Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * intel_pt.c: Intel Processor Trace support
   4 * Copyright (c) 2013-2015, Intel Corporation.
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <inttypes.h>
   8#include <stdio.h>
   9#include <stdbool.h>
  10#include <errno.h>
  11#include <linux/kernel.h>
  12#include <linux/string.h>
  13#include <linux/types.h>
  14#include <linux/zalloc.h>
  15
 
  16#include "session.h"
  17#include "machine.h"
  18#include "memswap.h"
  19#include "sort.h"
  20#include "tool.h"
  21#include "event.h"
  22#include "evlist.h"
  23#include "evsel.h"
  24#include "map.h"
  25#include "color.h"
 
  26#include "thread.h"
  27#include "thread-stack.h"
  28#include "symbol.h"
  29#include "callchain.h"
  30#include "dso.h"
  31#include "debug.h"
  32#include "auxtrace.h"
  33#include "tsc.h"
  34#include "intel-pt.h"
  35#include "config.h"
  36#include "util/synthetic-events.h"
  37#include "time-utils.h"
  38
  39#include "../arch/x86/include/uapi/asm/perf_regs.h"
  40
  41#include "intel-pt-decoder/intel-pt-log.h"
  42#include "intel-pt-decoder/intel-pt-decoder.h"
  43#include "intel-pt-decoder/intel-pt-insn-decoder.h"
  44#include "intel-pt-decoder/intel-pt-pkt-decoder.h"
  45
  46#define MAX_TIMESTAMP (~0ULL)
  47
  48struct range {
  49	u64 start;
  50	u64 end;
  51};
  52
  53struct intel_pt {
  54	struct auxtrace auxtrace;
  55	struct auxtrace_queues queues;
  56	struct auxtrace_heap heap;
  57	u32 auxtrace_type;
  58	struct perf_session *session;
  59	struct machine *machine;
  60	struct evsel *switch_evsel;
  61	struct thread *unknown_thread;
  62	bool timeless_decoding;
  63	bool sampling_mode;
  64	bool snapshot_mode;
  65	bool per_cpu_mmaps;
  66	bool have_tsc;
  67	bool data_queued;
  68	bool est_tsc;
  69	bool sync_switch;
  70	bool mispred_all;
  71	int have_sched_switch;
  72	u32 pmu_type;
  73	u64 kernel_start;
  74	u64 switch_ip;
  75	u64 ptss_ip;
  76
  77	struct perf_tsc_conversion tc;
  78	bool cap_user_time_zero;
  79
  80	struct itrace_synth_opts synth_opts;
  81
  82	bool sample_instructions;
  83	u64 instructions_sample_type;
 
  84	u64 instructions_id;
  85
  86	bool sample_branches;
  87	u32 branches_filter;
  88	u64 branches_sample_type;
  89	u64 branches_id;
  90
  91	bool sample_transactions;
  92	u64 transactions_sample_type;
  93	u64 transactions_id;
  94
  95	bool sample_ptwrites;
  96	u64 ptwrites_sample_type;
  97	u64 ptwrites_id;
  98
  99	bool sample_pwr_events;
 100	u64 pwr_events_sample_type;
 101	u64 mwait_id;
 102	u64 pwre_id;
 103	u64 exstop_id;
 104	u64 pwrx_id;
 105	u64 cbr_id;
 106
 107	bool sample_pebs;
 108	struct evsel *pebs_evsel;
 109
 110	u64 tsc_bit;
 111	u64 mtc_bit;
 112	u64 mtc_freq_bits;
 113	u32 tsc_ctc_ratio_n;
 114	u32 tsc_ctc_ratio_d;
 115	u64 cyc_bit;
 116	u64 noretcomp_bit;
 117	unsigned max_non_turbo_ratio;
 118	unsigned cbr2khz;
 119
 120	unsigned long num_events;
 121
 122	char *filter;
 123	struct addr_filters filts;
 124
 125	struct range *time_ranges;
 126	unsigned int range_cnt;
 127};
 128
 129enum switch_state {
 130	INTEL_PT_SS_NOT_TRACING,
 131	INTEL_PT_SS_UNKNOWN,
 132	INTEL_PT_SS_TRACING,
 133	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
 134	INTEL_PT_SS_EXPECTING_SWITCH_IP,
 135};
 136
 137struct intel_pt_queue {
 138	struct intel_pt *pt;
 139	unsigned int queue_nr;
 140	struct auxtrace_buffer *buffer;
 141	struct auxtrace_buffer *old_buffer;
 142	void *decoder;
 143	const struct intel_pt_state *state;
 144	struct ip_callchain *chain;
 145	struct branch_stack *last_branch;
 146	struct branch_stack *last_branch_rb;
 147	size_t last_branch_pos;
 148	union perf_event *event_buf;
 149	bool on_heap;
 150	bool stop;
 151	bool step_through_buffers;
 152	bool use_buffer_pid_tid;
 153	bool sync_switch;
 154	pid_t pid, tid;
 155	int cpu;
 156	int switch_state;
 157	pid_t next_tid;
 158	struct thread *thread;
 159	bool exclude_kernel;
 160	bool have_sample;
 161	u64 time;
 162	u64 timestamp;
 163	u64 sel_timestamp;
 164	bool sel_start;
 165	unsigned int sel_idx;
 166	u32 flags;
 167	u16 insn_len;
 168	u64 last_insn_cnt;
 169	u64 ipc_insn_cnt;
 170	u64 ipc_cyc_cnt;
 171	u64 last_in_insn_cnt;
 172	u64 last_in_cyc_cnt;
 173	u64 last_br_insn_cnt;
 174	u64 last_br_cyc_cnt;
 175	unsigned int cbr_seen;
 176	char insn[INTEL_PT_INSN_BUF_SZ];
 177};
 178
 179static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
 180			  unsigned char *buf, size_t len)
 181{
 182	struct intel_pt_pkt packet;
 183	size_t pos = 0;
 184	int ret, pkt_len, i;
 185	char desc[INTEL_PT_PKT_DESC_MAX];
 186	const char *color = PERF_COLOR_BLUE;
 187	enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
 188
 189	color_fprintf(stdout, color,
 190		      ". ... Intel Processor Trace data: size %zu bytes\n",
 191		      len);
 192
 193	while (len) {
 194		ret = intel_pt_get_packet(buf, len, &packet, &ctx);
 195		if (ret > 0)
 196			pkt_len = ret;
 197		else
 198			pkt_len = 1;
 199		printf(".");
 200		color_fprintf(stdout, color, "  %08x: ", pos);
 201		for (i = 0; i < pkt_len; i++)
 202			color_fprintf(stdout, color, " %02x", buf[i]);
 203		for (; i < 16; i++)
 204			color_fprintf(stdout, color, "   ");
 205		if (ret > 0) {
 206			ret = intel_pt_pkt_desc(&packet, desc,
 207						INTEL_PT_PKT_DESC_MAX);
 208			if (ret > 0)
 209				color_fprintf(stdout, color, " %s\n", desc);
 210		} else {
 211			color_fprintf(stdout, color, " Bad packet!\n");
 212		}
 213		pos += pkt_len;
 214		buf += pkt_len;
 215		len -= pkt_len;
 216	}
 217}
 218
 219static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
 220				size_t len)
 221{
 222	printf(".\n");
 223	intel_pt_dump(pt, buf, len);
 224}
 225
 226static void intel_pt_log_event(union perf_event *event)
 227{
 228	FILE *f = intel_pt_log_fp();
 229
 230	if (!intel_pt_enable_logging || !f)
 231		return;
 232
 233	perf_event__fprintf(event, f);
 234}
 235
 236static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
 237				   struct auxtrace_buffer *b)
 238{
 239	bool consecutive = false;
 240	void *start;
 241
 242	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
 243				      pt->have_tsc, &consecutive);
 244	if (!start)
 245		return -EINVAL;
 246	b->use_size = b->data + b->size - start;
 247	b->use_data = start;
 248	if (b->use_size && consecutive)
 249		b->consecutive = true;
 250	return 0;
 251}
 252
 253static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
 254			       struct auxtrace_buffer *buffer,
 255			       struct auxtrace_buffer *old_buffer,
 256			       struct intel_pt_buffer *b)
 257{
 258	bool might_overlap;
 259
 260	if (!buffer->data) {
 261		int fd = perf_data__fd(ptq->pt->session->data);
 262
 263		buffer->data = auxtrace_buffer__get_data(buffer, fd);
 264		if (!buffer->data)
 265			return -ENOMEM;
 266	}
 267
 268	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
 269	if (might_overlap && !buffer->consecutive && old_buffer &&
 270	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
 271		return -ENOMEM;
 272
 273	if (buffer->use_data) {
 274		b->len = buffer->use_size;
 275		b->buf = buffer->use_data;
 276	} else {
 277		b->len = buffer->size;
 278		b->buf = buffer->data;
 279	}
 280	b->ref_timestamp = buffer->reference;
 281
 282	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
 283		b->consecutive = false;
 284		b->trace_nr = buffer->buffer_nr + 1;
 285	} else {
 286		b->consecutive = true;
 287	}
 288
 289	return 0;
 290}
 291
 292/* Do not drop buffers with references - refer intel_pt_get_trace() */
 293static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
 294					   struct auxtrace_buffer *buffer)
 295{
 296	if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
 297		return;
 298
 299	auxtrace_buffer__drop_data(buffer);
 300}
 301
 302/* Must be serialized with respect to intel_pt_get_trace() */
 303static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
 304			      void *cb_data)
 305{
 306	struct intel_pt_queue *ptq = data;
 307	struct auxtrace_buffer *buffer = ptq->buffer;
 308	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
 309	struct auxtrace_queue *queue;
 310	int err = 0;
 311
 312	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
 313
 314	while (1) {
 315		struct intel_pt_buffer b = { .len = 0 };
 316
 317		buffer = auxtrace_buffer__next(queue, buffer);
 318		if (!buffer)
 319			break;
 320
 321		err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
 322		if (err)
 323			break;
 324
 325		if (b.len) {
 326			intel_pt_lookahead_drop_buffer(ptq, old_buffer);
 327			old_buffer = buffer;
 328		} else {
 329			intel_pt_lookahead_drop_buffer(ptq, buffer);
 330			continue;
 331		}
 332
 333		err = cb(&b, cb_data);
 334		if (err)
 335			break;
 
 
 
 
 
 336	}
 337
 338	if (buffer != old_buffer)
 339		intel_pt_lookahead_drop_buffer(ptq, buffer);
 340	intel_pt_lookahead_drop_buffer(ptq, old_buffer);
 341
 342	return err;
 343}
 344
 345/*
 346 * This function assumes data is processed sequentially only.
 347 * Must be serialized with respect to intel_pt_lookahead()
 348 */
 349static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
 350{
 351	struct intel_pt_queue *ptq = data;
 352	struct auxtrace_buffer *buffer = ptq->buffer;
 353	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
 354	struct auxtrace_queue *queue;
 355	int err;
 356
 357	if (ptq->stop) {
 358		b->len = 0;
 359		return 0;
 360	}
 361
 362	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
 363
 364	buffer = auxtrace_buffer__next(queue, buffer);
 365	if (!buffer) {
 366		if (old_buffer)
 367			auxtrace_buffer__drop_data(old_buffer);
 368		b->len = 0;
 369		return 0;
 370	}
 371
 372	ptq->buffer = buffer;
 373
 374	err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
 375	if (err)
 376		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377
 378	if (ptq->step_through_buffers)
 379		ptq->stop = true;
 380
 381	if (b->len) {
 382		if (old_buffer)
 383			auxtrace_buffer__drop_data(old_buffer);
 384		ptq->old_buffer = buffer;
 385	} else {
 386		auxtrace_buffer__drop_data(buffer);
 387		return intel_pt_get_trace(b, data);
 388	}
 389
 390	return 0;
 391}
 392
 393struct intel_pt_cache_entry {
 394	struct auxtrace_cache_entry	entry;
 395	u64				insn_cnt;
 396	u64				byte_cnt;
 397	enum intel_pt_insn_op		op;
 398	enum intel_pt_insn_branch	branch;
 399	int				length;
 400	int32_t				rel;
 401	char				insn[INTEL_PT_INSN_BUF_SZ];
 402};
 403
 404static int intel_pt_config_div(const char *var, const char *value, void *data)
 405{
 406	int *d = data;
 407	long val;
 408
 409	if (!strcmp(var, "intel-pt.cache-divisor")) {
 410		val = strtol(value, NULL, 0);
 411		if (val > 0 && val <= INT_MAX)
 412			*d = val;
 413	}
 414
 415	return 0;
 416}
 417
 418static int intel_pt_cache_divisor(void)
 419{
 420	static int d;
 421
 422	if (d)
 423		return d;
 424
 425	perf_config(intel_pt_config_div, &d);
 426
 427	if (!d)
 428		d = 64;
 429
 430	return d;
 431}
 432
 433static unsigned int intel_pt_cache_size(struct dso *dso,
 434					struct machine *machine)
 435{
 436	off_t size;
 437
 438	size = dso__data_size(dso, machine);
 439	size /= intel_pt_cache_divisor();
 440	if (size < 1000)
 441		return 10;
 442	if (size > (1 << 21))
 443		return 21;
 444	return 32 - __builtin_clz(size);
 445}
 446
 447static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
 448					     struct machine *machine)
 449{
 450	struct auxtrace_cache *c;
 451	unsigned int bits;
 452
 453	if (dso->auxtrace_cache)
 454		return dso->auxtrace_cache;
 455
 456	bits = intel_pt_cache_size(dso, machine);
 457
 458	/* Ignoring cache creation failure */
 459	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
 460
 461	dso->auxtrace_cache = c;
 462
 463	return c;
 464}
 465
 466static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
 467			      u64 offset, u64 insn_cnt, u64 byte_cnt,
 468			      struct intel_pt_insn *intel_pt_insn)
 469{
 470	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
 471	struct intel_pt_cache_entry *e;
 472	int err;
 473
 474	if (!c)
 475		return -ENOMEM;
 476
 477	e = auxtrace_cache__alloc_entry(c);
 478	if (!e)
 479		return -ENOMEM;
 480
 481	e->insn_cnt = insn_cnt;
 482	e->byte_cnt = byte_cnt;
 483	e->op = intel_pt_insn->op;
 484	e->branch = intel_pt_insn->branch;
 485	e->length = intel_pt_insn->length;
 486	e->rel = intel_pt_insn->rel;
 487	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
 488
 489	err = auxtrace_cache__add(c, offset, &e->entry);
 490	if (err)
 491		auxtrace_cache__free_entry(c, e);
 492
 493	return err;
 494}
 495
 496static struct intel_pt_cache_entry *
 497intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
 498{
 499	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
 500
 501	if (!c)
 502		return NULL;
 503
 504	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
 505}
 506
 507static inline u8 intel_pt_cpumode(struct intel_pt *pt, uint64_t ip)
 508{
 509	return ip >= pt->kernel_start ?
 510	       PERF_RECORD_MISC_KERNEL :
 511	       PERF_RECORD_MISC_USER;
 512}
 513
 514static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
 515				   uint64_t *insn_cnt_ptr, uint64_t *ip,
 516				   uint64_t to_ip, uint64_t max_insn_cnt,
 517				   void *data)
 518{
 519	struct intel_pt_queue *ptq = data;
 520	struct machine *machine = ptq->pt->machine;
 521	struct thread *thread;
 522	struct addr_location al;
 523	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
 
 524	ssize_t len;
 525	int x86_64;
 526	u8 cpumode;
 527	u64 offset, start_offset, start_ip;
 528	u64 insn_cnt = 0;
 529	bool one_map = true;
 530
 531	intel_pt_insn->length = 0;
 532
 533	if (to_ip && *ip == to_ip)
 534		goto out_no_cache;
 535
 536	cpumode = intel_pt_cpumode(ptq->pt, *ip);
 
 
 
 
 
 537
 538	thread = ptq->thread;
 539	if (!thread) {
 540		if (cpumode != PERF_RECORD_MISC_KERNEL)
 541			return -EINVAL;
 542		thread = ptq->pt->unknown_thread;
 543	}
 544
 545	while (1) {
 546		if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
 
 547			return -EINVAL;
 548
 549		if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
 550		    dso__data_status_seen(al.map->dso,
 551					  DSO_DATA_STATUS_SEEN_ITRACE))
 552			return -ENOENT;
 553
 554		offset = al.map->map_ip(al.map, *ip);
 555
 556		if (!to_ip && one_map) {
 557			struct intel_pt_cache_entry *e;
 558
 559			e = intel_pt_cache_lookup(al.map->dso, machine, offset);
 560			if (e &&
 561			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
 562				*insn_cnt_ptr = e->insn_cnt;
 563				*ip += e->byte_cnt;
 564				intel_pt_insn->op = e->op;
 565				intel_pt_insn->branch = e->branch;
 566				intel_pt_insn->length = e->length;
 567				intel_pt_insn->rel = e->rel;
 568				memcpy(intel_pt_insn->buf, e->insn,
 569				       INTEL_PT_INSN_BUF_SZ);
 570				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
 571				return 0;
 572			}
 573		}
 574
 575		start_offset = offset;
 576		start_ip = *ip;
 577
 578		/* Load maps to ensure dso->is_64_bit has been updated */
 579		map__load(al.map);
 580
 581		x86_64 = al.map->dso->is_64_bit;
 582
 583		while (1) {
 584			len = dso__data_read_offset(al.map->dso, machine,
 585						    offset, buf,
 586						    INTEL_PT_INSN_BUF_SZ);
 587			if (len <= 0)
 588				return -EINVAL;
 589
 590			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
 591				return -EINVAL;
 592
 593			intel_pt_log_insn(intel_pt_insn, *ip);
 594
 595			insn_cnt += 1;
 596
 597			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
 598				goto out;
 599
 600			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
 601				goto out_no_cache;
 602
 603			*ip += intel_pt_insn->length;
 604
 605			if (to_ip && *ip == to_ip)
 606				goto out_no_cache;
 607
 608			if (*ip >= al.map->end)
 609				break;
 610
 611			offset += intel_pt_insn->length;
 612		}
 613		one_map = false;
 614	}
 615out:
 616	*insn_cnt_ptr = insn_cnt;
 617
 618	if (!one_map)
 619		goto out_no_cache;
 620
 621	/*
 622	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
 623	 * entries.
 624	 */
 625	if (to_ip) {
 626		struct intel_pt_cache_entry *e;
 627
 628		e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
 629		if (e)
 630			return 0;
 631	}
 632
 633	/* Ignore cache errors */
 634	intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
 635			   *ip - start_ip, intel_pt_insn);
 636
 637	return 0;
 638
 639out_no_cache:
 640	*insn_cnt_ptr = insn_cnt;
 641	return 0;
 642}
 643
 644static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
 645				  uint64_t offset, const char *filename)
 646{
 647	struct addr_filter *filt;
 648	bool have_filter   = false;
 649	bool hit_tracestop = false;
 650	bool hit_filter    = false;
 651
 652	list_for_each_entry(filt, &pt->filts.head, list) {
 653		if (filt->start)
 654			have_filter = true;
 655
 656		if ((filename && !filt->filename) ||
 657		    (!filename && filt->filename) ||
 658		    (filename && strcmp(filename, filt->filename)))
 659			continue;
 660
 661		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
 662			continue;
 663
 664		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
 665			     ip, offset, filename ? filename : "[kernel]",
 666			     filt->start ? "filter" : "stop",
 667			     filt->addr, filt->size);
 668
 669		if (filt->start)
 670			hit_filter = true;
 671		else
 672			hit_tracestop = true;
 673	}
 674
 675	if (!hit_tracestop && !hit_filter)
 676		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
 677			     ip, offset, filename ? filename : "[kernel]");
 678
 679	return hit_tracestop || (have_filter && !hit_filter);
 680}
 681
 682static int __intel_pt_pgd_ip(uint64_t ip, void *data)
 683{
 684	struct intel_pt_queue *ptq = data;
 685	struct thread *thread;
 686	struct addr_location al;
 687	u8 cpumode;
 688	u64 offset;
 689
 690	if (ip >= ptq->pt->kernel_start)
 691		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
 692
 693	cpumode = PERF_RECORD_MISC_USER;
 694
 695	thread = ptq->thread;
 696	if (!thread)
 697		return -EINVAL;
 698
 699	if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
 700		return -EINVAL;
 701
 702	offset = al.map->map_ip(al.map, ip);
 703
 704	return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
 705				     al.map->dso->long_name);
 706}
 707
 708static bool intel_pt_pgd_ip(uint64_t ip, void *data)
 709{
 710	return __intel_pt_pgd_ip(ip, data) > 0;
 711}
 712
 713static bool intel_pt_get_config(struct intel_pt *pt,
 714				struct perf_event_attr *attr, u64 *config)
 715{
 716	if (attr->type == pt->pmu_type) {
 717		if (config)
 718			*config = attr->config;
 719		return true;
 720	}
 721
 722	return false;
 723}
 724
 725static bool intel_pt_exclude_kernel(struct intel_pt *pt)
 726{
 727	struct evsel *evsel;
 728
 729	evlist__for_each_entry(pt->session->evlist, evsel) {
 730		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
 731		    !evsel->core.attr.exclude_kernel)
 732			return false;
 733	}
 734	return true;
 735}
 736
 737static bool intel_pt_return_compression(struct intel_pt *pt)
 738{
 739	struct evsel *evsel;
 740	u64 config;
 741
 742	if (!pt->noretcomp_bit)
 743		return true;
 744
 745	evlist__for_each_entry(pt->session->evlist, evsel) {
 746		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
 747		    (config & pt->noretcomp_bit))
 748			return false;
 749	}
 750	return true;
 751}
 752
 753static bool intel_pt_branch_enable(struct intel_pt *pt)
 754{
 755	struct evsel *evsel;
 756	u64 config;
 757
 758	evlist__for_each_entry(pt->session->evlist, evsel) {
 759		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
 760		    (config & 1) && !(config & 0x2000))
 761			return false;
 762	}
 763	return true;
 764}
 765
 766static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
 767{
 768	struct evsel *evsel;
 769	unsigned int shift;
 770	u64 config;
 771
 772	if (!pt->mtc_freq_bits)
 773		return 0;
 774
 775	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
 776		config >>= 1;
 777
 778	evlist__for_each_entry(pt->session->evlist, evsel) {
 779		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
 780			return (config & pt->mtc_freq_bits) >> shift;
 781	}
 782	return 0;
 783}
 784
 785static bool intel_pt_timeless_decoding(struct intel_pt *pt)
 786{
 787	struct evsel *evsel;
 788	bool timeless_decoding = true;
 789	u64 config;
 790
 791	if (!pt->tsc_bit || !pt->cap_user_time_zero)
 792		return true;
 793
 794	evlist__for_each_entry(pt->session->evlist, evsel) {
 795		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
 796			return true;
 797		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
 798			if (config & pt->tsc_bit)
 799				timeless_decoding = false;
 800			else
 801				return true;
 802		}
 803	}
 804	return timeless_decoding;
 805}
 806
 807static bool intel_pt_tracing_kernel(struct intel_pt *pt)
 808{
 809	struct evsel *evsel;
 810
 811	evlist__for_each_entry(pt->session->evlist, evsel) {
 812		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
 813		    !evsel->core.attr.exclude_kernel)
 814			return true;
 815	}
 816	return false;
 817}
 818
 819static bool intel_pt_have_tsc(struct intel_pt *pt)
 820{
 821	struct evsel *evsel;
 822	bool have_tsc = false;
 823	u64 config;
 824
 825	if (!pt->tsc_bit)
 826		return false;
 827
 828	evlist__for_each_entry(pt->session->evlist, evsel) {
 829		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
 830			if (config & pt->tsc_bit)
 831				have_tsc = true;
 832			else
 833				return false;
 834		}
 835	}
 836	return have_tsc;
 837}
 838
 839static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
 840{
 841	u64 quot, rem;
 842
 843	quot = ns / pt->tc.time_mult;
 844	rem  = ns % pt->tc.time_mult;
 845	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
 846		pt->tc.time_mult;
 847}
 848
 849static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
 850						   unsigned int queue_nr)
 851{
 852	struct intel_pt_params params = { .get_trace = 0, };
 853	struct perf_env *env = pt->machine->env;
 854	struct intel_pt_queue *ptq;
 855
 856	ptq = zalloc(sizeof(struct intel_pt_queue));
 857	if (!ptq)
 858		return NULL;
 859
 860	if (pt->synth_opts.callchain) {
 861		size_t sz = sizeof(struct ip_callchain);
 862
 863		/* Add 1 to callchain_sz for callchain context */
 864		sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
 865		ptq->chain = zalloc(sz);
 866		if (!ptq->chain)
 867			goto out_free;
 868	}
 869
 870	if (pt->synth_opts.last_branch) {
 871		size_t sz = sizeof(struct branch_stack);
 872
 873		sz += pt->synth_opts.last_branch_sz *
 874		      sizeof(struct branch_entry);
 875		ptq->last_branch = zalloc(sz);
 876		if (!ptq->last_branch)
 877			goto out_free;
 878		ptq->last_branch_rb = zalloc(sz);
 879		if (!ptq->last_branch_rb)
 880			goto out_free;
 881	}
 882
 883	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
 884	if (!ptq->event_buf)
 885		goto out_free;
 886
 887	ptq->pt = pt;
 888	ptq->queue_nr = queue_nr;
 889	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
 890	ptq->pid = -1;
 891	ptq->tid = -1;
 892	ptq->cpu = -1;
 893	ptq->next_tid = -1;
 894
 895	params.get_trace = intel_pt_get_trace;
 896	params.walk_insn = intel_pt_walk_next_insn;
 897	params.lookahead = intel_pt_lookahead;
 898	params.data = ptq;
 899	params.return_compression = intel_pt_return_compression(pt);
 900	params.branch_enable = intel_pt_branch_enable(pt);
 901	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
 902	params.mtc_period = intel_pt_mtc_period(pt);
 903	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
 904	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
 905
 906	if (pt->filts.cnt > 0)
 907		params.pgd_ip = intel_pt_pgd_ip;
 908
 909	if (pt->synth_opts.instructions) {
 910		if (pt->synth_opts.period) {
 911			switch (pt->synth_opts.period_type) {
 912			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
 913				params.period_type =
 914						INTEL_PT_PERIOD_INSTRUCTIONS;
 915				params.period = pt->synth_opts.period;
 916				break;
 917			case PERF_ITRACE_PERIOD_TICKS:
 918				params.period_type = INTEL_PT_PERIOD_TICKS;
 919				params.period = pt->synth_opts.period;
 920				break;
 921			case PERF_ITRACE_PERIOD_NANOSECS:
 922				params.period_type = INTEL_PT_PERIOD_TICKS;
 923				params.period = intel_pt_ns_to_ticks(pt,
 924							pt->synth_opts.period);
 925				break;
 926			default:
 927				break;
 928			}
 929		}
 930
 931		if (!params.period) {
 932			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
 933			params.period = 1;
 934		}
 935	}
 936
 937	if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
 938		params.flags |= INTEL_PT_FUP_WITH_NLIP;
 939
 940	ptq->decoder = intel_pt_decoder_new(&params);
 941	if (!ptq->decoder)
 942		goto out_free;
 943
 944	return ptq;
 945
 946out_free:
 947	zfree(&ptq->event_buf);
 948	zfree(&ptq->last_branch);
 949	zfree(&ptq->last_branch_rb);
 950	zfree(&ptq->chain);
 951	free(ptq);
 952	return NULL;
 953}
 954
 955static void intel_pt_free_queue(void *priv)
 956{
 957	struct intel_pt_queue *ptq = priv;
 958
 959	if (!ptq)
 960		return;
 961	thread__zput(ptq->thread);
 962	intel_pt_decoder_free(ptq->decoder);
 963	zfree(&ptq->event_buf);
 964	zfree(&ptq->last_branch);
 965	zfree(&ptq->last_branch_rb);
 966	zfree(&ptq->chain);
 967	free(ptq);
 968}
 969
 970static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
 971				     struct auxtrace_queue *queue)
 972{
 973	struct intel_pt_queue *ptq = queue->priv;
 974
 975	if (queue->tid == -1 || pt->have_sched_switch) {
 976		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
 977		thread__zput(ptq->thread);
 978	}
 979
 980	if (!ptq->thread && ptq->tid != -1)
 981		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
 982
 983	if (ptq->thread) {
 984		ptq->pid = ptq->thread->pid_;
 985		if (queue->cpu == -1)
 986			ptq->cpu = ptq->thread->cpu;
 987	}
 988}
 989
 990static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
 991{
 992	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
 993		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
 994	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
 995		if (ptq->state->to_ip)
 996			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
 997				     PERF_IP_FLAG_ASYNC |
 998				     PERF_IP_FLAG_INTERRUPT;
 999		else
1000			ptq->flags = PERF_IP_FLAG_BRANCH |
1001				     PERF_IP_FLAG_TRACE_END;
1002		ptq->insn_len = 0;
1003	} else {
1004		if (ptq->state->from_ip)
1005			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1006		else
1007			ptq->flags = PERF_IP_FLAG_BRANCH |
1008				     PERF_IP_FLAG_TRACE_BEGIN;
1009		if (ptq->state->flags & INTEL_PT_IN_TX)
1010			ptq->flags |= PERF_IP_FLAG_IN_TX;
1011		ptq->insn_len = ptq->state->insn_len;
1012		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1013	}
1014
1015	if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1016		ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1017	if (ptq->state->type & INTEL_PT_TRACE_END)
1018		ptq->flags |= PERF_IP_FLAG_TRACE_END;
1019}
1020
1021static void intel_pt_setup_time_range(struct intel_pt *pt,
1022				      struct intel_pt_queue *ptq)
1023{
1024	if (!pt->range_cnt)
1025		return;
1026
1027	ptq->sel_timestamp = pt->time_ranges[0].start;
1028	ptq->sel_idx = 0;
1029
1030	if (ptq->sel_timestamp) {
1031		ptq->sel_start = true;
1032	} else {
1033		ptq->sel_timestamp = pt->time_ranges[0].end;
1034		ptq->sel_start = false;
1035	}
1036}
1037
1038static int intel_pt_setup_queue(struct intel_pt *pt,
1039				struct auxtrace_queue *queue,
1040				unsigned int queue_nr)
1041{
1042	struct intel_pt_queue *ptq = queue->priv;
1043
1044	if (list_empty(&queue->head))
1045		return 0;
1046
1047	if (!ptq) {
1048		ptq = intel_pt_alloc_queue(pt, queue_nr);
1049		if (!ptq)
1050			return -ENOMEM;
1051		queue->priv = ptq;
1052
1053		if (queue->cpu != -1)
1054			ptq->cpu = queue->cpu;
1055		ptq->tid = queue->tid;
1056
1057		ptq->cbr_seen = UINT_MAX;
1058
1059		if (pt->sampling_mode && !pt->snapshot_mode &&
1060		    pt->timeless_decoding)
1061			ptq->step_through_buffers = true;
1062
1063		ptq->sync_switch = pt->sync_switch;
1064
1065		intel_pt_setup_time_range(pt, ptq);
1066	}
1067
1068	if (!ptq->on_heap &&
1069	    (!ptq->sync_switch ||
1070	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1071		const struct intel_pt_state *state;
1072		int ret;
1073
1074		if (pt->timeless_decoding)
1075			return 0;
1076
1077		intel_pt_log("queue %u getting timestamp\n", queue_nr);
1078		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1079			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1080
1081		if (ptq->sel_start && ptq->sel_timestamp) {
1082			ret = intel_pt_fast_forward(ptq->decoder,
1083						    ptq->sel_timestamp);
1084			if (ret)
1085				return ret;
1086		}
1087
1088		while (1) {
1089			state = intel_pt_decode(ptq->decoder);
1090			if (state->err) {
1091				if (state->err == INTEL_PT_ERR_NODATA) {
1092					intel_pt_log("queue %u has no timestamp\n",
1093						     queue_nr);
1094					return 0;
1095				}
1096				continue;
1097			}
1098			if (state->timestamp)
1099				break;
1100		}
1101
1102		ptq->timestamp = state->timestamp;
1103		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1104			     queue_nr, ptq->timestamp);
1105		ptq->state = state;
1106		ptq->have_sample = true;
1107		if (ptq->sel_start && ptq->sel_timestamp &&
1108		    ptq->timestamp < ptq->sel_timestamp)
1109			ptq->have_sample = false;
1110		intel_pt_sample_flags(ptq);
1111		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1112		if (ret)
1113			return ret;
1114		ptq->on_heap = true;
1115	}
1116
1117	return 0;
1118}
1119
1120static int intel_pt_setup_queues(struct intel_pt *pt)
1121{
1122	unsigned int i;
1123	int ret;
1124
1125	for (i = 0; i < pt->queues.nr_queues; i++) {
1126		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1127		if (ret)
1128			return ret;
1129	}
1130	return 0;
1131}
1132
1133static inline void intel_pt_copy_last_branch_rb(struct intel_pt_queue *ptq)
1134{
1135	struct branch_stack *bs_src = ptq->last_branch_rb;
1136	struct branch_stack *bs_dst = ptq->last_branch;
1137	size_t nr = 0;
1138
1139	bs_dst->nr = bs_src->nr;
1140
1141	if (!bs_src->nr)
1142		return;
1143
1144	nr = ptq->pt->synth_opts.last_branch_sz - ptq->last_branch_pos;
1145	memcpy(&bs_dst->entries[0],
1146	       &bs_src->entries[ptq->last_branch_pos],
1147	       sizeof(struct branch_entry) * nr);
1148
1149	if (bs_src->nr >= ptq->pt->synth_opts.last_branch_sz) {
1150		memcpy(&bs_dst->entries[nr],
1151		       &bs_src->entries[0],
1152		       sizeof(struct branch_entry) * ptq->last_branch_pos);
1153	}
1154}
1155
1156static inline void intel_pt_reset_last_branch_rb(struct intel_pt_queue *ptq)
1157{
1158	ptq->last_branch_pos = 0;
1159	ptq->last_branch_rb->nr = 0;
1160}
1161
1162static void intel_pt_update_last_branch_rb(struct intel_pt_queue *ptq)
1163{
1164	const struct intel_pt_state *state = ptq->state;
1165	struct branch_stack *bs = ptq->last_branch_rb;
1166	struct branch_entry *be;
1167
1168	if (!ptq->last_branch_pos)
1169		ptq->last_branch_pos = ptq->pt->synth_opts.last_branch_sz;
1170
1171	ptq->last_branch_pos -= 1;
1172
1173	be              = &bs->entries[ptq->last_branch_pos];
1174	be->from        = state->from_ip;
1175	be->to          = state->to_ip;
1176	be->flags.abort = !!(state->flags & INTEL_PT_ABORT_TX);
1177	be->flags.in_tx = !!(state->flags & INTEL_PT_IN_TX);
1178	/* No support for mispredict */
1179	be->flags.mispred = ptq->pt->mispred_all;
1180
1181	if (bs->nr < ptq->pt->synth_opts.last_branch_sz)
1182		bs->nr += 1;
1183}
1184
1185static inline bool intel_pt_skip_event(struct intel_pt *pt)
1186{
1187	return pt->synth_opts.initial_skip &&
1188	       pt->num_events++ < pt->synth_opts.initial_skip;
1189}
1190
1191/*
1192 * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1193 * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1194 * from this decoder state.
1195 */
1196static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1197{
1198	return pt->synth_opts.initial_skip &&
1199	       pt->num_events + 4 < pt->synth_opts.initial_skip;
1200}
1201
1202static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1203				   union perf_event *event,
1204				   struct perf_sample *sample)
1205{
1206	event->sample.header.type = PERF_RECORD_SAMPLE;
1207	event->sample.header.size = sizeof(struct perf_event_header);
1208
1209	sample->pid = ptq->pid;
1210	sample->tid = ptq->tid;
1211	sample->cpu = ptq->cpu;
1212	sample->insn_len = ptq->insn_len;
1213	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1214}
1215
1216static void intel_pt_prep_b_sample(struct intel_pt *pt,
1217				   struct intel_pt_queue *ptq,
1218				   union perf_event *event,
1219				   struct perf_sample *sample)
1220{
1221	intel_pt_prep_a_sample(ptq, event, sample);
1222
1223	if (!pt->timeless_decoding)
1224		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1225
1226	sample->ip = ptq->state->from_ip;
1227	sample->cpumode = intel_pt_cpumode(pt, sample->ip);
1228	sample->addr = ptq->state->to_ip;
1229	sample->period = 1;
1230	sample->flags = ptq->flags;
1231
1232	event->sample.header.misc = sample->cpumode;
1233}
1234
1235static int intel_pt_inject_event(union perf_event *event,
1236				 struct perf_sample *sample, u64 type)
 
1237{
1238	event->header.size = perf_event__sample_event_size(sample, type, 0);
1239	return perf_event__synthesize_sample(event, type, 0, sample);
1240}
1241
1242static inline int intel_pt_opt_inject(struct intel_pt *pt,
1243				      union perf_event *event,
1244				      struct perf_sample *sample, u64 type)
1245{
1246	if (!pt->synth_opts.inject)
1247		return 0;
1248
1249	return intel_pt_inject_event(event, sample, type);
1250}
1251
1252static int intel_pt_deliver_synth_b_event(struct intel_pt *pt,
1253					  union perf_event *event,
1254					  struct perf_sample *sample, u64 type)
1255{
1256	int ret;
1257
1258	ret = intel_pt_opt_inject(pt, event, sample, type);
1259	if (ret)
1260		return ret;
1261
1262	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1263	if (ret)
1264		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1265
1266	return ret;
1267}
1268
1269static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1270{
 
1271	struct intel_pt *pt = ptq->pt;
1272	union perf_event *event = ptq->event_buf;
1273	struct perf_sample sample = { .ip = 0, };
1274	struct dummy_branch_stack {
1275		u64			nr;
1276		struct branch_entry	entries;
1277	} dummy_bs;
1278
1279	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1280		return 0;
1281
1282	if (intel_pt_skip_event(pt))
1283		return 0;
 
1284
1285	intel_pt_prep_b_sample(pt, ptq, event, &sample);
 
1286
 
 
 
 
 
1287	sample.id = ptq->pt->branches_id;
1288	sample.stream_id = ptq->pt->branches_id;
 
 
 
 
1289
1290	/*
1291	 * perf report cannot handle events without a branch stack when using
1292	 * SORT_MODE__BRANCH so make a dummy one.
1293	 */
1294	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1295		dummy_bs = (struct dummy_branch_stack){
1296			.nr = 1,
1297			.entries = {
1298				.from = sample.ip,
1299				.to = sample.addr,
1300			},
1301		};
1302		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1303	}
1304
1305	sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1306	if (sample.cyc_cnt) {
1307		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1308		ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1309		ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1310	}
1311
1312	return intel_pt_deliver_synth_b_event(pt, event, &sample,
1313					      pt->branches_sample_type);
1314}
1315
1316static void intel_pt_prep_sample(struct intel_pt *pt,
1317				 struct intel_pt_queue *ptq,
1318				 union perf_event *event,
1319				 struct perf_sample *sample)
1320{
1321	intel_pt_prep_b_sample(pt, ptq, event, sample);
1322
1323	if (pt->synth_opts.callchain) {
1324		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1325				     pt->synth_opts.callchain_sz + 1,
1326				     sample->ip, pt->kernel_start);
1327		sample->callchain = ptq->chain;
1328	}
1329
1330	if (pt->synth_opts.last_branch) {
1331		intel_pt_copy_last_branch_rb(ptq);
1332		sample->branch_stack = ptq->last_branch;
1333	}
1334}
1335
1336static inline int intel_pt_deliver_synth_event(struct intel_pt *pt,
1337					       struct intel_pt_queue *ptq,
1338					       union perf_event *event,
1339					       struct perf_sample *sample,
1340					       u64 type)
1341{
1342	int ret;
1343
1344	ret = intel_pt_deliver_synth_b_event(pt, event, sample, type);
1345
1346	if (pt->synth_opts.last_branch)
1347		intel_pt_reset_last_branch_rb(ptq);
 
 
1348
1349	return ret;
1350}
1351
1352static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1353{
 
1354	struct intel_pt *pt = ptq->pt;
1355	union perf_event *event = ptq->event_buf;
1356	struct perf_sample sample = { .ip = 0, };
1357
1358	if (intel_pt_skip_event(pt))
1359		return 0;
 
1360
1361	intel_pt_prep_sample(pt, ptq, event, &sample);
 
1362
 
 
 
 
 
1363	sample.id = ptq->pt->instructions_id;
1364	sample.stream_id = ptq->pt->instructions_id;
1365	sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1366
1367	sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1368	if (sample.cyc_cnt) {
1369		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1370		ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1371		ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1372	}
1373
1374	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1375
1376	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1377					    pt->instructions_sample_type);
1378}
1379
1380static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1381{
1382	struct intel_pt *pt = ptq->pt;
1383	union perf_event *event = ptq->event_buf;
1384	struct perf_sample sample = { .ip = 0, };
1385
1386	if (intel_pt_skip_event(pt))
1387		return 0;
1388
1389	intel_pt_prep_sample(pt, ptq, event, &sample);
1390
1391	sample.id = ptq->pt->transactions_id;
1392	sample.stream_id = ptq->pt->transactions_id;
1393
1394	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1395					    pt->transactions_sample_type);
1396}
1397
1398static void intel_pt_prep_p_sample(struct intel_pt *pt,
1399				   struct intel_pt_queue *ptq,
1400				   union perf_event *event,
1401				   struct perf_sample *sample)
1402{
1403	intel_pt_prep_sample(pt, ptq, event, sample);
1404
1405	/*
1406	 * Zero IP is used to mean "trace start" but that is not the case for
1407	 * power or PTWRITE events with no IP, so clear the flags.
1408	 */
1409	if (!sample->ip)
1410		sample->flags = 0;
1411}
1412
1413static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1414{
1415	struct intel_pt *pt = ptq->pt;
1416	union perf_event *event = ptq->event_buf;
1417	struct perf_sample sample = { .ip = 0, };
1418	struct perf_synth_intel_ptwrite raw;
1419
1420	if (intel_pt_skip_event(pt))
1421		return 0;
1422
1423	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1424
1425	sample.id = ptq->pt->ptwrites_id;
1426	sample.stream_id = ptq->pt->ptwrites_id;
1427
1428	raw.flags = 0;
1429	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1430	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1431
1432	sample.raw_size = perf_synth__raw_size(raw);
1433	sample.raw_data = perf_synth__raw_data(&raw);
1434
1435	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1436					    pt->ptwrites_sample_type);
1437}
1438
1439static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1440{
1441	struct intel_pt *pt = ptq->pt;
1442	union perf_event *event = ptq->event_buf;
1443	struct perf_sample sample = { .ip = 0, };
1444	struct perf_synth_intel_cbr raw;
1445	u32 flags;
1446
1447	if (intel_pt_skip_cbr_event(pt))
1448		return 0;
1449
1450	ptq->cbr_seen = ptq->state->cbr;
1451
1452	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1453
1454	sample.id = ptq->pt->cbr_id;
1455	sample.stream_id = ptq->pt->cbr_id;
1456
1457	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1458	raw.flags = cpu_to_le32(flags);
1459	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1460	raw.reserved3 = 0;
1461
1462	sample.raw_size = perf_synth__raw_size(raw);
1463	sample.raw_data = perf_synth__raw_data(&raw);
1464
1465	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1466					    pt->pwr_events_sample_type);
1467}
1468
1469static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1470{
1471	struct intel_pt *pt = ptq->pt;
1472	union perf_event *event = ptq->event_buf;
1473	struct perf_sample sample = { .ip = 0, };
1474	struct perf_synth_intel_mwait raw;
1475
1476	if (intel_pt_skip_event(pt))
1477		return 0;
1478
1479	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1480
1481	sample.id = ptq->pt->mwait_id;
1482	sample.stream_id = ptq->pt->mwait_id;
1483
1484	raw.reserved = 0;
1485	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1486
1487	sample.raw_size = perf_synth__raw_size(raw);
1488	sample.raw_data = perf_synth__raw_data(&raw);
1489
1490	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1491					    pt->pwr_events_sample_type);
1492}
1493
1494static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1495{
1496	struct intel_pt *pt = ptq->pt;
1497	union perf_event *event = ptq->event_buf;
1498	struct perf_sample sample = { .ip = 0, };
1499	struct perf_synth_intel_pwre raw;
1500
1501	if (intel_pt_skip_event(pt))
1502		return 0;
1503
1504	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1505
1506	sample.id = ptq->pt->pwre_id;
1507	sample.stream_id = ptq->pt->pwre_id;
1508
1509	raw.reserved = 0;
1510	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1511
1512	sample.raw_size = perf_synth__raw_size(raw);
1513	sample.raw_data = perf_synth__raw_data(&raw);
1514
1515	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1516					    pt->pwr_events_sample_type);
1517}
1518
1519static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1520{
1521	struct intel_pt *pt = ptq->pt;
1522	union perf_event *event = ptq->event_buf;
1523	struct perf_sample sample = { .ip = 0, };
1524	struct perf_synth_intel_exstop raw;
1525
1526	if (intel_pt_skip_event(pt))
1527		return 0;
1528
1529	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1530
1531	sample.id = ptq->pt->exstop_id;
1532	sample.stream_id = ptq->pt->exstop_id;
1533
1534	raw.flags = 0;
1535	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1536
1537	sample.raw_size = perf_synth__raw_size(raw);
1538	sample.raw_data = perf_synth__raw_data(&raw);
1539
1540	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1541					    pt->pwr_events_sample_type);
1542}
1543
1544static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1545{
1546	struct intel_pt *pt = ptq->pt;
1547	union perf_event *event = ptq->event_buf;
1548	struct perf_sample sample = { .ip = 0, };
1549	struct perf_synth_intel_pwrx raw;
1550
1551	if (intel_pt_skip_event(pt))
1552		return 0;
1553
1554	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1555
1556	sample.id = ptq->pt->pwrx_id;
1557	sample.stream_id = ptq->pt->pwrx_id;
1558
1559	raw.reserved = 0;
1560	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1561
1562	sample.raw_size = perf_synth__raw_size(raw);
1563	sample.raw_data = perf_synth__raw_data(&raw);
1564
1565	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1566					    pt->pwr_events_sample_type);
1567}
1568
1569/*
1570 * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1571 * intel_pt_add_gp_regs().
1572 */
1573static const int pebs_gp_regs[] = {
1574	[PERF_REG_X86_FLAGS]	= 1,
1575	[PERF_REG_X86_IP]	= 2,
1576	[PERF_REG_X86_AX]	= 3,
1577	[PERF_REG_X86_CX]	= 4,
1578	[PERF_REG_X86_DX]	= 5,
1579	[PERF_REG_X86_BX]	= 6,
1580	[PERF_REG_X86_SP]	= 7,
1581	[PERF_REG_X86_BP]	= 8,
1582	[PERF_REG_X86_SI]	= 9,
1583	[PERF_REG_X86_DI]	= 10,
1584	[PERF_REG_X86_R8]	= 11,
1585	[PERF_REG_X86_R9]	= 12,
1586	[PERF_REG_X86_R10]	= 13,
1587	[PERF_REG_X86_R11]	= 14,
1588	[PERF_REG_X86_R12]	= 15,
1589	[PERF_REG_X86_R13]	= 16,
1590	[PERF_REG_X86_R14]	= 17,
1591	[PERF_REG_X86_R15]	= 18,
1592};
1593
1594static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1595				 const struct intel_pt_blk_items *items,
1596				 u64 regs_mask)
1597{
1598	const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1599	u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1600	u32 bit;
1601	int i;
1602
1603	for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1604		/* Get the PEBS gp_regs array index */
1605		int n = pebs_gp_regs[i] - 1;
1606
1607		if (n < 0)
1608			continue;
1609		/*
1610		 * Add only registers that were requested (i.e. 'regs_mask') and
1611		 * that were provided (i.e. 'mask'), and update the resulting
1612		 * mask (i.e. 'intr_regs->mask') accordingly.
1613		 */
1614		if (mask & 1 << n && regs_mask & bit) {
1615			intr_regs->mask |= bit;
1616			*pos++ = gp_regs[n];
1617		}
1618	}
1619
1620	return pos;
1621}
1622
1623#ifndef PERF_REG_X86_XMM0
1624#define PERF_REG_X86_XMM0 32
1625#endif
1626
1627static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1628			     const struct intel_pt_blk_items *items,
1629			     u64 regs_mask)
1630{
1631	u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1632	const u64 *xmm = items->xmm;
1633
1634	/*
1635	 * If there are any XMM registers, then there should be all of them.
1636	 * Nevertheless, follow the logic to add only registers that were
1637	 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1638	 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1639	 */
1640	intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1641
1642	for (; mask; mask >>= 1, xmm++) {
1643		if (mask & 1)
1644			*pos++ = *xmm;
1645	}
1646}
1647
1648#define LBR_INFO_MISPRED	(1ULL << 63)
1649#define LBR_INFO_IN_TX		(1ULL << 62)
1650#define LBR_INFO_ABORT		(1ULL << 61)
1651#define LBR_INFO_CYCLES		0xffff
1652
1653/* Refer kernel's intel_pmu_store_pebs_lbrs() */
1654static u64 intel_pt_lbr_flags(u64 info)
1655{
1656	union {
1657		struct branch_flags flags;
1658		u64 result;
1659	} u = {
1660		.flags = {
1661			.mispred	= !!(info & LBR_INFO_MISPRED),
1662			.predicted	= !(info & LBR_INFO_MISPRED),
1663			.in_tx		= !!(info & LBR_INFO_IN_TX),
1664			.abort		= !!(info & LBR_INFO_ABORT),
1665			.cycles		= info & LBR_INFO_CYCLES,
1666		}
1667	};
1668
1669	return u.result;
1670}
1671
1672static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1673			      const struct intel_pt_blk_items *items)
1674{
1675	u64 *to;
1676	int i;
1677
1678	br_stack->nr = 0;
 
 
 
1679
1680	to = &br_stack->entries[0].from;
 
1681
1682	for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1683		u32 mask = items->mask[i];
1684		const u64 *from = items->val[i];
1685
1686		for (; mask; mask >>= 3, from += 3) {
1687			if ((mask & 7) == 7) {
1688				*to++ = from[0];
1689				*to++ = from[1];
1690				*to++ = intel_pt_lbr_flags(from[2]);
1691				br_stack->nr += 1;
1692			}
1693		}
1694	}
1695}
1696
1697/* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1698#define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3)
1699
1700static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
1701{
1702	const struct intel_pt_blk_items *items = &ptq->state->items;
1703	struct perf_sample sample = { .ip = 0, };
1704	union perf_event *event = ptq->event_buf;
1705	struct intel_pt *pt = ptq->pt;
1706	struct evsel *evsel = pt->pebs_evsel;
1707	u64 sample_type = evsel->core.attr.sample_type;
1708	u64 id = evsel->core.id[0];
1709	u8 cpumode;
1710
1711	if (intel_pt_skip_event(pt))
1712		return 0;
1713
1714	intel_pt_prep_a_sample(ptq, event, &sample);
1715
1716	sample.id = id;
1717	sample.stream_id = id;
1718
1719	if (!evsel->core.attr.freq)
1720		sample.period = evsel->core.attr.sample_period;
1721
1722	/* No support for non-zero CS base */
1723	if (items->has_ip)
1724		sample.ip = items->ip;
1725	else if (items->has_rip)
1726		sample.ip = items->rip;
1727	else
1728		sample.ip = ptq->state->from_ip;
1729
1730	/* No support for guest mode at this time */
1731	cpumode = sample.ip < ptq->pt->kernel_start ?
1732		  PERF_RECORD_MISC_USER :
1733		  PERF_RECORD_MISC_KERNEL;
1734
1735	event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
1736
1737	sample.cpumode = cpumode;
 
 
1738
1739	if (sample_type & PERF_SAMPLE_TIME) {
1740		u64 timestamp = 0;
1741
1742		if (items->has_timestamp)
1743			timestamp = items->timestamp;
1744		else if (!pt->timeless_decoding)
1745			timestamp = ptq->timestamp;
1746		if (timestamp)
1747			sample.time = tsc_to_perf_time(timestamp, &pt->tc);
1748	}
 
 
 
 
1749
1750	if (sample_type & PERF_SAMPLE_CALLCHAIN &&
1751	    pt->synth_opts.callchain) {
1752		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1753				     pt->synth_opts.callchain_sz, sample.ip,
1754				     pt->kernel_start);
1755		sample.callchain = ptq->chain;
1756	}
1757
1758	if (sample_type & PERF_SAMPLE_REGS_INTR &&
1759	    items->mask[INTEL_PT_GP_REGS_POS]) {
1760		u64 regs[sizeof(sample.intr_regs.mask)];
1761		u64 regs_mask = evsel->core.attr.sample_regs_intr;
1762		u64 *pos;
1763
1764		sample.intr_regs.abi = items->is_32_bit ?
1765				       PERF_SAMPLE_REGS_ABI_32 :
1766				       PERF_SAMPLE_REGS_ABI_64;
1767		sample.intr_regs.regs = regs;
1768
1769		pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
1770
1771		intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
1772	}
1773
1774	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1775		struct {
1776			struct branch_stack br_stack;
1777			struct branch_entry entries[LBRS_MAX];
1778		} br;
1779
1780		if (items->mask[INTEL_PT_LBR_0_POS] ||
1781		    items->mask[INTEL_PT_LBR_1_POS] ||
1782		    items->mask[INTEL_PT_LBR_2_POS]) {
1783			intel_pt_add_lbrs(&br.br_stack, items);
1784			sample.branch_stack = &br.br_stack;
1785		} else if (pt->synth_opts.last_branch) {
1786			intel_pt_copy_last_branch_rb(ptq);
1787			sample.branch_stack = ptq->last_branch;
1788		} else {
1789			br.br_stack.nr = 0;
1790			sample.branch_stack = &br.br_stack;
1791		}
1792	}
1793
1794	if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
1795		sample.addr = items->mem_access_address;
1796
1797	if (sample_type & PERF_SAMPLE_WEIGHT) {
1798		/*
1799		 * Refer kernel's setup_pebs_adaptive_sample_data() and
1800		 * intel_hsw_weight().
1801		 */
1802		if (items->has_mem_access_latency)
1803			sample.weight = items->mem_access_latency;
1804		if (!sample.weight && items->has_tsx_aux_info) {
1805			/* Cycles last block */
1806			sample.weight = (u32)items->tsx_aux_info;
1807		}
1808	}
1809
1810	if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
1811		u64 ax = items->has_rax ? items->rax : 0;
1812		/* Refer kernel's intel_hsw_transaction() */
1813		u64 txn = (u8)(items->tsx_aux_info >> 32);
1814
1815		/* For RTM XABORTs also log the abort code from AX */
1816		if (txn & PERF_TXN_TRANSACTION && ax & 1)
1817			txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1818		sample.transaction = txn;
1819	}
1820
1821	return intel_pt_deliver_synth_event(pt, ptq, event, &sample, sample_type);
1822}
1823
1824static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1825				pid_t pid, pid_t tid, u64 ip, u64 timestamp)
1826{
1827	union perf_event event;
1828	char msg[MAX_AUXTRACE_ERROR_MSG];
1829	int err;
1830
1831	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1832
1833	auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1834			     code, cpu, pid, tid, ip, msg, timestamp);
1835
1836	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1837	if (err)
1838		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1839		       err);
1840
1841	return err;
1842}
1843
1844static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
1845				 const struct intel_pt_state *state)
1846{
1847	struct intel_pt *pt = ptq->pt;
1848	u64 tm = ptq->timestamp;
1849
1850	tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
1851
1852	return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
1853				    ptq->tid, state->from_ip, tm);
1854}
1855
1856static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1857{
1858	struct auxtrace_queue *queue;
1859	pid_t tid = ptq->next_tid;
1860	int err;
1861
1862	if (tid == -1)
1863		return 0;
1864
1865	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1866
1867	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1868
1869	queue = &pt->queues.queue_array[ptq->queue_nr];
1870	intel_pt_set_pid_tid_cpu(pt, queue);
1871
1872	ptq->next_tid = -1;
1873
1874	return err;
1875}
1876
1877static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1878{
1879	struct intel_pt *pt = ptq->pt;
1880
1881	return ip == pt->switch_ip &&
1882	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1883	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1884			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1885}
1886
1887#define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
1888			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
1889
1890static int intel_pt_sample(struct intel_pt_queue *ptq)
1891{
1892	const struct intel_pt_state *state = ptq->state;
1893	struct intel_pt *pt = ptq->pt;
1894	int err;
1895
1896	if (!ptq->have_sample)
1897		return 0;
1898
1899	ptq->have_sample = false;
1900
1901	if (ptq->state->tot_cyc_cnt > ptq->ipc_cyc_cnt) {
1902		/*
1903		 * Cycle count and instruction count only go together to create
1904		 * a valid IPC ratio when the cycle count changes.
1905		 */
1906		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
1907		ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
1908	}
1909
1910	/*
1911	 * Do PEBS first to allow for the possibility that the PEBS timestamp
1912	 * precedes the current timestamp.
1913	 */
1914	if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
1915		err = intel_pt_synth_pebs_sample(ptq);
1916		if (err)
1917			return err;
1918	}
1919
1920	if (pt->sample_pwr_events) {
1921		if (ptq->state->cbr != ptq->cbr_seen) {
1922			err = intel_pt_synth_cbr_sample(ptq);
1923			if (err)
1924				return err;
1925		}
1926		if (state->type & INTEL_PT_PWR_EVT) {
1927			if (state->type & INTEL_PT_MWAIT_OP) {
1928				err = intel_pt_synth_mwait_sample(ptq);
1929				if (err)
1930					return err;
1931			}
1932			if (state->type & INTEL_PT_PWR_ENTRY) {
1933				err = intel_pt_synth_pwre_sample(ptq);
1934				if (err)
1935					return err;
1936			}
1937			if (state->type & INTEL_PT_EX_STOP) {
1938				err = intel_pt_synth_exstop_sample(ptq);
1939				if (err)
1940					return err;
1941			}
1942			if (state->type & INTEL_PT_PWR_EXIT) {
1943				err = intel_pt_synth_pwrx_sample(ptq);
1944				if (err)
1945					return err;
1946			}
1947		}
1948	}
1949
1950	if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
1951		err = intel_pt_synth_instruction_sample(ptq);
1952		if (err)
1953			return err;
1954	}
1955
1956	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
 
1957		err = intel_pt_synth_transaction_sample(ptq);
1958		if (err)
1959			return err;
1960	}
1961
1962	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
1963		err = intel_pt_synth_ptwrite_sample(ptq);
1964		if (err)
1965			return err;
1966	}
1967
1968	if (!(state->type & INTEL_PT_BRANCH))
1969		return 0;
1970
1971	if (pt->synth_opts.callchain || pt->synth_opts.thread_stack)
1972		thread_stack__event(ptq->thread, ptq->cpu, ptq->flags, state->from_ip,
1973				    state->to_ip, ptq->insn_len,
1974				    state->trace_nr);
1975	else
1976		thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
1977
1978	if (pt->sample_branches) {
1979		err = intel_pt_synth_branch_sample(ptq);
1980		if (err)
1981			return err;
1982	}
1983
1984	if (pt->synth_opts.last_branch)
1985		intel_pt_update_last_branch_rb(ptq);
1986
1987	if (!ptq->sync_switch)
1988		return 0;
1989
1990	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
1991		switch (ptq->switch_state) {
1992		case INTEL_PT_SS_NOT_TRACING:
1993		case INTEL_PT_SS_UNKNOWN:
1994		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
1995			err = intel_pt_next_tid(pt, ptq);
1996			if (err)
1997				return err;
1998			ptq->switch_state = INTEL_PT_SS_TRACING;
1999			break;
2000		default:
2001			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2002			return 1;
2003		}
2004	} else if (!state->to_ip) {
2005		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2006	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2007		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2008	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2009		   state->to_ip == pt->ptss_ip &&
2010		   (ptq->flags & PERF_IP_FLAG_CALL)) {
2011		ptq->switch_state = INTEL_PT_SS_TRACING;
2012	}
2013
2014	return 0;
2015}
2016
2017static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2018{
2019	struct machine *machine = pt->machine;
2020	struct map *map;
2021	struct symbol *sym, *start;
2022	u64 ip, switch_ip = 0;
2023	const char *ptss;
2024
2025	if (ptss_ip)
2026		*ptss_ip = 0;
2027
2028	map = machine__kernel_map(machine);
2029	if (!map)
2030		return 0;
2031
2032	if (map__load(map))
2033		return 0;
2034
2035	start = dso__first_symbol(map->dso);
2036
2037	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2038		if (sym->binding == STB_GLOBAL &&
2039		    !strcmp(sym->name, "__switch_to")) {
2040			ip = map->unmap_ip(map, sym->start);
2041			if (ip >= map->start && ip < map->end) {
2042				switch_ip = ip;
2043				break;
2044			}
2045		}
2046	}
2047
2048	if (!switch_ip || !ptss_ip)
2049		return 0;
2050
2051	if (pt->have_sched_switch == 1)
2052		ptss = "perf_trace_sched_switch";
2053	else
2054		ptss = "__perf_event_task_sched_out";
2055
2056	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2057		if (!strcmp(sym->name, ptss)) {
2058			ip = map->unmap_ip(map, sym->start);
2059			if (ip >= map->start && ip < map->end) {
2060				*ptss_ip = ip;
2061				break;
2062			}
2063		}
2064	}
2065
2066	return switch_ip;
2067}
2068
2069static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2070{
2071	unsigned int i;
2072
2073	pt->sync_switch = true;
2074
2075	for (i = 0; i < pt->queues.nr_queues; i++) {
2076		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2077		struct intel_pt_queue *ptq = queue->priv;
2078
2079		if (ptq)
2080			ptq->sync_switch = true;
2081	}
2082}
2083
2084/*
2085 * To filter against time ranges, it is only necessary to look at the next start
2086 * or end time.
2087 */
2088static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2089{
2090	struct intel_pt *pt = ptq->pt;
2091
2092	if (ptq->sel_start) {
2093		/* Next time is an end time */
2094		ptq->sel_start = false;
2095		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2096		return true;
2097	} else if (ptq->sel_idx + 1 < pt->range_cnt) {
2098		/* Next time is a start time */
2099		ptq->sel_start = true;
2100		ptq->sel_idx += 1;
2101		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2102		return true;
2103	}
2104
2105	/* No next time */
2106	return false;
2107}
2108
2109static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2110{
2111	int err;
2112
2113	while (1) {
2114		if (ptq->sel_start) {
2115			if (ptq->timestamp >= ptq->sel_timestamp) {
2116				/* After start time, so consider next time */
2117				intel_pt_next_time(ptq);
2118				if (!ptq->sel_timestamp) {
2119					/* No end time */
2120					return 0;
2121				}
2122				/* Check against end time */
2123				continue;
2124			}
2125			/* Before start time, so fast forward */
2126			ptq->have_sample = false;
2127			if (ptq->sel_timestamp > *ff_timestamp) {
2128				if (ptq->sync_switch) {
2129					intel_pt_next_tid(ptq->pt, ptq);
2130					ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2131				}
2132				*ff_timestamp = ptq->sel_timestamp;
2133				err = intel_pt_fast_forward(ptq->decoder,
2134							    ptq->sel_timestamp);
2135				if (err)
2136					return err;
2137			}
2138			return 0;
2139		} else if (ptq->timestamp > ptq->sel_timestamp) {
2140			/* After end time, so consider next time */
2141			if (!intel_pt_next_time(ptq)) {
2142				/* No next time range, so stop decoding */
2143				ptq->have_sample = false;
2144				ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2145				return 1;
2146			}
2147			/* Check against next start time */
2148			continue;
2149		} else {
2150			/* Before end time */
2151			return 0;
2152		}
2153	}
2154}
2155
2156static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2157{
2158	const struct intel_pt_state *state = ptq->state;
2159	struct intel_pt *pt = ptq->pt;
2160	u64 ff_timestamp = 0;
2161	int err;
2162
2163	if (!pt->kernel_start) {
2164		pt->kernel_start = machine__kernel_start(pt->machine);
2165		if (pt->per_cpu_mmaps &&
2166		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2167		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2168		    !pt->sampling_mode) {
2169			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2170			if (pt->switch_ip) {
2171				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2172					     pt->switch_ip, pt->ptss_ip);
2173				intel_pt_enable_sync_switch(pt);
2174			}
2175		}
2176	}
2177
2178	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2179		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2180	while (1) {
2181		err = intel_pt_sample(ptq);
2182		if (err)
2183			return err;
2184
2185		state = intel_pt_decode(ptq->decoder);
2186		if (state->err) {
2187			if (state->err == INTEL_PT_ERR_NODATA)
2188				return 1;
2189			if (ptq->sync_switch &&
2190			    state->from_ip >= pt->kernel_start) {
2191				ptq->sync_switch = false;
2192				intel_pt_next_tid(pt, ptq);
2193			}
2194			if (pt->synth_opts.errors) {
2195				err = intel_ptq_synth_error(ptq, state);
 
 
 
2196				if (err)
2197					return err;
2198			}
2199			continue;
2200		}
2201
2202		ptq->state = state;
2203		ptq->have_sample = true;
2204		intel_pt_sample_flags(ptq);
2205
2206		/* Use estimated TSC upon return to user space */
2207		if (pt->est_tsc &&
2208		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2209		    state->to_ip && state->to_ip < pt->kernel_start) {
2210			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2211				     state->timestamp, state->est_timestamp);
2212			ptq->timestamp = state->est_timestamp;
2213		/* Use estimated TSC in unknown switch state */
2214		} else if (ptq->sync_switch &&
2215			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2216			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
2217			   ptq->next_tid == -1) {
2218			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2219				     state->timestamp, state->est_timestamp);
2220			ptq->timestamp = state->est_timestamp;
2221		} else if (state->timestamp > ptq->timestamp) {
2222			ptq->timestamp = state->timestamp;
2223		}
2224
2225		if (ptq->sel_timestamp) {
2226			err = intel_pt_time_filter(ptq, &ff_timestamp);
2227			if (err)
2228				return err;
2229		}
2230
2231		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2232			*timestamp = ptq->timestamp;
2233			return 0;
2234		}
2235	}
2236	return 0;
2237}
2238
2239static inline int intel_pt_update_queues(struct intel_pt *pt)
2240{
2241	if (pt->queues.new_data) {
2242		pt->queues.new_data = false;
2243		return intel_pt_setup_queues(pt);
2244	}
2245	return 0;
2246}
2247
2248static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2249{
2250	unsigned int queue_nr;
2251	u64 ts;
2252	int ret;
2253
2254	while (1) {
2255		struct auxtrace_queue *queue;
2256		struct intel_pt_queue *ptq;
2257
2258		if (!pt->heap.heap_cnt)
2259			return 0;
2260
2261		if (pt->heap.heap_array[0].ordinal >= timestamp)
2262			return 0;
2263
2264		queue_nr = pt->heap.heap_array[0].queue_nr;
2265		queue = &pt->queues.queue_array[queue_nr];
2266		ptq = queue->priv;
2267
2268		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2269			     queue_nr, pt->heap.heap_array[0].ordinal,
2270			     timestamp);
2271
2272		auxtrace_heap__pop(&pt->heap);
2273
2274		if (pt->heap.heap_cnt) {
2275			ts = pt->heap.heap_array[0].ordinal + 1;
2276			if (ts > timestamp)
2277				ts = timestamp;
2278		} else {
2279			ts = timestamp;
2280		}
2281
2282		intel_pt_set_pid_tid_cpu(pt, queue);
2283
2284		ret = intel_pt_run_decoder(ptq, &ts);
2285
2286		if (ret < 0) {
2287			auxtrace_heap__add(&pt->heap, queue_nr, ts);
2288			return ret;
2289		}
2290
2291		if (!ret) {
2292			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2293			if (ret < 0)
2294				return ret;
2295		} else {
2296			ptq->on_heap = false;
2297		}
2298	}
2299
2300	return 0;
2301}
2302
2303static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2304					    u64 time_)
2305{
2306	struct auxtrace_queues *queues = &pt->queues;
2307	unsigned int i;
2308	u64 ts = 0;
2309
2310	for (i = 0; i < queues->nr_queues; i++) {
2311		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2312		struct intel_pt_queue *ptq = queue->priv;
2313
2314		if (ptq && (tid == -1 || ptq->tid == tid)) {
2315			ptq->time = time_;
2316			intel_pt_set_pid_tid_cpu(pt, queue);
2317			intel_pt_run_decoder(ptq, &ts);
2318		}
2319	}
2320	return 0;
2321}
2322
2323static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2324{
2325	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2326				    sample->pid, sample->tid, 0, sample->time);
2327}
2328
2329static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2330{
2331	unsigned i, j;
2332
2333	if (cpu < 0 || !pt->queues.nr_queues)
2334		return NULL;
2335
2336	if ((unsigned)cpu >= pt->queues.nr_queues)
2337		i = pt->queues.nr_queues - 1;
2338	else
2339		i = cpu;
2340
2341	if (pt->queues.queue_array[i].cpu == cpu)
2342		return pt->queues.queue_array[i].priv;
2343
2344	for (j = 0; i > 0; j++) {
2345		if (pt->queues.queue_array[--i].cpu == cpu)
2346			return pt->queues.queue_array[i].priv;
2347	}
2348
2349	for (; j < pt->queues.nr_queues; j++) {
2350		if (pt->queues.queue_array[j].cpu == cpu)
2351			return pt->queues.queue_array[j].priv;
2352	}
2353
2354	return NULL;
2355}
2356
2357static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2358				u64 timestamp)
2359{
2360	struct intel_pt_queue *ptq;
2361	int err;
2362
2363	if (!pt->sync_switch)
2364		return 1;
2365
2366	ptq = intel_pt_cpu_to_ptq(pt, cpu);
2367	if (!ptq || !ptq->sync_switch)
2368		return 1;
2369
2370	switch (ptq->switch_state) {
2371	case INTEL_PT_SS_NOT_TRACING:
 
2372		break;
2373	case INTEL_PT_SS_UNKNOWN:
2374	case INTEL_PT_SS_TRACING:
2375		ptq->next_tid = tid;
2376		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2377		return 0;
2378	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2379		if (!ptq->on_heap) {
2380			ptq->timestamp = perf_time_to_tsc(timestamp,
2381							  &pt->tc);
2382			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2383						 ptq->timestamp);
2384			if (err)
2385				return err;
2386			ptq->on_heap = true;
2387		}
2388		ptq->switch_state = INTEL_PT_SS_TRACING;
2389		break;
2390	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
 
2391		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2392		break;
2393	default:
2394		break;
2395	}
2396
2397	ptq->next_tid = -1;
2398
2399	return 1;
2400}
2401
2402static int intel_pt_process_switch(struct intel_pt *pt,
2403				   struct perf_sample *sample)
2404{
2405	struct evsel *evsel;
2406	pid_t tid;
2407	int cpu, ret;
2408
2409	evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
2410	if (evsel != pt->switch_evsel)
2411		return 0;
2412
2413	tid = perf_evsel__intval(evsel, sample, "next_pid");
2414	cpu = sample->cpu;
2415
2416	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2417		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2418		     &pt->tc));
2419
2420	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2421	if (ret <= 0)
2422		return ret;
2423
2424	return machine__set_current_tid(pt->machine, cpu, -1, tid);
2425}
2426
2427static int intel_pt_context_switch_in(struct intel_pt *pt,
2428				      struct perf_sample *sample)
2429{
2430	pid_t pid = sample->pid;
2431	pid_t tid = sample->tid;
2432	int cpu = sample->cpu;
2433
2434	if (pt->sync_switch) {
2435		struct intel_pt_queue *ptq;
2436
2437		ptq = intel_pt_cpu_to_ptq(pt, cpu);
2438		if (ptq && ptq->sync_switch) {
2439			ptq->next_tid = -1;
2440			switch (ptq->switch_state) {
2441			case INTEL_PT_SS_NOT_TRACING:
2442			case INTEL_PT_SS_UNKNOWN:
2443			case INTEL_PT_SS_TRACING:
2444				break;
2445			case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2446			case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2447				ptq->switch_state = INTEL_PT_SS_TRACING;
2448				break;
2449			default:
2450				break;
2451			}
2452		}
2453	}
2454
2455	/*
2456	 * If the current tid has not been updated yet, ensure it is now that
2457	 * a "switch in" event has occurred.
2458	 */
2459	if (machine__get_current_tid(pt->machine, cpu) == tid)
2460		return 0;
2461
2462	return machine__set_current_tid(pt->machine, cpu, pid, tid);
2463}
2464
2465static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2466				   struct perf_sample *sample)
2467{
2468	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2469	pid_t pid, tid;
2470	int cpu, ret;
2471
2472	cpu = sample->cpu;
2473
2474	if (pt->have_sched_switch == 3) {
2475		if (!out)
2476			return intel_pt_context_switch_in(pt, sample);
2477		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2478			pr_err("Expecting CPU-wide context switch event\n");
2479			return -EINVAL;
2480		}
2481		pid = event->context_switch.next_prev_pid;
2482		tid = event->context_switch.next_prev_tid;
2483	} else {
2484		if (out)
2485			return 0;
2486		pid = sample->pid;
2487		tid = sample->tid;
2488	}
2489
2490	if (tid == -1) {
2491		pr_err("context_switch event has no tid\n");
2492		return -EINVAL;
2493	}
2494
2495	intel_pt_log("context_switch: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2496		     cpu, pid, tid, sample->time, perf_time_to_tsc(sample->time,
2497		     &pt->tc));
2498
2499	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2500	if (ret <= 0)
2501		return ret;
2502
2503	return machine__set_current_tid(pt->machine, cpu, pid, tid);
2504}
2505
2506static int intel_pt_process_itrace_start(struct intel_pt *pt,
2507					 union perf_event *event,
2508					 struct perf_sample *sample)
2509{
2510	if (!pt->per_cpu_mmaps)
2511		return 0;
2512
2513	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2514		     sample->cpu, event->itrace_start.pid,
2515		     event->itrace_start.tid, sample->time,
2516		     perf_time_to_tsc(sample->time, &pt->tc));
2517
2518	return machine__set_current_tid(pt->machine, sample->cpu,
2519					event->itrace_start.pid,
2520					event->itrace_start.tid);
2521}
2522
2523static int intel_pt_process_event(struct perf_session *session,
2524				  union perf_event *event,
2525				  struct perf_sample *sample,
2526				  struct perf_tool *tool)
2527{
2528	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2529					   auxtrace);
2530	u64 timestamp;
2531	int err = 0;
2532
2533	if (dump_trace)
2534		return 0;
2535
2536	if (!tool->ordered_events) {
2537		pr_err("Intel Processor Trace requires ordered events\n");
2538		return -EINVAL;
2539	}
2540
2541	if (sample->time && sample->time != (u64)-1)
2542		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2543	else
2544		timestamp = 0;
2545
2546	if (timestamp || pt->timeless_decoding) {
2547		err = intel_pt_update_queues(pt);
2548		if (err)
2549			return err;
2550	}
2551
2552	if (pt->timeless_decoding) {
2553		if (event->header.type == PERF_RECORD_EXIT) {
2554			err = intel_pt_process_timeless_queues(pt,
2555							       event->fork.tid,
2556							       sample->time);
2557		}
2558	} else if (timestamp) {
2559		err = intel_pt_process_queues(pt, timestamp);
2560	}
2561	if (err)
2562		return err;
2563
2564	if (event->header.type == PERF_RECORD_AUX &&
2565	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
2566	    pt->synth_opts.errors) {
2567		err = intel_pt_lost(pt, sample);
2568		if (err)
2569			return err;
2570	}
2571
2572	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
2573		err = intel_pt_process_switch(pt, sample);
2574	else if (event->header.type == PERF_RECORD_ITRACE_START)
2575		err = intel_pt_process_itrace_start(pt, event, sample);
2576	else if (event->header.type == PERF_RECORD_SWITCH ||
2577		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2578		err = intel_pt_context_switch(pt, event, sample);
2579
2580	intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
2581		     event->header.type, sample->cpu, sample->time, timestamp);
2582	intel_pt_log_event(event);
2583
2584	return err;
2585}
2586
2587static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
2588{
2589	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2590					   auxtrace);
2591	int ret;
2592
2593	if (dump_trace)
2594		return 0;
2595
2596	if (!tool->ordered_events)
2597		return -EINVAL;
2598
2599	ret = intel_pt_update_queues(pt);
2600	if (ret < 0)
2601		return ret;
2602
2603	if (pt->timeless_decoding)
2604		return intel_pt_process_timeless_queues(pt, -1,
2605							MAX_TIMESTAMP - 1);
2606
2607	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
2608}
2609
2610static void intel_pt_free_events(struct perf_session *session)
2611{
2612	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2613					   auxtrace);
2614	struct auxtrace_queues *queues = &pt->queues;
2615	unsigned int i;
2616
2617	for (i = 0; i < queues->nr_queues; i++) {
2618		intel_pt_free_queue(queues->queue_array[i].priv);
2619		queues->queue_array[i].priv = NULL;
2620	}
2621	intel_pt_log_disable();
2622	auxtrace_queues__free(queues);
2623}
2624
2625static void intel_pt_free(struct perf_session *session)
2626{
2627	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2628					   auxtrace);
2629
2630	auxtrace_heap__free(&pt->heap);
2631	intel_pt_free_events(session);
2632	session->auxtrace = NULL;
2633	thread__put(pt->unknown_thread);
2634	addr_filters__exit(&pt->filts);
2635	zfree(&pt->filter);
2636	zfree(&pt->time_ranges);
2637	free(pt);
2638}
2639
2640static int intel_pt_process_auxtrace_event(struct perf_session *session,
2641					   union perf_event *event,
2642					   struct perf_tool *tool __maybe_unused)
2643{
2644	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2645					   auxtrace);
2646
 
 
 
2647	if (!pt->data_queued) {
2648		struct auxtrace_buffer *buffer;
2649		off_t data_offset;
2650		int fd = perf_data__fd(session->data);
2651		int err;
2652
2653		if (perf_data__is_pipe(session->data)) {
2654			data_offset = 0;
2655		} else {
2656			data_offset = lseek(fd, 0, SEEK_CUR);
2657			if (data_offset == -1)
2658				return -errno;
2659		}
2660
2661		err = auxtrace_queues__add_event(&pt->queues, session, event,
2662						 data_offset, &buffer);
2663		if (err)
2664			return err;
2665
2666		/* Dump here now we have copied a piped trace out of the pipe */
2667		if (dump_trace) {
2668			if (auxtrace_buffer__get_data(buffer, fd)) {
2669				intel_pt_dump_event(pt, buffer->data,
2670						    buffer->size);
2671				auxtrace_buffer__put_data(buffer);
2672			}
2673		}
2674	}
2675
2676	return 0;
2677}
2678
2679struct intel_pt_synth {
2680	struct perf_tool dummy_tool;
2681	struct perf_session *session;
2682};
2683
2684static int intel_pt_event_synth(struct perf_tool *tool,
2685				union perf_event *event,
2686				struct perf_sample *sample __maybe_unused,
2687				struct machine *machine __maybe_unused)
2688{
2689	struct intel_pt_synth *intel_pt_synth =
2690			container_of(tool, struct intel_pt_synth, dummy_tool);
2691
2692	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
2693						 NULL);
2694}
2695
2696static int intel_pt_synth_event(struct perf_session *session, const char *name,
2697				struct perf_event_attr *attr, u64 id)
2698{
2699	struct intel_pt_synth intel_pt_synth;
2700	int err;
2701
2702	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2703		 name, id, (u64)attr->sample_type);
2704
2705	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
2706	intel_pt_synth.session = session;
2707
2708	err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
2709					  &id, intel_pt_event_synth);
2710	if (err)
2711		pr_err("%s: failed to synthesize '%s' event type\n",
2712		       __func__, name);
2713
2714	return err;
2715}
2716
2717static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
2718				    const char *name)
2719{
2720	struct evsel *evsel;
2721
2722	evlist__for_each_entry(evlist, evsel) {
2723		if (evsel->core.id && evsel->core.id[0] == id) {
2724			if (evsel->name)
2725				zfree(&evsel->name);
2726			evsel->name = strdup(name);
2727			break;
2728		}
2729	}
2730}
2731
2732static struct evsel *intel_pt_evsel(struct intel_pt *pt,
2733					 struct evlist *evlist)
2734{
2735	struct evsel *evsel;
2736
2737	evlist__for_each_entry(evlist, evsel) {
2738		if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
2739			return evsel;
2740	}
2741
2742	return NULL;
2743}
2744
2745static int intel_pt_synth_events(struct intel_pt *pt,
2746				 struct perf_session *session)
2747{
2748	struct evlist *evlist = session->evlist;
2749	struct evsel *evsel = intel_pt_evsel(pt, evlist);
2750	struct perf_event_attr attr;
 
2751	u64 id;
2752	int err;
2753
2754	if (!evsel) {
 
 
 
 
 
 
 
2755		pr_debug("There are no selected events with Intel Processor Trace data\n");
2756		return 0;
2757	}
2758
2759	memset(&attr, 0, sizeof(struct perf_event_attr));
2760	attr.size = sizeof(struct perf_event_attr);
2761	attr.type = PERF_TYPE_HARDWARE;
2762	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
2763	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
2764			    PERF_SAMPLE_PERIOD;
2765	if (pt->timeless_decoding)
2766		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
2767	else
2768		attr.sample_type |= PERF_SAMPLE_TIME;
2769	if (!pt->per_cpu_mmaps)
2770		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
2771	attr.exclude_user = evsel->core.attr.exclude_user;
2772	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
2773	attr.exclude_hv = evsel->core.attr.exclude_hv;
2774	attr.exclude_host = evsel->core.attr.exclude_host;
2775	attr.exclude_guest = evsel->core.attr.exclude_guest;
2776	attr.sample_id_all = evsel->core.attr.sample_id_all;
2777	attr.read_format = evsel->core.attr.read_format;
2778
2779	id = evsel->core.id[0] + 1000000000;
2780	if (!id)
2781		id = 1;
2782
2783	if (pt->synth_opts.branches) {
2784		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
2785		attr.sample_period = 1;
2786		attr.sample_type |= PERF_SAMPLE_ADDR;
2787		err = intel_pt_synth_event(session, "branches", &attr, id);
2788		if (err)
2789			return err;
2790		pt->sample_branches = true;
2791		pt->branches_sample_type = attr.sample_type;
2792		pt->branches_id = id;
2793		id += 1;
2794		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
2795	}
2796
2797	if (pt->synth_opts.callchain)
2798		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
2799	if (pt->synth_opts.last_branch)
2800		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
2801
2802	if (pt->synth_opts.instructions) {
2803		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2804		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
2805			attr.sample_period =
2806				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
2807		else
2808			attr.sample_period = pt->synth_opts.period;
2809		err = intel_pt_synth_event(session, "instructions", &attr, id);
2810		if (err)
 
 
 
 
 
 
 
 
 
2811			return err;
 
2812		pt->sample_instructions = true;
2813		pt->instructions_sample_type = attr.sample_type;
2814		pt->instructions_id = id;
2815		id += 1;
2816	}
2817
2818	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
2819	attr.sample_period = 1;
2820
2821	if (pt->synth_opts.transactions) {
2822		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2823		err = intel_pt_synth_event(session, "transactions", &attr, id);
2824		if (err)
 
 
 
 
 
 
 
 
 
2825			return err;
 
2826		pt->sample_transactions = true;
2827		pt->transactions_sample_type = attr.sample_type;
2828		pt->transactions_id = id;
2829		intel_pt_set_event_name(evlist, id, "transactions");
2830		id += 1;
2831	}
2832
2833	attr.type = PERF_TYPE_SYNTH;
2834	attr.sample_type |= PERF_SAMPLE_RAW;
2835
2836	if (pt->synth_opts.ptwrites) {
2837		attr.config = PERF_SYNTH_INTEL_PTWRITE;
2838		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
2839		if (err)
2840			return err;
2841		pt->sample_ptwrites = true;
2842		pt->ptwrites_sample_type = attr.sample_type;
2843		pt->ptwrites_id = id;
2844		intel_pt_set_event_name(evlist, id, "ptwrite");
2845		id += 1;
 
 
 
 
 
 
 
 
2846	}
2847
2848	if (pt->synth_opts.pwr_events) {
2849		pt->sample_pwr_events = true;
2850		pt->pwr_events_sample_type = attr.sample_type;
2851
2852		attr.config = PERF_SYNTH_INTEL_CBR;
2853		err = intel_pt_synth_event(session, "cbr", &attr, id);
2854		if (err)
 
 
 
 
 
2855			return err;
2856		pt->cbr_id = id;
2857		intel_pt_set_event_name(evlist, id, "cbr");
2858		id += 1;
 
2859	}
2860
2861	if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
2862		attr.config = PERF_SYNTH_INTEL_MWAIT;
2863		err = intel_pt_synth_event(session, "mwait", &attr, id);
2864		if (err)
2865			return err;
2866		pt->mwait_id = id;
2867		intel_pt_set_event_name(evlist, id, "mwait");
2868		id += 1;
2869
2870		attr.config = PERF_SYNTH_INTEL_PWRE;
2871		err = intel_pt_synth_event(session, "pwre", &attr, id);
2872		if (err)
2873			return err;
2874		pt->pwre_id = id;
2875		intel_pt_set_event_name(evlist, id, "pwre");
2876		id += 1;
2877
2878		attr.config = PERF_SYNTH_INTEL_EXSTOP;
2879		err = intel_pt_synth_event(session, "exstop", &attr, id);
2880		if (err)
2881			return err;
2882		pt->exstop_id = id;
2883		intel_pt_set_event_name(evlist, id, "exstop");
2884		id += 1;
2885
2886		attr.config = PERF_SYNTH_INTEL_PWRX;
2887		err = intel_pt_synth_event(session, "pwrx", &attr, id);
2888		if (err)
2889			return err;
2890		pt->pwrx_id = id;
2891		intel_pt_set_event_name(evlist, id, "pwrx");
2892		id += 1;
2893	}
2894
2895	return 0;
2896}
2897
2898static void intel_pt_setup_pebs_events(struct intel_pt *pt)
2899{
2900	struct evsel *evsel;
2901
2902	if (!pt->synth_opts.other_events)
2903		return;
2904
2905	evlist__for_each_entry(pt->session->evlist, evsel) {
2906		if (evsel->core.attr.aux_output && evsel->core.id) {
2907			pt->sample_pebs = true;
2908			pt->pebs_evsel = evsel;
2909			return;
2910		}
2911	}
2912}
2913
2914static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
2915{
2916	struct evsel *evsel;
2917
2918	evlist__for_each_entry_reverse(evlist, evsel) {
2919		const char *name = perf_evsel__name(evsel);
2920
2921		if (!strcmp(name, "sched:sched_switch"))
2922			return evsel;
2923	}
2924
2925	return NULL;
2926}
2927
2928static bool intel_pt_find_switch(struct evlist *evlist)
2929{
2930	struct evsel *evsel;
2931
2932	evlist__for_each_entry(evlist, evsel) {
2933		if (evsel->core.attr.context_switch)
2934			return true;
2935	}
2936
2937	return false;
2938}
2939
2940static int intel_pt_perf_config(const char *var, const char *value, void *data)
2941{
2942	struct intel_pt *pt = data;
2943
2944	if (!strcmp(var, "intel-pt.mispred-all"))
2945		pt->mispred_all = perf_config_bool(var, value);
2946
2947	return 0;
2948}
2949
2950/* Find least TSC which converts to ns or later */
2951static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
2952{
2953	u64 tsc, tm;
2954
2955	tsc = perf_time_to_tsc(ns, &pt->tc);
2956
2957	while (1) {
2958		tm = tsc_to_perf_time(tsc, &pt->tc);
2959		if (tm < ns)
2960			break;
2961		tsc -= 1;
2962	}
2963
2964	while (tm < ns)
2965		tm = tsc_to_perf_time(++tsc, &pt->tc);
2966
2967	return tsc;
2968}
2969
2970/* Find greatest TSC which converts to ns or earlier */
2971static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
2972{
2973	u64 tsc, tm;
2974
2975	tsc = perf_time_to_tsc(ns, &pt->tc);
2976
2977	while (1) {
2978		tm = tsc_to_perf_time(tsc, &pt->tc);
2979		if (tm > ns)
2980			break;
2981		tsc += 1;
2982	}
2983
2984	while (tm > ns)
2985		tm = tsc_to_perf_time(--tsc, &pt->tc);
2986
2987	return tsc;
2988}
2989
2990static int intel_pt_setup_time_ranges(struct intel_pt *pt,
2991				      struct itrace_synth_opts *opts)
2992{
2993	struct perf_time_interval *p = opts->ptime_range;
2994	int n = opts->range_num;
2995	int i;
2996
2997	if (!n || !p || pt->timeless_decoding)
2998		return 0;
2999
3000	pt->time_ranges = calloc(n, sizeof(struct range));
3001	if (!pt->time_ranges)
3002		return -ENOMEM;
3003
3004	pt->range_cnt = n;
3005
3006	intel_pt_log("%s: %u range(s)\n", __func__, n);
3007
3008	for (i = 0; i < n; i++) {
3009		struct range *r = &pt->time_ranges[i];
3010		u64 ts = p[i].start;
3011		u64 te = p[i].end;
3012
3013		/*
3014		 * Take care to ensure the TSC range matches the perf-time range
3015		 * when converted back to perf-time.
3016		 */
3017		r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3018		r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3019
3020		intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3021			     i, ts, te);
3022		intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3023			     i, r->start, r->end);
3024	}
3025
3026	return 0;
3027}
3028
3029static const char * const intel_pt_info_fmts[] = {
3030	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
3031	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
3032	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
3033	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
3034	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
3035	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
3036	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
3037	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
3038	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
3039	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
3040	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
3041	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
3042	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
3043	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
3044	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
3045	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
3046};
3047
3048static void intel_pt_print_info(__u64 *arr, int start, int finish)
3049{
3050	int i;
3051
3052	if (!dump_trace)
3053		return;
3054
3055	for (i = start; i <= finish; i++)
3056		fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
3057}
3058
3059static void intel_pt_print_info_str(const char *name, const char *str)
3060{
3061	if (!dump_trace)
3062		return;
3063
3064	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
3065}
3066
3067static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3068{
3069	return auxtrace_info->header.size >=
3070		sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3071}
3072
3073int intel_pt_process_auxtrace_info(union perf_event *event,
3074				   struct perf_session *session)
3075{
3076	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3077	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3078	struct intel_pt *pt;
3079	void *info_end;
3080	__u64 *info;
3081	int err;
3082
3083	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3084					min_sz)
3085		return -EINVAL;
3086
3087	pt = zalloc(sizeof(struct intel_pt));
3088	if (!pt)
3089		return -ENOMEM;
3090
3091	addr_filters__init(&pt->filts);
3092
3093	err = perf_config(intel_pt_perf_config, pt);
3094	if (err)
3095		goto err_free;
3096
3097	err = auxtrace_queues__init(&pt->queues);
3098	if (err)
3099		goto err_free;
3100
3101	intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3102
3103	pt->session = session;
3104	pt->machine = &session->machines.host; /* No kvm support */
3105	pt->auxtrace_type = auxtrace_info->type;
3106	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3107	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3108	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3109	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3110	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3111	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3112	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3113	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3114	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3115	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3116	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3117			    INTEL_PT_PER_CPU_MMAPS);
3118
3119	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
 
3120		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3121		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3122		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3123		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3124		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3125		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3126				    INTEL_PT_CYC_BIT);
3127	}
3128
3129	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3130		pt->max_non_turbo_ratio =
3131			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3132		intel_pt_print_info(&auxtrace_info->priv[0],
3133				    INTEL_PT_MAX_NONTURBO_RATIO,
3134				    INTEL_PT_MAX_NONTURBO_RATIO);
3135	}
3136
3137	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3138	info_end = (void *)info + auxtrace_info->header.size;
3139
3140	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3141		size_t len;
3142
3143		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3144		intel_pt_print_info(&auxtrace_info->priv[0],
3145				    INTEL_PT_FILTER_STR_LEN,
3146				    INTEL_PT_FILTER_STR_LEN);
3147		if (len) {
3148			const char *filter = (const char *)info;
3149
3150			len = roundup(len + 1, 8);
3151			info += len >> 3;
3152			if ((void *)info > info_end) {
3153				pr_err("%s: bad filter string length\n", __func__);
3154				err = -EINVAL;
3155				goto err_free_queues;
3156			}
3157			pt->filter = memdup(filter, len);
3158			if (!pt->filter) {
3159				err = -ENOMEM;
3160				goto err_free_queues;
3161			}
3162			if (session->header.needs_swap)
3163				mem_bswap_64(pt->filter, len);
3164			if (pt->filter[len - 1]) {
3165				pr_err("%s: filter string not null terminated\n", __func__);
3166				err = -EINVAL;
3167				goto err_free_queues;
3168			}
3169			err = addr_filters__parse_bare_filter(&pt->filts,
3170							      filter);
3171			if (err)
3172				goto err_free_queues;
3173		}
3174		intel_pt_print_info_str("Filter string", pt->filter);
3175	}
3176
3177	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3178	if (pt->timeless_decoding && !pt->tc.time_mult)
3179		pt->tc.time_mult = 1;
3180	pt->have_tsc = intel_pt_have_tsc(pt);
3181	pt->sampling_mode = false;
3182	pt->est_tsc = !pt->timeless_decoding;
3183
3184	pt->unknown_thread = thread__new(999999999, 999999999);
3185	if (!pt->unknown_thread) {
3186		err = -ENOMEM;
3187		goto err_free_queues;
3188	}
3189
3190	/*
3191	 * Since this thread will not be kept in any rbtree not in a
3192	 * list, initialize its list node so that at thread__put() the
3193	 * current thread lifetime assuption is kept and we don't segfault
3194	 * at list_del_init().
3195	 */
3196	INIT_LIST_HEAD(&pt->unknown_thread->node);
3197
3198	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3199	if (err)
3200		goto err_delete_thread;
3201	if (thread__init_map_groups(pt->unknown_thread, pt->machine)) {
3202		err = -ENOMEM;
3203		goto err_delete_thread;
3204	}
3205
3206	pt->auxtrace.process_event = intel_pt_process_event;
3207	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
3208	pt->auxtrace.flush_events = intel_pt_flush;
3209	pt->auxtrace.free_events = intel_pt_free_events;
3210	pt->auxtrace.free = intel_pt_free;
3211	session->auxtrace = &pt->auxtrace;
3212
3213	if (dump_trace)
3214		return 0;
3215
3216	if (pt->have_sched_switch == 1) {
3217		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3218		if (!pt->switch_evsel) {
3219			pr_err("%s: missing sched_switch event\n", __func__);
3220			err = -EINVAL;
3221			goto err_delete_thread;
3222		}
3223	} else if (pt->have_sched_switch == 2 &&
3224		   !intel_pt_find_switch(session->evlist)) {
3225		pr_err("%s: missing context_switch attribute flag\n", __func__);
3226		err = -EINVAL;
3227		goto err_delete_thread;
3228	}
3229
3230	if (session->itrace_synth_opts->set) {
3231		pt->synth_opts = *session->itrace_synth_opts;
3232	} else {
3233		itrace_synth_opts__set_default(&pt->synth_opts,
3234				session->itrace_synth_opts->default_no_sample);
3235		if (!session->itrace_synth_opts->default_no_sample &&
3236		    !session->itrace_synth_opts->inject) {
3237			pt->synth_opts.branches = false;
3238			pt->synth_opts.callchain = true;
3239		}
3240		pt->synth_opts.thread_stack =
3241				session->itrace_synth_opts->thread_stack;
3242	}
3243
3244	if (pt->synth_opts.log)
3245		intel_pt_log_enable();
3246
3247	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
3248	if (pt->tc.time_mult) {
3249		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3250
3251		if (!pt->max_non_turbo_ratio)
3252			pt->max_non_turbo_ratio =
3253					(tsc_freq + 50000000) / 100000000;
3254		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3255		intel_pt_log("Maximum non-turbo ratio %u\n",
3256			     pt->max_non_turbo_ratio);
3257		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3258	}
3259
3260	err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3261	if (err)
3262		goto err_delete_thread;
3263
3264	if (pt->synth_opts.calls)
3265		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3266				       PERF_IP_FLAG_TRACE_END;
3267	if (pt->synth_opts.returns)
3268		pt->branches_filter |= PERF_IP_FLAG_RETURN |
3269				       PERF_IP_FLAG_TRACE_BEGIN;
3270
3271	if (pt->synth_opts.callchain && !symbol_conf.use_callchain) {
3272		symbol_conf.use_callchain = true;
3273		if (callchain_register_param(&callchain_param) < 0) {
3274			symbol_conf.use_callchain = false;
3275			pt->synth_opts.callchain = false;
3276		}
3277	}
3278
3279	err = intel_pt_synth_events(pt, session);
3280	if (err)
3281		goto err_delete_thread;
3282
3283	intel_pt_setup_pebs_events(pt);
3284
3285	err = auxtrace_queues__process_index(&pt->queues, session);
3286	if (err)
3287		goto err_delete_thread;
3288
3289	if (pt->queues.populated)
3290		pt->data_queued = true;
3291
3292	if (pt->timeless_decoding)
3293		pr_debug2("Intel PT decoding without timestamps\n");
3294
3295	return 0;
3296
3297err_delete_thread:
3298	thread__zput(pt->unknown_thread);
3299err_free_queues:
3300	intel_pt_log_disable();
3301	auxtrace_queues__free(&pt->queues);
3302	session->auxtrace = NULL;
3303err_free:
3304	addr_filters__exit(&pt->filts);
3305	zfree(&pt->filter);
3306	zfree(&pt->time_ranges);
3307	free(pt);
3308	return err;
3309}
v4.6
 
   1/*
   2 * intel_pt.c: Intel Processor Trace support
   3 * Copyright (c) 2013-2015, Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 */
  15
 
  16#include <stdio.h>
  17#include <stdbool.h>
  18#include <errno.h>
  19#include <linux/kernel.h>
 
  20#include <linux/types.h>
 
  21
  22#include "../perf.h"
  23#include "session.h"
  24#include "machine.h"
 
  25#include "sort.h"
  26#include "tool.h"
  27#include "event.h"
  28#include "evlist.h"
  29#include "evsel.h"
  30#include "map.h"
  31#include "color.h"
  32#include "util.h"
  33#include "thread.h"
  34#include "thread-stack.h"
  35#include "symbol.h"
  36#include "callchain.h"
  37#include "dso.h"
  38#include "debug.h"
  39#include "auxtrace.h"
  40#include "tsc.h"
  41#include "intel-pt.h"
 
 
 
 
 
  42
  43#include "intel-pt-decoder/intel-pt-log.h"
  44#include "intel-pt-decoder/intel-pt-decoder.h"
  45#include "intel-pt-decoder/intel-pt-insn-decoder.h"
  46#include "intel-pt-decoder/intel-pt-pkt-decoder.h"
  47
  48#define MAX_TIMESTAMP (~0ULL)
  49
 
 
 
 
 
  50struct intel_pt {
  51	struct auxtrace auxtrace;
  52	struct auxtrace_queues queues;
  53	struct auxtrace_heap heap;
  54	u32 auxtrace_type;
  55	struct perf_session *session;
  56	struct machine *machine;
  57	struct perf_evsel *switch_evsel;
  58	struct thread *unknown_thread;
  59	bool timeless_decoding;
  60	bool sampling_mode;
  61	bool snapshot_mode;
  62	bool per_cpu_mmaps;
  63	bool have_tsc;
  64	bool data_queued;
  65	bool est_tsc;
  66	bool sync_switch;
  67	bool mispred_all;
  68	int have_sched_switch;
  69	u32 pmu_type;
  70	u64 kernel_start;
  71	u64 switch_ip;
  72	u64 ptss_ip;
  73
  74	struct perf_tsc_conversion tc;
  75	bool cap_user_time_zero;
  76
  77	struct itrace_synth_opts synth_opts;
  78
  79	bool sample_instructions;
  80	u64 instructions_sample_type;
  81	u64 instructions_sample_period;
  82	u64 instructions_id;
  83
  84	bool sample_branches;
  85	u32 branches_filter;
  86	u64 branches_sample_type;
  87	u64 branches_id;
  88
  89	bool sample_transactions;
  90	u64 transactions_sample_type;
  91	u64 transactions_id;
  92
  93	bool synth_needs_swap;
 
 
 
 
 
 
 
 
 
 
 
 
 
  94
  95	u64 tsc_bit;
  96	u64 mtc_bit;
  97	u64 mtc_freq_bits;
  98	u32 tsc_ctc_ratio_n;
  99	u32 tsc_ctc_ratio_d;
 100	u64 cyc_bit;
 101	u64 noretcomp_bit;
 102	unsigned max_non_turbo_ratio;
 
 
 
 
 
 
 
 
 
 103};
 104
 105enum switch_state {
 106	INTEL_PT_SS_NOT_TRACING,
 107	INTEL_PT_SS_UNKNOWN,
 108	INTEL_PT_SS_TRACING,
 109	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
 110	INTEL_PT_SS_EXPECTING_SWITCH_IP,
 111};
 112
 113struct intel_pt_queue {
 114	struct intel_pt *pt;
 115	unsigned int queue_nr;
 116	struct auxtrace_buffer *buffer;
 
 117	void *decoder;
 118	const struct intel_pt_state *state;
 119	struct ip_callchain *chain;
 120	struct branch_stack *last_branch;
 121	struct branch_stack *last_branch_rb;
 122	size_t last_branch_pos;
 123	union perf_event *event_buf;
 124	bool on_heap;
 125	bool stop;
 126	bool step_through_buffers;
 127	bool use_buffer_pid_tid;
 
 128	pid_t pid, tid;
 129	int cpu;
 130	int switch_state;
 131	pid_t next_tid;
 132	struct thread *thread;
 133	bool exclude_kernel;
 134	bool have_sample;
 135	u64 time;
 136	u64 timestamp;
 
 
 
 137	u32 flags;
 138	u16 insn_len;
 139	u64 last_insn_cnt;
 
 
 
 
 
 
 
 
 140};
 141
 142static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
 143			  unsigned char *buf, size_t len)
 144{
 145	struct intel_pt_pkt packet;
 146	size_t pos = 0;
 147	int ret, pkt_len, i;
 148	char desc[INTEL_PT_PKT_DESC_MAX];
 149	const char *color = PERF_COLOR_BLUE;
 
 150
 151	color_fprintf(stdout, color,
 152		      ". ... Intel Processor Trace data: size %zu bytes\n",
 153		      len);
 154
 155	while (len) {
 156		ret = intel_pt_get_packet(buf, len, &packet);
 157		if (ret > 0)
 158			pkt_len = ret;
 159		else
 160			pkt_len = 1;
 161		printf(".");
 162		color_fprintf(stdout, color, "  %08x: ", pos);
 163		for (i = 0; i < pkt_len; i++)
 164			color_fprintf(stdout, color, " %02x", buf[i]);
 165		for (; i < 16; i++)
 166			color_fprintf(stdout, color, "   ");
 167		if (ret > 0) {
 168			ret = intel_pt_pkt_desc(&packet, desc,
 169						INTEL_PT_PKT_DESC_MAX);
 170			if (ret > 0)
 171				color_fprintf(stdout, color, " %s\n", desc);
 172		} else {
 173			color_fprintf(stdout, color, " Bad packet!\n");
 174		}
 175		pos += pkt_len;
 176		buf += pkt_len;
 177		len -= pkt_len;
 178	}
 179}
 180
 181static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
 182				size_t len)
 183{
 184	printf(".\n");
 185	intel_pt_dump(pt, buf, len);
 186}
 187
 
 
 
 
 
 
 
 
 
 
 188static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
 189				   struct auxtrace_buffer *b)
 190{
 
 191	void *start;
 192
 193	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
 194				      pt->have_tsc);
 195	if (!start)
 196		return -EINVAL;
 197	b->use_size = b->data + b->size - start;
 198	b->use_data = start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199	return 0;
 200}
 201
 202static void intel_pt_use_buffer_pid_tid(struct intel_pt_queue *ptq,
 203					struct auxtrace_queue *queue,
 204					struct auxtrace_buffer *buffer)
 205{
 206	if (queue->cpu == -1 && buffer->cpu != -1)
 207		ptq->cpu = buffer->cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 208
 209	ptq->pid = buffer->pid;
 210	ptq->tid = buffer->tid;
 
 211
 212	intel_pt_log("queue %u cpu %d pid %d tid %d\n",
 213		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
 
 214
 215	thread__zput(ptq->thread);
 
 
 
 
 
 
 216
 217	if (ptq->tid != -1) {
 218		if (ptq->pid != -1)
 219			ptq->thread = machine__findnew_thread(ptq->pt->machine,
 220							      ptq->pid,
 221							      ptq->tid);
 222		else
 223			ptq->thread = machine__find_thread(ptq->pt->machine, -1,
 224							   ptq->tid);
 225	}
 
 
 
 
 
 
 226}
 227
 228/* This function assumes data is processed sequentially only */
 
 
 
 229static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
 230{
 231	struct intel_pt_queue *ptq = data;
 232	struct auxtrace_buffer *buffer = ptq->buffer, *old_buffer = buffer;
 
 233	struct auxtrace_queue *queue;
 
 234
 235	if (ptq->stop) {
 236		b->len = 0;
 237		return 0;
 238	}
 239
 240	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
 241
 242	buffer = auxtrace_buffer__next(queue, buffer);
 243	if (!buffer) {
 244		if (old_buffer)
 245			auxtrace_buffer__drop_data(old_buffer);
 246		b->len = 0;
 247		return 0;
 248	}
 249
 250	ptq->buffer = buffer;
 251
 252	if (!buffer->data) {
 253		int fd = perf_data_file__fd(ptq->pt->session->file);
 254
 255		buffer->data = auxtrace_buffer__get_data(buffer, fd);
 256		if (!buffer->data)
 257			return -ENOMEM;
 258	}
 259
 260	if (ptq->pt->snapshot_mode && !buffer->consecutive && old_buffer &&
 261	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
 262		return -ENOMEM;
 263
 264	if (old_buffer)
 265		auxtrace_buffer__drop_data(old_buffer);
 266
 267	if (buffer->use_data) {
 268		b->len = buffer->use_size;
 269		b->buf = buffer->use_data;
 270	} else {
 271		b->len = buffer->size;
 272		b->buf = buffer->data;
 273	}
 274	b->ref_timestamp = buffer->reference;
 275
 276	if (!old_buffer || ptq->pt->sampling_mode || (ptq->pt->snapshot_mode &&
 277						      !buffer->consecutive)) {
 278		b->consecutive = false;
 279		b->trace_nr = buffer->buffer_nr + 1;
 280	} else {
 281		b->consecutive = true;
 282	}
 283
 284	if (ptq->use_buffer_pid_tid && (ptq->pid != buffer->pid ||
 285					ptq->tid != buffer->tid))
 286		intel_pt_use_buffer_pid_tid(ptq, queue, buffer);
 287
 288	if (ptq->step_through_buffers)
 289		ptq->stop = true;
 290
 291	if (!b->len)
 
 
 
 
 
 292		return intel_pt_get_trace(b, data);
 
 293
 294	return 0;
 295}
 296
 297struct intel_pt_cache_entry {
 298	struct auxtrace_cache_entry	entry;
 299	u64				insn_cnt;
 300	u64				byte_cnt;
 301	enum intel_pt_insn_op		op;
 302	enum intel_pt_insn_branch	branch;
 303	int				length;
 304	int32_t				rel;
 
 305};
 306
 307static int intel_pt_config_div(const char *var, const char *value, void *data)
 308{
 309	int *d = data;
 310	long val;
 311
 312	if (!strcmp(var, "intel-pt.cache-divisor")) {
 313		val = strtol(value, NULL, 0);
 314		if (val > 0 && val <= INT_MAX)
 315			*d = val;
 316	}
 317
 318	return 0;
 319}
 320
 321static int intel_pt_cache_divisor(void)
 322{
 323	static int d;
 324
 325	if (d)
 326		return d;
 327
 328	perf_config(intel_pt_config_div, &d);
 329
 330	if (!d)
 331		d = 64;
 332
 333	return d;
 334}
 335
 336static unsigned int intel_pt_cache_size(struct dso *dso,
 337					struct machine *machine)
 338{
 339	off_t size;
 340
 341	size = dso__data_size(dso, machine);
 342	size /= intel_pt_cache_divisor();
 343	if (size < 1000)
 344		return 10;
 345	if (size > (1 << 21))
 346		return 21;
 347	return 32 - __builtin_clz(size);
 348}
 349
 350static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
 351					     struct machine *machine)
 352{
 353	struct auxtrace_cache *c;
 354	unsigned int bits;
 355
 356	if (dso->auxtrace_cache)
 357		return dso->auxtrace_cache;
 358
 359	bits = intel_pt_cache_size(dso, machine);
 360
 361	/* Ignoring cache creation failure */
 362	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
 363
 364	dso->auxtrace_cache = c;
 365
 366	return c;
 367}
 368
 369static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
 370			      u64 offset, u64 insn_cnt, u64 byte_cnt,
 371			      struct intel_pt_insn *intel_pt_insn)
 372{
 373	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
 374	struct intel_pt_cache_entry *e;
 375	int err;
 376
 377	if (!c)
 378		return -ENOMEM;
 379
 380	e = auxtrace_cache__alloc_entry(c);
 381	if (!e)
 382		return -ENOMEM;
 383
 384	e->insn_cnt = insn_cnt;
 385	e->byte_cnt = byte_cnt;
 386	e->op = intel_pt_insn->op;
 387	e->branch = intel_pt_insn->branch;
 388	e->length = intel_pt_insn->length;
 389	e->rel = intel_pt_insn->rel;
 
 390
 391	err = auxtrace_cache__add(c, offset, &e->entry);
 392	if (err)
 393		auxtrace_cache__free_entry(c, e);
 394
 395	return err;
 396}
 397
 398static struct intel_pt_cache_entry *
 399intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
 400{
 401	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
 402
 403	if (!c)
 404		return NULL;
 405
 406	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
 407}
 408
 
 
 
 
 
 
 
 409static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
 410				   uint64_t *insn_cnt_ptr, uint64_t *ip,
 411				   uint64_t to_ip, uint64_t max_insn_cnt,
 412				   void *data)
 413{
 414	struct intel_pt_queue *ptq = data;
 415	struct machine *machine = ptq->pt->machine;
 416	struct thread *thread;
 417	struct addr_location al;
 418	unsigned char buf[1024];
 419	size_t bufsz;
 420	ssize_t len;
 421	int x86_64;
 422	u8 cpumode;
 423	u64 offset, start_offset, start_ip;
 424	u64 insn_cnt = 0;
 425	bool one_map = true;
 426
 
 
 427	if (to_ip && *ip == to_ip)
 428		goto out_no_cache;
 429
 430	bufsz = intel_pt_insn_max_size();
 431
 432	if (*ip >= ptq->pt->kernel_start)
 433		cpumode = PERF_RECORD_MISC_KERNEL;
 434	else
 435		cpumode = PERF_RECORD_MISC_USER;
 436
 437	thread = ptq->thread;
 438	if (!thread) {
 439		if (cpumode != PERF_RECORD_MISC_KERNEL)
 440			return -EINVAL;
 441		thread = ptq->pt->unknown_thread;
 442	}
 443
 444	while (1) {
 445		thread__find_addr_map(thread, cpumode, MAP__FUNCTION, *ip, &al);
 446		if (!al.map || !al.map->dso)
 447			return -EINVAL;
 448
 449		if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
 450		    dso__data_status_seen(al.map->dso,
 451					  DSO_DATA_STATUS_SEEN_ITRACE))
 452			return -ENOENT;
 453
 454		offset = al.map->map_ip(al.map, *ip);
 455
 456		if (!to_ip && one_map) {
 457			struct intel_pt_cache_entry *e;
 458
 459			e = intel_pt_cache_lookup(al.map->dso, machine, offset);
 460			if (e &&
 461			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
 462				*insn_cnt_ptr = e->insn_cnt;
 463				*ip += e->byte_cnt;
 464				intel_pt_insn->op = e->op;
 465				intel_pt_insn->branch = e->branch;
 466				intel_pt_insn->length = e->length;
 467				intel_pt_insn->rel = e->rel;
 
 
 468				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
 469				return 0;
 470			}
 471		}
 472
 473		start_offset = offset;
 474		start_ip = *ip;
 475
 476		/* Load maps to ensure dso->is_64_bit has been updated */
 477		map__load(al.map, machine->symbol_filter);
 478
 479		x86_64 = al.map->dso->is_64_bit;
 480
 481		while (1) {
 482			len = dso__data_read_offset(al.map->dso, machine,
 483						    offset, buf, bufsz);
 
 484			if (len <= 0)
 485				return -EINVAL;
 486
 487			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
 488				return -EINVAL;
 489
 490			intel_pt_log_insn(intel_pt_insn, *ip);
 491
 492			insn_cnt += 1;
 493
 494			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
 495				goto out;
 496
 497			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
 498				goto out_no_cache;
 499
 500			*ip += intel_pt_insn->length;
 501
 502			if (to_ip && *ip == to_ip)
 503				goto out_no_cache;
 504
 505			if (*ip >= al.map->end)
 506				break;
 507
 508			offset += intel_pt_insn->length;
 509		}
 510		one_map = false;
 511	}
 512out:
 513	*insn_cnt_ptr = insn_cnt;
 514
 515	if (!one_map)
 516		goto out_no_cache;
 517
 518	/*
 519	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
 520	 * entries.
 521	 */
 522	if (to_ip) {
 523		struct intel_pt_cache_entry *e;
 524
 525		e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
 526		if (e)
 527			return 0;
 528	}
 529
 530	/* Ignore cache errors */
 531	intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
 532			   *ip - start_ip, intel_pt_insn);
 533
 534	return 0;
 535
 536out_no_cache:
 537	*insn_cnt_ptr = insn_cnt;
 538	return 0;
 539}
 540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 541static bool intel_pt_get_config(struct intel_pt *pt,
 542				struct perf_event_attr *attr, u64 *config)
 543{
 544	if (attr->type == pt->pmu_type) {
 545		if (config)
 546			*config = attr->config;
 547		return true;
 548	}
 549
 550	return false;
 551}
 552
 553static bool intel_pt_exclude_kernel(struct intel_pt *pt)
 554{
 555	struct perf_evsel *evsel;
 556
 557	evlist__for_each(pt->session->evlist, evsel) {
 558		if (intel_pt_get_config(pt, &evsel->attr, NULL) &&
 559		    !evsel->attr.exclude_kernel)
 560			return false;
 561	}
 562	return true;
 563}
 564
 565static bool intel_pt_return_compression(struct intel_pt *pt)
 566{
 567	struct perf_evsel *evsel;
 568	u64 config;
 569
 570	if (!pt->noretcomp_bit)
 571		return true;
 572
 573	evlist__for_each(pt->session->evlist, evsel) {
 574		if (intel_pt_get_config(pt, &evsel->attr, &config) &&
 575		    (config & pt->noretcomp_bit))
 576			return false;
 577	}
 578	return true;
 579}
 580
 
 
 
 
 
 
 
 
 
 
 
 
 
 581static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
 582{
 583	struct perf_evsel *evsel;
 584	unsigned int shift;
 585	u64 config;
 586
 587	if (!pt->mtc_freq_bits)
 588		return 0;
 589
 590	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
 591		config >>= 1;
 592
 593	evlist__for_each(pt->session->evlist, evsel) {
 594		if (intel_pt_get_config(pt, &evsel->attr, &config))
 595			return (config & pt->mtc_freq_bits) >> shift;
 596	}
 597	return 0;
 598}
 599
 600static bool intel_pt_timeless_decoding(struct intel_pt *pt)
 601{
 602	struct perf_evsel *evsel;
 603	bool timeless_decoding = true;
 604	u64 config;
 605
 606	if (!pt->tsc_bit || !pt->cap_user_time_zero)
 607		return true;
 608
 609	evlist__for_each(pt->session->evlist, evsel) {
 610		if (!(evsel->attr.sample_type & PERF_SAMPLE_TIME))
 611			return true;
 612		if (intel_pt_get_config(pt, &evsel->attr, &config)) {
 613			if (config & pt->tsc_bit)
 614				timeless_decoding = false;
 615			else
 616				return true;
 617		}
 618	}
 619	return timeless_decoding;
 620}
 621
 622static bool intel_pt_tracing_kernel(struct intel_pt *pt)
 623{
 624	struct perf_evsel *evsel;
 625
 626	evlist__for_each(pt->session->evlist, evsel) {
 627		if (intel_pt_get_config(pt, &evsel->attr, NULL) &&
 628		    !evsel->attr.exclude_kernel)
 629			return true;
 630	}
 631	return false;
 632}
 633
 634static bool intel_pt_have_tsc(struct intel_pt *pt)
 635{
 636	struct perf_evsel *evsel;
 637	bool have_tsc = false;
 638	u64 config;
 639
 640	if (!pt->tsc_bit)
 641		return false;
 642
 643	evlist__for_each(pt->session->evlist, evsel) {
 644		if (intel_pt_get_config(pt, &evsel->attr, &config)) {
 645			if (config & pt->tsc_bit)
 646				have_tsc = true;
 647			else
 648				return false;
 649		}
 650	}
 651	return have_tsc;
 652}
 653
 654static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
 655{
 656	u64 quot, rem;
 657
 658	quot = ns / pt->tc.time_mult;
 659	rem  = ns % pt->tc.time_mult;
 660	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
 661		pt->tc.time_mult;
 662}
 663
 664static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
 665						   unsigned int queue_nr)
 666{
 667	struct intel_pt_params params = { .get_trace = 0, };
 
 668	struct intel_pt_queue *ptq;
 669
 670	ptq = zalloc(sizeof(struct intel_pt_queue));
 671	if (!ptq)
 672		return NULL;
 673
 674	if (pt->synth_opts.callchain) {
 675		size_t sz = sizeof(struct ip_callchain);
 676
 677		sz += pt->synth_opts.callchain_sz * sizeof(u64);
 
 678		ptq->chain = zalloc(sz);
 679		if (!ptq->chain)
 680			goto out_free;
 681	}
 682
 683	if (pt->synth_opts.last_branch) {
 684		size_t sz = sizeof(struct branch_stack);
 685
 686		sz += pt->synth_opts.last_branch_sz *
 687		      sizeof(struct branch_entry);
 688		ptq->last_branch = zalloc(sz);
 689		if (!ptq->last_branch)
 690			goto out_free;
 691		ptq->last_branch_rb = zalloc(sz);
 692		if (!ptq->last_branch_rb)
 693			goto out_free;
 694	}
 695
 696	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
 697	if (!ptq->event_buf)
 698		goto out_free;
 699
 700	ptq->pt = pt;
 701	ptq->queue_nr = queue_nr;
 702	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
 703	ptq->pid = -1;
 704	ptq->tid = -1;
 705	ptq->cpu = -1;
 706	ptq->next_tid = -1;
 707
 708	params.get_trace = intel_pt_get_trace;
 709	params.walk_insn = intel_pt_walk_next_insn;
 
 710	params.data = ptq;
 711	params.return_compression = intel_pt_return_compression(pt);
 
 712	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
 713	params.mtc_period = intel_pt_mtc_period(pt);
 714	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
 715	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
 716
 
 
 
 717	if (pt->synth_opts.instructions) {
 718		if (pt->synth_opts.period) {
 719			switch (pt->synth_opts.period_type) {
 720			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
 721				params.period_type =
 722						INTEL_PT_PERIOD_INSTRUCTIONS;
 723				params.period = pt->synth_opts.period;
 724				break;
 725			case PERF_ITRACE_PERIOD_TICKS:
 726				params.period_type = INTEL_PT_PERIOD_TICKS;
 727				params.period = pt->synth_opts.period;
 728				break;
 729			case PERF_ITRACE_PERIOD_NANOSECS:
 730				params.period_type = INTEL_PT_PERIOD_TICKS;
 731				params.period = intel_pt_ns_to_ticks(pt,
 732							pt->synth_opts.period);
 733				break;
 734			default:
 735				break;
 736			}
 737		}
 738
 739		if (!params.period) {
 740			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
 741			params.period = 1;
 742		}
 743	}
 744
 
 
 
 745	ptq->decoder = intel_pt_decoder_new(&params);
 746	if (!ptq->decoder)
 747		goto out_free;
 748
 749	return ptq;
 750
 751out_free:
 752	zfree(&ptq->event_buf);
 753	zfree(&ptq->last_branch);
 754	zfree(&ptq->last_branch_rb);
 755	zfree(&ptq->chain);
 756	free(ptq);
 757	return NULL;
 758}
 759
 760static void intel_pt_free_queue(void *priv)
 761{
 762	struct intel_pt_queue *ptq = priv;
 763
 764	if (!ptq)
 765		return;
 766	thread__zput(ptq->thread);
 767	intel_pt_decoder_free(ptq->decoder);
 768	zfree(&ptq->event_buf);
 769	zfree(&ptq->last_branch);
 770	zfree(&ptq->last_branch_rb);
 771	zfree(&ptq->chain);
 772	free(ptq);
 773}
 774
 775static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
 776				     struct auxtrace_queue *queue)
 777{
 778	struct intel_pt_queue *ptq = queue->priv;
 779
 780	if (queue->tid == -1 || pt->have_sched_switch) {
 781		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
 782		thread__zput(ptq->thread);
 783	}
 784
 785	if (!ptq->thread && ptq->tid != -1)
 786		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
 787
 788	if (ptq->thread) {
 789		ptq->pid = ptq->thread->pid_;
 790		if (queue->cpu == -1)
 791			ptq->cpu = ptq->thread->cpu;
 792	}
 793}
 794
 795static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
 796{
 797	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
 798		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
 799	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
 800		if (ptq->state->to_ip)
 801			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
 802				     PERF_IP_FLAG_ASYNC |
 803				     PERF_IP_FLAG_INTERRUPT;
 804		else
 805			ptq->flags = PERF_IP_FLAG_BRANCH |
 806				     PERF_IP_FLAG_TRACE_END;
 807		ptq->insn_len = 0;
 808	} else {
 809		if (ptq->state->from_ip)
 810			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
 811		else
 812			ptq->flags = PERF_IP_FLAG_BRANCH |
 813				     PERF_IP_FLAG_TRACE_BEGIN;
 814		if (ptq->state->flags & INTEL_PT_IN_TX)
 815			ptq->flags |= PERF_IP_FLAG_IN_TX;
 816		ptq->insn_len = ptq->state->insn_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 817	}
 818}
 819
 820static int intel_pt_setup_queue(struct intel_pt *pt,
 821				struct auxtrace_queue *queue,
 822				unsigned int queue_nr)
 823{
 824	struct intel_pt_queue *ptq = queue->priv;
 825
 826	if (list_empty(&queue->head))
 827		return 0;
 828
 829	if (!ptq) {
 830		ptq = intel_pt_alloc_queue(pt, queue_nr);
 831		if (!ptq)
 832			return -ENOMEM;
 833		queue->priv = ptq;
 834
 835		if (queue->cpu != -1)
 836			ptq->cpu = queue->cpu;
 837		ptq->tid = queue->tid;
 838
 839		if (pt->sampling_mode) {
 840			if (pt->timeless_decoding)
 841				ptq->step_through_buffers = true;
 842			if (pt->timeless_decoding || !pt->have_sched_switch)
 843				ptq->use_buffer_pid_tid = true;
 844		}
 
 
 
 845	}
 846
 847	if (!ptq->on_heap &&
 848	    (!pt->sync_switch ||
 849	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
 850		const struct intel_pt_state *state;
 851		int ret;
 852
 853		if (pt->timeless_decoding)
 854			return 0;
 855
 856		intel_pt_log("queue %u getting timestamp\n", queue_nr);
 857		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
 858			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
 
 
 
 
 
 
 
 
 859		while (1) {
 860			state = intel_pt_decode(ptq->decoder);
 861			if (state->err) {
 862				if (state->err == INTEL_PT_ERR_NODATA) {
 863					intel_pt_log("queue %u has no timestamp\n",
 864						     queue_nr);
 865					return 0;
 866				}
 867				continue;
 868			}
 869			if (state->timestamp)
 870				break;
 871		}
 872
 873		ptq->timestamp = state->timestamp;
 874		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
 875			     queue_nr, ptq->timestamp);
 876		ptq->state = state;
 877		ptq->have_sample = true;
 
 
 
 878		intel_pt_sample_flags(ptq);
 879		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
 880		if (ret)
 881			return ret;
 882		ptq->on_heap = true;
 883	}
 884
 885	return 0;
 886}
 887
 888static int intel_pt_setup_queues(struct intel_pt *pt)
 889{
 890	unsigned int i;
 891	int ret;
 892
 893	for (i = 0; i < pt->queues.nr_queues; i++) {
 894		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
 895		if (ret)
 896			return ret;
 897	}
 898	return 0;
 899}
 900
 901static inline void intel_pt_copy_last_branch_rb(struct intel_pt_queue *ptq)
 902{
 903	struct branch_stack *bs_src = ptq->last_branch_rb;
 904	struct branch_stack *bs_dst = ptq->last_branch;
 905	size_t nr = 0;
 906
 907	bs_dst->nr = bs_src->nr;
 908
 909	if (!bs_src->nr)
 910		return;
 911
 912	nr = ptq->pt->synth_opts.last_branch_sz - ptq->last_branch_pos;
 913	memcpy(&bs_dst->entries[0],
 914	       &bs_src->entries[ptq->last_branch_pos],
 915	       sizeof(struct branch_entry) * nr);
 916
 917	if (bs_src->nr >= ptq->pt->synth_opts.last_branch_sz) {
 918		memcpy(&bs_dst->entries[nr],
 919		       &bs_src->entries[0],
 920		       sizeof(struct branch_entry) * ptq->last_branch_pos);
 921	}
 922}
 923
 924static inline void intel_pt_reset_last_branch_rb(struct intel_pt_queue *ptq)
 925{
 926	ptq->last_branch_pos = 0;
 927	ptq->last_branch_rb->nr = 0;
 928}
 929
 930static void intel_pt_update_last_branch_rb(struct intel_pt_queue *ptq)
 931{
 932	const struct intel_pt_state *state = ptq->state;
 933	struct branch_stack *bs = ptq->last_branch_rb;
 934	struct branch_entry *be;
 935
 936	if (!ptq->last_branch_pos)
 937		ptq->last_branch_pos = ptq->pt->synth_opts.last_branch_sz;
 938
 939	ptq->last_branch_pos -= 1;
 940
 941	be              = &bs->entries[ptq->last_branch_pos];
 942	be->from        = state->from_ip;
 943	be->to          = state->to_ip;
 944	be->flags.abort = !!(state->flags & INTEL_PT_ABORT_TX);
 945	be->flags.in_tx = !!(state->flags & INTEL_PT_IN_TX);
 946	/* No support for mispredict */
 947	be->flags.mispred = ptq->pt->mispred_all;
 948
 949	if (bs->nr < ptq->pt->synth_opts.last_branch_sz)
 950		bs->nr += 1;
 951}
 952
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 953static int intel_pt_inject_event(union perf_event *event,
 954				 struct perf_sample *sample, u64 type,
 955				 bool swapped)
 956{
 957	event->header.size = perf_event__sample_event_size(sample, type, 0);
 958	return perf_event__synthesize_sample(event, type, 0, sample, swapped);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 959}
 960
 961static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
 962{
 963	int ret;
 964	struct intel_pt *pt = ptq->pt;
 965	union perf_event *event = ptq->event_buf;
 966	struct perf_sample sample = { .ip = 0, };
 967	struct dummy_branch_stack {
 968		u64			nr;
 969		struct branch_entry	entries;
 970	} dummy_bs;
 971
 972	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
 973		return 0;
 974
 975	event->sample.header.type = PERF_RECORD_SAMPLE;
 976	event->sample.header.misc = PERF_RECORD_MISC_USER;
 977	event->sample.header.size = sizeof(struct perf_event_header);
 978
 979	if (!pt->timeless_decoding)
 980		sample.time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
 981
 982	sample.cpumode = PERF_RECORD_MISC_USER;
 983	sample.ip = ptq->state->from_ip;
 984	sample.pid = ptq->pid;
 985	sample.tid = ptq->tid;
 986	sample.addr = ptq->state->to_ip;
 987	sample.id = ptq->pt->branches_id;
 988	sample.stream_id = ptq->pt->branches_id;
 989	sample.period = 1;
 990	sample.cpu = ptq->cpu;
 991	sample.flags = ptq->flags;
 992	sample.insn_len = ptq->insn_len;
 993
 994	/*
 995	 * perf report cannot handle events without a branch stack when using
 996	 * SORT_MODE__BRANCH so make a dummy one.
 997	 */
 998	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
 999		dummy_bs = (struct dummy_branch_stack){
1000			.nr = 1,
1001			.entries = {
1002				.from = sample.ip,
1003				.to = sample.addr,
1004			},
1005		};
1006		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1007	}
1008
1009	if (pt->synth_opts.inject) {
1010		ret = intel_pt_inject_event(event, &sample,
1011					    pt->branches_sample_type,
1012					    pt->synth_needs_swap);
1013		if (ret)
1014			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015	}
 
 
 
 
 
 
 
 
 
 
 
1016
1017	ret = perf_session__deliver_synth_event(pt->session, event, &sample);
1018	if (ret)
1019		pr_err("Intel Processor Trace: failed to deliver branch event, error %d\n",
1020		       ret);
1021
1022	return ret;
1023}
1024
1025static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1026{
1027	int ret;
1028	struct intel_pt *pt = ptq->pt;
1029	union perf_event *event = ptq->event_buf;
1030	struct perf_sample sample = { .ip = 0, };
1031
1032	event->sample.header.type = PERF_RECORD_SAMPLE;
1033	event->sample.header.misc = PERF_RECORD_MISC_USER;
1034	event->sample.header.size = sizeof(struct perf_event_header);
1035
1036	if (!pt->timeless_decoding)
1037		sample.time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1038
1039	sample.cpumode = PERF_RECORD_MISC_USER;
1040	sample.ip = ptq->state->from_ip;
1041	sample.pid = ptq->pid;
1042	sample.tid = ptq->tid;
1043	sample.addr = ptq->state->to_ip;
1044	sample.id = ptq->pt->instructions_id;
1045	sample.stream_id = ptq->pt->instructions_id;
1046	sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1047	sample.cpu = ptq->cpu;
1048	sample.flags = ptq->flags;
1049	sample.insn_len = ptq->insn_len;
 
 
 
 
1050
1051	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1052
1053	if (pt->synth_opts.callchain) {
1054		thread_stack__sample(ptq->thread, ptq->chain,
1055				     pt->synth_opts.callchain_sz, sample.ip);
1056		sample.callchain = ptq->chain;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057	}
1058
1059	if (pt->synth_opts.last_branch) {
1060		intel_pt_copy_last_branch_rb(ptq);
1061		sample.branch_stack = ptq->last_branch;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1062	}
 
 
 
 
 
 
1063
1064	if (pt->synth_opts.inject) {
1065		ret = intel_pt_inject_event(event, &sample,
1066					    pt->instructions_sample_type,
1067					    pt->synth_needs_swap);
1068		if (ret)
1069			return ret;
1070	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1071
1072	ret = perf_session__deliver_synth_event(pt->session, event, &sample);
1073	if (ret)
1074		pr_err("Intel Processor Trace: failed to deliver instruction event, error %d\n",
1075		       ret);
1076
1077	if (pt->synth_opts.last_branch)
1078		intel_pt_reset_last_branch_rb(ptq);
1079
1080	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
1081}
1082
1083static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
 
 
 
1084{
1085	int ret;
 
 
1086	struct intel_pt *pt = ptq->pt;
1087	union perf_event *event = ptq->event_buf;
1088	struct perf_sample sample = { .ip = 0, };
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1089
1090	event->sample.header.type = PERF_RECORD_SAMPLE;
1091	event->sample.header.misc = PERF_RECORD_MISC_USER;
1092	event->sample.header.size = sizeof(struct perf_event_header);
1093
1094	if (!pt->timeless_decoding)
1095		sample.time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1096
1097	sample.cpumode = PERF_RECORD_MISC_USER;
1098	sample.ip = ptq->state->from_ip;
1099	sample.pid = ptq->pid;
1100	sample.tid = ptq->tid;
1101	sample.addr = ptq->state->to_ip;
1102	sample.id = ptq->pt->transactions_id;
1103	sample.stream_id = ptq->pt->transactions_id;
1104	sample.period = 1;
1105	sample.cpu = ptq->cpu;
1106	sample.flags = ptq->flags;
1107	sample.insn_len = ptq->insn_len;
1108
1109	if (pt->synth_opts.callchain) {
1110		thread_stack__sample(ptq->thread, ptq->chain,
1111				     pt->synth_opts.callchain_sz, sample.ip);
 
 
1112		sample.callchain = ptq->chain;
1113	}
1114
1115	if (pt->synth_opts.last_branch) {
1116		intel_pt_copy_last_branch_rb(ptq);
1117		sample.branch_stack = ptq->last_branch;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1118	}
1119
1120	if (pt->synth_opts.inject) {
1121		ret = intel_pt_inject_event(event, &sample,
1122					    pt->transactions_sample_type,
1123					    pt->synth_needs_swap);
1124		if (ret)
1125			return ret;
 
 
 
 
 
 
 
 
1126	}
1127
1128	ret = perf_session__deliver_synth_event(pt->session, event, &sample);
1129	if (ret)
1130		pr_err("Intel Processor Trace: failed to deliver transaction event, error %d\n",
1131		       ret);
1132
1133	if (pt->synth_opts.last_branch)
1134		intel_pt_reset_last_branch_rb(ptq);
 
 
 
1135
1136	return ret;
1137}
1138
1139static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1140				pid_t pid, pid_t tid, u64 ip)
1141{
1142	union perf_event event;
1143	char msg[MAX_AUXTRACE_ERROR_MSG];
1144	int err;
1145
1146	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1147
1148	auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1149			     code, cpu, pid, tid, ip, msg);
1150
1151	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1152	if (err)
1153		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1154		       err);
1155
1156	return err;
1157}
1158
 
 
 
 
 
 
 
 
 
 
 
 
1159static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1160{
1161	struct auxtrace_queue *queue;
1162	pid_t tid = ptq->next_tid;
1163	int err;
1164
1165	if (tid == -1)
1166		return 0;
1167
1168	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1169
1170	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1171
1172	queue = &pt->queues.queue_array[ptq->queue_nr];
1173	intel_pt_set_pid_tid_cpu(pt, queue);
1174
1175	ptq->next_tid = -1;
1176
1177	return err;
1178}
1179
1180static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1181{
1182	struct intel_pt *pt = ptq->pt;
1183
1184	return ip == pt->switch_ip &&
1185	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1186	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1187			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1188}
1189
 
 
 
1190static int intel_pt_sample(struct intel_pt_queue *ptq)
1191{
1192	const struct intel_pt_state *state = ptq->state;
1193	struct intel_pt *pt = ptq->pt;
1194	int err;
1195
1196	if (!ptq->have_sample)
1197		return 0;
1198
1199	ptq->have_sample = false;
1200
1201	if (pt->sample_instructions &&
1202	    (state->type & INTEL_PT_INSTRUCTION)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1203		err = intel_pt_synth_instruction_sample(ptq);
1204		if (err)
1205			return err;
1206	}
1207
1208	if (pt->sample_transactions &&
1209	    (state->type & INTEL_PT_TRANSACTION)) {
1210		err = intel_pt_synth_transaction_sample(ptq);
1211		if (err)
1212			return err;
1213	}
1214
 
 
 
 
 
 
1215	if (!(state->type & INTEL_PT_BRANCH))
1216		return 0;
1217
1218	if (pt->synth_opts.callchain)
1219		thread_stack__event(ptq->thread, ptq->flags, state->from_ip,
1220				    state->to_ip, ptq->insn_len,
1221				    state->trace_nr);
1222	else
1223		thread_stack__set_trace_nr(ptq->thread, state->trace_nr);
1224
1225	if (pt->sample_branches) {
1226		err = intel_pt_synth_branch_sample(ptq);
1227		if (err)
1228			return err;
1229	}
1230
1231	if (pt->synth_opts.last_branch)
1232		intel_pt_update_last_branch_rb(ptq);
1233
1234	if (!pt->sync_switch)
1235		return 0;
1236
1237	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
1238		switch (ptq->switch_state) {
 
1239		case INTEL_PT_SS_UNKNOWN:
1240		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
1241			err = intel_pt_next_tid(pt, ptq);
1242			if (err)
1243				return err;
1244			ptq->switch_state = INTEL_PT_SS_TRACING;
1245			break;
1246		default:
1247			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
1248			return 1;
1249		}
1250	} else if (!state->to_ip) {
1251		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
1252	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
1253		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
1254	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
1255		   state->to_ip == pt->ptss_ip &&
1256		   (ptq->flags & PERF_IP_FLAG_CALL)) {
1257		ptq->switch_state = INTEL_PT_SS_TRACING;
1258	}
1259
1260	return 0;
1261}
1262
1263static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
1264{
1265	struct machine *machine = pt->machine;
1266	struct map *map;
1267	struct symbol *sym, *start;
1268	u64 ip, switch_ip = 0;
1269	const char *ptss;
1270
1271	if (ptss_ip)
1272		*ptss_ip = 0;
1273
1274	map = machine__kernel_map(machine);
1275	if (!map)
1276		return 0;
1277
1278	if (map__load(map, machine->symbol_filter))
1279		return 0;
1280
1281	start = dso__first_symbol(map->dso, MAP__FUNCTION);
1282
1283	for (sym = start; sym; sym = dso__next_symbol(sym)) {
1284		if (sym->binding == STB_GLOBAL &&
1285		    !strcmp(sym->name, "__switch_to")) {
1286			ip = map->unmap_ip(map, sym->start);
1287			if (ip >= map->start && ip < map->end) {
1288				switch_ip = ip;
1289				break;
1290			}
1291		}
1292	}
1293
1294	if (!switch_ip || !ptss_ip)
1295		return 0;
1296
1297	if (pt->have_sched_switch == 1)
1298		ptss = "perf_trace_sched_switch";
1299	else
1300		ptss = "__perf_event_task_sched_out";
1301
1302	for (sym = start; sym; sym = dso__next_symbol(sym)) {
1303		if (!strcmp(sym->name, ptss)) {
1304			ip = map->unmap_ip(map, sym->start);
1305			if (ip >= map->start && ip < map->end) {
1306				*ptss_ip = ip;
1307				break;
1308			}
1309		}
1310	}
1311
1312	return switch_ip;
1313}
1314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1315static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
1316{
1317	const struct intel_pt_state *state = ptq->state;
1318	struct intel_pt *pt = ptq->pt;
 
1319	int err;
1320
1321	if (!pt->kernel_start) {
1322		pt->kernel_start = machine__kernel_start(pt->machine);
1323		if (pt->per_cpu_mmaps &&
1324		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
1325		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
1326		    !pt->sampling_mode) {
1327			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
1328			if (pt->switch_ip) {
1329				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
1330					     pt->switch_ip, pt->ptss_ip);
1331				pt->sync_switch = true;
1332			}
1333		}
1334	}
1335
1336	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1337		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1338	while (1) {
1339		err = intel_pt_sample(ptq);
1340		if (err)
1341			return err;
1342
1343		state = intel_pt_decode(ptq->decoder);
1344		if (state->err) {
1345			if (state->err == INTEL_PT_ERR_NODATA)
1346				return 1;
1347			if (pt->sync_switch &&
1348			    state->from_ip >= pt->kernel_start) {
1349				pt->sync_switch = false;
1350				intel_pt_next_tid(pt, ptq);
1351			}
1352			if (pt->synth_opts.errors) {
1353				err = intel_pt_synth_error(pt, state->err,
1354							   ptq->cpu, ptq->pid,
1355							   ptq->tid,
1356							   state->from_ip);
1357				if (err)
1358					return err;
1359			}
1360			continue;
1361		}
1362
1363		ptq->state = state;
1364		ptq->have_sample = true;
1365		intel_pt_sample_flags(ptq);
1366
1367		/* Use estimated TSC upon return to user space */
1368		if (pt->est_tsc &&
1369		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
1370		    state->to_ip && state->to_ip < pt->kernel_start) {
1371			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
1372				     state->timestamp, state->est_timestamp);
1373			ptq->timestamp = state->est_timestamp;
1374		/* Use estimated TSC in unknown switch state */
1375		} else if (pt->sync_switch &&
1376			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
1377			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
1378			   ptq->next_tid == -1) {
1379			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
1380				     state->timestamp, state->est_timestamp);
1381			ptq->timestamp = state->est_timestamp;
1382		} else if (state->timestamp > ptq->timestamp) {
1383			ptq->timestamp = state->timestamp;
1384		}
1385
 
 
 
 
 
 
1386		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
1387			*timestamp = ptq->timestamp;
1388			return 0;
1389		}
1390	}
1391	return 0;
1392}
1393
1394static inline int intel_pt_update_queues(struct intel_pt *pt)
1395{
1396	if (pt->queues.new_data) {
1397		pt->queues.new_data = false;
1398		return intel_pt_setup_queues(pt);
1399	}
1400	return 0;
1401}
1402
1403static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
1404{
1405	unsigned int queue_nr;
1406	u64 ts;
1407	int ret;
1408
1409	while (1) {
1410		struct auxtrace_queue *queue;
1411		struct intel_pt_queue *ptq;
1412
1413		if (!pt->heap.heap_cnt)
1414			return 0;
1415
1416		if (pt->heap.heap_array[0].ordinal >= timestamp)
1417			return 0;
1418
1419		queue_nr = pt->heap.heap_array[0].queue_nr;
1420		queue = &pt->queues.queue_array[queue_nr];
1421		ptq = queue->priv;
1422
1423		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
1424			     queue_nr, pt->heap.heap_array[0].ordinal,
1425			     timestamp);
1426
1427		auxtrace_heap__pop(&pt->heap);
1428
1429		if (pt->heap.heap_cnt) {
1430			ts = pt->heap.heap_array[0].ordinal + 1;
1431			if (ts > timestamp)
1432				ts = timestamp;
1433		} else {
1434			ts = timestamp;
1435		}
1436
1437		intel_pt_set_pid_tid_cpu(pt, queue);
1438
1439		ret = intel_pt_run_decoder(ptq, &ts);
1440
1441		if (ret < 0) {
1442			auxtrace_heap__add(&pt->heap, queue_nr, ts);
1443			return ret;
1444		}
1445
1446		if (!ret) {
1447			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
1448			if (ret < 0)
1449				return ret;
1450		} else {
1451			ptq->on_heap = false;
1452		}
1453	}
1454
1455	return 0;
1456}
1457
1458static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
1459					    u64 time_)
1460{
1461	struct auxtrace_queues *queues = &pt->queues;
1462	unsigned int i;
1463	u64 ts = 0;
1464
1465	for (i = 0; i < queues->nr_queues; i++) {
1466		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1467		struct intel_pt_queue *ptq = queue->priv;
1468
1469		if (ptq && (tid == -1 || ptq->tid == tid)) {
1470			ptq->time = time_;
1471			intel_pt_set_pid_tid_cpu(pt, queue);
1472			intel_pt_run_decoder(ptq, &ts);
1473		}
1474	}
1475	return 0;
1476}
1477
1478static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
1479{
1480	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
1481				    sample->pid, sample->tid, 0);
1482}
1483
1484static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
1485{
1486	unsigned i, j;
1487
1488	if (cpu < 0 || !pt->queues.nr_queues)
1489		return NULL;
1490
1491	if ((unsigned)cpu >= pt->queues.nr_queues)
1492		i = pt->queues.nr_queues - 1;
1493	else
1494		i = cpu;
1495
1496	if (pt->queues.queue_array[i].cpu == cpu)
1497		return pt->queues.queue_array[i].priv;
1498
1499	for (j = 0; i > 0; j++) {
1500		if (pt->queues.queue_array[--i].cpu == cpu)
1501			return pt->queues.queue_array[i].priv;
1502	}
1503
1504	for (; j < pt->queues.nr_queues; j++) {
1505		if (pt->queues.queue_array[j].cpu == cpu)
1506			return pt->queues.queue_array[j].priv;
1507	}
1508
1509	return NULL;
1510}
1511
1512static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
1513				u64 timestamp)
1514{
1515	struct intel_pt_queue *ptq;
1516	int err;
1517
1518	if (!pt->sync_switch)
1519		return 1;
1520
1521	ptq = intel_pt_cpu_to_ptq(pt, cpu);
1522	if (!ptq)
1523		return 1;
1524
1525	switch (ptq->switch_state) {
1526	case INTEL_PT_SS_NOT_TRACING:
1527		ptq->next_tid = -1;
1528		break;
1529	case INTEL_PT_SS_UNKNOWN:
1530	case INTEL_PT_SS_TRACING:
1531		ptq->next_tid = tid;
1532		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
1533		return 0;
1534	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
1535		if (!ptq->on_heap) {
1536			ptq->timestamp = perf_time_to_tsc(timestamp,
1537							  &pt->tc);
1538			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
1539						 ptq->timestamp);
1540			if (err)
1541				return err;
1542			ptq->on_heap = true;
1543		}
1544		ptq->switch_state = INTEL_PT_SS_TRACING;
1545		break;
1546	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
1547		ptq->next_tid = tid;
1548		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
1549		break;
1550	default:
1551		break;
1552	}
1553
 
 
1554	return 1;
1555}
1556
1557static int intel_pt_process_switch(struct intel_pt *pt,
1558				   struct perf_sample *sample)
1559{
1560	struct perf_evsel *evsel;
1561	pid_t tid;
1562	int cpu, ret;
1563
1564	evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
1565	if (evsel != pt->switch_evsel)
1566		return 0;
1567
1568	tid = perf_evsel__intval(evsel, sample, "next_pid");
1569	cpu = sample->cpu;
1570
1571	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1572		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
1573		     &pt->tc));
1574
1575	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
1576	if (ret <= 0)
1577		return ret;
1578
1579	return machine__set_current_tid(pt->machine, cpu, -1, tid);
1580}
1581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1582static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
1583				   struct perf_sample *sample)
1584{
1585	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
1586	pid_t pid, tid;
1587	int cpu, ret;
1588
1589	cpu = sample->cpu;
1590
1591	if (pt->have_sched_switch == 3) {
1592		if (!out)
1593			return 0;
1594		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
1595			pr_err("Expecting CPU-wide context switch event\n");
1596			return -EINVAL;
1597		}
1598		pid = event->context_switch.next_prev_pid;
1599		tid = event->context_switch.next_prev_tid;
1600	} else {
1601		if (out)
1602			return 0;
1603		pid = sample->pid;
1604		tid = sample->tid;
1605	}
1606
1607	if (tid == -1) {
1608		pr_err("context_switch event has no tid\n");
1609		return -EINVAL;
1610	}
1611
1612	intel_pt_log("context_switch: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1613		     cpu, pid, tid, sample->time, perf_time_to_tsc(sample->time,
1614		     &pt->tc));
1615
1616	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
1617	if (ret <= 0)
1618		return ret;
1619
1620	return machine__set_current_tid(pt->machine, cpu, pid, tid);
1621}
1622
1623static int intel_pt_process_itrace_start(struct intel_pt *pt,
1624					 union perf_event *event,
1625					 struct perf_sample *sample)
1626{
1627	if (!pt->per_cpu_mmaps)
1628		return 0;
1629
1630	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1631		     sample->cpu, event->itrace_start.pid,
1632		     event->itrace_start.tid, sample->time,
1633		     perf_time_to_tsc(sample->time, &pt->tc));
1634
1635	return machine__set_current_tid(pt->machine, sample->cpu,
1636					event->itrace_start.pid,
1637					event->itrace_start.tid);
1638}
1639
1640static int intel_pt_process_event(struct perf_session *session,
1641				  union perf_event *event,
1642				  struct perf_sample *sample,
1643				  struct perf_tool *tool)
1644{
1645	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1646					   auxtrace);
1647	u64 timestamp;
1648	int err = 0;
1649
1650	if (dump_trace)
1651		return 0;
1652
1653	if (!tool->ordered_events) {
1654		pr_err("Intel Processor Trace requires ordered events\n");
1655		return -EINVAL;
1656	}
1657
1658	if (sample->time && sample->time != (u64)-1)
1659		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
1660	else
1661		timestamp = 0;
1662
1663	if (timestamp || pt->timeless_decoding) {
1664		err = intel_pt_update_queues(pt);
1665		if (err)
1666			return err;
1667	}
1668
1669	if (pt->timeless_decoding) {
1670		if (event->header.type == PERF_RECORD_EXIT) {
1671			err = intel_pt_process_timeless_queues(pt,
1672							       event->fork.tid,
1673							       sample->time);
1674		}
1675	} else if (timestamp) {
1676		err = intel_pt_process_queues(pt, timestamp);
1677	}
1678	if (err)
1679		return err;
1680
1681	if (event->header.type == PERF_RECORD_AUX &&
1682	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
1683	    pt->synth_opts.errors) {
1684		err = intel_pt_lost(pt, sample);
1685		if (err)
1686			return err;
1687	}
1688
1689	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
1690		err = intel_pt_process_switch(pt, sample);
1691	else if (event->header.type == PERF_RECORD_ITRACE_START)
1692		err = intel_pt_process_itrace_start(pt, event, sample);
1693	else if (event->header.type == PERF_RECORD_SWITCH ||
1694		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
1695		err = intel_pt_context_switch(pt, event, sample);
1696
1697	intel_pt_log("event %s (%u): cpu %d time %"PRIu64" tsc %#"PRIx64"\n",
1698		     perf_event__name(event->header.type), event->header.type,
1699		     sample->cpu, sample->time, timestamp);
1700
1701	return err;
1702}
1703
1704static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
1705{
1706	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1707					   auxtrace);
1708	int ret;
1709
1710	if (dump_trace)
1711		return 0;
1712
1713	if (!tool->ordered_events)
1714		return -EINVAL;
1715
1716	ret = intel_pt_update_queues(pt);
1717	if (ret < 0)
1718		return ret;
1719
1720	if (pt->timeless_decoding)
1721		return intel_pt_process_timeless_queues(pt, -1,
1722							MAX_TIMESTAMP - 1);
1723
1724	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
1725}
1726
1727static void intel_pt_free_events(struct perf_session *session)
1728{
1729	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1730					   auxtrace);
1731	struct auxtrace_queues *queues = &pt->queues;
1732	unsigned int i;
1733
1734	for (i = 0; i < queues->nr_queues; i++) {
1735		intel_pt_free_queue(queues->queue_array[i].priv);
1736		queues->queue_array[i].priv = NULL;
1737	}
1738	intel_pt_log_disable();
1739	auxtrace_queues__free(queues);
1740}
1741
1742static void intel_pt_free(struct perf_session *session)
1743{
1744	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1745					   auxtrace);
1746
1747	auxtrace_heap__free(&pt->heap);
1748	intel_pt_free_events(session);
1749	session->auxtrace = NULL;
1750	thread__put(pt->unknown_thread);
 
 
 
1751	free(pt);
1752}
1753
1754static int intel_pt_process_auxtrace_event(struct perf_session *session,
1755					   union perf_event *event,
1756					   struct perf_tool *tool __maybe_unused)
1757{
1758	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1759					   auxtrace);
1760
1761	if (pt->sampling_mode)
1762		return 0;
1763
1764	if (!pt->data_queued) {
1765		struct auxtrace_buffer *buffer;
1766		off_t data_offset;
1767		int fd = perf_data_file__fd(session->file);
1768		int err;
1769
1770		if (perf_data_file__is_pipe(session->file)) {
1771			data_offset = 0;
1772		} else {
1773			data_offset = lseek(fd, 0, SEEK_CUR);
1774			if (data_offset == -1)
1775				return -errno;
1776		}
1777
1778		err = auxtrace_queues__add_event(&pt->queues, session, event,
1779						 data_offset, &buffer);
1780		if (err)
1781			return err;
1782
1783		/* Dump here now we have copied a piped trace out of the pipe */
1784		if (dump_trace) {
1785			if (auxtrace_buffer__get_data(buffer, fd)) {
1786				intel_pt_dump_event(pt, buffer->data,
1787						    buffer->size);
1788				auxtrace_buffer__put_data(buffer);
1789			}
1790		}
1791	}
1792
1793	return 0;
1794}
1795
1796struct intel_pt_synth {
1797	struct perf_tool dummy_tool;
1798	struct perf_session *session;
1799};
1800
1801static int intel_pt_event_synth(struct perf_tool *tool,
1802				union perf_event *event,
1803				struct perf_sample *sample __maybe_unused,
1804				struct machine *machine __maybe_unused)
1805{
1806	struct intel_pt_synth *intel_pt_synth =
1807			container_of(tool, struct intel_pt_synth, dummy_tool);
1808
1809	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
1810						 NULL);
1811}
1812
1813static int intel_pt_synth_event(struct perf_session *session,
1814				struct perf_event_attr *attr, u64 id)
1815{
1816	struct intel_pt_synth intel_pt_synth;
 
 
 
 
1817
1818	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
1819	intel_pt_synth.session = session;
1820
1821	return perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
1822					   &id, intel_pt_event_synth);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1823}
1824
1825static int intel_pt_synth_events(struct intel_pt *pt,
1826				 struct perf_session *session)
1827{
1828	struct perf_evlist *evlist = session->evlist;
1829	struct perf_evsel *evsel;
1830	struct perf_event_attr attr;
1831	bool found = false;
1832	u64 id;
1833	int err;
1834
1835	evlist__for_each(evlist, evsel) {
1836		if (evsel->attr.type == pt->pmu_type && evsel->ids) {
1837			found = true;
1838			break;
1839		}
1840	}
1841
1842	if (!found) {
1843		pr_debug("There are no selected events with Intel Processor Trace data\n");
1844		return 0;
1845	}
1846
1847	memset(&attr, 0, sizeof(struct perf_event_attr));
1848	attr.size = sizeof(struct perf_event_attr);
1849	attr.type = PERF_TYPE_HARDWARE;
1850	attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK;
1851	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1852			    PERF_SAMPLE_PERIOD;
1853	if (pt->timeless_decoding)
1854		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1855	else
1856		attr.sample_type |= PERF_SAMPLE_TIME;
1857	if (!pt->per_cpu_mmaps)
1858		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
1859	attr.exclude_user = evsel->attr.exclude_user;
1860	attr.exclude_kernel = evsel->attr.exclude_kernel;
1861	attr.exclude_hv = evsel->attr.exclude_hv;
1862	attr.exclude_host = evsel->attr.exclude_host;
1863	attr.exclude_guest = evsel->attr.exclude_guest;
1864	attr.sample_id_all = evsel->attr.sample_id_all;
1865	attr.read_format = evsel->attr.read_format;
1866
1867	id = evsel->id[0] + 1000000000;
1868	if (!id)
1869		id = 1;
1870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1871	if (pt->synth_opts.instructions) {
1872		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1873		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
1874			attr.sample_period =
1875				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
1876		else
1877			attr.sample_period = pt->synth_opts.period;
1878		pt->instructions_sample_period = attr.sample_period;
1879		if (pt->synth_opts.callchain)
1880			attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
1881		if (pt->synth_opts.last_branch)
1882			attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1883		pr_debug("Synthesizing 'instructions' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
1884			 id, (u64)attr.sample_type);
1885		err = intel_pt_synth_event(session, &attr, id);
1886		if (err) {
1887			pr_err("%s: failed to synthesize 'instructions' event type\n",
1888			       __func__);
1889			return err;
1890		}
1891		pt->sample_instructions = true;
1892		pt->instructions_sample_type = attr.sample_type;
1893		pt->instructions_id = id;
1894		id += 1;
1895	}
1896
 
 
 
1897	if (pt->synth_opts.transactions) {
1898		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1899		attr.sample_period = 1;
1900		if (pt->synth_opts.callchain)
1901			attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
1902		if (pt->synth_opts.last_branch)
1903			attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1904		pr_debug("Synthesizing 'transactions' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
1905			 id, (u64)attr.sample_type);
1906		err = intel_pt_synth_event(session, &attr, id);
1907		if (err) {
1908			pr_err("%s: failed to synthesize 'transactions' event type\n",
1909			       __func__);
1910			return err;
1911		}
1912		pt->sample_transactions = true;
 
1913		pt->transactions_id = id;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1914		id += 1;
1915		evlist__for_each(evlist, evsel) {
1916			if (evsel->id && evsel->id[0] == pt->transactions_id) {
1917				if (evsel->name)
1918					zfree(&evsel->name);
1919				evsel->name = strdup("transactions");
1920				break;
1921			}
1922		}
1923	}
1924
1925	if (pt->synth_opts.branches) {
1926		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1927		attr.sample_period = 1;
1928		attr.sample_type |= PERF_SAMPLE_ADDR;
1929		attr.sample_type &= ~(u64)PERF_SAMPLE_CALLCHAIN;
1930		attr.sample_type &= ~(u64)PERF_SAMPLE_BRANCH_STACK;
1931		pr_debug("Synthesizing 'branches' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
1932			 id, (u64)attr.sample_type);
1933		err = intel_pt_synth_event(session, &attr, id);
1934		if (err) {
1935			pr_err("%s: failed to synthesize 'branches' event type\n",
1936			       __func__);
1937			return err;
1938		}
1939		pt->sample_branches = true;
1940		pt->branches_sample_type = attr.sample_type;
1941		pt->branches_id = id;
1942	}
1943
1944	pt->synth_needs_swap = evsel->needs_swap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1945
1946	return 0;
1947}
1948
1949static struct perf_evsel *intel_pt_find_sched_switch(struct perf_evlist *evlist)
1950{
1951	struct perf_evsel *evsel;
 
 
 
1952
1953	evlist__for_each_reverse(evlist, evsel) {
 
 
 
 
 
 
 
 
 
 
 
 
 
1954		const char *name = perf_evsel__name(evsel);
1955
1956		if (!strcmp(name, "sched:sched_switch"))
1957			return evsel;
1958	}
1959
1960	return NULL;
1961}
1962
1963static bool intel_pt_find_switch(struct perf_evlist *evlist)
1964{
1965	struct perf_evsel *evsel;
1966
1967	evlist__for_each(evlist, evsel) {
1968		if (evsel->attr.context_switch)
1969			return true;
1970	}
1971
1972	return false;
1973}
1974
1975static int intel_pt_perf_config(const char *var, const char *value, void *data)
1976{
1977	struct intel_pt *pt = data;
1978
1979	if (!strcmp(var, "intel-pt.mispred-all"))
1980		pt->mispred_all = perf_config_bool(var, value);
1981
1982	return 0;
1983}
1984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1985static const char * const intel_pt_info_fmts[] = {
1986	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
1987	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
1988	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
1989	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
1990	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
1991	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
1992	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
1993	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
1994	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
1995	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
1996	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
1997	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
1998	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
1999	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
 
 
2000};
2001
2002static void intel_pt_print_info(u64 *arr, int start, int finish)
2003{
2004	int i;
2005
2006	if (!dump_trace)
2007		return;
2008
2009	for (i = start; i <= finish; i++)
2010		fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
2011}
2012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2013int intel_pt_process_auxtrace_info(union perf_event *event,
2014				   struct perf_session *session)
2015{
2016	struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info;
2017	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
2018	struct intel_pt *pt;
 
 
2019	int err;
2020
2021	if (auxtrace_info->header.size < sizeof(struct auxtrace_info_event) +
2022					min_sz)
2023		return -EINVAL;
2024
2025	pt = zalloc(sizeof(struct intel_pt));
2026	if (!pt)
2027		return -ENOMEM;
2028
2029	perf_config(intel_pt_perf_config, pt);
 
 
 
 
2030
2031	err = auxtrace_queues__init(&pt->queues);
2032	if (err)
2033		goto err_free;
2034
2035	intel_pt_log_set_name(INTEL_PT_PMU_NAME);
2036
2037	pt->session = session;
2038	pt->machine = &session->machines.host; /* No kvm support */
2039	pt->auxtrace_type = auxtrace_info->type;
2040	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
2041	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
2042	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
2043	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
2044	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
2045	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
2046	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
2047	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
2048	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
2049	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
2050	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
2051			    INTEL_PT_PER_CPU_MMAPS);
2052
2053	if (auxtrace_info->header.size >= sizeof(struct auxtrace_info_event) +
2054					(sizeof(u64) * INTEL_PT_CYC_BIT)) {
2055		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
2056		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
2057		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
2058		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
2059		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
2060		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
2061				    INTEL_PT_CYC_BIT);
2062	}
2063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2064	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
 
 
2065	pt->have_tsc = intel_pt_have_tsc(pt);
2066	pt->sampling_mode = false;
2067	pt->est_tsc = !pt->timeless_decoding;
2068
2069	pt->unknown_thread = thread__new(999999999, 999999999);
2070	if (!pt->unknown_thread) {
2071		err = -ENOMEM;
2072		goto err_free_queues;
2073	}
2074
2075	/*
2076	 * Since this thread will not be kept in any rbtree not in a
2077	 * list, initialize its list node so that at thread__put() the
2078	 * current thread lifetime assuption is kept and we don't segfault
2079	 * at list_del_init().
2080	 */
2081	INIT_LIST_HEAD(&pt->unknown_thread->node);
2082
2083	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
2084	if (err)
2085		goto err_delete_thread;
2086	if (thread__init_map_groups(pt->unknown_thread, pt->machine)) {
2087		err = -ENOMEM;
2088		goto err_delete_thread;
2089	}
2090
2091	pt->auxtrace.process_event = intel_pt_process_event;
2092	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
2093	pt->auxtrace.flush_events = intel_pt_flush;
2094	pt->auxtrace.free_events = intel_pt_free_events;
2095	pt->auxtrace.free = intel_pt_free;
2096	session->auxtrace = &pt->auxtrace;
2097
2098	if (dump_trace)
2099		return 0;
2100
2101	if (pt->have_sched_switch == 1) {
2102		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
2103		if (!pt->switch_evsel) {
2104			pr_err("%s: missing sched_switch event\n", __func__);
 
2105			goto err_delete_thread;
2106		}
2107	} else if (pt->have_sched_switch == 2 &&
2108		   !intel_pt_find_switch(session->evlist)) {
2109		pr_err("%s: missing context_switch attribute flag\n", __func__);
 
2110		goto err_delete_thread;
2111	}
2112
2113	if (session->itrace_synth_opts && session->itrace_synth_opts->set) {
2114		pt->synth_opts = *session->itrace_synth_opts;
2115	} else {
2116		itrace_synth_opts__set_default(&pt->synth_opts);
2117		if (use_browser != -1) {
 
 
2118			pt->synth_opts.branches = false;
2119			pt->synth_opts.callchain = true;
2120		}
 
 
2121	}
2122
2123	if (pt->synth_opts.log)
2124		intel_pt_log_enable();
2125
2126	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
2127	if (pt->tc.time_mult) {
2128		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
2129
2130		pt->max_non_turbo_ratio = (tsc_freq + 50000000) / 100000000;
 
 
2131		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
2132		intel_pt_log("Maximum non-turbo ratio %u\n",
2133			     pt->max_non_turbo_ratio);
 
2134	}
2135
 
 
 
 
2136	if (pt->synth_opts.calls)
2137		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
2138				       PERF_IP_FLAG_TRACE_END;
2139	if (pt->synth_opts.returns)
2140		pt->branches_filter |= PERF_IP_FLAG_RETURN |
2141				       PERF_IP_FLAG_TRACE_BEGIN;
2142
2143	if (pt->synth_opts.callchain && !symbol_conf.use_callchain) {
2144		symbol_conf.use_callchain = true;
2145		if (callchain_register_param(&callchain_param) < 0) {
2146			symbol_conf.use_callchain = false;
2147			pt->synth_opts.callchain = false;
2148		}
2149	}
2150
2151	err = intel_pt_synth_events(pt, session);
2152	if (err)
2153		goto err_delete_thread;
2154
 
 
2155	err = auxtrace_queues__process_index(&pt->queues, session);
2156	if (err)
2157		goto err_delete_thread;
2158
2159	if (pt->queues.populated)
2160		pt->data_queued = true;
2161
2162	if (pt->timeless_decoding)
2163		pr_debug2("Intel PT decoding without timestamps\n");
2164
2165	return 0;
2166
2167err_delete_thread:
2168	thread__zput(pt->unknown_thread);
2169err_free_queues:
2170	intel_pt_log_disable();
2171	auxtrace_queues__free(&pt->queues);
2172	session->auxtrace = NULL;
2173err_free:
 
 
 
2174	free(pt);
2175	return err;
2176}