Linux Audio

Check our new training course

Loading...
v5.4
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
  29#include <linux/idr.h>
  30#include <linux/rfkill.h>
  31#include <linux/debugfs.h>
  32#include <linux/crypto.h>
  33#include <linux/property.h>
 
 
  34#include <asm/unaligned.h>
  35
  36#include <net/bluetooth/bluetooth.h>
  37#include <net/bluetooth/hci_core.h>
  38#include <net/bluetooth/l2cap.h>
  39#include <net/bluetooth/mgmt.h>
  40
  41#include "hci_request.h"
  42#include "hci_debugfs.h"
  43#include "smp.h"
  44#include "leds.h"
 
  45
  46static void hci_rx_work(struct work_struct *work);
  47static void hci_cmd_work(struct work_struct *work);
  48static void hci_tx_work(struct work_struct *work);
  49
  50/* HCI device list */
  51LIST_HEAD(hci_dev_list);
  52DEFINE_RWLOCK(hci_dev_list_lock);
  53
  54/* HCI callback list */
  55LIST_HEAD(hci_cb_list);
  56DEFINE_MUTEX(hci_cb_list_lock);
  57
  58/* HCI ID Numbering */
  59static DEFINE_IDA(hci_index_ida);
  60
  61/* ---- HCI debugfs entries ---- */
  62
  63static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
  64			     size_t count, loff_t *ppos)
  65{
  66	struct hci_dev *hdev = file->private_data;
  67	char buf[3];
  68
  69	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
  70	buf[1] = '\n';
  71	buf[2] = '\0';
  72	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
  73}
  74
  75static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
  76			      size_t count, loff_t *ppos)
  77{
  78	struct hci_dev *hdev = file->private_data;
  79	struct sk_buff *skb;
  80	bool enable;
  81	int err;
  82
  83	if (!test_bit(HCI_UP, &hdev->flags))
  84		return -ENETDOWN;
  85
  86	err = kstrtobool_from_user(user_buf, count, &enable);
  87	if (err)
  88		return err;
  89
  90	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
  91		return -EALREADY;
  92
  93	hci_req_sync_lock(hdev);
  94	if (enable)
  95		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
  96				     HCI_CMD_TIMEOUT);
  97	else
  98		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
  99				     HCI_CMD_TIMEOUT);
 100	hci_req_sync_unlock(hdev);
 101
 102	if (IS_ERR(skb))
 103		return PTR_ERR(skb);
 104
 105	kfree_skb(skb);
 106
 107	hci_dev_change_flag(hdev, HCI_DUT_MODE);
 108
 109	return count;
 110}
 111
 112static const struct file_operations dut_mode_fops = {
 113	.open		= simple_open,
 114	.read		= dut_mode_read,
 115	.write		= dut_mode_write,
 116	.llseek		= default_llseek,
 117};
 118
 119static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
 120				size_t count, loff_t *ppos)
 121{
 122	struct hci_dev *hdev = file->private_data;
 123	char buf[3];
 124
 125	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
 126	buf[1] = '\n';
 127	buf[2] = '\0';
 128	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 129}
 130
 131static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
 132				 size_t count, loff_t *ppos)
 133{
 134	struct hci_dev *hdev = file->private_data;
 135	bool enable;
 136	int err;
 137
 138	err = kstrtobool_from_user(user_buf, count, &enable);
 139	if (err)
 140		return err;
 141
 142	/* When the diagnostic flags are not persistent and the transport
 143	 * is not active or in user channel operation, then there is no need
 144	 * for the vendor callback. Instead just store the desired value and
 145	 * the setting will be programmed when the controller gets powered on.
 146	 */
 147	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
 148	    (!test_bit(HCI_RUNNING, &hdev->flags) ||
 149	     hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
 150		goto done;
 151
 152	hci_req_sync_lock(hdev);
 153	err = hdev->set_diag(hdev, enable);
 154	hci_req_sync_unlock(hdev);
 155
 156	if (err < 0)
 157		return err;
 158
 159done:
 160	if (enable)
 161		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
 162	else
 163		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
 164
 165	return count;
 166}
 167
 168static const struct file_operations vendor_diag_fops = {
 169	.open		= simple_open,
 170	.read		= vendor_diag_read,
 171	.write		= vendor_diag_write,
 172	.llseek		= default_llseek,
 173};
 174
 175static void hci_debugfs_create_basic(struct hci_dev *hdev)
 176{
 177	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
 178			    &dut_mode_fops);
 179
 180	if (hdev->set_diag)
 181		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
 182				    &vendor_diag_fops);
 183}
 184
 185static int hci_reset_req(struct hci_request *req, unsigned long opt)
 186{
 187	BT_DBG("%s %ld", req->hdev->name, opt);
 188
 189	/* Reset device */
 190	set_bit(HCI_RESET, &req->hdev->flags);
 191	hci_req_add(req, HCI_OP_RESET, 0, NULL);
 192	return 0;
 193}
 194
 195static void bredr_init(struct hci_request *req)
 196{
 197	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
 198
 199	/* Read Local Supported Features */
 200	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 201
 202	/* Read Local Version */
 203	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 204
 205	/* Read BD Address */
 206	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 207}
 208
 209static void amp_init1(struct hci_request *req)
 210{
 211	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
 212
 213	/* Read Local Version */
 214	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 215
 216	/* Read Local Supported Commands */
 217	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 218
 219	/* Read Local AMP Info */
 220	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
 221
 222	/* Read Data Blk size */
 223	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
 224
 225	/* Read Flow Control Mode */
 226	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
 227
 228	/* Read Location Data */
 229	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
 230}
 231
 232static int amp_init2(struct hci_request *req)
 233{
 234	/* Read Local Supported Features. Not all AMP controllers
 235	 * support this so it's placed conditionally in the second
 236	 * stage init.
 237	 */
 238	if (req->hdev->commands[14] & 0x20)
 239		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 240
 241	return 0;
 242}
 243
 244static int hci_init1_req(struct hci_request *req, unsigned long opt)
 245{
 246	struct hci_dev *hdev = req->hdev;
 247
 248	BT_DBG("%s %ld", hdev->name, opt);
 249
 250	/* Reset */
 251	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 252		hci_reset_req(req, 0);
 253
 254	switch (hdev->dev_type) {
 255	case HCI_PRIMARY:
 256		bredr_init(req);
 257		break;
 258	case HCI_AMP:
 259		amp_init1(req);
 260		break;
 261	default:
 262		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
 263		break;
 264	}
 265
 266	return 0;
 267}
 268
 269static void bredr_setup(struct hci_request *req)
 270{
 271	__le16 param;
 272	__u8 flt_type;
 273
 274	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
 275	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
 276
 277	/* Read Class of Device */
 278	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
 279
 280	/* Read Local Name */
 281	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
 282
 283	/* Read Voice Setting */
 284	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
 285
 286	/* Read Number of Supported IAC */
 287	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
 288
 289	/* Read Current IAC LAP */
 290	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
 291
 292	/* Clear Event Filters */
 293	flt_type = HCI_FLT_CLEAR_ALL;
 294	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
 295
 296	/* Connection accept timeout ~20 secs */
 297	param = cpu_to_le16(0x7d00);
 298	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
 299}
 300
 301static void le_setup(struct hci_request *req)
 302{
 303	struct hci_dev *hdev = req->hdev;
 304
 305	/* Read LE Buffer Size */
 306	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
 307
 308	/* Read LE Local Supported Features */
 309	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
 310
 311	/* Read LE Supported States */
 312	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
 313
 314	/* LE-only controllers have LE implicitly enabled */
 315	if (!lmp_bredr_capable(hdev))
 316		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
 317}
 318
 319static void hci_setup_event_mask(struct hci_request *req)
 320{
 321	struct hci_dev *hdev = req->hdev;
 322
 323	/* The second byte is 0xff instead of 0x9f (two reserved bits
 324	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
 325	 * command otherwise.
 326	 */
 327	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
 328
 329	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
 330	 * any event mask for pre 1.2 devices.
 331	 */
 332	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 333		return;
 334
 335	if (lmp_bredr_capable(hdev)) {
 336		events[4] |= 0x01; /* Flow Specification Complete */
 337	} else {
 338		/* Use a different default for LE-only devices */
 339		memset(events, 0, sizeof(events));
 340		events[1] |= 0x20; /* Command Complete */
 341		events[1] |= 0x40; /* Command Status */
 342		events[1] |= 0x80; /* Hardware Error */
 343
 344		/* If the controller supports the Disconnect command, enable
 345		 * the corresponding event. In addition enable packet flow
 346		 * control related events.
 347		 */
 348		if (hdev->commands[0] & 0x20) {
 349			events[0] |= 0x10; /* Disconnection Complete */
 350			events[2] |= 0x04; /* Number of Completed Packets */
 351			events[3] |= 0x02; /* Data Buffer Overflow */
 352		}
 353
 354		/* If the controller supports the Read Remote Version
 355		 * Information command, enable the corresponding event.
 356		 */
 357		if (hdev->commands[2] & 0x80)
 358			events[1] |= 0x08; /* Read Remote Version Information
 359					    * Complete
 360					    */
 361
 362		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
 363			events[0] |= 0x80; /* Encryption Change */
 364			events[5] |= 0x80; /* Encryption Key Refresh Complete */
 365		}
 366	}
 367
 368	if (lmp_inq_rssi_capable(hdev) ||
 369	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
 370		events[4] |= 0x02; /* Inquiry Result with RSSI */
 371
 372	if (lmp_ext_feat_capable(hdev))
 373		events[4] |= 0x04; /* Read Remote Extended Features Complete */
 374
 375	if (lmp_esco_capable(hdev)) {
 376		events[5] |= 0x08; /* Synchronous Connection Complete */
 377		events[5] |= 0x10; /* Synchronous Connection Changed */
 378	}
 379
 380	if (lmp_sniffsubr_capable(hdev))
 381		events[5] |= 0x20; /* Sniff Subrating */
 382
 383	if (lmp_pause_enc_capable(hdev))
 384		events[5] |= 0x80; /* Encryption Key Refresh Complete */
 385
 386	if (lmp_ext_inq_capable(hdev))
 387		events[5] |= 0x40; /* Extended Inquiry Result */
 388
 389	if (lmp_no_flush_capable(hdev))
 390		events[7] |= 0x01; /* Enhanced Flush Complete */
 391
 392	if (lmp_lsto_capable(hdev))
 393		events[6] |= 0x80; /* Link Supervision Timeout Changed */
 394
 395	if (lmp_ssp_capable(hdev)) {
 396		events[6] |= 0x01;	/* IO Capability Request */
 397		events[6] |= 0x02;	/* IO Capability Response */
 398		events[6] |= 0x04;	/* User Confirmation Request */
 399		events[6] |= 0x08;	/* User Passkey Request */
 400		events[6] |= 0x10;	/* Remote OOB Data Request */
 401		events[6] |= 0x20;	/* Simple Pairing Complete */
 402		events[7] |= 0x04;	/* User Passkey Notification */
 403		events[7] |= 0x08;	/* Keypress Notification */
 404		events[7] |= 0x10;	/* Remote Host Supported
 405					 * Features Notification
 406					 */
 407	}
 408
 409	if (lmp_le_capable(hdev))
 410		events[7] |= 0x20;	/* LE Meta-Event */
 411
 412	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
 413}
 414
 415static int hci_init2_req(struct hci_request *req, unsigned long opt)
 416{
 417	struct hci_dev *hdev = req->hdev;
 418
 419	if (hdev->dev_type == HCI_AMP)
 420		return amp_init2(req);
 421
 422	if (lmp_bredr_capable(hdev))
 423		bredr_setup(req);
 424	else
 425		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
 426
 427	if (lmp_le_capable(hdev))
 428		le_setup(req);
 429
 430	/* All Bluetooth 1.2 and later controllers should support the
 431	 * HCI command for reading the local supported commands.
 432	 *
 433	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
 434	 * but do not have support for this command. If that is the case,
 435	 * the driver can quirk the behavior and skip reading the local
 436	 * supported commands.
 437	 */
 438	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
 439	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
 440		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 441
 442	if (lmp_ssp_capable(hdev)) {
 443		/* When SSP is available, then the host features page
 444		 * should also be available as well. However some
 445		 * controllers list the max_page as 0 as long as SSP
 446		 * has not been enabled. To achieve proper debugging
 447		 * output, force the minimum max_page to 1 at least.
 448		 */
 449		hdev->max_page = 0x01;
 450
 451		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
 452			u8 mode = 0x01;
 453
 454			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
 455				    sizeof(mode), &mode);
 456		} else {
 457			struct hci_cp_write_eir cp;
 458
 459			memset(hdev->eir, 0, sizeof(hdev->eir));
 460			memset(&cp, 0, sizeof(cp));
 461
 462			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 463		}
 464	}
 465
 466	if (lmp_inq_rssi_capable(hdev) ||
 467	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
 468		u8 mode;
 469
 470		/* If Extended Inquiry Result events are supported, then
 471		 * they are clearly preferred over Inquiry Result with RSSI
 472		 * events.
 473		 */
 474		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
 475
 476		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
 477	}
 478
 479	if (lmp_inq_tx_pwr_capable(hdev))
 480		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
 481
 482	if (lmp_ext_feat_capable(hdev)) {
 483		struct hci_cp_read_local_ext_features cp;
 484
 485		cp.page = 0x01;
 486		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 487			    sizeof(cp), &cp);
 488	}
 489
 490	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
 491		u8 enable = 1;
 492		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
 493			    &enable);
 494	}
 495
 496	return 0;
 497}
 498
 499static void hci_setup_link_policy(struct hci_request *req)
 500{
 501	struct hci_dev *hdev = req->hdev;
 502	struct hci_cp_write_def_link_policy cp;
 503	u16 link_policy = 0;
 504
 505	if (lmp_rswitch_capable(hdev))
 506		link_policy |= HCI_LP_RSWITCH;
 507	if (lmp_hold_capable(hdev))
 508		link_policy |= HCI_LP_HOLD;
 509	if (lmp_sniff_capable(hdev))
 510		link_policy |= HCI_LP_SNIFF;
 511	if (lmp_park_capable(hdev))
 512		link_policy |= HCI_LP_PARK;
 513
 514	cp.policy = cpu_to_le16(link_policy);
 515	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
 516}
 517
 518static void hci_set_le_support(struct hci_request *req)
 519{
 520	struct hci_dev *hdev = req->hdev;
 521	struct hci_cp_write_le_host_supported cp;
 522
 523	/* LE-only devices do not support explicit enablement */
 524	if (!lmp_bredr_capable(hdev))
 525		return;
 526
 527	memset(&cp, 0, sizeof(cp));
 528
 529	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
 530		cp.le = 0x01;
 531		cp.simul = 0x00;
 532	}
 533
 534	if (cp.le != lmp_host_le_capable(hdev))
 535		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
 536			    &cp);
 537}
 538
 539static void hci_set_event_mask_page_2(struct hci_request *req)
 540{
 541	struct hci_dev *hdev = req->hdev;
 542	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
 543	bool changed = false;
 544
 545	/* If Connectionless Slave Broadcast master role is supported
 546	 * enable all necessary events for it.
 547	 */
 548	if (lmp_csb_master_capable(hdev)) {
 549		events[1] |= 0x40;	/* Triggered Clock Capture */
 550		events[1] |= 0x80;	/* Synchronization Train Complete */
 551		events[2] |= 0x10;	/* Slave Page Response Timeout */
 552		events[2] |= 0x20;	/* CSB Channel Map Change */
 553		changed = true;
 554	}
 555
 556	/* If Connectionless Slave Broadcast slave role is supported
 557	 * enable all necessary events for it.
 558	 */
 559	if (lmp_csb_slave_capable(hdev)) {
 560		events[2] |= 0x01;	/* Synchronization Train Received */
 561		events[2] |= 0x02;	/* CSB Receive */
 562		events[2] |= 0x04;	/* CSB Timeout */
 563		events[2] |= 0x08;	/* Truncated Page Complete */
 564		changed = true;
 565	}
 566
 567	/* Enable Authenticated Payload Timeout Expired event if supported */
 568	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
 569		events[2] |= 0x80;
 570		changed = true;
 571	}
 572
 573	/* Some Broadcom based controllers indicate support for Set Event
 574	 * Mask Page 2 command, but then actually do not support it. Since
 575	 * the default value is all bits set to zero, the command is only
 576	 * required if the event mask has to be changed. In case no change
 577	 * to the event mask is needed, skip this command.
 578	 */
 579	if (changed)
 580		hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
 581			    sizeof(events), events);
 582}
 583
 584static int hci_init3_req(struct hci_request *req, unsigned long opt)
 585{
 586	struct hci_dev *hdev = req->hdev;
 587	u8 p;
 588
 589	hci_setup_event_mask(req);
 590
 591	if (hdev->commands[6] & 0x20 &&
 592	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 593		struct hci_cp_read_stored_link_key cp;
 594
 595		bacpy(&cp.bdaddr, BDADDR_ANY);
 596		cp.read_all = 0x01;
 597		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
 598	}
 599
 600	if (hdev->commands[5] & 0x10)
 601		hci_setup_link_policy(req);
 602
 603	if (hdev->commands[8] & 0x01)
 604		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
 605
 
 
 
 
 606	/* Some older Broadcom based Bluetooth 1.2 controllers do not
 607	 * support the Read Page Scan Type command. Check support for
 608	 * this command in the bit mask of supported commands.
 609	 */
 610	if (hdev->commands[13] & 0x01)
 611		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
 612
 613	if (lmp_le_capable(hdev)) {
 614		u8 events[8];
 615
 616		memset(events, 0, sizeof(events));
 617
 618		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
 619			events[0] |= 0x10;	/* LE Long Term Key Request */
 620
 621		/* If controller supports the Connection Parameters Request
 622		 * Link Layer Procedure, enable the corresponding event.
 623		 */
 624		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
 625			events[0] |= 0x20;	/* LE Remote Connection
 626						 * Parameter Request
 627						 */
 628
 629		/* If the controller supports the Data Length Extension
 630		 * feature, enable the corresponding event.
 631		 */
 632		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
 633			events[0] |= 0x40;	/* LE Data Length Change */
 634
 
 
 
 
 
 
 
 
 635		/* If the controller supports Extended Scanner Filter
 636		 * Policies, enable the correspondig event.
 637		 */
 638		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
 639			events[1] |= 0x04;	/* LE Direct Advertising
 640						 * Report
 641						 */
 642
 643		/* If the controller supports Channel Selection Algorithm #2
 644		 * feature, enable the corresponding event.
 645		 */
 646		if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
 647			events[2] |= 0x08;	/* LE Channel Selection
 648						 * Algorithm
 649						 */
 650
 651		/* If the controller supports the LE Set Scan Enable command,
 652		 * enable the corresponding advertising report event.
 653		 */
 654		if (hdev->commands[26] & 0x08)
 655			events[0] |= 0x02;	/* LE Advertising Report */
 656
 657		/* If the controller supports the LE Create Connection
 658		 * command, enable the corresponding event.
 659		 */
 660		if (hdev->commands[26] & 0x10)
 661			events[0] |= 0x01;	/* LE Connection Complete */
 662
 663		/* If the controller supports the LE Connection Update
 664		 * command, enable the corresponding event.
 665		 */
 666		if (hdev->commands[27] & 0x04)
 667			events[0] |= 0x04;	/* LE Connection Update
 668						 * Complete
 669						 */
 670
 671		/* If the controller supports the LE Read Remote Used Features
 672		 * command, enable the corresponding event.
 673		 */
 674		if (hdev->commands[27] & 0x20)
 675			events[0] |= 0x08;	/* LE Read Remote Used
 676						 * Features Complete
 677						 */
 678
 679		/* If the controller supports the LE Read Local P-256
 680		 * Public Key command, enable the corresponding event.
 681		 */
 682		if (hdev->commands[34] & 0x02)
 683			events[0] |= 0x80;	/* LE Read Local P-256
 684						 * Public Key Complete
 685						 */
 686
 687		/* If the controller supports the LE Generate DHKey
 688		 * command, enable the corresponding event.
 689		 */
 690		if (hdev->commands[34] & 0x04)
 691			events[1] |= 0x01;	/* LE Generate DHKey Complete */
 692
 693		/* If the controller supports the LE Set Default PHY or
 694		 * LE Set PHY commands, enable the corresponding event.
 695		 */
 696		if (hdev->commands[35] & (0x20 | 0x40))
 697			events[1] |= 0x08;        /* LE PHY Update Complete */
 698
 699		/* If the controller supports LE Set Extended Scan Parameters
 700		 * and LE Set Extended Scan Enable commands, enable the
 701		 * corresponding event.
 702		 */
 703		if (use_ext_scan(hdev))
 704			events[1] |= 0x10;	/* LE Extended Advertising
 705						 * Report
 706						 */
 707
 708		/* If the controller supports the LE Extended Create Connection
 709		 * command, enable the corresponding event.
 710		 */
 711		if (use_ext_conn(hdev))
 712			events[1] |= 0x02;      /* LE Enhanced Connection
 713						 * Complete
 714						 */
 715
 716		/* If the controller supports the LE Extended Advertising
 717		 * command, enable the corresponding event.
 718		 */
 719		if (ext_adv_capable(hdev))
 720			events[2] |= 0x02;	/* LE Advertising Set
 721						 * Terminated
 722						 */
 723
 724		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
 725			    events);
 726
 727		/* Read LE Advertising Channel TX Power */
 728		if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
 729			/* HCI TS spec forbids mixing of legacy and extended
 730			 * advertising commands wherein READ_ADV_TX_POWER is
 731			 * also included. So do not call it if extended adv
 732			 * is supported otherwise controller will return
 733			 * COMMAND_DISALLOWED for extended commands.
 734			 */
 735			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
 736		}
 737
 738		if (hdev->commands[26] & 0x40) {
 739			/* Read LE White List Size */
 740			hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
 741				    0, NULL);
 742		}
 743
 744		if (hdev->commands[26] & 0x80) {
 745			/* Clear LE White List */
 746			hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
 747		}
 748
 749		if (hdev->commands[34] & 0x40) {
 750			/* Read LE Resolving List Size */
 751			hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
 752				    0, NULL);
 753		}
 754
 755		if (hdev->commands[34] & 0x20) {
 756			/* Clear LE Resolving List */
 757			hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
 758		}
 759
 
 
 
 
 
 
 
 
 760		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 761			/* Read LE Maximum Data Length */
 762			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
 763
 764			/* Read LE Suggested Default Data Length */
 765			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
 766		}
 767
 768		if (ext_adv_capable(hdev)) {
 769			/* Read LE Number of Supported Advertising Sets */
 770			hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
 771				    0, NULL);
 772		}
 773
 774		hci_set_le_support(req);
 775	}
 776
 777	/* Read features beyond page 1 if available */
 778	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
 779		struct hci_cp_read_local_ext_features cp;
 780
 781		cp.page = p;
 782		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 783			    sizeof(cp), &cp);
 784	}
 785
 786	return 0;
 787}
 788
 789static int hci_init4_req(struct hci_request *req, unsigned long opt)
 790{
 791	struct hci_dev *hdev = req->hdev;
 792
 793	/* Some Broadcom based Bluetooth controllers do not support the
 794	 * Delete Stored Link Key command. They are clearly indicating its
 795	 * absence in the bit mask of supported commands.
 796	 *
 797	 * Check the supported commands and only if the the command is marked
 798	 * as supported send it. If not supported assume that the controller
 799	 * does not have actual support for stored link keys which makes this
 800	 * command redundant anyway.
 801	 *
 802	 * Some controllers indicate that they support handling deleting
 803	 * stored link keys, but they don't. The quirk lets a driver
 804	 * just disable this command.
 805	 */
 806	if (hdev->commands[6] & 0x80 &&
 807	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 808		struct hci_cp_delete_stored_link_key cp;
 809
 810		bacpy(&cp.bdaddr, BDADDR_ANY);
 811		cp.delete_all = 0x01;
 812		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
 813			    sizeof(cp), &cp);
 814	}
 815
 816	/* Set event mask page 2 if the HCI command for it is supported */
 817	if (hdev->commands[22] & 0x04)
 818		hci_set_event_mask_page_2(req);
 819
 820	/* Read local codec list if the HCI command is supported */
 821	if (hdev->commands[29] & 0x20)
 822		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
 823
 
 
 
 
 824	/* Get MWS transport configuration if the HCI command is supported */
 825	if (hdev->commands[30] & 0x08)
 826		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
 827
 828	/* Check for Synchronization Train support */
 829	if (lmp_sync_train_capable(hdev))
 830		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
 831
 832	/* Enable Secure Connections if supported and configured */
 833	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
 834	    bredr_sc_enabled(hdev)) {
 835		u8 support = 0x01;
 836
 837		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
 838			    sizeof(support), &support);
 839	}
 840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 841	/* Set Suggested Default Data Length to maximum if supported */
 842	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 843		struct hci_cp_le_write_def_data_len cp;
 844
 845		cp.tx_len = hdev->le_max_tx_len;
 846		cp.tx_time = hdev->le_max_tx_time;
 847		hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
 848	}
 849
 850	/* Set Default PHY parameters if command is supported */
 851	if (hdev->commands[35] & 0x20) {
 852		struct hci_cp_le_set_default_phy cp;
 853
 854		cp.all_phys = 0x00;
 855		cp.tx_phys = hdev->le_tx_def_phys;
 856		cp.rx_phys = hdev->le_rx_def_phys;
 857
 858		hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
 859	}
 860
 861	return 0;
 862}
 863
 864static int __hci_init(struct hci_dev *hdev)
 865{
 866	int err;
 867
 868	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
 869	if (err < 0)
 870		return err;
 871
 872	if (hci_dev_test_flag(hdev, HCI_SETUP))
 873		hci_debugfs_create_basic(hdev);
 874
 875	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
 876	if (err < 0)
 877		return err;
 878
 879	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
 880	 * BR/EDR/LE type controllers. AMP controllers only need the
 881	 * first two stages of init.
 882	 */
 883	if (hdev->dev_type != HCI_PRIMARY)
 884		return 0;
 885
 886	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
 887	if (err < 0)
 888		return err;
 889
 890	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
 891	if (err < 0)
 892		return err;
 893
 894	/* This function is only called when the controller is actually in
 895	 * configured state. When the controller is marked as unconfigured,
 896	 * this initialization procedure is not run.
 897	 *
 898	 * It means that it is possible that a controller runs through its
 899	 * setup phase and then discovers missing settings. If that is the
 900	 * case, then this function will not be called. It then will only
 901	 * be called during the config phase.
 902	 *
 903	 * So only when in setup phase or config phase, create the debugfs
 904	 * entries and register the SMP channels.
 905	 */
 906	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 907	    !hci_dev_test_flag(hdev, HCI_CONFIG))
 908		return 0;
 909
 910	hci_debugfs_create_common(hdev);
 911
 912	if (lmp_bredr_capable(hdev))
 913		hci_debugfs_create_bredr(hdev);
 914
 915	if (lmp_le_capable(hdev))
 916		hci_debugfs_create_le(hdev);
 917
 918	return 0;
 919}
 920
 921static int hci_init0_req(struct hci_request *req, unsigned long opt)
 922{
 923	struct hci_dev *hdev = req->hdev;
 924
 925	BT_DBG("%s %ld", hdev->name, opt);
 926
 927	/* Reset */
 928	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 929		hci_reset_req(req, 0);
 930
 931	/* Read Local Version */
 932	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 933
 934	/* Read BD Address */
 935	if (hdev->set_bdaddr)
 936		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 937
 938	return 0;
 939}
 940
 941static int __hci_unconf_init(struct hci_dev *hdev)
 942{
 943	int err;
 944
 945	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
 946		return 0;
 947
 948	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
 949	if (err < 0)
 950		return err;
 951
 952	if (hci_dev_test_flag(hdev, HCI_SETUP))
 953		hci_debugfs_create_basic(hdev);
 954
 955	return 0;
 956}
 957
 958static int hci_scan_req(struct hci_request *req, unsigned long opt)
 959{
 960	__u8 scan = opt;
 961
 962	BT_DBG("%s %x", req->hdev->name, scan);
 963
 964	/* Inquiry and Page scans */
 965	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
 966	return 0;
 967}
 968
 969static int hci_auth_req(struct hci_request *req, unsigned long opt)
 970{
 971	__u8 auth = opt;
 972
 973	BT_DBG("%s %x", req->hdev->name, auth);
 974
 975	/* Authentication */
 976	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
 977	return 0;
 978}
 979
 980static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
 981{
 982	__u8 encrypt = opt;
 983
 984	BT_DBG("%s %x", req->hdev->name, encrypt);
 985
 986	/* Encryption */
 987	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
 988	return 0;
 989}
 990
 991static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
 992{
 993	__le16 policy = cpu_to_le16(opt);
 994
 995	BT_DBG("%s %x", req->hdev->name, policy);
 996
 997	/* Default link policy */
 998	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 999	return 0;
1000}
1001
1002/* Get HCI device by index.
1003 * Device is held on return. */
1004struct hci_dev *hci_dev_get(int index)
1005{
1006	struct hci_dev *hdev = NULL, *d;
1007
1008	BT_DBG("%d", index);
1009
1010	if (index < 0)
1011		return NULL;
1012
1013	read_lock(&hci_dev_list_lock);
1014	list_for_each_entry(d, &hci_dev_list, list) {
1015		if (d->id == index) {
1016			hdev = hci_dev_hold(d);
1017			break;
1018		}
1019	}
1020	read_unlock(&hci_dev_list_lock);
1021	return hdev;
1022}
1023
1024/* ---- Inquiry support ---- */
1025
1026bool hci_discovery_active(struct hci_dev *hdev)
1027{
1028	struct discovery_state *discov = &hdev->discovery;
1029
1030	switch (discov->state) {
1031	case DISCOVERY_FINDING:
1032	case DISCOVERY_RESOLVING:
1033		return true;
1034
1035	default:
1036		return false;
1037	}
1038}
1039
1040void hci_discovery_set_state(struct hci_dev *hdev, int state)
1041{
1042	int old_state = hdev->discovery.state;
1043
1044	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1045
1046	if (old_state == state)
1047		return;
1048
1049	hdev->discovery.state = state;
1050
1051	switch (state) {
1052	case DISCOVERY_STOPPED:
1053		hci_update_background_scan(hdev);
1054
1055		if (old_state != DISCOVERY_STARTING)
1056			mgmt_discovering(hdev, 0);
1057		break;
1058	case DISCOVERY_STARTING:
1059		break;
1060	case DISCOVERY_FINDING:
1061		mgmt_discovering(hdev, 1);
1062		break;
1063	case DISCOVERY_RESOLVING:
1064		break;
1065	case DISCOVERY_STOPPING:
1066		break;
1067	}
1068}
1069
1070void hci_inquiry_cache_flush(struct hci_dev *hdev)
1071{
1072	struct discovery_state *cache = &hdev->discovery;
1073	struct inquiry_entry *p, *n;
1074
1075	list_for_each_entry_safe(p, n, &cache->all, all) {
1076		list_del(&p->all);
1077		kfree(p);
1078	}
1079
1080	INIT_LIST_HEAD(&cache->unknown);
1081	INIT_LIST_HEAD(&cache->resolve);
1082}
1083
1084struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1085					       bdaddr_t *bdaddr)
1086{
1087	struct discovery_state *cache = &hdev->discovery;
1088	struct inquiry_entry *e;
1089
1090	BT_DBG("cache %p, %pMR", cache, bdaddr);
1091
1092	list_for_each_entry(e, &cache->all, all) {
1093		if (!bacmp(&e->data.bdaddr, bdaddr))
1094			return e;
1095	}
1096
1097	return NULL;
1098}
1099
1100struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1101						       bdaddr_t *bdaddr)
1102{
1103	struct discovery_state *cache = &hdev->discovery;
1104	struct inquiry_entry *e;
1105
1106	BT_DBG("cache %p, %pMR", cache, bdaddr);
1107
1108	list_for_each_entry(e, &cache->unknown, list) {
1109		if (!bacmp(&e->data.bdaddr, bdaddr))
1110			return e;
1111	}
1112
1113	return NULL;
1114}
1115
1116struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1117						       bdaddr_t *bdaddr,
1118						       int state)
1119{
1120	struct discovery_state *cache = &hdev->discovery;
1121	struct inquiry_entry *e;
1122
1123	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1124
1125	list_for_each_entry(e, &cache->resolve, list) {
1126		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1127			return e;
1128		if (!bacmp(&e->data.bdaddr, bdaddr))
1129			return e;
1130	}
1131
1132	return NULL;
1133}
1134
1135void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1136				      struct inquiry_entry *ie)
1137{
1138	struct discovery_state *cache = &hdev->discovery;
1139	struct list_head *pos = &cache->resolve;
1140	struct inquiry_entry *p;
1141
1142	list_del(&ie->list);
1143
1144	list_for_each_entry(p, &cache->resolve, list) {
1145		if (p->name_state != NAME_PENDING &&
1146		    abs(p->data.rssi) >= abs(ie->data.rssi))
1147			break;
1148		pos = &p->list;
1149	}
1150
1151	list_add(&ie->list, pos);
1152}
1153
1154u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1155			     bool name_known)
1156{
1157	struct discovery_state *cache = &hdev->discovery;
1158	struct inquiry_entry *ie;
1159	u32 flags = 0;
1160
1161	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1162
1163	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1164
1165	if (!data->ssp_mode)
1166		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1167
1168	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1169	if (ie) {
1170		if (!ie->data.ssp_mode)
1171			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1172
1173		if (ie->name_state == NAME_NEEDED &&
1174		    data->rssi != ie->data.rssi) {
1175			ie->data.rssi = data->rssi;
1176			hci_inquiry_cache_update_resolve(hdev, ie);
1177		}
1178
1179		goto update;
1180	}
1181
1182	/* Entry not in the cache. Add new one. */
1183	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1184	if (!ie) {
1185		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1186		goto done;
1187	}
1188
1189	list_add(&ie->all, &cache->all);
1190
1191	if (name_known) {
1192		ie->name_state = NAME_KNOWN;
1193	} else {
1194		ie->name_state = NAME_NOT_KNOWN;
1195		list_add(&ie->list, &cache->unknown);
1196	}
1197
1198update:
1199	if (name_known && ie->name_state != NAME_KNOWN &&
1200	    ie->name_state != NAME_PENDING) {
1201		ie->name_state = NAME_KNOWN;
1202		list_del(&ie->list);
1203	}
1204
1205	memcpy(&ie->data, data, sizeof(*data));
1206	ie->timestamp = jiffies;
1207	cache->timestamp = jiffies;
1208
1209	if (ie->name_state == NAME_NOT_KNOWN)
1210		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1211
1212done:
1213	return flags;
1214}
1215
1216static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1217{
1218	struct discovery_state *cache = &hdev->discovery;
1219	struct inquiry_info *info = (struct inquiry_info *) buf;
1220	struct inquiry_entry *e;
1221	int copied = 0;
1222
1223	list_for_each_entry(e, &cache->all, all) {
1224		struct inquiry_data *data = &e->data;
1225
1226		if (copied >= num)
1227			break;
1228
1229		bacpy(&info->bdaddr, &data->bdaddr);
1230		info->pscan_rep_mode	= data->pscan_rep_mode;
1231		info->pscan_period_mode	= data->pscan_period_mode;
1232		info->pscan_mode	= data->pscan_mode;
1233		memcpy(info->dev_class, data->dev_class, 3);
1234		info->clock_offset	= data->clock_offset;
1235
1236		info++;
1237		copied++;
1238	}
1239
1240	BT_DBG("cache %p, copied %d", cache, copied);
1241	return copied;
1242}
1243
1244static int hci_inq_req(struct hci_request *req, unsigned long opt)
1245{
1246	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1247	struct hci_dev *hdev = req->hdev;
1248	struct hci_cp_inquiry cp;
1249
1250	BT_DBG("%s", hdev->name);
1251
1252	if (test_bit(HCI_INQUIRY, &hdev->flags))
1253		return 0;
1254
1255	/* Start Inquiry */
1256	memcpy(&cp.lap, &ir->lap, 3);
1257	cp.length  = ir->length;
1258	cp.num_rsp = ir->num_rsp;
1259	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1260
1261	return 0;
1262}
1263
1264int hci_inquiry(void __user *arg)
1265{
1266	__u8 __user *ptr = arg;
1267	struct hci_inquiry_req ir;
1268	struct hci_dev *hdev;
1269	int err = 0, do_inquiry = 0, max_rsp;
1270	long timeo;
1271	__u8 *buf;
1272
1273	if (copy_from_user(&ir, ptr, sizeof(ir)))
1274		return -EFAULT;
1275
1276	hdev = hci_dev_get(ir.dev_id);
1277	if (!hdev)
1278		return -ENODEV;
1279
1280	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1281		err = -EBUSY;
1282		goto done;
1283	}
1284
1285	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1286		err = -EOPNOTSUPP;
1287		goto done;
1288	}
1289
1290	if (hdev->dev_type != HCI_PRIMARY) {
1291		err = -EOPNOTSUPP;
1292		goto done;
1293	}
1294
1295	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1296		err = -EOPNOTSUPP;
1297		goto done;
1298	}
1299
1300	hci_dev_lock(hdev);
1301	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1302	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1303		hci_inquiry_cache_flush(hdev);
1304		do_inquiry = 1;
1305	}
1306	hci_dev_unlock(hdev);
1307
1308	timeo = ir.length * msecs_to_jiffies(2000);
1309
1310	if (do_inquiry) {
1311		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1312				   timeo, NULL);
1313		if (err < 0)
1314			goto done;
1315
1316		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1317		 * cleared). If it is interrupted by a signal, return -EINTR.
1318		 */
1319		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1320				TASK_INTERRUPTIBLE))
1321			return -EINTR;
1322	}
1323
1324	/* for unlimited number of responses we will use buffer with
1325	 * 255 entries
1326	 */
1327	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1328
1329	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1330	 * copy it to the user space.
1331	 */
1332	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1333	if (!buf) {
1334		err = -ENOMEM;
1335		goto done;
1336	}
1337
1338	hci_dev_lock(hdev);
1339	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1340	hci_dev_unlock(hdev);
1341
1342	BT_DBG("num_rsp %d", ir.num_rsp);
1343
1344	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1345		ptr += sizeof(ir);
1346		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1347				 ir.num_rsp))
1348			err = -EFAULT;
1349	} else
1350		err = -EFAULT;
1351
1352	kfree(buf);
1353
1354done:
1355	hci_dev_put(hdev);
1356	return err;
1357}
1358
1359/**
1360 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1361 *				       (BD_ADDR) for a HCI device from
1362 *				       a firmware node property.
1363 * @hdev:	The HCI device
1364 *
1365 * Search the firmware node for 'local-bd-address'.
1366 *
1367 * All-zero BD addresses are rejected, because those could be properties
1368 * that exist in the firmware tables, but were not updated by the firmware. For
1369 * example, the DTS could define 'local-bd-address', with zero BD addresses.
1370 */
1371static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1372{
1373	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1374	bdaddr_t ba;
1375	int ret;
1376
1377	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1378					    (u8 *)&ba, sizeof(ba));
1379	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1380		return;
1381
1382	bacpy(&hdev->public_addr, &ba);
1383}
1384
1385static int hci_dev_do_open(struct hci_dev *hdev)
1386{
1387	int ret = 0;
1388
1389	BT_DBG("%s %p", hdev->name, hdev);
1390
1391	hci_req_sync_lock(hdev);
1392
1393	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1394		ret = -ENODEV;
1395		goto done;
1396	}
1397
1398	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1399	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1400		/* Check for rfkill but allow the HCI setup stage to
1401		 * proceed (which in itself doesn't cause any RF activity).
1402		 */
1403		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1404			ret = -ERFKILL;
1405			goto done;
1406		}
1407
1408		/* Check for valid public address or a configured static
1409		 * random adddress, but let the HCI setup proceed to
1410		 * be able to determine if there is a public address
1411		 * or not.
1412		 *
1413		 * In case of user channel usage, it is not important
1414		 * if a public address or static random address is
1415		 * available.
1416		 *
1417		 * This check is only valid for BR/EDR controllers
1418		 * since AMP controllers do not have an address.
1419		 */
1420		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1421		    hdev->dev_type == HCI_PRIMARY &&
1422		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1423		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1424			ret = -EADDRNOTAVAIL;
1425			goto done;
1426		}
1427	}
1428
1429	if (test_bit(HCI_UP, &hdev->flags)) {
1430		ret = -EALREADY;
1431		goto done;
1432	}
1433
1434	if (hdev->open(hdev)) {
1435		ret = -EIO;
1436		goto done;
1437	}
1438
1439	set_bit(HCI_RUNNING, &hdev->flags);
1440	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1441
1442	atomic_set(&hdev->cmd_cnt, 1);
1443	set_bit(HCI_INIT, &hdev->flags);
1444
1445	if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1446	    test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
 
 
1447		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1448
1449		if (hdev->setup)
1450			ret = hdev->setup(hdev);
1451
 
 
 
 
 
 
 
1452		if (ret)
1453			goto setup_failed;
1454
1455		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1456			if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1457				hci_dev_get_bd_addr_from_property(hdev);
1458
1459			if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1460			    hdev->set_bdaddr)
1461				ret = hdev->set_bdaddr(hdev,
1462						       &hdev->public_addr);
 
 
 
 
 
 
 
 
 
1463		}
1464
1465setup_failed:
1466		/* The transport driver can set these quirks before
1467		 * creating the HCI device or in its setup callback.
1468		 *
 
 
 
 
1469		 * In case any of them is set, the controller has to
1470		 * start up as unconfigured.
1471		 */
1472		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1473		    test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1474			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1475
1476		/* For an unconfigured controller it is required to
1477		 * read at least the version information provided by
1478		 * the Read Local Version Information command.
1479		 *
1480		 * If the set_bdaddr driver callback is provided, then
1481		 * also the original Bluetooth public device address
1482		 * will be read using the Read BD Address command.
1483		 */
1484		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1485			ret = __hci_unconf_init(hdev);
1486	}
1487
1488	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1489		/* If public address change is configured, ensure that
1490		 * the address gets programmed. If the driver does not
1491		 * support changing the public address, fail the power
1492		 * on procedure.
1493		 */
1494		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1495		    hdev->set_bdaddr)
1496			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1497		else
1498			ret = -EADDRNOTAVAIL;
1499	}
1500
1501	if (!ret) {
1502		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1503		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1504			ret = __hci_init(hdev);
1505			if (!ret && hdev->post_init)
1506				ret = hdev->post_init(hdev);
1507		}
1508	}
1509
1510	/* If the HCI Reset command is clearing all diagnostic settings,
1511	 * then they need to be reprogrammed after the init procedure
1512	 * completed.
1513	 */
1514	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1515	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1516	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1517		ret = hdev->set_diag(hdev, true);
1518
 
 
1519	clear_bit(HCI_INIT, &hdev->flags);
1520
1521	if (!ret) {
1522		hci_dev_hold(hdev);
1523		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1524		hci_adv_instances_set_rpa_expired(hdev, true);
1525		set_bit(HCI_UP, &hdev->flags);
1526		hci_sock_dev_event(hdev, HCI_DEV_UP);
1527		hci_leds_update_powered(hdev, true);
1528		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1529		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1530		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1531		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1532		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1533		    hdev->dev_type == HCI_PRIMARY) {
1534			ret = __hci_req_hci_power_on(hdev);
1535			mgmt_power_on(hdev, ret);
1536		}
1537	} else {
1538		/* Init failed, cleanup */
1539		flush_work(&hdev->tx_work);
1540		flush_work(&hdev->cmd_work);
1541		flush_work(&hdev->rx_work);
1542
1543		skb_queue_purge(&hdev->cmd_q);
1544		skb_queue_purge(&hdev->rx_q);
1545
1546		if (hdev->flush)
1547			hdev->flush(hdev);
1548
1549		if (hdev->sent_cmd) {
1550			kfree_skb(hdev->sent_cmd);
1551			hdev->sent_cmd = NULL;
1552		}
1553
1554		clear_bit(HCI_RUNNING, &hdev->flags);
1555		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1556
1557		hdev->close(hdev);
1558		hdev->flags &= BIT(HCI_RAW);
1559	}
1560
1561done:
1562	hci_req_sync_unlock(hdev);
1563	return ret;
1564}
1565
1566/* ---- HCI ioctl helpers ---- */
1567
1568int hci_dev_open(__u16 dev)
1569{
1570	struct hci_dev *hdev;
1571	int err;
1572
1573	hdev = hci_dev_get(dev);
1574	if (!hdev)
1575		return -ENODEV;
1576
1577	/* Devices that are marked as unconfigured can only be powered
1578	 * up as user channel. Trying to bring them up as normal devices
1579	 * will result into a failure. Only user channel operation is
1580	 * possible.
1581	 *
1582	 * When this function is called for a user channel, the flag
1583	 * HCI_USER_CHANNEL will be set first before attempting to
1584	 * open the device.
1585	 */
1586	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1587	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1588		err = -EOPNOTSUPP;
1589		goto done;
1590	}
1591
1592	/* We need to ensure that no other power on/off work is pending
1593	 * before proceeding to call hci_dev_do_open. This is
1594	 * particularly important if the setup procedure has not yet
1595	 * completed.
1596	 */
1597	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1598		cancel_delayed_work(&hdev->power_off);
1599
1600	/* After this call it is guaranteed that the setup procedure
1601	 * has finished. This means that error conditions like RFKILL
1602	 * or no valid public or static random address apply.
1603	 */
1604	flush_workqueue(hdev->req_workqueue);
1605
1606	/* For controllers not using the management interface and that
1607	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1608	 * so that pairing works for them. Once the management interface
1609	 * is in use this bit will be cleared again and userspace has
1610	 * to explicitly enable it.
1611	 */
1612	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1613	    !hci_dev_test_flag(hdev, HCI_MGMT))
1614		hci_dev_set_flag(hdev, HCI_BONDABLE);
1615
1616	err = hci_dev_do_open(hdev);
1617
1618done:
1619	hci_dev_put(hdev);
1620	return err;
1621}
1622
1623/* This function requires the caller holds hdev->lock */
1624static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1625{
1626	struct hci_conn_params *p;
1627
1628	list_for_each_entry(p, &hdev->le_conn_params, list) {
1629		if (p->conn) {
1630			hci_conn_drop(p->conn);
1631			hci_conn_put(p->conn);
1632			p->conn = NULL;
1633		}
1634		list_del_init(&p->action);
1635	}
1636
1637	BT_DBG("All LE pending actions cleared");
1638}
1639
1640int hci_dev_do_close(struct hci_dev *hdev)
1641{
1642	bool auto_off;
1643
1644	BT_DBG("%s %p", hdev->name, hdev);
1645
1646	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1647	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1648	    test_bit(HCI_UP, &hdev->flags)) {
1649		/* Execute vendor specific shutdown routine */
1650		if (hdev->shutdown)
1651			hdev->shutdown(hdev);
1652	}
1653
1654	cancel_delayed_work(&hdev->power_off);
1655
1656	hci_request_cancel_all(hdev);
1657	hci_req_sync_lock(hdev);
1658
1659	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1660		cancel_delayed_work_sync(&hdev->cmd_timer);
1661		hci_req_sync_unlock(hdev);
1662		return 0;
1663	}
1664
1665	hci_leds_update_powered(hdev, false);
1666
1667	/* Flush RX and TX works */
1668	flush_work(&hdev->tx_work);
1669	flush_work(&hdev->rx_work);
1670
1671	if (hdev->discov_timeout > 0) {
1672		hdev->discov_timeout = 0;
1673		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1674		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1675	}
1676
1677	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1678		cancel_delayed_work(&hdev->service_cache);
1679
1680	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1681		struct adv_info *adv_instance;
1682
1683		cancel_delayed_work_sync(&hdev->rpa_expired);
1684
1685		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1686			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1687	}
1688
1689	/* Avoid potential lockdep warnings from the *_flush() calls by
1690	 * ensuring the workqueue is empty up front.
1691	 */
1692	drain_workqueue(hdev->workqueue);
1693
1694	hci_dev_lock(hdev);
1695
1696	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1697
1698	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1699
1700	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1701	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1702	    hci_dev_test_flag(hdev, HCI_MGMT))
1703		__mgmt_power_off(hdev);
1704
1705	hci_inquiry_cache_flush(hdev);
1706	hci_pend_le_actions_clear(hdev);
1707	hci_conn_hash_flush(hdev);
1708	hci_dev_unlock(hdev);
1709
1710	smp_unregister(hdev);
1711
1712	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1713
 
 
1714	if (hdev->flush)
1715		hdev->flush(hdev);
1716
1717	/* Reset device */
1718	skb_queue_purge(&hdev->cmd_q);
1719	atomic_set(&hdev->cmd_cnt, 1);
1720	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1721	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1722		set_bit(HCI_INIT, &hdev->flags);
1723		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1724		clear_bit(HCI_INIT, &hdev->flags);
1725	}
1726
1727	/* flush cmd  work */
1728	flush_work(&hdev->cmd_work);
1729
1730	/* Drop queues */
1731	skb_queue_purge(&hdev->rx_q);
1732	skb_queue_purge(&hdev->cmd_q);
1733	skb_queue_purge(&hdev->raw_q);
1734
1735	/* Drop last sent command */
1736	if (hdev->sent_cmd) {
1737		cancel_delayed_work_sync(&hdev->cmd_timer);
1738		kfree_skb(hdev->sent_cmd);
1739		hdev->sent_cmd = NULL;
1740	}
1741
1742	clear_bit(HCI_RUNNING, &hdev->flags);
1743	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1744
 
 
 
1745	/* After this point our queues are empty
1746	 * and no tasks are scheduled. */
1747	hdev->close(hdev);
1748
1749	/* Clear flags */
1750	hdev->flags &= BIT(HCI_RAW);
1751	hci_dev_clear_volatile_flags(hdev);
1752
1753	/* Controller radio is available but is currently powered down */
1754	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1755
1756	memset(hdev->eir, 0, sizeof(hdev->eir));
1757	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1758	bacpy(&hdev->random_addr, BDADDR_ANY);
1759
1760	hci_req_sync_unlock(hdev);
1761
1762	hci_dev_put(hdev);
1763	return 0;
1764}
1765
1766int hci_dev_close(__u16 dev)
1767{
1768	struct hci_dev *hdev;
1769	int err;
1770
1771	hdev = hci_dev_get(dev);
1772	if (!hdev)
1773		return -ENODEV;
1774
1775	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1776		err = -EBUSY;
1777		goto done;
1778	}
1779
1780	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1781		cancel_delayed_work(&hdev->power_off);
1782
1783	err = hci_dev_do_close(hdev);
1784
1785done:
1786	hci_dev_put(hdev);
1787	return err;
1788}
1789
1790static int hci_dev_do_reset(struct hci_dev *hdev)
1791{
1792	int ret;
1793
1794	BT_DBG("%s %p", hdev->name, hdev);
1795
1796	hci_req_sync_lock(hdev);
1797
1798	/* Drop queues */
1799	skb_queue_purge(&hdev->rx_q);
1800	skb_queue_purge(&hdev->cmd_q);
1801
1802	/* Avoid potential lockdep warnings from the *_flush() calls by
1803	 * ensuring the workqueue is empty up front.
1804	 */
1805	drain_workqueue(hdev->workqueue);
1806
1807	hci_dev_lock(hdev);
1808	hci_inquiry_cache_flush(hdev);
1809	hci_conn_hash_flush(hdev);
1810	hci_dev_unlock(hdev);
1811
1812	if (hdev->flush)
1813		hdev->flush(hdev);
1814
1815	atomic_set(&hdev->cmd_cnt, 1);
1816	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1817
1818	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1819
1820	hci_req_sync_unlock(hdev);
1821	return ret;
1822}
1823
1824int hci_dev_reset(__u16 dev)
1825{
1826	struct hci_dev *hdev;
1827	int err;
1828
1829	hdev = hci_dev_get(dev);
1830	if (!hdev)
1831		return -ENODEV;
1832
1833	if (!test_bit(HCI_UP, &hdev->flags)) {
1834		err = -ENETDOWN;
1835		goto done;
1836	}
1837
1838	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1839		err = -EBUSY;
1840		goto done;
1841	}
1842
1843	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1844		err = -EOPNOTSUPP;
1845		goto done;
1846	}
1847
1848	err = hci_dev_do_reset(hdev);
1849
1850done:
1851	hci_dev_put(hdev);
1852	return err;
1853}
1854
1855int hci_dev_reset_stat(__u16 dev)
1856{
1857	struct hci_dev *hdev;
1858	int ret = 0;
1859
1860	hdev = hci_dev_get(dev);
1861	if (!hdev)
1862		return -ENODEV;
1863
1864	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1865		ret = -EBUSY;
1866		goto done;
1867	}
1868
1869	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1870		ret = -EOPNOTSUPP;
1871		goto done;
1872	}
1873
1874	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1875
1876done:
1877	hci_dev_put(hdev);
1878	return ret;
1879}
1880
1881static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1882{
1883	bool conn_changed, discov_changed;
1884
1885	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1886
1887	if ((scan & SCAN_PAGE))
1888		conn_changed = !hci_dev_test_and_set_flag(hdev,
1889							  HCI_CONNECTABLE);
1890	else
1891		conn_changed = hci_dev_test_and_clear_flag(hdev,
1892							   HCI_CONNECTABLE);
1893
1894	if ((scan & SCAN_INQUIRY)) {
1895		discov_changed = !hci_dev_test_and_set_flag(hdev,
1896							    HCI_DISCOVERABLE);
1897	} else {
1898		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1899		discov_changed = hci_dev_test_and_clear_flag(hdev,
1900							     HCI_DISCOVERABLE);
1901	}
1902
1903	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1904		return;
1905
1906	if (conn_changed || discov_changed) {
1907		/* In case this was disabled through mgmt */
1908		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1909
1910		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1911			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1912
1913		mgmt_new_settings(hdev);
1914	}
1915}
1916
1917int hci_dev_cmd(unsigned int cmd, void __user *arg)
1918{
1919	struct hci_dev *hdev;
1920	struct hci_dev_req dr;
1921	int err = 0;
1922
1923	if (copy_from_user(&dr, arg, sizeof(dr)))
1924		return -EFAULT;
1925
1926	hdev = hci_dev_get(dr.dev_id);
1927	if (!hdev)
1928		return -ENODEV;
1929
1930	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1931		err = -EBUSY;
1932		goto done;
1933	}
1934
1935	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1936		err = -EOPNOTSUPP;
1937		goto done;
1938	}
1939
1940	if (hdev->dev_type != HCI_PRIMARY) {
1941		err = -EOPNOTSUPP;
1942		goto done;
1943	}
1944
1945	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1946		err = -EOPNOTSUPP;
1947		goto done;
1948	}
1949
1950	switch (cmd) {
1951	case HCISETAUTH:
1952		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1953				   HCI_INIT_TIMEOUT, NULL);
1954		break;
1955
1956	case HCISETENCRYPT:
1957		if (!lmp_encrypt_capable(hdev)) {
1958			err = -EOPNOTSUPP;
1959			break;
1960		}
1961
1962		if (!test_bit(HCI_AUTH, &hdev->flags)) {
1963			/* Auth must be enabled first */
1964			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1965					   HCI_INIT_TIMEOUT, NULL);
1966			if (err)
1967				break;
1968		}
1969
1970		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1971				   HCI_INIT_TIMEOUT, NULL);
1972		break;
1973
1974	case HCISETSCAN:
1975		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1976				   HCI_INIT_TIMEOUT, NULL);
1977
1978		/* Ensure that the connectable and discoverable states
1979		 * get correctly modified as this was a non-mgmt change.
1980		 */
1981		if (!err)
1982			hci_update_scan_state(hdev, dr.dev_opt);
1983		break;
1984
1985	case HCISETLINKPOL:
1986		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1987				   HCI_INIT_TIMEOUT, NULL);
1988		break;
1989
1990	case HCISETLINKMODE:
1991		hdev->link_mode = ((__u16) dr.dev_opt) &
1992					(HCI_LM_MASTER | HCI_LM_ACCEPT);
1993		break;
1994
1995	case HCISETPTYPE:
1996		if (hdev->pkt_type == (__u16) dr.dev_opt)
1997			break;
1998
1999		hdev->pkt_type = (__u16) dr.dev_opt;
2000		mgmt_phy_configuration_changed(hdev, NULL);
2001		break;
2002
2003	case HCISETACLMTU:
2004		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
2005		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2006		break;
2007
2008	case HCISETSCOMTU:
2009		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
2010		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2011		break;
2012
2013	default:
2014		err = -EINVAL;
2015		break;
2016	}
2017
2018done:
2019	hci_dev_put(hdev);
2020	return err;
2021}
2022
2023int hci_get_dev_list(void __user *arg)
2024{
2025	struct hci_dev *hdev;
2026	struct hci_dev_list_req *dl;
2027	struct hci_dev_req *dr;
2028	int n = 0, size, err;
2029	__u16 dev_num;
2030
2031	if (get_user(dev_num, (__u16 __user *) arg))
2032		return -EFAULT;
2033
2034	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2035		return -EINVAL;
2036
2037	size = sizeof(*dl) + dev_num * sizeof(*dr);
2038
2039	dl = kzalloc(size, GFP_KERNEL);
2040	if (!dl)
2041		return -ENOMEM;
2042
2043	dr = dl->dev_req;
2044
2045	read_lock(&hci_dev_list_lock);
2046	list_for_each_entry(hdev, &hci_dev_list, list) {
2047		unsigned long flags = hdev->flags;
2048
2049		/* When the auto-off is configured it means the transport
2050		 * is running, but in that case still indicate that the
2051		 * device is actually down.
2052		 */
2053		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2054			flags &= ~BIT(HCI_UP);
2055
2056		(dr + n)->dev_id  = hdev->id;
2057		(dr + n)->dev_opt = flags;
2058
2059		if (++n >= dev_num)
2060			break;
2061	}
2062	read_unlock(&hci_dev_list_lock);
2063
2064	dl->dev_num = n;
2065	size = sizeof(*dl) + n * sizeof(*dr);
2066
2067	err = copy_to_user(arg, dl, size);
2068	kfree(dl);
2069
2070	return err ? -EFAULT : 0;
2071}
2072
2073int hci_get_dev_info(void __user *arg)
2074{
2075	struct hci_dev *hdev;
2076	struct hci_dev_info di;
2077	unsigned long flags;
2078	int err = 0;
2079
2080	if (copy_from_user(&di, arg, sizeof(di)))
2081		return -EFAULT;
2082
2083	hdev = hci_dev_get(di.dev_id);
2084	if (!hdev)
2085		return -ENODEV;
2086
2087	/* When the auto-off is configured it means the transport
2088	 * is running, but in that case still indicate that the
2089	 * device is actually down.
2090	 */
2091	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2092		flags = hdev->flags & ~BIT(HCI_UP);
2093	else
2094		flags = hdev->flags;
2095
2096	strcpy(di.name, hdev->name);
2097	di.bdaddr   = hdev->bdaddr;
2098	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2099	di.flags    = flags;
2100	di.pkt_type = hdev->pkt_type;
2101	if (lmp_bredr_capable(hdev)) {
2102		di.acl_mtu  = hdev->acl_mtu;
2103		di.acl_pkts = hdev->acl_pkts;
2104		di.sco_mtu  = hdev->sco_mtu;
2105		di.sco_pkts = hdev->sco_pkts;
2106	} else {
2107		di.acl_mtu  = hdev->le_mtu;
2108		di.acl_pkts = hdev->le_pkts;
2109		di.sco_mtu  = 0;
2110		di.sco_pkts = 0;
2111	}
2112	di.link_policy = hdev->link_policy;
2113	di.link_mode   = hdev->link_mode;
2114
2115	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2116	memcpy(&di.features, &hdev->features, sizeof(di.features));
2117
2118	if (copy_to_user(arg, &di, sizeof(di)))
2119		err = -EFAULT;
2120
2121	hci_dev_put(hdev);
2122
2123	return err;
2124}
2125
2126/* ---- Interface to HCI drivers ---- */
2127
2128static int hci_rfkill_set_block(void *data, bool blocked)
2129{
2130	struct hci_dev *hdev = data;
2131
2132	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2133
2134	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2135		return -EBUSY;
2136
2137	if (blocked) {
2138		hci_dev_set_flag(hdev, HCI_RFKILLED);
2139		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2140		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2141			hci_dev_do_close(hdev);
2142	} else {
2143		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2144	}
2145
2146	return 0;
2147}
2148
2149static const struct rfkill_ops hci_rfkill_ops = {
2150	.set_block = hci_rfkill_set_block,
2151};
2152
2153static void hci_power_on(struct work_struct *work)
2154{
2155	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2156	int err;
2157
2158	BT_DBG("%s", hdev->name);
2159
2160	if (test_bit(HCI_UP, &hdev->flags) &&
2161	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2162	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2163		cancel_delayed_work(&hdev->power_off);
2164		hci_req_sync_lock(hdev);
2165		err = __hci_req_hci_power_on(hdev);
2166		hci_req_sync_unlock(hdev);
2167		mgmt_power_on(hdev, err);
2168		return;
2169	}
2170
2171	err = hci_dev_do_open(hdev);
2172	if (err < 0) {
2173		hci_dev_lock(hdev);
2174		mgmt_set_powered_failed(hdev, err);
2175		hci_dev_unlock(hdev);
2176		return;
2177	}
2178
2179	/* During the HCI setup phase, a few error conditions are
2180	 * ignored and they need to be checked now. If they are still
2181	 * valid, it is important to turn the device back off.
2182	 */
2183	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2184	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2185	    (hdev->dev_type == HCI_PRIMARY &&
2186	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2187	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2188		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2189		hci_dev_do_close(hdev);
2190	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2191		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2192				   HCI_AUTO_OFF_TIMEOUT);
2193	}
2194
2195	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2196		/* For unconfigured devices, set the HCI_RAW flag
2197		 * so that userspace can easily identify them.
2198		 */
2199		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2200			set_bit(HCI_RAW, &hdev->flags);
2201
2202		/* For fully configured devices, this will send
2203		 * the Index Added event. For unconfigured devices,
2204		 * it will send Unconfigued Index Added event.
2205		 *
2206		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2207		 * and no event will be send.
2208		 */
2209		mgmt_index_added(hdev);
2210	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2211		/* When the controller is now configured, then it
2212		 * is important to clear the HCI_RAW flag.
2213		 */
2214		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2215			clear_bit(HCI_RAW, &hdev->flags);
2216
2217		/* Powering on the controller with HCI_CONFIG set only
2218		 * happens with the transition from unconfigured to
2219		 * configured. This will send the Index Added event.
2220		 */
2221		mgmt_index_added(hdev);
2222	}
2223}
2224
2225static void hci_power_off(struct work_struct *work)
2226{
2227	struct hci_dev *hdev = container_of(work, struct hci_dev,
2228					    power_off.work);
2229
2230	BT_DBG("%s", hdev->name);
2231
2232	hci_dev_do_close(hdev);
2233}
2234
2235static void hci_error_reset(struct work_struct *work)
2236{
2237	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2238
2239	BT_DBG("%s", hdev->name);
2240
2241	if (hdev->hw_error)
2242		hdev->hw_error(hdev, hdev->hw_error_code);
2243	else
2244		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2245
2246	if (hci_dev_do_close(hdev))
2247		return;
2248
2249	hci_dev_do_open(hdev);
2250}
2251
2252void hci_uuids_clear(struct hci_dev *hdev)
2253{
2254	struct bt_uuid *uuid, *tmp;
2255
2256	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2257		list_del(&uuid->list);
2258		kfree(uuid);
2259	}
2260}
2261
2262void hci_link_keys_clear(struct hci_dev *hdev)
2263{
2264	struct link_key *key;
2265
2266	list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2267		list_del_rcu(&key->list);
2268		kfree_rcu(key, rcu);
2269	}
2270}
2271
2272void hci_smp_ltks_clear(struct hci_dev *hdev)
2273{
2274	struct smp_ltk *k;
2275
2276	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2277		list_del_rcu(&k->list);
2278		kfree_rcu(k, rcu);
2279	}
2280}
2281
2282void hci_smp_irks_clear(struct hci_dev *hdev)
2283{
2284	struct smp_irk *k;
2285
2286	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2287		list_del_rcu(&k->list);
2288		kfree_rcu(k, rcu);
2289	}
2290}
2291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2292struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2293{
2294	struct link_key *k;
2295
2296	rcu_read_lock();
2297	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2298		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2299			rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
2300			return k;
2301		}
2302	}
2303	rcu_read_unlock();
2304
2305	return NULL;
2306}
2307
2308static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2309			       u8 key_type, u8 old_key_type)
2310{
2311	/* Legacy key */
2312	if (key_type < 0x03)
2313		return true;
2314
2315	/* Debug keys are insecure so don't store them persistently */
2316	if (key_type == HCI_LK_DEBUG_COMBINATION)
2317		return false;
2318
2319	/* Changed combination key and there's no previous one */
2320	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2321		return false;
2322
2323	/* Security mode 3 case */
2324	if (!conn)
2325		return true;
2326
2327	/* BR/EDR key derived using SC from an LE link */
2328	if (conn->type == LE_LINK)
2329		return true;
2330
2331	/* Neither local nor remote side had no-bonding as requirement */
2332	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2333		return true;
2334
2335	/* Local side had dedicated bonding as requirement */
2336	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2337		return true;
2338
2339	/* Remote side had dedicated bonding as requirement */
2340	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2341		return true;
2342
2343	/* If none of the above criteria match, then don't store the key
2344	 * persistently */
2345	return false;
2346}
2347
2348static u8 ltk_role(u8 type)
2349{
2350	if (type == SMP_LTK)
2351		return HCI_ROLE_MASTER;
2352
2353	return HCI_ROLE_SLAVE;
2354}
2355
2356struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2357			     u8 addr_type, u8 role)
2358{
2359	struct smp_ltk *k;
2360
2361	rcu_read_lock();
2362	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2363		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2364			continue;
2365
2366		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2367			rcu_read_unlock();
 
 
 
 
 
 
 
 
 
2368			return k;
2369		}
2370	}
2371	rcu_read_unlock();
2372
2373	return NULL;
2374}
2375
2376struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2377{
 
2378	struct smp_irk *irk;
2379
2380	rcu_read_lock();
2381	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2382		if (!bacmp(&irk->rpa, rpa)) {
2383			rcu_read_unlock();
2384			return irk;
2385		}
2386	}
2387
2388	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2389		if (smp_irk_matches(hdev, irk->val, rpa)) {
2390			bacpy(&irk->rpa, rpa);
2391			rcu_read_unlock();
2392			return irk;
2393		}
2394	}
 
 
 
 
 
 
 
 
 
2395	rcu_read_unlock();
2396
2397	return NULL;
2398}
2399
2400struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2401				     u8 addr_type)
2402{
 
2403	struct smp_irk *irk;
2404
2405	/* Identity Address must be public or static random */
2406	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2407		return NULL;
2408
2409	rcu_read_lock();
2410	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2411		if (addr_type == irk->addr_type &&
2412		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2413			rcu_read_unlock();
2414			return irk;
2415		}
2416	}
 
 
 
 
 
 
 
 
 
 
2417	rcu_read_unlock();
2418
2419	return NULL;
2420}
2421
2422struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2423				  bdaddr_t *bdaddr, u8 *val, u8 type,
2424				  u8 pin_len, bool *persistent)
2425{
2426	struct link_key *key, *old_key;
2427	u8 old_key_type;
2428
2429	old_key = hci_find_link_key(hdev, bdaddr);
2430	if (old_key) {
2431		old_key_type = old_key->type;
2432		key = old_key;
2433	} else {
2434		old_key_type = conn ? conn->key_type : 0xff;
2435		key = kzalloc(sizeof(*key), GFP_KERNEL);
2436		if (!key)
2437			return NULL;
2438		list_add_rcu(&key->list, &hdev->link_keys);
2439	}
2440
2441	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2442
2443	/* Some buggy controller combinations generate a changed
2444	 * combination key for legacy pairing even when there's no
2445	 * previous key */
2446	if (type == HCI_LK_CHANGED_COMBINATION &&
2447	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2448		type = HCI_LK_COMBINATION;
2449		if (conn)
2450			conn->key_type = type;
2451	}
2452
2453	bacpy(&key->bdaddr, bdaddr);
2454	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2455	key->pin_len = pin_len;
2456
2457	if (type == HCI_LK_CHANGED_COMBINATION)
2458		key->type = old_key_type;
2459	else
2460		key->type = type;
2461
2462	if (persistent)
2463		*persistent = hci_persistent_key(hdev, conn, type,
2464						 old_key_type);
2465
2466	return key;
2467}
2468
2469struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2470			    u8 addr_type, u8 type, u8 authenticated,
2471			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2472{
2473	struct smp_ltk *key, *old_key;
2474	u8 role = ltk_role(type);
2475
2476	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2477	if (old_key)
2478		key = old_key;
2479	else {
2480		key = kzalloc(sizeof(*key), GFP_KERNEL);
2481		if (!key)
2482			return NULL;
2483		list_add_rcu(&key->list, &hdev->long_term_keys);
2484	}
2485
2486	bacpy(&key->bdaddr, bdaddr);
2487	key->bdaddr_type = addr_type;
2488	memcpy(key->val, tk, sizeof(key->val));
2489	key->authenticated = authenticated;
2490	key->ediv = ediv;
2491	key->rand = rand;
2492	key->enc_size = enc_size;
2493	key->type = type;
2494
2495	return key;
2496}
2497
2498struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2499			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2500{
2501	struct smp_irk *irk;
2502
2503	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2504	if (!irk) {
2505		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2506		if (!irk)
2507			return NULL;
2508
2509		bacpy(&irk->bdaddr, bdaddr);
2510		irk->addr_type = addr_type;
2511
2512		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2513	}
2514
2515	memcpy(irk->val, val, 16);
2516	bacpy(&irk->rpa, rpa);
2517
2518	return irk;
2519}
2520
2521int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2522{
2523	struct link_key *key;
2524
2525	key = hci_find_link_key(hdev, bdaddr);
2526	if (!key)
2527		return -ENOENT;
2528
2529	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2530
2531	list_del_rcu(&key->list);
2532	kfree_rcu(key, rcu);
2533
2534	return 0;
2535}
2536
2537int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2538{
2539	struct smp_ltk *k;
2540	int removed = 0;
2541
2542	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2543		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2544			continue;
2545
2546		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2547
2548		list_del_rcu(&k->list);
2549		kfree_rcu(k, rcu);
2550		removed++;
2551	}
2552
2553	return removed ? 0 : -ENOENT;
2554}
2555
2556void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2557{
2558	struct smp_irk *k;
2559
2560	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2561		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2562			continue;
2563
2564		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2565
2566		list_del_rcu(&k->list);
2567		kfree_rcu(k, rcu);
2568	}
2569}
2570
2571bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2572{
2573	struct smp_ltk *k;
2574	struct smp_irk *irk;
2575	u8 addr_type;
2576
2577	if (type == BDADDR_BREDR) {
2578		if (hci_find_link_key(hdev, bdaddr))
2579			return true;
2580		return false;
2581	}
2582
2583	/* Convert to HCI addr type which struct smp_ltk uses */
2584	if (type == BDADDR_LE_PUBLIC)
2585		addr_type = ADDR_LE_DEV_PUBLIC;
2586	else
2587		addr_type = ADDR_LE_DEV_RANDOM;
2588
2589	irk = hci_get_irk(hdev, bdaddr, addr_type);
2590	if (irk) {
2591		bdaddr = &irk->bdaddr;
2592		addr_type = irk->addr_type;
2593	}
2594
2595	rcu_read_lock();
2596	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2597		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2598			rcu_read_unlock();
2599			return true;
2600		}
2601	}
2602	rcu_read_unlock();
2603
2604	return false;
2605}
2606
2607/* HCI command timer function */
2608static void hci_cmd_timeout(struct work_struct *work)
2609{
2610	struct hci_dev *hdev = container_of(work, struct hci_dev,
2611					    cmd_timer.work);
2612
2613	if (hdev->sent_cmd) {
2614		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2615		u16 opcode = __le16_to_cpu(sent->opcode);
2616
2617		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2618	} else {
2619		bt_dev_err(hdev, "command tx timeout");
2620	}
2621
2622	if (hdev->cmd_timeout)
2623		hdev->cmd_timeout(hdev);
2624
2625	atomic_set(&hdev->cmd_cnt, 1);
2626	queue_work(hdev->workqueue, &hdev->cmd_work);
2627}
2628
2629struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2630					  bdaddr_t *bdaddr, u8 bdaddr_type)
2631{
2632	struct oob_data *data;
2633
2634	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2635		if (bacmp(bdaddr, &data->bdaddr) != 0)
2636			continue;
2637		if (data->bdaddr_type != bdaddr_type)
2638			continue;
2639		return data;
2640	}
2641
2642	return NULL;
2643}
2644
2645int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2646			       u8 bdaddr_type)
2647{
2648	struct oob_data *data;
2649
2650	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2651	if (!data)
2652		return -ENOENT;
2653
2654	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2655
2656	list_del(&data->list);
2657	kfree(data);
2658
2659	return 0;
2660}
2661
2662void hci_remote_oob_data_clear(struct hci_dev *hdev)
2663{
2664	struct oob_data *data, *n;
2665
2666	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2667		list_del(&data->list);
2668		kfree(data);
2669	}
2670}
2671
2672int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2673			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2674			    u8 *hash256, u8 *rand256)
2675{
2676	struct oob_data *data;
2677
2678	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2679	if (!data) {
2680		data = kmalloc(sizeof(*data), GFP_KERNEL);
2681		if (!data)
2682			return -ENOMEM;
2683
2684		bacpy(&data->bdaddr, bdaddr);
2685		data->bdaddr_type = bdaddr_type;
2686		list_add(&data->list, &hdev->remote_oob_data);
2687	}
2688
2689	if (hash192 && rand192) {
2690		memcpy(data->hash192, hash192, sizeof(data->hash192));
2691		memcpy(data->rand192, rand192, sizeof(data->rand192));
2692		if (hash256 && rand256)
2693			data->present = 0x03;
2694	} else {
2695		memset(data->hash192, 0, sizeof(data->hash192));
2696		memset(data->rand192, 0, sizeof(data->rand192));
2697		if (hash256 && rand256)
2698			data->present = 0x02;
2699		else
2700			data->present = 0x00;
2701	}
2702
2703	if (hash256 && rand256) {
2704		memcpy(data->hash256, hash256, sizeof(data->hash256));
2705		memcpy(data->rand256, rand256, sizeof(data->rand256));
2706	} else {
2707		memset(data->hash256, 0, sizeof(data->hash256));
2708		memset(data->rand256, 0, sizeof(data->rand256));
2709		if (hash192 && rand192)
2710			data->present = 0x01;
2711	}
2712
2713	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2714
2715	return 0;
2716}
2717
2718/* This function requires the caller holds hdev->lock */
2719struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2720{
2721	struct adv_info *adv_instance;
2722
2723	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2724		if (adv_instance->instance == instance)
2725			return adv_instance;
2726	}
2727
2728	return NULL;
2729}
2730
2731/* This function requires the caller holds hdev->lock */
2732struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2733{
2734	struct adv_info *cur_instance;
2735
2736	cur_instance = hci_find_adv_instance(hdev, instance);
2737	if (!cur_instance)
2738		return NULL;
2739
2740	if (cur_instance == list_last_entry(&hdev->adv_instances,
2741					    struct adv_info, list))
2742		return list_first_entry(&hdev->adv_instances,
2743						 struct adv_info, list);
2744	else
2745		return list_next_entry(cur_instance, list);
2746}
2747
2748/* This function requires the caller holds hdev->lock */
2749int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2750{
2751	struct adv_info *adv_instance;
2752
2753	adv_instance = hci_find_adv_instance(hdev, instance);
2754	if (!adv_instance)
2755		return -ENOENT;
2756
2757	BT_DBG("%s removing %dMR", hdev->name, instance);
2758
2759	if (hdev->cur_adv_instance == instance) {
2760		if (hdev->adv_instance_timeout) {
2761			cancel_delayed_work(&hdev->adv_instance_expire);
2762			hdev->adv_instance_timeout = 0;
2763		}
2764		hdev->cur_adv_instance = 0x00;
2765	}
2766
2767	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2768
2769	list_del(&adv_instance->list);
2770	kfree(adv_instance);
2771
2772	hdev->adv_instance_cnt--;
2773
2774	return 0;
2775}
2776
2777void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2778{
2779	struct adv_info *adv_instance, *n;
2780
2781	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2782		adv_instance->rpa_expired = rpa_expired;
2783}
2784
2785/* This function requires the caller holds hdev->lock */
2786void hci_adv_instances_clear(struct hci_dev *hdev)
2787{
2788	struct adv_info *adv_instance, *n;
2789
2790	if (hdev->adv_instance_timeout) {
2791		cancel_delayed_work(&hdev->adv_instance_expire);
2792		hdev->adv_instance_timeout = 0;
2793	}
2794
2795	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2796		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2797		list_del(&adv_instance->list);
2798		kfree(adv_instance);
2799	}
2800
2801	hdev->adv_instance_cnt = 0;
2802	hdev->cur_adv_instance = 0x00;
2803}
2804
2805static void adv_instance_rpa_expired(struct work_struct *work)
2806{
2807	struct adv_info *adv_instance = container_of(work, struct adv_info,
2808						     rpa_expired_cb.work);
2809
2810	BT_DBG("");
2811
2812	adv_instance->rpa_expired = true;
2813}
2814
2815/* This function requires the caller holds hdev->lock */
2816int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2817			 u16 adv_data_len, u8 *adv_data,
2818			 u16 scan_rsp_len, u8 *scan_rsp_data,
2819			 u16 timeout, u16 duration)
2820{
2821	struct adv_info *adv_instance;
2822
2823	adv_instance = hci_find_adv_instance(hdev, instance);
2824	if (adv_instance) {
2825		memset(adv_instance->adv_data, 0,
2826		       sizeof(adv_instance->adv_data));
2827		memset(adv_instance->scan_rsp_data, 0,
2828		       sizeof(adv_instance->scan_rsp_data));
2829	} else {
2830		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
2831		    instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2832			return -EOVERFLOW;
2833
2834		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2835		if (!adv_instance)
2836			return -ENOMEM;
2837
2838		adv_instance->pending = true;
2839		adv_instance->instance = instance;
2840		list_add(&adv_instance->list, &hdev->adv_instances);
2841		hdev->adv_instance_cnt++;
2842	}
2843
2844	adv_instance->flags = flags;
2845	adv_instance->adv_data_len = adv_data_len;
2846	adv_instance->scan_rsp_len = scan_rsp_len;
2847
2848	if (adv_data_len)
2849		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2850
2851	if (scan_rsp_len)
2852		memcpy(adv_instance->scan_rsp_data,
2853		       scan_rsp_data, scan_rsp_len);
2854
2855	adv_instance->timeout = timeout;
2856	adv_instance->remaining_time = timeout;
2857
2858	if (duration == 0)
2859		adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2860	else
2861		adv_instance->duration = duration;
2862
2863	adv_instance->tx_power = HCI_TX_POWER_INVALID;
2864
2865	INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
2866			  adv_instance_rpa_expired);
2867
2868	BT_DBG("%s for %dMR", hdev->name, instance);
2869
2870	return 0;
2871}
2872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2873struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2874					 bdaddr_t *bdaddr, u8 type)
2875{
2876	struct bdaddr_list *b;
2877
2878	list_for_each_entry(b, bdaddr_list, list) {
2879		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2880			return b;
2881	}
2882
2883	return NULL;
2884}
2885
2886struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2887				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2888				u8 type)
2889{
2890	struct bdaddr_list_with_irk *b;
2891
2892	list_for_each_entry(b, bdaddr_list, list) {
2893		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2894			return b;
2895	}
2896
2897	return NULL;
2898}
2899
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2900void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2901{
2902	struct bdaddr_list *b, *n;
2903
2904	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2905		list_del(&b->list);
2906		kfree(b);
2907	}
2908}
2909
2910int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2911{
2912	struct bdaddr_list *entry;
2913
2914	if (!bacmp(bdaddr, BDADDR_ANY))
2915		return -EBADF;
2916
2917	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2918		return -EEXIST;
2919
2920	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2921	if (!entry)
2922		return -ENOMEM;
2923
2924	bacpy(&entry->bdaddr, bdaddr);
2925	entry->bdaddr_type = type;
2926
2927	list_add(&entry->list, list);
2928
2929	return 0;
2930}
2931
2932int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2933					u8 type, u8 *peer_irk, u8 *local_irk)
2934{
2935	struct bdaddr_list_with_irk *entry;
2936
2937	if (!bacmp(bdaddr, BDADDR_ANY))
2938		return -EBADF;
2939
2940	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2941		return -EEXIST;
2942
2943	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2944	if (!entry)
2945		return -ENOMEM;
2946
2947	bacpy(&entry->bdaddr, bdaddr);
2948	entry->bdaddr_type = type;
2949
2950	if (peer_irk)
2951		memcpy(entry->peer_irk, peer_irk, 16);
2952
2953	if (local_irk)
2954		memcpy(entry->local_irk, local_irk, 16);
2955
2956	list_add(&entry->list, list);
2957
2958	return 0;
2959}
2960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2961int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2962{
2963	struct bdaddr_list *entry;
2964
2965	if (!bacmp(bdaddr, BDADDR_ANY)) {
2966		hci_bdaddr_list_clear(list);
2967		return 0;
2968	}
2969
2970	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2971	if (!entry)
2972		return -ENOENT;
2973
2974	list_del(&entry->list);
2975	kfree(entry);
2976
2977	return 0;
2978}
2979
2980int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2981							u8 type)
2982{
2983	struct bdaddr_list_with_irk *entry;
2984
2985	if (!bacmp(bdaddr, BDADDR_ANY)) {
2986		hci_bdaddr_list_clear(list);
2987		return 0;
2988	}
2989
2990	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2991	if (!entry)
2992		return -ENOENT;
2993
2994	list_del(&entry->list);
2995	kfree(entry);
2996
2997	return 0;
2998}
2999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3000/* This function requires the caller holds hdev->lock */
3001struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3002					       bdaddr_t *addr, u8 addr_type)
3003{
3004	struct hci_conn_params *params;
3005
3006	list_for_each_entry(params, &hdev->le_conn_params, list) {
3007		if (bacmp(&params->addr, addr) == 0 &&
3008		    params->addr_type == addr_type) {
3009			return params;
3010		}
3011	}
3012
3013	return NULL;
3014}
3015
3016/* This function requires the caller holds hdev->lock */
3017struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3018						  bdaddr_t *addr, u8 addr_type)
3019{
3020	struct hci_conn_params *param;
3021
 
 
 
 
 
 
 
 
 
3022	list_for_each_entry(param, list, action) {
3023		if (bacmp(&param->addr, addr) == 0 &&
3024		    param->addr_type == addr_type)
3025			return param;
3026	}
3027
3028	return NULL;
3029}
3030
3031/* This function requires the caller holds hdev->lock */
3032struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3033					    bdaddr_t *addr, u8 addr_type)
3034{
3035	struct hci_conn_params *params;
3036
3037	params = hci_conn_params_lookup(hdev, addr, addr_type);
3038	if (params)
3039		return params;
3040
3041	params = kzalloc(sizeof(*params), GFP_KERNEL);
3042	if (!params) {
3043		bt_dev_err(hdev, "out of memory");
3044		return NULL;
3045	}
3046
3047	bacpy(&params->addr, addr);
3048	params->addr_type = addr_type;
3049
3050	list_add(&params->list, &hdev->le_conn_params);
3051	INIT_LIST_HEAD(&params->action);
3052
3053	params->conn_min_interval = hdev->le_conn_min_interval;
3054	params->conn_max_interval = hdev->le_conn_max_interval;
3055	params->conn_latency = hdev->le_conn_latency;
3056	params->supervision_timeout = hdev->le_supv_timeout;
3057	params->auto_connect = HCI_AUTO_CONN_DISABLED;
3058
3059	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3060
3061	return params;
3062}
3063
3064static void hci_conn_params_free(struct hci_conn_params *params)
3065{
3066	if (params->conn) {
3067		hci_conn_drop(params->conn);
3068		hci_conn_put(params->conn);
3069	}
3070
3071	list_del(&params->action);
3072	list_del(&params->list);
3073	kfree(params);
3074}
3075
3076/* This function requires the caller holds hdev->lock */
3077void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3078{
3079	struct hci_conn_params *params;
3080
3081	params = hci_conn_params_lookup(hdev, addr, addr_type);
3082	if (!params)
3083		return;
3084
3085	hci_conn_params_free(params);
3086
3087	hci_update_background_scan(hdev);
3088
3089	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3090}
3091
3092/* This function requires the caller holds hdev->lock */
3093void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3094{
3095	struct hci_conn_params *params, *tmp;
3096
3097	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3098		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3099			continue;
3100
3101		/* If trying to estabilish one time connection to disabled
3102		 * device, leave the params, but mark them as just once.
3103		 */
3104		if (params->explicit_connect) {
3105			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3106			continue;
3107		}
3108
3109		list_del(&params->list);
3110		kfree(params);
3111	}
3112
3113	BT_DBG("All LE disabled connection parameters were removed");
3114}
3115
3116/* This function requires the caller holds hdev->lock */
3117static void hci_conn_params_clear_all(struct hci_dev *hdev)
3118{
3119	struct hci_conn_params *params, *tmp;
3120
3121	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3122		hci_conn_params_free(params);
3123
3124	BT_DBG("All LE connection parameters were removed");
3125}
3126
3127/* Copy the Identity Address of the controller.
3128 *
3129 * If the controller has a public BD_ADDR, then by default use that one.
3130 * If this is a LE only controller without a public address, default to
3131 * the static random address.
3132 *
3133 * For debugging purposes it is possible to force controllers with a
3134 * public address to use the static random address instead.
3135 *
3136 * In case BR/EDR has been disabled on a dual-mode controller and
3137 * userspace has configured a static address, then that address
3138 * becomes the identity address instead of the public BR/EDR address.
3139 */
3140void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3141			       u8 *bdaddr_type)
3142{
3143	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3144	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3145	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3146	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
3147		bacpy(bdaddr, &hdev->static_addr);
3148		*bdaddr_type = ADDR_LE_DEV_RANDOM;
3149	} else {
3150		bacpy(bdaddr, &hdev->bdaddr);
3151		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
3152	}
3153}
3154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3155/* Alloc HCI device */
3156struct hci_dev *hci_alloc_dev(void)
3157{
3158	struct hci_dev *hdev;
3159
3160	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3161	if (!hdev)
3162		return NULL;
3163
3164	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3165	hdev->esco_type = (ESCO_HV1);
3166	hdev->link_mode = (HCI_LM_ACCEPT);
3167	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
3168	hdev->io_capability = 0x03;	/* No Input No Output */
3169	hdev->manufacturer = 0xffff;	/* Default to internal use */
3170	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3171	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3172	hdev->adv_instance_cnt = 0;
3173	hdev->cur_adv_instance = 0x00;
3174	hdev->adv_instance_timeout = 0;
3175
3176	hdev->sniff_max_interval = 800;
3177	hdev->sniff_min_interval = 80;
3178
3179	hdev->le_adv_channel_map = 0x07;
3180	hdev->le_adv_min_interval = 0x0800;
3181	hdev->le_adv_max_interval = 0x0800;
3182	hdev->le_scan_interval = 0x0060;
3183	hdev->le_scan_window = 0x0030;
 
 
 
 
 
 
3184	hdev->le_conn_min_interval = 0x0018;
3185	hdev->le_conn_max_interval = 0x0028;
3186	hdev->le_conn_latency = 0x0000;
3187	hdev->le_supv_timeout = 0x002a;
3188	hdev->le_def_tx_len = 0x001b;
3189	hdev->le_def_tx_time = 0x0148;
3190	hdev->le_max_tx_len = 0x001b;
3191	hdev->le_max_tx_time = 0x0148;
3192	hdev->le_max_rx_len = 0x001b;
3193	hdev->le_max_rx_time = 0x0148;
3194	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3195	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3196	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3197	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3198	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
 
 
3199
3200	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3201	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3202	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3203	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3204	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
3205	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
3206
 
 
 
 
 
3207	mutex_init(&hdev->lock);
3208	mutex_init(&hdev->req_lock);
3209
3210	INIT_LIST_HEAD(&hdev->mgmt_pending);
3211	INIT_LIST_HEAD(&hdev->blacklist);
3212	INIT_LIST_HEAD(&hdev->whitelist);
3213	INIT_LIST_HEAD(&hdev->uuids);
3214	INIT_LIST_HEAD(&hdev->link_keys);
3215	INIT_LIST_HEAD(&hdev->long_term_keys);
3216	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3217	INIT_LIST_HEAD(&hdev->remote_oob_data);
3218	INIT_LIST_HEAD(&hdev->le_white_list);
3219	INIT_LIST_HEAD(&hdev->le_resolv_list);
3220	INIT_LIST_HEAD(&hdev->le_conn_params);
3221	INIT_LIST_HEAD(&hdev->pend_le_conns);
3222	INIT_LIST_HEAD(&hdev->pend_le_reports);
3223	INIT_LIST_HEAD(&hdev->conn_hash.list);
3224	INIT_LIST_HEAD(&hdev->adv_instances);
 
3225
3226	INIT_WORK(&hdev->rx_work, hci_rx_work);
3227	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3228	INIT_WORK(&hdev->tx_work, hci_tx_work);
3229	INIT_WORK(&hdev->power_on, hci_power_on);
3230	INIT_WORK(&hdev->error_reset, hci_error_reset);
 
3231
3232	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3233
3234	skb_queue_head_init(&hdev->rx_q);
3235	skb_queue_head_init(&hdev->cmd_q);
3236	skb_queue_head_init(&hdev->raw_q);
3237
3238	init_waitqueue_head(&hdev->req_wait_q);
 
3239
3240	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3241
3242	hci_request_setup(hdev);
3243
3244	hci_init_sysfs(hdev);
3245	discovery_init(hdev);
3246
3247	return hdev;
3248}
3249EXPORT_SYMBOL(hci_alloc_dev);
3250
3251/* Free HCI device */
3252void hci_free_dev(struct hci_dev *hdev)
3253{
3254	/* will free via device release */
3255	put_device(&hdev->dev);
3256}
3257EXPORT_SYMBOL(hci_free_dev);
3258
3259/* Register HCI device */
3260int hci_register_dev(struct hci_dev *hdev)
3261{
3262	int id, error;
3263
3264	if (!hdev->open || !hdev->close || !hdev->send)
3265		return -EINVAL;
3266
3267	/* Do not allow HCI_AMP devices to register at index 0,
3268	 * so the index can be used as the AMP controller ID.
3269	 */
3270	switch (hdev->dev_type) {
3271	case HCI_PRIMARY:
3272		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3273		break;
3274	case HCI_AMP:
3275		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3276		break;
3277	default:
3278		return -EINVAL;
3279	}
3280
3281	if (id < 0)
3282		return id;
3283
3284	sprintf(hdev->name, "hci%d", id);
3285	hdev->id = id;
3286
3287	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3288
3289	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3290	if (!hdev->workqueue) {
3291		error = -ENOMEM;
3292		goto err;
3293	}
3294
3295	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3296						      hdev->name);
3297	if (!hdev->req_workqueue) {
3298		destroy_workqueue(hdev->workqueue);
3299		error = -ENOMEM;
3300		goto err;
3301	}
3302
3303	if (!IS_ERR_OR_NULL(bt_debugfs))
3304		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3305
3306	dev_set_name(&hdev->dev, "%s", hdev->name);
3307
3308	error = device_add(&hdev->dev);
3309	if (error < 0)
3310		goto err_wqueue;
3311
3312	hci_leds_init(hdev);
3313
3314	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3315				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3316				    hdev);
3317	if (hdev->rfkill) {
3318		if (rfkill_register(hdev->rfkill) < 0) {
3319			rfkill_destroy(hdev->rfkill);
3320			hdev->rfkill = NULL;
3321		}
3322	}
3323
3324	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3325		hci_dev_set_flag(hdev, HCI_RFKILLED);
3326
3327	hci_dev_set_flag(hdev, HCI_SETUP);
3328	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3329
3330	if (hdev->dev_type == HCI_PRIMARY) {
3331		/* Assume BR/EDR support until proven otherwise (such as
3332		 * through reading supported features during init.
3333		 */
3334		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3335	}
3336
3337	write_lock(&hci_dev_list_lock);
3338	list_add(&hdev->list, &hci_dev_list);
3339	write_unlock(&hci_dev_list_lock);
3340
3341	/* Devices that are marked for raw-only usage are unconfigured
3342	 * and should not be included in normal operation.
3343	 */
3344	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3345		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3346
3347	hci_sock_dev_event(hdev, HCI_DEV_REG);
3348	hci_dev_hold(hdev);
3349
 
 
 
 
 
3350	queue_work(hdev->req_workqueue, &hdev->power_on);
3351
 
 
3352	return id;
3353
3354err_wqueue:
3355	destroy_workqueue(hdev->workqueue);
3356	destroy_workqueue(hdev->req_workqueue);
3357err:
3358	ida_simple_remove(&hci_index_ida, hdev->id);
3359
3360	return error;
3361}
3362EXPORT_SYMBOL(hci_register_dev);
3363
3364/* Unregister HCI device */
3365void hci_unregister_dev(struct hci_dev *hdev)
3366{
3367	int id;
3368
3369	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3370
3371	hci_dev_set_flag(hdev, HCI_UNREGISTER);
3372
3373	id = hdev->id;
3374
3375	write_lock(&hci_dev_list_lock);
3376	list_del(&hdev->list);
3377	write_unlock(&hci_dev_list_lock);
3378
3379	cancel_work_sync(&hdev->power_on);
3380
 
 
 
3381	hci_dev_do_close(hdev);
3382
3383	if (!test_bit(HCI_INIT, &hdev->flags) &&
3384	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
3385	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3386		hci_dev_lock(hdev);
3387		mgmt_index_removed(hdev);
3388		hci_dev_unlock(hdev);
3389	}
3390
3391	/* mgmt_index_removed should take care of emptying the
3392	 * pending list */
3393	BUG_ON(!list_empty(&hdev->mgmt_pending));
3394
3395	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3396
3397	if (hdev->rfkill) {
3398		rfkill_unregister(hdev->rfkill);
3399		rfkill_destroy(hdev->rfkill);
3400	}
3401
3402	device_del(&hdev->dev);
3403
3404	debugfs_remove_recursive(hdev->debugfs);
3405	kfree_const(hdev->hw_info);
3406	kfree_const(hdev->fw_info);
3407
3408	destroy_workqueue(hdev->workqueue);
3409	destroy_workqueue(hdev->req_workqueue);
3410
3411	hci_dev_lock(hdev);
3412	hci_bdaddr_list_clear(&hdev->blacklist);
3413	hci_bdaddr_list_clear(&hdev->whitelist);
3414	hci_uuids_clear(hdev);
3415	hci_link_keys_clear(hdev);
3416	hci_smp_ltks_clear(hdev);
3417	hci_smp_irks_clear(hdev);
3418	hci_remote_oob_data_clear(hdev);
3419	hci_adv_instances_clear(hdev);
 
3420	hci_bdaddr_list_clear(&hdev->le_white_list);
3421	hci_bdaddr_list_clear(&hdev->le_resolv_list);
3422	hci_conn_params_clear_all(hdev);
3423	hci_discovery_filter_clear(hdev);
 
3424	hci_dev_unlock(hdev);
3425
3426	hci_dev_put(hdev);
3427
3428	ida_simple_remove(&hci_index_ida, id);
3429}
3430EXPORT_SYMBOL(hci_unregister_dev);
3431
3432/* Suspend HCI device */
3433int hci_suspend_dev(struct hci_dev *hdev)
3434{
3435	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3436	return 0;
3437}
3438EXPORT_SYMBOL(hci_suspend_dev);
3439
3440/* Resume HCI device */
3441int hci_resume_dev(struct hci_dev *hdev)
3442{
3443	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3444	return 0;
3445}
3446EXPORT_SYMBOL(hci_resume_dev);
3447
3448/* Reset HCI device */
3449int hci_reset_dev(struct hci_dev *hdev)
3450{
3451	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3452	struct sk_buff *skb;
3453
3454	skb = bt_skb_alloc(3, GFP_ATOMIC);
3455	if (!skb)
3456		return -ENOMEM;
3457
3458	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3459	skb_put_data(skb, hw_err, 3);
3460
3461	/* Send Hardware Error to upper stack */
3462	return hci_recv_frame(hdev, skb);
3463}
3464EXPORT_SYMBOL(hci_reset_dev);
3465
3466/* Receive frame from HCI drivers */
3467int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3468{
3469	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3470		      && !test_bit(HCI_INIT, &hdev->flags))) {
3471		kfree_skb(skb);
3472		return -ENXIO;
3473	}
3474
3475	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3476	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3477	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
 
3478		kfree_skb(skb);
3479		return -EINVAL;
3480	}
3481
3482	/* Incoming skb */
3483	bt_cb(skb)->incoming = 1;
3484
3485	/* Time stamp */
3486	__net_timestamp(skb);
3487
3488	skb_queue_tail(&hdev->rx_q, skb);
3489	queue_work(hdev->workqueue, &hdev->rx_work);
3490
3491	return 0;
3492}
3493EXPORT_SYMBOL(hci_recv_frame);
3494
3495/* Receive diagnostic message from HCI drivers */
3496int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3497{
3498	/* Mark as diagnostic packet */
3499	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3500
3501	/* Time stamp */
3502	__net_timestamp(skb);
3503
3504	skb_queue_tail(&hdev->rx_q, skb);
3505	queue_work(hdev->workqueue, &hdev->rx_work);
3506
3507	return 0;
3508}
3509EXPORT_SYMBOL(hci_recv_diag);
3510
3511void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3512{
3513	va_list vargs;
3514
3515	va_start(vargs, fmt);
3516	kfree_const(hdev->hw_info);
3517	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3518	va_end(vargs);
3519}
3520EXPORT_SYMBOL(hci_set_hw_info);
3521
3522void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3523{
3524	va_list vargs;
3525
3526	va_start(vargs, fmt);
3527	kfree_const(hdev->fw_info);
3528	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3529	va_end(vargs);
3530}
3531EXPORT_SYMBOL(hci_set_fw_info);
3532
3533/* ---- Interface to upper protocols ---- */
3534
3535int hci_register_cb(struct hci_cb *cb)
3536{
3537	BT_DBG("%p name %s", cb, cb->name);
3538
3539	mutex_lock(&hci_cb_list_lock);
3540	list_add_tail(&cb->list, &hci_cb_list);
3541	mutex_unlock(&hci_cb_list_lock);
3542
3543	return 0;
3544}
3545EXPORT_SYMBOL(hci_register_cb);
3546
3547int hci_unregister_cb(struct hci_cb *cb)
3548{
3549	BT_DBG("%p name %s", cb, cb->name);
3550
3551	mutex_lock(&hci_cb_list_lock);
3552	list_del(&cb->list);
3553	mutex_unlock(&hci_cb_list_lock);
3554
3555	return 0;
3556}
3557EXPORT_SYMBOL(hci_unregister_cb);
3558
3559static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3560{
3561	int err;
3562
3563	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3564	       skb->len);
3565
3566	/* Time stamp */
3567	__net_timestamp(skb);
3568
3569	/* Send copy to monitor */
3570	hci_send_to_monitor(hdev, skb);
3571
3572	if (atomic_read(&hdev->promisc)) {
3573		/* Send copy to the sockets */
3574		hci_send_to_sock(hdev, skb);
3575	}
3576
3577	/* Get rid of skb owner, prior to sending to the driver. */
3578	skb_orphan(skb);
3579
3580	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3581		kfree_skb(skb);
3582		return;
3583	}
3584
3585	err = hdev->send(hdev, skb);
3586	if (err < 0) {
3587		bt_dev_err(hdev, "sending frame failed (%d)", err);
3588		kfree_skb(skb);
3589	}
3590}
3591
3592/* Send HCI command */
3593int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3594		 const void *param)
3595{
3596	struct sk_buff *skb;
3597
3598	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3599
3600	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3601	if (!skb) {
3602		bt_dev_err(hdev, "no memory for command");
3603		return -ENOMEM;
3604	}
3605
3606	/* Stand-alone HCI commands must be flagged as
3607	 * single-command requests.
3608	 */
3609	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3610
3611	skb_queue_tail(&hdev->cmd_q, skb);
3612	queue_work(hdev->workqueue, &hdev->cmd_work);
3613
3614	return 0;
3615}
3616
3617int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3618		   const void *param)
3619{
3620	struct sk_buff *skb;
3621
3622	if (hci_opcode_ogf(opcode) != 0x3f) {
3623		/* A controller receiving a command shall respond with either
3624		 * a Command Status Event or a Command Complete Event.
3625		 * Therefore, all standard HCI commands must be sent via the
3626		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3627		 * Some vendors do not comply with this rule for vendor-specific
3628		 * commands and do not return any event. We want to support
3629		 * unresponded commands for such cases only.
3630		 */
3631		bt_dev_err(hdev, "unresponded command not supported");
3632		return -EINVAL;
3633	}
3634
3635	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3636	if (!skb) {
3637		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3638			   opcode);
3639		return -ENOMEM;
3640	}
3641
3642	hci_send_frame(hdev, skb);
3643
3644	return 0;
3645}
3646EXPORT_SYMBOL(__hci_cmd_send);
3647
3648/* Get data from the previously sent command */
3649void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3650{
3651	struct hci_command_hdr *hdr;
3652
3653	if (!hdev->sent_cmd)
3654		return NULL;
3655
3656	hdr = (void *) hdev->sent_cmd->data;
3657
3658	if (hdr->opcode != cpu_to_le16(opcode))
3659		return NULL;
3660
3661	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3662
3663	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3664}
3665
3666/* Send HCI command and wait for command commplete event */
3667struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3668			     const void *param, u32 timeout)
3669{
3670	struct sk_buff *skb;
3671
3672	if (!test_bit(HCI_UP, &hdev->flags))
3673		return ERR_PTR(-ENETDOWN);
3674
3675	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3676
3677	hci_req_sync_lock(hdev);
3678	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3679	hci_req_sync_unlock(hdev);
3680
3681	return skb;
3682}
3683EXPORT_SYMBOL(hci_cmd_sync);
3684
3685/* Send ACL data */
3686static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3687{
3688	struct hci_acl_hdr *hdr;
3689	int len = skb->len;
3690
3691	skb_push(skb, HCI_ACL_HDR_SIZE);
3692	skb_reset_transport_header(skb);
3693	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3694	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3695	hdr->dlen   = cpu_to_le16(len);
3696}
3697
3698static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3699			  struct sk_buff *skb, __u16 flags)
3700{
3701	struct hci_conn *conn = chan->conn;
3702	struct hci_dev *hdev = conn->hdev;
3703	struct sk_buff *list;
3704
3705	skb->len = skb_headlen(skb);
3706	skb->data_len = 0;
3707
3708	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3709
3710	switch (hdev->dev_type) {
3711	case HCI_PRIMARY:
3712		hci_add_acl_hdr(skb, conn->handle, flags);
3713		break;
3714	case HCI_AMP:
3715		hci_add_acl_hdr(skb, chan->handle, flags);
3716		break;
3717	default:
3718		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3719		return;
3720	}
3721
3722	list = skb_shinfo(skb)->frag_list;
3723	if (!list) {
3724		/* Non fragmented */
3725		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3726
3727		skb_queue_tail(queue, skb);
3728	} else {
3729		/* Fragmented */
3730		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3731
3732		skb_shinfo(skb)->frag_list = NULL;
3733
3734		/* Queue all fragments atomically. We need to use spin_lock_bh
3735		 * here because of 6LoWPAN links, as there this function is
3736		 * called from softirq and using normal spin lock could cause
3737		 * deadlocks.
3738		 */
3739		spin_lock_bh(&queue->lock);
3740
3741		__skb_queue_tail(queue, skb);
3742
3743		flags &= ~ACL_START;
3744		flags |= ACL_CONT;
3745		do {
3746			skb = list; list = list->next;
3747
3748			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3749			hci_add_acl_hdr(skb, conn->handle, flags);
3750
3751			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3752
3753			__skb_queue_tail(queue, skb);
3754		} while (list);
3755
3756		spin_unlock_bh(&queue->lock);
3757	}
3758}
3759
3760void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3761{
3762	struct hci_dev *hdev = chan->conn->hdev;
3763
3764	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3765
3766	hci_queue_acl(chan, &chan->data_q, skb, flags);
3767
3768	queue_work(hdev->workqueue, &hdev->tx_work);
3769}
3770
3771/* Send SCO data */
3772void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3773{
3774	struct hci_dev *hdev = conn->hdev;
3775	struct hci_sco_hdr hdr;
3776
3777	BT_DBG("%s len %d", hdev->name, skb->len);
3778
3779	hdr.handle = cpu_to_le16(conn->handle);
3780	hdr.dlen   = skb->len;
3781
3782	skb_push(skb, HCI_SCO_HDR_SIZE);
3783	skb_reset_transport_header(skb);
3784	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3785
3786	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3787
3788	skb_queue_tail(&conn->data_q, skb);
3789	queue_work(hdev->workqueue, &hdev->tx_work);
3790}
3791
3792/* ---- HCI TX task (outgoing data) ---- */
3793
3794/* HCI Connection scheduler */
3795static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3796				     int *quote)
3797{
3798	struct hci_conn_hash *h = &hdev->conn_hash;
3799	struct hci_conn *conn = NULL, *c;
3800	unsigned int num = 0, min = ~0;
3801
3802	/* We don't have to lock device here. Connections are always
3803	 * added and removed with TX task disabled. */
3804
3805	rcu_read_lock();
3806
3807	list_for_each_entry_rcu(c, &h->list, list) {
3808		if (c->type != type || skb_queue_empty(&c->data_q))
3809			continue;
3810
3811		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3812			continue;
3813
3814		num++;
3815
3816		if (c->sent < min) {
3817			min  = c->sent;
3818			conn = c;
3819		}
3820
3821		if (hci_conn_num(hdev, type) == num)
3822			break;
3823	}
3824
3825	rcu_read_unlock();
3826
3827	if (conn) {
3828		int cnt, q;
3829
3830		switch (conn->type) {
3831		case ACL_LINK:
3832			cnt = hdev->acl_cnt;
3833			break;
3834		case SCO_LINK:
3835		case ESCO_LINK:
3836			cnt = hdev->sco_cnt;
3837			break;
3838		case LE_LINK:
3839			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3840			break;
3841		default:
3842			cnt = 0;
3843			bt_dev_err(hdev, "unknown link type %d", conn->type);
3844		}
3845
3846		q = cnt / num;
3847		*quote = q ? q : 1;
3848	} else
3849		*quote = 0;
3850
3851	BT_DBG("conn %p quote %d", conn, *quote);
3852	return conn;
3853}
3854
3855static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3856{
3857	struct hci_conn_hash *h = &hdev->conn_hash;
3858	struct hci_conn *c;
3859
3860	bt_dev_err(hdev, "link tx timeout");
3861
3862	rcu_read_lock();
3863
3864	/* Kill stalled connections */
3865	list_for_each_entry_rcu(c, &h->list, list) {
3866		if (c->type == type && c->sent) {
3867			bt_dev_err(hdev, "killing stalled connection %pMR",
3868				   &c->dst);
3869			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3870		}
3871	}
3872
3873	rcu_read_unlock();
3874}
3875
3876static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3877				      int *quote)
3878{
3879	struct hci_conn_hash *h = &hdev->conn_hash;
3880	struct hci_chan *chan = NULL;
3881	unsigned int num = 0, min = ~0, cur_prio = 0;
3882	struct hci_conn *conn;
3883	int cnt, q, conn_num = 0;
3884
3885	BT_DBG("%s", hdev->name);
3886
3887	rcu_read_lock();
3888
3889	list_for_each_entry_rcu(conn, &h->list, list) {
3890		struct hci_chan *tmp;
3891
3892		if (conn->type != type)
3893			continue;
3894
3895		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3896			continue;
3897
3898		conn_num++;
3899
3900		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3901			struct sk_buff *skb;
3902
3903			if (skb_queue_empty(&tmp->data_q))
3904				continue;
3905
3906			skb = skb_peek(&tmp->data_q);
3907			if (skb->priority < cur_prio)
3908				continue;
3909
3910			if (skb->priority > cur_prio) {
3911				num = 0;
3912				min = ~0;
3913				cur_prio = skb->priority;
3914			}
3915
3916			num++;
3917
3918			if (conn->sent < min) {
3919				min  = conn->sent;
3920				chan = tmp;
3921			}
3922		}
3923
3924		if (hci_conn_num(hdev, type) == conn_num)
3925			break;
3926	}
3927
3928	rcu_read_unlock();
3929
3930	if (!chan)
3931		return NULL;
3932
3933	switch (chan->conn->type) {
3934	case ACL_LINK:
3935		cnt = hdev->acl_cnt;
3936		break;
3937	case AMP_LINK:
3938		cnt = hdev->block_cnt;
3939		break;
3940	case SCO_LINK:
3941	case ESCO_LINK:
3942		cnt = hdev->sco_cnt;
3943		break;
3944	case LE_LINK:
3945		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3946		break;
3947	default:
3948		cnt = 0;
3949		bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
3950	}
3951
3952	q = cnt / num;
3953	*quote = q ? q : 1;
3954	BT_DBG("chan %p quote %d", chan, *quote);
3955	return chan;
3956}
3957
3958static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3959{
3960	struct hci_conn_hash *h = &hdev->conn_hash;
3961	struct hci_conn *conn;
3962	int num = 0;
3963
3964	BT_DBG("%s", hdev->name);
3965
3966	rcu_read_lock();
3967
3968	list_for_each_entry_rcu(conn, &h->list, list) {
3969		struct hci_chan *chan;
3970
3971		if (conn->type != type)
3972			continue;
3973
3974		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3975			continue;
3976
3977		num++;
3978
3979		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3980			struct sk_buff *skb;
3981
3982			if (chan->sent) {
3983				chan->sent = 0;
3984				continue;
3985			}
3986
3987			if (skb_queue_empty(&chan->data_q))
3988				continue;
3989
3990			skb = skb_peek(&chan->data_q);
3991			if (skb->priority >= HCI_PRIO_MAX - 1)
3992				continue;
3993
3994			skb->priority = HCI_PRIO_MAX - 1;
3995
3996			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3997			       skb->priority);
3998		}
3999
4000		if (hci_conn_num(hdev, type) == num)
4001			break;
4002	}
4003
4004	rcu_read_unlock();
4005
4006}
4007
4008static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4009{
4010	/* Calculate count of blocks used by this packet */
4011	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4012}
4013
4014static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4015{
4016	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4017		/* ACL tx timeout must be longer than maximum
4018		 * link supervision timeout (40.9 seconds) */
4019		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4020				       HCI_ACL_TX_TIMEOUT))
4021			hci_link_tx_to(hdev, ACL_LINK);
4022	}
4023}
4024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4025static void hci_sched_acl_pkt(struct hci_dev *hdev)
4026{
4027	unsigned int cnt = hdev->acl_cnt;
4028	struct hci_chan *chan;
4029	struct sk_buff *skb;
4030	int quote;
4031
4032	__check_timeout(hdev, cnt);
4033
4034	while (hdev->acl_cnt &&
4035	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
4036		u32 priority = (skb_peek(&chan->data_q))->priority;
4037		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4038			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4039			       skb->len, skb->priority);
4040
4041			/* Stop if priority has changed */
4042			if (skb->priority < priority)
4043				break;
4044
4045			skb = skb_dequeue(&chan->data_q);
4046
4047			hci_conn_enter_active_mode(chan->conn,
4048						   bt_cb(skb)->force_active);
4049
4050			hci_send_frame(hdev, skb);
4051			hdev->acl_last_tx = jiffies;
4052
4053			hdev->acl_cnt--;
4054			chan->sent++;
4055			chan->conn->sent++;
 
 
 
 
4056		}
4057	}
4058
4059	if (cnt != hdev->acl_cnt)
4060		hci_prio_recalculate(hdev, ACL_LINK);
4061}
4062
4063static void hci_sched_acl_blk(struct hci_dev *hdev)
4064{
4065	unsigned int cnt = hdev->block_cnt;
4066	struct hci_chan *chan;
4067	struct sk_buff *skb;
4068	int quote;
4069	u8 type;
4070
4071	__check_timeout(hdev, cnt);
4072
4073	BT_DBG("%s", hdev->name);
4074
4075	if (hdev->dev_type == HCI_AMP)
4076		type = AMP_LINK;
4077	else
4078		type = ACL_LINK;
4079
4080	while (hdev->block_cnt > 0 &&
4081	       (chan = hci_chan_sent(hdev, type, &quote))) {
4082		u32 priority = (skb_peek(&chan->data_q))->priority;
4083		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4084			int blocks;
4085
4086			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4087			       skb->len, skb->priority);
4088
4089			/* Stop if priority has changed */
4090			if (skb->priority < priority)
4091				break;
4092
4093			skb = skb_dequeue(&chan->data_q);
4094
4095			blocks = __get_blocks(hdev, skb);
4096			if (blocks > hdev->block_cnt)
4097				return;
4098
4099			hci_conn_enter_active_mode(chan->conn,
4100						   bt_cb(skb)->force_active);
4101
4102			hci_send_frame(hdev, skb);
4103			hdev->acl_last_tx = jiffies;
4104
4105			hdev->block_cnt -= blocks;
4106			quote -= blocks;
4107
4108			chan->sent += blocks;
4109			chan->conn->sent += blocks;
4110		}
4111	}
4112
4113	if (cnt != hdev->block_cnt)
4114		hci_prio_recalculate(hdev, type);
4115}
4116
4117static void hci_sched_acl(struct hci_dev *hdev)
4118{
4119	BT_DBG("%s", hdev->name);
4120
4121	/* No ACL link over BR/EDR controller */
4122	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4123		return;
4124
4125	/* No AMP link over AMP controller */
4126	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4127		return;
4128
4129	switch (hdev->flow_ctl_mode) {
4130	case HCI_FLOW_CTL_MODE_PACKET_BASED:
4131		hci_sched_acl_pkt(hdev);
4132		break;
4133
4134	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4135		hci_sched_acl_blk(hdev);
4136		break;
4137	}
4138}
4139
4140/* Schedule SCO */
4141static void hci_sched_sco(struct hci_dev *hdev)
4142{
4143	struct hci_conn *conn;
4144	struct sk_buff *skb;
4145	int quote;
4146
4147	BT_DBG("%s", hdev->name);
4148
4149	if (!hci_conn_num(hdev, SCO_LINK))
4150		return;
4151
4152	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
4153		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4154			BT_DBG("skb %p len %d", skb, skb->len);
4155			hci_send_frame(hdev, skb);
4156
4157			conn->sent++;
4158			if (conn->sent == ~0)
4159				conn->sent = 0;
4160		}
4161	}
4162}
4163
4164static void hci_sched_esco(struct hci_dev *hdev)
4165{
4166	struct hci_conn *conn;
4167	struct sk_buff *skb;
4168	int quote;
4169
4170	BT_DBG("%s", hdev->name);
4171
4172	if (!hci_conn_num(hdev, ESCO_LINK))
4173		return;
4174
4175	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4176						     &quote))) {
4177		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4178			BT_DBG("skb %p len %d", skb, skb->len);
4179			hci_send_frame(hdev, skb);
4180
4181			conn->sent++;
4182			if (conn->sent == ~0)
4183				conn->sent = 0;
4184		}
4185	}
4186}
4187
4188static void hci_sched_le(struct hci_dev *hdev)
4189{
4190	struct hci_chan *chan;
4191	struct sk_buff *skb;
4192	int quote, cnt, tmp;
4193
4194	BT_DBG("%s", hdev->name);
4195
4196	if (!hci_conn_num(hdev, LE_LINK))
4197		return;
4198
4199	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4200		/* LE tx timeout must be longer than maximum
4201		 * link supervision timeout (40.9 seconds) */
4202		if (!hdev->le_cnt && hdev->le_pkts &&
4203		    time_after(jiffies, hdev->le_last_tx + HZ * 45))
4204			hci_link_tx_to(hdev, LE_LINK);
4205	}
4206
4207	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
 
 
 
4208	tmp = cnt;
4209	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
4210		u32 priority = (skb_peek(&chan->data_q))->priority;
4211		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4212			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4213			       skb->len, skb->priority);
4214
4215			/* Stop if priority has changed */
4216			if (skb->priority < priority)
4217				break;
4218
4219			skb = skb_dequeue(&chan->data_q);
4220
4221			hci_send_frame(hdev, skb);
4222			hdev->le_last_tx = jiffies;
4223
4224			cnt--;
4225			chan->sent++;
4226			chan->conn->sent++;
 
 
 
 
4227		}
4228	}
4229
4230	if (hdev->le_pkts)
4231		hdev->le_cnt = cnt;
4232	else
4233		hdev->acl_cnt = cnt;
4234
4235	if (cnt != tmp)
4236		hci_prio_recalculate(hdev, LE_LINK);
4237}
4238
4239static void hci_tx_work(struct work_struct *work)
4240{
4241	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4242	struct sk_buff *skb;
4243
4244	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4245	       hdev->sco_cnt, hdev->le_cnt);
4246
4247	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4248		/* Schedule queues and send stuff to HCI driver */
4249		hci_sched_acl(hdev);
4250		hci_sched_sco(hdev);
4251		hci_sched_esco(hdev);
 
4252		hci_sched_le(hdev);
4253	}
4254
4255	/* Send next queued raw (unknown type) packet */
4256	while ((skb = skb_dequeue(&hdev->raw_q)))
4257		hci_send_frame(hdev, skb);
4258}
4259
4260/* ----- HCI RX task (incoming data processing) ----- */
4261
4262/* ACL data packet */
4263static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4264{
4265	struct hci_acl_hdr *hdr = (void *) skb->data;
4266	struct hci_conn *conn;
4267	__u16 handle, flags;
4268
4269	skb_pull(skb, HCI_ACL_HDR_SIZE);
4270
4271	handle = __le16_to_cpu(hdr->handle);
4272	flags  = hci_flags(handle);
4273	handle = hci_handle(handle);
4274
4275	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4276	       handle, flags);
4277
4278	hdev->stat.acl_rx++;
4279
4280	hci_dev_lock(hdev);
4281	conn = hci_conn_hash_lookup_handle(hdev, handle);
4282	hci_dev_unlock(hdev);
4283
4284	if (conn) {
4285		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4286
4287		/* Send to upper protocol */
4288		l2cap_recv_acldata(conn, skb, flags);
4289		return;
4290	} else {
4291		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4292			   handle);
4293	}
4294
4295	kfree_skb(skb);
4296}
4297
4298/* SCO data packet */
4299static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4300{
4301	struct hci_sco_hdr *hdr = (void *) skb->data;
4302	struct hci_conn *conn;
4303	__u16 handle;
4304
4305	skb_pull(skb, HCI_SCO_HDR_SIZE);
4306
4307	handle = __le16_to_cpu(hdr->handle);
 
 
4308
4309	BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
 
4310
4311	hdev->stat.sco_rx++;
4312
4313	hci_dev_lock(hdev);
4314	conn = hci_conn_hash_lookup_handle(hdev, handle);
4315	hci_dev_unlock(hdev);
4316
4317	if (conn) {
4318		/* Send to upper protocol */
 
4319		sco_recv_scodata(conn, skb);
4320		return;
4321	} else {
4322		bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
4323			   handle);
4324	}
4325
4326	kfree_skb(skb);
4327}
4328
4329static bool hci_req_is_complete(struct hci_dev *hdev)
4330{
4331	struct sk_buff *skb;
4332
4333	skb = skb_peek(&hdev->cmd_q);
4334	if (!skb)
4335		return true;
4336
4337	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4338}
4339
4340static void hci_resend_last(struct hci_dev *hdev)
4341{
4342	struct hci_command_hdr *sent;
4343	struct sk_buff *skb;
4344	u16 opcode;
4345
4346	if (!hdev->sent_cmd)
4347		return;
4348
4349	sent = (void *) hdev->sent_cmd->data;
4350	opcode = __le16_to_cpu(sent->opcode);
4351	if (opcode == HCI_OP_RESET)
4352		return;
4353
4354	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4355	if (!skb)
4356		return;
4357
4358	skb_queue_head(&hdev->cmd_q, skb);
4359	queue_work(hdev->workqueue, &hdev->cmd_work);
4360}
4361
4362void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4363			  hci_req_complete_t *req_complete,
4364			  hci_req_complete_skb_t *req_complete_skb)
4365{
4366	struct sk_buff *skb;
4367	unsigned long flags;
4368
4369	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4370
4371	/* If the completed command doesn't match the last one that was
4372	 * sent we need to do special handling of it.
4373	 */
4374	if (!hci_sent_cmd_data(hdev, opcode)) {
4375		/* Some CSR based controllers generate a spontaneous
4376		 * reset complete event during init and any pending
4377		 * command will never be completed. In such a case we
4378		 * need to resend whatever was the last sent
4379		 * command.
4380		 */
4381		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4382			hci_resend_last(hdev);
4383
4384		return;
4385	}
4386
4387	/* If we reach this point this event matches the last command sent */
4388	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4389
4390	/* If the command succeeded and there's still more commands in
4391	 * this request the request is not yet complete.
4392	 */
4393	if (!status && !hci_req_is_complete(hdev))
4394		return;
4395
4396	/* If this was the last command in a request the complete
4397	 * callback would be found in hdev->sent_cmd instead of the
4398	 * command queue (hdev->cmd_q).
4399	 */
4400	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4401		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4402		return;
4403	}
4404
4405	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4406		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4407		return;
4408	}
4409
4410	/* Remove all pending commands belonging to this request */
4411	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4412	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4413		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4414			__skb_queue_head(&hdev->cmd_q, skb);
4415			break;
4416		}
4417
4418		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4419			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4420		else
4421			*req_complete = bt_cb(skb)->hci.req_complete;
4422		kfree_skb(skb);
4423	}
4424	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4425}
4426
4427static void hci_rx_work(struct work_struct *work)
4428{
4429	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4430	struct sk_buff *skb;
4431
4432	BT_DBG("%s", hdev->name);
4433
4434	while ((skb = skb_dequeue(&hdev->rx_q))) {
4435		/* Send copy to monitor */
4436		hci_send_to_monitor(hdev, skb);
4437
4438		if (atomic_read(&hdev->promisc)) {
4439			/* Send copy to the sockets */
4440			hci_send_to_sock(hdev, skb);
4441		}
4442
4443		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 
 
 
 
 
 
 
4444			kfree_skb(skb);
4445			continue;
4446		}
4447
4448		if (test_bit(HCI_INIT, &hdev->flags)) {
4449			/* Don't process data packets in this states. */
4450			switch (hci_skb_pkt_type(skb)) {
4451			case HCI_ACLDATA_PKT:
4452			case HCI_SCODATA_PKT:
 
4453				kfree_skb(skb);
4454				continue;
4455			}
4456		}
4457
4458		/* Process frame */
4459		switch (hci_skb_pkt_type(skb)) {
4460		case HCI_EVENT_PKT:
4461			BT_DBG("%s Event packet", hdev->name);
4462			hci_event_packet(hdev, skb);
4463			break;
4464
4465		case HCI_ACLDATA_PKT:
4466			BT_DBG("%s ACL data packet", hdev->name);
4467			hci_acldata_packet(hdev, skb);
4468			break;
4469
4470		case HCI_SCODATA_PKT:
4471			BT_DBG("%s SCO data packet", hdev->name);
4472			hci_scodata_packet(hdev, skb);
4473			break;
4474
4475		default:
4476			kfree_skb(skb);
4477			break;
4478		}
4479	}
4480}
4481
4482static void hci_cmd_work(struct work_struct *work)
4483{
4484	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4485	struct sk_buff *skb;
4486
4487	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4488	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4489
4490	/* Send queued commands */
4491	if (atomic_read(&hdev->cmd_cnt)) {
4492		skb = skb_dequeue(&hdev->cmd_q);
4493		if (!skb)
4494			return;
4495
4496		kfree_skb(hdev->sent_cmd);
4497
4498		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4499		if (hdev->sent_cmd) {
4500			if (hci_req_status_pend(hdev))
4501				hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4502			atomic_dec(&hdev->cmd_cnt);
4503			hci_send_frame(hdev, skb);
4504			if (test_bit(HCI_RESET, &hdev->flags))
4505				cancel_delayed_work(&hdev->cmd_timer);
4506			else
4507				schedule_delayed_work(&hdev->cmd_timer,
4508						      HCI_CMD_TIMEOUT);
4509		} else {
4510			skb_queue_head(&hdev->cmd_q, skb);
4511			queue_work(hdev->workqueue, &hdev->cmd_work);
4512		}
4513	}
4514}
v5.9
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
 
  29#include <linux/rfkill.h>
  30#include <linux/debugfs.h>
  31#include <linux/crypto.h>
  32#include <linux/property.h>
  33#include <linux/suspend.h>
  34#include <linux/wait.h>
  35#include <asm/unaligned.h>
  36
  37#include <net/bluetooth/bluetooth.h>
  38#include <net/bluetooth/hci_core.h>
  39#include <net/bluetooth/l2cap.h>
  40#include <net/bluetooth/mgmt.h>
  41
  42#include "hci_request.h"
  43#include "hci_debugfs.h"
  44#include "smp.h"
  45#include "leds.h"
  46#include "msft.h"
  47
  48static void hci_rx_work(struct work_struct *work);
  49static void hci_cmd_work(struct work_struct *work);
  50static void hci_tx_work(struct work_struct *work);
  51
  52/* HCI device list */
  53LIST_HEAD(hci_dev_list);
  54DEFINE_RWLOCK(hci_dev_list_lock);
  55
  56/* HCI callback list */
  57LIST_HEAD(hci_cb_list);
  58DEFINE_MUTEX(hci_cb_list_lock);
  59
  60/* HCI ID Numbering */
  61static DEFINE_IDA(hci_index_ida);
  62
  63/* ---- HCI debugfs entries ---- */
  64
  65static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
  66			     size_t count, loff_t *ppos)
  67{
  68	struct hci_dev *hdev = file->private_data;
  69	char buf[3];
  70
  71	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
  72	buf[1] = '\n';
  73	buf[2] = '\0';
  74	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
  75}
  76
  77static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
  78			      size_t count, loff_t *ppos)
  79{
  80	struct hci_dev *hdev = file->private_data;
  81	struct sk_buff *skb;
  82	bool enable;
  83	int err;
  84
  85	if (!test_bit(HCI_UP, &hdev->flags))
  86		return -ENETDOWN;
  87
  88	err = kstrtobool_from_user(user_buf, count, &enable);
  89	if (err)
  90		return err;
  91
  92	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
  93		return -EALREADY;
  94
  95	hci_req_sync_lock(hdev);
  96	if (enable)
  97		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
  98				     HCI_CMD_TIMEOUT);
  99	else
 100		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
 101				     HCI_CMD_TIMEOUT);
 102	hci_req_sync_unlock(hdev);
 103
 104	if (IS_ERR(skb))
 105		return PTR_ERR(skb);
 106
 107	kfree_skb(skb);
 108
 109	hci_dev_change_flag(hdev, HCI_DUT_MODE);
 110
 111	return count;
 112}
 113
 114static const struct file_operations dut_mode_fops = {
 115	.open		= simple_open,
 116	.read		= dut_mode_read,
 117	.write		= dut_mode_write,
 118	.llseek		= default_llseek,
 119};
 120
 121static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
 122				size_t count, loff_t *ppos)
 123{
 124	struct hci_dev *hdev = file->private_data;
 125	char buf[3];
 126
 127	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
 128	buf[1] = '\n';
 129	buf[2] = '\0';
 130	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 131}
 132
 133static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
 134				 size_t count, loff_t *ppos)
 135{
 136	struct hci_dev *hdev = file->private_data;
 137	bool enable;
 138	int err;
 139
 140	err = kstrtobool_from_user(user_buf, count, &enable);
 141	if (err)
 142		return err;
 143
 144	/* When the diagnostic flags are not persistent and the transport
 145	 * is not active or in user channel operation, then there is no need
 146	 * for the vendor callback. Instead just store the desired value and
 147	 * the setting will be programmed when the controller gets powered on.
 148	 */
 149	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
 150	    (!test_bit(HCI_RUNNING, &hdev->flags) ||
 151	     hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
 152		goto done;
 153
 154	hci_req_sync_lock(hdev);
 155	err = hdev->set_diag(hdev, enable);
 156	hci_req_sync_unlock(hdev);
 157
 158	if (err < 0)
 159		return err;
 160
 161done:
 162	if (enable)
 163		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
 164	else
 165		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
 166
 167	return count;
 168}
 169
 170static const struct file_operations vendor_diag_fops = {
 171	.open		= simple_open,
 172	.read		= vendor_diag_read,
 173	.write		= vendor_diag_write,
 174	.llseek		= default_llseek,
 175};
 176
 177static void hci_debugfs_create_basic(struct hci_dev *hdev)
 178{
 179	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
 180			    &dut_mode_fops);
 181
 182	if (hdev->set_diag)
 183		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
 184				    &vendor_diag_fops);
 185}
 186
 187static int hci_reset_req(struct hci_request *req, unsigned long opt)
 188{
 189	BT_DBG("%s %ld", req->hdev->name, opt);
 190
 191	/* Reset device */
 192	set_bit(HCI_RESET, &req->hdev->flags);
 193	hci_req_add(req, HCI_OP_RESET, 0, NULL);
 194	return 0;
 195}
 196
 197static void bredr_init(struct hci_request *req)
 198{
 199	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
 200
 201	/* Read Local Supported Features */
 202	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 203
 204	/* Read Local Version */
 205	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 206
 207	/* Read BD Address */
 208	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 209}
 210
 211static void amp_init1(struct hci_request *req)
 212{
 213	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
 214
 215	/* Read Local Version */
 216	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 217
 218	/* Read Local Supported Commands */
 219	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 220
 221	/* Read Local AMP Info */
 222	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
 223
 224	/* Read Data Blk size */
 225	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
 226
 227	/* Read Flow Control Mode */
 228	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
 229
 230	/* Read Location Data */
 231	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
 232}
 233
 234static int amp_init2(struct hci_request *req)
 235{
 236	/* Read Local Supported Features. Not all AMP controllers
 237	 * support this so it's placed conditionally in the second
 238	 * stage init.
 239	 */
 240	if (req->hdev->commands[14] & 0x20)
 241		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 242
 243	return 0;
 244}
 245
 246static int hci_init1_req(struct hci_request *req, unsigned long opt)
 247{
 248	struct hci_dev *hdev = req->hdev;
 249
 250	BT_DBG("%s %ld", hdev->name, opt);
 251
 252	/* Reset */
 253	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 254		hci_reset_req(req, 0);
 255
 256	switch (hdev->dev_type) {
 257	case HCI_PRIMARY:
 258		bredr_init(req);
 259		break;
 260	case HCI_AMP:
 261		amp_init1(req);
 262		break;
 263	default:
 264		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
 265		break;
 266	}
 267
 268	return 0;
 269}
 270
 271static void bredr_setup(struct hci_request *req)
 272{
 273	__le16 param;
 274	__u8 flt_type;
 275
 276	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
 277	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
 278
 279	/* Read Class of Device */
 280	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
 281
 282	/* Read Local Name */
 283	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
 284
 285	/* Read Voice Setting */
 286	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
 287
 288	/* Read Number of Supported IAC */
 289	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
 290
 291	/* Read Current IAC LAP */
 292	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
 293
 294	/* Clear Event Filters */
 295	flt_type = HCI_FLT_CLEAR_ALL;
 296	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
 297
 298	/* Connection accept timeout ~20 secs */
 299	param = cpu_to_le16(0x7d00);
 300	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
 301}
 302
 303static void le_setup(struct hci_request *req)
 304{
 305	struct hci_dev *hdev = req->hdev;
 306
 307	/* Read LE Buffer Size */
 308	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
 309
 310	/* Read LE Local Supported Features */
 311	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
 312
 313	/* Read LE Supported States */
 314	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
 315
 316	/* LE-only controllers have LE implicitly enabled */
 317	if (!lmp_bredr_capable(hdev))
 318		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
 319}
 320
 321static void hci_setup_event_mask(struct hci_request *req)
 322{
 323	struct hci_dev *hdev = req->hdev;
 324
 325	/* The second byte is 0xff instead of 0x9f (two reserved bits
 326	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
 327	 * command otherwise.
 328	 */
 329	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
 330
 331	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
 332	 * any event mask for pre 1.2 devices.
 333	 */
 334	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 335		return;
 336
 337	if (lmp_bredr_capable(hdev)) {
 338		events[4] |= 0x01; /* Flow Specification Complete */
 339	} else {
 340		/* Use a different default for LE-only devices */
 341		memset(events, 0, sizeof(events));
 342		events[1] |= 0x20; /* Command Complete */
 343		events[1] |= 0x40; /* Command Status */
 344		events[1] |= 0x80; /* Hardware Error */
 345
 346		/* If the controller supports the Disconnect command, enable
 347		 * the corresponding event. In addition enable packet flow
 348		 * control related events.
 349		 */
 350		if (hdev->commands[0] & 0x20) {
 351			events[0] |= 0x10; /* Disconnection Complete */
 352			events[2] |= 0x04; /* Number of Completed Packets */
 353			events[3] |= 0x02; /* Data Buffer Overflow */
 354		}
 355
 356		/* If the controller supports the Read Remote Version
 357		 * Information command, enable the corresponding event.
 358		 */
 359		if (hdev->commands[2] & 0x80)
 360			events[1] |= 0x08; /* Read Remote Version Information
 361					    * Complete
 362					    */
 363
 364		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
 365			events[0] |= 0x80; /* Encryption Change */
 366			events[5] |= 0x80; /* Encryption Key Refresh Complete */
 367		}
 368	}
 369
 370	if (lmp_inq_rssi_capable(hdev) ||
 371	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
 372		events[4] |= 0x02; /* Inquiry Result with RSSI */
 373
 374	if (lmp_ext_feat_capable(hdev))
 375		events[4] |= 0x04; /* Read Remote Extended Features Complete */
 376
 377	if (lmp_esco_capable(hdev)) {
 378		events[5] |= 0x08; /* Synchronous Connection Complete */
 379		events[5] |= 0x10; /* Synchronous Connection Changed */
 380	}
 381
 382	if (lmp_sniffsubr_capable(hdev))
 383		events[5] |= 0x20; /* Sniff Subrating */
 384
 385	if (lmp_pause_enc_capable(hdev))
 386		events[5] |= 0x80; /* Encryption Key Refresh Complete */
 387
 388	if (lmp_ext_inq_capable(hdev))
 389		events[5] |= 0x40; /* Extended Inquiry Result */
 390
 391	if (lmp_no_flush_capable(hdev))
 392		events[7] |= 0x01; /* Enhanced Flush Complete */
 393
 394	if (lmp_lsto_capable(hdev))
 395		events[6] |= 0x80; /* Link Supervision Timeout Changed */
 396
 397	if (lmp_ssp_capable(hdev)) {
 398		events[6] |= 0x01;	/* IO Capability Request */
 399		events[6] |= 0x02;	/* IO Capability Response */
 400		events[6] |= 0x04;	/* User Confirmation Request */
 401		events[6] |= 0x08;	/* User Passkey Request */
 402		events[6] |= 0x10;	/* Remote OOB Data Request */
 403		events[6] |= 0x20;	/* Simple Pairing Complete */
 404		events[7] |= 0x04;	/* User Passkey Notification */
 405		events[7] |= 0x08;	/* Keypress Notification */
 406		events[7] |= 0x10;	/* Remote Host Supported
 407					 * Features Notification
 408					 */
 409	}
 410
 411	if (lmp_le_capable(hdev))
 412		events[7] |= 0x20;	/* LE Meta-Event */
 413
 414	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
 415}
 416
 417static int hci_init2_req(struct hci_request *req, unsigned long opt)
 418{
 419	struct hci_dev *hdev = req->hdev;
 420
 421	if (hdev->dev_type == HCI_AMP)
 422		return amp_init2(req);
 423
 424	if (lmp_bredr_capable(hdev))
 425		bredr_setup(req);
 426	else
 427		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
 428
 429	if (lmp_le_capable(hdev))
 430		le_setup(req);
 431
 432	/* All Bluetooth 1.2 and later controllers should support the
 433	 * HCI command for reading the local supported commands.
 434	 *
 435	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
 436	 * but do not have support for this command. If that is the case,
 437	 * the driver can quirk the behavior and skip reading the local
 438	 * supported commands.
 439	 */
 440	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
 441	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
 442		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 443
 444	if (lmp_ssp_capable(hdev)) {
 445		/* When SSP is available, then the host features page
 446		 * should also be available as well. However some
 447		 * controllers list the max_page as 0 as long as SSP
 448		 * has not been enabled. To achieve proper debugging
 449		 * output, force the minimum max_page to 1 at least.
 450		 */
 451		hdev->max_page = 0x01;
 452
 453		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
 454			u8 mode = 0x01;
 455
 456			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
 457				    sizeof(mode), &mode);
 458		} else {
 459			struct hci_cp_write_eir cp;
 460
 461			memset(hdev->eir, 0, sizeof(hdev->eir));
 462			memset(&cp, 0, sizeof(cp));
 463
 464			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 465		}
 466	}
 467
 468	if (lmp_inq_rssi_capable(hdev) ||
 469	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
 470		u8 mode;
 471
 472		/* If Extended Inquiry Result events are supported, then
 473		 * they are clearly preferred over Inquiry Result with RSSI
 474		 * events.
 475		 */
 476		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
 477
 478		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
 479	}
 480
 481	if (lmp_inq_tx_pwr_capable(hdev))
 482		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
 483
 484	if (lmp_ext_feat_capable(hdev)) {
 485		struct hci_cp_read_local_ext_features cp;
 486
 487		cp.page = 0x01;
 488		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 489			    sizeof(cp), &cp);
 490	}
 491
 492	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
 493		u8 enable = 1;
 494		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
 495			    &enable);
 496	}
 497
 498	return 0;
 499}
 500
 501static void hci_setup_link_policy(struct hci_request *req)
 502{
 503	struct hci_dev *hdev = req->hdev;
 504	struct hci_cp_write_def_link_policy cp;
 505	u16 link_policy = 0;
 506
 507	if (lmp_rswitch_capable(hdev))
 508		link_policy |= HCI_LP_RSWITCH;
 509	if (lmp_hold_capable(hdev))
 510		link_policy |= HCI_LP_HOLD;
 511	if (lmp_sniff_capable(hdev))
 512		link_policy |= HCI_LP_SNIFF;
 513	if (lmp_park_capable(hdev))
 514		link_policy |= HCI_LP_PARK;
 515
 516	cp.policy = cpu_to_le16(link_policy);
 517	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
 518}
 519
 520static void hci_set_le_support(struct hci_request *req)
 521{
 522	struct hci_dev *hdev = req->hdev;
 523	struct hci_cp_write_le_host_supported cp;
 524
 525	/* LE-only devices do not support explicit enablement */
 526	if (!lmp_bredr_capable(hdev))
 527		return;
 528
 529	memset(&cp, 0, sizeof(cp));
 530
 531	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
 532		cp.le = 0x01;
 533		cp.simul = 0x00;
 534	}
 535
 536	if (cp.le != lmp_host_le_capable(hdev))
 537		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
 538			    &cp);
 539}
 540
 541static void hci_set_event_mask_page_2(struct hci_request *req)
 542{
 543	struct hci_dev *hdev = req->hdev;
 544	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
 545	bool changed = false;
 546
 547	/* If Connectionless Slave Broadcast master role is supported
 548	 * enable all necessary events for it.
 549	 */
 550	if (lmp_csb_master_capable(hdev)) {
 551		events[1] |= 0x40;	/* Triggered Clock Capture */
 552		events[1] |= 0x80;	/* Synchronization Train Complete */
 553		events[2] |= 0x10;	/* Slave Page Response Timeout */
 554		events[2] |= 0x20;	/* CSB Channel Map Change */
 555		changed = true;
 556	}
 557
 558	/* If Connectionless Slave Broadcast slave role is supported
 559	 * enable all necessary events for it.
 560	 */
 561	if (lmp_csb_slave_capable(hdev)) {
 562		events[2] |= 0x01;	/* Synchronization Train Received */
 563		events[2] |= 0x02;	/* CSB Receive */
 564		events[2] |= 0x04;	/* CSB Timeout */
 565		events[2] |= 0x08;	/* Truncated Page Complete */
 566		changed = true;
 567	}
 568
 569	/* Enable Authenticated Payload Timeout Expired event if supported */
 570	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
 571		events[2] |= 0x80;
 572		changed = true;
 573	}
 574
 575	/* Some Broadcom based controllers indicate support for Set Event
 576	 * Mask Page 2 command, but then actually do not support it. Since
 577	 * the default value is all bits set to zero, the command is only
 578	 * required if the event mask has to be changed. In case no change
 579	 * to the event mask is needed, skip this command.
 580	 */
 581	if (changed)
 582		hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
 583			    sizeof(events), events);
 584}
 585
 586static int hci_init3_req(struct hci_request *req, unsigned long opt)
 587{
 588	struct hci_dev *hdev = req->hdev;
 589	u8 p;
 590
 591	hci_setup_event_mask(req);
 592
 593	if (hdev->commands[6] & 0x20 &&
 594	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 595		struct hci_cp_read_stored_link_key cp;
 596
 597		bacpy(&cp.bdaddr, BDADDR_ANY);
 598		cp.read_all = 0x01;
 599		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
 600	}
 601
 602	if (hdev->commands[5] & 0x10)
 603		hci_setup_link_policy(req);
 604
 605	if (hdev->commands[8] & 0x01)
 606		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
 607
 608	if (hdev->commands[18] & 0x04 &&
 609	    !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
 610		hci_req_add(req, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 0, NULL);
 611
 612	/* Some older Broadcom based Bluetooth 1.2 controllers do not
 613	 * support the Read Page Scan Type command. Check support for
 614	 * this command in the bit mask of supported commands.
 615	 */
 616	if (hdev->commands[13] & 0x01)
 617		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
 618
 619	if (lmp_le_capable(hdev)) {
 620		u8 events[8];
 621
 622		memset(events, 0, sizeof(events));
 623
 624		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
 625			events[0] |= 0x10;	/* LE Long Term Key Request */
 626
 627		/* If controller supports the Connection Parameters Request
 628		 * Link Layer Procedure, enable the corresponding event.
 629		 */
 630		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
 631			events[0] |= 0x20;	/* LE Remote Connection
 632						 * Parameter Request
 633						 */
 634
 635		/* If the controller supports the Data Length Extension
 636		 * feature, enable the corresponding event.
 637		 */
 638		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
 639			events[0] |= 0x40;	/* LE Data Length Change */
 640
 641		/* If the controller supports LL Privacy feature, enable
 642		 * the corresponding event.
 643		 */
 644		if (hdev->le_features[0] & HCI_LE_LL_PRIVACY)
 645			events[1] |= 0x02;	/* LE Enhanced Connection
 646						 * Complete
 647						 */
 648
 649		/* If the controller supports Extended Scanner Filter
 650		 * Policies, enable the correspondig event.
 651		 */
 652		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
 653			events[1] |= 0x04;	/* LE Direct Advertising
 654						 * Report
 655						 */
 656
 657		/* If the controller supports Channel Selection Algorithm #2
 658		 * feature, enable the corresponding event.
 659		 */
 660		if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
 661			events[2] |= 0x08;	/* LE Channel Selection
 662						 * Algorithm
 663						 */
 664
 665		/* If the controller supports the LE Set Scan Enable command,
 666		 * enable the corresponding advertising report event.
 667		 */
 668		if (hdev->commands[26] & 0x08)
 669			events[0] |= 0x02;	/* LE Advertising Report */
 670
 671		/* If the controller supports the LE Create Connection
 672		 * command, enable the corresponding event.
 673		 */
 674		if (hdev->commands[26] & 0x10)
 675			events[0] |= 0x01;	/* LE Connection Complete */
 676
 677		/* If the controller supports the LE Connection Update
 678		 * command, enable the corresponding event.
 679		 */
 680		if (hdev->commands[27] & 0x04)
 681			events[0] |= 0x04;	/* LE Connection Update
 682						 * Complete
 683						 */
 684
 685		/* If the controller supports the LE Read Remote Used Features
 686		 * command, enable the corresponding event.
 687		 */
 688		if (hdev->commands[27] & 0x20)
 689			events[0] |= 0x08;	/* LE Read Remote Used
 690						 * Features Complete
 691						 */
 692
 693		/* If the controller supports the LE Read Local P-256
 694		 * Public Key command, enable the corresponding event.
 695		 */
 696		if (hdev->commands[34] & 0x02)
 697			events[0] |= 0x80;	/* LE Read Local P-256
 698						 * Public Key Complete
 699						 */
 700
 701		/* If the controller supports the LE Generate DHKey
 702		 * command, enable the corresponding event.
 703		 */
 704		if (hdev->commands[34] & 0x04)
 705			events[1] |= 0x01;	/* LE Generate DHKey Complete */
 706
 707		/* If the controller supports the LE Set Default PHY or
 708		 * LE Set PHY commands, enable the corresponding event.
 709		 */
 710		if (hdev->commands[35] & (0x20 | 0x40))
 711			events[1] |= 0x08;        /* LE PHY Update Complete */
 712
 713		/* If the controller supports LE Set Extended Scan Parameters
 714		 * and LE Set Extended Scan Enable commands, enable the
 715		 * corresponding event.
 716		 */
 717		if (use_ext_scan(hdev))
 718			events[1] |= 0x10;	/* LE Extended Advertising
 719						 * Report
 720						 */
 721
 
 
 
 
 
 
 
 
 722		/* If the controller supports the LE Extended Advertising
 723		 * command, enable the corresponding event.
 724		 */
 725		if (ext_adv_capable(hdev))
 726			events[2] |= 0x02;	/* LE Advertising Set
 727						 * Terminated
 728						 */
 729
 730		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
 731			    events);
 732
 733		/* Read LE Advertising Channel TX Power */
 734		if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
 735			/* HCI TS spec forbids mixing of legacy and extended
 736			 * advertising commands wherein READ_ADV_TX_POWER is
 737			 * also included. So do not call it if extended adv
 738			 * is supported otherwise controller will return
 739			 * COMMAND_DISALLOWED for extended commands.
 740			 */
 741			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
 742		}
 743
 744		if (hdev->commands[26] & 0x40) {
 745			/* Read LE White List Size */
 746			hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
 747				    0, NULL);
 748		}
 749
 750		if (hdev->commands[26] & 0x80) {
 751			/* Clear LE White List */
 752			hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
 753		}
 754
 755		if (hdev->commands[34] & 0x40) {
 756			/* Read LE Resolving List Size */
 757			hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
 758				    0, NULL);
 759		}
 760
 761		if (hdev->commands[34] & 0x20) {
 762			/* Clear LE Resolving List */
 763			hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
 764		}
 765
 766		if (hdev->commands[35] & 0x40) {
 767			__le16 rpa_timeout = cpu_to_le16(hdev->rpa_timeout);
 768
 769			/* Set RPA timeout */
 770			hci_req_add(req, HCI_OP_LE_SET_RPA_TIMEOUT, 2,
 771				    &rpa_timeout);
 772		}
 773
 774		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 775			/* Read LE Maximum Data Length */
 776			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
 777
 778			/* Read LE Suggested Default Data Length */
 779			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
 780		}
 781
 782		if (ext_adv_capable(hdev)) {
 783			/* Read LE Number of Supported Advertising Sets */
 784			hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
 785				    0, NULL);
 786		}
 787
 788		hci_set_le_support(req);
 789	}
 790
 791	/* Read features beyond page 1 if available */
 792	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
 793		struct hci_cp_read_local_ext_features cp;
 794
 795		cp.page = p;
 796		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 797			    sizeof(cp), &cp);
 798	}
 799
 800	return 0;
 801}
 802
 803static int hci_init4_req(struct hci_request *req, unsigned long opt)
 804{
 805	struct hci_dev *hdev = req->hdev;
 806
 807	/* Some Broadcom based Bluetooth controllers do not support the
 808	 * Delete Stored Link Key command. They are clearly indicating its
 809	 * absence in the bit mask of supported commands.
 810	 *
 811	 * Check the supported commands and only if the the command is marked
 812	 * as supported send it. If not supported assume that the controller
 813	 * does not have actual support for stored link keys which makes this
 814	 * command redundant anyway.
 815	 *
 816	 * Some controllers indicate that they support handling deleting
 817	 * stored link keys, but they don't. The quirk lets a driver
 818	 * just disable this command.
 819	 */
 820	if (hdev->commands[6] & 0x80 &&
 821	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 822		struct hci_cp_delete_stored_link_key cp;
 823
 824		bacpy(&cp.bdaddr, BDADDR_ANY);
 825		cp.delete_all = 0x01;
 826		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
 827			    sizeof(cp), &cp);
 828	}
 829
 830	/* Set event mask page 2 if the HCI command for it is supported */
 831	if (hdev->commands[22] & 0x04)
 832		hci_set_event_mask_page_2(req);
 833
 834	/* Read local codec list if the HCI command is supported */
 835	if (hdev->commands[29] & 0x20)
 836		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
 837
 838	/* Read local pairing options if the HCI command is supported */
 839	if (hdev->commands[41] & 0x08)
 840		hci_req_add(req, HCI_OP_READ_LOCAL_PAIRING_OPTS, 0, NULL);
 841
 842	/* Get MWS transport configuration if the HCI command is supported */
 843	if (hdev->commands[30] & 0x08)
 844		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
 845
 846	/* Check for Synchronization Train support */
 847	if (lmp_sync_train_capable(hdev))
 848		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
 849
 850	/* Enable Secure Connections if supported and configured */
 851	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
 852	    bredr_sc_enabled(hdev)) {
 853		u8 support = 0x01;
 854
 855		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
 856			    sizeof(support), &support);
 857	}
 858
 859	/* Set erroneous data reporting if supported to the wideband speech
 860	 * setting value
 861	 */
 862	if (hdev->commands[18] & 0x08 &&
 863	    !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) {
 864		bool enabled = hci_dev_test_flag(hdev,
 865						 HCI_WIDEBAND_SPEECH_ENABLED);
 866
 867		if (enabled !=
 868		    (hdev->err_data_reporting == ERR_DATA_REPORTING_ENABLED)) {
 869			struct hci_cp_write_def_err_data_reporting cp;
 870
 871			cp.err_data_reporting = enabled ?
 872						ERR_DATA_REPORTING_ENABLED :
 873						ERR_DATA_REPORTING_DISABLED;
 874
 875			hci_req_add(req, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
 876				    sizeof(cp), &cp);
 877		}
 878	}
 879
 880	/* Set Suggested Default Data Length to maximum if supported */
 881	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 882		struct hci_cp_le_write_def_data_len cp;
 883
 884		cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
 885		cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
 886		hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
 887	}
 888
 889	/* Set Default PHY parameters if command is supported */
 890	if (hdev->commands[35] & 0x20) {
 891		struct hci_cp_le_set_default_phy cp;
 892
 893		cp.all_phys = 0x00;
 894		cp.tx_phys = hdev->le_tx_def_phys;
 895		cp.rx_phys = hdev->le_rx_def_phys;
 896
 897		hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
 898	}
 899
 900	return 0;
 901}
 902
 903static int __hci_init(struct hci_dev *hdev)
 904{
 905	int err;
 906
 907	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
 908	if (err < 0)
 909		return err;
 910
 911	if (hci_dev_test_flag(hdev, HCI_SETUP))
 912		hci_debugfs_create_basic(hdev);
 913
 914	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
 915	if (err < 0)
 916		return err;
 917
 918	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
 919	 * BR/EDR/LE type controllers. AMP controllers only need the
 920	 * first two stages of init.
 921	 */
 922	if (hdev->dev_type != HCI_PRIMARY)
 923		return 0;
 924
 925	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
 926	if (err < 0)
 927		return err;
 928
 929	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
 930	if (err < 0)
 931		return err;
 932
 933	/* This function is only called when the controller is actually in
 934	 * configured state. When the controller is marked as unconfigured,
 935	 * this initialization procedure is not run.
 936	 *
 937	 * It means that it is possible that a controller runs through its
 938	 * setup phase and then discovers missing settings. If that is the
 939	 * case, then this function will not be called. It then will only
 940	 * be called during the config phase.
 941	 *
 942	 * So only when in setup phase or config phase, create the debugfs
 943	 * entries and register the SMP channels.
 944	 */
 945	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 946	    !hci_dev_test_flag(hdev, HCI_CONFIG))
 947		return 0;
 948
 949	hci_debugfs_create_common(hdev);
 950
 951	if (lmp_bredr_capable(hdev))
 952		hci_debugfs_create_bredr(hdev);
 953
 954	if (lmp_le_capable(hdev))
 955		hci_debugfs_create_le(hdev);
 956
 957	return 0;
 958}
 959
 960static int hci_init0_req(struct hci_request *req, unsigned long opt)
 961{
 962	struct hci_dev *hdev = req->hdev;
 963
 964	BT_DBG("%s %ld", hdev->name, opt);
 965
 966	/* Reset */
 967	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 968		hci_reset_req(req, 0);
 969
 970	/* Read Local Version */
 971	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 972
 973	/* Read BD Address */
 974	if (hdev->set_bdaddr)
 975		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 976
 977	return 0;
 978}
 979
 980static int __hci_unconf_init(struct hci_dev *hdev)
 981{
 982	int err;
 983
 984	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
 985		return 0;
 986
 987	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
 988	if (err < 0)
 989		return err;
 990
 991	if (hci_dev_test_flag(hdev, HCI_SETUP))
 992		hci_debugfs_create_basic(hdev);
 993
 994	return 0;
 995}
 996
 997static int hci_scan_req(struct hci_request *req, unsigned long opt)
 998{
 999	__u8 scan = opt;
1000
1001	BT_DBG("%s %x", req->hdev->name, scan);
1002
1003	/* Inquiry and Page scans */
1004	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1005	return 0;
1006}
1007
1008static int hci_auth_req(struct hci_request *req, unsigned long opt)
1009{
1010	__u8 auth = opt;
1011
1012	BT_DBG("%s %x", req->hdev->name, auth);
1013
1014	/* Authentication */
1015	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
1016	return 0;
1017}
1018
1019static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
1020{
1021	__u8 encrypt = opt;
1022
1023	BT_DBG("%s %x", req->hdev->name, encrypt);
1024
1025	/* Encryption */
1026	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
1027	return 0;
1028}
1029
1030static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
1031{
1032	__le16 policy = cpu_to_le16(opt);
1033
1034	BT_DBG("%s %x", req->hdev->name, policy);
1035
1036	/* Default link policy */
1037	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
1038	return 0;
1039}
1040
1041/* Get HCI device by index.
1042 * Device is held on return. */
1043struct hci_dev *hci_dev_get(int index)
1044{
1045	struct hci_dev *hdev = NULL, *d;
1046
1047	BT_DBG("%d", index);
1048
1049	if (index < 0)
1050		return NULL;
1051
1052	read_lock(&hci_dev_list_lock);
1053	list_for_each_entry(d, &hci_dev_list, list) {
1054		if (d->id == index) {
1055			hdev = hci_dev_hold(d);
1056			break;
1057		}
1058	}
1059	read_unlock(&hci_dev_list_lock);
1060	return hdev;
1061}
1062
1063/* ---- Inquiry support ---- */
1064
1065bool hci_discovery_active(struct hci_dev *hdev)
1066{
1067	struct discovery_state *discov = &hdev->discovery;
1068
1069	switch (discov->state) {
1070	case DISCOVERY_FINDING:
1071	case DISCOVERY_RESOLVING:
1072		return true;
1073
1074	default:
1075		return false;
1076	}
1077}
1078
1079void hci_discovery_set_state(struct hci_dev *hdev, int state)
1080{
1081	int old_state = hdev->discovery.state;
1082
1083	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1084
1085	if (old_state == state)
1086		return;
1087
1088	hdev->discovery.state = state;
1089
1090	switch (state) {
1091	case DISCOVERY_STOPPED:
1092		hci_update_background_scan(hdev);
1093
1094		if (old_state != DISCOVERY_STARTING)
1095			mgmt_discovering(hdev, 0);
1096		break;
1097	case DISCOVERY_STARTING:
1098		break;
1099	case DISCOVERY_FINDING:
1100		mgmt_discovering(hdev, 1);
1101		break;
1102	case DISCOVERY_RESOLVING:
1103		break;
1104	case DISCOVERY_STOPPING:
1105		break;
1106	}
1107}
1108
1109void hci_inquiry_cache_flush(struct hci_dev *hdev)
1110{
1111	struct discovery_state *cache = &hdev->discovery;
1112	struct inquiry_entry *p, *n;
1113
1114	list_for_each_entry_safe(p, n, &cache->all, all) {
1115		list_del(&p->all);
1116		kfree(p);
1117	}
1118
1119	INIT_LIST_HEAD(&cache->unknown);
1120	INIT_LIST_HEAD(&cache->resolve);
1121}
1122
1123struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1124					       bdaddr_t *bdaddr)
1125{
1126	struct discovery_state *cache = &hdev->discovery;
1127	struct inquiry_entry *e;
1128
1129	BT_DBG("cache %p, %pMR", cache, bdaddr);
1130
1131	list_for_each_entry(e, &cache->all, all) {
1132		if (!bacmp(&e->data.bdaddr, bdaddr))
1133			return e;
1134	}
1135
1136	return NULL;
1137}
1138
1139struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1140						       bdaddr_t *bdaddr)
1141{
1142	struct discovery_state *cache = &hdev->discovery;
1143	struct inquiry_entry *e;
1144
1145	BT_DBG("cache %p, %pMR", cache, bdaddr);
1146
1147	list_for_each_entry(e, &cache->unknown, list) {
1148		if (!bacmp(&e->data.bdaddr, bdaddr))
1149			return e;
1150	}
1151
1152	return NULL;
1153}
1154
1155struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1156						       bdaddr_t *bdaddr,
1157						       int state)
1158{
1159	struct discovery_state *cache = &hdev->discovery;
1160	struct inquiry_entry *e;
1161
1162	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1163
1164	list_for_each_entry(e, &cache->resolve, list) {
1165		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1166			return e;
1167		if (!bacmp(&e->data.bdaddr, bdaddr))
1168			return e;
1169	}
1170
1171	return NULL;
1172}
1173
1174void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1175				      struct inquiry_entry *ie)
1176{
1177	struct discovery_state *cache = &hdev->discovery;
1178	struct list_head *pos = &cache->resolve;
1179	struct inquiry_entry *p;
1180
1181	list_del(&ie->list);
1182
1183	list_for_each_entry(p, &cache->resolve, list) {
1184		if (p->name_state != NAME_PENDING &&
1185		    abs(p->data.rssi) >= abs(ie->data.rssi))
1186			break;
1187		pos = &p->list;
1188	}
1189
1190	list_add(&ie->list, pos);
1191}
1192
1193u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1194			     bool name_known)
1195{
1196	struct discovery_state *cache = &hdev->discovery;
1197	struct inquiry_entry *ie;
1198	u32 flags = 0;
1199
1200	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1201
1202	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1203
1204	if (!data->ssp_mode)
1205		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1206
1207	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1208	if (ie) {
1209		if (!ie->data.ssp_mode)
1210			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1211
1212		if (ie->name_state == NAME_NEEDED &&
1213		    data->rssi != ie->data.rssi) {
1214			ie->data.rssi = data->rssi;
1215			hci_inquiry_cache_update_resolve(hdev, ie);
1216		}
1217
1218		goto update;
1219	}
1220
1221	/* Entry not in the cache. Add new one. */
1222	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1223	if (!ie) {
1224		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1225		goto done;
1226	}
1227
1228	list_add(&ie->all, &cache->all);
1229
1230	if (name_known) {
1231		ie->name_state = NAME_KNOWN;
1232	} else {
1233		ie->name_state = NAME_NOT_KNOWN;
1234		list_add(&ie->list, &cache->unknown);
1235	}
1236
1237update:
1238	if (name_known && ie->name_state != NAME_KNOWN &&
1239	    ie->name_state != NAME_PENDING) {
1240		ie->name_state = NAME_KNOWN;
1241		list_del(&ie->list);
1242	}
1243
1244	memcpy(&ie->data, data, sizeof(*data));
1245	ie->timestamp = jiffies;
1246	cache->timestamp = jiffies;
1247
1248	if (ie->name_state == NAME_NOT_KNOWN)
1249		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1250
1251done:
1252	return flags;
1253}
1254
1255static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1256{
1257	struct discovery_state *cache = &hdev->discovery;
1258	struct inquiry_info *info = (struct inquiry_info *) buf;
1259	struct inquiry_entry *e;
1260	int copied = 0;
1261
1262	list_for_each_entry(e, &cache->all, all) {
1263		struct inquiry_data *data = &e->data;
1264
1265		if (copied >= num)
1266			break;
1267
1268		bacpy(&info->bdaddr, &data->bdaddr);
1269		info->pscan_rep_mode	= data->pscan_rep_mode;
1270		info->pscan_period_mode	= data->pscan_period_mode;
1271		info->pscan_mode	= data->pscan_mode;
1272		memcpy(info->dev_class, data->dev_class, 3);
1273		info->clock_offset	= data->clock_offset;
1274
1275		info++;
1276		copied++;
1277	}
1278
1279	BT_DBG("cache %p, copied %d", cache, copied);
1280	return copied;
1281}
1282
1283static int hci_inq_req(struct hci_request *req, unsigned long opt)
1284{
1285	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1286	struct hci_dev *hdev = req->hdev;
1287	struct hci_cp_inquiry cp;
1288
1289	BT_DBG("%s", hdev->name);
1290
1291	if (test_bit(HCI_INQUIRY, &hdev->flags))
1292		return 0;
1293
1294	/* Start Inquiry */
1295	memcpy(&cp.lap, &ir->lap, 3);
1296	cp.length  = ir->length;
1297	cp.num_rsp = ir->num_rsp;
1298	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1299
1300	return 0;
1301}
1302
1303int hci_inquiry(void __user *arg)
1304{
1305	__u8 __user *ptr = arg;
1306	struct hci_inquiry_req ir;
1307	struct hci_dev *hdev;
1308	int err = 0, do_inquiry = 0, max_rsp;
1309	long timeo;
1310	__u8 *buf;
1311
1312	if (copy_from_user(&ir, ptr, sizeof(ir)))
1313		return -EFAULT;
1314
1315	hdev = hci_dev_get(ir.dev_id);
1316	if (!hdev)
1317		return -ENODEV;
1318
1319	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1320		err = -EBUSY;
1321		goto done;
1322	}
1323
1324	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1325		err = -EOPNOTSUPP;
1326		goto done;
1327	}
1328
1329	if (hdev->dev_type != HCI_PRIMARY) {
1330		err = -EOPNOTSUPP;
1331		goto done;
1332	}
1333
1334	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1335		err = -EOPNOTSUPP;
1336		goto done;
1337	}
1338
1339	hci_dev_lock(hdev);
1340	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1341	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1342		hci_inquiry_cache_flush(hdev);
1343		do_inquiry = 1;
1344	}
1345	hci_dev_unlock(hdev);
1346
1347	timeo = ir.length * msecs_to_jiffies(2000);
1348
1349	if (do_inquiry) {
1350		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1351				   timeo, NULL);
1352		if (err < 0)
1353			goto done;
1354
1355		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1356		 * cleared). If it is interrupted by a signal, return -EINTR.
1357		 */
1358		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1359				TASK_INTERRUPTIBLE))
1360			return -EINTR;
1361	}
1362
1363	/* for unlimited number of responses we will use buffer with
1364	 * 255 entries
1365	 */
1366	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1367
1368	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1369	 * copy it to the user space.
1370	 */
1371	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1372	if (!buf) {
1373		err = -ENOMEM;
1374		goto done;
1375	}
1376
1377	hci_dev_lock(hdev);
1378	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1379	hci_dev_unlock(hdev);
1380
1381	BT_DBG("num_rsp %d", ir.num_rsp);
1382
1383	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1384		ptr += sizeof(ir);
1385		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1386				 ir.num_rsp))
1387			err = -EFAULT;
1388	} else
1389		err = -EFAULT;
1390
1391	kfree(buf);
1392
1393done:
1394	hci_dev_put(hdev);
1395	return err;
1396}
1397
1398/**
1399 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1400 *				       (BD_ADDR) for a HCI device from
1401 *				       a firmware node property.
1402 * @hdev:	The HCI device
1403 *
1404 * Search the firmware node for 'local-bd-address'.
1405 *
1406 * All-zero BD addresses are rejected, because those could be properties
1407 * that exist in the firmware tables, but were not updated by the firmware. For
1408 * example, the DTS could define 'local-bd-address', with zero BD addresses.
1409 */
1410static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1411{
1412	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1413	bdaddr_t ba;
1414	int ret;
1415
1416	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1417					    (u8 *)&ba, sizeof(ba));
1418	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1419		return;
1420
1421	bacpy(&hdev->public_addr, &ba);
1422}
1423
1424static int hci_dev_do_open(struct hci_dev *hdev)
1425{
1426	int ret = 0;
1427
1428	BT_DBG("%s %p", hdev->name, hdev);
1429
1430	hci_req_sync_lock(hdev);
1431
1432	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1433		ret = -ENODEV;
1434		goto done;
1435	}
1436
1437	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1438	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1439		/* Check for rfkill but allow the HCI setup stage to
1440		 * proceed (which in itself doesn't cause any RF activity).
1441		 */
1442		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1443			ret = -ERFKILL;
1444			goto done;
1445		}
1446
1447		/* Check for valid public address or a configured static
1448		 * random adddress, but let the HCI setup proceed to
1449		 * be able to determine if there is a public address
1450		 * or not.
1451		 *
1452		 * In case of user channel usage, it is not important
1453		 * if a public address or static random address is
1454		 * available.
1455		 *
1456		 * This check is only valid for BR/EDR controllers
1457		 * since AMP controllers do not have an address.
1458		 */
1459		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1460		    hdev->dev_type == HCI_PRIMARY &&
1461		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1462		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1463			ret = -EADDRNOTAVAIL;
1464			goto done;
1465		}
1466	}
1467
1468	if (test_bit(HCI_UP, &hdev->flags)) {
1469		ret = -EALREADY;
1470		goto done;
1471	}
1472
1473	if (hdev->open(hdev)) {
1474		ret = -EIO;
1475		goto done;
1476	}
1477
1478	set_bit(HCI_RUNNING, &hdev->flags);
1479	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1480
1481	atomic_set(&hdev->cmd_cnt, 1);
1482	set_bit(HCI_INIT, &hdev->flags);
1483
1484	if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1485	    test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
1486		bool invalid_bdaddr;
1487
1488		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1489
1490		if (hdev->setup)
1491			ret = hdev->setup(hdev);
1492
1493		/* The transport driver can set the quirk to mark the
1494		 * BD_ADDR invalid before creating the HCI device or in
1495		 * its setup callback.
1496		 */
1497		invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR,
1498					  &hdev->quirks);
1499
1500		if (ret)
1501			goto setup_failed;
1502
1503		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1504			if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1505				hci_dev_get_bd_addr_from_property(hdev);
1506
1507			if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1508			    hdev->set_bdaddr) {
1509				ret = hdev->set_bdaddr(hdev,
1510						       &hdev->public_addr);
1511
1512				/* If setting of the BD_ADDR from the device
1513				 * property succeeds, then treat the address
1514				 * as valid even if the invalid BD_ADDR
1515				 * quirk indicates otherwise.
1516				 */
1517				if (!ret)
1518					invalid_bdaddr = false;
1519			}
1520		}
1521
1522setup_failed:
1523		/* The transport driver can set these quirks before
1524		 * creating the HCI device or in its setup callback.
1525		 *
1526		 * For the invalid BD_ADDR quirk it is possible that
1527		 * it becomes a valid address if the bootloader does
1528		 * provide it (see above).
1529		 *
1530		 * In case any of them is set, the controller has to
1531		 * start up as unconfigured.
1532		 */
1533		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1534		    invalid_bdaddr)
1535			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1536
1537		/* For an unconfigured controller it is required to
1538		 * read at least the version information provided by
1539		 * the Read Local Version Information command.
1540		 *
1541		 * If the set_bdaddr driver callback is provided, then
1542		 * also the original Bluetooth public device address
1543		 * will be read using the Read BD Address command.
1544		 */
1545		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1546			ret = __hci_unconf_init(hdev);
1547	}
1548
1549	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1550		/* If public address change is configured, ensure that
1551		 * the address gets programmed. If the driver does not
1552		 * support changing the public address, fail the power
1553		 * on procedure.
1554		 */
1555		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1556		    hdev->set_bdaddr)
1557			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1558		else
1559			ret = -EADDRNOTAVAIL;
1560	}
1561
1562	if (!ret) {
1563		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1564		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1565			ret = __hci_init(hdev);
1566			if (!ret && hdev->post_init)
1567				ret = hdev->post_init(hdev);
1568		}
1569	}
1570
1571	/* If the HCI Reset command is clearing all diagnostic settings,
1572	 * then they need to be reprogrammed after the init procedure
1573	 * completed.
1574	 */
1575	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1576	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1577	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1578		ret = hdev->set_diag(hdev, true);
1579
1580	msft_do_open(hdev);
1581
1582	clear_bit(HCI_INIT, &hdev->flags);
1583
1584	if (!ret) {
1585		hci_dev_hold(hdev);
1586		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1587		hci_adv_instances_set_rpa_expired(hdev, true);
1588		set_bit(HCI_UP, &hdev->flags);
1589		hci_sock_dev_event(hdev, HCI_DEV_UP);
1590		hci_leds_update_powered(hdev, true);
1591		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1592		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1593		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1594		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1595		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1596		    hdev->dev_type == HCI_PRIMARY) {
1597			ret = __hci_req_hci_power_on(hdev);
1598			mgmt_power_on(hdev, ret);
1599		}
1600	} else {
1601		/* Init failed, cleanup */
1602		flush_work(&hdev->tx_work);
1603		flush_work(&hdev->cmd_work);
1604		flush_work(&hdev->rx_work);
1605
1606		skb_queue_purge(&hdev->cmd_q);
1607		skb_queue_purge(&hdev->rx_q);
1608
1609		if (hdev->flush)
1610			hdev->flush(hdev);
1611
1612		if (hdev->sent_cmd) {
1613			kfree_skb(hdev->sent_cmd);
1614			hdev->sent_cmd = NULL;
1615		}
1616
1617		clear_bit(HCI_RUNNING, &hdev->flags);
1618		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1619
1620		hdev->close(hdev);
1621		hdev->flags &= BIT(HCI_RAW);
1622	}
1623
1624done:
1625	hci_req_sync_unlock(hdev);
1626	return ret;
1627}
1628
1629/* ---- HCI ioctl helpers ---- */
1630
1631int hci_dev_open(__u16 dev)
1632{
1633	struct hci_dev *hdev;
1634	int err;
1635
1636	hdev = hci_dev_get(dev);
1637	if (!hdev)
1638		return -ENODEV;
1639
1640	/* Devices that are marked as unconfigured can only be powered
1641	 * up as user channel. Trying to bring them up as normal devices
1642	 * will result into a failure. Only user channel operation is
1643	 * possible.
1644	 *
1645	 * When this function is called for a user channel, the flag
1646	 * HCI_USER_CHANNEL will be set first before attempting to
1647	 * open the device.
1648	 */
1649	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1650	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1651		err = -EOPNOTSUPP;
1652		goto done;
1653	}
1654
1655	/* We need to ensure that no other power on/off work is pending
1656	 * before proceeding to call hci_dev_do_open. This is
1657	 * particularly important if the setup procedure has not yet
1658	 * completed.
1659	 */
1660	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1661		cancel_delayed_work(&hdev->power_off);
1662
1663	/* After this call it is guaranteed that the setup procedure
1664	 * has finished. This means that error conditions like RFKILL
1665	 * or no valid public or static random address apply.
1666	 */
1667	flush_workqueue(hdev->req_workqueue);
1668
1669	/* For controllers not using the management interface and that
1670	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1671	 * so that pairing works for them. Once the management interface
1672	 * is in use this bit will be cleared again and userspace has
1673	 * to explicitly enable it.
1674	 */
1675	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1676	    !hci_dev_test_flag(hdev, HCI_MGMT))
1677		hci_dev_set_flag(hdev, HCI_BONDABLE);
1678
1679	err = hci_dev_do_open(hdev);
1680
1681done:
1682	hci_dev_put(hdev);
1683	return err;
1684}
1685
1686/* This function requires the caller holds hdev->lock */
1687static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1688{
1689	struct hci_conn_params *p;
1690
1691	list_for_each_entry(p, &hdev->le_conn_params, list) {
1692		if (p->conn) {
1693			hci_conn_drop(p->conn);
1694			hci_conn_put(p->conn);
1695			p->conn = NULL;
1696		}
1697		list_del_init(&p->action);
1698	}
1699
1700	BT_DBG("All LE pending actions cleared");
1701}
1702
1703int hci_dev_do_close(struct hci_dev *hdev)
1704{
1705	bool auto_off;
1706
1707	BT_DBG("%s %p", hdev->name, hdev);
1708
1709	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1710	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1711	    test_bit(HCI_UP, &hdev->flags)) {
1712		/* Execute vendor specific shutdown routine */
1713		if (hdev->shutdown)
1714			hdev->shutdown(hdev);
1715	}
1716
1717	cancel_delayed_work(&hdev->power_off);
1718
1719	hci_request_cancel_all(hdev);
1720	hci_req_sync_lock(hdev);
1721
1722	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1723		cancel_delayed_work_sync(&hdev->cmd_timer);
1724		hci_req_sync_unlock(hdev);
1725		return 0;
1726	}
1727
1728	hci_leds_update_powered(hdev, false);
1729
1730	/* Flush RX and TX works */
1731	flush_work(&hdev->tx_work);
1732	flush_work(&hdev->rx_work);
1733
1734	if (hdev->discov_timeout > 0) {
1735		hdev->discov_timeout = 0;
1736		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1737		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1738	}
1739
1740	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1741		cancel_delayed_work(&hdev->service_cache);
1742
1743	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1744		struct adv_info *adv_instance;
1745
1746		cancel_delayed_work_sync(&hdev->rpa_expired);
1747
1748		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1749			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1750	}
1751
1752	/* Avoid potential lockdep warnings from the *_flush() calls by
1753	 * ensuring the workqueue is empty up front.
1754	 */
1755	drain_workqueue(hdev->workqueue);
1756
1757	hci_dev_lock(hdev);
1758
1759	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1760
1761	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1762
1763	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1764	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1765	    hci_dev_test_flag(hdev, HCI_MGMT))
1766		__mgmt_power_off(hdev);
1767
1768	hci_inquiry_cache_flush(hdev);
1769	hci_pend_le_actions_clear(hdev);
1770	hci_conn_hash_flush(hdev);
1771	hci_dev_unlock(hdev);
1772
1773	smp_unregister(hdev);
1774
1775	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1776
1777	msft_do_close(hdev);
1778
1779	if (hdev->flush)
1780		hdev->flush(hdev);
1781
1782	/* Reset device */
1783	skb_queue_purge(&hdev->cmd_q);
1784	atomic_set(&hdev->cmd_cnt, 1);
1785	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1786	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1787		set_bit(HCI_INIT, &hdev->flags);
1788		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1789		clear_bit(HCI_INIT, &hdev->flags);
1790	}
1791
1792	/* flush cmd  work */
1793	flush_work(&hdev->cmd_work);
1794
1795	/* Drop queues */
1796	skb_queue_purge(&hdev->rx_q);
1797	skb_queue_purge(&hdev->cmd_q);
1798	skb_queue_purge(&hdev->raw_q);
1799
1800	/* Drop last sent command */
1801	if (hdev->sent_cmd) {
1802		cancel_delayed_work_sync(&hdev->cmd_timer);
1803		kfree_skb(hdev->sent_cmd);
1804		hdev->sent_cmd = NULL;
1805	}
1806
1807	clear_bit(HCI_RUNNING, &hdev->flags);
1808	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1809
1810	if (test_and_clear_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks))
1811		wake_up(&hdev->suspend_wait_q);
1812
1813	/* After this point our queues are empty
1814	 * and no tasks are scheduled. */
1815	hdev->close(hdev);
1816
1817	/* Clear flags */
1818	hdev->flags &= BIT(HCI_RAW);
1819	hci_dev_clear_volatile_flags(hdev);
1820
1821	/* Controller radio is available but is currently powered down */
1822	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1823
1824	memset(hdev->eir, 0, sizeof(hdev->eir));
1825	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1826	bacpy(&hdev->random_addr, BDADDR_ANY);
1827
1828	hci_req_sync_unlock(hdev);
1829
1830	hci_dev_put(hdev);
1831	return 0;
1832}
1833
1834int hci_dev_close(__u16 dev)
1835{
1836	struct hci_dev *hdev;
1837	int err;
1838
1839	hdev = hci_dev_get(dev);
1840	if (!hdev)
1841		return -ENODEV;
1842
1843	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1844		err = -EBUSY;
1845		goto done;
1846	}
1847
1848	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1849		cancel_delayed_work(&hdev->power_off);
1850
1851	err = hci_dev_do_close(hdev);
1852
1853done:
1854	hci_dev_put(hdev);
1855	return err;
1856}
1857
1858static int hci_dev_do_reset(struct hci_dev *hdev)
1859{
1860	int ret;
1861
1862	BT_DBG("%s %p", hdev->name, hdev);
1863
1864	hci_req_sync_lock(hdev);
1865
1866	/* Drop queues */
1867	skb_queue_purge(&hdev->rx_q);
1868	skb_queue_purge(&hdev->cmd_q);
1869
1870	/* Avoid potential lockdep warnings from the *_flush() calls by
1871	 * ensuring the workqueue is empty up front.
1872	 */
1873	drain_workqueue(hdev->workqueue);
1874
1875	hci_dev_lock(hdev);
1876	hci_inquiry_cache_flush(hdev);
1877	hci_conn_hash_flush(hdev);
1878	hci_dev_unlock(hdev);
1879
1880	if (hdev->flush)
1881		hdev->flush(hdev);
1882
1883	atomic_set(&hdev->cmd_cnt, 1);
1884	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1885
1886	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1887
1888	hci_req_sync_unlock(hdev);
1889	return ret;
1890}
1891
1892int hci_dev_reset(__u16 dev)
1893{
1894	struct hci_dev *hdev;
1895	int err;
1896
1897	hdev = hci_dev_get(dev);
1898	if (!hdev)
1899		return -ENODEV;
1900
1901	if (!test_bit(HCI_UP, &hdev->flags)) {
1902		err = -ENETDOWN;
1903		goto done;
1904	}
1905
1906	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1907		err = -EBUSY;
1908		goto done;
1909	}
1910
1911	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1912		err = -EOPNOTSUPP;
1913		goto done;
1914	}
1915
1916	err = hci_dev_do_reset(hdev);
1917
1918done:
1919	hci_dev_put(hdev);
1920	return err;
1921}
1922
1923int hci_dev_reset_stat(__u16 dev)
1924{
1925	struct hci_dev *hdev;
1926	int ret = 0;
1927
1928	hdev = hci_dev_get(dev);
1929	if (!hdev)
1930		return -ENODEV;
1931
1932	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1933		ret = -EBUSY;
1934		goto done;
1935	}
1936
1937	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1938		ret = -EOPNOTSUPP;
1939		goto done;
1940	}
1941
1942	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1943
1944done:
1945	hci_dev_put(hdev);
1946	return ret;
1947}
1948
1949static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1950{
1951	bool conn_changed, discov_changed;
1952
1953	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1954
1955	if ((scan & SCAN_PAGE))
1956		conn_changed = !hci_dev_test_and_set_flag(hdev,
1957							  HCI_CONNECTABLE);
1958	else
1959		conn_changed = hci_dev_test_and_clear_flag(hdev,
1960							   HCI_CONNECTABLE);
1961
1962	if ((scan & SCAN_INQUIRY)) {
1963		discov_changed = !hci_dev_test_and_set_flag(hdev,
1964							    HCI_DISCOVERABLE);
1965	} else {
1966		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1967		discov_changed = hci_dev_test_and_clear_flag(hdev,
1968							     HCI_DISCOVERABLE);
1969	}
1970
1971	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1972		return;
1973
1974	if (conn_changed || discov_changed) {
1975		/* In case this was disabled through mgmt */
1976		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1977
1978		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1979			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1980
1981		mgmt_new_settings(hdev);
1982	}
1983}
1984
1985int hci_dev_cmd(unsigned int cmd, void __user *arg)
1986{
1987	struct hci_dev *hdev;
1988	struct hci_dev_req dr;
1989	int err = 0;
1990
1991	if (copy_from_user(&dr, arg, sizeof(dr)))
1992		return -EFAULT;
1993
1994	hdev = hci_dev_get(dr.dev_id);
1995	if (!hdev)
1996		return -ENODEV;
1997
1998	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1999		err = -EBUSY;
2000		goto done;
2001	}
2002
2003	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
2004		err = -EOPNOTSUPP;
2005		goto done;
2006	}
2007
2008	if (hdev->dev_type != HCI_PRIMARY) {
2009		err = -EOPNOTSUPP;
2010		goto done;
2011	}
2012
2013	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2014		err = -EOPNOTSUPP;
2015		goto done;
2016	}
2017
2018	switch (cmd) {
2019	case HCISETAUTH:
2020		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2021				   HCI_INIT_TIMEOUT, NULL);
2022		break;
2023
2024	case HCISETENCRYPT:
2025		if (!lmp_encrypt_capable(hdev)) {
2026			err = -EOPNOTSUPP;
2027			break;
2028		}
2029
2030		if (!test_bit(HCI_AUTH, &hdev->flags)) {
2031			/* Auth must be enabled first */
2032			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2033					   HCI_INIT_TIMEOUT, NULL);
2034			if (err)
2035				break;
2036		}
2037
2038		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
2039				   HCI_INIT_TIMEOUT, NULL);
2040		break;
2041
2042	case HCISETSCAN:
2043		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
2044				   HCI_INIT_TIMEOUT, NULL);
2045
2046		/* Ensure that the connectable and discoverable states
2047		 * get correctly modified as this was a non-mgmt change.
2048		 */
2049		if (!err)
2050			hci_update_scan_state(hdev, dr.dev_opt);
2051		break;
2052
2053	case HCISETLINKPOL:
2054		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
2055				   HCI_INIT_TIMEOUT, NULL);
2056		break;
2057
2058	case HCISETLINKMODE:
2059		hdev->link_mode = ((__u16) dr.dev_opt) &
2060					(HCI_LM_MASTER | HCI_LM_ACCEPT);
2061		break;
2062
2063	case HCISETPTYPE:
2064		if (hdev->pkt_type == (__u16) dr.dev_opt)
2065			break;
2066
2067		hdev->pkt_type = (__u16) dr.dev_opt;
2068		mgmt_phy_configuration_changed(hdev, NULL);
2069		break;
2070
2071	case HCISETACLMTU:
2072		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
2073		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2074		break;
2075
2076	case HCISETSCOMTU:
2077		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
2078		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2079		break;
2080
2081	default:
2082		err = -EINVAL;
2083		break;
2084	}
2085
2086done:
2087	hci_dev_put(hdev);
2088	return err;
2089}
2090
2091int hci_get_dev_list(void __user *arg)
2092{
2093	struct hci_dev *hdev;
2094	struct hci_dev_list_req *dl;
2095	struct hci_dev_req *dr;
2096	int n = 0, size, err;
2097	__u16 dev_num;
2098
2099	if (get_user(dev_num, (__u16 __user *) arg))
2100		return -EFAULT;
2101
2102	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2103		return -EINVAL;
2104
2105	size = sizeof(*dl) + dev_num * sizeof(*dr);
2106
2107	dl = kzalloc(size, GFP_KERNEL);
2108	if (!dl)
2109		return -ENOMEM;
2110
2111	dr = dl->dev_req;
2112
2113	read_lock(&hci_dev_list_lock);
2114	list_for_each_entry(hdev, &hci_dev_list, list) {
2115		unsigned long flags = hdev->flags;
2116
2117		/* When the auto-off is configured it means the transport
2118		 * is running, but in that case still indicate that the
2119		 * device is actually down.
2120		 */
2121		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2122			flags &= ~BIT(HCI_UP);
2123
2124		(dr + n)->dev_id  = hdev->id;
2125		(dr + n)->dev_opt = flags;
2126
2127		if (++n >= dev_num)
2128			break;
2129	}
2130	read_unlock(&hci_dev_list_lock);
2131
2132	dl->dev_num = n;
2133	size = sizeof(*dl) + n * sizeof(*dr);
2134
2135	err = copy_to_user(arg, dl, size);
2136	kfree(dl);
2137
2138	return err ? -EFAULT : 0;
2139}
2140
2141int hci_get_dev_info(void __user *arg)
2142{
2143	struct hci_dev *hdev;
2144	struct hci_dev_info di;
2145	unsigned long flags;
2146	int err = 0;
2147
2148	if (copy_from_user(&di, arg, sizeof(di)))
2149		return -EFAULT;
2150
2151	hdev = hci_dev_get(di.dev_id);
2152	if (!hdev)
2153		return -ENODEV;
2154
2155	/* When the auto-off is configured it means the transport
2156	 * is running, but in that case still indicate that the
2157	 * device is actually down.
2158	 */
2159	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2160		flags = hdev->flags & ~BIT(HCI_UP);
2161	else
2162		flags = hdev->flags;
2163
2164	strcpy(di.name, hdev->name);
2165	di.bdaddr   = hdev->bdaddr;
2166	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2167	di.flags    = flags;
2168	di.pkt_type = hdev->pkt_type;
2169	if (lmp_bredr_capable(hdev)) {
2170		di.acl_mtu  = hdev->acl_mtu;
2171		di.acl_pkts = hdev->acl_pkts;
2172		di.sco_mtu  = hdev->sco_mtu;
2173		di.sco_pkts = hdev->sco_pkts;
2174	} else {
2175		di.acl_mtu  = hdev->le_mtu;
2176		di.acl_pkts = hdev->le_pkts;
2177		di.sco_mtu  = 0;
2178		di.sco_pkts = 0;
2179	}
2180	di.link_policy = hdev->link_policy;
2181	di.link_mode   = hdev->link_mode;
2182
2183	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2184	memcpy(&di.features, &hdev->features, sizeof(di.features));
2185
2186	if (copy_to_user(arg, &di, sizeof(di)))
2187		err = -EFAULT;
2188
2189	hci_dev_put(hdev);
2190
2191	return err;
2192}
2193
2194/* ---- Interface to HCI drivers ---- */
2195
2196static int hci_rfkill_set_block(void *data, bool blocked)
2197{
2198	struct hci_dev *hdev = data;
2199
2200	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2201
2202	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2203		return -EBUSY;
2204
2205	if (blocked) {
2206		hci_dev_set_flag(hdev, HCI_RFKILLED);
2207		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2208		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2209			hci_dev_do_close(hdev);
2210	} else {
2211		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2212	}
2213
2214	return 0;
2215}
2216
2217static const struct rfkill_ops hci_rfkill_ops = {
2218	.set_block = hci_rfkill_set_block,
2219};
2220
2221static void hci_power_on(struct work_struct *work)
2222{
2223	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2224	int err;
2225
2226	BT_DBG("%s", hdev->name);
2227
2228	if (test_bit(HCI_UP, &hdev->flags) &&
2229	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2230	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2231		cancel_delayed_work(&hdev->power_off);
2232		hci_req_sync_lock(hdev);
2233		err = __hci_req_hci_power_on(hdev);
2234		hci_req_sync_unlock(hdev);
2235		mgmt_power_on(hdev, err);
2236		return;
2237	}
2238
2239	err = hci_dev_do_open(hdev);
2240	if (err < 0) {
2241		hci_dev_lock(hdev);
2242		mgmt_set_powered_failed(hdev, err);
2243		hci_dev_unlock(hdev);
2244		return;
2245	}
2246
2247	/* During the HCI setup phase, a few error conditions are
2248	 * ignored and they need to be checked now. If they are still
2249	 * valid, it is important to turn the device back off.
2250	 */
2251	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2252	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2253	    (hdev->dev_type == HCI_PRIMARY &&
2254	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2255	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2256		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2257		hci_dev_do_close(hdev);
2258	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2259		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2260				   HCI_AUTO_OFF_TIMEOUT);
2261	}
2262
2263	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2264		/* For unconfigured devices, set the HCI_RAW flag
2265		 * so that userspace can easily identify them.
2266		 */
2267		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2268			set_bit(HCI_RAW, &hdev->flags);
2269
2270		/* For fully configured devices, this will send
2271		 * the Index Added event. For unconfigured devices,
2272		 * it will send Unconfigued Index Added event.
2273		 *
2274		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2275		 * and no event will be send.
2276		 */
2277		mgmt_index_added(hdev);
2278	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2279		/* When the controller is now configured, then it
2280		 * is important to clear the HCI_RAW flag.
2281		 */
2282		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2283			clear_bit(HCI_RAW, &hdev->flags);
2284
2285		/* Powering on the controller with HCI_CONFIG set only
2286		 * happens with the transition from unconfigured to
2287		 * configured. This will send the Index Added event.
2288		 */
2289		mgmt_index_added(hdev);
2290	}
2291}
2292
2293static void hci_power_off(struct work_struct *work)
2294{
2295	struct hci_dev *hdev = container_of(work, struct hci_dev,
2296					    power_off.work);
2297
2298	BT_DBG("%s", hdev->name);
2299
2300	hci_dev_do_close(hdev);
2301}
2302
2303static void hci_error_reset(struct work_struct *work)
2304{
2305	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2306
2307	BT_DBG("%s", hdev->name);
2308
2309	if (hdev->hw_error)
2310		hdev->hw_error(hdev, hdev->hw_error_code);
2311	else
2312		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2313
2314	if (hci_dev_do_close(hdev))
2315		return;
2316
2317	hci_dev_do_open(hdev);
2318}
2319
2320void hci_uuids_clear(struct hci_dev *hdev)
2321{
2322	struct bt_uuid *uuid, *tmp;
2323
2324	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2325		list_del(&uuid->list);
2326		kfree(uuid);
2327	}
2328}
2329
2330void hci_link_keys_clear(struct hci_dev *hdev)
2331{
2332	struct link_key *key;
2333
2334	list_for_each_entry(key, &hdev->link_keys, list) {
2335		list_del_rcu(&key->list);
2336		kfree_rcu(key, rcu);
2337	}
2338}
2339
2340void hci_smp_ltks_clear(struct hci_dev *hdev)
2341{
2342	struct smp_ltk *k;
2343
2344	list_for_each_entry(k, &hdev->long_term_keys, list) {
2345		list_del_rcu(&k->list);
2346		kfree_rcu(k, rcu);
2347	}
2348}
2349
2350void hci_smp_irks_clear(struct hci_dev *hdev)
2351{
2352	struct smp_irk *k;
2353
2354	list_for_each_entry(k, &hdev->identity_resolving_keys, list) {
2355		list_del_rcu(&k->list);
2356		kfree_rcu(k, rcu);
2357	}
2358}
2359
2360void hci_blocked_keys_clear(struct hci_dev *hdev)
2361{
2362	struct blocked_key *b;
2363
2364	list_for_each_entry(b, &hdev->blocked_keys, list) {
2365		list_del_rcu(&b->list);
2366		kfree_rcu(b, rcu);
2367	}
2368}
2369
2370bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
2371{
2372	bool blocked = false;
2373	struct blocked_key *b;
2374
2375	rcu_read_lock();
2376	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
2377		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
2378			blocked = true;
2379			break;
2380		}
2381	}
2382
2383	rcu_read_unlock();
2384	return blocked;
2385}
2386
2387struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2388{
2389	struct link_key *k;
2390
2391	rcu_read_lock();
2392	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2393		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2394			rcu_read_unlock();
2395
2396			if (hci_is_blocked_key(hdev,
2397					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
2398					       k->val)) {
2399				bt_dev_warn_ratelimited(hdev,
2400							"Link key blocked for %pMR",
2401							&k->bdaddr);
2402				return NULL;
2403			}
2404
2405			return k;
2406		}
2407	}
2408	rcu_read_unlock();
2409
2410	return NULL;
2411}
2412
2413static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2414			       u8 key_type, u8 old_key_type)
2415{
2416	/* Legacy key */
2417	if (key_type < 0x03)
2418		return true;
2419
2420	/* Debug keys are insecure so don't store them persistently */
2421	if (key_type == HCI_LK_DEBUG_COMBINATION)
2422		return false;
2423
2424	/* Changed combination key and there's no previous one */
2425	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2426		return false;
2427
2428	/* Security mode 3 case */
2429	if (!conn)
2430		return true;
2431
2432	/* BR/EDR key derived using SC from an LE link */
2433	if (conn->type == LE_LINK)
2434		return true;
2435
2436	/* Neither local nor remote side had no-bonding as requirement */
2437	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2438		return true;
2439
2440	/* Local side had dedicated bonding as requirement */
2441	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2442		return true;
2443
2444	/* Remote side had dedicated bonding as requirement */
2445	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2446		return true;
2447
2448	/* If none of the above criteria match, then don't store the key
2449	 * persistently */
2450	return false;
2451}
2452
2453static u8 ltk_role(u8 type)
2454{
2455	if (type == SMP_LTK)
2456		return HCI_ROLE_MASTER;
2457
2458	return HCI_ROLE_SLAVE;
2459}
2460
2461struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2462			     u8 addr_type, u8 role)
2463{
2464	struct smp_ltk *k;
2465
2466	rcu_read_lock();
2467	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2468		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2469			continue;
2470
2471		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2472			rcu_read_unlock();
2473
2474			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
2475					       k->val)) {
2476				bt_dev_warn_ratelimited(hdev,
2477							"LTK blocked for %pMR",
2478							&k->bdaddr);
2479				return NULL;
2480			}
2481
2482			return k;
2483		}
2484	}
2485	rcu_read_unlock();
2486
2487	return NULL;
2488}
2489
2490struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2491{
2492	struct smp_irk *irk_to_return = NULL;
2493	struct smp_irk *irk;
2494
2495	rcu_read_lock();
2496	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2497		if (!bacmp(&irk->rpa, rpa)) {
2498			irk_to_return = irk;
2499			goto done;
2500		}
2501	}
2502
2503	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2504		if (smp_irk_matches(hdev, irk->val, rpa)) {
2505			bacpy(&irk->rpa, rpa);
2506			irk_to_return = irk;
2507			goto done;
2508		}
2509	}
2510
2511done:
2512	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2513						irk_to_return->val)) {
2514		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2515					&irk_to_return->bdaddr);
2516		irk_to_return = NULL;
2517	}
2518
2519	rcu_read_unlock();
2520
2521	return irk_to_return;
2522}
2523
2524struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2525				     u8 addr_type)
2526{
2527	struct smp_irk *irk_to_return = NULL;
2528	struct smp_irk *irk;
2529
2530	/* Identity Address must be public or static random */
2531	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2532		return NULL;
2533
2534	rcu_read_lock();
2535	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2536		if (addr_type == irk->addr_type &&
2537		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2538			irk_to_return = irk;
2539			goto done;
2540		}
2541	}
2542
2543done:
2544
2545	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2546						irk_to_return->val)) {
2547		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2548					&irk_to_return->bdaddr);
2549		irk_to_return = NULL;
2550	}
2551
2552	rcu_read_unlock();
2553
2554	return irk_to_return;
2555}
2556
2557struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2558				  bdaddr_t *bdaddr, u8 *val, u8 type,
2559				  u8 pin_len, bool *persistent)
2560{
2561	struct link_key *key, *old_key;
2562	u8 old_key_type;
2563
2564	old_key = hci_find_link_key(hdev, bdaddr);
2565	if (old_key) {
2566		old_key_type = old_key->type;
2567		key = old_key;
2568	} else {
2569		old_key_type = conn ? conn->key_type : 0xff;
2570		key = kzalloc(sizeof(*key), GFP_KERNEL);
2571		if (!key)
2572			return NULL;
2573		list_add_rcu(&key->list, &hdev->link_keys);
2574	}
2575
2576	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2577
2578	/* Some buggy controller combinations generate a changed
2579	 * combination key for legacy pairing even when there's no
2580	 * previous key */
2581	if (type == HCI_LK_CHANGED_COMBINATION &&
2582	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2583		type = HCI_LK_COMBINATION;
2584		if (conn)
2585			conn->key_type = type;
2586	}
2587
2588	bacpy(&key->bdaddr, bdaddr);
2589	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2590	key->pin_len = pin_len;
2591
2592	if (type == HCI_LK_CHANGED_COMBINATION)
2593		key->type = old_key_type;
2594	else
2595		key->type = type;
2596
2597	if (persistent)
2598		*persistent = hci_persistent_key(hdev, conn, type,
2599						 old_key_type);
2600
2601	return key;
2602}
2603
2604struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2605			    u8 addr_type, u8 type, u8 authenticated,
2606			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2607{
2608	struct smp_ltk *key, *old_key;
2609	u8 role = ltk_role(type);
2610
2611	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2612	if (old_key)
2613		key = old_key;
2614	else {
2615		key = kzalloc(sizeof(*key), GFP_KERNEL);
2616		if (!key)
2617			return NULL;
2618		list_add_rcu(&key->list, &hdev->long_term_keys);
2619	}
2620
2621	bacpy(&key->bdaddr, bdaddr);
2622	key->bdaddr_type = addr_type;
2623	memcpy(key->val, tk, sizeof(key->val));
2624	key->authenticated = authenticated;
2625	key->ediv = ediv;
2626	key->rand = rand;
2627	key->enc_size = enc_size;
2628	key->type = type;
2629
2630	return key;
2631}
2632
2633struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2634			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2635{
2636	struct smp_irk *irk;
2637
2638	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2639	if (!irk) {
2640		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2641		if (!irk)
2642			return NULL;
2643
2644		bacpy(&irk->bdaddr, bdaddr);
2645		irk->addr_type = addr_type;
2646
2647		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2648	}
2649
2650	memcpy(irk->val, val, 16);
2651	bacpy(&irk->rpa, rpa);
2652
2653	return irk;
2654}
2655
2656int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2657{
2658	struct link_key *key;
2659
2660	key = hci_find_link_key(hdev, bdaddr);
2661	if (!key)
2662		return -ENOENT;
2663
2664	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2665
2666	list_del_rcu(&key->list);
2667	kfree_rcu(key, rcu);
2668
2669	return 0;
2670}
2671
2672int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2673{
2674	struct smp_ltk *k;
2675	int removed = 0;
2676
2677	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2678		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2679			continue;
2680
2681		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2682
2683		list_del_rcu(&k->list);
2684		kfree_rcu(k, rcu);
2685		removed++;
2686	}
2687
2688	return removed ? 0 : -ENOENT;
2689}
2690
2691void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2692{
2693	struct smp_irk *k;
2694
2695	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2696		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2697			continue;
2698
2699		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2700
2701		list_del_rcu(&k->list);
2702		kfree_rcu(k, rcu);
2703	}
2704}
2705
2706bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2707{
2708	struct smp_ltk *k;
2709	struct smp_irk *irk;
2710	u8 addr_type;
2711
2712	if (type == BDADDR_BREDR) {
2713		if (hci_find_link_key(hdev, bdaddr))
2714			return true;
2715		return false;
2716	}
2717
2718	/* Convert to HCI addr type which struct smp_ltk uses */
2719	if (type == BDADDR_LE_PUBLIC)
2720		addr_type = ADDR_LE_DEV_PUBLIC;
2721	else
2722		addr_type = ADDR_LE_DEV_RANDOM;
2723
2724	irk = hci_get_irk(hdev, bdaddr, addr_type);
2725	if (irk) {
2726		bdaddr = &irk->bdaddr;
2727		addr_type = irk->addr_type;
2728	}
2729
2730	rcu_read_lock();
2731	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2732		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2733			rcu_read_unlock();
2734			return true;
2735		}
2736	}
2737	rcu_read_unlock();
2738
2739	return false;
2740}
2741
2742/* HCI command timer function */
2743static void hci_cmd_timeout(struct work_struct *work)
2744{
2745	struct hci_dev *hdev = container_of(work, struct hci_dev,
2746					    cmd_timer.work);
2747
2748	if (hdev->sent_cmd) {
2749		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2750		u16 opcode = __le16_to_cpu(sent->opcode);
2751
2752		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2753	} else {
2754		bt_dev_err(hdev, "command tx timeout");
2755	}
2756
2757	if (hdev->cmd_timeout)
2758		hdev->cmd_timeout(hdev);
2759
2760	atomic_set(&hdev->cmd_cnt, 1);
2761	queue_work(hdev->workqueue, &hdev->cmd_work);
2762}
2763
2764struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2765					  bdaddr_t *bdaddr, u8 bdaddr_type)
2766{
2767	struct oob_data *data;
2768
2769	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2770		if (bacmp(bdaddr, &data->bdaddr) != 0)
2771			continue;
2772		if (data->bdaddr_type != bdaddr_type)
2773			continue;
2774		return data;
2775	}
2776
2777	return NULL;
2778}
2779
2780int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2781			       u8 bdaddr_type)
2782{
2783	struct oob_data *data;
2784
2785	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2786	if (!data)
2787		return -ENOENT;
2788
2789	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2790
2791	list_del(&data->list);
2792	kfree(data);
2793
2794	return 0;
2795}
2796
2797void hci_remote_oob_data_clear(struct hci_dev *hdev)
2798{
2799	struct oob_data *data, *n;
2800
2801	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2802		list_del(&data->list);
2803		kfree(data);
2804	}
2805}
2806
2807int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2808			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2809			    u8 *hash256, u8 *rand256)
2810{
2811	struct oob_data *data;
2812
2813	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2814	if (!data) {
2815		data = kmalloc(sizeof(*data), GFP_KERNEL);
2816		if (!data)
2817			return -ENOMEM;
2818
2819		bacpy(&data->bdaddr, bdaddr);
2820		data->bdaddr_type = bdaddr_type;
2821		list_add(&data->list, &hdev->remote_oob_data);
2822	}
2823
2824	if (hash192 && rand192) {
2825		memcpy(data->hash192, hash192, sizeof(data->hash192));
2826		memcpy(data->rand192, rand192, sizeof(data->rand192));
2827		if (hash256 && rand256)
2828			data->present = 0x03;
2829	} else {
2830		memset(data->hash192, 0, sizeof(data->hash192));
2831		memset(data->rand192, 0, sizeof(data->rand192));
2832		if (hash256 && rand256)
2833			data->present = 0x02;
2834		else
2835			data->present = 0x00;
2836	}
2837
2838	if (hash256 && rand256) {
2839		memcpy(data->hash256, hash256, sizeof(data->hash256));
2840		memcpy(data->rand256, rand256, sizeof(data->rand256));
2841	} else {
2842		memset(data->hash256, 0, sizeof(data->hash256));
2843		memset(data->rand256, 0, sizeof(data->rand256));
2844		if (hash192 && rand192)
2845			data->present = 0x01;
2846	}
2847
2848	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2849
2850	return 0;
2851}
2852
2853/* This function requires the caller holds hdev->lock */
2854struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2855{
2856	struct adv_info *adv_instance;
2857
2858	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2859		if (adv_instance->instance == instance)
2860			return adv_instance;
2861	}
2862
2863	return NULL;
2864}
2865
2866/* This function requires the caller holds hdev->lock */
2867struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2868{
2869	struct adv_info *cur_instance;
2870
2871	cur_instance = hci_find_adv_instance(hdev, instance);
2872	if (!cur_instance)
2873		return NULL;
2874
2875	if (cur_instance == list_last_entry(&hdev->adv_instances,
2876					    struct adv_info, list))
2877		return list_first_entry(&hdev->adv_instances,
2878						 struct adv_info, list);
2879	else
2880		return list_next_entry(cur_instance, list);
2881}
2882
2883/* This function requires the caller holds hdev->lock */
2884int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2885{
2886	struct adv_info *adv_instance;
2887
2888	adv_instance = hci_find_adv_instance(hdev, instance);
2889	if (!adv_instance)
2890		return -ENOENT;
2891
2892	BT_DBG("%s removing %dMR", hdev->name, instance);
2893
2894	if (hdev->cur_adv_instance == instance) {
2895		if (hdev->adv_instance_timeout) {
2896			cancel_delayed_work(&hdev->adv_instance_expire);
2897			hdev->adv_instance_timeout = 0;
2898		}
2899		hdev->cur_adv_instance = 0x00;
2900	}
2901
2902	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2903
2904	list_del(&adv_instance->list);
2905	kfree(adv_instance);
2906
2907	hdev->adv_instance_cnt--;
2908
2909	return 0;
2910}
2911
2912void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2913{
2914	struct adv_info *adv_instance, *n;
2915
2916	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2917		adv_instance->rpa_expired = rpa_expired;
2918}
2919
2920/* This function requires the caller holds hdev->lock */
2921void hci_adv_instances_clear(struct hci_dev *hdev)
2922{
2923	struct adv_info *adv_instance, *n;
2924
2925	if (hdev->adv_instance_timeout) {
2926		cancel_delayed_work(&hdev->adv_instance_expire);
2927		hdev->adv_instance_timeout = 0;
2928	}
2929
2930	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2931		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2932		list_del(&adv_instance->list);
2933		kfree(adv_instance);
2934	}
2935
2936	hdev->adv_instance_cnt = 0;
2937	hdev->cur_adv_instance = 0x00;
2938}
2939
2940static void adv_instance_rpa_expired(struct work_struct *work)
2941{
2942	struct adv_info *adv_instance = container_of(work, struct adv_info,
2943						     rpa_expired_cb.work);
2944
2945	BT_DBG("");
2946
2947	adv_instance->rpa_expired = true;
2948}
2949
2950/* This function requires the caller holds hdev->lock */
2951int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2952			 u16 adv_data_len, u8 *adv_data,
2953			 u16 scan_rsp_len, u8 *scan_rsp_data,
2954			 u16 timeout, u16 duration)
2955{
2956	struct adv_info *adv_instance;
2957
2958	adv_instance = hci_find_adv_instance(hdev, instance);
2959	if (adv_instance) {
2960		memset(adv_instance->adv_data, 0,
2961		       sizeof(adv_instance->adv_data));
2962		memset(adv_instance->scan_rsp_data, 0,
2963		       sizeof(adv_instance->scan_rsp_data));
2964	} else {
2965		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
2966		    instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2967			return -EOVERFLOW;
2968
2969		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2970		if (!adv_instance)
2971			return -ENOMEM;
2972
2973		adv_instance->pending = true;
2974		adv_instance->instance = instance;
2975		list_add(&adv_instance->list, &hdev->adv_instances);
2976		hdev->adv_instance_cnt++;
2977	}
2978
2979	adv_instance->flags = flags;
2980	adv_instance->adv_data_len = adv_data_len;
2981	adv_instance->scan_rsp_len = scan_rsp_len;
2982
2983	if (adv_data_len)
2984		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2985
2986	if (scan_rsp_len)
2987		memcpy(adv_instance->scan_rsp_data,
2988		       scan_rsp_data, scan_rsp_len);
2989
2990	adv_instance->timeout = timeout;
2991	adv_instance->remaining_time = timeout;
2992
2993	if (duration == 0)
2994		adv_instance->duration = hdev->def_multi_adv_rotation_duration;
2995	else
2996		adv_instance->duration = duration;
2997
2998	adv_instance->tx_power = HCI_TX_POWER_INVALID;
2999
3000	INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
3001			  adv_instance_rpa_expired);
3002
3003	BT_DBG("%s for %dMR", hdev->name, instance);
3004
3005	return 0;
3006}
3007
3008/* This function requires the caller holds hdev->lock */
3009void hci_adv_monitors_clear(struct hci_dev *hdev)
3010{
3011	struct adv_monitor *monitor;
3012	int handle;
3013
3014	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
3015		hci_free_adv_monitor(monitor);
3016
3017	idr_destroy(&hdev->adv_monitors_idr);
3018}
3019
3020void hci_free_adv_monitor(struct adv_monitor *monitor)
3021{
3022	struct adv_pattern *pattern;
3023	struct adv_pattern *tmp;
3024
3025	if (!monitor)
3026		return;
3027
3028	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list)
3029		kfree(pattern);
3030
3031	kfree(monitor);
3032}
3033
3034/* This function requires the caller holds hdev->lock */
3035int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
3036{
3037	int min, max, handle;
3038
3039	if (!monitor)
3040		return -EINVAL;
3041
3042	min = HCI_MIN_ADV_MONITOR_HANDLE;
3043	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
3044	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
3045			   GFP_KERNEL);
3046	if (handle < 0)
3047		return handle;
3048
3049	hdev->adv_monitors_cnt++;
3050	monitor->handle = handle;
3051
3052	hci_update_background_scan(hdev);
3053
3054	return 0;
3055}
3056
3057static int free_adv_monitor(int id, void *ptr, void *data)
3058{
3059	struct hci_dev *hdev = data;
3060	struct adv_monitor *monitor = ptr;
3061
3062	idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3063	hci_free_adv_monitor(monitor);
3064
3065	return 0;
3066}
3067
3068/* This function requires the caller holds hdev->lock */
3069int hci_remove_adv_monitor(struct hci_dev *hdev, u16 handle)
3070{
3071	struct adv_monitor *monitor;
3072
3073	if (handle) {
3074		monitor = idr_find(&hdev->adv_monitors_idr, handle);
3075		if (!monitor)
3076			return -ENOENT;
3077
3078		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3079		hci_free_adv_monitor(monitor);
3080	} else {
3081		/* Remove all monitors if handle is 0. */
3082		idr_for_each(&hdev->adv_monitors_idr, &free_adv_monitor, hdev);
3083	}
3084
3085	hci_update_background_scan(hdev);
3086
3087	return 0;
3088}
3089
3090/* This function requires the caller holds hdev->lock */
3091bool hci_is_adv_monitoring(struct hci_dev *hdev)
3092{
3093	return !idr_is_empty(&hdev->adv_monitors_idr);
3094}
3095
3096struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
3097					 bdaddr_t *bdaddr, u8 type)
3098{
3099	struct bdaddr_list *b;
3100
3101	list_for_each_entry(b, bdaddr_list, list) {
3102		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3103			return b;
3104	}
3105
3106	return NULL;
3107}
3108
3109struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
3110				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
3111				u8 type)
3112{
3113	struct bdaddr_list_with_irk *b;
3114
3115	list_for_each_entry(b, bdaddr_list, list) {
3116		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3117			return b;
3118	}
3119
3120	return NULL;
3121}
3122
3123struct bdaddr_list_with_flags *
3124hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
3125				  bdaddr_t *bdaddr, u8 type)
3126{
3127	struct bdaddr_list_with_flags *b;
3128
3129	list_for_each_entry(b, bdaddr_list, list) {
3130		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3131			return b;
3132	}
3133
3134	return NULL;
3135}
3136
3137void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
3138{
3139	struct bdaddr_list *b, *n;
3140
3141	list_for_each_entry_safe(b, n, bdaddr_list, list) {
3142		list_del(&b->list);
3143		kfree(b);
3144	}
3145}
3146
3147int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3148{
3149	struct bdaddr_list *entry;
3150
3151	if (!bacmp(bdaddr, BDADDR_ANY))
3152		return -EBADF;
3153
3154	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3155		return -EEXIST;
3156
3157	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3158	if (!entry)
3159		return -ENOMEM;
3160
3161	bacpy(&entry->bdaddr, bdaddr);
3162	entry->bdaddr_type = type;
3163
3164	list_add(&entry->list, list);
3165
3166	return 0;
3167}
3168
3169int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3170					u8 type, u8 *peer_irk, u8 *local_irk)
3171{
3172	struct bdaddr_list_with_irk *entry;
3173
3174	if (!bacmp(bdaddr, BDADDR_ANY))
3175		return -EBADF;
3176
3177	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3178		return -EEXIST;
3179
3180	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3181	if (!entry)
3182		return -ENOMEM;
3183
3184	bacpy(&entry->bdaddr, bdaddr);
3185	entry->bdaddr_type = type;
3186
3187	if (peer_irk)
3188		memcpy(entry->peer_irk, peer_irk, 16);
3189
3190	if (local_irk)
3191		memcpy(entry->local_irk, local_irk, 16);
3192
3193	list_add(&entry->list, list);
3194
3195	return 0;
3196}
3197
3198int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3199				   u8 type, u32 flags)
3200{
3201	struct bdaddr_list_with_flags *entry;
3202
3203	if (!bacmp(bdaddr, BDADDR_ANY))
3204		return -EBADF;
3205
3206	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3207		return -EEXIST;
3208
3209	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3210	if (!entry)
3211		return -ENOMEM;
3212
3213	bacpy(&entry->bdaddr, bdaddr);
3214	entry->bdaddr_type = type;
3215	entry->current_flags = flags;
3216
3217	list_add(&entry->list, list);
3218
3219	return 0;
3220}
3221
3222int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3223{
3224	struct bdaddr_list *entry;
3225
3226	if (!bacmp(bdaddr, BDADDR_ANY)) {
3227		hci_bdaddr_list_clear(list);
3228		return 0;
3229	}
3230
3231	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
3232	if (!entry)
3233		return -ENOENT;
3234
3235	list_del(&entry->list);
3236	kfree(entry);
3237
3238	return 0;
3239}
3240
3241int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3242							u8 type)
3243{
3244	struct bdaddr_list_with_irk *entry;
3245
3246	if (!bacmp(bdaddr, BDADDR_ANY)) {
3247		hci_bdaddr_list_clear(list);
3248		return 0;
3249	}
3250
3251	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
3252	if (!entry)
3253		return -ENOENT;
3254
3255	list_del(&entry->list);
3256	kfree(entry);
3257
3258	return 0;
3259}
3260
3261int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3262				   u8 type)
3263{
3264	struct bdaddr_list_with_flags *entry;
3265
3266	if (!bacmp(bdaddr, BDADDR_ANY)) {
3267		hci_bdaddr_list_clear(list);
3268		return 0;
3269	}
3270
3271	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
3272	if (!entry)
3273		return -ENOENT;
3274
3275	list_del(&entry->list);
3276	kfree(entry);
3277
3278	return 0;
3279}
3280
3281/* This function requires the caller holds hdev->lock */
3282struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3283					       bdaddr_t *addr, u8 addr_type)
3284{
3285	struct hci_conn_params *params;
3286
3287	list_for_each_entry(params, &hdev->le_conn_params, list) {
3288		if (bacmp(&params->addr, addr) == 0 &&
3289		    params->addr_type == addr_type) {
3290			return params;
3291		}
3292	}
3293
3294	return NULL;
3295}
3296
3297/* This function requires the caller holds hdev->lock */
3298struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3299						  bdaddr_t *addr, u8 addr_type)
3300{
3301	struct hci_conn_params *param;
3302
3303	switch (addr_type) {
3304	case ADDR_LE_DEV_PUBLIC_RESOLVED:
3305		addr_type = ADDR_LE_DEV_PUBLIC;
3306		break;
3307	case ADDR_LE_DEV_RANDOM_RESOLVED:
3308		addr_type = ADDR_LE_DEV_RANDOM;
3309		break;
3310	}
3311
3312	list_for_each_entry(param, list, action) {
3313		if (bacmp(&param->addr, addr) == 0 &&
3314		    param->addr_type == addr_type)
3315			return param;
3316	}
3317
3318	return NULL;
3319}
3320
3321/* This function requires the caller holds hdev->lock */
3322struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3323					    bdaddr_t *addr, u8 addr_type)
3324{
3325	struct hci_conn_params *params;
3326
3327	params = hci_conn_params_lookup(hdev, addr, addr_type);
3328	if (params)
3329		return params;
3330
3331	params = kzalloc(sizeof(*params), GFP_KERNEL);
3332	if (!params) {
3333		bt_dev_err(hdev, "out of memory");
3334		return NULL;
3335	}
3336
3337	bacpy(&params->addr, addr);
3338	params->addr_type = addr_type;
3339
3340	list_add(&params->list, &hdev->le_conn_params);
3341	INIT_LIST_HEAD(&params->action);
3342
3343	params->conn_min_interval = hdev->le_conn_min_interval;
3344	params->conn_max_interval = hdev->le_conn_max_interval;
3345	params->conn_latency = hdev->le_conn_latency;
3346	params->supervision_timeout = hdev->le_supv_timeout;
3347	params->auto_connect = HCI_AUTO_CONN_DISABLED;
3348
3349	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3350
3351	return params;
3352}
3353
3354static void hci_conn_params_free(struct hci_conn_params *params)
3355{
3356	if (params->conn) {
3357		hci_conn_drop(params->conn);
3358		hci_conn_put(params->conn);
3359	}
3360
3361	list_del(&params->action);
3362	list_del(&params->list);
3363	kfree(params);
3364}
3365
3366/* This function requires the caller holds hdev->lock */
3367void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3368{
3369	struct hci_conn_params *params;
3370
3371	params = hci_conn_params_lookup(hdev, addr, addr_type);
3372	if (!params)
3373		return;
3374
3375	hci_conn_params_free(params);
3376
3377	hci_update_background_scan(hdev);
3378
3379	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3380}
3381
3382/* This function requires the caller holds hdev->lock */
3383void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3384{
3385	struct hci_conn_params *params, *tmp;
3386
3387	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3388		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3389			continue;
3390
3391		/* If trying to estabilish one time connection to disabled
3392		 * device, leave the params, but mark them as just once.
3393		 */
3394		if (params->explicit_connect) {
3395			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3396			continue;
3397		}
3398
3399		list_del(&params->list);
3400		kfree(params);
3401	}
3402
3403	BT_DBG("All LE disabled connection parameters were removed");
3404}
3405
3406/* This function requires the caller holds hdev->lock */
3407static void hci_conn_params_clear_all(struct hci_dev *hdev)
3408{
3409	struct hci_conn_params *params, *tmp;
3410
3411	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3412		hci_conn_params_free(params);
3413
3414	BT_DBG("All LE connection parameters were removed");
3415}
3416
3417/* Copy the Identity Address of the controller.
3418 *
3419 * If the controller has a public BD_ADDR, then by default use that one.
3420 * If this is a LE only controller without a public address, default to
3421 * the static random address.
3422 *
3423 * For debugging purposes it is possible to force controllers with a
3424 * public address to use the static random address instead.
3425 *
3426 * In case BR/EDR has been disabled on a dual-mode controller and
3427 * userspace has configured a static address, then that address
3428 * becomes the identity address instead of the public BR/EDR address.
3429 */
3430void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3431			       u8 *bdaddr_type)
3432{
3433	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3434	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3435	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3436	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
3437		bacpy(bdaddr, &hdev->static_addr);
3438		*bdaddr_type = ADDR_LE_DEV_RANDOM;
3439	} else {
3440		bacpy(bdaddr, &hdev->bdaddr);
3441		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
3442	}
3443}
3444
3445static int hci_suspend_wait_event(struct hci_dev *hdev)
3446{
3447#define WAKE_COND                                                              \
3448	(find_first_bit(hdev->suspend_tasks, __SUSPEND_NUM_TASKS) ==           \
3449	 __SUSPEND_NUM_TASKS)
3450
3451	int i;
3452	int ret = wait_event_timeout(hdev->suspend_wait_q,
3453				     WAKE_COND, SUSPEND_NOTIFIER_TIMEOUT);
3454
3455	if (ret == 0) {
3456		bt_dev_err(hdev, "Timed out waiting for suspend events");
3457		for (i = 0; i < __SUSPEND_NUM_TASKS; ++i) {
3458			if (test_bit(i, hdev->suspend_tasks))
3459				bt_dev_err(hdev, "Suspend timeout bit: %d", i);
3460			clear_bit(i, hdev->suspend_tasks);
3461		}
3462
3463		ret = -ETIMEDOUT;
3464	} else {
3465		ret = 0;
3466	}
3467
3468	return ret;
3469}
3470
3471static void hci_prepare_suspend(struct work_struct *work)
3472{
3473	struct hci_dev *hdev =
3474		container_of(work, struct hci_dev, suspend_prepare);
3475
3476	hci_dev_lock(hdev);
3477	hci_req_prepare_suspend(hdev, hdev->suspend_state_next);
3478	hci_dev_unlock(hdev);
3479}
3480
3481static int hci_change_suspend_state(struct hci_dev *hdev,
3482				    enum suspended_state next)
3483{
3484	hdev->suspend_state_next = next;
3485	set_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
3486	queue_work(hdev->req_workqueue, &hdev->suspend_prepare);
3487	return hci_suspend_wait_event(hdev);
3488}
3489
3490static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
3491				void *data)
3492{
3493	struct hci_dev *hdev =
3494		container_of(nb, struct hci_dev, suspend_notifier);
3495	int ret = 0;
3496
3497	/* If powering down, wait for completion. */
3498	if (mgmt_powering_down(hdev)) {
3499		set_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks);
3500		ret = hci_suspend_wait_event(hdev);
3501		if (ret)
3502			goto done;
3503	}
3504
3505	/* Suspend notifier should only act on events when powered. */
3506	if (!hdev_is_powered(hdev))
3507		goto done;
3508
3509	if (action == PM_SUSPEND_PREPARE) {
3510		/* Suspend consists of two actions:
3511		 *  - First, disconnect everything and make the controller not
3512		 *    connectable (disabling scanning)
3513		 *  - Second, program event filter/whitelist and enable scan
3514		 */
3515		ret = hci_change_suspend_state(hdev, BT_SUSPEND_DISCONNECT);
3516
3517		/* Only configure whitelist if disconnect succeeded and wake
3518		 * isn't being prevented.
3519		 */
3520		if (!ret && !(hdev->prevent_wake && hdev->prevent_wake(hdev)))
3521			ret = hci_change_suspend_state(hdev,
3522						BT_SUSPEND_CONFIGURE_WAKE);
3523	} else if (action == PM_POST_SUSPEND) {
3524		ret = hci_change_suspend_state(hdev, BT_RUNNING);
3525	}
3526
3527done:
3528	/* We always allow suspend even if suspend preparation failed and
3529	 * attempt to recover in resume.
3530	 */
3531	if (ret)
3532		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
3533			   action, ret);
3534
3535	return NOTIFY_DONE;
3536}
3537
3538/* Alloc HCI device */
3539struct hci_dev *hci_alloc_dev(void)
3540{
3541	struct hci_dev *hdev;
3542
3543	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3544	if (!hdev)
3545		return NULL;
3546
3547	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3548	hdev->esco_type = (ESCO_HV1);
3549	hdev->link_mode = (HCI_LM_ACCEPT);
3550	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
3551	hdev->io_capability = 0x03;	/* No Input No Output */
3552	hdev->manufacturer = 0xffff;	/* Default to internal use */
3553	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3554	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3555	hdev->adv_instance_cnt = 0;
3556	hdev->cur_adv_instance = 0x00;
3557	hdev->adv_instance_timeout = 0;
3558
3559	hdev->sniff_max_interval = 800;
3560	hdev->sniff_min_interval = 80;
3561
3562	hdev->le_adv_channel_map = 0x07;
3563	hdev->le_adv_min_interval = 0x0800;
3564	hdev->le_adv_max_interval = 0x0800;
3565	hdev->le_scan_interval = 0x0060;
3566	hdev->le_scan_window = 0x0030;
3567	hdev->le_scan_int_suspend = 0x0400;
3568	hdev->le_scan_window_suspend = 0x0012;
3569	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
3570	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
3571	hdev->le_scan_int_connect = 0x0060;
3572	hdev->le_scan_window_connect = 0x0060;
3573	hdev->le_conn_min_interval = 0x0018;
3574	hdev->le_conn_max_interval = 0x0028;
3575	hdev->le_conn_latency = 0x0000;
3576	hdev->le_supv_timeout = 0x002a;
3577	hdev->le_def_tx_len = 0x001b;
3578	hdev->le_def_tx_time = 0x0148;
3579	hdev->le_max_tx_len = 0x001b;
3580	hdev->le_max_tx_time = 0x0148;
3581	hdev->le_max_rx_len = 0x001b;
3582	hdev->le_max_rx_time = 0x0148;
3583	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3584	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3585	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3586	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3587	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
3588	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
3589	hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
3590
3591	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3592	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3593	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3594	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3595	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
3596	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
3597
3598	/* default 1.28 sec page scan */
3599	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
3600	hdev->def_page_scan_int = 0x0800;
3601	hdev->def_page_scan_window = 0x0012;
3602
3603	mutex_init(&hdev->lock);
3604	mutex_init(&hdev->req_lock);
3605
3606	INIT_LIST_HEAD(&hdev->mgmt_pending);
3607	INIT_LIST_HEAD(&hdev->blacklist);
3608	INIT_LIST_HEAD(&hdev->whitelist);
3609	INIT_LIST_HEAD(&hdev->uuids);
3610	INIT_LIST_HEAD(&hdev->link_keys);
3611	INIT_LIST_HEAD(&hdev->long_term_keys);
3612	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3613	INIT_LIST_HEAD(&hdev->remote_oob_data);
3614	INIT_LIST_HEAD(&hdev->le_white_list);
3615	INIT_LIST_HEAD(&hdev->le_resolv_list);
3616	INIT_LIST_HEAD(&hdev->le_conn_params);
3617	INIT_LIST_HEAD(&hdev->pend_le_conns);
3618	INIT_LIST_HEAD(&hdev->pend_le_reports);
3619	INIT_LIST_HEAD(&hdev->conn_hash.list);
3620	INIT_LIST_HEAD(&hdev->adv_instances);
3621	INIT_LIST_HEAD(&hdev->blocked_keys);
3622
3623	INIT_WORK(&hdev->rx_work, hci_rx_work);
3624	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3625	INIT_WORK(&hdev->tx_work, hci_tx_work);
3626	INIT_WORK(&hdev->power_on, hci_power_on);
3627	INIT_WORK(&hdev->error_reset, hci_error_reset);
3628	INIT_WORK(&hdev->suspend_prepare, hci_prepare_suspend);
3629
3630	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3631
3632	skb_queue_head_init(&hdev->rx_q);
3633	skb_queue_head_init(&hdev->cmd_q);
3634	skb_queue_head_init(&hdev->raw_q);
3635
3636	init_waitqueue_head(&hdev->req_wait_q);
3637	init_waitqueue_head(&hdev->suspend_wait_q);
3638
3639	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3640
3641	hci_request_setup(hdev);
3642
3643	hci_init_sysfs(hdev);
3644	discovery_init(hdev);
3645
3646	return hdev;
3647}
3648EXPORT_SYMBOL(hci_alloc_dev);
3649
3650/* Free HCI device */
3651void hci_free_dev(struct hci_dev *hdev)
3652{
3653	/* will free via device release */
3654	put_device(&hdev->dev);
3655}
3656EXPORT_SYMBOL(hci_free_dev);
3657
3658/* Register HCI device */
3659int hci_register_dev(struct hci_dev *hdev)
3660{
3661	int id, error;
3662
3663	if (!hdev->open || !hdev->close || !hdev->send)
3664		return -EINVAL;
3665
3666	/* Do not allow HCI_AMP devices to register at index 0,
3667	 * so the index can be used as the AMP controller ID.
3668	 */
3669	switch (hdev->dev_type) {
3670	case HCI_PRIMARY:
3671		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3672		break;
3673	case HCI_AMP:
3674		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3675		break;
3676	default:
3677		return -EINVAL;
3678	}
3679
3680	if (id < 0)
3681		return id;
3682
3683	sprintf(hdev->name, "hci%d", id);
3684	hdev->id = id;
3685
3686	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3687
3688	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3689	if (!hdev->workqueue) {
3690		error = -ENOMEM;
3691		goto err;
3692	}
3693
3694	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3695						      hdev->name);
3696	if (!hdev->req_workqueue) {
3697		destroy_workqueue(hdev->workqueue);
3698		error = -ENOMEM;
3699		goto err;
3700	}
3701
3702	if (!IS_ERR_OR_NULL(bt_debugfs))
3703		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3704
3705	dev_set_name(&hdev->dev, "%s", hdev->name);
3706
3707	error = device_add(&hdev->dev);
3708	if (error < 0)
3709		goto err_wqueue;
3710
3711	hci_leds_init(hdev);
3712
3713	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3714				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3715				    hdev);
3716	if (hdev->rfkill) {
3717		if (rfkill_register(hdev->rfkill) < 0) {
3718			rfkill_destroy(hdev->rfkill);
3719			hdev->rfkill = NULL;
3720		}
3721	}
3722
3723	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3724		hci_dev_set_flag(hdev, HCI_RFKILLED);
3725
3726	hci_dev_set_flag(hdev, HCI_SETUP);
3727	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3728
3729	if (hdev->dev_type == HCI_PRIMARY) {
3730		/* Assume BR/EDR support until proven otherwise (such as
3731		 * through reading supported features during init.
3732		 */
3733		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3734	}
3735
3736	write_lock(&hci_dev_list_lock);
3737	list_add(&hdev->list, &hci_dev_list);
3738	write_unlock(&hci_dev_list_lock);
3739
3740	/* Devices that are marked for raw-only usage are unconfigured
3741	 * and should not be included in normal operation.
3742	 */
3743	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3744		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3745
3746	hci_sock_dev_event(hdev, HCI_DEV_REG);
3747	hci_dev_hold(hdev);
3748
3749	hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
3750	error = register_pm_notifier(&hdev->suspend_notifier);
3751	if (error)
3752		goto err_wqueue;
3753
3754	queue_work(hdev->req_workqueue, &hdev->power_on);
3755
3756	idr_init(&hdev->adv_monitors_idr);
3757
3758	return id;
3759
3760err_wqueue:
3761	destroy_workqueue(hdev->workqueue);
3762	destroy_workqueue(hdev->req_workqueue);
3763err:
3764	ida_simple_remove(&hci_index_ida, hdev->id);
3765
3766	return error;
3767}
3768EXPORT_SYMBOL(hci_register_dev);
3769
3770/* Unregister HCI device */
3771void hci_unregister_dev(struct hci_dev *hdev)
3772{
3773	int id;
3774
3775	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3776
3777	hci_dev_set_flag(hdev, HCI_UNREGISTER);
3778
3779	id = hdev->id;
3780
3781	write_lock(&hci_dev_list_lock);
3782	list_del(&hdev->list);
3783	write_unlock(&hci_dev_list_lock);
3784
3785	cancel_work_sync(&hdev->power_on);
3786
3787	unregister_pm_notifier(&hdev->suspend_notifier);
3788	cancel_work_sync(&hdev->suspend_prepare);
3789
3790	hci_dev_do_close(hdev);
3791
3792	if (!test_bit(HCI_INIT, &hdev->flags) &&
3793	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
3794	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3795		hci_dev_lock(hdev);
3796		mgmt_index_removed(hdev);
3797		hci_dev_unlock(hdev);
3798	}
3799
3800	/* mgmt_index_removed should take care of emptying the
3801	 * pending list */
3802	BUG_ON(!list_empty(&hdev->mgmt_pending));
3803
3804	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3805
3806	if (hdev->rfkill) {
3807		rfkill_unregister(hdev->rfkill);
3808		rfkill_destroy(hdev->rfkill);
3809	}
3810
3811	device_del(&hdev->dev);
3812
3813	debugfs_remove_recursive(hdev->debugfs);
3814	kfree_const(hdev->hw_info);
3815	kfree_const(hdev->fw_info);
3816
3817	destroy_workqueue(hdev->workqueue);
3818	destroy_workqueue(hdev->req_workqueue);
3819
3820	hci_dev_lock(hdev);
3821	hci_bdaddr_list_clear(&hdev->blacklist);
3822	hci_bdaddr_list_clear(&hdev->whitelist);
3823	hci_uuids_clear(hdev);
3824	hci_link_keys_clear(hdev);
3825	hci_smp_ltks_clear(hdev);
3826	hci_smp_irks_clear(hdev);
3827	hci_remote_oob_data_clear(hdev);
3828	hci_adv_instances_clear(hdev);
3829	hci_adv_monitors_clear(hdev);
3830	hci_bdaddr_list_clear(&hdev->le_white_list);
3831	hci_bdaddr_list_clear(&hdev->le_resolv_list);
3832	hci_conn_params_clear_all(hdev);
3833	hci_discovery_filter_clear(hdev);
3834	hci_blocked_keys_clear(hdev);
3835	hci_dev_unlock(hdev);
3836
3837	hci_dev_put(hdev);
3838
3839	ida_simple_remove(&hci_index_ida, id);
3840}
3841EXPORT_SYMBOL(hci_unregister_dev);
3842
3843/* Suspend HCI device */
3844int hci_suspend_dev(struct hci_dev *hdev)
3845{
3846	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3847	return 0;
3848}
3849EXPORT_SYMBOL(hci_suspend_dev);
3850
3851/* Resume HCI device */
3852int hci_resume_dev(struct hci_dev *hdev)
3853{
3854	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3855	return 0;
3856}
3857EXPORT_SYMBOL(hci_resume_dev);
3858
3859/* Reset HCI device */
3860int hci_reset_dev(struct hci_dev *hdev)
3861{
3862	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3863	struct sk_buff *skb;
3864
3865	skb = bt_skb_alloc(3, GFP_ATOMIC);
3866	if (!skb)
3867		return -ENOMEM;
3868
3869	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3870	skb_put_data(skb, hw_err, 3);
3871
3872	/* Send Hardware Error to upper stack */
3873	return hci_recv_frame(hdev, skb);
3874}
3875EXPORT_SYMBOL(hci_reset_dev);
3876
3877/* Receive frame from HCI drivers */
3878int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3879{
3880	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3881		      && !test_bit(HCI_INIT, &hdev->flags))) {
3882		kfree_skb(skb);
3883		return -ENXIO;
3884	}
3885
3886	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3887	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3888	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
3889	    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
3890		kfree_skb(skb);
3891		return -EINVAL;
3892	}
3893
3894	/* Incoming skb */
3895	bt_cb(skb)->incoming = 1;
3896
3897	/* Time stamp */
3898	__net_timestamp(skb);
3899
3900	skb_queue_tail(&hdev->rx_q, skb);
3901	queue_work(hdev->workqueue, &hdev->rx_work);
3902
3903	return 0;
3904}
3905EXPORT_SYMBOL(hci_recv_frame);
3906
3907/* Receive diagnostic message from HCI drivers */
3908int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3909{
3910	/* Mark as diagnostic packet */
3911	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3912
3913	/* Time stamp */
3914	__net_timestamp(skb);
3915
3916	skb_queue_tail(&hdev->rx_q, skb);
3917	queue_work(hdev->workqueue, &hdev->rx_work);
3918
3919	return 0;
3920}
3921EXPORT_SYMBOL(hci_recv_diag);
3922
3923void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3924{
3925	va_list vargs;
3926
3927	va_start(vargs, fmt);
3928	kfree_const(hdev->hw_info);
3929	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3930	va_end(vargs);
3931}
3932EXPORT_SYMBOL(hci_set_hw_info);
3933
3934void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3935{
3936	va_list vargs;
3937
3938	va_start(vargs, fmt);
3939	kfree_const(hdev->fw_info);
3940	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3941	va_end(vargs);
3942}
3943EXPORT_SYMBOL(hci_set_fw_info);
3944
3945/* ---- Interface to upper protocols ---- */
3946
3947int hci_register_cb(struct hci_cb *cb)
3948{
3949	BT_DBG("%p name %s", cb, cb->name);
3950
3951	mutex_lock(&hci_cb_list_lock);
3952	list_add_tail(&cb->list, &hci_cb_list);
3953	mutex_unlock(&hci_cb_list_lock);
3954
3955	return 0;
3956}
3957EXPORT_SYMBOL(hci_register_cb);
3958
3959int hci_unregister_cb(struct hci_cb *cb)
3960{
3961	BT_DBG("%p name %s", cb, cb->name);
3962
3963	mutex_lock(&hci_cb_list_lock);
3964	list_del(&cb->list);
3965	mutex_unlock(&hci_cb_list_lock);
3966
3967	return 0;
3968}
3969EXPORT_SYMBOL(hci_unregister_cb);
3970
3971static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3972{
3973	int err;
3974
3975	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3976	       skb->len);
3977
3978	/* Time stamp */
3979	__net_timestamp(skb);
3980
3981	/* Send copy to monitor */
3982	hci_send_to_monitor(hdev, skb);
3983
3984	if (atomic_read(&hdev->promisc)) {
3985		/* Send copy to the sockets */
3986		hci_send_to_sock(hdev, skb);
3987	}
3988
3989	/* Get rid of skb owner, prior to sending to the driver. */
3990	skb_orphan(skb);
3991
3992	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3993		kfree_skb(skb);
3994		return;
3995	}
3996
3997	err = hdev->send(hdev, skb);
3998	if (err < 0) {
3999		bt_dev_err(hdev, "sending frame failed (%d)", err);
4000		kfree_skb(skb);
4001	}
4002}
4003
4004/* Send HCI command */
4005int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
4006		 const void *param)
4007{
4008	struct sk_buff *skb;
4009
4010	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
4011
4012	skb = hci_prepare_cmd(hdev, opcode, plen, param);
4013	if (!skb) {
4014		bt_dev_err(hdev, "no memory for command");
4015		return -ENOMEM;
4016	}
4017
4018	/* Stand-alone HCI commands must be flagged as
4019	 * single-command requests.
4020	 */
4021	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
4022
4023	skb_queue_tail(&hdev->cmd_q, skb);
4024	queue_work(hdev->workqueue, &hdev->cmd_work);
4025
4026	return 0;
4027}
4028
4029int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
4030		   const void *param)
4031{
4032	struct sk_buff *skb;
4033
4034	if (hci_opcode_ogf(opcode) != 0x3f) {
4035		/* A controller receiving a command shall respond with either
4036		 * a Command Status Event or a Command Complete Event.
4037		 * Therefore, all standard HCI commands must be sent via the
4038		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
4039		 * Some vendors do not comply with this rule for vendor-specific
4040		 * commands and do not return any event. We want to support
4041		 * unresponded commands for such cases only.
4042		 */
4043		bt_dev_err(hdev, "unresponded command not supported");
4044		return -EINVAL;
4045	}
4046
4047	skb = hci_prepare_cmd(hdev, opcode, plen, param);
4048	if (!skb) {
4049		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
4050			   opcode);
4051		return -ENOMEM;
4052	}
4053
4054	hci_send_frame(hdev, skb);
4055
4056	return 0;
4057}
4058EXPORT_SYMBOL(__hci_cmd_send);
4059
4060/* Get data from the previously sent command */
4061void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
4062{
4063	struct hci_command_hdr *hdr;
4064
4065	if (!hdev->sent_cmd)
4066		return NULL;
4067
4068	hdr = (void *) hdev->sent_cmd->data;
4069
4070	if (hdr->opcode != cpu_to_le16(opcode))
4071		return NULL;
4072
4073	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
4074
4075	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
4076}
4077
4078/* Send HCI command and wait for command commplete event */
4079struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
4080			     const void *param, u32 timeout)
4081{
4082	struct sk_buff *skb;
4083
4084	if (!test_bit(HCI_UP, &hdev->flags))
4085		return ERR_PTR(-ENETDOWN);
4086
4087	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
4088
4089	hci_req_sync_lock(hdev);
4090	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
4091	hci_req_sync_unlock(hdev);
4092
4093	return skb;
4094}
4095EXPORT_SYMBOL(hci_cmd_sync);
4096
4097/* Send ACL data */
4098static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
4099{
4100	struct hci_acl_hdr *hdr;
4101	int len = skb->len;
4102
4103	skb_push(skb, HCI_ACL_HDR_SIZE);
4104	skb_reset_transport_header(skb);
4105	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
4106	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
4107	hdr->dlen   = cpu_to_le16(len);
4108}
4109
4110static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
4111			  struct sk_buff *skb, __u16 flags)
4112{
4113	struct hci_conn *conn = chan->conn;
4114	struct hci_dev *hdev = conn->hdev;
4115	struct sk_buff *list;
4116
4117	skb->len = skb_headlen(skb);
4118	skb->data_len = 0;
4119
4120	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4121
4122	switch (hdev->dev_type) {
4123	case HCI_PRIMARY:
4124		hci_add_acl_hdr(skb, conn->handle, flags);
4125		break;
4126	case HCI_AMP:
4127		hci_add_acl_hdr(skb, chan->handle, flags);
4128		break;
4129	default:
4130		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
4131		return;
4132	}
4133
4134	list = skb_shinfo(skb)->frag_list;
4135	if (!list) {
4136		/* Non fragmented */
4137		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
4138
4139		skb_queue_tail(queue, skb);
4140	} else {
4141		/* Fragmented */
4142		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4143
4144		skb_shinfo(skb)->frag_list = NULL;
4145
4146		/* Queue all fragments atomically. We need to use spin_lock_bh
4147		 * here because of 6LoWPAN links, as there this function is
4148		 * called from softirq and using normal spin lock could cause
4149		 * deadlocks.
4150		 */
4151		spin_lock_bh(&queue->lock);
4152
4153		__skb_queue_tail(queue, skb);
4154
4155		flags &= ~ACL_START;
4156		flags |= ACL_CONT;
4157		do {
4158			skb = list; list = list->next;
4159
4160			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4161			hci_add_acl_hdr(skb, conn->handle, flags);
4162
4163			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4164
4165			__skb_queue_tail(queue, skb);
4166		} while (list);
4167
4168		spin_unlock_bh(&queue->lock);
4169	}
4170}
4171
4172void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
4173{
4174	struct hci_dev *hdev = chan->conn->hdev;
4175
4176	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
4177
4178	hci_queue_acl(chan, &chan->data_q, skb, flags);
4179
4180	queue_work(hdev->workqueue, &hdev->tx_work);
4181}
4182
4183/* Send SCO data */
4184void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
4185{
4186	struct hci_dev *hdev = conn->hdev;
4187	struct hci_sco_hdr hdr;
4188
4189	BT_DBG("%s len %d", hdev->name, skb->len);
4190
4191	hdr.handle = cpu_to_le16(conn->handle);
4192	hdr.dlen   = skb->len;
4193
4194	skb_push(skb, HCI_SCO_HDR_SIZE);
4195	skb_reset_transport_header(skb);
4196	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
4197
4198	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
4199
4200	skb_queue_tail(&conn->data_q, skb);
4201	queue_work(hdev->workqueue, &hdev->tx_work);
4202}
4203
4204/* ---- HCI TX task (outgoing data) ---- */
4205
4206/* HCI Connection scheduler */
4207static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
4208				     int *quote)
4209{
4210	struct hci_conn_hash *h = &hdev->conn_hash;
4211	struct hci_conn *conn = NULL, *c;
4212	unsigned int num = 0, min = ~0;
4213
4214	/* We don't have to lock device here. Connections are always
4215	 * added and removed with TX task disabled. */
4216
4217	rcu_read_lock();
4218
4219	list_for_each_entry_rcu(c, &h->list, list) {
4220		if (c->type != type || skb_queue_empty(&c->data_q))
4221			continue;
4222
4223		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
4224			continue;
4225
4226		num++;
4227
4228		if (c->sent < min) {
4229			min  = c->sent;
4230			conn = c;
4231		}
4232
4233		if (hci_conn_num(hdev, type) == num)
4234			break;
4235	}
4236
4237	rcu_read_unlock();
4238
4239	if (conn) {
4240		int cnt, q;
4241
4242		switch (conn->type) {
4243		case ACL_LINK:
4244			cnt = hdev->acl_cnt;
4245			break;
4246		case SCO_LINK:
4247		case ESCO_LINK:
4248			cnt = hdev->sco_cnt;
4249			break;
4250		case LE_LINK:
4251			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4252			break;
4253		default:
4254			cnt = 0;
4255			bt_dev_err(hdev, "unknown link type %d", conn->type);
4256		}
4257
4258		q = cnt / num;
4259		*quote = q ? q : 1;
4260	} else
4261		*quote = 0;
4262
4263	BT_DBG("conn %p quote %d", conn, *quote);
4264	return conn;
4265}
4266
4267static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
4268{
4269	struct hci_conn_hash *h = &hdev->conn_hash;
4270	struct hci_conn *c;
4271
4272	bt_dev_err(hdev, "link tx timeout");
4273
4274	rcu_read_lock();
4275
4276	/* Kill stalled connections */
4277	list_for_each_entry_rcu(c, &h->list, list) {
4278		if (c->type == type && c->sent) {
4279			bt_dev_err(hdev, "killing stalled connection %pMR",
4280				   &c->dst);
4281			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
4282		}
4283	}
4284
4285	rcu_read_unlock();
4286}
4287
4288static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
4289				      int *quote)
4290{
4291	struct hci_conn_hash *h = &hdev->conn_hash;
4292	struct hci_chan *chan = NULL;
4293	unsigned int num = 0, min = ~0, cur_prio = 0;
4294	struct hci_conn *conn;
4295	int cnt, q, conn_num = 0;
4296
4297	BT_DBG("%s", hdev->name);
4298
4299	rcu_read_lock();
4300
4301	list_for_each_entry_rcu(conn, &h->list, list) {
4302		struct hci_chan *tmp;
4303
4304		if (conn->type != type)
4305			continue;
4306
4307		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4308			continue;
4309
4310		conn_num++;
4311
4312		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
4313			struct sk_buff *skb;
4314
4315			if (skb_queue_empty(&tmp->data_q))
4316				continue;
4317
4318			skb = skb_peek(&tmp->data_q);
4319			if (skb->priority < cur_prio)
4320				continue;
4321
4322			if (skb->priority > cur_prio) {
4323				num = 0;
4324				min = ~0;
4325				cur_prio = skb->priority;
4326			}
4327
4328			num++;
4329
4330			if (conn->sent < min) {
4331				min  = conn->sent;
4332				chan = tmp;
4333			}
4334		}
4335
4336		if (hci_conn_num(hdev, type) == conn_num)
4337			break;
4338	}
4339
4340	rcu_read_unlock();
4341
4342	if (!chan)
4343		return NULL;
4344
4345	switch (chan->conn->type) {
4346	case ACL_LINK:
4347		cnt = hdev->acl_cnt;
4348		break;
4349	case AMP_LINK:
4350		cnt = hdev->block_cnt;
4351		break;
4352	case SCO_LINK:
4353	case ESCO_LINK:
4354		cnt = hdev->sco_cnt;
4355		break;
4356	case LE_LINK:
4357		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4358		break;
4359	default:
4360		cnt = 0;
4361		bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
4362	}
4363
4364	q = cnt / num;
4365	*quote = q ? q : 1;
4366	BT_DBG("chan %p quote %d", chan, *quote);
4367	return chan;
4368}
4369
4370static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
4371{
4372	struct hci_conn_hash *h = &hdev->conn_hash;
4373	struct hci_conn *conn;
4374	int num = 0;
4375
4376	BT_DBG("%s", hdev->name);
4377
4378	rcu_read_lock();
4379
4380	list_for_each_entry_rcu(conn, &h->list, list) {
4381		struct hci_chan *chan;
4382
4383		if (conn->type != type)
4384			continue;
4385
4386		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4387			continue;
4388
4389		num++;
4390
4391		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
4392			struct sk_buff *skb;
4393
4394			if (chan->sent) {
4395				chan->sent = 0;
4396				continue;
4397			}
4398
4399			if (skb_queue_empty(&chan->data_q))
4400				continue;
4401
4402			skb = skb_peek(&chan->data_q);
4403			if (skb->priority >= HCI_PRIO_MAX - 1)
4404				continue;
4405
4406			skb->priority = HCI_PRIO_MAX - 1;
4407
4408			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
4409			       skb->priority);
4410		}
4411
4412		if (hci_conn_num(hdev, type) == num)
4413			break;
4414	}
4415
4416	rcu_read_unlock();
4417
4418}
4419
4420static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4421{
4422	/* Calculate count of blocks used by this packet */
4423	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4424}
4425
4426static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4427{
4428	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4429		/* ACL tx timeout must be longer than maximum
4430		 * link supervision timeout (40.9 seconds) */
4431		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4432				       HCI_ACL_TX_TIMEOUT))
4433			hci_link_tx_to(hdev, ACL_LINK);
4434	}
4435}
4436
4437/* Schedule SCO */
4438static void hci_sched_sco(struct hci_dev *hdev)
4439{
4440	struct hci_conn *conn;
4441	struct sk_buff *skb;
4442	int quote;
4443
4444	BT_DBG("%s", hdev->name);
4445
4446	if (!hci_conn_num(hdev, SCO_LINK))
4447		return;
4448
4449	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
4450		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4451			BT_DBG("skb %p len %d", skb, skb->len);
4452			hci_send_frame(hdev, skb);
4453
4454			conn->sent++;
4455			if (conn->sent == ~0)
4456				conn->sent = 0;
4457		}
4458	}
4459}
4460
4461static void hci_sched_esco(struct hci_dev *hdev)
4462{
4463	struct hci_conn *conn;
4464	struct sk_buff *skb;
4465	int quote;
4466
4467	BT_DBG("%s", hdev->name);
4468
4469	if (!hci_conn_num(hdev, ESCO_LINK))
4470		return;
4471
4472	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4473						     &quote))) {
4474		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4475			BT_DBG("skb %p len %d", skb, skb->len);
4476			hci_send_frame(hdev, skb);
4477
4478			conn->sent++;
4479			if (conn->sent == ~0)
4480				conn->sent = 0;
4481		}
4482	}
4483}
4484
4485static void hci_sched_acl_pkt(struct hci_dev *hdev)
4486{
4487	unsigned int cnt = hdev->acl_cnt;
4488	struct hci_chan *chan;
4489	struct sk_buff *skb;
4490	int quote;
4491
4492	__check_timeout(hdev, cnt);
4493
4494	while (hdev->acl_cnt &&
4495	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
4496		u32 priority = (skb_peek(&chan->data_q))->priority;
4497		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4498			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4499			       skb->len, skb->priority);
4500
4501			/* Stop if priority has changed */
4502			if (skb->priority < priority)
4503				break;
4504
4505			skb = skb_dequeue(&chan->data_q);
4506
4507			hci_conn_enter_active_mode(chan->conn,
4508						   bt_cb(skb)->force_active);
4509
4510			hci_send_frame(hdev, skb);
4511			hdev->acl_last_tx = jiffies;
4512
4513			hdev->acl_cnt--;
4514			chan->sent++;
4515			chan->conn->sent++;
4516
4517			/* Send pending SCO packets right away */
4518			hci_sched_sco(hdev);
4519			hci_sched_esco(hdev);
4520		}
4521	}
4522
4523	if (cnt != hdev->acl_cnt)
4524		hci_prio_recalculate(hdev, ACL_LINK);
4525}
4526
4527static void hci_sched_acl_blk(struct hci_dev *hdev)
4528{
4529	unsigned int cnt = hdev->block_cnt;
4530	struct hci_chan *chan;
4531	struct sk_buff *skb;
4532	int quote;
4533	u8 type;
4534
4535	__check_timeout(hdev, cnt);
4536
4537	BT_DBG("%s", hdev->name);
4538
4539	if (hdev->dev_type == HCI_AMP)
4540		type = AMP_LINK;
4541	else
4542		type = ACL_LINK;
4543
4544	while (hdev->block_cnt > 0 &&
4545	       (chan = hci_chan_sent(hdev, type, &quote))) {
4546		u32 priority = (skb_peek(&chan->data_q))->priority;
4547		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4548			int blocks;
4549
4550			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4551			       skb->len, skb->priority);
4552
4553			/* Stop if priority has changed */
4554			if (skb->priority < priority)
4555				break;
4556
4557			skb = skb_dequeue(&chan->data_q);
4558
4559			blocks = __get_blocks(hdev, skb);
4560			if (blocks > hdev->block_cnt)
4561				return;
4562
4563			hci_conn_enter_active_mode(chan->conn,
4564						   bt_cb(skb)->force_active);
4565
4566			hci_send_frame(hdev, skb);
4567			hdev->acl_last_tx = jiffies;
4568
4569			hdev->block_cnt -= blocks;
4570			quote -= blocks;
4571
4572			chan->sent += blocks;
4573			chan->conn->sent += blocks;
4574		}
4575	}
4576
4577	if (cnt != hdev->block_cnt)
4578		hci_prio_recalculate(hdev, type);
4579}
4580
4581static void hci_sched_acl(struct hci_dev *hdev)
4582{
4583	BT_DBG("%s", hdev->name);
4584
4585	/* No ACL link over BR/EDR controller */
4586	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4587		return;
4588
4589	/* No AMP link over AMP controller */
4590	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4591		return;
4592
4593	switch (hdev->flow_ctl_mode) {
4594	case HCI_FLOW_CTL_MODE_PACKET_BASED:
4595		hci_sched_acl_pkt(hdev);
4596		break;
4597
4598	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4599		hci_sched_acl_blk(hdev);
4600		break;
4601	}
4602}
4603
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4604static void hci_sched_le(struct hci_dev *hdev)
4605{
4606	struct hci_chan *chan;
4607	struct sk_buff *skb;
4608	int quote, cnt, tmp;
4609
4610	BT_DBG("%s", hdev->name);
4611
4612	if (!hci_conn_num(hdev, LE_LINK))
4613		return;
4614
 
 
 
 
 
 
 
 
4615	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4616
4617	__check_timeout(hdev, cnt);
4618
4619	tmp = cnt;
4620	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
4621		u32 priority = (skb_peek(&chan->data_q))->priority;
4622		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4623			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4624			       skb->len, skb->priority);
4625
4626			/* Stop if priority has changed */
4627			if (skb->priority < priority)
4628				break;
4629
4630			skb = skb_dequeue(&chan->data_q);
4631
4632			hci_send_frame(hdev, skb);
4633			hdev->le_last_tx = jiffies;
4634
4635			cnt--;
4636			chan->sent++;
4637			chan->conn->sent++;
4638
4639			/* Send pending SCO packets right away */
4640			hci_sched_sco(hdev);
4641			hci_sched_esco(hdev);
4642		}
4643	}
4644
4645	if (hdev->le_pkts)
4646		hdev->le_cnt = cnt;
4647	else
4648		hdev->acl_cnt = cnt;
4649
4650	if (cnt != tmp)
4651		hci_prio_recalculate(hdev, LE_LINK);
4652}
4653
4654static void hci_tx_work(struct work_struct *work)
4655{
4656	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4657	struct sk_buff *skb;
4658
4659	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4660	       hdev->sco_cnt, hdev->le_cnt);
4661
4662	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4663		/* Schedule queues and send stuff to HCI driver */
 
4664		hci_sched_sco(hdev);
4665		hci_sched_esco(hdev);
4666		hci_sched_acl(hdev);
4667		hci_sched_le(hdev);
4668	}
4669
4670	/* Send next queued raw (unknown type) packet */
4671	while ((skb = skb_dequeue(&hdev->raw_q)))
4672		hci_send_frame(hdev, skb);
4673}
4674
4675/* ----- HCI RX task (incoming data processing) ----- */
4676
4677/* ACL data packet */
4678static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4679{
4680	struct hci_acl_hdr *hdr = (void *) skb->data;
4681	struct hci_conn *conn;
4682	__u16 handle, flags;
4683
4684	skb_pull(skb, HCI_ACL_HDR_SIZE);
4685
4686	handle = __le16_to_cpu(hdr->handle);
4687	flags  = hci_flags(handle);
4688	handle = hci_handle(handle);
4689
4690	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4691	       handle, flags);
4692
4693	hdev->stat.acl_rx++;
4694
4695	hci_dev_lock(hdev);
4696	conn = hci_conn_hash_lookup_handle(hdev, handle);
4697	hci_dev_unlock(hdev);
4698
4699	if (conn) {
4700		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4701
4702		/* Send to upper protocol */
4703		l2cap_recv_acldata(conn, skb, flags);
4704		return;
4705	} else {
4706		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4707			   handle);
4708	}
4709
4710	kfree_skb(skb);
4711}
4712
4713/* SCO data packet */
4714static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4715{
4716	struct hci_sco_hdr *hdr = (void *) skb->data;
4717	struct hci_conn *conn;
4718	__u16 handle, flags;
4719
4720	skb_pull(skb, HCI_SCO_HDR_SIZE);
4721
4722	handle = __le16_to_cpu(hdr->handle);
4723	flags  = hci_flags(handle);
4724	handle = hci_handle(handle);
4725
4726	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4727	       handle, flags);
4728
4729	hdev->stat.sco_rx++;
4730
4731	hci_dev_lock(hdev);
4732	conn = hci_conn_hash_lookup_handle(hdev, handle);
4733	hci_dev_unlock(hdev);
4734
4735	if (conn) {
4736		/* Send to upper protocol */
4737		bt_cb(skb)->sco.pkt_status = flags & 0x03;
4738		sco_recv_scodata(conn, skb);
4739		return;
4740	} else {
4741		bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
4742			   handle);
4743	}
4744
4745	kfree_skb(skb);
4746}
4747
4748static bool hci_req_is_complete(struct hci_dev *hdev)
4749{
4750	struct sk_buff *skb;
4751
4752	skb = skb_peek(&hdev->cmd_q);
4753	if (!skb)
4754		return true;
4755
4756	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4757}
4758
4759static void hci_resend_last(struct hci_dev *hdev)
4760{
4761	struct hci_command_hdr *sent;
4762	struct sk_buff *skb;
4763	u16 opcode;
4764
4765	if (!hdev->sent_cmd)
4766		return;
4767
4768	sent = (void *) hdev->sent_cmd->data;
4769	opcode = __le16_to_cpu(sent->opcode);
4770	if (opcode == HCI_OP_RESET)
4771		return;
4772
4773	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4774	if (!skb)
4775		return;
4776
4777	skb_queue_head(&hdev->cmd_q, skb);
4778	queue_work(hdev->workqueue, &hdev->cmd_work);
4779}
4780
4781void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4782			  hci_req_complete_t *req_complete,
4783			  hci_req_complete_skb_t *req_complete_skb)
4784{
4785	struct sk_buff *skb;
4786	unsigned long flags;
4787
4788	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4789
4790	/* If the completed command doesn't match the last one that was
4791	 * sent we need to do special handling of it.
4792	 */
4793	if (!hci_sent_cmd_data(hdev, opcode)) {
4794		/* Some CSR based controllers generate a spontaneous
4795		 * reset complete event during init and any pending
4796		 * command will never be completed. In such a case we
4797		 * need to resend whatever was the last sent
4798		 * command.
4799		 */
4800		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4801			hci_resend_last(hdev);
4802
4803		return;
4804	}
4805
4806	/* If we reach this point this event matches the last command sent */
4807	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4808
4809	/* If the command succeeded and there's still more commands in
4810	 * this request the request is not yet complete.
4811	 */
4812	if (!status && !hci_req_is_complete(hdev))
4813		return;
4814
4815	/* If this was the last command in a request the complete
4816	 * callback would be found in hdev->sent_cmd instead of the
4817	 * command queue (hdev->cmd_q).
4818	 */
4819	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4820		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4821		return;
4822	}
4823
4824	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4825		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4826		return;
4827	}
4828
4829	/* Remove all pending commands belonging to this request */
4830	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4831	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4832		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4833			__skb_queue_head(&hdev->cmd_q, skb);
4834			break;
4835		}
4836
4837		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4838			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4839		else
4840			*req_complete = bt_cb(skb)->hci.req_complete;
4841		kfree_skb(skb);
4842	}
4843	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4844}
4845
4846static void hci_rx_work(struct work_struct *work)
4847{
4848	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4849	struct sk_buff *skb;
4850
4851	BT_DBG("%s", hdev->name);
4852
4853	while ((skb = skb_dequeue(&hdev->rx_q))) {
4854		/* Send copy to monitor */
4855		hci_send_to_monitor(hdev, skb);
4856
4857		if (atomic_read(&hdev->promisc)) {
4858			/* Send copy to the sockets */
4859			hci_send_to_sock(hdev, skb);
4860		}
4861
4862		/* If the device has been opened in HCI_USER_CHANNEL,
4863		 * the userspace has exclusive access to device.
4864		 * When device is HCI_INIT, we still need to process
4865		 * the data packets to the driver in order
4866		 * to complete its setup().
4867		 */
4868		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4869		    !test_bit(HCI_INIT, &hdev->flags)) {
4870			kfree_skb(skb);
4871			continue;
4872		}
4873
4874		if (test_bit(HCI_INIT, &hdev->flags)) {
4875			/* Don't process data packets in this states. */
4876			switch (hci_skb_pkt_type(skb)) {
4877			case HCI_ACLDATA_PKT:
4878			case HCI_SCODATA_PKT:
4879			case HCI_ISODATA_PKT:
4880				kfree_skb(skb);
4881				continue;
4882			}
4883		}
4884
4885		/* Process frame */
4886		switch (hci_skb_pkt_type(skb)) {
4887		case HCI_EVENT_PKT:
4888			BT_DBG("%s Event packet", hdev->name);
4889			hci_event_packet(hdev, skb);
4890			break;
4891
4892		case HCI_ACLDATA_PKT:
4893			BT_DBG("%s ACL data packet", hdev->name);
4894			hci_acldata_packet(hdev, skb);
4895			break;
4896
4897		case HCI_SCODATA_PKT:
4898			BT_DBG("%s SCO data packet", hdev->name);
4899			hci_scodata_packet(hdev, skb);
4900			break;
4901
4902		default:
4903			kfree_skb(skb);
4904			break;
4905		}
4906	}
4907}
4908
4909static void hci_cmd_work(struct work_struct *work)
4910{
4911	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4912	struct sk_buff *skb;
4913
4914	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4915	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4916
4917	/* Send queued commands */
4918	if (atomic_read(&hdev->cmd_cnt)) {
4919		skb = skb_dequeue(&hdev->cmd_q);
4920		if (!skb)
4921			return;
4922
4923		kfree_skb(hdev->sent_cmd);
4924
4925		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4926		if (hdev->sent_cmd) {
4927			if (hci_req_status_pend(hdev))
4928				hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4929			atomic_dec(&hdev->cmd_cnt);
4930			hci_send_frame(hdev, skb);
4931			if (test_bit(HCI_RESET, &hdev->flags))
4932				cancel_delayed_work(&hdev->cmd_timer);
4933			else
4934				schedule_delayed_work(&hdev->cmd_timer,
4935						      HCI_CMD_TIMEOUT);
4936		} else {
4937			skb_queue_head(&hdev->cmd_q, skb);
4938			queue_work(hdev->workqueue, &hdev->cmd_work);
4939		}
4940	}
4941}