note, we do not remove the inode from TNC even if the last reference
 664	 * to it has just been deleted, because the inode may still be opened.
 665	 * Instead, the inode has been added to orphan lists and the orphan
 666	 * subsystem will take further care about it.
 667	 */
 668	ino_key_init(c, &ino_key, inode->i_ino);
 669	ino_offs = dent_offs + aligned_dlen;
 670	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen, hash_ino);
 671	if (err)
 672		goto out_ro;
 673
 674	ino_key_init(c, &ino_key, dir->i_ino);
 675	ino_offs += aligned_ilen;
 676	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
 677			    UBIFS_INO_NODE_SZ + host_ui->data_len, hash_ino_host);
 678	if (err)
 679		goto out_ro;
 680
 681	finish_reservation(c);
 682	spin_lock(&ui->ui_lock);
 683	ui->synced_i_size = ui->ui_size;
 684	spin_unlock(&ui->ui_lock);
 685	if (xent) {
 686		spin_lock(&host_ui->ui_lock);
 687		host_ui->synced_i_size = host_ui->ui_size;
 688		spin_unlock(&host_ui->ui_lock);
 689	}
 690	mark_inode_clean(c, ui);
 691	mark_inode_clean(c, host_ui);
 692	return 0;
 693
 694out_finish:
 695	finish_reservation(c);
 696out_free:
 697	kfree(dent);
 698	return err;
 699
 700out_release:
 701	release_head(c, BASEHD);
 702	kfree(dent);
 703out_ro:
 704	ubifs_ro_mode(c, err);
 705	if (last_reference)
 706		ubifs_delete_orphan(c, inode->i_ino);
 707	finish_reservation(c);
 708	return err;
 709}
 710
 711/**
 712 * ubifs_jnl_write_data - write a data node to the journal.
 713 * @c: UBIFS file-system description object
 714 * @inode: inode the data node belongs to
 715 * @key: node key
 716 * @buf: buffer to write
 717 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
 718 *
 719 * This function writes a data node to the journal. Returns %0 if the data node
 720 * was successfully written, and a negative error code in case of failure.
 721 */
 722int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
 723			 const union ubifs_key *key, const void *buf, int len)
 724{
 725	struct ubifs_data_node *data;
 726	int err, lnum, offs, compr_type, out_len, compr_len, auth_len;
 727	int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
 728	int write_len;
 729	struct ubifs_inode *ui = ubifs_inode(inode);
 730	bool encrypted = ubifs_crypt_is_encrypted(inode);
 731	u8 hash[UBIFS_HASH_ARR_SZ];
 732
 733	dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
 734		(unsigned long)key_inum(c, key), key_block(c, key), len);
 735	ubifs_assert(c, len <= UBIFS_BLOCK_SIZE);
 736
 737	if (encrypted)
 738		dlen += UBIFS_CIPHER_BLOCK_SIZE;
 739
 740	auth_len = ubifs_auth_node_sz(c);
 741
 742	data = kmalloc(dlen + auth_len, GFP_NOFS | __GFP_NOWARN);
 743	if (!data) {
 744		/*
 745		 * Fall-back to the write reserve buffer. Note, we might be
 746		 * currently on the memory reclaim path, when the kernel is
 747		 * trying to free some memory by writing out dirty pages. The
 748		 * write reserve buffer helps us to guarantee that we are
 749		 * always able to write the data.
 750		 */
 751		allocated = 0;
 752		mutex_lock(&c->write_reserve_mutex);
 753		data = c->write_reserve_buf;
 754	}
 755
 756	data->ch.node_type = UBIFS_DATA_NODE;
 757	key_write(c, key, &data->key);
 758	data->size = cpu_to_le32(len);
 
 759
 760	if (!(ui->flags & UBIFS_COMPR_FL))
 761		/* Compression is disabled for this inode */
 762		compr_type = UBIFS_COMPR_NONE;
 763	else
 764		compr_type = ui->compr_type;
 765
 766	out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
 767	ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type);
 768	ubifs_assert(c, compr_len <= UBIFS_BLOCK_SIZE);
 769
 770	if (encrypted) {
 771		err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key));
 772		if (err)
 773			goto out_free;
 774
 775	} else {
 776		data->compr_size = 0;
 777		out_len = compr_len;
 778	}
 779
 780	dlen = UBIFS_DATA_NODE_SZ + out_len;
 781	if (ubifs_authenticated(c))
 782		write_len = ALIGN(dlen, 8) + auth_len;
 783	else
 784		write_len = dlen;
 785
 786	data->compr_type = cpu_to_le16(compr_type);
 787
 788	/* Make reservation before allocating sequence numbers */
 789	err = make_reservation(c, DATAHD, write_len);
 790	if (err)
 791		goto out_free;
 792
 793	ubifs_prepare_node(c, data, dlen, 0);
 794	err = write_head(c, DATAHD, data, write_len, &lnum, &offs, 0);
 795	if (err)
 796		goto out_release;
 797
 798	err = ubifs_node_calc_hash(c, data, hash);
 799	if (err)
 800		goto out_release;
 801
 802	ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
 803	release_head(c, DATAHD);
 804
 805	ubifs_add_auth_dirt(c, lnum);
 806
 807	err = ubifs_tnc_add(c, key, lnum, offs, dlen, hash);
 808	if (err)
 809		goto out_ro;
 810
 811	finish_reservation(c);
 812	if (!allocated)
 813		mutex_unlock(&c->write_reserve_mutex);
 814	else
 815		kfree(data);
 816	return 0;
 817
 818out_release:
 819	release_head(c, DATAHD);
 820out_ro:
 821	ubifs_ro_mode(c, err);
 822	finish_reservation(c);
 823out_free:
 824	if (!allocated)
 825		mutex_unlock(&c->write_reserve_mutex);
 826	else
 827		kfree(data);
 828	return err;
 829}
 830
 831/**
 832 * ubifs_jnl_write_inode - flush inode to the journal.
 833 * @c: UBIFS file-system description object
 834 * @inode: inode to flush
 835 *
 836 * This function writes inode @inode to the journal. If the inode is
 837 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
 838 * success and a negative error code in case of failure.
 839 */
 840int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
 841{
 842	int err, lnum, offs;
 843	struct ubifs_ino_node *ino, *ino_start;
 844	struct ubifs_inode *ui = ubifs_inode(inode);
 845	int sync = 0, write_len = 0, ilen = UBIFS_INO_NODE_SZ;
 846	int last_reference = !inode->i_nlink;
 847	int kill_xattrs = ui->xattr_cnt && last_reference;
 848	u8 hash[UBIFS_HASH_ARR_SZ];
 849
 850	dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
 851
 852	/*
 853	 * If the inode is being deleted, do not write the attached data. No
 854	 * need to synchronize the write-buffer either.
 855	 */
 856	if (!last_reference) {
 857		ilen += ui->data_len;
 858		sync = IS_SYNC(inode);
 859	} else if (kill_xattrs) {
 860		write_len += UBIFS_INO_NODE_SZ * ui->xattr_cnt;
 861	}
 862
 863	if (ubifs_authenticated(c))
 864		write_len += ALIGN(ilen, 8) + ubifs_auth_node_sz(c);
 865	else
 866		write_len += ilen;
 867
 868	ino_start = ino = kmalloc(write_len, GFP_NOFS);
 869	if (!ino)
 870		return -ENOMEM;
 871
 872	/* Make reservation before allocating sequence numbers */
 873	err = make_reservation(c, BASEHD, write_len);
 874	if (err)
 875		goto out_free;
 876
 877	if (kill_xattrs) {
 878		union ubifs_key key;
 879		struct fscrypt_name nm = {0};
 880		struct inode *xino;
 881		struct ubifs_dent_node *xent, *pxent = NULL;
 882
 883		if (ui->xattr_cnt >= ubifs_xattr_max_cnt(c)) {
 884			ubifs_err(c, "Cannot delete inode, it has too much xattrs!");
 885			goto out_release;
 886		}
 887
 888		lowest_xent_key(c, &key, inode->i_ino);
 889		while (1) {
 890			xent = ubifs_tnc_next_ent(c, &key, &nm);
 891			if (IS_ERR(xent)) {
 892				err = PTR_ERR(xent);
 893				if (err == -ENOENT)
 894					break;
 895
 896				goto out_release;
 897			}
 898
 899			fname_name(&nm) = xent->name;
 900			fname_len(&nm) = le16_to_cpu(xent->nlen);
 901
 902			xino = ubifs_iget(c->vfs_sb, xent->inum);
 903			if (IS_ERR(xino)) {
 904				err = PTR_ERR(xino);
 905				ubifs_err(c, "dead directory entry '%s', error %d",
 906					  xent->name, err);
 907				ubifs_ro_mode(c, err);
 908				goto out_release;
 909			}
 910			ubifs_assert(c, ubifs_inode(xino)->xattr);
 911
 912			clear_nlink(xino);
 913			pack_inode(c, ino, xino, 0);
 914			ino = (void *)ino + UBIFS_INO_NODE_SZ;
 915			iput(xino);
 916
 917			kfree(pxent);
 918			pxent = xent;
 919			key_read(c, &xent->key, &key);
 920		}
 921		kfree(pxent);
 922	}
 923
 924	pack_inode(c, ino, inode, 1);
 925	err = ubifs_node_calc_hash(c, ino, hash);
 926	if (err)
 927		goto out_release;
 928
 929	err = write_head(c, BASEHD, ino_start, write_len, &lnum, &offs, sync);
 930	if (err)
 931		goto out_release;
 932	if (!sync)
 933		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
 934					  inode->i_ino);
 935	release_head(c, BASEHD);
 936
 937	ubifs_add_auth_dirt(c, lnum);
 938
 939	if (last_reference) {
 940		err = ubifs_tnc_remove_ino(c, inode->i_ino);
 941		if (err)
 942			goto out_ro;
 943		ubifs_delete_orphan(c, inode->i_ino);
 944		err = ubifs_add_dirt(c, lnum, write_len);
 945	} else {
 946		union ubifs_key key;
 947
 948		ino_key_init(c, &key, inode->i_ino);
 949		err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash);
 950	}
 951	if (err)
 952		goto out_ro;
 953
 954	finish_reservation(c);
 955	spin_lock(&ui->ui_lock);
 956	ui->synced_i_size = ui->ui_size;
 957	spin_unlock(&ui->ui_lock);
 958	kfree(ino_start);
 959	return 0;
 960
 961out_release:
 962	release_head(c, BASEHD);
 963out_ro:
 964	ubifs_ro_mode(c, err);
 965	finish_reservation(c);
 966out_free:
 967	kfree(ino_start);
 968	return err;
 969}
 970
 971/**
 972 * ubifs_jnl_delete_inode - delete an inode.
 973 * @c: UBIFS file-system description object
 974 * @inode: inode to delete
 975 *
 976 * This function deletes inode @inode which includes removing it from orphans,
 977 * deleting it from TNC and, in some cases, writing a deletion inode to the
 978 * journal.
 979 *
 980 * When regular file inodes are unlinked or a directory inode is removed, the
 981 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
 982 * direntry to the media, and adds the inode to orphans. After this, when the
 983 * last reference to this inode has been dropped, this function is called. In
 984 * general, it has to write one more deletion inode to the media, because if
 985 * a commit happened between 'ubifs_jnl_update()' and
 986 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
 987 * anymore, and in fact it might not be on the flash anymore, because it might
 988 * have been garbage-collected already. And for optimization reasons UBIFS does
 989 * not read the orphan area if it has been unmounted cleanly, so it would have
 990 * no indication in the journal that there is a deleted inode which has to be
 991 * removed from TNC.
 992 *
 993 * However, if there was no commit between 'ubifs_jnl_update()' and
 994 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
 995 * inode to the media for the second time. And this is quite a typical case.
 996 *
 997 * This function returns zero in case of success and a negative error code in
 998 * case of failure.
 999 */
1000int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
1001{
1002	int err;
1003	struct ubifs_inode *ui = ubifs_inode(inode);
1004
1005	ubifs_assert(c, inode->i_nlink == 0);
1006
1007	if (ui->xattr_cnt || ui->del_cmtno != c->cmt_no)
1008		/* A commit happened for sure or inode hosts xattrs */
1009		return ubifs_jnl_write_inode(c, inode);
1010
1011	down_read(&c->commit_sem);
1012	/*
1013	 * Check commit number again, because the first test has been done
1014	 * without @c->commit_sem, so a commit might have happened.
1015	 */
1016	if (ui->del_cmtno != c->cmt_no) {
1017		up_read(&c->commit_sem);
1018		return ubifs_jnl_write_inode(c, inode);
1019	}
1020
1021	err = ubifs_tnc_remove_ino(c, inode->i_ino);
1022	if (err)
1023		ubifs_ro_mode(c, err);
1024	else
1025		ubifs_delete_orphan(c, inode->i_ino);
1026	up_read(&c->commit_sem);
1027	return err;
1028}
1029
1030/**
1031 * ubifs_jnl_xrename - cross rename two directory entries.
1032 * @c: UBIFS file-system description object
1033 * @fst_dir: parent inode of 1st directory entry to exchange
1034 * @fst_inode: 1st inode to exchange
1035 * @fst_nm: name of 1st inode to exchange
1036 * @snd_dir: parent inode of 2nd directory entry to exchange
1037 * @snd_inode: 2nd inode to exchange
1038 * @snd_nm: name of 2nd inode to exchange
1039 * @sync: non-zero if the write-buffer has to be synchronized
1040 *
1041 * This function implements the cross rename operation which may involve
1042 * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
1043 * and returns zero on success. In case of failure, a negative error code is
1044 * returned.
1045 */
1046int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
1047		      const struct inode *fst_inode,
1048		      const struct fscrypt_name *fst_nm,
1049		      const struct inode *snd_dir,
1050		      const struct inode *snd_inode,
1051		      const struct fscrypt_name *snd_nm, int sync)
1052{
1053	union ubifs_key key;
1054	struct ubifs_dent_node *dent1, *dent2;
1055	int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
1056	int aligned_dlen1, aligned_dlen2;
1057	int twoparents = (fst_dir != snd_dir);
1058	void *p;
1059	u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1060	u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1061	u8 hash_p1[UBIFS_HASH_ARR_SZ];
1062	u8 hash_p2[UBIFS_HASH_ARR_SZ];
1063
1064	ubifs_assert(c, ubifs_inode(fst_dir)->data_len == 0);
1065	ubifs_assert(c, ubifs_inode(snd_dir)->data_len == 0);
1066	ubifs_assert(c, mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
1067	ubifs_assert(c, mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
1068
1069	dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
1070	dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
1071	aligned_dlen1 = ALIGN(dlen1, 8);
1072	aligned_dlen2 = ALIGN(dlen2, 8);
1073
1074	len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
1075	if (twoparents)
1076		len += plen;
1077
1078	len += ubifs_auth_node_sz(c);
1079
1080	dent1 = kzalloc(len, GFP_NOFS);
1081	if (!dent1)
1082		return -ENOMEM;
1083
1084	/* Make reservation before allocating sequence numbers */
1085	err = make_reservation(c, BASEHD, len);
1086	if (err)
1087		goto out_free;
1088
1089	/* Make new dent for 1st entry */
1090	dent1->ch.node_type = UBIFS_DENT_NODE;
1091	dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm);
1092	dent1->inum = cpu_to_le64(fst_inode->i_ino);
1093	dent1->type = get_dent_type(fst_inode->i_mode);
1094	dent1->nlen = cpu_to_le16(fname_len(snd_nm));
1095	memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
1096	dent1->name[fname_len(snd_nm)] = '\0';
1097	set_dent_cookie(c, dent1);
1098	zero_dent_node_unused(dent1);
1099	ubifs_prep_grp_node(c, dent1, dlen1, 0);
1100	err = ubifs_node_calc_hash(c, dent1, hash_dent1);
1101	if (err)
1102		goto out_release;
1103
1104	/* Make new dent for 2nd entry */
1105	dent2 = (void *)dent1 + aligned_dlen1;
1106	dent2->ch.node_type = UBIFS_DENT_NODE;
1107	dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm);
1108	dent2->inum = cpu_to_le64(snd_inode->i_ino);
1109	dent2->type = get_dent_type(snd_inode->i_mode);
1110	dent2->nlen = cpu_to_le16(fname_len(fst_nm));
1111	memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
1112	dent2->name[fname_len(fst_nm)] = '\0';
1113	set_dent_cookie(c, dent2);
1114	zero_dent_node_unused(dent2);
1115	ubifs_prep_grp_node(c, dent2, dlen2, 0);
1116	err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1117	if (err)
1118		goto out_release;
1119
1120	p = (void *)dent2 + aligned_dlen2;
1121	if (!twoparents) {
1122		pack_inode(c, p, fst_dir, 1);
1123		err = ubifs_node_calc_hash(c, p, hash_p1);
1124		if (err)
1125			goto out_release;
1126	} else {
1127		pack_inode(c, p, fst_dir, 0);
1128		err = ubifs_node_calc_hash(c, p, hash_p1);
1129		if (err)
1130			goto out_release;
1131		p += ALIGN(plen, 8);
1132		pack_inode(c, p, snd_dir, 1);
1133		err = ubifs_node_calc_hash(c, p, hash_p2);
1134		if (err)
1135			goto out_release;
1136	}
1137
1138	err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
1139	if (err)
1140		goto out_release;
1141	if (!sync) {
1142		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1143
1144		ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
1145		ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
1146	}
1147	release_head(c, BASEHD);
1148
1149	ubifs_add_auth_dirt(c, lnum);
1150
1151	dent_key_init(c, &key, snd_dir->i_ino, snd_nm);
1152	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, snd_nm);
1153	if (err)
1154		goto out_ro;
1155
1156	offs += aligned_dlen1;
1157	dent_key_init(c, &key, fst_dir->i_ino, fst_nm);
1158	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, fst_nm);
1159	if (err)
1160		goto out_ro;
1161
1162	offs += aligned_dlen2;
1163
1164	ino_key_init(c, &key, fst_dir->i_ino);
1165	err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p1);
1166	if (err)
1167		goto out_ro;
1168
1169	if (twoparents) {
1170		offs += ALIGN(plen, 8);
1171		ino_key_init(c, &key, snd_dir->i_ino);
1172		err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p2);
1173		if (err)
1174			goto out_ro;
1175	}
1176
1177	finish_reservation(c);
1178
1179	mark_inode_clean(c, ubifs_inode(fst_dir));
1180	if (twoparents)
1181		mark_inode_clean(c, ubifs_inode(snd_dir));
1182	kfree(dent1);
1183	return 0;
1184
1185out_release:
1186	release_head(c, BASEHD);
1187out_ro:
1188	ubifs_ro_mode(c, err);
1189	finish_reservation(c);
1190out_free:
1191	kfree(dent1);
1192	return err;
1193}
1194
1195/**
1196 * ubifs_jnl_rename - rename a directory entry.
1197 * @c: UBIFS file-system description object
1198 * @old_dir: parent inode of directory entry to rename
1199 * @old_dentry: directory entry to rename
1200 * @new_dir: parent inode of directory entry to rename
1201 * @new_dentry: new directory entry (or directory entry to replace)
1202 * @sync: non-zero if the write-buffer has to be synchronized
1203 *
1204 * This function implements the re-name operation which may involve writing up
1205 * to 4 inodes and 2 directory entries. It marks the written inodes as clean
1206 * and returns zero on success. In case of failure, a negative error code is
1207 * returned.
1208 */
1209int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1210		     const struct inode *old_inode,
1211		     const struct fscrypt_name *old_nm,
1212		     const struct inode *new_dir,
1213		     const struct inode *new_inode,
1214		     const struct fscrypt_name *new_nm,
1215		     const struct inode *whiteout, int sync)
1216{
1217	void *p;
1218	union ubifs_key key;
1219	struct ubifs_dent_node *dent, *dent2;
1220	int err, dlen1, dlen2, ilen, lnum, offs, len;
 
 
1221	int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1222	int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1223	int move = (old_dir != new_dir);
1224	struct ubifs_inode *uninitialized_var(new_ui);
1225	u8 hash_old_dir[UBIFS_HASH_ARR_SZ];
1226	u8 hash_new_dir[UBIFS_HASH_ARR_SZ];
1227	u8 hash_new_inode[UBIFS_HASH_ARR_SZ];
1228	u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1229	u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1230
1231	ubifs_assert(c, ubifs_inode(old_dir)->data_len == 0);
1232	ubifs_assert(c, ubifs_inode(new_dir)->data_len == 0);
1233	ubifs_assert(c, mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1234	ubifs_assert(c, mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1235
1236	dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
1237	dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
 
 
 
 
 
 
 
1238	if (new_inode) {
1239		new_ui = ubifs_inode(new_inode);
1240		ubifs_assert(c, mutex_is_locked(&new_ui->ui_mutex));
1241		ilen = UBIFS_INO_NODE_SZ;
1242		if (!last_reference)
1243			ilen += new_ui->data_len;
1244	} else
1245		ilen = 0;
1246
1247	aligned_dlen1 = ALIGN(dlen1, 8);
1248	aligned_dlen2 = ALIGN(dlen2, 8);
1249	len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
1250	if (move)
1251		len += plen;
1252
1253	len += ubifs_auth_node_sz(c);
1254
1255	dent = kzalloc(len, GFP_NOFS);
1256	if (!dent)
1257		return -ENOMEM;
1258
1259	/* Make reservation before allocating sequence numbers */
1260	err = make_reservation(c, BASEHD, len);
1261	if (err)
1262		goto out_free;
1263
1264	/* Make new dent */
1265	dent->ch.node_type = UBIFS_DENT_NODE;
1266	dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm);
1267	dent->inum = cpu_to_le64(old_inode->i_ino);
1268	dent->type = get_dent_type(old_inode->i_mode);
1269	dent->nlen = cpu_to_le16(fname_len(new_nm));
1270	memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
1271	dent->name[fname_len(new_nm)] = '\0';
1272	set_dent_cookie(c, dent);
1273	zero_dent_node_unused(dent);
1274	ubifs_prep_grp_node(c, dent, dlen1, 0);
1275	err = ubifs_node_calc_hash(c, dent, hash_dent1);
1276	if (err)
1277		goto out_release;
1278
 
1279	dent2 = (void *)dent + aligned_dlen1;
1280	dent2->ch.node_type = UBIFS_DENT_NODE;
1281	dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm);
1282
1283	if (whiteout) {
1284		dent2->inum = cpu_to_le64(whiteout->i_ino);
1285		dent2->type = get_dent_type(whiteout->i_mode);
1286	} else {
1287		/* Make deletion dent */
1288		dent2->inum = 0;
1289		dent2->type = DT_UNKNOWN;
1290	}
1291	dent2->nlen = cpu_to_le16(fname_len(old_nm));
1292	memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
1293	dent2->name[fname_len(old_nm)] = '\0';
1294	set_dent_cookie(c, dent2);
1295	zero_dent_node_unused(dent2);
1296	ubifs_prep_grp_node(c, dent2, dlen2, 0);
1297	err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1298	if (err)
1299		goto out_release;
1300
1301	p = (void *)dent2 + aligned_dlen2;
1302	if (new_inode) {
1303		pack_inode(c, p, new_inode, 0);
1304		err = ubifs_node_calc_hash(c, p, hash_new_inode);
1305		if (err)
1306			goto out_release;
1307
1308		p += ALIGN(ilen, 8);
1309	}
1310
1311	if (!move) {
1312		pack_inode(c, p, old_dir, 1);
1313		err = ubifs_node_calc_hash(c, p, hash_old_dir);
1314		if (err)
1315			goto out_release;
1316	} else {
1317		pack_inode(c, p, old_dir, 0);
1318		err = ubifs_node_calc_hash(c, p, hash_old_dir);
1319		if (err)
1320			goto out_release;
1321
1322		p += ALIGN(plen, 8);
1323		pack_inode(c, p, new_dir, 1);
1324		err = ubifs_node_calc_hash(c, p, hash_new_dir);
1325		if (err)
1326			goto out_release;
1327	}
1328
1329	if (last_reference) {
1330		err = ubifs_add_orphan(c, new_inode->i_ino);
1331		if (err) {
1332			release_head(c, BASEHD);
1333			goto out_finish;
1334		}
1335		new_ui->del_cmtno = c->cmt_no;
1336	}
1337
1338	err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1339	if (err)
1340		goto out_release;
1341	if (!sync) {
1342		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1343
1344		ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1345		ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1346		if (new_inode)
1347			ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1348						  new_inode->i_ino);
1349	}
1350	release_head(c, BASEHD);
1351
1352	ubifs_add_auth_dirt(c, lnum);
1353
1354	dent_key_init(c, &key, new_dir->i_ino, new_nm);
1355	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, new_nm);
1356	if (err)
1357		goto out_ro;
1358
1359	offs += aligned_dlen1;
1360	if (whiteout) {
1361		dent_key_init(c, &key, old_dir->i_ino, old_nm);
1362		err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, old_nm);
1363		if (err)
1364			goto out_ro;
1365
1366		ubifs_delete_orphan(c, whiteout->i_ino);
1367	} else {
1368		err = ubifs_add_dirt(c, lnum, dlen2);
1369		if (err)
1370			goto out_ro;
1371
1372		dent_key_init(c, &key, old_dir->i_ino, old_nm);
1373		err = ubifs_tnc_remove_nm(c, &key, old_nm);
1374		if (err)
1375			goto out_ro;
1376	}
1377
1378	offs += aligned_dlen2;
1379	if (new_inode) {
1380		ino_key_init(c, &key, new_inode->i_ino);
1381		err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash_new_inode);
1382		if (err)
1383			goto out_ro;
1384		offs += ALIGN(ilen, 8);
1385	}
1386
1387	ino_key_init(c, &key, old_dir->i_ino);
1388	err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_old_dir);
1389	if (err)
1390		goto out_ro;
1391
1392	if (move) {
1393		offs += ALIGN(plen, 8);
1394		ino_key_init(c, &key, new_dir->i_ino);
1395		err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_new_dir);
1396		if (err)
1397			goto out_ro;
1398	}
1399
1400	finish_reservation(c);
1401	if (new_inode) {
1402		mark_inode_clean(c, new_ui);
1403		spin_lock(&new_ui->ui_lock);
1404		new_ui->synced_i_size = new_ui->ui_size;
1405		spin_unlock(&new_ui->ui_lock);
1406	}
1407	mark_inode_clean(c, ubifs_inode(old_dir));
1408	if (move)
1409		mark_inode_clean(c, ubifs_inode(new_dir));
1410	kfree(dent);
1411	return 0;
1412
1413out_release:
1414	release_head(c, BASEHD);
1415out_ro:
1416	ubifs_ro_mode(c, err);
1417	if (last_reference)
1418		ubifs_delete_orphan(c, new_inode->i_ino);
1419out_finish:
1420	finish_reservation(c);
1421out_free:
1422	kfree(dent);
1423	return err;
1424}
1425
1426/**
1427 * truncate_data_node - re-compress/encrypt a truncated data node.
1428 * @c: UBIFS file-system description object
1429 * @inode: inode which referes to the data node
1430 * @block: data block number
1431 * @dn: data node to re-compress
1432 * @new_len: new length
1433 *
1434 * This function is used when an inode is truncated and the last data node of
1435 * the inode has to be re-compressed/encrypted and re-written.
1436 */
1437static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
1438			      unsigned int block, struct ubifs_data_node *dn,
1439			      int *new_len)
1440{
1441	void *buf;
1442	int err, dlen, compr_type, out_len, old_dlen;
1443
1444	out_len = le32_to_cpu(dn->size);
1445	buf = kmalloc_array(out_len, WORST_COMPR_FACTOR, GFP_NOFS);
1446	if (!buf)
1447		return -ENOMEM;
1448
1449	dlen = old_dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1450	compr_type = le16_to_cpu(dn->compr_type);
 
 
 
1451
1452	if (ubifs_crypt_is_encrypted(inode)) {
1453		err = ubifs_decrypt(inode, dn, &dlen, block);
1454		if (err)
1455			goto out;
1456	}
1457
1458	if (compr_type == UBIFS_COMPR_NONE) {
1459		out_len = *new_len;
1460	} else {
1461		err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type);
1462		if (err)
1463			goto out;
1464
1465		ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1466	}
1467
1468	if (ubifs_crypt_is_encrypted(inode)) {
1469		err = ubifs_encrypt(inode, dn, out_len, &old_dlen, block);
1470		if (err)
1471			goto out;
1472
1473		out_len = old_dlen;
1474	} else {
1475		dn->compr_size = 0;
1476	}
1477
1478	ubifs_assert(c, out_len <= UBIFS_BLOCK_SIZE);
1479	dn->compr_type = cpu_to_le16(compr_type);
1480	dn->size = cpu_to_le32(*new_len);
1481	*new_len = UBIFS_DATA_NODE_SZ + out_len;
1482	err = 0;
1483out:
1484	kfree(buf);
1485	return err;
1486}
1487
1488/**
1489 * ubifs_jnl_truncate - update the journal for a truncation.
1490 * @c: UBIFS file-system description object
1491 * @inode: inode to truncate
1492 * @old_size: old size
1493 * @new_size: new size
1494 *
1495 * When the size of a file decreases due to truncation, a truncation node is
1496 * written, the journal tree is updated, and the last data block is re-written
1497 * if it has been affected. The inode is also updated in order to synchronize
1498 * the new inode size.
1499 *
1500 * This function marks the inode as clean and returns zero on success. In case
1501 * of failure, a negative error code is returned.
1502 */
1503int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1504		       loff_t old_size, loff_t new_size)
1505{
1506	union ubifs_key key, to_key;
1507	struct ubifs_ino_node *ino;
1508	struct ubifs_trun_node *trun;
1509	struct ubifs_data_node *uninitialized_var(dn);
1510	int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1511	struct ubifs_inode *ui = ubifs_inode(inode);
1512	ino_t inum = inode->i_ino;
1513	unsigned int blk;
1514	u8 hash_ino[UBIFS_HASH_ARR_SZ];
1515	u8 hash_dn[UBIFS_HASH_ARR_SZ];
1516
1517	dbg_jnl("ino %lu, size %lld -> %lld",
1518		(unsigned long)inum, old_size, new_size);
1519	ubifs_assert(c, !ui->data_len);
1520	ubifs_assert(c, S_ISREG(inode->i_mode));
1521	ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
1522
1523	sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1524	     UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1525
1526	sz += ubifs_auth_node_sz(c);
1527
1528	ino = kmalloc(sz, GFP_NOFS);
1529	if (!ino)
1530		return -ENOMEM;
1531
1532	trun = (void *)ino + UBIFS_INO_NODE_SZ;
1533	trun->ch.node_type = UBIFS_TRUN_NODE;
1534	trun->inum = cpu_to_le32(inum);
1535	trun->old_size = cpu_to_le64(old_size);
1536	trun->new_size = cpu_to_le64(new_size);
1537	zero_trun_node_unused(trun);
1538
1539	dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1540	if (dlen) {
1541		/* Get last data block so it can be truncated */
1542		dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1543		blk = new_size >> UBIFS_BLOCK_SHIFT;
1544		data_key_init(c, &key, inum, blk);
1545		dbg_jnlk(&key, "last block key ");
1546		err = ubifs_tnc_lookup(c, &key, dn);
1547		if (err == -ENOENT)
1548			dlen = 0; /* Not found (so it is a hole) */
1549		else if (err)
1550			goto out_free;
1551		else {
1552			int dn_len = le32_to_cpu(dn->size);
1553
1554			if (dn_len <= 0 || dn_len > UBIFS_BLOCK_SIZE) {
1555				ubifs_err(c, "bad data node (block %u, inode %lu)",
1556					  blk, inode->i_ino);
1557				ubifs_dump_node(c, dn);
1558				goto out_free;
1559			}
1560
1561			if (dn_len <= dlen)
1562				dlen = 0; /* Nothing to do */
1563			else {
1564				err = truncate_data_node(c, inode, blk, dn, &dlen);
1565				if (err)
1566					goto out_free;
 
 
 
 
 
 
 
 
1567			}
1568		}
1569	}
1570
1571	/* Must make reservation before allocating sequence numbers */
1572	len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1573
1574	if (ubifs_authenticated(c))
1575		len += ALIGN(dlen, 8) + ubifs_auth_node_sz(c);
1576	else
1577		len += dlen;
1578
1579	err = make_reservation(c, BASEHD, len);
1580	if (err)
1581		goto out_free;
1582
1583	pack_inode(c, ino, inode, 0);
1584	err = ubifs_node_calc_hash(c, ino, hash_ino);
1585	if (err)
1586		goto out_release;
1587
1588	ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1589	if (dlen) {
1590		ubifs_prep_grp_node(c, dn, dlen, 1);
1591		err = ubifs_node_calc_hash(c, dn, hash_dn);
1592		if (err)
1593			goto out_release;
1594	}
1595
1596	err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1597	if (err)
1598		goto out_release;
1599	if (!sync)
1600		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1601	release_head(c, BASEHD);
1602
1603	ubifs_add_auth_dirt(c, lnum);
1604
1605	if (dlen) {
1606		sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1607		err = ubifs_tnc_add(c, &key, lnum, sz, dlen, hash_dn);
1608		if (err)
1609			goto out_ro;
1610	}
1611
1612	ino_key_init(c, &key, inum);
1613	err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ, hash_ino);
1614	if (err)
1615		goto out_ro;
1616
1617	err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1618	if (err)
1619		goto out_ro;
1620
1621	bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1622	blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1623	data_key_init(c, &key, inum, blk);
1624
1625	bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1626	blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1627	data_key_init(c, &to_key, inum, blk);
1628
1629	err = ubifs_tnc_remove_range(c, &key, &to_key);
1630	if (err)
1631		goto out_ro;
1632
1633	finish_reservation(c);
1634	spin_lock(&ui->ui_lock);
1635	ui->synced_i_size = ui->ui_size;
1636	spin_unlock(&ui->ui_lock);
1637	mark_inode_clean(c, ui);
1638	kfree(ino);
1639	return 0;
1640
1641out_release:
1642	release_head(c, BASEHD);
1643out_ro:
1644	ubifs_ro_mode(c, err);
1645	finish_reservation(c);
1646out_free:
1647	kfree(ino);
1648	return err;
1649}
1650
1651
1652/**
1653 * ubifs_jnl_delete_xattr - delete an extended attribute.
1654 * @c: UBIFS file-system description object
1655 * @host: host inode
1656 * @inode: extended attribute inode
1657 * @nm: extended attribute entry name
1658 *
1659 * This function delete an extended attribute which is very similar to
1660 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1661 * updates the target inode. Returns zero in case of success and a negative
1662 * error code in case of failure.
1663 */
1664int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1665			   const struct inode *inode,
1666			   const struct fscrypt_name *nm)
1667{
1668	int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen, write_len;
1669	struct ubifs_dent_node *xent;
1670	struct ubifs_ino_node *ino;
1671	union ubifs_key xent_key, key1, key2;
1672	int sync = IS_DIRSYNC(host);
1673	struct ubifs_inode *host_ui = ubifs_inode(host);
1674	u8 hash[UBIFS_HASH_ARR_SZ];
1675
1676	ubifs_assert(c, inode->i_nlink == 0);
1677	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
 
 
 
1678
1679	/*
1680	 * Since we are deleting the inode, we do not bother to attach any data
1681	 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1682	 */
1683	xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
1684	aligned_xlen = ALIGN(xlen, 8);
1685	hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1686	len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1687
1688	write_len = len + ubifs_auth_node_sz(c);
1689
1690	xent = kzalloc(write_len, GFP_NOFS);
1691	if (!xent)
1692		return -ENOMEM;
1693
1694	/* Make reservation before allocating sequence numbers */
1695	err = make_reservation(c, BASEHD, write_len);
1696	if (err) {
1697		kfree(xent);
1698		return err;
1699	}
1700
1701	xent->ch.node_type = UBIFS_XENT_NODE;
1702	xent_key_init(c, &xent_key, host->i_ino, nm);
1703	key_write(c, &xent_key, xent->key);
1704	xent->inum = 0;
1705	xent->type = get_dent_type(inode->i_mode);
1706	xent->nlen = cpu_to_le16(fname_len(nm));
1707	memcpy(xent->name, fname_name(nm), fname_len(nm));
1708	xent->name[fname_len(nm)] = '\0';
1709	zero_dent_node_unused(xent);
1710	ubifs_prep_grp_node(c, xent, xlen, 0);
1711
1712	ino = (void *)xent + aligned_xlen;
1713	pack_inode(c, ino, inode, 0);
1714	ino = (void *)ino + UBIFS_INO_NODE_SZ;
1715	pack_inode(c, ino, host, 1);
1716	err = ubifs_node_calc_hash(c, ino, hash);
1717	if (err)
1718		goto out_release;
1719
1720	err = write_head(c, BASEHD, xent, write_len, &lnum, &xent_offs, sync);
1721	if (!sync && !err)
1722		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1723	release_head(c, BASEHD);
1724
1725	ubifs_add_auth_dirt(c, lnum);
1726	kfree(xent);
1727	if (err)
1728		goto out_ro;
1729
1730	/* Remove the extended attribute entry from TNC */
1731	err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1732	if (err)
1733		goto out_ro;
1734	err = ubifs_add_dirt(c, lnum, xlen);
1735	if (err)
1736		goto out_ro;
1737
1738	/*
1739	 * Remove all nodes belonging to the extended attribute inode from TNC.
1740	 * Well, there actually must be only one node - the inode itself.
1741	 */
1742	lowest_ino_key(c, &key1, inode->i_ino);
1743	highest_ino_key(c, &key2, inode->i_ino);
1744	err = ubifs_tnc_remove_range(c, &key1, &key2);
1745	if (err)
1746		goto out_ro;
1747	err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1748	if (err)
1749		goto out_ro;
1750
1751	/* And update TNC with the new host inode position */
1752	ino_key_init(c, &key1, host->i_ino);
1753	err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen, hash);
1754	if (err)
1755		goto out_ro;
1756
1757	finish_reservation(c);
1758	spin_lock(&host_ui->ui_lock);
1759	host_ui->synced_i_size = host_ui->ui_size;
1760	spin_unlock(&host_ui->ui_lock);
1761	mark_inode_clean(c, host_ui);
1762	return 0;
1763
1764out_release:
1765	kfree(xent);
1766	release_head(c, BASEHD);
1767out_ro:
1768	ubifs_ro_mode(c, err);
1769	finish_reservation(c);
1770	return err;
1771}
1772
1773/**
1774 * ubifs_jnl_change_xattr - change an extended attribute.
1775 * @c: UBIFS file-system description object
1776 * @inode: extended attribute inode
1777 * @host: host inode
1778 *
1779 * This function writes the updated version of an extended attribute inode and
1780 * the host inode to the journal (to the base head). The host inode is written
1781 * after the extended attribute inode in order to guarantee that the extended
1782 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1783 * consequently, the write-buffer is synchronized. This function returns zero
1784 * in case of success and a negative error code in case of failure.
1785 */
1786int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1787			   const struct inode *host)
1788{
1789	int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1790	struct ubifs_inode *host_ui = ubifs_inode(host);
1791	struct ubifs_ino_node *ino;
1792	union ubifs_key key;
1793	int sync = IS_DIRSYNC(host);
1794	u8 hash_host[UBIFS_HASH_ARR_SZ];
1795	u8 hash[UBIFS_HASH_ARR_SZ];
1796
1797	dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1798	ubifs_assert(c, host->i_nlink > 0);
1799	ubifs_assert(c, inode->i_nlink > 0);
1800	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1801
1802	len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1803	len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1804	aligned_len1 = ALIGN(len1, 8);
1805	aligned_len = aligned_len1 + ALIGN(len2, 8);
1806
1807	aligned_len += ubifs_auth_node_sz(c);
1808
1809	ino = kzalloc(aligned_len, GFP_NOFS);
1810	if (!ino)
1811		return -ENOMEM;
1812
1813	/* Make reservation before allocating sequence numbers */
1814	err = make_reservation(c, BASEHD, aligned_len);
1815	if (err)
1816		goto out_free;
1817
1818	pack_inode(c, ino, host, 0);
1819	err = ubifs_node_calc_hash(c, ino, hash_host);
1820	if (err)
1821		goto out_release;
1822	pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1823	err = ubifs_node_calc_hash(c, (void *)ino + aligned_len1, hash);
1824	if (err)
1825		goto out_release;
1826
1827	err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1828	if (!sync && !err) {
1829		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1830
1831		ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1832		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1833	}
1834	release_head(c, BASEHD);
1835	if (err)
1836		goto out_ro;
1837
1838	ubifs_add_auth_dirt(c, lnum);
1839
1840	ino_key_init(c, &key, host->i_ino);
1841	err = ubifs_tnc_add(c, &key, lnum, offs, len1, hash_host);
1842	if (err)
1843		goto out_ro;
1844
1845	ino_key_init(c, &key, inode->i_ino);
1846	err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2, hash);
1847	if (err)
1848		goto out_ro;
1849
1850	finish_reservation(c);
1851	spin_lock(&host_ui->ui_lock);
1852	host_ui->synced_i_size = host_ui->ui_size;
1853	spin_unlock(&host_ui->ui_lock);
1854	mark_inode_clean(c, host_ui);
1855	kfree(ino);
1856	return 0;
1857
1858out_release:
1859	release_head(c, BASEHD);
1860out_ro:
1861	ubifs_ro_mode(c, err);
1862	finish_reservation(c);
1863out_free:
1864	kfree(ino);
1865	return err;
1866}
1867
v4.6
 
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Artem Bityutskiy (Битюцкий Артём)
  20 *          Adrian Hunter
  21 */
  22
  23/*
  24 * This file implements UBIFS journal.
  25 *
  26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
  27 * length and position, while a bud logical eraseblock is any LEB in the main
  28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
  29 * contains only references to buds and some other stuff like commit
  30 * start node. The idea is that when we commit the journal, we do
  31 * not copy the data, the buds just become indexed. Since after the commit the
  32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
  33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
  34 * become leafs in the future.
  35 *
  36 * The journal is multi-headed because we want to write data to the journal as
  37 * optimally as possible. It is nice to have nodes belonging to the same inode
  38 * in one LEB, so we may write data owned by different inodes to different
  39 * journal heads, although at present only one data head is used.
  40 *
  41 * For recovery reasons, the base head contains all inode nodes, all directory
  42 * entry nodes and all truncate nodes. This means that the other heads contain
  43 * only data nodes.
  44 *
  45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
  46 * time of commit, the bud is retained to continue to be used in the journal,
  47 * even though the "front" of the LEB is now indexed. In that case, the log
  48 * reference contains the offset where the bud starts for the purposes of the
  49 * journal.
  50 *
  51 * The journal size has to be limited, because the larger is the journal, the
  52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
  53 * takes (indexing in the TNC).
  54 *
  55 * All the journal write operations like 'ubifs_jnl_update()' here, which write
  56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
  57 * unclean reboots. Should the unclean reboot happen, the recovery code drops
  58 * all the nodes.
  59 */
  60
  61#include "ubifs.h"
  62
  63/**
  64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
  65 * @ino: the inode to zero out
  66 */
  67static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
  68{
  69	memset(ino->padding1, 0, 4);
  70	memset(ino->padding2, 0, 26);
  71}
  72
  73/**
  74 * zero_dent_node_unused - zero out unused fields of an on-flash directory
  75 *                         entry node.
  76 * @dent: the directory entry to zero out
  77 */
  78static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
  79{
  80	dent->padding1 = 0;
  81	memset(dent->padding2, 0, 4);
  82}
  83
  84/**
  85 * zero_data_node_unused - zero out unused fields of an on-flash data node.
  86 * @data: the data node to zero out
  87 */
  88static inline void zero_data_node_unused(struct ubifs_data_node *data)
  89{
  90	memset(data->padding, 0, 2);
  91}
  92
  93/**
  94 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
  95 *                         node.
  96 * @trun: the truncation node to zero out
  97 */
  98static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
  99{
 100	memset(trun->padding, 0, 12);
 101}
 102
 
 
 
 
 
 
 103/**
 104 * reserve_space - reserve space in the journal.
 105 * @c: UBIFS file-system description object
 106 * @jhead: journal head number
 107 * @len: node length
 108 *
 109 * This function reserves space in journal head @head. If the reservation
 110 * succeeded, the journal head stays locked and later has to be unlocked using
 111 * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock
 112 * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and
 113 * other negative error codes in case of other failures.
 114 */
 115static int reserve_space(struct ubifs_info *c, int jhead, int len)
 116{
 117	int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
 118	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
 119
 120	/*
 121	 * Typically, the base head has smaller nodes written to it, so it is
 122	 * better to try to allocate space at the ends of eraseblocks. This is
 123	 * what the squeeze parameter does.
 124	 */
 125	ubifs_assert(!c->ro_media && !c->ro_mount);
 126	squeeze = (jhead == BASEHD);
 127again:
 128	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 129
 130	if (c->ro_error) {
 131		err = -EROFS;
 132		goto out_unlock;
 133	}
 134
 135	avail = c->leb_size - wbuf->offs - wbuf->used;
 136	if (wbuf->lnum != -1 && avail >= len)
 137		return 0;
 138
 139	/*
 140	 * Write buffer wasn't seek'ed or there is no enough space - look for an
 141	 * LEB with some empty space.
 142	 */
 143	lnum = ubifs_find_free_space(c, len, &offs, squeeze);
 144	if (lnum >= 0)
 145		goto out;
 146
 147	err = lnum;
 148	if (err != -ENOSPC)
 149		goto out_unlock;
 150
 151	/*
 152	 * No free space, we have to run garbage collector to make
 153	 * some. But the write-buffer mutex has to be unlocked because
 154	 * GC also takes it.
 155	 */
 156	dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
 157	mutex_unlock(&wbuf->io_mutex);
 158
 159	lnum = ubifs_garbage_collect(c, 0);
 160	if (lnum < 0) {
 161		err = lnum;
 162		if (err != -ENOSPC)
 163			return err;
 164
 165		/*
 166		 * GC could not make a free LEB. But someone else may
 167		 * have allocated new bud for this journal head,
 168		 * because we dropped @wbuf->io_mutex, so try once
 169		 * again.
 170		 */
 171		dbg_jnl("GC couldn't make a free LEB for jhead %s",
 172			dbg_jhead(jhead));
 173		if (retries++ < 2) {
 174			dbg_jnl("retry (%d)", retries);
 175			goto again;
 176		}
 177
 178		dbg_jnl("return -ENOSPC");
 179		return err;
 180	}
 181
 182	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 183	dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
 184	avail = c->leb_size - wbuf->offs - wbuf->used;
 185
 186	if (wbuf->lnum != -1 && avail >= len) {
 187		/*
 188		 * Someone else has switched the journal head and we have
 189		 * enough space now. This happens when more than one process is
 190		 * trying to write to the same journal head at the same time.
 191		 */
 192		dbg_jnl("return LEB %d back, already have LEB %d:%d",
 193			lnum, wbuf->lnum, wbuf->offs + wbuf->used);
 194		err = ubifs_return_leb(c, lnum);
 195		if (err)
 196			goto out_unlock;
 197		return 0;
 198	}
 199
 200	offs = 0;
 201
 202out:
 203	/*
 204	 * Make sure we synchronize the write-buffer before we add the new bud
 205	 * to the log. Otherwise we may have a power cut after the log
 206	 * reference node for the last bud (@lnum) is written but before the
 207	 * write-buffer data are written to the next-to-last bud
 208	 * (@wbuf->lnum). And the effect would be that the recovery would see
 209	 * that there is corruption in the next-to-last bud.
 210	 */
 211	err = ubifs_wbuf_sync_nolock(wbuf);
 212	if (err)
 213		goto out_return;
 214	err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
 215	if (err)
 216		goto out_return;
 217	err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
 218	if (err)
 219		goto out_unlock;
 220
 221	return 0;
 222
 223out_unlock:
 224	mutex_unlock(&wbuf->io_mutex);
 225	return err;
 226
 227out_return:
 228	/* An error occurred and the LEB has to be returned to lprops */
 229	ubifs_assert(err < 0);
 230	err1 = ubifs_return_leb(c, lnum);
 231	if (err1 && err == -EAGAIN)
 232		/*
 233		 * Return original error code only if it is not %-EAGAIN,
 234		 * which is not really an error. Otherwise, return the error
 235		 * code of 'ubifs_return_leb()'.
 236		 */
 237		err = err1;
 238	mutex_unlock(&wbuf->io_mutex);
 239	return err;
 240}
 241
 242/**
 243 * write_node - write node to a journal head.
 244 * @c: UBIFS file-system description object
 245 * @jhead: journal head
 246 * @node: node to write
 247 * @len: node length
 248 * @lnum: LEB number written is returned here
 249 * @offs: offset written is returned here
 250 *
 251 * This function writes a node to reserved space of journal head @jhead.
 252 * Returns zero in case of success and a negative error code in case of
 253 * failure.
 254 */
 255static int write_node(struct ubifs_info *c, int jhead, void *node, int len,
 256		      int *lnum, int *offs)
 257{
 258	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
 
 
 
 
 
 
 
 
 
 
 259
 260	ubifs_assert(jhead != GCHD);
 
 261
 262	*lnum = c->jheads[jhead].wbuf.lnum;
 263	*offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
 
 264
 265	dbg_jnl("jhead %s, LEB %d:%d, len %d",
 266		dbg_jhead(jhead), *lnum, *offs, len);
 267	ubifs_prepare_node(c, node, len, 0);
 268
 269	return ubifs_wbuf_write_nolock(wbuf, node, len);
 270}
 271
 272/**
 273 * write_head - write data to a journal head.
 274 * @c: UBIFS file-system description object
 275 * @jhead: journal head
 276 * @buf: buffer to write
 277 * @len: length to write
 278 * @lnum: LEB number written is returned here
 279 * @offs: offset written is returned here
 280 * @sync: non-zero if the write-buffer has to by synchronized
 281 *
 282 * This function is the same as 'write_node()' but it does not assume the
 283 * buffer it is writing is a node, so it does not prepare it (which means
 284 * initializing common header and calculating CRC).
 285 */
 286static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
 287		      int *lnum, int *offs, int sync)
 288{
 289	int err;
 290	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
 291
 292	ubifs_assert(jhead != GCHD);
 293
 294	*lnum = c->jheads[jhead].wbuf.lnum;
 295	*offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
 296	dbg_jnl("jhead %s, LEB %d:%d, len %d",
 297		dbg_jhead(jhead), *lnum, *offs, len);
 298
 
 
 
 
 
 
 299	err = ubifs_wbuf_write_nolock(wbuf, buf, len);
 300	if (err)
 301		return err;
 302	if (sync)
 303		err = ubifs_wbuf_sync_nolock(wbuf);
 304	return err;
 305}
 306
 307/**
 308 * make_reservation - reserve journal space.
 309 * @c: UBIFS file-system description object
 310 * @jhead: journal head
 311 * @len: how many bytes to reserve
 312 *
 313 * This function makes space reservation in journal head @jhead. The function
 314 * takes the commit lock and locks the journal head, and the caller has to
 315 * unlock the head and finish the reservation with 'finish_reservation()'.
 316 * Returns zero in case of success and a negative error code in case of
 317 * failure.
 318 *
 319 * Note, the journal head may be unlocked as soon as the data is written, while
 320 * the commit lock has to be released after the data has been added to the
 321 * TNC.
 322 */
 323static int make_reservation(struct ubifs_info *c, int jhead, int len)
 324{
 325	int err, cmt_retries = 0, nospc_retries = 0;
 326
 327again:
 328	down_read(&c->commit_sem);
 329	err = reserve_space(c, jhead, len);
 330	if (!err)
 
 331		return 0;
 332	up_read(&c->commit_sem);
 333
 334	if (err == -ENOSPC) {
 335		/*
 336		 * GC could not make any progress. We should try to commit
 337		 * once because it could make some dirty space and GC would
 338		 * make progress, so make the error -EAGAIN so that the below
 339		 * will commit and re-try.
 340		 */
 341		if (nospc_retries++ < 2) {
 342			dbg_jnl("no space, retry");
 343			err = -EAGAIN;
 344		}
 345
 346		/*
 347		 * This means that the budgeting is incorrect. We always have
 348		 * to be able to write to the media, because all operations are
 349		 * budgeted. Deletions are not budgeted, though, but we reserve
 350		 * an extra LEB for them.
 351		 */
 352	}
 353
 354	if (err != -EAGAIN)
 355		goto out;
 356
 357	/*
 358	 * -EAGAIN means that the journal is full or too large, or the above
 359	 * code wants to do one commit. Do this and re-try.
 360	 */
 361	if (cmt_retries > 128) {
 362		/*
 363		 * This should not happen unless the journal size limitations
 364		 * are too tough.
 365		 */
 366		ubifs_err(c, "stuck in space allocation");
 367		err = -ENOSPC;
 368		goto out;
 369	} else if (cmt_retries > 32)
 370		ubifs_warn(c, "too many space allocation re-tries (%d)",
 371			   cmt_retries);
 372
 373	dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
 374		cmt_retries);
 375	cmt_retries += 1;
 376
 377	err = ubifs_run_commit(c);
 378	if (err)
 379		return err;
 380	goto again;
 381
 382out:
 383	ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
 384		  len, jhead, err);
 385	if (err == -ENOSPC) {
 386		/* This are some budgeting problems, print useful information */
 387		down_write(&c->commit_sem);
 388		dump_stack();
 389		ubifs_dump_budg(c, &c->bi);
 390		ubifs_dump_lprops(c);
 391		cmt_retries = dbg_check_lprops(c);
 392		up_write(&c->commit_sem);
 393	}
 394	return err;
 395}
 396
 397/**
 398 * release_head - release a journal head.
 399 * @c: UBIFS file-system description object
 400 * @jhead: journal head
 401 *
 402 * This function releases journal head @jhead which was locked by
 403 * the 'make_reservation()' function. It has to be called after each successful
 404 * 'make_reservation()' invocation.
 405 */
 406static inline void release_head(struct ubifs_info *c, int jhead)
 407{
 408	mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
 409}
 410
 411/**
 412 * finish_reservation - finish a reservation.
 413 * @c: UBIFS file-system description object
 414 *
 415 * This function finishes journal space reservation. It must be called after
 416 * 'make_reservation()'.
 417 */
 418static void finish_reservation(struct ubifs_info *c)
 419{
 420	up_read(&c->commit_sem);
 421}
 422
 423/**
 424 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
 425 * @mode: inode mode
 426 */
 427static int get_dent_type(int mode)
 428{
 429	switch (mode & S_IFMT) {
 430	case S_IFREG:
 431		return UBIFS_ITYPE_REG;
 432	case S_IFDIR:
 433		return UBIFS_ITYPE_DIR;
 434	case S_IFLNK:
 435		return UBIFS_ITYPE_LNK;
 436	case S_IFBLK:
 437		return UBIFS_ITYPE_BLK;
 438	case S_IFCHR:
 439		return UBIFS_ITYPE_CHR;
 440	case S_IFIFO:
 441		return UBIFS_ITYPE_FIFO;
 442	case S_IFSOCK:
 443		return UBIFS_ITYPE_SOCK;
 444	default:
 445		BUG();
 446	}
 447	return 0;
 448}
 449
 450/**
 451 * pack_inode - pack an inode node.
 452 * @c: UBIFS file-system description object
 453 * @ino: buffer in which to pack inode node
 454 * @inode: inode to pack
 455 * @last: indicates the last node of the group
 456 */
 457static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
 458		       const struct inode *inode, int last)
 459{
 460	int data_len = 0, last_reference = !inode->i_nlink;
 461	struct ubifs_inode *ui = ubifs_inode(inode);
 462
 463	ino->ch.node_type = UBIFS_INO_NODE;
 464	ino_key_init_flash(c, &ino->key, inode->i_ino);
 465	ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
 466	ino->atime_sec  = cpu_to_le64(inode->i_atime.tv_sec);
 467	ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
 468	ino->ctime_sec  = cpu_to_le64(inode->i_ctime.tv_sec);
 469	ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
 470	ino->mtime_sec  = cpu_to_le64(inode->i_mtime.tv_sec);
 471	ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
 472	ino->uid   = cpu_to_le32(i_uid_read(inode));
 473	ino->gid   = cpu_to_le32(i_gid_read(inode));
 474	ino->mode  = cpu_to_le32(inode->i_mode);
 475	ino->flags = cpu_to_le32(ui->flags);
 476	ino->size  = cpu_to_le64(ui->ui_size);
 477	ino->nlink = cpu_to_le32(inode->i_nlink);
 478	ino->compr_type  = cpu_to_le16(ui->compr_type);
 479	ino->data_len    = cpu_to_le32(ui->data_len);
 480	ino->xattr_cnt   = cpu_to_le32(ui->xattr_cnt);
 481	ino->xattr_size  = cpu_to_le32(ui->xattr_size);
 482	ino->xattr_names = cpu_to_le32(ui->xattr_names);
 483	zero_ino_node_unused(ino);
 484
 485	/*
 486	 * Drop the attached data if this is a deletion inode, the data is not
 487	 * needed anymore.
 488	 */
 489	if (!last_reference) {
 490		memcpy(ino->data, ui->data, ui->data_len);
 491		data_len = ui->data_len;
 492	}
 493
 494	ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
 495}
 496
 497/**
 498 * mark_inode_clean - mark UBIFS inode as clean.
 499 * @c: UBIFS file-system description object
 500 * @ui: UBIFS inode to mark as clean
 501 *
 502 * This helper function marks UBIFS inode @ui as clean by cleaning the
 503 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
 504 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
 505 * just do nothing.
 506 */
 507static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
 508{
 509	if (ui->dirty)
 510		ubifs_release_dirty_inode_budget(c, ui);
 511	ui->dirty = 0;
 512}
 513
 
 
 
 
 
 
 
 
 514/**
 515 * ubifs_jnl_update - update inode.
 516 * @c: UBIFS file-system description object
 517 * @dir: parent inode or host inode in case of extended attributes
 518 * @nm: directory entry name
 519 * @inode: inode to update
 520 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
 521 * @xent: non-zero if the directory entry is an extended attribute entry
 522 *
 523 * This function updates an inode by writing a directory entry (or extended
 524 * attribute entry), the inode itself, and the parent directory inode (or the
 525 * host inode) to the journal.
 526 *
 527 * The function writes the host inode @dir last, which is important in case of
 528 * extended attributes. Indeed, then we guarantee that if the host inode gets
 529 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
 530 * the extended attribute inode gets flushed too. And this is exactly what the
 531 * user expects - synchronizing the host inode synchronizes its extended
 532 * attributes. Similarly, this guarantees that if @dir is synchronized, its
 533 * directory entry corresponding to @nm gets synchronized too.
 534 *
 535 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
 536 * function synchronizes the write-buffer.
 537 *
 538 * This function marks the @dir and @inode inodes as clean and returns zero on
 539 * success. In case of failure, a negative error code is returned.
 540 */
 541int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
 542		     const struct qstr *nm, const struct inode *inode,
 543		     int deletion, int xent)
 544{
 545	int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
 546	int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
 547	int last_reference = !!(deletion && inode->i_nlink == 0);
 548	struct ubifs_inode *ui = ubifs_inode(inode);
 549	struct ubifs_inode *host_ui = ubifs_inode(dir);
 550	struct ubifs_dent_node *dent;
 551	struct ubifs_ino_node *ino;
 552	union ubifs_key dent_key, ino_key;
 
 
 
 553
 554	dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu",
 555		inode->i_ino, nm->len, nm->name, ui->data_len, dir->i_ino);
 556	ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
 557
 558	dlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
 559	ilen = UBIFS_INO_NODE_SZ;
 560
 561	/*
 562	 * If the last reference to the inode is being deleted, then there is
 563	 * no need to attach and write inode data, it is being deleted anyway.
 564	 * And if the inode is being deleted, no need to synchronize
 565	 * write-buffer even if the inode is synchronous.
 566	 */
 567	if (!last_reference) {
 568		ilen += ui->data_len;
 569		sync |= IS_SYNC(inode);
 570	}
 571
 572	aligned_dlen = ALIGN(dlen, 8);
 573	aligned_ilen = ALIGN(ilen, 8);
 574
 575	len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
 576	/* Make sure to also account for extended attributes */
 577	len += host_ui->data_len;
 
 
 
 578
 579	dent = kmalloc(len, GFP_NOFS);
 580	if (!dent)
 581		return -ENOMEM;
 582
 583	/* Make reservation before allocating sequence numbers */
 584	err = make_reservation(c, BASEHD, len);
 585	if (err)
 586		goto out_free;
 587
 588	if (!xent) {
 589		dent->ch.node_type = UBIFS_DENT_NODE;
 590		dent_key_init(c, &dent_key, dir->i_ino, nm);
 
 
 
 591	} else {
 592		dent->ch.node_type = UBIFS_XENT_NODE;
 593		xent_key_init(c, &dent_key, dir->i_ino, nm);
 594	}
 595
 596	key_write(c, &dent_key, dent->key);
 597	dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
 598	dent->type = get_dent_type(inode->i_mode);
 599	dent->nlen = cpu_to_le16(nm->len);
 600	memcpy(dent->name, nm->name, nm->len);
 601	dent->name[nm->len] = '\0';
 
 
 602	zero_dent_node_unused(dent);
 603	ubifs_prep_grp_node(c, dent, dlen, 0);
 
 
 
 604
 605	ino = (void *)dent + aligned_dlen;
 606	pack_inode(c, ino, inode, 0);
 
 
 
 
 607	ino = (void *)ino + aligned_ilen;
 608	pack_inode(c, ino, dir, 1);
 
 
 
 609
 610	if (last_reference) {
 611		err = ubifs_add_orphan(c, inode->i_ino);
 612		if (err) {
 613			release_head(c, BASEHD);
 614			goto out_finish;
 615		}
 616		ui->del_cmtno = c->cmt_no;
 617	}
 618
 619	err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
 620	if (err)
 621		goto out_release;
 622	if (!sync) {
 623		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
 624
 625		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
 626		ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
 627	}
 628	release_head(c, BASEHD);
 629	kfree(dent);
 
 630
 631	if (deletion) {
 632		err = ubifs_tnc_remove_nm(c, &dent_key, nm);
 
 
 
 633		if (err)
 634			goto out_ro;
 635		err = ubifs_add_dirt(c, lnum, dlen);
 636	} else
 637		err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm);
 
 638	if (err)
 639		goto out_ro;
 640
 641	/*
 642	 * Note, we do not remove the inode from TNC even if the last reference
 643	 * to it has just been deleted, because the inode may still be opened.
 644	 * Instead, the inode has been added to orphan lists and the orphan
 645	 * subsystem will take further care about it.
 646	 */
 647	ino_key_init(c, &ino_key, inode->i_ino);
 648	ino_offs = dent_offs + aligned_dlen;
 649	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen);
 650	if (err)
 651		goto out_ro;
 652
 653	ino_key_init(c, &ino_key, dir->i_ino);
 654	ino_offs += aligned_ilen;
 655	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
 656			    UBIFS_INO_NODE_SZ + host_ui->data_len);
 657	if (err)
 658		goto out_ro;
 659
 660	finish_reservation(c);
 661	spin_lock(&ui->ui_lock);
 662	ui->synced_i_size = ui->ui_size;
 663	spin_unlock(&ui->ui_lock);
 
 
 
 
 
 664	mark_inode_clean(c, ui);
 665	mark_inode_clean(c, host_ui);
 666	return 0;
 667
 668out_finish:
 669	finish_reservation(c);
 670out_free:
 671	kfree(dent);
 672	return err;
 673
 674out_release:
 675	release_head(c, BASEHD);
 676	kfree(dent);
 677out_ro:
 678	ubifs_ro_mode(c, err);
 679	if (last_reference)
 680		ubifs_delete_orphan(c, inode->i_ino);
 681	finish_reservation(c);
 682	return err;
 683}
 684
 685/**
 686 * ubifs_jnl_write_data - write a data node to the journal.
 687 * @c: UBIFS file-system description object
 688 * @inode: inode the data node belongs to
 689 * @key: node key
 690 * @buf: buffer to write
 691 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
 692 *
 693 * This function writes a data node to the journal. Returns %0 if the data node
 694 * was successfully written, and a negative error code in case of failure.
 695 */
 696int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
 697			 const union ubifs_key *key, const void *buf, int len)
 698{
 699	struct ubifs_data_node *data;
 700	int err, lnum, offs, compr_type, out_len;
 701	int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
 
 702	struct ubifs_inode *ui = ubifs_inode(inode);
 
 
 703
 704	dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
 705		(unsigned long)key_inum(c, key), key_block(c, key), len);
 706	ubifs_assert(len <= UBIFS_BLOCK_SIZE);
 707
 708	data = kmalloc(dlen, GFP_NOFS | __GFP_NOWARN);
 
 
 
 
 
 709	if (!data) {
 710		/*
 711		 * Fall-back to the write reserve buffer. Note, we might be
 712		 * currently on the memory reclaim path, when the kernel is
 713		 * trying to free some memory by writing out dirty pages. The
 714		 * write reserve buffer helps us to guarantee that we are
 715		 * always able to write the data.
 716		 */
 717		allocated = 0;
 718		mutex_lock(&c->write_reserve_mutex);
 719		data = c->write_reserve_buf;
 720	}
 721
 722	data->ch.node_type = UBIFS_DATA_NODE;
 723	key_write(c, key, &data->key);
 724	data->size = cpu_to_le32(len);
 725	zero_data_node_unused(data);
 726
 727	if (!(ui->flags & UBIFS_COMPR_FL))
 728		/* Compression is disabled for this inode */
 729		compr_type = UBIFS_COMPR_NONE;
 730	else
 731		compr_type = ui->compr_type;
 732
 733	out_len = dlen - UBIFS_DATA_NODE_SZ;
 734	ubifs_compress(c, buf, len, &data->data, &out_len, &compr_type);
 735	ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
 
 
 
 
 
 
 
 
 
 
 736
 737	dlen = UBIFS_DATA_NODE_SZ + out_len;
 
 
 
 
 
 738	data->compr_type = cpu_to_le16(compr_type);
 739
 740	/* Make reservation before allocating sequence numbers */
 741	err = make_reservation(c, DATAHD, dlen);
 742	if (err)
 743		goto out_free;
 744
 745	err = write_node(c, DATAHD, data, dlen, &lnum, &offs);
 
 
 
 
 
 746	if (err)
 747		goto out_release;
 
 748	ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
 749	release_head(c, DATAHD);
 750
 751	err = ubifs_tnc_add(c, key, lnum, offs, dlen);
 
 
 752	if (err)
 753		goto out_ro;
 754
 755	finish_reservation(c);
 756	if (!allocated)
 757		mutex_unlock(&c->write_reserve_mutex);
 758	else
 759		kfree(data);
 760	return 0;
 761
 762out_release:
 763	release_head(c, DATAHD);
 764out_ro:
 765	ubifs_ro_mode(c, err);
 766	finish_reservation(c);
 767out_free:
 768	if (!allocated)
 769		mutex_unlock(&c->write_reserve_mutex);
 770	else
 771		kfree(data);
 772	return err;
 773}
 774
 775/**
 776 * ubifs_jnl_write_inode - flush inode to the journal.
 777 * @c: UBIFS file-system description object
 778 * @inode: inode to flush
 779 *
 780 * This function writes inode @inode to the journal. If the inode is
 781 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
 782 * success and a negative error code in case of failure.
 783 */
 784int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
 785{
 786	int err, lnum, offs;
 787	struct ubifs_ino_node *ino;
 788	struct ubifs_inode *ui = ubifs_inode(inode);
 789	int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink;
 
 
 
 790
 791	dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
 792
 793	/*
 794	 * If the inode is being deleted, do not write the attached data. No
 795	 * need to synchronize the write-buffer either.
 796	 */
 797	if (!last_reference) {
 798		len += ui->data_len;
 799		sync = IS_SYNC(inode);
 
 
 800	}
 801	ino = kmalloc(len, GFP_NOFS);
 
 
 
 
 
 
 802	if (!ino)
 803		return -ENOMEM;
 804
 805	/* Make reservation before allocating sequence numbers */
 806	err = make_reservation(c, BASEHD, len);
 807	if (err)
 808		goto out_free;
 809
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 810	pack_inode(c, ino, inode, 1);
 811	err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
 
 
 
 
 812	if (err)
 813		goto out_release;
 814	if (!sync)
 815		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
 816					  inode->i_ino);
 817	release_head(c, BASEHD);
 818
 
 
 819	if (last_reference) {
 820		err = ubifs_tnc_remove_ino(c, inode->i_ino);
 821		if (err)
 822			goto out_ro;
 823		ubifs_delete_orphan(c, inode->i_ino);
 824		err = ubifs_add_dirt(c, lnum, len);
 825	} else {
 826		union ubifs_key key;
 827
 828		ino_key_init(c, &key, inode->i_ino);
 829		err = ubifs_tnc_add(c, &key, lnum, offs, len);
 830	}
 831	if (err)
 832		goto out_ro;
 833
 834	finish_reservation(c);
 835	spin_lock(&ui->ui_lock);
 836	ui->synced_i_size = ui->ui_size;
 837	spin_unlock(&ui->ui_lock);
 838	kfree(ino);
 839	return 0;
 840
 841out_release:
 842	release_head(c, BASEHD);
 843out_ro:
 844	ubifs_ro_mode(c, err);
 845	finish_reservation(c);
 846out_free:
 847	kfree(ino);
 848	return err;
 849}
 850
 851/**
 852 * ubifs_jnl_delete_inode - delete an inode.
 853 * @c: UBIFS file-system description object
 854 * @inode: inode to delete
 855 *
 856 * This function deletes inode @inode which includes removing it from orphans,
 857 * deleting it from TNC and, in some cases, writing a deletion inode to the
 858 * journal.
 859 *
 860 * When regular file inodes are unlinked or a directory inode is removed, the
 861 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
 862 * direntry to the media, and adds the inode to orphans. After this, when the
 863 * last reference to this inode has been dropped, this function is called. In
 864 * general, it has to write one more deletion inode to the media, because if
 865 * a commit happened between 'ubifs_jnl_update()' and
 866 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
 867 * anymore, and in fact it might not be on the flash anymore, because it might
 868 * have been garbage-collected already. And for optimization reasons UBIFS does
 869 * not read the orphan area if it has been unmounted cleanly, so it would have
 870 * no indication in the journal that there is a deleted inode which has to be
 871 * removed from TNC.
 872 *
 873 * However, if there was no commit between 'ubifs_jnl_update()' and
 874 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
 875 * inode to the media for the second time. And this is quite a typical case.
 876 *
 877 * This function returns zero in case of success and a negative error code in
 878 * case of failure.
 879 */
 880int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
 881{
 882	int err;
 883	struct ubifs_inode *ui = ubifs_inode(inode);
 884
 885	ubifs_assert(inode->i_nlink == 0);
 886
 887	if (ui->del_cmtno != c->cmt_no)
 888		/* A commit happened for sure */
 889		return ubifs_jnl_write_inode(c, inode);
 890
 891	down_read(&c->commit_sem);
 892	/*
 893	 * Check commit number again, because the first test has been done
 894	 * without @c->commit_sem, so a commit might have happened.
 895	 */
 896	if (ui->del_cmtno != c->cmt_no) {
 897		up_read(&c->commit_sem);
 898		return ubifs_jnl_write_inode(c, inode);
 899	}
 900
 901	err = ubifs_tnc_remove_ino(c, inode->i_ino);
 902	if (err)
 903		ubifs_ro_mode(c, err);
 904	else
 905		ubifs_delete_orphan(c, inode->i_ino);
 906	up_read(&c->commit_sem);
 907	return err;
 908}
 909
 910/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 911 * ubifs_jnl_rename - rename a directory entry.
 912 * @c: UBIFS file-system description object
 913 * @old_dir: parent inode of directory entry to rename
 914 * @old_dentry: directory entry to rename
 915 * @new_dir: parent inode of directory entry to rename
 916 * @new_dentry: new directory entry (or directory entry to replace)
 917 * @sync: non-zero if the write-buffer has to be synchronized
 918 *
 919 * This function implements the re-name operation which may involve writing up
 920 * to 3 inodes and 2 directory entries. It marks the written inodes as clean
 921 * and returns zero on success. In case of failure, a negative error code is
 922 * returned.
 923 */
 924int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
 925		     const struct dentry *old_dentry,
 
 926		     const struct inode *new_dir,
 927		     const struct dentry *new_dentry, int sync)
 
 
 928{
 929	void *p;
 930	union ubifs_key key;
 931	struct ubifs_dent_node *dent, *dent2;
 932	int err, dlen1, dlen2, ilen, lnum, offs, len;
 933	const struct inode *old_inode = d_inode(old_dentry);
 934	const struct inode *new_inode = d_inode(new_dentry);
 935	int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
 936	int last_reference = !!(new_inode && new_inode->i_nlink == 0);
 937	int move = (old_dir != new_dir);
 938	struct ubifs_inode *uninitialized_var(new_ui);
 
 
 
 
 
 
 
 
 
 
 939
 940	dbg_jnl("dent '%pd' in dir ino %lu to dent '%pd' in dir ino %lu",
 941		old_dentry, old_dir->i_ino, new_dentry, new_dir->i_ino);
 942	ubifs_assert(ubifs_inode(old_dir)->data_len == 0);
 943	ubifs_assert(ubifs_inode(new_dir)->data_len == 0);
 944	ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
 945	ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
 946
 947	dlen1 = UBIFS_DENT_NODE_SZ + new_dentry->d_name.len + 1;
 948	dlen2 = UBIFS_DENT_NODE_SZ + old_dentry->d_name.len + 1;
 949	if (new_inode) {
 950		new_ui = ubifs_inode(new_inode);
 951		ubifs_assert(mutex_is_locked(&new_ui->ui_mutex));
 952		ilen = UBIFS_INO_NODE_SZ;
 953		if (!last_reference)
 954			ilen += new_ui->data_len;
 955	} else
 956		ilen = 0;
 957
 958	aligned_dlen1 = ALIGN(dlen1, 8);
 959	aligned_dlen2 = ALIGN(dlen2, 8);
 960	len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
 961	if (old_dir != new_dir)
 962		len += plen;
 963	dent = kmalloc(len, GFP_NOFS);
 
 
 
 964	if (!dent)
 965		return -ENOMEM;
 966
 967	/* Make reservation before allocating sequence numbers */
 968	err = make_reservation(c, BASEHD, len);
 969	if (err)
 970		goto out_free;
 971
 972	/* Make new dent */
 973	dent->ch.node_type = UBIFS_DENT_NODE;
 974	dent_key_init_flash(c, &dent->key, new_dir->i_ino, &new_dentry->d_name);
 975	dent->inum = cpu_to_le64(old_inode->i_ino);
 976	dent->type = get_dent_type(old_inode->i_mode);
 977	dent->nlen = cpu_to_le16(new_dentry->d_name.len);
 978	memcpy(dent->name, new_dentry->d_name.name, new_dentry->d_name.len);
 979	dent->name[new_dentry->d_name.len] = '\0';
 
 980	zero_dent_node_unused(dent);
 981	ubifs_prep_grp_node(c, dent, dlen1, 0);
 
 
 
 982
 983	/* Make deletion dent */
 984	dent2 = (void *)dent + aligned_dlen1;
 985	dent2->ch.node_type = UBIFS_DENT_NODE;
 986	dent_key_init_flash(c, &dent2->key, old_dir->i_ino,
 987			    &old_dentry->d_name);
 988	dent2->inum = 0;
 989	dent2->type = DT_UNKNOWN;
 990	dent2->nlen = cpu_to_le16(old_dentry->d_name.len);
 991	memcpy(dent2->name, old_dentry->d_name.name, old_dentry->d_name.len);
 992	dent2->name[old_dentry->d_name.len] = '\0';
 
 
 
 
 
 
 
 993	zero_dent_node_unused(dent2);
 994	ubifs_prep_grp_node(c, dent2, dlen2, 0);
 
 
 
 995
 996	p = (void *)dent2 + aligned_dlen2;
 997	if (new_inode) {
 998		pack_inode(c, p, new_inode, 0);
 
 
 
 
 999		p += ALIGN(ilen, 8);
1000	}
1001
1002	if (!move)
1003		pack_inode(c, p, old_dir, 1);
1004	else {
 
 
 
1005		pack_inode(c, p, old_dir, 0);
 
 
 
 
1006		p += ALIGN(plen, 8);
1007		pack_inode(c, p, new_dir, 1);
 
 
 
1008	}
1009
1010	if (last_reference) {
1011		err = ubifs_add_orphan(c, new_inode->i_ino);
1012		if (err) {
1013			release_head(c, BASEHD);
1014			goto out_finish;
1015		}
1016		new_ui->del_cmtno = c->cmt_no;
1017	}
1018
1019	err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1020	if (err)
1021		goto out_release;
1022	if (!sync) {
1023		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1024
1025		ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1026		ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1027		if (new_inode)
1028			ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1029						  new_inode->i_ino);
1030	}
1031	release_head(c, BASEHD);
1032
1033	dent_key_init(c, &key, new_dir->i_ino, &new_dentry->d_name);
1034	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, &new_dentry->d_name);
 
 
1035	if (err)
1036		goto out_ro;
1037
1038	err = ubifs_add_dirt(c, lnum, dlen2);
1039	if (err)
1040		goto out_ro;
 
 
 
 
 
 
 
 
 
1041
1042	dent_key_init(c, &key, old_dir->i_ino, &old_dentry->d_name);
1043	err = ubifs_tnc_remove_nm(c, &key, &old_dentry->d_name);
1044	if (err)
1045		goto out_ro;
 
1046
1047	offs += aligned_dlen1 + aligned_dlen2;
1048	if (new_inode) {
1049		ino_key_init(c, &key, new_inode->i_ino);
1050		err = ubifs_tnc_add(c, &key, lnum, offs, ilen);
1051		if (err)
1052			goto out_ro;
1053		offs += ALIGN(ilen, 8);
1054	}
1055
1056	ino_key_init(c, &key, old_dir->i_ino);
1057	err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1058	if (err)
1059		goto out_ro;
1060
1061	if (old_dir != new_dir) {
1062		offs += ALIGN(plen, 8);
1063		ino_key_init(c, &key, new_dir->i_ino);
1064		err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1065		if (err)
1066			goto out_ro;
1067	}
1068
1069	finish_reservation(c);
1070	if (new_inode) {
1071		mark_inode_clean(c, new_ui);
1072		spin_lock(&new_ui->ui_lock);
1073		new_ui->synced_i_size = new_ui->ui_size;
1074		spin_unlock(&new_ui->ui_lock);
1075	}
1076	mark_inode_clean(c, ubifs_inode(old_dir));
1077	if (move)
1078		mark_inode_clean(c, ubifs_inode(new_dir));
1079	kfree(dent);
1080	return 0;
1081
1082out_release:
1083	release_head(c, BASEHD);
1084out_ro:
1085	ubifs_ro_mode(c, err);
1086	if (last_reference)
1087		ubifs_delete_orphan(c, new_inode->i_ino);
1088out_finish:
1089	finish_reservation(c);
1090out_free:
1091	kfree(dent);
1092	return err;
1093}
1094
1095/**
1096 * recomp_data_node - re-compress a truncated data node.
 
 
 
1097 * @dn: data node to re-compress
1098 * @new_len: new length
1099 *
1100 * This function is used when an inode is truncated and the last data node of
1101 * the inode has to be re-compressed and re-written.
1102 */
1103static int recomp_data_node(const struct ubifs_info *c,
1104			    struct ubifs_data_node *dn, int *new_len)
 
1105{
1106	void *buf;
1107	int err, len, compr_type, out_len;
1108
1109	out_len = le32_to_cpu(dn->size);
1110	buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS);
1111	if (!buf)
1112		return -ENOMEM;
1113
1114	len = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1115	compr_type = le16_to_cpu(dn->compr_type);
1116	err = ubifs_decompress(c, &dn->data, len, buf, &out_len, compr_type);
1117	if (err)
1118		goto out;
1119
1120	ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1121	ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122	dn->compr_type = cpu_to_le16(compr_type);
1123	dn->size = cpu_to_le32(*new_len);
1124	*new_len = UBIFS_DATA_NODE_SZ + out_len;
 
1125out:
1126	kfree(buf);
1127	return err;
1128}
1129
1130/**
1131 * ubifs_jnl_truncate - update the journal for a truncation.
1132 * @c: UBIFS file-system description object
1133 * @inode: inode to truncate
1134 * @old_size: old size
1135 * @new_size: new size
1136 *
1137 * When the size of a file decreases due to truncation, a truncation node is
1138 * written, the journal tree is updated, and the last data block is re-written
1139 * if it has been affected. The inode is also updated in order to synchronize
1140 * the new inode size.
1141 *
1142 * This function marks the inode as clean and returns zero on success. In case
1143 * of failure, a negative error code is returned.
1144 */
1145int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1146		       loff_t old_size, loff_t new_size)
1147{
1148	union ubifs_key key, to_key;
1149	struct ubifs_ino_node *ino;
1150	struct ubifs_trun_node *trun;
1151	struct ubifs_data_node *uninitialized_var(dn);
1152	int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1153	struct ubifs_inode *ui = ubifs_inode(inode);
1154	ino_t inum = inode->i_ino;
1155	unsigned int blk;
 
 
1156
1157	dbg_jnl("ino %lu, size %lld -> %lld",
1158		(unsigned long)inum, old_size, new_size);
1159	ubifs_assert(!ui->data_len);
1160	ubifs_assert(S_ISREG(inode->i_mode));
1161	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
1162
1163	sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1164	     UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
 
 
 
1165	ino = kmalloc(sz, GFP_NOFS);
1166	if (!ino)
1167		return -ENOMEM;
1168
1169	trun = (void *)ino + UBIFS_INO_NODE_SZ;
1170	trun->ch.node_type = UBIFS_TRUN_NODE;
1171	trun->inum = cpu_to_le32(inum);
1172	trun->old_size = cpu_to_le64(old_size);
1173	trun->new_size = cpu_to_le64(new_size);
1174	zero_trun_node_unused(trun);
1175
1176	dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1177	if (dlen) {
1178		/* Get last data block so it can be truncated */
1179		dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1180		blk = new_size >> UBIFS_BLOCK_SHIFT;
1181		data_key_init(c, &key, inum, blk);
1182		dbg_jnlk(&key, "last block key ");
1183		err = ubifs_tnc_lookup(c, &key, dn);
1184		if (err == -ENOENT)
1185			dlen = 0; /* Not found (so it is a hole) */
1186		else if (err)
1187			goto out_free;
1188		else {
1189			if (le32_to_cpu(dn->size) <= dlen)
 
 
 
 
 
 
 
 
 
1190				dlen = 0; /* Nothing to do */
1191			else {
1192				int compr_type = le16_to_cpu(dn->compr_type);
1193
1194				if (compr_type != UBIFS_COMPR_NONE) {
1195					err = recomp_data_node(c, dn, &dlen);
1196					if (err)
1197						goto out_free;
1198				} else {
1199					dn->size = cpu_to_le32(dlen);
1200					dlen += UBIFS_DATA_NODE_SZ;
1201				}
1202				zero_data_node_unused(dn);
1203			}
1204		}
1205	}
1206
1207	/* Must make reservation before allocating sequence numbers */
1208	len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1209	if (dlen)
 
 
 
1210		len += dlen;
 
1211	err = make_reservation(c, BASEHD, len);
1212	if (err)
1213		goto out_free;
1214
1215	pack_inode(c, ino, inode, 0);
 
 
 
 
1216	ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1217	if (dlen)
1218		ubifs_prep_grp_node(c, dn, dlen, 1);
 
 
 
 
1219
1220	err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1221	if (err)
1222		goto out_release;
1223	if (!sync)
1224		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1225	release_head(c, BASEHD);
1226
 
 
1227	if (dlen) {
1228		sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1229		err = ubifs_tnc_add(c, &key, lnum, sz, dlen);
1230		if (err)
1231			goto out_ro;
1232	}
1233
1234	ino_key_init(c, &key, inum);
1235	err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ);
1236	if (err)
1237		goto out_ro;
1238
1239	err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1240	if (err)
1241		goto out_ro;
1242
1243	bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1244	blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1245	data_key_init(c, &key, inum, blk);
1246
1247	bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1248	blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1249	data_key_init(c, &to_key, inum, blk);
1250
1251	err = ubifs_tnc_remove_range(c, &key, &to_key);
1252	if (err)
1253		goto out_ro;
1254
1255	finish_reservation(c);
1256	spin_lock(&ui->ui_lock);
1257	ui->synced_i_size = ui->ui_size;
1258	spin_unlock(&ui->ui_lock);
1259	mark_inode_clean(c, ui);
1260	kfree(ino);
1261	return 0;
1262
1263out_release:
1264	release_head(c, BASEHD);
1265out_ro:
1266	ubifs_ro_mode(c, err);
1267	finish_reservation(c);
1268out_free:
1269	kfree(ino);
1270	return err;
1271}
1272
1273
1274/**
1275 * ubifs_jnl_delete_xattr - delete an extended attribute.
1276 * @c: UBIFS file-system description object
1277 * @host: host inode
1278 * @inode: extended attribute inode
1279 * @nm: extended attribute entry name
1280 *
1281 * This function delete an extended attribute which is very similar to
1282 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1283 * updates the target inode. Returns zero in case of success and a negative
1284 * error code in case of failure.
1285 */
1286int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1287			   const struct inode *inode, const struct qstr *nm)
 
1288{
1289	int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen;
1290	struct ubifs_dent_node *xent;
1291	struct ubifs_ino_node *ino;
1292	union ubifs_key xent_key, key1, key2;
1293	int sync = IS_DIRSYNC(host);
1294	struct ubifs_inode *host_ui = ubifs_inode(host);
 
1295
1296	dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d",
1297		host->i_ino, inode->i_ino, nm->name,
1298		ubifs_inode(inode)->data_len);
1299	ubifs_assert(inode->i_nlink == 0);
1300	ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1301
1302	/*
1303	 * Since we are deleting the inode, we do not bother to attach any data
1304	 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1305	 */
1306	xlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
1307	aligned_xlen = ALIGN(xlen, 8);
1308	hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1309	len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1310
1311	xent = kmalloc(len, GFP_NOFS);
 
 
1312	if (!xent)
1313		return -ENOMEM;
1314
1315	/* Make reservation before allocating sequence numbers */
1316	err = make_reservation(c, BASEHD, len);
1317	if (err) {
1318		kfree(xent);
1319		return err;
1320	}
1321
1322	xent->ch.node_type = UBIFS_XENT_NODE;
1323	xent_key_init(c, &xent_key, host->i_ino, nm);
1324	key_write(c, &xent_key, xent->key);
1325	xent->inum = 0;
1326	xent->type = get_dent_type(inode->i_mode);
1327	xent->nlen = cpu_to_le16(nm->len);
1328	memcpy(xent->name, nm->name, nm->len);
1329	xent->name[nm->len] = '\0';
1330	zero_dent_node_unused(xent);
1331	ubifs_prep_grp_node(c, xent, xlen, 0);
1332
1333	ino = (void *)xent + aligned_xlen;
1334	pack_inode(c, ino, inode, 0);
1335	ino = (void *)ino + UBIFS_INO_NODE_SZ;
1336	pack_inode(c, ino, host, 1);
 
 
 
1337
1338	err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync);
1339	if (!sync && !err)
1340		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1341	release_head(c, BASEHD);
 
 
1342	kfree(xent);
1343	if (err)
1344		goto out_ro;
1345
1346	/* Remove the extended attribute entry from TNC */
1347	err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1348	if (err)
1349		goto out_ro;
1350	err = ubifs_add_dirt(c, lnum, xlen);
1351	if (err)
1352		goto out_ro;
1353
1354	/*
1355	 * Remove all nodes belonging to the extended attribute inode from TNC.
1356	 * Well, there actually must be only one node - the inode itself.
1357	 */
1358	lowest_ino_key(c, &key1, inode->i_ino);
1359	highest_ino_key(c, &key2, inode->i_ino);
1360	err = ubifs_tnc_remove_range(c, &key1, &key2);
1361	if (err)
1362		goto out_ro;
1363	err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1364	if (err)
1365		goto out_ro;
1366
1367	/* And update TNC with the new host inode position */
1368	ino_key_init(c, &key1, host->i_ino);
1369	err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen);
1370	if (err)
1371		goto out_ro;
1372
1373	finish_reservation(c);
1374	spin_lock(&host_ui->ui_lock);
1375	host_ui->synced_i_size = host_ui->ui_size;
1376	spin_unlock(&host_ui->ui_lock);
1377	mark_inode_clean(c, host_ui);
1378	return 0;
1379
 
 
 
1380out_ro:
1381	ubifs_ro_mode(c, err);
1382	finish_reservation(c);
1383	return err;
1384}
1385
1386/**
1387 * ubifs_jnl_change_xattr - change an extended attribute.
1388 * @c: UBIFS file-system description object
1389 * @inode: extended attribute inode
1390 * @host: host inode
1391 *
1392 * This function writes the updated version of an extended attribute inode and
1393 * the host inode to the journal (to the base head). The host inode is written
1394 * after the extended attribute inode in order to guarantee that the extended
1395 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1396 * consequently, the write-buffer is synchronized. This function returns zero
1397 * in case of success and a negative error code in case of failure.
1398 */
1399int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1400			   const struct inode *host)
1401{
1402	int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1403	struct ubifs_inode *host_ui = ubifs_inode(host);
1404	struct ubifs_ino_node *ino;
1405	union ubifs_key key;
1406	int sync = IS_DIRSYNC(host);
 
 
1407
1408	dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1409	ubifs_assert(host->i_nlink > 0);
1410	ubifs_assert(inode->i_nlink > 0);
1411	ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1412
1413	len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1414	len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1415	aligned_len1 = ALIGN(len1, 8);
1416	aligned_len = aligned_len1 + ALIGN(len2, 8);
1417
1418	ino = kmalloc(aligned_len, GFP_NOFS);
 
 
1419	if (!ino)
1420		return -ENOMEM;
1421
1422	/* Make reservation before allocating sequence numbers */
1423	err = make_reservation(c, BASEHD, aligned_len);
1424	if (err)
1425		goto out_free;
1426
1427	pack_inode(c, ino, host, 0);
 
 
 
1428	pack_inode(c, (void *)ino + aligned_len1, inode, 1);
 
 
 
1429
1430	err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1431	if (!sync && !err) {
1432		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1433
1434		ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1435		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1436	}
1437	release_head(c, BASEHD);
1438	if (err)
1439		goto out_ro;
1440
 
 
1441	ino_key_init(c, &key, host->i_ino);
1442	err = ubifs_tnc_add(c, &key, lnum, offs, len1);
1443	if (err)
1444		goto out_ro;
1445
1446	ino_key_init(c, &key, inode->i_ino);
1447	err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2);
1448	if (err)
1449		goto out_ro;
1450
1451	finish_reservation(c);
1452	spin_lock(&host_ui->ui_lock);
1453	host_ui->synced_i_size = host_ui->ui_size;
1454	spin_unlock(&host_ui->ui_lock);
1455	mark_inode_clean(c, host_ui);
1456	kfree(ino);
1457	return 0;
1458
 
 
1459out_ro:
1460	ubifs_ro_mode(c, err);
1461	finish_reservation(c);
1462out_free:
1463	kfree(ino);
1464	return err;
1465}
1466