Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * intel_pt.c: Intel Processor Trace support
   4 * Copyright (c) 2013-2015, Intel Corporation.
   5 */
   6
   7#include <inttypes.h>
   8#include <stdio.h>
   9#include <stdbool.h>
  10#include <errno.h>
  11#include <linux/kernel.h>
  12#include <linux/string.h>
  13#include <linux/types.h>
  14#include <linux/zalloc.h>
  15
  16#include "session.h"
  17#include "machine.h"
  18#include "memswap.h"
  19#include "sort.h"
  20#include "tool.h"
  21#include "event.h"
  22#include "evlist.h"
  23#include "evsel.h"
  24#include "map.h"
  25#include "color.h"
  26#include "thread.h"
  27#include "thread-stack.h"
  28#include "symbol.h"
  29#include "callchain.h"
  30#include "dso.h"
  31#include "debug.h"
  32#include "auxtrace.h"
  33#include "tsc.h"
  34#include "intel-pt.h"
  35#include "config.h"
 
  36#include "util/synthetic-events.h"
  37#include "time-utils.h"
  38
  39#include "../arch/x86/include/uapi/asm/perf_regs.h"
  40
  41#include "intel-pt-decoder/intel-pt-log.h"
  42#include "intel-pt-decoder/intel-pt-decoder.h"
  43#include "intel-pt-decoder/intel-pt-insn-decoder.h"
  44#include "intel-pt-decoder/intel-pt-pkt-decoder.h"
  45
  46#define MAX_TIMESTAMP (~0ULL)
  47
 
 
 
 
 
 
  48struct range {
  49	u64 start;
  50	u64 end;
  51};
  52
  53struct intel_pt {
  54	struct auxtrace auxtrace;
  55	struct auxtrace_queues queues;
  56	struct auxtrace_heap heap;
  57	u32 auxtrace_type;
  58	struct perf_session *session;
  59	struct machine *machine;
  60	struct evsel *switch_evsel;
  61	struct thread *unknown_thread;
  62	bool timeless_decoding;
  63	bool sampling_mode;
  64	bool snapshot_mode;
  65	bool per_cpu_mmaps;
  66	bool have_tsc;
  67	bool data_queued;
  68	bool est_tsc;
  69	bool sync_switch;
 
  70	bool mispred_all;
 
 
 
 
 
 
  71	int have_sched_switch;
  72	u32 pmu_type;
  73	u64 kernel_start;
  74	u64 switch_ip;
  75	u64 ptss_ip;
 
  76
  77	struct perf_tsc_conversion tc;
  78	bool cap_user_time_zero;
  79
  80	struct itrace_synth_opts synth_opts;
  81
  82	bool sample_instructions;
  83	u64 instructions_sample_type;
  84	u64 instructions_id;
  85
  86	bool sample_branches;
  87	u32 branches_filter;
  88	u64 branches_sample_type;
  89	u64 branches_id;
  90
  91	bool sample_transactions;
  92	u64 transactions_sample_type;
  93	u64 transactions_id;
  94
  95	bool sample_ptwrites;
  96	u64 ptwrites_sample_type;
  97	u64 ptwrites_id;
  98
  99	bool sample_pwr_events;
 100	u64 pwr_events_sample_type;
 101	u64 mwait_id;
 102	u64 pwre_id;
 103	u64 exstop_id;
 104	u64 pwrx_id;
 105	u64 cbr_id;
 
 106
 
 107	bool sample_pebs;
 108	struct evsel *pebs_evsel;
 109
 
 
 
 
 
 
 110	u64 tsc_bit;
 111	u64 mtc_bit;
 112	u64 mtc_freq_bits;
 113	u32 tsc_ctc_ratio_n;
 114	u32 tsc_ctc_ratio_d;
 115	u64 cyc_bit;
 116	u64 noretcomp_bit;
 117	unsigned max_non_turbo_ratio;
 118	unsigned cbr2khz;
 
 119
 120	unsigned long num_events;
 121
 122	char *filter;
 123	struct addr_filters filts;
 124
 125	struct range *time_ranges;
 126	unsigned int range_cnt;
 
 
 
 
 
 
 127};
 128
 129enum switch_state {
 130	INTEL_PT_SS_NOT_TRACING,
 131	INTEL_PT_SS_UNKNOWN,
 132	INTEL_PT_SS_TRACING,
 133	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
 134	INTEL_PT_SS_EXPECTING_SWITCH_IP,
 135};
 136
 
 
 
 
 
 
 
 
 137struct intel_pt_queue {
 138	struct intel_pt *pt;
 139	unsigned int queue_nr;
 140	struct auxtrace_buffer *buffer;
 141	struct auxtrace_buffer *old_buffer;
 142	void *decoder;
 143	const struct intel_pt_state *state;
 144	struct ip_callchain *chain;
 145	struct branch_stack *last_branch;
 146	struct branch_stack *last_branch_rb;
 147	size_t last_branch_pos;
 148	union perf_event *event_buf;
 149	bool on_heap;
 150	bool stop;
 151	bool step_through_buffers;
 152	bool use_buffer_pid_tid;
 153	bool sync_switch;
 
 154	pid_t pid, tid;
 155	int cpu;
 156	int switch_state;
 157	pid_t next_tid;
 158	struct thread *thread;
 
 
 
 
 
 
 
 159	bool exclude_kernel;
 160	bool have_sample;
 161	u64 time;
 162	u64 timestamp;
 163	u64 sel_timestamp;
 164	bool sel_start;
 165	unsigned int sel_idx;
 166	u32 flags;
 167	u16 insn_len;
 168	u64 last_insn_cnt;
 169	u64 ipc_insn_cnt;
 170	u64 ipc_cyc_cnt;
 171	u64 last_in_insn_cnt;
 172	u64 last_in_cyc_cnt;
 173	u64 last_br_insn_cnt;
 174	u64 last_br_cyc_cnt;
 175	unsigned int cbr_seen;
 176	char insn[INTEL_PT_INSN_BUF_SZ];
 
 177};
 178
 179static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
 180			  unsigned char *buf, size_t len)
 181{
 182	struct intel_pt_pkt packet;
 183	size_t pos = 0;
 184	int ret, pkt_len, i;
 185	char desc[INTEL_PT_PKT_DESC_MAX];
 186	const char *color = PERF_COLOR_BLUE;
 187	enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
 188
 189	color_fprintf(stdout, color,
 190		      ". ... Intel Processor Trace data: size %zu bytes\n",
 191		      len);
 192
 193	while (len) {
 194		ret = intel_pt_get_packet(buf, len, &packet, &ctx);
 195		if (ret > 0)
 196			pkt_len = ret;
 197		else
 198			pkt_len = 1;
 199		printf(".");
 200		color_fprintf(stdout, color, "  %08x: ", pos);
 201		for (i = 0; i < pkt_len; i++)
 202			color_fprintf(stdout, color, " %02x", buf[i]);
 203		for (; i < 16; i++)
 204			color_fprintf(stdout, color, "   ");
 205		if (ret > 0) {
 206			ret = intel_pt_pkt_desc(&packet, desc,
 207						INTEL_PT_PKT_DESC_MAX);
 208			if (ret > 0)
 209				color_fprintf(stdout, color, " %s\n", desc);
 210		} else {
 211			color_fprintf(stdout, color, " Bad packet!\n");
 212		}
 213		pos += pkt_len;
 214		buf += pkt_len;
 215		len -= pkt_len;
 216	}
 217}
 218
 219static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
 220				size_t len)
 221{
 222	printf(".\n");
 223	intel_pt_dump(pt, buf, len);
 224}
 225
 226static void intel_pt_log_event(union perf_event *event)
 227{
 228	FILE *f = intel_pt_log_fp();
 229
 230	if (!intel_pt_enable_logging || !f)
 231		return;
 232
 233	perf_event__fprintf(event, f);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 234}
 235
 236static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
 237				   struct auxtrace_buffer *b)
 238{
 239	bool consecutive = false;
 240	void *start;
 241
 242	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
 243				      pt->have_tsc, &consecutive);
 
 244	if (!start)
 245		return -EINVAL;
 
 
 
 
 
 
 
 246	b->use_size = b->data + b->size - start;
 247	b->use_data = start;
 248	if (b->use_size && consecutive)
 249		b->consecutive = true;
 250	return 0;
 251}
 252
 253static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
 254			       struct auxtrace_buffer *buffer,
 255			       struct auxtrace_buffer *old_buffer,
 256			       struct intel_pt_buffer *b)
 257{
 258	bool might_overlap;
 259
 260	if (!buffer->data) {
 261		int fd = perf_data__fd(ptq->pt->session->data);
 262
 263		buffer->data = auxtrace_buffer__get_data(buffer, fd);
 264		if (!buffer->data)
 265			return -ENOMEM;
 266	}
 267
 268	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
 269	if (might_overlap && !buffer->consecutive && old_buffer &&
 270	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
 271		return -ENOMEM;
 272
 273	if (buffer->use_data) {
 274		b->len = buffer->use_size;
 275		b->buf = buffer->use_data;
 276	} else {
 277		b->len = buffer->size;
 278		b->buf = buffer->data;
 279	}
 280	b->ref_timestamp = buffer->reference;
 281
 282	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
 283		b->consecutive = false;
 284		b->trace_nr = buffer->buffer_nr + 1;
 285	} else {
 286		b->consecutive = true;
 287	}
 288
 289	return 0;
 290}
 291
 292/* Do not drop buffers with references - refer intel_pt_get_trace() */
 293static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
 294					   struct auxtrace_buffer *buffer)
 295{
 296	if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
 297		return;
 298
 299	auxtrace_buffer__drop_data(buffer);
 300}
 301
 302/* Must be serialized with respect to intel_pt_get_trace() */
 303static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
 304			      void *cb_data)
 305{
 306	struct intel_pt_queue *ptq = data;
 307	struct auxtrace_buffer *buffer = ptq->buffer;
 308	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
 309	struct auxtrace_queue *queue;
 310	int err = 0;
 311
 312	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
 313
 314	while (1) {
 315		struct intel_pt_buffer b = { .len = 0 };
 316
 317		buffer = auxtrace_buffer__next(queue, buffer);
 318		if (!buffer)
 319			break;
 320
 321		err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
 322		if (err)
 323			break;
 324
 325		if (b.len) {
 326			intel_pt_lookahead_drop_buffer(ptq, old_buffer);
 327			old_buffer = buffer;
 328		} else {
 329			intel_pt_lookahead_drop_buffer(ptq, buffer);
 330			continue;
 331		}
 332
 333		err = cb(&b, cb_data);
 334		if (err)
 335			break;
 336	}
 337
 338	if (buffer != old_buffer)
 339		intel_pt_lookahead_drop_buffer(ptq, buffer);
 340	intel_pt_lookahead_drop_buffer(ptq, old_buffer);
 341
 342	return err;
 343}
 344
 345/*
 346 * This function assumes data is processed sequentially only.
 347 * Must be serialized with respect to intel_pt_lookahead()
 348 */
 349static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
 350{
 351	struct intel_pt_queue *ptq = data;
 352	struct auxtrace_buffer *buffer = ptq->buffer;
 353	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
 354	struct auxtrace_queue *queue;
 355	int err;
 356
 357	if (ptq->stop) {
 358		b->len = 0;
 359		return 0;
 360	}
 361
 362	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
 363
 364	buffer = auxtrace_buffer__next(queue, buffer);
 365	if (!buffer) {
 366		if (old_buffer)
 367			auxtrace_buffer__drop_data(old_buffer);
 368		b->len = 0;
 369		return 0;
 370	}
 371
 372	ptq->buffer = buffer;
 373
 374	err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
 375	if (err)
 376		return err;
 377
 378	if (ptq->step_through_buffers)
 379		ptq->stop = true;
 380
 381	if (b->len) {
 382		if (old_buffer)
 383			auxtrace_buffer__drop_data(old_buffer);
 384		ptq->old_buffer = buffer;
 385	} else {
 386		auxtrace_buffer__drop_data(buffer);
 387		return intel_pt_get_trace(b, data);
 388	}
 389
 390	return 0;
 391}
 392
 393struct intel_pt_cache_entry {
 394	struct auxtrace_cache_entry	entry;
 395	u64				insn_cnt;
 396	u64				byte_cnt;
 397	enum intel_pt_insn_op		op;
 398	enum intel_pt_insn_branch	branch;
 
 399	int				length;
 400	int32_t				rel;
 401	char				insn[INTEL_PT_INSN_BUF_SZ];
 402};
 403
 404static int intel_pt_config_div(const char *var, const char *value, void *data)
 405{
 406	int *d = data;
 407	long val;
 408
 409	if (!strcmp(var, "intel-pt.cache-divisor")) {
 410		val = strtol(value, NULL, 0);
 411		if (val > 0 && val <= INT_MAX)
 412			*d = val;
 413	}
 414
 415	return 0;
 416}
 417
 418static int intel_pt_cache_divisor(void)
 419{
 420	static int d;
 421
 422	if (d)
 423		return d;
 424
 425	perf_config(intel_pt_config_div, &d);
 426
 427	if (!d)
 428		d = 64;
 429
 430	return d;
 431}
 432
 433static unsigned int intel_pt_cache_size(struct dso *dso,
 434					struct machine *machine)
 435{
 436	off_t size;
 437
 438	size = dso__data_size(dso, machine);
 439	size /= intel_pt_cache_divisor();
 440	if (size < 1000)
 441		return 10;
 442	if (size > (1 << 21))
 443		return 21;
 444	return 32 - __builtin_clz(size);
 445}
 446
 447static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
 448					     struct machine *machine)
 449{
 450	struct auxtrace_cache *c;
 451	unsigned int bits;
 452
 453	if (dso->auxtrace_cache)
 454		return dso->auxtrace_cache;
 455
 456	bits = intel_pt_cache_size(dso, machine);
 457
 458	/* Ignoring cache creation failure */
 459	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
 460
 461	dso->auxtrace_cache = c;
 462
 463	return c;
 464}
 465
 466static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
 467			      u64 offset, u64 insn_cnt, u64 byte_cnt,
 468			      struct intel_pt_insn *intel_pt_insn)
 469{
 470	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
 471	struct intel_pt_cache_entry *e;
 472	int err;
 473
 474	if (!c)
 475		return -ENOMEM;
 476
 477	e = auxtrace_cache__alloc_entry(c);
 478	if (!e)
 479		return -ENOMEM;
 480
 481	e->insn_cnt = insn_cnt;
 482	e->byte_cnt = byte_cnt;
 483	e->op = intel_pt_insn->op;
 484	e->branch = intel_pt_insn->branch;
 
 485	e->length = intel_pt_insn->length;
 486	e->rel = intel_pt_insn->rel;
 487	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
 488
 489	err = auxtrace_cache__add(c, offset, &e->entry);
 490	if (err)
 491		auxtrace_cache__free_entry(c, e);
 492
 493	return err;
 494}
 495
 496static struct intel_pt_cache_entry *
 497intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
 498{
 499	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
 500
 501	if (!c)
 502		return NULL;
 503
 504	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
 505}
 506
 507static inline u8 intel_pt_cpumode(struct intel_pt *pt, uint64_t ip)
 
 508{
 509	return ip >= pt->kernel_start ?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 510	       PERF_RECORD_MISC_KERNEL :
 511	       PERF_RECORD_MISC_USER;
 512}
 513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 514static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
 515				   uint64_t *insn_cnt_ptr, uint64_t *ip,
 516				   uint64_t to_ip, uint64_t max_insn_cnt,
 517				   void *data)
 518{
 519	struct intel_pt_queue *ptq = data;
 520	struct machine *machine = ptq->pt->machine;
 521	struct thread *thread;
 522	struct addr_location al;
 523	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
 524	ssize_t len;
 525	int x86_64;
 526	u8 cpumode;
 527	u64 offset, start_offset, start_ip;
 528	u64 insn_cnt = 0;
 529	bool one_map = true;
 
 530
 531	intel_pt_insn->length = 0;
 532
 533	if (to_ip && *ip == to_ip)
 534		goto out_no_cache;
 535
 536	cpumode = intel_pt_cpumode(ptq->pt, *ip);
 
 537
 538	thread = ptq->thread;
 539	if (!thread) {
 540		if (cpumode != PERF_RECORD_MISC_KERNEL)
 
 
 
 
 
 
 541			return -EINVAL;
 542		thread = ptq->pt->unknown_thread;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 543	}
 544
 545	while (1) {
 546		if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
 
 
 
 
 547			return -EINVAL;
 
 548
 549		if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
 550		    dso__data_status_seen(al.map->dso,
 551					  DSO_DATA_STATUS_SEEN_ITRACE))
 552			return -ENOENT;
 553
 554		offset = al.map->map_ip(al.map, *ip);
 555
 556		if (!to_ip && one_map) {
 557			struct intel_pt_cache_entry *e;
 558
 559			e = intel_pt_cache_lookup(al.map->dso, machine, offset);
 560			if (e &&
 561			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
 562				*insn_cnt_ptr = e->insn_cnt;
 563				*ip += e->byte_cnt;
 564				intel_pt_insn->op = e->op;
 565				intel_pt_insn->branch = e->branch;
 
 566				intel_pt_insn->length = e->length;
 567				intel_pt_insn->rel = e->rel;
 568				memcpy(intel_pt_insn->buf, e->insn,
 569				       INTEL_PT_INSN_BUF_SZ);
 570				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
 571				return 0;
 572			}
 573		}
 574
 575		start_offset = offset;
 576		start_ip = *ip;
 577
 578		/* Load maps to ensure dso->is_64_bit has been updated */
 579		map__load(al.map);
 580
 581		x86_64 = al.map->dso->is_64_bit;
 582
 583		while (1) {
 584			len = dso__data_read_offset(al.map->dso, machine,
 585						    offset, buf,
 586						    INTEL_PT_INSN_BUF_SZ);
 587			if (len <= 0)
 
 
 
 
 588				return -EINVAL;
 
 589
 590			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
 591				return -EINVAL;
 592
 593			intel_pt_log_insn(intel_pt_insn, *ip);
 594
 595			insn_cnt += 1;
 596
 597			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
 
 
 
 
 
 
 
 
 
 598				goto out;
 
 599
 600			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
 601				goto out_no_cache;
 602
 603			*ip += intel_pt_insn->length;
 604
 605			if (to_ip && *ip == to_ip)
 
 606				goto out_no_cache;
 
 607
 608			if (*ip >= al.map->end)
 609				break;
 610
 611			offset += intel_pt_insn->length;
 612		}
 613		one_map = false;
 614	}
 615out:
 616	*insn_cnt_ptr = insn_cnt;
 617
 618	if (!one_map)
 619		goto out_no_cache;
 620
 621	/*
 622	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
 623	 * entries.
 624	 */
 625	if (to_ip) {
 626		struct intel_pt_cache_entry *e;
 627
 628		e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
 629		if (e)
 630			return 0;
 631	}
 632
 633	/* Ignore cache errors */
 634	intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
 635			   *ip - start_ip, intel_pt_insn);
 636
 637	return 0;
 638
 639out_no_cache:
 640	*insn_cnt_ptr = insn_cnt;
 641	return 0;
 642}
 643
 644static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
 645				  uint64_t offset, const char *filename)
 646{
 647	struct addr_filter *filt;
 648	bool have_filter   = false;
 649	bool hit_tracestop = false;
 650	bool hit_filter    = false;
 651
 652	list_for_each_entry(filt, &pt->filts.head, list) {
 653		if (filt->start)
 654			have_filter = true;
 655
 656		if ((filename && !filt->filename) ||
 657		    (!filename && filt->filename) ||
 658		    (filename && strcmp(filename, filt->filename)))
 659			continue;
 660
 661		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
 662			continue;
 663
 664		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
 665			     ip, offset, filename ? filename : "[kernel]",
 666			     filt->start ? "filter" : "stop",
 667			     filt->addr, filt->size);
 668
 669		if (filt->start)
 670			hit_filter = true;
 671		else
 672			hit_tracestop = true;
 673	}
 674
 675	if (!hit_tracestop && !hit_filter)
 676		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
 677			     ip, offset, filename ? filename : "[kernel]");
 678
 679	return hit_tracestop || (have_filter && !hit_filter);
 680}
 681
 682static int __intel_pt_pgd_ip(uint64_t ip, void *data)
 683{
 684	struct intel_pt_queue *ptq = data;
 685	struct thread *thread;
 686	struct addr_location al;
 687	u8 cpumode;
 688	u64 offset;
 689
 690	if (ip >= ptq->pt->kernel_start)
 
 
 
 
 
 691		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
 
 692
 693	cpumode = PERF_RECORD_MISC_USER;
 694
 695	thread = ptq->thread;
 696	if (!thread)
 697		return -EINVAL;
 698
 699	if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
 700		return -EINVAL;
 701
 702	offset = al.map->map_ip(al.map, ip);
 703
 704	return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
 705				     al.map->dso->long_name);
 706}
 707
 708static bool intel_pt_pgd_ip(uint64_t ip, void *data)
 709{
 710	return __intel_pt_pgd_ip(ip, data) > 0;
 711}
 712
 713static bool intel_pt_get_config(struct intel_pt *pt,
 714				struct perf_event_attr *attr, u64 *config)
 715{
 716	if (attr->type == pt->pmu_type) {
 717		if (config)
 718			*config = attr->config;
 719		return true;
 720	}
 721
 722	return false;
 723}
 724
 725static bool intel_pt_exclude_kernel(struct intel_pt *pt)
 726{
 727	struct evsel *evsel;
 728
 729	evlist__for_each_entry(pt->session->evlist, evsel) {
 730		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
 731		    !evsel->core.attr.exclude_kernel)
 732			return false;
 733	}
 734	return true;
 735}
 736
 737static bool intel_pt_return_compression(struct intel_pt *pt)
 738{
 739	struct evsel *evsel;
 740	u64 config;
 741
 742	if (!pt->noretcomp_bit)
 743		return true;
 744
 745	evlist__for_each_entry(pt->session->evlist, evsel) {
 746		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
 747		    (config & pt->noretcomp_bit))
 748			return false;
 749	}
 750	return true;
 751}
 752
 753static bool intel_pt_branch_enable(struct intel_pt *pt)
 754{
 755	struct evsel *evsel;
 756	u64 config;
 757
 758	evlist__for_each_entry(pt->session->evlist, evsel) {
 759		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
 760		    (config & 1) && !(config & 0x2000))
 
 761			return false;
 762	}
 763	return true;
 764}
 765
 
 
 
 
 
 
 
 
 
 
 
 
 
 766static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
 767{
 768	struct evsel *evsel;
 769	unsigned int shift;
 770	u64 config;
 771
 772	if (!pt->mtc_freq_bits)
 773		return 0;
 774
 775	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
 776		config >>= 1;
 777
 778	evlist__for_each_entry(pt->session->evlist, evsel) {
 779		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
 780			return (config & pt->mtc_freq_bits) >> shift;
 781	}
 782	return 0;
 783}
 784
 785static bool intel_pt_timeless_decoding(struct intel_pt *pt)
 786{
 787	struct evsel *evsel;
 788	bool timeless_decoding = true;
 789	u64 config;
 790
 791	if (!pt->tsc_bit || !pt->cap_user_time_zero)
 792		return true;
 793
 794	evlist__for_each_entry(pt->session->evlist, evsel) {
 795		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
 796			return true;
 797		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
 798			if (config & pt->tsc_bit)
 799				timeless_decoding = false;
 800			else
 801				return true;
 802		}
 803	}
 804	return timeless_decoding;
 805}
 806
 807static bool intel_pt_tracing_kernel(struct intel_pt *pt)
 808{
 809	struct evsel *evsel;
 810
 811	evlist__for_each_entry(pt->session->evlist, evsel) {
 812		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
 813		    !evsel->core.attr.exclude_kernel)
 814			return true;
 815	}
 816	return false;
 817}
 818
 819static bool intel_pt_have_tsc(struct intel_pt *pt)
 820{
 821	struct evsel *evsel;
 822	bool have_tsc = false;
 823	u64 config;
 824
 825	if (!pt->tsc_bit)
 826		return false;
 827
 828	evlist__for_each_entry(pt->session->evlist, evsel) {
 829		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
 830			if (config & pt->tsc_bit)
 831				have_tsc = true;
 832			else
 833				return false;
 834		}
 835	}
 836	return have_tsc;
 837}
 838
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 839static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
 840{
 841	u64 quot, rem;
 842
 843	quot = ns / pt->tc.time_mult;
 844	rem  = ns % pt->tc.time_mult;
 845	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
 846		pt->tc.time_mult;
 847}
 848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 849static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
 850						   unsigned int queue_nr)
 851{
 852	struct intel_pt_params params = { .get_trace = 0, };
 853	struct perf_env *env = pt->machine->env;
 854	struct intel_pt_queue *ptq;
 855
 856	ptq = zalloc(sizeof(struct intel_pt_queue));
 857	if (!ptq)
 858		return NULL;
 859
 860	if (pt->synth_opts.callchain) {
 861		size_t sz = sizeof(struct ip_callchain);
 862
 863		/* Add 1 to callchain_sz for callchain context */
 864		sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
 865		ptq->chain = zalloc(sz);
 866		if (!ptq->chain)
 867			goto out_free;
 868	}
 869
 870	if (pt->synth_opts.last_branch) {
 871		size_t sz = sizeof(struct branch_stack);
 872
 873		sz += pt->synth_opts.last_branch_sz *
 874		      sizeof(struct branch_entry);
 875		ptq->last_branch = zalloc(sz);
 876		if (!ptq->last_branch)
 877			goto out_free;
 878		ptq->last_branch_rb = zalloc(sz);
 879		if (!ptq->last_branch_rb)
 880			goto out_free;
 881	}
 882
 883	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
 884	if (!ptq->event_buf)
 885		goto out_free;
 886
 887	ptq->pt = pt;
 888	ptq->queue_nr = queue_nr;
 889	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
 890	ptq->pid = -1;
 891	ptq->tid = -1;
 892	ptq->cpu = -1;
 893	ptq->next_tid = -1;
 894
 895	params.get_trace = intel_pt_get_trace;
 896	params.walk_insn = intel_pt_walk_next_insn;
 897	params.lookahead = intel_pt_lookahead;
 
 898	params.data = ptq;
 899	params.return_compression = intel_pt_return_compression(pt);
 900	params.branch_enable = intel_pt_branch_enable(pt);
 
 901	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
 902	params.mtc_period = intel_pt_mtc_period(pt);
 903	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
 904	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
 
 
 
 
 
 
 
 
 
 905
 906	if (pt->filts.cnt > 0)
 907		params.pgd_ip = intel_pt_pgd_ip;
 908
 909	if (pt->synth_opts.instructions) {
 910		if (pt->synth_opts.period) {
 911			switch (pt->synth_opts.period_type) {
 912			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
 913				params.period_type =
 914						INTEL_PT_PERIOD_INSTRUCTIONS;
 915				params.period = pt->synth_opts.period;
 916				break;
 917			case PERF_ITRACE_PERIOD_TICKS:
 918				params.period_type = INTEL_PT_PERIOD_TICKS;
 919				params.period = pt->synth_opts.period;
 920				break;
 921			case PERF_ITRACE_PERIOD_NANOSECS:
 922				params.period_type = INTEL_PT_PERIOD_TICKS;
 923				params.period = intel_pt_ns_to_ticks(pt,
 924							pt->synth_opts.period);
 925				break;
 926			default:
 927				break;
 928			}
 929		}
 930
 931		if (!params.period) {
 932			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
 933			params.period = 1;
 934		}
 935	}
 936
 937	if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
 938		params.flags |= INTEL_PT_FUP_WITH_NLIP;
 939
 940	ptq->decoder = intel_pt_decoder_new(&params);
 941	if (!ptq->decoder)
 942		goto out_free;
 943
 944	return ptq;
 945
 946out_free:
 947	zfree(&ptq->event_buf);
 948	zfree(&ptq->last_branch);
 949	zfree(&ptq->last_branch_rb);
 950	zfree(&ptq->chain);
 951	free(ptq);
 952	return NULL;
 953}
 954
 955static void intel_pt_free_queue(void *priv)
 956{
 957	struct intel_pt_queue *ptq = priv;
 958
 959	if (!ptq)
 960		return;
 961	thread__zput(ptq->thread);
 
 
 962	intel_pt_decoder_free(ptq->decoder);
 963	zfree(&ptq->event_buf);
 964	zfree(&ptq->last_branch);
 965	zfree(&ptq->last_branch_rb);
 966	zfree(&ptq->chain);
 967	free(ptq);
 968}
 969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 970static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
 971				     struct auxtrace_queue *queue)
 972{
 973	struct intel_pt_queue *ptq = queue->priv;
 974
 975	if (queue->tid == -1 || pt->have_sched_switch) {
 976		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
 
 
 977		thread__zput(ptq->thread);
 978	}
 979
 980	if (!ptq->thread && ptq->tid != -1)
 981		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
 982
 983	if (ptq->thread) {
 984		ptq->pid = ptq->thread->pid_;
 985		if (queue->cpu == -1)
 986			ptq->cpu = ptq->thread->cpu;
 987	}
 
 
 
 
 
 
 
 988}
 989
 990static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
 991{
 
 
 
 992	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
 993		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
 994	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
 995		if (ptq->state->to_ip)
 
 
 
 
 
 
 996			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
 997				     PERF_IP_FLAG_ASYNC |
 998				     PERF_IP_FLAG_INTERRUPT;
 999		else
1000			ptq->flags = PERF_IP_FLAG_BRANCH |
1001				     PERF_IP_FLAG_TRACE_END;
1002		ptq->insn_len = 0;
1003	} else {
1004		if (ptq->state->from_ip)
1005			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1006		else
1007			ptq->flags = PERF_IP_FLAG_BRANCH |
1008				     PERF_IP_FLAG_TRACE_BEGIN;
1009		if (ptq->state->flags & INTEL_PT_IN_TX)
1010			ptq->flags |= PERF_IP_FLAG_IN_TX;
1011		ptq->insn_len = ptq->state->insn_len;
1012		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1013	}
1014
1015	if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1016		ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1017	if (ptq->state->type & INTEL_PT_TRACE_END)
1018		ptq->flags |= PERF_IP_FLAG_TRACE_END;
 
 
 
 
 
 
 
 
 
 
 
1019}
1020
1021static void intel_pt_setup_time_range(struct intel_pt *pt,
1022				      struct intel_pt_queue *ptq)
1023{
1024	if (!pt->range_cnt)
1025		return;
1026
1027	ptq->sel_timestamp = pt->time_ranges[0].start;
1028	ptq->sel_idx = 0;
1029
1030	if (ptq->sel_timestamp) {
1031		ptq->sel_start = true;
1032	} else {
1033		ptq->sel_timestamp = pt->time_ranges[0].end;
1034		ptq->sel_start = false;
1035	}
1036}
1037
1038static int intel_pt_setup_queue(struct intel_pt *pt,
1039				struct auxtrace_queue *queue,
1040				unsigned int queue_nr)
1041{
1042	struct intel_pt_queue *ptq = queue->priv;
1043
1044	if (list_empty(&queue->head))
1045		return 0;
1046
1047	if (!ptq) {
1048		ptq = intel_pt_alloc_queue(pt, queue_nr);
1049		if (!ptq)
1050			return -ENOMEM;
1051		queue->priv = ptq;
1052
1053		if (queue->cpu != -1)
1054			ptq->cpu = queue->cpu;
1055		ptq->tid = queue->tid;
1056
1057		ptq->cbr_seen = UINT_MAX;
1058
1059		if (pt->sampling_mode && !pt->snapshot_mode &&
1060		    pt->timeless_decoding)
1061			ptq->step_through_buffers = true;
1062
1063		ptq->sync_switch = pt->sync_switch;
1064
1065		intel_pt_setup_time_range(pt, ptq);
1066	}
1067
1068	if (!ptq->on_heap &&
1069	    (!ptq->sync_switch ||
1070	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1071		const struct intel_pt_state *state;
1072		int ret;
1073
1074		if (pt->timeless_decoding)
1075			return 0;
1076
1077		intel_pt_log("queue %u getting timestamp\n", queue_nr);
1078		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1079			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1080
1081		if (ptq->sel_start && ptq->sel_timestamp) {
1082			ret = intel_pt_fast_forward(ptq->decoder,
1083						    ptq->sel_timestamp);
1084			if (ret)
1085				return ret;
1086		}
1087
1088		while (1) {
1089			state = intel_pt_decode(ptq->decoder);
1090			if (state->err) {
1091				if (state->err == INTEL_PT_ERR_NODATA) {
1092					intel_pt_log("queue %u has no timestamp\n",
1093						     queue_nr);
1094					return 0;
1095				}
1096				continue;
1097			}
1098			if (state->timestamp)
1099				break;
1100		}
1101
1102		ptq->timestamp = state->timestamp;
1103		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1104			     queue_nr, ptq->timestamp);
1105		ptq->state = state;
1106		ptq->have_sample = true;
1107		if (ptq->sel_start && ptq->sel_timestamp &&
1108		    ptq->timestamp < ptq->sel_timestamp)
1109			ptq->have_sample = false;
1110		intel_pt_sample_flags(ptq);
1111		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1112		if (ret)
1113			return ret;
1114		ptq->on_heap = true;
1115	}
1116
1117	return 0;
1118}
1119
1120static int intel_pt_setup_queues(struct intel_pt *pt)
1121{
1122	unsigned int i;
1123	int ret;
1124
1125	for (i = 0; i < pt->queues.nr_queues; i++) {
1126		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1127		if (ret)
1128			return ret;
1129	}
1130	return 0;
1131}
1132
1133static inline void intel_pt_copy_last_branch_rb(struct intel_pt_queue *ptq)
1134{
1135	struct branch_stack *bs_src = ptq->last_branch_rb;
1136	struct branch_stack *bs_dst = ptq->last_branch;
1137	size_t nr = 0;
1138
1139	bs_dst->nr = bs_src->nr;
1140
1141	if (!bs_src->nr)
1142		return;
1143
1144	nr = ptq->pt->synth_opts.last_branch_sz - ptq->last_branch_pos;
1145	memcpy(&bs_dst->entries[0],
1146	       &bs_src->entries[ptq->last_branch_pos],
1147	       sizeof(struct branch_entry) * nr);
1148
1149	if (bs_src->nr >= ptq->pt->synth_opts.last_branch_sz) {
1150		memcpy(&bs_dst->entries[nr],
1151		       &bs_src->entries[0],
1152		       sizeof(struct branch_entry) * ptq->last_branch_pos);
1153	}
1154}
1155
1156static inline void intel_pt_reset_last_branch_rb(struct intel_pt_queue *ptq)
1157{
1158	ptq->last_branch_pos = 0;
1159	ptq->last_branch_rb->nr = 0;
1160}
1161
1162static void intel_pt_update_last_branch_rb(struct intel_pt_queue *ptq)
1163{
1164	const struct intel_pt_state *state = ptq->state;
1165	struct branch_stack *bs = ptq->last_branch_rb;
1166	struct branch_entry *be;
1167
1168	if (!ptq->last_branch_pos)
1169		ptq->last_branch_pos = ptq->pt->synth_opts.last_branch_sz;
1170
1171	ptq->last_branch_pos -= 1;
1172
1173	be              = &bs->entries[ptq->last_branch_pos];
1174	be->from        = state->from_ip;
1175	be->to          = state->to_ip;
1176	be->flags.abort = !!(state->flags & INTEL_PT_ABORT_TX);
1177	be->flags.in_tx = !!(state->flags & INTEL_PT_IN_TX);
1178	/* No support for mispredict */
1179	be->flags.mispred = ptq->pt->mispred_all;
1180
1181	if (bs->nr < ptq->pt->synth_opts.last_branch_sz)
1182		bs->nr += 1;
1183}
1184
1185static inline bool intel_pt_skip_event(struct intel_pt *pt)
1186{
1187	return pt->synth_opts.initial_skip &&
1188	       pt->num_events++ < pt->synth_opts.initial_skip;
1189}
1190
1191/*
1192 * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1193 * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1194 * from this decoder state.
1195 */
1196static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1197{
1198	return pt->synth_opts.initial_skip &&
1199	       pt->num_events + 4 < pt->synth_opts.initial_skip;
1200}
1201
1202static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1203				   union perf_event *event,
1204				   struct perf_sample *sample)
1205{
1206	event->sample.header.type = PERF_RECORD_SAMPLE;
1207	event->sample.header.size = sizeof(struct perf_event_header);
1208
1209	sample->pid = ptq->pid;
1210	sample->tid = ptq->tid;
 
 
 
 
 
 
 
 
 
 
 
1211	sample->cpu = ptq->cpu;
1212	sample->insn_len = ptq->insn_len;
1213	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1214}
1215
1216static void intel_pt_prep_b_sample(struct intel_pt *pt,
1217				   struct intel_pt_queue *ptq,
1218				   union perf_event *event,
1219				   struct perf_sample *sample)
1220{
1221	intel_pt_prep_a_sample(ptq, event, sample);
1222
1223	if (!pt->timeless_decoding)
1224		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1225
1226	sample->ip = ptq->state->from_ip;
1227	sample->cpumode = intel_pt_cpumode(pt, sample->ip);
1228	sample->addr = ptq->state->to_ip;
 
1229	sample->period = 1;
1230	sample->flags = ptq->flags;
1231
1232	event->sample.header.misc = sample->cpumode;
1233}
1234
1235static int intel_pt_inject_event(union perf_event *event,
1236				 struct perf_sample *sample, u64 type)
1237{
1238	event->header.size = perf_event__sample_event_size(sample, type, 0);
1239	return perf_event__synthesize_sample(event, type, 0, sample);
1240}
1241
1242static inline int intel_pt_opt_inject(struct intel_pt *pt,
1243				      union perf_event *event,
1244				      struct perf_sample *sample, u64 type)
1245{
1246	if (!pt->synth_opts.inject)
1247		return 0;
1248
1249	return intel_pt_inject_event(event, sample, type);
1250}
1251
1252static int intel_pt_deliver_synth_b_event(struct intel_pt *pt,
1253					  union perf_event *event,
1254					  struct perf_sample *sample, u64 type)
1255{
1256	int ret;
1257
1258	ret = intel_pt_opt_inject(pt, event, sample, type);
1259	if (ret)
1260		return ret;
1261
1262	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1263	if (ret)
1264		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1265
1266	return ret;
1267}
1268
1269static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1270{
1271	struct intel_pt *pt = ptq->pt;
1272	union perf_event *event = ptq->event_buf;
1273	struct perf_sample sample = { .ip = 0, };
1274	struct dummy_branch_stack {
1275		u64			nr;
 
1276		struct branch_entry	entries;
1277	} dummy_bs;
1278
1279	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1280		return 0;
1281
1282	if (intel_pt_skip_event(pt))
1283		return 0;
1284
1285	intel_pt_prep_b_sample(pt, ptq, event, &sample);
1286
1287	sample.id = ptq->pt->branches_id;
1288	sample.stream_id = ptq->pt->branches_id;
1289
1290	/*
1291	 * perf report cannot handle events without a branch stack when using
1292	 * SORT_MODE__BRANCH so make a dummy one.
1293	 */
1294	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1295		dummy_bs = (struct dummy_branch_stack){
1296			.nr = 1,
 
1297			.entries = {
1298				.from = sample.ip,
1299				.to = sample.addr,
1300			},
1301		};
1302		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1303	}
1304
1305	sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
 
1306	if (sample.cyc_cnt) {
1307		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1308		ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1309		ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1310	}
1311
1312	return intel_pt_deliver_synth_b_event(pt, event, &sample,
1313					      pt->branches_sample_type);
1314}
1315
1316static void intel_pt_prep_sample(struct intel_pt *pt,
1317				 struct intel_pt_queue *ptq,
1318				 union perf_event *event,
1319				 struct perf_sample *sample)
1320{
1321	intel_pt_prep_b_sample(pt, ptq, event, sample);
1322
1323	if (pt->synth_opts.callchain) {
1324		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1325				     pt->synth_opts.callchain_sz + 1,
1326				     sample->ip, pt->kernel_start);
1327		sample->callchain = ptq->chain;
1328	}
1329
1330	if (pt->synth_opts.last_branch) {
1331		intel_pt_copy_last_branch_rb(ptq);
 
1332		sample->branch_stack = ptq->last_branch;
1333	}
1334}
1335
1336static inline int intel_pt_deliver_synth_event(struct intel_pt *pt,
1337					       struct intel_pt_queue *ptq,
1338					       union perf_event *event,
1339					       struct perf_sample *sample,
1340					       u64 type)
1341{
1342	int ret;
1343
1344	ret = intel_pt_deliver_synth_b_event(pt, event, sample, type);
1345
1346	if (pt->synth_opts.last_branch)
1347		intel_pt_reset_last_branch_rb(ptq);
1348
1349	return ret;
1350}
1351
1352static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1353{
1354	struct intel_pt *pt = ptq->pt;
1355	union perf_event *event = ptq->event_buf;
1356	struct perf_sample sample = { .ip = 0, };
1357
1358	if (intel_pt_skip_event(pt))
1359		return 0;
1360
1361	intel_pt_prep_sample(pt, ptq, event, &sample);
1362
1363	sample.id = ptq->pt->instructions_id;
1364	sample.stream_id = ptq->pt->instructions_id;
1365	sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
 
 
 
1366
1367	sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
 
1368	if (sample.cyc_cnt) {
1369		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1370		ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1371		ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1372	}
1373
1374	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1375
1376	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1377					    pt->instructions_sample_type);
1378}
1379
1380static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1381{
1382	struct intel_pt *pt = ptq->pt;
1383	union perf_event *event = ptq->event_buf;
1384	struct perf_sample sample = { .ip = 0, };
1385
1386	if (intel_pt_skip_event(pt))
1387		return 0;
1388
1389	intel_pt_prep_sample(pt, ptq, event, &sample);
1390
1391	sample.id = ptq->pt->transactions_id;
1392	sample.stream_id = ptq->pt->transactions_id;
1393
1394	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1395					    pt->transactions_sample_type);
1396}
1397
1398static void intel_pt_prep_p_sample(struct intel_pt *pt,
1399				   struct intel_pt_queue *ptq,
1400				   union perf_event *event,
1401				   struct perf_sample *sample)
1402{
1403	intel_pt_prep_sample(pt, ptq, event, sample);
1404
1405	/*
1406	 * Zero IP is used to mean "trace start" but that is not the case for
1407	 * power or PTWRITE events with no IP, so clear the flags.
1408	 */
1409	if (!sample->ip)
1410		sample->flags = 0;
1411}
1412
1413static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1414{
1415	struct intel_pt *pt = ptq->pt;
1416	union perf_event *event = ptq->event_buf;
1417	struct perf_sample sample = { .ip = 0, };
1418	struct perf_synth_intel_ptwrite raw;
1419
1420	if (intel_pt_skip_event(pt))
1421		return 0;
1422
1423	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1424
1425	sample.id = ptq->pt->ptwrites_id;
1426	sample.stream_id = ptq->pt->ptwrites_id;
1427
1428	raw.flags = 0;
1429	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1430	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1431
1432	sample.raw_size = perf_synth__raw_size(raw);
1433	sample.raw_data = perf_synth__raw_data(&raw);
1434
1435	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1436					    pt->ptwrites_sample_type);
1437}
1438
1439static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1440{
1441	struct intel_pt *pt = ptq->pt;
1442	union perf_event *event = ptq->event_buf;
1443	struct perf_sample sample = { .ip = 0, };
1444	struct perf_synth_intel_cbr raw;
1445	u32 flags;
1446
1447	if (intel_pt_skip_cbr_event(pt))
1448		return 0;
1449
1450	ptq->cbr_seen = ptq->state->cbr;
1451
1452	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1453
1454	sample.id = ptq->pt->cbr_id;
1455	sample.stream_id = ptq->pt->cbr_id;
1456
1457	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1458	raw.flags = cpu_to_le32(flags);
1459	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1460	raw.reserved3 = 0;
1461
1462	sample.raw_size = perf_synth__raw_size(raw);
1463	sample.raw_data = perf_synth__raw_data(&raw);
1464
1465	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1466					    pt->pwr_events_sample_type);
1467}
1468
1469static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1470{
1471	struct intel_pt *pt = ptq->pt;
1472	union perf_event *event = ptq->event_buf;
1473	struct perf_sample sample = { .ip = 0, };
1474	struct perf_synth_intel_mwait raw;
1475
1476	if (intel_pt_skip_event(pt))
1477		return 0;
1478
1479	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1480
1481	sample.id = ptq->pt->mwait_id;
1482	sample.stream_id = ptq->pt->mwait_id;
1483
1484	raw.reserved = 0;
1485	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1486
1487	sample.raw_size = perf_synth__raw_size(raw);
1488	sample.raw_data = perf_synth__raw_data(&raw);
1489
1490	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1491					    pt->pwr_events_sample_type);
1492}
1493
1494static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1495{
1496	struct intel_pt *pt = ptq->pt;
1497	union perf_event *event = ptq->event_buf;
1498	struct perf_sample sample = { .ip = 0, };
1499	struct perf_synth_intel_pwre raw;
1500
1501	if (intel_pt_skip_event(pt))
1502		return 0;
1503
1504	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1505
1506	sample.id = ptq->pt->pwre_id;
1507	sample.stream_id = ptq->pt->pwre_id;
1508
1509	raw.reserved = 0;
1510	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1511
1512	sample.raw_size = perf_synth__raw_size(raw);
1513	sample.raw_data = perf_synth__raw_data(&raw);
1514
1515	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1516					    pt->pwr_events_sample_type);
1517}
1518
1519static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1520{
1521	struct intel_pt *pt = ptq->pt;
1522	union perf_event *event = ptq->event_buf;
1523	struct perf_sample sample = { .ip = 0, };
1524	struct perf_synth_intel_exstop raw;
1525
1526	if (intel_pt_skip_event(pt))
1527		return 0;
1528
1529	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1530
1531	sample.id = ptq->pt->exstop_id;
1532	sample.stream_id = ptq->pt->exstop_id;
1533
1534	raw.flags = 0;
1535	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1536
1537	sample.raw_size = perf_synth__raw_size(raw);
1538	sample.raw_data = perf_synth__raw_data(&raw);
1539
1540	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1541					    pt->pwr_events_sample_type);
1542}
1543
1544static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1545{
1546	struct intel_pt *pt = ptq->pt;
1547	union perf_event *event = ptq->event_buf;
1548	struct perf_sample sample = { .ip = 0, };
1549	struct perf_synth_intel_pwrx raw;
1550
1551	if (intel_pt_skip_event(pt))
1552		return 0;
1553
1554	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1555
1556	sample.id = ptq->pt->pwrx_id;
1557	sample.stream_id = ptq->pt->pwrx_id;
1558
1559	raw.reserved = 0;
1560	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1561
1562	sample.raw_size = perf_synth__raw_size(raw);
1563	sample.raw_data = perf_synth__raw_data(&raw);
1564
1565	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1566					    pt->pwr_events_sample_type);
1567}
1568
1569/*
1570 * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1571 * intel_pt_add_gp_regs().
1572 */
1573static const int pebs_gp_regs[] = {
1574	[PERF_REG_X86_FLAGS]	= 1,
1575	[PERF_REG_X86_IP]	= 2,
1576	[PERF_REG_X86_AX]	= 3,
1577	[PERF_REG_X86_CX]	= 4,
1578	[PERF_REG_X86_DX]	= 5,
1579	[PERF_REG_X86_BX]	= 6,
1580	[PERF_REG_X86_SP]	= 7,
1581	[PERF_REG_X86_BP]	= 8,
1582	[PERF_REG_X86_SI]	= 9,
1583	[PERF_REG_X86_DI]	= 10,
1584	[PERF_REG_X86_R8]	= 11,
1585	[PERF_REG_X86_R9]	= 12,
1586	[PERF_REG_X86_R10]	= 13,
1587	[PERF_REG_X86_R11]	= 14,
1588	[PERF_REG_X86_R12]	= 15,
1589	[PERF_REG_X86_R13]	= 16,
1590	[PERF_REG_X86_R14]	= 17,
1591	[PERF_REG_X86_R15]	= 18,
1592};
1593
1594static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1595				 const struct intel_pt_blk_items *items,
1596				 u64 regs_mask)
1597{
1598	const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1599	u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1600	u32 bit;
1601	int i;
1602
1603	for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1604		/* Get the PEBS gp_regs array index */
1605		int n = pebs_gp_regs[i] - 1;
1606
1607		if (n < 0)
1608			continue;
1609		/*
1610		 * Add only registers that were requested (i.e. 'regs_mask') and
1611		 * that were provided (i.e. 'mask'), and update the resulting
1612		 * mask (i.e. 'intr_regs->mask') accordingly.
1613		 */
1614		if (mask & 1 << n && regs_mask & bit) {
1615			intr_regs->mask |= bit;
1616			*pos++ = gp_regs[n];
1617		}
1618	}
1619
1620	return pos;
1621}
1622
1623#ifndef PERF_REG_X86_XMM0
1624#define PERF_REG_X86_XMM0 32
1625#endif
1626
1627static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1628			     const struct intel_pt_blk_items *items,
1629			     u64 regs_mask)
1630{
1631	u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1632	const u64 *xmm = items->xmm;
1633
1634	/*
1635	 * If there are any XMM registers, then there should be all of them.
1636	 * Nevertheless, follow the logic to add only registers that were
1637	 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1638	 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1639	 */
1640	intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1641
1642	for (; mask; mask >>= 1, xmm++) {
1643		if (mask & 1)
1644			*pos++ = *xmm;
1645	}
1646}
1647
1648#define LBR_INFO_MISPRED	(1ULL << 63)
1649#define LBR_INFO_IN_TX		(1ULL << 62)
1650#define LBR_INFO_ABORT		(1ULL << 61)
1651#define LBR_INFO_CYCLES		0xffff
1652
1653/* Refer kernel's intel_pmu_store_pebs_lbrs() */
1654static u64 intel_pt_lbr_flags(u64 info)
1655{
1656	union {
1657		struct branch_flags flags;
1658		u64 result;
1659	} u = {
1660		.flags = {
1661			.mispred	= !!(info & LBR_INFO_MISPRED),
1662			.predicted	= !(info & LBR_INFO_MISPRED),
1663			.in_tx		= !!(info & LBR_INFO_IN_TX),
1664			.abort		= !!(info & LBR_INFO_ABORT),
1665			.cycles		= info & LBR_INFO_CYCLES,
1666		}
1667	};
1668
1669	return u.result;
1670}
1671
1672static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1673			      const struct intel_pt_blk_items *items)
1674{
1675	u64 *to;
1676	int i;
1677
1678	br_stack->nr = 0;
1679
1680	to = &br_stack->entries[0].from;
1681
1682	for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1683		u32 mask = items->mask[i];
1684		const u64 *from = items->val[i];
1685
1686		for (; mask; mask >>= 3, from += 3) {
1687			if ((mask & 7) == 7) {
1688				*to++ = from[0];
1689				*to++ = from[1];
1690				*to++ = intel_pt_lbr_flags(from[2]);
1691				br_stack->nr += 1;
1692			}
1693		}
1694	}
1695}
1696
1697/* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1698#define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3)
1699
1700static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
1701{
1702	const struct intel_pt_blk_items *items = &ptq->state->items;
1703	struct perf_sample sample = { .ip = 0, };
1704	union perf_event *event = ptq->event_buf;
1705	struct intel_pt *pt = ptq->pt;
1706	struct evsel *evsel = pt->pebs_evsel;
1707	u64 sample_type = evsel->core.attr.sample_type;
1708	u64 id = evsel->core.id[0];
1709	u8 cpumode;
 
1710
1711	if (intel_pt_skip_event(pt))
1712		return 0;
1713
1714	intel_pt_prep_a_sample(ptq, event, &sample);
1715
1716	sample.id = id;
1717	sample.stream_id = id;
1718
1719	if (!evsel->core.attr.freq)
1720		sample.period = evsel->core.attr.sample_period;
1721
1722	/* No support for non-zero CS base */
1723	if (items->has_ip)
1724		sample.ip = items->ip;
1725	else if (items->has_rip)
1726		sample.ip = items->rip;
1727	else
1728		sample.ip = ptq->state->from_ip;
1729
1730	/* No support for guest mode at this time */
1731	cpumode = sample.ip < ptq->pt->kernel_start ?
1732		  PERF_RECORD_MISC_USER :
1733		  PERF_RECORD_MISC_KERNEL;
1734
1735	event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
1736
1737	sample.cpumode = cpumode;
1738
1739	if (sample_type & PERF_SAMPLE_TIME) {
1740		u64 timestamp = 0;
1741
1742		if (items->has_timestamp)
1743			timestamp = items->timestamp;
1744		else if (!pt->timeless_decoding)
1745			timestamp = ptq->timestamp;
1746		if (timestamp)
1747			sample.time = tsc_to_perf_time(timestamp, &pt->tc);
1748	}
1749
1750	if (sample_type & PERF_SAMPLE_CALLCHAIN &&
1751	    pt->synth_opts.callchain) {
1752		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1753				     pt->synth_opts.callchain_sz, sample.ip,
1754				     pt->kernel_start);
1755		sample.callchain = ptq->chain;
1756	}
1757
1758	if (sample_type & PERF_SAMPLE_REGS_INTR &&
1759	    items->mask[INTEL_PT_GP_REGS_POS]) {
1760		u64 regs[sizeof(sample.intr_regs.mask)];
1761		u64 regs_mask = evsel->core.attr.sample_regs_intr;
1762		u64 *pos;
1763
1764		sample.intr_regs.abi = items->is_32_bit ?
1765				       PERF_SAMPLE_REGS_ABI_32 :
1766				       PERF_SAMPLE_REGS_ABI_64;
1767		sample.intr_regs.regs = regs;
1768
1769		pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
1770
1771		intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
1772	}
1773
1774	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1775		struct {
1776			struct branch_stack br_stack;
1777			struct branch_entry entries[LBRS_MAX];
1778		} br;
1779
1780		if (items->mask[INTEL_PT_LBR_0_POS] ||
1781		    items->mask[INTEL_PT_LBR_1_POS] ||
1782		    items->mask[INTEL_PT_LBR_2_POS]) {
1783			intel_pt_add_lbrs(&br.br_stack, items);
1784			sample.branch_stack = &br.br_stack;
1785		} else if (pt->synth_opts.last_branch) {
1786			intel_pt_copy_last_branch_rb(ptq);
1787			sample.branch_stack = ptq->last_branch;
 
1788		} else {
1789			br.br_stack.nr = 0;
1790			sample.branch_stack = &br.br_stack;
1791		}
 
1792	}
1793
1794	if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
1795		sample.addr = items->mem_access_address;
1796
1797	if (sample_type & PERF_SAMPLE_WEIGHT) {
1798		/*
1799		 * Refer kernel's setup_pebs_adaptive_sample_data() and
1800		 * intel_hsw_weight().
1801		 */
1802		if (items->has_mem_access_latency)
1803			sample.weight = items->mem_access_latency;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1804		if (!sample.weight && items->has_tsx_aux_info) {
1805			/* Cycles last block */
1806			sample.weight = (u32)items->tsx_aux_info;
1807		}
1808	}
1809
1810	if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
1811		u64 ax = items->has_rax ? items->rax : 0;
1812		/* Refer kernel's intel_hsw_transaction() */
1813		u64 txn = (u8)(items->tsx_aux_info >> 32);
1814
1815		/* For RTM XABORTs also log the abort code from AX */
1816		if (txn & PERF_TXN_TRANSACTION && ax & 1)
1817			txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1818		sample.transaction = txn;
1819	}
1820
1821	return intel_pt_deliver_synth_event(pt, ptq, event, &sample, sample_type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1822}
1823
1824static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1825				pid_t pid, pid_t tid, u64 ip, u64 timestamp)
 
1826{
 
 
1827	union perf_event event;
1828	char msg[MAX_AUXTRACE_ERROR_MSG];
1829	int err;
1830
 
 
 
 
 
 
 
 
 
1831	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1832
1833	auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1834			     code, cpu, pid, tid, ip, msg, timestamp);
 
 
 
 
 
 
 
 
 
 
 
1835
1836	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1837	if (err)
1838		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1839		       err);
1840
1841	return err;
1842}
1843
1844static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
1845				 const struct intel_pt_state *state)
1846{
1847	struct intel_pt *pt = ptq->pt;
1848	u64 tm = ptq->timestamp;
 
 
 
 
1849
1850	tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
1851
1852	return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
1853				    ptq->tid, state->from_ip, tm);
 
 
 
 
 
 
 
1854}
1855
1856static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1857{
1858	struct auxtrace_queue *queue;
1859	pid_t tid = ptq->next_tid;
1860	int err;
1861
1862	if (tid == -1)
1863		return 0;
1864
1865	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1866
1867	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1868
1869	queue = &pt->queues.queue_array[ptq->queue_nr];
1870	intel_pt_set_pid_tid_cpu(pt, queue);
1871
1872	ptq->next_tid = -1;
1873
1874	return err;
1875}
1876
1877static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1878{
1879	struct intel_pt *pt = ptq->pt;
1880
1881	return ip == pt->switch_ip &&
1882	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1883	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1884			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1885}
1886
1887#define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
1888			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
1889
1890static int intel_pt_sample(struct intel_pt_queue *ptq)
1891{
1892	const struct intel_pt_state *state = ptq->state;
1893	struct intel_pt *pt = ptq->pt;
1894	int err;
1895
1896	if (!ptq->have_sample)
1897		return 0;
1898
1899	ptq->have_sample = false;
1900
1901	if (ptq->state->tot_cyc_cnt > ptq->ipc_cyc_cnt) {
1902		/*
1903		 * Cycle count and instruction count only go together to create
1904		 * a valid IPC ratio when the cycle count changes.
1905		 */
1906		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
1907		ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
 
1908	}
1909
 
 
 
 
1910	/*
1911	 * Do PEBS first to allow for the possibility that the PEBS timestamp
1912	 * precedes the current timestamp.
1913	 */
1914	if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
1915		err = intel_pt_synth_pebs_sample(ptq);
1916		if (err)
1917			return err;
1918	}
1919
 
 
 
 
 
 
 
 
 
 
 
 
 
1920	if (pt->sample_pwr_events) {
 
 
 
 
 
1921		if (ptq->state->cbr != ptq->cbr_seen) {
1922			err = intel_pt_synth_cbr_sample(ptq);
1923			if (err)
1924				return err;
1925		}
1926		if (state->type & INTEL_PT_PWR_EVT) {
1927			if (state->type & INTEL_PT_MWAIT_OP) {
1928				err = intel_pt_synth_mwait_sample(ptq);
1929				if (err)
1930					return err;
1931			}
1932			if (state->type & INTEL_PT_PWR_ENTRY) {
1933				err = intel_pt_synth_pwre_sample(ptq);
1934				if (err)
1935					return err;
1936			}
1937			if (state->type & INTEL_PT_EX_STOP) {
1938				err = intel_pt_synth_exstop_sample(ptq);
1939				if (err)
1940					return err;
1941			}
1942			if (state->type & INTEL_PT_PWR_EXIT) {
1943				err = intel_pt_synth_pwrx_sample(ptq);
1944				if (err)
1945					return err;
1946			}
1947		}
1948	}
1949
1950	if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
1951		err = intel_pt_synth_instruction_sample(ptq);
1952		if (err)
1953			return err;
1954	}
1955
1956	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
1957		err = intel_pt_synth_transaction_sample(ptq);
1958		if (err)
1959			return err;
1960	}
1961
1962	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
1963		err = intel_pt_synth_ptwrite_sample(ptq);
1964		if (err)
1965			return err;
1966	}
1967
1968	if (!(state->type & INTEL_PT_BRANCH))
1969		return 0;
1970
1971	if (pt->synth_opts.callchain || pt->synth_opts.thread_stack)
1972		thread_stack__event(ptq->thread, ptq->cpu, ptq->flags, state->from_ip,
1973				    state->to_ip, ptq->insn_len,
1974				    state->trace_nr);
1975	else
 
 
1976		thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
 
1977
1978	if (pt->sample_branches) {
1979		err = intel_pt_synth_branch_sample(ptq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1980		if (err)
1981			return err;
1982	}
1983
1984	if (pt->synth_opts.last_branch)
1985		intel_pt_update_last_branch_rb(ptq);
1986
1987	if (!ptq->sync_switch)
1988		return 0;
1989
1990	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
1991		switch (ptq->switch_state) {
1992		case INTEL_PT_SS_NOT_TRACING:
1993		case INTEL_PT_SS_UNKNOWN:
1994		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
1995			err = intel_pt_next_tid(pt, ptq);
1996			if (err)
1997				return err;
1998			ptq->switch_state = INTEL_PT_SS_TRACING;
1999			break;
2000		default:
2001			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2002			return 1;
2003		}
2004	} else if (!state->to_ip) {
2005		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2006	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2007		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2008	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2009		   state->to_ip == pt->ptss_ip &&
2010		   (ptq->flags & PERF_IP_FLAG_CALL)) {
2011		ptq->switch_state = INTEL_PT_SS_TRACING;
2012	}
2013
2014	return 0;
2015}
2016
2017static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2018{
2019	struct machine *machine = pt->machine;
2020	struct map *map;
2021	struct symbol *sym, *start;
2022	u64 ip, switch_ip = 0;
2023	const char *ptss;
2024
2025	if (ptss_ip)
2026		*ptss_ip = 0;
2027
2028	map = machine__kernel_map(machine);
2029	if (!map)
2030		return 0;
2031
2032	if (map__load(map))
2033		return 0;
2034
2035	start = dso__first_symbol(map->dso);
2036
2037	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2038		if (sym->binding == STB_GLOBAL &&
2039		    !strcmp(sym->name, "__switch_to")) {
2040			ip = map->unmap_ip(map, sym->start);
2041			if (ip >= map->start && ip < map->end) {
2042				switch_ip = ip;
2043				break;
2044			}
2045		}
2046	}
2047
2048	if (!switch_ip || !ptss_ip)
2049		return 0;
2050
2051	if (pt->have_sched_switch == 1)
2052		ptss = "perf_trace_sched_switch";
2053	else
2054		ptss = "__perf_event_task_sched_out";
2055
2056	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2057		if (!strcmp(sym->name, ptss)) {
2058			ip = map->unmap_ip(map, sym->start);
2059			if (ip >= map->start && ip < map->end) {
2060				*ptss_ip = ip;
2061				break;
2062			}
2063		}
2064	}
2065
2066	return switch_ip;
2067}
2068
2069static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2070{
2071	unsigned int i;
2072
 
 
 
2073	pt->sync_switch = true;
2074
2075	for (i = 0; i < pt->queues.nr_queues; i++) {
2076		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2077		struct intel_pt_queue *ptq = queue->priv;
2078
2079		if (ptq)
2080			ptq->sync_switch = true;
2081	}
2082}
2083
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2084/*
2085 * To filter against time ranges, it is only necessary to look at the next start
2086 * or end time.
2087 */
2088static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2089{
2090	struct intel_pt *pt = ptq->pt;
2091
2092	if (ptq->sel_start) {
2093		/* Next time is an end time */
2094		ptq->sel_start = false;
2095		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2096		return true;
2097	} else if (ptq->sel_idx + 1 < pt->range_cnt) {
2098		/* Next time is a start time */
2099		ptq->sel_start = true;
2100		ptq->sel_idx += 1;
2101		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2102		return true;
2103	}
2104
2105	/* No next time */
2106	return false;
2107}
2108
2109static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2110{
2111	int err;
2112
2113	while (1) {
2114		if (ptq->sel_start) {
2115			if (ptq->timestamp >= ptq->sel_timestamp) {
2116				/* After start time, so consider next time */
2117				intel_pt_next_time(ptq);
2118				if (!ptq->sel_timestamp) {
2119					/* No end time */
2120					return 0;
2121				}
2122				/* Check against end time */
2123				continue;
2124			}
2125			/* Before start time, so fast forward */
2126			ptq->have_sample = false;
2127			if (ptq->sel_timestamp > *ff_timestamp) {
2128				if (ptq->sync_switch) {
2129					intel_pt_next_tid(ptq->pt, ptq);
2130					ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2131				}
2132				*ff_timestamp = ptq->sel_timestamp;
2133				err = intel_pt_fast_forward(ptq->decoder,
2134							    ptq->sel_timestamp);
2135				if (err)
2136					return err;
2137			}
2138			return 0;
2139		} else if (ptq->timestamp > ptq->sel_timestamp) {
2140			/* After end time, so consider next time */
2141			if (!intel_pt_next_time(ptq)) {
2142				/* No next time range, so stop decoding */
2143				ptq->have_sample = false;
2144				ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2145				return 1;
2146			}
2147			/* Check against next start time */
2148			continue;
2149		} else {
2150			/* Before end time */
2151			return 0;
2152		}
2153	}
2154}
2155
2156static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2157{
2158	const struct intel_pt_state *state = ptq->state;
2159	struct intel_pt *pt = ptq->pt;
2160	u64 ff_timestamp = 0;
2161	int err;
2162
2163	if (!pt->kernel_start) {
2164		pt->kernel_start = machine__kernel_start(pt->machine);
2165		if (pt->per_cpu_mmaps &&
2166		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2167		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2168		    !pt->sampling_mode) {
2169			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2170			if (pt->switch_ip) {
2171				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2172					     pt->switch_ip, pt->ptss_ip);
2173				intel_pt_enable_sync_switch(pt);
2174			}
2175		}
2176	}
2177
2178	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2179		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2180	while (1) {
2181		err = intel_pt_sample(ptq);
2182		if (err)
2183			return err;
2184
2185		state = intel_pt_decode(ptq->decoder);
2186		if (state->err) {
2187			if (state->err == INTEL_PT_ERR_NODATA)
2188				return 1;
2189			if (ptq->sync_switch &&
2190			    state->from_ip >= pt->kernel_start) {
2191				ptq->sync_switch = false;
2192				intel_pt_next_tid(pt, ptq);
2193			}
 
2194			if (pt->synth_opts.errors) {
2195				err = intel_ptq_synth_error(ptq, state);
2196				if (err)
2197					return err;
2198			}
2199			continue;
2200		}
2201
2202		ptq->state = state;
2203		ptq->have_sample = true;
2204		intel_pt_sample_flags(ptq);
2205
2206		/* Use estimated TSC upon return to user space */
2207		if (pt->est_tsc &&
2208		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2209		    state->to_ip && state->to_ip < pt->kernel_start) {
2210			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2211				     state->timestamp, state->est_timestamp);
2212			ptq->timestamp = state->est_timestamp;
2213		/* Use estimated TSC in unknown switch state */
2214		} else if (ptq->sync_switch &&
2215			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2216			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
2217			   ptq->next_tid == -1) {
2218			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2219				     state->timestamp, state->est_timestamp);
2220			ptq->timestamp = state->est_timestamp;
2221		} else if (state->timestamp > ptq->timestamp) {
2222			ptq->timestamp = state->timestamp;
2223		}
2224
2225		if (ptq->sel_timestamp) {
2226			err = intel_pt_time_filter(ptq, &ff_timestamp);
2227			if (err)
2228				return err;
2229		}
2230
2231		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2232			*timestamp = ptq->timestamp;
2233			return 0;
2234		}
2235	}
2236	return 0;
2237}
2238
2239static inline int intel_pt_update_queues(struct intel_pt *pt)
2240{
2241	if (pt->queues.new_data) {
2242		pt->queues.new_data = false;
2243		return intel_pt_setup_queues(pt);
2244	}
2245	return 0;
2246}
2247
2248static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2249{
2250	unsigned int queue_nr;
2251	u64 ts;
2252	int ret;
2253
2254	while (1) {
2255		struct auxtrace_queue *queue;
2256		struct intel_pt_queue *ptq;
2257
2258		if (!pt->heap.heap_cnt)
2259			return 0;
2260
2261		if (pt->heap.heap_array[0].ordinal >= timestamp)
2262			return 0;
2263
2264		queue_nr = pt->heap.heap_array[0].queue_nr;
2265		queue = &pt->queues.queue_array[queue_nr];
2266		ptq = queue->priv;
2267
2268		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2269			     queue_nr, pt->heap.heap_array[0].ordinal,
2270			     timestamp);
2271
2272		auxtrace_heap__pop(&pt->heap);
2273
2274		if (pt->heap.heap_cnt) {
2275			ts = pt->heap.heap_array[0].ordinal + 1;
2276			if (ts > timestamp)
2277				ts = timestamp;
2278		} else {
2279			ts = timestamp;
2280		}
2281
2282		intel_pt_set_pid_tid_cpu(pt, queue);
2283
2284		ret = intel_pt_run_decoder(ptq, &ts);
2285
2286		if (ret < 0) {
2287			auxtrace_heap__add(&pt->heap, queue_nr, ts);
2288			return ret;
2289		}
2290
2291		if (!ret) {
2292			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2293			if (ret < 0)
2294				return ret;
2295		} else {
2296			ptq->on_heap = false;
2297		}
2298	}
2299
2300	return 0;
2301}
2302
2303static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2304					    u64 time_)
2305{
2306	struct auxtrace_queues *queues = &pt->queues;
2307	unsigned int i;
2308	u64 ts = 0;
2309
2310	for (i = 0; i < queues->nr_queues; i++) {
2311		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2312		struct intel_pt_queue *ptq = queue->priv;
2313
2314		if (ptq && (tid == -1 || ptq->tid == tid)) {
2315			ptq->time = time_;
2316			intel_pt_set_pid_tid_cpu(pt, queue);
2317			intel_pt_run_decoder(ptq, &ts);
2318		}
2319	}
2320	return 0;
2321}
2322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2323static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2324{
2325	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2326				    sample->pid, sample->tid, 0, sample->time);
 
2327}
2328
2329static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2330{
2331	unsigned i, j;
2332
2333	if (cpu < 0 || !pt->queues.nr_queues)
2334		return NULL;
2335
2336	if ((unsigned)cpu >= pt->queues.nr_queues)
2337		i = pt->queues.nr_queues - 1;
2338	else
2339		i = cpu;
2340
2341	if (pt->queues.queue_array[i].cpu == cpu)
2342		return pt->queues.queue_array[i].priv;
2343
2344	for (j = 0; i > 0; j++) {
2345		if (pt->queues.queue_array[--i].cpu == cpu)
2346			return pt->queues.queue_array[i].priv;
2347	}
2348
2349	for (; j < pt->queues.nr_queues; j++) {
2350		if (pt->queues.queue_array[j].cpu == cpu)
2351			return pt->queues.queue_array[j].priv;
2352	}
2353
2354	return NULL;
2355}
2356
2357static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2358				u64 timestamp)
2359{
2360	struct intel_pt_queue *ptq;
2361	int err;
2362
2363	if (!pt->sync_switch)
2364		return 1;
2365
2366	ptq = intel_pt_cpu_to_ptq(pt, cpu);
2367	if (!ptq || !ptq->sync_switch)
2368		return 1;
2369
2370	switch (ptq->switch_state) {
2371	case INTEL_PT_SS_NOT_TRACING:
2372		break;
2373	case INTEL_PT_SS_UNKNOWN:
2374	case INTEL_PT_SS_TRACING:
2375		ptq->next_tid = tid;
2376		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2377		return 0;
2378	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2379		if (!ptq->on_heap) {
2380			ptq->timestamp = perf_time_to_tsc(timestamp,
2381							  &pt->tc);
2382			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2383						 ptq->timestamp);
2384			if (err)
2385				return err;
2386			ptq->on_heap = true;
2387		}
2388		ptq->switch_state = INTEL_PT_SS_TRACING;
2389		break;
2390	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2391		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2392		break;
2393	default:
2394		break;
2395	}
2396
2397	ptq->next_tid = -1;
2398
2399	return 1;
2400}
2401
 
2402static int intel_pt_process_switch(struct intel_pt *pt,
2403				   struct perf_sample *sample)
2404{
2405	struct evsel *evsel;
2406	pid_t tid;
2407	int cpu, ret;
 
2408
2409	evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
2410	if (evsel != pt->switch_evsel)
2411		return 0;
2412
2413	tid = perf_evsel__intval(evsel, sample, "next_pid");
2414	cpu = sample->cpu;
2415
2416	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2417		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2418		     &pt->tc));
2419
2420	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2421	if (ret <= 0)
2422		return ret;
2423
2424	return machine__set_current_tid(pt->machine, cpu, -1, tid);
2425}
 
2426
2427static int intel_pt_context_switch_in(struct intel_pt *pt,
2428				      struct perf_sample *sample)
2429{
2430	pid_t pid = sample->pid;
2431	pid_t tid = sample->tid;
2432	int cpu = sample->cpu;
2433
2434	if (pt->sync_switch) {
2435		struct intel_pt_queue *ptq;
2436
2437		ptq = intel_pt_cpu_to_ptq(pt, cpu);
2438		if (ptq && ptq->sync_switch) {
2439			ptq->next_tid = -1;
2440			switch (ptq->switch_state) {
2441			case INTEL_PT_SS_NOT_TRACING:
2442			case INTEL_PT_SS_UNKNOWN:
2443			case INTEL_PT_SS_TRACING:
2444				break;
2445			case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2446			case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2447				ptq->switch_state = INTEL_PT_SS_TRACING;
2448				break;
2449			default:
2450				break;
2451			}
2452		}
2453	}
2454
2455	/*
2456	 * If the current tid has not been updated yet, ensure it is now that
2457	 * a "switch in" event has occurred.
2458	 */
2459	if (machine__get_current_tid(pt->machine, cpu) == tid)
2460		return 0;
2461
2462	return machine__set_current_tid(pt->machine, cpu, pid, tid);
2463}
2464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2465static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2466				   struct perf_sample *sample)
2467{
2468	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2469	pid_t pid, tid;
2470	int cpu, ret;
2471
 
 
 
2472	cpu = sample->cpu;
2473
2474	if (pt->have_sched_switch == 3) {
2475		if (!out)
2476			return intel_pt_context_switch_in(pt, sample);
2477		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2478			pr_err("Expecting CPU-wide context switch event\n");
2479			return -EINVAL;
2480		}
2481		pid = event->context_switch.next_prev_pid;
2482		tid = event->context_switch.next_prev_tid;
2483	} else {
2484		if (out)
2485			return 0;
2486		pid = sample->pid;
2487		tid = sample->tid;
2488	}
2489
2490	if (tid == -1) {
2491		pr_err("context_switch event has no tid\n");
2492		return -EINVAL;
2493	}
2494
2495	intel_pt_log("context_switch: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2496		     cpu, pid, tid, sample->time, perf_time_to_tsc(sample->time,
2497		     &pt->tc));
2498
2499	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2500	if (ret <= 0)
2501		return ret;
2502
2503	return machine__set_current_tid(pt->machine, cpu, pid, tid);
2504}
2505
2506static int intel_pt_process_itrace_start(struct intel_pt *pt,
2507					 union perf_event *event,
2508					 struct perf_sample *sample)
2509{
2510	if (!pt->per_cpu_mmaps)
2511		return 0;
2512
2513	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2514		     sample->cpu, event->itrace_start.pid,
2515		     event->itrace_start.tid, sample->time,
2516		     perf_time_to_tsc(sample->time, &pt->tc));
2517
2518	return machine__set_current_tid(pt->machine, sample->cpu,
2519					event->itrace_start.pid,
2520					event->itrace_start.tid);
2521}
2522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2523static int intel_pt_process_event(struct perf_session *session,
2524				  union perf_event *event,
2525				  struct perf_sample *sample,
2526				  struct perf_tool *tool)
2527{
2528	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2529					   auxtrace);
2530	u64 timestamp;
2531	int err = 0;
2532
2533	if (dump_trace)
2534		return 0;
2535
2536	if (!tool->ordered_events) {
2537		pr_err("Intel Processor Trace requires ordered events\n");
2538		return -EINVAL;
2539	}
2540
2541	if (sample->time && sample->time != (u64)-1)
2542		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2543	else
2544		timestamp = 0;
2545
2546	if (timestamp || pt->timeless_decoding) {
2547		err = intel_pt_update_queues(pt);
2548		if (err)
2549			return err;
2550	}
2551
2552	if (pt->timeless_decoding) {
2553		if (event->header.type == PERF_RECORD_EXIT) {
 
 
 
 
2554			err = intel_pt_process_timeless_queues(pt,
2555							       event->fork.tid,
2556							       sample->time);
2557		}
2558	} else if (timestamp) {
 
 
2559		err = intel_pt_process_queues(pt, timestamp);
2560	}
2561	if (err)
2562		return err;
2563
 
 
 
 
 
 
 
2564	if (event->header.type == PERF_RECORD_AUX &&
2565	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
2566	    pt->synth_opts.errors) {
2567		err = intel_pt_lost(pt, sample);
2568		if (err)
2569			return err;
2570	}
2571
 
2572	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
2573		err = intel_pt_process_switch(pt, sample);
2574	else if (event->header.type == PERF_RECORD_ITRACE_START)
 
 
2575		err = intel_pt_process_itrace_start(pt, event, sample);
 
 
2576	else if (event->header.type == PERF_RECORD_SWITCH ||
2577		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2578		err = intel_pt_context_switch(pt, event, sample);
2579
2580	intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
2581		     event->header.type, sample->cpu, sample->time, timestamp);
2582	intel_pt_log_event(event);
 
 
 
 
 
2583
2584	return err;
2585}
2586
2587static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
2588{
2589	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2590					   auxtrace);
2591	int ret;
2592
2593	if (dump_trace)
2594		return 0;
2595
2596	if (!tool->ordered_events)
2597		return -EINVAL;
2598
2599	ret = intel_pt_update_queues(pt);
2600	if (ret < 0)
2601		return ret;
2602
2603	if (pt->timeless_decoding)
2604		return intel_pt_process_timeless_queues(pt, -1,
2605							MAX_TIMESTAMP - 1);
2606
2607	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
2608}
2609
2610static void intel_pt_free_events(struct perf_session *session)
2611{
2612	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2613					   auxtrace);
2614	struct auxtrace_queues *queues = &pt->queues;
2615	unsigned int i;
2616
2617	for (i = 0; i < queues->nr_queues; i++) {
2618		intel_pt_free_queue(queues->queue_array[i].priv);
2619		queues->queue_array[i].priv = NULL;
2620	}
2621	intel_pt_log_disable();
2622	auxtrace_queues__free(queues);
2623}
2624
2625static void intel_pt_free(struct perf_session *session)
2626{
2627	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2628					   auxtrace);
2629
2630	auxtrace_heap__free(&pt->heap);
2631	intel_pt_free_events(session);
2632	session->auxtrace = NULL;
 
2633	thread__put(pt->unknown_thread);
2634	addr_filters__exit(&pt->filts);
 
2635	zfree(&pt->filter);
2636	zfree(&pt->time_ranges);
2637	free(pt);
2638}
2639
 
 
 
 
 
 
 
 
 
2640static int intel_pt_process_auxtrace_event(struct perf_session *session,
2641					   union perf_event *event,
2642					   struct perf_tool *tool __maybe_unused)
2643{
2644	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2645					   auxtrace);
2646
2647	if (!pt->data_queued) {
2648		struct auxtrace_buffer *buffer;
2649		off_t data_offset;
2650		int fd = perf_data__fd(session->data);
2651		int err;
2652
2653		if (perf_data__is_pipe(session->data)) {
2654			data_offset = 0;
2655		} else {
2656			data_offset = lseek(fd, 0, SEEK_CUR);
2657			if (data_offset == -1)
2658				return -errno;
2659		}
2660
2661		err = auxtrace_queues__add_event(&pt->queues, session, event,
2662						 data_offset, &buffer);
2663		if (err)
2664			return err;
2665
2666		/* Dump here now we have copied a piped trace out of the pipe */
2667		if (dump_trace) {
2668			if (auxtrace_buffer__get_data(buffer, fd)) {
2669				intel_pt_dump_event(pt, buffer->data,
2670						    buffer->size);
2671				auxtrace_buffer__put_data(buffer);
2672			}
2673		}
2674	}
2675
2676	return 0;
2677}
2678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2679struct intel_pt_synth {
2680	struct perf_tool dummy_tool;
2681	struct perf_session *session;
2682};
2683
2684static int intel_pt_event_synth(struct perf_tool *tool,
2685				union perf_event *event,
2686				struct perf_sample *sample __maybe_unused,
2687				struct machine *machine __maybe_unused)
2688{
2689	struct intel_pt_synth *intel_pt_synth =
2690			container_of(tool, struct intel_pt_synth, dummy_tool);
2691
2692	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
2693						 NULL);
2694}
2695
2696static int intel_pt_synth_event(struct perf_session *session, const char *name,
2697				struct perf_event_attr *attr, u64 id)
2698{
2699	struct intel_pt_synth intel_pt_synth;
2700	int err;
2701
2702	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2703		 name, id, (u64)attr->sample_type);
2704
2705	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
2706	intel_pt_synth.session = session;
2707
2708	err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
2709					  &id, intel_pt_event_synth);
2710	if (err)
2711		pr_err("%s: failed to synthesize '%s' event type\n",
2712		       __func__, name);
2713
2714	return err;
2715}
2716
2717static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
2718				    const char *name)
2719{
2720	struct evsel *evsel;
2721
2722	evlist__for_each_entry(evlist, evsel) {
2723		if (evsel->core.id && evsel->core.id[0] == id) {
2724			if (evsel->name)
2725				zfree(&evsel->name);
2726			evsel->name = strdup(name);
2727			break;
2728		}
2729	}
2730}
2731
2732static struct evsel *intel_pt_evsel(struct intel_pt *pt,
2733					 struct evlist *evlist)
2734{
2735	struct evsel *evsel;
2736
2737	evlist__for_each_entry(evlist, evsel) {
2738		if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
2739			return evsel;
2740	}
2741
2742	return NULL;
2743}
2744
2745static int intel_pt_synth_events(struct intel_pt *pt,
2746				 struct perf_session *session)
2747{
2748	struct evlist *evlist = session->evlist;
2749	struct evsel *evsel = intel_pt_evsel(pt, evlist);
2750	struct perf_event_attr attr;
2751	u64 id;
2752	int err;
2753
2754	if (!evsel) {
2755		pr_debug("There are no selected events with Intel Processor Trace data\n");
2756		return 0;
2757	}
2758
2759	memset(&attr, 0, sizeof(struct perf_event_attr));
2760	attr.size = sizeof(struct perf_event_attr);
2761	attr.type = PERF_TYPE_HARDWARE;
2762	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
2763	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
2764			    PERF_SAMPLE_PERIOD;
2765	if (pt->timeless_decoding)
2766		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
2767	else
2768		attr.sample_type |= PERF_SAMPLE_TIME;
2769	if (!pt->per_cpu_mmaps)
2770		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
2771	attr.exclude_user = evsel->core.attr.exclude_user;
2772	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
2773	attr.exclude_hv = evsel->core.attr.exclude_hv;
2774	attr.exclude_host = evsel->core.attr.exclude_host;
2775	attr.exclude_guest = evsel->core.attr.exclude_guest;
2776	attr.sample_id_all = evsel->core.attr.sample_id_all;
2777	attr.read_format = evsel->core.attr.read_format;
2778
2779	id = evsel->core.id[0] + 1000000000;
2780	if (!id)
2781		id = 1;
2782
2783	if (pt->synth_opts.branches) {
2784		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
2785		attr.sample_period = 1;
2786		attr.sample_type |= PERF_SAMPLE_ADDR;
2787		err = intel_pt_synth_event(session, "branches", &attr, id);
2788		if (err)
2789			return err;
2790		pt->sample_branches = true;
2791		pt->branches_sample_type = attr.sample_type;
2792		pt->branches_id = id;
2793		id += 1;
2794		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
2795	}
2796
2797	if (pt->synth_opts.callchain)
2798		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
2799	if (pt->synth_opts.last_branch)
2800		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
 
 
 
 
 
 
 
2801
2802	if (pt->synth_opts.instructions) {
2803		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2804		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
2805			attr.sample_period =
2806				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
2807		else
2808			attr.sample_period = pt->synth_opts.period;
2809		err = intel_pt_synth_event(session, "instructions", &attr, id);
2810		if (err)
2811			return err;
2812		pt->sample_instructions = true;
2813		pt->instructions_sample_type = attr.sample_type;
2814		pt->instructions_id = id;
2815		id += 1;
2816	}
2817
2818	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
2819	attr.sample_period = 1;
2820
2821	if (pt->synth_opts.transactions) {
2822		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2823		err = intel_pt_synth_event(session, "transactions", &attr, id);
2824		if (err)
2825			return err;
2826		pt->sample_transactions = true;
2827		pt->transactions_sample_type = attr.sample_type;
2828		pt->transactions_id = id;
2829		intel_pt_set_event_name(evlist, id, "transactions");
2830		id += 1;
2831	}
2832
2833	attr.type = PERF_TYPE_SYNTH;
2834	attr.sample_type |= PERF_SAMPLE_RAW;
2835
2836	if (pt->synth_opts.ptwrites) {
2837		attr.config = PERF_SYNTH_INTEL_PTWRITE;
2838		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
2839		if (err)
2840			return err;
2841		pt->sample_ptwrites = true;
2842		pt->ptwrites_sample_type = attr.sample_type;
2843		pt->ptwrites_id = id;
2844		intel_pt_set_event_name(evlist, id, "ptwrite");
2845		id += 1;
2846	}
2847
2848	if (pt->synth_opts.pwr_events) {
2849		pt->sample_pwr_events = true;
2850		pt->pwr_events_sample_type = attr.sample_type;
2851
2852		attr.config = PERF_SYNTH_INTEL_CBR;
2853		err = intel_pt_synth_event(session, "cbr", &attr, id);
2854		if (err)
2855			return err;
2856		pt->cbr_id = id;
2857		intel_pt_set_event_name(evlist, id, "cbr");
2858		id += 1;
 
 
 
 
 
 
 
 
2859	}
2860
2861	if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
2862		attr.config = PERF_SYNTH_INTEL_MWAIT;
2863		err = intel_pt_synth_event(session, "mwait", &attr, id);
2864		if (err)
2865			return err;
2866		pt->mwait_id = id;
2867		intel_pt_set_event_name(evlist, id, "mwait");
2868		id += 1;
2869
2870		attr.config = PERF_SYNTH_INTEL_PWRE;
2871		err = intel_pt_synth_event(session, "pwre", &attr, id);
2872		if (err)
2873			return err;
2874		pt->pwre_id = id;
2875		intel_pt_set_event_name(evlist, id, "pwre");
2876		id += 1;
2877
2878		attr.config = PERF_SYNTH_INTEL_EXSTOP;
2879		err = intel_pt_synth_event(session, "exstop", &attr, id);
2880		if (err)
2881			return err;
2882		pt->exstop_id = id;
2883		intel_pt_set_event_name(evlist, id, "exstop");
2884		id += 1;
2885
2886		attr.config = PERF_SYNTH_INTEL_PWRX;
2887		err = intel_pt_synth_event(session, "pwrx", &attr, id);
2888		if (err)
2889			return err;
2890		pt->pwrx_id = id;
2891		intel_pt_set_event_name(evlist, id, "pwrx");
2892		id += 1;
2893	}
2894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2895	return 0;
2896}
2897
2898static void intel_pt_setup_pebs_events(struct intel_pt *pt)
2899{
2900	struct evsel *evsel;
2901
2902	if (!pt->synth_opts.other_events)
2903		return;
2904
2905	evlist__for_each_entry(pt->session->evlist, evsel) {
2906		if (evsel->core.attr.aux_output && evsel->core.id) {
 
 
 
 
 
2907			pt->sample_pebs = true;
2908			pt->pebs_evsel = evsel;
2909			return;
2910		}
2911	}
2912}
2913
2914static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
2915{
2916	struct evsel *evsel;
2917
2918	evlist__for_each_entry_reverse(evlist, evsel) {
2919		const char *name = perf_evsel__name(evsel);
2920
2921		if (!strcmp(name, "sched:sched_switch"))
2922			return evsel;
2923	}
2924
2925	return NULL;
2926}
2927
2928static bool intel_pt_find_switch(struct evlist *evlist)
2929{
2930	struct evsel *evsel;
2931
2932	evlist__for_each_entry(evlist, evsel) {
2933		if (evsel->core.attr.context_switch)
2934			return true;
2935	}
2936
2937	return false;
2938}
2939
2940static int intel_pt_perf_config(const char *var, const char *value, void *data)
2941{
2942	struct intel_pt *pt = data;
2943
2944	if (!strcmp(var, "intel-pt.mispred-all"))
2945		pt->mispred_all = perf_config_bool(var, value);
2946
 
 
 
2947	return 0;
2948}
2949
2950/* Find least TSC which converts to ns or later */
2951static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
2952{
2953	u64 tsc, tm;
2954
2955	tsc = perf_time_to_tsc(ns, &pt->tc);
2956
2957	while (1) {
2958		tm = tsc_to_perf_time(tsc, &pt->tc);
2959		if (tm < ns)
2960			break;
2961		tsc -= 1;
2962	}
2963
2964	while (tm < ns)
2965		tm = tsc_to_perf_time(++tsc, &pt->tc);
2966
2967	return tsc;
2968}
2969
2970/* Find greatest TSC which converts to ns or earlier */
2971static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
2972{
2973	u64 tsc, tm;
2974
2975	tsc = perf_time_to_tsc(ns, &pt->tc);
2976
2977	while (1) {
2978		tm = tsc_to_perf_time(tsc, &pt->tc);
2979		if (tm > ns)
2980			break;
2981		tsc += 1;
2982	}
2983
2984	while (tm > ns)
2985		tm = tsc_to_perf_time(--tsc, &pt->tc);
2986
2987	return tsc;
2988}
2989
2990static int intel_pt_setup_time_ranges(struct intel_pt *pt,
2991				      struct itrace_synth_opts *opts)
2992{
2993	struct perf_time_interval *p = opts->ptime_range;
2994	int n = opts->range_num;
2995	int i;
2996
2997	if (!n || !p || pt->timeless_decoding)
2998		return 0;
2999
3000	pt->time_ranges = calloc(n, sizeof(struct range));
3001	if (!pt->time_ranges)
3002		return -ENOMEM;
3003
3004	pt->range_cnt = n;
3005
3006	intel_pt_log("%s: %u range(s)\n", __func__, n);
3007
3008	for (i = 0; i < n; i++) {
3009		struct range *r = &pt->time_ranges[i];
3010		u64 ts = p[i].start;
3011		u64 te = p[i].end;
3012
3013		/*
3014		 * Take care to ensure the TSC range matches the perf-time range
3015		 * when converted back to perf-time.
3016		 */
3017		r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3018		r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3019
3020		intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3021			     i, ts, te);
3022		intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3023			     i, r->start, r->end);
3024	}
3025
3026	return 0;
3027}
3028
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3029static const char * const intel_pt_info_fmts[] = {
3030	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
3031	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
3032	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
3033	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
3034	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
3035	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
3036	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
3037	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
3038	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
3039	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
3040	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
 
3041	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
3042	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
3043	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
3044	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
3045	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
3046};
3047
3048static void intel_pt_print_info(__u64 *arr, int start, int finish)
3049{
3050	int i;
3051
3052	if (!dump_trace)
3053		return;
3054
3055	for (i = start; i <= finish; i++)
3056		fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
 
 
 
 
3057}
3058
3059static void intel_pt_print_info_str(const char *name, const char *str)
3060{
3061	if (!dump_trace)
3062		return;
3063
3064	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
3065}
3066
3067static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3068{
3069	return auxtrace_info->header.size >=
3070		sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3071}
3072
3073int intel_pt_process_auxtrace_info(union perf_event *event,
3074				   struct perf_session *session)
3075{
3076	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3077	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3078	struct intel_pt *pt;
3079	void *info_end;
3080	__u64 *info;
3081	int err;
3082
3083	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3084					min_sz)
3085		return -EINVAL;
3086
3087	pt = zalloc(sizeof(struct intel_pt));
3088	if (!pt)
3089		return -ENOMEM;
3090
 
 
3091	addr_filters__init(&pt->filts);
3092
3093	err = perf_config(intel_pt_perf_config, pt);
3094	if (err)
3095		goto err_free;
3096
3097	err = auxtrace_queues__init(&pt->queues);
3098	if (err)
3099		goto err_free;
3100
3101	intel_pt_log_set_name(INTEL_PT_PMU_NAME);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3102
3103	pt->session = session;
3104	pt->machine = &session->machines.host; /* No kvm support */
3105	pt->auxtrace_type = auxtrace_info->type;
3106	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3107	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3108	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3109	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3110	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3111	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3112	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3113	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3114	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3115	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3116	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3117			    INTEL_PT_PER_CPU_MMAPS);
3118
3119	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3120		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3121		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3122		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3123		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3124		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3125		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3126				    INTEL_PT_CYC_BIT);
3127	}
3128
3129	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3130		pt->max_non_turbo_ratio =
3131			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3132		intel_pt_print_info(&auxtrace_info->priv[0],
3133				    INTEL_PT_MAX_NONTURBO_RATIO,
3134				    INTEL_PT_MAX_NONTURBO_RATIO);
3135	}
3136
3137	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3138	info_end = (void *)info + auxtrace_info->header.size;
3139
3140	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3141		size_t len;
3142
3143		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3144		intel_pt_print_info(&auxtrace_info->priv[0],
3145				    INTEL_PT_FILTER_STR_LEN,
3146				    INTEL_PT_FILTER_STR_LEN);
3147		if (len) {
3148			const char *filter = (const char *)info;
3149
3150			len = roundup(len + 1, 8);
3151			info += len >> 3;
3152			if ((void *)info > info_end) {
3153				pr_err("%s: bad filter string length\n", __func__);
3154				err = -EINVAL;
3155				goto err_free_queues;
3156			}
3157			pt->filter = memdup(filter, len);
3158			if (!pt->filter) {
3159				err = -ENOMEM;
3160				goto err_free_queues;
3161			}
3162			if (session->header.needs_swap)
3163				mem_bswap_64(pt->filter, len);
3164			if (pt->filter[len - 1]) {
3165				pr_err("%s: filter string not null terminated\n", __func__);
3166				err = -EINVAL;
3167				goto err_free_queues;
3168			}
3169			err = addr_filters__parse_bare_filter(&pt->filts,
3170							      filter);
3171			if (err)
3172				goto err_free_queues;
3173		}
3174		intel_pt_print_info_str("Filter string", pt->filter);
3175	}
3176
 
 
 
 
 
 
 
3177	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3178	if (pt->timeless_decoding && !pt->tc.time_mult)
3179		pt->tc.time_mult = 1;
3180	pt->have_tsc = intel_pt_have_tsc(pt);
3181	pt->sampling_mode = false;
3182	pt->est_tsc = !pt->timeless_decoding;
3183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3184	pt->unknown_thread = thread__new(999999999, 999999999);
3185	if (!pt->unknown_thread) {
3186		err = -ENOMEM;
3187		goto err_free_queues;
3188	}
3189
3190	/*
3191	 * Since this thread will not be kept in any rbtree not in a
3192	 * list, initialize its list node so that at thread__put() the
3193	 * current thread lifetime assuption is kept and we don't segfault
3194	 * at list_del_init().
3195	 */
3196	INIT_LIST_HEAD(&pt->unknown_thread->node);
3197
3198	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3199	if (err)
3200		goto err_delete_thread;
3201	if (thread__init_map_groups(pt->unknown_thread, pt->machine)) {
3202		err = -ENOMEM;
3203		goto err_delete_thread;
3204	}
3205
3206	pt->auxtrace.process_event = intel_pt_process_event;
3207	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
 
 
3208	pt->auxtrace.flush_events = intel_pt_flush;
3209	pt->auxtrace.free_events = intel_pt_free_events;
3210	pt->auxtrace.free = intel_pt_free;
 
3211	session->auxtrace = &pt->auxtrace;
3212
3213	if (dump_trace)
3214		return 0;
3215
3216	if (pt->have_sched_switch == 1) {
3217		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3218		if (!pt->switch_evsel) {
3219			pr_err("%s: missing sched_switch event\n", __func__);
3220			err = -EINVAL;
3221			goto err_delete_thread;
3222		}
3223	} else if (pt->have_sched_switch == 2 &&
3224		   !intel_pt_find_switch(session->evlist)) {
3225		pr_err("%s: missing context_switch attribute flag\n", __func__);
3226		err = -EINVAL;
3227		goto err_delete_thread;
3228	}
3229
3230	if (session->itrace_synth_opts->set) {
3231		pt->synth_opts = *session->itrace_synth_opts;
3232	} else {
3233		itrace_synth_opts__set_default(&pt->synth_opts,
3234				session->itrace_synth_opts->default_no_sample);
3235		if (!session->itrace_synth_opts->default_no_sample &&
3236		    !session->itrace_synth_opts->inject) {
3237			pt->synth_opts.branches = false;
3238			pt->synth_opts.callchain = true;
3239		}
3240		pt->synth_opts.thread_stack =
3241				session->itrace_synth_opts->thread_stack;
3242	}
3243
3244	if (pt->synth_opts.log)
3245		intel_pt_log_enable();
3246
3247	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
3248	if (pt->tc.time_mult) {
3249		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3250
3251		if (!pt->max_non_turbo_ratio)
3252			pt->max_non_turbo_ratio =
3253					(tsc_freq + 50000000) / 100000000;
3254		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3255		intel_pt_log("Maximum non-turbo ratio %u\n",
3256			     pt->max_non_turbo_ratio);
3257		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3258	}
3259
3260	err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3261	if (err)
3262		goto err_delete_thread;
3263
3264	if (pt->synth_opts.calls)
3265		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3266				       PERF_IP_FLAG_TRACE_END;
3267	if (pt->synth_opts.returns)
3268		pt->branches_filter |= PERF_IP_FLAG_RETURN |
3269				       PERF_IP_FLAG_TRACE_BEGIN;
3270
3271	if (pt->synth_opts.callchain && !symbol_conf.use_callchain) {
 
3272		symbol_conf.use_callchain = true;
3273		if (callchain_register_param(&callchain_param) < 0) {
3274			symbol_conf.use_callchain = false;
3275			pt->synth_opts.callchain = false;
 
3276		}
3277	}
3278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3279	err = intel_pt_synth_events(pt, session);
3280	if (err)
3281		goto err_delete_thread;
3282
3283	intel_pt_setup_pebs_events(pt);
3284
3285	err = auxtrace_queues__process_index(&pt->queues, session);
 
 
 
3286	if (err)
3287		goto err_delete_thread;
3288
3289	if (pt->queues.populated)
3290		pt->data_queued = true;
3291
3292	if (pt->timeless_decoding)
3293		pr_debug2("Intel PT decoding without timestamps\n");
3294
3295	return 0;
3296
3297err_delete_thread:
 
3298	thread__zput(pt->unknown_thread);
3299err_free_queues:
3300	intel_pt_log_disable();
3301	auxtrace_queues__free(&pt->queues);
3302	session->auxtrace = NULL;
3303err_free:
3304	addr_filters__exit(&pt->filts);
3305	zfree(&pt->filter);
3306	zfree(&pt->time_ranges);
3307	free(pt);
3308	return err;
3309}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * intel_pt.c: Intel Processor Trace support
   4 * Copyright (c) 2013-2015, Intel Corporation.
   5 */
   6
   7#include <inttypes.h>
   8#include <stdio.h>
   9#include <stdbool.h>
  10#include <errno.h>
  11#include <linux/kernel.h>
  12#include <linux/string.h>
  13#include <linux/types.h>
  14#include <linux/zalloc.h>
  15
  16#include "session.h"
  17#include "machine.h"
  18#include "memswap.h"
  19#include "sort.h"
  20#include "tool.h"
  21#include "event.h"
  22#include "evlist.h"
  23#include "evsel.h"
  24#include "map.h"
  25#include "color.h"
  26#include "thread.h"
  27#include "thread-stack.h"
  28#include "symbol.h"
  29#include "callchain.h"
  30#include "dso.h"
  31#include "debug.h"
  32#include "auxtrace.h"
  33#include "tsc.h"
  34#include "intel-pt.h"
  35#include "config.h"
  36#include "util/perf_api_probe.h"
  37#include "util/synthetic-events.h"
  38#include "time-utils.h"
  39
  40#include "../arch/x86/include/uapi/asm/perf_regs.h"
  41
  42#include "intel-pt-decoder/intel-pt-log.h"
  43#include "intel-pt-decoder/intel-pt-decoder.h"
  44#include "intel-pt-decoder/intel-pt-insn-decoder.h"
  45#include "intel-pt-decoder/intel-pt-pkt-decoder.h"
  46
  47#define MAX_TIMESTAMP (~0ULL)
  48
  49#define INTEL_PT_CFG_PASS_THRU	BIT_ULL(0)
  50#define INTEL_PT_CFG_PWR_EVT_EN	BIT_ULL(4)
  51#define INTEL_PT_CFG_BRANCH_EN	BIT_ULL(13)
  52#define INTEL_PT_CFG_EVT_EN	BIT_ULL(31)
  53#define INTEL_PT_CFG_TNT_DIS	BIT_ULL(55)
  54
  55struct range {
  56	u64 start;
  57	u64 end;
  58};
  59
  60struct intel_pt {
  61	struct auxtrace auxtrace;
  62	struct auxtrace_queues queues;
  63	struct auxtrace_heap heap;
  64	u32 auxtrace_type;
  65	struct perf_session *session;
  66	struct machine *machine;
  67	struct evsel *switch_evsel;
  68	struct thread *unknown_thread;
  69	bool timeless_decoding;
  70	bool sampling_mode;
  71	bool snapshot_mode;
  72	bool per_cpu_mmaps;
  73	bool have_tsc;
  74	bool data_queued;
  75	bool est_tsc;
  76	bool sync_switch;
  77	bool sync_switch_not_supported;
  78	bool mispred_all;
  79	bool use_thread_stack;
  80	bool callstack;
  81	bool cap_event_trace;
  82	bool have_guest_sideband;
  83	unsigned int br_stack_sz;
  84	unsigned int br_stack_sz_plus;
  85	int have_sched_switch;
  86	u32 pmu_type;
  87	u64 kernel_start;
  88	u64 switch_ip;
  89	u64 ptss_ip;
  90	u64 first_timestamp;
  91
  92	struct perf_tsc_conversion tc;
  93	bool cap_user_time_zero;
  94
  95	struct itrace_synth_opts synth_opts;
  96
  97	bool sample_instructions;
  98	u64 instructions_sample_type;
  99	u64 instructions_id;
 100
 101	bool sample_branches;
 102	u32 branches_filter;
 103	u64 branches_sample_type;
 104	u64 branches_id;
 105
 106	bool sample_transactions;
 107	u64 transactions_sample_type;
 108	u64 transactions_id;
 109
 110	bool sample_ptwrites;
 111	u64 ptwrites_sample_type;
 112	u64 ptwrites_id;
 113
 114	bool sample_pwr_events;
 115	u64 pwr_events_sample_type;
 116	u64 mwait_id;
 117	u64 pwre_id;
 118	u64 exstop_id;
 119	u64 pwrx_id;
 120	u64 cbr_id;
 121	u64 psb_id;
 122
 123	bool single_pebs;
 124	bool sample_pebs;
 125	struct evsel *pebs_evsel;
 126
 127	u64 evt_sample_type;
 128	u64 evt_id;
 129
 130	u64 iflag_chg_sample_type;
 131	u64 iflag_chg_id;
 132
 133	u64 tsc_bit;
 134	u64 mtc_bit;
 135	u64 mtc_freq_bits;
 136	u32 tsc_ctc_ratio_n;
 137	u32 tsc_ctc_ratio_d;
 138	u64 cyc_bit;
 139	u64 noretcomp_bit;
 140	unsigned max_non_turbo_ratio;
 141	unsigned cbr2khz;
 142	int max_loops;
 143
 144	unsigned long num_events;
 145
 146	char *filter;
 147	struct addr_filters filts;
 148
 149	struct range *time_ranges;
 150	unsigned int range_cnt;
 151
 152	struct ip_callchain *chain;
 153	struct branch_stack *br_stack;
 154
 155	u64 dflt_tsc_offset;
 156	struct rb_root vmcs_info;
 157};
 158
 159enum switch_state {
 160	INTEL_PT_SS_NOT_TRACING,
 161	INTEL_PT_SS_UNKNOWN,
 162	INTEL_PT_SS_TRACING,
 163	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
 164	INTEL_PT_SS_EXPECTING_SWITCH_IP,
 165};
 166
 167/* applicable_counters is 64-bits */
 168#define INTEL_PT_MAX_PEBS 64
 169
 170struct intel_pt_pebs_event {
 171	struct evsel *evsel;
 172	u64 id;
 173};
 174
 175struct intel_pt_queue {
 176	struct intel_pt *pt;
 177	unsigned int queue_nr;
 178	struct auxtrace_buffer *buffer;
 179	struct auxtrace_buffer *old_buffer;
 180	void *decoder;
 181	const struct intel_pt_state *state;
 182	struct ip_callchain *chain;
 183	struct branch_stack *last_branch;
 
 
 184	union perf_event *event_buf;
 185	bool on_heap;
 186	bool stop;
 187	bool step_through_buffers;
 188	bool use_buffer_pid_tid;
 189	bool sync_switch;
 190	bool sample_ipc;
 191	pid_t pid, tid;
 192	int cpu;
 193	int switch_state;
 194	pid_t next_tid;
 195	struct thread *thread;
 196	struct machine *guest_machine;
 197	struct thread *guest_thread;
 198	struct thread *unknown_guest_thread;
 199	pid_t guest_machine_pid;
 200	pid_t guest_pid;
 201	pid_t guest_tid;
 202	int vcpu;
 203	bool exclude_kernel;
 204	bool have_sample;
 205	u64 time;
 206	u64 timestamp;
 207	u64 sel_timestamp;
 208	bool sel_start;
 209	unsigned int sel_idx;
 210	u32 flags;
 211	u16 insn_len;
 212	u64 last_insn_cnt;
 213	u64 ipc_insn_cnt;
 214	u64 ipc_cyc_cnt;
 215	u64 last_in_insn_cnt;
 216	u64 last_in_cyc_cnt;
 217	u64 last_br_insn_cnt;
 218	u64 last_br_cyc_cnt;
 219	unsigned int cbr_seen;
 220	char insn[INTEL_PT_INSN_BUF_SZ];
 221	struct intel_pt_pebs_event pebs[INTEL_PT_MAX_PEBS];
 222};
 223
 224static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
 225			  unsigned char *buf, size_t len)
 226{
 227	struct intel_pt_pkt packet;
 228	size_t pos = 0;
 229	int ret, pkt_len, i;
 230	char desc[INTEL_PT_PKT_DESC_MAX];
 231	const char *color = PERF_COLOR_BLUE;
 232	enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
 233
 234	color_fprintf(stdout, color,
 235		      ". ... Intel Processor Trace data: size %zu bytes\n",
 236		      len);
 237
 238	while (len) {
 239		ret = intel_pt_get_packet(buf, len, &packet, &ctx);
 240		if (ret > 0)
 241			pkt_len = ret;
 242		else
 243			pkt_len = 1;
 244		printf(".");
 245		color_fprintf(stdout, color, "  %08x: ", pos);
 246		for (i = 0; i < pkt_len; i++)
 247			color_fprintf(stdout, color, " %02x", buf[i]);
 248		for (; i < 16; i++)
 249			color_fprintf(stdout, color, "   ");
 250		if (ret > 0) {
 251			ret = intel_pt_pkt_desc(&packet, desc,
 252						INTEL_PT_PKT_DESC_MAX);
 253			if (ret > 0)
 254				color_fprintf(stdout, color, " %s\n", desc);
 255		} else {
 256			color_fprintf(stdout, color, " Bad packet!\n");
 257		}
 258		pos += pkt_len;
 259		buf += pkt_len;
 260		len -= pkt_len;
 261	}
 262}
 263
 264static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
 265				size_t len)
 266{
 267	printf(".\n");
 268	intel_pt_dump(pt, buf, len);
 269}
 270
 271static void intel_pt_log_event(union perf_event *event)
 272{
 273	FILE *f = intel_pt_log_fp();
 274
 275	if (!intel_pt_enable_logging || !f)
 276		return;
 277
 278	perf_event__fprintf(event, NULL, f);
 279}
 280
 281static void intel_pt_dump_sample(struct perf_session *session,
 282				 struct perf_sample *sample)
 283{
 284	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
 285					   auxtrace);
 286
 287	printf("\n");
 288	intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
 289}
 290
 291static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
 292{
 293	struct perf_time_interval *range = pt->synth_opts.ptime_range;
 294	int n = pt->synth_opts.range_num;
 295
 296	if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
 297		return true;
 298
 299	if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
 300		return false;
 301
 302	/* perf_time__ranges_skip_sample does not work if time is zero */
 303	if (!tm)
 304		tm = 1;
 305
 306	return !n || !perf_time__ranges_skip_sample(range, n, tm);
 307}
 308
 309static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
 310							u64 vmcs,
 311							u64 dflt_tsc_offset)
 312{
 313	struct rb_node **p = &rb_root->rb_node;
 314	struct rb_node *parent = NULL;
 315	struct intel_pt_vmcs_info *v;
 316
 317	while (*p) {
 318		parent = *p;
 319		v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
 320
 321		if (v->vmcs == vmcs)
 322			return v;
 323
 324		if (vmcs < v->vmcs)
 325			p = &(*p)->rb_left;
 326		else
 327			p = &(*p)->rb_right;
 328	}
 329
 330	v = zalloc(sizeof(*v));
 331	if (v) {
 332		v->vmcs = vmcs;
 333		v->tsc_offset = dflt_tsc_offset;
 334		v->reliable = dflt_tsc_offset;
 335
 336		rb_link_node(&v->rb_node, parent, p);
 337		rb_insert_color(&v->rb_node, rb_root);
 338	}
 339
 340	return v;
 341}
 342
 343static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
 344{
 345	struct intel_pt_queue *ptq = data;
 346	struct intel_pt *pt = ptq->pt;
 347
 348	if (!vmcs && !pt->dflt_tsc_offset)
 349		return NULL;
 350
 351	return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset);
 352}
 353
 354static void intel_pt_free_vmcs_info(struct intel_pt *pt)
 355{
 356	struct intel_pt_vmcs_info *v;
 357	struct rb_node *n;
 358
 359	n = rb_first(&pt->vmcs_info);
 360	while (n) {
 361		v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
 362		n = rb_next(n);
 363		rb_erase(&v->rb_node, &pt->vmcs_info);
 364		free(v);
 365	}
 366}
 367
 368static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
 369				   struct auxtrace_buffer *b)
 370{
 371	bool consecutive = false;
 372	void *start;
 373
 374	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
 375				      pt->have_tsc, &consecutive,
 376				      pt->synth_opts.vm_time_correlation);
 377	if (!start)
 378		return -EINVAL;
 379	/*
 380	 * In the case of vm_time_correlation, the overlap might contain TSC
 381	 * packets that will not be fixed, and that will then no longer work for
 382	 * overlap detection. Avoid that by zeroing out the overlap.
 383	 */
 384	if (pt->synth_opts.vm_time_correlation)
 385		memset(b->data, 0, start - b->data);
 386	b->use_size = b->data + b->size - start;
 387	b->use_data = start;
 388	if (b->use_size && consecutive)
 389		b->consecutive = true;
 390	return 0;
 391}
 392
 393static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
 394			       struct auxtrace_buffer *buffer,
 395			       struct auxtrace_buffer *old_buffer,
 396			       struct intel_pt_buffer *b)
 397{
 398	bool might_overlap;
 399
 400	if (!buffer->data) {
 401		int fd = perf_data__fd(ptq->pt->session->data);
 402
 403		buffer->data = auxtrace_buffer__get_data(buffer, fd);
 404		if (!buffer->data)
 405			return -ENOMEM;
 406	}
 407
 408	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
 409	if (might_overlap && !buffer->consecutive && old_buffer &&
 410	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
 411		return -ENOMEM;
 412
 413	if (buffer->use_data) {
 414		b->len = buffer->use_size;
 415		b->buf = buffer->use_data;
 416	} else {
 417		b->len = buffer->size;
 418		b->buf = buffer->data;
 419	}
 420	b->ref_timestamp = buffer->reference;
 421
 422	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
 423		b->consecutive = false;
 424		b->trace_nr = buffer->buffer_nr + 1;
 425	} else {
 426		b->consecutive = true;
 427	}
 428
 429	return 0;
 430}
 431
 432/* Do not drop buffers with references - refer intel_pt_get_trace() */
 433static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
 434					   struct auxtrace_buffer *buffer)
 435{
 436	if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
 437		return;
 438
 439	auxtrace_buffer__drop_data(buffer);
 440}
 441
 442/* Must be serialized with respect to intel_pt_get_trace() */
 443static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
 444			      void *cb_data)
 445{
 446	struct intel_pt_queue *ptq = data;
 447	struct auxtrace_buffer *buffer = ptq->buffer;
 448	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
 449	struct auxtrace_queue *queue;
 450	int err = 0;
 451
 452	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
 453
 454	while (1) {
 455		struct intel_pt_buffer b = { .len = 0 };
 456
 457		buffer = auxtrace_buffer__next(queue, buffer);
 458		if (!buffer)
 459			break;
 460
 461		err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
 462		if (err)
 463			break;
 464
 465		if (b.len) {
 466			intel_pt_lookahead_drop_buffer(ptq, old_buffer);
 467			old_buffer = buffer;
 468		} else {
 469			intel_pt_lookahead_drop_buffer(ptq, buffer);
 470			continue;
 471		}
 472
 473		err = cb(&b, cb_data);
 474		if (err)
 475			break;
 476	}
 477
 478	if (buffer != old_buffer)
 479		intel_pt_lookahead_drop_buffer(ptq, buffer);
 480	intel_pt_lookahead_drop_buffer(ptq, old_buffer);
 481
 482	return err;
 483}
 484
 485/*
 486 * This function assumes data is processed sequentially only.
 487 * Must be serialized with respect to intel_pt_lookahead()
 488 */
 489static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
 490{
 491	struct intel_pt_queue *ptq = data;
 492	struct auxtrace_buffer *buffer = ptq->buffer;
 493	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
 494	struct auxtrace_queue *queue;
 495	int err;
 496
 497	if (ptq->stop) {
 498		b->len = 0;
 499		return 0;
 500	}
 501
 502	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
 503
 504	buffer = auxtrace_buffer__next(queue, buffer);
 505	if (!buffer) {
 506		if (old_buffer)
 507			auxtrace_buffer__drop_data(old_buffer);
 508		b->len = 0;
 509		return 0;
 510	}
 511
 512	ptq->buffer = buffer;
 513
 514	err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
 515	if (err)
 516		return err;
 517
 518	if (ptq->step_through_buffers)
 519		ptq->stop = true;
 520
 521	if (b->len) {
 522		if (old_buffer)
 523			auxtrace_buffer__drop_data(old_buffer);
 524		ptq->old_buffer = buffer;
 525	} else {
 526		auxtrace_buffer__drop_data(buffer);
 527		return intel_pt_get_trace(b, data);
 528	}
 529
 530	return 0;
 531}
 532
 533struct intel_pt_cache_entry {
 534	struct auxtrace_cache_entry	entry;
 535	u64				insn_cnt;
 536	u64				byte_cnt;
 537	enum intel_pt_insn_op		op;
 538	enum intel_pt_insn_branch	branch;
 539	bool				emulated_ptwrite;
 540	int				length;
 541	int32_t				rel;
 542	char				insn[INTEL_PT_INSN_BUF_SZ];
 543};
 544
 545static int intel_pt_config_div(const char *var, const char *value, void *data)
 546{
 547	int *d = data;
 548	long val;
 549
 550	if (!strcmp(var, "intel-pt.cache-divisor")) {
 551		val = strtol(value, NULL, 0);
 552		if (val > 0 && val <= INT_MAX)
 553			*d = val;
 554	}
 555
 556	return 0;
 557}
 558
 559static int intel_pt_cache_divisor(void)
 560{
 561	static int d;
 562
 563	if (d)
 564		return d;
 565
 566	perf_config(intel_pt_config_div, &d);
 567
 568	if (!d)
 569		d = 64;
 570
 571	return d;
 572}
 573
 574static unsigned int intel_pt_cache_size(struct dso *dso,
 575					struct machine *machine)
 576{
 577	off_t size;
 578
 579	size = dso__data_size(dso, machine);
 580	size /= intel_pt_cache_divisor();
 581	if (size < 1000)
 582		return 10;
 583	if (size > (1 << 21))
 584		return 21;
 585	return 32 - __builtin_clz(size);
 586}
 587
 588static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
 589					     struct machine *machine)
 590{
 591	struct auxtrace_cache *c;
 592	unsigned int bits;
 593
 594	if (dso->auxtrace_cache)
 595		return dso->auxtrace_cache;
 596
 597	bits = intel_pt_cache_size(dso, machine);
 598
 599	/* Ignoring cache creation failure */
 600	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
 601
 602	dso->auxtrace_cache = c;
 603
 604	return c;
 605}
 606
 607static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
 608			      u64 offset, u64 insn_cnt, u64 byte_cnt,
 609			      struct intel_pt_insn *intel_pt_insn)
 610{
 611	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
 612	struct intel_pt_cache_entry *e;
 613	int err;
 614
 615	if (!c)
 616		return -ENOMEM;
 617
 618	e = auxtrace_cache__alloc_entry(c);
 619	if (!e)
 620		return -ENOMEM;
 621
 622	e->insn_cnt = insn_cnt;
 623	e->byte_cnt = byte_cnt;
 624	e->op = intel_pt_insn->op;
 625	e->branch = intel_pt_insn->branch;
 626	e->emulated_ptwrite = intel_pt_insn->emulated_ptwrite;
 627	e->length = intel_pt_insn->length;
 628	e->rel = intel_pt_insn->rel;
 629	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
 630
 631	err = auxtrace_cache__add(c, offset, &e->entry);
 632	if (err)
 633		auxtrace_cache__free_entry(c, e);
 634
 635	return err;
 636}
 637
 638static struct intel_pt_cache_entry *
 639intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
 640{
 641	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
 642
 643	if (!c)
 644		return NULL;
 645
 646	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
 647}
 648
 649static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
 650				      u64 offset)
 651{
 652	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
 653
 654	if (!c)
 655		return;
 656
 657	auxtrace_cache__remove(dso->auxtrace_cache, offset);
 658}
 659
 660static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
 661{
 662	/* Assumes 64-bit kernel */
 663	return ip & (1ULL << 63);
 664}
 665
 666static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
 667{
 668	if (nr) {
 669		return intel_pt_guest_kernel_ip(ip) ?
 670		       PERF_RECORD_MISC_GUEST_KERNEL :
 671		       PERF_RECORD_MISC_GUEST_USER;
 672	}
 673
 674	return ip >= ptq->pt->kernel_start ?
 675	       PERF_RECORD_MISC_KERNEL :
 676	       PERF_RECORD_MISC_USER;
 677}
 678
 679static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
 680{
 681	/* No support for non-zero CS base */
 682	if (from_ip)
 683		return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
 684	return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
 685}
 686
 687static int intel_pt_get_guest(struct intel_pt_queue *ptq)
 688{
 689	struct machines *machines = &ptq->pt->session->machines;
 690	struct machine *machine;
 691	pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
 692
 693	if (ptq->guest_machine && pid == ptq->guest_machine->pid)
 694		return 0;
 695
 696	ptq->guest_machine = NULL;
 697	thread__zput(ptq->unknown_guest_thread);
 698
 699	if (symbol_conf.guest_code) {
 700		thread__zput(ptq->guest_thread);
 701		ptq->guest_thread = machines__findnew_guest_code(machines, pid);
 702	}
 703
 704	machine = machines__find_guest(machines, pid);
 705	if (!machine)
 706		return -1;
 707
 708	ptq->unknown_guest_thread = machine__idle_thread(machine);
 709	if (!ptq->unknown_guest_thread)
 710		return -1;
 711
 712	ptq->guest_machine = machine;
 713
 714	return 0;
 715}
 716
 717static inline bool intel_pt_jmp_16(struct intel_pt_insn *intel_pt_insn)
 718{
 719	return intel_pt_insn->rel == 16 && intel_pt_insn->branch == INTEL_PT_BR_UNCONDITIONAL;
 720}
 721
 722#define PTWRITE_MAGIC		"\x0f\x0bperf,ptwrite  "
 723#define PTWRITE_MAGIC_LEN	16
 724
 725static bool intel_pt_emulated_ptwrite(struct dso *dso, struct machine *machine, u64 offset)
 726{
 727	unsigned char buf[PTWRITE_MAGIC_LEN];
 728	ssize_t len;
 729
 730	len = dso__data_read_offset(dso, machine, offset, buf, PTWRITE_MAGIC_LEN);
 731	if (len == PTWRITE_MAGIC_LEN && !memcmp(buf, PTWRITE_MAGIC, PTWRITE_MAGIC_LEN)) {
 732		intel_pt_log("Emulated ptwrite signature found\n");
 733		return true;
 734	}
 735	intel_pt_log("Emulated ptwrite signature not found\n");
 736	return false;
 737}
 738
 739static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
 740				   uint64_t *insn_cnt_ptr, uint64_t *ip,
 741				   uint64_t to_ip, uint64_t max_insn_cnt,
 742				   void *data)
 743{
 744	struct intel_pt_queue *ptq = data;
 745	struct machine *machine = ptq->pt->machine;
 746	struct thread *thread;
 747	struct addr_location al;
 748	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
 749	ssize_t len;
 750	int x86_64;
 751	u8 cpumode;
 752	u64 offset, start_offset, start_ip;
 753	u64 insn_cnt = 0;
 754	bool one_map = true;
 755	bool nr;
 756
 757	intel_pt_insn->length = 0;
 758
 759	if (to_ip && *ip == to_ip)
 760		goto out_no_cache;
 761
 762	nr = ptq->state->to_nr;
 763	cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
 764
 765	if (nr) {
 766		if (ptq->pt->have_guest_sideband) {
 767			if (!ptq->guest_machine || ptq->guest_machine_pid != ptq->pid) {
 768				intel_pt_log("ERROR: guest sideband but no guest machine\n");
 769				return -EINVAL;
 770			}
 771		} else if ((!symbol_conf.guest_code && cpumode != PERF_RECORD_MISC_GUEST_KERNEL) ||
 772			   intel_pt_get_guest(ptq)) {
 773			intel_pt_log("ERROR: no guest machine\n");
 774			return -EINVAL;
 775		}
 776		machine = ptq->guest_machine;
 777		thread = ptq->guest_thread;
 778		if (!thread) {
 779			if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL) {
 780				intel_pt_log("ERROR: no guest thread\n");
 781				return -EINVAL;
 782			}
 783			thread = ptq->unknown_guest_thread;
 784		}
 785	} else {
 786		thread = ptq->thread;
 787		if (!thread) {
 788			if (cpumode != PERF_RECORD_MISC_KERNEL) {
 789				intel_pt_log("ERROR: no thread\n");
 790				return -EINVAL;
 791			}
 792			thread = ptq->pt->unknown_thread;
 793		}
 794	}
 795
 796	while (1) {
 797		if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso) {
 798			if (al.map)
 799				intel_pt_log("ERROR: thread has no dso for %#" PRIx64 "\n", *ip);
 800			else
 801				intel_pt_log("ERROR: thread has no map for %#" PRIx64 "\n", *ip);
 802			return -EINVAL;
 803		}
 804
 805		if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
 806		    dso__data_status_seen(al.map->dso,
 807					  DSO_DATA_STATUS_SEEN_ITRACE))
 808			return -ENOENT;
 809
 810		offset = al.map->map_ip(al.map, *ip);
 811
 812		if (!to_ip && one_map) {
 813			struct intel_pt_cache_entry *e;
 814
 815			e = intel_pt_cache_lookup(al.map->dso, machine, offset);
 816			if (e &&
 817			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
 818				*insn_cnt_ptr = e->insn_cnt;
 819				*ip += e->byte_cnt;
 820				intel_pt_insn->op = e->op;
 821				intel_pt_insn->branch = e->branch;
 822				intel_pt_insn->emulated_ptwrite = e->emulated_ptwrite;
 823				intel_pt_insn->length = e->length;
 824				intel_pt_insn->rel = e->rel;
 825				memcpy(intel_pt_insn->buf, e->insn,
 826				       INTEL_PT_INSN_BUF_SZ);
 827				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
 828				return 0;
 829			}
 830		}
 831
 832		start_offset = offset;
 833		start_ip = *ip;
 834
 835		/* Load maps to ensure dso->is_64_bit has been updated */
 836		map__load(al.map);
 837
 838		x86_64 = al.map->dso->is_64_bit;
 839
 840		while (1) {
 841			len = dso__data_read_offset(al.map->dso, machine,
 842						    offset, buf,
 843						    INTEL_PT_INSN_BUF_SZ);
 844			if (len <= 0) {
 845				intel_pt_log("ERROR: failed to read at offset %#" PRIx64 " ",
 846					     offset);
 847				if (intel_pt_enable_logging)
 848					dso__fprintf(al.map->dso, intel_pt_log_fp());
 849				return -EINVAL;
 850			}
 851
 852			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
 853				return -EINVAL;
 854
 855			intel_pt_log_insn(intel_pt_insn, *ip);
 856
 857			insn_cnt += 1;
 858
 859			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) {
 860				bool eptw;
 861				u64 offs;
 862
 863				if (!intel_pt_jmp_16(intel_pt_insn))
 864					goto out;
 865				/* Check for emulated ptwrite */
 866				offs = offset + intel_pt_insn->length;
 867				eptw = intel_pt_emulated_ptwrite(al.map->dso, machine, offs);
 868				intel_pt_insn->emulated_ptwrite = eptw;
 869				goto out;
 870			}
 871
 872			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
 873				goto out_no_cache;
 874
 875			*ip += intel_pt_insn->length;
 876
 877			if (to_ip && *ip == to_ip) {
 878				intel_pt_insn->length = 0;
 879				goto out_no_cache;
 880			}
 881
 882			if (*ip >= al.map->end)
 883				break;
 884
 885			offset += intel_pt_insn->length;
 886		}
 887		one_map = false;
 888	}
 889out:
 890	*insn_cnt_ptr = insn_cnt;
 891
 892	if (!one_map)
 893		goto out_no_cache;
 894
 895	/*
 896	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
 897	 * entries.
 898	 */
 899	if (to_ip) {
 900		struct intel_pt_cache_entry *e;
 901
 902		e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
 903		if (e)
 904			return 0;
 905	}
 906
 907	/* Ignore cache errors */
 908	intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
 909			   *ip - start_ip, intel_pt_insn);
 910
 911	return 0;
 912
 913out_no_cache:
 914	*insn_cnt_ptr = insn_cnt;
 915	return 0;
 916}
 917
 918static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
 919				  uint64_t offset, const char *filename)
 920{
 921	struct addr_filter *filt;
 922	bool have_filter   = false;
 923	bool hit_tracestop = false;
 924	bool hit_filter    = false;
 925
 926	list_for_each_entry(filt, &pt->filts.head, list) {
 927		if (filt->start)
 928			have_filter = true;
 929
 930		if ((filename && !filt->filename) ||
 931		    (!filename && filt->filename) ||
 932		    (filename && strcmp(filename, filt->filename)))
 933			continue;
 934
 935		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
 936			continue;
 937
 938		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
 939			     ip, offset, filename ? filename : "[kernel]",
 940			     filt->start ? "filter" : "stop",
 941			     filt->addr, filt->size);
 942
 943		if (filt->start)
 944			hit_filter = true;
 945		else
 946			hit_tracestop = true;
 947	}
 948
 949	if (!hit_tracestop && !hit_filter)
 950		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
 951			     ip, offset, filename ? filename : "[kernel]");
 952
 953	return hit_tracestop || (have_filter && !hit_filter);
 954}
 955
 956static int __intel_pt_pgd_ip(uint64_t ip, void *data)
 957{
 958	struct intel_pt_queue *ptq = data;
 959	struct thread *thread;
 960	struct addr_location al;
 961	u8 cpumode;
 962	u64 offset;
 963
 964	if (ptq->state->to_nr) {
 965		if (intel_pt_guest_kernel_ip(ip))
 966			return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
 967		/* No support for decoding guest user space */
 968		return -EINVAL;
 969	} else if (ip >= ptq->pt->kernel_start) {
 970		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
 971	}
 972
 973	cpumode = PERF_RECORD_MISC_USER;
 974
 975	thread = ptq->thread;
 976	if (!thread)
 977		return -EINVAL;
 978
 979	if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
 980		return -EINVAL;
 981
 982	offset = al.map->map_ip(al.map, ip);
 983
 984	return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
 985				     al.map->dso->long_name);
 986}
 987
 988static bool intel_pt_pgd_ip(uint64_t ip, void *data)
 989{
 990	return __intel_pt_pgd_ip(ip, data) > 0;
 991}
 992
 993static bool intel_pt_get_config(struct intel_pt *pt,
 994				struct perf_event_attr *attr, u64 *config)
 995{
 996	if (attr->type == pt->pmu_type) {
 997		if (config)
 998			*config = attr->config;
 999		return true;
1000	}
1001
1002	return false;
1003}
1004
1005static bool intel_pt_exclude_kernel(struct intel_pt *pt)
1006{
1007	struct evsel *evsel;
1008
1009	evlist__for_each_entry(pt->session->evlist, evsel) {
1010		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1011		    !evsel->core.attr.exclude_kernel)
1012			return false;
1013	}
1014	return true;
1015}
1016
1017static bool intel_pt_return_compression(struct intel_pt *pt)
1018{
1019	struct evsel *evsel;
1020	u64 config;
1021
1022	if (!pt->noretcomp_bit)
1023		return true;
1024
1025	evlist__for_each_entry(pt->session->evlist, evsel) {
1026		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1027		    (config & pt->noretcomp_bit))
1028			return false;
1029	}
1030	return true;
1031}
1032
1033static bool intel_pt_branch_enable(struct intel_pt *pt)
1034{
1035	struct evsel *evsel;
1036	u64 config;
1037
1038	evlist__for_each_entry(pt->session->evlist, evsel) {
1039		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1040		    (config & INTEL_PT_CFG_PASS_THRU) &&
1041		    !(config & INTEL_PT_CFG_BRANCH_EN))
1042			return false;
1043	}
1044	return true;
1045}
1046
1047static bool intel_pt_disabled_tnt(struct intel_pt *pt)
1048{
1049	struct evsel *evsel;
1050	u64 config;
1051
1052	evlist__for_each_entry(pt->session->evlist, evsel) {
1053		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1054		    config & INTEL_PT_CFG_TNT_DIS)
1055			return true;
1056	}
1057	return false;
1058}
1059
1060static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
1061{
1062	struct evsel *evsel;
1063	unsigned int shift;
1064	u64 config;
1065
1066	if (!pt->mtc_freq_bits)
1067		return 0;
1068
1069	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
1070		config >>= 1;
1071
1072	evlist__for_each_entry(pt->session->evlist, evsel) {
1073		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1074			return (config & pt->mtc_freq_bits) >> shift;
1075	}
1076	return 0;
1077}
1078
1079static bool intel_pt_timeless_decoding(struct intel_pt *pt)
1080{
1081	struct evsel *evsel;
1082	bool timeless_decoding = true;
1083	u64 config;
1084
1085	if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
1086		return true;
1087
1088	evlist__for_each_entry(pt->session->evlist, evsel) {
1089		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
1090			return true;
1091		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1092			if (config & pt->tsc_bit)
1093				timeless_decoding = false;
1094			else
1095				return true;
1096		}
1097	}
1098	return timeless_decoding;
1099}
1100
1101static bool intel_pt_tracing_kernel(struct intel_pt *pt)
1102{
1103	struct evsel *evsel;
1104
1105	evlist__for_each_entry(pt->session->evlist, evsel) {
1106		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1107		    !evsel->core.attr.exclude_kernel)
1108			return true;
1109	}
1110	return false;
1111}
1112
1113static bool intel_pt_have_tsc(struct intel_pt *pt)
1114{
1115	struct evsel *evsel;
1116	bool have_tsc = false;
1117	u64 config;
1118
1119	if (!pt->tsc_bit)
1120		return false;
1121
1122	evlist__for_each_entry(pt->session->evlist, evsel) {
1123		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1124			if (config & pt->tsc_bit)
1125				have_tsc = true;
1126			else
1127				return false;
1128		}
1129	}
1130	return have_tsc;
1131}
1132
1133static bool intel_pt_have_mtc(struct intel_pt *pt)
1134{
1135	struct evsel *evsel;
1136	u64 config;
1137
1138	evlist__for_each_entry(pt->session->evlist, evsel) {
1139		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1140		    (config & pt->mtc_bit))
1141			return true;
1142	}
1143	return false;
1144}
1145
1146static bool intel_pt_sampling_mode(struct intel_pt *pt)
1147{
1148	struct evsel *evsel;
1149
1150	evlist__for_each_entry(pt->session->evlist, evsel) {
1151		if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
1152		    evsel->core.attr.aux_sample_size)
1153			return true;
1154	}
1155	return false;
1156}
1157
1158static u64 intel_pt_ctl(struct intel_pt *pt)
1159{
1160	struct evsel *evsel;
1161	u64 config;
1162
1163	evlist__for_each_entry(pt->session->evlist, evsel) {
1164		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1165			return config;
1166	}
1167	return 0;
1168}
1169
1170static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
1171{
1172	u64 quot, rem;
1173
1174	quot = ns / pt->tc.time_mult;
1175	rem  = ns % pt->tc.time_mult;
1176	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
1177		pt->tc.time_mult;
1178}
1179
1180static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
1181{
1182	size_t sz = sizeof(struct ip_callchain);
1183
1184	/* Add 1 to callchain_sz for callchain context */
1185	sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
1186	return zalloc(sz);
1187}
1188
1189static int intel_pt_callchain_init(struct intel_pt *pt)
1190{
1191	struct evsel *evsel;
1192
1193	evlist__for_each_entry(pt->session->evlist, evsel) {
1194		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1195			evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1196	}
1197
1198	pt->chain = intel_pt_alloc_chain(pt);
1199	if (!pt->chain)
1200		return -ENOMEM;
1201
1202	return 0;
1203}
1204
1205static void intel_pt_add_callchain(struct intel_pt *pt,
1206				   struct perf_sample *sample)
1207{
1208	struct thread *thread = machine__findnew_thread(pt->machine,
1209							sample->pid,
1210							sample->tid);
1211
1212	thread_stack__sample_late(thread, sample->cpu, pt->chain,
1213				  pt->synth_opts.callchain_sz + 1, sample->ip,
1214				  pt->kernel_start);
1215
1216	sample->callchain = pt->chain;
1217}
1218
1219static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1220{
1221	size_t sz = sizeof(struct branch_stack);
1222
1223	sz += entry_cnt * sizeof(struct branch_entry);
1224	return zalloc(sz);
1225}
1226
1227static int intel_pt_br_stack_init(struct intel_pt *pt)
1228{
1229	struct evsel *evsel;
1230
1231	evlist__for_each_entry(pt->session->evlist, evsel) {
1232		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1233			evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1234	}
1235
1236	pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1237	if (!pt->br_stack)
1238		return -ENOMEM;
1239
1240	return 0;
1241}
1242
1243static void intel_pt_add_br_stack(struct intel_pt *pt,
1244				  struct perf_sample *sample)
1245{
1246	struct thread *thread = machine__findnew_thread(pt->machine,
1247							sample->pid,
1248							sample->tid);
1249
1250	thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1251				     pt->br_stack_sz, sample->ip,
1252				     pt->kernel_start);
1253
1254	sample->branch_stack = pt->br_stack;
1255}
1256
1257/* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1258#define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1259
1260static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1261						   unsigned int queue_nr)
1262{
1263	struct intel_pt_params params = { .get_trace = 0, };
1264	struct perf_env *env = pt->machine->env;
1265	struct intel_pt_queue *ptq;
1266
1267	ptq = zalloc(sizeof(struct intel_pt_queue));
1268	if (!ptq)
1269		return NULL;
1270
1271	if (pt->synth_opts.callchain) {
1272		ptq->chain = intel_pt_alloc_chain(pt);
 
 
 
 
1273		if (!ptq->chain)
1274			goto out_free;
1275	}
1276
1277	if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1278		unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1279
1280		ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
 
 
1281		if (!ptq->last_branch)
1282			goto out_free;
 
 
 
1283	}
1284
1285	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1286	if (!ptq->event_buf)
1287		goto out_free;
1288
1289	ptq->pt = pt;
1290	ptq->queue_nr = queue_nr;
1291	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1292	ptq->pid = -1;
1293	ptq->tid = -1;
1294	ptq->cpu = -1;
1295	ptq->next_tid = -1;
1296
1297	params.get_trace = intel_pt_get_trace;
1298	params.walk_insn = intel_pt_walk_next_insn;
1299	params.lookahead = intel_pt_lookahead;
1300	params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
1301	params.data = ptq;
1302	params.return_compression = intel_pt_return_compression(pt);
1303	params.branch_enable = intel_pt_branch_enable(pt);
1304	params.ctl = intel_pt_ctl(pt);
1305	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1306	params.mtc_period = intel_pt_mtc_period(pt);
1307	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1308	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1309	params.quick = pt->synth_opts.quick;
1310	params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
1311	params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
1312	params.first_timestamp = pt->first_timestamp;
1313	params.max_loops = pt->max_loops;
1314
1315	/* Cannot walk code without TNT, so force 'quick' mode */
1316	if (params.branch_enable && intel_pt_disabled_tnt(pt) && !params.quick)
1317		params.quick = 1;
1318
1319	if (pt->filts.cnt > 0)
1320		params.pgd_ip = intel_pt_pgd_ip;
1321
1322	if (pt->synth_opts.instructions) {
1323		if (pt->synth_opts.period) {
1324			switch (pt->synth_opts.period_type) {
1325			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1326				params.period_type =
1327						INTEL_PT_PERIOD_INSTRUCTIONS;
1328				params.period = pt->synth_opts.period;
1329				break;
1330			case PERF_ITRACE_PERIOD_TICKS:
1331				params.period_type = INTEL_PT_PERIOD_TICKS;
1332				params.period = pt->synth_opts.period;
1333				break;
1334			case PERF_ITRACE_PERIOD_NANOSECS:
1335				params.period_type = INTEL_PT_PERIOD_TICKS;
1336				params.period = intel_pt_ns_to_ticks(pt,
1337							pt->synth_opts.period);
1338				break;
1339			default:
1340				break;
1341			}
1342		}
1343
1344		if (!params.period) {
1345			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1346			params.period = 1;
1347		}
1348	}
1349
1350	if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1351		params.flags |= INTEL_PT_FUP_WITH_NLIP;
1352
1353	ptq->decoder = intel_pt_decoder_new(&params);
1354	if (!ptq->decoder)
1355		goto out_free;
1356
1357	return ptq;
1358
1359out_free:
1360	zfree(&ptq->event_buf);
1361	zfree(&ptq->last_branch);
 
1362	zfree(&ptq->chain);
1363	free(ptq);
1364	return NULL;
1365}
1366
1367static void intel_pt_free_queue(void *priv)
1368{
1369	struct intel_pt_queue *ptq = priv;
1370
1371	if (!ptq)
1372		return;
1373	thread__zput(ptq->thread);
1374	thread__zput(ptq->guest_thread);
1375	thread__zput(ptq->unknown_guest_thread);
1376	intel_pt_decoder_free(ptq->decoder);
1377	zfree(&ptq->event_buf);
1378	zfree(&ptq->last_branch);
 
1379	zfree(&ptq->chain);
1380	free(ptq);
1381}
1382
1383static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
1384{
1385	unsigned int i;
1386
1387	pt->first_timestamp = timestamp;
1388
1389	for (i = 0; i < pt->queues.nr_queues; i++) {
1390		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1391		struct intel_pt_queue *ptq = queue->priv;
1392
1393		if (ptq && ptq->decoder)
1394			intel_pt_set_first_timestamp(ptq->decoder, timestamp);
1395	}
1396}
1397
1398static int intel_pt_get_guest_from_sideband(struct intel_pt_queue *ptq)
1399{
1400	struct machines *machines = &ptq->pt->session->machines;
1401	struct machine *machine;
1402	pid_t machine_pid = ptq->pid;
1403	pid_t tid;
1404	int vcpu;
1405
1406	if (machine_pid <= 0)
1407		return 0; /* Not a guest machine */
1408
1409	machine = machines__find(machines, machine_pid);
1410	if (!machine)
1411		return 0; /* Not a guest machine */
1412
1413	if (ptq->guest_machine != machine) {
1414		ptq->guest_machine = NULL;
1415		thread__zput(ptq->guest_thread);
1416		thread__zput(ptq->unknown_guest_thread);
1417
1418		ptq->unknown_guest_thread = machine__find_thread(machine, 0, 0);
1419		if (!ptq->unknown_guest_thread)
1420			return -1;
1421		ptq->guest_machine = machine;
1422	}
1423
1424	vcpu = ptq->thread ? ptq->thread->guest_cpu : -1;
1425	if (vcpu < 0)
1426		return -1;
1427
1428	tid = machine__get_current_tid(machine, vcpu);
1429
1430	if (ptq->guest_thread && ptq->guest_thread->tid != tid)
1431		thread__zput(ptq->guest_thread);
1432
1433	if (!ptq->guest_thread) {
1434		ptq->guest_thread = machine__find_thread(machine, -1, tid);
1435		if (!ptq->guest_thread)
1436			return -1;
1437	}
1438
1439	ptq->guest_machine_pid = machine_pid;
1440	ptq->guest_pid = ptq->guest_thread->pid_;
1441	ptq->guest_tid = tid;
1442	ptq->vcpu = vcpu;
1443
1444	return 0;
1445}
1446
1447static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1448				     struct auxtrace_queue *queue)
1449{
1450	struct intel_pt_queue *ptq = queue->priv;
1451
1452	if (queue->tid == -1 || pt->have_sched_switch) {
1453		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1454		if (ptq->tid == -1)
1455			ptq->pid = -1;
1456		thread__zput(ptq->thread);
1457	}
1458
1459	if (!ptq->thread && ptq->tid != -1)
1460		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1461
1462	if (ptq->thread) {
1463		ptq->pid = ptq->thread->pid_;
1464		if (queue->cpu == -1)
1465			ptq->cpu = ptq->thread->cpu;
1466	}
1467
1468	if (pt->have_guest_sideband && intel_pt_get_guest_from_sideband(ptq)) {
1469		ptq->guest_machine_pid = 0;
1470		ptq->guest_pid = -1;
1471		ptq->guest_tid = -1;
1472		ptq->vcpu = -1;
1473	}
1474}
1475
1476static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1477{
1478	struct intel_pt *pt = ptq->pt;
1479
1480	ptq->insn_len = 0;
1481	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1482		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1483	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
1484		if (!ptq->state->to_ip)
1485			ptq->flags = PERF_IP_FLAG_BRANCH |
1486				     PERF_IP_FLAG_TRACE_END;
1487		else if (ptq->state->from_nr && !ptq->state->to_nr)
1488			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1489				     PERF_IP_FLAG_VMEXIT;
1490		else
1491			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1492				     PERF_IP_FLAG_ASYNC |
1493				     PERF_IP_FLAG_INTERRUPT;
 
 
 
 
1494	} else {
1495		if (ptq->state->from_ip)
1496			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1497		else
1498			ptq->flags = PERF_IP_FLAG_BRANCH |
1499				     PERF_IP_FLAG_TRACE_BEGIN;
1500		if (ptq->state->flags & INTEL_PT_IN_TX)
1501			ptq->flags |= PERF_IP_FLAG_IN_TX;
1502		ptq->insn_len = ptq->state->insn_len;
1503		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1504	}
1505
1506	if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1507		ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1508	if (ptq->state->type & INTEL_PT_TRACE_END)
1509		ptq->flags |= PERF_IP_FLAG_TRACE_END;
1510
1511	if (pt->cap_event_trace) {
1512		if (ptq->state->type & INTEL_PT_IFLAG_CHG) {
1513			if (!ptq->state->from_iflag)
1514				ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1515			if (ptq->state->from_iflag != ptq->state->to_iflag)
1516				ptq->flags |= PERF_IP_FLAG_INTR_TOGGLE;
1517		} else if (!ptq->state->to_iflag) {
1518			ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1519		}
1520	}
1521}
1522
1523static void intel_pt_setup_time_range(struct intel_pt *pt,
1524				      struct intel_pt_queue *ptq)
1525{
1526	if (!pt->range_cnt)
1527		return;
1528
1529	ptq->sel_timestamp = pt->time_ranges[0].start;
1530	ptq->sel_idx = 0;
1531
1532	if (ptq->sel_timestamp) {
1533		ptq->sel_start = true;
1534	} else {
1535		ptq->sel_timestamp = pt->time_ranges[0].end;
1536		ptq->sel_start = false;
1537	}
1538}
1539
1540static int intel_pt_setup_queue(struct intel_pt *pt,
1541				struct auxtrace_queue *queue,
1542				unsigned int queue_nr)
1543{
1544	struct intel_pt_queue *ptq = queue->priv;
1545
1546	if (list_empty(&queue->head))
1547		return 0;
1548
1549	if (!ptq) {
1550		ptq = intel_pt_alloc_queue(pt, queue_nr);
1551		if (!ptq)
1552			return -ENOMEM;
1553		queue->priv = ptq;
1554
1555		if (queue->cpu != -1)
1556			ptq->cpu = queue->cpu;
1557		ptq->tid = queue->tid;
1558
1559		ptq->cbr_seen = UINT_MAX;
1560
1561		if (pt->sampling_mode && !pt->snapshot_mode &&
1562		    pt->timeless_decoding)
1563			ptq->step_through_buffers = true;
1564
1565		ptq->sync_switch = pt->sync_switch;
1566
1567		intel_pt_setup_time_range(pt, ptq);
1568	}
1569
1570	if (!ptq->on_heap &&
1571	    (!ptq->sync_switch ||
1572	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1573		const struct intel_pt_state *state;
1574		int ret;
1575
1576		if (pt->timeless_decoding)
1577			return 0;
1578
1579		intel_pt_log("queue %u getting timestamp\n", queue_nr);
1580		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1581			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1582
1583		if (ptq->sel_start && ptq->sel_timestamp) {
1584			ret = intel_pt_fast_forward(ptq->decoder,
1585						    ptq->sel_timestamp);
1586			if (ret)
1587				return ret;
1588		}
1589
1590		while (1) {
1591			state = intel_pt_decode(ptq->decoder);
1592			if (state->err) {
1593				if (state->err == INTEL_PT_ERR_NODATA) {
1594					intel_pt_log("queue %u has no timestamp\n",
1595						     queue_nr);
1596					return 0;
1597				}
1598				continue;
1599			}
1600			if (state->timestamp)
1601				break;
1602		}
1603
1604		ptq->timestamp = state->timestamp;
1605		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1606			     queue_nr, ptq->timestamp);
1607		ptq->state = state;
1608		ptq->have_sample = true;
1609		if (ptq->sel_start && ptq->sel_timestamp &&
1610		    ptq->timestamp < ptq->sel_timestamp)
1611			ptq->have_sample = false;
1612		intel_pt_sample_flags(ptq);
1613		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1614		if (ret)
1615			return ret;
1616		ptq->on_heap = true;
1617	}
1618
1619	return 0;
1620}
1621
1622static int intel_pt_setup_queues(struct intel_pt *pt)
1623{
1624	unsigned int i;
1625	int ret;
1626
1627	for (i = 0; i < pt->queues.nr_queues; i++) {
1628		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1629		if (ret)
1630			return ret;
1631	}
1632	return 0;
1633}
1634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1635static inline bool intel_pt_skip_event(struct intel_pt *pt)
1636{
1637	return pt->synth_opts.initial_skip &&
1638	       pt->num_events++ < pt->synth_opts.initial_skip;
1639}
1640
1641/*
1642 * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1643 * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1644 * from this decoder state.
1645 */
1646static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1647{
1648	return pt->synth_opts.initial_skip &&
1649	       pt->num_events + 4 < pt->synth_opts.initial_skip;
1650}
1651
1652static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1653				   union perf_event *event,
1654				   struct perf_sample *sample)
1655{
1656	event->sample.header.type = PERF_RECORD_SAMPLE;
1657	event->sample.header.size = sizeof(struct perf_event_header);
1658
1659	sample->pid = ptq->pid;
1660	sample->tid = ptq->tid;
1661
1662	if (ptq->pt->have_guest_sideband) {
1663		if ((ptq->state->from_ip && ptq->state->from_nr) ||
1664		    (ptq->state->to_ip && ptq->state->to_nr)) {
1665			sample->pid = ptq->guest_pid;
1666			sample->tid = ptq->guest_tid;
1667			sample->machine_pid = ptq->guest_machine_pid;
1668			sample->vcpu = ptq->vcpu;
1669		}
1670	}
1671
1672	sample->cpu = ptq->cpu;
1673	sample->insn_len = ptq->insn_len;
1674	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1675}
1676
1677static void intel_pt_prep_b_sample(struct intel_pt *pt,
1678				   struct intel_pt_queue *ptq,
1679				   union perf_event *event,
1680				   struct perf_sample *sample)
1681{
1682	intel_pt_prep_a_sample(ptq, event, sample);
1683
1684	if (!pt->timeless_decoding)
1685		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1686
1687	sample->ip = ptq->state->from_ip;
 
1688	sample->addr = ptq->state->to_ip;
1689	sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1690	sample->period = 1;
1691	sample->flags = ptq->flags;
1692
1693	event->sample.header.misc = sample->cpumode;
1694}
1695
1696static int intel_pt_inject_event(union perf_event *event,
1697				 struct perf_sample *sample, u64 type)
1698{
1699	event->header.size = perf_event__sample_event_size(sample, type, 0);
1700	return perf_event__synthesize_sample(event, type, 0, sample);
1701}
1702
1703static inline int intel_pt_opt_inject(struct intel_pt *pt,
1704				      union perf_event *event,
1705				      struct perf_sample *sample, u64 type)
1706{
1707	if (!pt->synth_opts.inject)
1708		return 0;
1709
1710	return intel_pt_inject_event(event, sample, type);
1711}
1712
1713static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1714					union perf_event *event,
1715					struct perf_sample *sample, u64 type)
1716{
1717	int ret;
1718
1719	ret = intel_pt_opt_inject(pt, event, sample, type);
1720	if (ret)
1721		return ret;
1722
1723	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1724	if (ret)
1725		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1726
1727	return ret;
1728}
1729
1730static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1731{
1732	struct intel_pt *pt = ptq->pt;
1733	union perf_event *event = ptq->event_buf;
1734	struct perf_sample sample = { .ip = 0, };
1735	struct dummy_branch_stack {
1736		u64			nr;
1737		u64			hw_idx;
1738		struct branch_entry	entries;
1739	} dummy_bs;
1740
1741	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1742		return 0;
1743
1744	if (intel_pt_skip_event(pt))
1745		return 0;
1746
1747	intel_pt_prep_b_sample(pt, ptq, event, &sample);
1748
1749	sample.id = ptq->pt->branches_id;
1750	sample.stream_id = ptq->pt->branches_id;
1751
1752	/*
1753	 * perf report cannot handle events without a branch stack when using
1754	 * SORT_MODE__BRANCH so make a dummy one.
1755	 */
1756	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1757		dummy_bs = (struct dummy_branch_stack){
1758			.nr = 1,
1759			.hw_idx = -1ULL,
1760			.entries = {
1761				.from = sample.ip,
1762				.to = sample.addr,
1763			},
1764		};
1765		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1766	}
1767
1768	if (ptq->sample_ipc)
1769		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1770	if (sample.cyc_cnt) {
1771		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1772		ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1773		ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1774	}
1775
1776	return intel_pt_deliver_synth_event(pt, event, &sample,
1777					    pt->branches_sample_type);
1778}
1779
1780static void intel_pt_prep_sample(struct intel_pt *pt,
1781				 struct intel_pt_queue *ptq,
1782				 union perf_event *event,
1783				 struct perf_sample *sample)
1784{
1785	intel_pt_prep_b_sample(pt, ptq, event, sample);
1786
1787	if (pt->synth_opts.callchain) {
1788		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1789				     pt->synth_opts.callchain_sz + 1,
1790				     sample->ip, pt->kernel_start);
1791		sample->callchain = ptq->chain;
1792	}
1793
1794	if (pt->synth_opts.last_branch) {
1795		thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1796					pt->br_stack_sz);
1797		sample->branch_stack = ptq->last_branch;
1798	}
1799}
1800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1801static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1802{
1803	struct intel_pt *pt = ptq->pt;
1804	union perf_event *event = ptq->event_buf;
1805	struct perf_sample sample = { .ip = 0, };
1806
1807	if (intel_pt_skip_event(pt))
1808		return 0;
1809
1810	intel_pt_prep_sample(pt, ptq, event, &sample);
1811
1812	sample.id = ptq->pt->instructions_id;
1813	sample.stream_id = ptq->pt->instructions_id;
1814	if (pt->synth_opts.quick)
1815		sample.period = 1;
1816	else
1817		sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1818
1819	if (ptq->sample_ipc)
1820		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1821	if (sample.cyc_cnt) {
1822		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1823		ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1824		ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1825	}
1826
1827	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1828
1829	return intel_pt_deliver_synth_event(pt, event, &sample,
1830					    pt->instructions_sample_type);
1831}
1832
1833static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1834{
1835	struct intel_pt *pt = ptq->pt;
1836	union perf_event *event = ptq->event_buf;
1837	struct perf_sample sample = { .ip = 0, };
1838
1839	if (intel_pt_skip_event(pt))
1840		return 0;
1841
1842	intel_pt_prep_sample(pt, ptq, event, &sample);
1843
1844	sample.id = ptq->pt->transactions_id;
1845	sample.stream_id = ptq->pt->transactions_id;
1846
1847	return intel_pt_deliver_synth_event(pt, event, &sample,
1848					    pt->transactions_sample_type);
1849}
1850
1851static void intel_pt_prep_p_sample(struct intel_pt *pt,
1852				   struct intel_pt_queue *ptq,
1853				   union perf_event *event,
1854				   struct perf_sample *sample)
1855{
1856	intel_pt_prep_sample(pt, ptq, event, sample);
1857
1858	/*
1859	 * Zero IP is used to mean "trace start" but that is not the case for
1860	 * power or PTWRITE events with no IP, so clear the flags.
1861	 */
1862	if (!sample->ip)
1863		sample->flags = 0;
1864}
1865
1866static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1867{
1868	struct intel_pt *pt = ptq->pt;
1869	union perf_event *event = ptq->event_buf;
1870	struct perf_sample sample = { .ip = 0, };
1871	struct perf_synth_intel_ptwrite raw;
1872
1873	if (intel_pt_skip_event(pt))
1874		return 0;
1875
1876	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1877
1878	sample.id = ptq->pt->ptwrites_id;
1879	sample.stream_id = ptq->pt->ptwrites_id;
1880
1881	raw.flags = 0;
1882	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1883	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1884
1885	sample.raw_size = perf_synth__raw_size(raw);
1886	sample.raw_data = perf_synth__raw_data(&raw);
1887
1888	return intel_pt_deliver_synth_event(pt, event, &sample,
1889					    pt->ptwrites_sample_type);
1890}
1891
1892static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1893{
1894	struct intel_pt *pt = ptq->pt;
1895	union perf_event *event = ptq->event_buf;
1896	struct perf_sample sample = { .ip = 0, };
1897	struct perf_synth_intel_cbr raw;
1898	u32 flags;
1899
1900	if (intel_pt_skip_cbr_event(pt))
1901		return 0;
1902
1903	ptq->cbr_seen = ptq->state->cbr;
1904
1905	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1906
1907	sample.id = ptq->pt->cbr_id;
1908	sample.stream_id = ptq->pt->cbr_id;
1909
1910	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1911	raw.flags = cpu_to_le32(flags);
1912	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1913	raw.reserved3 = 0;
1914
1915	sample.raw_size = perf_synth__raw_size(raw);
1916	sample.raw_data = perf_synth__raw_data(&raw);
1917
1918	return intel_pt_deliver_synth_event(pt, event, &sample,
1919					    pt->pwr_events_sample_type);
1920}
1921
1922static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
1923{
1924	struct intel_pt *pt = ptq->pt;
1925	union perf_event *event = ptq->event_buf;
1926	struct perf_sample sample = { .ip = 0, };
1927	struct perf_synth_intel_psb raw;
1928
1929	if (intel_pt_skip_event(pt))
1930		return 0;
1931
1932	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1933
1934	sample.id = ptq->pt->psb_id;
1935	sample.stream_id = ptq->pt->psb_id;
1936	sample.flags = 0;
1937
1938	raw.reserved = 0;
1939	raw.offset = ptq->state->psb_offset;
1940
1941	sample.raw_size = perf_synth__raw_size(raw);
1942	sample.raw_data = perf_synth__raw_data(&raw);
1943
1944	return intel_pt_deliver_synth_event(pt, event, &sample,
1945					    pt->pwr_events_sample_type);
1946}
1947
1948static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1949{
1950	struct intel_pt *pt = ptq->pt;
1951	union perf_event *event = ptq->event_buf;
1952	struct perf_sample sample = { .ip = 0, };
1953	struct perf_synth_intel_mwait raw;
1954
1955	if (intel_pt_skip_event(pt))
1956		return 0;
1957
1958	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1959
1960	sample.id = ptq->pt->mwait_id;
1961	sample.stream_id = ptq->pt->mwait_id;
1962
1963	raw.reserved = 0;
1964	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1965
1966	sample.raw_size = perf_synth__raw_size(raw);
1967	sample.raw_data = perf_synth__raw_data(&raw);
1968
1969	return intel_pt_deliver_synth_event(pt, event, &sample,
1970					    pt->pwr_events_sample_type);
1971}
1972
1973static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1974{
1975	struct intel_pt *pt = ptq->pt;
1976	union perf_event *event = ptq->event_buf;
1977	struct perf_sample sample = { .ip = 0, };
1978	struct perf_synth_intel_pwre raw;
1979
1980	if (intel_pt_skip_event(pt))
1981		return 0;
1982
1983	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1984
1985	sample.id = ptq->pt->pwre_id;
1986	sample.stream_id = ptq->pt->pwre_id;
1987
1988	raw.reserved = 0;
1989	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1990
1991	sample.raw_size = perf_synth__raw_size(raw);
1992	sample.raw_data = perf_synth__raw_data(&raw);
1993
1994	return intel_pt_deliver_synth_event(pt, event, &sample,
1995					    pt->pwr_events_sample_type);
1996}
1997
1998static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1999{
2000	struct intel_pt *pt = ptq->pt;
2001	union perf_event *event = ptq->event_buf;
2002	struct perf_sample sample = { .ip = 0, };
2003	struct perf_synth_intel_exstop raw;
2004
2005	if (intel_pt_skip_event(pt))
2006		return 0;
2007
2008	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2009
2010	sample.id = ptq->pt->exstop_id;
2011	sample.stream_id = ptq->pt->exstop_id;
2012
2013	raw.flags = 0;
2014	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2015
2016	sample.raw_size = perf_synth__raw_size(raw);
2017	sample.raw_data = perf_synth__raw_data(&raw);
2018
2019	return intel_pt_deliver_synth_event(pt, event, &sample,
2020					    pt->pwr_events_sample_type);
2021}
2022
2023static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
2024{
2025	struct intel_pt *pt = ptq->pt;
2026	union perf_event *event = ptq->event_buf;
2027	struct perf_sample sample = { .ip = 0, };
2028	struct perf_synth_intel_pwrx raw;
2029
2030	if (intel_pt_skip_event(pt))
2031		return 0;
2032
2033	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2034
2035	sample.id = ptq->pt->pwrx_id;
2036	sample.stream_id = ptq->pt->pwrx_id;
2037
2038	raw.reserved = 0;
2039	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
2040
2041	sample.raw_size = perf_synth__raw_size(raw);
2042	sample.raw_data = perf_synth__raw_data(&raw);
2043
2044	return intel_pt_deliver_synth_event(pt, event, &sample,
2045					    pt->pwr_events_sample_type);
2046}
2047
2048/*
2049 * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
2050 * intel_pt_add_gp_regs().
2051 */
2052static const int pebs_gp_regs[] = {
2053	[PERF_REG_X86_FLAGS]	= 1,
2054	[PERF_REG_X86_IP]	= 2,
2055	[PERF_REG_X86_AX]	= 3,
2056	[PERF_REG_X86_CX]	= 4,
2057	[PERF_REG_X86_DX]	= 5,
2058	[PERF_REG_X86_BX]	= 6,
2059	[PERF_REG_X86_SP]	= 7,
2060	[PERF_REG_X86_BP]	= 8,
2061	[PERF_REG_X86_SI]	= 9,
2062	[PERF_REG_X86_DI]	= 10,
2063	[PERF_REG_X86_R8]	= 11,
2064	[PERF_REG_X86_R9]	= 12,
2065	[PERF_REG_X86_R10]	= 13,
2066	[PERF_REG_X86_R11]	= 14,
2067	[PERF_REG_X86_R12]	= 15,
2068	[PERF_REG_X86_R13]	= 16,
2069	[PERF_REG_X86_R14]	= 17,
2070	[PERF_REG_X86_R15]	= 18,
2071};
2072
2073static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
2074				 const struct intel_pt_blk_items *items,
2075				 u64 regs_mask)
2076{
2077	const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
2078	u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
2079	u32 bit;
2080	int i;
2081
2082	for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
2083		/* Get the PEBS gp_regs array index */
2084		int n = pebs_gp_regs[i] - 1;
2085
2086		if (n < 0)
2087			continue;
2088		/*
2089		 * Add only registers that were requested (i.e. 'regs_mask') and
2090		 * that were provided (i.e. 'mask'), and update the resulting
2091		 * mask (i.e. 'intr_regs->mask') accordingly.
2092		 */
2093		if (mask & 1 << n && regs_mask & bit) {
2094			intr_regs->mask |= bit;
2095			*pos++ = gp_regs[n];
2096		}
2097	}
2098
2099	return pos;
2100}
2101
2102#ifndef PERF_REG_X86_XMM0
2103#define PERF_REG_X86_XMM0 32
2104#endif
2105
2106static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
2107			     const struct intel_pt_blk_items *items,
2108			     u64 regs_mask)
2109{
2110	u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
2111	const u64 *xmm = items->xmm;
2112
2113	/*
2114	 * If there are any XMM registers, then there should be all of them.
2115	 * Nevertheless, follow the logic to add only registers that were
2116	 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
2117	 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
2118	 */
2119	intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
2120
2121	for (; mask; mask >>= 1, xmm++) {
2122		if (mask & 1)
2123			*pos++ = *xmm;
2124	}
2125}
2126
2127#define LBR_INFO_MISPRED	(1ULL << 63)
2128#define LBR_INFO_IN_TX		(1ULL << 62)
2129#define LBR_INFO_ABORT		(1ULL << 61)
2130#define LBR_INFO_CYCLES		0xffff
2131
2132/* Refer kernel's intel_pmu_store_pebs_lbrs() */
2133static u64 intel_pt_lbr_flags(u64 info)
2134{
2135	union {
2136		struct branch_flags flags;
2137		u64 result;
2138	} u;
2139
2140	u.result	  = 0;
2141	u.flags.mispred	  = !!(info & LBR_INFO_MISPRED);
2142	u.flags.predicted = !(info & LBR_INFO_MISPRED);
2143	u.flags.in_tx	  = !!(info & LBR_INFO_IN_TX);
2144	u.flags.abort	  = !!(info & LBR_INFO_ABORT);
2145	u.flags.cycles	  = info & LBR_INFO_CYCLES;
 
2146
2147	return u.result;
2148}
2149
2150static void intel_pt_add_lbrs(struct branch_stack *br_stack,
2151			      const struct intel_pt_blk_items *items)
2152{
2153	u64 *to;
2154	int i;
2155
2156	br_stack->nr = 0;
2157
2158	to = &br_stack->entries[0].from;
2159
2160	for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
2161		u32 mask = items->mask[i];
2162		const u64 *from = items->val[i];
2163
2164		for (; mask; mask >>= 3, from += 3) {
2165			if ((mask & 7) == 7) {
2166				*to++ = from[0];
2167				*to++ = from[1];
2168				*to++ = intel_pt_lbr_flags(from[2]);
2169				br_stack->nr += 1;
2170			}
2171		}
2172	}
2173}
2174
2175static int intel_pt_do_synth_pebs_sample(struct intel_pt_queue *ptq, struct evsel *evsel, u64 id)
 
 
 
2176{
2177	const struct intel_pt_blk_items *items = &ptq->state->items;
2178	struct perf_sample sample = { .ip = 0, };
2179	union perf_event *event = ptq->event_buf;
2180	struct intel_pt *pt = ptq->pt;
 
2181	u64 sample_type = evsel->core.attr.sample_type;
 
2182	u8 cpumode;
2183	u64 regs[8 * sizeof(sample.intr_regs.mask)];
2184
2185	if (intel_pt_skip_event(pt))
2186		return 0;
2187
2188	intel_pt_prep_a_sample(ptq, event, &sample);
2189
2190	sample.id = id;
2191	sample.stream_id = id;
2192
2193	if (!evsel->core.attr.freq)
2194		sample.period = evsel->core.attr.sample_period;
2195
2196	/* No support for non-zero CS base */
2197	if (items->has_ip)
2198		sample.ip = items->ip;
2199	else if (items->has_rip)
2200		sample.ip = items->rip;
2201	else
2202		sample.ip = ptq->state->from_ip;
2203
2204	cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
 
 
 
2205
2206	event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
2207
2208	sample.cpumode = cpumode;
2209
2210	if (sample_type & PERF_SAMPLE_TIME) {
2211		u64 timestamp = 0;
2212
2213		if (items->has_timestamp)
2214			timestamp = items->timestamp;
2215		else if (!pt->timeless_decoding)
2216			timestamp = ptq->timestamp;
2217		if (timestamp)
2218			sample.time = tsc_to_perf_time(timestamp, &pt->tc);
2219	}
2220
2221	if (sample_type & PERF_SAMPLE_CALLCHAIN &&
2222	    pt->synth_opts.callchain) {
2223		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
2224				     pt->synth_opts.callchain_sz, sample.ip,
2225				     pt->kernel_start);
2226		sample.callchain = ptq->chain;
2227	}
2228
2229	if (sample_type & PERF_SAMPLE_REGS_INTR &&
2230	    (items->mask[INTEL_PT_GP_REGS_POS] ||
2231	     items->mask[INTEL_PT_XMM_POS])) {
2232		u64 regs_mask = evsel->core.attr.sample_regs_intr;
2233		u64 *pos;
2234
2235		sample.intr_regs.abi = items->is_32_bit ?
2236				       PERF_SAMPLE_REGS_ABI_32 :
2237				       PERF_SAMPLE_REGS_ABI_64;
2238		sample.intr_regs.regs = regs;
2239
2240		pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
2241
2242		intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
2243	}
2244
2245	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
 
 
 
 
 
2246		if (items->mask[INTEL_PT_LBR_0_POS] ||
2247		    items->mask[INTEL_PT_LBR_1_POS] ||
2248		    items->mask[INTEL_PT_LBR_2_POS]) {
2249			intel_pt_add_lbrs(ptq->last_branch, items);
 
2250		} else if (pt->synth_opts.last_branch) {
2251			thread_stack__br_sample(ptq->thread, ptq->cpu,
2252						ptq->last_branch,
2253						pt->br_stack_sz);
2254		} else {
2255			ptq->last_branch->nr = 0;
 
2256		}
2257		sample.branch_stack = ptq->last_branch;
2258	}
2259
2260	if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
2261		sample.addr = items->mem_access_address;
2262
2263	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2264		/*
2265		 * Refer kernel's setup_pebs_adaptive_sample_data() and
2266		 * intel_hsw_weight().
2267		 */
2268		if (items->has_mem_access_latency) {
2269			u64 weight = items->mem_access_latency >> 32;
2270
2271			/*
2272			 * Starts from SPR, the mem access latency field
2273			 * contains both cache latency [47:32] and instruction
2274			 * latency [15:0]. The cache latency is the same as the
2275			 * mem access latency on previous platforms.
2276			 *
2277			 * In practice, no memory access could last than 4G
2278			 * cycles. Use latency >> 32 to distinguish the
2279			 * different format of the mem access latency field.
2280			 */
2281			if (weight > 0) {
2282				sample.weight = weight & 0xffff;
2283				sample.ins_lat = items->mem_access_latency & 0xffff;
2284			} else
2285				sample.weight = items->mem_access_latency;
2286		}
2287		if (!sample.weight && items->has_tsx_aux_info) {
2288			/* Cycles last block */
2289			sample.weight = (u32)items->tsx_aux_info;
2290		}
2291	}
2292
2293	if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
2294		u64 ax = items->has_rax ? items->rax : 0;
2295		/* Refer kernel's intel_hsw_transaction() */
2296		u64 txn = (u8)(items->tsx_aux_info >> 32);
2297
2298		/* For RTM XABORTs also log the abort code from AX */
2299		if (txn & PERF_TXN_TRANSACTION && ax & 1)
2300			txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2301		sample.transaction = txn;
2302	}
2303
2304	return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2305}
2306
2307static int intel_pt_synth_single_pebs_sample(struct intel_pt_queue *ptq)
2308{
2309	struct intel_pt *pt = ptq->pt;
2310	struct evsel *evsel = pt->pebs_evsel;
2311	u64 id = evsel->core.id[0];
2312
2313	return intel_pt_do_synth_pebs_sample(ptq, evsel, id);
2314}
2315
2316static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
2317{
2318	const struct intel_pt_blk_items *items = &ptq->state->items;
2319	struct intel_pt_pebs_event *pe;
2320	struct intel_pt *pt = ptq->pt;
2321	int err = -EINVAL;
2322	int hw_id;
2323
2324	if (!items->has_applicable_counters || !items->applicable_counters) {
2325		if (!pt->single_pebs)
2326			pr_err("PEBS-via-PT record with no applicable_counters\n");
2327		return intel_pt_synth_single_pebs_sample(ptq);
2328	}
2329
2330	for_each_set_bit(hw_id, (unsigned long *)&items->applicable_counters, INTEL_PT_MAX_PEBS) {
2331		pe = &ptq->pebs[hw_id];
2332		if (!pe->evsel) {
2333			if (!pt->single_pebs)
2334				pr_err("PEBS-via-PT record with no matching event, hw_id %d\n",
2335				       hw_id);
2336			return intel_pt_synth_single_pebs_sample(ptq);
2337		}
2338		err = intel_pt_do_synth_pebs_sample(ptq, pe->evsel, pe->id);
2339		if (err)
2340			return err;
2341	}
2342
2343	return err;
2344}
2345
2346static int intel_pt_synth_events_sample(struct intel_pt_queue *ptq)
2347{
2348	struct intel_pt *pt = ptq->pt;
2349	union perf_event *event = ptq->event_buf;
2350	struct perf_sample sample = { .ip = 0, };
2351	struct {
2352		struct perf_synth_intel_evt cfe;
2353		struct perf_synth_intel_evd evd[INTEL_PT_MAX_EVDS];
2354	} raw;
2355	int i;
2356
2357	if (intel_pt_skip_event(pt))
2358		return 0;
2359
2360	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2361
2362	sample.id        = ptq->pt->evt_id;
2363	sample.stream_id = ptq->pt->evt_id;
2364
2365	raw.cfe.type     = ptq->state->cfe_type;
2366	raw.cfe.reserved = 0;
2367	raw.cfe.ip       = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2368	raw.cfe.vector   = ptq->state->cfe_vector;
2369	raw.cfe.evd_cnt  = ptq->state->evd_cnt;
2370
2371	for (i = 0; i < ptq->state->evd_cnt; i++) {
2372		raw.evd[i].et       = 0;
2373		raw.evd[i].evd_type = ptq->state->evd[i].type;
2374		raw.evd[i].payload  = ptq->state->evd[i].payload;
2375	}
2376
2377	sample.raw_size = perf_synth__raw_size(raw) +
2378			  ptq->state->evd_cnt * sizeof(struct perf_synth_intel_evd);
2379	sample.raw_data = perf_synth__raw_data(&raw);
2380
2381	return intel_pt_deliver_synth_event(pt, event, &sample,
2382					    pt->evt_sample_type);
2383}
2384
2385static int intel_pt_synth_iflag_chg_sample(struct intel_pt_queue *ptq)
2386{
2387	struct intel_pt *pt = ptq->pt;
2388	union perf_event *event = ptq->event_buf;
2389	struct perf_sample sample = { .ip = 0, };
2390	struct perf_synth_intel_iflag_chg raw;
2391
2392	if (intel_pt_skip_event(pt))
2393		return 0;
2394
2395	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2396
2397	sample.id = ptq->pt->iflag_chg_id;
2398	sample.stream_id = ptq->pt->iflag_chg_id;
2399
2400	raw.flags = 0;
2401	raw.iflag = ptq->state->to_iflag;
2402
2403	if (ptq->state->type & INTEL_PT_BRANCH) {
2404		raw.via_branch = 1;
2405		raw.branch_ip = ptq->state->to_ip;
2406	} else {
2407		sample.addr = 0;
2408	}
2409	sample.flags = ptq->flags;
2410
2411	sample.raw_size = perf_synth__raw_size(raw);
2412	sample.raw_data = perf_synth__raw_data(&raw);
2413
2414	return intel_pt_deliver_synth_event(pt, event, &sample,
2415					    pt->iflag_chg_sample_type);
2416}
2417
2418static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2419				pid_t pid, pid_t tid, u64 ip, u64 timestamp,
2420				pid_t machine_pid, int vcpu)
2421{
2422	bool dump_log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
2423	bool log_on_stdout = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT;
2424	union perf_event event;
2425	char msg[MAX_AUXTRACE_ERROR_MSG];
2426	int err;
2427
2428	if (pt->synth_opts.error_minus_flags) {
2429		if (code == INTEL_PT_ERR_OVR &&
2430		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2431			return 0;
2432		if (code == INTEL_PT_ERR_LOST &&
2433		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2434			return 0;
2435	}
2436
2437	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2438
2439	auxtrace_synth_guest_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2440				   code, cpu, pid, tid, ip, msg, timestamp,
2441				   machine_pid, vcpu);
2442
2443	if (intel_pt_enable_logging && !log_on_stdout) {
2444		FILE *fp = intel_pt_log_fp();
2445
2446		if (fp)
2447			perf_event__fprintf_auxtrace_error(&event, fp);
2448	}
2449
2450	if (code != INTEL_PT_ERR_LOST && dump_log_on_error)
2451		intel_pt_log_dump_buf();
2452
2453	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2454	if (err)
2455		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2456		       err);
2457
2458	return err;
2459}
2460
2461static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2462				 const struct intel_pt_state *state)
2463{
2464	struct intel_pt *pt = ptq->pt;
2465	u64 tm = ptq->timestamp;
2466	pid_t machine_pid = 0;
2467	pid_t pid = ptq->pid;
2468	pid_t tid = ptq->tid;
2469	int vcpu = -1;
2470
2471	tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2472
2473	if (pt->have_guest_sideband && state->from_nr) {
2474		machine_pid = ptq->guest_machine_pid;
2475		vcpu = ptq->vcpu;
2476		pid = ptq->guest_pid;
2477		tid = ptq->guest_tid;
2478	}
2479
2480	return intel_pt_synth_error(pt, state->err, ptq->cpu, pid, tid,
2481				    state->from_ip, tm, machine_pid, vcpu);
2482}
2483
2484static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2485{
2486	struct auxtrace_queue *queue;
2487	pid_t tid = ptq->next_tid;
2488	int err;
2489
2490	if (tid == -1)
2491		return 0;
2492
2493	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2494
2495	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2496
2497	queue = &pt->queues.queue_array[ptq->queue_nr];
2498	intel_pt_set_pid_tid_cpu(pt, queue);
2499
2500	ptq->next_tid = -1;
2501
2502	return err;
2503}
2504
2505static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2506{
2507	struct intel_pt *pt = ptq->pt;
2508
2509	return ip == pt->switch_ip &&
2510	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2511	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2512			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2513}
2514
2515#define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2516			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2517
2518static int intel_pt_sample(struct intel_pt_queue *ptq)
2519{
2520	const struct intel_pt_state *state = ptq->state;
2521	struct intel_pt *pt = ptq->pt;
2522	int err;
2523
2524	if (!ptq->have_sample)
2525		return 0;
2526
2527	ptq->have_sample = false;
2528
2529	if (pt->synth_opts.approx_ipc) {
2530		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2531		ptq->ipc_cyc_cnt = ptq->state->cycles;
2532		ptq->sample_ipc = true;
2533	} else {
2534		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2535		ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2536		ptq->sample_ipc = ptq->state->flags & INTEL_PT_SAMPLE_IPC;
2537	}
2538
2539	/* Ensure guest code maps are set up */
2540	if (symbol_conf.guest_code && (state->from_nr || state->to_nr))
2541		intel_pt_get_guest(ptq);
2542
2543	/*
2544	 * Do PEBS first to allow for the possibility that the PEBS timestamp
2545	 * precedes the current timestamp.
2546	 */
2547	if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2548		err = intel_pt_synth_pebs_sample(ptq);
2549		if (err)
2550			return err;
2551	}
2552
2553	if (pt->synth_opts.intr_events) {
2554		if (state->type & INTEL_PT_EVT) {
2555			err = intel_pt_synth_events_sample(ptq);
2556			if (err)
2557				return err;
2558		}
2559		if (state->type & INTEL_PT_IFLAG_CHG) {
2560			err = intel_pt_synth_iflag_chg_sample(ptq);
2561			if (err)
2562				return err;
2563		}
2564	}
2565
2566	if (pt->sample_pwr_events) {
2567		if (state->type & INTEL_PT_PSB_EVT) {
2568			err = intel_pt_synth_psb_sample(ptq);
2569			if (err)
2570				return err;
2571		}
2572		if (ptq->state->cbr != ptq->cbr_seen) {
2573			err = intel_pt_synth_cbr_sample(ptq);
2574			if (err)
2575				return err;
2576		}
2577		if (state->type & INTEL_PT_PWR_EVT) {
2578			if (state->type & INTEL_PT_MWAIT_OP) {
2579				err = intel_pt_synth_mwait_sample(ptq);
2580				if (err)
2581					return err;
2582			}
2583			if (state->type & INTEL_PT_PWR_ENTRY) {
2584				err = intel_pt_synth_pwre_sample(ptq);
2585				if (err)
2586					return err;
2587			}
2588			if (state->type & INTEL_PT_EX_STOP) {
2589				err = intel_pt_synth_exstop_sample(ptq);
2590				if (err)
2591					return err;
2592			}
2593			if (state->type & INTEL_PT_PWR_EXIT) {
2594				err = intel_pt_synth_pwrx_sample(ptq);
2595				if (err)
2596					return err;
2597			}
2598		}
2599	}
2600
2601	if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
2602		err = intel_pt_synth_instruction_sample(ptq);
2603		if (err)
2604			return err;
2605	}
2606
2607	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2608		err = intel_pt_synth_transaction_sample(ptq);
2609		if (err)
2610			return err;
2611	}
2612
2613	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2614		err = intel_pt_synth_ptwrite_sample(ptq);
2615		if (err)
2616			return err;
2617	}
2618
2619	if (!(state->type & INTEL_PT_BRANCH))
2620		return 0;
2621
2622	if (pt->use_thread_stack) {
2623		thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2624				    state->from_ip, state->to_ip, ptq->insn_len,
2625				    state->trace_nr, pt->callstack,
2626				    pt->br_stack_sz_plus,
2627				    pt->mispred_all);
2628	} else {
2629		thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2630	}
2631
2632	if (pt->sample_branches) {
2633		if (state->from_nr != state->to_nr &&
2634		    state->from_ip && state->to_ip) {
2635			struct intel_pt_state *st = (struct intel_pt_state *)state;
2636			u64 to_ip = st->to_ip;
2637			u64 from_ip = st->from_ip;
2638
2639			/*
2640			 * perf cannot handle having different machines for ip
2641			 * and addr, so create 2 branches.
2642			 */
2643			st->to_ip = 0;
2644			err = intel_pt_synth_branch_sample(ptq);
2645			if (err)
2646				return err;
2647			st->from_ip = 0;
2648			st->to_ip = to_ip;
2649			err = intel_pt_synth_branch_sample(ptq);
2650			st->from_ip = from_ip;
2651		} else {
2652			err = intel_pt_synth_branch_sample(ptq);
2653		}
2654		if (err)
2655			return err;
2656	}
2657
 
 
 
2658	if (!ptq->sync_switch)
2659		return 0;
2660
2661	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2662		switch (ptq->switch_state) {
2663		case INTEL_PT_SS_NOT_TRACING:
2664		case INTEL_PT_SS_UNKNOWN:
2665		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2666			err = intel_pt_next_tid(pt, ptq);
2667			if (err)
2668				return err;
2669			ptq->switch_state = INTEL_PT_SS_TRACING;
2670			break;
2671		default:
2672			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2673			return 1;
2674		}
2675	} else if (!state->to_ip) {
2676		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2677	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2678		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2679	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2680		   state->to_ip == pt->ptss_ip &&
2681		   (ptq->flags & PERF_IP_FLAG_CALL)) {
2682		ptq->switch_state = INTEL_PT_SS_TRACING;
2683	}
2684
2685	return 0;
2686}
2687
2688static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2689{
2690	struct machine *machine = pt->machine;
2691	struct map *map;
2692	struct symbol *sym, *start;
2693	u64 ip, switch_ip = 0;
2694	const char *ptss;
2695
2696	if (ptss_ip)
2697		*ptss_ip = 0;
2698
2699	map = machine__kernel_map(machine);
2700	if (!map)
2701		return 0;
2702
2703	if (map__load(map))
2704		return 0;
2705
2706	start = dso__first_symbol(map->dso);
2707
2708	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2709		if (sym->binding == STB_GLOBAL &&
2710		    !strcmp(sym->name, "__switch_to")) {
2711			ip = map->unmap_ip(map, sym->start);
2712			if (ip >= map->start && ip < map->end) {
2713				switch_ip = ip;
2714				break;
2715			}
2716		}
2717	}
2718
2719	if (!switch_ip || !ptss_ip)
2720		return 0;
2721
2722	if (pt->have_sched_switch == 1)
2723		ptss = "perf_trace_sched_switch";
2724	else
2725		ptss = "__perf_event_task_sched_out";
2726
2727	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2728		if (!strcmp(sym->name, ptss)) {
2729			ip = map->unmap_ip(map, sym->start);
2730			if (ip >= map->start && ip < map->end) {
2731				*ptss_ip = ip;
2732				break;
2733			}
2734		}
2735	}
2736
2737	return switch_ip;
2738}
2739
2740static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2741{
2742	unsigned int i;
2743
2744	if (pt->sync_switch_not_supported)
2745		return;
2746
2747	pt->sync_switch = true;
2748
2749	for (i = 0; i < pt->queues.nr_queues; i++) {
2750		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2751		struct intel_pt_queue *ptq = queue->priv;
2752
2753		if (ptq)
2754			ptq->sync_switch = true;
2755	}
2756}
2757
2758static void intel_pt_disable_sync_switch(struct intel_pt *pt)
2759{
2760	unsigned int i;
2761
2762	pt->sync_switch = false;
2763
2764	for (i = 0; i < pt->queues.nr_queues; i++) {
2765		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2766		struct intel_pt_queue *ptq = queue->priv;
2767
2768		if (ptq) {
2769			ptq->sync_switch = false;
2770			intel_pt_next_tid(pt, ptq);
2771		}
2772	}
2773}
2774
2775/*
2776 * To filter against time ranges, it is only necessary to look at the next start
2777 * or end time.
2778 */
2779static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2780{
2781	struct intel_pt *pt = ptq->pt;
2782
2783	if (ptq->sel_start) {
2784		/* Next time is an end time */
2785		ptq->sel_start = false;
2786		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2787		return true;
2788	} else if (ptq->sel_idx + 1 < pt->range_cnt) {
2789		/* Next time is a start time */
2790		ptq->sel_start = true;
2791		ptq->sel_idx += 1;
2792		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2793		return true;
2794	}
2795
2796	/* No next time */
2797	return false;
2798}
2799
2800static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2801{
2802	int err;
2803
2804	while (1) {
2805		if (ptq->sel_start) {
2806			if (ptq->timestamp >= ptq->sel_timestamp) {
2807				/* After start time, so consider next time */
2808				intel_pt_next_time(ptq);
2809				if (!ptq->sel_timestamp) {
2810					/* No end time */
2811					return 0;
2812				}
2813				/* Check against end time */
2814				continue;
2815			}
2816			/* Before start time, so fast forward */
2817			ptq->have_sample = false;
2818			if (ptq->sel_timestamp > *ff_timestamp) {
2819				if (ptq->sync_switch) {
2820					intel_pt_next_tid(ptq->pt, ptq);
2821					ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2822				}
2823				*ff_timestamp = ptq->sel_timestamp;
2824				err = intel_pt_fast_forward(ptq->decoder,
2825							    ptq->sel_timestamp);
2826				if (err)
2827					return err;
2828			}
2829			return 0;
2830		} else if (ptq->timestamp > ptq->sel_timestamp) {
2831			/* After end time, so consider next time */
2832			if (!intel_pt_next_time(ptq)) {
2833				/* No next time range, so stop decoding */
2834				ptq->have_sample = false;
2835				ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2836				return 1;
2837			}
2838			/* Check against next start time */
2839			continue;
2840		} else {
2841			/* Before end time */
2842			return 0;
2843		}
2844	}
2845}
2846
2847static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2848{
2849	const struct intel_pt_state *state = ptq->state;
2850	struct intel_pt *pt = ptq->pt;
2851	u64 ff_timestamp = 0;
2852	int err;
2853
2854	if (!pt->kernel_start) {
2855		pt->kernel_start = machine__kernel_start(pt->machine);
2856		if (pt->per_cpu_mmaps &&
2857		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2858		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2859		    !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
2860			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2861			if (pt->switch_ip) {
2862				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2863					     pt->switch_ip, pt->ptss_ip);
2864				intel_pt_enable_sync_switch(pt);
2865			}
2866		}
2867	}
2868
2869	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2870		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2871	while (1) {
2872		err = intel_pt_sample(ptq);
2873		if (err)
2874			return err;
2875
2876		state = intel_pt_decode(ptq->decoder);
2877		if (state->err) {
2878			if (state->err == INTEL_PT_ERR_NODATA)
2879				return 1;
2880			if (ptq->sync_switch &&
2881			    state->from_ip >= pt->kernel_start) {
2882				ptq->sync_switch = false;
2883				intel_pt_next_tid(pt, ptq);
2884			}
2885			ptq->timestamp = state->est_timestamp;
2886			if (pt->synth_opts.errors) {
2887				err = intel_ptq_synth_error(ptq, state);
2888				if (err)
2889					return err;
2890			}
2891			continue;
2892		}
2893
2894		ptq->state = state;
2895		ptq->have_sample = true;
2896		intel_pt_sample_flags(ptq);
2897
2898		/* Use estimated TSC upon return to user space */
2899		if (pt->est_tsc &&
2900		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2901		    state->to_ip && state->to_ip < pt->kernel_start) {
2902			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2903				     state->timestamp, state->est_timestamp);
2904			ptq->timestamp = state->est_timestamp;
2905		/* Use estimated TSC in unknown switch state */
2906		} else if (ptq->sync_switch &&
2907			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2908			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
2909			   ptq->next_tid == -1) {
2910			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2911				     state->timestamp, state->est_timestamp);
2912			ptq->timestamp = state->est_timestamp;
2913		} else if (state->timestamp > ptq->timestamp) {
2914			ptq->timestamp = state->timestamp;
2915		}
2916
2917		if (ptq->sel_timestamp) {
2918			err = intel_pt_time_filter(ptq, &ff_timestamp);
2919			if (err)
2920				return err;
2921		}
2922
2923		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2924			*timestamp = ptq->timestamp;
2925			return 0;
2926		}
2927	}
2928	return 0;
2929}
2930
2931static inline int intel_pt_update_queues(struct intel_pt *pt)
2932{
2933	if (pt->queues.new_data) {
2934		pt->queues.new_data = false;
2935		return intel_pt_setup_queues(pt);
2936	}
2937	return 0;
2938}
2939
2940static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2941{
2942	unsigned int queue_nr;
2943	u64 ts;
2944	int ret;
2945
2946	while (1) {
2947		struct auxtrace_queue *queue;
2948		struct intel_pt_queue *ptq;
2949
2950		if (!pt->heap.heap_cnt)
2951			return 0;
2952
2953		if (pt->heap.heap_array[0].ordinal >= timestamp)
2954			return 0;
2955
2956		queue_nr = pt->heap.heap_array[0].queue_nr;
2957		queue = &pt->queues.queue_array[queue_nr];
2958		ptq = queue->priv;
2959
2960		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2961			     queue_nr, pt->heap.heap_array[0].ordinal,
2962			     timestamp);
2963
2964		auxtrace_heap__pop(&pt->heap);
2965
2966		if (pt->heap.heap_cnt) {
2967			ts = pt->heap.heap_array[0].ordinal + 1;
2968			if (ts > timestamp)
2969				ts = timestamp;
2970		} else {
2971			ts = timestamp;
2972		}
2973
2974		intel_pt_set_pid_tid_cpu(pt, queue);
2975
2976		ret = intel_pt_run_decoder(ptq, &ts);
2977
2978		if (ret < 0) {
2979			auxtrace_heap__add(&pt->heap, queue_nr, ts);
2980			return ret;
2981		}
2982
2983		if (!ret) {
2984			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2985			if (ret < 0)
2986				return ret;
2987		} else {
2988			ptq->on_heap = false;
2989		}
2990	}
2991
2992	return 0;
2993}
2994
2995static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2996					    u64 time_)
2997{
2998	struct auxtrace_queues *queues = &pt->queues;
2999	unsigned int i;
3000	u64 ts = 0;
3001
3002	for (i = 0; i < queues->nr_queues; i++) {
3003		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
3004		struct intel_pt_queue *ptq = queue->priv;
3005
3006		if (ptq && (tid == -1 || ptq->tid == tid)) {
3007			ptq->time = time_;
3008			intel_pt_set_pid_tid_cpu(pt, queue);
3009			intel_pt_run_decoder(ptq, &ts);
3010		}
3011	}
3012	return 0;
3013}
3014
3015static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
3016					    struct auxtrace_queue *queue,
3017					    struct perf_sample *sample)
3018{
3019	struct machine *m = ptq->pt->machine;
3020
3021	ptq->pid = sample->pid;
3022	ptq->tid = sample->tid;
3023	ptq->cpu = queue->cpu;
3024
3025	intel_pt_log("queue %u cpu %d pid %d tid %d\n",
3026		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
3027
3028	thread__zput(ptq->thread);
3029
3030	if (ptq->tid == -1)
3031		return;
3032
3033	if (ptq->pid == -1) {
3034		ptq->thread = machine__find_thread(m, -1, ptq->tid);
3035		if (ptq->thread)
3036			ptq->pid = ptq->thread->pid_;
3037		return;
3038	}
3039
3040	ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
3041}
3042
3043static int intel_pt_process_timeless_sample(struct intel_pt *pt,
3044					    struct perf_sample *sample)
3045{
3046	struct auxtrace_queue *queue;
3047	struct intel_pt_queue *ptq;
3048	u64 ts = 0;
3049
3050	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3051	if (!queue)
3052		return -EINVAL;
3053
3054	ptq = queue->priv;
3055	if (!ptq)
3056		return 0;
3057
3058	ptq->stop = false;
3059	ptq->time = sample->time;
3060	intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
3061	intel_pt_run_decoder(ptq, &ts);
3062	return 0;
3063}
3064
3065static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
3066{
3067	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
3068				    sample->pid, sample->tid, 0, sample->time,
3069				    sample->machine_pid, sample->vcpu);
3070}
3071
3072static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
3073{
3074	unsigned i, j;
3075
3076	if (cpu < 0 || !pt->queues.nr_queues)
3077		return NULL;
3078
3079	if ((unsigned)cpu >= pt->queues.nr_queues)
3080		i = pt->queues.nr_queues - 1;
3081	else
3082		i = cpu;
3083
3084	if (pt->queues.queue_array[i].cpu == cpu)
3085		return pt->queues.queue_array[i].priv;
3086
3087	for (j = 0; i > 0; j++) {
3088		if (pt->queues.queue_array[--i].cpu == cpu)
3089			return pt->queues.queue_array[i].priv;
3090	}
3091
3092	for (; j < pt->queues.nr_queues; j++) {
3093		if (pt->queues.queue_array[j].cpu == cpu)
3094			return pt->queues.queue_array[j].priv;
3095	}
3096
3097	return NULL;
3098}
3099
3100static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
3101				u64 timestamp)
3102{
3103	struct intel_pt_queue *ptq;
3104	int err;
3105
3106	if (!pt->sync_switch)
3107		return 1;
3108
3109	ptq = intel_pt_cpu_to_ptq(pt, cpu);
3110	if (!ptq || !ptq->sync_switch)
3111		return 1;
3112
3113	switch (ptq->switch_state) {
3114	case INTEL_PT_SS_NOT_TRACING:
3115		break;
3116	case INTEL_PT_SS_UNKNOWN:
3117	case INTEL_PT_SS_TRACING:
3118		ptq->next_tid = tid;
3119		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
3120		return 0;
3121	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3122		if (!ptq->on_heap) {
3123			ptq->timestamp = perf_time_to_tsc(timestamp,
3124							  &pt->tc);
3125			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
3126						 ptq->timestamp);
3127			if (err)
3128				return err;
3129			ptq->on_heap = true;
3130		}
3131		ptq->switch_state = INTEL_PT_SS_TRACING;
3132		break;
3133	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3134		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
3135		break;
3136	default:
3137		break;
3138	}
3139
3140	ptq->next_tid = -1;
3141
3142	return 1;
3143}
3144
3145#ifdef HAVE_LIBTRACEEVENT
3146static int intel_pt_process_switch(struct intel_pt *pt,
3147				   struct perf_sample *sample)
3148{
 
3149	pid_t tid;
3150	int cpu, ret;
3151	struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
3152
 
3153	if (evsel != pt->switch_evsel)
3154		return 0;
3155
3156	tid = evsel__intval(evsel, sample, "next_pid");
3157	cpu = sample->cpu;
3158
3159	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3160		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
3161		     &pt->tc));
3162
3163	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3164	if (ret <= 0)
3165		return ret;
3166
3167	return machine__set_current_tid(pt->machine, cpu, -1, tid);
3168}
3169#endif /* HAVE_LIBTRACEEVENT */
3170
3171static int intel_pt_context_switch_in(struct intel_pt *pt,
3172				      struct perf_sample *sample)
3173{
3174	pid_t pid = sample->pid;
3175	pid_t tid = sample->tid;
3176	int cpu = sample->cpu;
3177
3178	if (pt->sync_switch) {
3179		struct intel_pt_queue *ptq;
3180
3181		ptq = intel_pt_cpu_to_ptq(pt, cpu);
3182		if (ptq && ptq->sync_switch) {
3183			ptq->next_tid = -1;
3184			switch (ptq->switch_state) {
3185			case INTEL_PT_SS_NOT_TRACING:
3186			case INTEL_PT_SS_UNKNOWN:
3187			case INTEL_PT_SS_TRACING:
3188				break;
3189			case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3190			case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3191				ptq->switch_state = INTEL_PT_SS_TRACING;
3192				break;
3193			default:
3194				break;
3195			}
3196		}
3197	}
3198
3199	/*
3200	 * If the current tid has not been updated yet, ensure it is now that
3201	 * a "switch in" event has occurred.
3202	 */
3203	if (machine__get_current_tid(pt->machine, cpu) == tid)
3204		return 0;
3205
3206	return machine__set_current_tid(pt->machine, cpu, pid, tid);
3207}
3208
3209static int intel_pt_guest_context_switch(struct intel_pt *pt,
3210					 union perf_event *event,
3211					 struct perf_sample *sample)
3212{
3213	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3214	struct machines *machines = &pt->session->machines;
3215	struct machine *machine = machines__find(machines, sample->machine_pid);
3216
3217	pt->have_guest_sideband = true;
3218
3219	/*
3220	 * sync_switch cannot handle guest machines at present, so just disable
3221	 * it.
3222	 */
3223	pt->sync_switch_not_supported = true;
3224	if (pt->sync_switch)
3225		intel_pt_disable_sync_switch(pt);
3226
3227	if (out)
3228		return 0;
3229
3230	if (!machine)
3231		return -EINVAL;
3232
3233	return machine__set_current_tid(machine, sample->vcpu, sample->pid, sample->tid);
3234}
3235
3236static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
3237				   struct perf_sample *sample)
3238{
3239	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3240	pid_t pid, tid;
3241	int cpu, ret;
3242
3243	if (perf_event__is_guest(event))
3244		return intel_pt_guest_context_switch(pt, event, sample);
3245
3246	cpu = sample->cpu;
3247
3248	if (pt->have_sched_switch == 3) {
3249		if (!out)
3250			return intel_pt_context_switch_in(pt, sample);
3251		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
3252			pr_err("Expecting CPU-wide context switch event\n");
3253			return -EINVAL;
3254		}
3255		pid = event->context_switch.next_prev_pid;
3256		tid = event->context_switch.next_prev_tid;
3257	} else {
3258		if (out)
3259			return 0;
3260		pid = sample->pid;
3261		tid = sample->tid;
3262	}
3263
3264	if (tid == -1)
3265		intel_pt_log("context_switch event has no tid\n");
 
 
 
 
 
 
3266
3267	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3268	if (ret <= 0)
3269		return ret;
3270
3271	return machine__set_current_tid(pt->machine, cpu, pid, tid);
3272}
3273
3274static int intel_pt_process_itrace_start(struct intel_pt *pt,
3275					 union perf_event *event,
3276					 struct perf_sample *sample)
3277{
3278	if (!pt->per_cpu_mmaps)
3279		return 0;
3280
3281	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3282		     sample->cpu, event->itrace_start.pid,
3283		     event->itrace_start.tid, sample->time,
3284		     perf_time_to_tsc(sample->time, &pt->tc));
3285
3286	return machine__set_current_tid(pt->machine, sample->cpu,
3287					event->itrace_start.pid,
3288					event->itrace_start.tid);
3289}
3290
3291static int intel_pt_process_aux_output_hw_id(struct intel_pt *pt,
3292					     union perf_event *event,
3293					     struct perf_sample *sample)
3294{
3295	u64 hw_id = event->aux_output_hw_id.hw_id;
3296	struct auxtrace_queue *queue;
3297	struct intel_pt_queue *ptq;
3298	struct evsel *evsel;
3299
3300	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3301	evsel = evlist__id2evsel_strict(pt->session->evlist, sample->id);
3302	if (!queue || !queue->priv || !evsel || hw_id > INTEL_PT_MAX_PEBS) {
3303		pr_err("Bad AUX output hardware ID\n");
3304		return -EINVAL;
3305	}
3306
3307	ptq = queue->priv;
3308
3309	ptq->pebs[hw_id].evsel = evsel;
3310	ptq->pebs[hw_id].id = sample->id;
3311
3312	return 0;
3313}
3314
3315static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
3316			     struct addr_location *al)
3317{
3318	if (!al->map || addr < al->map->start || addr >= al->map->end) {
3319		if (!thread__find_map(thread, cpumode, addr, al))
3320			return -1;
3321	}
3322
3323	return 0;
3324}
3325
3326/* Invalidate all instruction cache entries that overlap the text poke */
3327static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
3328{
3329	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
3330	u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
3331	/* Assume text poke begins in a basic block no more than 4096 bytes */
3332	int cnt = 4096 + event->text_poke.new_len;
3333	struct thread *thread = pt->unknown_thread;
3334	struct addr_location al = { .map = NULL };
3335	struct machine *machine = pt->machine;
3336	struct intel_pt_cache_entry *e;
3337	u64 offset;
3338
3339	if (!event->text_poke.new_len)
3340		return 0;
3341
3342	for (; cnt; cnt--, addr--) {
3343		if (intel_pt_find_map(thread, cpumode, addr, &al)) {
3344			if (addr < event->text_poke.addr)
3345				return 0;
3346			continue;
3347		}
3348
3349		if (!al.map->dso || !al.map->dso->auxtrace_cache)
3350			continue;
3351
3352		offset = al.map->map_ip(al.map, addr);
3353
3354		e = intel_pt_cache_lookup(al.map->dso, machine, offset);
3355		if (!e)
3356			continue;
3357
3358		if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
3359			/*
3360			 * No overlap. Working backwards there cannot be another
3361			 * basic block that overlaps the text poke if there is a
3362			 * branch instruction before the text poke address.
3363			 */
3364			if (e->branch != INTEL_PT_BR_NO_BRANCH)
3365				return 0;
3366		} else {
3367			intel_pt_cache_invalidate(al.map->dso, machine, offset);
3368			intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
3369				     al.map->dso->long_name, addr);
3370		}
3371	}
3372
3373	return 0;
3374}
3375
3376static int intel_pt_process_event(struct perf_session *session,
3377				  union perf_event *event,
3378				  struct perf_sample *sample,
3379				  struct perf_tool *tool)
3380{
3381	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3382					   auxtrace);
3383	u64 timestamp;
3384	int err = 0;
3385
3386	if (dump_trace)
3387		return 0;
3388
3389	if (!tool->ordered_events) {
3390		pr_err("Intel Processor Trace requires ordered events\n");
3391		return -EINVAL;
3392	}
3393
3394	if (sample->time && sample->time != (u64)-1)
3395		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3396	else
3397		timestamp = 0;
3398
3399	if (timestamp || pt->timeless_decoding) {
3400		err = intel_pt_update_queues(pt);
3401		if (err)
3402			return err;
3403	}
3404
3405	if (pt->timeless_decoding) {
3406		if (pt->sampling_mode) {
3407			if (sample->aux_sample.size)
3408				err = intel_pt_process_timeless_sample(pt,
3409								       sample);
3410		} else if (event->header.type == PERF_RECORD_EXIT) {
3411			err = intel_pt_process_timeless_queues(pt,
3412							       event->fork.tid,
3413							       sample->time);
3414		}
3415	} else if (timestamp) {
3416		if (!pt->first_timestamp)
3417			intel_pt_first_timestamp(pt, timestamp);
3418		err = intel_pt_process_queues(pt, timestamp);
3419	}
3420	if (err)
3421		return err;
3422
3423	if (event->header.type == PERF_RECORD_SAMPLE) {
3424		if (pt->synth_opts.add_callchain && !sample->callchain)
3425			intel_pt_add_callchain(pt, sample);
3426		if (pt->synth_opts.add_last_branch && !sample->branch_stack)
3427			intel_pt_add_br_stack(pt, sample);
3428	}
3429
3430	if (event->header.type == PERF_RECORD_AUX &&
3431	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
3432	    pt->synth_opts.errors) {
3433		err = intel_pt_lost(pt, sample);
3434		if (err)
3435			return err;
3436	}
3437
3438#ifdef HAVE_LIBTRACEEVENT
3439	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
3440		err = intel_pt_process_switch(pt, sample);
3441	else
3442#endif
3443	if (event->header.type == PERF_RECORD_ITRACE_START)
3444		err = intel_pt_process_itrace_start(pt, event, sample);
3445	else if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID)
3446		err = intel_pt_process_aux_output_hw_id(pt, event, sample);
3447	else if (event->header.type == PERF_RECORD_SWITCH ||
3448		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
3449		err = intel_pt_context_switch(pt, event, sample);
3450
3451	if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
3452		err = intel_pt_text_poke(pt, event);
3453
3454	if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
3455		intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
3456			     event->header.type, sample->cpu, sample->time, timestamp);
3457		intel_pt_log_event(event);
3458	}
3459
3460	return err;
3461}
3462
3463static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
3464{
3465	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3466					   auxtrace);
3467	int ret;
3468
3469	if (dump_trace)
3470		return 0;
3471
3472	if (!tool->ordered_events)
3473		return -EINVAL;
3474
3475	ret = intel_pt_update_queues(pt);
3476	if (ret < 0)
3477		return ret;
3478
3479	if (pt->timeless_decoding)
3480		return intel_pt_process_timeless_queues(pt, -1,
3481							MAX_TIMESTAMP - 1);
3482
3483	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
3484}
3485
3486static void intel_pt_free_events(struct perf_session *session)
3487{
3488	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3489					   auxtrace);
3490	struct auxtrace_queues *queues = &pt->queues;
3491	unsigned int i;
3492
3493	for (i = 0; i < queues->nr_queues; i++) {
3494		intel_pt_free_queue(queues->queue_array[i].priv);
3495		queues->queue_array[i].priv = NULL;
3496	}
3497	intel_pt_log_disable();
3498	auxtrace_queues__free(queues);
3499}
3500
3501static void intel_pt_free(struct perf_session *session)
3502{
3503	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3504					   auxtrace);
3505
3506	auxtrace_heap__free(&pt->heap);
3507	intel_pt_free_events(session);
3508	session->auxtrace = NULL;
3509	intel_pt_free_vmcs_info(pt);
3510	thread__put(pt->unknown_thread);
3511	addr_filters__exit(&pt->filts);
3512	zfree(&pt->chain);
3513	zfree(&pt->filter);
3514	zfree(&pt->time_ranges);
3515	free(pt);
3516}
3517
3518static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
3519				       struct evsel *evsel)
3520{
3521	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3522					   auxtrace);
3523
3524	return evsel->core.attr.type == pt->pmu_type;
3525}
3526
3527static int intel_pt_process_auxtrace_event(struct perf_session *session,
3528					   union perf_event *event,
3529					   struct perf_tool *tool __maybe_unused)
3530{
3531	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3532					   auxtrace);
3533
3534	if (!pt->data_queued) {
3535		struct auxtrace_buffer *buffer;
3536		off_t data_offset;
3537		int fd = perf_data__fd(session->data);
3538		int err;
3539
3540		if (perf_data__is_pipe(session->data)) {
3541			data_offset = 0;
3542		} else {
3543			data_offset = lseek(fd, 0, SEEK_CUR);
3544			if (data_offset == -1)
3545				return -errno;
3546		}
3547
3548		err = auxtrace_queues__add_event(&pt->queues, session, event,
3549						 data_offset, &buffer);
3550		if (err)
3551			return err;
3552
3553		/* Dump here now we have copied a piped trace out of the pipe */
3554		if (dump_trace) {
3555			if (auxtrace_buffer__get_data(buffer, fd)) {
3556				intel_pt_dump_event(pt, buffer->data,
3557						    buffer->size);
3558				auxtrace_buffer__put_data(buffer);
3559			}
3560		}
3561	}
3562
3563	return 0;
3564}
3565
3566static int intel_pt_queue_data(struct perf_session *session,
3567			       struct perf_sample *sample,
3568			       union perf_event *event, u64 data_offset)
3569{
3570	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3571					   auxtrace);
3572	u64 timestamp;
3573
3574	if (event) {
3575		return auxtrace_queues__add_event(&pt->queues, session, event,
3576						  data_offset, NULL);
3577	}
3578
3579	if (sample->time && sample->time != (u64)-1)
3580		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3581	else
3582		timestamp = 0;
3583
3584	return auxtrace_queues__add_sample(&pt->queues, session, sample,
3585					   data_offset, timestamp);
3586}
3587
3588struct intel_pt_synth {
3589	struct perf_tool dummy_tool;
3590	struct perf_session *session;
3591};
3592
3593static int intel_pt_event_synth(struct perf_tool *tool,
3594				union perf_event *event,
3595				struct perf_sample *sample __maybe_unused,
3596				struct machine *machine __maybe_unused)
3597{
3598	struct intel_pt_synth *intel_pt_synth =
3599			container_of(tool, struct intel_pt_synth, dummy_tool);
3600
3601	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
3602						 NULL);
3603}
3604
3605static int intel_pt_synth_event(struct perf_session *session, const char *name,
3606				struct perf_event_attr *attr, u64 id)
3607{
3608	struct intel_pt_synth intel_pt_synth;
3609	int err;
3610
3611	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3612		 name, id, (u64)attr->sample_type);
3613
3614	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
3615	intel_pt_synth.session = session;
3616
3617	err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
3618					  &id, intel_pt_event_synth);
3619	if (err)
3620		pr_err("%s: failed to synthesize '%s' event type\n",
3621		       __func__, name);
3622
3623	return err;
3624}
3625
3626static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3627				    const char *name)
3628{
3629	struct evsel *evsel;
3630
3631	evlist__for_each_entry(evlist, evsel) {
3632		if (evsel->core.id && evsel->core.id[0] == id) {
3633			if (evsel->name)
3634				zfree(&evsel->name);
3635			evsel->name = strdup(name);
3636			break;
3637		}
3638	}
3639}
3640
3641static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3642					 struct evlist *evlist)
3643{
3644	struct evsel *evsel;
3645
3646	evlist__for_each_entry(evlist, evsel) {
3647		if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3648			return evsel;
3649	}
3650
3651	return NULL;
3652}
3653
3654static int intel_pt_synth_events(struct intel_pt *pt,
3655				 struct perf_session *session)
3656{
3657	struct evlist *evlist = session->evlist;
3658	struct evsel *evsel = intel_pt_evsel(pt, evlist);
3659	struct perf_event_attr attr;
3660	u64 id;
3661	int err;
3662
3663	if (!evsel) {
3664		pr_debug("There are no selected events with Intel Processor Trace data\n");
3665		return 0;
3666	}
3667
3668	memset(&attr, 0, sizeof(struct perf_event_attr));
3669	attr.size = sizeof(struct perf_event_attr);
3670	attr.type = PERF_TYPE_HARDWARE;
3671	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3672	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3673			    PERF_SAMPLE_PERIOD;
3674	if (pt->timeless_decoding)
3675		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3676	else
3677		attr.sample_type |= PERF_SAMPLE_TIME;
3678	if (!pt->per_cpu_mmaps)
3679		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3680	attr.exclude_user = evsel->core.attr.exclude_user;
3681	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3682	attr.exclude_hv = evsel->core.attr.exclude_hv;
3683	attr.exclude_host = evsel->core.attr.exclude_host;
3684	attr.exclude_guest = evsel->core.attr.exclude_guest;
3685	attr.sample_id_all = evsel->core.attr.sample_id_all;
3686	attr.read_format = evsel->core.attr.read_format;
3687
3688	id = evsel->core.id[0] + 1000000000;
3689	if (!id)
3690		id = 1;
3691
3692	if (pt->synth_opts.branches) {
3693		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3694		attr.sample_period = 1;
3695		attr.sample_type |= PERF_SAMPLE_ADDR;
3696		err = intel_pt_synth_event(session, "branches", &attr, id);
3697		if (err)
3698			return err;
3699		pt->sample_branches = true;
3700		pt->branches_sample_type = attr.sample_type;
3701		pt->branches_id = id;
3702		id += 1;
3703		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3704	}
3705
3706	if (pt->synth_opts.callchain)
3707		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3708	if (pt->synth_opts.last_branch) {
3709		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3710		/*
3711		 * We don't use the hardware index, but the sample generation
3712		 * code uses the new format branch_stack with this field,
3713		 * so the event attributes must indicate that it's present.
3714		 */
3715		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3716	}
3717
3718	if (pt->synth_opts.instructions) {
3719		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3720		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3721			attr.sample_period =
3722				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3723		else
3724			attr.sample_period = pt->synth_opts.period;
3725		err = intel_pt_synth_event(session, "instructions", &attr, id);
3726		if (err)
3727			return err;
3728		pt->sample_instructions = true;
3729		pt->instructions_sample_type = attr.sample_type;
3730		pt->instructions_id = id;
3731		id += 1;
3732	}
3733
3734	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3735	attr.sample_period = 1;
3736
3737	if (pt->synth_opts.transactions) {
3738		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3739		err = intel_pt_synth_event(session, "transactions", &attr, id);
3740		if (err)
3741			return err;
3742		pt->sample_transactions = true;
3743		pt->transactions_sample_type = attr.sample_type;
3744		pt->transactions_id = id;
3745		intel_pt_set_event_name(evlist, id, "transactions");
3746		id += 1;
3747	}
3748
3749	attr.type = PERF_TYPE_SYNTH;
3750	attr.sample_type |= PERF_SAMPLE_RAW;
3751
3752	if (pt->synth_opts.ptwrites) {
3753		attr.config = PERF_SYNTH_INTEL_PTWRITE;
3754		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3755		if (err)
3756			return err;
3757		pt->sample_ptwrites = true;
3758		pt->ptwrites_sample_type = attr.sample_type;
3759		pt->ptwrites_id = id;
3760		intel_pt_set_event_name(evlist, id, "ptwrite");
3761		id += 1;
3762	}
3763
3764	if (pt->synth_opts.pwr_events) {
3765		pt->sample_pwr_events = true;
3766		pt->pwr_events_sample_type = attr.sample_type;
3767
3768		attr.config = PERF_SYNTH_INTEL_CBR;
3769		err = intel_pt_synth_event(session, "cbr", &attr, id);
3770		if (err)
3771			return err;
3772		pt->cbr_id = id;
3773		intel_pt_set_event_name(evlist, id, "cbr");
3774		id += 1;
3775
3776		attr.config = PERF_SYNTH_INTEL_PSB;
3777		err = intel_pt_synth_event(session, "psb", &attr, id);
3778		if (err)
3779			return err;
3780		pt->psb_id = id;
3781		intel_pt_set_event_name(evlist, id, "psb");
3782		id += 1;
3783	}
3784
3785	if (pt->synth_opts.pwr_events && (evsel->core.attr.config & INTEL_PT_CFG_PWR_EVT_EN)) {
3786		attr.config = PERF_SYNTH_INTEL_MWAIT;
3787		err = intel_pt_synth_event(session, "mwait", &attr, id);
3788		if (err)
3789			return err;
3790		pt->mwait_id = id;
3791		intel_pt_set_event_name(evlist, id, "mwait");
3792		id += 1;
3793
3794		attr.config = PERF_SYNTH_INTEL_PWRE;
3795		err = intel_pt_synth_event(session, "pwre", &attr, id);
3796		if (err)
3797			return err;
3798		pt->pwre_id = id;
3799		intel_pt_set_event_name(evlist, id, "pwre");
3800		id += 1;
3801
3802		attr.config = PERF_SYNTH_INTEL_EXSTOP;
3803		err = intel_pt_synth_event(session, "exstop", &attr, id);
3804		if (err)
3805			return err;
3806		pt->exstop_id = id;
3807		intel_pt_set_event_name(evlist, id, "exstop");
3808		id += 1;
3809
3810		attr.config = PERF_SYNTH_INTEL_PWRX;
3811		err = intel_pt_synth_event(session, "pwrx", &attr, id);
3812		if (err)
3813			return err;
3814		pt->pwrx_id = id;
3815		intel_pt_set_event_name(evlist, id, "pwrx");
3816		id += 1;
3817	}
3818
3819	if (pt->synth_opts.intr_events && (evsel->core.attr.config & INTEL_PT_CFG_EVT_EN)) {
3820		attr.config = PERF_SYNTH_INTEL_EVT;
3821		err = intel_pt_synth_event(session, "evt", &attr, id);
3822		if (err)
3823			return err;
3824		pt->evt_sample_type = attr.sample_type;
3825		pt->evt_id = id;
3826		intel_pt_set_event_name(evlist, id, "evt");
3827		id += 1;
3828	}
3829
3830	if (pt->synth_opts.intr_events && pt->cap_event_trace) {
3831		attr.config = PERF_SYNTH_INTEL_IFLAG_CHG;
3832		err = intel_pt_synth_event(session, "iflag", &attr, id);
3833		if (err)
3834			return err;
3835		pt->iflag_chg_sample_type = attr.sample_type;
3836		pt->iflag_chg_id = id;
3837		intel_pt_set_event_name(evlist, id, "iflag");
3838		id += 1;
3839	}
3840
3841	return 0;
3842}
3843
3844static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3845{
3846	struct evsel *evsel;
3847
3848	if (!pt->synth_opts.other_events)
3849		return;
3850
3851	evlist__for_each_entry(pt->session->evlist, evsel) {
3852		if (evsel->core.attr.aux_output && evsel->core.id) {
3853			if (pt->single_pebs) {
3854				pt->single_pebs = false;
3855				return;
3856			}
3857			pt->single_pebs = true;
3858			pt->sample_pebs = true;
3859			pt->pebs_evsel = evsel;
 
3860		}
3861	}
3862}
3863
3864static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3865{
3866	struct evsel *evsel;
3867
3868	evlist__for_each_entry_reverse(evlist, evsel) {
3869		const char *name = evsel__name(evsel);
3870
3871		if (!strcmp(name, "sched:sched_switch"))
3872			return evsel;
3873	}
3874
3875	return NULL;
3876}
3877
3878static bool intel_pt_find_switch(struct evlist *evlist)
3879{
3880	struct evsel *evsel;
3881
3882	evlist__for_each_entry(evlist, evsel) {
3883		if (evsel->core.attr.context_switch)
3884			return true;
3885	}
3886
3887	return false;
3888}
3889
3890static int intel_pt_perf_config(const char *var, const char *value, void *data)
3891{
3892	struct intel_pt *pt = data;
3893
3894	if (!strcmp(var, "intel-pt.mispred-all"))
3895		pt->mispred_all = perf_config_bool(var, value);
3896
3897	if (!strcmp(var, "intel-pt.max-loops"))
3898		perf_config_int(&pt->max_loops, var, value);
3899
3900	return 0;
3901}
3902
3903/* Find least TSC which converts to ns or later */
3904static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3905{
3906	u64 tsc, tm;
3907
3908	tsc = perf_time_to_tsc(ns, &pt->tc);
3909
3910	while (1) {
3911		tm = tsc_to_perf_time(tsc, &pt->tc);
3912		if (tm < ns)
3913			break;
3914		tsc -= 1;
3915	}
3916
3917	while (tm < ns)
3918		tm = tsc_to_perf_time(++tsc, &pt->tc);
3919
3920	return tsc;
3921}
3922
3923/* Find greatest TSC which converts to ns or earlier */
3924static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3925{
3926	u64 tsc, tm;
3927
3928	tsc = perf_time_to_tsc(ns, &pt->tc);
3929
3930	while (1) {
3931		tm = tsc_to_perf_time(tsc, &pt->tc);
3932		if (tm > ns)
3933			break;
3934		tsc += 1;
3935	}
3936
3937	while (tm > ns)
3938		tm = tsc_to_perf_time(--tsc, &pt->tc);
3939
3940	return tsc;
3941}
3942
3943static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3944				      struct itrace_synth_opts *opts)
3945{
3946	struct perf_time_interval *p = opts->ptime_range;
3947	int n = opts->range_num;
3948	int i;
3949
3950	if (!n || !p || pt->timeless_decoding)
3951		return 0;
3952
3953	pt->time_ranges = calloc(n, sizeof(struct range));
3954	if (!pt->time_ranges)
3955		return -ENOMEM;
3956
3957	pt->range_cnt = n;
3958
3959	intel_pt_log("%s: %u range(s)\n", __func__, n);
3960
3961	for (i = 0; i < n; i++) {
3962		struct range *r = &pt->time_ranges[i];
3963		u64 ts = p[i].start;
3964		u64 te = p[i].end;
3965
3966		/*
3967		 * Take care to ensure the TSC range matches the perf-time range
3968		 * when converted back to perf-time.
3969		 */
3970		r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3971		r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3972
3973		intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3974			     i, ts, te);
3975		intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3976			     i, r->start, r->end);
3977	}
3978
3979	return 0;
3980}
3981
3982static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args)
3983{
3984	struct intel_pt_vmcs_info *vmcs_info;
3985	u64 tsc_offset, vmcs;
3986	char *p = *args;
3987
3988	errno = 0;
3989
3990	p = skip_spaces(p);
3991	if (!*p)
3992		return 1;
3993
3994	tsc_offset = strtoull(p, &p, 0);
3995	if (errno)
3996		return -errno;
3997	p = skip_spaces(p);
3998	if (*p != ':') {
3999		pt->dflt_tsc_offset = tsc_offset;
4000		*args = p;
4001		return 0;
4002	}
4003	p += 1;
4004	while (1) {
4005		vmcs = strtoull(p, &p, 0);
4006		if (errno)
4007			return -errno;
4008		if (!vmcs)
4009			return -EINVAL;
4010		vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset);
4011		if (!vmcs_info)
4012			return -ENOMEM;
4013		p = skip_spaces(p);
4014		if (*p != ',')
4015			break;
4016		p += 1;
4017	}
4018	*args = p;
4019	return 0;
4020}
4021
4022static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt)
4023{
4024	char *args = pt->synth_opts.vm_tm_corr_args;
4025	int ret;
4026
4027	if (!args)
4028		return 0;
4029
4030	do {
4031		ret = intel_pt_parse_vm_tm_corr_arg(pt, &args);
4032	} while (!ret);
4033
4034	if (ret < 0) {
4035		pr_err("Failed to parse VM Time Correlation options\n");
4036		return ret;
4037	}
4038
4039	return 0;
4040}
4041
4042static const char * const intel_pt_info_fmts[] = {
4043	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
4044	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
4045	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
4046	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
4047	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
4048	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
4049	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
4050	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
4051	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
4052	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
4053	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
4054	[INTEL_PT_MTC_FREQ_BITS]	= "  MTC freq bits       %#"PRIx64"\n",
4055	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
4056	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
4057	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
4058	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
4059	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
4060};
4061
4062static void intel_pt_print_info(__u64 *arr, int start, int finish)
4063{
4064	int i;
4065
4066	if (!dump_trace)
4067		return;
4068
4069	for (i = start; i <= finish; i++) {
4070		const char *fmt = intel_pt_info_fmts[i];
4071
4072		if (fmt)
4073			fprintf(stdout, fmt, arr[i]);
4074	}
4075}
4076
4077static void intel_pt_print_info_str(const char *name, const char *str)
4078{
4079	if (!dump_trace)
4080		return;
4081
4082	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
4083}
4084
4085static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
4086{
4087	return auxtrace_info->header.size >=
4088		sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
4089}
4090
4091int intel_pt_process_auxtrace_info(union perf_event *event,
4092				   struct perf_session *session)
4093{
4094	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
4095	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
4096	struct intel_pt *pt;
4097	void *info_end;
4098	__u64 *info;
4099	int err;
4100
4101	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
4102					min_sz)
4103		return -EINVAL;
4104
4105	pt = zalloc(sizeof(struct intel_pt));
4106	if (!pt)
4107		return -ENOMEM;
4108
4109	pt->vmcs_info = RB_ROOT;
4110
4111	addr_filters__init(&pt->filts);
4112
4113	err = perf_config(intel_pt_perf_config, pt);
4114	if (err)
4115		goto err_free;
4116
4117	err = auxtrace_queues__init(&pt->queues);
4118	if (err)
4119		goto err_free;
4120
4121	if (session->itrace_synth_opts->set) {
4122		pt->synth_opts = *session->itrace_synth_opts;
4123	} else {
4124		struct itrace_synth_opts *opts = session->itrace_synth_opts;
4125
4126		itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample);
4127		if (!opts->default_no_sample && !opts->inject) {
4128			pt->synth_opts.branches = false;
4129			pt->synth_opts.callchain = true;
4130			pt->synth_opts.add_callchain = true;
4131		}
4132		pt->synth_opts.thread_stack = opts->thread_stack;
4133	}
4134
4135	if (!(pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT))
4136		intel_pt_log_set_name(INTEL_PT_PMU_NAME);
4137
4138	pt->session = session;
4139	pt->machine = &session->machines.host; /* No kvm support */
4140	pt->auxtrace_type = auxtrace_info->type;
4141	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
4142	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
4143	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
4144	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
4145	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
4146	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
4147	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
4148	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
4149	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
4150	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
4151	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
4152			    INTEL_PT_PER_CPU_MMAPS);
4153
4154	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
4155		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
4156		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
4157		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
4158		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
4159		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
4160		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
4161				    INTEL_PT_CYC_BIT);
4162	}
4163
4164	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
4165		pt->max_non_turbo_ratio =
4166			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
4167		intel_pt_print_info(&auxtrace_info->priv[0],
4168				    INTEL_PT_MAX_NONTURBO_RATIO,
4169				    INTEL_PT_MAX_NONTURBO_RATIO);
4170	}
4171
4172	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
4173	info_end = (void *)auxtrace_info + auxtrace_info->header.size;
4174
4175	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
4176		size_t len;
4177
4178		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
4179		intel_pt_print_info(&auxtrace_info->priv[0],
4180				    INTEL_PT_FILTER_STR_LEN,
4181				    INTEL_PT_FILTER_STR_LEN);
4182		if (len) {
4183			const char *filter = (const char *)info;
4184
4185			len = roundup(len + 1, 8);
4186			info += len >> 3;
4187			if ((void *)info > info_end) {
4188				pr_err("%s: bad filter string length\n", __func__);
4189				err = -EINVAL;
4190				goto err_free_queues;
4191			}
4192			pt->filter = memdup(filter, len);
4193			if (!pt->filter) {
4194				err = -ENOMEM;
4195				goto err_free_queues;
4196			}
4197			if (session->header.needs_swap)
4198				mem_bswap_64(pt->filter, len);
4199			if (pt->filter[len - 1]) {
4200				pr_err("%s: filter string not null terminated\n", __func__);
4201				err = -EINVAL;
4202				goto err_free_queues;
4203			}
4204			err = addr_filters__parse_bare_filter(&pt->filts,
4205							      filter);
4206			if (err)
4207				goto err_free_queues;
4208		}
4209		intel_pt_print_info_str("Filter string", pt->filter);
4210	}
4211
4212	if ((void *)info < info_end) {
4213		pt->cap_event_trace = *info++;
4214		if (dump_trace)
4215			fprintf(stdout, "  Cap Event Trace     %d\n",
4216				pt->cap_event_trace);
4217	}
4218
4219	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
4220	if (pt->timeless_decoding && !pt->tc.time_mult)
4221		pt->tc.time_mult = 1;
4222	pt->have_tsc = intel_pt_have_tsc(pt);
4223	pt->sampling_mode = intel_pt_sampling_mode(pt);
4224	pt->est_tsc = !pt->timeless_decoding;
4225
4226	if (pt->synth_opts.vm_time_correlation) {
4227		if (pt->timeless_decoding) {
4228			pr_err("Intel PT has no time information for VM Time Correlation\n");
4229			err = -EINVAL;
4230			goto err_free_queues;
4231		}
4232		if (session->itrace_synth_opts->ptime_range) {
4233			pr_err("Time ranges cannot be specified with VM Time Correlation\n");
4234			err = -EINVAL;
4235			goto err_free_queues;
4236		}
4237		/* Currently TSC Offset is calculated using MTC packets */
4238		if (!intel_pt_have_mtc(pt)) {
4239			pr_err("MTC packets must have been enabled for VM Time Correlation\n");
4240			err = -EINVAL;
4241			goto err_free_queues;
4242		}
4243		err = intel_pt_parse_vm_tm_corr_args(pt);
4244		if (err)
4245			goto err_free_queues;
4246	}
4247
4248	pt->unknown_thread = thread__new(999999999, 999999999);
4249	if (!pt->unknown_thread) {
4250		err = -ENOMEM;
4251		goto err_free_queues;
4252	}
4253
4254	/*
4255	 * Since this thread will not be kept in any rbtree not in a
4256	 * list, initialize its list node so that at thread__put() the
4257	 * current thread lifetime assumption is kept and we don't segfault
4258	 * at list_del_init().
4259	 */
4260	INIT_LIST_HEAD(&pt->unknown_thread->node);
4261
4262	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
4263	if (err)
4264		goto err_delete_thread;
4265	if (thread__init_maps(pt->unknown_thread, pt->machine)) {
4266		err = -ENOMEM;
4267		goto err_delete_thread;
4268	}
4269
4270	pt->auxtrace.process_event = intel_pt_process_event;
4271	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
4272	pt->auxtrace.queue_data = intel_pt_queue_data;
4273	pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
4274	pt->auxtrace.flush_events = intel_pt_flush;
4275	pt->auxtrace.free_events = intel_pt_free_events;
4276	pt->auxtrace.free = intel_pt_free;
4277	pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
4278	session->auxtrace = &pt->auxtrace;
4279
4280	if (dump_trace)
4281		return 0;
4282
4283	if (pt->have_sched_switch == 1) {
4284		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
4285		if (!pt->switch_evsel) {
4286			pr_err("%s: missing sched_switch event\n", __func__);
4287			err = -EINVAL;
4288			goto err_delete_thread;
4289		}
4290	} else if (pt->have_sched_switch == 2 &&
4291		   !intel_pt_find_switch(session->evlist)) {
4292		pr_err("%s: missing context_switch attribute flag\n", __func__);
4293		err = -EINVAL;
4294		goto err_delete_thread;
4295	}
4296
4297	if (pt->synth_opts.log) {
4298		bool log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
4299		unsigned int log_on_error_size = pt->synth_opts.log_on_error_size;
 
 
 
 
 
 
 
 
 
 
4300
4301		intel_pt_log_enable(log_on_error, log_on_error_size);
4302	}
4303
4304	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
4305	if (pt->tc.time_mult) {
4306		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
4307
4308		if (!pt->max_non_turbo_ratio)
4309			pt->max_non_turbo_ratio =
4310					(tsc_freq + 50000000) / 100000000;
4311		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
4312		intel_pt_log("Maximum non-turbo ratio %u\n",
4313			     pt->max_non_turbo_ratio);
4314		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
4315	}
4316
4317	err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
4318	if (err)
4319		goto err_delete_thread;
4320
4321	if (pt->synth_opts.calls)
4322		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
4323				       PERF_IP_FLAG_TRACE_END;
4324	if (pt->synth_opts.returns)
4325		pt->branches_filter |= PERF_IP_FLAG_RETURN |
4326				       PERF_IP_FLAG_TRACE_BEGIN;
4327
4328	if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
4329	    !symbol_conf.use_callchain) {
4330		symbol_conf.use_callchain = true;
4331		if (callchain_register_param(&callchain_param) < 0) {
4332			symbol_conf.use_callchain = false;
4333			pt->synth_opts.callchain = false;
4334			pt->synth_opts.add_callchain = false;
4335		}
4336	}
4337
4338	if (pt->synth_opts.add_callchain) {
4339		err = intel_pt_callchain_init(pt);
4340		if (err)
4341			goto err_delete_thread;
4342	}
4343
4344	if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
4345		pt->br_stack_sz = pt->synth_opts.last_branch_sz;
4346		pt->br_stack_sz_plus = pt->br_stack_sz;
4347	}
4348
4349	if (pt->synth_opts.add_last_branch) {
4350		err = intel_pt_br_stack_init(pt);
4351		if (err)
4352			goto err_delete_thread;
4353		/*
4354		 * Additional branch stack size to cater for tracing from the
4355		 * actual sample ip to where the sample time is recorded.
4356		 * Measured at about 200 branches, but generously set to 1024.
4357		 * If kernel space is not being traced, then add just 1 for the
4358		 * branch to kernel space.
4359		 */
4360		if (intel_pt_tracing_kernel(pt))
4361			pt->br_stack_sz_plus += 1024;
4362		else
4363			pt->br_stack_sz_plus += 1;
4364	}
4365
4366	pt->use_thread_stack = pt->synth_opts.callchain ||
4367			       pt->synth_opts.add_callchain ||
4368			       pt->synth_opts.thread_stack ||
4369			       pt->synth_opts.last_branch ||
4370			       pt->synth_opts.add_last_branch;
4371
4372	pt->callstack = pt->synth_opts.callchain ||
4373			pt->synth_opts.add_callchain ||
4374			pt->synth_opts.thread_stack;
4375
4376	err = intel_pt_synth_events(pt, session);
4377	if (err)
4378		goto err_delete_thread;
4379
4380	intel_pt_setup_pebs_events(pt);
4381
4382	if (pt->sampling_mode || list_empty(&session->auxtrace_index))
4383		err = auxtrace_queue_data(session, true, true);
4384	else
4385		err = auxtrace_queues__process_index(&pt->queues, session);
4386	if (err)
4387		goto err_delete_thread;
4388
4389	if (pt->queues.populated)
4390		pt->data_queued = true;
4391
4392	if (pt->timeless_decoding)
4393		pr_debug2("Intel PT decoding without timestamps\n");
4394
4395	return 0;
4396
4397err_delete_thread:
4398	zfree(&pt->chain);
4399	thread__zput(pt->unknown_thread);
4400err_free_queues:
4401	intel_pt_log_disable();
4402	auxtrace_queues__free(&pt->queues);
4403	session->auxtrace = NULL;
4404err_free:
4405	addr_filters__exit(&pt->filts);
4406	zfree(&pt->filter);
4407	zfree(&pt->time_ranges);
4408	free(pt);
4409	return err;
4410}