Linux Audio

Check our new training course

Loading...
v5.4
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
  29#include <linux/idr.h>
  30#include <linux/rfkill.h>
  31#include <linux/debugfs.h>
  32#include <linux/crypto.h>
 
  33#include <linux/property.h>
 
 
  34#include <asm/unaligned.h>
  35
  36#include <net/bluetooth/bluetooth.h>
  37#include <net/bluetooth/hci_core.h>
  38#include <net/bluetooth/l2cap.h>
  39#include <net/bluetooth/mgmt.h>
  40
  41#include "hci_request.h"
  42#include "hci_debugfs.h"
  43#include "smp.h"
  44#include "leds.h"
 
 
 
  45
  46static void hci_rx_work(struct work_struct *work);
  47static void hci_cmd_work(struct work_struct *work);
  48static void hci_tx_work(struct work_struct *work);
  49
  50/* HCI device list */
  51LIST_HEAD(hci_dev_list);
  52DEFINE_RWLOCK(hci_dev_list_lock);
  53
  54/* HCI callback list */
  55LIST_HEAD(hci_cb_list);
  56DEFINE_MUTEX(hci_cb_list_lock);
  57
  58/* HCI ID Numbering */
  59static DEFINE_IDA(hci_index_ida);
  60
  61/* ---- HCI debugfs entries ---- */
  62
  63static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
  64			     size_t count, loff_t *ppos)
  65{
  66	struct hci_dev *hdev = file->private_data;
  67	char buf[3];
  68
  69	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
  70	buf[1] = '\n';
  71	buf[2] = '\0';
  72	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
  73}
  74
  75static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
  76			      size_t count, loff_t *ppos)
  77{
  78	struct hci_dev *hdev = file->private_data;
  79	struct sk_buff *skb;
  80	bool enable;
  81	int err;
  82
  83	if (!test_bit(HCI_UP, &hdev->flags))
  84		return -ENETDOWN;
  85
  86	err = kstrtobool_from_user(user_buf, count, &enable);
  87	if (err)
  88		return err;
  89
  90	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
  91		return -EALREADY;
  92
  93	hci_req_sync_lock(hdev);
  94	if (enable)
  95		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
  96				     HCI_CMD_TIMEOUT);
  97	else
  98		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
  99				     HCI_CMD_TIMEOUT);
 100	hci_req_sync_unlock(hdev);
 101
 102	if (IS_ERR(skb))
 103		return PTR_ERR(skb);
 104
 105	kfree_skb(skb);
 106
 107	hci_dev_change_flag(hdev, HCI_DUT_MODE);
 108
 109	return count;
 110}
 111
 112static const struct file_operations dut_mode_fops = {
 113	.open		= simple_open,
 114	.read		= dut_mode_read,
 115	.write		= dut_mode_write,
 116	.llseek		= default_llseek,
 117};
 118
 119static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
 120				size_t count, loff_t *ppos)
 121{
 122	struct hci_dev *hdev = file->private_data;
 123	char buf[3];
 124
 125	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
 126	buf[1] = '\n';
 127	buf[2] = '\0';
 128	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 129}
 130
 131static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
 132				 size_t count, loff_t *ppos)
 133{
 134	struct hci_dev *hdev = file->private_data;
 135	bool enable;
 136	int err;
 137
 138	err = kstrtobool_from_user(user_buf, count, &enable);
 139	if (err)
 140		return err;
 141
 142	/* When the diagnostic flags are not persistent and the transport
 143	 * is not active or in user channel operation, then there is no need
 144	 * for the vendor callback. Instead just store the desired value and
 145	 * the setting will be programmed when the controller gets powered on.
 146	 */
 147	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
 148	    (!test_bit(HCI_RUNNING, &hdev->flags) ||
 149	     hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
 150		goto done;
 151
 152	hci_req_sync_lock(hdev);
 153	err = hdev->set_diag(hdev, enable);
 154	hci_req_sync_unlock(hdev);
 155
 156	if (err < 0)
 157		return err;
 158
 159done:
 160	if (enable)
 161		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
 162	else
 163		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
 164
 165	return count;
 166}
 167
 168static const struct file_operations vendor_diag_fops = {
 169	.open		= simple_open,
 170	.read		= vendor_diag_read,
 171	.write		= vendor_diag_write,
 172	.llseek		= default_llseek,
 173};
 174
 175static void hci_debugfs_create_basic(struct hci_dev *hdev)
 176{
 177	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
 178			    &dut_mode_fops);
 179
 180	if (hdev->set_diag)
 181		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
 182				    &vendor_diag_fops);
 183}
 184
 185static int hci_reset_req(struct hci_request *req, unsigned long opt)
 186{
 187	BT_DBG("%s %ld", req->hdev->name, opt);
 188
 189	/* Reset device */
 190	set_bit(HCI_RESET, &req->hdev->flags);
 191	hci_req_add(req, HCI_OP_RESET, 0, NULL);
 192	return 0;
 193}
 194
 195static void bredr_init(struct hci_request *req)
 196{
 197	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
 198
 199	/* Read Local Supported Features */
 200	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 201
 202	/* Read Local Version */
 203	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 204
 205	/* Read BD Address */
 206	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 207}
 208
 209static void amp_init1(struct hci_request *req)
 210{
 211	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
 212
 213	/* Read Local Version */
 214	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 215
 216	/* Read Local Supported Commands */
 217	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 218
 219	/* Read Local AMP Info */
 220	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
 221
 222	/* Read Data Blk size */
 223	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
 224
 225	/* Read Flow Control Mode */
 226	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
 227
 228	/* Read Location Data */
 229	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
 230}
 231
 232static int amp_init2(struct hci_request *req)
 233{
 234	/* Read Local Supported Features. Not all AMP controllers
 235	 * support this so it's placed conditionally in the second
 236	 * stage init.
 237	 */
 238	if (req->hdev->commands[14] & 0x20)
 239		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 240
 241	return 0;
 242}
 243
 244static int hci_init1_req(struct hci_request *req, unsigned long opt)
 245{
 246	struct hci_dev *hdev = req->hdev;
 247
 248	BT_DBG("%s %ld", hdev->name, opt);
 249
 250	/* Reset */
 251	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 252		hci_reset_req(req, 0);
 253
 254	switch (hdev->dev_type) {
 255	case HCI_PRIMARY:
 256		bredr_init(req);
 257		break;
 258	case HCI_AMP:
 259		amp_init1(req);
 260		break;
 261	default:
 262		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
 263		break;
 264	}
 265
 266	return 0;
 267}
 268
 269static void bredr_setup(struct hci_request *req)
 270{
 271	__le16 param;
 272	__u8 flt_type;
 273
 274	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
 275	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
 276
 277	/* Read Class of Device */
 278	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
 279
 280	/* Read Local Name */
 281	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
 282
 283	/* Read Voice Setting */
 284	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
 285
 286	/* Read Number of Supported IAC */
 287	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
 288
 289	/* Read Current IAC LAP */
 290	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
 291
 292	/* Clear Event Filters */
 293	flt_type = HCI_FLT_CLEAR_ALL;
 294	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
 295
 296	/* Connection accept timeout ~20 secs */
 297	param = cpu_to_le16(0x7d00);
 298	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
 299}
 300
 301static void le_setup(struct hci_request *req)
 302{
 303	struct hci_dev *hdev = req->hdev;
 304
 305	/* Read LE Buffer Size */
 306	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
 307
 308	/* Read LE Local Supported Features */
 309	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
 310
 311	/* Read LE Supported States */
 312	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
 313
 314	/* LE-only controllers have LE implicitly enabled */
 315	if (!lmp_bredr_capable(hdev))
 316		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
 317}
 318
 319static void hci_setup_event_mask(struct hci_request *req)
 320{
 321	struct hci_dev *hdev = req->hdev;
 322
 323	/* The second byte is 0xff instead of 0x9f (two reserved bits
 324	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
 325	 * command otherwise.
 326	 */
 327	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
 328
 329	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
 330	 * any event mask for pre 1.2 devices.
 331	 */
 332	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 333		return;
 334
 335	if (lmp_bredr_capable(hdev)) {
 336		events[4] |= 0x01; /* Flow Specification Complete */
 337	} else {
 338		/* Use a different default for LE-only devices */
 339		memset(events, 0, sizeof(events));
 340		events[1] |= 0x20; /* Command Complete */
 341		events[1] |= 0x40; /* Command Status */
 342		events[1] |= 0x80; /* Hardware Error */
 343
 344		/* If the controller supports the Disconnect command, enable
 345		 * the corresponding event. In addition enable packet flow
 346		 * control related events.
 347		 */
 348		if (hdev->commands[0] & 0x20) {
 349			events[0] |= 0x10; /* Disconnection Complete */
 350			events[2] |= 0x04; /* Number of Completed Packets */
 351			events[3] |= 0x02; /* Data Buffer Overflow */
 352		}
 353
 354		/* If the controller supports the Read Remote Version
 355		 * Information command, enable the corresponding event.
 356		 */
 357		if (hdev->commands[2] & 0x80)
 358			events[1] |= 0x08; /* Read Remote Version Information
 359					    * Complete
 360					    */
 361
 362		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
 363			events[0] |= 0x80; /* Encryption Change */
 364			events[5] |= 0x80; /* Encryption Key Refresh Complete */
 365		}
 366	}
 367
 368	if (lmp_inq_rssi_capable(hdev) ||
 369	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
 370		events[4] |= 0x02; /* Inquiry Result with RSSI */
 371
 372	if (lmp_ext_feat_capable(hdev))
 373		events[4] |= 0x04; /* Read Remote Extended Features Complete */
 374
 375	if (lmp_esco_capable(hdev)) {
 376		events[5] |= 0x08; /* Synchronous Connection Complete */
 377		events[5] |= 0x10; /* Synchronous Connection Changed */
 378	}
 379
 380	if (lmp_sniffsubr_capable(hdev))
 381		events[5] |= 0x20; /* Sniff Subrating */
 382
 383	if (lmp_pause_enc_capable(hdev))
 384		events[5] |= 0x80; /* Encryption Key Refresh Complete */
 385
 386	if (lmp_ext_inq_capable(hdev))
 387		events[5] |= 0x40; /* Extended Inquiry Result */
 388
 389	if (lmp_no_flush_capable(hdev))
 390		events[7] |= 0x01; /* Enhanced Flush Complete */
 391
 392	if (lmp_lsto_capable(hdev))
 393		events[6] |= 0x80; /* Link Supervision Timeout Changed */
 394
 395	if (lmp_ssp_capable(hdev)) {
 396		events[6] |= 0x01;	/* IO Capability Request */
 397		events[6] |= 0x02;	/* IO Capability Response */
 398		events[6] |= 0x04;	/* User Confirmation Request */
 399		events[6] |= 0x08;	/* User Passkey Request */
 400		events[6] |= 0x10;	/* Remote OOB Data Request */
 401		events[6] |= 0x20;	/* Simple Pairing Complete */
 402		events[7] |= 0x04;	/* User Passkey Notification */
 403		events[7] |= 0x08;	/* Keypress Notification */
 404		events[7] |= 0x10;	/* Remote Host Supported
 405					 * Features Notification
 406					 */
 407	}
 408
 409	if (lmp_le_capable(hdev))
 410		events[7] |= 0x20;	/* LE Meta-Event */
 411
 412	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
 413}
 414
 415static int hci_init2_req(struct hci_request *req, unsigned long opt)
 416{
 417	struct hci_dev *hdev = req->hdev;
 418
 419	if (hdev->dev_type == HCI_AMP)
 420		return amp_init2(req);
 421
 422	if (lmp_bredr_capable(hdev))
 423		bredr_setup(req);
 424	else
 425		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
 426
 427	if (lmp_le_capable(hdev))
 428		le_setup(req);
 429
 430	/* All Bluetooth 1.2 and later controllers should support the
 431	 * HCI command for reading the local supported commands.
 432	 *
 433	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
 434	 * but do not have support for this command. If that is the case,
 435	 * the driver can quirk the behavior and skip reading the local
 436	 * supported commands.
 437	 */
 438	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
 439	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
 440		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 441
 442	if (lmp_ssp_capable(hdev)) {
 443		/* When SSP is available, then the host features page
 444		 * should also be available as well. However some
 445		 * controllers list the max_page as 0 as long as SSP
 446		 * has not been enabled. To achieve proper debugging
 447		 * output, force the minimum max_page to 1 at least.
 448		 */
 449		hdev->max_page = 0x01;
 450
 451		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
 452			u8 mode = 0x01;
 453
 454			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
 455				    sizeof(mode), &mode);
 456		} else {
 457			struct hci_cp_write_eir cp;
 458
 459			memset(hdev->eir, 0, sizeof(hdev->eir));
 460			memset(&cp, 0, sizeof(cp));
 461
 462			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 463		}
 464	}
 465
 466	if (lmp_inq_rssi_capable(hdev) ||
 467	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
 468		u8 mode;
 469
 470		/* If Extended Inquiry Result events are supported, then
 471		 * they are clearly preferred over Inquiry Result with RSSI
 472		 * events.
 473		 */
 474		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
 475
 476		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
 477	}
 478
 479	if (lmp_inq_tx_pwr_capable(hdev))
 480		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
 481
 482	if (lmp_ext_feat_capable(hdev)) {
 483		struct hci_cp_read_local_ext_features cp;
 484
 485		cp.page = 0x01;
 486		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 487			    sizeof(cp), &cp);
 488	}
 489
 490	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
 491		u8 enable = 1;
 492		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
 493			    &enable);
 494	}
 495
 496	return 0;
 497}
 498
 499static void hci_setup_link_policy(struct hci_request *req)
 500{
 501	struct hci_dev *hdev = req->hdev;
 502	struct hci_cp_write_def_link_policy cp;
 503	u16 link_policy = 0;
 504
 505	if (lmp_rswitch_capable(hdev))
 506		link_policy |= HCI_LP_RSWITCH;
 507	if (lmp_hold_capable(hdev))
 508		link_policy |= HCI_LP_HOLD;
 509	if (lmp_sniff_capable(hdev))
 510		link_policy |= HCI_LP_SNIFF;
 511	if (lmp_park_capable(hdev))
 512		link_policy |= HCI_LP_PARK;
 513
 514	cp.policy = cpu_to_le16(link_policy);
 515	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
 516}
 517
 518static void hci_set_le_support(struct hci_request *req)
 519{
 520	struct hci_dev *hdev = req->hdev;
 521	struct hci_cp_write_le_host_supported cp;
 522
 523	/* LE-only devices do not support explicit enablement */
 524	if (!lmp_bredr_capable(hdev))
 525		return;
 526
 527	memset(&cp, 0, sizeof(cp));
 528
 529	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
 530		cp.le = 0x01;
 531		cp.simul = 0x00;
 532	}
 533
 534	if (cp.le != lmp_host_le_capable(hdev))
 535		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
 536			    &cp);
 537}
 538
 539static void hci_set_event_mask_page_2(struct hci_request *req)
 540{
 541	struct hci_dev *hdev = req->hdev;
 542	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
 543	bool changed = false;
 544
 545	/* If Connectionless Slave Broadcast master role is supported
 546	 * enable all necessary events for it.
 547	 */
 548	if (lmp_csb_master_capable(hdev)) {
 549		events[1] |= 0x40;	/* Triggered Clock Capture */
 550		events[1] |= 0x80;	/* Synchronization Train Complete */
 551		events[2] |= 0x10;	/* Slave Page Response Timeout */
 552		events[2] |= 0x20;	/* CSB Channel Map Change */
 553		changed = true;
 554	}
 555
 556	/* If Connectionless Slave Broadcast slave role is supported
 557	 * enable all necessary events for it.
 558	 */
 559	if (lmp_csb_slave_capable(hdev)) {
 560		events[2] |= 0x01;	/* Synchronization Train Received */
 561		events[2] |= 0x02;	/* CSB Receive */
 562		events[2] |= 0x04;	/* CSB Timeout */
 563		events[2] |= 0x08;	/* Truncated Page Complete */
 564		changed = true;
 565	}
 566
 567	/* Enable Authenticated Payload Timeout Expired event if supported */
 568	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
 569		events[2] |= 0x80;
 570		changed = true;
 571	}
 572
 573	/* Some Broadcom based controllers indicate support for Set Event
 574	 * Mask Page 2 command, but then actually do not support it. Since
 575	 * the default value is all bits set to zero, the command is only
 576	 * required if the event mask has to be changed. In case no change
 577	 * to the event mask is needed, skip this command.
 578	 */
 579	if (changed)
 580		hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
 581			    sizeof(events), events);
 582}
 583
 584static int hci_init3_req(struct hci_request *req, unsigned long opt)
 585{
 586	struct hci_dev *hdev = req->hdev;
 587	u8 p;
 588
 589	hci_setup_event_mask(req);
 590
 591	if (hdev->commands[6] & 0x20 &&
 592	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 593		struct hci_cp_read_stored_link_key cp;
 594
 595		bacpy(&cp.bdaddr, BDADDR_ANY);
 596		cp.read_all = 0x01;
 597		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
 598	}
 599
 600	if (hdev->commands[5] & 0x10)
 601		hci_setup_link_policy(req);
 602
 603	if (hdev->commands[8] & 0x01)
 604		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
 605
 606	/* Some older Broadcom based Bluetooth 1.2 controllers do not
 607	 * support the Read Page Scan Type command. Check support for
 608	 * this command in the bit mask of supported commands.
 609	 */
 610	if (hdev->commands[13] & 0x01)
 611		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
 612
 613	if (lmp_le_capable(hdev)) {
 614		u8 events[8];
 615
 616		memset(events, 0, sizeof(events));
 617
 618		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
 619			events[0] |= 0x10;	/* LE Long Term Key Request */
 620
 621		/* If controller supports the Connection Parameters Request
 622		 * Link Layer Procedure, enable the corresponding event.
 623		 */
 624		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
 625			events[0] |= 0x20;	/* LE Remote Connection
 626						 * Parameter Request
 627						 */
 628
 629		/* If the controller supports the Data Length Extension
 630		 * feature, enable the corresponding event.
 631		 */
 632		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
 633			events[0] |= 0x40;	/* LE Data Length Change */
 634
 635		/* If the controller supports Extended Scanner Filter
 636		 * Policies, enable the correspondig event.
 637		 */
 638		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
 639			events[1] |= 0x04;	/* LE Direct Advertising
 640						 * Report
 641						 */
 642
 643		/* If the controller supports Channel Selection Algorithm #2
 644		 * feature, enable the corresponding event.
 645		 */
 646		if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
 647			events[2] |= 0x08;	/* LE Channel Selection
 648						 * Algorithm
 649						 */
 650
 651		/* If the controller supports the LE Set Scan Enable command,
 652		 * enable the corresponding advertising report event.
 653		 */
 654		if (hdev->commands[26] & 0x08)
 655			events[0] |= 0x02;	/* LE Advertising Report */
 656
 657		/* If the controller supports the LE Create Connection
 658		 * command, enable the corresponding event.
 659		 */
 660		if (hdev->commands[26] & 0x10)
 661			events[0] |= 0x01;	/* LE Connection Complete */
 662
 663		/* If the controller supports the LE Connection Update
 664		 * command, enable the corresponding event.
 665		 */
 666		if (hdev->commands[27] & 0x04)
 667			events[0] |= 0x04;	/* LE Connection Update
 668						 * Complete
 669						 */
 670
 671		/* If the controller supports the LE Read Remote Used Features
 672		 * command, enable the corresponding event.
 673		 */
 674		if (hdev->commands[27] & 0x20)
 675			events[0] |= 0x08;	/* LE Read Remote Used
 676						 * Features Complete
 677						 */
 678
 679		/* If the controller supports the LE Read Local P-256
 680		 * Public Key command, enable the corresponding event.
 681		 */
 682		if (hdev->commands[34] & 0x02)
 683			events[0] |= 0x80;	/* LE Read Local P-256
 684						 * Public Key Complete
 685						 */
 686
 687		/* If the controller supports the LE Generate DHKey
 688		 * command, enable the corresponding event.
 689		 */
 690		if (hdev->commands[34] & 0x04)
 691			events[1] |= 0x01;	/* LE Generate DHKey Complete */
 692
 693		/* If the controller supports the LE Set Default PHY or
 694		 * LE Set PHY commands, enable the corresponding event.
 695		 */
 696		if (hdev->commands[35] & (0x20 | 0x40))
 697			events[1] |= 0x08;        /* LE PHY Update Complete */
 698
 699		/* If the controller supports LE Set Extended Scan Parameters
 700		 * and LE Set Extended Scan Enable commands, enable the
 701		 * corresponding event.
 702		 */
 703		if (use_ext_scan(hdev))
 704			events[1] |= 0x10;	/* LE Extended Advertising
 705						 * Report
 706						 */
 707
 708		/* If the controller supports the LE Extended Create Connection
 709		 * command, enable the corresponding event.
 710		 */
 711		if (use_ext_conn(hdev))
 712			events[1] |= 0x02;      /* LE Enhanced Connection
 713						 * Complete
 714						 */
 715
 716		/* If the controller supports the LE Extended Advertising
 717		 * command, enable the corresponding event.
 718		 */
 719		if (ext_adv_capable(hdev))
 720			events[2] |= 0x02;	/* LE Advertising Set
 721						 * Terminated
 722						 */
 723
 724		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
 725			    events);
 726
 727		/* Read LE Advertising Channel TX Power */
 728		if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
 729			/* HCI TS spec forbids mixing of legacy and extended
 730			 * advertising commands wherein READ_ADV_TX_POWER is
 731			 * also included. So do not call it if extended adv
 732			 * is supported otherwise controller will return
 733			 * COMMAND_DISALLOWED for extended commands.
 734			 */
 735			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
 736		}
 737
 738		if (hdev->commands[26] & 0x40) {
 739			/* Read LE White List Size */
 740			hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
 741				    0, NULL);
 742		}
 743
 744		if (hdev->commands[26] & 0x80) {
 745			/* Clear LE White List */
 746			hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
 747		}
 748
 749		if (hdev->commands[34] & 0x40) {
 750			/* Read LE Resolving List Size */
 751			hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
 752				    0, NULL);
 753		}
 754
 755		if (hdev->commands[34] & 0x20) {
 756			/* Clear LE Resolving List */
 757			hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
 758		}
 759
 760		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 761			/* Read LE Maximum Data Length */
 762			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
 763
 764			/* Read LE Suggested Default Data Length */
 765			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
 766		}
 767
 768		if (ext_adv_capable(hdev)) {
 769			/* Read LE Number of Supported Advertising Sets */
 770			hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
 771				    0, NULL);
 772		}
 773
 774		hci_set_le_support(req);
 775	}
 776
 777	/* Read features beyond page 1 if available */
 778	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
 779		struct hci_cp_read_local_ext_features cp;
 780
 781		cp.page = p;
 782		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 783			    sizeof(cp), &cp);
 784	}
 785
 786	return 0;
 787}
 788
 789static int hci_init4_req(struct hci_request *req, unsigned long opt)
 790{
 791	struct hci_dev *hdev = req->hdev;
 792
 793	/* Some Broadcom based Bluetooth controllers do not support the
 794	 * Delete Stored Link Key command. They are clearly indicating its
 795	 * absence in the bit mask of supported commands.
 796	 *
 797	 * Check the supported commands and only if the the command is marked
 798	 * as supported send it. If not supported assume that the controller
 799	 * does not have actual support for stored link keys which makes this
 800	 * command redundant anyway.
 801	 *
 802	 * Some controllers indicate that they support handling deleting
 803	 * stored link keys, but they don't. The quirk lets a driver
 804	 * just disable this command.
 805	 */
 806	if (hdev->commands[6] & 0x80 &&
 807	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 808		struct hci_cp_delete_stored_link_key cp;
 809
 810		bacpy(&cp.bdaddr, BDADDR_ANY);
 811		cp.delete_all = 0x01;
 812		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
 813			    sizeof(cp), &cp);
 814	}
 815
 816	/* Set event mask page 2 if the HCI command for it is supported */
 817	if (hdev->commands[22] & 0x04)
 818		hci_set_event_mask_page_2(req);
 819
 820	/* Read local codec list if the HCI command is supported */
 821	if (hdev->commands[29] & 0x20)
 822		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
 823
 824	/* Get MWS transport configuration if the HCI command is supported */
 825	if (hdev->commands[30] & 0x08)
 826		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
 827
 828	/* Check for Synchronization Train support */
 829	if (lmp_sync_train_capable(hdev))
 830		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
 831
 832	/* Enable Secure Connections if supported and configured */
 833	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
 834	    bredr_sc_enabled(hdev)) {
 835		u8 support = 0x01;
 836
 837		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
 838			    sizeof(support), &support);
 839	}
 840
 841	/* Set Suggested Default Data Length to maximum if supported */
 842	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 843		struct hci_cp_le_write_def_data_len cp;
 844
 845		cp.tx_len = hdev->le_max_tx_len;
 846		cp.tx_time = hdev->le_max_tx_time;
 847		hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
 848	}
 849
 850	/* Set Default PHY parameters if command is supported */
 851	if (hdev->commands[35] & 0x20) {
 852		struct hci_cp_le_set_default_phy cp;
 853
 854		cp.all_phys = 0x00;
 855		cp.tx_phys = hdev->le_tx_def_phys;
 856		cp.rx_phys = hdev->le_rx_def_phys;
 857
 858		hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
 859	}
 860
 861	return 0;
 862}
 863
 864static int __hci_init(struct hci_dev *hdev)
 865{
 866	int err;
 867
 868	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
 869	if (err < 0)
 870		return err;
 871
 872	if (hci_dev_test_flag(hdev, HCI_SETUP))
 873		hci_debugfs_create_basic(hdev);
 874
 875	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
 876	if (err < 0)
 877		return err;
 878
 879	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
 880	 * BR/EDR/LE type controllers. AMP controllers only need the
 881	 * first two stages of init.
 882	 */
 883	if (hdev->dev_type != HCI_PRIMARY)
 884		return 0;
 885
 886	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
 887	if (err < 0)
 888		return err;
 889
 890	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
 891	if (err < 0)
 892		return err;
 893
 894	/* This function is only called when the controller is actually in
 895	 * configured state. When the controller is marked as unconfigured,
 896	 * this initialization procedure is not run.
 897	 *
 898	 * It means that it is possible that a controller runs through its
 899	 * setup phase and then discovers missing settings. If that is the
 900	 * case, then this function will not be called. It then will only
 901	 * be called during the config phase.
 902	 *
 903	 * So only when in setup phase or config phase, create the debugfs
 904	 * entries and register the SMP channels.
 905	 */
 906	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 907	    !hci_dev_test_flag(hdev, HCI_CONFIG))
 908		return 0;
 909
 910	hci_debugfs_create_common(hdev);
 911
 912	if (lmp_bredr_capable(hdev))
 913		hci_debugfs_create_bredr(hdev);
 914
 915	if (lmp_le_capable(hdev))
 916		hci_debugfs_create_le(hdev);
 917
 918	return 0;
 919}
 920
 921static int hci_init0_req(struct hci_request *req, unsigned long opt)
 922{
 923	struct hci_dev *hdev = req->hdev;
 924
 925	BT_DBG("%s %ld", hdev->name, opt);
 926
 927	/* Reset */
 928	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 929		hci_reset_req(req, 0);
 930
 931	/* Read Local Version */
 932	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 933
 934	/* Read BD Address */
 935	if (hdev->set_bdaddr)
 936		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 937
 938	return 0;
 939}
 940
 941static int __hci_unconf_init(struct hci_dev *hdev)
 942{
 943	int err;
 944
 945	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
 946		return 0;
 947
 948	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
 949	if (err < 0)
 950		return err;
 951
 952	if (hci_dev_test_flag(hdev, HCI_SETUP))
 953		hci_debugfs_create_basic(hdev);
 954
 955	return 0;
 956}
 957
 958static int hci_scan_req(struct hci_request *req, unsigned long opt)
 959{
 960	__u8 scan = opt;
 961
 962	BT_DBG("%s %x", req->hdev->name, scan);
 963
 964	/* Inquiry and Page scans */
 965	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
 966	return 0;
 967}
 968
 969static int hci_auth_req(struct hci_request *req, unsigned long opt)
 970{
 971	__u8 auth = opt;
 972
 973	BT_DBG("%s %x", req->hdev->name, auth);
 974
 975	/* Authentication */
 976	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
 977	return 0;
 978}
 979
 980static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
 981{
 982	__u8 encrypt = opt;
 983
 984	BT_DBG("%s %x", req->hdev->name, encrypt);
 985
 986	/* Encryption */
 987	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
 988	return 0;
 989}
 990
 991static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
 992{
 993	__le16 policy = cpu_to_le16(opt);
 994
 995	BT_DBG("%s %x", req->hdev->name, policy);
 996
 997	/* Default link policy */
 998	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 999	return 0;
1000}
1001
1002/* Get HCI device by index.
1003 * Device is held on return. */
1004struct hci_dev *hci_dev_get(int index)
1005{
1006	struct hci_dev *hdev = NULL, *d;
1007
1008	BT_DBG("%d", index);
1009
1010	if (index < 0)
1011		return NULL;
1012
1013	read_lock(&hci_dev_list_lock);
1014	list_for_each_entry(d, &hci_dev_list, list) {
1015		if (d->id == index) {
1016			hdev = hci_dev_hold(d);
1017			break;
1018		}
1019	}
1020	read_unlock(&hci_dev_list_lock);
1021	return hdev;
1022}
1023
1024/* ---- Inquiry support ---- */
1025
1026bool hci_discovery_active(struct hci_dev *hdev)
1027{
1028	struct discovery_state *discov = &hdev->discovery;
1029
1030	switch (discov->state) {
1031	case DISCOVERY_FINDING:
1032	case DISCOVERY_RESOLVING:
1033		return true;
1034
1035	default:
1036		return false;
1037	}
1038}
1039
1040void hci_discovery_set_state(struct hci_dev *hdev, int state)
1041{
1042	int old_state = hdev->discovery.state;
1043
1044	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1045
1046	if (old_state == state)
1047		return;
1048
1049	hdev->discovery.state = state;
1050
1051	switch (state) {
1052	case DISCOVERY_STOPPED:
1053		hci_update_background_scan(hdev);
1054
1055		if (old_state != DISCOVERY_STARTING)
1056			mgmt_discovering(hdev, 0);
1057		break;
1058	case DISCOVERY_STARTING:
1059		break;
1060	case DISCOVERY_FINDING:
1061		mgmt_discovering(hdev, 1);
1062		break;
1063	case DISCOVERY_RESOLVING:
1064		break;
1065	case DISCOVERY_STOPPING:
1066		break;
1067	}
1068}
1069
1070void hci_inquiry_cache_flush(struct hci_dev *hdev)
1071{
1072	struct discovery_state *cache = &hdev->discovery;
1073	struct inquiry_entry *p, *n;
1074
1075	list_for_each_entry_safe(p, n, &cache->all, all) {
1076		list_del(&p->all);
1077		kfree(p);
1078	}
1079
1080	INIT_LIST_HEAD(&cache->unknown);
1081	INIT_LIST_HEAD(&cache->resolve);
1082}
1083
1084struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1085					       bdaddr_t *bdaddr)
1086{
1087	struct discovery_state *cache = &hdev->discovery;
1088	struct inquiry_entry *e;
1089
1090	BT_DBG("cache %p, %pMR", cache, bdaddr);
1091
1092	list_for_each_entry(e, &cache->all, all) {
1093		if (!bacmp(&e->data.bdaddr, bdaddr))
1094			return e;
1095	}
1096
1097	return NULL;
1098}
1099
1100struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1101						       bdaddr_t *bdaddr)
1102{
1103	struct discovery_state *cache = &hdev->discovery;
1104	struct inquiry_entry *e;
1105
1106	BT_DBG("cache %p, %pMR", cache, bdaddr);
1107
1108	list_for_each_entry(e, &cache->unknown, list) {
1109		if (!bacmp(&e->data.bdaddr, bdaddr))
1110			return e;
1111	}
1112
1113	return NULL;
1114}
1115
1116struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1117						       bdaddr_t *bdaddr,
1118						       int state)
1119{
1120	struct discovery_state *cache = &hdev->discovery;
1121	struct inquiry_entry *e;
1122
1123	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1124
1125	list_for_each_entry(e, &cache->resolve, list) {
1126		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1127			return e;
1128		if (!bacmp(&e->data.bdaddr, bdaddr))
1129			return e;
1130	}
1131
1132	return NULL;
1133}
1134
1135void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1136				      struct inquiry_entry *ie)
1137{
1138	struct discovery_state *cache = &hdev->discovery;
1139	struct list_head *pos = &cache->resolve;
1140	struct inquiry_entry *p;
1141
1142	list_del(&ie->list);
1143
1144	list_for_each_entry(p, &cache->resolve, list) {
1145		if (p->name_state != NAME_PENDING &&
1146		    abs(p->data.rssi) >= abs(ie->data.rssi))
1147			break;
1148		pos = &p->list;
1149	}
1150
1151	list_add(&ie->list, pos);
1152}
1153
1154u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1155			     bool name_known)
1156{
1157	struct discovery_state *cache = &hdev->discovery;
1158	struct inquiry_entry *ie;
1159	u32 flags = 0;
1160
1161	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1162
1163	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1164
1165	if (!data->ssp_mode)
1166		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1167
1168	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1169	if (ie) {
1170		if (!ie->data.ssp_mode)
1171			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1172
1173		if (ie->name_state == NAME_NEEDED &&
1174		    data->rssi != ie->data.rssi) {
1175			ie->data.rssi = data->rssi;
1176			hci_inquiry_cache_update_resolve(hdev, ie);
1177		}
1178
1179		goto update;
1180	}
1181
1182	/* Entry not in the cache. Add new one. */
1183	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1184	if (!ie) {
1185		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1186		goto done;
1187	}
1188
1189	list_add(&ie->all, &cache->all);
1190
1191	if (name_known) {
1192		ie->name_state = NAME_KNOWN;
1193	} else {
1194		ie->name_state = NAME_NOT_KNOWN;
1195		list_add(&ie->list, &cache->unknown);
1196	}
1197
1198update:
1199	if (name_known && ie->name_state != NAME_KNOWN &&
1200	    ie->name_state != NAME_PENDING) {
1201		ie->name_state = NAME_KNOWN;
1202		list_del(&ie->list);
1203	}
1204
1205	memcpy(&ie->data, data, sizeof(*data));
1206	ie->timestamp = jiffies;
1207	cache->timestamp = jiffies;
1208
1209	if (ie->name_state == NAME_NOT_KNOWN)
1210		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1211
1212done:
1213	return flags;
1214}
1215
1216static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1217{
1218	struct discovery_state *cache = &hdev->discovery;
1219	struct inquiry_info *info = (struct inquiry_info *) buf;
1220	struct inquiry_entry *e;
1221	int copied = 0;
1222
1223	list_for_each_entry(e, &cache->all, all) {
1224		struct inquiry_data *data = &e->data;
1225
1226		if (copied >= num)
1227			break;
1228
1229		bacpy(&info->bdaddr, &data->bdaddr);
1230		info->pscan_rep_mode	= data->pscan_rep_mode;
1231		info->pscan_period_mode	= data->pscan_period_mode;
1232		info->pscan_mode	= data->pscan_mode;
1233		memcpy(info->dev_class, data->dev_class, 3);
1234		info->clock_offset	= data->clock_offset;
1235
1236		info++;
1237		copied++;
1238	}
1239
1240	BT_DBG("cache %p, copied %d", cache, copied);
1241	return copied;
1242}
1243
1244static int hci_inq_req(struct hci_request *req, unsigned long opt)
1245{
1246	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1247	struct hci_dev *hdev = req->hdev;
1248	struct hci_cp_inquiry cp;
1249
1250	BT_DBG("%s", hdev->name);
1251
1252	if (test_bit(HCI_INQUIRY, &hdev->flags))
1253		return 0;
1254
1255	/* Start Inquiry */
1256	memcpy(&cp.lap, &ir->lap, 3);
1257	cp.length  = ir->length;
1258	cp.num_rsp = ir->num_rsp;
1259	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1260
1261	return 0;
1262}
1263
1264int hci_inquiry(void __user *arg)
1265{
1266	__u8 __user *ptr = arg;
1267	struct hci_inquiry_req ir;
1268	struct hci_dev *hdev;
1269	int err = 0, do_inquiry = 0, max_rsp;
1270	long timeo;
1271	__u8 *buf;
1272
1273	if (copy_from_user(&ir, ptr, sizeof(ir)))
1274		return -EFAULT;
1275
1276	hdev = hci_dev_get(ir.dev_id);
1277	if (!hdev)
1278		return -ENODEV;
1279
1280	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1281		err = -EBUSY;
1282		goto done;
1283	}
1284
1285	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1286		err = -EOPNOTSUPP;
1287		goto done;
1288	}
1289
1290	if (hdev->dev_type != HCI_PRIMARY) {
1291		err = -EOPNOTSUPP;
1292		goto done;
1293	}
1294
1295	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1296		err = -EOPNOTSUPP;
1297		goto done;
1298	}
1299
 
 
 
 
 
 
1300	hci_dev_lock(hdev);
1301	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1302	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1303		hci_inquiry_cache_flush(hdev);
1304		do_inquiry = 1;
1305	}
1306	hci_dev_unlock(hdev);
1307
1308	timeo = ir.length * msecs_to_jiffies(2000);
1309
1310	if (do_inquiry) {
1311		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1312				   timeo, NULL);
1313		if (err < 0)
1314			goto done;
1315
1316		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1317		 * cleared). If it is interrupted by a signal, return -EINTR.
1318		 */
1319		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1320				TASK_INTERRUPTIBLE))
1321			return -EINTR;
 
 
1322	}
1323
1324	/* for unlimited number of responses we will use buffer with
1325	 * 255 entries
1326	 */
1327	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1328
1329	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1330	 * copy it to the user space.
1331	 */
1332	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1333	if (!buf) {
1334		err = -ENOMEM;
1335		goto done;
1336	}
1337
1338	hci_dev_lock(hdev);
1339	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1340	hci_dev_unlock(hdev);
1341
1342	BT_DBG("num_rsp %d", ir.num_rsp);
1343
1344	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1345		ptr += sizeof(ir);
1346		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1347				 ir.num_rsp))
1348			err = -EFAULT;
1349	} else
1350		err = -EFAULT;
1351
1352	kfree(buf);
1353
1354done:
1355	hci_dev_put(hdev);
1356	return err;
1357}
1358
1359/**
1360 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1361 *				       (BD_ADDR) for a HCI device from
1362 *				       a firmware node property.
1363 * @hdev:	The HCI device
1364 *
1365 * Search the firmware node for 'local-bd-address'.
1366 *
1367 * All-zero BD addresses are rejected, because those could be properties
1368 * that exist in the firmware tables, but were not updated by the firmware. For
1369 * example, the DTS could define 'local-bd-address', with zero BD addresses.
1370 */
1371static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1372{
1373	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1374	bdaddr_t ba;
1375	int ret;
1376
1377	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1378					    (u8 *)&ba, sizeof(ba));
1379	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1380		return;
1381
1382	bacpy(&hdev->public_addr, &ba);
1383}
1384
1385static int hci_dev_do_open(struct hci_dev *hdev)
1386{
1387	int ret = 0;
1388
1389	BT_DBG("%s %p", hdev->name, hdev);
1390
1391	hci_req_sync_lock(hdev);
1392
1393	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1394		ret = -ENODEV;
1395		goto done;
1396	}
1397
1398	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1399	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1400		/* Check for rfkill but allow the HCI setup stage to
1401		 * proceed (which in itself doesn't cause any RF activity).
1402		 */
1403		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1404			ret = -ERFKILL;
1405			goto done;
1406		}
1407
1408		/* Check for valid public address or a configured static
1409		 * random adddress, but let the HCI setup proceed to
1410		 * be able to determine if there is a public address
1411		 * or not.
1412		 *
1413		 * In case of user channel usage, it is not important
1414		 * if a public address or static random address is
1415		 * available.
1416		 *
1417		 * This check is only valid for BR/EDR controllers
1418		 * since AMP controllers do not have an address.
1419		 */
1420		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1421		    hdev->dev_type == HCI_PRIMARY &&
1422		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1423		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1424			ret = -EADDRNOTAVAIL;
1425			goto done;
1426		}
1427	}
1428
1429	if (test_bit(HCI_UP, &hdev->flags)) {
1430		ret = -EALREADY;
1431		goto done;
1432	}
1433
1434	if (hdev->open(hdev)) {
1435		ret = -EIO;
1436		goto done;
1437	}
1438
1439	set_bit(HCI_RUNNING, &hdev->flags);
1440	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1441
1442	atomic_set(&hdev->cmd_cnt, 1);
1443	set_bit(HCI_INIT, &hdev->flags);
1444
1445	if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1446	    test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
1447		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1448
1449		if (hdev->setup)
1450			ret = hdev->setup(hdev);
1451
1452		if (ret)
1453			goto setup_failed;
1454
1455		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1456			if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1457				hci_dev_get_bd_addr_from_property(hdev);
1458
1459			if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1460			    hdev->set_bdaddr)
1461				ret = hdev->set_bdaddr(hdev,
1462						       &hdev->public_addr);
1463		}
1464
1465setup_failed:
1466		/* The transport driver can set these quirks before
1467		 * creating the HCI device or in its setup callback.
1468		 *
1469		 * In case any of them is set, the controller has to
1470		 * start up as unconfigured.
1471		 */
1472		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1473		    test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1474			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1475
1476		/* For an unconfigured controller it is required to
1477		 * read at least the version information provided by
1478		 * the Read Local Version Information command.
1479		 *
1480		 * If the set_bdaddr driver callback is provided, then
1481		 * also the original Bluetooth public device address
1482		 * will be read using the Read BD Address command.
1483		 */
1484		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1485			ret = __hci_unconf_init(hdev);
1486	}
1487
1488	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1489		/* If public address change is configured, ensure that
1490		 * the address gets programmed. If the driver does not
1491		 * support changing the public address, fail the power
1492		 * on procedure.
1493		 */
1494		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1495		    hdev->set_bdaddr)
1496			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1497		else
1498			ret = -EADDRNOTAVAIL;
1499	}
1500
1501	if (!ret) {
1502		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1503		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1504			ret = __hci_init(hdev);
1505			if (!ret && hdev->post_init)
1506				ret = hdev->post_init(hdev);
1507		}
1508	}
1509
1510	/* If the HCI Reset command is clearing all diagnostic settings,
1511	 * then they need to be reprogrammed after the init procedure
1512	 * completed.
1513	 */
1514	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1515	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1516	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1517		ret = hdev->set_diag(hdev, true);
1518
1519	clear_bit(HCI_INIT, &hdev->flags);
1520
1521	if (!ret) {
1522		hci_dev_hold(hdev);
1523		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1524		hci_adv_instances_set_rpa_expired(hdev, true);
1525		set_bit(HCI_UP, &hdev->flags);
1526		hci_sock_dev_event(hdev, HCI_DEV_UP);
1527		hci_leds_update_powered(hdev, true);
1528		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1529		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1530		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1531		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1532		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1533		    hdev->dev_type == HCI_PRIMARY) {
1534			ret = __hci_req_hci_power_on(hdev);
1535			mgmt_power_on(hdev, ret);
1536		}
1537	} else {
1538		/* Init failed, cleanup */
1539		flush_work(&hdev->tx_work);
1540		flush_work(&hdev->cmd_work);
1541		flush_work(&hdev->rx_work);
1542
1543		skb_queue_purge(&hdev->cmd_q);
1544		skb_queue_purge(&hdev->rx_q);
1545
1546		if (hdev->flush)
1547			hdev->flush(hdev);
1548
1549		if (hdev->sent_cmd) {
1550			kfree_skb(hdev->sent_cmd);
1551			hdev->sent_cmd = NULL;
1552		}
1553
1554		clear_bit(HCI_RUNNING, &hdev->flags);
1555		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1556
1557		hdev->close(hdev);
1558		hdev->flags &= BIT(HCI_RAW);
1559	}
1560
1561done:
1562	hci_req_sync_unlock(hdev);
1563	return ret;
1564}
1565
1566/* ---- HCI ioctl helpers ---- */
1567
1568int hci_dev_open(__u16 dev)
1569{
1570	struct hci_dev *hdev;
1571	int err;
1572
1573	hdev = hci_dev_get(dev);
1574	if (!hdev)
1575		return -ENODEV;
1576
1577	/* Devices that are marked as unconfigured can only be powered
1578	 * up as user channel. Trying to bring them up as normal devices
1579	 * will result into a failure. Only user channel operation is
1580	 * possible.
1581	 *
1582	 * When this function is called for a user channel, the flag
1583	 * HCI_USER_CHANNEL will be set first before attempting to
1584	 * open the device.
1585	 */
1586	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1587	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1588		err = -EOPNOTSUPP;
1589		goto done;
1590	}
1591
1592	/* We need to ensure that no other power on/off work is pending
1593	 * before proceeding to call hci_dev_do_open. This is
1594	 * particularly important if the setup procedure has not yet
1595	 * completed.
1596	 */
1597	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1598		cancel_delayed_work(&hdev->power_off);
1599
1600	/* After this call it is guaranteed that the setup procedure
1601	 * has finished. This means that error conditions like RFKILL
1602	 * or no valid public or static random address apply.
1603	 */
1604	flush_workqueue(hdev->req_workqueue);
1605
1606	/* For controllers not using the management interface and that
1607	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1608	 * so that pairing works for them. Once the management interface
1609	 * is in use this bit will be cleared again and userspace has
1610	 * to explicitly enable it.
1611	 */
1612	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1613	    !hci_dev_test_flag(hdev, HCI_MGMT))
1614		hci_dev_set_flag(hdev, HCI_BONDABLE);
1615
1616	err = hci_dev_do_open(hdev);
1617
1618done:
1619	hci_dev_put(hdev);
1620	return err;
1621}
1622
1623/* This function requires the caller holds hdev->lock */
1624static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1625{
1626	struct hci_conn_params *p;
1627
1628	list_for_each_entry(p, &hdev->le_conn_params, list) {
1629		if (p->conn) {
1630			hci_conn_drop(p->conn);
1631			hci_conn_put(p->conn);
1632			p->conn = NULL;
1633		}
1634		list_del_init(&p->action);
1635	}
1636
1637	BT_DBG("All LE pending actions cleared");
1638}
1639
1640int hci_dev_do_close(struct hci_dev *hdev)
1641{
1642	bool auto_off;
1643
1644	BT_DBG("%s %p", hdev->name, hdev);
1645
1646	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1647	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1648	    test_bit(HCI_UP, &hdev->flags)) {
1649		/* Execute vendor specific shutdown routine */
1650		if (hdev->shutdown)
1651			hdev->shutdown(hdev);
1652	}
1653
1654	cancel_delayed_work(&hdev->power_off);
1655
1656	hci_request_cancel_all(hdev);
1657	hci_req_sync_lock(hdev);
1658
1659	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1660		cancel_delayed_work_sync(&hdev->cmd_timer);
1661		hci_req_sync_unlock(hdev);
1662		return 0;
1663	}
1664
1665	hci_leds_update_powered(hdev, false);
1666
1667	/* Flush RX and TX works */
1668	flush_work(&hdev->tx_work);
1669	flush_work(&hdev->rx_work);
1670
1671	if (hdev->discov_timeout > 0) {
1672		hdev->discov_timeout = 0;
1673		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1674		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1675	}
1676
1677	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1678		cancel_delayed_work(&hdev->service_cache);
1679
1680	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1681		struct adv_info *adv_instance;
1682
1683		cancel_delayed_work_sync(&hdev->rpa_expired);
1684
1685		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1686			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1687	}
1688
1689	/* Avoid potential lockdep warnings from the *_flush() calls by
1690	 * ensuring the workqueue is empty up front.
1691	 */
1692	drain_workqueue(hdev->workqueue);
1693
1694	hci_dev_lock(hdev);
1695
1696	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1697
1698	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1699
1700	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1701	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1702	    hci_dev_test_flag(hdev, HCI_MGMT))
1703		__mgmt_power_off(hdev);
1704
1705	hci_inquiry_cache_flush(hdev);
1706	hci_pend_le_actions_clear(hdev);
1707	hci_conn_hash_flush(hdev);
1708	hci_dev_unlock(hdev);
1709
1710	smp_unregister(hdev);
1711
1712	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1713
1714	if (hdev->flush)
1715		hdev->flush(hdev);
1716
1717	/* Reset device */
1718	skb_queue_purge(&hdev->cmd_q);
1719	atomic_set(&hdev->cmd_cnt, 1);
1720	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1721	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1722		set_bit(HCI_INIT, &hdev->flags);
1723		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1724		clear_bit(HCI_INIT, &hdev->flags);
1725	}
1726
1727	/* flush cmd  work */
1728	flush_work(&hdev->cmd_work);
1729
1730	/* Drop queues */
1731	skb_queue_purge(&hdev->rx_q);
1732	skb_queue_purge(&hdev->cmd_q);
1733	skb_queue_purge(&hdev->raw_q);
1734
1735	/* Drop last sent command */
1736	if (hdev->sent_cmd) {
1737		cancel_delayed_work_sync(&hdev->cmd_timer);
1738		kfree_skb(hdev->sent_cmd);
1739		hdev->sent_cmd = NULL;
1740	}
1741
1742	clear_bit(HCI_RUNNING, &hdev->flags);
1743	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1744
1745	/* After this point our queues are empty
1746	 * and no tasks are scheduled. */
1747	hdev->close(hdev);
1748
1749	/* Clear flags */
1750	hdev->flags &= BIT(HCI_RAW);
1751	hci_dev_clear_volatile_flags(hdev);
1752
1753	/* Controller radio is available but is currently powered down */
1754	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1755
1756	memset(hdev->eir, 0, sizeof(hdev->eir));
1757	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1758	bacpy(&hdev->random_addr, BDADDR_ANY);
1759
1760	hci_req_sync_unlock(hdev);
1761
1762	hci_dev_put(hdev);
1763	return 0;
1764}
1765
1766int hci_dev_close(__u16 dev)
1767{
1768	struct hci_dev *hdev;
1769	int err;
1770
1771	hdev = hci_dev_get(dev);
1772	if (!hdev)
1773		return -ENODEV;
1774
1775	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1776		err = -EBUSY;
1777		goto done;
1778	}
1779
 
1780	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1781		cancel_delayed_work(&hdev->power_off);
1782
1783	err = hci_dev_do_close(hdev);
1784
1785done:
1786	hci_dev_put(hdev);
1787	return err;
1788}
1789
1790static int hci_dev_do_reset(struct hci_dev *hdev)
1791{
1792	int ret;
1793
1794	BT_DBG("%s %p", hdev->name, hdev);
1795
1796	hci_req_sync_lock(hdev);
1797
1798	/* Drop queues */
1799	skb_queue_purge(&hdev->rx_q);
1800	skb_queue_purge(&hdev->cmd_q);
1801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1802	/* Avoid potential lockdep warnings from the *_flush() calls by
1803	 * ensuring the workqueue is empty up front.
1804	 */
1805	drain_workqueue(hdev->workqueue);
1806
1807	hci_dev_lock(hdev);
1808	hci_inquiry_cache_flush(hdev);
1809	hci_conn_hash_flush(hdev);
1810	hci_dev_unlock(hdev);
1811
1812	if (hdev->flush)
1813		hdev->flush(hdev);
1814
 
 
1815	atomic_set(&hdev->cmd_cnt, 1);
1816	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
 
 
 
1817
1818	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1819
1820	hci_req_sync_unlock(hdev);
1821	return ret;
1822}
1823
1824int hci_dev_reset(__u16 dev)
1825{
1826	struct hci_dev *hdev;
1827	int err;
1828
1829	hdev = hci_dev_get(dev);
1830	if (!hdev)
1831		return -ENODEV;
1832
1833	if (!test_bit(HCI_UP, &hdev->flags)) {
1834		err = -ENETDOWN;
1835		goto done;
1836	}
1837
1838	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1839		err = -EBUSY;
1840		goto done;
1841	}
1842
1843	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1844		err = -EOPNOTSUPP;
1845		goto done;
1846	}
1847
1848	err = hci_dev_do_reset(hdev);
1849
1850done:
1851	hci_dev_put(hdev);
1852	return err;
1853}
1854
1855int hci_dev_reset_stat(__u16 dev)
1856{
1857	struct hci_dev *hdev;
1858	int ret = 0;
1859
1860	hdev = hci_dev_get(dev);
1861	if (!hdev)
1862		return -ENODEV;
1863
1864	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1865		ret = -EBUSY;
1866		goto done;
1867	}
1868
1869	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1870		ret = -EOPNOTSUPP;
1871		goto done;
1872	}
1873
1874	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1875
1876done:
1877	hci_dev_put(hdev);
1878	return ret;
1879}
1880
1881static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1882{
1883	bool conn_changed, discov_changed;
1884
1885	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1886
1887	if ((scan & SCAN_PAGE))
1888		conn_changed = !hci_dev_test_and_set_flag(hdev,
1889							  HCI_CONNECTABLE);
1890	else
1891		conn_changed = hci_dev_test_and_clear_flag(hdev,
1892							   HCI_CONNECTABLE);
1893
1894	if ((scan & SCAN_INQUIRY)) {
1895		discov_changed = !hci_dev_test_and_set_flag(hdev,
1896							    HCI_DISCOVERABLE);
1897	} else {
1898		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1899		discov_changed = hci_dev_test_and_clear_flag(hdev,
1900							     HCI_DISCOVERABLE);
1901	}
1902
1903	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1904		return;
1905
1906	if (conn_changed || discov_changed) {
1907		/* In case this was disabled through mgmt */
1908		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1909
1910		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1911			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1912
1913		mgmt_new_settings(hdev);
1914	}
1915}
1916
1917int hci_dev_cmd(unsigned int cmd, void __user *arg)
1918{
1919	struct hci_dev *hdev;
1920	struct hci_dev_req dr;
1921	int err = 0;
1922
1923	if (copy_from_user(&dr, arg, sizeof(dr)))
1924		return -EFAULT;
1925
1926	hdev = hci_dev_get(dr.dev_id);
1927	if (!hdev)
1928		return -ENODEV;
1929
1930	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1931		err = -EBUSY;
1932		goto done;
1933	}
1934
1935	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1936		err = -EOPNOTSUPP;
1937		goto done;
1938	}
1939
1940	if (hdev->dev_type != HCI_PRIMARY) {
1941		err = -EOPNOTSUPP;
1942		goto done;
1943	}
1944
1945	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1946		err = -EOPNOTSUPP;
1947		goto done;
1948	}
1949
1950	switch (cmd) {
1951	case HCISETAUTH:
1952		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1953				   HCI_INIT_TIMEOUT, NULL);
1954		break;
1955
1956	case HCISETENCRYPT:
1957		if (!lmp_encrypt_capable(hdev)) {
1958			err = -EOPNOTSUPP;
1959			break;
1960		}
1961
1962		if (!test_bit(HCI_AUTH, &hdev->flags)) {
1963			/* Auth must be enabled first */
1964			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1965					   HCI_INIT_TIMEOUT, NULL);
1966			if (err)
1967				break;
1968		}
1969
1970		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1971				   HCI_INIT_TIMEOUT, NULL);
1972		break;
1973
1974	case HCISETSCAN:
1975		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1976				   HCI_INIT_TIMEOUT, NULL);
1977
1978		/* Ensure that the connectable and discoverable states
1979		 * get correctly modified as this was a non-mgmt change.
1980		 */
1981		if (!err)
1982			hci_update_scan_state(hdev, dr.dev_opt);
1983		break;
1984
1985	case HCISETLINKPOL:
1986		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1987				   HCI_INIT_TIMEOUT, NULL);
1988		break;
1989
1990	case HCISETLINKMODE:
1991		hdev->link_mode = ((__u16) dr.dev_opt) &
1992					(HCI_LM_MASTER | HCI_LM_ACCEPT);
1993		break;
1994
1995	case HCISETPTYPE:
1996		if (hdev->pkt_type == (__u16) dr.dev_opt)
1997			break;
1998
1999		hdev->pkt_type = (__u16) dr.dev_opt;
2000		mgmt_phy_configuration_changed(hdev, NULL);
2001		break;
2002
2003	case HCISETACLMTU:
2004		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
2005		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2006		break;
2007
2008	case HCISETSCOMTU:
2009		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
2010		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2011		break;
2012
2013	default:
2014		err = -EINVAL;
2015		break;
2016	}
2017
2018done:
2019	hci_dev_put(hdev);
2020	return err;
2021}
2022
2023int hci_get_dev_list(void __user *arg)
2024{
2025	struct hci_dev *hdev;
2026	struct hci_dev_list_req *dl;
2027	struct hci_dev_req *dr;
2028	int n = 0, size, err;
2029	__u16 dev_num;
2030
2031	if (get_user(dev_num, (__u16 __user *) arg))
2032		return -EFAULT;
2033
2034	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2035		return -EINVAL;
2036
2037	size = sizeof(*dl) + dev_num * sizeof(*dr);
2038
2039	dl = kzalloc(size, GFP_KERNEL);
2040	if (!dl)
2041		return -ENOMEM;
2042
2043	dr = dl->dev_req;
2044
2045	read_lock(&hci_dev_list_lock);
2046	list_for_each_entry(hdev, &hci_dev_list, list) {
2047		unsigned long flags = hdev->flags;
2048
2049		/* When the auto-off is configured it means the transport
2050		 * is running, but in that case still indicate that the
2051		 * device is actually down.
2052		 */
2053		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2054			flags &= ~BIT(HCI_UP);
2055
2056		(dr + n)->dev_id  = hdev->id;
2057		(dr + n)->dev_opt = flags;
2058
2059		if (++n >= dev_num)
2060			break;
2061	}
2062	read_unlock(&hci_dev_list_lock);
2063
2064	dl->dev_num = n;
2065	size = sizeof(*dl) + n * sizeof(*dr);
2066
2067	err = copy_to_user(arg, dl, size);
2068	kfree(dl);
2069
2070	return err ? -EFAULT : 0;
2071}
2072
2073int hci_get_dev_info(void __user *arg)
2074{
2075	struct hci_dev *hdev;
2076	struct hci_dev_info di;
2077	unsigned long flags;
2078	int err = 0;
2079
2080	if (copy_from_user(&di, arg, sizeof(di)))
2081		return -EFAULT;
2082
2083	hdev = hci_dev_get(di.dev_id);
2084	if (!hdev)
2085		return -ENODEV;
2086
2087	/* When the auto-off is configured it means the transport
2088	 * is running, but in that case still indicate that the
2089	 * device is actually down.
2090	 */
2091	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2092		flags = hdev->flags & ~BIT(HCI_UP);
2093	else
2094		flags = hdev->flags;
2095
2096	strcpy(di.name, hdev->name);
2097	di.bdaddr   = hdev->bdaddr;
2098	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2099	di.flags    = flags;
2100	di.pkt_type = hdev->pkt_type;
2101	if (lmp_bredr_capable(hdev)) {
2102		di.acl_mtu  = hdev->acl_mtu;
2103		di.acl_pkts = hdev->acl_pkts;
2104		di.sco_mtu  = hdev->sco_mtu;
2105		di.sco_pkts = hdev->sco_pkts;
2106	} else {
2107		di.acl_mtu  = hdev->le_mtu;
2108		di.acl_pkts = hdev->le_pkts;
2109		di.sco_mtu  = 0;
2110		di.sco_pkts = 0;
2111	}
2112	di.link_policy = hdev->link_policy;
2113	di.link_mode   = hdev->link_mode;
2114
2115	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2116	memcpy(&di.features, &hdev->features, sizeof(di.features));
2117
2118	if (copy_to_user(arg, &di, sizeof(di)))
2119		err = -EFAULT;
2120
2121	hci_dev_put(hdev);
2122
2123	return err;
2124}
2125
2126/* ---- Interface to HCI drivers ---- */
2127
2128static int hci_rfkill_set_block(void *data, bool blocked)
2129{
2130	struct hci_dev *hdev = data;
2131
2132	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2133
2134	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2135		return -EBUSY;
2136
2137	if (blocked) {
2138		hci_dev_set_flag(hdev, HCI_RFKILLED);
2139		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2140		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2141			hci_dev_do_close(hdev);
2142	} else {
2143		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2144	}
2145
2146	return 0;
2147}
2148
2149static const struct rfkill_ops hci_rfkill_ops = {
2150	.set_block = hci_rfkill_set_block,
2151};
2152
2153static void hci_power_on(struct work_struct *work)
2154{
2155	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2156	int err;
2157
2158	BT_DBG("%s", hdev->name);
2159
2160	if (test_bit(HCI_UP, &hdev->flags) &&
2161	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2162	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2163		cancel_delayed_work(&hdev->power_off);
2164		hci_req_sync_lock(hdev);
2165		err = __hci_req_hci_power_on(hdev);
2166		hci_req_sync_unlock(hdev);
2167		mgmt_power_on(hdev, err);
2168		return;
2169	}
2170
2171	err = hci_dev_do_open(hdev);
2172	if (err < 0) {
2173		hci_dev_lock(hdev);
2174		mgmt_set_powered_failed(hdev, err);
2175		hci_dev_unlock(hdev);
2176		return;
2177	}
2178
2179	/* During the HCI setup phase, a few error conditions are
2180	 * ignored and they need to be checked now. If they are still
2181	 * valid, it is important to turn the device back off.
2182	 */
2183	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2184	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2185	    (hdev->dev_type == HCI_PRIMARY &&
2186	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2187	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2188		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2189		hci_dev_do_close(hdev);
2190	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2191		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2192				   HCI_AUTO_OFF_TIMEOUT);
2193	}
2194
2195	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2196		/* For unconfigured devices, set the HCI_RAW flag
2197		 * so that userspace can easily identify them.
2198		 */
2199		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2200			set_bit(HCI_RAW, &hdev->flags);
2201
2202		/* For fully configured devices, this will send
2203		 * the Index Added event. For unconfigured devices,
2204		 * it will send Unconfigued Index Added event.
2205		 *
2206		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2207		 * and no event will be send.
2208		 */
2209		mgmt_index_added(hdev);
2210	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2211		/* When the controller is now configured, then it
2212		 * is important to clear the HCI_RAW flag.
2213		 */
2214		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2215			clear_bit(HCI_RAW, &hdev->flags);
2216
2217		/* Powering on the controller with HCI_CONFIG set only
2218		 * happens with the transition from unconfigured to
2219		 * configured. This will send the Index Added event.
2220		 */
2221		mgmt_index_added(hdev);
2222	}
2223}
2224
2225static void hci_power_off(struct work_struct *work)
2226{
2227	struct hci_dev *hdev = container_of(work, struct hci_dev,
2228					    power_off.work);
2229
2230	BT_DBG("%s", hdev->name);
2231
2232	hci_dev_do_close(hdev);
2233}
2234
2235static void hci_error_reset(struct work_struct *work)
2236{
2237	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2238
 
2239	BT_DBG("%s", hdev->name);
2240
2241	if (hdev->hw_error)
2242		hdev->hw_error(hdev, hdev->hw_error_code);
2243	else
2244		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2245
2246	if (hci_dev_do_close(hdev))
2247		return;
2248
2249	hci_dev_do_open(hdev);
2250}
2251
2252void hci_uuids_clear(struct hci_dev *hdev)
2253{
2254	struct bt_uuid *uuid, *tmp;
2255
2256	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2257		list_del(&uuid->list);
2258		kfree(uuid);
2259	}
2260}
2261
2262void hci_link_keys_clear(struct hci_dev *hdev)
2263{
2264	struct link_key *key;
2265
2266	list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2267		list_del_rcu(&key->list);
2268		kfree_rcu(key, rcu);
2269	}
2270}
2271
2272void hci_smp_ltks_clear(struct hci_dev *hdev)
2273{
2274	struct smp_ltk *k;
2275
2276	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2277		list_del_rcu(&k->list);
2278		kfree_rcu(k, rcu);
2279	}
2280}
2281
2282void hci_smp_irks_clear(struct hci_dev *hdev)
2283{
2284	struct smp_irk *k;
2285
2286	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2287		list_del_rcu(&k->list);
2288		kfree_rcu(k, rcu);
2289	}
2290}
2291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2292struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2293{
2294	struct link_key *k;
2295
2296	rcu_read_lock();
2297	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2298		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2299			rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
2300			return k;
2301		}
2302	}
2303	rcu_read_unlock();
2304
2305	return NULL;
2306}
2307
2308static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2309			       u8 key_type, u8 old_key_type)
2310{
2311	/* Legacy key */
2312	if (key_type < 0x03)
2313		return true;
2314
2315	/* Debug keys are insecure so don't store them persistently */
2316	if (key_type == HCI_LK_DEBUG_COMBINATION)
2317		return false;
2318
2319	/* Changed combination key and there's no previous one */
2320	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2321		return false;
2322
2323	/* Security mode 3 case */
2324	if (!conn)
2325		return true;
2326
2327	/* BR/EDR key derived using SC from an LE link */
2328	if (conn->type == LE_LINK)
2329		return true;
2330
2331	/* Neither local nor remote side had no-bonding as requirement */
2332	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2333		return true;
2334
2335	/* Local side had dedicated bonding as requirement */
2336	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2337		return true;
2338
2339	/* Remote side had dedicated bonding as requirement */
2340	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2341		return true;
2342
2343	/* If none of the above criteria match, then don't store the key
2344	 * persistently */
2345	return false;
2346}
2347
2348static u8 ltk_role(u8 type)
2349{
2350	if (type == SMP_LTK)
2351		return HCI_ROLE_MASTER;
2352
2353	return HCI_ROLE_SLAVE;
2354}
2355
2356struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2357			     u8 addr_type, u8 role)
2358{
2359	struct smp_ltk *k;
2360
2361	rcu_read_lock();
2362	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2363		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2364			continue;
2365
2366		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2367			rcu_read_unlock();
 
 
 
 
 
 
 
 
 
2368			return k;
2369		}
2370	}
2371	rcu_read_unlock();
2372
2373	return NULL;
2374}
2375
2376struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2377{
 
2378	struct smp_irk *irk;
2379
2380	rcu_read_lock();
2381	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2382		if (!bacmp(&irk->rpa, rpa)) {
2383			rcu_read_unlock();
2384			return irk;
2385		}
2386	}
2387
2388	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2389		if (smp_irk_matches(hdev, irk->val, rpa)) {
2390			bacpy(&irk->rpa, rpa);
2391			rcu_read_unlock();
2392			return irk;
2393		}
2394	}
 
 
 
 
 
 
 
 
 
2395	rcu_read_unlock();
2396
2397	return NULL;
2398}
2399
2400struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2401				     u8 addr_type)
2402{
 
2403	struct smp_irk *irk;
2404
2405	/* Identity Address must be public or static random */
2406	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2407		return NULL;
2408
2409	rcu_read_lock();
2410	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2411		if (addr_type == irk->addr_type &&
2412		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2413			rcu_read_unlock();
2414			return irk;
2415		}
2416	}
 
 
 
 
 
 
 
 
 
 
2417	rcu_read_unlock();
2418
2419	return NULL;
2420}
2421
2422struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2423				  bdaddr_t *bdaddr, u8 *val, u8 type,
2424				  u8 pin_len, bool *persistent)
2425{
2426	struct link_key *key, *old_key;
2427	u8 old_key_type;
2428
2429	old_key = hci_find_link_key(hdev, bdaddr);
2430	if (old_key) {
2431		old_key_type = old_key->type;
2432		key = old_key;
2433	} else {
2434		old_key_type = conn ? conn->key_type : 0xff;
2435		key = kzalloc(sizeof(*key), GFP_KERNEL);
2436		if (!key)
2437			return NULL;
2438		list_add_rcu(&key->list, &hdev->link_keys);
2439	}
2440
2441	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2442
2443	/* Some buggy controller combinations generate a changed
2444	 * combination key for legacy pairing even when there's no
2445	 * previous key */
2446	if (type == HCI_LK_CHANGED_COMBINATION &&
2447	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2448		type = HCI_LK_COMBINATION;
2449		if (conn)
2450			conn->key_type = type;
2451	}
2452
2453	bacpy(&key->bdaddr, bdaddr);
2454	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2455	key->pin_len = pin_len;
2456
2457	if (type == HCI_LK_CHANGED_COMBINATION)
2458		key->type = old_key_type;
2459	else
2460		key->type = type;
2461
2462	if (persistent)
2463		*persistent = hci_persistent_key(hdev, conn, type,
2464						 old_key_type);
2465
2466	return key;
2467}
2468
2469struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2470			    u8 addr_type, u8 type, u8 authenticated,
2471			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2472{
2473	struct smp_ltk *key, *old_key;
2474	u8 role = ltk_role(type);
2475
2476	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2477	if (old_key)
2478		key = old_key;
2479	else {
2480		key = kzalloc(sizeof(*key), GFP_KERNEL);
2481		if (!key)
2482			return NULL;
2483		list_add_rcu(&key->list, &hdev->long_term_keys);
2484	}
2485
2486	bacpy(&key->bdaddr, bdaddr);
2487	key->bdaddr_type = addr_type;
2488	memcpy(key->val, tk, sizeof(key->val));
2489	key->authenticated = authenticated;
2490	key->ediv = ediv;
2491	key->rand = rand;
2492	key->enc_size = enc_size;
2493	key->type = type;
2494
2495	return key;
2496}
2497
2498struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2499			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2500{
2501	struct smp_irk *irk;
2502
2503	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2504	if (!irk) {
2505		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2506		if (!irk)
2507			return NULL;
2508
2509		bacpy(&irk->bdaddr, bdaddr);
2510		irk->addr_type = addr_type;
2511
2512		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2513	}
2514
2515	memcpy(irk->val, val, 16);
2516	bacpy(&irk->rpa, rpa);
2517
2518	return irk;
2519}
2520
2521int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2522{
2523	struct link_key *key;
2524
2525	key = hci_find_link_key(hdev, bdaddr);
2526	if (!key)
2527		return -ENOENT;
2528
2529	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2530
2531	list_del_rcu(&key->list);
2532	kfree_rcu(key, rcu);
2533
2534	return 0;
2535}
2536
2537int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2538{
2539	struct smp_ltk *k;
2540	int removed = 0;
2541
2542	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2543		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2544			continue;
2545
2546		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2547
2548		list_del_rcu(&k->list);
2549		kfree_rcu(k, rcu);
2550		removed++;
2551	}
2552
2553	return removed ? 0 : -ENOENT;
2554}
2555
2556void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2557{
2558	struct smp_irk *k;
2559
2560	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2561		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2562			continue;
2563
2564		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2565
2566		list_del_rcu(&k->list);
2567		kfree_rcu(k, rcu);
2568	}
2569}
2570
2571bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2572{
2573	struct smp_ltk *k;
2574	struct smp_irk *irk;
2575	u8 addr_type;
2576
2577	if (type == BDADDR_BREDR) {
2578		if (hci_find_link_key(hdev, bdaddr))
2579			return true;
2580		return false;
2581	}
2582
2583	/* Convert to HCI addr type which struct smp_ltk uses */
2584	if (type == BDADDR_LE_PUBLIC)
2585		addr_type = ADDR_LE_DEV_PUBLIC;
2586	else
2587		addr_type = ADDR_LE_DEV_RANDOM;
2588
2589	irk = hci_get_irk(hdev, bdaddr, addr_type);
2590	if (irk) {
2591		bdaddr = &irk->bdaddr;
2592		addr_type = irk->addr_type;
2593	}
2594
2595	rcu_read_lock();
2596	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2597		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2598			rcu_read_unlock();
2599			return true;
2600		}
2601	}
2602	rcu_read_unlock();
2603
2604	return false;
2605}
2606
2607/* HCI command timer function */
2608static void hci_cmd_timeout(struct work_struct *work)
2609{
2610	struct hci_dev *hdev = container_of(work, struct hci_dev,
2611					    cmd_timer.work);
2612
2613	if (hdev->sent_cmd) {
2614		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2615		u16 opcode = __le16_to_cpu(sent->opcode);
2616
2617		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2618	} else {
2619		bt_dev_err(hdev, "command tx timeout");
2620	}
2621
2622	if (hdev->cmd_timeout)
2623		hdev->cmd_timeout(hdev);
2624
2625	atomic_set(&hdev->cmd_cnt, 1);
2626	queue_work(hdev->workqueue, &hdev->cmd_work);
2627}
2628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2629struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2630					  bdaddr_t *bdaddr, u8 bdaddr_type)
2631{
2632	struct oob_data *data;
2633
2634	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2635		if (bacmp(bdaddr, &data->bdaddr) != 0)
2636			continue;
2637		if (data->bdaddr_type != bdaddr_type)
2638			continue;
2639		return data;
2640	}
2641
2642	return NULL;
2643}
2644
2645int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2646			       u8 bdaddr_type)
2647{
2648	struct oob_data *data;
2649
2650	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2651	if (!data)
2652		return -ENOENT;
2653
2654	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2655
2656	list_del(&data->list);
2657	kfree(data);
2658
2659	return 0;
2660}
2661
2662void hci_remote_oob_data_clear(struct hci_dev *hdev)
2663{
2664	struct oob_data *data, *n;
2665
2666	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2667		list_del(&data->list);
2668		kfree(data);
2669	}
2670}
2671
2672int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2673			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2674			    u8 *hash256, u8 *rand256)
2675{
2676	struct oob_data *data;
2677
2678	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2679	if (!data) {
2680		data = kmalloc(sizeof(*data), GFP_KERNEL);
2681		if (!data)
2682			return -ENOMEM;
2683
2684		bacpy(&data->bdaddr, bdaddr);
2685		data->bdaddr_type = bdaddr_type;
2686		list_add(&data->list, &hdev->remote_oob_data);
2687	}
2688
2689	if (hash192 && rand192) {
2690		memcpy(data->hash192, hash192, sizeof(data->hash192));
2691		memcpy(data->rand192, rand192, sizeof(data->rand192));
2692		if (hash256 && rand256)
2693			data->present = 0x03;
2694	} else {
2695		memset(data->hash192, 0, sizeof(data->hash192));
2696		memset(data->rand192, 0, sizeof(data->rand192));
2697		if (hash256 && rand256)
2698			data->present = 0x02;
2699		else
2700			data->present = 0x00;
2701	}
2702
2703	if (hash256 && rand256) {
2704		memcpy(data->hash256, hash256, sizeof(data->hash256));
2705		memcpy(data->rand256, rand256, sizeof(data->rand256));
2706	} else {
2707		memset(data->hash256, 0, sizeof(data->hash256));
2708		memset(data->rand256, 0, sizeof(data->rand256));
2709		if (hash192 && rand192)
2710			data->present = 0x01;
2711	}
2712
2713	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2714
2715	return 0;
2716}
2717
2718/* This function requires the caller holds hdev->lock */
2719struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2720{
2721	struct adv_info *adv_instance;
2722
2723	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2724		if (adv_instance->instance == instance)
2725			return adv_instance;
2726	}
2727
2728	return NULL;
2729}
2730
2731/* This function requires the caller holds hdev->lock */
2732struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2733{
2734	struct adv_info *cur_instance;
2735
2736	cur_instance = hci_find_adv_instance(hdev, instance);
2737	if (!cur_instance)
2738		return NULL;
2739
2740	if (cur_instance == list_last_entry(&hdev->adv_instances,
2741					    struct adv_info, list))
2742		return list_first_entry(&hdev->adv_instances,
2743						 struct adv_info, list);
2744	else
2745		return list_next_entry(cur_instance, list);
2746}
2747
2748/* This function requires the caller holds hdev->lock */
2749int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2750{
2751	struct adv_info *adv_instance;
2752
2753	adv_instance = hci_find_adv_instance(hdev, instance);
2754	if (!adv_instance)
2755		return -ENOENT;
2756
2757	BT_DBG("%s removing %dMR", hdev->name, instance);
2758
2759	if (hdev->cur_adv_instance == instance) {
2760		if (hdev->adv_instance_timeout) {
2761			cancel_delayed_work(&hdev->adv_instance_expire);
2762			hdev->adv_instance_timeout = 0;
2763		}
2764		hdev->cur_adv_instance = 0x00;
2765	}
2766
2767	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2768
2769	list_del(&adv_instance->list);
2770	kfree(adv_instance);
2771
2772	hdev->adv_instance_cnt--;
2773
2774	return 0;
2775}
2776
2777void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2778{
2779	struct adv_info *adv_instance, *n;
2780
2781	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2782		adv_instance->rpa_expired = rpa_expired;
2783}
2784
2785/* This function requires the caller holds hdev->lock */
2786void hci_adv_instances_clear(struct hci_dev *hdev)
2787{
2788	struct adv_info *adv_instance, *n;
2789
2790	if (hdev->adv_instance_timeout) {
2791		cancel_delayed_work(&hdev->adv_instance_expire);
2792		hdev->adv_instance_timeout = 0;
2793	}
2794
2795	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2796		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2797		list_del(&adv_instance->list);
2798		kfree(adv_instance);
2799	}
2800
2801	hdev->adv_instance_cnt = 0;
2802	hdev->cur_adv_instance = 0x00;
2803}
2804
2805static void adv_instance_rpa_expired(struct work_struct *work)
2806{
2807	struct adv_info *adv_instance = container_of(work, struct adv_info,
2808						     rpa_expired_cb.work);
2809
2810	BT_DBG("");
2811
2812	adv_instance->rpa_expired = true;
2813}
2814
2815/* This function requires the caller holds hdev->lock */
2816int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2817			 u16 adv_data_len, u8 *adv_data,
2818			 u16 scan_rsp_len, u8 *scan_rsp_data,
2819			 u16 timeout, u16 duration)
2820{
2821	struct adv_info *adv_instance;
2822
2823	adv_instance = hci_find_adv_instance(hdev, instance);
2824	if (adv_instance) {
2825		memset(adv_instance->adv_data, 0,
2826		       sizeof(adv_instance->adv_data));
2827		memset(adv_instance->scan_rsp_data, 0,
2828		       sizeof(adv_instance->scan_rsp_data));
 
2829	} else {
2830		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
2831		    instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2832			return -EOVERFLOW;
2833
2834		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2835		if (!adv_instance)
2836			return -ENOMEM;
2837
2838		adv_instance->pending = true;
2839		adv_instance->instance = instance;
2840		list_add(&adv_instance->list, &hdev->adv_instances);
 
 
 
 
2841		hdev->adv_instance_cnt++;
2842	}
2843
2844	adv_instance->flags = flags;
2845	adv_instance->adv_data_len = adv_data_len;
2846	adv_instance->scan_rsp_len = scan_rsp_len;
2847
2848	if (adv_data_len)
2849		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2850
2851	if (scan_rsp_len)
2852		memcpy(adv_instance->scan_rsp_data,
2853		       scan_rsp_data, scan_rsp_len);
 
 
2854
2855	adv_instance->timeout = timeout;
2856	adv_instance->remaining_time = timeout;
2857
2858	if (duration == 0)
2859		adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2860	else
2861		adv_instance->duration = duration;
2862
2863	adv_instance->tx_power = HCI_TX_POWER_INVALID;
2864
2865	INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
2866			  adv_instance_rpa_expired);
2867
2868	BT_DBG("%s for %dMR", hdev->name, instance);
2869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2870	return 0;
2871}
2872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2873struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2874					 bdaddr_t *bdaddr, u8 type)
2875{
2876	struct bdaddr_list *b;
2877
2878	list_for_each_entry(b, bdaddr_list, list) {
2879		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2880			return b;
2881	}
2882
2883	return NULL;
2884}
2885
2886struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2887				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2888				u8 type)
2889{
2890	struct bdaddr_list_with_irk *b;
2891
2892	list_for_each_entry(b, bdaddr_list, list) {
2893		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2894			return b;
2895	}
2896
2897	return NULL;
2898}
2899
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2900void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2901{
2902	struct bdaddr_list *b, *n;
2903
2904	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2905		list_del(&b->list);
2906		kfree(b);
2907	}
2908}
2909
2910int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2911{
2912	struct bdaddr_list *entry;
2913
2914	if (!bacmp(bdaddr, BDADDR_ANY))
2915		return -EBADF;
2916
2917	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2918		return -EEXIST;
2919
2920	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2921	if (!entry)
2922		return -ENOMEM;
2923
2924	bacpy(&entry->bdaddr, bdaddr);
2925	entry->bdaddr_type = type;
2926
2927	list_add(&entry->list, list);
2928
2929	return 0;
2930}
2931
2932int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2933					u8 type, u8 *peer_irk, u8 *local_irk)
2934{
2935	struct bdaddr_list_with_irk *entry;
2936
2937	if (!bacmp(bdaddr, BDADDR_ANY))
2938		return -EBADF;
2939
2940	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2941		return -EEXIST;
2942
2943	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2944	if (!entry)
2945		return -ENOMEM;
2946
2947	bacpy(&entry->bdaddr, bdaddr);
2948	entry->bdaddr_type = type;
2949
2950	if (peer_irk)
2951		memcpy(entry->peer_irk, peer_irk, 16);
2952
2953	if (local_irk)
2954		memcpy(entry->local_irk, local_irk, 16);
2955
2956	list_add(&entry->list, list);
2957
2958	return 0;
2959}
2960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2961int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2962{
2963	struct bdaddr_list *entry;
2964
2965	if (!bacmp(bdaddr, BDADDR_ANY)) {
2966		hci_bdaddr_list_clear(list);
2967		return 0;
2968	}
2969
2970	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2971	if (!entry)
2972		return -ENOENT;
2973
2974	list_del(&entry->list);
2975	kfree(entry);
2976
2977	return 0;
2978}
2979
2980int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2981							u8 type)
2982{
2983	struct bdaddr_list_with_irk *entry;
2984
2985	if (!bacmp(bdaddr, BDADDR_ANY)) {
2986		hci_bdaddr_list_clear(list);
2987		return 0;
2988	}
2989
2990	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2991	if (!entry)
2992		return -ENOENT;
2993
2994	list_del(&entry->list);
2995	kfree(entry);
2996
2997	return 0;
2998}
2999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3000/* This function requires the caller holds hdev->lock */
3001struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3002					       bdaddr_t *addr, u8 addr_type)
3003{
3004	struct hci_conn_params *params;
3005
3006	list_for_each_entry(params, &hdev->le_conn_params, list) {
3007		if (bacmp(&params->addr, addr) == 0 &&
3008		    params->addr_type == addr_type) {
3009			return params;
3010		}
3011	}
3012
3013	return NULL;
3014}
3015
3016/* This function requires the caller holds hdev->lock */
3017struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3018						  bdaddr_t *addr, u8 addr_type)
3019{
3020	struct hci_conn_params *param;
3021
3022	list_for_each_entry(param, list, action) {
 
 
3023		if (bacmp(&param->addr, addr) == 0 &&
3024		    param->addr_type == addr_type)
 
3025			return param;
 
3026	}
3027
 
 
3028	return NULL;
3029}
3030
3031/* This function requires the caller holds hdev->lock */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3032struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3033					    bdaddr_t *addr, u8 addr_type)
3034{
3035	struct hci_conn_params *params;
3036
3037	params = hci_conn_params_lookup(hdev, addr, addr_type);
3038	if (params)
3039		return params;
3040
3041	params = kzalloc(sizeof(*params), GFP_KERNEL);
3042	if (!params) {
3043		bt_dev_err(hdev, "out of memory");
3044		return NULL;
3045	}
3046
3047	bacpy(&params->addr, addr);
3048	params->addr_type = addr_type;
3049
3050	list_add(&params->list, &hdev->le_conn_params);
3051	INIT_LIST_HEAD(&params->action);
3052
3053	params->conn_min_interval = hdev->le_conn_min_interval;
3054	params->conn_max_interval = hdev->le_conn_max_interval;
3055	params->conn_latency = hdev->le_conn_latency;
3056	params->supervision_timeout = hdev->le_supv_timeout;
3057	params->auto_connect = HCI_AUTO_CONN_DISABLED;
3058
3059	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3060
3061	return params;
3062}
3063
3064static void hci_conn_params_free(struct hci_conn_params *params)
3065{
 
 
3066	if (params->conn) {
3067		hci_conn_drop(params->conn);
3068		hci_conn_put(params->conn);
3069	}
3070
3071	list_del(&params->action);
3072	list_del(&params->list);
3073	kfree(params);
3074}
3075
3076/* This function requires the caller holds hdev->lock */
3077void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3078{
3079	struct hci_conn_params *params;
3080
3081	params = hci_conn_params_lookup(hdev, addr, addr_type);
3082	if (!params)
3083		return;
3084
3085	hci_conn_params_free(params);
3086
3087	hci_update_background_scan(hdev);
3088
3089	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3090}
3091
3092/* This function requires the caller holds hdev->lock */
3093void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3094{
3095	struct hci_conn_params *params, *tmp;
3096
3097	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3098		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3099			continue;
3100
3101		/* If trying to estabilish one time connection to disabled
3102		 * device, leave the params, but mark them as just once.
3103		 */
3104		if (params->explicit_connect) {
3105			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3106			continue;
3107		}
3108
3109		list_del(&params->list);
3110		kfree(params);
3111	}
3112
3113	BT_DBG("All LE disabled connection parameters were removed");
3114}
3115
3116/* This function requires the caller holds hdev->lock */
3117static void hci_conn_params_clear_all(struct hci_dev *hdev)
3118{
3119	struct hci_conn_params *params, *tmp;
3120
3121	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3122		hci_conn_params_free(params);
3123
3124	BT_DBG("All LE connection parameters were removed");
3125}
3126
3127/* Copy the Identity Address of the controller.
3128 *
3129 * If the controller has a public BD_ADDR, then by default use that one.
3130 * If this is a LE only controller without a public address, default to
3131 * the static random address.
3132 *
3133 * For debugging purposes it is possible to force controllers with a
3134 * public address to use the static random address instead.
3135 *
3136 * In case BR/EDR has been disabled on a dual-mode controller and
3137 * userspace has configured a static address, then that address
3138 * becomes the identity address instead of the public BR/EDR address.
3139 */
3140void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3141			       u8 *bdaddr_type)
3142{
3143	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3144	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3145	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3146	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
3147		bacpy(bdaddr, &hdev->static_addr);
3148		*bdaddr_type = ADDR_LE_DEV_RANDOM;
3149	} else {
3150		bacpy(bdaddr, &hdev->bdaddr);
3151		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
3152	}
3153}
3154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3155/* Alloc HCI device */
3156struct hci_dev *hci_alloc_dev(void)
3157{
3158	struct hci_dev *hdev;
 
 
 
 
 
 
 
3159
3160	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3161	if (!hdev)
3162		return NULL;
3163
3164	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3165	hdev->esco_type = (ESCO_HV1);
3166	hdev->link_mode = (HCI_LM_ACCEPT);
3167	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
3168	hdev->io_capability = 0x03;	/* No Input No Output */
3169	hdev->manufacturer = 0xffff;	/* Default to internal use */
3170	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3171	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3172	hdev->adv_instance_cnt = 0;
3173	hdev->cur_adv_instance = 0x00;
3174	hdev->adv_instance_timeout = 0;
3175
 
 
 
 
3176	hdev->sniff_max_interval = 800;
3177	hdev->sniff_min_interval = 80;
3178
3179	hdev->le_adv_channel_map = 0x07;
3180	hdev->le_adv_min_interval = 0x0800;
3181	hdev->le_adv_max_interval = 0x0800;
3182	hdev->le_scan_interval = 0x0060;
3183	hdev->le_scan_window = 0x0030;
 
 
 
 
 
 
 
 
3184	hdev->le_conn_min_interval = 0x0018;
3185	hdev->le_conn_max_interval = 0x0028;
3186	hdev->le_conn_latency = 0x0000;
3187	hdev->le_supv_timeout = 0x002a;
3188	hdev->le_def_tx_len = 0x001b;
3189	hdev->le_def_tx_time = 0x0148;
3190	hdev->le_max_tx_len = 0x001b;
3191	hdev->le_max_tx_time = 0x0148;
3192	hdev->le_max_rx_len = 0x001b;
3193	hdev->le_max_rx_time = 0x0148;
3194	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3195	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3196	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3197	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3198	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
 
 
 
 
3199
3200	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3201	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3202	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3203	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3204	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
3205	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
3206
 
 
 
 
 
3207	mutex_init(&hdev->lock);
3208	mutex_init(&hdev->req_lock);
3209
 
 
 
3210	INIT_LIST_HEAD(&hdev->mgmt_pending);
3211	INIT_LIST_HEAD(&hdev->blacklist);
3212	INIT_LIST_HEAD(&hdev->whitelist);
3213	INIT_LIST_HEAD(&hdev->uuids);
3214	INIT_LIST_HEAD(&hdev->link_keys);
3215	INIT_LIST_HEAD(&hdev->long_term_keys);
3216	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3217	INIT_LIST_HEAD(&hdev->remote_oob_data);
3218	INIT_LIST_HEAD(&hdev->le_white_list);
3219	INIT_LIST_HEAD(&hdev->le_resolv_list);
3220	INIT_LIST_HEAD(&hdev->le_conn_params);
3221	INIT_LIST_HEAD(&hdev->pend_le_conns);
3222	INIT_LIST_HEAD(&hdev->pend_le_reports);
3223	INIT_LIST_HEAD(&hdev->conn_hash.list);
3224	INIT_LIST_HEAD(&hdev->adv_instances);
 
 
3225
 
3226	INIT_WORK(&hdev->rx_work, hci_rx_work);
3227	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3228	INIT_WORK(&hdev->tx_work, hci_tx_work);
3229	INIT_WORK(&hdev->power_on, hci_power_on);
3230	INIT_WORK(&hdev->error_reset, hci_error_reset);
3231
 
 
3232	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3233
3234	skb_queue_head_init(&hdev->rx_q);
3235	skb_queue_head_init(&hdev->cmd_q);
3236	skb_queue_head_init(&hdev->raw_q);
3237
3238	init_waitqueue_head(&hdev->req_wait_q);
3239
3240	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
 
3241
 
3242	hci_request_setup(hdev);
3243
3244	hci_init_sysfs(hdev);
3245	discovery_init(hdev);
3246
3247	return hdev;
3248}
3249EXPORT_SYMBOL(hci_alloc_dev);
3250
3251/* Free HCI device */
3252void hci_free_dev(struct hci_dev *hdev)
3253{
3254	/* will free via device release */
3255	put_device(&hdev->dev);
3256}
3257EXPORT_SYMBOL(hci_free_dev);
3258
3259/* Register HCI device */
3260int hci_register_dev(struct hci_dev *hdev)
3261{
3262	int id, error;
3263
3264	if (!hdev->open || !hdev->close || !hdev->send)
3265		return -EINVAL;
3266
3267	/* Do not allow HCI_AMP devices to register at index 0,
3268	 * so the index can be used as the AMP controller ID.
3269	 */
3270	switch (hdev->dev_type) {
3271	case HCI_PRIMARY:
3272		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3273		break;
3274	case HCI_AMP:
3275		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3276		break;
3277	default:
3278		return -EINVAL;
3279	}
3280
3281	if (id < 0)
3282		return id;
3283
3284	sprintf(hdev->name, "hci%d", id);
 
 
 
 
3285	hdev->id = id;
3286
3287	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3288
3289	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3290	if (!hdev->workqueue) {
3291		error = -ENOMEM;
3292		goto err;
3293	}
3294
3295	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3296						      hdev->name);
3297	if (!hdev->req_workqueue) {
3298		destroy_workqueue(hdev->workqueue);
3299		error = -ENOMEM;
3300		goto err;
3301	}
3302
3303	if (!IS_ERR_OR_NULL(bt_debugfs))
3304		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3305
3306	dev_set_name(&hdev->dev, "%s", hdev->name);
3307
3308	error = device_add(&hdev->dev);
3309	if (error < 0)
3310		goto err_wqueue;
3311
3312	hci_leds_init(hdev);
3313
3314	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3315				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3316				    hdev);
3317	if (hdev->rfkill) {
3318		if (rfkill_register(hdev->rfkill) < 0) {
3319			rfkill_destroy(hdev->rfkill);
3320			hdev->rfkill = NULL;
3321		}
3322	}
3323
3324	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3325		hci_dev_set_flag(hdev, HCI_RFKILLED);
3326
3327	hci_dev_set_flag(hdev, HCI_SETUP);
3328	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3329
3330	if (hdev->dev_type == HCI_PRIMARY) {
3331		/* Assume BR/EDR support until proven otherwise (such as
3332		 * through reading supported features during init.
3333		 */
3334		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3335	}
3336
3337	write_lock(&hci_dev_list_lock);
3338	list_add(&hdev->list, &hci_dev_list);
3339	write_unlock(&hci_dev_list_lock);
3340
3341	/* Devices that are marked for raw-only usage are unconfigured
3342	 * and should not be included in normal operation.
3343	 */
3344	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3345		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3346
 
 
 
 
 
 
3347	hci_sock_dev_event(hdev, HCI_DEV_REG);
3348	hci_dev_hold(hdev);
3349
 
 
 
 
3350	queue_work(hdev->req_workqueue, &hdev->power_on);
3351
 
 
 
3352	return id;
3353
3354err_wqueue:
 
3355	destroy_workqueue(hdev->workqueue);
3356	destroy_workqueue(hdev->req_workqueue);
3357err:
3358	ida_simple_remove(&hci_index_ida, hdev->id);
3359
3360	return error;
3361}
3362EXPORT_SYMBOL(hci_register_dev);
3363
3364/* Unregister HCI device */
3365void hci_unregister_dev(struct hci_dev *hdev)
3366{
3367	int id;
3368
3369	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3370
 
3371	hci_dev_set_flag(hdev, HCI_UNREGISTER);
3372
3373	id = hdev->id;
3374
3375	write_lock(&hci_dev_list_lock);
3376	list_del(&hdev->list);
3377	write_unlock(&hci_dev_list_lock);
3378
3379	cancel_work_sync(&hdev->power_on);
3380
 
 
 
 
 
 
3381	hci_dev_do_close(hdev);
3382
3383	if (!test_bit(HCI_INIT, &hdev->flags) &&
3384	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
3385	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3386		hci_dev_lock(hdev);
3387		mgmt_index_removed(hdev);
3388		hci_dev_unlock(hdev);
3389	}
3390
3391	/* mgmt_index_removed should take care of emptying the
3392	 * pending list */
3393	BUG_ON(!list_empty(&hdev->mgmt_pending));
3394
3395	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3396
3397	if (hdev->rfkill) {
3398		rfkill_unregister(hdev->rfkill);
3399		rfkill_destroy(hdev->rfkill);
3400	}
3401
3402	device_del(&hdev->dev);
 
 
 
 
3403
 
 
 
3404	debugfs_remove_recursive(hdev->debugfs);
3405	kfree_const(hdev->hw_info);
3406	kfree_const(hdev->fw_info);
3407
3408	destroy_workqueue(hdev->workqueue);
3409	destroy_workqueue(hdev->req_workqueue);
3410
3411	hci_dev_lock(hdev);
3412	hci_bdaddr_list_clear(&hdev->blacklist);
3413	hci_bdaddr_list_clear(&hdev->whitelist);
3414	hci_uuids_clear(hdev);
3415	hci_link_keys_clear(hdev);
3416	hci_smp_ltks_clear(hdev);
3417	hci_smp_irks_clear(hdev);
3418	hci_remote_oob_data_clear(hdev);
3419	hci_adv_instances_clear(hdev);
3420	hci_bdaddr_list_clear(&hdev->le_white_list);
 
3421	hci_bdaddr_list_clear(&hdev->le_resolv_list);
3422	hci_conn_params_clear_all(hdev);
3423	hci_discovery_filter_clear(hdev);
 
 
3424	hci_dev_unlock(hdev);
3425
3426	hci_dev_put(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3427
3428	ida_simple_remove(&hci_index_ida, id);
 
 
 
 
 
 
3429}
3430EXPORT_SYMBOL(hci_unregister_dev);
3431
3432/* Suspend HCI device */
3433int hci_suspend_dev(struct hci_dev *hdev)
3434{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3435	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3436	return 0;
3437}
3438EXPORT_SYMBOL(hci_suspend_dev);
3439
3440/* Resume HCI device */
3441int hci_resume_dev(struct hci_dev *hdev)
3442{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3443	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3444	return 0;
3445}
3446EXPORT_SYMBOL(hci_resume_dev);
3447
3448/* Reset HCI device */
3449int hci_reset_dev(struct hci_dev *hdev)
3450{
3451	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3452	struct sk_buff *skb;
3453
3454	skb = bt_skb_alloc(3, GFP_ATOMIC);
3455	if (!skb)
3456		return -ENOMEM;
3457
3458	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3459	skb_put_data(skb, hw_err, 3);
3460
 
 
3461	/* Send Hardware Error to upper stack */
3462	return hci_recv_frame(hdev, skb);
3463}
3464EXPORT_SYMBOL(hci_reset_dev);
3465
3466/* Receive frame from HCI drivers */
3467int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3468{
3469	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3470		      && !test_bit(HCI_INIT, &hdev->flags))) {
3471		kfree_skb(skb);
3472		return -ENXIO;
3473	}
3474
3475	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3476	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3477	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3478		kfree_skb(skb);
3479		return -EINVAL;
3480	}
3481
3482	/* Incoming skb */
3483	bt_cb(skb)->incoming = 1;
3484
3485	/* Time stamp */
3486	__net_timestamp(skb);
3487
3488	skb_queue_tail(&hdev->rx_q, skb);
3489	queue_work(hdev->workqueue, &hdev->rx_work);
3490
3491	return 0;
3492}
3493EXPORT_SYMBOL(hci_recv_frame);
3494
3495/* Receive diagnostic message from HCI drivers */
3496int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3497{
3498	/* Mark as diagnostic packet */
3499	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3500
3501	/* Time stamp */
3502	__net_timestamp(skb);
3503
3504	skb_queue_tail(&hdev->rx_q, skb);
3505	queue_work(hdev->workqueue, &hdev->rx_work);
3506
3507	return 0;
3508}
3509EXPORT_SYMBOL(hci_recv_diag);
3510
3511void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3512{
3513	va_list vargs;
3514
3515	va_start(vargs, fmt);
3516	kfree_const(hdev->hw_info);
3517	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3518	va_end(vargs);
3519}
3520EXPORT_SYMBOL(hci_set_hw_info);
3521
3522void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3523{
3524	va_list vargs;
3525
3526	va_start(vargs, fmt);
3527	kfree_const(hdev->fw_info);
3528	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3529	va_end(vargs);
3530}
3531EXPORT_SYMBOL(hci_set_fw_info);
3532
3533/* ---- Interface to upper protocols ---- */
3534
3535int hci_register_cb(struct hci_cb *cb)
3536{
3537	BT_DBG("%p name %s", cb, cb->name);
3538
3539	mutex_lock(&hci_cb_list_lock);
3540	list_add_tail(&cb->list, &hci_cb_list);
3541	mutex_unlock(&hci_cb_list_lock);
3542
3543	return 0;
3544}
3545EXPORT_SYMBOL(hci_register_cb);
3546
3547int hci_unregister_cb(struct hci_cb *cb)
3548{
3549	BT_DBG("%p name %s", cb, cb->name);
3550
3551	mutex_lock(&hci_cb_list_lock);
3552	list_del(&cb->list);
3553	mutex_unlock(&hci_cb_list_lock);
3554
3555	return 0;
3556}
3557EXPORT_SYMBOL(hci_unregister_cb);
3558
3559static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3560{
3561	int err;
3562
3563	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3564	       skb->len);
3565
3566	/* Time stamp */
3567	__net_timestamp(skb);
3568
3569	/* Send copy to monitor */
3570	hci_send_to_monitor(hdev, skb);
3571
3572	if (atomic_read(&hdev->promisc)) {
3573		/* Send copy to the sockets */
3574		hci_send_to_sock(hdev, skb);
3575	}
3576
3577	/* Get rid of skb owner, prior to sending to the driver. */
3578	skb_orphan(skb);
3579
3580	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3581		kfree_skb(skb);
3582		return;
3583	}
3584
3585	err = hdev->send(hdev, skb);
3586	if (err < 0) {
3587		bt_dev_err(hdev, "sending frame failed (%d)", err);
3588		kfree_skb(skb);
 
3589	}
 
 
3590}
3591
3592/* Send HCI command */
3593int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3594		 const void *param)
3595{
3596	struct sk_buff *skb;
3597
3598	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3599
3600	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3601	if (!skb) {
3602		bt_dev_err(hdev, "no memory for command");
3603		return -ENOMEM;
3604	}
3605
3606	/* Stand-alone HCI commands must be flagged as
3607	 * single-command requests.
3608	 */
3609	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3610
3611	skb_queue_tail(&hdev->cmd_q, skb);
3612	queue_work(hdev->workqueue, &hdev->cmd_work);
3613
3614	return 0;
3615}
3616
3617int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3618		   const void *param)
3619{
3620	struct sk_buff *skb;
3621
3622	if (hci_opcode_ogf(opcode) != 0x3f) {
3623		/* A controller receiving a command shall respond with either
3624		 * a Command Status Event or a Command Complete Event.
3625		 * Therefore, all standard HCI commands must be sent via the
3626		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3627		 * Some vendors do not comply with this rule for vendor-specific
3628		 * commands and do not return any event. We want to support
3629		 * unresponded commands for such cases only.
3630		 */
3631		bt_dev_err(hdev, "unresponded command not supported");
3632		return -EINVAL;
3633	}
3634
3635	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3636	if (!skb) {
3637		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3638			   opcode);
3639		return -ENOMEM;
3640	}
3641
3642	hci_send_frame(hdev, skb);
3643
3644	return 0;
3645}
3646EXPORT_SYMBOL(__hci_cmd_send);
3647
3648/* Get data from the previously sent command */
3649void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3650{
3651	struct hci_command_hdr *hdr;
3652
3653	if (!hdev->sent_cmd)
3654		return NULL;
3655
3656	hdr = (void *) hdev->sent_cmd->data;
3657
3658	if (hdr->opcode != cpu_to_le16(opcode))
3659		return NULL;
3660
3661	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3662
3663	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3664}
3665
3666/* Send HCI command and wait for command commplete event */
3667struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3668			     const void *param, u32 timeout)
3669{
3670	struct sk_buff *skb;
 
3671
3672	if (!test_bit(HCI_UP, &hdev->flags))
3673		return ERR_PTR(-ENETDOWN);
3674
3675	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
 
3676
3677	hci_req_sync_lock(hdev);
3678	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3679	hci_req_sync_unlock(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
3680
3681	return skb;
3682}
3683EXPORT_SYMBOL(hci_cmd_sync);
3684
3685/* Send ACL data */
3686static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3687{
3688	struct hci_acl_hdr *hdr;
3689	int len = skb->len;
3690
3691	skb_push(skb, HCI_ACL_HDR_SIZE);
3692	skb_reset_transport_header(skb);
3693	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3694	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3695	hdr->dlen   = cpu_to_le16(len);
3696}
3697
3698static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3699			  struct sk_buff *skb, __u16 flags)
3700{
3701	struct hci_conn *conn = chan->conn;
3702	struct hci_dev *hdev = conn->hdev;
3703	struct sk_buff *list;
3704
3705	skb->len = skb_headlen(skb);
3706	skb->data_len = 0;
3707
3708	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3709
3710	switch (hdev->dev_type) {
3711	case HCI_PRIMARY:
3712		hci_add_acl_hdr(skb, conn->handle, flags);
3713		break;
3714	case HCI_AMP:
3715		hci_add_acl_hdr(skb, chan->handle, flags);
3716		break;
3717	default:
3718		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3719		return;
3720	}
3721
3722	list = skb_shinfo(skb)->frag_list;
3723	if (!list) {
3724		/* Non fragmented */
3725		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3726
3727		skb_queue_tail(queue, skb);
3728	} else {
3729		/* Fragmented */
3730		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3731
3732		skb_shinfo(skb)->frag_list = NULL;
3733
3734		/* Queue all fragments atomically. We need to use spin_lock_bh
3735		 * here because of 6LoWPAN links, as there this function is
3736		 * called from softirq and using normal spin lock could cause
3737		 * deadlocks.
3738		 */
3739		spin_lock_bh(&queue->lock);
3740
3741		__skb_queue_tail(queue, skb);
3742
3743		flags &= ~ACL_START;
3744		flags |= ACL_CONT;
3745		do {
3746			skb = list; list = list->next;
3747
3748			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3749			hci_add_acl_hdr(skb, conn->handle, flags);
3750
3751			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3752
3753			__skb_queue_tail(queue, skb);
3754		} while (list);
3755
3756		spin_unlock_bh(&queue->lock);
3757	}
3758}
3759
3760void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3761{
3762	struct hci_dev *hdev = chan->conn->hdev;
3763
3764	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3765
3766	hci_queue_acl(chan, &chan->data_q, skb, flags);
3767
3768	queue_work(hdev->workqueue, &hdev->tx_work);
3769}
3770
3771/* Send SCO data */
3772void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3773{
3774	struct hci_dev *hdev = conn->hdev;
3775	struct hci_sco_hdr hdr;
3776
3777	BT_DBG("%s len %d", hdev->name, skb->len);
3778
3779	hdr.handle = cpu_to_le16(conn->handle);
3780	hdr.dlen   = skb->len;
3781
3782	skb_push(skb, HCI_SCO_HDR_SIZE);
3783	skb_reset_transport_header(skb);
3784	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3785
3786	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3787
3788	skb_queue_tail(&conn->data_q, skb);
3789	queue_work(hdev->workqueue, &hdev->tx_work);
3790}
3791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3792/* ---- HCI TX task (outgoing data) ---- */
3793
3794/* HCI Connection scheduler */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3795static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3796				     int *quote)
3797{
3798	struct hci_conn_hash *h = &hdev->conn_hash;
3799	struct hci_conn *conn = NULL, *c;
3800	unsigned int num = 0, min = ~0;
3801
3802	/* We don't have to lock device here. Connections are always
3803	 * added and removed with TX task disabled. */
3804
3805	rcu_read_lock();
3806
3807	list_for_each_entry_rcu(c, &h->list, list) {
3808		if (c->type != type || skb_queue_empty(&c->data_q))
3809			continue;
3810
3811		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3812			continue;
3813
3814		num++;
3815
3816		if (c->sent < min) {
3817			min  = c->sent;
3818			conn = c;
3819		}
3820
3821		if (hci_conn_num(hdev, type) == num)
3822			break;
3823	}
3824
3825	rcu_read_unlock();
3826
3827	if (conn) {
3828		int cnt, q;
3829
3830		switch (conn->type) {
3831		case ACL_LINK:
3832			cnt = hdev->acl_cnt;
3833			break;
3834		case SCO_LINK:
3835		case ESCO_LINK:
3836			cnt = hdev->sco_cnt;
3837			break;
3838		case LE_LINK:
3839			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3840			break;
3841		default:
3842			cnt = 0;
3843			bt_dev_err(hdev, "unknown link type %d", conn->type);
3844		}
3845
3846		q = cnt / num;
3847		*quote = q ? q : 1;
3848	} else
3849		*quote = 0;
3850
3851	BT_DBG("conn %p quote %d", conn, *quote);
3852	return conn;
3853}
3854
3855static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3856{
3857	struct hci_conn_hash *h = &hdev->conn_hash;
3858	struct hci_conn *c;
3859
3860	bt_dev_err(hdev, "link tx timeout");
3861
3862	rcu_read_lock();
3863
3864	/* Kill stalled connections */
3865	list_for_each_entry_rcu(c, &h->list, list) {
3866		if (c->type == type && c->sent) {
3867			bt_dev_err(hdev, "killing stalled connection %pMR",
3868				   &c->dst);
 
 
 
 
3869			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
 
3870		}
3871	}
3872
3873	rcu_read_unlock();
3874}
3875
3876static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3877				      int *quote)
3878{
3879	struct hci_conn_hash *h = &hdev->conn_hash;
3880	struct hci_chan *chan = NULL;
3881	unsigned int num = 0, min = ~0, cur_prio = 0;
3882	struct hci_conn *conn;
3883	int cnt, q, conn_num = 0;
3884
3885	BT_DBG("%s", hdev->name);
3886
3887	rcu_read_lock();
3888
3889	list_for_each_entry_rcu(conn, &h->list, list) {
3890		struct hci_chan *tmp;
3891
3892		if (conn->type != type)
3893			continue;
3894
3895		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3896			continue;
3897
3898		conn_num++;
3899
3900		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3901			struct sk_buff *skb;
3902
3903			if (skb_queue_empty(&tmp->data_q))
3904				continue;
3905
3906			skb = skb_peek(&tmp->data_q);
3907			if (skb->priority < cur_prio)
3908				continue;
3909
3910			if (skb->priority > cur_prio) {
3911				num = 0;
3912				min = ~0;
3913				cur_prio = skb->priority;
3914			}
3915
3916			num++;
3917
3918			if (conn->sent < min) {
3919				min  = conn->sent;
3920				chan = tmp;
3921			}
3922		}
3923
3924		if (hci_conn_num(hdev, type) == conn_num)
3925			break;
3926	}
3927
3928	rcu_read_unlock();
3929
3930	if (!chan)
3931		return NULL;
3932
3933	switch (chan->conn->type) {
3934	case ACL_LINK:
3935		cnt = hdev->acl_cnt;
3936		break;
3937	case AMP_LINK:
3938		cnt = hdev->block_cnt;
3939		break;
3940	case SCO_LINK:
3941	case ESCO_LINK:
3942		cnt = hdev->sco_cnt;
3943		break;
3944	case LE_LINK:
3945		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3946		break;
3947	default:
3948		cnt = 0;
3949		bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
3950	}
3951
3952	q = cnt / num;
3953	*quote = q ? q : 1;
3954	BT_DBG("chan %p quote %d", chan, *quote);
3955	return chan;
3956}
3957
3958static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3959{
3960	struct hci_conn_hash *h = &hdev->conn_hash;
3961	struct hci_conn *conn;
3962	int num = 0;
3963
3964	BT_DBG("%s", hdev->name);
3965
3966	rcu_read_lock();
3967
3968	list_for_each_entry_rcu(conn, &h->list, list) {
3969		struct hci_chan *chan;
3970
3971		if (conn->type != type)
3972			continue;
3973
3974		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3975			continue;
3976
3977		num++;
3978
3979		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3980			struct sk_buff *skb;
3981
3982			if (chan->sent) {
3983				chan->sent = 0;
3984				continue;
3985			}
3986
3987			if (skb_queue_empty(&chan->data_q))
3988				continue;
3989
3990			skb = skb_peek(&chan->data_q);
3991			if (skb->priority >= HCI_PRIO_MAX - 1)
3992				continue;
3993
3994			skb->priority = HCI_PRIO_MAX - 1;
3995
3996			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3997			       skb->priority);
3998		}
3999
4000		if (hci_conn_num(hdev, type) == num)
4001			break;
4002	}
4003
4004	rcu_read_unlock();
4005
4006}
4007
4008static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4009{
4010	/* Calculate count of blocks used by this packet */
4011	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4012}
4013
4014static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4015{
4016	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4017		/* ACL tx timeout must be longer than maximum
4018		 * link supervision timeout (40.9 seconds) */
4019		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4020				       HCI_ACL_TX_TIMEOUT))
4021			hci_link_tx_to(hdev, ACL_LINK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4022	}
4023}
4024
4025static void hci_sched_acl_pkt(struct hci_dev *hdev)
4026{
4027	unsigned int cnt = hdev->acl_cnt;
4028	struct hci_chan *chan;
4029	struct sk_buff *skb;
4030	int quote;
4031
4032	__check_timeout(hdev, cnt);
4033
4034	while (hdev->acl_cnt &&
4035	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
4036		u32 priority = (skb_peek(&chan->data_q))->priority;
4037		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4038			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4039			       skb->len, skb->priority);
4040
4041			/* Stop if priority has changed */
4042			if (skb->priority < priority)
4043				break;
4044
4045			skb = skb_dequeue(&chan->data_q);
4046
4047			hci_conn_enter_active_mode(chan->conn,
4048						   bt_cb(skb)->force_active);
4049
4050			hci_send_frame(hdev, skb);
4051			hdev->acl_last_tx = jiffies;
4052
4053			hdev->acl_cnt--;
4054			chan->sent++;
4055			chan->conn->sent++;
 
 
 
 
4056		}
4057	}
4058
4059	if (cnt != hdev->acl_cnt)
4060		hci_prio_recalculate(hdev, ACL_LINK);
4061}
4062
4063static void hci_sched_acl_blk(struct hci_dev *hdev)
4064{
4065	unsigned int cnt = hdev->block_cnt;
4066	struct hci_chan *chan;
4067	struct sk_buff *skb;
4068	int quote;
4069	u8 type;
4070
4071	__check_timeout(hdev, cnt);
4072
4073	BT_DBG("%s", hdev->name);
4074
4075	if (hdev->dev_type == HCI_AMP)
4076		type = AMP_LINK;
4077	else
4078		type = ACL_LINK;
4079
 
 
4080	while (hdev->block_cnt > 0 &&
4081	       (chan = hci_chan_sent(hdev, type, &quote))) {
4082		u32 priority = (skb_peek(&chan->data_q))->priority;
4083		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4084			int blocks;
4085
4086			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4087			       skb->len, skb->priority);
4088
4089			/* Stop if priority has changed */
4090			if (skb->priority < priority)
4091				break;
4092
4093			skb = skb_dequeue(&chan->data_q);
4094
4095			blocks = __get_blocks(hdev, skb);
4096			if (blocks > hdev->block_cnt)
4097				return;
4098
4099			hci_conn_enter_active_mode(chan->conn,
4100						   bt_cb(skb)->force_active);
4101
4102			hci_send_frame(hdev, skb);
4103			hdev->acl_last_tx = jiffies;
4104
4105			hdev->block_cnt -= blocks;
4106			quote -= blocks;
4107
4108			chan->sent += blocks;
4109			chan->conn->sent += blocks;
4110		}
4111	}
4112
4113	if (cnt != hdev->block_cnt)
4114		hci_prio_recalculate(hdev, type);
4115}
4116
4117static void hci_sched_acl(struct hci_dev *hdev)
4118{
4119	BT_DBG("%s", hdev->name);
4120
4121	/* No ACL link over BR/EDR controller */
4122	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4123		return;
4124
4125	/* No AMP link over AMP controller */
4126	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4127		return;
4128
4129	switch (hdev->flow_ctl_mode) {
4130	case HCI_FLOW_CTL_MODE_PACKET_BASED:
4131		hci_sched_acl_pkt(hdev);
4132		break;
4133
4134	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4135		hci_sched_acl_blk(hdev);
4136		break;
4137	}
4138}
4139
4140/* Schedule SCO */
4141static void hci_sched_sco(struct hci_dev *hdev)
4142{
4143	struct hci_conn *conn;
4144	struct sk_buff *skb;
4145	int quote;
4146
4147	BT_DBG("%s", hdev->name);
4148
4149	if (!hci_conn_num(hdev, SCO_LINK))
4150		return;
4151
4152	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
4153		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4154			BT_DBG("skb %p len %d", skb, skb->len);
4155			hci_send_frame(hdev, skb);
4156
4157			conn->sent++;
4158			if (conn->sent == ~0)
4159				conn->sent = 0;
4160		}
4161	}
4162}
4163
4164static void hci_sched_esco(struct hci_dev *hdev)
4165{
4166	struct hci_conn *conn;
4167	struct sk_buff *skb;
4168	int quote;
4169
4170	BT_DBG("%s", hdev->name);
4171
4172	if (!hci_conn_num(hdev, ESCO_LINK))
4173		return;
4174
4175	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4176						     &quote))) {
4177		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4178			BT_DBG("skb %p len %d", skb, skb->len);
4179			hci_send_frame(hdev, skb);
4180
4181			conn->sent++;
4182			if (conn->sent == ~0)
4183				conn->sent = 0;
4184		}
4185	}
4186}
4187
4188static void hci_sched_le(struct hci_dev *hdev)
4189{
4190	struct hci_chan *chan;
4191	struct sk_buff *skb;
4192	int quote, cnt, tmp;
4193
4194	BT_DBG("%s", hdev->name);
4195
4196	if (!hci_conn_num(hdev, LE_LINK))
4197		return;
4198
4199	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4200		/* LE tx timeout must be longer than maximum
4201		 * link supervision timeout (40.9 seconds) */
4202		if (!hdev->le_cnt && hdev->le_pkts &&
4203		    time_after(jiffies, hdev->le_last_tx + HZ * 45))
4204			hci_link_tx_to(hdev, LE_LINK);
4205	}
4206
4207	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
 
 
 
4208	tmp = cnt;
4209	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
4210		u32 priority = (skb_peek(&chan->data_q))->priority;
4211		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4212			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4213			       skb->len, skb->priority);
4214
4215			/* Stop if priority has changed */
4216			if (skb->priority < priority)
4217				break;
4218
4219			skb = skb_dequeue(&chan->data_q);
4220
4221			hci_send_frame(hdev, skb);
4222			hdev->le_last_tx = jiffies;
4223
4224			cnt--;
4225			chan->sent++;
4226			chan->conn->sent++;
 
 
 
 
4227		}
4228	}
4229
4230	if (hdev->le_pkts)
4231		hdev->le_cnt = cnt;
4232	else
4233		hdev->acl_cnt = cnt;
4234
4235	if (cnt != tmp)
4236		hci_prio_recalculate(hdev, LE_LINK);
4237}
4238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4239static void hci_tx_work(struct work_struct *work)
4240{
4241	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4242	struct sk_buff *skb;
4243
4244	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4245	       hdev->sco_cnt, hdev->le_cnt);
4246
4247	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4248		/* Schedule queues and send stuff to HCI driver */
4249		hci_sched_acl(hdev);
4250		hci_sched_sco(hdev);
4251		hci_sched_esco(hdev);
 
 
4252		hci_sched_le(hdev);
4253	}
4254
4255	/* Send next queued raw (unknown type) packet */
4256	while ((skb = skb_dequeue(&hdev->raw_q)))
4257		hci_send_frame(hdev, skb);
4258}
4259
4260/* ----- HCI RX task (incoming data processing) ----- */
4261
4262/* ACL data packet */
4263static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4264{
4265	struct hci_acl_hdr *hdr = (void *) skb->data;
4266	struct hci_conn *conn;
4267	__u16 handle, flags;
4268
4269	skb_pull(skb, HCI_ACL_HDR_SIZE);
4270
4271	handle = __le16_to_cpu(hdr->handle);
4272	flags  = hci_flags(handle);
4273	handle = hci_handle(handle);
4274
4275	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4276	       handle, flags);
4277
4278	hdev->stat.acl_rx++;
4279
4280	hci_dev_lock(hdev);
4281	conn = hci_conn_hash_lookup_handle(hdev, handle);
4282	hci_dev_unlock(hdev);
4283
4284	if (conn) {
4285		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4286
4287		/* Send to upper protocol */
4288		l2cap_recv_acldata(conn, skb, flags);
4289		return;
4290	} else {
4291		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4292			   handle);
4293	}
4294
4295	kfree_skb(skb);
4296}
4297
4298/* SCO data packet */
4299static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4300{
4301	struct hci_sco_hdr *hdr = (void *) skb->data;
4302	struct hci_conn *conn;
4303	__u16 handle;
4304
4305	skb_pull(skb, HCI_SCO_HDR_SIZE);
4306
4307	handle = __le16_to_cpu(hdr->handle);
 
 
4308
4309	BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
 
4310
4311	hdev->stat.sco_rx++;
4312
4313	hci_dev_lock(hdev);
4314	conn = hci_conn_hash_lookup_handle(hdev, handle);
4315	hci_dev_unlock(hdev);
4316
4317	if (conn) {
4318		/* Send to upper protocol */
 
4319		sco_recv_scodata(conn, skb);
4320		return;
4321	} else {
4322		bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4323			   handle);
 
4324	}
4325
 
 
 
 
 
4326	kfree_skb(skb);
4327}
4328
4329static bool hci_req_is_complete(struct hci_dev *hdev)
4330{
4331	struct sk_buff *skb;
4332
4333	skb = skb_peek(&hdev->cmd_q);
4334	if (!skb)
4335		return true;
4336
4337	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4338}
4339
4340static void hci_resend_last(struct hci_dev *hdev)
4341{
4342	struct hci_command_hdr *sent;
4343	struct sk_buff *skb;
4344	u16 opcode;
4345
4346	if (!hdev->sent_cmd)
4347		return;
4348
4349	sent = (void *) hdev->sent_cmd->data;
4350	opcode = __le16_to_cpu(sent->opcode);
4351	if (opcode == HCI_OP_RESET)
4352		return;
4353
4354	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4355	if (!skb)
4356		return;
4357
4358	skb_queue_head(&hdev->cmd_q, skb);
4359	queue_work(hdev->workqueue, &hdev->cmd_work);
4360}
4361
4362void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4363			  hci_req_complete_t *req_complete,
4364			  hci_req_complete_skb_t *req_complete_skb)
4365{
4366	struct sk_buff *skb;
4367	unsigned long flags;
4368
4369	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4370
4371	/* If the completed command doesn't match the last one that was
4372	 * sent we need to do special handling of it.
4373	 */
4374	if (!hci_sent_cmd_data(hdev, opcode)) {
4375		/* Some CSR based controllers generate a spontaneous
4376		 * reset complete event during init and any pending
4377		 * command will never be completed. In such a case we
4378		 * need to resend whatever was the last sent
4379		 * command.
4380		 */
4381		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4382			hci_resend_last(hdev);
4383
4384		return;
4385	}
4386
4387	/* If we reach this point this event matches the last command sent */
4388	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4389
4390	/* If the command succeeded and there's still more commands in
4391	 * this request the request is not yet complete.
4392	 */
4393	if (!status && !hci_req_is_complete(hdev))
4394		return;
4395
4396	/* If this was the last command in a request the complete
4397	 * callback would be found in hdev->sent_cmd instead of the
4398	 * command queue (hdev->cmd_q).
4399	 */
4400	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4401		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4402		return;
4403	}
4404
4405	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4406		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4407		return;
4408	}
4409
4410	/* Remove all pending commands belonging to this request */
4411	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4412	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4413		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4414			__skb_queue_head(&hdev->cmd_q, skb);
4415			break;
4416		}
4417
4418		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4419			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4420		else
4421			*req_complete = bt_cb(skb)->hci.req_complete;
4422		kfree_skb(skb);
4423	}
4424	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4425}
4426
4427static void hci_rx_work(struct work_struct *work)
4428{
4429	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4430	struct sk_buff *skb;
4431
4432	BT_DBG("%s", hdev->name);
4433
4434	while ((skb = skb_dequeue(&hdev->rx_q))) {
 
 
 
 
 
 
 
4435		/* Send copy to monitor */
4436		hci_send_to_monitor(hdev, skb);
4437
4438		if (atomic_read(&hdev->promisc)) {
4439			/* Send copy to the sockets */
4440			hci_send_to_sock(hdev, skb);
4441		}
4442
4443		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 
 
 
 
 
 
 
4444			kfree_skb(skb);
4445			continue;
4446		}
4447
4448		if (test_bit(HCI_INIT, &hdev->flags)) {
4449			/* Don't process data packets in this states. */
4450			switch (hci_skb_pkt_type(skb)) {
4451			case HCI_ACLDATA_PKT:
4452			case HCI_SCODATA_PKT:
 
4453				kfree_skb(skb);
4454				continue;
4455			}
4456		}
4457
4458		/* Process frame */
4459		switch (hci_skb_pkt_type(skb)) {
4460		case HCI_EVENT_PKT:
4461			BT_DBG("%s Event packet", hdev->name);
4462			hci_event_packet(hdev, skb);
4463			break;
4464
4465		case HCI_ACLDATA_PKT:
4466			BT_DBG("%s ACL data packet", hdev->name);
4467			hci_acldata_packet(hdev, skb);
4468			break;
4469
4470		case HCI_SCODATA_PKT:
4471			BT_DBG("%s SCO data packet", hdev->name);
4472			hci_scodata_packet(hdev, skb);
4473			break;
4474
 
 
 
 
 
4475		default:
4476			kfree_skb(skb);
4477			break;
4478		}
4479	}
4480}
4481
4482static void hci_cmd_work(struct work_struct *work)
4483{
4484	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4485	struct sk_buff *skb;
4486
4487	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4488	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4489
4490	/* Send queued commands */
4491	if (atomic_read(&hdev->cmd_cnt)) {
4492		skb = skb_dequeue(&hdev->cmd_q);
4493		if (!skb)
4494			return;
4495
4496		kfree_skb(hdev->sent_cmd);
4497
4498		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4499		if (hdev->sent_cmd) {
 
4500			if (hci_req_status_pend(hdev))
4501				hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4502			atomic_dec(&hdev->cmd_cnt);
4503			hci_send_frame(hdev, skb);
4504			if (test_bit(HCI_RESET, &hdev->flags))
 
 
 
 
 
 
4505				cancel_delayed_work(&hdev->cmd_timer);
4506			else
4507				schedule_delayed_work(&hdev->cmd_timer,
4508						      HCI_CMD_TIMEOUT);
 
4509		} else {
4510			skb_queue_head(&hdev->cmd_q, skb);
4511			queue_work(hdev->workqueue, &hdev->cmd_work);
4512		}
4513	}
4514}
v6.8
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
 
  29#include <linux/rfkill.h>
  30#include <linux/debugfs.h>
  31#include <linux/crypto.h>
  32#include <linux/kcov.h>
  33#include <linux/property.h>
  34#include <linux/suspend.h>
  35#include <linux/wait.h>
  36#include <asm/unaligned.h>
  37
  38#include <net/bluetooth/bluetooth.h>
  39#include <net/bluetooth/hci_core.h>
  40#include <net/bluetooth/l2cap.h>
  41#include <net/bluetooth/mgmt.h>
  42
  43#include "hci_request.h"
  44#include "hci_debugfs.h"
  45#include "smp.h"
  46#include "leds.h"
  47#include "msft.h"
  48#include "aosp.h"
  49#include "hci_codec.h"
  50
  51static void hci_rx_work(struct work_struct *work);
  52static void hci_cmd_work(struct work_struct *work);
  53static void hci_tx_work(struct work_struct *work);
  54
  55/* HCI device list */
  56LIST_HEAD(hci_dev_list);
  57DEFINE_RWLOCK(hci_dev_list_lock);
  58
  59/* HCI callback list */
  60LIST_HEAD(hci_cb_list);
  61DEFINE_MUTEX(hci_cb_list_lock);
  62
  63/* HCI ID Numbering */
  64static DEFINE_IDA(hci_index_ida);
  65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66static int hci_scan_req(struct hci_request *req, unsigned long opt)
  67{
  68	__u8 scan = opt;
  69
  70	BT_DBG("%s %x", req->hdev->name, scan);
  71
  72	/* Inquiry and Page scans */
  73	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
  74	return 0;
  75}
  76
  77static int hci_auth_req(struct hci_request *req, unsigned long opt)
  78{
  79	__u8 auth = opt;
  80
  81	BT_DBG("%s %x", req->hdev->name, auth);
  82
  83	/* Authentication */
  84	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
  85	return 0;
  86}
  87
  88static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
  89{
  90	__u8 encrypt = opt;
  91
  92	BT_DBG("%s %x", req->hdev->name, encrypt);
  93
  94	/* Encryption */
  95	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
  96	return 0;
  97}
  98
  99static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
 100{
 101	__le16 policy = cpu_to_le16(opt);
 102
 103	BT_DBG("%s %x", req->hdev->name, policy);
 104
 105	/* Default link policy */
 106	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 107	return 0;
 108}
 109
 110/* Get HCI device by index.
 111 * Device is held on return. */
 112struct hci_dev *hci_dev_get(int index)
 113{
 114	struct hci_dev *hdev = NULL, *d;
 115
 116	BT_DBG("%d", index);
 117
 118	if (index < 0)
 119		return NULL;
 120
 121	read_lock(&hci_dev_list_lock);
 122	list_for_each_entry(d, &hci_dev_list, list) {
 123		if (d->id == index) {
 124			hdev = hci_dev_hold(d);
 125			break;
 126		}
 127	}
 128	read_unlock(&hci_dev_list_lock);
 129	return hdev;
 130}
 131
 132/* ---- Inquiry support ---- */
 133
 134bool hci_discovery_active(struct hci_dev *hdev)
 135{
 136	struct discovery_state *discov = &hdev->discovery;
 137
 138	switch (discov->state) {
 139	case DISCOVERY_FINDING:
 140	case DISCOVERY_RESOLVING:
 141		return true;
 142
 143	default:
 144		return false;
 145	}
 146}
 147
 148void hci_discovery_set_state(struct hci_dev *hdev, int state)
 149{
 150	int old_state = hdev->discovery.state;
 151
 152	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
 153
 154	if (old_state == state)
 155		return;
 156
 157	hdev->discovery.state = state;
 158
 159	switch (state) {
 160	case DISCOVERY_STOPPED:
 161		hci_update_passive_scan(hdev);
 162
 163		if (old_state != DISCOVERY_STARTING)
 164			mgmt_discovering(hdev, 0);
 165		break;
 166	case DISCOVERY_STARTING:
 167		break;
 168	case DISCOVERY_FINDING:
 169		mgmt_discovering(hdev, 1);
 170		break;
 171	case DISCOVERY_RESOLVING:
 172		break;
 173	case DISCOVERY_STOPPING:
 174		break;
 175	}
 176}
 177
 178void hci_inquiry_cache_flush(struct hci_dev *hdev)
 179{
 180	struct discovery_state *cache = &hdev->discovery;
 181	struct inquiry_entry *p, *n;
 182
 183	list_for_each_entry_safe(p, n, &cache->all, all) {
 184		list_del(&p->all);
 185		kfree(p);
 186	}
 187
 188	INIT_LIST_HEAD(&cache->unknown);
 189	INIT_LIST_HEAD(&cache->resolve);
 190}
 191
 192struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
 193					       bdaddr_t *bdaddr)
 194{
 195	struct discovery_state *cache = &hdev->discovery;
 196	struct inquiry_entry *e;
 197
 198	BT_DBG("cache %p, %pMR", cache, bdaddr);
 199
 200	list_for_each_entry(e, &cache->all, all) {
 201		if (!bacmp(&e->data.bdaddr, bdaddr))
 202			return e;
 203	}
 204
 205	return NULL;
 206}
 207
 208struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
 209						       bdaddr_t *bdaddr)
 210{
 211	struct discovery_state *cache = &hdev->discovery;
 212	struct inquiry_entry *e;
 213
 214	BT_DBG("cache %p, %pMR", cache, bdaddr);
 215
 216	list_for_each_entry(e, &cache->unknown, list) {
 217		if (!bacmp(&e->data.bdaddr, bdaddr))
 218			return e;
 219	}
 220
 221	return NULL;
 222}
 223
 224struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
 225						       bdaddr_t *bdaddr,
 226						       int state)
 227{
 228	struct discovery_state *cache = &hdev->discovery;
 229	struct inquiry_entry *e;
 230
 231	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
 232
 233	list_for_each_entry(e, &cache->resolve, list) {
 234		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
 235			return e;
 236		if (!bacmp(&e->data.bdaddr, bdaddr))
 237			return e;
 238	}
 239
 240	return NULL;
 241}
 242
 243void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
 244				      struct inquiry_entry *ie)
 245{
 246	struct discovery_state *cache = &hdev->discovery;
 247	struct list_head *pos = &cache->resolve;
 248	struct inquiry_entry *p;
 249
 250	list_del(&ie->list);
 251
 252	list_for_each_entry(p, &cache->resolve, list) {
 253		if (p->name_state != NAME_PENDING &&
 254		    abs(p->data.rssi) >= abs(ie->data.rssi))
 255			break;
 256		pos = &p->list;
 257	}
 258
 259	list_add(&ie->list, pos);
 260}
 261
 262u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
 263			     bool name_known)
 264{
 265	struct discovery_state *cache = &hdev->discovery;
 266	struct inquiry_entry *ie;
 267	u32 flags = 0;
 268
 269	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
 270
 271	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
 272
 273	if (!data->ssp_mode)
 274		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
 275
 276	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
 277	if (ie) {
 278		if (!ie->data.ssp_mode)
 279			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
 280
 281		if (ie->name_state == NAME_NEEDED &&
 282		    data->rssi != ie->data.rssi) {
 283			ie->data.rssi = data->rssi;
 284			hci_inquiry_cache_update_resolve(hdev, ie);
 285		}
 286
 287		goto update;
 288	}
 289
 290	/* Entry not in the cache. Add new one. */
 291	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
 292	if (!ie) {
 293		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
 294		goto done;
 295	}
 296
 297	list_add(&ie->all, &cache->all);
 298
 299	if (name_known) {
 300		ie->name_state = NAME_KNOWN;
 301	} else {
 302		ie->name_state = NAME_NOT_KNOWN;
 303		list_add(&ie->list, &cache->unknown);
 304	}
 305
 306update:
 307	if (name_known && ie->name_state != NAME_KNOWN &&
 308	    ie->name_state != NAME_PENDING) {
 309		ie->name_state = NAME_KNOWN;
 310		list_del(&ie->list);
 311	}
 312
 313	memcpy(&ie->data, data, sizeof(*data));
 314	ie->timestamp = jiffies;
 315	cache->timestamp = jiffies;
 316
 317	if (ie->name_state == NAME_NOT_KNOWN)
 318		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
 319
 320done:
 321	return flags;
 322}
 323
 324static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
 325{
 326	struct discovery_state *cache = &hdev->discovery;
 327	struct inquiry_info *info = (struct inquiry_info *) buf;
 328	struct inquiry_entry *e;
 329	int copied = 0;
 330
 331	list_for_each_entry(e, &cache->all, all) {
 332		struct inquiry_data *data = &e->data;
 333
 334		if (copied >= num)
 335			break;
 336
 337		bacpy(&info->bdaddr, &data->bdaddr);
 338		info->pscan_rep_mode	= data->pscan_rep_mode;
 339		info->pscan_period_mode	= data->pscan_period_mode;
 340		info->pscan_mode	= data->pscan_mode;
 341		memcpy(info->dev_class, data->dev_class, 3);
 342		info->clock_offset	= data->clock_offset;
 343
 344		info++;
 345		copied++;
 346	}
 347
 348	BT_DBG("cache %p, copied %d", cache, copied);
 349	return copied;
 350}
 351
 352static int hci_inq_req(struct hci_request *req, unsigned long opt)
 353{
 354	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
 355	struct hci_dev *hdev = req->hdev;
 356	struct hci_cp_inquiry cp;
 357
 358	BT_DBG("%s", hdev->name);
 359
 360	if (test_bit(HCI_INQUIRY, &hdev->flags))
 361		return 0;
 362
 363	/* Start Inquiry */
 364	memcpy(&cp.lap, &ir->lap, 3);
 365	cp.length  = ir->length;
 366	cp.num_rsp = ir->num_rsp;
 367	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
 368
 369	return 0;
 370}
 371
 372int hci_inquiry(void __user *arg)
 373{
 374	__u8 __user *ptr = arg;
 375	struct hci_inquiry_req ir;
 376	struct hci_dev *hdev;
 377	int err = 0, do_inquiry = 0, max_rsp;
 378	long timeo;
 379	__u8 *buf;
 380
 381	if (copy_from_user(&ir, ptr, sizeof(ir)))
 382		return -EFAULT;
 383
 384	hdev = hci_dev_get(ir.dev_id);
 385	if (!hdev)
 386		return -ENODEV;
 387
 388	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 389		err = -EBUSY;
 390		goto done;
 391	}
 392
 393	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 394		err = -EOPNOTSUPP;
 395		goto done;
 396	}
 397
 398	if (hdev->dev_type != HCI_PRIMARY) {
 399		err = -EOPNOTSUPP;
 400		goto done;
 401	}
 402
 403	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 404		err = -EOPNOTSUPP;
 405		goto done;
 406	}
 407
 408	/* Restrict maximum inquiry length to 60 seconds */
 409	if (ir.length > 60) {
 410		err = -EINVAL;
 411		goto done;
 412	}
 413
 414	hci_dev_lock(hdev);
 415	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
 416	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
 417		hci_inquiry_cache_flush(hdev);
 418		do_inquiry = 1;
 419	}
 420	hci_dev_unlock(hdev);
 421
 422	timeo = ir.length * msecs_to_jiffies(2000);
 423
 424	if (do_inquiry) {
 425		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
 426				   timeo, NULL);
 427		if (err < 0)
 428			goto done;
 429
 430		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
 431		 * cleared). If it is interrupted by a signal, return -EINTR.
 432		 */
 433		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
 434				TASK_INTERRUPTIBLE)) {
 435			err = -EINTR;
 436			goto done;
 437		}
 438	}
 439
 440	/* for unlimited number of responses we will use buffer with
 441	 * 255 entries
 442	 */
 443	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
 444
 445	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
 446	 * copy it to the user space.
 447	 */
 448	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
 449	if (!buf) {
 450		err = -ENOMEM;
 451		goto done;
 452	}
 453
 454	hci_dev_lock(hdev);
 455	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
 456	hci_dev_unlock(hdev);
 457
 458	BT_DBG("num_rsp %d", ir.num_rsp);
 459
 460	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
 461		ptr += sizeof(ir);
 462		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
 463				 ir.num_rsp))
 464			err = -EFAULT;
 465	} else
 466		err = -EFAULT;
 467
 468	kfree(buf);
 469
 470done:
 471	hci_dev_put(hdev);
 472	return err;
 473}
 474
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 475static int hci_dev_do_open(struct hci_dev *hdev)
 476{
 477	int ret = 0;
 478
 479	BT_DBG("%s %p", hdev->name, hdev);
 480
 481	hci_req_sync_lock(hdev);
 482
 483	ret = hci_dev_open_sync(hdev);
 
 
 
 484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 485	hci_req_sync_unlock(hdev);
 486	return ret;
 487}
 488
 489/* ---- HCI ioctl helpers ---- */
 490
 491int hci_dev_open(__u16 dev)
 492{
 493	struct hci_dev *hdev;
 494	int err;
 495
 496	hdev = hci_dev_get(dev);
 497	if (!hdev)
 498		return -ENODEV;
 499
 500	/* Devices that are marked as unconfigured can only be powered
 501	 * up as user channel. Trying to bring them up as normal devices
 502	 * will result into a failure. Only user channel operation is
 503	 * possible.
 504	 *
 505	 * When this function is called for a user channel, the flag
 506	 * HCI_USER_CHANNEL will be set first before attempting to
 507	 * open the device.
 508	 */
 509	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
 510	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 511		err = -EOPNOTSUPP;
 512		goto done;
 513	}
 514
 515	/* We need to ensure that no other power on/off work is pending
 516	 * before proceeding to call hci_dev_do_open. This is
 517	 * particularly important if the setup procedure has not yet
 518	 * completed.
 519	 */
 520	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
 521		cancel_delayed_work(&hdev->power_off);
 522
 523	/* After this call it is guaranteed that the setup procedure
 524	 * has finished. This means that error conditions like RFKILL
 525	 * or no valid public or static random address apply.
 526	 */
 527	flush_workqueue(hdev->req_workqueue);
 528
 529	/* For controllers not using the management interface and that
 530	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
 531	 * so that pairing works for them. Once the management interface
 532	 * is in use this bit will be cleared again and userspace has
 533	 * to explicitly enable it.
 534	 */
 535	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
 536	    !hci_dev_test_flag(hdev, HCI_MGMT))
 537		hci_dev_set_flag(hdev, HCI_BONDABLE);
 538
 539	err = hci_dev_do_open(hdev);
 540
 541done:
 542	hci_dev_put(hdev);
 543	return err;
 544}
 545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 546int hci_dev_do_close(struct hci_dev *hdev)
 547{
 548	int err;
 549
 550	BT_DBG("%s %p", hdev->name, hdev);
 551
 
 
 
 
 
 
 
 
 
 
 
 552	hci_req_sync_lock(hdev);
 553
 554	err = hci_dev_close_sync(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 555
 556	hci_req_sync_unlock(hdev);
 557
 558	return err;
 
 559}
 560
 561int hci_dev_close(__u16 dev)
 562{
 563	struct hci_dev *hdev;
 564	int err;
 565
 566	hdev = hci_dev_get(dev);
 567	if (!hdev)
 568		return -ENODEV;
 569
 570	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 571		err = -EBUSY;
 572		goto done;
 573	}
 574
 575	cancel_work_sync(&hdev->power_on);
 576	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
 577		cancel_delayed_work(&hdev->power_off);
 578
 579	err = hci_dev_do_close(hdev);
 580
 581done:
 582	hci_dev_put(hdev);
 583	return err;
 584}
 585
 586static int hci_dev_do_reset(struct hci_dev *hdev)
 587{
 588	int ret;
 589
 590	BT_DBG("%s %p", hdev->name, hdev);
 591
 592	hci_req_sync_lock(hdev);
 593
 594	/* Drop queues */
 595	skb_queue_purge(&hdev->rx_q);
 596	skb_queue_purge(&hdev->cmd_q);
 597
 598	/* Cancel these to avoid queueing non-chained pending work */
 599	hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
 600	/* Wait for
 601	 *
 602	 *    if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
 603	 *        queue_delayed_work(&hdev->{cmd,ncmd}_timer)
 604	 *
 605	 * inside RCU section to see the flag or complete scheduling.
 606	 */
 607	synchronize_rcu();
 608	/* Explicitly cancel works in case scheduled after setting the flag. */
 609	cancel_delayed_work(&hdev->cmd_timer);
 610	cancel_delayed_work(&hdev->ncmd_timer);
 611
 612	/* Avoid potential lockdep warnings from the *_flush() calls by
 613	 * ensuring the workqueue is empty up front.
 614	 */
 615	drain_workqueue(hdev->workqueue);
 616
 617	hci_dev_lock(hdev);
 618	hci_inquiry_cache_flush(hdev);
 619	hci_conn_hash_flush(hdev);
 620	hci_dev_unlock(hdev);
 621
 622	if (hdev->flush)
 623		hdev->flush(hdev);
 624
 625	hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
 626
 627	atomic_set(&hdev->cmd_cnt, 1);
 628	hdev->acl_cnt = 0;
 629	hdev->sco_cnt = 0;
 630	hdev->le_cnt = 0;
 631	hdev->iso_cnt = 0;
 632
 633	ret = hci_reset_sync(hdev);
 634
 635	hci_req_sync_unlock(hdev);
 636	return ret;
 637}
 638
 639int hci_dev_reset(__u16 dev)
 640{
 641	struct hci_dev *hdev;
 642	int err;
 643
 644	hdev = hci_dev_get(dev);
 645	if (!hdev)
 646		return -ENODEV;
 647
 648	if (!test_bit(HCI_UP, &hdev->flags)) {
 649		err = -ENETDOWN;
 650		goto done;
 651	}
 652
 653	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 654		err = -EBUSY;
 655		goto done;
 656	}
 657
 658	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 659		err = -EOPNOTSUPP;
 660		goto done;
 661	}
 662
 663	err = hci_dev_do_reset(hdev);
 664
 665done:
 666	hci_dev_put(hdev);
 667	return err;
 668}
 669
 670int hci_dev_reset_stat(__u16 dev)
 671{
 672	struct hci_dev *hdev;
 673	int ret = 0;
 674
 675	hdev = hci_dev_get(dev);
 676	if (!hdev)
 677		return -ENODEV;
 678
 679	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 680		ret = -EBUSY;
 681		goto done;
 682	}
 683
 684	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 685		ret = -EOPNOTSUPP;
 686		goto done;
 687	}
 688
 689	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
 690
 691done:
 692	hci_dev_put(hdev);
 693	return ret;
 694}
 695
 696static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
 697{
 698	bool conn_changed, discov_changed;
 699
 700	BT_DBG("%s scan 0x%02x", hdev->name, scan);
 701
 702	if ((scan & SCAN_PAGE))
 703		conn_changed = !hci_dev_test_and_set_flag(hdev,
 704							  HCI_CONNECTABLE);
 705	else
 706		conn_changed = hci_dev_test_and_clear_flag(hdev,
 707							   HCI_CONNECTABLE);
 708
 709	if ((scan & SCAN_INQUIRY)) {
 710		discov_changed = !hci_dev_test_and_set_flag(hdev,
 711							    HCI_DISCOVERABLE);
 712	} else {
 713		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
 714		discov_changed = hci_dev_test_and_clear_flag(hdev,
 715							     HCI_DISCOVERABLE);
 716	}
 717
 718	if (!hci_dev_test_flag(hdev, HCI_MGMT))
 719		return;
 720
 721	if (conn_changed || discov_changed) {
 722		/* In case this was disabled through mgmt */
 723		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
 724
 725		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 726			hci_update_adv_data(hdev, hdev->cur_adv_instance);
 727
 728		mgmt_new_settings(hdev);
 729	}
 730}
 731
 732int hci_dev_cmd(unsigned int cmd, void __user *arg)
 733{
 734	struct hci_dev *hdev;
 735	struct hci_dev_req dr;
 736	int err = 0;
 737
 738	if (copy_from_user(&dr, arg, sizeof(dr)))
 739		return -EFAULT;
 740
 741	hdev = hci_dev_get(dr.dev_id);
 742	if (!hdev)
 743		return -ENODEV;
 744
 745	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 746		err = -EBUSY;
 747		goto done;
 748	}
 749
 750	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 751		err = -EOPNOTSUPP;
 752		goto done;
 753	}
 754
 755	if (hdev->dev_type != HCI_PRIMARY) {
 756		err = -EOPNOTSUPP;
 757		goto done;
 758	}
 759
 760	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 761		err = -EOPNOTSUPP;
 762		goto done;
 763	}
 764
 765	switch (cmd) {
 766	case HCISETAUTH:
 767		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
 768				   HCI_INIT_TIMEOUT, NULL);
 769		break;
 770
 771	case HCISETENCRYPT:
 772		if (!lmp_encrypt_capable(hdev)) {
 773			err = -EOPNOTSUPP;
 774			break;
 775		}
 776
 777		if (!test_bit(HCI_AUTH, &hdev->flags)) {
 778			/* Auth must be enabled first */
 779			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
 780					   HCI_INIT_TIMEOUT, NULL);
 781			if (err)
 782				break;
 783		}
 784
 785		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
 786				   HCI_INIT_TIMEOUT, NULL);
 787		break;
 788
 789	case HCISETSCAN:
 790		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
 791				   HCI_INIT_TIMEOUT, NULL);
 792
 793		/* Ensure that the connectable and discoverable states
 794		 * get correctly modified as this was a non-mgmt change.
 795		 */
 796		if (!err)
 797			hci_update_passive_scan_state(hdev, dr.dev_opt);
 798		break;
 799
 800	case HCISETLINKPOL:
 801		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
 802				   HCI_INIT_TIMEOUT, NULL);
 803		break;
 804
 805	case HCISETLINKMODE:
 806		hdev->link_mode = ((__u16) dr.dev_opt) &
 807					(HCI_LM_MASTER | HCI_LM_ACCEPT);
 808		break;
 809
 810	case HCISETPTYPE:
 811		if (hdev->pkt_type == (__u16) dr.dev_opt)
 812			break;
 813
 814		hdev->pkt_type = (__u16) dr.dev_opt;
 815		mgmt_phy_configuration_changed(hdev, NULL);
 816		break;
 817
 818	case HCISETACLMTU:
 819		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
 820		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
 821		break;
 822
 823	case HCISETSCOMTU:
 824		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
 825		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
 826		break;
 827
 828	default:
 829		err = -EINVAL;
 830		break;
 831	}
 832
 833done:
 834	hci_dev_put(hdev);
 835	return err;
 836}
 837
 838int hci_get_dev_list(void __user *arg)
 839{
 840	struct hci_dev *hdev;
 841	struct hci_dev_list_req *dl;
 842	struct hci_dev_req *dr;
 843	int n = 0, size, err;
 844	__u16 dev_num;
 845
 846	if (get_user(dev_num, (__u16 __user *) arg))
 847		return -EFAULT;
 848
 849	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
 850		return -EINVAL;
 851
 852	size = sizeof(*dl) + dev_num * sizeof(*dr);
 853
 854	dl = kzalloc(size, GFP_KERNEL);
 855	if (!dl)
 856		return -ENOMEM;
 857
 858	dr = dl->dev_req;
 859
 860	read_lock(&hci_dev_list_lock);
 861	list_for_each_entry(hdev, &hci_dev_list, list) {
 862		unsigned long flags = hdev->flags;
 863
 864		/* When the auto-off is configured it means the transport
 865		 * is running, but in that case still indicate that the
 866		 * device is actually down.
 867		 */
 868		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
 869			flags &= ~BIT(HCI_UP);
 870
 871		(dr + n)->dev_id  = hdev->id;
 872		(dr + n)->dev_opt = flags;
 873
 874		if (++n >= dev_num)
 875			break;
 876	}
 877	read_unlock(&hci_dev_list_lock);
 878
 879	dl->dev_num = n;
 880	size = sizeof(*dl) + n * sizeof(*dr);
 881
 882	err = copy_to_user(arg, dl, size);
 883	kfree(dl);
 884
 885	return err ? -EFAULT : 0;
 886}
 887
 888int hci_get_dev_info(void __user *arg)
 889{
 890	struct hci_dev *hdev;
 891	struct hci_dev_info di;
 892	unsigned long flags;
 893	int err = 0;
 894
 895	if (copy_from_user(&di, arg, sizeof(di)))
 896		return -EFAULT;
 897
 898	hdev = hci_dev_get(di.dev_id);
 899	if (!hdev)
 900		return -ENODEV;
 901
 902	/* When the auto-off is configured it means the transport
 903	 * is running, but in that case still indicate that the
 904	 * device is actually down.
 905	 */
 906	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
 907		flags = hdev->flags & ~BIT(HCI_UP);
 908	else
 909		flags = hdev->flags;
 910
 911	strcpy(di.name, hdev->name);
 912	di.bdaddr   = hdev->bdaddr;
 913	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
 914	di.flags    = flags;
 915	di.pkt_type = hdev->pkt_type;
 916	if (lmp_bredr_capable(hdev)) {
 917		di.acl_mtu  = hdev->acl_mtu;
 918		di.acl_pkts = hdev->acl_pkts;
 919		di.sco_mtu  = hdev->sco_mtu;
 920		di.sco_pkts = hdev->sco_pkts;
 921	} else {
 922		di.acl_mtu  = hdev->le_mtu;
 923		di.acl_pkts = hdev->le_pkts;
 924		di.sco_mtu  = 0;
 925		di.sco_pkts = 0;
 926	}
 927	di.link_policy = hdev->link_policy;
 928	di.link_mode   = hdev->link_mode;
 929
 930	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
 931	memcpy(&di.features, &hdev->features, sizeof(di.features));
 932
 933	if (copy_to_user(arg, &di, sizeof(di)))
 934		err = -EFAULT;
 935
 936	hci_dev_put(hdev);
 937
 938	return err;
 939}
 940
 941/* ---- Interface to HCI drivers ---- */
 942
 943static int hci_rfkill_set_block(void *data, bool blocked)
 944{
 945	struct hci_dev *hdev = data;
 946
 947	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
 948
 949	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
 950		return -EBUSY;
 951
 952	if (blocked) {
 953		hci_dev_set_flag(hdev, HCI_RFKILLED);
 954		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 955		    !hci_dev_test_flag(hdev, HCI_CONFIG))
 956			hci_dev_do_close(hdev);
 957	} else {
 958		hci_dev_clear_flag(hdev, HCI_RFKILLED);
 959	}
 960
 961	return 0;
 962}
 963
 964static const struct rfkill_ops hci_rfkill_ops = {
 965	.set_block = hci_rfkill_set_block,
 966};
 967
 968static void hci_power_on(struct work_struct *work)
 969{
 970	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
 971	int err;
 972
 973	BT_DBG("%s", hdev->name);
 974
 975	if (test_bit(HCI_UP, &hdev->flags) &&
 976	    hci_dev_test_flag(hdev, HCI_MGMT) &&
 977	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
 978		cancel_delayed_work(&hdev->power_off);
 979		err = hci_powered_update_sync(hdev);
 
 
 980		mgmt_power_on(hdev, err);
 981		return;
 982	}
 983
 984	err = hci_dev_do_open(hdev);
 985	if (err < 0) {
 986		hci_dev_lock(hdev);
 987		mgmt_set_powered_failed(hdev, err);
 988		hci_dev_unlock(hdev);
 989		return;
 990	}
 991
 992	/* During the HCI setup phase, a few error conditions are
 993	 * ignored and they need to be checked now. If they are still
 994	 * valid, it is important to turn the device back off.
 995	 */
 996	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
 997	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
 998	    (hdev->dev_type == HCI_PRIMARY &&
 999	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1000	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
1001		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
1002		hci_dev_do_close(hdev);
1003	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
1004		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
1005				   HCI_AUTO_OFF_TIMEOUT);
1006	}
1007
1008	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
1009		/* For unconfigured devices, set the HCI_RAW flag
1010		 * so that userspace can easily identify them.
1011		 */
1012		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1013			set_bit(HCI_RAW, &hdev->flags);
1014
1015		/* For fully configured devices, this will send
1016		 * the Index Added event. For unconfigured devices,
1017		 * it will send Unconfigued Index Added event.
1018		 *
1019		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
1020		 * and no event will be send.
1021		 */
1022		mgmt_index_added(hdev);
1023	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
1024		/* When the controller is now configured, then it
1025		 * is important to clear the HCI_RAW flag.
1026		 */
1027		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1028			clear_bit(HCI_RAW, &hdev->flags);
1029
1030		/* Powering on the controller with HCI_CONFIG set only
1031		 * happens with the transition from unconfigured to
1032		 * configured. This will send the Index Added event.
1033		 */
1034		mgmt_index_added(hdev);
1035	}
1036}
1037
1038static void hci_power_off(struct work_struct *work)
1039{
1040	struct hci_dev *hdev = container_of(work, struct hci_dev,
1041					    power_off.work);
1042
1043	BT_DBG("%s", hdev->name);
1044
1045	hci_dev_do_close(hdev);
1046}
1047
1048static void hci_error_reset(struct work_struct *work)
1049{
1050	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1051
1052	hci_dev_hold(hdev);
1053	BT_DBG("%s", hdev->name);
1054
1055	if (hdev->hw_error)
1056		hdev->hw_error(hdev, hdev->hw_error_code);
1057	else
1058		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
1059
1060	if (!hci_dev_do_close(hdev))
1061		hci_dev_do_open(hdev);
1062
1063	hci_dev_put(hdev);
1064}
1065
1066void hci_uuids_clear(struct hci_dev *hdev)
1067{
1068	struct bt_uuid *uuid, *tmp;
1069
1070	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1071		list_del(&uuid->list);
1072		kfree(uuid);
1073	}
1074}
1075
1076void hci_link_keys_clear(struct hci_dev *hdev)
1077{
1078	struct link_key *key, *tmp;
1079
1080	list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
1081		list_del_rcu(&key->list);
1082		kfree_rcu(key, rcu);
1083	}
1084}
1085
1086void hci_smp_ltks_clear(struct hci_dev *hdev)
1087{
1088	struct smp_ltk *k, *tmp;
1089
1090	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1091		list_del_rcu(&k->list);
1092		kfree_rcu(k, rcu);
1093	}
1094}
1095
1096void hci_smp_irks_clear(struct hci_dev *hdev)
1097{
1098	struct smp_irk *k, *tmp;
1099
1100	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1101		list_del_rcu(&k->list);
1102		kfree_rcu(k, rcu);
1103	}
1104}
1105
1106void hci_blocked_keys_clear(struct hci_dev *hdev)
1107{
1108	struct blocked_key *b, *tmp;
1109
1110	list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
1111		list_del_rcu(&b->list);
1112		kfree_rcu(b, rcu);
1113	}
1114}
1115
1116bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1117{
1118	bool blocked = false;
1119	struct blocked_key *b;
1120
1121	rcu_read_lock();
1122	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1123		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1124			blocked = true;
1125			break;
1126		}
1127	}
1128
1129	rcu_read_unlock();
1130	return blocked;
1131}
1132
1133struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1134{
1135	struct link_key *k;
1136
1137	rcu_read_lock();
1138	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1139		if (bacmp(bdaddr, &k->bdaddr) == 0) {
1140			rcu_read_unlock();
1141
1142			if (hci_is_blocked_key(hdev,
1143					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
1144					       k->val)) {
1145				bt_dev_warn_ratelimited(hdev,
1146							"Link key blocked for %pMR",
1147							&k->bdaddr);
1148				return NULL;
1149			}
1150
1151			return k;
1152		}
1153	}
1154	rcu_read_unlock();
1155
1156	return NULL;
1157}
1158
1159static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1160			       u8 key_type, u8 old_key_type)
1161{
1162	/* Legacy key */
1163	if (key_type < 0x03)
1164		return true;
1165
1166	/* Debug keys are insecure so don't store them persistently */
1167	if (key_type == HCI_LK_DEBUG_COMBINATION)
1168		return false;
1169
1170	/* Changed combination key and there's no previous one */
1171	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1172		return false;
1173
1174	/* Security mode 3 case */
1175	if (!conn)
1176		return true;
1177
1178	/* BR/EDR key derived using SC from an LE link */
1179	if (conn->type == LE_LINK)
1180		return true;
1181
1182	/* Neither local nor remote side had no-bonding as requirement */
1183	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1184		return true;
1185
1186	/* Local side had dedicated bonding as requirement */
1187	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1188		return true;
1189
1190	/* Remote side had dedicated bonding as requirement */
1191	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1192		return true;
1193
1194	/* If none of the above criteria match, then don't store the key
1195	 * persistently */
1196	return false;
1197}
1198
1199static u8 ltk_role(u8 type)
1200{
1201	if (type == SMP_LTK)
1202		return HCI_ROLE_MASTER;
1203
1204	return HCI_ROLE_SLAVE;
1205}
1206
1207struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1208			     u8 addr_type, u8 role)
1209{
1210	struct smp_ltk *k;
1211
1212	rcu_read_lock();
1213	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1214		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1215			continue;
1216
1217		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1218			rcu_read_unlock();
1219
1220			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1221					       k->val)) {
1222				bt_dev_warn_ratelimited(hdev,
1223							"LTK blocked for %pMR",
1224							&k->bdaddr);
1225				return NULL;
1226			}
1227
1228			return k;
1229		}
1230	}
1231	rcu_read_unlock();
1232
1233	return NULL;
1234}
1235
1236struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1237{
1238	struct smp_irk *irk_to_return = NULL;
1239	struct smp_irk *irk;
1240
1241	rcu_read_lock();
1242	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1243		if (!bacmp(&irk->rpa, rpa)) {
1244			irk_to_return = irk;
1245			goto done;
1246		}
1247	}
1248
1249	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1250		if (smp_irk_matches(hdev, irk->val, rpa)) {
1251			bacpy(&irk->rpa, rpa);
1252			irk_to_return = irk;
1253			goto done;
1254		}
1255	}
1256
1257done:
1258	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1259						irk_to_return->val)) {
1260		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1261					&irk_to_return->bdaddr);
1262		irk_to_return = NULL;
1263	}
1264
1265	rcu_read_unlock();
1266
1267	return irk_to_return;
1268}
1269
1270struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1271				     u8 addr_type)
1272{
1273	struct smp_irk *irk_to_return = NULL;
1274	struct smp_irk *irk;
1275
1276	/* Identity Address must be public or static random */
1277	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1278		return NULL;
1279
1280	rcu_read_lock();
1281	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1282		if (addr_type == irk->addr_type &&
1283		    bacmp(bdaddr, &irk->bdaddr) == 0) {
1284			irk_to_return = irk;
1285			goto done;
1286		}
1287	}
1288
1289done:
1290
1291	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1292						irk_to_return->val)) {
1293		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1294					&irk_to_return->bdaddr);
1295		irk_to_return = NULL;
1296	}
1297
1298	rcu_read_unlock();
1299
1300	return irk_to_return;
1301}
1302
1303struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1304				  bdaddr_t *bdaddr, u8 *val, u8 type,
1305				  u8 pin_len, bool *persistent)
1306{
1307	struct link_key *key, *old_key;
1308	u8 old_key_type;
1309
1310	old_key = hci_find_link_key(hdev, bdaddr);
1311	if (old_key) {
1312		old_key_type = old_key->type;
1313		key = old_key;
1314	} else {
1315		old_key_type = conn ? conn->key_type : 0xff;
1316		key = kzalloc(sizeof(*key), GFP_KERNEL);
1317		if (!key)
1318			return NULL;
1319		list_add_rcu(&key->list, &hdev->link_keys);
1320	}
1321
1322	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1323
1324	/* Some buggy controller combinations generate a changed
1325	 * combination key for legacy pairing even when there's no
1326	 * previous key */
1327	if (type == HCI_LK_CHANGED_COMBINATION &&
1328	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1329		type = HCI_LK_COMBINATION;
1330		if (conn)
1331			conn->key_type = type;
1332	}
1333
1334	bacpy(&key->bdaddr, bdaddr);
1335	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1336	key->pin_len = pin_len;
1337
1338	if (type == HCI_LK_CHANGED_COMBINATION)
1339		key->type = old_key_type;
1340	else
1341		key->type = type;
1342
1343	if (persistent)
1344		*persistent = hci_persistent_key(hdev, conn, type,
1345						 old_key_type);
1346
1347	return key;
1348}
1349
1350struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1351			    u8 addr_type, u8 type, u8 authenticated,
1352			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1353{
1354	struct smp_ltk *key, *old_key;
1355	u8 role = ltk_role(type);
1356
1357	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1358	if (old_key)
1359		key = old_key;
1360	else {
1361		key = kzalloc(sizeof(*key), GFP_KERNEL);
1362		if (!key)
1363			return NULL;
1364		list_add_rcu(&key->list, &hdev->long_term_keys);
1365	}
1366
1367	bacpy(&key->bdaddr, bdaddr);
1368	key->bdaddr_type = addr_type;
1369	memcpy(key->val, tk, sizeof(key->val));
1370	key->authenticated = authenticated;
1371	key->ediv = ediv;
1372	key->rand = rand;
1373	key->enc_size = enc_size;
1374	key->type = type;
1375
1376	return key;
1377}
1378
1379struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1380			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
1381{
1382	struct smp_irk *irk;
1383
1384	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1385	if (!irk) {
1386		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1387		if (!irk)
1388			return NULL;
1389
1390		bacpy(&irk->bdaddr, bdaddr);
1391		irk->addr_type = addr_type;
1392
1393		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1394	}
1395
1396	memcpy(irk->val, val, 16);
1397	bacpy(&irk->rpa, rpa);
1398
1399	return irk;
1400}
1401
1402int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1403{
1404	struct link_key *key;
1405
1406	key = hci_find_link_key(hdev, bdaddr);
1407	if (!key)
1408		return -ENOENT;
1409
1410	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1411
1412	list_del_rcu(&key->list);
1413	kfree_rcu(key, rcu);
1414
1415	return 0;
1416}
1417
1418int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1419{
1420	struct smp_ltk *k, *tmp;
1421	int removed = 0;
1422
1423	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1424		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1425			continue;
1426
1427		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1428
1429		list_del_rcu(&k->list);
1430		kfree_rcu(k, rcu);
1431		removed++;
1432	}
1433
1434	return removed ? 0 : -ENOENT;
1435}
1436
1437void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1438{
1439	struct smp_irk *k, *tmp;
1440
1441	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1442		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1443			continue;
1444
1445		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1446
1447		list_del_rcu(&k->list);
1448		kfree_rcu(k, rcu);
1449	}
1450}
1451
1452bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1453{
1454	struct smp_ltk *k;
1455	struct smp_irk *irk;
1456	u8 addr_type;
1457
1458	if (type == BDADDR_BREDR) {
1459		if (hci_find_link_key(hdev, bdaddr))
1460			return true;
1461		return false;
1462	}
1463
1464	/* Convert to HCI addr type which struct smp_ltk uses */
1465	if (type == BDADDR_LE_PUBLIC)
1466		addr_type = ADDR_LE_DEV_PUBLIC;
1467	else
1468		addr_type = ADDR_LE_DEV_RANDOM;
1469
1470	irk = hci_get_irk(hdev, bdaddr, addr_type);
1471	if (irk) {
1472		bdaddr = &irk->bdaddr;
1473		addr_type = irk->addr_type;
1474	}
1475
1476	rcu_read_lock();
1477	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1478		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1479			rcu_read_unlock();
1480			return true;
1481		}
1482	}
1483	rcu_read_unlock();
1484
1485	return false;
1486}
1487
1488/* HCI command timer function */
1489static void hci_cmd_timeout(struct work_struct *work)
1490{
1491	struct hci_dev *hdev = container_of(work, struct hci_dev,
1492					    cmd_timer.work);
1493
1494	if (hdev->sent_cmd) {
1495		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
1496		u16 opcode = __le16_to_cpu(sent->opcode);
1497
1498		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1499	} else {
1500		bt_dev_err(hdev, "command tx timeout");
1501	}
1502
1503	if (hdev->cmd_timeout)
1504		hdev->cmd_timeout(hdev);
1505
1506	atomic_set(&hdev->cmd_cnt, 1);
1507	queue_work(hdev->workqueue, &hdev->cmd_work);
1508}
1509
1510/* HCI ncmd timer function */
1511static void hci_ncmd_timeout(struct work_struct *work)
1512{
1513	struct hci_dev *hdev = container_of(work, struct hci_dev,
1514					    ncmd_timer.work);
1515
1516	bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1517
1518	/* During HCI_INIT phase no events can be injected if the ncmd timer
1519	 * triggers since the procedure has its own timeout handling.
1520	 */
1521	if (test_bit(HCI_INIT, &hdev->flags))
1522		return;
1523
1524	/* This is an irrecoverable state, inject hardware error event */
1525	hci_reset_dev(hdev);
1526}
1527
1528struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1529					  bdaddr_t *bdaddr, u8 bdaddr_type)
1530{
1531	struct oob_data *data;
1532
1533	list_for_each_entry(data, &hdev->remote_oob_data, list) {
1534		if (bacmp(bdaddr, &data->bdaddr) != 0)
1535			continue;
1536		if (data->bdaddr_type != bdaddr_type)
1537			continue;
1538		return data;
1539	}
1540
1541	return NULL;
1542}
1543
1544int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1545			       u8 bdaddr_type)
1546{
1547	struct oob_data *data;
1548
1549	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1550	if (!data)
1551		return -ENOENT;
1552
1553	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1554
1555	list_del(&data->list);
1556	kfree(data);
1557
1558	return 0;
1559}
1560
1561void hci_remote_oob_data_clear(struct hci_dev *hdev)
1562{
1563	struct oob_data *data, *n;
1564
1565	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1566		list_del(&data->list);
1567		kfree(data);
1568	}
1569}
1570
1571int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1572			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
1573			    u8 *hash256, u8 *rand256)
1574{
1575	struct oob_data *data;
1576
1577	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1578	if (!data) {
1579		data = kmalloc(sizeof(*data), GFP_KERNEL);
1580		if (!data)
1581			return -ENOMEM;
1582
1583		bacpy(&data->bdaddr, bdaddr);
1584		data->bdaddr_type = bdaddr_type;
1585		list_add(&data->list, &hdev->remote_oob_data);
1586	}
1587
1588	if (hash192 && rand192) {
1589		memcpy(data->hash192, hash192, sizeof(data->hash192));
1590		memcpy(data->rand192, rand192, sizeof(data->rand192));
1591		if (hash256 && rand256)
1592			data->present = 0x03;
1593	} else {
1594		memset(data->hash192, 0, sizeof(data->hash192));
1595		memset(data->rand192, 0, sizeof(data->rand192));
1596		if (hash256 && rand256)
1597			data->present = 0x02;
1598		else
1599			data->present = 0x00;
1600	}
1601
1602	if (hash256 && rand256) {
1603		memcpy(data->hash256, hash256, sizeof(data->hash256));
1604		memcpy(data->rand256, rand256, sizeof(data->rand256));
1605	} else {
1606		memset(data->hash256, 0, sizeof(data->hash256));
1607		memset(data->rand256, 0, sizeof(data->rand256));
1608		if (hash192 && rand192)
1609			data->present = 0x01;
1610	}
1611
1612	BT_DBG("%s for %pMR", hdev->name, bdaddr);
1613
1614	return 0;
1615}
1616
1617/* This function requires the caller holds hdev->lock */
1618struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1619{
1620	struct adv_info *adv_instance;
1621
1622	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1623		if (adv_instance->instance == instance)
1624			return adv_instance;
1625	}
1626
1627	return NULL;
1628}
1629
1630/* This function requires the caller holds hdev->lock */
1631struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1632{
1633	struct adv_info *cur_instance;
1634
1635	cur_instance = hci_find_adv_instance(hdev, instance);
1636	if (!cur_instance)
1637		return NULL;
1638
1639	if (cur_instance == list_last_entry(&hdev->adv_instances,
1640					    struct adv_info, list))
1641		return list_first_entry(&hdev->adv_instances,
1642						 struct adv_info, list);
1643	else
1644		return list_next_entry(cur_instance, list);
1645}
1646
1647/* This function requires the caller holds hdev->lock */
1648int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1649{
1650	struct adv_info *adv_instance;
1651
1652	adv_instance = hci_find_adv_instance(hdev, instance);
1653	if (!adv_instance)
1654		return -ENOENT;
1655
1656	BT_DBG("%s removing %dMR", hdev->name, instance);
1657
1658	if (hdev->cur_adv_instance == instance) {
1659		if (hdev->adv_instance_timeout) {
1660			cancel_delayed_work(&hdev->adv_instance_expire);
1661			hdev->adv_instance_timeout = 0;
1662		}
1663		hdev->cur_adv_instance = 0x00;
1664	}
1665
1666	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1667
1668	list_del(&adv_instance->list);
1669	kfree(adv_instance);
1670
1671	hdev->adv_instance_cnt--;
1672
1673	return 0;
1674}
1675
1676void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1677{
1678	struct adv_info *adv_instance, *n;
1679
1680	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1681		adv_instance->rpa_expired = rpa_expired;
1682}
1683
1684/* This function requires the caller holds hdev->lock */
1685void hci_adv_instances_clear(struct hci_dev *hdev)
1686{
1687	struct adv_info *adv_instance, *n;
1688
1689	if (hdev->adv_instance_timeout) {
1690		cancel_delayed_work(&hdev->adv_instance_expire);
1691		hdev->adv_instance_timeout = 0;
1692	}
1693
1694	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1695		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1696		list_del(&adv_instance->list);
1697		kfree(adv_instance);
1698	}
1699
1700	hdev->adv_instance_cnt = 0;
1701	hdev->cur_adv_instance = 0x00;
1702}
1703
1704static void adv_instance_rpa_expired(struct work_struct *work)
1705{
1706	struct adv_info *adv_instance = container_of(work, struct adv_info,
1707						     rpa_expired_cb.work);
1708
1709	BT_DBG("");
1710
1711	adv_instance->rpa_expired = true;
1712}
1713
1714/* This function requires the caller holds hdev->lock */
1715struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1716				      u32 flags, u16 adv_data_len, u8 *adv_data,
1717				      u16 scan_rsp_len, u8 *scan_rsp_data,
1718				      u16 timeout, u16 duration, s8 tx_power,
1719				      u32 min_interval, u32 max_interval,
1720				      u8 mesh_handle)
1721{
1722	struct adv_info *adv;
1723
1724	adv = hci_find_adv_instance(hdev, instance);
1725	if (adv) {
1726		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1727		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1728		memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1729	} else {
1730		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1731		    instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1732			return ERR_PTR(-EOVERFLOW);
 
 
 
 
1733
1734		adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1735		if (!adv)
1736			return ERR_PTR(-ENOMEM);
1737
1738		adv->pending = true;
1739		adv->instance = instance;
1740		list_add(&adv->list, &hdev->adv_instances);
1741		hdev->adv_instance_cnt++;
1742	}
1743
1744	adv->flags = flags;
1745	adv->min_interval = min_interval;
1746	adv->max_interval = max_interval;
1747	adv->tx_power = tx_power;
1748	/* Defining a mesh_handle changes the timing units to ms,
1749	 * rather than seconds, and ties the instance to the requested
1750	 * mesh_tx queue.
1751	 */
1752	adv->mesh = mesh_handle;
1753
1754	hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1755				  scan_rsp_len, scan_rsp_data);
1756
1757	adv->timeout = timeout;
1758	adv->remaining_time = timeout;
1759
1760	if (duration == 0)
1761		adv->duration = hdev->def_multi_adv_rotation_duration;
1762	else
1763		adv->duration = duration;
1764
1765	INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
 
 
 
1766
1767	BT_DBG("%s for %dMR", hdev->name, instance);
1768
1769	return adv;
1770}
1771
1772/* This function requires the caller holds hdev->lock */
1773struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1774				      u32 flags, u8 data_len, u8 *data,
1775				      u32 min_interval, u32 max_interval)
1776{
1777	struct adv_info *adv;
1778
1779	adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1780				   0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1781				   min_interval, max_interval, 0);
1782	if (IS_ERR(adv))
1783		return adv;
1784
1785	adv->periodic = true;
1786	adv->per_adv_data_len = data_len;
1787
1788	if (data)
1789		memcpy(adv->per_adv_data, data, data_len);
1790
1791	return adv;
1792}
1793
1794/* This function requires the caller holds hdev->lock */
1795int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1796			      u16 adv_data_len, u8 *adv_data,
1797			      u16 scan_rsp_len, u8 *scan_rsp_data)
1798{
1799	struct adv_info *adv;
1800
1801	adv = hci_find_adv_instance(hdev, instance);
1802
1803	/* If advertisement doesn't exist, we can't modify its data */
1804	if (!adv)
1805		return -ENOENT;
1806
1807	if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1808		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1809		memcpy(adv->adv_data, adv_data, adv_data_len);
1810		adv->adv_data_len = adv_data_len;
1811		adv->adv_data_changed = true;
1812	}
1813
1814	if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1815		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1816		memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1817		adv->scan_rsp_len = scan_rsp_len;
1818		adv->scan_rsp_changed = true;
1819	}
1820
1821	/* Mark as changed if there are flags which would affect it */
1822	if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1823	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1824		adv->scan_rsp_changed = true;
1825
1826	return 0;
1827}
1828
1829/* This function requires the caller holds hdev->lock */
1830u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1831{
1832	u32 flags;
1833	struct adv_info *adv;
1834
1835	if (instance == 0x00) {
1836		/* Instance 0 always manages the "Tx Power" and "Flags"
1837		 * fields
1838		 */
1839		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1840
1841		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1842		 * corresponds to the "connectable" instance flag.
1843		 */
1844		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1845			flags |= MGMT_ADV_FLAG_CONNECTABLE;
1846
1847		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1848			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1849		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1850			flags |= MGMT_ADV_FLAG_DISCOV;
1851
1852		return flags;
1853	}
1854
1855	adv = hci_find_adv_instance(hdev, instance);
1856
1857	/* Return 0 when we got an invalid instance identifier. */
1858	if (!adv)
1859		return 0;
1860
1861	return adv->flags;
1862}
1863
1864bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1865{
1866	struct adv_info *adv;
1867
1868	/* Instance 0x00 always set local name */
1869	if (instance == 0x00)
1870		return true;
1871
1872	adv = hci_find_adv_instance(hdev, instance);
1873	if (!adv)
1874		return false;
1875
1876	if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1877	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1878		return true;
1879
1880	return adv->scan_rsp_len ? true : false;
1881}
1882
1883/* This function requires the caller holds hdev->lock */
1884void hci_adv_monitors_clear(struct hci_dev *hdev)
1885{
1886	struct adv_monitor *monitor;
1887	int handle;
1888
1889	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1890		hci_free_adv_monitor(hdev, monitor);
1891
1892	idr_destroy(&hdev->adv_monitors_idr);
1893}
1894
1895/* Frees the monitor structure and do some bookkeepings.
1896 * This function requires the caller holds hdev->lock.
1897 */
1898void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1899{
1900	struct adv_pattern *pattern;
1901	struct adv_pattern *tmp;
1902
1903	if (!monitor)
1904		return;
1905
1906	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1907		list_del(&pattern->list);
1908		kfree(pattern);
1909	}
1910
1911	if (monitor->handle)
1912		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1913
1914	if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1915		hdev->adv_monitors_cnt--;
1916		mgmt_adv_monitor_removed(hdev, monitor->handle);
1917	}
1918
1919	kfree(monitor);
1920}
1921
1922/* Assigns handle to a monitor, and if offloading is supported and power is on,
1923 * also attempts to forward the request to the controller.
1924 * This function requires the caller holds hci_req_sync_lock.
1925 */
1926int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1927{
1928	int min, max, handle;
1929	int status = 0;
1930
1931	if (!monitor)
1932		return -EINVAL;
1933
1934	hci_dev_lock(hdev);
1935
1936	min = HCI_MIN_ADV_MONITOR_HANDLE;
1937	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1938	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1939			   GFP_KERNEL);
1940
1941	hci_dev_unlock(hdev);
1942
1943	if (handle < 0)
1944		return handle;
1945
1946	monitor->handle = handle;
1947
1948	if (!hdev_is_powered(hdev))
1949		return status;
1950
1951	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1952	case HCI_ADV_MONITOR_EXT_NONE:
1953		bt_dev_dbg(hdev, "add monitor %d status %d",
1954			   monitor->handle, status);
1955		/* Message was not forwarded to controller - not an error */
1956		break;
1957
1958	case HCI_ADV_MONITOR_EXT_MSFT:
1959		status = msft_add_monitor_pattern(hdev, monitor);
1960		bt_dev_dbg(hdev, "add monitor %d msft status %d",
1961			   handle, status);
1962		break;
1963	}
1964
1965	return status;
1966}
1967
1968/* Attempts to tell the controller and free the monitor. If somehow the
1969 * controller doesn't have a corresponding handle, remove anyway.
1970 * This function requires the caller holds hci_req_sync_lock.
1971 */
1972static int hci_remove_adv_monitor(struct hci_dev *hdev,
1973				  struct adv_monitor *monitor)
1974{
1975	int status = 0;
1976	int handle;
1977
1978	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1979	case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1980		bt_dev_dbg(hdev, "remove monitor %d status %d",
1981			   monitor->handle, status);
1982		goto free_monitor;
1983
1984	case HCI_ADV_MONITOR_EXT_MSFT:
1985		handle = monitor->handle;
1986		status = msft_remove_monitor(hdev, monitor);
1987		bt_dev_dbg(hdev, "remove monitor %d msft status %d",
1988			   handle, status);
1989		break;
1990	}
1991
1992	/* In case no matching handle registered, just free the monitor */
1993	if (status == -ENOENT)
1994		goto free_monitor;
1995
1996	return status;
1997
1998free_monitor:
1999	if (status == -ENOENT)
2000		bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
2001			    monitor->handle);
2002	hci_free_adv_monitor(hdev, monitor);
2003
2004	return status;
2005}
2006
2007/* This function requires the caller holds hci_req_sync_lock */
2008int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
2009{
2010	struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
2011
2012	if (!monitor)
2013		return -EINVAL;
2014
2015	return hci_remove_adv_monitor(hdev, monitor);
2016}
2017
2018/* This function requires the caller holds hci_req_sync_lock */
2019int hci_remove_all_adv_monitor(struct hci_dev *hdev)
2020{
2021	struct adv_monitor *monitor;
2022	int idr_next_id = 0;
2023	int status = 0;
2024
2025	while (1) {
2026		monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
2027		if (!monitor)
2028			break;
2029
2030		status = hci_remove_adv_monitor(hdev, monitor);
2031		if (status)
2032			return status;
2033
2034		idr_next_id++;
2035	}
2036
2037	return status;
2038}
2039
2040/* This function requires the caller holds hdev->lock */
2041bool hci_is_adv_monitoring(struct hci_dev *hdev)
2042{
2043	return !idr_is_empty(&hdev->adv_monitors_idr);
2044}
2045
2046int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2047{
2048	if (msft_monitor_supported(hdev))
2049		return HCI_ADV_MONITOR_EXT_MSFT;
2050
2051	return HCI_ADV_MONITOR_EXT_NONE;
2052}
2053
2054struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2055					 bdaddr_t *bdaddr, u8 type)
2056{
2057	struct bdaddr_list *b;
2058
2059	list_for_each_entry(b, bdaddr_list, list) {
2060		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2061			return b;
2062	}
2063
2064	return NULL;
2065}
2066
2067struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2068				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2069				u8 type)
2070{
2071	struct bdaddr_list_with_irk *b;
2072
2073	list_for_each_entry(b, bdaddr_list, list) {
2074		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2075			return b;
2076	}
2077
2078	return NULL;
2079}
2080
2081struct bdaddr_list_with_flags *
2082hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2083				  bdaddr_t *bdaddr, u8 type)
2084{
2085	struct bdaddr_list_with_flags *b;
2086
2087	list_for_each_entry(b, bdaddr_list, list) {
2088		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2089			return b;
2090	}
2091
2092	return NULL;
2093}
2094
2095void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2096{
2097	struct bdaddr_list *b, *n;
2098
2099	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2100		list_del(&b->list);
2101		kfree(b);
2102	}
2103}
2104
2105int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2106{
2107	struct bdaddr_list *entry;
2108
2109	if (!bacmp(bdaddr, BDADDR_ANY))
2110		return -EBADF;
2111
2112	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2113		return -EEXIST;
2114
2115	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2116	if (!entry)
2117		return -ENOMEM;
2118
2119	bacpy(&entry->bdaddr, bdaddr);
2120	entry->bdaddr_type = type;
2121
2122	list_add(&entry->list, list);
2123
2124	return 0;
2125}
2126
2127int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2128					u8 type, u8 *peer_irk, u8 *local_irk)
2129{
2130	struct bdaddr_list_with_irk *entry;
2131
2132	if (!bacmp(bdaddr, BDADDR_ANY))
2133		return -EBADF;
2134
2135	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2136		return -EEXIST;
2137
2138	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2139	if (!entry)
2140		return -ENOMEM;
2141
2142	bacpy(&entry->bdaddr, bdaddr);
2143	entry->bdaddr_type = type;
2144
2145	if (peer_irk)
2146		memcpy(entry->peer_irk, peer_irk, 16);
2147
2148	if (local_irk)
2149		memcpy(entry->local_irk, local_irk, 16);
2150
2151	list_add(&entry->list, list);
2152
2153	return 0;
2154}
2155
2156int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2157				   u8 type, u32 flags)
2158{
2159	struct bdaddr_list_with_flags *entry;
2160
2161	if (!bacmp(bdaddr, BDADDR_ANY))
2162		return -EBADF;
2163
2164	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2165		return -EEXIST;
2166
2167	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2168	if (!entry)
2169		return -ENOMEM;
2170
2171	bacpy(&entry->bdaddr, bdaddr);
2172	entry->bdaddr_type = type;
2173	entry->flags = flags;
2174
2175	list_add(&entry->list, list);
2176
2177	return 0;
2178}
2179
2180int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2181{
2182	struct bdaddr_list *entry;
2183
2184	if (!bacmp(bdaddr, BDADDR_ANY)) {
2185		hci_bdaddr_list_clear(list);
2186		return 0;
2187	}
2188
2189	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2190	if (!entry)
2191		return -ENOENT;
2192
2193	list_del(&entry->list);
2194	kfree(entry);
2195
2196	return 0;
2197}
2198
2199int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2200							u8 type)
2201{
2202	struct bdaddr_list_with_irk *entry;
2203
2204	if (!bacmp(bdaddr, BDADDR_ANY)) {
2205		hci_bdaddr_list_clear(list);
2206		return 0;
2207	}
2208
2209	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2210	if (!entry)
2211		return -ENOENT;
2212
2213	list_del(&entry->list);
2214	kfree(entry);
2215
2216	return 0;
2217}
2218
2219int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2220				   u8 type)
2221{
2222	struct bdaddr_list_with_flags *entry;
2223
2224	if (!bacmp(bdaddr, BDADDR_ANY)) {
2225		hci_bdaddr_list_clear(list);
2226		return 0;
2227	}
2228
2229	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2230	if (!entry)
2231		return -ENOENT;
2232
2233	list_del(&entry->list);
2234	kfree(entry);
2235
2236	return 0;
2237}
2238
2239/* This function requires the caller holds hdev->lock */
2240struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2241					       bdaddr_t *addr, u8 addr_type)
2242{
2243	struct hci_conn_params *params;
2244
2245	list_for_each_entry(params, &hdev->le_conn_params, list) {
2246		if (bacmp(&params->addr, addr) == 0 &&
2247		    params->addr_type == addr_type) {
2248			return params;
2249		}
2250	}
2251
2252	return NULL;
2253}
2254
2255/* This function requires the caller holds hdev->lock or rcu_read_lock */
2256struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2257						  bdaddr_t *addr, u8 addr_type)
2258{
2259	struct hci_conn_params *param;
2260
2261	rcu_read_lock();
2262
2263	list_for_each_entry_rcu(param, list, action) {
2264		if (bacmp(&param->addr, addr) == 0 &&
2265		    param->addr_type == addr_type) {
2266			rcu_read_unlock();
2267			return param;
2268		}
2269	}
2270
2271	rcu_read_unlock();
2272
2273	return NULL;
2274}
2275
2276/* This function requires the caller holds hdev->lock */
2277void hci_pend_le_list_del_init(struct hci_conn_params *param)
2278{
2279	if (list_empty(&param->action))
2280		return;
2281
2282	list_del_rcu(&param->action);
2283	synchronize_rcu();
2284	INIT_LIST_HEAD(&param->action);
2285}
2286
2287/* This function requires the caller holds hdev->lock */
2288void hci_pend_le_list_add(struct hci_conn_params *param,
2289			  struct list_head *list)
2290{
2291	list_add_rcu(&param->action, list);
2292}
2293
2294/* This function requires the caller holds hdev->lock */
2295struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2296					    bdaddr_t *addr, u8 addr_type)
2297{
2298	struct hci_conn_params *params;
2299
2300	params = hci_conn_params_lookup(hdev, addr, addr_type);
2301	if (params)
2302		return params;
2303
2304	params = kzalloc(sizeof(*params), GFP_KERNEL);
2305	if (!params) {
2306		bt_dev_err(hdev, "out of memory");
2307		return NULL;
2308	}
2309
2310	bacpy(&params->addr, addr);
2311	params->addr_type = addr_type;
2312
2313	list_add(&params->list, &hdev->le_conn_params);
2314	INIT_LIST_HEAD(&params->action);
2315
2316	params->conn_min_interval = hdev->le_conn_min_interval;
2317	params->conn_max_interval = hdev->le_conn_max_interval;
2318	params->conn_latency = hdev->le_conn_latency;
2319	params->supervision_timeout = hdev->le_supv_timeout;
2320	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2321
2322	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2323
2324	return params;
2325}
2326
2327void hci_conn_params_free(struct hci_conn_params *params)
2328{
2329	hci_pend_le_list_del_init(params);
2330
2331	if (params->conn) {
2332		hci_conn_drop(params->conn);
2333		hci_conn_put(params->conn);
2334	}
2335
 
2336	list_del(&params->list);
2337	kfree(params);
2338}
2339
2340/* This function requires the caller holds hdev->lock */
2341void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2342{
2343	struct hci_conn_params *params;
2344
2345	params = hci_conn_params_lookup(hdev, addr, addr_type);
2346	if (!params)
2347		return;
2348
2349	hci_conn_params_free(params);
2350
2351	hci_update_passive_scan(hdev);
2352
2353	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2354}
2355
2356/* This function requires the caller holds hdev->lock */
2357void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2358{
2359	struct hci_conn_params *params, *tmp;
2360
2361	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2362		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2363			continue;
2364
2365		/* If trying to establish one time connection to disabled
2366		 * device, leave the params, but mark them as just once.
2367		 */
2368		if (params->explicit_connect) {
2369			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2370			continue;
2371		}
2372
2373		hci_conn_params_free(params);
 
2374	}
2375
2376	BT_DBG("All LE disabled connection parameters were removed");
2377}
2378
2379/* This function requires the caller holds hdev->lock */
2380static void hci_conn_params_clear_all(struct hci_dev *hdev)
2381{
2382	struct hci_conn_params *params, *tmp;
2383
2384	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2385		hci_conn_params_free(params);
2386
2387	BT_DBG("All LE connection parameters were removed");
2388}
2389
2390/* Copy the Identity Address of the controller.
2391 *
2392 * If the controller has a public BD_ADDR, then by default use that one.
2393 * If this is a LE only controller without a public address, default to
2394 * the static random address.
2395 *
2396 * For debugging purposes it is possible to force controllers with a
2397 * public address to use the static random address instead.
2398 *
2399 * In case BR/EDR has been disabled on a dual-mode controller and
2400 * userspace has configured a static address, then that address
2401 * becomes the identity address instead of the public BR/EDR address.
2402 */
2403void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2404			       u8 *bdaddr_type)
2405{
2406	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2407	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2408	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2409	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2410		bacpy(bdaddr, &hdev->static_addr);
2411		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2412	} else {
2413		bacpy(bdaddr, &hdev->bdaddr);
2414		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2415	}
2416}
2417
2418static void hci_clear_wake_reason(struct hci_dev *hdev)
2419{
2420	hci_dev_lock(hdev);
2421
2422	hdev->wake_reason = 0;
2423	bacpy(&hdev->wake_addr, BDADDR_ANY);
2424	hdev->wake_addr_type = 0;
2425
2426	hci_dev_unlock(hdev);
2427}
2428
2429static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2430				void *data)
2431{
2432	struct hci_dev *hdev =
2433		container_of(nb, struct hci_dev, suspend_notifier);
2434	int ret = 0;
2435
2436	/* Userspace has full control of this device. Do nothing. */
2437	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2438		return NOTIFY_DONE;
2439
2440	/* To avoid a potential race with hci_unregister_dev. */
2441	hci_dev_hold(hdev);
2442
2443	if (action == PM_SUSPEND_PREPARE)
2444		ret = hci_suspend_dev(hdev);
2445	else if (action == PM_POST_SUSPEND)
2446		ret = hci_resume_dev(hdev);
2447
2448	if (ret)
2449		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2450			   action, ret);
2451
2452	hci_dev_put(hdev);
2453	return NOTIFY_DONE;
2454}
2455
2456/* Alloc HCI device */
2457struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2458{
2459	struct hci_dev *hdev;
2460	unsigned int alloc_size;
2461
2462	alloc_size = sizeof(*hdev);
2463	if (sizeof_priv) {
2464		/* Fixme: May need ALIGN-ment? */
2465		alloc_size += sizeof_priv;
2466	}
2467
2468	hdev = kzalloc(alloc_size, GFP_KERNEL);
2469	if (!hdev)
2470		return NULL;
2471
2472	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2473	hdev->esco_type = (ESCO_HV1);
2474	hdev->link_mode = (HCI_LM_ACCEPT);
2475	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2476	hdev->io_capability = 0x03;	/* No Input No Output */
2477	hdev->manufacturer = 0xffff;	/* Default to internal use */
2478	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2479	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2480	hdev->adv_instance_cnt = 0;
2481	hdev->cur_adv_instance = 0x00;
2482	hdev->adv_instance_timeout = 0;
2483
2484	hdev->advmon_allowlist_duration = 300;
2485	hdev->advmon_no_filter_duration = 500;
2486	hdev->enable_advmon_interleave_scan = 0x00;	/* Default to disable */
2487
2488	hdev->sniff_max_interval = 800;
2489	hdev->sniff_min_interval = 80;
2490
2491	hdev->le_adv_channel_map = 0x07;
2492	hdev->le_adv_min_interval = 0x0800;
2493	hdev->le_adv_max_interval = 0x0800;
2494	hdev->le_scan_interval = 0x0060;
2495	hdev->le_scan_window = 0x0030;
2496	hdev->le_scan_int_suspend = 0x0400;
2497	hdev->le_scan_window_suspend = 0x0012;
2498	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2499	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2500	hdev->le_scan_int_adv_monitor = 0x0060;
2501	hdev->le_scan_window_adv_monitor = 0x0030;
2502	hdev->le_scan_int_connect = 0x0060;
2503	hdev->le_scan_window_connect = 0x0060;
2504	hdev->le_conn_min_interval = 0x0018;
2505	hdev->le_conn_max_interval = 0x0028;
2506	hdev->le_conn_latency = 0x0000;
2507	hdev->le_supv_timeout = 0x002a;
2508	hdev->le_def_tx_len = 0x001b;
2509	hdev->le_def_tx_time = 0x0148;
2510	hdev->le_max_tx_len = 0x001b;
2511	hdev->le_max_tx_time = 0x0148;
2512	hdev->le_max_rx_len = 0x001b;
2513	hdev->le_max_rx_time = 0x0148;
2514	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2515	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2516	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2517	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2518	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2519	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2520	hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
2521	hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2522	hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2523
2524	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2525	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2526	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2527	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2528	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2529	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2530
2531	/* default 1.28 sec page scan */
2532	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2533	hdev->def_page_scan_int = 0x0800;
2534	hdev->def_page_scan_window = 0x0012;
2535
2536	mutex_init(&hdev->lock);
2537	mutex_init(&hdev->req_lock);
2538
2539	ida_init(&hdev->unset_handle_ida);
2540
2541	INIT_LIST_HEAD(&hdev->mesh_pending);
2542	INIT_LIST_HEAD(&hdev->mgmt_pending);
2543	INIT_LIST_HEAD(&hdev->reject_list);
2544	INIT_LIST_HEAD(&hdev->accept_list);
2545	INIT_LIST_HEAD(&hdev->uuids);
2546	INIT_LIST_HEAD(&hdev->link_keys);
2547	INIT_LIST_HEAD(&hdev->long_term_keys);
2548	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2549	INIT_LIST_HEAD(&hdev->remote_oob_data);
2550	INIT_LIST_HEAD(&hdev->le_accept_list);
2551	INIT_LIST_HEAD(&hdev->le_resolv_list);
2552	INIT_LIST_HEAD(&hdev->le_conn_params);
2553	INIT_LIST_HEAD(&hdev->pend_le_conns);
2554	INIT_LIST_HEAD(&hdev->pend_le_reports);
2555	INIT_LIST_HEAD(&hdev->conn_hash.list);
2556	INIT_LIST_HEAD(&hdev->adv_instances);
2557	INIT_LIST_HEAD(&hdev->blocked_keys);
2558	INIT_LIST_HEAD(&hdev->monitored_devices);
2559
2560	INIT_LIST_HEAD(&hdev->local_codecs);
2561	INIT_WORK(&hdev->rx_work, hci_rx_work);
2562	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2563	INIT_WORK(&hdev->tx_work, hci_tx_work);
2564	INIT_WORK(&hdev->power_on, hci_power_on);
2565	INIT_WORK(&hdev->error_reset, hci_error_reset);
2566
2567	hci_cmd_sync_init(hdev);
2568
2569	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2570
2571	skb_queue_head_init(&hdev->rx_q);
2572	skb_queue_head_init(&hdev->cmd_q);
2573	skb_queue_head_init(&hdev->raw_q);
2574
2575	init_waitqueue_head(&hdev->req_wait_q);
2576
2577	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2578	INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2579
2580	hci_devcd_setup(hdev);
2581	hci_request_setup(hdev);
2582
2583	hci_init_sysfs(hdev);
2584	discovery_init(hdev);
2585
2586	return hdev;
2587}
2588EXPORT_SYMBOL(hci_alloc_dev_priv);
2589
2590/* Free HCI device */
2591void hci_free_dev(struct hci_dev *hdev)
2592{
2593	/* will free via device release */
2594	put_device(&hdev->dev);
2595}
2596EXPORT_SYMBOL(hci_free_dev);
2597
2598/* Register HCI device */
2599int hci_register_dev(struct hci_dev *hdev)
2600{
2601	int id, error;
2602
2603	if (!hdev->open || !hdev->close || !hdev->send)
2604		return -EINVAL;
2605
2606	/* Do not allow HCI_AMP devices to register at index 0,
2607	 * so the index can be used as the AMP controller ID.
2608	 */
2609	switch (hdev->dev_type) {
2610	case HCI_PRIMARY:
2611		id = ida_simple_get(&hci_index_ida, 0, HCI_MAX_ID, GFP_KERNEL);
2612		break;
2613	case HCI_AMP:
2614		id = ida_simple_get(&hci_index_ida, 1, HCI_MAX_ID, GFP_KERNEL);
2615		break;
2616	default:
2617		return -EINVAL;
2618	}
2619
2620	if (id < 0)
2621		return id;
2622
2623	error = dev_set_name(&hdev->dev, "hci%u", id);
2624	if (error)
2625		return error;
2626
2627	hdev->name = dev_name(&hdev->dev);
2628	hdev->id = id;
2629
2630	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2631
2632	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
2633	if (!hdev->workqueue) {
2634		error = -ENOMEM;
2635		goto err;
2636	}
2637
2638	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2639						      hdev->name);
2640	if (!hdev->req_workqueue) {
2641		destroy_workqueue(hdev->workqueue);
2642		error = -ENOMEM;
2643		goto err;
2644	}
2645
2646	if (!IS_ERR_OR_NULL(bt_debugfs))
2647		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2648
 
 
2649	error = device_add(&hdev->dev);
2650	if (error < 0)
2651		goto err_wqueue;
2652
2653	hci_leds_init(hdev);
2654
2655	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2656				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2657				    hdev);
2658	if (hdev->rfkill) {
2659		if (rfkill_register(hdev->rfkill) < 0) {
2660			rfkill_destroy(hdev->rfkill);
2661			hdev->rfkill = NULL;
2662		}
2663	}
2664
2665	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2666		hci_dev_set_flag(hdev, HCI_RFKILLED);
2667
2668	hci_dev_set_flag(hdev, HCI_SETUP);
2669	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2670
2671	if (hdev->dev_type == HCI_PRIMARY) {
2672		/* Assume BR/EDR support until proven otherwise (such as
2673		 * through reading supported features during init.
2674		 */
2675		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2676	}
2677
2678	write_lock(&hci_dev_list_lock);
2679	list_add(&hdev->list, &hci_dev_list);
2680	write_unlock(&hci_dev_list_lock);
2681
2682	/* Devices that are marked for raw-only usage are unconfigured
2683	 * and should not be included in normal operation.
2684	 */
2685	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2686		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2687
2688	/* Mark Remote Wakeup connection flag as supported if driver has wakeup
2689	 * callback.
2690	 */
2691	if (hdev->wakeup)
2692		hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2693
2694	hci_sock_dev_event(hdev, HCI_DEV_REG);
2695	hci_dev_hold(hdev);
2696
2697	error = hci_register_suspend_notifier(hdev);
2698	if (error)
2699		BT_WARN("register suspend notifier failed error:%d\n", error);
2700
2701	queue_work(hdev->req_workqueue, &hdev->power_on);
2702
2703	idr_init(&hdev->adv_monitors_idr);
2704	msft_register(hdev);
2705
2706	return id;
2707
2708err_wqueue:
2709	debugfs_remove_recursive(hdev->debugfs);
2710	destroy_workqueue(hdev->workqueue);
2711	destroy_workqueue(hdev->req_workqueue);
2712err:
2713	ida_simple_remove(&hci_index_ida, hdev->id);
2714
2715	return error;
2716}
2717EXPORT_SYMBOL(hci_register_dev);
2718
2719/* Unregister HCI device */
2720void hci_unregister_dev(struct hci_dev *hdev)
2721{
 
 
2722	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2723
2724	mutex_lock(&hdev->unregister_lock);
2725	hci_dev_set_flag(hdev, HCI_UNREGISTER);
2726	mutex_unlock(&hdev->unregister_lock);
 
2727
2728	write_lock(&hci_dev_list_lock);
2729	list_del(&hdev->list);
2730	write_unlock(&hci_dev_list_lock);
2731
2732	cancel_work_sync(&hdev->power_on);
2733
2734	hci_cmd_sync_clear(hdev);
2735
2736	hci_unregister_suspend_notifier(hdev);
2737
2738	msft_unregister(hdev);
2739
2740	hci_dev_do_close(hdev);
2741
2742	if (!test_bit(HCI_INIT, &hdev->flags) &&
2743	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
2744	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2745		hci_dev_lock(hdev);
2746		mgmt_index_removed(hdev);
2747		hci_dev_unlock(hdev);
2748	}
2749
2750	/* mgmt_index_removed should take care of emptying the
2751	 * pending list */
2752	BUG_ON(!list_empty(&hdev->mgmt_pending));
2753
2754	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2755
2756	if (hdev->rfkill) {
2757		rfkill_unregister(hdev->rfkill);
2758		rfkill_destroy(hdev->rfkill);
2759	}
2760
2761	device_del(&hdev->dev);
2762	/* Actual cleanup is deferred until hci_release_dev(). */
2763	hci_dev_put(hdev);
2764}
2765EXPORT_SYMBOL(hci_unregister_dev);
2766
2767/* Release HCI device */
2768void hci_release_dev(struct hci_dev *hdev)
2769{
2770	debugfs_remove_recursive(hdev->debugfs);
2771	kfree_const(hdev->hw_info);
2772	kfree_const(hdev->fw_info);
2773
2774	destroy_workqueue(hdev->workqueue);
2775	destroy_workqueue(hdev->req_workqueue);
2776
2777	hci_dev_lock(hdev);
2778	hci_bdaddr_list_clear(&hdev->reject_list);
2779	hci_bdaddr_list_clear(&hdev->accept_list);
2780	hci_uuids_clear(hdev);
2781	hci_link_keys_clear(hdev);
2782	hci_smp_ltks_clear(hdev);
2783	hci_smp_irks_clear(hdev);
2784	hci_remote_oob_data_clear(hdev);
2785	hci_adv_instances_clear(hdev);
2786	hci_adv_monitors_clear(hdev);
2787	hci_bdaddr_list_clear(&hdev->le_accept_list);
2788	hci_bdaddr_list_clear(&hdev->le_resolv_list);
2789	hci_conn_params_clear_all(hdev);
2790	hci_discovery_filter_clear(hdev);
2791	hci_blocked_keys_clear(hdev);
2792	hci_codec_list_clear(&hdev->local_codecs);
2793	hci_dev_unlock(hdev);
2794
2795	ida_destroy(&hdev->unset_handle_ida);
2796	ida_simple_remove(&hci_index_ida, hdev->id);
2797	kfree_skb(hdev->sent_cmd);
2798	kfree_skb(hdev->recv_event);
2799	kfree(hdev);
2800}
2801EXPORT_SYMBOL(hci_release_dev);
2802
2803int hci_register_suspend_notifier(struct hci_dev *hdev)
2804{
2805	int ret = 0;
2806
2807	if (!hdev->suspend_notifier.notifier_call &&
2808	    !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2809		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2810		ret = register_pm_notifier(&hdev->suspend_notifier);
2811	}
2812
2813	return ret;
2814}
2815
2816int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2817{
2818	int ret = 0;
2819
2820	if (hdev->suspend_notifier.notifier_call) {
2821		ret = unregister_pm_notifier(&hdev->suspend_notifier);
2822		if (!ret)
2823			hdev->suspend_notifier.notifier_call = NULL;
2824	}
2825
2826	return ret;
2827}
 
2828
2829/* Suspend HCI device */
2830int hci_suspend_dev(struct hci_dev *hdev)
2831{
2832	int ret;
2833
2834	bt_dev_dbg(hdev, "");
2835
2836	/* Suspend should only act on when powered. */
2837	if (!hdev_is_powered(hdev) ||
2838	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2839		return 0;
2840
2841	/* If powering down don't attempt to suspend */
2842	if (mgmt_powering_down(hdev))
2843		return 0;
2844
2845	/* Cancel potentially blocking sync operation before suspend */
2846	__hci_cmd_sync_cancel(hdev, -EHOSTDOWN);
2847
2848	hci_req_sync_lock(hdev);
2849	ret = hci_suspend_sync(hdev);
2850	hci_req_sync_unlock(hdev);
2851
2852	hci_clear_wake_reason(hdev);
2853	mgmt_suspending(hdev, hdev->suspend_state);
2854
2855	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2856	return ret;
2857}
2858EXPORT_SYMBOL(hci_suspend_dev);
2859
2860/* Resume HCI device */
2861int hci_resume_dev(struct hci_dev *hdev)
2862{
2863	int ret;
2864
2865	bt_dev_dbg(hdev, "");
2866
2867	/* Resume should only act on when powered. */
2868	if (!hdev_is_powered(hdev) ||
2869	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2870		return 0;
2871
2872	/* If powering down don't attempt to resume */
2873	if (mgmt_powering_down(hdev))
2874		return 0;
2875
2876	hci_req_sync_lock(hdev);
2877	ret = hci_resume_sync(hdev);
2878	hci_req_sync_unlock(hdev);
2879
2880	mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2881		      hdev->wake_addr_type);
2882
2883	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2884	return ret;
2885}
2886EXPORT_SYMBOL(hci_resume_dev);
2887
2888/* Reset HCI device */
2889int hci_reset_dev(struct hci_dev *hdev)
2890{
2891	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2892	struct sk_buff *skb;
2893
2894	skb = bt_skb_alloc(3, GFP_ATOMIC);
2895	if (!skb)
2896		return -ENOMEM;
2897
2898	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2899	skb_put_data(skb, hw_err, 3);
2900
2901	bt_dev_err(hdev, "Injecting HCI hardware error event");
2902
2903	/* Send Hardware Error to upper stack */
2904	return hci_recv_frame(hdev, skb);
2905}
2906EXPORT_SYMBOL(hci_reset_dev);
2907
2908/* Receive frame from HCI drivers */
2909int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2910{
2911	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2912		      && !test_bit(HCI_INIT, &hdev->flags))) {
2913		kfree_skb(skb);
2914		return -ENXIO;
2915	}
2916
2917	switch (hci_skb_pkt_type(skb)) {
2918	case HCI_EVENT_PKT:
2919		break;
2920	case HCI_ACLDATA_PKT:
2921		/* Detect if ISO packet has been sent as ACL */
2922		if (hci_conn_num(hdev, ISO_LINK)) {
2923			__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2924			__u8 type;
2925
2926			type = hci_conn_lookup_type(hdev, hci_handle(handle));
2927			if (type == ISO_LINK)
2928				hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2929		}
2930		break;
2931	case HCI_SCODATA_PKT:
2932		break;
2933	case HCI_ISODATA_PKT:
2934		break;
2935	default:
2936		kfree_skb(skb);
2937		return -EINVAL;
2938	}
2939
2940	/* Incoming skb */
2941	bt_cb(skb)->incoming = 1;
2942
2943	/* Time stamp */
2944	__net_timestamp(skb);
2945
2946	skb_queue_tail(&hdev->rx_q, skb);
2947	queue_work(hdev->workqueue, &hdev->rx_work);
2948
2949	return 0;
2950}
2951EXPORT_SYMBOL(hci_recv_frame);
2952
2953/* Receive diagnostic message from HCI drivers */
2954int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2955{
2956	/* Mark as diagnostic packet */
2957	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2958
2959	/* Time stamp */
2960	__net_timestamp(skb);
2961
2962	skb_queue_tail(&hdev->rx_q, skb);
2963	queue_work(hdev->workqueue, &hdev->rx_work);
2964
2965	return 0;
2966}
2967EXPORT_SYMBOL(hci_recv_diag);
2968
2969void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2970{
2971	va_list vargs;
2972
2973	va_start(vargs, fmt);
2974	kfree_const(hdev->hw_info);
2975	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2976	va_end(vargs);
2977}
2978EXPORT_SYMBOL(hci_set_hw_info);
2979
2980void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
2981{
2982	va_list vargs;
2983
2984	va_start(vargs, fmt);
2985	kfree_const(hdev->fw_info);
2986	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2987	va_end(vargs);
2988}
2989EXPORT_SYMBOL(hci_set_fw_info);
2990
2991/* ---- Interface to upper protocols ---- */
2992
2993int hci_register_cb(struct hci_cb *cb)
2994{
2995	BT_DBG("%p name %s", cb, cb->name);
2996
2997	mutex_lock(&hci_cb_list_lock);
2998	list_add_tail(&cb->list, &hci_cb_list);
2999	mutex_unlock(&hci_cb_list_lock);
3000
3001	return 0;
3002}
3003EXPORT_SYMBOL(hci_register_cb);
3004
3005int hci_unregister_cb(struct hci_cb *cb)
3006{
3007	BT_DBG("%p name %s", cb, cb->name);
3008
3009	mutex_lock(&hci_cb_list_lock);
3010	list_del(&cb->list);
3011	mutex_unlock(&hci_cb_list_lock);
3012
3013	return 0;
3014}
3015EXPORT_SYMBOL(hci_unregister_cb);
3016
3017static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3018{
3019	int err;
3020
3021	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3022	       skb->len);
3023
3024	/* Time stamp */
3025	__net_timestamp(skb);
3026
3027	/* Send copy to monitor */
3028	hci_send_to_monitor(hdev, skb);
3029
3030	if (atomic_read(&hdev->promisc)) {
3031		/* Send copy to the sockets */
3032		hci_send_to_sock(hdev, skb);
3033	}
3034
3035	/* Get rid of skb owner, prior to sending to the driver. */
3036	skb_orphan(skb);
3037
3038	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3039		kfree_skb(skb);
3040		return -EINVAL;
3041	}
3042
3043	err = hdev->send(hdev, skb);
3044	if (err < 0) {
3045		bt_dev_err(hdev, "sending frame failed (%d)", err);
3046		kfree_skb(skb);
3047		return err;
3048	}
3049
3050	return 0;
3051}
3052
3053/* Send HCI command */
3054int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3055		 const void *param)
3056{
3057	struct sk_buff *skb;
3058
3059	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3060
3061	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3062	if (!skb) {
3063		bt_dev_err(hdev, "no memory for command");
3064		return -ENOMEM;
3065	}
3066
3067	/* Stand-alone HCI commands must be flagged as
3068	 * single-command requests.
3069	 */
3070	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3071
3072	skb_queue_tail(&hdev->cmd_q, skb);
3073	queue_work(hdev->workqueue, &hdev->cmd_work);
3074
3075	return 0;
3076}
3077
3078int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3079		   const void *param)
3080{
3081	struct sk_buff *skb;
3082
3083	if (hci_opcode_ogf(opcode) != 0x3f) {
3084		/* A controller receiving a command shall respond with either
3085		 * a Command Status Event or a Command Complete Event.
3086		 * Therefore, all standard HCI commands must be sent via the
3087		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3088		 * Some vendors do not comply with this rule for vendor-specific
3089		 * commands and do not return any event. We want to support
3090		 * unresponded commands for such cases only.
3091		 */
3092		bt_dev_err(hdev, "unresponded command not supported");
3093		return -EINVAL;
3094	}
3095
3096	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3097	if (!skb) {
3098		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3099			   opcode);
3100		return -ENOMEM;
3101	}
3102
3103	hci_send_frame(hdev, skb);
3104
3105	return 0;
3106}
3107EXPORT_SYMBOL(__hci_cmd_send);
3108
3109/* Get data from the previously sent command */
3110void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3111{
3112	struct hci_command_hdr *hdr;
3113
3114	if (!hdev->sent_cmd)
3115		return NULL;
3116
3117	hdr = (void *) hdev->sent_cmd->data;
3118
3119	if (hdr->opcode != cpu_to_le16(opcode))
3120		return NULL;
3121
3122	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3123
3124	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3125}
3126
3127/* Get data from last received event */
3128void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
 
3129{
3130	struct hci_event_hdr *hdr;
3131	int offset;
3132
3133	if (!hdev->recv_event)
3134		return NULL;
3135
3136	hdr = (void *)hdev->recv_event->data;
3137	offset = sizeof(*hdr);
3138
3139	if (hdr->evt != event) {
3140		/* In case of LE metaevent check the subevent match */
3141		if (hdr->evt == HCI_EV_LE_META) {
3142			struct hci_ev_le_meta *ev;
3143
3144			ev = (void *)hdev->recv_event->data + offset;
3145			offset += sizeof(*ev);
3146			if (ev->subevent == event)
3147				goto found;
3148		}
3149		return NULL;
3150	}
3151
3152found:
3153	bt_dev_dbg(hdev, "event 0x%2.2x", event);
3154
3155	return hdev->recv_event->data + offset;
3156}
 
3157
3158/* Send ACL data */
3159static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3160{
3161	struct hci_acl_hdr *hdr;
3162	int len = skb->len;
3163
3164	skb_push(skb, HCI_ACL_HDR_SIZE);
3165	skb_reset_transport_header(skb);
3166	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3167	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3168	hdr->dlen   = cpu_to_le16(len);
3169}
3170
3171static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3172			  struct sk_buff *skb, __u16 flags)
3173{
3174	struct hci_conn *conn = chan->conn;
3175	struct hci_dev *hdev = conn->hdev;
3176	struct sk_buff *list;
3177
3178	skb->len = skb_headlen(skb);
3179	skb->data_len = 0;
3180
3181	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3182
3183	switch (hdev->dev_type) {
3184	case HCI_PRIMARY:
3185		hci_add_acl_hdr(skb, conn->handle, flags);
3186		break;
3187	case HCI_AMP:
3188		hci_add_acl_hdr(skb, chan->handle, flags);
3189		break;
3190	default:
3191		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3192		return;
3193	}
3194
3195	list = skb_shinfo(skb)->frag_list;
3196	if (!list) {
3197		/* Non fragmented */
3198		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3199
3200		skb_queue_tail(queue, skb);
3201	} else {
3202		/* Fragmented */
3203		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3204
3205		skb_shinfo(skb)->frag_list = NULL;
3206
3207		/* Queue all fragments atomically. We need to use spin_lock_bh
3208		 * here because of 6LoWPAN links, as there this function is
3209		 * called from softirq and using normal spin lock could cause
3210		 * deadlocks.
3211		 */
3212		spin_lock_bh(&queue->lock);
3213
3214		__skb_queue_tail(queue, skb);
3215
3216		flags &= ~ACL_START;
3217		flags |= ACL_CONT;
3218		do {
3219			skb = list; list = list->next;
3220
3221			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3222			hci_add_acl_hdr(skb, conn->handle, flags);
3223
3224			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3225
3226			__skb_queue_tail(queue, skb);
3227		} while (list);
3228
3229		spin_unlock_bh(&queue->lock);
3230	}
3231}
3232
3233void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3234{
3235	struct hci_dev *hdev = chan->conn->hdev;
3236
3237	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3238
3239	hci_queue_acl(chan, &chan->data_q, skb, flags);
3240
3241	queue_work(hdev->workqueue, &hdev->tx_work);
3242}
3243
3244/* Send SCO data */
3245void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3246{
3247	struct hci_dev *hdev = conn->hdev;
3248	struct hci_sco_hdr hdr;
3249
3250	BT_DBG("%s len %d", hdev->name, skb->len);
3251
3252	hdr.handle = cpu_to_le16(conn->handle);
3253	hdr.dlen   = skb->len;
3254
3255	skb_push(skb, HCI_SCO_HDR_SIZE);
3256	skb_reset_transport_header(skb);
3257	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3258
3259	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3260
3261	skb_queue_tail(&conn->data_q, skb);
3262	queue_work(hdev->workqueue, &hdev->tx_work);
3263}
3264
3265/* Send ISO data */
3266static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3267{
3268	struct hci_iso_hdr *hdr;
3269	int len = skb->len;
3270
3271	skb_push(skb, HCI_ISO_HDR_SIZE);
3272	skb_reset_transport_header(skb);
3273	hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3274	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3275	hdr->dlen   = cpu_to_le16(len);
3276}
3277
3278static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3279			  struct sk_buff *skb)
3280{
3281	struct hci_dev *hdev = conn->hdev;
3282	struct sk_buff *list;
3283	__u16 flags;
3284
3285	skb->len = skb_headlen(skb);
3286	skb->data_len = 0;
3287
3288	hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3289
3290	list = skb_shinfo(skb)->frag_list;
3291
3292	flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3293	hci_add_iso_hdr(skb, conn->handle, flags);
3294
3295	if (!list) {
3296		/* Non fragmented */
3297		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3298
3299		skb_queue_tail(queue, skb);
3300	} else {
3301		/* Fragmented */
3302		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3303
3304		skb_shinfo(skb)->frag_list = NULL;
3305
3306		__skb_queue_tail(queue, skb);
3307
3308		do {
3309			skb = list; list = list->next;
3310
3311			hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3312			flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3313						   0x00);
3314			hci_add_iso_hdr(skb, conn->handle, flags);
3315
3316			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3317
3318			__skb_queue_tail(queue, skb);
3319		} while (list);
3320	}
3321}
3322
3323void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3324{
3325	struct hci_dev *hdev = conn->hdev;
3326
3327	BT_DBG("%s len %d", hdev->name, skb->len);
3328
3329	hci_queue_iso(conn, &conn->data_q, skb);
3330
3331	queue_work(hdev->workqueue, &hdev->tx_work);
3332}
3333
3334/* ---- HCI TX task (outgoing data) ---- */
3335
3336/* HCI Connection scheduler */
3337static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3338{
3339	struct hci_dev *hdev;
3340	int cnt, q;
3341
3342	if (!conn) {
3343		*quote = 0;
3344		return;
3345	}
3346
3347	hdev = conn->hdev;
3348
3349	switch (conn->type) {
3350	case ACL_LINK:
3351		cnt = hdev->acl_cnt;
3352		break;
3353	case AMP_LINK:
3354		cnt = hdev->block_cnt;
3355		break;
3356	case SCO_LINK:
3357	case ESCO_LINK:
3358		cnt = hdev->sco_cnt;
3359		break;
3360	case LE_LINK:
3361		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3362		break;
3363	case ISO_LINK:
3364		cnt = hdev->iso_mtu ? hdev->iso_cnt :
3365			hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3366		break;
3367	default:
3368		cnt = 0;
3369		bt_dev_err(hdev, "unknown link type %d", conn->type);
3370	}
3371
3372	q = cnt / num;
3373	*quote = q ? q : 1;
3374}
3375
3376static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3377				     int *quote)
3378{
3379	struct hci_conn_hash *h = &hdev->conn_hash;
3380	struct hci_conn *conn = NULL, *c;
3381	unsigned int num = 0, min = ~0;
3382
3383	/* We don't have to lock device here. Connections are always
3384	 * added and removed with TX task disabled. */
3385
3386	rcu_read_lock();
3387
3388	list_for_each_entry_rcu(c, &h->list, list) {
3389		if (c->type != type || skb_queue_empty(&c->data_q))
3390			continue;
3391
3392		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3393			continue;
3394
3395		num++;
3396
3397		if (c->sent < min) {
3398			min  = c->sent;
3399			conn = c;
3400		}
3401
3402		if (hci_conn_num(hdev, type) == num)
3403			break;
3404	}
3405
3406	rcu_read_unlock();
3407
3408	hci_quote_sent(conn, num, quote);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3409
3410	BT_DBG("conn %p quote %d", conn, *quote);
3411	return conn;
3412}
3413
3414static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3415{
3416	struct hci_conn_hash *h = &hdev->conn_hash;
3417	struct hci_conn *c;
3418
3419	bt_dev_err(hdev, "link tx timeout");
3420
3421	rcu_read_lock();
3422
3423	/* Kill stalled connections */
3424	list_for_each_entry_rcu(c, &h->list, list) {
3425		if (c->type == type && c->sent) {
3426			bt_dev_err(hdev, "killing stalled connection %pMR",
3427				   &c->dst);
3428			/* hci_disconnect might sleep, so, we have to release
3429			 * the RCU read lock before calling it.
3430			 */
3431			rcu_read_unlock();
3432			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3433			rcu_read_lock();
3434		}
3435	}
3436
3437	rcu_read_unlock();
3438}
3439
3440static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3441				      int *quote)
3442{
3443	struct hci_conn_hash *h = &hdev->conn_hash;
3444	struct hci_chan *chan = NULL;
3445	unsigned int num = 0, min = ~0, cur_prio = 0;
3446	struct hci_conn *conn;
3447	int conn_num = 0;
3448
3449	BT_DBG("%s", hdev->name);
3450
3451	rcu_read_lock();
3452
3453	list_for_each_entry_rcu(conn, &h->list, list) {
3454		struct hci_chan *tmp;
3455
3456		if (conn->type != type)
3457			continue;
3458
3459		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3460			continue;
3461
3462		conn_num++;
3463
3464		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3465			struct sk_buff *skb;
3466
3467			if (skb_queue_empty(&tmp->data_q))
3468				continue;
3469
3470			skb = skb_peek(&tmp->data_q);
3471			if (skb->priority < cur_prio)
3472				continue;
3473
3474			if (skb->priority > cur_prio) {
3475				num = 0;
3476				min = ~0;
3477				cur_prio = skb->priority;
3478			}
3479
3480			num++;
3481
3482			if (conn->sent < min) {
3483				min  = conn->sent;
3484				chan = tmp;
3485			}
3486		}
3487
3488		if (hci_conn_num(hdev, type) == conn_num)
3489			break;
3490	}
3491
3492	rcu_read_unlock();
3493
3494	if (!chan)
3495		return NULL;
3496
3497	hci_quote_sent(chan->conn, num, quote);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3498
 
 
3499	BT_DBG("chan %p quote %d", chan, *quote);
3500	return chan;
3501}
3502
3503static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3504{
3505	struct hci_conn_hash *h = &hdev->conn_hash;
3506	struct hci_conn *conn;
3507	int num = 0;
3508
3509	BT_DBG("%s", hdev->name);
3510
3511	rcu_read_lock();
3512
3513	list_for_each_entry_rcu(conn, &h->list, list) {
3514		struct hci_chan *chan;
3515
3516		if (conn->type != type)
3517			continue;
3518
3519		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3520			continue;
3521
3522		num++;
3523
3524		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3525			struct sk_buff *skb;
3526
3527			if (chan->sent) {
3528				chan->sent = 0;
3529				continue;
3530			}
3531
3532			if (skb_queue_empty(&chan->data_q))
3533				continue;
3534
3535			skb = skb_peek(&chan->data_q);
3536			if (skb->priority >= HCI_PRIO_MAX - 1)
3537				continue;
3538
3539			skb->priority = HCI_PRIO_MAX - 1;
3540
3541			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3542			       skb->priority);
3543		}
3544
3545		if (hci_conn_num(hdev, type) == num)
3546			break;
3547	}
3548
3549	rcu_read_unlock();
3550
3551}
3552
3553static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3554{
3555	/* Calculate count of blocks used by this packet */
3556	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3557}
3558
3559static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3560{
3561	unsigned long last_tx;
3562
3563	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3564		return;
3565
3566	switch (type) {
3567	case LE_LINK:
3568		last_tx = hdev->le_last_tx;
3569		break;
3570	default:
3571		last_tx = hdev->acl_last_tx;
3572		break;
3573	}
3574
3575	/* tx timeout must be longer than maximum link supervision timeout
3576	 * (40.9 seconds)
3577	 */
3578	if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3579		hci_link_tx_to(hdev, type);
3580}
3581
3582/* Schedule SCO */
3583static void hci_sched_sco(struct hci_dev *hdev)
3584{
3585	struct hci_conn *conn;
3586	struct sk_buff *skb;
3587	int quote;
3588
3589	BT_DBG("%s", hdev->name);
3590
3591	if (!hci_conn_num(hdev, SCO_LINK))
3592		return;
3593
3594	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3595		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3596			BT_DBG("skb %p len %d", skb, skb->len);
3597			hci_send_frame(hdev, skb);
3598
3599			conn->sent++;
3600			if (conn->sent == ~0)
3601				conn->sent = 0;
3602		}
3603	}
3604}
3605
3606static void hci_sched_esco(struct hci_dev *hdev)
3607{
3608	struct hci_conn *conn;
3609	struct sk_buff *skb;
3610	int quote;
3611
3612	BT_DBG("%s", hdev->name);
3613
3614	if (!hci_conn_num(hdev, ESCO_LINK))
3615		return;
3616
3617	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3618						     &quote))) {
3619		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3620			BT_DBG("skb %p len %d", skb, skb->len);
3621			hci_send_frame(hdev, skb);
3622
3623			conn->sent++;
3624			if (conn->sent == ~0)
3625				conn->sent = 0;
3626		}
3627	}
3628}
3629
3630static void hci_sched_acl_pkt(struct hci_dev *hdev)
3631{
3632	unsigned int cnt = hdev->acl_cnt;
3633	struct hci_chan *chan;
3634	struct sk_buff *skb;
3635	int quote;
3636
3637	__check_timeout(hdev, cnt, ACL_LINK);
3638
3639	while (hdev->acl_cnt &&
3640	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3641		u32 priority = (skb_peek(&chan->data_q))->priority;
3642		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3643			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3644			       skb->len, skb->priority);
3645
3646			/* Stop if priority has changed */
3647			if (skb->priority < priority)
3648				break;
3649
3650			skb = skb_dequeue(&chan->data_q);
3651
3652			hci_conn_enter_active_mode(chan->conn,
3653						   bt_cb(skb)->force_active);
3654
3655			hci_send_frame(hdev, skb);
3656			hdev->acl_last_tx = jiffies;
3657
3658			hdev->acl_cnt--;
3659			chan->sent++;
3660			chan->conn->sent++;
3661
3662			/* Send pending SCO packets right away */
3663			hci_sched_sco(hdev);
3664			hci_sched_esco(hdev);
3665		}
3666	}
3667
3668	if (cnt != hdev->acl_cnt)
3669		hci_prio_recalculate(hdev, ACL_LINK);
3670}
3671
3672static void hci_sched_acl_blk(struct hci_dev *hdev)
3673{
3674	unsigned int cnt = hdev->block_cnt;
3675	struct hci_chan *chan;
3676	struct sk_buff *skb;
3677	int quote;
3678	u8 type;
3679
 
 
3680	BT_DBG("%s", hdev->name);
3681
3682	if (hdev->dev_type == HCI_AMP)
3683		type = AMP_LINK;
3684	else
3685		type = ACL_LINK;
3686
3687	__check_timeout(hdev, cnt, type);
3688
3689	while (hdev->block_cnt > 0 &&
3690	       (chan = hci_chan_sent(hdev, type, &quote))) {
3691		u32 priority = (skb_peek(&chan->data_q))->priority;
3692		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3693			int blocks;
3694
3695			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3696			       skb->len, skb->priority);
3697
3698			/* Stop if priority has changed */
3699			if (skb->priority < priority)
3700				break;
3701
3702			skb = skb_dequeue(&chan->data_q);
3703
3704			blocks = __get_blocks(hdev, skb);
3705			if (blocks > hdev->block_cnt)
3706				return;
3707
3708			hci_conn_enter_active_mode(chan->conn,
3709						   bt_cb(skb)->force_active);
3710
3711			hci_send_frame(hdev, skb);
3712			hdev->acl_last_tx = jiffies;
3713
3714			hdev->block_cnt -= blocks;
3715			quote -= blocks;
3716
3717			chan->sent += blocks;
3718			chan->conn->sent += blocks;
3719		}
3720	}
3721
3722	if (cnt != hdev->block_cnt)
3723		hci_prio_recalculate(hdev, type);
3724}
3725
3726static void hci_sched_acl(struct hci_dev *hdev)
3727{
3728	BT_DBG("%s", hdev->name);
3729
3730	/* No ACL link over BR/EDR controller */
3731	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3732		return;
3733
3734	/* No AMP link over AMP controller */
3735	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3736		return;
3737
3738	switch (hdev->flow_ctl_mode) {
3739	case HCI_FLOW_CTL_MODE_PACKET_BASED:
3740		hci_sched_acl_pkt(hdev);
3741		break;
3742
3743	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3744		hci_sched_acl_blk(hdev);
3745		break;
3746	}
3747}
3748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3749static void hci_sched_le(struct hci_dev *hdev)
3750{
3751	struct hci_chan *chan;
3752	struct sk_buff *skb;
3753	int quote, cnt, tmp;
3754
3755	BT_DBG("%s", hdev->name);
3756
3757	if (!hci_conn_num(hdev, LE_LINK))
3758		return;
3759
 
 
 
 
 
 
 
 
3760	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3761
3762	__check_timeout(hdev, cnt, LE_LINK);
3763
3764	tmp = cnt;
3765	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3766		u32 priority = (skb_peek(&chan->data_q))->priority;
3767		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3768			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3769			       skb->len, skb->priority);
3770
3771			/* Stop if priority has changed */
3772			if (skb->priority < priority)
3773				break;
3774
3775			skb = skb_dequeue(&chan->data_q);
3776
3777			hci_send_frame(hdev, skb);
3778			hdev->le_last_tx = jiffies;
3779
3780			cnt--;
3781			chan->sent++;
3782			chan->conn->sent++;
3783
3784			/* Send pending SCO packets right away */
3785			hci_sched_sco(hdev);
3786			hci_sched_esco(hdev);
3787		}
3788	}
3789
3790	if (hdev->le_pkts)
3791		hdev->le_cnt = cnt;
3792	else
3793		hdev->acl_cnt = cnt;
3794
3795	if (cnt != tmp)
3796		hci_prio_recalculate(hdev, LE_LINK);
3797}
3798
3799/* Schedule CIS */
3800static void hci_sched_iso(struct hci_dev *hdev)
3801{
3802	struct hci_conn *conn;
3803	struct sk_buff *skb;
3804	int quote, *cnt;
3805
3806	BT_DBG("%s", hdev->name);
3807
3808	if (!hci_conn_num(hdev, ISO_LINK))
3809		return;
3810
3811	cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3812		hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3813	while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, &quote))) {
3814		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3815			BT_DBG("skb %p len %d", skb, skb->len);
3816			hci_send_frame(hdev, skb);
3817
3818			conn->sent++;
3819			if (conn->sent == ~0)
3820				conn->sent = 0;
3821			(*cnt)--;
3822		}
3823	}
3824}
3825
3826static void hci_tx_work(struct work_struct *work)
3827{
3828	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3829	struct sk_buff *skb;
3830
3831	BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3832	       hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3833
3834	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3835		/* Schedule queues and send stuff to HCI driver */
 
3836		hci_sched_sco(hdev);
3837		hci_sched_esco(hdev);
3838		hci_sched_iso(hdev);
3839		hci_sched_acl(hdev);
3840		hci_sched_le(hdev);
3841	}
3842
3843	/* Send next queued raw (unknown type) packet */
3844	while ((skb = skb_dequeue(&hdev->raw_q)))
3845		hci_send_frame(hdev, skb);
3846}
3847
3848/* ----- HCI RX task (incoming data processing) ----- */
3849
3850/* ACL data packet */
3851static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3852{
3853	struct hci_acl_hdr *hdr = (void *) skb->data;
3854	struct hci_conn *conn;
3855	__u16 handle, flags;
3856
3857	skb_pull(skb, HCI_ACL_HDR_SIZE);
3858
3859	handle = __le16_to_cpu(hdr->handle);
3860	flags  = hci_flags(handle);
3861	handle = hci_handle(handle);
3862
3863	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3864	       handle, flags);
3865
3866	hdev->stat.acl_rx++;
3867
3868	hci_dev_lock(hdev);
3869	conn = hci_conn_hash_lookup_handle(hdev, handle);
3870	hci_dev_unlock(hdev);
3871
3872	if (conn) {
3873		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3874
3875		/* Send to upper protocol */
3876		l2cap_recv_acldata(conn, skb, flags);
3877		return;
3878	} else {
3879		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3880			   handle);
3881	}
3882
3883	kfree_skb(skb);
3884}
3885
3886/* SCO data packet */
3887static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3888{
3889	struct hci_sco_hdr *hdr = (void *) skb->data;
3890	struct hci_conn *conn;
3891	__u16 handle, flags;
3892
3893	skb_pull(skb, HCI_SCO_HDR_SIZE);
3894
3895	handle = __le16_to_cpu(hdr->handle);
3896	flags  = hci_flags(handle);
3897	handle = hci_handle(handle);
3898
3899	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3900	       handle, flags);
3901
3902	hdev->stat.sco_rx++;
3903
3904	hci_dev_lock(hdev);
3905	conn = hci_conn_hash_lookup_handle(hdev, handle);
3906	hci_dev_unlock(hdev);
3907
3908	if (conn) {
3909		/* Send to upper protocol */
3910		hci_skb_pkt_status(skb) = flags & 0x03;
3911		sco_recv_scodata(conn, skb);
3912		return;
3913	} else {
3914		bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3915				       handle);
3916	}
3917
3918	kfree_skb(skb);
3919}
3920
3921static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3922{
3923	struct hci_iso_hdr *hdr;
3924	struct hci_conn *conn;
3925	__u16 handle, flags;
3926
3927	hdr = skb_pull_data(skb, sizeof(*hdr));
3928	if (!hdr) {
3929		bt_dev_err(hdev, "ISO packet too small");
3930		goto drop;
3931	}
3932
3933	handle = __le16_to_cpu(hdr->handle);
3934	flags  = hci_flags(handle);
3935	handle = hci_handle(handle);
3936
3937	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3938		   handle, flags);
3939
3940	hci_dev_lock(hdev);
3941	conn = hci_conn_hash_lookup_handle(hdev, handle);
3942	hci_dev_unlock(hdev);
3943
3944	if (!conn) {
3945		bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3946			   handle);
3947		goto drop;
3948	}
3949
3950	/* Send to upper protocol */
3951	iso_recv(conn, skb, flags);
3952	return;
3953
3954drop:
3955	kfree_skb(skb);
3956}
3957
3958static bool hci_req_is_complete(struct hci_dev *hdev)
3959{
3960	struct sk_buff *skb;
3961
3962	skb = skb_peek(&hdev->cmd_q);
3963	if (!skb)
3964		return true;
3965
3966	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3967}
3968
3969static void hci_resend_last(struct hci_dev *hdev)
3970{
3971	struct hci_command_hdr *sent;
3972	struct sk_buff *skb;
3973	u16 opcode;
3974
3975	if (!hdev->sent_cmd)
3976		return;
3977
3978	sent = (void *) hdev->sent_cmd->data;
3979	opcode = __le16_to_cpu(sent->opcode);
3980	if (opcode == HCI_OP_RESET)
3981		return;
3982
3983	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3984	if (!skb)
3985		return;
3986
3987	skb_queue_head(&hdev->cmd_q, skb);
3988	queue_work(hdev->workqueue, &hdev->cmd_work);
3989}
3990
3991void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3992			  hci_req_complete_t *req_complete,
3993			  hci_req_complete_skb_t *req_complete_skb)
3994{
3995	struct sk_buff *skb;
3996	unsigned long flags;
3997
3998	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3999
4000	/* If the completed command doesn't match the last one that was
4001	 * sent we need to do special handling of it.
4002	 */
4003	if (!hci_sent_cmd_data(hdev, opcode)) {
4004		/* Some CSR based controllers generate a spontaneous
4005		 * reset complete event during init and any pending
4006		 * command will never be completed. In such a case we
4007		 * need to resend whatever was the last sent
4008		 * command.
4009		 */
4010		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4011			hci_resend_last(hdev);
4012
4013		return;
4014	}
4015
4016	/* If we reach this point this event matches the last command sent */
4017	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4018
4019	/* If the command succeeded and there's still more commands in
4020	 * this request the request is not yet complete.
4021	 */
4022	if (!status && !hci_req_is_complete(hdev))
4023		return;
4024
4025	/* If this was the last command in a request the complete
4026	 * callback would be found in hdev->sent_cmd instead of the
4027	 * command queue (hdev->cmd_q).
4028	 */
4029	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4030		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4031		return;
4032	}
4033
4034	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4035		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4036		return;
4037	}
4038
4039	/* Remove all pending commands belonging to this request */
4040	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4041	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4042		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4043			__skb_queue_head(&hdev->cmd_q, skb);
4044			break;
4045		}
4046
4047		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4048			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4049		else
4050			*req_complete = bt_cb(skb)->hci.req_complete;
4051		dev_kfree_skb_irq(skb);
4052	}
4053	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4054}
4055
4056static void hci_rx_work(struct work_struct *work)
4057{
4058	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4059	struct sk_buff *skb;
4060
4061	BT_DBG("%s", hdev->name);
4062
4063	/* The kcov_remote functions used for collecting packet parsing
4064	 * coverage information from this background thread and associate
4065	 * the coverage with the syscall's thread which originally injected
4066	 * the packet. This helps fuzzing the kernel.
4067	 */
4068	for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
4069		kcov_remote_start_common(skb_get_kcov_handle(skb));
4070
4071		/* Send copy to monitor */
4072		hci_send_to_monitor(hdev, skb);
4073
4074		if (atomic_read(&hdev->promisc)) {
4075			/* Send copy to the sockets */
4076			hci_send_to_sock(hdev, skb);
4077		}
4078
4079		/* If the device has been opened in HCI_USER_CHANNEL,
4080		 * the userspace has exclusive access to device.
4081		 * When device is HCI_INIT, we still need to process
4082		 * the data packets to the driver in order
4083		 * to complete its setup().
4084		 */
4085		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4086		    !test_bit(HCI_INIT, &hdev->flags)) {
4087			kfree_skb(skb);
4088			continue;
4089		}
4090
4091		if (test_bit(HCI_INIT, &hdev->flags)) {
4092			/* Don't process data packets in this states. */
4093			switch (hci_skb_pkt_type(skb)) {
4094			case HCI_ACLDATA_PKT:
4095			case HCI_SCODATA_PKT:
4096			case HCI_ISODATA_PKT:
4097				kfree_skb(skb);
4098				continue;
4099			}
4100		}
4101
4102		/* Process frame */
4103		switch (hci_skb_pkt_type(skb)) {
4104		case HCI_EVENT_PKT:
4105			BT_DBG("%s Event packet", hdev->name);
4106			hci_event_packet(hdev, skb);
4107			break;
4108
4109		case HCI_ACLDATA_PKT:
4110			BT_DBG("%s ACL data packet", hdev->name);
4111			hci_acldata_packet(hdev, skb);
4112			break;
4113
4114		case HCI_SCODATA_PKT:
4115			BT_DBG("%s SCO data packet", hdev->name);
4116			hci_scodata_packet(hdev, skb);
4117			break;
4118
4119		case HCI_ISODATA_PKT:
4120			BT_DBG("%s ISO data packet", hdev->name);
4121			hci_isodata_packet(hdev, skb);
4122			break;
4123
4124		default:
4125			kfree_skb(skb);
4126			break;
4127		}
4128	}
4129}
4130
4131static void hci_cmd_work(struct work_struct *work)
4132{
4133	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4134	struct sk_buff *skb;
4135
4136	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4137	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4138
4139	/* Send queued commands */
4140	if (atomic_read(&hdev->cmd_cnt)) {
4141		skb = skb_dequeue(&hdev->cmd_q);
4142		if (!skb)
4143			return;
4144
4145		kfree_skb(hdev->sent_cmd);
4146
4147		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4148		if (hdev->sent_cmd) {
4149			int res;
4150			if (hci_req_status_pend(hdev))
4151				hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4152			atomic_dec(&hdev->cmd_cnt);
4153
4154			res = hci_send_frame(hdev, skb);
4155			if (res < 0)
4156				__hci_cmd_sync_cancel(hdev, -res);
4157
4158			rcu_read_lock();
4159			if (test_bit(HCI_RESET, &hdev->flags) ||
4160			    hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4161				cancel_delayed_work(&hdev->cmd_timer);
4162			else
4163				queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4164						   HCI_CMD_TIMEOUT);
4165			rcu_read_unlock();
4166		} else {
4167			skb_queue_head(&hdev->cmd_q, skb);
4168			queue_work(hdev->workqueue, &hdev->cmd_work);
4169		}
4170	}
4171}