Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * intel_pt.c: Intel Processor Trace support
   4 * Copyright (c) 2013-2015, Intel Corporation.
   5 */
   6
   7#include <inttypes.h>
 
   8#include <stdio.h>
   9#include <stdbool.h>
  10#include <errno.h>
  11#include <linux/kernel.h>
  12#include <linux/string.h>
  13#include <linux/types.h>
  14#include <linux/zalloc.h>
  15
  16#include "session.h"
  17#include "machine.h"
  18#include "memswap.h"
  19#include "sort.h"
  20#include "tool.h"
  21#include "event.h"
  22#include "evlist.h"
  23#include "evsel.h"
  24#include "map.h"
  25#include "color.h"
  26#include "thread.h"
  27#include "thread-stack.h"
  28#include "symbol.h"
  29#include "callchain.h"
  30#include "dso.h"
  31#include "debug.h"
  32#include "auxtrace.h"
  33#include "tsc.h"
  34#include "intel-pt.h"
  35#include "config.h"
 
  36#include "util/synthetic-events.h"
  37#include "time-utils.h"
  38
  39#include "../arch/x86/include/uapi/asm/perf_regs.h"
  40
  41#include "intel-pt-decoder/intel-pt-log.h"
  42#include "intel-pt-decoder/intel-pt-decoder.h"
  43#include "intel-pt-decoder/intel-pt-insn-decoder.h"
  44#include "intel-pt-decoder/intel-pt-pkt-decoder.h"
  45
  46#define MAX_TIMESTAMP (~0ULL)
  47
 
 
 
 
 
 
  48struct range {
  49	u64 start;
  50	u64 end;
  51};
  52
  53struct intel_pt {
  54	struct auxtrace auxtrace;
  55	struct auxtrace_queues queues;
  56	struct auxtrace_heap heap;
  57	u32 auxtrace_type;
  58	struct perf_session *session;
  59	struct machine *machine;
  60	struct evsel *switch_evsel;
  61	struct thread *unknown_thread;
  62	bool timeless_decoding;
  63	bool sampling_mode;
  64	bool snapshot_mode;
  65	bool per_cpu_mmaps;
  66	bool have_tsc;
  67	bool data_queued;
  68	bool est_tsc;
  69	bool sync_switch;
 
  70	bool mispred_all;
 
 
 
 
 
 
  71	int have_sched_switch;
  72	u32 pmu_type;
  73	u64 kernel_start;
  74	u64 switch_ip;
  75	u64 ptss_ip;
 
  76
  77	struct perf_tsc_conversion tc;
  78	bool cap_user_time_zero;
  79
  80	struct itrace_synth_opts synth_opts;
  81
  82	bool sample_instructions;
  83	u64 instructions_sample_type;
  84	u64 instructions_id;
  85
 
 
 
 
  86	bool sample_branches;
  87	u32 branches_filter;
  88	u64 branches_sample_type;
  89	u64 branches_id;
  90
  91	bool sample_transactions;
  92	u64 transactions_sample_type;
  93	u64 transactions_id;
  94
  95	bool sample_ptwrites;
  96	u64 ptwrites_sample_type;
  97	u64 ptwrites_id;
  98
  99	bool sample_pwr_events;
 100	u64 pwr_events_sample_type;
 101	u64 mwait_id;
 102	u64 pwre_id;
 103	u64 exstop_id;
 104	u64 pwrx_id;
 105	u64 cbr_id;
 
 106
 
 107	bool sample_pebs;
 108	struct evsel *pebs_evsel;
 109
 
 
 
 
 
 
 110	u64 tsc_bit;
 111	u64 mtc_bit;
 112	u64 mtc_freq_bits;
 113	u32 tsc_ctc_ratio_n;
 114	u32 tsc_ctc_ratio_d;
 115	u64 cyc_bit;
 116	u64 noretcomp_bit;
 117	unsigned max_non_turbo_ratio;
 118	unsigned cbr2khz;
 
 119
 120	unsigned long num_events;
 121
 122	char *filter;
 123	struct addr_filters filts;
 124
 125	struct range *time_ranges;
 126	unsigned int range_cnt;
 
 
 
 
 
 
 127};
 128
 129enum switch_state {
 130	INTEL_PT_SS_NOT_TRACING,
 131	INTEL_PT_SS_UNKNOWN,
 132	INTEL_PT_SS_TRACING,
 133	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
 134	INTEL_PT_SS_EXPECTING_SWITCH_IP,
 135};
 136
 
 
 
 
 
 
 
 
 137struct intel_pt_queue {
 138	struct intel_pt *pt;
 139	unsigned int queue_nr;
 140	struct auxtrace_buffer *buffer;
 141	struct auxtrace_buffer *old_buffer;
 142	void *decoder;
 143	const struct intel_pt_state *state;
 144	struct ip_callchain *chain;
 145	struct branch_stack *last_branch;
 146	struct branch_stack *last_branch_rb;
 147	size_t last_branch_pos;
 148	union perf_event *event_buf;
 149	bool on_heap;
 150	bool stop;
 151	bool step_through_buffers;
 152	bool use_buffer_pid_tid;
 153	bool sync_switch;
 
 154	pid_t pid, tid;
 155	int cpu;
 156	int switch_state;
 157	pid_t next_tid;
 158	struct thread *thread;
 
 
 
 
 
 
 
 159	bool exclude_kernel;
 160	bool have_sample;
 161	u64 time;
 162	u64 timestamp;
 163	u64 sel_timestamp;
 164	bool sel_start;
 165	unsigned int sel_idx;
 166	u32 flags;
 167	u16 insn_len;
 168	u64 last_insn_cnt;
 169	u64 ipc_insn_cnt;
 170	u64 ipc_cyc_cnt;
 171	u64 last_in_insn_cnt;
 172	u64 last_in_cyc_cnt;
 
 
 173	u64 last_br_insn_cnt;
 174	u64 last_br_cyc_cnt;
 175	unsigned int cbr_seen;
 176	char insn[INTEL_PT_INSN_BUF_SZ];
 
 177};
 178
 179static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
 180			  unsigned char *buf, size_t len)
 181{
 182	struct intel_pt_pkt packet;
 183	size_t pos = 0;
 184	int ret, pkt_len, i;
 185	char desc[INTEL_PT_PKT_DESC_MAX];
 186	const char *color = PERF_COLOR_BLUE;
 187	enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
 188
 189	color_fprintf(stdout, color,
 190		      ". ... Intel Processor Trace data: size %zu bytes\n",
 191		      len);
 192
 193	while (len) {
 194		ret = intel_pt_get_packet(buf, len, &packet, &ctx);
 195		if (ret > 0)
 196			pkt_len = ret;
 197		else
 198			pkt_len = 1;
 199		printf(".");
 200		color_fprintf(stdout, color, "  %08x: ", pos);
 201		for (i = 0; i < pkt_len; i++)
 202			color_fprintf(stdout, color, " %02x", buf[i]);
 203		for (; i < 16; i++)
 204			color_fprintf(stdout, color, "   ");
 205		if (ret > 0) {
 206			ret = intel_pt_pkt_desc(&packet, desc,
 207						INTEL_PT_PKT_DESC_MAX);
 208			if (ret > 0)
 209				color_fprintf(stdout, color, " %s\n", desc);
 210		} else {
 211			color_fprintf(stdout, color, " Bad packet!\n");
 212		}
 213		pos += pkt_len;
 214		buf += pkt_len;
 215		len -= pkt_len;
 216	}
 217}
 218
 219static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
 220				size_t len)
 221{
 222	printf(".\n");
 223	intel_pt_dump(pt, buf, len);
 224}
 225
 226static void intel_pt_log_event(union perf_event *event)
 227{
 228	FILE *f = intel_pt_log_fp();
 229
 230	if (!intel_pt_enable_logging || !f)
 231		return;
 232
 233	perf_event__fprintf(event, f);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 234}
 235
 236static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
 237				   struct auxtrace_buffer *b)
 238{
 239	bool consecutive = false;
 240	void *start;
 241
 242	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
 243				      pt->have_tsc, &consecutive);
 
 244	if (!start)
 245		return -EINVAL;
 
 
 
 
 
 
 
 246	b->use_size = b->data + b->size - start;
 247	b->use_data = start;
 248	if (b->use_size && consecutive)
 249		b->consecutive = true;
 250	return 0;
 251}
 252
 253static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
 254			       struct auxtrace_buffer *buffer,
 255			       struct auxtrace_buffer *old_buffer,
 256			       struct intel_pt_buffer *b)
 257{
 258	bool might_overlap;
 259
 260	if (!buffer->data) {
 261		int fd = perf_data__fd(ptq->pt->session->data);
 262
 263		buffer->data = auxtrace_buffer__get_data(buffer, fd);
 264		if (!buffer->data)
 265			return -ENOMEM;
 266	}
 267
 268	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
 269	if (might_overlap && !buffer->consecutive && old_buffer &&
 270	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
 271		return -ENOMEM;
 272
 273	if (buffer->use_data) {
 274		b->len = buffer->use_size;
 275		b->buf = buffer->use_data;
 276	} else {
 277		b->len = buffer->size;
 278		b->buf = buffer->data;
 279	}
 280	b->ref_timestamp = buffer->reference;
 281
 282	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
 283		b->consecutive = false;
 284		b->trace_nr = buffer->buffer_nr + 1;
 285	} else {
 286		b->consecutive = true;
 287	}
 288
 289	return 0;
 290}
 291
 292/* Do not drop buffers with references - refer intel_pt_get_trace() */
 293static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
 294					   struct auxtrace_buffer *buffer)
 295{
 296	if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
 297		return;
 298
 299	auxtrace_buffer__drop_data(buffer);
 300}
 301
 302/* Must be serialized with respect to intel_pt_get_trace() */
 303static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
 304			      void *cb_data)
 305{
 306	struct intel_pt_queue *ptq = data;
 307	struct auxtrace_buffer *buffer = ptq->buffer;
 308	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
 309	struct auxtrace_queue *queue;
 310	int err = 0;
 311
 312	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
 313
 314	while (1) {
 315		struct intel_pt_buffer b = { .len = 0 };
 316
 317		buffer = auxtrace_buffer__next(queue, buffer);
 318		if (!buffer)
 319			break;
 320
 321		err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
 322		if (err)
 323			break;
 324
 325		if (b.len) {
 326			intel_pt_lookahead_drop_buffer(ptq, old_buffer);
 327			old_buffer = buffer;
 328		} else {
 329			intel_pt_lookahead_drop_buffer(ptq, buffer);
 330			continue;
 331		}
 332
 333		err = cb(&b, cb_data);
 334		if (err)
 335			break;
 336	}
 337
 338	if (buffer != old_buffer)
 339		intel_pt_lookahead_drop_buffer(ptq, buffer);
 340	intel_pt_lookahead_drop_buffer(ptq, old_buffer);
 341
 342	return err;
 343}
 344
 345/*
 346 * This function assumes data is processed sequentially only.
 347 * Must be serialized with respect to intel_pt_lookahead()
 348 */
 349static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
 350{
 351	struct intel_pt_queue *ptq = data;
 352	struct auxtrace_buffer *buffer = ptq->buffer;
 353	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
 354	struct auxtrace_queue *queue;
 355	int err;
 356
 357	if (ptq->stop) {
 358		b->len = 0;
 359		return 0;
 360	}
 361
 362	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
 363
 364	buffer = auxtrace_buffer__next(queue, buffer);
 365	if (!buffer) {
 366		if (old_buffer)
 367			auxtrace_buffer__drop_data(old_buffer);
 368		b->len = 0;
 369		return 0;
 370	}
 371
 372	ptq->buffer = buffer;
 373
 374	err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
 375	if (err)
 376		return err;
 377
 378	if (ptq->step_through_buffers)
 379		ptq->stop = true;
 380
 381	if (b->len) {
 382		if (old_buffer)
 383			auxtrace_buffer__drop_data(old_buffer);
 384		ptq->old_buffer = buffer;
 385	} else {
 386		auxtrace_buffer__drop_data(buffer);
 387		return intel_pt_get_trace(b, data);
 388	}
 389
 390	return 0;
 391}
 392
 393struct intel_pt_cache_entry {
 394	struct auxtrace_cache_entry	entry;
 395	u64				insn_cnt;
 396	u64				byte_cnt;
 397	enum intel_pt_insn_op		op;
 398	enum intel_pt_insn_branch	branch;
 
 399	int				length;
 400	int32_t				rel;
 401	char				insn[INTEL_PT_INSN_BUF_SZ];
 402};
 403
 404static int intel_pt_config_div(const char *var, const char *value, void *data)
 405{
 406	int *d = data;
 407	long val;
 408
 409	if (!strcmp(var, "intel-pt.cache-divisor")) {
 410		val = strtol(value, NULL, 0);
 411		if (val > 0 && val <= INT_MAX)
 412			*d = val;
 413	}
 414
 415	return 0;
 416}
 417
 418static int intel_pt_cache_divisor(void)
 419{
 420	static int d;
 421
 422	if (d)
 423		return d;
 424
 425	perf_config(intel_pt_config_div, &d);
 426
 427	if (!d)
 428		d = 64;
 429
 430	return d;
 431}
 432
 433static unsigned int intel_pt_cache_size(struct dso *dso,
 434					struct machine *machine)
 435{
 436	off_t size;
 437
 438	size = dso__data_size(dso, machine);
 439	size /= intel_pt_cache_divisor();
 440	if (size < 1000)
 441		return 10;
 442	if (size > (1 << 21))
 443		return 21;
 444	return 32 - __builtin_clz(size);
 445}
 446
 447static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
 448					     struct machine *machine)
 449{
 450	struct auxtrace_cache *c;
 451	unsigned int bits;
 452
 453	if (dso->auxtrace_cache)
 454		return dso->auxtrace_cache;
 455
 456	bits = intel_pt_cache_size(dso, machine);
 457
 458	/* Ignoring cache creation failure */
 459	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
 460
 461	dso->auxtrace_cache = c;
 462
 463	return c;
 464}
 465
 466static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
 467			      u64 offset, u64 insn_cnt, u64 byte_cnt,
 468			      struct intel_pt_insn *intel_pt_insn)
 469{
 470	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
 471	struct intel_pt_cache_entry *e;
 472	int err;
 473
 474	if (!c)
 475		return -ENOMEM;
 476
 477	e = auxtrace_cache__alloc_entry(c);
 478	if (!e)
 479		return -ENOMEM;
 480
 481	e->insn_cnt = insn_cnt;
 482	e->byte_cnt = byte_cnt;
 483	e->op = intel_pt_insn->op;
 484	e->branch = intel_pt_insn->branch;
 
 485	e->length = intel_pt_insn->length;
 486	e->rel = intel_pt_insn->rel;
 487	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
 488
 489	err = auxtrace_cache__add(c, offset, &e->entry);
 490	if (err)
 491		auxtrace_cache__free_entry(c, e);
 492
 493	return err;
 494}
 495
 496static struct intel_pt_cache_entry *
 497intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
 498{
 499	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
 500
 501	if (!c)
 502		return NULL;
 503
 504	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
 505}
 506
 507static inline u8 intel_pt_cpumode(struct intel_pt *pt, uint64_t ip)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 508{
 509	return ip >= pt->kernel_start ?
 
 
 
 
 
 
 510	       PERF_RECORD_MISC_KERNEL :
 511	       PERF_RECORD_MISC_USER;
 512}
 513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 514static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
 515				   uint64_t *insn_cnt_ptr, uint64_t *ip,
 516				   uint64_t to_ip, uint64_t max_insn_cnt,
 517				   void *data)
 518{
 519	struct intel_pt_queue *ptq = data;
 520	struct machine *machine = ptq->pt->machine;
 521	struct thread *thread;
 522	struct addr_location al;
 523	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
 524	ssize_t len;
 525	int x86_64;
 526	u8 cpumode;
 527	u64 offset, start_offset, start_ip;
 528	u64 insn_cnt = 0;
 529	bool one_map = true;
 
 
 530
 
 531	intel_pt_insn->length = 0;
 532
 533	if (to_ip && *ip == to_ip)
 534		goto out_no_cache;
 535
 536	cpumode = intel_pt_cpumode(ptq->pt, *ip);
 
 537
 538	thread = ptq->thread;
 539	if (!thread) {
 540		if (cpumode != PERF_RECORD_MISC_KERNEL)
 541			return -EINVAL;
 542		thread = ptq->pt->unknown_thread;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 543	}
 544
 545	while (1) {
 546		if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
 547			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 548
 549		if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
 550		    dso__data_status_seen(al.map->dso,
 551					  DSO_DATA_STATUS_SEEN_ITRACE))
 552			return -ENOENT;
 
 553
 554		offset = al.map->map_ip(al.map, *ip);
 555
 556		if (!to_ip && one_map) {
 557			struct intel_pt_cache_entry *e;
 558
 559			e = intel_pt_cache_lookup(al.map->dso, machine, offset);
 560			if (e &&
 561			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
 562				*insn_cnt_ptr = e->insn_cnt;
 563				*ip += e->byte_cnt;
 564				intel_pt_insn->op = e->op;
 565				intel_pt_insn->branch = e->branch;
 
 566				intel_pt_insn->length = e->length;
 567				intel_pt_insn->rel = e->rel;
 568				memcpy(intel_pt_insn->buf, e->insn,
 569				       INTEL_PT_INSN_BUF_SZ);
 570				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
 571				return 0;
 
 572			}
 573		}
 574
 575		start_offset = offset;
 576		start_ip = *ip;
 577
 578		/* Load maps to ensure dso->is_64_bit has been updated */
 579		map__load(al.map);
 580
 581		x86_64 = al.map->dso->is_64_bit;
 582
 583		while (1) {
 584			len = dso__data_read_offset(al.map->dso, machine,
 585						    offset, buf,
 586						    INTEL_PT_INSN_BUF_SZ);
 587			if (len <= 0)
 588				return -EINVAL;
 
 
 
 
 
 
 589
 590			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
 591				return -EINVAL;
 
 
 592
 593			intel_pt_log_insn(intel_pt_insn, *ip);
 594
 595			insn_cnt += 1;
 596
 597			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
 
 
 
 
 
 
 
 
 
 598				goto out;
 
 599
 600			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
 601				goto out_no_cache;
 602
 603			*ip += intel_pt_insn->length;
 604
 605			if (to_ip && *ip == to_ip)
 
 606				goto out_no_cache;
 
 607
 608			if (*ip >= al.map->end)
 609				break;
 610
 611			offset += intel_pt_insn->length;
 612		}
 613		one_map = false;
 614	}
 615out:
 616	*insn_cnt_ptr = insn_cnt;
 617
 618	if (!one_map)
 619		goto out_no_cache;
 620
 621	/*
 622	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
 623	 * entries.
 624	 */
 625	if (to_ip) {
 626		struct intel_pt_cache_entry *e;
 627
 628		e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
 629		if (e)
 630			return 0;
 631	}
 632
 633	/* Ignore cache errors */
 634	intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
 635			   *ip - start_ip, intel_pt_insn);
 636
 637	return 0;
 
 
 638
 639out_no_cache:
 640	*insn_cnt_ptr = insn_cnt;
 
 641	return 0;
 642}
 643
 644static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
 645				  uint64_t offset, const char *filename)
 646{
 647	struct addr_filter *filt;
 648	bool have_filter   = false;
 649	bool hit_tracestop = false;
 650	bool hit_filter    = false;
 651
 652	list_for_each_entry(filt, &pt->filts.head, list) {
 653		if (filt->start)
 654			have_filter = true;
 655
 656		if ((filename && !filt->filename) ||
 657		    (!filename && filt->filename) ||
 658		    (filename && strcmp(filename, filt->filename)))
 659			continue;
 660
 661		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
 662			continue;
 663
 664		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
 665			     ip, offset, filename ? filename : "[kernel]",
 666			     filt->start ? "filter" : "stop",
 667			     filt->addr, filt->size);
 668
 669		if (filt->start)
 670			hit_filter = true;
 671		else
 672			hit_tracestop = true;
 673	}
 674
 675	if (!hit_tracestop && !hit_filter)
 676		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
 677			     ip, offset, filename ? filename : "[kernel]");
 678
 679	return hit_tracestop || (have_filter && !hit_filter);
 680}
 681
 682static int __intel_pt_pgd_ip(uint64_t ip, void *data)
 683{
 684	struct intel_pt_queue *ptq = data;
 685	struct thread *thread;
 686	struct addr_location al;
 687	u8 cpumode;
 688	u64 offset;
 
 689
 690	if (ip >= ptq->pt->kernel_start)
 
 
 
 
 
 691		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
 
 692
 693	cpumode = PERF_RECORD_MISC_USER;
 694
 695	thread = ptq->thread;
 696	if (!thread)
 697		return -EINVAL;
 698
 699	if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
 
 700		return -EINVAL;
 701
 702	offset = al.map->map_ip(al.map, ip);
 703
 704	return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
 705				     al.map->dso->long_name);
 
 706}
 707
 708static bool intel_pt_pgd_ip(uint64_t ip, void *data)
 709{
 710	return __intel_pt_pgd_ip(ip, data) > 0;
 711}
 712
 713static bool intel_pt_get_config(struct intel_pt *pt,
 714				struct perf_event_attr *attr, u64 *config)
 715{
 716	if (attr->type == pt->pmu_type) {
 717		if (config)
 718			*config = attr->config;
 719		return true;
 720	}
 721
 722	return false;
 723}
 724
 725static bool intel_pt_exclude_kernel(struct intel_pt *pt)
 726{
 727	struct evsel *evsel;
 728
 729	evlist__for_each_entry(pt->session->evlist, evsel) {
 730		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
 731		    !evsel->core.attr.exclude_kernel)
 732			return false;
 733	}
 734	return true;
 735}
 736
 737static bool intel_pt_return_compression(struct intel_pt *pt)
 738{
 739	struct evsel *evsel;
 740	u64 config;
 741
 742	if (!pt->noretcomp_bit)
 743		return true;
 744
 745	evlist__for_each_entry(pt->session->evlist, evsel) {
 746		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
 747		    (config & pt->noretcomp_bit))
 748			return false;
 749	}
 750	return true;
 751}
 752
 753static bool intel_pt_branch_enable(struct intel_pt *pt)
 754{
 755	struct evsel *evsel;
 756	u64 config;
 757
 758	evlist__for_each_entry(pt->session->evlist, evsel) {
 759		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
 760		    (config & 1) && !(config & 0x2000))
 
 761			return false;
 762	}
 763	return true;
 764}
 765
 
 
 
 
 
 
 
 
 
 
 
 
 
 766static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
 767{
 768	struct evsel *evsel;
 769	unsigned int shift;
 770	u64 config;
 771
 772	if (!pt->mtc_freq_bits)
 773		return 0;
 774
 775	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
 776		config >>= 1;
 777
 778	evlist__for_each_entry(pt->session->evlist, evsel) {
 779		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
 780			return (config & pt->mtc_freq_bits) >> shift;
 781	}
 782	return 0;
 783}
 784
 785static bool intel_pt_timeless_decoding(struct intel_pt *pt)
 786{
 787	struct evsel *evsel;
 788	bool timeless_decoding = true;
 789	u64 config;
 790
 791	if (!pt->tsc_bit || !pt->cap_user_time_zero)
 792		return true;
 793
 794	evlist__for_each_entry(pt->session->evlist, evsel) {
 795		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
 796			return true;
 797		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
 798			if (config & pt->tsc_bit)
 799				timeless_decoding = false;
 800			else
 801				return true;
 802		}
 803	}
 804	return timeless_decoding;
 805}
 806
 807static bool intel_pt_tracing_kernel(struct intel_pt *pt)
 808{
 809	struct evsel *evsel;
 810
 811	evlist__for_each_entry(pt->session->evlist, evsel) {
 812		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
 813		    !evsel->core.attr.exclude_kernel)
 814			return true;
 815	}
 816	return false;
 817}
 818
 819static bool intel_pt_have_tsc(struct intel_pt *pt)
 820{
 821	struct evsel *evsel;
 822	bool have_tsc = false;
 823	u64 config;
 824
 825	if (!pt->tsc_bit)
 826		return false;
 827
 828	evlist__for_each_entry(pt->session->evlist, evsel) {
 829		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
 830			if (config & pt->tsc_bit)
 831				have_tsc = true;
 832			else
 833				return false;
 834		}
 835	}
 836	return have_tsc;
 837}
 838
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 839static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
 840{
 841	u64 quot, rem;
 842
 843	quot = ns / pt->tc.time_mult;
 844	rem  = ns % pt->tc.time_mult;
 845	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
 846		pt->tc.time_mult;
 847}
 848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 849static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
 850						   unsigned int queue_nr)
 851{
 852	struct intel_pt_params params = { .get_trace = 0, };
 853	struct perf_env *env = pt->machine->env;
 854	struct intel_pt_queue *ptq;
 855
 856	ptq = zalloc(sizeof(struct intel_pt_queue));
 857	if (!ptq)
 858		return NULL;
 859
 860	if (pt->synth_opts.callchain) {
 861		size_t sz = sizeof(struct ip_callchain);
 862
 863		/* Add 1 to callchain_sz for callchain context */
 864		sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
 865		ptq->chain = zalloc(sz);
 866		if (!ptq->chain)
 867			goto out_free;
 868	}
 869
 870	if (pt->synth_opts.last_branch) {
 871		size_t sz = sizeof(struct branch_stack);
 872
 873		sz += pt->synth_opts.last_branch_sz *
 874		      sizeof(struct branch_entry);
 875		ptq->last_branch = zalloc(sz);
 876		if (!ptq->last_branch)
 877			goto out_free;
 878		ptq->last_branch_rb = zalloc(sz);
 879		if (!ptq->last_branch_rb)
 880			goto out_free;
 881	}
 882
 883	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
 884	if (!ptq->event_buf)
 885		goto out_free;
 886
 887	ptq->pt = pt;
 888	ptq->queue_nr = queue_nr;
 889	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
 890	ptq->pid = -1;
 891	ptq->tid = -1;
 892	ptq->cpu = -1;
 893	ptq->next_tid = -1;
 894
 895	params.get_trace = intel_pt_get_trace;
 896	params.walk_insn = intel_pt_walk_next_insn;
 897	params.lookahead = intel_pt_lookahead;
 
 898	params.data = ptq;
 899	params.return_compression = intel_pt_return_compression(pt);
 900	params.branch_enable = intel_pt_branch_enable(pt);
 
 901	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
 902	params.mtc_period = intel_pt_mtc_period(pt);
 903	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
 904	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
 
 
 
 
 
 
 
 
 
 905
 906	if (pt->filts.cnt > 0)
 907		params.pgd_ip = intel_pt_pgd_ip;
 908
 909	if (pt->synth_opts.instructions) {
 910		if (pt->synth_opts.period) {
 911			switch (pt->synth_opts.period_type) {
 912			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
 913				params.period_type =
 914						INTEL_PT_PERIOD_INSTRUCTIONS;
 915				params.period = pt->synth_opts.period;
 916				break;
 917			case PERF_ITRACE_PERIOD_TICKS:
 918				params.period_type = INTEL_PT_PERIOD_TICKS;
 919				params.period = pt->synth_opts.period;
 920				break;
 921			case PERF_ITRACE_PERIOD_NANOSECS:
 922				params.period_type = INTEL_PT_PERIOD_TICKS;
 923				params.period = intel_pt_ns_to_ticks(pt,
 924							pt->synth_opts.period);
 925				break;
 926			default:
 927				break;
 928			}
 929		}
 930
 931		if (!params.period) {
 932			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
 933			params.period = 1;
 934		}
 935	}
 936
 937	if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
 938		params.flags |= INTEL_PT_FUP_WITH_NLIP;
 939
 940	ptq->decoder = intel_pt_decoder_new(&params);
 941	if (!ptq->decoder)
 942		goto out_free;
 943
 944	return ptq;
 945
 946out_free:
 947	zfree(&ptq->event_buf);
 948	zfree(&ptq->last_branch);
 949	zfree(&ptq->last_branch_rb);
 950	zfree(&ptq->chain);
 951	free(ptq);
 952	return NULL;
 953}
 954
 955static void intel_pt_free_queue(void *priv)
 956{
 957	struct intel_pt_queue *ptq = priv;
 958
 959	if (!ptq)
 960		return;
 961	thread__zput(ptq->thread);
 
 
 962	intel_pt_decoder_free(ptq->decoder);
 963	zfree(&ptq->event_buf);
 964	zfree(&ptq->last_branch);
 965	zfree(&ptq->last_branch_rb);
 966	zfree(&ptq->chain);
 967	free(ptq);
 968}
 969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 970static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
 971				     struct auxtrace_queue *queue)
 972{
 973	struct intel_pt_queue *ptq = queue->priv;
 974
 975	if (queue->tid == -1 || pt->have_sched_switch) {
 976		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
 
 
 977		thread__zput(ptq->thread);
 978	}
 979
 980	if (!ptq->thread && ptq->tid != -1)
 981		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
 982
 983	if (ptq->thread) {
 984		ptq->pid = ptq->thread->pid_;
 985		if (queue->cpu == -1)
 986			ptq->cpu = ptq->thread->cpu;
 
 
 
 
 
 
 
 987	}
 988}
 989
 990static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
 991{
 
 
 
 992	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
 993		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
 994	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
 995		if (ptq->state->to_ip)
 
 
 
 
 996			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
 997				     PERF_IP_FLAG_ASYNC |
 998				     PERF_IP_FLAG_INTERRUPT;
 999		else
1000			ptq->flags = PERF_IP_FLAG_BRANCH |
1001				     PERF_IP_FLAG_TRACE_END;
1002		ptq->insn_len = 0;
1003	} else {
1004		if (ptq->state->from_ip)
1005			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1006		else
1007			ptq->flags = PERF_IP_FLAG_BRANCH |
1008				     PERF_IP_FLAG_TRACE_BEGIN;
1009		if (ptq->state->flags & INTEL_PT_IN_TX)
1010			ptq->flags |= PERF_IP_FLAG_IN_TX;
1011		ptq->insn_len = ptq->state->insn_len;
1012		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1013	}
1014
1015	if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1016		ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1017	if (ptq->state->type & INTEL_PT_TRACE_END)
1018		ptq->flags |= PERF_IP_FLAG_TRACE_END;
 
 
 
 
 
 
 
 
 
 
 
1019}
1020
1021static void intel_pt_setup_time_range(struct intel_pt *pt,
1022				      struct intel_pt_queue *ptq)
1023{
1024	if (!pt->range_cnt)
1025		return;
1026
1027	ptq->sel_timestamp = pt->time_ranges[0].start;
1028	ptq->sel_idx = 0;
1029
1030	if (ptq->sel_timestamp) {
1031		ptq->sel_start = true;
1032	} else {
1033		ptq->sel_timestamp = pt->time_ranges[0].end;
1034		ptq->sel_start = false;
1035	}
1036}
1037
1038static int intel_pt_setup_queue(struct intel_pt *pt,
1039				struct auxtrace_queue *queue,
1040				unsigned int queue_nr)
1041{
1042	struct intel_pt_queue *ptq = queue->priv;
1043
1044	if (list_empty(&queue->head))
1045		return 0;
1046
1047	if (!ptq) {
1048		ptq = intel_pt_alloc_queue(pt, queue_nr);
1049		if (!ptq)
1050			return -ENOMEM;
1051		queue->priv = ptq;
1052
1053		if (queue->cpu != -1)
1054			ptq->cpu = queue->cpu;
1055		ptq->tid = queue->tid;
1056
1057		ptq->cbr_seen = UINT_MAX;
1058
1059		if (pt->sampling_mode && !pt->snapshot_mode &&
1060		    pt->timeless_decoding)
1061			ptq->step_through_buffers = true;
1062
1063		ptq->sync_switch = pt->sync_switch;
1064
1065		intel_pt_setup_time_range(pt, ptq);
1066	}
1067
1068	if (!ptq->on_heap &&
1069	    (!ptq->sync_switch ||
1070	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1071		const struct intel_pt_state *state;
1072		int ret;
1073
1074		if (pt->timeless_decoding)
1075			return 0;
1076
1077		intel_pt_log("queue %u getting timestamp\n", queue_nr);
1078		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1079			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1080
1081		if (ptq->sel_start && ptq->sel_timestamp) {
1082			ret = intel_pt_fast_forward(ptq->decoder,
1083						    ptq->sel_timestamp);
1084			if (ret)
1085				return ret;
1086		}
1087
1088		while (1) {
1089			state = intel_pt_decode(ptq->decoder);
1090			if (state->err) {
1091				if (state->err == INTEL_PT_ERR_NODATA) {
1092					intel_pt_log("queue %u has no timestamp\n",
1093						     queue_nr);
1094					return 0;
1095				}
1096				continue;
1097			}
1098			if (state->timestamp)
1099				break;
1100		}
1101
1102		ptq->timestamp = state->timestamp;
1103		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1104			     queue_nr, ptq->timestamp);
1105		ptq->state = state;
1106		ptq->have_sample = true;
1107		if (ptq->sel_start && ptq->sel_timestamp &&
1108		    ptq->timestamp < ptq->sel_timestamp)
1109			ptq->have_sample = false;
1110		intel_pt_sample_flags(ptq);
1111		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1112		if (ret)
1113			return ret;
1114		ptq->on_heap = true;
1115	}
1116
1117	return 0;
1118}
1119
1120static int intel_pt_setup_queues(struct intel_pt *pt)
1121{
1122	unsigned int i;
1123	int ret;
1124
1125	for (i = 0; i < pt->queues.nr_queues; i++) {
1126		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1127		if (ret)
1128			return ret;
1129	}
1130	return 0;
1131}
1132
1133static inline void intel_pt_copy_last_branch_rb(struct intel_pt_queue *ptq)
1134{
1135	struct branch_stack *bs_src = ptq->last_branch_rb;
1136	struct branch_stack *bs_dst = ptq->last_branch;
1137	size_t nr = 0;
1138
1139	bs_dst->nr = bs_src->nr;
1140
1141	if (!bs_src->nr)
1142		return;
1143
1144	nr = ptq->pt->synth_opts.last_branch_sz - ptq->last_branch_pos;
1145	memcpy(&bs_dst->entries[0],
1146	       &bs_src->entries[ptq->last_branch_pos],
1147	       sizeof(struct branch_entry) * nr);
1148
1149	if (bs_src->nr >= ptq->pt->synth_opts.last_branch_sz) {
1150		memcpy(&bs_dst->entries[nr],
1151		       &bs_src->entries[0],
1152		       sizeof(struct branch_entry) * ptq->last_branch_pos);
1153	}
1154}
1155
1156static inline void intel_pt_reset_last_branch_rb(struct intel_pt_queue *ptq)
1157{
1158	ptq->last_branch_pos = 0;
1159	ptq->last_branch_rb->nr = 0;
1160}
1161
1162static void intel_pt_update_last_branch_rb(struct intel_pt_queue *ptq)
1163{
1164	const struct intel_pt_state *state = ptq->state;
1165	struct branch_stack *bs = ptq->last_branch_rb;
1166	struct branch_entry *be;
1167
1168	if (!ptq->last_branch_pos)
1169		ptq->last_branch_pos = ptq->pt->synth_opts.last_branch_sz;
1170
1171	ptq->last_branch_pos -= 1;
1172
1173	be              = &bs->entries[ptq->last_branch_pos];
1174	be->from        = state->from_ip;
1175	be->to          = state->to_ip;
1176	be->flags.abort = !!(state->flags & INTEL_PT_ABORT_TX);
1177	be->flags.in_tx = !!(state->flags & INTEL_PT_IN_TX);
1178	/* No support for mispredict */
1179	be->flags.mispred = ptq->pt->mispred_all;
1180
1181	if (bs->nr < ptq->pt->synth_opts.last_branch_sz)
1182		bs->nr += 1;
1183}
1184
1185static inline bool intel_pt_skip_event(struct intel_pt *pt)
1186{
1187	return pt->synth_opts.initial_skip &&
1188	       pt->num_events++ < pt->synth_opts.initial_skip;
1189}
1190
1191/*
1192 * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1193 * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1194 * from this decoder state.
1195 */
1196static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1197{
1198	return pt->synth_opts.initial_skip &&
1199	       pt->num_events + 4 < pt->synth_opts.initial_skip;
1200}
1201
1202static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1203				   union perf_event *event,
1204				   struct perf_sample *sample)
1205{
1206	event->sample.header.type = PERF_RECORD_SAMPLE;
1207	event->sample.header.size = sizeof(struct perf_event_header);
1208
1209	sample->pid = ptq->pid;
1210	sample->tid = ptq->tid;
 
 
 
 
 
 
 
 
 
 
 
1211	sample->cpu = ptq->cpu;
1212	sample->insn_len = ptq->insn_len;
1213	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1214}
1215
1216static void intel_pt_prep_b_sample(struct intel_pt *pt,
1217				   struct intel_pt_queue *ptq,
1218				   union perf_event *event,
1219				   struct perf_sample *sample)
1220{
1221	intel_pt_prep_a_sample(ptq, event, sample);
1222
1223	if (!pt->timeless_decoding)
1224		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1225
1226	sample->ip = ptq->state->from_ip;
1227	sample->cpumode = intel_pt_cpumode(pt, sample->ip);
1228	sample->addr = ptq->state->to_ip;
 
1229	sample->period = 1;
1230	sample->flags = ptq->flags;
1231
1232	event->sample.header.misc = sample->cpumode;
1233}
1234
1235static int intel_pt_inject_event(union perf_event *event,
1236				 struct perf_sample *sample, u64 type)
1237{
1238	event->header.size = perf_event__sample_event_size(sample, type, 0);
1239	return perf_event__synthesize_sample(event, type, 0, sample);
1240}
1241
1242static inline int intel_pt_opt_inject(struct intel_pt *pt,
1243				      union perf_event *event,
1244				      struct perf_sample *sample, u64 type)
1245{
1246	if (!pt->synth_opts.inject)
1247		return 0;
1248
1249	return intel_pt_inject_event(event, sample, type);
1250}
1251
1252static int intel_pt_deliver_synth_b_event(struct intel_pt *pt,
1253					  union perf_event *event,
1254					  struct perf_sample *sample, u64 type)
1255{
1256	int ret;
1257
1258	ret = intel_pt_opt_inject(pt, event, sample, type);
1259	if (ret)
1260		return ret;
1261
1262	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1263	if (ret)
1264		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1265
1266	return ret;
1267}
1268
1269static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1270{
1271	struct intel_pt *pt = ptq->pt;
1272	union perf_event *event = ptq->event_buf;
1273	struct perf_sample sample = { .ip = 0, };
1274	struct dummy_branch_stack {
1275		u64			nr;
 
1276		struct branch_entry	entries;
1277	} dummy_bs;
1278
1279	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1280		return 0;
1281
1282	if (intel_pt_skip_event(pt))
1283		return 0;
1284
1285	intel_pt_prep_b_sample(pt, ptq, event, &sample);
1286
1287	sample.id = ptq->pt->branches_id;
1288	sample.stream_id = ptq->pt->branches_id;
1289
1290	/*
1291	 * perf report cannot handle events without a branch stack when using
1292	 * SORT_MODE__BRANCH so make a dummy one.
1293	 */
1294	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1295		dummy_bs = (struct dummy_branch_stack){
1296			.nr = 1,
 
1297			.entries = {
1298				.from = sample.ip,
1299				.to = sample.addr,
1300			},
1301		};
1302		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1303	}
1304
1305	sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
 
1306	if (sample.cyc_cnt) {
1307		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1308		ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1309		ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1310	}
1311
1312	return intel_pt_deliver_synth_b_event(pt, event, &sample,
1313					      pt->branches_sample_type);
1314}
1315
1316static void intel_pt_prep_sample(struct intel_pt *pt,
1317				 struct intel_pt_queue *ptq,
1318				 union perf_event *event,
1319				 struct perf_sample *sample)
1320{
1321	intel_pt_prep_b_sample(pt, ptq, event, sample);
1322
1323	if (pt->synth_opts.callchain) {
1324		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1325				     pt->synth_opts.callchain_sz + 1,
1326				     sample->ip, pt->kernel_start);
1327		sample->callchain = ptq->chain;
1328	}
1329
1330	if (pt->synth_opts.last_branch) {
1331		intel_pt_copy_last_branch_rb(ptq);
 
1332		sample->branch_stack = ptq->last_branch;
1333	}
1334}
1335
1336static inline int intel_pt_deliver_synth_event(struct intel_pt *pt,
1337					       struct intel_pt_queue *ptq,
1338					       union perf_event *event,
1339					       struct perf_sample *sample,
1340					       u64 type)
1341{
1342	int ret;
1343
1344	ret = intel_pt_deliver_synth_b_event(pt, event, sample, type);
1345
1346	if (pt->synth_opts.last_branch)
1347		intel_pt_reset_last_branch_rb(ptq);
1348
1349	return ret;
1350}
1351
1352static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1353{
1354	struct intel_pt *pt = ptq->pt;
1355	union perf_event *event = ptq->event_buf;
1356	struct perf_sample sample = { .ip = 0, };
1357
1358	if (intel_pt_skip_event(pt))
1359		return 0;
1360
1361	intel_pt_prep_sample(pt, ptq, event, &sample);
1362
1363	sample.id = ptq->pt->instructions_id;
1364	sample.stream_id = ptq->pt->instructions_id;
1365	sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
 
 
 
1366
1367	sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
 
1368	if (sample.cyc_cnt) {
1369		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1370		ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1371		ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1372	}
1373
1374	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1375
1376	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1377					    pt->instructions_sample_type);
1378}
1379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1380static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1381{
1382	struct intel_pt *pt = ptq->pt;
1383	union perf_event *event = ptq->event_buf;
1384	struct perf_sample sample = { .ip = 0, };
1385
1386	if (intel_pt_skip_event(pt))
1387		return 0;
1388
1389	intel_pt_prep_sample(pt, ptq, event, &sample);
1390
1391	sample.id = ptq->pt->transactions_id;
1392	sample.stream_id = ptq->pt->transactions_id;
1393
1394	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1395					    pt->transactions_sample_type);
1396}
1397
1398static void intel_pt_prep_p_sample(struct intel_pt *pt,
1399				   struct intel_pt_queue *ptq,
1400				   union perf_event *event,
1401				   struct perf_sample *sample)
1402{
1403	intel_pt_prep_sample(pt, ptq, event, sample);
1404
1405	/*
1406	 * Zero IP is used to mean "trace start" but that is not the case for
1407	 * power or PTWRITE events with no IP, so clear the flags.
1408	 */
1409	if (!sample->ip)
1410		sample->flags = 0;
1411}
1412
1413static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1414{
1415	struct intel_pt *pt = ptq->pt;
1416	union perf_event *event = ptq->event_buf;
1417	struct perf_sample sample = { .ip = 0, };
1418	struct perf_synth_intel_ptwrite raw;
1419
1420	if (intel_pt_skip_event(pt))
1421		return 0;
1422
1423	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1424
1425	sample.id = ptq->pt->ptwrites_id;
1426	sample.stream_id = ptq->pt->ptwrites_id;
1427
1428	raw.flags = 0;
1429	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1430	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1431
1432	sample.raw_size = perf_synth__raw_size(raw);
1433	sample.raw_data = perf_synth__raw_data(&raw);
1434
1435	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1436					    pt->ptwrites_sample_type);
1437}
1438
1439static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1440{
1441	struct intel_pt *pt = ptq->pt;
1442	union perf_event *event = ptq->event_buf;
1443	struct perf_sample sample = { .ip = 0, };
1444	struct perf_synth_intel_cbr raw;
1445	u32 flags;
1446
1447	if (intel_pt_skip_cbr_event(pt))
1448		return 0;
1449
1450	ptq->cbr_seen = ptq->state->cbr;
1451
1452	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1453
1454	sample.id = ptq->pt->cbr_id;
1455	sample.stream_id = ptq->pt->cbr_id;
1456
1457	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1458	raw.flags = cpu_to_le32(flags);
1459	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1460	raw.reserved3 = 0;
1461
1462	sample.raw_size = perf_synth__raw_size(raw);
1463	sample.raw_data = perf_synth__raw_data(&raw);
1464
1465	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1466					    pt->pwr_events_sample_type);
1467}
1468
1469static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1470{
1471	struct intel_pt *pt = ptq->pt;
1472	union perf_event *event = ptq->event_buf;
1473	struct perf_sample sample = { .ip = 0, };
1474	struct perf_synth_intel_mwait raw;
1475
1476	if (intel_pt_skip_event(pt))
1477		return 0;
1478
1479	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1480
1481	sample.id = ptq->pt->mwait_id;
1482	sample.stream_id = ptq->pt->mwait_id;
1483
1484	raw.reserved = 0;
1485	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1486
1487	sample.raw_size = perf_synth__raw_size(raw);
1488	sample.raw_data = perf_synth__raw_data(&raw);
1489
1490	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1491					    pt->pwr_events_sample_type);
1492}
1493
1494static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1495{
1496	struct intel_pt *pt = ptq->pt;
1497	union perf_event *event = ptq->event_buf;
1498	struct perf_sample sample = { .ip = 0, };
1499	struct perf_synth_intel_pwre raw;
1500
1501	if (intel_pt_skip_event(pt))
1502		return 0;
1503
1504	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1505
1506	sample.id = ptq->pt->pwre_id;
1507	sample.stream_id = ptq->pt->pwre_id;
1508
1509	raw.reserved = 0;
1510	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1511
1512	sample.raw_size = perf_synth__raw_size(raw);
1513	sample.raw_data = perf_synth__raw_data(&raw);
1514
1515	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1516					    pt->pwr_events_sample_type);
1517}
1518
1519static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1520{
1521	struct intel_pt *pt = ptq->pt;
1522	union perf_event *event = ptq->event_buf;
1523	struct perf_sample sample = { .ip = 0, };
1524	struct perf_synth_intel_exstop raw;
1525
1526	if (intel_pt_skip_event(pt))
1527		return 0;
1528
1529	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1530
1531	sample.id = ptq->pt->exstop_id;
1532	sample.stream_id = ptq->pt->exstop_id;
1533
1534	raw.flags = 0;
1535	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1536
1537	sample.raw_size = perf_synth__raw_size(raw);
1538	sample.raw_data = perf_synth__raw_data(&raw);
1539
1540	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1541					    pt->pwr_events_sample_type);
1542}
1543
1544static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1545{
1546	struct intel_pt *pt = ptq->pt;
1547	union perf_event *event = ptq->event_buf;
1548	struct perf_sample sample = { .ip = 0, };
1549	struct perf_synth_intel_pwrx raw;
1550
1551	if (intel_pt_skip_event(pt))
1552		return 0;
1553
1554	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1555
1556	sample.id = ptq->pt->pwrx_id;
1557	sample.stream_id = ptq->pt->pwrx_id;
1558
1559	raw.reserved = 0;
1560	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1561
1562	sample.raw_size = perf_synth__raw_size(raw);
1563	sample.raw_data = perf_synth__raw_data(&raw);
1564
1565	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1566					    pt->pwr_events_sample_type);
1567}
1568
1569/*
1570 * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1571 * intel_pt_add_gp_regs().
1572 */
1573static const int pebs_gp_regs[] = {
1574	[PERF_REG_X86_FLAGS]	= 1,
1575	[PERF_REG_X86_IP]	= 2,
1576	[PERF_REG_X86_AX]	= 3,
1577	[PERF_REG_X86_CX]	= 4,
1578	[PERF_REG_X86_DX]	= 5,
1579	[PERF_REG_X86_BX]	= 6,
1580	[PERF_REG_X86_SP]	= 7,
1581	[PERF_REG_X86_BP]	= 8,
1582	[PERF_REG_X86_SI]	= 9,
1583	[PERF_REG_X86_DI]	= 10,
1584	[PERF_REG_X86_R8]	= 11,
1585	[PERF_REG_X86_R9]	= 12,
1586	[PERF_REG_X86_R10]	= 13,
1587	[PERF_REG_X86_R11]	= 14,
1588	[PERF_REG_X86_R12]	= 15,
1589	[PERF_REG_X86_R13]	= 16,
1590	[PERF_REG_X86_R14]	= 17,
1591	[PERF_REG_X86_R15]	= 18,
1592};
1593
1594static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1595				 const struct intel_pt_blk_items *items,
1596				 u64 regs_mask)
1597{
1598	const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1599	u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1600	u32 bit;
1601	int i;
1602
1603	for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1604		/* Get the PEBS gp_regs array index */
1605		int n = pebs_gp_regs[i] - 1;
1606
1607		if (n < 0)
1608			continue;
1609		/*
1610		 * Add only registers that were requested (i.e. 'regs_mask') and
1611		 * that were provided (i.e. 'mask'), and update the resulting
1612		 * mask (i.e. 'intr_regs->mask') accordingly.
1613		 */
1614		if (mask & 1 << n && regs_mask & bit) {
1615			intr_regs->mask |= bit;
1616			*pos++ = gp_regs[n];
1617		}
1618	}
1619
1620	return pos;
1621}
1622
1623#ifndef PERF_REG_X86_XMM0
1624#define PERF_REG_X86_XMM0 32
1625#endif
1626
1627static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1628			     const struct intel_pt_blk_items *items,
1629			     u64 regs_mask)
1630{
1631	u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1632	const u64 *xmm = items->xmm;
1633
1634	/*
1635	 * If there are any XMM registers, then there should be all of them.
1636	 * Nevertheless, follow the logic to add only registers that were
1637	 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1638	 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1639	 */
1640	intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1641
1642	for (; mask; mask >>= 1, xmm++) {
1643		if (mask & 1)
1644			*pos++ = *xmm;
1645	}
1646}
1647
1648#define LBR_INFO_MISPRED	(1ULL << 63)
1649#define LBR_INFO_IN_TX		(1ULL << 62)
1650#define LBR_INFO_ABORT		(1ULL << 61)
1651#define LBR_INFO_CYCLES		0xffff
1652
1653/* Refer kernel's intel_pmu_store_pebs_lbrs() */
1654static u64 intel_pt_lbr_flags(u64 info)
1655{
1656	union {
1657		struct branch_flags flags;
1658		u64 result;
1659	} u = {
1660		.flags = {
1661			.mispred	= !!(info & LBR_INFO_MISPRED),
1662			.predicted	= !(info & LBR_INFO_MISPRED),
1663			.in_tx		= !!(info & LBR_INFO_IN_TX),
1664			.abort		= !!(info & LBR_INFO_ABORT),
1665			.cycles		= info & LBR_INFO_CYCLES,
1666		}
1667	};
1668
1669	return u.result;
1670}
1671
1672static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1673			      const struct intel_pt_blk_items *items)
1674{
1675	u64 *to;
1676	int i;
1677
1678	br_stack->nr = 0;
1679
1680	to = &br_stack->entries[0].from;
1681
1682	for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1683		u32 mask = items->mask[i];
1684		const u64 *from = items->val[i];
1685
1686		for (; mask; mask >>= 3, from += 3) {
1687			if ((mask & 7) == 7) {
1688				*to++ = from[0];
1689				*to++ = from[1];
1690				*to++ = intel_pt_lbr_flags(from[2]);
1691				br_stack->nr += 1;
1692			}
1693		}
1694	}
1695}
1696
1697/* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1698#define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3)
1699
1700static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
1701{
1702	const struct intel_pt_blk_items *items = &ptq->state->items;
1703	struct perf_sample sample = { .ip = 0, };
1704	union perf_event *event = ptq->event_buf;
1705	struct intel_pt *pt = ptq->pt;
1706	struct evsel *evsel = pt->pebs_evsel;
1707	u64 sample_type = evsel->core.attr.sample_type;
1708	u64 id = evsel->core.id[0];
1709	u8 cpumode;
 
1710
1711	if (intel_pt_skip_event(pt))
1712		return 0;
1713
1714	intel_pt_prep_a_sample(ptq, event, &sample);
1715
1716	sample.id = id;
1717	sample.stream_id = id;
1718
1719	if (!evsel->core.attr.freq)
1720		sample.period = evsel->core.attr.sample_period;
1721
1722	/* No support for non-zero CS base */
1723	if (items->has_ip)
1724		sample.ip = items->ip;
1725	else if (items->has_rip)
1726		sample.ip = items->rip;
1727	else
1728		sample.ip = ptq->state->from_ip;
1729
1730	/* No support for guest mode at this time */
1731	cpumode = sample.ip < ptq->pt->kernel_start ?
1732		  PERF_RECORD_MISC_USER :
1733		  PERF_RECORD_MISC_KERNEL;
1734
1735	event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
1736
1737	sample.cpumode = cpumode;
1738
1739	if (sample_type & PERF_SAMPLE_TIME) {
1740		u64 timestamp = 0;
1741
1742		if (items->has_timestamp)
1743			timestamp = items->timestamp;
1744		else if (!pt->timeless_decoding)
1745			timestamp = ptq->timestamp;
1746		if (timestamp)
1747			sample.time = tsc_to_perf_time(timestamp, &pt->tc);
1748	}
1749
1750	if (sample_type & PERF_SAMPLE_CALLCHAIN &&
1751	    pt->synth_opts.callchain) {
1752		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1753				     pt->synth_opts.callchain_sz, sample.ip,
1754				     pt->kernel_start);
1755		sample.callchain = ptq->chain;
1756	}
1757
1758	if (sample_type & PERF_SAMPLE_REGS_INTR &&
1759	    items->mask[INTEL_PT_GP_REGS_POS]) {
1760		u64 regs[sizeof(sample.intr_regs.mask)];
1761		u64 regs_mask = evsel->core.attr.sample_regs_intr;
1762		u64 *pos;
1763
1764		sample.intr_regs.abi = items->is_32_bit ?
1765				       PERF_SAMPLE_REGS_ABI_32 :
1766				       PERF_SAMPLE_REGS_ABI_64;
1767		sample.intr_regs.regs = regs;
1768
1769		pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
1770
1771		intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
1772	}
1773
1774	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1775		struct {
1776			struct branch_stack br_stack;
1777			struct branch_entry entries[LBRS_MAX];
1778		} br;
1779
1780		if (items->mask[INTEL_PT_LBR_0_POS] ||
1781		    items->mask[INTEL_PT_LBR_1_POS] ||
1782		    items->mask[INTEL_PT_LBR_2_POS]) {
1783			intel_pt_add_lbrs(&br.br_stack, items);
1784			sample.branch_stack = &br.br_stack;
1785		} else if (pt->synth_opts.last_branch) {
1786			intel_pt_copy_last_branch_rb(ptq);
1787			sample.branch_stack = ptq->last_branch;
 
1788		} else {
1789			br.br_stack.nr = 0;
1790			sample.branch_stack = &br.br_stack;
1791		}
 
1792	}
1793
1794	if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
1795		sample.addr = items->mem_access_address;
1796
1797	if (sample_type & PERF_SAMPLE_WEIGHT) {
1798		/*
1799		 * Refer kernel's setup_pebs_adaptive_sample_data() and
1800		 * intel_hsw_weight().
1801		 */
1802		if (items->has_mem_access_latency)
1803			sample.weight = items->mem_access_latency;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1804		if (!sample.weight && items->has_tsx_aux_info) {
1805			/* Cycles last block */
1806			sample.weight = (u32)items->tsx_aux_info;
1807		}
1808	}
1809
1810	if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
1811		u64 ax = items->has_rax ? items->rax : 0;
1812		/* Refer kernel's intel_hsw_transaction() */
1813		u64 txn = (u8)(items->tsx_aux_info >> 32);
1814
1815		/* For RTM XABORTs also log the abort code from AX */
1816		if (txn & PERF_TXN_TRANSACTION && ax & 1)
1817			txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1818		sample.transaction = txn;
1819	}
1820
1821	return intel_pt_deliver_synth_event(pt, ptq, event, &sample, sample_type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1822}
1823
1824static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1825				pid_t pid, pid_t tid, u64 ip, u64 timestamp)
 
1826{
 
 
1827	union perf_event event;
1828	char msg[MAX_AUXTRACE_ERROR_MSG];
1829	int err;
1830
 
 
 
 
 
 
 
 
 
1831	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1832
1833	auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1834			     code, cpu, pid, tid, ip, msg, timestamp);
 
 
 
 
 
 
 
 
 
 
 
1835
1836	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1837	if (err)
1838		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1839		       err);
1840
1841	return err;
1842}
1843
1844static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
1845				 const struct intel_pt_state *state)
1846{
1847	struct intel_pt *pt = ptq->pt;
1848	u64 tm = ptq->timestamp;
 
 
 
 
1849
1850	tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
1851
1852	return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
1853				    ptq->tid, state->from_ip, tm);
 
 
 
 
 
 
 
1854}
1855
1856static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1857{
1858	struct auxtrace_queue *queue;
1859	pid_t tid = ptq->next_tid;
1860	int err;
1861
1862	if (tid == -1)
1863		return 0;
1864
1865	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1866
1867	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1868
1869	queue = &pt->queues.queue_array[ptq->queue_nr];
1870	intel_pt_set_pid_tid_cpu(pt, queue);
1871
1872	ptq->next_tid = -1;
1873
1874	return err;
1875}
1876
1877static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1878{
1879	struct intel_pt *pt = ptq->pt;
1880
1881	return ip == pt->switch_ip &&
1882	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1883	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1884			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1885}
1886
1887#define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
1888			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
1889
1890static int intel_pt_sample(struct intel_pt_queue *ptq)
1891{
1892	const struct intel_pt_state *state = ptq->state;
1893	struct intel_pt *pt = ptq->pt;
1894	int err;
1895
1896	if (!ptq->have_sample)
1897		return 0;
1898
1899	ptq->have_sample = false;
1900
1901	if (ptq->state->tot_cyc_cnt > ptq->ipc_cyc_cnt) {
1902		/*
1903		 * Cycle count and instruction count only go together to create
1904		 * a valid IPC ratio when the cycle count changes.
1905		 */
1906		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
1907		ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
 
1908	}
1909
 
 
 
 
1910	/*
1911	 * Do PEBS first to allow for the possibility that the PEBS timestamp
1912	 * precedes the current timestamp.
1913	 */
1914	if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
1915		err = intel_pt_synth_pebs_sample(ptq);
1916		if (err)
1917			return err;
1918	}
1919
 
 
 
 
 
 
 
 
 
 
 
 
 
1920	if (pt->sample_pwr_events) {
 
 
 
 
 
1921		if (ptq->state->cbr != ptq->cbr_seen) {
1922			err = intel_pt_synth_cbr_sample(ptq);
1923			if (err)
1924				return err;
1925		}
1926		if (state->type & INTEL_PT_PWR_EVT) {
1927			if (state->type & INTEL_PT_MWAIT_OP) {
1928				err = intel_pt_synth_mwait_sample(ptq);
1929				if (err)
1930					return err;
1931			}
1932			if (state->type & INTEL_PT_PWR_ENTRY) {
1933				err = intel_pt_synth_pwre_sample(ptq);
1934				if (err)
1935					return err;
1936			}
1937			if (state->type & INTEL_PT_EX_STOP) {
1938				err = intel_pt_synth_exstop_sample(ptq);
1939				if (err)
1940					return err;
1941			}
1942			if (state->type & INTEL_PT_PWR_EXIT) {
1943				err = intel_pt_synth_pwrx_sample(ptq);
1944				if (err)
1945					return err;
1946			}
1947		}
1948	}
1949
1950	if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
1951		err = intel_pt_synth_instruction_sample(ptq);
1952		if (err)
1953			return err;
 
 
 
 
 
 
 
1954	}
1955
1956	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
1957		err = intel_pt_synth_transaction_sample(ptq);
1958		if (err)
1959			return err;
1960	}
1961
1962	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
1963		err = intel_pt_synth_ptwrite_sample(ptq);
1964		if (err)
1965			return err;
1966	}
1967
1968	if (!(state->type & INTEL_PT_BRANCH))
1969		return 0;
1970
1971	if (pt->synth_opts.callchain || pt->synth_opts.thread_stack)
1972		thread_stack__event(ptq->thread, ptq->cpu, ptq->flags, state->from_ip,
1973				    state->to_ip, ptq->insn_len,
1974				    state->trace_nr);
1975	else
 
 
1976		thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
 
1977
1978	if (pt->sample_branches) {
1979		err = intel_pt_synth_branch_sample(ptq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1980		if (err)
1981			return err;
1982	}
1983
1984	if (pt->synth_opts.last_branch)
1985		intel_pt_update_last_branch_rb(ptq);
1986
1987	if (!ptq->sync_switch)
1988		return 0;
1989
1990	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
1991		switch (ptq->switch_state) {
1992		case INTEL_PT_SS_NOT_TRACING:
1993		case INTEL_PT_SS_UNKNOWN:
1994		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
1995			err = intel_pt_next_tid(pt, ptq);
1996			if (err)
1997				return err;
1998			ptq->switch_state = INTEL_PT_SS_TRACING;
1999			break;
2000		default:
2001			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2002			return 1;
2003		}
2004	} else if (!state->to_ip) {
2005		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2006	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2007		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2008	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2009		   state->to_ip == pt->ptss_ip &&
2010		   (ptq->flags & PERF_IP_FLAG_CALL)) {
2011		ptq->switch_state = INTEL_PT_SS_TRACING;
2012	}
2013
2014	return 0;
2015}
2016
2017static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2018{
2019	struct machine *machine = pt->machine;
2020	struct map *map;
2021	struct symbol *sym, *start;
2022	u64 ip, switch_ip = 0;
2023	const char *ptss;
2024
2025	if (ptss_ip)
2026		*ptss_ip = 0;
2027
2028	map = machine__kernel_map(machine);
2029	if (!map)
2030		return 0;
2031
2032	if (map__load(map))
2033		return 0;
2034
2035	start = dso__first_symbol(map->dso);
2036
2037	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2038		if (sym->binding == STB_GLOBAL &&
2039		    !strcmp(sym->name, "__switch_to")) {
2040			ip = map->unmap_ip(map, sym->start);
2041			if (ip >= map->start && ip < map->end) {
2042				switch_ip = ip;
2043				break;
2044			}
2045		}
2046	}
2047
2048	if (!switch_ip || !ptss_ip)
2049		return 0;
2050
2051	if (pt->have_sched_switch == 1)
2052		ptss = "perf_trace_sched_switch";
2053	else
2054		ptss = "__perf_event_task_sched_out";
2055
2056	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2057		if (!strcmp(sym->name, ptss)) {
2058			ip = map->unmap_ip(map, sym->start);
2059			if (ip >= map->start && ip < map->end) {
2060				*ptss_ip = ip;
2061				break;
2062			}
2063		}
2064	}
2065
2066	return switch_ip;
2067}
2068
2069static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2070{
2071	unsigned int i;
2072
 
 
 
2073	pt->sync_switch = true;
2074
2075	for (i = 0; i < pt->queues.nr_queues; i++) {
2076		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2077		struct intel_pt_queue *ptq = queue->priv;
2078
2079		if (ptq)
2080			ptq->sync_switch = true;
2081	}
2082}
2083
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2084/*
2085 * To filter against time ranges, it is only necessary to look at the next start
2086 * or end time.
2087 */
2088static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2089{
2090	struct intel_pt *pt = ptq->pt;
2091
2092	if (ptq->sel_start) {
2093		/* Next time is an end time */
2094		ptq->sel_start = false;
2095		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2096		return true;
2097	} else if (ptq->sel_idx + 1 < pt->range_cnt) {
2098		/* Next time is a start time */
2099		ptq->sel_start = true;
2100		ptq->sel_idx += 1;
2101		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2102		return true;
2103	}
2104
2105	/* No next time */
2106	return false;
2107}
2108
2109static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2110{
2111	int err;
2112
2113	while (1) {
2114		if (ptq->sel_start) {
2115			if (ptq->timestamp >= ptq->sel_timestamp) {
2116				/* After start time, so consider next time */
2117				intel_pt_next_time(ptq);
2118				if (!ptq->sel_timestamp) {
2119					/* No end time */
2120					return 0;
2121				}
2122				/* Check against end time */
2123				continue;
2124			}
2125			/* Before start time, so fast forward */
2126			ptq->have_sample = false;
2127			if (ptq->sel_timestamp > *ff_timestamp) {
2128				if (ptq->sync_switch) {
2129					intel_pt_next_tid(ptq->pt, ptq);
2130					ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2131				}
2132				*ff_timestamp = ptq->sel_timestamp;
2133				err = intel_pt_fast_forward(ptq->decoder,
2134							    ptq->sel_timestamp);
2135				if (err)
2136					return err;
2137			}
2138			return 0;
2139		} else if (ptq->timestamp > ptq->sel_timestamp) {
2140			/* After end time, so consider next time */
2141			if (!intel_pt_next_time(ptq)) {
2142				/* No next time range, so stop decoding */
2143				ptq->have_sample = false;
2144				ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2145				return 1;
2146			}
2147			/* Check against next start time */
2148			continue;
2149		} else {
2150			/* Before end time */
2151			return 0;
2152		}
2153	}
2154}
2155
2156static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2157{
2158	const struct intel_pt_state *state = ptq->state;
2159	struct intel_pt *pt = ptq->pt;
2160	u64 ff_timestamp = 0;
2161	int err;
2162
2163	if (!pt->kernel_start) {
2164		pt->kernel_start = machine__kernel_start(pt->machine);
2165		if (pt->per_cpu_mmaps &&
2166		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2167		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2168		    !pt->sampling_mode) {
2169			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2170			if (pt->switch_ip) {
2171				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2172					     pt->switch_ip, pt->ptss_ip);
2173				intel_pt_enable_sync_switch(pt);
2174			}
2175		}
2176	}
2177
2178	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2179		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2180	while (1) {
2181		err = intel_pt_sample(ptq);
2182		if (err)
2183			return err;
2184
2185		state = intel_pt_decode(ptq->decoder);
2186		if (state->err) {
2187			if (state->err == INTEL_PT_ERR_NODATA)
2188				return 1;
2189			if (ptq->sync_switch &&
2190			    state->from_ip >= pt->kernel_start) {
2191				ptq->sync_switch = false;
2192				intel_pt_next_tid(pt, ptq);
2193			}
 
2194			if (pt->synth_opts.errors) {
2195				err = intel_ptq_synth_error(ptq, state);
2196				if (err)
2197					return err;
2198			}
2199			continue;
2200		}
2201
2202		ptq->state = state;
2203		ptq->have_sample = true;
2204		intel_pt_sample_flags(ptq);
2205
2206		/* Use estimated TSC upon return to user space */
2207		if (pt->est_tsc &&
2208		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2209		    state->to_ip && state->to_ip < pt->kernel_start) {
2210			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2211				     state->timestamp, state->est_timestamp);
2212			ptq->timestamp = state->est_timestamp;
2213		/* Use estimated TSC in unknown switch state */
2214		} else if (ptq->sync_switch &&
2215			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2216			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
2217			   ptq->next_tid == -1) {
2218			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2219				     state->timestamp, state->est_timestamp);
2220			ptq->timestamp = state->est_timestamp;
2221		} else if (state->timestamp > ptq->timestamp) {
2222			ptq->timestamp = state->timestamp;
2223		}
2224
2225		if (ptq->sel_timestamp) {
2226			err = intel_pt_time_filter(ptq, &ff_timestamp);
2227			if (err)
2228				return err;
2229		}
2230
2231		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2232			*timestamp = ptq->timestamp;
2233			return 0;
2234		}
2235	}
2236	return 0;
2237}
2238
2239static inline int intel_pt_update_queues(struct intel_pt *pt)
2240{
2241	if (pt->queues.new_data) {
2242		pt->queues.new_data = false;
2243		return intel_pt_setup_queues(pt);
2244	}
2245	return 0;
2246}
2247
2248static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2249{
2250	unsigned int queue_nr;
2251	u64 ts;
2252	int ret;
2253
2254	while (1) {
2255		struct auxtrace_queue *queue;
2256		struct intel_pt_queue *ptq;
2257
2258		if (!pt->heap.heap_cnt)
2259			return 0;
2260
2261		if (pt->heap.heap_array[0].ordinal >= timestamp)
2262			return 0;
2263
2264		queue_nr = pt->heap.heap_array[0].queue_nr;
2265		queue = &pt->queues.queue_array[queue_nr];
2266		ptq = queue->priv;
2267
2268		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2269			     queue_nr, pt->heap.heap_array[0].ordinal,
2270			     timestamp);
2271
2272		auxtrace_heap__pop(&pt->heap);
2273
2274		if (pt->heap.heap_cnt) {
2275			ts = pt->heap.heap_array[0].ordinal + 1;
2276			if (ts > timestamp)
2277				ts = timestamp;
2278		} else {
2279			ts = timestamp;
2280		}
2281
2282		intel_pt_set_pid_tid_cpu(pt, queue);
2283
2284		ret = intel_pt_run_decoder(ptq, &ts);
2285
2286		if (ret < 0) {
2287			auxtrace_heap__add(&pt->heap, queue_nr, ts);
2288			return ret;
2289		}
2290
2291		if (!ret) {
2292			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2293			if (ret < 0)
2294				return ret;
2295		} else {
2296			ptq->on_heap = false;
2297		}
2298	}
2299
2300	return 0;
2301}
2302
2303static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2304					    u64 time_)
2305{
2306	struct auxtrace_queues *queues = &pt->queues;
2307	unsigned int i;
2308	u64 ts = 0;
2309
2310	for (i = 0; i < queues->nr_queues; i++) {
2311		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2312		struct intel_pt_queue *ptq = queue->priv;
2313
2314		if (ptq && (tid == -1 || ptq->tid == tid)) {
2315			ptq->time = time_;
2316			intel_pt_set_pid_tid_cpu(pt, queue);
2317			intel_pt_run_decoder(ptq, &ts);
2318		}
2319	}
2320	return 0;
2321}
2322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2323static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2324{
2325	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2326				    sample->pid, sample->tid, 0, sample->time);
 
2327}
2328
2329static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2330{
2331	unsigned i, j;
2332
2333	if (cpu < 0 || !pt->queues.nr_queues)
2334		return NULL;
2335
2336	if ((unsigned)cpu >= pt->queues.nr_queues)
2337		i = pt->queues.nr_queues - 1;
2338	else
2339		i = cpu;
2340
2341	if (pt->queues.queue_array[i].cpu == cpu)
2342		return pt->queues.queue_array[i].priv;
2343
2344	for (j = 0; i > 0; j++) {
2345		if (pt->queues.queue_array[--i].cpu == cpu)
2346			return pt->queues.queue_array[i].priv;
2347	}
2348
2349	for (; j < pt->queues.nr_queues; j++) {
2350		if (pt->queues.queue_array[j].cpu == cpu)
2351			return pt->queues.queue_array[j].priv;
2352	}
2353
2354	return NULL;
2355}
2356
2357static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2358				u64 timestamp)
2359{
2360	struct intel_pt_queue *ptq;
2361	int err;
2362
2363	if (!pt->sync_switch)
2364		return 1;
2365
2366	ptq = intel_pt_cpu_to_ptq(pt, cpu);
2367	if (!ptq || !ptq->sync_switch)
2368		return 1;
2369
2370	switch (ptq->switch_state) {
2371	case INTEL_PT_SS_NOT_TRACING:
2372		break;
2373	case INTEL_PT_SS_UNKNOWN:
2374	case INTEL_PT_SS_TRACING:
2375		ptq->next_tid = tid;
2376		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2377		return 0;
2378	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2379		if (!ptq->on_heap) {
2380			ptq->timestamp = perf_time_to_tsc(timestamp,
2381							  &pt->tc);
2382			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2383						 ptq->timestamp);
2384			if (err)
2385				return err;
2386			ptq->on_heap = true;
2387		}
2388		ptq->switch_state = INTEL_PT_SS_TRACING;
2389		break;
2390	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2391		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2392		break;
2393	default:
2394		break;
2395	}
2396
2397	ptq->next_tid = -1;
2398
2399	return 1;
2400}
2401
 
2402static int intel_pt_process_switch(struct intel_pt *pt,
2403				   struct perf_sample *sample)
2404{
2405	struct evsel *evsel;
2406	pid_t tid;
2407	int cpu, ret;
 
2408
2409	evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
2410	if (evsel != pt->switch_evsel)
2411		return 0;
2412
2413	tid = perf_evsel__intval(evsel, sample, "next_pid");
2414	cpu = sample->cpu;
2415
2416	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2417		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2418		     &pt->tc));
2419
2420	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2421	if (ret <= 0)
2422		return ret;
2423
2424	return machine__set_current_tid(pt->machine, cpu, -1, tid);
2425}
 
2426
2427static int intel_pt_context_switch_in(struct intel_pt *pt,
2428				      struct perf_sample *sample)
2429{
2430	pid_t pid = sample->pid;
2431	pid_t tid = sample->tid;
2432	int cpu = sample->cpu;
2433
2434	if (pt->sync_switch) {
2435		struct intel_pt_queue *ptq;
2436
2437		ptq = intel_pt_cpu_to_ptq(pt, cpu);
2438		if (ptq && ptq->sync_switch) {
2439			ptq->next_tid = -1;
2440			switch (ptq->switch_state) {
2441			case INTEL_PT_SS_NOT_TRACING:
2442			case INTEL_PT_SS_UNKNOWN:
2443			case INTEL_PT_SS_TRACING:
2444				break;
2445			case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2446			case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2447				ptq->switch_state = INTEL_PT_SS_TRACING;
2448				break;
2449			default:
2450				break;
2451			}
2452		}
2453	}
2454
2455	/*
2456	 * If the current tid has not been updated yet, ensure it is now that
2457	 * a "switch in" event has occurred.
2458	 */
2459	if (machine__get_current_tid(pt->machine, cpu) == tid)
2460		return 0;
2461
2462	return machine__set_current_tid(pt->machine, cpu, pid, tid);
2463}
2464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2465static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2466				   struct perf_sample *sample)
2467{
2468	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2469	pid_t pid, tid;
2470	int cpu, ret;
2471
 
 
 
2472	cpu = sample->cpu;
2473
2474	if (pt->have_sched_switch == 3) {
2475		if (!out)
2476			return intel_pt_context_switch_in(pt, sample);
2477		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2478			pr_err("Expecting CPU-wide context switch event\n");
2479			return -EINVAL;
2480		}
2481		pid = event->context_switch.next_prev_pid;
2482		tid = event->context_switch.next_prev_tid;
2483	} else {
2484		if (out)
2485			return 0;
2486		pid = sample->pid;
2487		tid = sample->tid;
2488	}
2489
2490	if (tid == -1) {
2491		pr_err("context_switch event has no tid\n");
2492		return -EINVAL;
2493	}
2494
2495	intel_pt_log("context_switch: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2496		     cpu, pid, tid, sample->time, perf_time_to_tsc(sample->time,
2497		     &pt->tc));
2498
2499	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2500	if (ret <= 0)
2501		return ret;
2502
2503	return machine__set_current_tid(pt->machine, cpu, pid, tid);
2504}
2505
2506static int intel_pt_process_itrace_start(struct intel_pt *pt,
2507					 union perf_event *event,
2508					 struct perf_sample *sample)
2509{
2510	if (!pt->per_cpu_mmaps)
2511		return 0;
2512
2513	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2514		     sample->cpu, event->itrace_start.pid,
2515		     event->itrace_start.tid, sample->time,
2516		     perf_time_to_tsc(sample->time, &pt->tc));
2517
2518	return machine__set_current_tid(pt->machine, sample->cpu,
2519					event->itrace_start.pid,
2520					event->itrace_start.tid);
2521}
2522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2523static int intel_pt_process_event(struct perf_session *session,
2524				  union perf_event *event,
2525				  struct perf_sample *sample,
2526				  struct perf_tool *tool)
2527{
2528	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2529					   auxtrace);
2530	u64 timestamp;
2531	int err = 0;
2532
2533	if (dump_trace)
2534		return 0;
2535
2536	if (!tool->ordered_events) {
2537		pr_err("Intel Processor Trace requires ordered events\n");
2538		return -EINVAL;
2539	}
2540
2541	if (sample->time && sample->time != (u64)-1)
2542		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2543	else
2544		timestamp = 0;
2545
2546	if (timestamp || pt->timeless_decoding) {
2547		err = intel_pt_update_queues(pt);
2548		if (err)
2549			return err;
2550	}
2551
2552	if (pt->timeless_decoding) {
2553		if (event->header.type == PERF_RECORD_EXIT) {
 
 
 
 
2554			err = intel_pt_process_timeless_queues(pt,
2555							       event->fork.tid,
2556							       sample->time);
2557		}
2558	} else if (timestamp) {
 
 
2559		err = intel_pt_process_queues(pt, timestamp);
2560	}
2561	if (err)
2562		return err;
2563
 
 
 
 
 
 
 
2564	if (event->header.type == PERF_RECORD_AUX &&
2565	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
2566	    pt->synth_opts.errors) {
2567		err = intel_pt_lost(pt, sample);
2568		if (err)
2569			return err;
2570	}
2571
 
2572	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
2573		err = intel_pt_process_switch(pt, sample);
2574	else if (event->header.type == PERF_RECORD_ITRACE_START)
 
 
2575		err = intel_pt_process_itrace_start(pt, event, sample);
 
 
2576	else if (event->header.type == PERF_RECORD_SWITCH ||
2577		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2578		err = intel_pt_context_switch(pt, event, sample);
2579
2580	intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
2581		     event->header.type, sample->cpu, sample->time, timestamp);
2582	intel_pt_log_event(event);
 
 
 
 
 
2583
2584	return err;
2585}
2586
2587static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
2588{
2589	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2590					   auxtrace);
2591	int ret;
2592
2593	if (dump_trace)
2594		return 0;
2595
2596	if (!tool->ordered_events)
2597		return -EINVAL;
2598
2599	ret = intel_pt_update_queues(pt);
2600	if (ret < 0)
2601		return ret;
2602
2603	if (pt->timeless_decoding)
2604		return intel_pt_process_timeless_queues(pt, -1,
2605							MAX_TIMESTAMP - 1);
2606
2607	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
2608}
2609
2610static void intel_pt_free_events(struct perf_session *session)
2611{
2612	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2613					   auxtrace);
2614	struct auxtrace_queues *queues = &pt->queues;
2615	unsigned int i;
2616
2617	for (i = 0; i < queues->nr_queues; i++) {
2618		intel_pt_free_queue(queues->queue_array[i].priv);
2619		queues->queue_array[i].priv = NULL;
2620	}
2621	intel_pt_log_disable();
2622	auxtrace_queues__free(queues);
2623}
2624
2625static void intel_pt_free(struct perf_session *session)
2626{
2627	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2628					   auxtrace);
2629
2630	auxtrace_heap__free(&pt->heap);
2631	intel_pt_free_events(session);
2632	session->auxtrace = NULL;
 
2633	thread__put(pt->unknown_thread);
2634	addr_filters__exit(&pt->filts);
 
2635	zfree(&pt->filter);
2636	zfree(&pt->time_ranges);
 
2637	free(pt);
2638}
2639
 
 
 
 
 
 
 
 
 
2640static int intel_pt_process_auxtrace_event(struct perf_session *session,
2641					   union perf_event *event,
2642					   struct perf_tool *tool __maybe_unused)
2643{
2644	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2645					   auxtrace);
2646
2647	if (!pt->data_queued) {
2648		struct auxtrace_buffer *buffer;
2649		off_t data_offset;
2650		int fd = perf_data__fd(session->data);
2651		int err;
2652
2653		if (perf_data__is_pipe(session->data)) {
2654			data_offset = 0;
2655		} else {
2656			data_offset = lseek(fd, 0, SEEK_CUR);
2657			if (data_offset == -1)
2658				return -errno;
2659		}
2660
2661		err = auxtrace_queues__add_event(&pt->queues, session, event,
2662						 data_offset, &buffer);
2663		if (err)
2664			return err;
2665
2666		/* Dump here now we have copied a piped trace out of the pipe */
2667		if (dump_trace) {
2668			if (auxtrace_buffer__get_data(buffer, fd)) {
2669				intel_pt_dump_event(pt, buffer->data,
2670						    buffer->size);
2671				auxtrace_buffer__put_data(buffer);
2672			}
2673		}
2674	}
2675
2676	return 0;
2677}
2678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2679struct intel_pt_synth {
2680	struct perf_tool dummy_tool;
2681	struct perf_session *session;
2682};
2683
2684static int intel_pt_event_synth(struct perf_tool *tool,
2685				union perf_event *event,
2686				struct perf_sample *sample __maybe_unused,
2687				struct machine *machine __maybe_unused)
2688{
2689	struct intel_pt_synth *intel_pt_synth =
2690			container_of(tool, struct intel_pt_synth, dummy_tool);
2691
2692	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
2693						 NULL);
2694}
2695
2696static int intel_pt_synth_event(struct perf_session *session, const char *name,
2697				struct perf_event_attr *attr, u64 id)
2698{
2699	struct intel_pt_synth intel_pt_synth;
2700	int err;
2701
2702	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2703		 name, id, (u64)attr->sample_type);
2704
2705	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
2706	intel_pt_synth.session = session;
2707
2708	err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
2709					  &id, intel_pt_event_synth);
2710	if (err)
2711		pr_err("%s: failed to synthesize '%s' event type\n",
2712		       __func__, name);
2713
2714	return err;
2715}
2716
2717static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
2718				    const char *name)
2719{
2720	struct evsel *evsel;
2721
2722	evlist__for_each_entry(evlist, evsel) {
2723		if (evsel->core.id && evsel->core.id[0] == id) {
2724			if (evsel->name)
2725				zfree(&evsel->name);
2726			evsel->name = strdup(name);
2727			break;
2728		}
2729	}
2730}
2731
2732static struct evsel *intel_pt_evsel(struct intel_pt *pt,
2733					 struct evlist *evlist)
2734{
2735	struct evsel *evsel;
2736
2737	evlist__for_each_entry(evlist, evsel) {
2738		if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
2739			return evsel;
2740	}
2741
2742	return NULL;
2743}
2744
2745static int intel_pt_synth_events(struct intel_pt *pt,
2746				 struct perf_session *session)
2747{
2748	struct evlist *evlist = session->evlist;
2749	struct evsel *evsel = intel_pt_evsel(pt, evlist);
2750	struct perf_event_attr attr;
2751	u64 id;
2752	int err;
2753
2754	if (!evsel) {
2755		pr_debug("There are no selected events with Intel Processor Trace data\n");
2756		return 0;
2757	}
2758
2759	memset(&attr, 0, sizeof(struct perf_event_attr));
2760	attr.size = sizeof(struct perf_event_attr);
2761	attr.type = PERF_TYPE_HARDWARE;
2762	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
2763	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
2764			    PERF_SAMPLE_PERIOD;
2765	if (pt->timeless_decoding)
2766		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
2767	else
2768		attr.sample_type |= PERF_SAMPLE_TIME;
2769	if (!pt->per_cpu_mmaps)
2770		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
2771	attr.exclude_user = evsel->core.attr.exclude_user;
2772	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
2773	attr.exclude_hv = evsel->core.attr.exclude_hv;
2774	attr.exclude_host = evsel->core.attr.exclude_host;
2775	attr.exclude_guest = evsel->core.attr.exclude_guest;
2776	attr.sample_id_all = evsel->core.attr.sample_id_all;
2777	attr.read_format = evsel->core.attr.read_format;
2778
2779	id = evsel->core.id[0] + 1000000000;
2780	if (!id)
2781		id = 1;
2782
2783	if (pt->synth_opts.branches) {
2784		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
2785		attr.sample_period = 1;
2786		attr.sample_type |= PERF_SAMPLE_ADDR;
2787		err = intel_pt_synth_event(session, "branches", &attr, id);
2788		if (err)
2789			return err;
2790		pt->sample_branches = true;
2791		pt->branches_sample_type = attr.sample_type;
2792		pt->branches_id = id;
2793		id += 1;
2794		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
2795	}
2796
2797	if (pt->synth_opts.callchain)
2798		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
2799	if (pt->synth_opts.last_branch)
2800		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
 
 
 
 
 
 
 
2801
2802	if (pt->synth_opts.instructions) {
2803		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2804		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
2805			attr.sample_period =
2806				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
2807		else
2808			attr.sample_period = pt->synth_opts.period;
2809		err = intel_pt_synth_event(session, "instructions", &attr, id);
2810		if (err)
2811			return err;
2812		pt->sample_instructions = true;
2813		pt->instructions_sample_type = attr.sample_type;
2814		pt->instructions_id = id;
2815		id += 1;
2816	}
2817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2818	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
2819	attr.sample_period = 1;
2820
2821	if (pt->synth_opts.transactions) {
2822		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2823		err = intel_pt_synth_event(session, "transactions", &attr, id);
2824		if (err)
2825			return err;
2826		pt->sample_transactions = true;
2827		pt->transactions_sample_type = attr.sample_type;
2828		pt->transactions_id = id;
2829		intel_pt_set_event_name(evlist, id, "transactions");
2830		id += 1;
2831	}
2832
2833	attr.type = PERF_TYPE_SYNTH;
2834	attr.sample_type |= PERF_SAMPLE_RAW;
2835
2836	if (pt->synth_opts.ptwrites) {
2837		attr.config = PERF_SYNTH_INTEL_PTWRITE;
2838		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
2839		if (err)
2840			return err;
2841		pt->sample_ptwrites = true;
2842		pt->ptwrites_sample_type = attr.sample_type;
2843		pt->ptwrites_id = id;
2844		intel_pt_set_event_name(evlist, id, "ptwrite");
2845		id += 1;
2846	}
2847
2848	if (pt->synth_opts.pwr_events) {
2849		pt->sample_pwr_events = true;
2850		pt->pwr_events_sample_type = attr.sample_type;
2851
2852		attr.config = PERF_SYNTH_INTEL_CBR;
2853		err = intel_pt_synth_event(session, "cbr", &attr, id);
2854		if (err)
2855			return err;
2856		pt->cbr_id = id;
2857		intel_pt_set_event_name(evlist, id, "cbr");
2858		id += 1;
 
 
 
 
 
 
 
 
2859	}
2860
2861	if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
2862		attr.config = PERF_SYNTH_INTEL_MWAIT;
2863		err = intel_pt_synth_event(session, "mwait", &attr, id);
2864		if (err)
2865			return err;
2866		pt->mwait_id = id;
2867		intel_pt_set_event_name(evlist, id, "mwait");
2868		id += 1;
2869
2870		attr.config = PERF_SYNTH_INTEL_PWRE;
2871		err = intel_pt_synth_event(session, "pwre", &attr, id);
2872		if (err)
2873			return err;
2874		pt->pwre_id = id;
2875		intel_pt_set_event_name(evlist, id, "pwre");
2876		id += 1;
2877
2878		attr.config = PERF_SYNTH_INTEL_EXSTOP;
2879		err = intel_pt_synth_event(session, "exstop", &attr, id);
2880		if (err)
2881			return err;
2882		pt->exstop_id = id;
2883		intel_pt_set_event_name(evlist, id, "exstop");
2884		id += 1;
2885
2886		attr.config = PERF_SYNTH_INTEL_PWRX;
2887		err = intel_pt_synth_event(session, "pwrx", &attr, id);
2888		if (err)
2889			return err;
2890		pt->pwrx_id = id;
2891		intel_pt_set_event_name(evlist, id, "pwrx");
2892		id += 1;
2893	}
2894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2895	return 0;
2896}
2897
2898static void intel_pt_setup_pebs_events(struct intel_pt *pt)
2899{
2900	struct evsel *evsel;
2901
2902	if (!pt->synth_opts.other_events)
2903		return;
2904
2905	evlist__for_each_entry(pt->session->evlist, evsel) {
2906		if (evsel->core.attr.aux_output && evsel->core.id) {
 
 
 
 
 
2907			pt->sample_pebs = true;
2908			pt->pebs_evsel = evsel;
2909			return;
2910		}
2911	}
2912}
2913
2914static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
2915{
2916	struct evsel *evsel;
2917
2918	evlist__for_each_entry_reverse(evlist, evsel) {
2919		const char *name = perf_evsel__name(evsel);
2920
2921		if (!strcmp(name, "sched:sched_switch"))
2922			return evsel;
2923	}
2924
2925	return NULL;
2926}
2927
2928static bool intel_pt_find_switch(struct evlist *evlist)
2929{
2930	struct evsel *evsel;
2931
2932	evlist__for_each_entry(evlist, evsel) {
2933		if (evsel->core.attr.context_switch)
2934			return true;
2935	}
2936
2937	return false;
2938}
2939
2940static int intel_pt_perf_config(const char *var, const char *value, void *data)
2941{
2942	struct intel_pt *pt = data;
2943
2944	if (!strcmp(var, "intel-pt.mispred-all"))
2945		pt->mispred_all = perf_config_bool(var, value);
2946
 
 
 
2947	return 0;
2948}
2949
2950/* Find least TSC which converts to ns or later */
2951static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
2952{
2953	u64 tsc, tm;
2954
2955	tsc = perf_time_to_tsc(ns, &pt->tc);
2956
2957	while (1) {
2958		tm = tsc_to_perf_time(tsc, &pt->tc);
2959		if (tm < ns)
2960			break;
2961		tsc -= 1;
2962	}
2963
2964	while (tm < ns)
2965		tm = tsc_to_perf_time(++tsc, &pt->tc);
2966
2967	return tsc;
2968}
2969
2970/* Find greatest TSC which converts to ns or earlier */
2971static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
2972{
2973	u64 tsc, tm;
2974
2975	tsc = perf_time_to_tsc(ns, &pt->tc);
2976
2977	while (1) {
2978		tm = tsc_to_perf_time(tsc, &pt->tc);
2979		if (tm > ns)
2980			break;
2981		tsc += 1;
2982	}
2983
2984	while (tm > ns)
2985		tm = tsc_to_perf_time(--tsc, &pt->tc);
2986
2987	return tsc;
2988}
2989
2990static int intel_pt_setup_time_ranges(struct intel_pt *pt,
2991				      struct itrace_synth_opts *opts)
2992{
2993	struct perf_time_interval *p = opts->ptime_range;
2994	int n = opts->range_num;
2995	int i;
2996
2997	if (!n || !p || pt->timeless_decoding)
2998		return 0;
2999
3000	pt->time_ranges = calloc(n, sizeof(struct range));
3001	if (!pt->time_ranges)
3002		return -ENOMEM;
3003
3004	pt->range_cnt = n;
3005
3006	intel_pt_log("%s: %u range(s)\n", __func__, n);
3007
3008	for (i = 0; i < n; i++) {
3009		struct range *r = &pt->time_ranges[i];
3010		u64 ts = p[i].start;
3011		u64 te = p[i].end;
3012
3013		/*
3014		 * Take care to ensure the TSC range matches the perf-time range
3015		 * when converted back to perf-time.
3016		 */
3017		r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3018		r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3019
3020		intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3021			     i, ts, te);
3022		intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3023			     i, r->start, r->end);
3024	}
3025
3026	return 0;
3027}
3028
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3029static const char * const intel_pt_info_fmts[] = {
3030	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
3031	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
3032	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
3033	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
3034	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
3035	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
3036	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
3037	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
3038	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
3039	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
3040	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
 
3041	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
3042	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
3043	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
3044	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
3045	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
3046};
3047
3048static void intel_pt_print_info(__u64 *arr, int start, int finish)
3049{
3050	int i;
3051
3052	if (!dump_trace)
3053		return;
3054
3055	for (i = start; i <= finish; i++)
3056		fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
 
 
 
 
3057}
3058
3059static void intel_pt_print_info_str(const char *name, const char *str)
3060{
3061	if (!dump_trace)
3062		return;
3063
3064	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
3065}
3066
3067static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3068{
3069	return auxtrace_info->header.size >=
3070		sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3071}
3072
3073int intel_pt_process_auxtrace_info(union perf_event *event,
3074				   struct perf_session *session)
3075{
3076	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3077	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3078	struct intel_pt *pt;
3079	void *info_end;
3080	__u64 *info;
3081	int err;
3082
3083	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3084					min_sz)
3085		return -EINVAL;
3086
3087	pt = zalloc(sizeof(struct intel_pt));
3088	if (!pt)
3089		return -ENOMEM;
3090
 
 
3091	addr_filters__init(&pt->filts);
3092
3093	err = perf_config(intel_pt_perf_config, pt);
3094	if (err)
3095		goto err_free;
3096
3097	err = auxtrace_queues__init(&pt->queues);
3098	if (err)
3099		goto err_free;
3100
3101	intel_pt_log_set_name(INTEL_PT_PMU_NAME);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3102
3103	pt->session = session;
3104	pt->machine = &session->machines.host; /* No kvm support */
3105	pt->auxtrace_type = auxtrace_info->type;
3106	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3107	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3108	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3109	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3110	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3111	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3112	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3113	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3114	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3115	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3116	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3117			    INTEL_PT_PER_CPU_MMAPS);
3118
3119	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3120		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3121		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3122		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3123		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3124		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3125		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3126				    INTEL_PT_CYC_BIT);
3127	}
3128
3129	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3130		pt->max_non_turbo_ratio =
3131			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3132		intel_pt_print_info(&auxtrace_info->priv[0],
3133				    INTEL_PT_MAX_NONTURBO_RATIO,
3134				    INTEL_PT_MAX_NONTURBO_RATIO);
3135	}
3136
3137	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3138	info_end = (void *)info + auxtrace_info->header.size;
3139
3140	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3141		size_t len;
3142
3143		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3144		intel_pt_print_info(&auxtrace_info->priv[0],
3145				    INTEL_PT_FILTER_STR_LEN,
3146				    INTEL_PT_FILTER_STR_LEN);
3147		if (len) {
3148			const char *filter = (const char *)info;
3149
3150			len = roundup(len + 1, 8);
3151			info += len >> 3;
3152			if ((void *)info > info_end) {
3153				pr_err("%s: bad filter string length\n", __func__);
3154				err = -EINVAL;
3155				goto err_free_queues;
3156			}
3157			pt->filter = memdup(filter, len);
3158			if (!pt->filter) {
3159				err = -ENOMEM;
3160				goto err_free_queues;
3161			}
3162			if (session->header.needs_swap)
3163				mem_bswap_64(pt->filter, len);
3164			if (pt->filter[len - 1]) {
3165				pr_err("%s: filter string not null terminated\n", __func__);
3166				err = -EINVAL;
3167				goto err_free_queues;
3168			}
3169			err = addr_filters__parse_bare_filter(&pt->filts,
3170							      filter);
3171			if (err)
3172				goto err_free_queues;
3173		}
3174		intel_pt_print_info_str("Filter string", pt->filter);
3175	}
3176
 
 
 
 
 
 
 
3177	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3178	if (pt->timeless_decoding && !pt->tc.time_mult)
3179		pt->tc.time_mult = 1;
3180	pt->have_tsc = intel_pt_have_tsc(pt);
3181	pt->sampling_mode = false;
3182	pt->est_tsc = !pt->timeless_decoding;
3183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3184	pt->unknown_thread = thread__new(999999999, 999999999);
3185	if (!pt->unknown_thread) {
3186		err = -ENOMEM;
3187		goto err_free_queues;
3188	}
3189
3190	/*
3191	 * Since this thread will not be kept in any rbtree not in a
3192	 * list, initialize its list node so that at thread__put() the
3193	 * current thread lifetime assuption is kept and we don't segfault
3194	 * at list_del_init().
3195	 */
3196	INIT_LIST_HEAD(&pt->unknown_thread->node);
3197
3198	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3199	if (err)
3200		goto err_delete_thread;
3201	if (thread__init_map_groups(pt->unknown_thread, pt->machine)) {
3202		err = -ENOMEM;
3203		goto err_delete_thread;
3204	}
3205
3206	pt->auxtrace.process_event = intel_pt_process_event;
3207	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
 
 
3208	pt->auxtrace.flush_events = intel_pt_flush;
3209	pt->auxtrace.free_events = intel_pt_free_events;
3210	pt->auxtrace.free = intel_pt_free;
 
3211	session->auxtrace = &pt->auxtrace;
3212
3213	if (dump_trace)
3214		return 0;
3215
3216	if (pt->have_sched_switch == 1) {
3217		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3218		if (!pt->switch_evsel) {
3219			pr_err("%s: missing sched_switch event\n", __func__);
3220			err = -EINVAL;
3221			goto err_delete_thread;
3222		}
3223	} else if (pt->have_sched_switch == 2 &&
3224		   !intel_pt_find_switch(session->evlist)) {
3225		pr_err("%s: missing context_switch attribute flag\n", __func__);
3226		err = -EINVAL;
3227		goto err_delete_thread;
3228	}
3229
3230	if (session->itrace_synth_opts->set) {
3231		pt->synth_opts = *session->itrace_synth_opts;
3232	} else {
3233		itrace_synth_opts__set_default(&pt->synth_opts,
3234				session->itrace_synth_opts->default_no_sample);
3235		if (!session->itrace_synth_opts->default_no_sample &&
3236		    !session->itrace_synth_opts->inject) {
3237			pt->synth_opts.branches = false;
3238			pt->synth_opts.callchain = true;
3239		}
3240		pt->synth_opts.thread_stack =
3241				session->itrace_synth_opts->thread_stack;
3242	}
3243
3244	if (pt->synth_opts.log)
3245		intel_pt_log_enable();
3246
3247	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
3248	if (pt->tc.time_mult) {
3249		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3250
3251		if (!pt->max_non_turbo_ratio)
3252			pt->max_non_turbo_ratio =
3253					(tsc_freq + 50000000) / 100000000;
3254		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3255		intel_pt_log("Maximum non-turbo ratio %u\n",
3256			     pt->max_non_turbo_ratio);
3257		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3258	}
3259
3260	err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3261	if (err)
3262		goto err_delete_thread;
3263
3264	if (pt->synth_opts.calls)
3265		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3266				       PERF_IP_FLAG_TRACE_END;
3267	if (pt->synth_opts.returns)
3268		pt->branches_filter |= PERF_IP_FLAG_RETURN |
3269				       PERF_IP_FLAG_TRACE_BEGIN;
3270
3271	if (pt->synth_opts.callchain && !symbol_conf.use_callchain) {
 
3272		symbol_conf.use_callchain = true;
3273		if (callchain_register_param(&callchain_param) < 0) {
3274			symbol_conf.use_callchain = false;
3275			pt->synth_opts.callchain = false;
 
3276		}
3277	}
3278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3279	err = intel_pt_synth_events(pt, session);
3280	if (err)
3281		goto err_delete_thread;
3282
3283	intel_pt_setup_pebs_events(pt);
3284
3285	err = auxtrace_queues__process_index(&pt->queues, session);
 
 
 
 
 
 
 
 
 
3286	if (err)
3287		goto err_delete_thread;
3288
3289	if (pt->queues.populated)
3290		pt->data_queued = true;
3291
3292	if (pt->timeless_decoding)
3293		pr_debug2("Intel PT decoding without timestamps\n");
3294
3295	return 0;
3296
3297err_delete_thread:
 
3298	thread__zput(pt->unknown_thread);
3299err_free_queues:
3300	intel_pt_log_disable();
3301	auxtrace_queues__free(&pt->queues);
3302	session->auxtrace = NULL;
3303err_free:
3304	addr_filters__exit(&pt->filts);
3305	zfree(&pt->filter);
3306	zfree(&pt->time_ranges);
3307	free(pt);
3308	return err;
3309}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * intel_pt.c: Intel Processor Trace support
   4 * Copyright (c) 2013-2015, Intel Corporation.
   5 */
   6
   7#include <inttypes.h>
   8#include <linux/perf_event.h>
   9#include <stdio.h>
  10#include <stdbool.h>
  11#include <errno.h>
  12#include <linux/kernel.h>
  13#include <linux/string.h>
  14#include <linux/types.h>
  15#include <linux/zalloc.h>
  16
  17#include "session.h"
  18#include "machine.h"
  19#include "memswap.h"
  20#include "sort.h"
  21#include "tool.h"
  22#include "event.h"
  23#include "evlist.h"
  24#include "evsel.h"
  25#include "map.h"
  26#include "color.h"
  27#include "thread.h"
  28#include "thread-stack.h"
  29#include "symbol.h"
  30#include "callchain.h"
  31#include "dso.h"
  32#include "debug.h"
  33#include "auxtrace.h"
  34#include "tsc.h"
  35#include "intel-pt.h"
  36#include "config.h"
  37#include "util/perf_api_probe.h"
  38#include "util/synthetic-events.h"
  39#include "time-utils.h"
  40
  41#include "../arch/x86/include/uapi/asm/perf_regs.h"
  42
  43#include "intel-pt-decoder/intel-pt-log.h"
  44#include "intel-pt-decoder/intel-pt-decoder.h"
  45#include "intel-pt-decoder/intel-pt-insn-decoder.h"
  46#include "intel-pt-decoder/intel-pt-pkt-decoder.h"
  47
  48#define MAX_TIMESTAMP (~0ULL)
  49
  50#define INTEL_PT_CFG_PASS_THRU	BIT_ULL(0)
  51#define INTEL_PT_CFG_PWR_EVT_EN	BIT_ULL(4)
  52#define INTEL_PT_CFG_BRANCH_EN	BIT_ULL(13)
  53#define INTEL_PT_CFG_EVT_EN	BIT_ULL(31)
  54#define INTEL_PT_CFG_TNT_DIS	BIT_ULL(55)
  55
  56struct range {
  57	u64 start;
  58	u64 end;
  59};
  60
  61struct intel_pt {
  62	struct auxtrace auxtrace;
  63	struct auxtrace_queues queues;
  64	struct auxtrace_heap heap;
  65	u32 auxtrace_type;
  66	struct perf_session *session;
  67	struct machine *machine;
  68	struct evsel *switch_evsel;
  69	struct thread *unknown_thread;
  70	bool timeless_decoding;
  71	bool sampling_mode;
  72	bool snapshot_mode;
  73	bool per_cpu_mmaps;
  74	bool have_tsc;
  75	bool data_queued;
  76	bool est_tsc;
  77	bool sync_switch;
  78	bool sync_switch_not_supported;
  79	bool mispred_all;
  80	bool use_thread_stack;
  81	bool callstack;
  82	bool cap_event_trace;
  83	bool have_guest_sideband;
  84	unsigned int br_stack_sz;
  85	unsigned int br_stack_sz_plus;
  86	int have_sched_switch;
  87	u32 pmu_type;
  88	u64 kernel_start;
  89	u64 switch_ip;
  90	u64 ptss_ip;
  91	u64 first_timestamp;
  92
  93	struct perf_tsc_conversion tc;
  94	bool cap_user_time_zero;
  95
  96	struct itrace_synth_opts synth_opts;
  97
  98	bool sample_instructions;
  99	u64 instructions_sample_type;
 100	u64 instructions_id;
 101
 102	bool sample_cycles;
 103	u64 cycles_sample_type;
 104	u64 cycles_id;
 105
 106	bool sample_branches;
 107	u32 branches_filter;
 108	u64 branches_sample_type;
 109	u64 branches_id;
 110
 111	bool sample_transactions;
 112	u64 transactions_sample_type;
 113	u64 transactions_id;
 114
 115	bool sample_ptwrites;
 116	u64 ptwrites_sample_type;
 117	u64 ptwrites_id;
 118
 119	bool sample_pwr_events;
 120	u64 pwr_events_sample_type;
 121	u64 mwait_id;
 122	u64 pwre_id;
 123	u64 exstop_id;
 124	u64 pwrx_id;
 125	u64 cbr_id;
 126	u64 psb_id;
 127
 128	bool single_pebs;
 129	bool sample_pebs;
 130	struct evsel *pebs_evsel;
 131
 132	u64 evt_sample_type;
 133	u64 evt_id;
 134
 135	u64 iflag_chg_sample_type;
 136	u64 iflag_chg_id;
 137
 138	u64 tsc_bit;
 139	u64 mtc_bit;
 140	u64 mtc_freq_bits;
 141	u32 tsc_ctc_ratio_n;
 142	u32 tsc_ctc_ratio_d;
 143	u64 cyc_bit;
 144	u64 noretcomp_bit;
 145	unsigned max_non_turbo_ratio;
 146	unsigned cbr2khz;
 147	int max_loops;
 148
 149	unsigned long num_events;
 150
 151	char *filter;
 152	struct addr_filters filts;
 153
 154	struct range *time_ranges;
 155	unsigned int range_cnt;
 156
 157	struct ip_callchain *chain;
 158	struct branch_stack *br_stack;
 159
 160	u64 dflt_tsc_offset;
 161	struct rb_root vmcs_info;
 162};
 163
 164enum switch_state {
 165	INTEL_PT_SS_NOT_TRACING,
 166	INTEL_PT_SS_UNKNOWN,
 167	INTEL_PT_SS_TRACING,
 168	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
 169	INTEL_PT_SS_EXPECTING_SWITCH_IP,
 170};
 171
 172/* applicable_counters is 64-bits */
 173#define INTEL_PT_MAX_PEBS 64
 174
 175struct intel_pt_pebs_event {
 176	struct evsel *evsel;
 177	u64 id;
 178};
 179
 180struct intel_pt_queue {
 181	struct intel_pt *pt;
 182	unsigned int queue_nr;
 183	struct auxtrace_buffer *buffer;
 184	struct auxtrace_buffer *old_buffer;
 185	void *decoder;
 186	const struct intel_pt_state *state;
 187	struct ip_callchain *chain;
 188	struct branch_stack *last_branch;
 
 
 189	union perf_event *event_buf;
 190	bool on_heap;
 191	bool stop;
 192	bool step_through_buffers;
 193	bool use_buffer_pid_tid;
 194	bool sync_switch;
 195	bool sample_ipc;
 196	pid_t pid, tid;
 197	int cpu;
 198	int switch_state;
 199	pid_t next_tid;
 200	struct thread *thread;
 201	struct machine *guest_machine;
 202	struct thread *guest_thread;
 203	struct thread *unknown_guest_thread;
 204	pid_t guest_machine_pid;
 205	pid_t guest_pid;
 206	pid_t guest_tid;
 207	int vcpu;
 208	bool exclude_kernel;
 209	bool have_sample;
 210	u64 time;
 211	u64 timestamp;
 212	u64 sel_timestamp;
 213	bool sel_start;
 214	unsigned int sel_idx;
 215	u32 flags;
 216	u16 insn_len;
 217	u64 last_insn_cnt;
 218	u64 ipc_insn_cnt;
 219	u64 ipc_cyc_cnt;
 220	u64 last_in_insn_cnt;
 221	u64 last_in_cyc_cnt;
 222	u64 last_cy_insn_cnt;
 223	u64 last_cy_cyc_cnt;
 224	u64 last_br_insn_cnt;
 225	u64 last_br_cyc_cnt;
 226	unsigned int cbr_seen;
 227	char insn[INTEL_PT_INSN_BUF_SZ];
 228	struct intel_pt_pebs_event pebs[INTEL_PT_MAX_PEBS];
 229};
 230
 231static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
 232			  unsigned char *buf, size_t len)
 233{
 234	struct intel_pt_pkt packet;
 235	size_t pos = 0;
 236	int ret, pkt_len, i;
 237	char desc[INTEL_PT_PKT_DESC_MAX];
 238	const char *color = PERF_COLOR_BLUE;
 239	enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
 240
 241	color_fprintf(stdout, color,
 242		      ". ... Intel Processor Trace data: size %zu bytes\n",
 243		      len);
 244
 245	while (len) {
 246		ret = intel_pt_get_packet(buf, len, &packet, &ctx);
 247		if (ret > 0)
 248			pkt_len = ret;
 249		else
 250			pkt_len = 1;
 251		printf(".");
 252		color_fprintf(stdout, color, "  %08x: ", pos);
 253		for (i = 0; i < pkt_len; i++)
 254			color_fprintf(stdout, color, " %02x", buf[i]);
 255		for (; i < 16; i++)
 256			color_fprintf(stdout, color, "   ");
 257		if (ret > 0) {
 258			ret = intel_pt_pkt_desc(&packet, desc,
 259						INTEL_PT_PKT_DESC_MAX);
 260			if (ret > 0)
 261				color_fprintf(stdout, color, " %s\n", desc);
 262		} else {
 263			color_fprintf(stdout, color, " Bad packet!\n");
 264		}
 265		pos += pkt_len;
 266		buf += pkt_len;
 267		len -= pkt_len;
 268	}
 269}
 270
 271static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
 272				size_t len)
 273{
 274	printf(".\n");
 275	intel_pt_dump(pt, buf, len);
 276}
 277
 278static void intel_pt_log_event(union perf_event *event)
 279{
 280	FILE *f = intel_pt_log_fp();
 281
 282	if (!intel_pt_enable_logging || !f)
 283		return;
 284
 285	perf_event__fprintf(event, NULL, f);
 286}
 287
 288static void intel_pt_dump_sample(struct perf_session *session,
 289				 struct perf_sample *sample)
 290{
 291	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
 292					   auxtrace);
 293
 294	printf("\n");
 295	intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
 296}
 297
 298static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
 299{
 300	struct perf_time_interval *range = pt->synth_opts.ptime_range;
 301	int n = pt->synth_opts.range_num;
 302
 303	if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
 304		return true;
 305
 306	if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
 307		return false;
 308
 309	/* perf_time__ranges_skip_sample does not work if time is zero */
 310	if (!tm)
 311		tm = 1;
 312
 313	return !n || !perf_time__ranges_skip_sample(range, n, tm);
 314}
 315
 316static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
 317							u64 vmcs,
 318							u64 dflt_tsc_offset)
 319{
 320	struct rb_node **p = &rb_root->rb_node;
 321	struct rb_node *parent = NULL;
 322	struct intel_pt_vmcs_info *v;
 323
 324	while (*p) {
 325		parent = *p;
 326		v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
 327
 328		if (v->vmcs == vmcs)
 329			return v;
 330
 331		if (vmcs < v->vmcs)
 332			p = &(*p)->rb_left;
 333		else
 334			p = &(*p)->rb_right;
 335	}
 336
 337	v = zalloc(sizeof(*v));
 338	if (v) {
 339		v->vmcs = vmcs;
 340		v->tsc_offset = dflt_tsc_offset;
 341		v->reliable = dflt_tsc_offset;
 342
 343		rb_link_node(&v->rb_node, parent, p);
 344		rb_insert_color(&v->rb_node, rb_root);
 345	}
 346
 347	return v;
 348}
 349
 350static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
 351{
 352	struct intel_pt_queue *ptq = data;
 353	struct intel_pt *pt = ptq->pt;
 354
 355	if (!vmcs && !pt->dflt_tsc_offset)
 356		return NULL;
 357
 358	return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset);
 359}
 360
 361static void intel_pt_free_vmcs_info(struct intel_pt *pt)
 362{
 363	struct intel_pt_vmcs_info *v;
 364	struct rb_node *n;
 365
 366	n = rb_first(&pt->vmcs_info);
 367	while (n) {
 368		v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
 369		n = rb_next(n);
 370		rb_erase(&v->rb_node, &pt->vmcs_info);
 371		free(v);
 372	}
 373}
 374
 375static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
 376				   struct auxtrace_buffer *b)
 377{
 378	bool consecutive = false;
 379	void *start;
 380
 381	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
 382				      pt->have_tsc, &consecutive,
 383				      pt->synth_opts.vm_time_correlation);
 384	if (!start)
 385		return -EINVAL;
 386	/*
 387	 * In the case of vm_time_correlation, the overlap might contain TSC
 388	 * packets that will not be fixed, and that will then no longer work for
 389	 * overlap detection. Avoid that by zeroing out the overlap.
 390	 */
 391	if (pt->synth_opts.vm_time_correlation)
 392		memset(b->data, 0, start - b->data);
 393	b->use_size = b->data + b->size - start;
 394	b->use_data = start;
 395	if (b->use_size && consecutive)
 396		b->consecutive = true;
 397	return 0;
 398}
 399
 400static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
 401			       struct auxtrace_buffer *buffer,
 402			       struct auxtrace_buffer *old_buffer,
 403			       struct intel_pt_buffer *b)
 404{
 405	bool might_overlap;
 406
 407	if (!buffer->data) {
 408		int fd = perf_data__fd(ptq->pt->session->data);
 409
 410		buffer->data = auxtrace_buffer__get_data(buffer, fd);
 411		if (!buffer->data)
 412			return -ENOMEM;
 413	}
 414
 415	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
 416	if (might_overlap && !buffer->consecutive && old_buffer &&
 417	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
 418		return -ENOMEM;
 419
 420	if (buffer->use_data) {
 421		b->len = buffer->use_size;
 422		b->buf = buffer->use_data;
 423	} else {
 424		b->len = buffer->size;
 425		b->buf = buffer->data;
 426	}
 427	b->ref_timestamp = buffer->reference;
 428
 429	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
 430		b->consecutive = false;
 431		b->trace_nr = buffer->buffer_nr + 1;
 432	} else {
 433		b->consecutive = true;
 434	}
 435
 436	return 0;
 437}
 438
 439/* Do not drop buffers with references - refer intel_pt_get_trace() */
 440static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
 441					   struct auxtrace_buffer *buffer)
 442{
 443	if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
 444		return;
 445
 446	auxtrace_buffer__drop_data(buffer);
 447}
 448
 449/* Must be serialized with respect to intel_pt_get_trace() */
 450static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
 451			      void *cb_data)
 452{
 453	struct intel_pt_queue *ptq = data;
 454	struct auxtrace_buffer *buffer = ptq->buffer;
 455	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
 456	struct auxtrace_queue *queue;
 457	int err = 0;
 458
 459	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
 460
 461	while (1) {
 462		struct intel_pt_buffer b = { .len = 0 };
 463
 464		buffer = auxtrace_buffer__next(queue, buffer);
 465		if (!buffer)
 466			break;
 467
 468		err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
 469		if (err)
 470			break;
 471
 472		if (b.len) {
 473			intel_pt_lookahead_drop_buffer(ptq, old_buffer);
 474			old_buffer = buffer;
 475		} else {
 476			intel_pt_lookahead_drop_buffer(ptq, buffer);
 477			continue;
 478		}
 479
 480		err = cb(&b, cb_data);
 481		if (err)
 482			break;
 483	}
 484
 485	if (buffer != old_buffer)
 486		intel_pt_lookahead_drop_buffer(ptq, buffer);
 487	intel_pt_lookahead_drop_buffer(ptq, old_buffer);
 488
 489	return err;
 490}
 491
 492/*
 493 * This function assumes data is processed sequentially only.
 494 * Must be serialized with respect to intel_pt_lookahead()
 495 */
 496static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
 497{
 498	struct intel_pt_queue *ptq = data;
 499	struct auxtrace_buffer *buffer = ptq->buffer;
 500	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
 501	struct auxtrace_queue *queue;
 502	int err;
 503
 504	if (ptq->stop) {
 505		b->len = 0;
 506		return 0;
 507	}
 508
 509	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
 510
 511	buffer = auxtrace_buffer__next(queue, buffer);
 512	if (!buffer) {
 513		if (old_buffer)
 514			auxtrace_buffer__drop_data(old_buffer);
 515		b->len = 0;
 516		return 0;
 517	}
 518
 519	ptq->buffer = buffer;
 520
 521	err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
 522	if (err)
 523		return err;
 524
 525	if (ptq->step_through_buffers)
 526		ptq->stop = true;
 527
 528	if (b->len) {
 529		if (old_buffer)
 530			auxtrace_buffer__drop_data(old_buffer);
 531		ptq->old_buffer = buffer;
 532	} else {
 533		auxtrace_buffer__drop_data(buffer);
 534		return intel_pt_get_trace(b, data);
 535	}
 536
 537	return 0;
 538}
 539
 540struct intel_pt_cache_entry {
 541	struct auxtrace_cache_entry	entry;
 542	u64				insn_cnt;
 543	u64				byte_cnt;
 544	enum intel_pt_insn_op		op;
 545	enum intel_pt_insn_branch	branch;
 546	bool				emulated_ptwrite;
 547	int				length;
 548	int32_t				rel;
 549	char				insn[INTEL_PT_INSN_BUF_SZ];
 550};
 551
 552static int intel_pt_config_div(const char *var, const char *value, void *data)
 553{
 554	int *d = data;
 555	long val;
 556
 557	if (!strcmp(var, "intel-pt.cache-divisor")) {
 558		val = strtol(value, NULL, 0);
 559		if (val > 0 && val <= INT_MAX)
 560			*d = val;
 561	}
 562
 563	return 0;
 564}
 565
 566static int intel_pt_cache_divisor(void)
 567{
 568	static int d;
 569
 570	if (d)
 571		return d;
 572
 573	perf_config(intel_pt_config_div, &d);
 574
 575	if (!d)
 576		d = 64;
 577
 578	return d;
 579}
 580
 581static unsigned int intel_pt_cache_size(struct dso *dso,
 582					struct machine *machine)
 583{
 584	off_t size;
 585
 586	size = dso__data_size(dso, machine);
 587	size /= intel_pt_cache_divisor();
 588	if (size < 1000)
 589		return 10;
 590	if (size > (1 << 21))
 591		return 21;
 592	return 32 - __builtin_clz(size);
 593}
 594
 595static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
 596					     struct machine *machine)
 597{
 598	struct auxtrace_cache *c;
 599	unsigned int bits;
 600
 601	if (dso->auxtrace_cache)
 602		return dso->auxtrace_cache;
 603
 604	bits = intel_pt_cache_size(dso, machine);
 605
 606	/* Ignoring cache creation failure */
 607	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
 608
 609	dso->auxtrace_cache = c;
 610
 611	return c;
 612}
 613
 614static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
 615			      u64 offset, u64 insn_cnt, u64 byte_cnt,
 616			      struct intel_pt_insn *intel_pt_insn)
 617{
 618	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
 619	struct intel_pt_cache_entry *e;
 620	int err;
 621
 622	if (!c)
 623		return -ENOMEM;
 624
 625	e = auxtrace_cache__alloc_entry(c);
 626	if (!e)
 627		return -ENOMEM;
 628
 629	e->insn_cnt = insn_cnt;
 630	e->byte_cnt = byte_cnt;
 631	e->op = intel_pt_insn->op;
 632	e->branch = intel_pt_insn->branch;
 633	e->emulated_ptwrite = intel_pt_insn->emulated_ptwrite;
 634	e->length = intel_pt_insn->length;
 635	e->rel = intel_pt_insn->rel;
 636	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
 637
 638	err = auxtrace_cache__add(c, offset, &e->entry);
 639	if (err)
 640		auxtrace_cache__free_entry(c, e);
 641
 642	return err;
 643}
 644
 645static struct intel_pt_cache_entry *
 646intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
 647{
 648	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
 649
 650	if (!c)
 651		return NULL;
 652
 653	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
 654}
 655
 656static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
 657				      u64 offset)
 658{
 659	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
 660
 661	if (!c)
 662		return;
 663
 664	auxtrace_cache__remove(dso->auxtrace_cache, offset);
 665}
 666
 667static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
 668{
 669	/* Assumes 64-bit kernel */
 670	return ip & (1ULL << 63);
 671}
 672
 673static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
 674{
 675	if (nr) {
 676		return intel_pt_guest_kernel_ip(ip) ?
 677		       PERF_RECORD_MISC_GUEST_KERNEL :
 678		       PERF_RECORD_MISC_GUEST_USER;
 679	}
 680
 681	return ip >= ptq->pt->kernel_start ?
 682	       PERF_RECORD_MISC_KERNEL :
 683	       PERF_RECORD_MISC_USER;
 684}
 685
 686static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
 687{
 688	/* No support for non-zero CS base */
 689	if (from_ip)
 690		return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
 691	return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
 692}
 693
 694static int intel_pt_get_guest(struct intel_pt_queue *ptq)
 695{
 696	struct machines *machines = &ptq->pt->session->machines;
 697	struct machine *machine;
 698	pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
 699
 700	if (ptq->guest_machine && pid == ptq->guest_machine->pid)
 701		return 0;
 702
 703	ptq->guest_machine = NULL;
 704	thread__zput(ptq->unknown_guest_thread);
 705
 706	if (symbol_conf.guest_code) {
 707		thread__zput(ptq->guest_thread);
 708		ptq->guest_thread = machines__findnew_guest_code(machines, pid);
 709	}
 710
 711	machine = machines__find_guest(machines, pid);
 712	if (!machine)
 713		return -1;
 714
 715	ptq->unknown_guest_thread = machine__idle_thread(machine);
 716	if (!ptq->unknown_guest_thread)
 717		return -1;
 718
 719	ptq->guest_machine = machine;
 720
 721	return 0;
 722}
 723
 724static inline bool intel_pt_jmp_16(struct intel_pt_insn *intel_pt_insn)
 725{
 726	return intel_pt_insn->rel == 16 && intel_pt_insn->branch == INTEL_PT_BR_UNCONDITIONAL;
 727}
 728
 729#define PTWRITE_MAGIC		"\x0f\x0bperf,ptwrite  "
 730#define PTWRITE_MAGIC_LEN	16
 731
 732static bool intel_pt_emulated_ptwrite(struct dso *dso, struct machine *machine, u64 offset)
 733{
 734	unsigned char buf[PTWRITE_MAGIC_LEN];
 735	ssize_t len;
 736
 737	len = dso__data_read_offset(dso, machine, offset, buf, PTWRITE_MAGIC_LEN);
 738	if (len == PTWRITE_MAGIC_LEN && !memcmp(buf, PTWRITE_MAGIC, PTWRITE_MAGIC_LEN)) {
 739		intel_pt_log("Emulated ptwrite signature found\n");
 740		return true;
 741	}
 742	intel_pt_log("Emulated ptwrite signature not found\n");
 743	return false;
 744}
 745
 746static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
 747				   uint64_t *insn_cnt_ptr, uint64_t *ip,
 748				   uint64_t to_ip, uint64_t max_insn_cnt,
 749				   void *data)
 750{
 751	struct intel_pt_queue *ptq = data;
 752	struct machine *machine = ptq->pt->machine;
 753	struct thread *thread;
 754	struct addr_location al;
 755	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
 756	ssize_t len;
 757	int x86_64, ret = 0;
 758	u8 cpumode;
 759	u64 offset, start_offset, start_ip;
 760	u64 insn_cnt = 0;
 761	bool one_map = true;
 762	bool nr;
 763
 764
 765	addr_location__init(&al);
 766	intel_pt_insn->length = 0;
 767
 768	if (to_ip && *ip == to_ip)
 769		goto out_no_cache;
 770
 771	nr = ptq->state->to_nr;
 772	cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
 773
 774	if (nr) {
 775		if (ptq->pt->have_guest_sideband) {
 776			if (!ptq->guest_machine || ptq->guest_machine_pid != ptq->pid) {
 777				intel_pt_log("ERROR: guest sideband but no guest machine\n");
 778				ret = -EINVAL;
 779				goto out_ret;
 780			}
 781		} else if ((!symbol_conf.guest_code && cpumode != PERF_RECORD_MISC_GUEST_KERNEL) ||
 782			   intel_pt_get_guest(ptq)) {
 783			intel_pt_log("ERROR: no guest machine\n");
 784			ret = -EINVAL;
 785			goto out_ret;
 786		}
 787		machine = ptq->guest_machine;
 788		thread = ptq->guest_thread;
 789		if (!thread) {
 790			if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL) {
 791				intel_pt_log("ERROR: no guest thread\n");
 792				ret = -EINVAL;
 793				goto out_ret;
 794			}
 795			thread = ptq->unknown_guest_thread;
 796		}
 797	} else {
 798		thread = ptq->thread;
 799		if (!thread) {
 800			if (cpumode != PERF_RECORD_MISC_KERNEL) {
 801				intel_pt_log("ERROR: no thread\n");
 802				ret = -EINVAL;
 803				goto out_ret;
 804			}
 805			thread = ptq->pt->unknown_thread;
 806		}
 807	}
 808
 809	while (1) {
 810		struct dso *dso;
 811
 812		if (!thread__find_map(thread, cpumode, *ip, &al) || !map__dso(al.map)) {
 813			if (al.map)
 814				intel_pt_log("ERROR: thread has no dso for %#" PRIx64 "\n", *ip);
 815			else
 816				intel_pt_log("ERROR: thread has no map for %#" PRIx64 "\n", *ip);
 817			addr_location__exit(&al);
 818			ret = -EINVAL;
 819			goto out_ret;
 820		}
 821		dso = map__dso(al.map);
 822
 823		if (dso->data.status == DSO_DATA_STATUS_ERROR &&
 824			dso__data_status_seen(dso, DSO_DATA_STATUS_SEEN_ITRACE)) {
 825			ret = -ENOENT;
 826			goto out_ret;
 827		}
 828
 829		offset = map__map_ip(al.map, *ip);
 830
 831		if (!to_ip && one_map) {
 832			struct intel_pt_cache_entry *e;
 833
 834			e = intel_pt_cache_lookup(dso, machine, offset);
 835			if (e &&
 836			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
 837				*insn_cnt_ptr = e->insn_cnt;
 838				*ip += e->byte_cnt;
 839				intel_pt_insn->op = e->op;
 840				intel_pt_insn->branch = e->branch;
 841				intel_pt_insn->emulated_ptwrite = e->emulated_ptwrite;
 842				intel_pt_insn->length = e->length;
 843				intel_pt_insn->rel = e->rel;
 844				memcpy(intel_pt_insn->buf, e->insn, INTEL_PT_INSN_BUF_SZ);
 
 845				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
 846				ret = 0;
 847				goto out_ret;
 848			}
 849		}
 850
 851		start_offset = offset;
 852		start_ip = *ip;
 853
 854		/* Load maps to ensure dso->is_64_bit has been updated */
 855		map__load(al.map);
 856
 857		x86_64 = dso->is_64_bit;
 858
 859		while (1) {
 860			len = dso__data_read_offset(dso, machine,
 861						    offset, buf,
 862						    INTEL_PT_INSN_BUF_SZ);
 863			if (len <= 0) {
 864				intel_pt_log("ERROR: failed to read at offset %#" PRIx64 " ",
 865					     offset);
 866				if (intel_pt_enable_logging)
 867					dso__fprintf(dso, intel_pt_log_fp());
 868				ret = -EINVAL;
 869				goto out_ret;
 870			}
 871
 872			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn)) {
 873				ret = -EINVAL;
 874				goto out_ret;
 875			}
 876
 877			intel_pt_log_insn(intel_pt_insn, *ip);
 878
 879			insn_cnt += 1;
 880
 881			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) {
 882				bool eptw;
 883				u64 offs;
 884
 885				if (!intel_pt_jmp_16(intel_pt_insn))
 886					goto out;
 887				/* Check for emulated ptwrite */
 888				offs = offset + intel_pt_insn->length;
 889				eptw = intel_pt_emulated_ptwrite(dso, machine, offs);
 890				intel_pt_insn->emulated_ptwrite = eptw;
 891				goto out;
 892			}
 893
 894			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
 895				goto out_no_cache;
 896
 897			*ip += intel_pt_insn->length;
 898
 899			if (to_ip && *ip == to_ip) {
 900				intel_pt_insn->length = 0;
 901				goto out_no_cache;
 902			}
 903
 904			if (*ip >= map__end(al.map))
 905				break;
 906
 907			offset += intel_pt_insn->length;
 908		}
 909		one_map = false;
 910	}
 911out:
 912	*insn_cnt_ptr = insn_cnt;
 913
 914	if (!one_map)
 915		goto out_no_cache;
 916
 917	/*
 918	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
 919	 * entries.
 920	 */
 921	if (to_ip) {
 922		struct intel_pt_cache_entry *e;
 923
 924		e = intel_pt_cache_lookup(map__dso(al.map), machine, start_offset);
 925		if (e)
 926			goto out_ret;
 927	}
 928
 929	/* Ignore cache errors */
 930	intel_pt_cache_add(map__dso(al.map), machine, start_offset, insn_cnt,
 931			   *ip - start_ip, intel_pt_insn);
 932
 933out_ret:
 934	addr_location__exit(&al);
 935	return ret;
 936
 937out_no_cache:
 938	*insn_cnt_ptr = insn_cnt;
 939	addr_location__exit(&al);
 940	return 0;
 941}
 942
 943static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
 944				  uint64_t offset, const char *filename)
 945{
 946	struct addr_filter *filt;
 947	bool have_filter   = false;
 948	bool hit_tracestop = false;
 949	bool hit_filter    = false;
 950
 951	list_for_each_entry(filt, &pt->filts.head, list) {
 952		if (filt->start)
 953			have_filter = true;
 954
 955		if ((filename && !filt->filename) ||
 956		    (!filename && filt->filename) ||
 957		    (filename && strcmp(filename, filt->filename)))
 958			continue;
 959
 960		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
 961			continue;
 962
 963		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
 964			     ip, offset, filename ? filename : "[kernel]",
 965			     filt->start ? "filter" : "stop",
 966			     filt->addr, filt->size);
 967
 968		if (filt->start)
 969			hit_filter = true;
 970		else
 971			hit_tracestop = true;
 972	}
 973
 974	if (!hit_tracestop && !hit_filter)
 975		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
 976			     ip, offset, filename ? filename : "[kernel]");
 977
 978	return hit_tracestop || (have_filter && !hit_filter);
 979}
 980
 981static int __intel_pt_pgd_ip(uint64_t ip, void *data)
 982{
 983	struct intel_pt_queue *ptq = data;
 984	struct thread *thread;
 985	struct addr_location al;
 986	u8 cpumode;
 987	u64 offset;
 988	int res;
 989
 990	if (ptq->state->to_nr) {
 991		if (intel_pt_guest_kernel_ip(ip))
 992			return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
 993		/* No support for decoding guest user space */
 994		return -EINVAL;
 995	} else if (ip >= ptq->pt->kernel_start) {
 996		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
 997	}
 998
 999	cpumode = PERF_RECORD_MISC_USER;
1000
1001	thread = ptq->thread;
1002	if (!thread)
1003		return -EINVAL;
1004
1005	addr_location__init(&al);
1006	if (!thread__find_map(thread, cpumode, ip, &al) || !map__dso(al.map))
1007		return -EINVAL;
1008
1009	offset = map__map_ip(al.map, ip);
1010
1011	res = intel_pt_match_pgd_ip(ptq->pt, ip, offset, map__dso(al.map)->long_name);
1012	addr_location__exit(&al);
1013	return res;
1014}
1015
1016static bool intel_pt_pgd_ip(uint64_t ip, void *data)
1017{
1018	return __intel_pt_pgd_ip(ip, data) > 0;
1019}
1020
1021static bool intel_pt_get_config(struct intel_pt *pt,
1022				struct perf_event_attr *attr, u64 *config)
1023{
1024	if (attr->type == pt->pmu_type) {
1025		if (config)
1026			*config = attr->config;
1027		return true;
1028	}
1029
1030	return false;
1031}
1032
1033static bool intel_pt_exclude_kernel(struct intel_pt *pt)
1034{
1035	struct evsel *evsel;
1036
1037	evlist__for_each_entry(pt->session->evlist, evsel) {
1038		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1039		    !evsel->core.attr.exclude_kernel)
1040			return false;
1041	}
1042	return true;
1043}
1044
1045static bool intel_pt_return_compression(struct intel_pt *pt)
1046{
1047	struct evsel *evsel;
1048	u64 config;
1049
1050	if (!pt->noretcomp_bit)
1051		return true;
1052
1053	evlist__for_each_entry(pt->session->evlist, evsel) {
1054		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1055		    (config & pt->noretcomp_bit))
1056			return false;
1057	}
1058	return true;
1059}
1060
1061static bool intel_pt_branch_enable(struct intel_pt *pt)
1062{
1063	struct evsel *evsel;
1064	u64 config;
1065
1066	evlist__for_each_entry(pt->session->evlist, evsel) {
1067		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1068		    (config & INTEL_PT_CFG_PASS_THRU) &&
1069		    !(config & INTEL_PT_CFG_BRANCH_EN))
1070			return false;
1071	}
1072	return true;
1073}
1074
1075static bool intel_pt_disabled_tnt(struct intel_pt *pt)
1076{
1077	struct evsel *evsel;
1078	u64 config;
1079
1080	evlist__for_each_entry(pt->session->evlist, evsel) {
1081		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1082		    config & INTEL_PT_CFG_TNT_DIS)
1083			return true;
1084	}
1085	return false;
1086}
1087
1088static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
1089{
1090	struct evsel *evsel;
1091	unsigned int shift;
1092	u64 config;
1093
1094	if (!pt->mtc_freq_bits)
1095		return 0;
1096
1097	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
1098		config >>= 1;
1099
1100	evlist__for_each_entry(pt->session->evlist, evsel) {
1101		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1102			return (config & pt->mtc_freq_bits) >> shift;
1103	}
1104	return 0;
1105}
1106
1107static bool intel_pt_timeless_decoding(struct intel_pt *pt)
1108{
1109	struct evsel *evsel;
1110	bool timeless_decoding = true;
1111	u64 config;
1112
1113	if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
1114		return true;
1115
1116	evlist__for_each_entry(pt->session->evlist, evsel) {
1117		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
1118			return true;
1119		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1120			if (config & pt->tsc_bit)
1121				timeless_decoding = false;
1122			else
1123				return true;
1124		}
1125	}
1126	return timeless_decoding;
1127}
1128
1129static bool intel_pt_tracing_kernel(struct intel_pt *pt)
1130{
1131	struct evsel *evsel;
1132
1133	evlist__for_each_entry(pt->session->evlist, evsel) {
1134		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1135		    !evsel->core.attr.exclude_kernel)
1136			return true;
1137	}
1138	return false;
1139}
1140
1141static bool intel_pt_have_tsc(struct intel_pt *pt)
1142{
1143	struct evsel *evsel;
1144	bool have_tsc = false;
1145	u64 config;
1146
1147	if (!pt->tsc_bit)
1148		return false;
1149
1150	evlist__for_each_entry(pt->session->evlist, evsel) {
1151		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1152			if (config & pt->tsc_bit)
1153				have_tsc = true;
1154			else
1155				return false;
1156		}
1157	}
1158	return have_tsc;
1159}
1160
1161static bool intel_pt_have_mtc(struct intel_pt *pt)
1162{
1163	struct evsel *evsel;
1164	u64 config;
1165
1166	evlist__for_each_entry(pt->session->evlist, evsel) {
1167		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1168		    (config & pt->mtc_bit))
1169			return true;
1170	}
1171	return false;
1172}
1173
1174static bool intel_pt_sampling_mode(struct intel_pt *pt)
1175{
1176	struct evsel *evsel;
1177
1178	evlist__for_each_entry(pt->session->evlist, evsel) {
1179		if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
1180		    evsel->core.attr.aux_sample_size)
1181			return true;
1182	}
1183	return false;
1184}
1185
1186static u64 intel_pt_ctl(struct intel_pt *pt)
1187{
1188	struct evsel *evsel;
1189	u64 config;
1190
1191	evlist__for_each_entry(pt->session->evlist, evsel) {
1192		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1193			return config;
1194	}
1195	return 0;
1196}
1197
1198static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
1199{
1200	u64 quot, rem;
1201
1202	quot = ns / pt->tc.time_mult;
1203	rem  = ns % pt->tc.time_mult;
1204	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
1205		pt->tc.time_mult;
1206}
1207
1208static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
1209{
1210	size_t sz = sizeof(struct ip_callchain);
1211
1212	/* Add 1 to callchain_sz for callchain context */
1213	sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
1214	return zalloc(sz);
1215}
1216
1217static int intel_pt_callchain_init(struct intel_pt *pt)
1218{
1219	struct evsel *evsel;
1220
1221	evlist__for_each_entry(pt->session->evlist, evsel) {
1222		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1223			evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1224	}
1225
1226	pt->chain = intel_pt_alloc_chain(pt);
1227	if (!pt->chain)
1228		return -ENOMEM;
1229
1230	return 0;
1231}
1232
1233static void intel_pt_add_callchain(struct intel_pt *pt,
1234				   struct perf_sample *sample)
1235{
1236	struct thread *thread = machine__findnew_thread(pt->machine,
1237							sample->pid,
1238							sample->tid);
1239
1240	thread_stack__sample_late(thread, sample->cpu, pt->chain,
1241				  pt->synth_opts.callchain_sz + 1, sample->ip,
1242				  pt->kernel_start);
1243
1244	sample->callchain = pt->chain;
1245}
1246
1247static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1248{
1249	size_t sz = sizeof(struct branch_stack);
1250
1251	sz += entry_cnt * sizeof(struct branch_entry);
1252	return zalloc(sz);
1253}
1254
1255static int intel_pt_br_stack_init(struct intel_pt *pt)
1256{
1257	struct evsel *evsel;
1258
1259	evlist__for_each_entry(pt->session->evlist, evsel) {
1260		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1261			evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1262	}
1263
1264	pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1265	if (!pt->br_stack)
1266		return -ENOMEM;
1267
1268	return 0;
1269}
1270
1271static void intel_pt_add_br_stack(struct intel_pt *pt,
1272				  struct perf_sample *sample)
1273{
1274	struct thread *thread = machine__findnew_thread(pt->machine,
1275							sample->pid,
1276							sample->tid);
1277
1278	thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1279				     pt->br_stack_sz, sample->ip,
1280				     pt->kernel_start);
1281
1282	sample->branch_stack = pt->br_stack;
1283	thread__put(thread);
1284}
1285
1286/* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1287#define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1288
1289static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1290						   unsigned int queue_nr)
1291{
1292	struct intel_pt_params params = { .get_trace = 0, };
1293	struct perf_env *env = pt->machine->env;
1294	struct intel_pt_queue *ptq;
1295
1296	ptq = zalloc(sizeof(struct intel_pt_queue));
1297	if (!ptq)
1298		return NULL;
1299
1300	if (pt->synth_opts.callchain) {
1301		ptq->chain = intel_pt_alloc_chain(pt);
 
 
 
 
1302		if (!ptq->chain)
1303			goto out_free;
1304	}
1305
1306	if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1307		unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1308
1309		ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
 
 
1310		if (!ptq->last_branch)
1311			goto out_free;
 
 
 
1312	}
1313
1314	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1315	if (!ptq->event_buf)
1316		goto out_free;
1317
1318	ptq->pt = pt;
1319	ptq->queue_nr = queue_nr;
1320	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1321	ptq->pid = -1;
1322	ptq->tid = -1;
1323	ptq->cpu = -1;
1324	ptq->next_tid = -1;
1325
1326	params.get_trace = intel_pt_get_trace;
1327	params.walk_insn = intel_pt_walk_next_insn;
1328	params.lookahead = intel_pt_lookahead;
1329	params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
1330	params.data = ptq;
1331	params.return_compression = intel_pt_return_compression(pt);
1332	params.branch_enable = intel_pt_branch_enable(pt);
1333	params.ctl = intel_pt_ctl(pt);
1334	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1335	params.mtc_period = intel_pt_mtc_period(pt);
1336	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1337	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1338	params.quick = pt->synth_opts.quick;
1339	params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
1340	params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
1341	params.first_timestamp = pt->first_timestamp;
1342	params.max_loops = pt->max_loops;
1343
1344	/* Cannot walk code without TNT, so force 'quick' mode */
1345	if (params.branch_enable && intel_pt_disabled_tnt(pt) && !params.quick)
1346		params.quick = 1;
1347
1348	if (pt->filts.cnt > 0)
1349		params.pgd_ip = intel_pt_pgd_ip;
1350
1351	if (pt->synth_opts.instructions || pt->synth_opts.cycles) {
1352		if (pt->synth_opts.period) {
1353			switch (pt->synth_opts.period_type) {
1354			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1355				params.period_type =
1356						INTEL_PT_PERIOD_INSTRUCTIONS;
1357				params.period = pt->synth_opts.period;
1358				break;
1359			case PERF_ITRACE_PERIOD_TICKS:
1360				params.period_type = INTEL_PT_PERIOD_TICKS;
1361				params.period = pt->synth_opts.period;
1362				break;
1363			case PERF_ITRACE_PERIOD_NANOSECS:
1364				params.period_type = INTEL_PT_PERIOD_TICKS;
1365				params.period = intel_pt_ns_to_ticks(pt,
1366							pt->synth_opts.period);
1367				break;
1368			default:
1369				break;
1370			}
1371		}
1372
1373		if (!params.period) {
1374			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1375			params.period = 1;
1376		}
1377	}
1378
1379	if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1380		params.flags |= INTEL_PT_FUP_WITH_NLIP;
1381
1382	ptq->decoder = intel_pt_decoder_new(&params);
1383	if (!ptq->decoder)
1384		goto out_free;
1385
1386	return ptq;
1387
1388out_free:
1389	zfree(&ptq->event_buf);
1390	zfree(&ptq->last_branch);
 
1391	zfree(&ptq->chain);
1392	free(ptq);
1393	return NULL;
1394}
1395
1396static void intel_pt_free_queue(void *priv)
1397{
1398	struct intel_pt_queue *ptq = priv;
1399
1400	if (!ptq)
1401		return;
1402	thread__zput(ptq->thread);
1403	thread__zput(ptq->guest_thread);
1404	thread__zput(ptq->unknown_guest_thread);
1405	intel_pt_decoder_free(ptq->decoder);
1406	zfree(&ptq->event_buf);
1407	zfree(&ptq->last_branch);
 
1408	zfree(&ptq->chain);
1409	free(ptq);
1410}
1411
1412static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
1413{
1414	unsigned int i;
1415
1416	pt->first_timestamp = timestamp;
1417
1418	for (i = 0; i < pt->queues.nr_queues; i++) {
1419		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1420		struct intel_pt_queue *ptq = queue->priv;
1421
1422		if (ptq && ptq->decoder)
1423			intel_pt_set_first_timestamp(ptq->decoder, timestamp);
1424	}
1425}
1426
1427static int intel_pt_get_guest_from_sideband(struct intel_pt_queue *ptq)
1428{
1429	struct machines *machines = &ptq->pt->session->machines;
1430	struct machine *machine;
1431	pid_t machine_pid = ptq->pid;
1432	pid_t tid;
1433	int vcpu;
1434
1435	if (machine_pid <= 0)
1436		return 0; /* Not a guest machine */
1437
1438	machine = machines__find(machines, machine_pid);
1439	if (!machine)
1440		return 0; /* Not a guest machine */
1441
1442	if (ptq->guest_machine != machine) {
1443		ptq->guest_machine = NULL;
1444		thread__zput(ptq->guest_thread);
1445		thread__zput(ptq->unknown_guest_thread);
1446
1447		ptq->unknown_guest_thread = machine__find_thread(machine, 0, 0);
1448		if (!ptq->unknown_guest_thread)
1449			return -1;
1450		ptq->guest_machine = machine;
1451	}
1452
1453	vcpu = ptq->thread ? thread__guest_cpu(ptq->thread) : -1;
1454	if (vcpu < 0)
1455		return -1;
1456
1457	tid = machine__get_current_tid(machine, vcpu);
1458
1459	if (ptq->guest_thread && thread__tid(ptq->guest_thread) != tid)
1460		thread__zput(ptq->guest_thread);
1461
1462	if (!ptq->guest_thread) {
1463		ptq->guest_thread = machine__find_thread(machine, -1, tid);
1464		if (!ptq->guest_thread)
1465			return -1;
1466	}
1467
1468	ptq->guest_machine_pid = machine_pid;
1469	ptq->guest_pid = thread__pid(ptq->guest_thread);
1470	ptq->guest_tid = tid;
1471	ptq->vcpu = vcpu;
1472
1473	return 0;
1474}
1475
1476static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1477				     struct auxtrace_queue *queue)
1478{
1479	struct intel_pt_queue *ptq = queue->priv;
1480
1481	if (queue->tid == -1 || pt->have_sched_switch) {
1482		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1483		if (ptq->tid == -1)
1484			ptq->pid = -1;
1485		thread__zput(ptq->thread);
1486	}
1487
1488	if (!ptq->thread && ptq->tid != -1)
1489		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1490
1491	if (ptq->thread) {
1492		ptq->pid = thread__pid(ptq->thread);
1493		if (queue->cpu == -1)
1494			ptq->cpu = thread__cpu(ptq->thread);
1495	}
1496
1497	if (pt->have_guest_sideband && intel_pt_get_guest_from_sideband(ptq)) {
1498		ptq->guest_machine_pid = 0;
1499		ptq->guest_pid = -1;
1500		ptq->guest_tid = -1;
1501		ptq->vcpu = -1;
1502	}
1503}
1504
1505static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1506{
1507	struct intel_pt *pt = ptq->pt;
1508
1509	ptq->insn_len = 0;
1510	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1511		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1512	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
1513		if (!ptq->state->to_ip)
1514			ptq->flags = PERF_IP_FLAG_BRANCH |
1515				     PERF_IP_FLAG_ASYNC |
1516				     PERF_IP_FLAG_TRACE_END;
1517		else if (ptq->state->from_nr && !ptq->state->to_nr)
1518			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1519				     PERF_IP_FLAG_ASYNC |
1520				     PERF_IP_FLAG_VMEXIT;
1521		else
1522			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1523				     PERF_IP_FLAG_ASYNC |
1524				     PERF_IP_FLAG_INTERRUPT;
1525	} else {
1526		if (ptq->state->from_ip)
1527			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1528		else
1529			ptq->flags = PERF_IP_FLAG_BRANCH |
1530				     PERF_IP_FLAG_TRACE_BEGIN;
1531		if (ptq->state->flags & INTEL_PT_IN_TX)
1532			ptq->flags |= PERF_IP_FLAG_IN_TX;
1533		ptq->insn_len = ptq->state->insn_len;
1534		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1535	}
1536
1537	if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1538		ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1539	if (ptq->state->type & INTEL_PT_TRACE_END)
1540		ptq->flags |= PERF_IP_FLAG_TRACE_END;
1541
1542	if (pt->cap_event_trace) {
1543		if (ptq->state->type & INTEL_PT_IFLAG_CHG) {
1544			if (!ptq->state->from_iflag)
1545				ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1546			if (ptq->state->from_iflag != ptq->state->to_iflag)
1547				ptq->flags |= PERF_IP_FLAG_INTR_TOGGLE;
1548		} else if (!ptq->state->to_iflag) {
1549			ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1550		}
1551	}
1552}
1553
1554static void intel_pt_setup_time_range(struct intel_pt *pt,
1555				      struct intel_pt_queue *ptq)
1556{
1557	if (!pt->range_cnt)
1558		return;
1559
1560	ptq->sel_timestamp = pt->time_ranges[0].start;
1561	ptq->sel_idx = 0;
1562
1563	if (ptq->sel_timestamp) {
1564		ptq->sel_start = true;
1565	} else {
1566		ptq->sel_timestamp = pt->time_ranges[0].end;
1567		ptq->sel_start = false;
1568	}
1569}
1570
1571static int intel_pt_setup_queue(struct intel_pt *pt,
1572				struct auxtrace_queue *queue,
1573				unsigned int queue_nr)
1574{
1575	struct intel_pt_queue *ptq = queue->priv;
1576
1577	if (list_empty(&queue->head))
1578		return 0;
1579
1580	if (!ptq) {
1581		ptq = intel_pt_alloc_queue(pt, queue_nr);
1582		if (!ptq)
1583			return -ENOMEM;
1584		queue->priv = ptq;
1585
1586		if (queue->cpu != -1)
1587			ptq->cpu = queue->cpu;
1588		ptq->tid = queue->tid;
1589
1590		ptq->cbr_seen = UINT_MAX;
1591
1592		if (pt->sampling_mode && !pt->snapshot_mode &&
1593		    pt->timeless_decoding)
1594			ptq->step_through_buffers = true;
1595
1596		ptq->sync_switch = pt->sync_switch;
1597
1598		intel_pt_setup_time_range(pt, ptq);
1599	}
1600
1601	if (!ptq->on_heap &&
1602	    (!ptq->sync_switch ||
1603	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1604		const struct intel_pt_state *state;
1605		int ret;
1606
1607		if (pt->timeless_decoding)
1608			return 0;
1609
1610		intel_pt_log("queue %u getting timestamp\n", queue_nr);
1611		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1612			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1613
1614		if (ptq->sel_start && ptq->sel_timestamp) {
1615			ret = intel_pt_fast_forward(ptq->decoder,
1616						    ptq->sel_timestamp);
1617			if (ret)
1618				return ret;
1619		}
1620
1621		while (1) {
1622			state = intel_pt_decode(ptq->decoder);
1623			if (state->err) {
1624				if (state->err == INTEL_PT_ERR_NODATA) {
1625					intel_pt_log("queue %u has no timestamp\n",
1626						     queue_nr);
1627					return 0;
1628				}
1629				continue;
1630			}
1631			if (state->timestamp)
1632				break;
1633		}
1634
1635		ptq->timestamp = state->timestamp;
1636		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1637			     queue_nr, ptq->timestamp);
1638		ptq->state = state;
1639		ptq->have_sample = true;
1640		if (ptq->sel_start && ptq->sel_timestamp &&
1641		    ptq->timestamp < ptq->sel_timestamp)
1642			ptq->have_sample = false;
1643		intel_pt_sample_flags(ptq);
1644		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1645		if (ret)
1646			return ret;
1647		ptq->on_heap = true;
1648	}
1649
1650	return 0;
1651}
1652
1653static int intel_pt_setup_queues(struct intel_pt *pt)
1654{
1655	unsigned int i;
1656	int ret;
1657
1658	for (i = 0; i < pt->queues.nr_queues; i++) {
1659		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1660		if (ret)
1661			return ret;
1662	}
1663	return 0;
1664}
1665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1666static inline bool intel_pt_skip_event(struct intel_pt *pt)
1667{
1668	return pt->synth_opts.initial_skip &&
1669	       pt->num_events++ < pt->synth_opts.initial_skip;
1670}
1671
1672/*
1673 * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1674 * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1675 * from this decoder state.
1676 */
1677static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1678{
1679	return pt->synth_opts.initial_skip &&
1680	       pt->num_events + 4 < pt->synth_opts.initial_skip;
1681}
1682
1683static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1684				   union perf_event *event,
1685				   struct perf_sample *sample)
1686{
1687	event->sample.header.type = PERF_RECORD_SAMPLE;
1688	event->sample.header.size = sizeof(struct perf_event_header);
1689
1690	sample->pid = ptq->pid;
1691	sample->tid = ptq->tid;
1692
1693	if (ptq->pt->have_guest_sideband) {
1694		if ((ptq->state->from_ip && ptq->state->from_nr) ||
1695		    (ptq->state->to_ip && ptq->state->to_nr)) {
1696			sample->pid = ptq->guest_pid;
1697			sample->tid = ptq->guest_tid;
1698			sample->machine_pid = ptq->guest_machine_pid;
1699			sample->vcpu = ptq->vcpu;
1700		}
1701	}
1702
1703	sample->cpu = ptq->cpu;
1704	sample->insn_len = ptq->insn_len;
1705	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1706}
1707
1708static void intel_pt_prep_b_sample(struct intel_pt *pt,
1709				   struct intel_pt_queue *ptq,
1710				   union perf_event *event,
1711				   struct perf_sample *sample)
1712{
1713	intel_pt_prep_a_sample(ptq, event, sample);
1714
1715	if (!pt->timeless_decoding)
1716		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1717
1718	sample->ip = ptq->state->from_ip;
 
1719	sample->addr = ptq->state->to_ip;
1720	sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1721	sample->period = 1;
1722	sample->flags = ptq->flags;
1723
1724	event->sample.header.misc = sample->cpumode;
1725}
1726
1727static int intel_pt_inject_event(union perf_event *event,
1728				 struct perf_sample *sample, u64 type)
1729{
1730	event->header.size = perf_event__sample_event_size(sample, type, 0);
1731	return perf_event__synthesize_sample(event, type, 0, sample);
1732}
1733
1734static inline int intel_pt_opt_inject(struct intel_pt *pt,
1735				      union perf_event *event,
1736				      struct perf_sample *sample, u64 type)
1737{
1738	if (!pt->synth_opts.inject)
1739		return 0;
1740
1741	return intel_pt_inject_event(event, sample, type);
1742}
1743
1744static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1745					union perf_event *event,
1746					struct perf_sample *sample, u64 type)
1747{
1748	int ret;
1749
1750	ret = intel_pt_opt_inject(pt, event, sample, type);
1751	if (ret)
1752		return ret;
1753
1754	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1755	if (ret)
1756		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1757
1758	return ret;
1759}
1760
1761static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1762{
1763	struct intel_pt *pt = ptq->pt;
1764	union perf_event *event = ptq->event_buf;
1765	struct perf_sample sample = { .ip = 0, };
1766	struct dummy_branch_stack {
1767		u64			nr;
1768		u64			hw_idx;
1769		struct branch_entry	entries;
1770	} dummy_bs;
1771
1772	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1773		return 0;
1774
1775	if (intel_pt_skip_event(pt))
1776		return 0;
1777
1778	intel_pt_prep_b_sample(pt, ptq, event, &sample);
1779
1780	sample.id = ptq->pt->branches_id;
1781	sample.stream_id = ptq->pt->branches_id;
1782
1783	/*
1784	 * perf report cannot handle events without a branch stack when using
1785	 * SORT_MODE__BRANCH so make a dummy one.
1786	 */
1787	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1788		dummy_bs = (struct dummy_branch_stack){
1789			.nr = 1,
1790			.hw_idx = -1ULL,
1791			.entries = {
1792				.from = sample.ip,
1793				.to = sample.addr,
1794			},
1795		};
1796		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1797	}
1798
1799	if (ptq->sample_ipc)
1800		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1801	if (sample.cyc_cnt) {
1802		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1803		ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1804		ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1805	}
1806
1807	return intel_pt_deliver_synth_event(pt, event, &sample,
1808					    pt->branches_sample_type);
1809}
1810
1811static void intel_pt_prep_sample(struct intel_pt *pt,
1812				 struct intel_pt_queue *ptq,
1813				 union perf_event *event,
1814				 struct perf_sample *sample)
1815{
1816	intel_pt_prep_b_sample(pt, ptq, event, sample);
1817
1818	if (pt->synth_opts.callchain) {
1819		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1820				     pt->synth_opts.callchain_sz + 1,
1821				     sample->ip, pt->kernel_start);
1822		sample->callchain = ptq->chain;
1823	}
1824
1825	if (pt->synth_opts.last_branch) {
1826		thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1827					pt->br_stack_sz);
1828		sample->branch_stack = ptq->last_branch;
1829	}
1830}
1831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1832static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1833{
1834	struct intel_pt *pt = ptq->pt;
1835	union perf_event *event = ptq->event_buf;
1836	struct perf_sample sample = { .ip = 0, };
1837
1838	if (intel_pt_skip_event(pt))
1839		return 0;
1840
1841	intel_pt_prep_sample(pt, ptq, event, &sample);
1842
1843	sample.id = ptq->pt->instructions_id;
1844	sample.stream_id = ptq->pt->instructions_id;
1845	if (pt->synth_opts.quick)
1846		sample.period = 1;
1847	else
1848		sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1849
1850	if (ptq->sample_ipc)
1851		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1852	if (sample.cyc_cnt) {
1853		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1854		ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1855		ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1856	}
1857
1858	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1859
1860	return intel_pt_deliver_synth_event(pt, event, &sample,
1861					    pt->instructions_sample_type);
1862}
1863
1864static int intel_pt_synth_cycle_sample(struct intel_pt_queue *ptq)
1865{
1866	struct intel_pt *pt = ptq->pt;
1867	union perf_event *event = ptq->event_buf;
1868	struct perf_sample sample = { .ip = 0, };
1869	u64 period = 0;
1870
1871	if (ptq->sample_ipc)
1872		period = ptq->ipc_cyc_cnt - ptq->last_cy_cyc_cnt;
1873
1874	if (!period || intel_pt_skip_event(pt))
1875		return 0;
1876
1877	intel_pt_prep_sample(pt, ptq, event, &sample);
1878
1879	sample.id = ptq->pt->cycles_id;
1880	sample.stream_id = ptq->pt->cycles_id;
1881	sample.period = period;
1882
1883	sample.cyc_cnt = period;
1884	sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_cy_insn_cnt;
1885	ptq->last_cy_insn_cnt = ptq->ipc_insn_cnt;
1886	ptq->last_cy_cyc_cnt = ptq->ipc_cyc_cnt;
1887
1888	return intel_pt_deliver_synth_event(pt, event, &sample, pt->cycles_sample_type);
1889}
1890
1891static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1892{
1893	struct intel_pt *pt = ptq->pt;
1894	union perf_event *event = ptq->event_buf;
1895	struct perf_sample sample = { .ip = 0, };
1896
1897	if (intel_pt_skip_event(pt))
1898		return 0;
1899
1900	intel_pt_prep_sample(pt, ptq, event, &sample);
1901
1902	sample.id = ptq->pt->transactions_id;
1903	sample.stream_id = ptq->pt->transactions_id;
1904
1905	return intel_pt_deliver_synth_event(pt, event, &sample,
1906					    pt->transactions_sample_type);
1907}
1908
1909static void intel_pt_prep_p_sample(struct intel_pt *pt,
1910				   struct intel_pt_queue *ptq,
1911				   union perf_event *event,
1912				   struct perf_sample *sample)
1913{
1914	intel_pt_prep_sample(pt, ptq, event, sample);
1915
1916	/*
1917	 * Zero IP is used to mean "trace start" but that is not the case for
1918	 * power or PTWRITE events with no IP, so clear the flags.
1919	 */
1920	if (!sample->ip)
1921		sample->flags = 0;
1922}
1923
1924static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1925{
1926	struct intel_pt *pt = ptq->pt;
1927	union perf_event *event = ptq->event_buf;
1928	struct perf_sample sample = { .ip = 0, };
1929	struct perf_synth_intel_ptwrite raw;
1930
1931	if (intel_pt_skip_event(pt))
1932		return 0;
1933
1934	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1935
1936	sample.id = ptq->pt->ptwrites_id;
1937	sample.stream_id = ptq->pt->ptwrites_id;
1938
1939	raw.flags = 0;
1940	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1941	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1942
1943	sample.raw_size = perf_synth__raw_size(raw);
1944	sample.raw_data = perf_synth__raw_data(&raw);
1945
1946	return intel_pt_deliver_synth_event(pt, event, &sample,
1947					    pt->ptwrites_sample_type);
1948}
1949
1950static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1951{
1952	struct intel_pt *pt = ptq->pt;
1953	union perf_event *event = ptq->event_buf;
1954	struct perf_sample sample = { .ip = 0, };
1955	struct perf_synth_intel_cbr raw;
1956	u32 flags;
1957
1958	if (intel_pt_skip_cbr_event(pt))
1959		return 0;
1960
1961	ptq->cbr_seen = ptq->state->cbr;
1962
1963	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1964
1965	sample.id = ptq->pt->cbr_id;
1966	sample.stream_id = ptq->pt->cbr_id;
1967
1968	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1969	raw.flags = cpu_to_le32(flags);
1970	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1971	raw.reserved3 = 0;
1972
1973	sample.raw_size = perf_synth__raw_size(raw);
1974	sample.raw_data = perf_synth__raw_data(&raw);
1975
1976	return intel_pt_deliver_synth_event(pt, event, &sample,
1977					    pt->pwr_events_sample_type);
1978}
1979
1980static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
1981{
1982	struct intel_pt *pt = ptq->pt;
1983	union perf_event *event = ptq->event_buf;
1984	struct perf_sample sample = { .ip = 0, };
1985	struct perf_synth_intel_psb raw;
1986
1987	if (intel_pt_skip_event(pt))
1988		return 0;
1989
1990	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1991
1992	sample.id = ptq->pt->psb_id;
1993	sample.stream_id = ptq->pt->psb_id;
1994	sample.flags = 0;
1995
1996	raw.reserved = 0;
1997	raw.offset = ptq->state->psb_offset;
1998
1999	sample.raw_size = perf_synth__raw_size(raw);
2000	sample.raw_data = perf_synth__raw_data(&raw);
2001
2002	return intel_pt_deliver_synth_event(pt, event, &sample,
2003					    pt->pwr_events_sample_type);
2004}
2005
2006static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
2007{
2008	struct intel_pt *pt = ptq->pt;
2009	union perf_event *event = ptq->event_buf;
2010	struct perf_sample sample = { .ip = 0, };
2011	struct perf_synth_intel_mwait raw;
2012
2013	if (intel_pt_skip_event(pt))
2014		return 0;
2015
2016	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2017
2018	sample.id = ptq->pt->mwait_id;
2019	sample.stream_id = ptq->pt->mwait_id;
2020
2021	raw.reserved = 0;
2022	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
2023
2024	sample.raw_size = perf_synth__raw_size(raw);
2025	sample.raw_data = perf_synth__raw_data(&raw);
2026
2027	return intel_pt_deliver_synth_event(pt, event, &sample,
2028					    pt->pwr_events_sample_type);
2029}
2030
2031static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
2032{
2033	struct intel_pt *pt = ptq->pt;
2034	union perf_event *event = ptq->event_buf;
2035	struct perf_sample sample = { .ip = 0, };
2036	struct perf_synth_intel_pwre raw;
2037
2038	if (intel_pt_skip_event(pt))
2039		return 0;
2040
2041	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2042
2043	sample.id = ptq->pt->pwre_id;
2044	sample.stream_id = ptq->pt->pwre_id;
2045
2046	raw.reserved = 0;
2047	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
2048
2049	sample.raw_size = perf_synth__raw_size(raw);
2050	sample.raw_data = perf_synth__raw_data(&raw);
2051
2052	return intel_pt_deliver_synth_event(pt, event, &sample,
2053					    pt->pwr_events_sample_type);
2054}
2055
2056static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
2057{
2058	struct intel_pt *pt = ptq->pt;
2059	union perf_event *event = ptq->event_buf;
2060	struct perf_sample sample = { .ip = 0, };
2061	struct perf_synth_intel_exstop raw;
2062
2063	if (intel_pt_skip_event(pt))
2064		return 0;
2065
2066	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2067
2068	sample.id = ptq->pt->exstop_id;
2069	sample.stream_id = ptq->pt->exstop_id;
2070
2071	raw.flags = 0;
2072	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2073
2074	sample.raw_size = perf_synth__raw_size(raw);
2075	sample.raw_data = perf_synth__raw_data(&raw);
2076
2077	return intel_pt_deliver_synth_event(pt, event, &sample,
2078					    pt->pwr_events_sample_type);
2079}
2080
2081static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
2082{
2083	struct intel_pt *pt = ptq->pt;
2084	union perf_event *event = ptq->event_buf;
2085	struct perf_sample sample = { .ip = 0, };
2086	struct perf_synth_intel_pwrx raw;
2087
2088	if (intel_pt_skip_event(pt))
2089		return 0;
2090
2091	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2092
2093	sample.id = ptq->pt->pwrx_id;
2094	sample.stream_id = ptq->pt->pwrx_id;
2095
2096	raw.reserved = 0;
2097	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
2098
2099	sample.raw_size = perf_synth__raw_size(raw);
2100	sample.raw_data = perf_synth__raw_data(&raw);
2101
2102	return intel_pt_deliver_synth_event(pt, event, &sample,
2103					    pt->pwr_events_sample_type);
2104}
2105
2106/*
2107 * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
2108 * intel_pt_add_gp_regs().
2109 */
2110static const int pebs_gp_regs[] = {
2111	[PERF_REG_X86_FLAGS]	= 1,
2112	[PERF_REG_X86_IP]	= 2,
2113	[PERF_REG_X86_AX]	= 3,
2114	[PERF_REG_X86_CX]	= 4,
2115	[PERF_REG_X86_DX]	= 5,
2116	[PERF_REG_X86_BX]	= 6,
2117	[PERF_REG_X86_SP]	= 7,
2118	[PERF_REG_X86_BP]	= 8,
2119	[PERF_REG_X86_SI]	= 9,
2120	[PERF_REG_X86_DI]	= 10,
2121	[PERF_REG_X86_R8]	= 11,
2122	[PERF_REG_X86_R9]	= 12,
2123	[PERF_REG_X86_R10]	= 13,
2124	[PERF_REG_X86_R11]	= 14,
2125	[PERF_REG_X86_R12]	= 15,
2126	[PERF_REG_X86_R13]	= 16,
2127	[PERF_REG_X86_R14]	= 17,
2128	[PERF_REG_X86_R15]	= 18,
2129};
2130
2131static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
2132				 const struct intel_pt_blk_items *items,
2133				 u64 regs_mask)
2134{
2135	const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
2136	u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
2137	u32 bit;
2138	int i;
2139
2140	for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
2141		/* Get the PEBS gp_regs array index */
2142		int n = pebs_gp_regs[i] - 1;
2143
2144		if (n < 0)
2145			continue;
2146		/*
2147		 * Add only registers that were requested (i.e. 'regs_mask') and
2148		 * that were provided (i.e. 'mask'), and update the resulting
2149		 * mask (i.e. 'intr_regs->mask') accordingly.
2150		 */
2151		if (mask & 1 << n && regs_mask & bit) {
2152			intr_regs->mask |= bit;
2153			*pos++ = gp_regs[n];
2154		}
2155	}
2156
2157	return pos;
2158}
2159
2160#ifndef PERF_REG_X86_XMM0
2161#define PERF_REG_X86_XMM0 32
2162#endif
2163
2164static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
2165			     const struct intel_pt_blk_items *items,
2166			     u64 regs_mask)
2167{
2168	u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
2169	const u64 *xmm = items->xmm;
2170
2171	/*
2172	 * If there are any XMM registers, then there should be all of them.
2173	 * Nevertheless, follow the logic to add only registers that were
2174	 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
2175	 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
2176	 */
2177	intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
2178
2179	for (; mask; mask >>= 1, xmm++) {
2180		if (mask & 1)
2181			*pos++ = *xmm;
2182	}
2183}
2184
2185#define LBR_INFO_MISPRED	(1ULL << 63)
2186#define LBR_INFO_IN_TX		(1ULL << 62)
2187#define LBR_INFO_ABORT		(1ULL << 61)
2188#define LBR_INFO_CYCLES		0xffff
2189
2190/* Refer kernel's intel_pmu_store_pebs_lbrs() */
2191static u64 intel_pt_lbr_flags(u64 info)
2192{
2193	union {
2194		struct branch_flags flags;
2195		u64 result;
2196	} u;
2197
2198	u.result	  = 0;
2199	u.flags.mispred	  = !!(info & LBR_INFO_MISPRED);
2200	u.flags.predicted = !(info & LBR_INFO_MISPRED);
2201	u.flags.in_tx	  = !!(info & LBR_INFO_IN_TX);
2202	u.flags.abort	  = !!(info & LBR_INFO_ABORT);
2203	u.flags.cycles	  = info & LBR_INFO_CYCLES;
 
2204
2205	return u.result;
2206}
2207
2208static void intel_pt_add_lbrs(struct branch_stack *br_stack,
2209			      const struct intel_pt_blk_items *items)
2210{
2211	u64 *to;
2212	int i;
2213
2214	br_stack->nr = 0;
2215
2216	to = &br_stack->entries[0].from;
2217
2218	for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
2219		u32 mask = items->mask[i];
2220		const u64 *from = items->val[i];
2221
2222		for (; mask; mask >>= 3, from += 3) {
2223			if ((mask & 7) == 7) {
2224				*to++ = from[0];
2225				*to++ = from[1];
2226				*to++ = intel_pt_lbr_flags(from[2]);
2227				br_stack->nr += 1;
2228			}
2229		}
2230	}
2231}
2232
2233static int intel_pt_do_synth_pebs_sample(struct intel_pt_queue *ptq, struct evsel *evsel, u64 id)
 
 
 
2234{
2235	const struct intel_pt_blk_items *items = &ptq->state->items;
2236	struct perf_sample sample = { .ip = 0, };
2237	union perf_event *event = ptq->event_buf;
2238	struct intel_pt *pt = ptq->pt;
 
2239	u64 sample_type = evsel->core.attr.sample_type;
 
2240	u8 cpumode;
2241	u64 regs[8 * sizeof(sample.intr_regs.mask)];
2242
2243	if (intel_pt_skip_event(pt))
2244		return 0;
2245
2246	intel_pt_prep_a_sample(ptq, event, &sample);
2247
2248	sample.id = id;
2249	sample.stream_id = id;
2250
2251	if (!evsel->core.attr.freq)
2252		sample.period = evsel->core.attr.sample_period;
2253
2254	/* No support for non-zero CS base */
2255	if (items->has_ip)
2256		sample.ip = items->ip;
2257	else if (items->has_rip)
2258		sample.ip = items->rip;
2259	else
2260		sample.ip = ptq->state->from_ip;
2261
2262	cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
 
 
 
2263
2264	event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
2265
2266	sample.cpumode = cpumode;
2267
2268	if (sample_type & PERF_SAMPLE_TIME) {
2269		u64 timestamp = 0;
2270
2271		if (items->has_timestamp)
2272			timestamp = items->timestamp;
2273		else if (!pt->timeless_decoding)
2274			timestamp = ptq->timestamp;
2275		if (timestamp)
2276			sample.time = tsc_to_perf_time(timestamp, &pt->tc);
2277	}
2278
2279	if (sample_type & PERF_SAMPLE_CALLCHAIN &&
2280	    pt->synth_opts.callchain) {
2281		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
2282				     pt->synth_opts.callchain_sz, sample.ip,
2283				     pt->kernel_start);
2284		sample.callchain = ptq->chain;
2285	}
2286
2287	if (sample_type & PERF_SAMPLE_REGS_INTR &&
2288	    (items->mask[INTEL_PT_GP_REGS_POS] ||
2289	     items->mask[INTEL_PT_XMM_POS])) {
2290		u64 regs_mask = evsel->core.attr.sample_regs_intr;
2291		u64 *pos;
2292
2293		sample.intr_regs.abi = items->is_32_bit ?
2294				       PERF_SAMPLE_REGS_ABI_32 :
2295				       PERF_SAMPLE_REGS_ABI_64;
2296		sample.intr_regs.regs = regs;
2297
2298		pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
2299
2300		intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
2301	}
2302
2303	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
 
 
 
 
 
2304		if (items->mask[INTEL_PT_LBR_0_POS] ||
2305		    items->mask[INTEL_PT_LBR_1_POS] ||
2306		    items->mask[INTEL_PT_LBR_2_POS]) {
2307			intel_pt_add_lbrs(ptq->last_branch, items);
 
2308		} else if (pt->synth_opts.last_branch) {
2309			thread_stack__br_sample(ptq->thread, ptq->cpu,
2310						ptq->last_branch,
2311						pt->br_stack_sz);
2312		} else {
2313			ptq->last_branch->nr = 0;
 
2314		}
2315		sample.branch_stack = ptq->last_branch;
2316	}
2317
2318	if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
2319		sample.addr = items->mem_access_address;
2320
2321	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2322		/*
2323		 * Refer kernel's setup_pebs_adaptive_sample_data() and
2324		 * intel_hsw_weight().
2325		 */
2326		if (items->has_mem_access_latency) {
2327			u64 weight = items->mem_access_latency >> 32;
2328
2329			/*
2330			 * Starts from SPR, the mem access latency field
2331			 * contains both cache latency [47:32] and instruction
2332			 * latency [15:0]. The cache latency is the same as the
2333			 * mem access latency on previous platforms.
2334			 *
2335			 * In practice, no memory access could last than 4G
2336			 * cycles. Use latency >> 32 to distinguish the
2337			 * different format of the mem access latency field.
2338			 */
2339			if (weight > 0) {
2340				sample.weight = weight & 0xffff;
2341				sample.ins_lat = items->mem_access_latency & 0xffff;
2342			} else
2343				sample.weight = items->mem_access_latency;
2344		}
2345		if (!sample.weight && items->has_tsx_aux_info) {
2346			/* Cycles last block */
2347			sample.weight = (u32)items->tsx_aux_info;
2348		}
2349	}
2350
2351	if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
2352		u64 ax = items->has_rax ? items->rax : 0;
2353		/* Refer kernel's intel_hsw_transaction() */
2354		u64 txn = (u8)(items->tsx_aux_info >> 32);
2355
2356		/* For RTM XABORTs also log the abort code from AX */
2357		if (txn & PERF_TXN_TRANSACTION && ax & 1)
2358			txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2359		sample.transaction = txn;
2360	}
2361
2362	return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2363}
2364
2365static int intel_pt_synth_single_pebs_sample(struct intel_pt_queue *ptq)
2366{
2367	struct intel_pt *pt = ptq->pt;
2368	struct evsel *evsel = pt->pebs_evsel;
2369	u64 id = evsel->core.id[0];
2370
2371	return intel_pt_do_synth_pebs_sample(ptq, evsel, id);
2372}
2373
2374static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
2375{
2376	const struct intel_pt_blk_items *items = &ptq->state->items;
2377	struct intel_pt_pebs_event *pe;
2378	struct intel_pt *pt = ptq->pt;
2379	int err = -EINVAL;
2380	int hw_id;
2381
2382	if (!items->has_applicable_counters || !items->applicable_counters) {
2383		if (!pt->single_pebs)
2384			pr_err("PEBS-via-PT record with no applicable_counters\n");
2385		return intel_pt_synth_single_pebs_sample(ptq);
2386	}
2387
2388	for_each_set_bit(hw_id, (unsigned long *)&items->applicable_counters, INTEL_PT_MAX_PEBS) {
2389		pe = &ptq->pebs[hw_id];
2390		if (!pe->evsel) {
2391			if (!pt->single_pebs)
2392				pr_err("PEBS-via-PT record with no matching event, hw_id %d\n",
2393				       hw_id);
2394			return intel_pt_synth_single_pebs_sample(ptq);
2395		}
2396		err = intel_pt_do_synth_pebs_sample(ptq, pe->evsel, pe->id);
2397		if (err)
2398			return err;
2399	}
2400
2401	return err;
2402}
2403
2404static int intel_pt_synth_events_sample(struct intel_pt_queue *ptq)
2405{
2406	struct intel_pt *pt = ptq->pt;
2407	union perf_event *event = ptq->event_buf;
2408	struct perf_sample sample = { .ip = 0, };
2409	struct {
2410		struct perf_synth_intel_evt cfe;
2411		struct perf_synth_intel_evd evd[INTEL_PT_MAX_EVDS];
2412	} raw;
2413	int i;
2414
2415	if (intel_pt_skip_event(pt))
2416		return 0;
2417
2418	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2419
2420	sample.id        = ptq->pt->evt_id;
2421	sample.stream_id = ptq->pt->evt_id;
2422
2423	raw.cfe.type     = ptq->state->cfe_type;
2424	raw.cfe.reserved = 0;
2425	raw.cfe.ip       = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2426	raw.cfe.vector   = ptq->state->cfe_vector;
2427	raw.cfe.evd_cnt  = ptq->state->evd_cnt;
2428
2429	for (i = 0; i < ptq->state->evd_cnt; i++) {
2430		raw.evd[i].et       = 0;
2431		raw.evd[i].evd_type = ptq->state->evd[i].type;
2432		raw.evd[i].payload  = ptq->state->evd[i].payload;
2433	}
2434
2435	sample.raw_size = perf_synth__raw_size(raw) +
2436			  ptq->state->evd_cnt * sizeof(struct perf_synth_intel_evd);
2437	sample.raw_data = perf_synth__raw_data(&raw);
2438
2439	return intel_pt_deliver_synth_event(pt, event, &sample,
2440					    pt->evt_sample_type);
2441}
2442
2443static int intel_pt_synth_iflag_chg_sample(struct intel_pt_queue *ptq)
2444{
2445	struct intel_pt *pt = ptq->pt;
2446	union perf_event *event = ptq->event_buf;
2447	struct perf_sample sample = { .ip = 0, };
2448	struct perf_synth_intel_iflag_chg raw;
2449
2450	if (intel_pt_skip_event(pt))
2451		return 0;
2452
2453	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2454
2455	sample.id = ptq->pt->iflag_chg_id;
2456	sample.stream_id = ptq->pt->iflag_chg_id;
2457
2458	raw.flags = 0;
2459	raw.iflag = ptq->state->to_iflag;
2460
2461	if (ptq->state->type & INTEL_PT_BRANCH) {
2462		raw.via_branch = 1;
2463		raw.branch_ip = ptq->state->to_ip;
2464	} else {
2465		sample.addr = 0;
2466	}
2467	sample.flags = ptq->flags;
2468
2469	sample.raw_size = perf_synth__raw_size(raw);
2470	sample.raw_data = perf_synth__raw_data(&raw);
2471
2472	return intel_pt_deliver_synth_event(pt, event, &sample,
2473					    pt->iflag_chg_sample_type);
2474}
2475
2476static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2477				pid_t pid, pid_t tid, u64 ip, u64 timestamp,
2478				pid_t machine_pid, int vcpu)
2479{
2480	bool dump_log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
2481	bool log_on_stdout = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT;
2482	union perf_event event;
2483	char msg[MAX_AUXTRACE_ERROR_MSG];
2484	int err;
2485
2486	if (pt->synth_opts.error_minus_flags) {
2487		if (code == INTEL_PT_ERR_OVR &&
2488		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2489			return 0;
2490		if (code == INTEL_PT_ERR_LOST &&
2491		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2492			return 0;
2493	}
2494
2495	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2496
2497	auxtrace_synth_guest_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2498				   code, cpu, pid, tid, ip, msg, timestamp,
2499				   machine_pid, vcpu);
2500
2501	if (intel_pt_enable_logging && !log_on_stdout) {
2502		FILE *fp = intel_pt_log_fp();
2503
2504		if (fp)
2505			perf_event__fprintf_auxtrace_error(&event, fp);
2506	}
2507
2508	if (code != INTEL_PT_ERR_LOST && dump_log_on_error)
2509		intel_pt_log_dump_buf();
2510
2511	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2512	if (err)
2513		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2514		       err);
2515
2516	return err;
2517}
2518
2519static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2520				 const struct intel_pt_state *state)
2521{
2522	struct intel_pt *pt = ptq->pt;
2523	u64 tm = ptq->timestamp;
2524	pid_t machine_pid = 0;
2525	pid_t pid = ptq->pid;
2526	pid_t tid = ptq->tid;
2527	int vcpu = -1;
2528
2529	tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2530
2531	if (pt->have_guest_sideband && state->from_nr) {
2532		machine_pid = ptq->guest_machine_pid;
2533		vcpu = ptq->vcpu;
2534		pid = ptq->guest_pid;
2535		tid = ptq->guest_tid;
2536	}
2537
2538	return intel_pt_synth_error(pt, state->err, ptq->cpu, pid, tid,
2539				    state->from_ip, tm, machine_pid, vcpu);
2540}
2541
2542static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2543{
2544	struct auxtrace_queue *queue;
2545	pid_t tid = ptq->next_tid;
2546	int err;
2547
2548	if (tid == -1)
2549		return 0;
2550
2551	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2552
2553	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2554
2555	queue = &pt->queues.queue_array[ptq->queue_nr];
2556	intel_pt_set_pid_tid_cpu(pt, queue);
2557
2558	ptq->next_tid = -1;
2559
2560	return err;
2561}
2562
2563static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2564{
2565	struct intel_pt *pt = ptq->pt;
2566
2567	return ip == pt->switch_ip &&
2568	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2569	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2570			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2571}
2572
2573#define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2574			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2575
2576static int intel_pt_sample(struct intel_pt_queue *ptq)
2577{
2578	const struct intel_pt_state *state = ptq->state;
2579	struct intel_pt *pt = ptq->pt;
2580	int err;
2581
2582	if (!ptq->have_sample)
2583		return 0;
2584
2585	ptq->have_sample = false;
2586
2587	if (pt->synth_opts.approx_ipc) {
2588		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2589		ptq->ipc_cyc_cnt = ptq->state->cycles;
2590		ptq->sample_ipc = true;
2591	} else {
2592		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2593		ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2594		ptq->sample_ipc = ptq->state->flags & INTEL_PT_SAMPLE_IPC;
2595	}
2596
2597	/* Ensure guest code maps are set up */
2598	if (symbol_conf.guest_code && (state->from_nr || state->to_nr))
2599		intel_pt_get_guest(ptq);
2600
2601	/*
2602	 * Do PEBS first to allow for the possibility that the PEBS timestamp
2603	 * precedes the current timestamp.
2604	 */
2605	if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2606		err = intel_pt_synth_pebs_sample(ptq);
2607		if (err)
2608			return err;
2609	}
2610
2611	if (pt->synth_opts.intr_events) {
2612		if (state->type & INTEL_PT_EVT) {
2613			err = intel_pt_synth_events_sample(ptq);
2614			if (err)
2615				return err;
2616		}
2617		if (state->type & INTEL_PT_IFLAG_CHG) {
2618			err = intel_pt_synth_iflag_chg_sample(ptq);
2619			if (err)
2620				return err;
2621		}
2622	}
2623
2624	if (pt->sample_pwr_events) {
2625		if (state->type & INTEL_PT_PSB_EVT) {
2626			err = intel_pt_synth_psb_sample(ptq);
2627			if (err)
2628				return err;
2629		}
2630		if (ptq->state->cbr != ptq->cbr_seen) {
2631			err = intel_pt_synth_cbr_sample(ptq);
2632			if (err)
2633				return err;
2634		}
2635		if (state->type & INTEL_PT_PWR_EVT) {
2636			if (state->type & INTEL_PT_MWAIT_OP) {
2637				err = intel_pt_synth_mwait_sample(ptq);
2638				if (err)
2639					return err;
2640			}
2641			if (state->type & INTEL_PT_PWR_ENTRY) {
2642				err = intel_pt_synth_pwre_sample(ptq);
2643				if (err)
2644					return err;
2645			}
2646			if (state->type & INTEL_PT_EX_STOP) {
2647				err = intel_pt_synth_exstop_sample(ptq);
2648				if (err)
2649					return err;
2650			}
2651			if (state->type & INTEL_PT_PWR_EXIT) {
2652				err = intel_pt_synth_pwrx_sample(ptq);
2653				if (err)
2654					return err;
2655			}
2656		}
2657	}
2658
2659	if (state->type & INTEL_PT_INSTRUCTION) {
2660		if (pt->sample_instructions) {
2661			err = intel_pt_synth_instruction_sample(ptq);
2662			if (err)
2663				return err;
2664		}
2665		if (pt->sample_cycles) {
2666			err = intel_pt_synth_cycle_sample(ptq);
2667			if (err)
2668				return err;
2669		}
2670	}
2671
2672	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2673		err = intel_pt_synth_transaction_sample(ptq);
2674		if (err)
2675			return err;
2676	}
2677
2678	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2679		err = intel_pt_synth_ptwrite_sample(ptq);
2680		if (err)
2681			return err;
2682	}
2683
2684	if (!(state->type & INTEL_PT_BRANCH))
2685		return 0;
2686
2687	if (pt->use_thread_stack) {
2688		thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2689				    state->from_ip, state->to_ip, ptq->insn_len,
2690				    state->trace_nr, pt->callstack,
2691				    pt->br_stack_sz_plus,
2692				    pt->mispred_all);
2693	} else {
2694		thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2695	}
2696
2697	if (pt->sample_branches) {
2698		if (state->from_nr != state->to_nr &&
2699		    state->from_ip && state->to_ip) {
2700			struct intel_pt_state *st = (struct intel_pt_state *)state;
2701			u64 to_ip = st->to_ip;
2702			u64 from_ip = st->from_ip;
2703
2704			/*
2705			 * perf cannot handle having different machines for ip
2706			 * and addr, so create 2 branches.
2707			 */
2708			st->to_ip = 0;
2709			err = intel_pt_synth_branch_sample(ptq);
2710			if (err)
2711				return err;
2712			st->from_ip = 0;
2713			st->to_ip = to_ip;
2714			err = intel_pt_synth_branch_sample(ptq);
2715			st->from_ip = from_ip;
2716		} else {
2717			err = intel_pt_synth_branch_sample(ptq);
2718		}
2719		if (err)
2720			return err;
2721	}
2722
 
 
 
2723	if (!ptq->sync_switch)
2724		return 0;
2725
2726	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2727		switch (ptq->switch_state) {
2728		case INTEL_PT_SS_NOT_TRACING:
2729		case INTEL_PT_SS_UNKNOWN:
2730		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2731			err = intel_pt_next_tid(pt, ptq);
2732			if (err)
2733				return err;
2734			ptq->switch_state = INTEL_PT_SS_TRACING;
2735			break;
2736		default:
2737			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2738			return 1;
2739		}
2740	} else if (!state->to_ip) {
2741		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2742	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2743		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2744	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2745		   state->to_ip == pt->ptss_ip &&
2746		   (ptq->flags & PERF_IP_FLAG_CALL)) {
2747		ptq->switch_state = INTEL_PT_SS_TRACING;
2748	}
2749
2750	return 0;
2751}
2752
2753static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2754{
2755	struct machine *machine = pt->machine;
2756	struct map *map;
2757	struct symbol *sym, *start;
2758	u64 ip, switch_ip = 0;
2759	const char *ptss;
2760
2761	if (ptss_ip)
2762		*ptss_ip = 0;
2763
2764	map = machine__kernel_map(machine);
2765	if (!map)
2766		return 0;
2767
2768	if (map__load(map))
2769		return 0;
2770
2771	start = dso__first_symbol(map__dso(map));
2772
2773	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2774		if (sym->binding == STB_GLOBAL &&
2775		    !strcmp(sym->name, "__switch_to")) {
2776			ip = map__unmap_ip(map, sym->start);
2777			if (ip >= map__start(map) && ip < map__end(map)) {
2778				switch_ip = ip;
2779				break;
2780			}
2781		}
2782	}
2783
2784	if (!switch_ip || !ptss_ip)
2785		return 0;
2786
2787	if (pt->have_sched_switch == 1)
2788		ptss = "perf_trace_sched_switch";
2789	else
2790		ptss = "__perf_event_task_sched_out";
2791
2792	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2793		if (!strcmp(sym->name, ptss)) {
2794			ip = map__unmap_ip(map, sym->start);
2795			if (ip >= map__start(map) && ip < map__end(map)) {
2796				*ptss_ip = ip;
2797				break;
2798			}
2799		}
2800	}
2801
2802	return switch_ip;
2803}
2804
2805static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2806{
2807	unsigned int i;
2808
2809	if (pt->sync_switch_not_supported)
2810		return;
2811
2812	pt->sync_switch = true;
2813
2814	for (i = 0; i < pt->queues.nr_queues; i++) {
2815		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2816		struct intel_pt_queue *ptq = queue->priv;
2817
2818		if (ptq)
2819			ptq->sync_switch = true;
2820	}
2821}
2822
2823static void intel_pt_disable_sync_switch(struct intel_pt *pt)
2824{
2825	unsigned int i;
2826
2827	pt->sync_switch = false;
2828
2829	for (i = 0; i < pt->queues.nr_queues; i++) {
2830		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2831		struct intel_pt_queue *ptq = queue->priv;
2832
2833		if (ptq) {
2834			ptq->sync_switch = false;
2835			intel_pt_next_tid(pt, ptq);
2836		}
2837	}
2838}
2839
2840/*
2841 * To filter against time ranges, it is only necessary to look at the next start
2842 * or end time.
2843 */
2844static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2845{
2846	struct intel_pt *pt = ptq->pt;
2847
2848	if (ptq->sel_start) {
2849		/* Next time is an end time */
2850		ptq->sel_start = false;
2851		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2852		return true;
2853	} else if (ptq->sel_idx + 1 < pt->range_cnt) {
2854		/* Next time is a start time */
2855		ptq->sel_start = true;
2856		ptq->sel_idx += 1;
2857		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2858		return true;
2859	}
2860
2861	/* No next time */
2862	return false;
2863}
2864
2865static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2866{
2867	int err;
2868
2869	while (1) {
2870		if (ptq->sel_start) {
2871			if (ptq->timestamp >= ptq->sel_timestamp) {
2872				/* After start time, so consider next time */
2873				intel_pt_next_time(ptq);
2874				if (!ptq->sel_timestamp) {
2875					/* No end time */
2876					return 0;
2877				}
2878				/* Check against end time */
2879				continue;
2880			}
2881			/* Before start time, so fast forward */
2882			ptq->have_sample = false;
2883			if (ptq->sel_timestamp > *ff_timestamp) {
2884				if (ptq->sync_switch) {
2885					intel_pt_next_tid(ptq->pt, ptq);
2886					ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2887				}
2888				*ff_timestamp = ptq->sel_timestamp;
2889				err = intel_pt_fast_forward(ptq->decoder,
2890							    ptq->sel_timestamp);
2891				if (err)
2892					return err;
2893			}
2894			return 0;
2895		} else if (ptq->timestamp > ptq->sel_timestamp) {
2896			/* After end time, so consider next time */
2897			if (!intel_pt_next_time(ptq)) {
2898				/* No next time range, so stop decoding */
2899				ptq->have_sample = false;
2900				ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2901				return 1;
2902			}
2903			/* Check against next start time */
2904			continue;
2905		} else {
2906			/* Before end time */
2907			return 0;
2908		}
2909	}
2910}
2911
2912static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2913{
2914	const struct intel_pt_state *state = ptq->state;
2915	struct intel_pt *pt = ptq->pt;
2916	u64 ff_timestamp = 0;
2917	int err;
2918
2919	if (!pt->kernel_start) {
2920		pt->kernel_start = machine__kernel_start(pt->machine);
2921		if (pt->per_cpu_mmaps &&
2922		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2923		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2924		    !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
2925			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2926			if (pt->switch_ip) {
2927				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2928					     pt->switch_ip, pt->ptss_ip);
2929				intel_pt_enable_sync_switch(pt);
2930			}
2931		}
2932	}
2933
2934	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2935		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2936	while (1) {
2937		err = intel_pt_sample(ptq);
2938		if (err)
2939			return err;
2940
2941		state = intel_pt_decode(ptq->decoder);
2942		if (state->err) {
2943			if (state->err == INTEL_PT_ERR_NODATA)
2944				return 1;
2945			if (ptq->sync_switch &&
2946			    state->from_ip >= pt->kernel_start) {
2947				ptq->sync_switch = false;
2948				intel_pt_next_tid(pt, ptq);
2949			}
2950			ptq->timestamp = state->est_timestamp;
2951			if (pt->synth_opts.errors) {
2952				err = intel_ptq_synth_error(ptq, state);
2953				if (err)
2954					return err;
2955			}
2956			continue;
2957		}
2958
2959		ptq->state = state;
2960		ptq->have_sample = true;
2961		intel_pt_sample_flags(ptq);
2962
2963		/* Use estimated TSC upon return to user space */
2964		if (pt->est_tsc &&
2965		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2966		    state->to_ip && state->to_ip < pt->kernel_start) {
2967			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2968				     state->timestamp, state->est_timestamp);
2969			ptq->timestamp = state->est_timestamp;
2970		/* Use estimated TSC in unknown switch state */
2971		} else if (ptq->sync_switch &&
2972			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2973			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
2974			   ptq->next_tid == -1) {
2975			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2976				     state->timestamp, state->est_timestamp);
2977			ptq->timestamp = state->est_timestamp;
2978		} else if (state->timestamp > ptq->timestamp) {
2979			ptq->timestamp = state->timestamp;
2980		}
2981
2982		if (ptq->sel_timestamp) {
2983			err = intel_pt_time_filter(ptq, &ff_timestamp);
2984			if (err)
2985				return err;
2986		}
2987
2988		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2989			*timestamp = ptq->timestamp;
2990			return 0;
2991		}
2992	}
2993	return 0;
2994}
2995
2996static inline int intel_pt_update_queues(struct intel_pt *pt)
2997{
2998	if (pt->queues.new_data) {
2999		pt->queues.new_data = false;
3000		return intel_pt_setup_queues(pt);
3001	}
3002	return 0;
3003}
3004
3005static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
3006{
3007	unsigned int queue_nr;
3008	u64 ts;
3009	int ret;
3010
3011	while (1) {
3012		struct auxtrace_queue *queue;
3013		struct intel_pt_queue *ptq;
3014
3015		if (!pt->heap.heap_cnt)
3016			return 0;
3017
3018		if (pt->heap.heap_array[0].ordinal >= timestamp)
3019			return 0;
3020
3021		queue_nr = pt->heap.heap_array[0].queue_nr;
3022		queue = &pt->queues.queue_array[queue_nr];
3023		ptq = queue->priv;
3024
3025		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
3026			     queue_nr, pt->heap.heap_array[0].ordinal,
3027			     timestamp);
3028
3029		auxtrace_heap__pop(&pt->heap);
3030
3031		if (pt->heap.heap_cnt) {
3032			ts = pt->heap.heap_array[0].ordinal + 1;
3033			if (ts > timestamp)
3034				ts = timestamp;
3035		} else {
3036			ts = timestamp;
3037		}
3038
3039		intel_pt_set_pid_tid_cpu(pt, queue);
3040
3041		ret = intel_pt_run_decoder(ptq, &ts);
3042
3043		if (ret < 0) {
3044			auxtrace_heap__add(&pt->heap, queue_nr, ts);
3045			return ret;
3046		}
3047
3048		if (!ret) {
3049			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
3050			if (ret < 0)
3051				return ret;
3052		} else {
3053			ptq->on_heap = false;
3054		}
3055	}
3056
3057	return 0;
3058}
3059
3060static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
3061					    u64 time_)
3062{
3063	struct auxtrace_queues *queues = &pt->queues;
3064	unsigned int i;
3065	u64 ts = 0;
3066
3067	for (i = 0; i < queues->nr_queues; i++) {
3068		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
3069		struct intel_pt_queue *ptq = queue->priv;
3070
3071		if (ptq && (tid == -1 || ptq->tid == tid)) {
3072			ptq->time = time_;
3073			intel_pt_set_pid_tid_cpu(pt, queue);
3074			intel_pt_run_decoder(ptq, &ts);
3075		}
3076	}
3077	return 0;
3078}
3079
3080static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
3081					    struct auxtrace_queue *queue,
3082					    struct perf_sample *sample)
3083{
3084	struct machine *m = ptq->pt->machine;
3085
3086	ptq->pid = sample->pid;
3087	ptq->tid = sample->tid;
3088	ptq->cpu = queue->cpu;
3089
3090	intel_pt_log("queue %u cpu %d pid %d tid %d\n",
3091		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
3092
3093	thread__zput(ptq->thread);
3094
3095	if (ptq->tid == -1)
3096		return;
3097
3098	if (ptq->pid == -1) {
3099		ptq->thread = machine__find_thread(m, -1, ptq->tid);
3100		if (ptq->thread)
3101			ptq->pid = thread__pid(ptq->thread);
3102		return;
3103	}
3104
3105	ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
3106}
3107
3108static int intel_pt_process_timeless_sample(struct intel_pt *pt,
3109					    struct perf_sample *sample)
3110{
3111	struct auxtrace_queue *queue;
3112	struct intel_pt_queue *ptq;
3113	u64 ts = 0;
3114
3115	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3116	if (!queue)
3117		return -EINVAL;
3118
3119	ptq = queue->priv;
3120	if (!ptq)
3121		return 0;
3122
3123	ptq->stop = false;
3124	ptq->time = sample->time;
3125	intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
3126	intel_pt_run_decoder(ptq, &ts);
3127	return 0;
3128}
3129
3130static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
3131{
3132	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
3133				    sample->pid, sample->tid, 0, sample->time,
3134				    sample->machine_pid, sample->vcpu);
3135}
3136
3137static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
3138{
3139	unsigned i, j;
3140
3141	if (cpu < 0 || !pt->queues.nr_queues)
3142		return NULL;
3143
3144	if ((unsigned)cpu >= pt->queues.nr_queues)
3145		i = pt->queues.nr_queues - 1;
3146	else
3147		i = cpu;
3148
3149	if (pt->queues.queue_array[i].cpu == cpu)
3150		return pt->queues.queue_array[i].priv;
3151
3152	for (j = 0; i > 0; j++) {
3153		if (pt->queues.queue_array[--i].cpu == cpu)
3154			return pt->queues.queue_array[i].priv;
3155	}
3156
3157	for (; j < pt->queues.nr_queues; j++) {
3158		if (pt->queues.queue_array[j].cpu == cpu)
3159			return pt->queues.queue_array[j].priv;
3160	}
3161
3162	return NULL;
3163}
3164
3165static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
3166				u64 timestamp)
3167{
3168	struct intel_pt_queue *ptq;
3169	int err;
3170
3171	if (!pt->sync_switch)
3172		return 1;
3173
3174	ptq = intel_pt_cpu_to_ptq(pt, cpu);
3175	if (!ptq || !ptq->sync_switch)
3176		return 1;
3177
3178	switch (ptq->switch_state) {
3179	case INTEL_PT_SS_NOT_TRACING:
3180		break;
3181	case INTEL_PT_SS_UNKNOWN:
3182	case INTEL_PT_SS_TRACING:
3183		ptq->next_tid = tid;
3184		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
3185		return 0;
3186	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3187		if (!ptq->on_heap) {
3188			ptq->timestamp = perf_time_to_tsc(timestamp,
3189							  &pt->tc);
3190			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
3191						 ptq->timestamp);
3192			if (err)
3193				return err;
3194			ptq->on_heap = true;
3195		}
3196		ptq->switch_state = INTEL_PT_SS_TRACING;
3197		break;
3198	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3199		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
3200		break;
3201	default:
3202		break;
3203	}
3204
3205	ptq->next_tid = -1;
3206
3207	return 1;
3208}
3209
3210#ifdef HAVE_LIBTRACEEVENT
3211static int intel_pt_process_switch(struct intel_pt *pt,
3212				   struct perf_sample *sample)
3213{
 
3214	pid_t tid;
3215	int cpu, ret;
3216	struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
3217
 
3218	if (evsel != pt->switch_evsel)
3219		return 0;
3220
3221	tid = evsel__intval(evsel, sample, "next_pid");
3222	cpu = sample->cpu;
3223
3224	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3225		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
3226		     &pt->tc));
3227
3228	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3229	if (ret <= 0)
3230		return ret;
3231
3232	return machine__set_current_tid(pt->machine, cpu, -1, tid);
3233}
3234#endif /* HAVE_LIBTRACEEVENT */
3235
3236static int intel_pt_context_switch_in(struct intel_pt *pt,
3237				      struct perf_sample *sample)
3238{
3239	pid_t pid = sample->pid;
3240	pid_t tid = sample->tid;
3241	int cpu = sample->cpu;
3242
3243	if (pt->sync_switch) {
3244		struct intel_pt_queue *ptq;
3245
3246		ptq = intel_pt_cpu_to_ptq(pt, cpu);
3247		if (ptq && ptq->sync_switch) {
3248			ptq->next_tid = -1;
3249			switch (ptq->switch_state) {
3250			case INTEL_PT_SS_NOT_TRACING:
3251			case INTEL_PT_SS_UNKNOWN:
3252			case INTEL_PT_SS_TRACING:
3253				break;
3254			case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3255			case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3256				ptq->switch_state = INTEL_PT_SS_TRACING;
3257				break;
3258			default:
3259				break;
3260			}
3261		}
3262	}
3263
3264	/*
3265	 * If the current tid has not been updated yet, ensure it is now that
3266	 * a "switch in" event has occurred.
3267	 */
3268	if (machine__get_current_tid(pt->machine, cpu) == tid)
3269		return 0;
3270
3271	return machine__set_current_tid(pt->machine, cpu, pid, tid);
3272}
3273
3274static int intel_pt_guest_context_switch(struct intel_pt *pt,
3275					 union perf_event *event,
3276					 struct perf_sample *sample)
3277{
3278	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3279	struct machines *machines = &pt->session->machines;
3280	struct machine *machine = machines__find(machines, sample->machine_pid);
3281
3282	pt->have_guest_sideband = true;
3283
3284	/*
3285	 * sync_switch cannot handle guest machines at present, so just disable
3286	 * it.
3287	 */
3288	pt->sync_switch_not_supported = true;
3289	if (pt->sync_switch)
3290		intel_pt_disable_sync_switch(pt);
3291
3292	if (out)
3293		return 0;
3294
3295	if (!machine)
3296		return -EINVAL;
3297
3298	return machine__set_current_tid(machine, sample->vcpu, sample->pid, sample->tid);
3299}
3300
3301static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
3302				   struct perf_sample *sample)
3303{
3304	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3305	pid_t pid, tid;
3306	int cpu, ret;
3307
3308	if (perf_event__is_guest(event))
3309		return intel_pt_guest_context_switch(pt, event, sample);
3310
3311	cpu = sample->cpu;
3312
3313	if (pt->have_sched_switch == 3) {
3314		if (!out)
3315			return intel_pt_context_switch_in(pt, sample);
3316		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
3317			pr_err("Expecting CPU-wide context switch event\n");
3318			return -EINVAL;
3319		}
3320		pid = event->context_switch.next_prev_pid;
3321		tid = event->context_switch.next_prev_tid;
3322	} else {
3323		if (out)
3324			return 0;
3325		pid = sample->pid;
3326		tid = sample->tid;
3327	}
3328
3329	if (tid == -1)
3330		intel_pt_log("context_switch event has no tid\n");
 
 
 
 
 
 
3331
3332	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3333	if (ret <= 0)
3334		return ret;
3335
3336	return machine__set_current_tid(pt->machine, cpu, pid, tid);
3337}
3338
3339static int intel_pt_process_itrace_start(struct intel_pt *pt,
3340					 union perf_event *event,
3341					 struct perf_sample *sample)
3342{
3343	if (!pt->per_cpu_mmaps)
3344		return 0;
3345
3346	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3347		     sample->cpu, event->itrace_start.pid,
3348		     event->itrace_start.tid, sample->time,
3349		     perf_time_to_tsc(sample->time, &pt->tc));
3350
3351	return machine__set_current_tid(pt->machine, sample->cpu,
3352					event->itrace_start.pid,
3353					event->itrace_start.tid);
3354}
3355
3356static int intel_pt_process_aux_output_hw_id(struct intel_pt *pt,
3357					     union perf_event *event,
3358					     struct perf_sample *sample)
3359{
3360	u64 hw_id = event->aux_output_hw_id.hw_id;
3361	struct auxtrace_queue *queue;
3362	struct intel_pt_queue *ptq;
3363	struct evsel *evsel;
3364
3365	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3366	evsel = evlist__id2evsel_strict(pt->session->evlist, sample->id);
3367	if (!queue || !queue->priv || !evsel || hw_id > INTEL_PT_MAX_PEBS) {
3368		pr_err("Bad AUX output hardware ID\n");
3369		return -EINVAL;
3370	}
3371
3372	ptq = queue->priv;
3373
3374	ptq->pebs[hw_id].evsel = evsel;
3375	ptq->pebs[hw_id].id = sample->id;
3376
3377	return 0;
3378}
3379
3380static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
3381			     struct addr_location *al)
3382{
3383	if (!al->map || addr < map__start(al->map) || addr >= map__end(al->map)) {
3384		if (!thread__find_map(thread, cpumode, addr, al))
3385			return -1;
3386	}
3387
3388	return 0;
3389}
3390
3391/* Invalidate all instruction cache entries that overlap the text poke */
3392static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
3393{
3394	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
3395	u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
3396	/* Assume text poke begins in a basic block no more than 4096 bytes */
3397	int cnt = 4096 + event->text_poke.new_len;
3398	struct thread *thread = pt->unknown_thread;
3399	struct addr_location al;
3400	struct machine *machine = pt->machine;
3401	struct intel_pt_cache_entry *e;
3402	u64 offset;
3403	int ret = 0;
3404
3405	addr_location__init(&al);
3406	if (!event->text_poke.new_len)
3407		goto out;
3408
3409	for (; cnt; cnt--, addr--) {
3410		struct dso *dso;
3411
3412		if (intel_pt_find_map(thread, cpumode, addr, &al)) {
3413			if (addr < event->text_poke.addr)
3414				goto out;
3415			continue;
3416		}
3417
3418		dso = map__dso(al.map);
3419		if (!dso || !dso->auxtrace_cache)
3420			continue;
3421
3422		offset = map__map_ip(al.map, addr);
3423
3424		e = intel_pt_cache_lookup(dso, machine, offset);
3425		if (!e)
3426			continue;
3427
3428		if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
3429			/*
3430			 * No overlap. Working backwards there cannot be another
3431			 * basic block that overlaps the text poke if there is a
3432			 * branch instruction before the text poke address.
3433			 */
3434			if (e->branch != INTEL_PT_BR_NO_BRANCH)
3435				goto out;
3436		} else {
3437			intel_pt_cache_invalidate(dso, machine, offset);
3438			intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
3439				     dso->long_name, addr);
3440		}
3441	}
3442out:
3443	addr_location__exit(&al);
3444	return ret;
3445}
3446
3447static int intel_pt_process_event(struct perf_session *session,
3448				  union perf_event *event,
3449				  struct perf_sample *sample,
3450				  struct perf_tool *tool)
3451{
3452	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3453					   auxtrace);
3454	u64 timestamp;
3455	int err = 0;
3456
3457	if (dump_trace)
3458		return 0;
3459
3460	if (!tool->ordered_events) {
3461		pr_err("Intel Processor Trace requires ordered events\n");
3462		return -EINVAL;
3463	}
3464
3465	if (sample->time && sample->time != (u64)-1)
3466		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3467	else
3468		timestamp = 0;
3469
3470	if (timestamp || pt->timeless_decoding) {
3471		err = intel_pt_update_queues(pt);
3472		if (err)
3473			return err;
3474	}
3475
3476	if (pt->timeless_decoding) {
3477		if (pt->sampling_mode) {
3478			if (sample->aux_sample.size)
3479				err = intel_pt_process_timeless_sample(pt,
3480								       sample);
3481		} else if (event->header.type == PERF_RECORD_EXIT) {
3482			err = intel_pt_process_timeless_queues(pt,
3483							       event->fork.tid,
3484							       sample->time);
3485		}
3486	} else if (timestamp) {
3487		if (!pt->first_timestamp)
3488			intel_pt_first_timestamp(pt, timestamp);
3489		err = intel_pt_process_queues(pt, timestamp);
3490	}
3491	if (err)
3492		return err;
3493
3494	if (event->header.type == PERF_RECORD_SAMPLE) {
3495		if (pt->synth_opts.add_callchain && !sample->callchain)
3496			intel_pt_add_callchain(pt, sample);
3497		if (pt->synth_opts.add_last_branch && !sample->branch_stack)
3498			intel_pt_add_br_stack(pt, sample);
3499	}
3500
3501	if (event->header.type == PERF_RECORD_AUX &&
3502	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
3503	    pt->synth_opts.errors) {
3504		err = intel_pt_lost(pt, sample);
3505		if (err)
3506			return err;
3507	}
3508
3509#ifdef HAVE_LIBTRACEEVENT
3510	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
3511		err = intel_pt_process_switch(pt, sample);
3512	else
3513#endif
3514	if (event->header.type == PERF_RECORD_ITRACE_START)
3515		err = intel_pt_process_itrace_start(pt, event, sample);
3516	else if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID)
3517		err = intel_pt_process_aux_output_hw_id(pt, event, sample);
3518	else if (event->header.type == PERF_RECORD_SWITCH ||
3519		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
3520		err = intel_pt_context_switch(pt, event, sample);
3521
3522	if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
3523		err = intel_pt_text_poke(pt, event);
3524
3525	if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
3526		intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
3527			     event->header.type, sample->cpu, sample->time, timestamp);
3528		intel_pt_log_event(event);
3529	}
3530
3531	return err;
3532}
3533
3534static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
3535{
3536	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3537					   auxtrace);
3538	int ret;
3539
3540	if (dump_trace)
3541		return 0;
3542
3543	if (!tool->ordered_events)
3544		return -EINVAL;
3545
3546	ret = intel_pt_update_queues(pt);
3547	if (ret < 0)
3548		return ret;
3549
3550	if (pt->timeless_decoding)
3551		return intel_pt_process_timeless_queues(pt, -1,
3552							MAX_TIMESTAMP - 1);
3553
3554	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
3555}
3556
3557static void intel_pt_free_events(struct perf_session *session)
3558{
3559	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3560					   auxtrace);
3561	struct auxtrace_queues *queues = &pt->queues;
3562	unsigned int i;
3563
3564	for (i = 0; i < queues->nr_queues; i++) {
3565		intel_pt_free_queue(queues->queue_array[i].priv);
3566		queues->queue_array[i].priv = NULL;
3567	}
3568	intel_pt_log_disable();
3569	auxtrace_queues__free(queues);
3570}
3571
3572static void intel_pt_free(struct perf_session *session)
3573{
3574	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3575					   auxtrace);
3576
3577	auxtrace_heap__free(&pt->heap);
3578	intel_pt_free_events(session);
3579	session->auxtrace = NULL;
3580	intel_pt_free_vmcs_info(pt);
3581	thread__put(pt->unknown_thread);
3582	addr_filters__exit(&pt->filts);
3583	zfree(&pt->chain);
3584	zfree(&pt->filter);
3585	zfree(&pt->time_ranges);
3586	zfree(&pt->br_stack);
3587	free(pt);
3588}
3589
3590static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
3591				       struct evsel *evsel)
3592{
3593	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3594					   auxtrace);
3595
3596	return evsel->core.attr.type == pt->pmu_type;
3597}
3598
3599static int intel_pt_process_auxtrace_event(struct perf_session *session,
3600					   union perf_event *event,
3601					   struct perf_tool *tool __maybe_unused)
3602{
3603	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3604					   auxtrace);
3605
3606	if (!pt->data_queued) {
3607		struct auxtrace_buffer *buffer;
3608		off_t data_offset;
3609		int fd = perf_data__fd(session->data);
3610		int err;
3611
3612		if (perf_data__is_pipe(session->data)) {
3613			data_offset = 0;
3614		} else {
3615			data_offset = lseek(fd, 0, SEEK_CUR);
3616			if (data_offset == -1)
3617				return -errno;
3618		}
3619
3620		err = auxtrace_queues__add_event(&pt->queues, session, event,
3621						 data_offset, &buffer);
3622		if (err)
3623			return err;
3624
3625		/* Dump here now we have copied a piped trace out of the pipe */
3626		if (dump_trace) {
3627			if (auxtrace_buffer__get_data(buffer, fd)) {
3628				intel_pt_dump_event(pt, buffer->data,
3629						    buffer->size);
3630				auxtrace_buffer__put_data(buffer);
3631			}
3632		}
3633	}
3634
3635	return 0;
3636}
3637
3638static int intel_pt_queue_data(struct perf_session *session,
3639			       struct perf_sample *sample,
3640			       union perf_event *event, u64 data_offset)
3641{
3642	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3643					   auxtrace);
3644	u64 timestamp;
3645
3646	if (event) {
3647		return auxtrace_queues__add_event(&pt->queues, session, event,
3648						  data_offset, NULL);
3649	}
3650
3651	if (sample->time && sample->time != (u64)-1)
3652		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3653	else
3654		timestamp = 0;
3655
3656	return auxtrace_queues__add_sample(&pt->queues, session, sample,
3657					   data_offset, timestamp);
3658}
3659
3660struct intel_pt_synth {
3661	struct perf_tool dummy_tool;
3662	struct perf_session *session;
3663};
3664
3665static int intel_pt_event_synth(struct perf_tool *tool,
3666				union perf_event *event,
3667				struct perf_sample *sample __maybe_unused,
3668				struct machine *machine __maybe_unused)
3669{
3670	struct intel_pt_synth *intel_pt_synth =
3671			container_of(tool, struct intel_pt_synth, dummy_tool);
3672
3673	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
3674						 NULL);
3675}
3676
3677static int intel_pt_synth_event(struct perf_session *session, const char *name,
3678				struct perf_event_attr *attr, u64 id)
3679{
3680	struct intel_pt_synth intel_pt_synth;
3681	int err;
3682
3683	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3684		 name, id, (u64)attr->sample_type);
3685
3686	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
3687	intel_pt_synth.session = session;
3688
3689	err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
3690					  &id, intel_pt_event_synth);
3691	if (err)
3692		pr_err("%s: failed to synthesize '%s' event type\n",
3693		       __func__, name);
3694
3695	return err;
3696}
3697
3698static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3699				    const char *name)
3700{
3701	struct evsel *evsel;
3702
3703	evlist__for_each_entry(evlist, evsel) {
3704		if (evsel->core.id && evsel->core.id[0] == id) {
3705			if (evsel->name)
3706				zfree(&evsel->name);
3707			evsel->name = strdup(name);
3708			break;
3709		}
3710	}
3711}
3712
3713static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3714					 struct evlist *evlist)
3715{
3716	struct evsel *evsel;
3717
3718	evlist__for_each_entry(evlist, evsel) {
3719		if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3720			return evsel;
3721	}
3722
3723	return NULL;
3724}
3725
3726static int intel_pt_synth_events(struct intel_pt *pt,
3727				 struct perf_session *session)
3728{
3729	struct evlist *evlist = session->evlist;
3730	struct evsel *evsel = intel_pt_evsel(pt, evlist);
3731	struct perf_event_attr attr;
3732	u64 id;
3733	int err;
3734
3735	if (!evsel) {
3736		pr_debug("There are no selected events with Intel Processor Trace data\n");
3737		return 0;
3738	}
3739
3740	memset(&attr, 0, sizeof(struct perf_event_attr));
3741	attr.size = sizeof(struct perf_event_attr);
3742	attr.type = PERF_TYPE_HARDWARE;
3743	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3744	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3745			    PERF_SAMPLE_PERIOD;
3746	if (pt->timeless_decoding)
3747		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3748	else
3749		attr.sample_type |= PERF_SAMPLE_TIME;
3750	if (!pt->per_cpu_mmaps)
3751		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3752	attr.exclude_user = evsel->core.attr.exclude_user;
3753	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3754	attr.exclude_hv = evsel->core.attr.exclude_hv;
3755	attr.exclude_host = evsel->core.attr.exclude_host;
3756	attr.exclude_guest = evsel->core.attr.exclude_guest;
3757	attr.sample_id_all = evsel->core.attr.sample_id_all;
3758	attr.read_format = evsel->core.attr.read_format;
3759
3760	id = evsel->core.id[0] + 1000000000;
3761	if (!id)
3762		id = 1;
3763
3764	if (pt->synth_opts.branches) {
3765		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3766		attr.sample_period = 1;
3767		attr.sample_type |= PERF_SAMPLE_ADDR;
3768		err = intel_pt_synth_event(session, "branches", &attr, id);
3769		if (err)
3770			return err;
3771		pt->sample_branches = true;
3772		pt->branches_sample_type = attr.sample_type;
3773		pt->branches_id = id;
3774		id += 1;
3775		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3776	}
3777
3778	if (pt->synth_opts.callchain)
3779		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3780	if (pt->synth_opts.last_branch) {
3781		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3782		/*
3783		 * We don't use the hardware index, but the sample generation
3784		 * code uses the new format branch_stack with this field,
3785		 * so the event attributes must indicate that it's present.
3786		 */
3787		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3788	}
3789
3790	if (pt->synth_opts.instructions) {
3791		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3792		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3793			attr.sample_period =
3794				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3795		else
3796			attr.sample_period = pt->synth_opts.period;
3797		err = intel_pt_synth_event(session, "instructions", &attr, id);
3798		if (err)
3799			return err;
3800		pt->sample_instructions = true;
3801		pt->instructions_sample_type = attr.sample_type;
3802		pt->instructions_id = id;
3803		id += 1;
3804	}
3805
3806	if (pt->synth_opts.cycles) {
3807		attr.config = PERF_COUNT_HW_CPU_CYCLES;
3808		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3809			attr.sample_period =
3810				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3811		else
3812			attr.sample_period = pt->synth_opts.period;
3813		err = intel_pt_synth_event(session, "cycles", &attr, id);
3814		if (err)
3815			return err;
3816		pt->sample_cycles = true;
3817		pt->cycles_sample_type = attr.sample_type;
3818		pt->cycles_id = id;
3819		id += 1;
3820	}
3821
3822	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3823	attr.sample_period = 1;
3824
3825	if (pt->synth_opts.transactions) {
3826		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3827		err = intel_pt_synth_event(session, "transactions", &attr, id);
3828		if (err)
3829			return err;
3830		pt->sample_transactions = true;
3831		pt->transactions_sample_type = attr.sample_type;
3832		pt->transactions_id = id;
3833		intel_pt_set_event_name(evlist, id, "transactions");
3834		id += 1;
3835	}
3836
3837	attr.type = PERF_TYPE_SYNTH;
3838	attr.sample_type |= PERF_SAMPLE_RAW;
3839
3840	if (pt->synth_opts.ptwrites) {
3841		attr.config = PERF_SYNTH_INTEL_PTWRITE;
3842		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3843		if (err)
3844			return err;
3845		pt->sample_ptwrites = true;
3846		pt->ptwrites_sample_type = attr.sample_type;
3847		pt->ptwrites_id = id;
3848		intel_pt_set_event_name(evlist, id, "ptwrite");
3849		id += 1;
3850	}
3851
3852	if (pt->synth_opts.pwr_events) {
3853		pt->sample_pwr_events = true;
3854		pt->pwr_events_sample_type = attr.sample_type;
3855
3856		attr.config = PERF_SYNTH_INTEL_CBR;
3857		err = intel_pt_synth_event(session, "cbr", &attr, id);
3858		if (err)
3859			return err;
3860		pt->cbr_id = id;
3861		intel_pt_set_event_name(evlist, id, "cbr");
3862		id += 1;
3863
3864		attr.config = PERF_SYNTH_INTEL_PSB;
3865		err = intel_pt_synth_event(session, "psb", &attr, id);
3866		if (err)
3867			return err;
3868		pt->psb_id = id;
3869		intel_pt_set_event_name(evlist, id, "psb");
3870		id += 1;
3871	}
3872
3873	if (pt->synth_opts.pwr_events && (evsel->core.attr.config & INTEL_PT_CFG_PWR_EVT_EN)) {
3874		attr.config = PERF_SYNTH_INTEL_MWAIT;
3875		err = intel_pt_synth_event(session, "mwait", &attr, id);
3876		if (err)
3877			return err;
3878		pt->mwait_id = id;
3879		intel_pt_set_event_name(evlist, id, "mwait");
3880		id += 1;
3881
3882		attr.config = PERF_SYNTH_INTEL_PWRE;
3883		err = intel_pt_synth_event(session, "pwre", &attr, id);
3884		if (err)
3885			return err;
3886		pt->pwre_id = id;
3887		intel_pt_set_event_name(evlist, id, "pwre");
3888		id += 1;
3889
3890		attr.config = PERF_SYNTH_INTEL_EXSTOP;
3891		err = intel_pt_synth_event(session, "exstop", &attr, id);
3892		if (err)
3893			return err;
3894		pt->exstop_id = id;
3895		intel_pt_set_event_name(evlist, id, "exstop");
3896		id += 1;
3897
3898		attr.config = PERF_SYNTH_INTEL_PWRX;
3899		err = intel_pt_synth_event(session, "pwrx", &attr, id);
3900		if (err)
3901			return err;
3902		pt->pwrx_id = id;
3903		intel_pt_set_event_name(evlist, id, "pwrx");
3904		id += 1;
3905	}
3906
3907	if (pt->synth_opts.intr_events && (evsel->core.attr.config & INTEL_PT_CFG_EVT_EN)) {
3908		attr.config = PERF_SYNTH_INTEL_EVT;
3909		err = intel_pt_synth_event(session, "evt", &attr, id);
3910		if (err)
3911			return err;
3912		pt->evt_sample_type = attr.sample_type;
3913		pt->evt_id = id;
3914		intel_pt_set_event_name(evlist, id, "evt");
3915		id += 1;
3916	}
3917
3918	if (pt->synth_opts.intr_events && pt->cap_event_trace) {
3919		attr.config = PERF_SYNTH_INTEL_IFLAG_CHG;
3920		err = intel_pt_synth_event(session, "iflag", &attr, id);
3921		if (err)
3922			return err;
3923		pt->iflag_chg_sample_type = attr.sample_type;
3924		pt->iflag_chg_id = id;
3925		intel_pt_set_event_name(evlist, id, "iflag");
3926		id += 1;
3927	}
3928
3929	return 0;
3930}
3931
3932static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3933{
3934	struct evsel *evsel;
3935
3936	if (!pt->synth_opts.other_events)
3937		return;
3938
3939	evlist__for_each_entry(pt->session->evlist, evsel) {
3940		if (evsel->core.attr.aux_output && evsel->core.id) {
3941			if (pt->single_pebs) {
3942				pt->single_pebs = false;
3943				return;
3944			}
3945			pt->single_pebs = true;
3946			pt->sample_pebs = true;
3947			pt->pebs_evsel = evsel;
 
3948		}
3949	}
3950}
3951
3952static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3953{
3954	struct evsel *evsel;
3955
3956	evlist__for_each_entry_reverse(evlist, evsel) {
3957		const char *name = evsel__name(evsel);
3958
3959		if (!strcmp(name, "sched:sched_switch"))
3960			return evsel;
3961	}
3962
3963	return NULL;
3964}
3965
3966static bool intel_pt_find_switch(struct evlist *evlist)
3967{
3968	struct evsel *evsel;
3969
3970	evlist__for_each_entry(evlist, evsel) {
3971		if (evsel->core.attr.context_switch)
3972			return true;
3973	}
3974
3975	return false;
3976}
3977
3978static int intel_pt_perf_config(const char *var, const char *value, void *data)
3979{
3980	struct intel_pt *pt = data;
3981
3982	if (!strcmp(var, "intel-pt.mispred-all"))
3983		pt->mispred_all = perf_config_bool(var, value);
3984
3985	if (!strcmp(var, "intel-pt.max-loops"))
3986		perf_config_int(&pt->max_loops, var, value);
3987
3988	return 0;
3989}
3990
3991/* Find least TSC which converts to ns or later */
3992static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3993{
3994	u64 tsc, tm;
3995
3996	tsc = perf_time_to_tsc(ns, &pt->tc);
3997
3998	while (1) {
3999		tm = tsc_to_perf_time(tsc, &pt->tc);
4000		if (tm < ns)
4001			break;
4002		tsc -= 1;
4003	}
4004
4005	while (tm < ns)
4006		tm = tsc_to_perf_time(++tsc, &pt->tc);
4007
4008	return tsc;
4009}
4010
4011/* Find greatest TSC which converts to ns or earlier */
4012static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
4013{
4014	u64 tsc, tm;
4015
4016	tsc = perf_time_to_tsc(ns, &pt->tc);
4017
4018	while (1) {
4019		tm = tsc_to_perf_time(tsc, &pt->tc);
4020		if (tm > ns)
4021			break;
4022		tsc += 1;
4023	}
4024
4025	while (tm > ns)
4026		tm = tsc_to_perf_time(--tsc, &pt->tc);
4027
4028	return tsc;
4029}
4030
4031static int intel_pt_setup_time_ranges(struct intel_pt *pt,
4032				      struct itrace_synth_opts *opts)
4033{
4034	struct perf_time_interval *p = opts->ptime_range;
4035	int n = opts->range_num;
4036	int i;
4037
4038	if (!n || !p || pt->timeless_decoding)
4039		return 0;
4040
4041	pt->time_ranges = calloc(n, sizeof(struct range));
4042	if (!pt->time_ranges)
4043		return -ENOMEM;
4044
4045	pt->range_cnt = n;
4046
4047	intel_pt_log("%s: %u range(s)\n", __func__, n);
4048
4049	for (i = 0; i < n; i++) {
4050		struct range *r = &pt->time_ranges[i];
4051		u64 ts = p[i].start;
4052		u64 te = p[i].end;
4053
4054		/*
4055		 * Take care to ensure the TSC range matches the perf-time range
4056		 * when converted back to perf-time.
4057		 */
4058		r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
4059		r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
4060
4061		intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
4062			     i, ts, te);
4063		intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
4064			     i, r->start, r->end);
4065	}
4066
4067	return 0;
4068}
4069
4070static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args)
4071{
4072	struct intel_pt_vmcs_info *vmcs_info;
4073	u64 tsc_offset, vmcs;
4074	char *p = *args;
4075
4076	errno = 0;
4077
4078	p = skip_spaces(p);
4079	if (!*p)
4080		return 1;
4081
4082	tsc_offset = strtoull(p, &p, 0);
4083	if (errno)
4084		return -errno;
4085	p = skip_spaces(p);
4086	if (*p != ':') {
4087		pt->dflt_tsc_offset = tsc_offset;
4088		*args = p;
4089		return 0;
4090	}
4091	p += 1;
4092	while (1) {
4093		vmcs = strtoull(p, &p, 0);
4094		if (errno)
4095			return -errno;
4096		if (!vmcs)
4097			return -EINVAL;
4098		vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset);
4099		if (!vmcs_info)
4100			return -ENOMEM;
4101		p = skip_spaces(p);
4102		if (*p != ',')
4103			break;
4104		p += 1;
4105	}
4106	*args = p;
4107	return 0;
4108}
4109
4110static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt)
4111{
4112	char *args = pt->synth_opts.vm_tm_corr_args;
4113	int ret;
4114
4115	if (!args)
4116		return 0;
4117
4118	do {
4119		ret = intel_pt_parse_vm_tm_corr_arg(pt, &args);
4120	} while (!ret);
4121
4122	if (ret < 0) {
4123		pr_err("Failed to parse VM Time Correlation options\n");
4124		return ret;
4125	}
4126
4127	return 0;
4128}
4129
4130static const char * const intel_pt_info_fmts[] = {
4131	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
4132	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
4133	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
4134	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
4135	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
4136	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
4137	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
4138	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
4139	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
4140	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
4141	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
4142	[INTEL_PT_MTC_FREQ_BITS]	= "  MTC freq bits       %#"PRIx64"\n",
4143	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
4144	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
4145	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
4146	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
4147	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
4148};
4149
4150static void intel_pt_print_info(__u64 *arr, int start, int finish)
4151{
4152	int i;
4153
4154	if (!dump_trace)
4155		return;
4156
4157	for (i = start; i <= finish; i++) {
4158		const char *fmt = intel_pt_info_fmts[i];
4159
4160		if (fmt)
4161			fprintf(stdout, fmt, arr[i]);
4162	}
4163}
4164
4165static void intel_pt_print_info_str(const char *name, const char *str)
4166{
4167	if (!dump_trace)
4168		return;
4169
4170	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
4171}
4172
4173static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
4174{
4175	return auxtrace_info->header.size >=
4176		sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
4177}
4178
4179int intel_pt_process_auxtrace_info(union perf_event *event,
4180				   struct perf_session *session)
4181{
4182	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
4183	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
4184	struct intel_pt *pt;
4185	void *info_end;
4186	__u64 *info;
4187	int err;
4188
4189	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
4190					min_sz)
4191		return -EINVAL;
4192
4193	pt = zalloc(sizeof(struct intel_pt));
4194	if (!pt)
4195		return -ENOMEM;
4196
4197	pt->vmcs_info = RB_ROOT;
4198
4199	addr_filters__init(&pt->filts);
4200
4201	err = perf_config(intel_pt_perf_config, pt);
4202	if (err)
4203		goto err_free;
4204
4205	err = auxtrace_queues__init(&pt->queues);
4206	if (err)
4207		goto err_free;
4208
4209	if (session->itrace_synth_opts->set) {
4210		pt->synth_opts = *session->itrace_synth_opts;
4211	} else {
4212		struct itrace_synth_opts *opts = session->itrace_synth_opts;
4213
4214		itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample);
4215		if (!opts->default_no_sample && !opts->inject) {
4216			pt->synth_opts.branches = false;
4217			pt->synth_opts.callchain = true;
4218			pt->synth_opts.add_callchain = true;
4219		}
4220		pt->synth_opts.thread_stack = opts->thread_stack;
4221	}
4222
4223	if (!(pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT))
4224		intel_pt_log_set_name(INTEL_PT_PMU_NAME);
4225
4226	pt->session = session;
4227	pt->machine = &session->machines.host; /* No kvm support */
4228	pt->auxtrace_type = auxtrace_info->type;
4229	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
4230	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
4231	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
4232	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
4233	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
4234	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
4235	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
4236	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
4237	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
4238	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
4239	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
4240			    INTEL_PT_PER_CPU_MMAPS);
4241
4242	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
4243		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
4244		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
4245		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
4246		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
4247		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
4248		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
4249				    INTEL_PT_CYC_BIT);
4250	}
4251
4252	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
4253		pt->max_non_turbo_ratio =
4254			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
4255		intel_pt_print_info(&auxtrace_info->priv[0],
4256				    INTEL_PT_MAX_NONTURBO_RATIO,
4257				    INTEL_PT_MAX_NONTURBO_RATIO);
4258	}
4259
4260	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
4261	info_end = (void *)auxtrace_info + auxtrace_info->header.size;
4262
4263	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
4264		size_t len;
4265
4266		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
4267		intel_pt_print_info(&auxtrace_info->priv[0],
4268				    INTEL_PT_FILTER_STR_LEN,
4269				    INTEL_PT_FILTER_STR_LEN);
4270		if (len) {
4271			const char *filter = (const char *)info;
4272
4273			len = roundup(len + 1, 8);
4274			info += len >> 3;
4275			if ((void *)info > info_end) {
4276				pr_err("%s: bad filter string length\n", __func__);
4277				err = -EINVAL;
4278				goto err_free_queues;
4279			}
4280			pt->filter = memdup(filter, len);
4281			if (!pt->filter) {
4282				err = -ENOMEM;
4283				goto err_free_queues;
4284			}
4285			if (session->header.needs_swap)
4286				mem_bswap_64(pt->filter, len);
4287			if (pt->filter[len - 1]) {
4288				pr_err("%s: filter string not null terminated\n", __func__);
4289				err = -EINVAL;
4290				goto err_free_queues;
4291			}
4292			err = addr_filters__parse_bare_filter(&pt->filts,
4293							      filter);
4294			if (err)
4295				goto err_free_queues;
4296		}
4297		intel_pt_print_info_str("Filter string", pt->filter);
4298	}
4299
4300	if ((void *)info < info_end) {
4301		pt->cap_event_trace = *info++;
4302		if (dump_trace)
4303			fprintf(stdout, "  Cap Event Trace     %d\n",
4304				pt->cap_event_trace);
4305	}
4306
4307	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
4308	if (pt->timeless_decoding && !pt->tc.time_mult)
4309		pt->tc.time_mult = 1;
4310	pt->have_tsc = intel_pt_have_tsc(pt);
4311	pt->sampling_mode = intel_pt_sampling_mode(pt);
4312	pt->est_tsc = !pt->timeless_decoding;
4313
4314	if (pt->synth_opts.vm_time_correlation) {
4315		if (pt->timeless_decoding) {
4316			pr_err("Intel PT has no time information for VM Time Correlation\n");
4317			err = -EINVAL;
4318			goto err_free_queues;
4319		}
4320		if (session->itrace_synth_opts->ptime_range) {
4321			pr_err("Time ranges cannot be specified with VM Time Correlation\n");
4322			err = -EINVAL;
4323			goto err_free_queues;
4324		}
4325		/* Currently TSC Offset is calculated using MTC packets */
4326		if (!intel_pt_have_mtc(pt)) {
4327			pr_err("MTC packets must have been enabled for VM Time Correlation\n");
4328			err = -EINVAL;
4329			goto err_free_queues;
4330		}
4331		err = intel_pt_parse_vm_tm_corr_args(pt);
4332		if (err)
4333			goto err_free_queues;
4334	}
4335
4336	pt->unknown_thread = thread__new(999999999, 999999999);
4337	if (!pt->unknown_thread) {
4338		err = -ENOMEM;
4339		goto err_free_queues;
4340	}
4341
 
 
 
 
 
 
 
 
4342	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
4343	if (err)
4344		goto err_delete_thread;
4345	if (thread__init_maps(pt->unknown_thread, pt->machine)) {
4346		err = -ENOMEM;
4347		goto err_delete_thread;
4348	}
4349
4350	pt->auxtrace.process_event = intel_pt_process_event;
4351	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
4352	pt->auxtrace.queue_data = intel_pt_queue_data;
4353	pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
4354	pt->auxtrace.flush_events = intel_pt_flush;
4355	pt->auxtrace.free_events = intel_pt_free_events;
4356	pt->auxtrace.free = intel_pt_free;
4357	pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
4358	session->auxtrace = &pt->auxtrace;
4359
4360	if (dump_trace)
4361		return 0;
4362
4363	if (pt->have_sched_switch == 1) {
4364		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
4365		if (!pt->switch_evsel) {
4366			pr_err("%s: missing sched_switch event\n", __func__);
4367			err = -EINVAL;
4368			goto err_delete_thread;
4369		}
4370	} else if (pt->have_sched_switch == 2 &&
4371		   !intel_pt_find_switch(session->evlist)) {
4372		pr_err("%s: missing context_switch attribute flag\n", __func__);
4373		err = -EINVAL;
4374		goto err_delete_thread;
4375	}
4376
4377	if (pt->synth_opts.log) {
4378		bool log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
4379		unsigned int log_on_error_size = pt->synth_opts.log_on_error_size;
 
 
 
 
 
 
 
 
 
 
4380
4381		intel_pt_log_enable(log_on_error, log_on_error_size);
4382	}
4383
4384	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
4385	if (pt->tc.time_mult) {
4386		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
4387
4388		if (!pt->max_non_turbo_ratio)
4389			pt->max_non_turbo_ratio =
4390					(tsc_freq + 50000000) / 100000000;
4391		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
4392		intel_pt_log("Maximum non-turbo ratio %u\n",
4393			     pt->max_non_turbo_ratio);
4394		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
4395	}
4396
4397	err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
4398	if (err)
4399		goto err_delete_thread;
4400
4401	if (pt->synth_opts.calls)
4402		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
4403				       PERF_IP_FLAG_TRACE_END;
4404	if (pt->synth_opts.returns)
4405		pt->branches_filter |= PERF_IP_FLAG_RETURN |
4406				       PERF_IP_FLAG_TRACE_BEGIN;
4407
4408	if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
4409	    !symbol_conf.use_callchain) {
4410		symbol_conf.use_callchain = true;
4411		if (callchain_register_param(&callchain_param) < 0) {
4412			symbol_conf.use_callchain = false;
4413			pt->synth_opts.callchain = false;
4414			pt->synth_opts.add_callchain = false;
4415		}
4416	}
4417
4418	if (pt->synth_opts.add_callchain) {
4419		err = intel_pt_callchain_init(pt);
4420		if (err)
4421			goto err_delete_thread;
4422	}
4423
4424	if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
4425		pt->br_stack_sz = pt->synth_opts.last_branch_sz;
4426		pt->br_stack_sz_plus = pt->br_stack_sz;
4427	}
4428
4429	if (pt->synth_opts.add_last_branch) {
4430		err = intel_pt_br_stack_init(pt);
4431		if (err)
4432			goto err_delete_thread;
4433		/*
4434		 * Additional branch stack size to cater for tracing from the
4435		 * actual sample ip to where the sample time is recorded.
4436		 * Measured at about 200 branches, but generously set to 1024.
4437		 * If kernel space is not being traced, then add just 1 for the
4438		 * branch to kernel space.
4439		 */
4440		if (intel_pt_tracing_kernel(pt))
4441			pt->br_stack_sz_plus += 1024;
4442		else
4443			pt->br_stack_sz_plus += 1;
4444	}
4445
4446	pt->use_thread_stack = pt->synth_opts.callchain ||
4447			       pt->synth_opts.add_callchain ||
4448			       pt->synth_opts.thread_stack ||
4449			       pt->synth_opts.last_branch ||
4450			       pt->synth_opts.add_last_branch;
4451
4452	pt->callstack = pt->synth_opts.callchain ||
4453			pt->synth_opts.add_callchain ||
4454			pt->synth_opts.thread_stack;
4455
4456	err = intel_pt_synth_events(pt, session);
4457	if (err)
4458		goto err_delete_thread;
4459
4460	intel_pt_setup_pebs_events(pt);
4461
4462	if (perf_data__is_pipe(session->data)) {
4463		pr_warning("WARNING: Intel PT with pipe mode is not recommended.\n"
4464			   "         The output cannot relied upon.  In particular,\n"
4465			   "         timestamps and the order of events may be incorrect.\n");
4466	}
4467
4468	if (pt->sampling_mode || list_empty(&session->auxtrace_index))
4469		err = auxtrace_queue_data(session, true, true);
4470	else
4471		err = auxtrace_queues__process_index(&pt->queues, session);
4472	if (err)
4473		goto err_delete_thread;
4474
4475	if (pt->queues.populated)
4476		pt->data_queued = true;
4477
4478	if (pt->timeless_decoding)
4479		pr_debug2("Intel PT decoding without timestamps\n");
4480
4481	return 0;
4482
4483err_delete_thread:
4484	zfree(&pt->chain);
4485	thread__zput(pt->unknown_thread);
4486err_free_queues:
4487	intel_pt_log_disable();
4488	auxtrace_queues__free(&pt->queues);
4489	session->auxtrace = NULL;
4490err_free:
4491	addr_filters__exit(&pt->filts);
4492	zfree(&pt->filter);
4493	zfree(&pt->time_ranges);
4494	free(pt);
4495	return err;
4496}