Loading...
1/*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24*/
25
26/* Bluetooth HCI core. */
27
28#include <linux/export.h>
29#include <linux/idr.h>
30#include <linux/rfkill.h>
31#include <linux/debugfs.h>
32#include <linux/crypto.h>
33#include <linux/property.h>
34#include <asm/unaligned.h>
35
36#include <net/bluetooth/bluetooth.h>
37#include <net/bluetooth/hci_core.h>
38#include <net/bluetooth/l2cap.h>
39#include <net/bluetooth/mgmt.h>
40
41#include "hci_request.h"
42#include "hci_debugfs.h"
43#include "smp.h"
44#include "leds.h"
45
46static void hci_rx_work(struct work_struct *work);
47static void hci_cmd_work(struct work_struct *work);
48static void hci_tx_work(struct work_struct *work);
49
50/* HCI device list */
51LIST_HEAD(hci_dev_list);
52DEFINE_RWLOCK(hci_dev_list_lock);
53
54/* HCI callback list */
55LIST_HEAD(hci_cb_list);
56DEFINE_MUTEX(hci_cb_list_lock);
57
58/* HCI ID Numbering */
59static DEFINE_IDA(hci_index_ida);
60
61/* ---- HCI debugfs entries ---- */
62
63static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
64 size_t count, loff_t *ppos)
65{
66 struct hci_dev *hdev = file->private_data;
67 char buf[3];
68
69 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
70 buf[1] = '\n';
71 buf[2] = '\0';
72 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
73}
74
75static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
76 size_t count, loff_t *ppos)
77{
78 struct hci_dev *hdev = file->private_data;
79 struct sk_buff *skb;
80 bool enable;
81 int err;
82
83 if (!test_bit(HCI_UP, &hdev->flags))
84 return -ENETDOWN;
85
86 err = kstrtobool_from_user(user_buf, count, &enable);
87 if (err)
88 return err;
89
90 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
91 return -EALREADY;
92
93 hci_req_sync_lock(hdev);
94 if (enable)
95 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
96 HCI_CMD_TIMEOUT);
97 else
98 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
99 HCI_CMD_TIMEOUT);
100 hci_req_sync_unlock(hdev);
101
102 if (IS_ERR(skb))
103 return PTR_ERR(skb);
104
105 kfree_skb(skb);
106
107 hci_dev_change_flag(hdev, HCI_DUT_MODE);
108
109 return count;
110}
111
112static const struct file_operations dut_mode_fops = {
113 .open = simple_open,
114 .read = dut_mode_read,
115 .write = dut_mode_write,
116 .llseek = default_llseek,
117};
118
119static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
120 size_t count, loff_t *ppos)
121{
122 struct hci_dev *hdev = file->private_data;
123 char buf[3];
124
125 buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
126 buf[1] = '\n';
127 buf[2] = '\0';
128 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
129}
130
131static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
132 size_t count, loff_t *ppos)
133{
134 struct hci_dev *hdev = file->private_data;
135 bool enable;
136 int err;
137
138 err = kstrtobool_from_user(user_buf, count, &enable);
139 if (err)
140 return err;
141
142 /* When the diagnostic flags are not persistent and the transport
143 * is not active or in user channel operation, then there is no need
144 * for the vendor callback. Instead just store the desired value and
145 * the setting will be programmed when the controller gets powered on.
146 */
147 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
148 (!test_bit(HCI_RUNNING, &hdev->flags) ||
149 hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
150 goto done;
151
152 hci_req_sync_lock(hdev);
153 err = hdev->set_diag(hdev, enable);
154 hci_req_sync_unlock(hdev);
155
156 if (err < 0)
157 return err;
158
159done:
160 if (enable)
161 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
162 else
163 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
164
165 return count;
166}
167
168static const struct file_operations vendor_diag_fops = {
169 .open = simple_open,
170 .read = vendor_diag_read,
171 .write = vendor_diag_write,
172 .llseek = default_llseek,
173};
174
175static void hci_debugfs_create_basic(struct hci_dev *hdev)
176{
177 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
178 &dut_mode_fops);
179
180 if (hdev->set_diag)
181 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
182 &vendor_diag_fops);
183}
184
185static int hci_reset_req(struct hci_request *req, unsigned long opt)
186{
187 BT_DBG("%s %ld", req->hdev->name, opt);
188
189 /* Reset device */
190 set_bit(HCI_RESET, &req->hdev->flags);
191 hci_req_add(req, HCI_OP_RESET, 0, NULL);
192 return 0;
193}
194
195static void bredr_init(struct hci_request *req)
196{
197 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
198
199 /* Read Local Supported Features */
200 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
201
202 /* Read Local Version */
203 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
204
205 /* Read BD Address */
206 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
207}
208
209static void amp_init1(struct hci_request *req)
210{
211 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
212
213 /* Read Local Version */
214 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
215
216 /* Read Local Supported Commands */
217 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
218
219 /* Read Local AMP Info */
220 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
221
222 /* Read Data Blk size */
223 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
224
225 /* Read Flow Control Mode */
226 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
227
228 /* Read Location Data */
229 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
230}
231
232static int amp_init2(struct hci_request *req)
233{
234 /* Read Local Supported Features. Not all AMP controllers
235 * support this so it's placed conditionally in the second
236 * stage init.
237 */
238 if (req->hdev->commands[14] & 0x20)
239 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
240
241 return 0;
242}
243
244static int hci_init1_req(struct hci_request *req, unsigned long opt)
245{
246 struct hci_dev *hdev = req->hdev;
247
248 BT_DBG("%s %ld", hdev->name, opt);
249
250 /* Reset */
251 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
252 hci_reset_req(req, 0);
253
254 switch (hdev->dev_type) {
255 case HCI_PRIMARY:
256 bredr_init(req);
257 break;
258 case HCI_AMP:
259 amp_init1(req);
260 break;
261 default:
262 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
263 break;
264 }
265
266 return 0;
267}
268
269static void bredr_setup(struct hci_request *req)
270{
271 __le16 param;
272 __u8 flt_type;
273
274 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
275 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
276
277 /* Read Class of Device */
278 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
279
280 /* Read Local Name */
281 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
282
283 /* Read Voice Setting */
284 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
285
286 /* Read Number of Supported IAC */
287 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
288
289 /* Read Current IAC LAP */
290 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
291
292 /* Clear Event Filters */
293 flt_type = HCI_FLT_CLEAR_ALL;
294 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
295
296 /* Connection accept timeout ~20 secs */
297 param = cpu_to_le16(0x7d00);
298 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, ¶m);
299}
300
301static void le_setup(struct hci_request *req)
302{
303 struct hci_dev *hdev = req->hdev;
304
305 /* Read LE Buffer Size */
306 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
307
308 /* Read LE Local Supported Features */
309 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
310
311 /* Read LE Supported States */
312 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
313
314 /* LE-only controllers have LE implicitly enabled */
315 if (!lmp_bredr_capable(hdev))
316 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
317}
318
319static void hci_setup_event_mask(struct hci_request *req)
320{
321 struct hci_dev *hdev = req->hdev;
322
323 /* The second byte is 0xff instead of 0x9f (two reserved bits
324 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
325 * command otherwise.
326 */
327 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
328
329 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
330 * any event mask for pre 1.2 devices.
331 */
332 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
333 return;
334
335 if (lmp_bredr_capable(hdev)) {
336 events[4] |= 0x01; /* Flow Specification Complete */
337 } else {
338 /* Use a different default for LE-only devices */
339 memset(events, 0, sizeof(events));
340 events[1] |= 0x20; /* Command Complete */
341 events[1] |= 0x40; /* Command Status */
342 events[1] |= 0x80; /* Hardware Error */
343
344 /* If the controller supports the Disconnect command, enable
345 * the corresponding event. In addition enable packet flow
346 * control related events.
347 */
348 if (hdev->commands[0] & 0x20) {
349 events[0] |= 0x10; /* Disconnection Complete */
350 events[2] |= 0x04; /* Number of Completed Packets */
351 events[3] |= 0x02; /* Data Buffer Overflow */
352 }
353
354 /* If the controller supports the Read Remote Version
355 * Information command, enable the corresponding event.
356 */
357 if (hdev->commands[2] & 0x80)
358 events[1] |= 0x08; /* Read Remote Version Information
359 * Complete
360 */
361
362 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
363 events[0] |= 0x80; /* Encryption Change */
364 events[5] |= 0x80; /* Encryption Key Refresh Complete */
365 }
366 }
367
368 if (lmp_inq_rssi_capable(hdev) ||
369 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
370 events[4] |= 0x02; /* Inquiry Result with RSSI */
371
372 if (lmp_ext_feat_capable(hdev))
373 events[4] |= 0x04; /* Read Remote Extended Features Complete */
374
375 if (lmp_esco_capable(hdev)) {
376 events[5] |= 0x08; /* Synchronous Connection Complete */
377 events[5] |= 0x10; /* Synchronous Connection Changed */
378 }
379
380 if (lmp_sniffsubr_capable(hdev))
381 events[5] |= 0x20; /* Sniff Subrating */
382
383 if (lmp_pause_enc_capable(hdev))
384 events[5] |= 0x80; /* Encryption Key Refresh Complete */
385
386 if (lmp_ext_inq_capable(hdev))
387 events[5] |= 0x40; /* Extended Inquiry Result */
388
389 if (lmp_no_flush_capable(hdev))
390 events[7] |= 0x01; /* Enhanced Flush Complete */
391
392 if (lmp_lsto_capable(hdev))
393 events[6] |= 0x80; /* Link Supervision Timeout Changed */
394
395 if (lmp_ssp_capable(hdev)) {
396 events[6] |= 0x01; /* IO Capability Request */
397 events[6] |= 0x02; /* IO Capability Response */
398 events[6] |= 0x04; /* User Confirmation Request */
399 events[6] |= 0x08; /* User Passkey Request */
400 events[6] |= 0x10; /* Remote OOB Data Request */
401 events[6] |= 0x20; /* Simple Pairing Complete */
402 events[7] |= 0x04; /* User Passkey Notification */
403 events[7] |= 0x08; /* Keypress Notification */
404 events[7] |= 0x10; /* Remote Host Supported
405 * Features Notification
406 */
407 }
408
409 if (lmp_le_capable(hdev))
410 events[7] |= 0x20; /* LE Meta-Event */
411
412 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
413}
414
415static int hci_init2_req(struct hci_request *req, unsigned long opt)
416{
417 struct hci_dev *hdev = req->hdev;
418
419 if (hdev->dev_type == HCI_AMP)
420 return amp_init2(req);
421
422 if (lmp_bredr_capable(hdev))
423 bredr_setup(req);
424 else
425 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
426
427 if (lmp_le_capable(hdev))
428 le_setup(req);
429
430 /* All Bluetooth 1.2 and later controllers should support the
431 * HCI command for reading the local supported commands.
432 *
433 * Unfortunately some controllers indicate Bluetooth 1.2 support,
434 * but do not have support for this command. If that is the case,
435 * the driver can quirk the behavior and skip reading the local
436 * supported commands.
437 */
438 if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
439 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
440 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
441
442 if (lmp_ssp_capable(hdev)) {
443 /* When SSP is available, then the host features page
444 * should also be available as well. However some
445 * controllers list the max_page as 0 as long as SSP
446 * has not been enabled. To achieve proper debugging
447 * output, force the minimum max_page to 1 at least.
448 */
449 hdev->max_page = 0x01;
450
451 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
452 u8 mode = 0x01;
453
454 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
455 sizeof(mode), &mode);
456 } else {
457 struct hci_cp_write_eir cp;
458
459 memset(hdev->eir, 0, sizeof(hdev->eir));
460 memset(&cp, 0, sizeof(cp));
461
462 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
463 }
464 }
465
466 if (lmp_inq_rssi_capable(hdev) ||
467 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
468 u8 mode;
469
470 /* If Extended Inquiry Result events are supported, then
471 * they are clearly preferred over Inquiry Result with RSSI
472 * events.
473 */
474 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
475
476 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
477 }
478
479 if (lmp_inq_tx_pwr_capable(hdev))
480 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
481
482 if (lmp_ext_feat_capable(hdev)) {
483 struct hci_cp_read_local_ext_features cp;
484
485 cp.page = 0x01;
486 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
487 sizeof(cp), &cp);
488 }
489
490 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
491 u8 enable = 1;
492 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
493 &enable);
494 }
495
496 return 0;
497}
498
499static void hci_setup_link_policy(struct hci_request *req)
500{
501 struct hci_dev *hdev = req->hdev;
502 struct hci_cp_write_def_link_policy cp;
503 u16 link_policy = 0;
504
505 if (lmp_rswitch_capable(hdev))
506 link_policy |= HCI_LP_RSWITCH;
507 if (lmp_hold_capable(hdev))
508 link_policy |= HCI_LP_HOLD;
509 if (lmp_sniff_capable(hdev))
510 link_policy |= HCI_LP_SNIFF;
511 if (lmp_park_capable(hdev))
512 link_policy |= HCI_LP_PARK;
513
514 cp.policy = cpu_to_le16(link_policy);
515 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
516}
517
518static void hci_set_le_support(struct hci_request *req)
519{
520 struct hci_dev *hdev = req->hdev;
521 struct hci_cp_write_le_host_supported cp;
522
523 /* LE-only devices do not support explicit enablement */
524 if (!lmp_bredr_capable(hdev))
525 return;
526
527 memset(&cp, 0, sizeof(cp));
528
529 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
530 cp.le = 0x01;
531 cp.simul = 0x00;
532 }
533
534 if (cp.le != lmp_host_le_capable(hdev))
535 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
536 &cp);
537}
538
539static void hci_set_event_mask_page_2(struct hci_request *req)
540{
541 struct hci_dev *hdev = req->hdev;
542 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
543 bool changed = false;
544
545 /* If Connectionless Slave Broadcast master role is supported
546 * enable all necessary events for it.
547 */
548 if (lmp_csb_master_capable(hdev)) {
549 events[1] |= 0x40; /* Triggered Clock Capture */
550 events[1] |= 0x80; /* Synchronization Train Complete */
551 events[2] |= 0x10; /* Slave Page Response Timeout */
552 events[2] |= 0x20; /* CSB Channel Map Change */
553 changed = true;
554 }
555
556 /* If Connectionless Slave Broadcast slave role is supported
557 * enable all necessary events for it.
558 */
559 if (lmp_csb_slave_capable(hdev)) {
560 events[2] |= 0x01; /* Synchronization Train Received */
561 events[2] |= 0x02; /* CSB Receive */
562 events[2] |= 0x04; /* CSB Timeout */
563 events[2] |= 0x08; /* Truncated Page Complete */
564 changed = true;
565 }
566
567 /* Enable Authenticated Payload Timeout Expired event if supported */
568 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
569 events[2] |= 0x80;
570 changed = true;
571 }
572
573 /* Some Broadcom based controllers indicate support for Set Event
574 * Mask Page 2 command, but then actually do not support it. Since
575 * the default value is all bits set to zero, the command is only
576 * required if the event mask has to be changed. In case no change
577 * to the event mask is needed, skip this command.
578 */
579 if (changed)
580 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
581 sizeof(events), events);
582}
583
584static int hci_init3_req(struct hci_request *req, unsigned long opt)
585{
586 struct hci_dev *hdev = req->hdev;
587 u8 p;
588
589 hci_setup_event_mask(req);
590
591 if (hdev->commands[6] & 0x20 &&
592 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
593 struct hci_cp_read_stored_link_key cp;
594
595 bacpy(&cp.bdaddr, BDADDR_ANY);
596 cp.read_all = 0x01;
597 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
598 }
599
600 if (hdev->commands[5] & 0x10)
601 hci_setup_link_policy(req);
602
603 if (hdev->commands[8] & 0x01)
604 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
605
606 /* Some older Broadcom based Bluetooth 1.2 controllers do not
607 * support the Read Page Scan Type command. Check support for
608 * this command in the bit mask of supported commands.
609 */
610 if (hdev->commands[13] & 0x01)
611 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
612
613 if (lmp_le_capable(hdev)) {
614 u8 events[8];
615
616 memset(events, 0, sizeof(events));
617
618 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
619 events[0] |= 0x10; /* LE Long Term Key Request */
620
621 /* If controller supports the Connection Parameters Request
622 * Link Layer Procedure, enable the corresponding event.
623 */
624 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
625 events[0] |= 0x20; /* LE Remote Connection
626 * Parameter Request
627 */
628
629 /* If the controller supports the Data Length Extension
630 * feature, enable the corresponding event.
631 */
632 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
633 events[0] |= 0x40; /* LE Data Length Change */
634
635 /* If the controller supports Extended Scanner Filter
636 * Policies, enable the correspondig event.
637 */
638 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
639 events[1] |= 0x04; /* LE Direct Advertising
640 * Report
641 */
642
643 /* If the controller supports Channel Selection Algorithm #2
644 * feature, enable the corresponding event.
645 */
646 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
647 events[2] |= 0x08; /* LE Channel Selection
648 * Algorithm
649 */
650
651 /* If the controller supports the LE Set Scan Enable command,
652 * enable the corresponding advertising report event.
653 */
654 if (hdev->commands[26] & 0x08)
655 events[0] |= 0x02; /* LE Advertising Report */
656
657 /* If the controller supports the LE Create Connection
658 * command, enable the corresponding event.
659 */
660 if (hdev->commands[26] & 0x10)
661 events[0] |= 0x01; /* LE Connection Complete */
662
663 /* If the controller supports the LE Connection Update
664 * command, enable the corresponding event.
665 */
666 if (hdev->commands[27] & 0x04)
667 events[0] |= 0x04; /* LE Connection Update
668 * Complete
669 */
670
671 /* If the controller supports the LE Read Remote Used Features
672 * command, enable the corresponding event.
673 */
674 if (hdev->commands[27] & 0x20)
675 events[0] |= 0x08; /* LE Read Remote Used
676 * Features Complete
677 */
678
679 /* If the controller supports the LE Read Local P-256
680 * Public Key command, enable the corresponding event.
681 */
682 if (hdev->commands[34] & 0x02)
683 events[0] |= 0x80; /* LE Read Local P-256
684 * Public Key Complete
685 */
686
687 /* If the controller supports the LE Generate DHKey
688 * command, enable the corresponding event.
689 */
690 if (hdev->commands[34] & 0x04)
691 events[1] |= 0x01; /* LE Generate DHKey Complete */
692
693 /* If the controller supports the LE Set Default PHY or
694 * LE Set PHY commands, enable the corresponding event.
695 */
696 if (hdev->commands[35] & (0x20 | 0x40))
697 events[1] |= 0x08; /* LE PHY Update Complete */
698
699 /* If the controller supports LE Set Extended Scan Parameters
700 * and LE Set Extended Scan Enable commands, enable the
701 * corresponding event.
702 */
703 if (use_ext_scan(hdev))
704 events[1] |= 0x10; /* LE Extended Advertising
705 * Report
706 */
707
708 /* If the controller supports the LE Extended Create Connection
709 * command, enable the corresponding event.
710 */
711 if (use_ext_conn(hdev))
712 events[1] |= 0x02; /* LE Enhanced Connection
713 * Complete
714 */
715
716 /* If the controller supports the LE Extended Advertising
717 * command, enable the corresponding event.
718 */
719 if (ext_adv_capable(hdev))
720 events[2] |= 0x02; /* LE Advertising Set
721 * Terminated
722 */
723
724 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
725 events);
726
727 /* Read LE Advertising Channel TX Power */
728 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
729 /* HCI TS spec forbids mixing of legacy and extended
730 * advertising commands wherein READ_ADV_TX_POWER is
731 * also included. So do not call it if extended adv
732 * is supported otherwise controller will return
733 * COMMAND_DISALLOWED for extended commands.
734 */
735 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
736 }
737
738 if (hdev->commands[26] & 0x40) {
739 /* Read LE White List Size */
740 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
741 0, NULL);
742 }
743
744 if (hdev->commands[26] & 0x80) {
745 /* Clear LE White List */
746 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
747 }
748
749 if (hdev->commands[34] & 0x40) {
750 /* Read LE Resolving List Size */
751 hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
752 0, NULL);
753 }
754
755 if (hdev->commands[34] & 0x20) {
756 /* Clear LE Resolving List */
757 hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
758 }
759
760 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
761 /* Read LE Maximum Data Length */
762 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
763
764 /* Read LE Suggested Default Data Length */
765 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
766 }
767
768 if (ext_adv_capable(hdev)) {
769 /* Read LE Number of Supported Advertising Sets */
770 hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
771 0, NULL);
772 }
773
774 hci_set_le_support(req);
775 }
776
777 /* Read features beyond page 1 if available */
778 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
779 struct hci_cp_read_local_ext_features cp;
780
781 cp.page = p;
782 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
783 sizeof(cp), &cp);
784 }
785
786 return 0;
787}
788
789static int hci_init4_req(struct hci_request *req, unsigned long opt)
790{
791 struct hci_dev *hdev = req->hdev;
792
793 /* Some Broadcom based Bluetooth controllers do not support the
794 * Delete Stored Link Key command. They are clearly indicating its
795 * absence in the bit mask of supported commands.
796 *
797 * Check the supported commands and only if the the command is marked
798 * as supported send it. If not supported assume that the controller
799 * does not have actual support for stored link keys which makes this
800 * command redundant anyway.
801 *
802 * Some controllers indicate that they support handling deleting
803 * stored link keys, but they don't. The quirk lets a driver
804 * just disable this command.
805 */
806 if (hdev->commands[6] & 0x80 &&
807 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
808 struct hci_cp_delete_stored_link_key cp;
809
810 bacpy(&cp.bdaddr, BDADDR_ANY);
811 cp.delete_all = 0x01;
812 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
813 sizeof(cp), &cp);
814 }
815
816 /* Set event mask page 2 if the HCI command for it is supported */
817 if (hdev->commands[22] & 0x04)
818 hci_set_event_mask_page_2(req);
819
820 /* Read local codec list if the HCI command is supported */
821 if (hdev->commands[29] & 0x20)
822 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
823
824 /* Get MWS transport configuration if the HCI command is supported */
825 if (hdev->commands[30] & 0x08)
826 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
827
828 /* Check for Synchronization Train support */
829 if (lmp_sync_train_capable(hdev))
830 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
831
832 /* Enable Secure Connections if supported and configured */
833 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
834 bredr_sc_enabled(hdev)) {
835 u8 support = 0x01;
836
837 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
838 sizeof(support), &support);
839 }
840
841 /* Set Suggested Default Data Length to maximum if supported */
842 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
843 struct hci_cp_le_write_def_data_len cp;
844
845 cp.tx_len = hdev->le_max_tx_len;
846 cp.tx_time = hdev->le_max_tx_time;
847 hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
848 }
849
850 /* Set Default PHY parameters if command is supported */
851 if (hdev->commands[35] & 0x20) {
852 struct hci_cp_le_set_default_phy cp;
853
854 cp.all_phys = 0x00;
855 cp.tx_phys = hdev->le_tx_def_phys;
856 cp.rx_phys = hdev->le_rx_def_phys;
857
858 hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
859 }
860
861 return 0;
862}
863
864static int __hci_init(struct hci_dev *hdev)
865{
866 int err;
867
868 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
869 if (err < 0)
870 return err;
871
872 if (hci_dev_test_flag(hdev, HCI_SETUP))
873 hci_debugfs_create_basic(hdev);
874
875 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
876 if (err < 0)
877 return err;
878
879 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
880 * BR/EDR/LE type controllers. AMP controllers only need the
881 * first two stages of init.
882 */
883 if (hdev->dev_type != HCI_PRIMARY)
884 return 0;
885
886 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
887 if (err < 0)
888 return err;
889
890 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
891 if (err < 0)
892 return err;
893
894 /* This function is only called when the controller is actually in
895 * configured state. When the controller is marked as unconfigured,
896 * this initialization procedure is not run.
897 *
898 * It means that it is possible that a controller runs through its
899 * setup phase and then discovers missing settings. If that is the
900 * case, then this function will not be called. It then will only
901 * be called during the config phase.
902 *
903 * So only when in setup phase or config phase, create the debugfs
904 * entries and register the SMP channels.
905 */
906 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
907 !hci_dev_test_flag(hdev, HCI_CONFIG))
908 return 0;
909
910 hci_debugfs_create_common(hdev);
911
912 if (lmp_bredr_capable(hdev))
913 hci_debugfs_create_bredr(hdev);
914
915 if (lmp_le_capable(hdev))
916 hci_debugfs_create_le(hdev);
917
918 return 0;
919}
920
921static int hci_init0_req(struct hci_request *req, unsigned long opt)
922{
923 struct hci_dev *hdev = req->hdev;
924
925 BT_DBG("%s %ld", hdev->name, opt);
926
927 /* Reset */
928 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
929 hci_reset_req(req, 0);
930
931 /* Read Local Version */
932 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
933
934 /* Read BD Address */
935 if (hdev->set_bdaddr)
936 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
937
938 return 0;
939}
940
941static int __hci_unconf_init(struct hci_dev *hdev)
942{
943 int err;
944
945 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
946 return 0;
947
948 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
949 if (err < 0)
950 return err;
951
952 if (hci_dev_test_flag(hdev, HCI_SETUP))
953 hci_debugfs_create_basic(hdev);
954
955 return 0;
956}
957
958static int hci_scan_req(struct hci_request *req, unsigned long opt)
959{
960 __u8 scan = opt;
961
962 BT_DBG("%s %x", req->hdev->name, scan);
963
964 /* Inquiry and Page scans */
965 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
966 return 0;
967}
968
969static int hci_auth_req(struct hci_request *req, unsigned long opt)
970{
971 __u8 auth = opt;
972
973 BT_DBG("%s %x", req->hdev->name, auth);
974
975 /* Authentication */
976 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
977 return 0;
978}
979
980static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
981{
982 __u8 encrypt = opt;
983
984 BT_DBG("%s %x", req->hdev->name, encrypt);
985
986 /* Encryption */
987 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
988 return 0;
989}
990
991static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
992{
993 __le16 policy = cpu_to_le16(opt);
994
995 BT_DBG("%s %x", req->hdev->name, policy);
996
997 /* Default link policy */
998 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
999 return 0;
1000}
1001
1002/* Get HCI device by index.
1003 * Device is held on return. */
1004struct hci_dev *hci_dev_get(int index)
1005{
1006 struct hci_dev *hdev = NULL, *d;
1007
1008 BT_DBG("%d", index);
1009
1010 if (index < 0)
1011 return NULL;
1012
1013 read_lock(&hci_dev_list_lock);
1014 list_for_each_entry(d, &hci_dev_list, list) {
1015 if (d->id == index) {
1016 hdev = hci_dev_hold(d);
1017 break;
1018 }
1019 }
1020 read_unlock(&hci_dev_list_lock);
1021 return hdev;
1022}
1023
1024/* ---- Inquiry support ---- */
1025
1026bool hci_discovery_active(struct hci_dev *hdev)
1027{
1028 struct discovery_state *discov = &hdev->discovery;
1029
1030 switch (discov->state) {
1031 case DISCOVERY_FINDING:
1032 case DISCOVERY_RESOLVING:
1033 return true;
1034
1035 default:
1036 return false;
1037 }
1038}
1039
1040void hci_discovery_set_state(struct hci_dev *hdev, int state)
1041{
1042 int old_state = hdev->discovery.state;
1043
1044 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1045
1046 if (old_state == state)
1047 return;
1048
1049 hdev->discovery.state = state;
1050
1051 switch (state) {
1052 case DISCOVERY_STOPPED:
1053 hci_update_background_scan(hdev);
1054
1055 if (old_state != DISCOVERY_STARTING)
1056 mgmt_discovering(hdev, 0);
1057 break;
1058 case DISCOVERY_STARTING:
1059 break;
1060 case DISCOVERY_FINDING:
1061 mgmt_discovering(hdev, 1);
1062 break;
1063 case DISCOVERY_RESOLVING:
1064 break;
1065 case DISCOVERY_STOPPING:
1066 break;
1067 }
1068}
1069
1070void hci_inquiry_cache_flush(struct hci_dev *hdev)
1071{
1072 struct discovery_state *cache = &hdev->discovery;
1073 struct inquiry_entry *p, *n;
1074
1075 list_for_each_entry_safe(p, n, &cache->all, all) {
1076 list_del(&p->all);
1077 kfree(p);
1078 }
1079
1080 INIT_LIST_HEAD(&cache->unknown);
1081 INIT_LIST_HEAD(&cache->resolve);
1082}
1083
1084struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1085 bdaddr_t *bdaddr)
1086{
1087 struct discovery_state *cache = &hdev->discovery;
1088 struct inquiry_entry *e;
1089
1090 BT_DBG("cache %p, %pMR", cache, bdaddr);
1091
1092 list_for_each_entry(e, &cache->all, all) {
1093 if (!bacmp(&e->data.bdaddr, bdaddr))
1094 return e;
1095 }
1096
1097 return NULL;
1098}
1099
1100struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1101 bdaddr_t *bdaddr)
1102{
1103 struct discovery_state *cache = &hdev->discovery;
1104 struct inquiry_entry *e;
1105
1106 BT_DBG("cache %p, %pMR", cache, bdaddr);
1107
1108 list_for_each_entry(e, &cache->unknown, list) {
1109 if (!bacmp(&e->data.bdaddr, bdaddr))
1110 return e;
1111 }
1112
1113 return NULL;
1114}
1115
1116struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1117 bdaddr_t *bdaddr,
1118 int state)
1119{
1120 struct discovery_state *cache = &hdev->discovery;
1121 struct inquiry_entry *e;
1122
1123 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1124
1125 list_for_each_entry(e, &cache->resolve, list) {
1126 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1127 return e;
1128 if (!bacmp(&e->data.bdaddr, bdaddr))
1129 return e;
1130 }
1131
1132 return NULL;
1133}
1134
1135void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1136 struct inquiry_entry *ie)
1137{
1138 struct discovery_state *cache = &hdev->discovery;
1139 struct list_head *pos = &cache->resolve;
1140 struct inquiry_entry *p;
1141
1142 list_del(&ie->list);
1143
1144 list_for_each_entry(p, &cache->resolve, list) {
1145 if (p->name_state != NAME_PENDING &&
1146 abs(p->data.rssi) >= abs(ie->data.rssi))
1147 break;
1148 pos = &p->list;
1149 }
1150
1151 list_add(&ie->list, pos);
1152}
1153
1154u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1155 bool name_known)
1156{
1157 struct discovery_state *cache = &hdev->discovery;
1158 struct inquiry_entry *ie;
1159 u32 flags = 0;
1160
1161 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1162
1163 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1164
1165 if (!data->ssp_mode)
1166 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1167
1168 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1169 if (ie) {
1170 if (!ie->data.ssp_mode)
1171 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1172
1173 if (ie->name_state == NAME_NEEDED &&
1174 data->rssi != ie->data.rssi) {
1175 ie->data.rssi = data->rssi;
1176 hci_inquiry_cache_update_resolve(hdev, ie);
1177 }
1178
1179 goto update;
1180 }
1181
1182 /* Entry not in the cache. Add new one. */
1183 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1184 if (!ie) {
1185 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1186 goto done;
1187 }
1188
1189 list_add(&ie->all, &cache->all);
1190
1191 if (name_known) {
1192 ie->name_state = NAME_KNOWN;
1193 } else {
1194 ie->name_state = NAME_NOT_KNOWN;
1195 list_add(&ie->list, &cache->unknown);
1196 }
1197
1198update:
1199 if (name_known && ie->name_state != NAME_KNOWN &&
1200 ie->name_state != NAME_PENDING) {
1201 ie->name_state = NAME_KNOWN;
1202 list_del(&ie->list);
1203 }
1204
1205 memcpy(&ie->data, data, sizeof(*data));
1206 ie->timestamp = jiffies;
1207 cache->timestamp = jiffies;
1208
1209 if (ie->name_state == NAME_NOT_KNOWN)
1210 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1211
1212done:
1213 return flags;
1214}
1215
1216static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1217{
1218 struct discovery_state *cache = &hdev->discovery;
1219 struct inquiry_info *info = (struct inquiry_info *) buf;
1220 struct inquiry_entry *e;
1221 int copied = 0;
1222
1223 list_for_each_entry(e, &cache->all, all) {
1224 struct inquiry_data *data = &e->data;
1225
1226 if (copied >= num)
1227 break;
1228
1229 bacpy(&info->bdaddr, &data->bdaddr);
1230 info->pscan_rep_mode = data->pscan_rep_mode;
1231 info->pscan_period_mode = data->pscan_period_mode;
1232 info->pscan_mode = data->pscan_mode;
1233 memcpy(info->dev_class, data->dev_class, 3);
1234 info->clock_offset = data->clock_offset;
1235
1236 info++;
1237 copied++;
1238 }
1239
1240 BT_DBG("cache %p, copied %d", cache, copied);
1241 return copied;
1242}
1243
1244static int hci_inq_req(struct hci_request *req, unsigned long opt)
1245{
1246 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1247 struct hci_dev *hdev = req->hdev;
1248 struct hci_cp_inquiry cp;
1249
1250 BT_DBG("%s", hdev->name);
1251
1252 if (test_bit(HCI_INQUIRY, &hdev->flags))
1253 return 0;
1254
1255 /* Start Inquiry */
1256 memcpy(&cp.lap, &ir->lap, 3);
1257 cp.length = ir->length;
1258 cp.num_rsp = ir->num_rsp;
1259 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1260
1261 return 0;
1262}
1263
1264int hci_inquiry(void __user *arg)
1265{
1266 __u8 __user *ptr = arg;
1267 struct hci_inquiry_req ir;
1268 struct hci_dev *hdev;
1269 int err = 0, do_inquiry = 0, max_rsp;
1270 long timeo;
1271 __u8 *buf;
1272
1273 if (copy_from_user(&ir, ptr, sizeof(ir)))
1274 return -EFAULT;
1275
1276 hdev = hci_dev_get(ir.dev_id);
1277 if (!hdev)
1278 return -ENODEV;
1279
1280 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1281 err = -EBUSY;
1282 goto done;
1283 }
1284
1285 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1286 err = -EOPNOTSUPP;
1287 goto done;
1288 }
1289
1290 if (hdev->dev_type != HCI_PRIMARY) {
1291 err = -EOPNOTSUPP;
1292 goto done;
1293 }
1294
1295 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1296 err = -EOPNOTSUPP;
1297 goto done;
1298 }
1299
1300 hci_dev_lock(hdev);
1301 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1302 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1303 hci_inquiry_cache_flush(hdev);
1304 do_inquiry = 1;
1305 }
1306 hci_dev_unlock(hdev);
1307
1308 timeo = ir.length * msecs_to_jiffies(2000);
1309
1310 if (do_inquiry) {
1311 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1312 timeo, NULL);
1313 if (err < 0)
1314 goto done;
1315
1316 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1317 * cleared). If it is interrupted by a signal, return -EINTR.
1318 */
1319 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1320 TASK_INTERRUPTIBLE))
1321 return -EINTR;
1322 }
1323
1324 /* for unlimited number of responses we will use buffer with
1325 * 255 entries
1326 */
1327 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1328
1329 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1330 * copy it to the user space.
1331 */
1332 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1333 if (!buf) {
1334 err = -ENOMEM;
1335 goto done;
1336 }
1337
1338 hci_dev_lock(hdev);
1339 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1340 hci_dev_unlock(hdev);
1341
1342 BT_DBG("num_rsp %d", ir.num_rsp);
1343
1344 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1345 ptr += sizeof(ir);
1346 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1347 ir.num_rsp))
1348 err = -EFAULT;
1349 } else
1350 err = -EFAULT;
1351
1352 kfree(buf);
1353
1354done:
1355 hci_dev_put(hdev);
1356 return err;
1357}
1358
1359/**
1360 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1361 * (BD_ADDR) for a HCI device from
1362 * a firmware node property.
1363 * @hdev: The HCI device
1364 *
1365 * Search the firmware node for 'local-bd-address'.
1366 *
1367 * All-zero BD addresses are rejected, because those could be properties
1368 * that exist in the firmware tables, but were not updated by the firmware. For
1369 * example, the DTS could define 'local-bd-address', with zero BD addresses.
1370 */
1371static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1372{
1373 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1374 bdaddr_t ba;
1375 int ret;
1376
1377 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1378 (u8 *)&ba, sizeof(ba));
1379 if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1380 return;
1381
1382 bacpy(&hdev->public_addr, &ba);
1383}
1384
1385static int hci_dev_do_open(struct hci_dev *hdev)
1386{
1387 int ret = 0;
1388
1389 BT_DBG("%s %p", hdev->name, hdev);
1390
1391 hci_req_sync_lock(hdev);
1392
1393 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1394 ret = -ENODEV;
1395 goto done;
1396 }
1397
1398 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1399 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1400 /* Check for rfkill but allow the HCI setup stage to
1401 * proceed (which in itself doesn't cause any RF activity).
1402 */
1403 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1404 ret = -ERFKILL;
1405 goto done;
1406 }
1407
1408 /* Check for valid public address or a configured static
1409 * random adddress, but let the HCI setup proceed to
1410 * be able to determine if there is a public address
1411 * or not.
1412 *
1413 * In case of user channel usage, it is not important
1414 * if a public address or static random address is
1415 * available.
1416 *
1417 * This check is only valid for BR/EDR controllers
1418 * since AMP controllers do not have an address.
1419 */
1420 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1421 hdev->dev_type == HCI_PRIMARY &&
1422 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1423 !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1424 ret = -EADDRNOTAVAIL;
1425 goto done;
1426 }
1427 }
1428
1429 if (test_bit(HCI_UP, &hdev->flags)) {
1430 ret = -EALREADY;
1431 goto done;
1432 }
1433
1434 if (hdev->open(hdev)) {
1435 ret = -EIO;
1436 goto done;
1437 }
1438
1439 set_bit(HCI_RUNNING, &hdev->flags);
1440 hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1441
1442 atomic_set(&hdev->cmd_cnt, 1);
1443 set_bit(HCI_INIT, &hdev->flags);
1444
1445 if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1446 test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
1447 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1448
1449 if (hdev->setup)
1450 ret = hdev->setup(hdev);
1451
1452 if (ret)
1453 goto setup_failed;
1454
1455 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1456 if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1457 hci_dev_get_bd_addr_from_property(hdev);
1458
1459 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1460 hdev->set_bdaddr)
1461 ret = hdev->set_bdaddr(hdev,
1462 &hdev->public_addr);
1463 }
1464
1465setup_failed:
1466 /* The transport driver can set these quirks before
1467 * creating the HCI device or in its setup callback.
1468 *
1469 * In case any of them is set, the controller has to
1470 * start up as unconfigured.
1471 */
1472 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1473 test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1474 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1475
1476 /* For an unconfigured controller it is required to
1477 * read at least the version information provided by
1478 * the Read Local Version Information command.
1479 *
1480 * If the set_bdaddr driver callback is provided, then
1481 * also the original Bluetooth public device address
1482 * will be read using the Read BD Address command.
1483 */
1484 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1485 ret = __hci_unconf_init(hdev);
1486 }
1487
1488 if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1489 /* If public address change is configured, ensure that
1490 * the address gets programmed. If the driver does not
1491 * support changing the public address, fail the power
1492 * on procedure.
1493 */
1494 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1495 hdev->set_bdaddr)
1496 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1497 else
1498 ret = -EADDRNOTAVAIL;
1499 }
1500
1501 if (!ret) {
1502 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1503 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1504 ret = __hci_init(hdev);
1505 if (!ret && hdev->post_init)
1506 ret = hdev->post_init(hdev);
1507 }
1508 }
1509
1510 /* If the HCI Reset command is clearing all diagnostic settings,
1511 * then they need to be reprogrammed after the init procedure
1512 * completed.
1513 */
1514 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1515 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1516 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1517 ret = hdev->set_diag(hdev, true);
1518
1519 clear_bit(HCI_INIT, &hdev->flags);
1520
1521 if (!ret) {
1522 hci_dev_hold(hdev);
1523 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1524 hci_adv_instances_set_rpa_expired(hdev, true);
1525 set_bit(HCI_UP, &hdev->flags);
1526 hci_sock_dev_event(hdev, HCI_DEV_UP);
1527 hci_leds_update_powered(hdev, true);
1528 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1529 !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1530 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1531 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1532 hci_dev_test_flag(hdev, HCI_MGMT) &&
1533 hdev->dev_type == HCI_PRIMARY) {
1534 ret = __hci_req_hci_power_on(hdev);
1535 mgmt_power_on(hdev, ret);
1536 }
1537 } else {
1538 /* Init failed, cleanup */
1539 flush_work(&hdev->tx_work);
1540 flush_work(&hdev->cmd_work);
1541 flush_work(&hdev->rx_work);
1542
1543 skb_queue_purge(&hdev->cmd_q);
1544 skb_queue_purge(&hdev->rx_q);
1545
1546 if (hdev->flush)
1547 hdev->flush(hdev);
1548
1549 if (hdev->sent_cmd) {
1550 kfree_skb(hdev->sent_cmd);
1551 hdev->sent_cmd = NULL;
1552 }
1553
1554 clear_bit(HCI_RUNNING, &hdev->flags);
1555 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1556
1557 hdev->close(hdev);
1558 hdev->flags &= BIT(HCI_RAW);
1559 }
1560
1561done:
1562 hci_req_sync_unlock(hdev);
1563 return ret;
1564}
1565
1566/* ---- HCI ioctl helpers ---- */
1567
1568int hci_dev_open(__u16 dev)
1569{
1570 struct hci_dev *hdev;
1571 int err;
1572
1573 hdev = hci_dev_get(dev);
1574 if (!hdev)
1575 return -ENODEV;
1576
1577 /* Devices that are marked as unconfigured can only be powered
1578 * up as user channel. Trying to bring them up as normal devices
1579 * will result into a failure. Only user channel operation is
1580 * possible.
1581 *
1582 * When this function is called for a user channel, the flag
1583 * HCI_USER_CHANNEL will be set first before attempting to
1584 * open the device.
1585 */
1586 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1587 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1588 err = -EOPNOTSUPP;
1589 goto done;
1590 }
1591
1592 /* We need to ensure that no other power on/off work is pending
1593 * before proceeding to call hci_dev_do_open. This is
1594 * particularly important if the setup procedure has not yet
1595 * completed.
1596 */
1597 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1598 cancel_delayed_work(&hdev->power_off);
1599
1600 /* After this call it is guaranteed that the setup procedure
1601 * has finished. This means that error conditions like RFKILL
1602 * or no valid public or static random address apply.
1603 */
1604 flush_workqueue(hdev->req_workqueue);
1605
1606 /* For controllers not using the management interface and that
1607 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1608 * so that pairing works for them. Once the management interface
1609 * is in use this bit will be cleared again and userspace has
1610 * to explicitly enable it.
1611 */
1612 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1613 !hci_dev_test_flag(hdev, HCI_MGMT))
1614 hci_dev_set_flag(hdev, HCI_BONDABLE);
1615
1616 err = hci_dev_do_open(hdev);
1617
1618done:
1619 hci_dev_put(hdev);
1620 return err;
1621}
1622
1623/* This function requires the caller holds hdev->lock */
1624static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1625{
1626 struct hci_conn_params *p;
1627
1628 list_for_each_entry(p, &hdev->le_conn_params, list) {
1629 if (p->conn) {
1630 hci_conn_drop(p->conn);
1631 hci_conn_put(p->conn);
1632 p->conn = NULL;
1633 }
1634 list_del_init(&p->action);
1635 }
1636
1637 BT_DBG("All LE pending actions cleared");
1638}
1639
1640int hci_dev_do_close(struct hci_dev *hdev)
1641{
1642 bool auto_off;
1643
1644 BT_DBG("%s %p", hdev->name, hdev);
1645
1646 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1647 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1648 test_bit(HCI_UP, &hdev->flags)) {
1649 /* Execute vendor specific shutdown routine */
1650 if (hdev->shutdown)
1651 hdev->shutdown(hdev);
1652 }
1653
1654 cancel_delayed_work(&hdev->power_off);
1655
1656 hci_request_cancel_all(hdev);
1657 hci_req_sync_lock(hdev);
1658
1659 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1660 cancel_delayed_work_sync(&hdev->cmd_timer);
1661 hci_req_sync_unlock(hdev);
1662 return 0;
1663 }
1664
1665 hci_leds_update_powered(hdev, false);
1666
1667 /* Flush RX and TX works */
1668 flush_work(&hdev->tx_work);
1669 flush_work(&hdev->rx_work);
1670
1671 if (hdev->discov_timeout > 0) {
1672 hdev->discov_timeout = 0;
1673 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1674 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1675 }
1676
1677 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1678 cancel_delayed_work(&hdev->service_cache);
1679
1680 if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1681 struct adv_info *adv_instance;
1682
1683 cancel_delayed_work_sync(&hdev->rpa_expired);
1684
1685 list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1686 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1687 }
1688
1689 /* Avoid potential lockdep warnings from the *_flush() calls by
1690 * ensuring the workqueue is empty up front.
1691 */
1692 drain_workqueue(hdev->workqueue);
1693
1694 hci_dev_lock(hdev);
1695
1696 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1697
1698 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1699
1700 if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1701 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1702 hci_dev_test_flag(hdev, HCI_MGMT))
1703 __mgmt_power_off(hdev);
1704
1705 hci_inquiry_cache_flush(hdev);
1706 hci_pend_le_actions_clear(hdev);
1707 hci_conn_hash_flush(hdev);
1708 hci_dev_unlock(hdev);
1709
1710 smp_unregister(hdev);
1711
1712 hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1713
1714 if (hdev->flush)
1715 hdev->flush(hdev);
1716
1717 /* Reset device */
1718 skb_queue_purge(&hdev->cmd_q);
1719 atomic_set(&hdev->cmd_cnt, 1);
1720 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1721 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1722 set_bit(HCI_INIT, &hdev->flags);
1723 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1724 clear_bit(HCI_INIT, &hdev->flags);
1725 }
1726
1727 /* flush cmd work */
1728 flush_work(&hdev->cmd_work);
1729
1730 /* Drop queues */
1731 skb_queue_purge(&hdev->rx_q);
1732 skb_queue_purge(&hdev->cmd_q);
1733 skb_queue_purge(&hdev->raw_q);
1734
1735 /* Drop last sent command */
1736 if (hdev->sent_cmd) {
1737 cancel_delayed_work_sync(&hdev->cmd_timer);
1738 kfree_skb(hdev->sent_cmd);
1739 hdev->sent_cmd = NULL;
1740 }
1741
1742 clear_bit(HCI_RUNNING, &hdev->flags);
1743 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1744
1745 /* After this point our queues are empty
1746 * and no tasks are scheduled. */
1747 hdev->close(hdev);
1748
1749 /* Clear flags */
1750 hdev->flags &= BIT(HCI_RAW);
1751 hci_dev_clear_volatile_flags(hdev);
1752
1753 /* Controller radio is available but is currently powered down */
1754 hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1755
1756 memset(hdev->eir, 0, sizeof(hdev->eir));
1757 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1758 bacpy(&hdev->random_addr, BDADDR_ANY);
1759
1760 hci_req_sync_unlock(hdev);
1761
1762 hci_dev_put(hdev);
1763 return 0;
1764}
1765
1766int hci_dev_close(__u16 dev)
1767{
1768 struct hci_dev *hdev;
1769 int err;
1770
1771 hdev = hci_dev_get(dev);
1772 if (!hdev)
1773 return -ENODEV;
1774
1775 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1776 err = -EBUSY;
1777 goto done;
1778 }
1779
1780 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1781 cancel_delayed_work(&hdev->power_off);
1782
1783 err = hci_dev_do_close(hdev);
1784
1785done:
1786 hci_dev_put(hdev);
1787 return err;
1788}
1789
1790static int hci_dev_do_reset(struct hci_dev *hdev)
1791{
1792 int ret;
1793
1794 BT_DBG("%s %p", hdev->name, hdev);
1795
1796 hci_req_sync_lock(hdev);
1797
1798 /* Drop queues */
1799 skb_queue_purge(&hdev->rx_q);
1800 skb_queue_purge(&hdev->cmd_q);
1801
1802 /* Avoid potential lockdep warnings from the *_flush() calls by
1803 * ensuring the workqueue is empty up front.
1804 */
1805 drain_workqueue(hdev->workqueue);
1806
1807 hci_dev_lock(hdev);
1808 hci_inquiry_cache_flush(hdev);
1809 hci_conn_hash_flush(hdev);
1810 hci_dev_unlock(hdev);
1811
1812 if (hdev->flush)
1813 hdev->flush(hdev);
1814
1815 atomic_set(&hdev->cmd_cnt, 1);
1816 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1817
1818 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1819
1820 hci_req_sync_unlock(hdev);
1821 return ret;
1822}
1823
1824int hci_dev_reset(__u16 dev)
1825{
1826 struct hci_dev *hdev;
1827 int err;
1828
1829 hdev = hci_dev_get(dev);
1830 if (!hdev)
1831 return -ENODEV;
1832
1833 if (!test_bit(HCI_UP, &hdev->flags)) {
1834 err = -ENETDOWN;
1835 goto done;
1836 }
1837
1838 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1839 err = -EBUSY;
1840 goto done;
1841 }
1842
1843 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1844 err = -EOPNOTSUPP;
1845 goto done;
1846 }
1847
1848 err = hci_dev_do_reset(hdev);
1849
1850done:
1851 hci_dev_put(hdev);
1852 return err;
1853}
1854
1855int hci_dev_reset_stat(__u16 dev)
1856{
1857 struct hci_dev *hdev;
1858 int ret = 0;
1859
1860 hdev = hci_dev_get(dev);
1861 if (!hdev)
1862 return -ENODEV;
1863
1864 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1865 ret = -EBUSY;
1866 goto done;
1867 }
1868
1869 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1870 ret = -EOPNOTSUPP;
1871 goto done;
1872 }
1873
1874 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1875
1876done:
1877 hci_dev_put(hdev);
1878 return ret;
1879}
1880
1881static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1882{
1883 bool conn_changed, discov_changed;
1884
1885 BT_DBG("%s scan 0x%02x", hdev->name, scan);
1886
1887 if ((scan & SCAN_PAGE))
1888 conn_changed = !hci_dev_test_and_set_flag(hdev,
1889 HCI_CONNECTABLE);
1890 else
1891 conn_changed = hci_dev_test_and_clear_flag(hdev,
1892 HCI_CONNECTABLE);
1893
1894 if ((scan & SCAN_INQUIRY)) {
1895 discov_changed = !hci_dev_test_and_set_flag(hdev,
1896 HCI_DISCOVERABLE);
1897 } else {
1898 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1899 discov_changed = hci_dev_test_and_clear_flag(hdev,
1900 HCI_DISCOVERABLE);
1901 }
1902
1903 if (!hci_dev_test_flag(hdev, HCI_MGMT))
1904 return;
1905
1906 if (conn_changed || discov_changed) {
1907 /* In case this was disabled through mgmt */
1908 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1909
1910 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1911 hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1912
1913 mgmt_new_settings(hdev);
1914 }
1915}
1916
1917int hci_dev_cmd(unsigned int cmd, void __user *arg)
1918{
1919 struct hci_dev *hdev;
1920 struct hci_dev_req dr;
1921 int err = 0;
1922
1923 if (copy_from_user(&dr, arg, sizeof(dr)))
1924 return -EFAULT;
1925
1926 hdev = hci_dev_get(dr.dev_id);
1927 if (!hdev)
1928 return -ENODEV;
1929
1930 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1931 err = -EBUSY;
1932 goto done;
1933 }
1934
1935 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1936 err = -EOPNOTSUPP;
1937 goto done;
1938 }
1939
1940 if (hdev->dev_type != HCI_PRIMARY) {
1941 err = -EOPNOTSUPP;
1942 goto done;
1943 }
1944
1945 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1946 err = -EOPNOTSUPP;
1947 goto done;
1948 }
1949
1950 switch (cmd) {
1951 case HCISETAUTH:
1952 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1953 HCI_INIT_TIMEOUT, NULL);
1954 break;
1955
1956 case HCISETENCRYPT:
1957 if (!lmp_encrypt_capable(hdev)) {
1958 err = -EOPNOTSUPP;
1959 break;
1960 }
1961
1962 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1963 /* Auth must be enabled first */
1964 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1965 HCI_INIT_TIMEOUT, NULL);
1966 if (err)
1967 break;
1968 }
1969
1970 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1971 HCI_INIT_TIMEOUT, NULL);
1972 break;
1973
1974 case HCISETSCAN:
1975 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1976 HCI_INIT_TIMEOUT, NULL);
1977
1978 /* Ensure that the connectable and discoverable states
1979 * get correctly modified as this was a non-mgmt change.
1980 */
1981 if (!err)
1982 hci_update_scan_state(hdev, dr.dev_opt);
1983 break;
1984
1985 case HCISETLINKPOL:
1986 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1987 HCI_INIT_TIMEOUT, NULL);
1988 break;
1989
1990 case HCISETLINKMODE:
1991 hdev->link_mode = ((__u16) dr.dev_opt) &
1992 (HCI_LM_MASTER | HCI_LM_ACCEPT);
1993 break;
1994
1995 case HCISETPTYPE:
1996 if (hdev->pkt_type == (__u16) dr.dev_opt)
1997 break;
1998
1999 hdev->pkt_type = (__u16) dr.dev_opt;
2000 mgmt_phy_configuration_changed(hdev, NULL);
2001 break;
2002
2003 case HCISETACLMTU:
2004 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
2005 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2006 break;
2007
2008 case HCISETSCOMTU:
2009 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
2010 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2011 break;
2012
2013 default:
2014 err = -EINVAL;
2015 break;
2016 }
2017
2018done:
2019 hci_dev_put(hdev);
2020 return err;
2021}
2022
2023int hci_get_dev_list(void __user *arg)
2024{
2025 struct hci_dev *hdev;
2026 struct hci_dev_list_req *dl;
2027 struct hci_dev_req *dr;
2028 int n = 0, size, err;
2029 __u16 dev_num;
2030
2031 if (get_user(dev_num, (__u16 __user *) arg))
2032 return -EFAULT;
2033
2034 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2035 return -EINVAL;
2036
2037 size = sizeof(*dl) + dev_num * sizeof(*dr);
2038
2039 dl = kzalloc(size, GFP_KERNEL);
2040 if (!dl)
2041 return -ENOMEM;
2042
2043 dr = dl->dev_req;
2044
2045 read_lock(&hci_dev_list_lock);
2046 list_for_each_entry(hdev, &hci_dev_list, list) {
2047 unsigned long flags = hdev->flags;
2048
2049 /* When the auto-off is configured it means the transport
2050 * is running, but in that case still indicate that the
2051 * device is actually down.
2052 */
2053 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2054 flags &= ~BIT(HCI_UP);
2055
2056 (dr + n)->dev_id = hdev->id;
2057 (dr + n)->dev_opt = flags;
2058
2059 if (++n >= dev_num)
2060 break;
2061 }
2062 read_unlock(&hci_dev_list_lock);
2063
2064 dl->dev_num = n;
2065 size = sizeof(*dl) + n * sizeof(*dr);
2066
2067 err = copy_to_user(arg, dl, size);
2068 kfree(dl);
2069
2070 return err ? -EFAULT : 0;
2071}
2072
2073int hci_get_dev_info(void __user *arg)
2074{
2075 struct hci_dev *hdev;
2076 struct hci_dev_info di;
2077 unsigned long flags;
2078 int err = 0;
2079
2080 if (copy_from_user(&di, arg, sizeof(di)))
2081 return -EFAULT;
2082
2083 hdev = hci_dev_get(di.dev_id);
2084 if (!hdev)
2085 return -ENODEV;
2086
2087 /* When the auto-off is configured it means the transport
2088 * is running, but in that case still indicate that the
2089 * device is actually down.
2090 */
2091 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2092 flags = hdev->flags & ~BIT(HCI_UP);
2093 else
2094 flags = hdev->flags;
2095
2096 strcpy(di.name, hdev->name);
2097 di.bdaddr = hdev->bdaddr;
2098 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2099 di.flags = flags;
2100 di.pkt_type = hdev->pkt_type;
2101 if (lmp_bredr_capable(hdev)) {
2102 di.acl_mtu = hdev->acl_mtu;
2103 di.acl_pkts = hdev->acl_pkts;
2104 di.sco_mtu = hdev->sco_mtu;
2105 di.sco_pkts = hdev->sco_pkts;
2106 } else {
2107 di.acl_mtu = hdev->le_mtu;
2108 di.acl_pkts = hdev->le_pkts;
2109 di.sco_mtu = 0;
2110 di.sco_pkts = 0;
2111 }
2112 di.link_policy = hdev->link_policy;
2113 di.link_mode = hdev->link_mode;
2114
2115 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2116 memcpy(&di.features, &hdev->features, sizeof(di.features));
2117
2118 if (copy_to_user(arg, &di, sizeof(di)))
2119 err = -EFAULT;
2120
2121 hci_dev_put(hdev);
2122
2123 return err;
2124}
2125
2126/* ---- Interface to HCI drivers ---- */
2127
2128static int hci_rfkill_set_block(void *data, bool blocked)
2129{
2130 struct hci_dev *hdev = data;
2131
2132 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2133
2134 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2135 return -EBUSY;
2136
2137 if (blocked) {
2138 hci_dev_set_flag(hdev, HCI_RFKILLED);
2139 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2140 !hci_dev_test_flag(hdev, HCI_CONFIG))
2141 hci_dev_do_close(hdev);
2142 } else {
2143 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2144 }
2145
2146 return 0;
2147}
2148
2149static const struct rfkill_ops hci_rfkill_ops = {
2150 .set_block = hci_rfkill_set_block,
2151};
2152
2153static void hci_power_on(struct work_struct *work)
2154{
2155 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2156 int err;
2157
2158 BT_DBG("%s", hdev->name);
2159
2160 if (test_bit(HCI_UP, &hdev->flags) &&
2161 hci_dev_test_flag(hdev, HCI_MGMT) &&
2162 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2163 cancel_delayed_work(&hdev->power_off);
2164 hci_req_sync_lock(hdev);
2165 err = __hci_req_hci_power_on(hdev);
2166 hci_req_sync_unlock(hdev);
2167 mgmt_power_on(hdev, err);
2168 return;
2169 }
2170
2171 err = hci_dev_do_open(hdev);
2172 if (err < 0) {
2173 hci_dev_lock(hdev);
2174 mgmt_set_powered_failed(hdev, err);
2175 hci_dev_unlock(hdev);
2176 return;
2177 }
2178
2179 /* During the HCI setup phase, a few error conditions are
2180 * ignored and they need to be checked now. If they are still
2181 * valid, it is important to turn the device back off.
2182 */
2183 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2184 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2185 (hdev->dev_type == HCI_PRIMARY &&
2186 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2187 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2188 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2189 hci_dev_do_close(hdev);
2190 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2191 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2192 HCI_AUTO_OFF_TIMEOUT);
2193 }
2194
2195 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2196 /* For unconfigured devices, set the HCI_RAW flag
2197 * so that userspace can easily identify them.
2198 */
2199 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2200 set_bit(HCI_RAW, &hdev->flags);
2201
2202 /* For fully configured devices, this will send
2203 * the Index Added event. For unconfigured devices,
2204 * it will send Unconfigued Index Added event.
2205 *
2206 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2207 * and no event will be send.
2208 */
2209 mgmt_index_added(hdev);
2210 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2211 /* When the controller is now configured, then it
2212 * is important to clear the HCI_RAW flag.
2213 */
2214 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2215 clear_bit(HCI_RAW, &hdev->flags);
2216
2217 /* Powering on the controller with HCI_CONFIG set only
2218 * happens with the transition from unconfigured to
2219 * configured. This will send the Index Added event.
2220 */
2221 mgmt_index_added(hdev);
2222 }
2223}
2224
2225static void hci_power_off(struct work_struct *work)
2226{
2227 struct hci_dev *hdev = container_of(work, struct hci_dev,
2228 power_off.work);
2229
2230 BT_DBG("%s", hdev->name);
2231
2232 hci_dev_do_close(hdev);
2233}
2234
2235static void hci_error_reset(struct work_struct *work)
2236{
2237 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2238
2239 BT_DBG("%s", hdev->name);
2240
2241 if (hdev->hw_error)
2242 hdev->hw_error(hdev, hdev->hw_error_code);
2243 else
2244 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2245
2246 if (hci_dev_do_close(hdev))
2247 return;
2248
2249 hci_dev_do_open(hdev);
2250}
2251
2252void hci_uuids_clear(struct hci_dev *hdev)
2253{
2254 struct bt_uuid *uuid, *tmp;
2255
2256 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2257 list_del(&uuid->list);
2258 kfree(uuid);
2259 }
2260}
2261
2262void hci_link_keys_clear(struct hci_dev *hdev)
2263{
2264 struct link_key *key;
2265
2266 list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2267 list_del_rcu(&key->list);
2268 kfree_rcu(key, rcu);
2269 }
2270}
2271
2272void hci_smp_ltks_clear(struct hci_dev *hdev)
2273{
2274 struct smp_ltk *k;
2275
2276 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2277 list_del_rcu(&k->list);
2278 kfree_rcu(k, rcu);
2279 }
2280}
2281
2282void hci_smp_irks_clear(struct hci_dev *hdev)
2283{
2284 struct smp_irk *k;
2285
2286 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2287 list_del_rcu(&k->list);
2288 kfree_rcu(k, rcu);
2289 }
2290}
2291
2292struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2293{
2294 struct link_key *k;
2295
2296 rcu_read_lock();
2297 list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2298 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2299 rcu_read_unlock();
2300 return k;
2301 }
2302 }
2303 rcu_read_unlock();
2304
2305 return NULL;
2306}
2307
2308static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2309 u8 key_type, u8 old_key_type)
2310{
2311 /* Legacy key */
2312 if (key_type < 0x03)
2313 return true;
2314
2315 /* Debug keys are insecure so don't store them persistently */
2316 if (key_type == HCI_LK_DEBUG_COMBINATION)
2317 return false;
2318
2319 /* Changed combination key and there's no previous one */
2320 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2321 return false;
2322
2323 /* Security mode 3 case */
2324 if (!conn)
2325 return true;
2326
2327 /* BR/EDR key derived using SC from an LE link */
2328 if (conn->type == LE_LINK)
2329 return true;
2330
2331 /* Neither local nor remote side had no-bonding as requirement */
2332 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2333 return true;
2334
2335 /* Local side had dedicated bonding as requirement */
2336 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2337 return true;
2338
2339 /* Remote side had dedicated bonding as requirement */
2340 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2341 return true;
2342
2343 /* If none of the above criteria match, then don't store the key
2344 * persistently */
2345 return false;
2346}
2347
2348static u8 ltk_role(u8 type)
2349{
2350 if (type == SMP_LTK)
2351 return HCI_ROLE_MASTER;
2352
2353 return HCI_ROLE_SLAVE;
2354}
2355
2356struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2357 u8 addr_type, u8 role)
2358{
2359 struct smp_ltk *k;
2360
2361 rcu_read_lock();
2362 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2363 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2364 continue;
2365
2366 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2367 rcu_read_unlock();
2368 return k;
2369 }
2370 }
2371 rcu_read_unlock();
2372
2373 return NULL;
2374}
2375
2376struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2377{
2378 struct smp_irk *irk;
2379
2380 rcu_read_lock();
2381 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2382 if (!bacmp(&irk->rpa, rpa)) {
2383 rcu_read_unlock();
2384 return irk;
2385 }
2386 }
2387
2388 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2389 if (smp_irk_matches(hdev, irk->val, rpa)) {
2390 bacpy(&irk->rpa, rpa);
2391 rcu_read_unlock();
2392 return irk;
2393 }
2394 }
2395 rcu_read_unlock();
2396
2397 return NULL;
2398}
2399
2400struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2401 u8 addr_type)
2402{
2403 struct smp_irk *irk;
2404
2405 /* Identity Address must be public or static random */
2406 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2407 return NULL;
2408
2409 rcu_read_lock();
2410 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2411 if (addr_type == irk->addr_type &&
2412 bacmp(bdaddr, &irk->bdaddr) == 0) {
2413 rcu_read_unlock();
2414 return irk;
2415 }
2416 }
2417 rcu_read_unlock();
2418
2419 return NULL;
2420}
2421
2422struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2423 bdaddr_t *bdaddr, u8 *val, u8 type,
2424 u8 pin_len, bool *persistent)
2425{
2426 struct link_key *key, *old_key;
2427 u8 old_key_type;
2428
2429 old_key = hci_find_link_key(hdev, bdaddr);
2430 if (old_key) {
2431 old_key_type = old_key->type;
2432 key = old_key;
2433 } else {
2434 old_key_type = conn ? conn->key_type : 0xff;
2435 key = kzalloc(sizeof(*key), GFP_KERNEL);
2436 if (!key)
2437 return NULL;
2438 list_add_rcu(&key->list, &hdev->link_keys);
2439 }
2440
2441 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2442
2443 /* Some buggy controller combinations generate a changed
2444 * combination key for legacy pairing even when there's no
2445 * previous key */
2446 if (type == HCI_LK_CHANGED_COMBINATION &&
2447 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2448 type = HCI_LK_COMBINATION;
2449 if (conn)
2450 conn->key_type = type;
2451 }
2452
2453 bacpy(&key->bdaddr, bdaddr);
2454 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2455 key->pin_len = pin_len;
2456
2457 if (type == HCI_LK_CHANGED_COMBINATION)
2458 key->type = old_key_type;
2459 else
2460 key->type = type;
2461
2462 if (persistent)
2463 *persistent = hci_persistent_key(hdev, conn, type,
2464 old_key_type);
2465
2466 return key;
2467}
2468
2469struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2470 u8 addr_type, u8 type, u8 authenticated,
2471 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2472{
2473 struct smp_ltk *key, *old_key;
2474 u8 role = ltk_role(type);
2475
2476 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2477 if (old_key)
2478 key = old_key;
2479 else {
2480 key = kzalloc(sizeof(*key), GFP_KERNEL);
2481 if (!key)
2482 return NULL;
2483 list_add_rcu(&key->list, &hdev->long_term_keys);
2484 }
2485
2486 bacpy(&key->bdaddr, bdaddr);
2487 key->bdaddr_type = addr_type;
2488 memcpy(key->val, tk, sizeof(key->val));
2489 key->authenticated = authenticated;
2490 key->ediv = ediv;
2491 key->rand = rand;
2492 key->enc_size = enc_size;
2493 key->type = type;
2494
2495 return key;
2496}
2497
2498struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2499 u8 addr_type, u8 val[16], bdaddr_t *rpa)
2500{
2501 struct smp_irk *irk;
2502
2503 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2504 if (!irk) {
2505 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2506 if (!irk)
2507 return NULL;
2508
2509 bacpy(&irk->bdaddr, bdaddr);
2510 irk->addr_type = addr_type;
2511
2512 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2513 }
2514
2515 memcpy(irk->val, val, 16);
2516 bacpy(&irk->rpa, rpa);
2517
2518 return irk;
2519}
2520
2521int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2522{
2523 struct link_key *key;
2524
2525 key = hci_find_link_key(hdev, bdaddr);
2526 if (!key)
2527 return -ENOENT;
2528
2529 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2530
2531 list_del_rcu(&key->list);
2532 kfree_rcu(key, rcu);
2533
2534 return 0;
2535}
2536
2537int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2538{
2539 struct smp_ltk *k;
2540 int removed = 0;
2541
2542 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2543 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2544 continue;
2545
2546 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2547
2548 list_del_rcu(&k->list);
2549 kfree_rcu(k, rcu);
2550 removed++;
2551 }
2552
2553 return removed ? 0 : -ENOENT;
2554}
2555
2556void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2557{
2558 struct smp_irk *k;
2559
2560 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2561 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2562 continue;
2563
2564 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2565
2566 list_del_rcu(&k->list);
2567 kfree_rcu(k, rcu);
2568 }
2569}
2570
2571bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2572{
2573 struct smp_ltk *k;
2574 struct smp_irk *irk;
2575 u8 addr_type;
2576
2577 if (type == BDADDR_BREDR) {
2578 if (hci_find_link_key(hdev, bdaddr))
2579 return true;
2580 return false;
2581 }
2582
2583 /* Convert to HCI addr type which struct smp_ltk uses */
2584 if (type == BDADDR_LE_PUBLIC)
2585 addr_type = ADDR_LE_DEV_PUBLIC;
2586 else
2587 addr_type = ADDR_LE_DEV_RANDOM;
2588
2589 irk = hci_get_irk(hdev, bdaddr, addr_type);
2590 if (irk) {
2591 bdaddr = &irk->bdaddr;
2592 addr_type = irk->addr_type;
2593 }
2594
2595 rcu_read_lock();
2596 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2597 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2598 rcu_read_unlock();
2599 return true;
2600 }
2601 }
2602 rcu_read_unlock();
2603
2604 return false;
2605}
2606
2607/* HCI command timer function */
2608static void hci_cmd_timeout(struct work_struct *work)
2609{
2610 struct hci_dev *hdev = container_of(work, struct hci_dev,
2611 cmd_timer.work);
2612
2613 if (hdev->sent_cmd) {
2614 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2615 u16 opcode = __le16_to_cpu(sent->opcode);
2616
2617 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2618 } else {
2619 bt_dev_err(hdev, "command tx timeout");
2620 }
2621
2622 if (hdev->cmd_timeout)
2623 hdev->cmd_timeout(hdev);
2624
2625 atomic_set(&hdev->cmd_cnt, 1);
2626 queue_work(hdev->workqueue, &hdev->cmd_work);
2627}
2628
2629struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2630 bdaddr_t *bdaddr, u8 bdaddr_type)
2631{
2632 struct oob_data *data;
2633
2634 list_for_each_entry(data, &hdev->remote_oob_data, list) {
2635 if (bacmp(bdaddr, &data->bdaddr) != 0)
2636 continue;
2637 if (data->bdaddr_type != bdaddr_type)
2638 continue;
2639 return data;
2640 }
2641
2642 return NULL;
2643}
2644
2645int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2646 u8 bdaddr_type)
2647{
2648 struct oob_data *data;
2649
2650 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2651 if (!data)
2652 return -ENOENT;
2653
2654 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2655
2656 list_del(&data->list);
2657 kfree(data);
2658
2659 return 0;
2660}
2661
2662void hci_remote_oob_data_clear(struct hci_dev *hdev)
2663{
2664 struct oob_data *data, *n;
2665
2666 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2667 list_del(&data->list);
2668 kfree(data);
2669 }
2670}
2671
2672int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2673 u8 bdaddr_type, u8 *hash192, u8 *rand192,
2674 u8 *hash256, u8 *rand256)
2675{
2676 struct oob_data *data;
2677
2678 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2679 if (!data) {
2680 data = kmalloc(sizeof(*data), GFP_KERNEL);
2681 if (!data)
2682 return -ENOMEM;
2683
2684 bacpy(&data->bdaddr, bdaddr);
2685 data->bdaddr_type = bdaddr_type;
2686 list_add(&data->list, &hdev->remote_oob_data);
2687 }
2688
2689 if (hash192 && rand192) {
2690 memcpy(data->hash192, hash192, sizeof(data->hash192));
2691 memcpy(data->rand192, rand192, sizeof(data->rand192));
2692 if (hash256 && rand256)
2693 data->present = 0x03;
2694 } else {
2695 memset(data->hash192, 0, sizeof(data->hash192));
2696 memset(data->rand192, 0, sizeof(data->rand192));
2697 if (hash256 && rand256)
2698 data->present = 0x02;
2699 else
2700 data->present = 0x00;
2701 }
2702
2703 if (hash256 && rand256) {
2704 memcpy(data->hash256, hash256, sizeof(data->hash256));
2705 memcpy(data->rand256, rand256, sizeof(data->rand256));
2706 } else {
2707 memset(data->hash256, 0, sizeof(data->hash256));
2708 memset(data->rand256, 0, sizeof(data->rand256));
2709 if (hash192 && rand192)
2710 data->present = 0x01;
2711 }
2712
2713 BT_DBG("%s for %pMR", hdev->name, bdaddr);
2714
2715 return 0;
2716}
2717
2718/* This function requires the caller holds hdev->lock */
2719struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2720{
2721 struct adv_info *adv_instance;
2722
2723 list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2724 if (adv_instance->instance == instance)
2725 return adv_instance;
2726 }
2727
2728 return NULL;
2729}
2730
2731/* This function requires the caller holds hdev->lock */
2732struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2733{
2734 struct adv_info *cur_instance;
2735
2736 cur_instance = hci_find_adv_instance(hdev, instance);
2737 if (!cur_instance)
2738 return NULL;
2739
2740 if (cur_instance == list_last_entry(&hdev->adv_instances,
2741 struct adv_info, list))
2742 return list_first_entry(&hdev->adv_instances,
2743 struct adv_info, list);
2744 else
2745 return list_next_entry(cur_instance, list);
2746}
2747
2748/* This function requires the caller holds hdev->lock */
2749int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2750{
2751 struct adv_info *adv_instance;
2752
2753 adv_instance = hci_find_adv_instance(hdev, instance);
2754 if (!adv_instance)
2755 return -ENOENT;
2756
2757 BT_DBG("%s removing %dMR", hdev->name, instance);
2758
2759 if (hdev->cur_adv_instance == instance) {
2760 if (hdev->adv_instance_timeout) {
2761 cancel_delayed_work(&hdev->adv_instance_expire);
2762 hdev->adv_instance_timeout = 0;
2763 }
2764 hdev->cur_adv_instance = 0x00;
2765 }
2766
2767 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2768
2769 list_del(&adv_instance->list);
2770 kfree(adv_instance);
2771
2772 hdev->adv_instance_cnt--;
2773
2774 return 0;
2775}
2776
2777void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2778{
2779 struct adv_info *adv_instance, *n;
2780
2781 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2782 adv_instance->rpa_expired = rpa_expired;
2783}
2784
2785/* This function requires the caller holds hdev->lock */
2786void hci_adv_instances_clear(struct hci_dev *hdev)
2787{
2788 struct adv_info *adv_instance, *n;
2789
2790 if (hdev->adv_instance_timeout) {
2791 cancel_delayed_work(&hdev->adv_instance_expire);
2792 hdev->adv_instance_timeout = 0;
2793 }
2794
2795 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2796 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2797 list_del(&adv_instance->list);
2798 kfree(adv_instance);
2799 }
2800
2801 hdev->adv_instance_cnt = 0;
2802 hdev->cur_adv_instance = 0x00;
2803}
2804
2805static void adv_instance_rpa_expired(struct work_struct *work)
2806{
2807 struct adv_info *adv_instance = container_of(work, struct adv_info,
2808 rpa_expired_cb.work);
2809
2810 BT_DBG("");
2811
2812 adv_instance->rpa_expired = true;
2813}
2814
2815/* This function requires the caller holds hdev->lock */
2816int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2817 u16 adv_data_len, u8 *adv_data,
2818 u16 scan_rsp_len, u8 *scan_rsp_data,
2819 u16 timeout, u16 duration)
2820{
2821 struct adv_info *adv_instance;
2822
2823 adv_instance = hci_find_adv_instance(hdev, instance);
2824 if (adv_instance) {
2825 memset(adv_instance->adv_data, 0,
2826 sizeof(adv_instance->adv_data));
2827 memset(adv_instance->scan_rsp_data, 0,
2828 sizeof(adv_instance->scan_rsp_data));
2829 } else {
2830 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
2831 instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2832 return -EOVERFLOW;
2833
2834 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2835 if (!adv_instance)
2836 return -ENOMEM;
2837
2838 adv_instance->pending = true;
2839 adv_instance->instance = instance;
2840 list_add(&adv_instance->list, &hdev->adv_instances);
2841 hdev->adv_instance_cnt++;
2842 }
2843
2844 adv_instance->flags = flags;
2845 adv_instance->adv_data_len = adv_data_len;
2846 adv_instance->scan_rsp_len = scan_rsp_len;
2847
2848 if (adv_data_len)
2849 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2850
2851 if (scan_rsp_len)
2852 memcpy(adv_instance->scan_rsp_data,
2853 scan_rsp_data, scan_rsp_len);
2854
2855 adv_instance->timeout = timeout;
2856 adv_instance->remaining_time = timeout;
2857
2858 if (duration == 0)
2859 adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2860 else
2861 adv_instance->duration = duration;
2862
2863 adv_instance->tx_power = HCI_TX_POWER_INVALID;
2864
2865 INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
2866 adv_instance_rpa_expired);
2867
2868 BT_DBG("%s for %dMR", hdev->name, instance);
2869
2870 return 0;
2871}
2872
2873struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2874 bdaddr_t *bdaddr, u8 type)
2875{
2876 struct bdaddr_list *b;
2877
2878 list_for_each_entry(b, bdaddr_list, list) {
2879 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2880 return b;
2881 }
2882
2883 return NULL;
2884}
2885
2886struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2887 struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2888 u8 type)
2889{
2890 struct bdaddr_list_with_irk *b;
2891
2892 list_for_each_entry(b, bdaddr_list, list) {
2893 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2894 return b;
2895 }
2896
2897 return NULL;
2898}
2899
2900void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2901{
2902 struct bdaddr_list *b, *n;
2903
2904 list_for_each_entry_safe(b, n, bdaddr_list, list) {
2905 list_del(&b->list);
2906 kfree(b);
2907 }
2908}
2909
2910int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2911{
2912 struct bdaddr_list *entry;
2913
2914 if (!bacmp(bdaddr, BDADDR_ANY))
2915 return -EBADF;
2916
2917 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2918 return -EEXIST;
2919
2920 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2921 if (!entry)
2922 return -ENOMEM;
2923
2924 bacpy(&entry->bdaddr, bdaddr);
2925 entry->bdaddr_type = type;
2926
2927 list_add(&entry->list, list);
2928
2929 return 0;
2930}
2931
2932int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2933 u8 type, u8 *peer_irk, u8 *local_irk)
2934{
2935 struct bdaddr_list_with_irk *entry;
2936
2937 if (!bacmp(bdaddr, BDADDR_ANY))
2938 return -EBADF;
2939
2940 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2941 return -EEXIST;
2942
2943 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2944 if (!entry)
2945 return -ENOMEM;
2946
2947 bacpy(&entry->bdaddr, bdaddr);
2948 entry->bdaddr_type = type;
2949
2950 if (peer_irk)
2951 memcpy(entry->peer_irk, peer_irk, 16);
2952
2953 if (local_irk)
2954 memcpy(entry->local_irk, local_irk, 16);
2955
2956 list_add(&entry->list, list);
2957
2958 return 0;
2959}
2960
2961int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2962{
2963 struct bdaddr_list *entry;
2964
2965 if (!bacmp(bdaddr, BDADDR_ANY)) {
2966 hci_bdaddr_list_clear(list);
2967 return 0;
2968 }
2969
2970 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2971 if (!entry)
2972 return -ENOENT;
2973
2974 list_del(&entry->list);
2975 kfree(entry);
2976
2977 return 0;
2978}
2979
2980int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2981 u8 type)
2982{
2983 struct bdaddr_list_with_irk *entry;
2984
2985 if (!bacmp(bdaddr, BDADDR_ANY)) {
2986 hci_bdaddr_list_clear(list);
2987 return 0;
2988 }
2989
2990 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2991 if (!entry)
2992 return -ENOENT;
2993
2994 list_del(&entry->list);
2995 kfree(entry);
2996
2997 return 0;
2998}
2999
3000/* This function requires the caller holds hdev->lock */
3001struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3002 bdaddr_t *addr, u8 addr_type)
3003{
3004 struct hci_conn_params *params;
3005
3006 list_for_each_entry(params, &hdev->le_conn_params, list) {
3007 if (bacmp(¶ms->addr, addr) == 0 &&
3008 params->addr_type == addr_type) {
3009 return params;
3010 }
3011 }
3012
3013 return NULL;
3014}
3015
3016/* This function requires the caller holds hdev->lock */
3017struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3018 bdaddr_t *addr, u8 addr_type)
3019{
3020 struct hci_conn_params *param;
3021
3022 list_for_each_entry(param, list, action) {
3023 if (bacmp(¶m->addr, addr) == 0 &&
3024 param->addr_type == addr_type)
3025 return param;
3026 }
3027
3028 return NULL;
3029}
3030
3031/* This function requires the caller holds hdev->lock */
3032struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3033 bdaddr_t *addr, u8 addr_type)
3034{
3035 struct hci_conn_params *params;
3036
3037 params = hci_conn_params_lookup(hdev, addr, addr_type);
3038 if (params)
3039 return params;
3040
3041 params = kzalloc(sizeof(*params), GFP_KERNEL);
3042 if (!params) {
3043 bt_dev_err(hdev, "out of memory");
3044 return NULL;
3045 }
3046
3047 bacpy(¶ms->addr, addr);
3048 params->addr_type = addr_type;
3049
3050 list_add(¶ms->list, &hdev->le_conn_params);
3051 INIT_LIST_HEAD(¶ms->action);
3052
3053 params->conn_min_interval = hdev->le_conn_min_interval;
3054 params->conn_max_interval = hdev->le_conn_max_interval;
3055 params->conn_latency = hdev->le_conn_latency;
3056 params->supervision_timeout = hdev->le_supv_timeout;
3057 params->auto_connect = HCI_AUTO_CONN_DISABLED;
3058
3059 BT_DBG("addr %pMR (type %u)", addr, addr_type);
3060
3061 return params;
3062}
3063
3064static void hci_conn_params_free(struct hci_conn_params *params)
3065{
3066 if (params->conn) {
3067 hci_conn_drop(params->conn);
3068 hci_conn_put(params->conn);
3069 }
3070
3071 list_del(¶ms->action);
3072 list_del(¶ms->list);
3073 kfree(params);
3074}
3075
3076/* This function requires the caller holds hdev->lock */
3077void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3078{
3079 struct hci_conn_params *params;
3080
3081 params = hci_conn_params_lookup(hdev, addr, addr_type);
3082 if (!params)
3083 return;
3084
3085 hci_conn_params_free(params);
3086
3087 hci_update_background_scan(hdev);
3088
3089 BT_DBG("addr %pMR (type %u)", addr, addr_type);
3090}
3091
3092/* This function requires the caller holds hdev->lock */
3093void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3094{
3095 struct hci_conn_params *params, *tmp;
3096
3097 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3098 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3099 continue;
3100
3101 /* If trying to estabilish one time connection to disabled
3102 * device, leave the params, but mark them as just once.
3103 */
3104 if (params->explicit_connect) {
3105 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3106 continue;
3107 }
3108
3109 list_del(¶ms->list);
3110 kfree(params);
3111 }
3112
3113 BT_DBG("All LE disabled connection parameters were removed");
3114}
3115
3116/* This function requires the caller holds hdev->lock */
3117static void hci_conn_params_clear_all(struct hci_dev *hdev)
3118{
3119 struct hci_conn_params *params, *tmp;
3120
3121 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3122 hci_conn_params_free(params);
3123
3124 BT_DBG("All LE connection parameters were removed");
3125}
3126
3127/* Copy the Identity Address of the controller.
3128 *
3129 * If the controller has a public BD_ADDR, then by default use that one.
3130 * If this is a LE only controller without a public address, default to
3131 * the static random address.
3132 *
3133 * For debugging purposes it is possible to force controllers with a
3134 * public address to use the static random address instead.
3135 *
3136 * In case BR/EDR has been disabled on a dual-mode controller and
3137 * userspace has configured a static address, then that address
3138 * becomes the identity address instead of the public BR/EDR address.
3139 */
3140void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3141 u8 *bdaddr_type)
3142{
3143 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3144 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3145 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3146 bacmp(&hdev->static_addr, BDADDR_ANY))) {
3147 bacpy(bdaddr, &hdev->static_addr);
3148 *bdaddr_type = ADDR_LE_DEV_RANDOM;
3149 } else {
3150 bacpy(bdaddr, &hdev->bdaddr);
3151 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
3152 }
3153}
3154
3155/* Alloc HCI device */
3156struct hci_dev *hci_alloc_dev(void)
3157{
3158 struct hci_dev *hdev;
3159
3160 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3161 if (!hdev)
3162 return NULL;
3163
3164 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3165 hdev->esco_type = (ESCO_HV1);
3166 hdev->link_mode = (HCI_LM_ACCEPT);
3167 hdev->num_iac = 0x01; /* One IAC support is mandatory */
3168 hdev->io_capability = 0x03; /* No Input No Output */
3169 hdev->manufacturer = 0xffff; /* Default to internal use */
3170 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3171 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3172 hdev->adv_instance_cnt = 0;
3173 hdev->cur_adv_instance = 0x00;
3174 hdev->adv_instance_timeout = 0;
3175
3176 hdev->sniff_max_interval = 800;
3177 hdev->sniff_min_interval = 80;
3178
3179 hdev->le_adv_channel_map = 0x07;
3180 hdev->le_adv_min_interval = 0x0800;
3181 hdev->le_adv_max_interval = 0x0800;
3182 hdev->le_scan_interval = 0x0060;
3183 hdev->le_scan_window = 0x0030;
3184 hdev->le_conn_min_interval = 0x0018;
3185 hdev->le_conn_max_interval = 0x0028;
3186 hdev->le_conn_latency = 0x0000;
3187 hdev->le_supv_timeout = 0x002a;
3188 hdev->le_def_tx_len = 0x001b;
3189 hdev->le_def_tx_time = 0x0148;
3190 hdev->le_max_tx_len = 0x001b;
3191 hdev->le_max_tx_time = 0x0148;
3192 hdev->le_max_rx_len = 0x001b;
3193 hdev->le_max_rx_time = 0x0148;
3194 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3195 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3196 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3197 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3198 hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
3199
3200 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3201 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3202 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3203 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3204 hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
3205 hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
3206
3207 mutex_init(&hdev->lock);
3208 mutex_init(&hdev->req_lock);
3209
3210 INIT_LIST_HEAD(&hdev->mgmt_pending);
3211 INIT_LIST_HEAD(&hdev->blacklist);
3212 INIT_LIST_HEAD(&hdev->whitelist);
3213 INIT_LIST_HEAD(&hdev->uuids);
3214 INIT_LIST_HEAD(&hdev->link_keys);
3215 INIT_LIST_HEAD(&hdev->long_term_keys);
3216 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3217 INIT_LIST_HEAD(&hdev->remote_oob_data);
3218 INIT_LIST_HEAD(&hdev->le_white_list);
3219 INIT_LIST_HEAD(&hdev->le_resolv_list);
3220 INIT_LIST_HEAD(&hdev->le_conn_params);
3221 INIT_LIST_HEAD(&hdev->pend_le_conns);
3222 INIT_LIST_HEAD(&hdev->pend_le_reports);
3223 INIT_LIST_HEAD(&hdev->conn_hash.list);
3224 INIT_LIST_HEAD(&hdev->adv_instances);
3225
3226 INIT_WORK(&hdev->rx_work, hci_rx_work);
3227 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3228 INIT_WORK(&hdev->tx_work, hci_tx_work);
3229 INIT_WORK(&hdev->power_on, hci_power_on);
3230 INIT_WORK(&hdev->error_reset, hci_error_reset);
3231
3232 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3233
3234 skb_queue_head_init(&hdev->rx_q);
3235 skb_queue_head_init(&hdev->cmd_q);
3236 skb_queue_head_init(&hdev->raw_q);
3237
3238 init_waitqueue_head(&hdev->req_wait_q);
3239
3240 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3241
3242 hci_request_setup(hdev);
3243
3244 hci_init_sysfs(hdev);
3245 discovery_init(hdev);
3246
3247 return hdev;
3248}
3249EXPORT_SYMBOL(hci_alloc_dev);
3250
3251/* Free HCI device */
3252void hci_free_dev(struct hci_dev *hdev)
3253{
3254 /* will free via device release */
3255 put_device(&hdev->dev);
3256}
3257EXPORT_SYMBOL(hci_free_dev);
3258
3259/* Register HCI device */
3260int hci_register_dev(struct hci_dev *hdev)
3261{
3262 int id, error;
3263
3264 if (!hdev->open || !hdev->close || !hdev->send)
3265 return -EINVAL;
3266
3267 /* Do not allow HCI_AMP devices to register at index 0,
3268 * so the index can be used as the AMP controller ID.
3269 */
3270 switch (hdev->dev_type) {
3271 case HCI_PRIMARY:
3272 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3273 break;
3274 case HCI_AMP:
3275 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3276 break;
3277 default:
3278 return -EINVAL;
3279 }
3280
3281 if (id < 0)
3282 return id;
3283
3284 sprintf(hdev->name, "hci%d", id);
3285 hdev->id = id;
3286
3287 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3288
3289 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3290 if (!hdev->workqueue) {
3291 error = -ENOMEM;
3292 goto err;
3293 }
3294
3295 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3296 hdev->name);
3297 if (!hdev->req_workqueue) {
3298 destroy_workqueue(hdev->workqueue);
3299 error = -ENOMEM;
3300 goto err;
3301 }
3302
3303 if (!IS_ERR_OR_NULL(bt_debugfs))
3304 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3305
3306 dev_set_name(&hdev->dev, "%s", hdev->name);
3307
3308 error = device_add(&hdev->dev);
3309 if (error < 0)
3310 goto err_wqueue;
3311
3312 hci_leds_init(hdev);
3313
3314 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3315 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3316 hdev);
3317 if (hdev->rfkill) {
3318 if (rfkill_register(hdev->rfkill) < 0) {
3319 rfkill_destroy(hdev->rfkill);
3320 hdev->rfkill = NULL;
3321 }
3322 }
3323
3324 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3325 hci_dev_set_flag(hdev, HCI_RFKILLED);
3326
3327 hci_dev_set_flag(hdev, HCI_SETUP);
3328 hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3329
3330 if (hdev->dev_type == HCI_PRIMARY) {
3331 /* Assume BR/EDR support until proven otherwise (such as
3332 * through reading supported features during init.
3333 */
3334 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3335 }
3336
3337 write_lock(&hci_dev_list_lock);
3338 list_add(&hdev->list, &hci_dev_list);
3339 write_unlock(&hci_dev_list_lock);
3340
3341 /* Devices that are marked for raw-only usage are unconfigured
3342 * and should not be included in normal operation.
3343 */
3344 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3345 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3346
3347 hci_sock_dev_event(hdev, HCI_DEV_REG);
3348 hci_dev_hold(hdev);
3349
3350 queue_work(hdev->req_workqueue, &hdev->power_on);
3351
3352 return id;
3353
3354err_wqueue:
3355 destroy_workqueue(hdev->workqueue);
3356 destroy_workqueue(hdev->req_workqueue);
3357err:
3358 ida_simple_remove(&hci_index_ida, hdev->id);
3359
3360 return error;
3361}
3362EXPORT_SYMBOL(hci_register_dev);
3363
3364/* Unregister HCI device */
3365void hci_unregister_dev(struct hci_dev *hdev)
3366{
3367 int id;
3368
3369 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3370
3371 hci_dev_set_flag(hdev, HCI_UNREGISTER);
3372
3373 id = hdev->id;
3374
3375 write_lock(&hci_dev_list_lock);
3376 list_del(&hdev->list);
3377 write_unlock(&hci_dev_list_lock);
3378
3379 cancel_work_sync(&hdev->power_on);
3380
3381 hci_dev_do_close(hdev);
3382
3383 if (!test_bit(HCI_INIT, &hdev->flags) &&
3384 !hci_dev_test_flag(hdev, HCI_SETUP) &&
3385 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3386 hci_dev_lock(hdev);
3387 mgmt_index_removed(hdev);
3388 hci_dev_unlock(hdev);
3389 }
3390
3391 /* mgmt_index_removed should take care of emptying the
3392 * pending list */
3393 BUG_ON(!list_empty(&hdev->mgmt_pending));
3394
3395 hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3396
3397 if (hdev->rfkill) {
3398 rfkill_unregister(hdev->rfkill);
3399 rfkill_destroy(hdev->rfkill);
3400 }
3401
3402 device_del(&hdev->dev);
3403
3404 debugfs_remove_recursive(hdev->debugfs);
3405 kfree_const(hdev->hw_info);
3406 kfree_const(hdev->fw_info);
3407
3408 destroy_workqueue(hdev->workqueue);
3409 destroy_workqueue(hdev->req_workqueue);
3410
3411 hci_dev_lock(hdev);
3412 hci_bdaddr_list_clear(&hdev->blacklist);
3413 hci_bdaddr_list_clear(&hdev->whitelist);
3414 hci_uuids_clear(hdev);
3415 hci_link_keys_clear(hdev);
3416 hci_smp_ltks_clear(hdev);
3417 hci_smp_irks_clear(hdev);
3418 hci_remote_oob_data_clear(hdev);
3419 hci_adv_instances_clear(hdev);
3420 hci_bdaddr_list_clear(&hdev->le_white_list);
3421 hci_bdaddr_list_clear(&hdev->le_resolv_list);
3422 hci_conn_params_clear_all(hdev);
3423 hci_discovery_filter_clear(hdev);
3424 hci_dev_unlock(hdev);
3425
3426 hci_dev_put(hdev);
3427
3428 ida_simple_remove(&hci_index_ida, id);
3429}
3430EXPORT_SYMBOL(hci_unregister_dev);
3431
3432/* Suspend HCI device */
3433int hci_suspend_dev(struct hci_dev *hdev)
3434{
3435 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3436 return 0;
3437}
3438EXPORT_SYMBOL(hci_suspend_dev);
3439
3440/* Resume HCI device */
3441int hci_resume_dev(struct hci_dev *hdev)
3442{
3443 hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3444 return 0;
3445}
3446EXPORT_SYMBOL(hci_resume_dev);
3447
3448/* Reset HCI device */
3449int hci_reset_dev(struct hci_dev *hdev)
3450{
3451 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3452 struct sk_buff *skb;
3453
3454 skb = bt_skb_alloc(3, GFP_ATOMIC);
3455 if (!skb)
3456 return -ENOMEM;
3457
3458 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3459 skb_put_data(skb, hw_err, 3);
3460
3461 /* Send Hardware Error to upper stack */
3462 return hci_recv_frame(hdev, skb);
3463}
3464EXPORT_SYMBOL(hci_reset_dev);
3465
3466/* Receive frame from HCI drivers */
3467int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3468{
3469 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3470 && !test_bit(HCI_INIT, &hdev->flags))) {
3471 kfree_skb(skb);
3472 return -ENXIO;
3473 }
3474
3475 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3476 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3477 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3478 kfree_skb(skb);
3479 return -EINVAL;
3480 }
3481
3482 /* Incoming skb */
3483 bt_cb(skb)->incoming = 1;
3484
3485 /* Time stamp */
3486 __net_timestamp(skb);
3487
3488 skb_queue_tail(&hdev->rx_q, skb);
3489 queue_work(hdev->workqueue, &hdev->rx_work);
3490
3491 return 0;
3492}
3493EXPORT_SYMBOL(hci_recv_frame);
3494
3495/* Receive diagnostic message from HCI drivers */
3496int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3497{
3498 /* Mark as diagnostic packet */
3499 hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3500
3501 /* Time stamp */
3502 __net_timestamp(skb);
3503
3504 skb_queue_tail(&hdev->rx_q, skb);
3505 queue_work(hdev->workqueue, &hdev->rx_work);
3506
3507 return 0;
3508}
3509EXPORT_SYMBOL(hci_recv_diag);
3510
3511void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3512{
3513 va_list vargs;
3514
3515 va_start(vargs, fmt);
3516 kfree_const(hdev->hw_info);
3517 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3518 va_end(vargs);
3519}
3520EXPORT_SYMBOL(hci_set_hw_info);
3521
3522void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3523{
3524 va_list vargs;
3525
3526 va_start(vargs, fmt);
3527 kfree_const(hdev->fw_info);
3528 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3529 va_end(vargs);
3530}
3531EXPORT_SYMBOL(hci_set_fw_info);
3532
3533/* ---- Interface to upper protocols ---- */
3534
3535int hci_register_cb(struct hci_cb *cb)
3536{
3537 BT_DBG("%p name %s", cb, cb->name);
3538
3539 mutex_lock(&hci_cb_list_lock);
3540 list_add_tail(&cb->list, &hci_cb_list);
3541 mutex_unlock(&hci_cb_list_lock);
3542
3543 return 0;
3544}
3545EXPORT_SYMBOL(hci_register_cb);
3546
3547int hci_unregister_cb(struct hci_cb *cb)
3548{
3549 BT_DBG("%p name %s", cb, cb->name);
3550
3551 mutex_lock(&hci_cb_list_lock);
3552 list_del(&cb->list);
3553 mutex_unlock(&hci_cb_list_lock);
3554
3555 return 0;
3556}
3557EXPORT_SYMBOL(hci_unregister_cb);
3558
3559static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3560{
3561 int err;
3562
3563 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3564 skb->len);
3565
3566 /* Time stamp */
3567 __net_timestamp(skb);
3568
3569 /* Send copy to monitor */
3570 hci_send_to_monitor(hdev, skb);
3571
3572 if (atomic_read(&hdev->promisc)) {
3573 /* Send copy to the sockets */
3574 hci_send_to_sock(hdev, skb);
3575 }
3576
3577 /* Get rid of skb owner, prior to sending to the driver. */
3578 skb_orphan(skb);
3579
3580 if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3581 kfree_skb(skb);
3582 return;
3583 }
3584
3585 err = hdev->send(hdev, skb);
3586 if (err < 0) {
3587 bt_dev_err(hdev, "sending frame failed (%d)", err);
3588 kfree_skb(skb);
3589 }
3590}
3591
3592/* Send HCI command */
3593int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3594 const void *param)
3595{
3596 struct sk_buff *skb;
3597
3598 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3599
3600 skb = hci_prepare_cmd(hdev, opcode, plen, param);
3601 if (!skb) {
3602 bt_dev_err(hdev, "no memory for command");
3603 return -ENOMEM;
3604 }
3605
3606 /* Stand-alone HCI commands must be flagged as
3607 * single-command requests.
3608 */
3609 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3610
3611 skb_queue_tail(&hdev->cmd_q, skb);
3612 queue_work(hdev->workqueue, &hdev->cmd_work);
3613
3614 return 0;
3615}
3616
3617int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3618 const void *param)
3619{
3620 struct sk_buff *skb;
3621
3622 if (hci_opcode_ogf(opcode) != 0x3f) {
3623 /* A controller receiving a command shall respond with either
3624 * a Command Status Event or a Command Complete Event.
3625 * Therefore, all standard HCI commands must be sent via the
3626 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3627 * Some vendors do not comply with this rule for vendor-specific
3628 * commands and do not return any event. We want to support
3629 * unresponded commands for such cases only.
3630 */
3631 bt_dev_err(hdev, "unresponded command not supported");
3632 return -EINVAL;
3633 }
3634
3635 skb = hci_prepare_cmd(hdev, opcode, plen, param);
3636 if (!skb) {
3637 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3638 opcode);
3639 return -ENOMEM;
3640 }
3641
3642 hci_send_frame(hdev, skb);
3643
3644 return 0;
3645}
3646EXPORT_SYMBOL(__hci_cmd_send);
3647
3648/* Get data from the previously sent command */
3649void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3650{
3651 struct hci_command_hdr *hdr;
3652
3653 if (!hdev->sent_cmd)
3654 return NULL;
3655
3656 hdr = (void *) hdev->sent_cmd->data;
3657
3658 if (hdr->opcode != cpu_to_le16(opcode))
3659 return NULL;
3660
3661 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3662
3663 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3664}
3665
3666/* Send HCI command and wait for command commplete event */
3667struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3668 const void *param, u32 timeout)
3669{
3670 struct sk_buff *skb;
3671
3672 if (!test_bit(HCI_UP, &hdev->flags))
3673 return ERR_PTR(-ENETDOWN);
3674
3675 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3676
3677 hci_req_sync_lock(hdev);
3678 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3679 hci_req_sync_unlock(hdev);
3680
3681 return skb;
3682}
3683EXPORT_SYMBOL(hci_cmd_sync);
3684
3685/* Send ACL data */
3686static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3687{
3688 struct hci_acl_hdr *hdr;
3689 int len = skb->len;
3690
3691 skb_push(skb, HCI_ACL_HDR_SIZE);
3692 skb_reset_transport_header(skb);
3693 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3694 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3695 hdr->dlen = cpu_to_le16(len);
3696}
3697
3698static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3699 struct sk_buff *skb, __u16 flags)
3700{
3701 struct hci_conn *conn = chan->conn;
3702 struct hci_dev *hdev = conn->hdev;
3703 struct sk_buff *list;
3704
3705 skb->len = skb_headlen(skb);
3706 skb->data_len = 0;
3707
3708 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3709
3710 switch (hdev->dev_type) {
3711 case HCI_PRIMARY:
3712 hci_add_acl_hdr(skb, conn->handle, flags);
3713 break;
3714 case HCI_AMP:
3715 hci_add_acl_hdr(skb, chan->handle, flags);
3716 break;
3717 default:
3718 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3719 return;
3720 }
3721
3722 list = skb_shinfo(skb)->frag_list;
3723 if (!list) {
3724 /* Non fragmented */
3725 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3726
3727 skb_queue_tail(queue, skb);
3728 } else {
3729 /* Fragmented */
3730 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3731
3732 skb_shinfo(skb)->frag_list = NULL;
3733
3734 /* Queue all fragments atomically. We need to use spin_lock_bh
3735 * here because of 6LoWPAN links, as there this function is
3736 * called from softirq and using normal spin lock could cause
3737 * deadlocks.
3738 */
3739 spin_lock_bh(&queue->lock);
3740
3741 __skb_queue_tail(queue, skb);
3742
3743 flags &= ~ACL_START;
3744 flags |= ACL_CONT;
3745 do {
3746 skb = list; list = list->next;
3747
3748 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3749 hci_add_acl_hdr(skb, conn->handle, flags);
3750
3751 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3752
3753 __skb_queue_tail(queue, skb);
3754 } while (list);
3755
3756 spin_unlock_bh(&queue->lock);
3757 }
3758}
3759
3760void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3761{
3762 struct hci_dev *hdev = chan->conn->hdev;
3763
3764 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3765
3766 hci_queue_acl(chan, &chan->data_q, skb, flags);
3767
3768 queue_work(hdev->workqueue, &hdev->tx_work);
3769}
3770
3771/* Send SCO data */
3772void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3773{
3774 struct hci_dev *hdev = conn->hdev;
3775 struct hci_sco_hdr hdr;
3776
3777 BT_DBG("%s len %d", hdev->name, skb->len);
3778
3779 hdr.handle = cpu_to_le16(conn->handle);
3780 hdr.dlen = skb->len;
3781
3782 skb_push(skb, HCI_SCO_HDR_SIZE);
3783 skb_reset_transport_header(skb);
3784 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3785
3786 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3787
3788 skb_queue_tail(&conn->data_q, skb);
3789 queue_work(hdev->workqueue, &hdev->tx_work);
3790}
3791
3792/* ---- HCI TX task (outgoing data) ---- */
3793
3794/* HCI Connection scheduler */
3795static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3796 int *quote)
3797{
3798 struct hci_conn_hash *h = &hdev->conn_hash;
3799 struct hci_conn *conn = NULL, *c;
3800 unsigned int num = 0, min = ~0;
3801
3802 /* We don't have to lock device here. Connections are always
3803 * added and removed with TX task disabled. */
3804
3805 rcu_read_lock();
3806
3807 list_for_each_entry_rcu(c, &h->list, list) {
3808 if (c->type != type || skb_queue_empty(&c->data_q))
3809 continue;
3810
3811 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3812 continue;
3813
3814 num++;
3815
3816 if (c->sent < min) {
3817 min = c->sent;
3818 conn = c;
3819 }
3820
3821 if (hci_conn_num(hdev, type) == num)
3822 break;
3823 }
3824
3825 rcu_read_unlock();
3826
3827 if (conn) {
3828 int cnt, q;
3829
3830 switch (conn->type) {
3831 case ACL_LINK:
3832 cnt = hdev->acl_cnt;
3833 break;
3834 case SCO_LINK:
3835 case ESCO_LINK:
3836 cnt = hdev->sco_cnt;
3837 break;
3838 case LE_LINK:
3839 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3840 break;
3841 default:
3842 cnt = 0;
3843 bt_dev_err(hdev, "unknown link type %d", conn->type);
3844 }
3845
3846 q = cnt / num;
3847 *quote = q ? q : 1;
3848 } else
3849 *quote = 0;
3850
3851 BT_DBG("conn %p quote %d", conn, *quote);
3852 return conn;
3853}
3854
3855static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3856{
3857 struct hci_conn_hash *h = &hdev->conn_hash;
3858 struct hci_conn *c;
3859
3860 bt_dev_err(hdev, "link tx timeout");
3861
3862 rcu_read_lock();
3863
3864 /* Kill stalled connections */
3865 list_for_each_entry_rcu(c, &h->list, list) {
3866 if (c->type == type && c->sent) {
3867 bt_dev_err(hdev, "killing stalled connection %pMR",
3868 &c->dst);
3869 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3870 }
3871 }
3872
3873 rcu_read_unlock();
3874}
3875
3876static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3877 int *quote)
3878{
3879 struct hci_conn_hash *h = &hdev->conn_hash;
3880 struct hci_chan *chan = NULL;
3881 unsigned int num = 0, min = ~0, cur_prio = 0;
3882 struct hci_conn *conn;
3883 int cnt, q, conn_num = 0;
3884
3885 BT_DBG("%s", hdev->name);
3886
3887 rcu_read_lock();
3888
3889 list_for_each_entry_rcu(conn, &h->list, list) {
3890 struct hci_chan *tmp;
3891
3892 if (conn->type != type)
3893 continue;
3894
3895 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3896 continue;
3897
3898 conn_num++;
3899
3900 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3901 struct sk_buff *skb;
3902
3903 if (skb_queue_empty(&tmp->data_q))
3904 continue;
3905
3906 skb = skb_peek(&tmp->data_q);
3907 if (skb->priority < cur_prio)
3908 continue;
3909
3910 if (skb->priority > cur_prio) {
3911 num = 0;
3912 min = ~0;
3913 cur_prio = skb->priority;
3914 }
3915
3916 num++;
3917
3918 if (conn->sent < min) {
3919 min = conn->sent;
3920 chan = tmp;
3921 }
3922 }
3923
3924 if (hci_conn_num(hdev, type) == conn_num)
3925 break;
3926 }
3927
3928 rcu_read_unlock();
3929
3930 if (!chan)
3931 return NULL;
3932
3933 switch (chan->conn->type) {
3934 case ACL_LINK:
3935 cnt = hdev->acl_cnt;
3936 break;
3937 case AMP_LINK:
3938 cnt = hdev->block_cnt;
3939 break;
3940 case SCO_LINK:
3941 case ESCO_LINK:
3942 cnt = hdev->sco_cnt;
3943 break;
3944 case LE_LINK:
3945 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3946 break;
3947 default:
3948 cnt = 0;
3949 bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
3950 }
3951
3952 q = cnt / num;
3953 *quote = q ? q : 1;
3954 BT_DBG("chan %p quote %d", chan, *quote);
3955 return chan;
3956}
3957
3958static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3959{
3960 struct hci_conn_hash *h = &hdev->conn_hash;
3961 struct hci_conn *conn;
3962 int num = 0;
3963
3964 BT_DBG("%s", hdev->name);
3965
3966 rcu_read_lock();
3967
3968 list_for_each_entry_rcu(conn, &h->list, list) {
3969 struct hci_chan *chan;
3970
3971 if (conn->type != type)
3972 continue;
3973
3974 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3975 continue;
3976
3977 num++;
3978
3979 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3980 struct sk_buff *skb;
3981
3982 if (chan->sent) {
3983 chan->sent = 0;
3984 continue;
3985 }
3986
3987 if (skb_queue_empty(&chan->data_q))
3988 continue;
3989
3990 skb = skb_peek(&chan->data_q);
3991 if (skb->priority >= HCI_PRIO_MAX - 1)
3992 continue;
3993
3994 skb->priority = HCI_PRIO_MAX - 1;
3995
3996 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3997 skb->priority);
3998 }
3999
4000 if (hci_conn_num(hdev, type) == num)
4001 break;
4002 }
4003
4004 rcu_read_unlock();
4005
4006}
4007
4008static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4009{
4010 /* Calculate count of blocks used by this packet */
4011 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4012}
4013
4014static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4015{
4016 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4017 /* ACL tx timeout must be longer than maximum
4018 * link supervision timeout (40.9 seconds) */
4019 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4020 HCI_ACL_TX_TIMEOUT))
4021 hci_link_tx_to(hdev, ACL_LINK);
4022 }
4023}
4024
4025static void hci_sched_acl_pkt(struct hci_dev *hdev)
4026{
4027 unsigned int cnt = hdev->acl_cnt;
4028 struct hci_chan *chan;
4029 struct sk_buff *skb;
4030 int quote;
4031
4032 __check_timeout(hdev, cnt);
4033
4034 while (hdev->acl_cnt &&
4035 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) {
4036 u32 priority = (skb_peek(&chan->data_q))->priority;
4037 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4038 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4039 skb->len, skb->priority);
4040
4041 /* Stop if priority has changed */
4042 if (skb->priority < priority)
4043 break;
4044
4045 skb = skb_dequeue(&chan->data_q);
4046
4047 hci_conn_enter_active_mode(chan->conn,
4048 bt_cb(skb)->force_active);
4049
4050 hci_send_frame(hdev, skb);
4051 hdev->acl_last_tx = jiffies;
4052
4053 hdev->acl_cnt--;
4054 chan->sent++;
4055 chan->conn->sent++;
4056 }
4057 }
4058
4059 if (cnt != hdev->acl_cnt)
4060 hci_prio_recalculate(hdev, ACL_LINK);
4061}
4062
4063static void hci_sched_acl_blk(struct hci_dev *hdev)
4064{
4065 unsigned int cnt = hdev->block_cnt;
4066 struct hci_chan *chan;
4067 struct sk_buff *skb;
4068 int quote;
4069 u8 type;
4070
4071 __check_timeout(hdev, cnt);
4072
4073 BT_DBG("%s", hdev->name);
4074
4075 if (hdev->dev_type == HCI_AMP)
4076 type = AMP_LINK;
4077 else
4078 type = ACL_LINK;
4079
4080 while (hdev->block_cnt > 0 &&
4081 (chan = hci_chan_sent(hdev, type, "e))) {
4082 u32 priority = (skb_peek(&chan->data_q))->priority;
4083 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4084 int blocks;
4085
4086 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4087 skb->len, skb->priority);
4088
4089 /* Stop if priority has changed */
4090 if (skb->priority < priority)
4091 break;
4092
4093 skb = skb_dequeue(&chan->data_q);
4094
4095 blocks = __get_blocks(hdev, skb);
4096 if (blocks > hdev->block_cnt)
4097 return;
4098
4099 hci_conn_enter_active_mode(chan->conn,
4100 bt_cb(skb)->force_active);
4101
4102 hci_send_frame(hdev, skb);
4103 hdev->acl_last_tx = jiffies;
4104
4105 hdev->block_cnt -= blocks;
4106 quote -= blocks;
4107
4108 chan->sent += blocks;
4109 chan->conn->sent += blocks;
4110 }
4111 }
4112
4113 if (cnt != hdev->block_cnt)
4114 hci_prio_recalculate(hdev, type);
4115}
4116
4117static void hci_sched_acl(struct hci_dev *hdev)
4118{
4119 BT_DBG("%s", hdev->name);
4120
4121 /* No ACL link over BR/EDR controller */
4122 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4123 return;
4124
4125 /* No AMP link over AMP controller */
4126 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4127 return;
4128
4129 switch (hdev->flow_ctl_mode) {
4130 case HCI_FLOW_CTL_MODE_PACKET_BASED:
4131 hci_sched_acl_pkt(hdev);
4132 break;
4133
4134 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4135 hci_sched_acl_blk(hdev);
4136 break;
4137 }
4138}
4139
4140/* Schedule SCO */
4141static void hci_sched_sco(struct hci_dev *hdev)
4142{
4143 struct hci_conn *conn;
4144 struct sk_buff *skb;
4145 int quote;
4146
4147 BT_DBG("%s", hdev->name);
4148
4149 if (!hci_conn_num(hdev, SCO_LINK))
4150 return;
4151
4152 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) {
4153 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4154 BT_DBG("skb %p len %d", skb, skb->len);
4155 hci_send_frame(hdev, skb);
4156
4157 conn->sent++;
4158 if (conn->sent == ~0)
4159 conn->sent = 0;
4160 }
4161 }
4162}
4163
4164static void hci_sched_esco(struct hci_dev *hdev)
4165{
4166 struct hci_conn *conn;
4167 struct sk_buff *skb;
4168 int quote;
4169
4170 BT_DBG("%s", hdev->name);
4171
4172 if (!hci_conn_num(hdev, ESCO_LINK))
4173 return;
4174
4175 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4176 "e))) {
4177 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4178 BT_DBG("skb %p len %d", skb, skb->len);
4179 hci_send_frame(hdev, skb);
4180
4181 conn->sent++;
4182 if (conn->sent == ~0)
4183 conn->sent = 0;
4184 }
4185 }
4186}
4187
4188static void hci_sched_le(struct hci_dev *hdev)
4189{
4190 struct hci_chan *chan;
4191 struct sk_buff *skb;
4192 int quote, cnt, tmp;
4193
4194 BT_DBG("%s", hdev->name);
4195
4196 if (!hci_conn_num(hdev, LE_LINK))
4197 return;
4198
4199 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4200 /* LE tx timeout must be longer than maximum
4201 * link supervision timeout (40.9 seconds) */
4202 if (!hdev->le_cnt && hdev->le_pkts &&
4203 time_after(jiffies, hdev->le_last_tx + HZ * 45))
4204 hci_link_tx_to(hdev, LE_LINK);
4205 }
4206
4207 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4208 tmp = cnt;
4209 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) {
4210 u32 priority = (skb_peek(&chan->data_q))->priority;
4211 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4212 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4213 skb->len, skb->priority);
4214
4215 /* Stop if priority has changed */
4216 if (skb->priority < priority)
4217 break;
4218
4219 skb = skb_dequeue(&chan->data_q);
4220
4221 hci_send_frame(hdev, skb);
4222 hdev->le_last_tx = jiffies;
4223
4224 cnt--;
4225 chan->sent++;
4226 chan->conn->sent++;
4227 }
4228 }
4229
4230 if (hdev->le_pkts)
4231 hdev->le_cnt = cnt;
4232 else
4233 hdev->acl_cnt = cnt;
4234
4235 if (cnt != tmp)
4236 hci_prio_recalculate(hdev, LE_LINK);
4237}
4238
4239static void hci_tx_work(struct work_struct *work)
4240{
4241 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4242 struct sk_buff *skb;
4243
4244 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4245 hdev->sco_cnt, hdev->le_cnt);
4246
4247 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4248 /* Schedule queues and send stuff to HCI driver */
4249 hci_sched_acl(hdev);
4250 hci_sched_sco(hdev);
4251 hci_sched_esco(hdev);
4252 hci_sched_le(hdev);
4253 }
4254
4255 /* Send next queued raw (unknown type) packet */
4256 while ((skb = skb_dequeue(&hdev->raw_q)))
4257 hci_send_frame(hdev, skb);
4258}
4259
4260/* ----- HCI RX task (incoming data processing) ----- */
4261
4262/* ACL data packet */
4263static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4264{
4265 struct hci_acl_hdr *hdr = (void *) skb->data;
4266 struct hci_conn *conn;
4267 __u16 handle, flags;
4268
4269 skb_pull(skb, HCI_ACL_HDR_SIZE);
4270
4271 handle = __le16_to_cpu(hdr->handle);
4272 flags = hci_flags(handle);
4273 handle = hci_handle(handle);
4274
4275 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4276 handle, flags);
4277
4278 hdev->stat.acl_rx++;
4279
4280 hci_dev_lock(hdev);
4281 conn = hci_conn_hash_lookup_handle(hdev, handle);
4282 hci_dev_unlock(hdev);
4283
4284 if (conn) {
4285 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4286
4287 /* Send to upper protocol */
4288 l2cap_recv_acldata(conn, skb, flags);
4289 return;
4290 } else {
4291 bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4292 handle);
4293 }
4294
4295 kfree_skb(skb);
4296}
4297
4298/* SCO data packet */
4299static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4300{
4301 struct hci_sco_hdr *hdr = (void *) skb->data;
4302 struct hci_conn *conn;
4303 __u16 handle;
4304
4305 skb_pull(skb, HCI_SCO_HDR_SIZE);
4306
4307 handle = __le16_to_cpu(hdr->handle);
4308
4309 BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4310
4311 hdev->stat.sco_rx++;
4312
4313 hci_dev_lock(hdev);
4314 conn = hci_conn_hash_lookup_handle(hdev, handle);
4315 hci_dev_unlock(hdev);
4316
4317 if (conn) {
4318 /* Send to upper protocol */
4319 sco_recv_scodata(conn, skb);
4320 return;
4321 } else {
4322 bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
4323 handle);
4324 }
4325
4326 kfree_skb(skb);
4327}
4328
4329static bool hci_req_is_complete(struct hci_dev *hdev)
4330{
4331 struct sk_buff *skb;
4332
4333 skb = skb_peek(&hdev->cmd_q);
4334 if (!skb)
4335 return true;
4336
4337 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4338}
4339
4340static void hci_resend_last(struct hci_dev *hdev)
4341{
4342 struct hci_command_hdr *sent;
4343 struct sk_buff *skb;
4344 u16 opcode;
4345
4346 if (!hdev->sent_cmd)
4347 return;
4348
4349 sent = (void *) hdev->sent_cmd->data;
4350 opcode = __le16_to_cpu(sent->opcode);
4351 if (opcode == HCI_OP_RESET)
4352 return;
4353
4354 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4355 if (!skb)
4356 return;
4357
4358 skb_queue_head(&hdev->cmd_q, skb);
4359 queue_work(hdev->workqueue, &hdev->cmd_work);
4360}
4361
4362void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4363 hci_req_complete_t *req_complete,
4364 hci_req_complete_skb_t *req_complete_skb)
4365{
4366 struct sk_buff *skb;
4367 unsigned long flags;
4368
4369 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4370
4371 /* If the completed command doesn't match the last one that was
4372 * sent we need to do special handling of it.
4373 */
4374 if (!hci_sent_cmd_data(hdev, opcode)) {
4375 /* Some CSR based controllers generate a spontaneous
4376 * reset complete event during init and any pending
4377 * command will never be completed. In such a case we
4378 * need to resend whatever was the last sent
4379 * command.
4380 */
4381 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4382 hci_resend_last(hdev);
4383
4384 return;
4385 }
4386
4387 /* If we reach this point this event matches the last command sent */
4388 hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4389
4390 /* If the command succeeded and there's still more commands in
4391 * this request the request is not yet complete.
4392 */
4393 if (!status && !hci_req_is_complete(hdev))
4394 return;
4395
4396 /* If this was the last command in a request the complete
4397 * callback would be found in hdev->sent_cmd instead of the
4398 * command queue (hdev->cmd_q).
4399 */
4400 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4401 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4402 return;
4403 }
4404
4405 if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4406 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4407 return;
4408 }
4409
4410 /* Remove all pending commands belonging to this request */
4411 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4412 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4413 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4414 __skb_queue_head(&hdev->cmd_q, skb);
4415 break;
4416 }
4417
4418 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4419 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4420 else
4421 *req_complete = bt_cb(skb)->hci.req_complete;
4422 kfree_skb(skb);
4423 }
4424 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4425}
4426
4427static void hci_rx_work(struct work_struct *work)
4428{
4429 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4430 struct sk_buff *skb;
4431
4432 BT_DBG("%s", hdev->name);
4433
4434 while ((skb = skb_dequeue(&hdev->rx_q))) {
4435 /* Send copy to monitor */
4436 hci_send_to_monitor(hdev, skb);
4437
4438 if (atomic_read(&hdev->promisc)) {
4439 /* Send copy to the sockets */
4440 hci_send_to_sock(hdev, skb);
4441 }
4442
4443 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4444 kfree_skb(skb);
4445 continue;
4446 }
4447
4448 if (test_bit(HCI_INIT, &hdev->flags)) {
4449 /* Don't process data packets in this states. */
4450 switch (hci_skb_pkt_type(skb)) {
4451 case HCI_ACLDATA_PKT:
4452 case HCI_SCODATA_PKT:
4453 kfree_skb(skb);
4454 continue;
4455 }
4456 }
4457
4458 /* Process frame */
4459 switch (hci_skb_pkt_type(skb)) {
4460 case HCI_EVENT_PKT:
4461 BT_DBG("%s Event packet", hdev->name);
4462 hci_event_packet(hdev, skb);
4463 break;
4464
4465 case HCI_ACLDATA_PKT:
4466 BT_DBG("%s ACL data packet", hdev->name);
4467 hci_acldata_packet(hdev, skb);
4468 break;
4469
4470 case HCI_SCODATA_PKT:
4471 BT_DBG("%s SCO data packet", hdev->name);
4472 hci_scodata_packet(hdev, skb);
4473 break;
4474
4475 default:
4476 kfree_skb(skb);
4477 break;
4478 }
4479 }
4480}
4481
4482static void hci_cmd_work(struct work_struct *work)
4483{
4484 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4485 struct sk_buff *skb;
4486
4487 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4488 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4489
4490 /* Send queued commands */
4491 if (atomic_read(&hdev->cmd_cnt)) {
4492 skb = skb_dequeue(&hdev->cmd_q);
4493 if (!skb)
4494 return;
4495
4496 kfree_skb(hdev->sent_cmd);
4497
4498 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4499 if (hdev->sent_cmd) {
4500 if (hci_req_status_pend(hdev))
4501 hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4502 atomic_dec(&hdev->cmd_cnt);
4503 hci_send_frame(hdev, skb);
4504 if (test_bit(HCI_RESET, &hdev->flags))
4505 cancel_delayed_work(&hdev->cmd_timer);
4506 else
4507 schedule_delayed_work(&hdev->cmd_timer,
4508 HCI_CMD_TIMEOUT);
4509 } else {
4510 skb_queue_head(&hdev->cmd_q, skb);
4511 queue_work(hdev->workqueue, &hdev->cmd_work);
4512 }
4513 }
4514}
1/*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24*/
25
26/* Bluetooth HCI core. */
27
28#include <linux/export.h>
29#include <linux/rfkill.h>
30#include <linux/debugfs.h>
31#include <linux/crypto.h>
32#include <linux/property.h>
33#include <linux/suspend.h>
34#include <linux/wait.h>
35#include <asm/unaligned.h>
36
37#include <net/bluetooth/bluetooth.h>
38#include <net/bluetooth/hci_core.h>
39#include <net/bluetooth/l2cap.h>
40#include <net/bluetooth/mgmt.h>
41
42#include "hci_request.h"
43#include "hci_debugfs.h"
44#include "smp.h"
45#include "leds.h"
46#include "msft.h"
47
48static void hci_rx_work(struct work_struct *work);
49static void hci_cmd_work(struct work_struct *work);
50static void hci_tx_work(struct work_struct *work);
51
52/* HCI device list */
53LIST_HEAD(hci_dev_list);
54DEFINE_RWLOCK(hci_dev_list_lock);
55
56/* HCI callback list */
57LIST_HEAD(hci_cb_list);
58DEFINE_MUTEX(hci_cb_list_lock);
59
60/* HCI ID Numbering */
61static DEFINE_IDA(hci_index_ida);
62
63/* ---- HCI debugfs entries ---- */
64
65static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
66 size_t count, loff_t *ppos)
67{
68 struct hci_dev *hdev = file->private_data;
69 char buf[3];
70
71 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
72 buf[1] = '\n';
73 buf[2] = '\0';
74 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
75}
76
77static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
78 size_t count, loff_t *ppos)
79{
80 struct hci_dev *hdev = file->private_data;
81 struct sk_buff *skb;
82 bool enable;
83 int err;
84
85 if (!test_bit(HCI_UP, &hdev->flags))
86 return -ENETDOWN;
87
88 err = kstrtobool_from_user(user_buf, count, &enable);
89 if (err)
90 return err;
91
92 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
93 return -EALREADY;
94
95 hci_req_sync_lock(hdev);
96 if (enable)
97 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
98 HCI_CMD_TIMEOUT);
99 else
100 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
101 HCI_CMD_TIMEOUT);
102 hci_req_sync_unlock(hdev);
103
104 if (IS_ERR(skb))
105 return PTR_ERR(skb);
106
107 kfree_skb(skb);
108
109 hci_dev_change_flag(hdev, HCI_DUT_MODE);
110
111 return count;
112}
113
114static const struct file_operations dut_mode_fops = {
115 .open = simple_open,
116 .read = dut_mode_read,
117 .write = dut_mode_write,
118 .llseek = default_llseek,
119};
120
121static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
122 size_t count, loff_t *ppos)
123{
124 struct hci_dev *hdev = file->private_data;
125 char buf[3];
126
127 buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
128 buf[1] = '\n';
129 buf[2] = '\0';
130 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
131}
132
133static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
134 size_t count, loff_t *ppos)
135{
136 struct hci_dev *hdev = file->private_data;
137 bool enable;
138 int err;
139
140 err = kstrtobool_from_user(user_buf, count, &enable);
141 if (err)
142 return err;
143
144 /* When the diagnostic flags are not persistent and the transport
145 * is not active or in user channel operation, then there is no need
146 * for the vendor callback. Instead just store the desired value and
147 * the setting will be programmed when the controller gets powered on.
148 */
149 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
150 (!test_bit(HCI_RUNNING, &hdev->flags) ||
151 hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
152 goto done;
153
154 hci_req_sync_lock(hdev);
155 err = hdev->set_diag(hdev, enable);
156 hci_req_sync_unlock(hdev);
157
158 if (err < 0)
159 return err;
160
161done:
162 if (enable)
163 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
164 else
165 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
166
167 return count;
168}
169
170static const struct file_operations vendor_diag_fops = {
171 .open = simple_open,
172 .read = vendor_diag_read,
173 .write = vendor_diag_write,
174 .llseek = default_llseek,
175};
176
177static void hci_debugfs_create_basic(struct hci_dev *hdev)
178{
179 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
180 &dut_mode_fops);
181
182 if (hdev->set_diag)
183 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
184 &vendor_diag_fops);
185}
186
187static int hci_reset_req(struct hci_request *req, unsigned long opt)
188{
189 BT_DBG("%s %ld", req->hdev->name, opt);
190
191 /* Reset device */
192 set_bit(HCI_RESET, &req->hdev->flags);
193 hci_req_add(req, HCI_OP_RESET, 0, NULL);
194 return 0;
195}
196
197static void bredr_init(struct hci_request *req)
198{
199 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
200
201 /* Read Local Supported Features */
202 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
203
204 /* Read Local Version */
205 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
206
207 /* Read BD Address */
208 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
209}
210
211static void amp_init1(struct hci_request *req)
212{
213 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
214
215 /* Read Local Version */
216 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
217
218 /* Read Local Supported Commands */
219 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
220
221 /* Read Local AMP Info */
222 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
223
224 /* Read Data Blk size */
225 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
226
227 /* Read Flow Control Mode */
228 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
229
230 /* Read Location Data */
231 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
232}
233
234static int amp_init2(struct hci_request *req)
235{
236 /* Read Local Supported Features. Not all AMP controllers
237 * support this so it's placed conditionally in the second
238 * stage init.
239 */
240 if (req->hdev->commands[14] & 0x20)
241 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
242
243 return 0;
244}
245
246static int hci_init1_req(struct hci_request *req, unsigned long opt)
247{
248 struct hci_dev *hdev = req->hdev;
249
250 BT_DBG("%s %ld", hdev->name, opt);
251
252 /* Reset */
253 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
254 hci_reset_req(req, 0);
255
256 switch (hdev->dev_type) {
257 case HCI_PRIMARY:
258 bredr_init(req);
259 break;
260 case HCI_AMP:
261 amp_init1(req);
262 break;
263 default:
264 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
265 break;
266 }
267
268 return 0;
269}
270
271static void bredr_setup(struct hci_request *req)
272{
273 __le16 param;
274 __u8 flt_type;
275
276 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
277 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
278
279 /* Read Class of Device */
280 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
281
282 /* Read Local Name */
283 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
284
285 /* Read Voice Setting */
286 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
287
288 /* Read Number of Supported IAC */
289 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
290
291 /* Read Current IAC LAP */
292 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
293
294 /* Clear Event Filters */
295 flt_type = HCI_FLT_CLEAR_ALL;
296 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
297
298 /* Connection accept timeout ~20 secs */
299 param = cpu_to_le16(0x7d00);
300 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, ¶m);
301}
302
303static void le_setup(struct hci_request *req)
304{
305 struct hci_dev *hdev = req->hdev;
306
307 /* Read LE Buffer Size */
308 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
309
310 /* Read LE Local Supported Features */
311 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
312
313 /* Read LE Supported States */
314 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
315
316 /* LE-only controllers have LE implicitly enabled */
317 if (!lmp_bredr_capable(hdev))
318 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
319}
320
321static void hci_setup_event_mask(struct hci_request *req)
322{
323 struct hci_dev *hdev = req->hdev;
324
325 /* The second byte is 0xff instead of 0x9f (two reserved bits
326 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
327 * command otherwise.
328 */
329 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
330
331 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
332 * any event mask for pre 1.2 devices.
333 */
334 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
335 return;
336
337 if (lmp_bredr_capable(hdev)) {
338 events[4] |= 0x01; /* Flow Specification Complete */
339 } else {
340 /* Use a different default for LE-only devices */
341 memset(events, 0, sizeof(events));
342 events[1] |= 0x20; /* Command Complete */
343 events[1] |= 0x40; /* Command Status */
344 events[1] |= 0x80; /* Hardware Error */
345
346 /* If the controller supports the Disconnect command, enable
347 * the corresponding event. In addition enable packet flow
348 * control related events.
349 */
350 if (hdev->commands[0] & 0x20) {
351 events[0] |= 0x10; /* Disconnection Complete */
352 events[2] |= 0x04; /* Number of Completed Packets */
353 events[3] |= 0x02; /* Data Buffer Overflow */
354 }
355
356 /* If the controller supports the Read Remote Version
357 * Information command, enable the corresponding event.
358 */
359 if (hdev->commands[2] & 0x80)
360 events[1] |= 0x08; /* Read Remote Version Information
361 * Complete
362 */
363
364 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
365 events[0] |= 0x80; /* Encryption Change */
366 events[5] |= 0x80; /* Encryption Key Refresh Complete */
367 }
368 }
369
370 if (lmp_inq_rssi_capable(hdev) ||
371 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
372 events[4] |= 0x02; /* Inquiry Result with RSSI */
373
374 if (lmp_ext_feat_capable(hdev))
375 events[4] |= 0x04; /* Read Remote Extended Features Complete */
376
377 if (lmp_esco_capable(hdev)) {
378 events[5] |= 0x08; /* Synchronous Connection Complete */
379 events[5] |= 0x10; /* Synchronous Connection Changed */
380 }
381
382 if (lmp_sniffsubr_capable(hdev))
383 events[5] |= 0x20; /* Sniff Subrating */
384
385 if (lmp_pause_enc_capable(hdev))
386 events[5] |= 0x80; /* Encryption Key Refresh Complete */
387
388 if (lmp_ext_inq_capable(hdev))
389 events[5] |= 0x40; /* Extended Inquiry Result */
390
391 if (lmp_no_flush_capable(hdev))
392 events[7] |= 0x01; /* Enhanced Flush Complete */
393
394 if (lmp_lsto_capable(hdev))
395 events[6] |= 0x80; /* Link Supervision Timeout Changed */
396
397 if (lmp_ssp_capable(hdev)) {
398 events[6] |= 0x01; /* IO Capability Request */
399 events[6] |= 0x02; /* IO Capability Response */
400 events[6] |= 0x04; /* User Confirmation Request */
401 events[6] |= 0x08; /* User Passkey Request */
402 events[6] |= 0x10; /* Remote OOB Data Request */
403 events[6] |= 0x20; /* Simple Pairing Complete */
404 events[7] |= 0x04; /* User Passkey Notification */
405 events[7] |= 0x08; /* Keypress Notification */
406 events[7] |= 0x10; /* Remote Host Supported
407 * Features Notification
408 */
409 }
410
411 if (lmp_le_capable(hdev))
412 events[7] |= 0x20; /* LE Meta-Event */
413
414 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
415}
416
417static int hci_init2_req(struct hci_request *req, unsigned long opt)
418{
419 struct hci_dev *hdev = req->hdev;
420
421 if (hdev->dev_type == HCI_AMP)
422 return amp_init2(req);
423
424 if (lmp_bredr_capable(hdev))
425 bredr_setup(req);
426 else
427 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
428
429 if (lmp_le_capable(hdev))
430 le_setup(req);
431
432 /* All Bluetooth 1.2 and later controllers should support the
433 * HCI command for reading the local supported commands.
434 *
435 * Unfortunately some controllers indicate Bluetooth 1.2 support,
436 * but do not have support for this command. If that is the case,
437 * the driver can quirk the behavior and skip reading the local
438 * supported commands.
439 */
440 if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
441 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
442 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
443
444 if (lmp_ssp_capable(hdev)) {
445 /* When SSP is available, then the host features page
446 * should also be available as well. However some
447 * controllers list the max_page as 0 as long as SSP
448 * has not been enabled. To achieve proper debugging
449 * output, force the minimum max_page to 1 at least.
450 */
451 hdev->max_page = 0x01;
452
453 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
454 u8 mode = 0x01;
455
456 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
457 sizeof(mode), &mode);
458 } else {
459 struct hci_cp_write_eir cp;
460
461 memset(hdev->eir, 0, sizeof(hdev->eir));
462 memset(&cp, 0, sizeof(cp));
463
464 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
465 }
466 }
467
468 if (lmp_inq_rssi_capable(hdev) ||
469 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
470 u8 mode;
471
472 /* If Extended Inquiry Result events are supported, then
473 * they are clearly preferred over Inquiry Result with RSSI
474 * events.
475 */
476 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
477
478 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
479 }
480
481 if (lmp_inq_tx_pwr_capable(hdev))
482 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
483
484 if (lmp_ext_feat_capable(hdev)) {
485 struct hci_cp_read_local_ext_features cp;
486
487 cp.page = 0x01;
488 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
489 sizeof(cp), &cp);
490 }
491
492 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
493 u8 enable = 1;
494 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
495 &enable);
496 }
497
498 return 0;
499}
500
501static void hci_setup_link_policy(struct hci_request *req)
502{
503 struct hci_dev *hdev = req->hdev;
504 struct hci_cp_write_def_link_policy cp;
505 u16 link_policy = 0;
506
507 if (lmp_rswitch_capable(hdev))
508 link_policy |= HCI_LP_RSWITCH;
509 if (lmp_hold_capable(hdev))
510 link_policy |= HCI_LP_HOLD;
511 if (lmp_sniff_capable(hdev))
512 link_policy |= HCI_LP_SNIFF;
513 if (lmp_park_capable(hdev))
514 link_policy |= HCI_LP_PARK;
515
516 cp.policy = cpu_to_le16(link_policy);
517 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
518}
519
520static void hci_set_le_support(struct hci_request *req)
521{
522 struct hci_dev *hdev = req->hdev;
523 struct hci_cp_write_le_host_supported cp;
524
525 /* LE-only devices do not support explicit enablement */
526 if (!lmp_bredr_capable(hdev))
527 return;
528
529 memset(&cp, 0, sizeof(cp));
530
531 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
532 cp.le = 0x01;
533 cp.simul = 0x00;
534 }
535
536 if (cp.le != lmp_host_le_capable(hdev))
537 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
538 &cp);
539}
540
541static void hci_set_event_mask_page_2(struct hci_request *req)
542{
543 struct hci_dev *hdev = req->hdev;
544 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
545 bool changed = false;
546
547 /* If Connectionless Slave Broadcast master role is supported
548 * enable all necessary events for it.
549 */
550 if (lmp_csb_master_capable(hdev)) {
551 events[1] |= 0x40; /* Triggered Clock Capture */
552 events[1] |= 0x80; /* Synchronization Train Complete */
553 events[2] |= 0x10; /* Slave Page Response Timeout */
554 events[2] |= 0x20; /* CSB Channel Map Change */
555 changed = true;
556 }
557
558 /* If Connectionless Slave Broadcast slave role is supported
559 * enable all necessary events for it.
560 */
561 if (lmp_csb_slave_capable(hdev)) {
562 events[2] |= 0x01; /* Synchronization Train Received */
563 events[2] |= 0x02; /* CSB Receive */
564 events[2] |= 0x04; /* CSB Timeout */
565 events[2] |= 0x08; /* Truncated Page Complete */
566 changed = true;
567 }
568
569 /* Enable Authenticated Payload Timeout Expired event if supported */
570 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
571 events[2] |= 0x80;
572 changed = true;
573 }
574
575 /* Some Broadcom based controllers indicate support for Set Event
576 * Mask Page 2 command, but then actually do not support it. Since
577 * the default value is all bits set to zero, the command is only
578 * required if the event mask has to be changed. In case no change
579 * to the event mask is needed, skip this command.
580 */
581 if (changed)
582 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
583 sizeof(events), events);
584}
585
586static int hci_init3_req(struct hci_request *req, unsigned long opt)
587{
588 struct hci_dev *hdev = req->hdev;
589 u8 p;
590
591 hci_setup_event_mask(req);
592
593 if (hdev->commands[6] & 0x20 &&
594 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
595 struct hci_cp_read_stored_link_key cp;
596
597 bacpy(&cp.bdaddr, BDADDR_ANY);
598 cp.read_all = 0x01;
599 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
600 }
601
602 if (hdev->commands[5] & 0x10)
603 hci_setup_link_policy(req);
604
605 if (hdev->commands[8] & 0x01)
606 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
607
608 if (hdev->commands[18] & 0x04 &&
609 !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
610 hci_req_add(req, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 0, NULL);
611
612 /* Some older Broadcom based Bluetooth 1.2 controllers do not
613 * support the Read Page Scan Type command. Check support for
614 * this command in the bit mask of supported commands.
615 */
616 if (hdev->commands[13] & 0x01)
617 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
618
619 if (lmp_le_capable(hdev)) {
620 u8 events[8];
621
622 memset(events, 0, sizeof(events));
623
624 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
625 events[0] |= 0x10; /* LE Long Term Key Request */
626
627 /* If controller supports the Connection Parameters Request
628 * Link Layer Procedure, enable the corresponding event.
629 */
630 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
631 events[0] |= 0x20; /* LE Remote Connection
632 * Parameter Request
633 */
634
635 /* If the controller supports the Data Length Extension
636 * feature, enable the corresponding event.
637 */
638 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
639 events[0] |= 0x40; /* LE Data Length Change */
640
641 /* If the controller supports LL Privacy feature, enable
642 * the corresponding event.
643 */
644 if (hdev->le_features[0] & HCI_LE_LL_PRIVACY)
645 events[1] |= 0x02; /* LE Enhanced Connection
646 * Complete
647 */
648
649 /* If the controller supports Extended Scanner Filter
650 * Policies, enable the correspondig event.
651 */
652 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
653 events[1] |= 0x04; /* LE Direct Advertising
654 * Report
655 */
656
657 /* If the controller supports Channel Selection Algorithm #2
658 * feature, enable the corresponding event.
659 */
660 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
661 events[2] |= 0x08; /* LE Channel Selection
662 * Algorithm
663 */
664
665 /* If the controller supports the LE Set Scan Enable command,
666 * enable the corresponding advertising report event.
667 */
668 if (hdev->commands[26] & 0x08)
669 events[0] |= 0x02; /* LE Advertising Report */
670
671 /* If the controller supports the LE Create Connection
672 * command, enable the corresponding event.
673 */
674 if (hdev->commands[26] & 0x10)
675 events[0] |= 0x01; /* LE Connection Complete */
676
677 /* If the controller supports the LE Connection Update
678 * command, enable the corresponding event.
679 */
680 if (hdev->commands[27] & 0x04)
681 events[0] |= 0x04; /* LE Connection Update
682 * Complete
683 */
684
685 /* If the controller supports the LE Read Remote Used Features
686 * command, enable the corresponding event.
687 */
688 if (hdev->commands[27] & 0x20)
689 events[0] |= 0x08; /* LE Read Remote Used
690 * Features Complete
691 */
692
693 /* If the controller supports the LE Read Local P-256
694 * Public Key command, enable the corresponding event.
695 */
696 if (hdev->commands[34] & 0x02)
697 events[0] |= 0x80; /* LE Read Local P-256
698 * Public Key Complete
699 */
700
701 /* If the controller supports the LE Generate DHKey
702 * command, enable the corresponding event.
703 */
704 if (hdev->commands[34] & 0x04)
705 events[1] |= 0x01; /* LE Generate DHKey Complete */
706
707 /* If the controller supports the LE Set Default PHY or
708 * LE Set PHY commands, enable the corresponding event.
709 */
710 if (hdev->commands[35] & (0x20 | 0x40))
711 events[1] |= 0x08; /* LE PHY Update Complete */
712
713 /* If the controller supports LE Set Extended Scan Parameters
714 * and LE Set Extended Scan Enable commands, enable the
715 * corresponding event.
716 */
717 if (use_ext_scan(hdev))
718 events[1] |= 0x10; /* LE Extended Advertising
719 * Report
720 */
721
722 /* If the controller supports the LE Extended Advertising
723 * command, enable the corresponding event.
724 */
725 if (ext_adv_capable(hdev))
726 events[2] |= 0x02; /* LE Advertising Set
727 * Terminated
728 */
729
730 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
731 events);
732
733 /* Read LE Advertising Channel TX Power */
734 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
735 /* HCI TS spec forbids mixing of legacy and extended
736 * advertising commands wherein READ_ADV_TX_POWER is
737 * also included. So do not call it if extended adv
738 * is supported otherwise controller will return
739 * COMMAND_DISALLOWED for extended commands.
740 */
741 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
742 }
743
744 if (hdev->commands[26] & 0x40) {
745 /* Read LE White List Size */
746 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
747 0, NULL);
748 }
749
750 if (hdev->commands[26] & 0x80) {
751 /* Clear LE White List */
752 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
753 }
754
755 if (hdev->commands[34] & 0x40) {
756 /* Read LE Resolving List Size */
757 hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
758 0, NULL);
759 }
760
761 if (hdev->commands[34] & 0x20) {
762 /* Clear LE Resolving List */
763 hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
764 }
765
766 if (hdev->commands[35] & 0x40) {
767 __le16 rpa_timeout = cpu_to_le16(hdev->rpa_timeout);
768
769 /* Set RPA timeout */
770 hci_req_add(req, HCI_OP_LE_SET_RPA_TIMEOUT, 2,
771 &rpa_timeout);
772 }
773
774 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
775 /* Read LE Maximum Data Length */
776 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
777
778 /* Read LE Suggested Default Data Length */
779 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
780 }
781
782 if (ext_adv_capable(hdev)) {
783 /* Read LE Number of Supported Advertising Sets */
784 hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
785 0, NULL);
786 }
787
788 hci_set_le_support(req);
789 }
790
791 /* Read features beyond page 1 if available */
792 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
793 struct hci_cp_read_local_ext_features cp;
794
795 cp.page = p;
796 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
797 sizeof(cp), &cp);
798 }
799
800 return 0;
801}
802
803static int hci_init4_req(struct hci_request *req, unsigned long opt)
804{
805 struct hci_dev *hdev = req->hdev;
806
807 /* Some Broadcom based Bluetooth controllers do not support the
808 * Delete Stored Link Key command. They are clearly indicating its
809 * absence in the bit mask of supported commands.
810 *
811 * Check the supported commands and only if the the command is marked
812 * as supported send it. If not supported assume that the controller
813 * does not have actual support for stored link keys which makes this
814 * command redundant anyway.
815 *
816 * Some controllers indicate that they support handling deleting
817 * stored link keys, but they don't. The quirk lets a driver
818 * just disable this command.
819 */
820 if (hdev->commands[6] & 0x80 &&
821 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
822 struct hci_cp_delete_stored_link_key cp;
823
824 bacpy(&cp.bdaddr, BDADDR_ANY);
825 cp.delete_all = 0x01;
826 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
827 sizeof(cp), &cp);
828 }
829
830 /* Set event mask page 2 if the HCI command for it is supported */
831 if (hdev->commands[22] & 0x04)
832 hci_set_event_mask_page_2(req);
833
834 /* Read local codec list if the HCI command is supported */
835 if (hdev->commands[29] & 0x20)
836 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
837
838 /* Read local pairing options if the HCI command is supported */
839 if (hdev->commands[41] & 0x08)
840 hci_req_add(req, HCI_OP_READ_LOCAL_PAIRING_OPTS, 0, NULL);
841
842 /* Get MWS transport configuration if the HCI command is supported */
843 if (hdev->commands[30] & 0x08)
844 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
845
846 /* Check for Synchronization Train support */
847 if (lmp_sync_train_capable(hdev))
848 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
849
850 /* Enable Secure Connections if supported and configured */
851 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
852 bredr_sc_enabled(hdev)) {
853 u8 support = 0x01;
854
855 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
856 sizeof(support), &support);
857 }
858
859 /* Set erroneous data reporting if supported to the wideband speech
860 * setting value
861 */
862 if (hdev->commands[18] & 0x08 &&
863 !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) {
864 bool enabled = hci_dev_test_flag(hdev,
865 HCI_WIDEBAND_SPEECH_ENABLED);
866
867 if (enabled !=
868 (hdev->err_data_reporting == ERR_DATA_REPORTING_ENABLED)) {
869 struct hci_cp_write_def_err_data_reporting cp;
870
871 cp.err_data_reporting = enabled ?
872 ERR_DATA_REPORTING_ENABLED :
873 ERR_DATA_REPORTING_DISABLED;
874
875 hci_req_add(req, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
876 sizeof(cp), &cp);
877 }
878 }
879
880 /* Set Suggested Default Data Length to maximum if supported */
881 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
882 struct hci_cp_le_write_def_data_len cp;
883
884 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
885 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
886 hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
887 }
888
889 /* Set Default PHY parameters if command is supported */
890 if (hdev->commands[35] & 0x20) {
891 struct hci_cp_le_set_default_phy cp;
892
893 cp.all_phys = 0x00;
894 cp.tx_phys = hdev->le_tx_def_phys;
895 cp.rx_phys = hdev->le_rx_def_phys;
896
897 hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
898 }
899
900 return 0;
901}
902
903static int __hci_init(struct hci_dev *hdev)
904{
905 int err;
906
907 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
908 if (err < 0)
909 return err;
910
911 if (hci_dev_test_flag(hdev, HCI_SETUP))
912 hci_debugfs_create_basic(hdev);
913
914 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
915 if (err < 0)
916 return err;
917
918 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
919 * BR/EDR/LE type controllers. AMP controllers only need the
920 * first two stages of init.
921 */
922 if (hdev->dev_type != HCI_PRIMARY)
923 return 0;
924
925 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
926 if (err < 0)
927 return err;
928
929 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
930 if (err < 0)
931 return err;
932
933 /* This function is only called when the controller is actually in
934 * configured state. When the controller is marked as unconfigured,
935 * this initialization procedure is not run.
936 *
937 * It means that it is possible that a controller runs through its
938 * setup phase and then discovers missing settings. If that is the
939 * case, then this function will not be called. It then will only
940 * be called during the config phase.
941 *
942 * So only when in setup phase or config phase, create the debugfs
943 * entries and register the SMP channels.
944 */
945 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
946 !hci_dev_test_flag(hdev, HCI_CONFIG))
947 return 0;
948
949 hci_debugfs_create_common(hdev);
950
951 if (lmp_bredr_capable(hdev))
952 hci_debugfs_create_bredr(hdev);
953
954 if (lmp_le_capable(hdev))
955 hci_debugfs_create_le(hdev);
956
957 return 0;
958}
959
960static int hci_init0_req(struct hci_request *req, unsigned long opt)
961{
962 struct hci_dev *hdev = req->hdev;
963
964 BT_DBG("%s %ld", hdev->name, opt);
965
966 /* Reset */
967 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
968 hci_reset_req(req, 0);
969
970 /* Read Local Version */
971 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
972
973 /* Read BD Address */
974 if (hdev->set_bdaddr)
975 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
976
977 return 0;
978}
979
980static int __hci_unconf_init(struct hci_dev *hdev)
981{
982 int err;
983
984 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
985 return 0;
986
987 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
988 if (err < 0)
989 return err;
990
991 if (hci_dev_test_flag(hdev, HCI_SETUP))
992 hci_debugfs_create_basic(hdev);
993
994 return 0;
995}
996
997static int hci_scan_req(struct hci_request *req, unsigned long opt)
998{
999 __u8 scan = opt;
1000
1001 BT_DBG("%s %x", req->hdev->name, scan);
1002
1003 /* Inquiry and Page scans */
1004 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1005 return 0;
1006}
1007
1008static int hci_auth_req(struct hci_request *req, unsigned long opt)
1009{
1010 __u8 auth = opt;
1011
1012 BT_DBG("%s %x", req->hdev->name, auth);
1013
1014 /* Authentication */
1015 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
1016 return 0;
1017}
1018
1019static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
1020{
1021 __u8 encrypt = opt;
1022
1023 BT_DBG("%s %x", req->hdev->name, encrypt);
1024
1025 /* Encryption */
1026 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
1027 return 0;
1028}
1029
1030static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
1031{
1032 __le16 policy = cpu_to_le16(opt);
1033
1034 BT_DBG("%s %x", req->hdev->name, policy);
1035
1036 /* Default link policy */
1037 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
1038 return 0;
1039}
1040
1041/* Get HCI device by index.
1042 * Device is held on return. */
1043struct hci_dev *hci_dev_get(int index)
1044{
1045 struct hci_dev *hdev = NULL, *d;
1046
1047 BT_DBG("%d", index);
1048
1049 if (index < 0)
1050 return NULL;
1051
1052 read_lock(&hci_dev_list_lock);
1053 list_for_each_entry(d, &hci_dev_list, list) {
1054 if (d->id == index) {
1055 hdev = hci_dev_hold(d);
1056 break;
1057 }
1058 }
1059 read_unlock(&hci_dev_list_lock);
1060 return hdev;
1061}
1062
1063/* ---- Inquiry support ---- */
1064
1065bool hci_discovery_active(struct hci_dev *hdev)
1066{
1067 struct discovery_state *discov = &hdev->discovery;
1068
1069 switch (discov->state) {
1070 case DISCOVERY_FINDING:
1071 case DISCOVERY_RESOLVING:
1072 return true;
1073
1074 default:
1075 return false;
1076 }
1077}
1078
1079void hci_discovery_set_state(struct hci_dev *hdev, int state)
1080{
1081 int old_state = hdev->discovery.state;
1082
1083 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1084
1085 if (old_state == state)
1086 return;
1087
1088 hdev->discovery.state = state;
1089
1090 switch (state) {
1091 case DISCOVERY_STOPPED:
1092 hci_update_background_scan(hdev);
1093
1094 if (old_state != DISCOVERY_STARTING)
1095 mgmt_discovering(hdev, 0);
1096 break;
1097 case DISCOVERY_STARTING:
1098 break;
1099 case DISCOVERY_FINDING:
1100 mgmt_discovering(hdev, 1);
1101 break;
1102 case DISCOVERY_RESOLVING:
1103 break;
1104 case DISCOVERY_STOPPING:
1105 break;
1106 }
1107}
1108
1109void hci_inquiry_cache_flush(struct hci_dev *hdev)
1110{
1111 struct discovery_state *cache = &hdev->discovery;
1112 struct inquiry_entry *p, *n;
1113
1114 list_for_each_entry_safe(p, n, &cache->all, all) {
1115 list_del(&p->all);
1116 kfree(p);
1117 }
1118
1119 INIT_LIST_HEAD(&cache->unknown);
1120 INIT_LIST_HEAD(&cache->resolve);
1121}
1122
1123struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1124 bdaddr_t *bdaddr)
1125{
1126 struct discovery_state *cache = &hdev->discovery;
1127 struct inquiry_entry *e;
1128
1129 BT_DBG("cache %p, %pMR", cache, bdaddr);
1130
1131 list_for_each_entry(e, &cache->all, all) {
1132 if (!bacmp(&e->data.bdaddr, bdaddr))
1133 return e;
1134 }
1135
1136 return NULL;
1137}
1138
1139struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1140 bdaddr_t *bdaddr)
1141{
1142 struct discovery_state *cache = &hdev->discovery;
1143 struct inquiry_entry *e;
1144
1145 BT_DBG("cache %p, %pMR", cache, bdaddr);
1146
1147 list_for_each_entry(e, &cache->unknown, list) {
1148 if (!bacmp(&e->data.bdaddr, bdaddr))
1149 return e;
1150 }
1151
1152 return NULL;
1153}
1154
1155struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1156 bdaddr_t *bdaddr,
1157 int state)
1158{
1159 struct discovery_state *cache = &hdev->discovery;
1160 struct inquiry_entry *e;
1161
1162 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1163
1164 list_for_each_entry(e, &cache->resolve, list) {
1165 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1166 return e;
1167 if (!bacmp(&e->data.bdaddr, bdaddr))
1168 return e;
1169 }
1170
1171 return NULL;
1172}
1173
1174void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1175 struct inquiry_entry *ie)
1176{
1177 struct discovery_state *cache = &hdev->discovery;
1178 struct list_head *pos = &cache->resolve;
1179 struct inquiry_entry *p;
1180
1181 list_del(&ie->list);
1182
1183 list_for_each_entry(p, &cache->resolve, list) {
1184 if (p->name_state != NAME_PENDING &&
1185 abs(p->data.rssi) >= abs(ie->data.rssi))
1186 break;
1187 pos = &p->list;
1188 }
1189
1190 list_add(&ie->list, pos);
1191}
1192
1193u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1194 bool name_known)
1195{
1196 struct discovery_state *cache = &hdev->discovery;
1197 struct inquiry_entry *ie;
1198 u32 flags = 0;
1199
1200 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1201
1202 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1203
1204 if (!data->ssp_mode)
1205 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1206
1207 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1208 if (ie) {
1209 if (!ie->data.ssp_mode)
1210 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1211
1212 if (ie->name_state == NAME_NEEDED &&
1213 data->rssi != ie->data.rssi) {
1214 ie->data.rssi = data->rssi;
1215 hci_inquiry_cache_update_resolve(hdev, ie);
1216 }
1217
1218 goto update;
1219 }
1220
1221 /* Entry not in the cache. Add new one. */
1222 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1223 if (!ie) {
1224 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1225 goto done;
1226 }
1227
1228 list_add(&ie->all, &cache->all);
1229
1230 if (name_known) {
1231 ie->name_state = NAME_KNOWN;
1232 } else {
1233 ie->name_state = NAME_NOT_KNOWN;
1234 list_add(&ie->list, &cache->unknown);
1235 }
1236
1237update:
1238 if (name_known && ie->name_state != NAME_KNOWN &&
1239 ie->name_state != NAME_PENDING) {
1240 ie->name_state = NAME_KNOWN;
1241 list_del(&ie->list);
1242 }
1243
1244 memcpy(&ie->data, data, sizeof(*data));
1245 ie->timestamp = jiffies;
1246 cache->timestamp = jiffies;
1247
1248 if (ie->name_state == NAME_NOT_KNOWN)
1249 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1250
1251done:
1252 return flags;
1253}
1254
1255static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1256{
1257 struct discovery_state *cache = &hdev->discovery;
1258 struct inquiry_info *info = (struct inquiry_info *) buf;
1259 struct inquiry_entry *e;
1260 int copied = 0;
1261
1262 list_for_each_entry(e, &cache->all, all) {
1263 struct inquiry_data *data = &e->data;
1264
1265 if (copied >= num)
1266 break;
1267
1268 bacpy(&info->bdaddr, &data->bdaddr);
1269 info->pscan_rep_mode = data->pscan_rep_mode;
1270 info->pscan_period_mode = data->pscan_period_mode;
1271 info->pscan_mode = data->pscan_mode;
1272 memcpy(info->dev_class, data->dev_class, 3);
1273 info->clock_offset = data->clock_offset;
1274
1275 info++;
1276 copied++;
1277 }
1278
1279 BT_DBG("cache %p, copied %d", cache, copied);
1280 return copied;
1281}
1282
1283static int hci_inq_req(struct hci_request *req, unsigned long opt)
1284{
1285 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1286 struct hci_dev *hdev = req->hdev;
1287 struct hci_cp_inquiry cp;
1288
1289 BT_DBG("%s", hdev->name);
1290
1291 if (test_bit(HCI_INQUIRY, &hdev->flags))
1292 return 0;
1293
1294 /* Start Inquiry */
1295 memcpy(&cp.lap, &ir->lap, 3);
1296 cp.length = ir->length;
1297 cp.num_rsp = ir->num_rsp;
1298 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1299
1300 return 0;
1301}
1302
1303int hci_inquiry(void __user *arg)
1304{
1305 __u8 __user *ptr = arg;
1306 struct hci_inquiry_req ir;
1307 struct hci_dev *hdev;
1308 int err = 0, do_inquiry = 0, max_rsp;
1309 long timeo;
1310 __u8 *buf;
1311
1312 if (copy_from_user(&ir, ptr, sizeof(ir)))
1313 return -EFAULT;
1314
1315 hdev = hci_dev_get(ir.dev_id);
1316 if (!hdev)
1317 return -ENODEV;
1318
1319 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1320 err = -EBUSY;
1321 goto done;
1322 }
1323
1324 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1325 err = -EOPNOTSUPP;
1326 goto done;
1327 }
1328
1329 if (hdev->dev_type != HCI_PRIMARY) {
1330 err = -EOPNOTSUPP;
1331 goto done;
1332 }
1333
1334 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1335 err = -EOPNOTSUPP;
1336 goto done;
1337 }
1338
1339 hci_dev_lock(hdev);
1340 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1341 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1342 hci_inquiry_cache_flush(hdev);
1343 do_inquiry = 1;
1344 }
1345 hci_dev_unlock(hdev);
1346
1347 timeo = ir.length * msecs_to_jiffies(2000);
1348
1349 if (do_inquiry) {
1350 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1351 timeo, NULL);
1352 if (err < 0)
1353 goto done;
1354
1355 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1356 * cleared). If it is interrupted by a signal, return -EINTR.
1357 */
1358 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1359 TASK_INTERRUPTIBLE))
1360 return -EINTR;
1361 }
1362
1363 /* for unlimited number of responses we will use buffer with
1364 * 255 entries
1365 */
1366 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1367
1368 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1369 * copy it to the user space.
1370 */
1371 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1372 if (!buf) {
1373 err = -ENOMEM;
1374 goto done;
1375 }
1376
1377 hci_dev_lock(hdev);
1378 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1379 hci_dev_unlock(hdev);
1380
1381 BT_DBG("num_rsp %d", ir.num_rsp);
1382
1383 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1384 ptr += sizeof(ir);
1385 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1386 ir.num_rsp))
1387 err = -EFAULT;
1388 } else
1389 err = -EFAULT;
1390
1391 kfree(buf);
1392
1393done:
1394 hci_dev_put(hdev);
1395 return err;
1396}
1397
1398/**
1399 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1400 * (BD_ADDR) for a HCI device from
1401 * a firmware node property.
1402 * @hdev: The HCI device
1403 *
1404 * Search the firmware node for 'local-bd-address'.
1405 *
1406 * All-zero BD addresses are rejected, because those could be properties
1407 * that exist in the firmware tables, but were not updated by the firmware. For
1408 * example, the DTS could define 'local-bd-address', with zero BD addresses.
1409 */
1410static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1411{
1412 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1413 bdaddr_t ba;
1414 int ret;
1415
1416 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1417 (u8 *)&ba, sizeof(ba));
1418 if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1419 return;
1420
1421 bacpy(&hdev->public_addr, &ba);
1422}
1423
1424static int hci_dev_do_open(struct hci_dev *hdev)
1425{
1426 int ret = 0;
1427
1428 BT_DBG("%s %p", hdev->name, hdev);
1429
1430 hci_req_sync_lock(hdev);
1431
1432 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1433 ret = -ENODEV;
1434 goto done;
1435 }
1436
1437 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1438 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1439 /* Check for rfkill but allow the HCI setup stage to
1440 * proceed (which in itself doesn't cause any RF activity).
1441 */
1442 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1443 ret = -ERFKILL;
1444 goto done;
1445 }
1446
1447 /* Check for valid public address or a configured static
1448 * random adddress, but let the HCI setup proceed to
1449 * be able to determine if there is a public address
1450 * or not.
1451 *
1452 * In case of user channel usage, it is not important
1453 * if a public address or static random address is
1454 * available.
1455 *
1456 * This check is only valid for BR/EDR controllers
1457 * since AMP controllers do not have an address.
1458 */
1459 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1460 hdev->dev_type == HCI_PRIMARY &&
1461 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1462 !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1463 ret = -EADDRNOTAVAIL;
1464 goto done;
1465 }
1466 }
1467
1468 if (test_bit(HCI_UP, &hdev->flags)) {
1469 ret = -EALREADY;
1470 goto done;
1471 }
1472
1473 if (hdev->open(hdev)) {
1474 ret = -EIO;
1475 goto done;
1476 }
1477
1478 set_bit(HCI_RUNNING, &hdev->flags);
1479 hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1480
1481 atomic_set(&hdev->cmd_cnt, 1);
1482 set_bit(HCI_INIT, &hdev->flags);
1483
1484 if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1485 test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
1486 bool invalid_bdaddr;
1487
1488 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1489
1490 if (hdev->setup)
1491 ret = hdev->setup(hdev);
1492
1493 /* The transport driver can set the quirk to mark the
1494 * BD_ADDR invalid before creating the HCI device or in
1495 * its setup callback.
1496 */
1497 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR,
1498 &hdev->quirks);
1499
1500 if (ret)
1501 goto setup_failed;
1502
1503 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1504 if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1505 hci_dev_get_bd_addr_from_property(hdev);
1506
1507 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1508 hdev->set_bdaddr) {
1509 ret = hdev->set_bdaddr(hdev,
1510 &hdev->public_addr);
1511
1512 /* If setting of the BD_ADDR from the device
1513 * property succeeds, then treat the address
1514 * as valid even if the invalid BD_ADDR
1515 * quirk indicates otherwise.
1516 */
1517 if (!ret)
1518 invalid_bdaddr = false;
1519 }
1520 }
1521
1522setup_failed:
1523 /* The transport driver can set these quirks before
1524 * creating the HCI device or in its setup callback.
1525 *
1526 * For the invalid BD_ADDR quirk it is possible that
1527 * it becomes a valid address if the bootloader does
1528 * provide it (see above).
1529 *
1530 * In case any of them is set, the controller has to
1531 * start up as unconfigured.
1532 */
1533 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1534 invalid_bdaddr)
1535 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1536
1537 /* For an unconfigured controller it is required to
1538 * read at least the version information provided by
1539 * the Read Local Version Information command.
1540 *
1541 * If the set_bdaddr driver callback is provided, then
1542 * also the original Bluetooth public device address
1543 * will be read using the Read BD Address command.
1544 */
1545 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1546 ret = __hci_unconf_init(hdev);
1547 }
1548
1549 if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1550 /* If public address change is configured, ensure that
1551 * the address gets programmed. If the driver does not
1552 * support changing the public address, fail the power
1553 * on procedure.
1554 */
1555 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1556 hdev->set_bdaddr)
1557 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1558 else
1559 ret = -EADDRNOTAVAIL;
1560 }
1561
1562 if (!ret) {
1563 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1564 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1565 ret = __hci_init(hdev);
1566 if (!ret && hdev->post_init)
1567 ret = hdev->post_init(hdev);
1568 }
1569 }
1570
1571 /* If the HCI Reset command is clearing all diagnostic settings,
1572 * then they need to be reprogrammed after the init procedure
1573 * completed.
1574 */
1575 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1576 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1577 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1578 ret = hdev->set_diag(hdev, true);
1579
1580 msft_do_open(hdev);
1581
1582 clear_bit(HCI_INIT, &hdev->flags);
1583
1584 if (!ret) {
1585 hci_dev_hold(hdev);
1586 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1587 hci_adv_instances_set_rpa_expired(hdev, true);
1588 set_bit(HCI_UP, &hdev->flags);
1589 hci_sock_dev_event(hdev, HCI_DEV_UP);
1590 hci_leds_update_powered(hdev, true);
1591 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1592 !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1593 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1594 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1595 hci_dev_test_flag(hdev, HCI_MGMT) &&
1596 hdev->dev_type == HCI_PRIMARY) {
1597 ret = __hci_req_hci_power_on(hdev);
1598 mgmt_power_on(hdev, ret);
1599 }
1600 } else {
1601 /* Init failed, cleanup */
1602 flush_work(&hdev->tx_work);
1603 flush_work(&hdev->cmd_work);
1604 flush_work(&hdev->rx_work);
1605
1606 skb_queue_purge(&hdev->cmd_q);
1607 skb_queue_purge(&hdev->rx_q);
1608
1609 if (hdev->flush)
1610 hdev->flush(hdev);
1611
1612 if (hdev->sent_cmd) {
1613 kfree_skb(hdev->sent_cmd);
1614 hdev->sent_cmd = NULL;
1615 }
1616
1617 clear_bit(HCI_RUNNING, &hdev->flags);
1618 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1619
1620 hdev->close(hdev);
1621 hdev->flags &= BIT(HCI_RAW);
1622 }
1623
1624done:
1625 hci_req_sync_unlock(hdev);
1626 return ret;
1627}
1628
1629/* ---- HCI ioctl helpers ---- */
1630
1631int hci_dev_open(__u16 dev)
1632{
1633 struct hci_dev *hdev;
1634 int err;
1635
1636 hdev = hci_dev_get(dev);
1637 if (!hdev)
1638 return -ENODEV;
1639
1640 /* Devices that are marked as unconfigured can only be powered
1641 * up as user channel. Trying to bring them up as normal devices
1642 * will result into a failure. Only user channel operation is
1643 * possible.
1644 *
1645 * When this function is called for a user channel, the flag
1646 * HCI_USER_CHANNEL will be set first before attempting to
1647 * open the device.
1648 */
1649 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1650 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1651 err = -EOPNOTSUPP;
1652 goto done;
1653 }
1654
1655 /* We need to ensure that no other power on/off work is pending
1656 * before proceeding to call hci_dev_do_open. This is
1657 * particularly important if the setup procedure has not yet
1658 * completed.
1659 */
1660 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1661 cancel_delayed_work(&hdev->power_off);
1662
1663 /* After this call it is guaranteed that the setup procedure
1664 * has finished. This means that error conditions like RFKILL
1665 * or no valid public or static random address apply.
1666 */
1667 flush_workqueue(hdev->req_workqueue);
1668
1669 /* For controllers not using the management interface and that
1670 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1671 * so that pairing works for them. Once the management interface
1672 * is in use this bit will be cleared again and userspace has
1673 * to explicitly enable it.
1674 */
1675 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1676 !hci_dev_test_flag(hdev, HCI_MGMT))
1677 hci_dev_set_flag(hdev, HCI_BONDABLE);
1678
1679 err = hci_dev_do_open(hdev);
1680
1681done:
1682 hci_dev_put(hdev);
1683 return err;
1684}
1685
1686/* This function requires the caller holds hdev->lock */
1687static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1688{
1689 struct hci_conn_params *p;
1690
1691 list_for_each_entry(p, &hdev->le_conn_params, list) {
1692 if (p->conn) {
1693 hci_conn_drop(p->conn);
1694 hci_conn_put(p->conn);
1695 p->conn = NULL;
1696 }
1697 list_del_init(&p->action);
1698 }
1699
1700 BT_DBG("All LE pending actions cleared");
1701}
1702
1703int hci_dev_do_close(struct hci_dev *hdev)
1704{
1705 bool auto_off;
1706
1707 BT_DBG("%s %p", hdev->name, hdev);
1708
1709 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1710 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1711 test_bit(HCI_UP, &hdev->flags)) {
1712 /* Execute vendor specific shutdown routine */
1713 if (hdev->shutdown)
1714 hdev->shutdown(hdev);
1715 }
1716
1717 cancel_delayed_work(&hdev->power_off);
1718
1719 hci_request_cancel_all(hdev);
1720 hci_req_sync_lock(hdev);
1721
1722 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1723 cancel_delayed_work_sync(&hdev->cmd_timer);
1724 hci_req_sync_unlock(hdev);
1725 return 0;
1726 }
1727
1728 hci_leds_update_powered(hdev, false);
1729
1730 /* Flush RX and TX works */
1731 flush_work(&hdev->tx_work);
1732 flush_work(&hdev->rx_work);
1733
1734 if (hdev->discov_timeout > 0) {
1735 hdev->discov_timeout = 0;
1736 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1737 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1738 }
1739
1740 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1741 cancel_delayed_work(&hdev->service_cache);
1742
1743 if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1744 struct adv_info *adv_instance;
1745
1746 cancel_delayed_work_sync(&hdev->rpa_expired);
1747
1748 list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1749 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1750 }
1751
1752 /* Avoid potential lockdep warnings from the *_flush() calls by
1753 * ensuring the workqueue is empty up front.
1754 */
1755 drain_workqueue(hdev->workqueue);
1756
1757 hci_dev_lock(hdev);
1758
1759 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1760
1761 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1762
1763 if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1764 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1765 hci_dev_test_flag(hdev, HCI_MGMT))
1766 __mgmt_power_off(hdev);
1767
1768 hci_inquiry_cache_flush(hdev);
1769 hci_pend_le_actions_clear(hdev);
1770 hci_conn_hash_flush(hdev);
1771 hci_dev_unlock(hdev);
1772
1773 smp_unregister(hdev);
1774
1775 hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1776
1777 msft_do_close(hdev);
1778
1779 if (hdev->flush)
1780 hdev->flush(hdev);
1781
1782 /* Reset device */
1783 skb_queue_purge(&hdev->cmd_q);
1784 atomic_set(&hdev->cmd_cnt, 1);
1785 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1786 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1787 set_bit(HCI_INIT, &hdev->flags);
1788 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1789 clear_bit(HCI_INIT, &hdev->flags);
1790 }
1791
1792 /* flush cmd work */
1793 flush_work(&hdev->cmd_work);
1794
1795 /* Drop queues */
1796 skb_queue_purge(&hdev->rx_q);
1797 skb_queue_purge(&hdev->cmd_q);
1798 skb_queue_purge(&hdev->raw_q);
1799
1800 /* Drop last sent command */
1801 if (hdev->sent_cmd) {
1802 cancel_delayed_work_sync(&hdev->cmd_timer);
1803 kfree_skb(hdev->sent_cmd);
1804 hdev->sent_cmd = NULL;
1805 }
1806
1807 clear_bit(HCI_RUNNING, &hdev->flags);
1808 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1809
1810 if (test_and_clear_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks))
1811 wake_up(&hdev->suspend_wait_q);
1812
1813 /* After this point our queues are empty
1814 * and no tasks are scheduled. */
1815 hdev->close(hdev);
1816
1817 /* Clear flags */
1818 hdev->flags &= BIT(HCI_RAW);
1819 hci_dev_clear_volatile_flags(hdev);
1820
1821 /* Controller radio is available but is currently powered down */
1822 hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1823
1824 memset(hdev->eir, 0, sizeof(hdev->eir));
1825 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1826 bacpy(&hdev->random_addr, BDADDR_ANY);
1827
1828 hci_req_sync_unlock(hdev);
1829
1830 hci_dev_put(hdev);
1831 return 0;
1832}
1833
1834int hci_dev_close(__u16 dev)
1835{
1836 struct hci_dev *hdev;
1837 int err;
1838
1839 hdev = hci_dev_get(dev);
1840 if (!hdev)
1841 return -ENODEV;
1842
1843 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1844 err = -EBUSY;
1845 goto done;
1846 }
1847
1848 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1849 cancel_delayed_work(&hdev->power_off);
1850
1851 err = hci_dev_do_close(hdev);
1852
1853done:
1854 hci_dev_put(hdev);
1855 return err;
1856}
1857
1858static int hci_dev_do_reset(struct hci_dev *hdev)
1859{
1860 int ret;
1861
1862 BT_DBG("%s %p", hdev->name, hdev);
1863
1864 hci_req_sync_lock(hdev);
1865
1866 /* Drop queues */
1867 skb_queue_purge(&hdev->rx_q);
1868 skb_queue_purge(&hdev->cmd_q);
1869
1870 /* Avoid potential lockdep warnings from the *_flush() calls by
1871 * ensuring the workqueue is empty up front.
1872 */
1873 drain_workqueue(hdev->workqueue);
1874
1875 hci_dev_lock(hdev);
1876 hci_inquiry_cache_flush(hdev);
1877 hci_conn_hash_flush(hdev);
1878 hci_dev_unlock(hdev);
1879
1880 if (hdev->flush)
1881 hdev->flush(hdev);
1882
1883 atomic_set(&hdev->cmd_cnt, 1);
1884 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1885
1886 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1887
1888 hci_req_sync_unlock(hdev);
1889 return ret;
1890}
1891
1892int hci_dev_reset(__u16 dev)
1893{
1894 struct hci_dev *hdev;
1895 int err;
1896
1897 hdev = hci_dev_get(dev);
1898 if (!hdev)
1899 return -ENODEV;
1900
1901 if (!test_bit(HCI_UP, &hdev->flags)) {
1902 err = -ENETDOWN;
1903 goto done;
1904 }
1905
1906 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1907 err = -EBUSY;
1908 goto done;
1909 }
1910
1911 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1912 err = -EOPNOTSUPP;
1913 goto done;
1914 }
1915
1916 err = hci_dev_do_reset(hdev);
1917
1918done:
1919 hci_dev_put(hdev);
1920 return err;
1921}
1922
1923int hci_dev_reset_stat(__u16 dev)
1924{
1925 struct hci_dev *hdev;
1926 int ret = 0;
1927
1928 hdev = hci_dev_get(dev);
1929 if (!hdev)
1930 return -ENODEV;
1931
1932 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1933 ret = -EBUSY;
1934 goto done;
1935 }
1936
1937 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1938 ret = -EOPNOTSUPP;
1939 goto done;
1940 }
1941
1942 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1943
1944done:
1945 hci_dev_put(hdev);
1946 return ret;
1947}
1948
1949static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1950{
1951 bool conn_changed, discov_changed;
1952
1953 BT_DBG("%s scan 0x%02x", hdev->name, scan);
1954
1955 if ((scan & SCAN_PAGE))
1956 conn_changed = !hci_dev_test_and_set_flag(hdev,
1957 HCI_CONNECTABLE);
1958 else
1959 conn_changed = hci_dev_test_and_clear_flag(hdev,
1960 HCI_CONNECTABLE);
1961
1962 if ((scan & SCAN_INQUIRY)) {
1963 discov_changed = !hci_dev_test_and_set_flag(hdev,
1964 HCI_DISCOVERABLE);
1965 } else {
1966 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1967 discov_changed = hci_dev_test_and_clear_flag(hdev,
1968 HCI_DISCOVERABLE);
1969 }
1970
1971 if (!hci_dev_test_flag(hdev, HCI_MGMT))
1972 return;
1973
1974 if (conn_changed || discov_changed) {
1975 /* In case this was disabled through mgmt */
1976 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1977
1978 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1979 hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1980
1981 mgmt_new_settings(hdev);
1982 }
1983}
1984
1985int hci_dev_cmd(unsigned int cmd, void __user *arg)
1986{
1987 struct hci_dev *hdev;
1988 struct hci_dev_req dr;
1989 int err = 0;
1990
1991 if (copy_from_user(&dr, arg, sizeof(dr)))
1992 return -EFAULT;
1993
1994 hdev = hci_dev_get(dr.dev_id);
1995 if (!hdev)
1996 return -ENODEV;
1997
1998 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1999 err = -EBUSY;
2000 goto done;
2001 }
2002
2003 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
2004 err = -EOPNOTSUPP;
2005 goto done;
2006 }
2007
2008 if (hdev->dev_type != HCI_PRIMARY) {
2009 err = -EOPNOTSUPP;
2010 goto done;
2011 }
2012
2013 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2014 err = -EOPNOTSUPP;
2015 goto done;
2016 }
2017
2018 switch (cmd) {
2019 case HCISETAUTH:
2020 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2021 HCI_INIT_TIMEOUT, NULL);
2022 break;
2023
2024 case HCISETENCRYPT:
2025 if (!lmp_encrypt_capable(hdev)) {
2026 err = -EOPNOTSUPP;
2027 break;
2028 }
2029
2030 if (!test_bit(HCI_AUTH, &hdev->flags)) {
2031 /* Auth must be enabled first */
2032 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2033 HCI_INIT_TIMEOUT, NULL);
2034 if (err)
2035 break;
2036 }
2037
2038 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
2039 HCI_INIT_TIMEOUT, NULL);
2040 break;
2041
2042 case HCISETSCAN:
2043 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
2044 HCI_INIT_TIMEOUT, NULL);
2045
2046 /* Ensure that the connectable and discoverable states
2047 * get correctly modified as this was a non-mgmt change.
2048 */
2049 if (!err)
2050 hci_update_scan_state(hdev, dr.dev_opt);
2051 break;
2052
2053 case HCISETLINKPOL:
2054 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
2055 HCI_INIT_TIMEOUT, NULL);
2056 break;
2057
2058 case HCISETLINKMODE:
2059 hdev->link_mode = ((__u16) dr.dev_opt) &
2060 (HCI_LM_MASTER | HCI_LM_ACCEPT);
2061 break;
2062
2063 case HCISETPTYPE:
2064 if (hdev->pkt_type == (__u16) dr.dev_opt)
2065 break;
2066
2067 hdev->pkt_type = (__u16) dr.dev_opt;
2068 mgmt_phy_configuration_changed(hdev, NULL);
2069 break;
2070
2071 case HCISETACLMTU:
2072 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
2073 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2074 break;
2075
2076 case HCISETSCOMTU:
2077 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
2078 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2079 break;
2080
2081 default:
2082 err = -EINVAL;
2083 break;
2084 }
2085
2086done:
2087 hci_dev_put(hdev);
2088 return err;
2089}
2090
2091int hci_get_dev_list(void __user *arg)
2092{
2093 struct hci_dev *hdev;
2094 struct hci_dev_list_req *dl;
2095 struct hci_dev_req *dr;
2096 int n = 0, size, err;
2097 __u16 dev_num;
2098
2099 if (get_user(dev_num, (__u16 __user *) arg))
2100 return -EFAULT;
2101
2102 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2103 return -EINVAL;
2104
2105 size = sizeof(*dl) + dev_num * sizeof(*dr);
2106
2107 dl = kzalloc(size, GFP_KERNEL);
2108 if (!dl)
2109 return -ENOMEM;
2110
2111 dr = dl->dev_req;
2112
2113 read_lock(&hci_dev_list_lock);
2114 list_for_each_entry(hdev, &hci_dev_list, list) {
2115 unsigned long flags = hdev->flags;
2116
2117 /* When the auto-off is configured it means the transport
2118 * is running, but in that case still indicate that the
2119 * device is actually down.
2120 */
2121 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2122 flags &= ~BIT(HCI_UP);
2123
2124 (dr + n)->dev_id = hdev->id;
2125 (dr + n)->dev_opt = flags;
2126
2127 if (++n >= dev_num)
2128 break;
2129 }
2130 read_unlock(&hci_dev_list_lock);
2131
2132 dl->dev_num = n;
2133 size = sizeof(*dl) + n * sizeof(*dr);
2134
2135 err = copy_to_user(arg, dl, size);
2136 kfree(dl);
2137
2138 return err ? -EFAULT : 0;
2139}
2140
2141int hci_get_dev_info(void __user *arg)
2142{
2143 struct hci_dev *hdev;
2144 struct hci_dev_info di;
2145 unsigned long flags;
2146 int err = 0;
2147
2148 if (copy_from_user(&di, arg, sizeof(di)))
2149 return -EFAULT;
2150
2151 hdev = hci_dev_get(di.dev_id);
2152 if (!hdev)
2153 return -ENODEV;
2154
2155 /* When the auto-off is configured it means the transport
2156 * is running, but in that case still indicate that the
2157 * device is actually down.
2158 */
2159 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2160 flags = hdev->flags & ~BIT(HCI_UP);
2161 else
2162 flags = hdev->flags;
2163
2164 strcpy(di.name, hdev->name);
2165 di.bdaddr = hdev->bdaddr;
2166 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2167 di.flags = flags;
2168 di.pkt_type = hdev->pkt_type;
2169 if (lmp_bredr_capable(hdev)) {
2170 di.acl_mtu = hdev->acl_mtu;
2171 di.acl_pkts = hdev->acl_pkts;
2172 di.sco_mtu = hdev->sco_mtu;
2173 di.sco_pkts = hdev->sco_pkts;
2174 } else {
2175 di.acl_mtu = hdev->le_mtu;
2176 di.acl_pkts = hdev->le_pkts;
2177 di.sco_mtu = 0;
2178 di.sco_pkts = 0;
2179 }
2180 di.link_policy = hdev->link_policy;
2181 di.link_mode = hdev->link_mode;
2182
2183 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2184 memcpy(&di.features, &hdev->features, sizeof(di.features));
2185
2186 if (copy_to_user(arg, &di, sizeof(di)))
2187 err = -EFAULT;
2188
2189 hci_dev_put(hdev);
2190
2191 return err;
2192}
2193
2194/* ---- Interface to HCI drivers ---- */
2195
2196static int hci_rfkill_set_block(void *data, bool blocked)
2197{
2198 struct hci_dev *hdev = data;
2199
2200 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2201
2202 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2203 return -EBUSY;
2204
2205 if (blocked) {
2206 hci_dev_set_flag(hdev, HCI_RFKILLED);
2207 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2208 !hci_dev_test_flag(hdev, HCI_CONFIG))
2209 hci_dev_do_close(hdev);
2210 } else {
2211 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2212 }
2213
2214 return 0;
2215}
2216
2217static const struct rfkill_ops hci_rfkill_ops = {
2218 .set_block = hci_rfkill_set_block,
2219};
2220
2221static void hci_power_on(struct work_struct *work)
2222{
2223 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2224 int err;
2225
2226 BT_DBG("%s", hdev->name);
2227
2228 if (test_bit(HCI_UP, &hdev->flags) &&
2229 hci_dev_test_flag(hdev, HCI_MGMT) &&
2230 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2231 cancel_delayed_work(&hdev->power_off);
2232 hci_req_sync_lock(hdev);
2233 err = __hci_req_hci_power_on(hdev);
2234 hci_req_sync_unlock(hdev);
2235 mgmt_power_on(hdev, err);
2236 return;
2237 }
2238
2239 err = hci_dev_do_open(hdev);
2240 if (err < 0) {
2241 hci_dev_lock(hdev);
2242 mgmt_set_powered_failed(hdev, err);
2243 hci_dev_unlock(hdev);
2244 return;
2245 }
2246
2247 /* During the HCI setup phase, a few error conditions are
2248 * ignored and they need to be checked now. If they are still
2249 * valid, it is important to turn the device back off.
2250 */
2251 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2252 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2253 (hdev->dev_type == HCI_PRIMARY &&
2254 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2255 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2256 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2257 hci_dev_do_close(hdev);
2258 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2259 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2260 HCI_AUTO_OFF_TIMEOUT);
2261 }
2262
2263 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2264 /* For unconfigured devices, set the HCI_RAW flag
2265 * so that userspace can easily identify them.
2266 */
2267 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2268 set_bit(HCI_RAW, &hdev->flags);
2269
2270 /* For fully configured devices, this will send
2271 * the Index Added event. For unconfigured devices,
2272 * it will send Unconfigued Index Added event.
2273 *
2274 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2275 * and no event will be send.
2276 */
2277 mgmt_index_added(hdev);
2278 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2279 /* When the controller is now configured, then it
2280 * is important to clear the HCI_RAW flag.
2281 */
2282 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2283 clear_bit(HCI_RAW, &hdev->flags);
2284
2285 /* Powering on the controller with HCI_CONFIG set only
2286 * happens with the transition from unconfigured to
2287 * configured. This will send the Index Added event.
2288 */
2289 mgmt_index_added(hdev);
2290 }
2291}
2292
2293static void hci_power_off(struct work_struct *work)
2294{
2295 struct hci_dev *hdev = container_of(work, struct hci_dev,
2296 power_off.work);
2297
2298 BT_DBG("%s", hdev->name);
2299
2300 hci_dev_do_close(hdev);
2301}
2302
2303static void hci_error_reset(struct work_struct *work)
2304{
2305 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2306
2307 BT_DBG("%s", hdev->name);
2308
2309 if (hdev->hw_error)
2310 hdev->hw_error(hdev, hdev->hw_error_code);
2311 else
2312 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2313
2314 if (hci_dev_do_close(hdev))
2315 return;
2316
2317 hci_dev_do_open(hdev);
2318}
2319
2320void hci_uuids_clear(struct hci_dev *hdev)
2321{
2322 struct bt_uuid *uuid, *tmp;
2323
2324 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2325 list_del(&uuid->list);
2326 kfree(uuid);
2327 }
2328}
2329
2330void hci_link_keys_clear(struct hci_dev *hdev)
2331{
2332 struct link_key *key;
2333
2334 list_for_each_entry(key, &hdev->link_keys, list) {
2335 list_del_rcu(&key->list);
2336 kfree_rcu(key, rcu);
2337 }
2338}
2339
2340void hci_smp_ltks_clear(struct hci_dev *hdev)
2341{
2342 struct smp_ltk *k;
2343
2344 list_for_each_entry(k, &hdev->long_term_keys, list) {
2345 list_del_rcu(&k->list);
2346 kfree_rcu(k, rcu);
2347 }
2348}
2349
2350void hci_smp_irks_clear(struct hci_dev *hdev)
2351{
2352 struct smp_irk *k;
2353
2354 list_for_each_entry(k, &hdev->identity_resolving_keys, list) {
2355 list_del_rcu(&k->list);
2356 kfree_rcu(k, rcu);
2357 }
2358}
2359
2360void hci_blocked_keys_clear(struct hci_dev *hdev)
2361{
2362 struct blocked_key *b;
2363
2364 list_for_each_entry(b, &hdev->blocked_keys, list) {
2365 list_del_rcu(&b->list);
2366 kfree_rcu(b, rcu);
2367 }
2368}
2369
2370bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
2371{
2372 bool blocked = false;
2373 struct blocked_key *b;
2374
2375 rcu_read_lock();
2376 list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
2377 if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
2378 blocked = true;
2379 break;
2380 }
2381 }
2382
2383 rcu_read_unlock();
2384 return blocked;
2385}
2386
2387struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2388{
2389 struct link_key *k;
2390
2391 rcu_read_lock();
2392 list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2393 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2394 rcu_read_unlock();
2395
2396 if (hci_is_blocked_key(hdev,
2397 HCI_BLOCKED_KEY_TYPE_LINKKEY,
2398 k->val)) {
2399 bt_dev_warn_ratelimited(hdev,
2400 "Link key blocked for %pMR",
2401 &k->bdaddr);
2402 return NULL;
2403 }
2404
2405 return k;
2406 }
2407 }
2408 rcu_read_unlock();
2409
2410 return NULL;
2411}
2412
2413static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2414 u8 key_type, u8 old_key_type)
2415{
2416 /* Legacy key */
2417 if (key_type < 0x03)
2418 return true;
2419
2420 /* Debug keys are insecure so don't store them persistently */
2421 if (key_type == HCI_LK_DEBUG_COMBINATION)
2422 return false;
2423
2424 /* Changed combination key and there's no previous one */
2425 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2426 return false;
2427
2428 /* Security mode 3 case */
2429 if (!conn)
2430 return true;
2431
2432 /* BR/EDR key derived using SC from an LE link */
2433 if (conn->type == LE_LINK)
2434 return true;
2435
2436 /* Neither local nor remote side had no-bonding as requirement */
2437 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2438 return true;
2439
2440 /* Local side had dedicated bonding as requirement */
2441 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2442 return true;
2443
2444 /* Remote side had dedicated bonding as requirement */
2445 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2446 return true;
2447
2448 /* If none of the above criteria match, then don't store the key
2449 * persistently */
2450 return false;
2451}
2452
2453static u8 ltk_role(u8 type)
2454{
2455 if (type == SMP_LTK)
2456 return HCI_ROLE_MASTER;
2457
2458 return HCI_ROLE_SLAVE;
2459}
2460
2461struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2462 u8 addr_type, u8 role)
2463{
2464 struct smp_ltk *k;
2465
2466 rcu_read_lock();
2467 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2468 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2469 continue;
2470
2471 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2472 rcu_read_unlock();
2473
2474 if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
2475 k->val)) {
2476 bt_dev_warn_ratelimited(hdev,
2477 "LTK blocked for %pMR",
2478 &k->bdaddr);
2479 return NULL;
2480 }
2481
2482 return k;
2483 }
2484 }
2485 rcu_read_unlock();
2486
2487 return NULL;
2488}
2489
2490struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2491{
2492 struct smp_irk *irk_to_return = NULL;
2493 struct smp_irk *irk;
2494
2495 rcu_read_lock();
2496 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2497 if (!bacmp(&irk->rpa, rpa)) {
2498 irk_to_return = irk;
2499 goto done;
2500 }
2501 }
2502
2503 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2504 if (smp_irk_matches(hdev, irk->val, rpa)) {
2505 bacpy(&irk->rpa, rpa);
2506 irk_to_return = irk;
2507 goto done;
2508 }
2509 }
2510
2511done:
2512 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2513 irk_to_return->val)) {
2514 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2515 &irk_to_return->bdaddr);
2516 irk_to_return = NULL;
2517 }
2518
2519 rcu_read_unlock();
2520
2521 return irk_to_return;
2522}
2523
2524struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2525 u8 addr_type)
2526{
2527 struct smp_irk *irk_to_return = NULL;
2528 struct smp_irk *irk;
2529
2530 /* Identity Address must be public or static random */
2531 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2532 return NULL;
2533
2534 rcu_read_lock();
2535 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2536 if (addr_type == irk->addr_type &&
2537 bacmp(bdaddr, &irk->bdaddr) == 0) {
2538 irk_to_return = irk;
2539 goto done;
2540 }
2541 }
2542
2543done:
2544
2545 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2546 irk_to_return->val)) {
2547 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2548 &irk_to_return->bdaddr);
2549 irk_to_return = NULL;
2550 }
2551
2552 rcu_read_unlock();
2553
2554 return irk_to_return;
2555}
2556
2557struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2558 bdaddr_t *bdaddr, u8 *val, u8 type,
2559 u8 pin_len, bool *persistent)
2560{
2561 struct link_key *key, *old_key;
2562 u8 old_key_type;
2563
2564 old_key = hci_find_link_key(hdev, bdaddr);
2565 if (old_key) {
2566 old_key_type = old_key->type;
2567 key = old_key;
2568 } else {
2569 old_key_type = conn ? conn->key_type : 0xff;
2570 key = kzalloc(sizeof(*key), GFP_KERNEL);
2571 if (!key)
2572 return NULL;
2573 list_add_rcu(&key->list, &hdev->link_keys);
2574 }
2575
2576 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2577
2578 /* Some buggy controller combinations generate a changed
2579 * combination key for legacy pairing even when there's no
2580 * previous key */
2581 if (type == HCI_LK_CHANGED_COMBINATION &&
2582 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2583 type = HCI_LK_COMBINATION;
2584 if (conn)
2585 conn->key_type = type;
2586 }
2587
2588 bacpy(&key->bdaddr, bdaddr);
2589 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2590 key->pin_len = pin_len;
2591
2592 if (type == HCI_LK_CHANGED_COMBINATION)
2593 key->type = old_key_type;
2594 else
2595 key->type = type;
2596
2597 if (persistent)
2598 *persistent = hci_persistent_key(hdev, conn, type,
2599 old_key_type);
2600
2601 return key;
2602}
2603
2604struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2605 u8 addr_type, u8 type, u8 authenticated,
2606 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2607{
2608 struct smp_ltk *key, *old_key;
2609 u8 role = ltk_role(type);
2610
2611 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2612 if (old_key)
2613 key = old_key;
2614 else {
2615 key = kzalloc(sizeof(*key), GFP_KERNEL);
2616 if (!key)
2617 return NULL;
2618 list_add_rcu(&key->list, &hdev->long_term_keys);
2619 }
2620
2621 bacpy(&key->bdaddr, bdaddr);
2622 key->bdaddr_type = addr_type;
2623 memcpy(key->val, tk, sizeof(key->val));
2624 key->authenticated = authenticated;
2625 key->ediv = ediv;
2626 key->rand = rand;
2627 key->enc_size = enc_size;
2628 key->type = type;
2629
2630 return key;
2631}
2632
2633struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2634 u8 addr_type, u8 val[16], bdaddr_t *rpa)
2635{
2636 struct smp_irk *irk;
2637
2638 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2639 if (!irk) {
2640 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2641 if (!irk)
2642 return NULL;
2643
2644 bacpy(&irk->bdaddr, bdaddr);
2645 irk->addr_type = addr_type;
2646
2647 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2648 }
2649
2650 memcpy(irk->val, val, 16);
2651 bacpy(&irk->rpa, rpa);
2652
2653 return irk;
2654}
2655
2656int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2657{
2658 struct link_key *key;
2659
2660 key = hci_find_link_key(hdev, bdaddr);
2661 if (!key)
2662 return -ENOENT;
2663
2664 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2665
2666 list_del_rcu(&key->list);
2667 kfree_rcu(key, rcu);
2668
2669 return 0;
2670}
2671
2672int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2673{
2674 struct smp_ltk *k;
2675 int removed = 0;
2676
2677 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2678 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2679 continue;
2680
2681 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2682
2683 list_del_rcu(&k->list);
2684 kfree_rcu(k, rcu);
2685 removed++;
2686 }
2687
2688 return removed ? 0 : -ENOENT;
2689}
2690
2691void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2692{
2693 struct smp_irk *k;
2694
2695 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2696 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2697 continue;
2698
2699 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2700
2701 list_del_rcu(&k->list);
2702 kfree_rcu(k, rcu);
2703 }
2704}
2705
2706bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2707{
2708 struct smp_ltk *k;
2709 struct smp_irk *irk;
2710 u8 addr_type;
2711
2712 if (type == BDADDR_BREDR) {
2713 if (hci_find_link_key(hdev, bdaddr))
2714 return true;
2715 return false;
2716 }
2717
2718 /* Convert to HCI addr type which struct smp_ltk uses */
2719 if (type == BDADDR_LE_PUBLIC)
2720 addr_type = ADDR_LE_DEV_PUBLIC;
2721 else
2722 addr_type = ADDR_LE_DEV_RANDOM;
2723
2724 irk = hci_get_irk(hdev, bdaddr, addr_type);
2725 if (irk) {
2726 bdaddr = &irk->bdaddr;
2727 addr_type = irk->addr_type;
2728 }
2729
2730 rcu_read_lock();
2731 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2732 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2733 rcu_read_unlock();
2734 return true;
2735 }
2736 }
2737 rcu_read_unlock();
2738
2739 return false;
2740}
2741
2742/* HCI command timer function */
2743static void hci_cmd_timeout(struct work_struct *work)
2744{
2745 struct hci_dev *hdev = container_of(work, struct hci_dev,
2746 cmd_timer.work);
2747
2748 if (hdev->sent_cmd) {
2749 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2750 u16 opcode = __le16_to_cpu(sent->opcode);
2751
2752 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2753 } else {
2754 bt_dev_err(hdev, "command tx timeout");
2755 }
2756
2757 if (hdev->cmd_timeout)
2758 hdev->cmd_timeout(hdev);
2759
2760 atomic_set(&hdev->cmd_cnt, 1);
2761 queue_work(hdev->workqueue, &hdev->cmd_work);
2762}
2763
2764struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2765 bdaddr_t *bdaddr, u8 bdaddr_type)
2766{
2767 struct oob_data *data;
2768
2769 list_for_each_entry(data, &hdev->remote_oob_data, list) {
2770 if (bacmp(bdaddr, &data->bdaddr) != 0)
2771 continue;
2772 if (data->bdaddr_type != bdaddr_type)
2773 continue;
2774 return data;
2775 }
2776
2777 return NULL;
2778}
2779
2780int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2781 u8 bdaddr_type)
2782{
2783 struct oob_data *data;
2784
2785 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2786 if (!data)
2787 return -ENOENT;
2788
2789 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2790
2791 list_del(&data->list);
2792 kfree(data);
2793
2794 return 0;
2795}
2796
2797void hci_remote_oob_data_clear(struct hci_dev *hdev)
2798{
2799 struct oob_data *data, *n;
2800
2801 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2802 list_del(&data->list);
2803 kfree(data);
2804 }
2805}
2806
2807int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2808 u8 bdaddr_type, u8 *hash192, u8 *rand192,
2809 u8 *hash256, u8 *rand256)
2810{
2811 struct oob_data *data;
2812
2813 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2814 if (!data) {
2815 data = kmalloc(sizeof(*data), GFP_KERNEL);
2816 if (!data)
2817 return -ENOMEM;
2818
2819 bacpy(&data->bdaddr, bdaddr);
2820 data->bdaddr_type = bdaddr_type;
2821 list_add(&data->list, &hdev->remote_oob_data);
2822 }
2823
2824 if (hash192 && rand192) {
2825 memcpy(data->hash192, hash192, sizeof(data->hash192));
2826 memcpy(data->rand192, rand192, sizeof(data->rand192));
2827 if (hash256 && rand256)
2828 data->present = 0x03;
2829 } else {
2830 memset(data->hash192, 0, sizeof(data->hash192));
2831 memset(data->rand192, 0, sizeof(data->rand192));
2832 if (hash256 && rand256)
2833 data->present = 0x02;
2834 else
2835 data->present = 0x00;
2836 }
2837
2838 if (hash256 && rand256) {
2839 memcpy(data->hash256, hash256, sizeof(data->hash256));
2840 memcpy(data->rand256, rand256, sizeof(data->rand256));
2841 } else {
2842 memset(data->hash256, 0, sizeof(data->hash256));
2843 memset(data->rand256, 0, sizeof(data->rand256));
2844 if (hash192 && rand192)
2845 data->present = 0x01;
2846 }
2847
2848 BT_DBG("%s for %pMR", hdev->name, bdaddr);
2849
2850 return 0;
2851}
2852
2853/* This function requires the caller holds hdev->lock */
2854struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2855{
2856 struct adv_info *adv_instance;
2857
2858 list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2859 if (adv_instance->instance == instance)
2860 return adv_instance;
2861 }
2862
2863 return NULL;
2864}
2865
2866/* This function requires the caller holds hdev->lock */
2867struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2868{
2869 struct adv_info *cur_instance;
2870
2871 cur_instance = hci_find_adv_instance(hdev, instance);
2872 if (!cur_instance)
2873 return NULL;
2874
2875 if (cur_instance == list_last_entry(&hdev->adv_instances,
2876 struct adv_info, list))
2877 return list_first_entry(&hdev->adv_instances,
2878 struct adv_info, list);
2879 else
2880 return list_next_entry(cur_instance, list);
2881}
2882
2883/* This function requires the caller holds hdev->lock */
2884int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2885{
2886 struct adv_info *adv_instance;
2887
2888 adv_instance = hci_find_adv_instance(hdev, instance);
2889 if (!adv_instance)
2890 return -ENOENT;
2891
2892 BT_DBG("%s removing %dMR", hdev->name, instance);
2893
2894 if (hdev->cur_adv_instance == instance) {
2895 if (hdev->adv_instance_timeout) {
2896 cancel_delayed_work(&hdev->adv_instance_expire);
2897 hdev->adv_instance_timeout = 0;
2898 }
2899 hdev->cur_adv_instance = 0x00;
2900 }
2901
2902 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2903
2904 list_del(&adv_instance->list);
2905 kfree(adv_instance);
2906
2907 hdev->adv_instance_cnt--;
2908
2909 return 0;
2910}
2911
2912void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2913{
2914 struct adv_info *adv_instance, *n;
2915
2916 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2917 adv_instance->rpa_expired = rpa_expired;
2918}
2919
2920/* This function requires the caller holds hdev->lock */
2921void hci_adv_instances_clear(struct hci_dev *hdev)
2922{
2923 struct adv_info *adv_instance, *n;
2924
2925 if (hdev->adv_instance_timeout) {
2926 cancel_delayed_work(&hdev->adv_instance_expire);
2927 hdev->adv_instance_timeout = 0;
2928 }
2929
2930 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2931 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2932 list_del(&adv_instance->list);
2933 kfree(adv_instance);
2934 }
2935
2936 hdev->adv_instance_cnt = 0;
2937 hdev->cur_adv_instance = 0x00;
2938}
2939
2940static void adv_instance_rpa_expired(struct work_struct *work)
2941{
2942 struct adv_info *adv_instance = container_of(work, struct adv_info,
2943 rpa_expired_cb.work);
2944
2945 BT_DBG("");
2946
2947 adv_instance->rpa_expired = true;
2948}
2949
2950/* This function requires the caller holds hdev->lock */
2951int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2952 u16 adv_data_len, u8 *adv_data,
2953 u16 scan_rsp_len, u8 *scan_rsp_data,
2954 u16 timeout, u16 duration)
2955{
2956 struct adv_info *adv_instance;
2957
2958 adv_instance = hci_find_adv_instance(hdev, instance);
2959 if (adv_instance) {
2960 memset(adv_instance->adv_data, 0,
2961 sizeof(adv_instance->adv_data));
2962 memset(adv_instance->scan_rsp_data, 0,
2963 sizeof(adv_instance->scan_rsp_data));
2964 } else {
2965 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
2966 instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2967 return -EOVERFLOW;
2968
2969 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2970 if (!adv_instance)
2971 return -ENOMEM;
2972
2973 adv_instance->pending = true;
2974 adv_instance->instance = instance;
2975 list_add(&adv_instance->list, &hdev->adv_instances);
2976 hdev->adv_instance_cnt++;
2977 }
2978
2979 adv_instance->flags = flags;
2980 adv_instance->adv_data_len = adv_data_len;
2981 adv_instance->scan_rsp_len = scan_rsp_len;
2982
2983 if (adv_data_len)
2984 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2985
2986 if (scan_rsp_len)
2987 memcpy(adv_instance->scan_rsp_data,
2988 scan_rsp_data, scan_rsp_len);
2989
2990 adv_instance->timeout = timeout;
2991 adv_instance->remaining_time = timeout;
2992
2993 if (duration == 0)
2994 adv_instance->duration = hdev->def_multi_adv_rotation_duration;
2995 else
2996 adv_instance->duration = duration;
2997
2998 adv_instance->tx_power = HCI_TX_POWER_INVALID;
2999
3000 INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
3001 adv_instance_rpa_expired);
3002
3003 BT_DBG("%s for %dMR", hdev->name, instance);
3004
3005 return 0;
3006}
3007
3008/* This function requires the caller holds hdev->lock */
3009void hci_adv_monitors_clear(struct hci_dev *hdev)
3010{
3011 struct adv_monitor *monitor;
3012 int handle;
3013
3014 idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
3015 hci_free_adv_monitor(monitor);
3016
3017 idr_destroy(&hdev->adv_monitors_idr);
3018}
3019
3020void hci_free_adv_monitor(struct adv_monitor *monitor)
3021{
3022 struct adv_pattern *pattern;
3023 struct adv_pattern *tmp;
3024
3025 if (!monitor)
3026 return;
3027
3028 list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list)
3029 kfree(pattern);
3030
3031 kfree(monitor);
3032}
3033
3034/* This function requires the caller holds hdev->lock */
3035int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
3036{
3037 int min, max, handle;
3038
3039 if (!monitor)
3040 return -EINVAL;
3041
3042 min = HCI_MIN_ADV_MONITOR_HANDLE;
3043 max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
3044 handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
3045 GFP_KERNEL);
3046 if (handle < 0)
3047 return handle;
3048
3049 hdev->adv_monitors_cnt++;
3050 monitor->handle = handle;
3051
3052 hci_update_background_scan(hdev);
3053
3054 return 0;
3055}
3056
3057static int free_adv_monitor(int id, void *ptr, void *data)
3058{
3059 struct hci_dev *hdev = data;
3060 struct adv_monitor *monitor = ptr;
3061
3062 idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3063 hci_free_adv_monitor(monitor);
3064
3065 return 0;
3066}
3067
3068/* This function requires the caller holds hdev->lock */
3069int hci_remove_adv_monitor(struct hci_dev *hdev, u16 handle)
3070{
3071 struct adv_monitor *monitor;
3072
3073 if (handle) {
3074 monitor = idr_find(&hdev->adv_monitors_idr, handle);
3075 if (!monitor)
3076 return -ENOENT;
3077
3078 idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3079 hci_free_adv_monitor(monitor);
3080 } else {
3081 /* Remove all monitors if handle is 0. */
3082 idr_for_each(&hdev->adv_monitors_idr, &free_adv_monitor, hdev);
3083 }
3084
3085 hci_update_background_scan(hdev);
3086
3087 return 0;
3088}
3089
3090/* This function requires the caller holds hdev->lock */
3091bool hci_is_adv_monitoring(struct hci_dev *hdev)
3092{
3093 return !idr_is_empty(&hdev->adv_monitors_idr);
3094}
3095
3096struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
3097 bdaddr_t *bdaddr, u8 type)
3098{
3099 struct bdaddr_list *b;
3100
3101 list_for_each_entry(b, bdaddr_list, list) {
3102 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3103 return b;
3104 }
3105
3106 return NULL;
3107}
3108
3109struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
3110 struct list_head *bdaddr_list, bdaddr_t *bdaddr,
3111 u8 type)
3112{
3113 struct bdaddr_list_with_irk *b;
3114
3115 list_for_each_entry(b, bdaddr_list, list) {
3116 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3117 return b;
3118 }
3119
3120 return NULL;
3121}
3122
3123struct bdaddr_list_with_flags *
3124hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
3125 bdaddr_t *bdaddr, u8 type)
3126{
3127 struct bdaddr_list_with_flags *b;
3128
3129 list_for_each_entry(b, bdaddr_list, list) {
3130 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3131 return b;
3132 }
3133
3134 return NULL;
3135}
3136
3137void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
3138{
3139 struct bdaddr_list *b, *n;
3140
3141 list_for_each_entry_safe(b, n, bdaddr_list, list) {
3142 list_del(&b->list);
3143 kfree(b);
3144 }
3145}
3146
3147int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3148{
3149 struct bdaddr_list *entry;
3150
3151 if (!bacmp(bdaddr, BDADDR_ANY))
3152 return -EBADF;
3153
3154 if (hci_bdaddr_list_lookup(list, bdaddr, type))
3155 return -EEXIST;
3156
3157 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3158 if (!entry)
3159 return -ENOMEM;
3160
3161 bacpy(&entry->bdaddr, bdaddr);
3162 entry->bdaddr_type = type;
3163
3164 list_add(&entry->list, list);
3165
3166 return 0;
3167}
3168
3169int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3170 u8 type, u8 *peer_irk, u8 *local_irk)
3171{
3172 struct bdaddr_list_with_irk *entry;
3173
3174 if (!bacmp(bdaddr, BDADDR_ANY))
3175 return -EBADF;
3176
3177 if (hci_bdaddr_list_lookup(list, bdaddr, type))
3178 return -EEXIST;
3179
3180 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3181 if (!entry)
3182 return -ENOMEM;
3183
3184 bacpy(&entry->bdaddr, bdaddr);
3185 entry->bdaddr_type = type;
3186
3187 if (peer_irk)
3188 memcpy(entry->peer_irk, peer_irk, 16);
3189
3190 if (local_irk)
3191 memcpy(entry->local_irk, local_irk, 16);
3192
3193 list_add(&entry->list, list);
3194
3195 return 0;
3196}
3197
3198int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3199 u8 type, u32 flags)
3200{
3201 struct bdaddr_list_with_flags *entry;
3202
3203 if (!bacmp(bdaddr, BDADDR_ANY))
3204 return -EBADF;
3205
3206 if (hci_bdaddr_list_lookup(list, bdaddr, type))
3207 return -EEXIST;
3208
3209 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3210 if (!entry)
3211 return -ENOMEM;
3212
3213 bacpy(&entry->bdaddr, bdaddr);
3214 entry->bdaddr_type = type;
3215 entry->current_flags = flags;
3216
3217 list_add(&entry->list, list);
3218
3219 return 0;
3220}
3221
3222int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3223{
3224 struct bdaddr_list *entry;
3225
3226 if (!bacmp(bdaddr, BDADDR_ANY)) {
3227 hci_bdaddr_list_clear(list);
3228 return 0;
3229 }
3230
3231 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
3232 if (!entry)
3233 return -ENOENT;
3234
3235 list_del(&entry->list);
3236 kfree(entry);
3237
3238 return 0;
3239}
3240
3241int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3242 u8 type)
3243{
3244 struct bdaddr_list_with_irk *entry;
3245
3246 if (!bacmp(bdaddr, BDADDR_ANY)) {
3247 hci_bdaddr_list_clear(list);
3248 return 0;
3249 }
3250
3251 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
3252 if (!entry)
3253 return -ENOENT;
3254
3255 list_del(&entry->list);
3256 kfree(entry);
3257
3258 return 0;
3259}
3260
3261int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3262 u8 type)
3263{
3264 struct bdaddr_list_with_flags *entry;
3265
3266 if (!bacmp(bdaddr, BDADDR_ANY)) {
3267 hci_bdaddr_list_clear(list);
3268 return 0;
3269 }
3270
3271 entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
3272 if (!entry)
3273 return -ENOENT;
3274
3275 list_del(&entry->list);
3276 kfree(entry);
3277
3278 return 0;
3279}
3280
3281/* This function requires the caller holds hdev->lock */
3282struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3283 bdaddr_t *addr, u8 addr_type)
3284{
3285 struct hci_conn_params *params;
3286
3287 list_for_each_entry(params, &hdev->le_conn_params, list) {
3288 if (bacmp(¶ms->addr, addr) == 0 &&
3289 params->addr_type == addr_type) {
3290 return params;
3291 }
3292 }
3293
3294 return NULL;
3295}
3296
3297/* This function requires the caller holds hdev->lock */
3298struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3299 bdaddr_t *addr, u8 addr_type)
3300{
3301 struct hci_conn_params *param;
3302
3303 switch (addr_type) {
3304 case ADDR_LE_DEV_PUBLIC_RESOLVED:
3305 addr_type = ADDR_LE_DEV_PUBLIC;
3306 break;
3307 case ADDR_LE_DEV_RANDOM_RESOLVED:
3308 addr_type = ADDR_LE_DEV_RANDOM;
3309 break;
3310 }
3311
3312 list_for_each_entry(param, list, action) {
3313 if (bacmp(¶m->addr, addr) == 0 &&
3314 param->addr_type == addr_type)
3315 return param;
3316 }
3317
3318 return NULL;
3319}
3320
3321/* This function requires the caller holds hdev->lock */
3322struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3323 bdaddr_t *addr, u8 addr_type)
3324{
3325 struct hci_conn_params *params;
3326
3327 params = hci_conn_params_lookup(hdev, addr, addr_type);
3328 if (params)
3329 return params;
3330
3331 params = kzalloc(sizeof(*params), GFP_KERNEL);
3332 if (!params) {
3333 bt_dev_err(hdev, "out of memory");
3334 return NULL;
3335 }
3336
3337 bacpy(¶ms->addr, addr);
3338 params->addr_type = addr_type;
3339
3340 list_add(¶ms->list, &hdev->le_conn_params);
3341 INIT_LIST_HEAD(¶ms->action);
3342
3343 params->conn_min_interval = hdev->le_conn_min_interval;
3344 params->conn_max_interval = hdev->le_conn_max_interval;
3345 params->conn_latency = hdev->le_conn_latency;
3346 params->supervision_timeout = hdev->le_supv_timeout;
3347 params->auto_connect = HCI_AUTO_CONN_DISABLED;
3348
3349 BT_DBG("addr %pMR (type %u)", addr, addr_type);
3350
3351 return params;
3352}
3353
3354static void hci_conn_params_free(struct hci_conn_params *params)
3355{
3356 if (params->conn) {
3357 hci_conn_drop(params->conn);
3358 hci_conn_put(params->conn);
3359 }
3360
3361 list_del(¶ms->action);
3362 list_del(¶ms->list);
3363 kfree(params);
3364}
3365
3366/* This function requires the caller holds hdev->lock */
3367void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3368{
3369 struct hci_conn_params *params;
3370
3371 params = hci_conn_params_lookup(hdev, addr, addr_type);
3372 if (!params)
3373 return;
3374
3375 hci_conn_params_free(params);
3376
3377 hci_update_background_scan(hdev);
3378
3379 BT_DBG("addr %pMR (type %u)", addr, addr_type);
3380}
3381
3382/* This function requires the caller holds hdev->lock */
3383void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3384{
3385 struct hci_conn_params *params, *tmp;
3386
3387 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3388 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3389 continue;
3390
3391 /* If trying to estabilish one time connection to disabled
3392 * device, leave the params, but mark them as just once.
3393 */
3394 if (params->explicit_connect) {
3395 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3396 continue;
3397 }
3398
3399 list_del(¶ms->list);
3400 kfree(params);
3401 }
3402
3403 BT_DBG("All LE disabled connection parameters were removed");
3404}
3405
3406/* This function requires the caller holds hdev->lock */
3407static void hci_conn_params_clear_all(struct hci_dev *hdev)
3408{
3409 struct hci_conn_params *params, *tmp;
3410
3411 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3412 hci_conn_params_free(params);
3413
3414 BT_DBG("All LE connection parameters were removed");
3415}
3416
3417/* Copy the Identity Address of the controller.
3418 *
3419 * If the controller has a public BD_ADDR, then by default use that one.
3420 * If this is a LE only controller without a public address, default to
3421 * the static random address.
3422 *
3423 * For debugging purposes it is possible to force controllers with a
3424 * public address to use the static random address instead.
3425 *
3426 * In case BR/EDR has been disabled on a dual-mode controller and
3427 * userspace has configured a static address, then that address
3428 * becomes the identity address instead of the public BR/EDR address.
3429 */
3430void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3431 u8 *bdaddr_type)
3432{
3433 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3434 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3435 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3436 bacmp(&hdev->static_addr, BDADDR_ANY))) {
3437 bacpy(bdaddr, &hdev->static_addr);
3438 *bdaddr_type = ADDR_LE_DEV_RANDOM;
3439 } else {
3440 bacpy(bdaddr, &hdev->bdaddr);
3441 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
3442 }
3443}
3444
3445static int hci_suspend_wait_event(struct hci_dev *hdev)
3446{
3447#define WAKE_COND \
3448 (find_first_bit(hdev->suspend_tasks, __SUSPEND_NUM_TASKS) == \
3449 __SUSPEND_NUM_TASKS)
3450
3451 int i;
3452 int ret = wait_event_timeout(hdev->suspend_wait_q,
3453 WAKE_COND, SUSPEND_NOTIFIER_TIMEOUT);
3454
3455 if (ret == 0) {
3456 bt_dev_err(hdev, "Timed out waiting for suspend events");
3457 for (i = 0; i < __SUSPEND_NUM_TASKS; ++i) {
3458 if (test_bit(i, hdev->suspend_tasks))
3459 bt_dev_err(hdev, "Suspend timeout bit: %d", i);
3460 clear_bit(i, hdev->suspend_tasks);
3461 }
3462
3463 ret = -ETIMEDOUT;
3464 } else {
3465 ret = 0;
3466 }
3467
3468 return ret;
3469}
3470
3471static void hci_prepare_suspend(struct work_struct *work)
3472{
3473 struct hci_dev *hdev =
3474 container_of(work, struct hci_dev, suspend_prepare);
3475
3476 hci_dev_lock(hdev);
3477 hci_req_prepare_suspend(hdev, hdev->suspend_state_next);
3478 hci_dev_unlock(hdev);
3479}
3480
3481static int hci_change_suspend_state(struct hci_dev *hdev,
3482 enum suspended_state next)
3483{
3484 hdev->suspend_state_next = next;
3485 set_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
3486 queue_work(hdev->req_workqueue, &hdev->suspend_prepare);
3487 return hci_suspend_wait_event(hdev);
3488}
3489
3490static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
3491 void *data)
3492{
3493 struct hci_dev *hdev =
3494 container_of(nb, struct hci_dev, suspend_notifier);
3495 int ret = 0;
3496
3497 /* If powering down, wait for completion. */
3498 if (mgmt_powering_down(hdev)) {
3499 set_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks);
3500 ret = hci_suspend_wait_event(hdev);
3501 if (ret)
3502 goto done;
3503 }
3504
3505 /* Suspend notifier should only act on events when powered. */
3506 if (!hdev_is_powered(hdev))
3507 goto done;
3508
3509 if (action == PM_SUSPEND_PREPARE) {
3510 /* Suspend consists of two actions:
3511 * - First, disconnect everything and make the controller not
3512 * connectable (disabling scanning)
3513 * - Second, program event filter/whitelist and enable scan
3514 */
3515 ret = hci_change_suspend_state(hdev, BT_SUSPEND_DISCONNECT);
3516
3517 /* Only configure whitelist if disconnect succeeded and wake
3518 * isn't being prevented.
3519 */
3520 if (!ret && !(hdev->prevent_wake && hdev->prevent_wake(hdev)))
3521 ret = hci_change_suspend_state(hdev,
3522 BT_SUSPEND_CONFIGURE_WAKE);
3523 } else if (action == PM_POST_SUSPEND) {
3524 ret = hci_change_suspend_state(hdev, BT_RUNNING);
3525 }
3526
3527done:
3528 /* We always allow suspend even if suspend preparation failed and
3529 * attempt to recover in resume.
3530 */
3531 if (ret)
3532 bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
3533 action, ret);
3534
3535 return NOTIFY_DONE;
3536}
3537
3538/* Alloc HCI device */
3539struct hci_dev *hci_alloc_dev(void)
3540{
3541 struct hci_dev *hdev;
3542
3543 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3544 if (!hdev)
3545 return NULL;
3546
3547 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3548 hdev->esco_type = (ESCO_HV1);
3549 hdev->link_mode = (HCI_LM_ACCEPT);
3550 hdev->num_iac = 0x01; /* One IAC support is mandatory */
3551 hdev->io_capability = 0x03; /* No Input No Output */
3552 hdev->manufacturer = 0xffff; /* Default to internal use */
3553 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3554 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3555 hdev->adv_instance_cnt = 0;
3556 hdev->cur_adv_instance = 0x00;
3557 hdev->adv_instance_timeout = 0;
3558
3559 hdev->sniff_max_interval = 800;
3560 hdev->sniff_min_interval = 80;
3561
3562 hdev->le_adv_channel_map = 0x07;
3563 hdev->le_adv_min_interval = 0x0800;
3564 hdev->le_adv_max_interval = 0x0800;
3565 hdev->le_scan_interval = 0x0060;
3566 hdev->le_scan_window = 0x0030;
3567 hdev->le_scan_int_suspend = 0x0400;
3568 hdev->le_scan_window_suspend = 0x0012;
3569 hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
3570 hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
3571 hdev->le_scan_int_connect = 0x0060;
3572 hdev->le_scan_window_connect = 0x0060;
3573 hdev->le_conn_min_interval = 0x0018;
3574 hdev->le_conn_max_interval = 0x0028;
3575 hdev->le_conn_latency = 0x0000;
3576 hdev->le_supv_timeout = 0x002a;
3577 hdev->le_def_tx_len = 0x001b;
3578 hdev->le_def_tx_time = 0x0148;
3579 hdev->le_max_tx_len = 0x001b;
3580 hdev->le_max_tx_time = 0x0148;
3581 hdev->le_max_rx_len = 0x001b;
3582 hdev->le_max_rx_time = 0x0148;
3583 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3584 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3585 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3586 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3587 hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
3588 hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
3589 hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
3590
3591 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3592 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3593 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3594 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3595 hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
3596 hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
3597
3598 /* default 1.28 sec page scan */
3599 hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
3600 hdev->def_page_scan_int = 0x0800;
3601 hdev->def_page_scan_window = 0x0012;
3602
3603 mutex_init(&hdev->lock);
3604 mutex_init(&hdev->req_lock);
3605
3606 INIT_LIST_HEAD(&hdev->mgmt_pending);
3607 INIT_LIST_HEAD(&hdev->blacklist);
3608 INIT_LIST_HEAD(&hdev->whitelist);
3609 INIT_LIST_HEAD(&hdev->uuids);
3610 INIT_LIST_HEAD(&hdev->link_keys);
3611 INIT_LIST_HEAD(&hdev->long_term_keys);
3612 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3613 INIT_LIST_HEAD(&hdev->remote_oob_data);
3614 INIT_LIST_HEAD(&hdev->le_white_list);
3615 INIT_LIST_HEAD(&hdev->le_resolv_list);
3616 INIT_LIST_HEAD(&hdev->le_conn_params);
3617 INIT_LIST_HEAD(&hdev->pend_le_conns);
3618 INIT_LIST_HEAD(&hdev->pend_le_reports);
3619 INIT_LIST_HEAD(&hdev->conn_hash.list);
3620 INIT_LIST_HEAD(&hdev->adv_instances);
3621 INIT_LIST_HEAD(&hdev->blocked_keys);
3622
3623 INIT_WORK(&hdev->rx_work, hci_rx_work);
3624 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3625 INIT_WORK(&hdev->tx_work, hci_tx_work);
3626 INIT_WORK(&hdev->power_on, hci_power_on);
3627 INIT_WORK(&hdev->error_reset, hci_error_reset);
3628 INIT_WORK(&hdev->suspend_prepare, hci_prepare_suspend);
3629
3630 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3631
3632 skb_queue_head_init(&hdev->rx_q);
3633 skb_queue_head_init(&hdev->cmd_q);
3634 skb_queue_head_init(&hdev->raw_q);
3635
3636 init_waitqueue_head(&hdev->req_wait_q);
3637 init_waitqueue_head(&hdev->suspend_wait_q);
3638
3639 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3640
3641 hci_request_setup(hdev);
3642
3643 hci_init_sysfs(hdev);
3644 discovery_init(hdev);
3645
3646 return hdev;
3647}
3648EXPORT_SYMBOL(hci_alloc_dev);
3649
3650/* Free HCI device */
3651void hci_free_dev(struct hci_dev *hdev)
3652{
3653 /* will free via device release */
3654 put_device(&hdev->dev);
3655}
3656EXPORT_SYMBOL(hci_free_dev);
3657
3658/* Register HCI device */
3659int hci_register_dev(struct hci_dev *hdev)
3660{
3661 int id, error;
3662
3663 if (!hdev->open || !hdev->close || !hdev->send)
3664 return -EINVAL;
3665
3666 /* Do not allow HCI_AMP devices to register at index 0,
3667 * so the index can be used as the AMP controller ID.
3668 */
3669 switch (hdev->dev_type) {
3670 case HCI_PRIMARY:
3671 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3672 break;
3673 case HCI_AMP:
3674 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3675 break;
3676 default:
3677 return -EINVAL;
3678 }
3679
3680 if (id < 0)
3681 return id;
3682
3683 sprintf(hdev->name, "hci%d", id);
3684 hdev->id = id;
3685
3686 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3687
3688 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3689 if (!hdev->workqueue) {
3690 error = -ENOMEM;
3691 goto err;
3692 }
3693
3694 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3695 hdev->name);
3696 if (!hdev->req_workqueue) {
3697 destroy_workqueue(hdev->workqueue);
3698 error = -ENOMEM;
3699 goto err;
3700 }
3701
3702 if (!IS_ERR_OR_NULL(bt_debugfs))
3703 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3704
3705 dev_set_name(&hdev->dev, "%s", hdev->name);
3706
3707 error = device_add(&hdev->dev);
3708 if (error < 0)
3709 goto err_wqueue;
3710
3711 hci_leds_init(hdev);
3712
3713 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3714 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3715 hdev);
3716 if (hdev->rfkill) {
3717 if (rfkill_register(hdev->rfkill) < 0) {
3718 rfkill_destroy(hdev->rfkill);
3719 hdev->rfkill = NULL;
3720 }
3721 }
3722
3723 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3724 hci_dev_set_flag(hdev, HCI_RFKILLED);
3725
3726 hci_dev_set_flag(hdev, HCI_SETUP);
3727 hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3728
3729 if (hdev->dev_type == HCI_PRIMARY) {
3730 /* Assume BR/EDR support until proven otherwise (such as
3731 * through reading supported features during init.
3732 */
3733 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3734 }
3735
3736 write_lock(&hci_dev_list_lock);
3737 list_add(&hdev->list, &hci_dev_list);
3738 write_unlock(&hci_dev_list_lock);
3739
3740 /* Devices that are marked for raw-only usage are unconfigured
3741 * and should not be included in normal operation.
3742 */
3743 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3744 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3745
3746 hci_sock_dev_event(hdev, HCI_DEV_REG);
3747 hci_dev_hold(hdev);
3748
3749 hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
3750 error = register_pm_notifier(&hdev->suspend_notifier);
3751 if (error)
3752 goto err_wqueue;
3753
3754 queue_work(hdev->req_workqueue, &hdev->power_on);
3755
3756 idr_init(&hdev->adv_monitors_idr);
3757
3758 return id;
3759
3760err_wqueue:
3761 destroy_workqueue(hdev->workqueue);
3762 destroy_workqueue(hdev->req_workqueue);
3763err:
3764 ida_simple_remove(&hci_index_ida, hdev->id);
3765
3766 return error;
3767}
3768EXPORT_SYMBOL(hci_register_dev);
3769
3770/* Unregister HCI device */
3771void hci_unregister_dev(struct hci_dev *hdev)
3772{
3773 int id;
3774
3775 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3776
3777 hci_dev_set_flag(hdev, HCI_UNREGISTER);
3778
3779 id = hdev->id;
3780
3781 write_lock(&hci_dev_list_lock);
3782 list_del(&hdev->list);
3783 write_unlock(&hci_dev_list_lock);
3784
3785 cancel_work_sync(&hdev->power_on);
3786
3787 unregister_pm_notifier(&hdev->suspend_notifier);
3788 cancel_work_sync(&hdev->suspend_prepare);
3789
3790 hci_dev_do_close(hdev);
3791
3792 if (!test_bit(HCI_INIT, &hdev->flags) &&
3793 !hci_dev_test_flag(hdev, HCI_SETUP) &&
3794 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3795 hci_dev_lock(hdev);
3796 mgmt_index_removed(hdev);
3797 hci_dev_unlock(hdev);
3798 }
3799
3800 /* mgmt_index_removed should take care of emptying the
3801 * pending list */
3802 BUG_ON(!list_empty(&hdev->mgmt_pending));
3803
3804 hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3805
3806 if (hdev->rfkill) {
3807 rfkill_unregister(hdev->rfkill);
3808 rfkill_destroy(hdev->rfkill);
3809 }
3810
3811 device_del(&hdev->dev);
3812
3813 debugfs_remove_recursive(hdev->debugfs);
3814 kfree_const(hdev->hw_info);
3815 kfree_const(hdev->fw_info);
3816
3817 destroy_workqueue(hdev->workqueue);
3818 destroy_workqueue(hdev->req_workqueue);
3819
3820 hci_dev_lock(hdev);
3821 hci_bdaddr_list_clear(&hdev->blacklist);
3822 hci_bdaddr_list_clear(&hdev->whitelist);
3823 hci_uuids_clear(hdev);
3824 hci_link_keys_clear(hdev);
3825 hci_smp_ltks_clear(hdev);
3826 hci_smp_irks_clear(hdev);
3827 hci_remote_oob_data_clear(hdev);
3828 hci_adv_instances_clear(hdev);
3829 hci_adv_monitors_clear(hdev);
3830 hci_bdaddr_list_clear(&hdev->le_white_list);
3831 hci_bdaddr_list_clear(&hdev->le_resolv_list);
3832 hci_conn_params_clear_all(hdev);
3833 hci_discovery_filter_clear(hdev);
3834 hci_blocked_keys_clear(hdev);
3835 hci_dev_unlock(hdev);
3836
3837 hci_dev_put(hdev);
3838
3839 ida_simple_remove(&hci_index_ida, id);
3840}
3841EXPORT_SYMBOL(hci_unregister_dev);
3842
3843/* Suspend HCI device */
3844int hci_suspend_dev(struct hci_dev *hdev)
3845{
3846 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3847 return 0;
3848}
3849EXPORT_SYMBOL(hci_suspend_dev);
3850
3851/* Resume HCI device */
3852int hci_resume_dev(struct hci_dev *hdev)
3853{
3854 hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3855 return 0;
3856}
3857EXPORT_SYMBOL(hci_resume_dev);
3858
3859/* Reset HCI device */
3860int hci_reset_dev(struct hci_dev *hdev)
3861{
3862 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3863 struct sk_buff *skb;
3864
3865 skb = bt_skb_alloc(3, GFP_ATOMIC);
3866 if (!skb)
3867 return -ENOMEM;
3868
3869 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3870 skb_put_data(skb, hw_err, 3);
3871
3872 /* Send Hardware Error to upper stack */
3873 return hci_recv_frame(hdev, skb);
3874}
3875EXPORT_SYMBOL(hci_reset_dev);
3876
3877/* Receive frame from HCI drivers */
3878int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3879{
3880 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3881 && !test_bit(HCI_INIT, &hdev->flags))) {
3882 kfree_skb(skb);
3883 return -ENXIO;
3884 }
3885
3886 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3887 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3888 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
3889 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
3890 kfree_skb(skb);
3891 return -EINVAL;
3892 }
3893
3894 /* Incoming skb */
3895 bt_cb(skb)->incoming = 1;
3896
3897 /* Time stamp */
3898 __net_timestamp(skb);
3899
3900 skb_queue_tail(&hdev->rx_q, skb);
3901 queue_work(hdev->workqueue, &hdev->rx_work);
3902
3903 return 0;
3904}
3905EXPORT_SYMBOL(hci_recv_frame);
3906
3907/* Receive diagnostic message from HCI drivers */
3908int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3909{
3910 /* Mark as diagnostic packet */
3911 hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3912
3913 /* Time stamp */
3914 __net_timestamp(skb);
3915
3916 skb_queue_tail(&hdev->rx_q, skb);
3917 queue_work(hdev->workqueue, &hdev->rx_work);
3918
3919 return 0;
3920}
3921EXPORT_SYMBOL(hci_recv_diag);
3922
3923void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3924{
3925 va_list vargs;
3926
3927 va_start(vargs, fmt);
3928 kfree_const(hdev->hw_info);
3929 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3930 va_end(vargs);
3931}
3932EXPORT_SYMBOL(hci_set_hw_info);
3933
3934void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3935{
3936 va_list vargs;
3937
3938 va_start(vargs, fmt);
3939 kfree_const(hdev->fw_info);
3940 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3941 va_end(vargs);
3942}
3943EXPORT_SYMBOL(hci_set_fw_info);
3944
3945/* ---- Interface to upper protocols ---- */
3946
3947int hci_register_cb(struct hci_cb *cb)
3948{
3949 BT_DBG("%p name %s", cb, cb->name);
3950
3951 mutex_lock(&hci_cb_list_lock);
3952 list_add_tail(&cb->list, &hci_cb_list);
3953 mutex_unlock(&hci_cb_list_lock);
3954
3955 return 0;
3956}
3957EXPORT_SYMBOL(hci_register_cb);
3958
3959int hci_unregister_cb(struct hci_cb *cb)
3960{
3961 BT_DBG("%p name %s", cb, cb->name);
3962
3963 mutex_lock(&hci_cb_list_lock);
3964 list_del(&cb->list);
3965 mutex_unlock(&hci_cb_list_lock);
3966
3967 return 0;
3968}
3969EXPORT_SYMBOL(hci_unregister_cb);
3970
3971static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3972{
3973 int err;
3974
3975 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3976 skb->len);
3977
3978 /* Time stamp */
3979 __net_timestamp(skb);
3980
3981 /* Send copy to monitor */
3982 hci_send_to_monitor(hdev, skb);
3983
3984 if (atomic_read(&hdev->promisc)) {
3985 /* Send copy to the sockets */
3986 hci_send_to_sock(hdev, skb);
3987 }
3988
3989 /* Get rid of skb owner, prior to sending to the driver. */
3990 skb_orphan(skb);
3991
3992 if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3993 kfree_skb(skb);
3994 return;
3995 }
3996
3997 err = hdev->send(hdev, skb);
3998 if (err < 0) {
3999 bt_dev_err(hdev, "sending frame failed (%d)", err);
4000 kfree_skb(skb);
4001 }
4002}
4003
4004/* Send HCI command */
4005int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
4006 const void *param)
4007{
4008 struct sk_buff *skb;
4009
4010 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
4011
4012 skb = hci_prepare_cmd(hdev, opcode, plen, param);
4013 if (!skb) {
4014 bt_dev_err(hdev, "no memory for command");
4015 return -ENOMEM;
4016 }
4017
4018 /* Stand-alone HCI commands must be flagged as
4019 * single-command requests.
4020 */
4021 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
4022
4023 skb_queue_tail(&hdev->cmd_q, skb);
4024 queue_work(hdev->workqueue, &hdev->cmd_work);
4025
4026 return 0;
4027}
4028
4029int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
4030 const void *param)
4031{
4032 struct sk_buff *skb;
4033
4034 if (hci_opcode_ogf(opcode) != 0x3f) {
4035 /* A controller receiving a command shall respond with either
4036 * a Command Status Event or a Command Complete Event.
4037 * Therefore, all standard HCI commands must be sent via the
4038 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
4039 * Some vendors do not comply with this rule for vendor-specific
4040 * commands and do not return any event. We want to support
4041 * unresponded commands for such cases only.
4042 */
4043 bt_dev_err(hdev, "unresponded command not supported");
4044 return -EINVAL;
4045 }
4046
4047 skb = hci_prepare_cmd(hdev, opcode, plen, param);
4048 if (!skb) {
4049 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
4050 opcode);
4051 return -ENOMEM;
4052 }
4053
4054 hci_send_frame(hdev, skb);
4055
4056 return 0;
4057}
4058EXPORT_SYMBOL(__hci_cmd_send);
4059
4060/* Get data from the previously sent command */
4061void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
4062{
4063 struct hci_command_hdr *hdr;
4064
4065 if (!hdev->sent_cmd)
4066 return NULL;
4067
4068 hdr = (void *) hdev->sent_cmd->data;
4069
4070 if (hdr->opcode != cpu_to_le16(opcode))
4071 return NULL;
4072
4073 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
4074
4075 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
4076}
4077
4078/* Send HCI command and wait for command commplete event */
4079struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
4080 const void *param, u32 timeout)
4081{
4082 struct sk_buff *skb;
4083
4084 if (!test_bit(HCI_UP, &hdev->flags))
4085 return ERR_PTR(-ENETDOWN);
4086
4087 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
4088
4089 hci_req_sync_lock(hdev);
4090 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
4091 hci_req_sync_unlock(hdev);
4092
4093 return skb;
4094}
4095EXPORT_SYMBOL(hci_cmd_sync);
4096
4097/* Send ACL data */
4098static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
4099{
4100 struct hci_acl_hdr *hdr;
4101 int len = skb->len;
4102
4103 skb_push(skb, HCI_ACL_HDR_SIZE);
4104 skb_reset_transport_header(skb);
4105 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
4106 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
4107 hdr->dlen = cpu_to_le16(len);
4108}
4109
4110static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
4111 struct sk_buff *skb, __u16 flags)
4112{
4113 struct hci_conn *conn = chan->conn;
4114 struct hci_dev *hdev = conn->hdev;
4115 struct sk_buff *list;
4116
4117 skb->len = skb_headlen(skb);
4118 skb->data_len = 0;
4119
4120 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4121
4122 switch (hdev->dev_type) {
4123 case HCI_PRIMARY:
4124 hci_add_acl_hdr(skb, conn->handle, flags);
4125 break;
4126 case HCI_AMP:
4127 hci_add_acl_hdr(skb, chan->handle, flags);
4128 break;
4129 default:
4130 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
4131 return;
4132 }
4133
4134 list = skb_shinfo(skb)->frag_list;
4135 if (!list) {
4136 /* Non fragmented */
4137 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
4138
4139 skb_queue_tail(queue, skb);
4140 } else {
4141 /* Fragmented */
4142 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4143
4144 skb_shinfo(skb)->frag_list = NULL;
4145
4146 /* Queue all fragments atomically. We need to use spin_lock_bh
4147 * here because of 6LoWPAN links, as there this function is
4148 * called from softirq and using normal spin lock could cause
4149 * deadlocks.
4150 */
4151 spin_lock_bh(&queue->lock);
4152
4153 __skb_queue_tail(queue, skb);
4154
4155 flags &= ~ACL_START;
4156 flags |= ACL_CONT;
4157 do {
4158 skb = list; list = list->next;
4159
4160 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4161 hci_add_acl_hdr(skb, conn->handle, flags);
4162
4163 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4164
4165 __skb_queue_tail(queue, skb);
4166 } while (list);
4167
4168 spin_unlock_bh(&queue->lock);
4169 }
4170}
4171
4172void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
4173{
4174 struct hci_dev *hdev = chan->conn->hdev;
4175
4176 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
4177
4178 hci_queue_acl(chan, &chan->data_q, skb, flags);
4179
4180 queue_work(hdev->workqueue, &hdev->tx_work);
4181}
4182
4183/* Send SCO data */
4184void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
4185{
4186 struct hci_dev *hdev = conn->hdev;
4187 struct hci_sco_hdr hdr;
4188
4189 BT_DBG("%s len %d", hdev->name, skb->len);
4190
4191 hdr.handle = cpu_to_le16(conn->handle);
4192 hdr.dlen = skb->len;
4193
4194 skb_push(skb, HCI_SCO_HDR_SIZE);
4195 skb_reset_transport_header(skb);
4196 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
4197
4198 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
4199
4200 skb_queue_tail(&conn->data_q, skb);
4201 queue_work(hdev->workqueue, &hdev->tx_work);
4202}
4203
4204/* ---- HCI TX task (outgoing data) ---- */
4205
4206/* HCI Connection scheduler */
4207static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
4208 int *quote)
4209{
4210 struct hci_conn_hash *h = &hdev->conn_hash;
4211 struct hci_conn *conn = NULL, *c;
4212 unsigned int num = 0, min = ~0;
4213
4214 /* We don't have to lock device here. Connections are always
4215 * added and removed with TX task disabled. */
4216
4217 rcu_read_lock();
4218
4219 list_for_each_entry_rcu(c, &h->list, list) {
4220 if (c->type != type || skb_queue_empty(&c->data_q))
4221 continue;
4222
4223 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
4224 continue;
4225
4226 num++;
4227
4228 if (c->sent < min) {
4229 min = c->sent;
4230 conn = c;
4231 }
4232
4233 if (hci_conn_num(hdev, type) == num)
4234 break;
4235 }
4236
4237 rcu_read_unlock();
4238
4239 if (conn) {
4240 int cnt, q;
4241
4242 switch (conn->type) {
4243 case ACL_LINK:
4244 cnt = hdev->acl_cnt;
4245 break;
4246 case SCO_LINK:
4247 case ESCO_LINK:
4248 cnt = hdev->sco_cnt;
4249 break;
4250 case LE_LINK:
4251 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4252 break;
4253 default:
4254 cnt = 0;
4255 bt_dev_err(hdev, "unknown link type %d", conn->type);
4256 }
4257
4258 q = cnt / num;
4259 *quote = q ? q : 1;
4260 } else
4261 *quote = 0;
4262
4263 BT_DBG("conn %p quote %d", conn, *quote);
4264 return conn;
4265}
4266
4267static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
4268{
4269 struct hci_conn_hash *h = &hdev->conn_hash;
4270 struct hci_conn *c;
4271
4272 bt_dev_err(hdev, "link tx timeout");
4273
4274 rcu_read_lock();
4275
4276 /* Kill stalled connections */
4277 list_for_each_entry_rcu(c, &h->list, list) {
4278 if (c->type == type && c->sent) {
4279 bt_dev_err(hdev, "killing stalled connection %pMR",
4280 &c->dst);
4281 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
4282 }
4283 }
4284
4285 rcu_read_unlock();
4286}
4287
4288static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
4289 int *quote)
4290{
4291 struct hci_conn_hash *h = &hdev->conn_hash;
4292 struct hci_chan *chan = NULL;
4293 unsigned int num = 0, min = ~0, cur_prio = 0;
4294 struct hci_conn *conn;
4295 int cnt, q, conn_num = 0;
4296
4297 BT_DBG("%s", hdev->name);
4298
4299 rcu_read_lock();
4300
4301 list_for_each_entry_rcu(conn, &h->list, list) {
4302 struct hci_chan *tmp;
4303
4304 if (conn->type != type)
4305 continue;
4306
4307 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4308 continue;
4309
4310 conn_num++;
4311
4312 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
4313 struct sk_buff *skb;
4314
4315 if (skb_queue_empty(&tmp->data_q))
4316 continue;
4317
4318 skb = skb_peek(&tmp->data_q);
4319 if (skb->priority < cur_prio)
4320 continue;
4321
4322 if (skb->priority > cur_prio) {
4323 num = 0;
4324 min = ~0;
4325 cur_prio = skb->priority;
4326 }
4327
4328 num++;
4329
4330 if (conn->sent < min) {
4331 min = conn->sent;
4332 chan = tmp;
4333 }
4334 }
4335
4336 if (hci_conn_num(hdev, type) == conn_num)
4337 break;
4338 }
4339
4340 rcu_read_unlock();
4341
4342 if (!chan)
4343 return NULL;
4344
4345 switch (chan->conn->type) {
4346 case ACL_LINK:
4347 cnt = hdev->acl_cnt;
4348 break;
4349 case AMP_LINK:
4350 cnt = hdev->block_cnt;
4351 break;
4352 case SCO_LINK:
4353 case ESCO_LINK:
4354 cnt = hdev->sco_cnt;
4355 break;
4356 case LE_LINK:
4357 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4358 break;
4359 default:
4360 cnt = 0;
4361 bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
4362 }
4363
4364 q = cnt / num;
4365 *quote = q ? q : 1;
4366 BT_DBG("chan %p quote %d", chan, *quote);
4367 return chan;
4368}
4369
4370static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
4371{
4372 struct hci_conn_hash *h = &hdev->conn_hash;
4373 struct hci_conn *conn;
4374 int num = 0;
4375
4376 BT_DBG("%s", hdev->name);
4377
4378 rcu_read_lock();
4379
4380 list_for_each_entry_rcu(conn, &h->list, list) {
4381 struct hci_chan *chan;
4382
4383 if (conn->type != type)
4384 continue;
4385
4386 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4387 continue;
4388
4389 num++;
4390
4391 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
4392 struct sk_buff *skb;
4393
4394 if (chan->sent) {
4395 chan->sent = 0;
4396 continue;
4397 }
4398
4399 if (skb_queue_empty(&chan->data_q))
4400 continue;
4401
4402 skb = skb_peek(&chan->data_q);
4403 if (skb->priority >= HCI_PRIO_MAX - 1)
4404 continue;
4405
4406 skb->priority = HCI_PRIO_MAX - 1;
4407
4408 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
4409 skb->priority);
4410 }
4411
4412 if (hci_conn_num(hdev, type) == num)
4413 break;
4414 }
4415
4416 rcu_read_unlock();
4417
4418}
4419
4420static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4421{
4422 /* Calculate count of blocks used by this packet */
4423 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4424}
4425
4426static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4427{
4428 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4429 /* ACL tx timeout must be longer than maximum
4430 * link supervision timeout (40.9 seconds) */
4431 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4432 HCI_ACL_TX_TIMEOUT))
4433 hci_link_tx_to(hdev, ACL_LINK);
4434 }
4435}
4436
4437/* Schedule SCO */
4438static void hci_sched_sco(struct hci_dev *hdev)
4439{
4440 struct hci_conn *conn;
4441 struct sk_buff *skb;
4442 int quote;
4443
4444 BT_DBG("%s", hdev->name);
4445
4446 if (!hci_conn_num(hdev, SCO_LINK))
4447 return;
4448
4449 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) {
4450 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4451 BT_DBG("skb %p len %d", skb, skb->len);
4452 hci_send_frame(hdev, skb);
4453
4454 conn->sent++;
4455 if (conn->sent == ~0)
4456 conn->sent = 0;
4457 }
4458 }
4459}
4460
4461static void hci_sched_esco(struct hci_dev *hdev)
4462{
4463 struct hci_conn *conn;
4464 struct sk_buff *skb;
4465 int quote;
4466
4467 BT_DBG("%s", hdev->name);
4468
4469 if (!hci_conn_num(hdev, ESCO_LINK))
4470 return;
4471
4472 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4473 "e))) {
4474 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4475 BT_DBG("skb %p len %d", skb, skb->len);
4476 hci_send_frame(hdev, skb);
4477
4478 conn->sent++;
4479 if (conn->sent == ~0)
4480 conn->sent = 0;
4481 }
4482 }
4483}
4484
4485static void hci_sched_acl_pkt(struct hci_dev *hdev)
4486{
4487 unsigned int cnt = hdev->acl_cnt;
4488 struct hci_chan *chan;
4489 struct sk_buff *skb;
4490 int quote;
4491
4492 __check_timeout(hdev, cnt);
4493
4494 while (hdev->acl_cnt &&
4495 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) {
4496 u32 priority = (skb_peek(&chan->data_q))->priority;
4497 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4498 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4499 skb->len, skb->priority);
4500
4501 /* Stop if priority has changed */
4502 if (skb->priority < priority)
4503 break;
4504
4505 skb = skb_dequeue(&chan->data_q);
4506
4507 hci_conn_enter_active_mode(chan->conn,
4508 bt_cb(skb)->force_active);
4509
4510 hci_send_frame(hdev, skb);
4511 hdev->acl_last_tx = jiffies;
4512
4513 hdev->acl_cnt--;
4514 chan->sent++;
4515 chan->conn->sent++;
4516
4517 /* Send pending SCO packets right away */
4518 hci_sched_sco(hdev);
4519 hci_sched_esco(hdev);
4520 }
4521 }
4522
4523 if (cnt != hdev->acl_cnt)
4524 hci_prio_recalculate(hdev, ACL_LINK);
4525}
4526
4527static void hci_sched_acl_blk(struct hci_dev *hdev)
4528{
4529 unsigned int cnt = hdev->block_cnt;
4530 struct hci_chan *chan;
4531 struct sk_buff *skb;
4532 int quote;
4533 u8 type;
4534
4535 __check_timeout(hdev, cnt);
4536
4537 BT_DBG("%s", hdev->name);
4538
4539 if (hdev->dev_type == HCI_AMP)
4540 type = AMP_LINK;
4541 else
4542 type = ACL_LINK;
4543
4544 while (hdev->block_cnt > 0 &&
4545 (chan = hci_chan_sent(hdev, type, "e))) {
4546 u32 priority = (skb_peek(&chan->data_q))->priority;
4547 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4548 int blocks;
4549
4550 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4551 skb->len, skb->priority);
4552
4553 /* Stop if priority has changed */
4554 if (skb->priority < priority)
4555 break;
4556
4557 skb = skb_dequeue(&chan->data_q);
4558
4559 blocks = __get_blocks(hdev, skb);
4560 if (blocks > hdev->block_cnt)
4561 return;
4562
4563 hci_conn_enter_active_mode(chan->conn,
4564 bt_cb(skb)->force_active);
4565
4566 hci_send_frame(hdev, skb);
4567 hdev->acl_last_tx = jiffies;
4568
4569 hdev->block_cnt -= blocks;
4570 quote -= blocks;
4571
4572 chan->sent += blocks;
4573 chan->conn->sent += blocks;
4574 }
4575 }
4576
4577 if (cnt != hdev->block_cnt)
4578 hci_prio_recalculate(hdev, type);
4579}
4580
4581static void hci_sched_acl(struct hci_dev *hdev)
4582{
4583 BT_DBG("%s", hdev->name);
4584
4585 /* No ACL link over BR/EDR controller */
4586 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4587 return;
4588
4589 /* No AMP link over AMP controller */
4590 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4591 return;
4592
4593 switch (hdev->flow_ctl_mode) {
4594 case HCI_FLOW_CTL_MODE_PACKET_BASED:
4595 hci_sched_acl_pkt(hdev);
4596 break;
4597
4598 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4599 hci_sched_acl_blk(hdev);
4600 break;
4601 }
4602}
4603
4604static void hci_sched_le(struct hci_dev *hdev)
4605{
4606 struct hci_chan *chan;
4607 struct sk_buff *skb;
4608 int quote, cnt, tmp;
4609
4610 BT_DBG("%s", hdev->name);
4611
4612 if (!hci_conn_num(hdev, LE_LINK))
4613 return;
4614
4615 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4616
4617 __check_timeout(hdev, cnt);
4618
4619 tmp = cnt;
4620 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) {
4621 u32 priority = (skb_peek(&chan->data_q))->priority;
4622 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4623 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4624 skb->len, skb->priority);
4625
4626 /* Stop if priority has changed */
4627 if (skb->priority < priority)
4628 break;
4629
4630 skb = skb_dequeue(&chan->data_q);
4631
4632 hci_send_frame(hdev, skb);
4633 hdev->le_last_tx = jiffies;
4634
4635 cnt--;
4636 chan->sent++;
4637 chan->conn->sent++;
4638
4639 /* Send pending SCO packets right away */
4640 hci_sched_sco(hdev);
4641 hci_sched_esco(hdev);
4642 }
4643 }
4644
4645 if (hdev->le_pkts)
4646 hdev->le_cnt = cnt;
4647 else
4648 hdev->acl_cnt = cnt;
4649
4650 if (cnt != tmp)
4651 hci_prio_recalculate(hdev, LE_LINK);
4652}
4653
4654static void hci_tx_work(struct work_struct *work)
4655{
4656 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4657 struct sk_buff *skb;
4658
4659 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4660 hdev->sco_cnt, hdev->le_cnt);
4661
4662 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4663 /* Schedule queues and send stuff to HCI driver */
4664 hci_sched_sco(hdev);
4665 hci_sched_esco(hdev);
4666 hci_sched_acl(hdev);
4667 hci_sched_le(hdev);
4668 }
4669
4670 /* Send next queued raw (unknown type) packet */
4671 while ((skb = skb_dequeue(&hdev->raw_q)))
4672 hci_send_frame(hdev, skb);
4673}
4674
4675/* ----- HCI RX task (incoming data processing) ----- */
4676
4677/* ACL data packet */
4678static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4679{
4680 struct hci_acl_hdr *hdr = (void *) skb->data;
4681 struct hci_conn *conn;
4682 __u16 handle, flags;
4683
4684 skb_pull(skb, HCI_ACL_HDR_SIZE);
4685
4686 handle = __le16_to_cpu(hdr->handle);
4687 flags = hci_flags(handle);
4688 handle = hci_handle(handle);
4689
4690 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4691 handle, flags);
4692
4693 hdev->stat.acl_rx++;
4694
4695 hci_dev_lock(hdev);
4696 conn = hci_conn_hash_lookup_handle(hdev, handle);
4697 hci_dev_unlock(hdev);
4698
4699 if (conn) {
4700 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4701
4702 /* Send to upper protocol */
4703 l2cap_recv_acldata(conn, skb, flags);
4704 return;
4705 } else {
4706 bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4707 handle);
4708 }
4709
4710 kfree_skb(skb);
4711}
4712
4713/* SCO data packet */
4714static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4715{
4716 struct hci_sco_hdr *hdr = (void *) skb->data;
4717 struct hci_conn *conn;
4718 __u16 handle, flags;
4719
4720 skb_pull(skb, HCI_SCO_HDR_SIZE);
4721
4722 handle = __le16_to_cpu(hdr->handle);
4723 flags = hci_flags(handle);
4724 handle = hci_handle(handle);
4725
4726 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4727 handle, flags);
4728
4729 hdev->stat.sco_rx++;
4730
4731 hci_dev_lock(hdev);
4732 conn = hci_conn_hash_lookup_handle(hdev, handle);
4733 hci_dev_unlock(hdev);
4734
4735 if (conn) {
4736 /* Send to upper protocol */
4737 bt_cb(skb)->sco.pkt_status = flags & 0x03;
4738 sco_recv_scodata(conn, skb);
4739 return;
4740 } else {
4741 bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
4742 handle);
4743 }
4744
4745 kfree_skb(skb);
4746}
4747
4748static bool hci_req_is_complete(struct hci_dev *hdev)
4749{
4750 struct sk_buff *skb;
4751
4752 skb = skb_peek(&hdev->cmd_q);
4753 if (!skb)
4754 return true;
4755
4756 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4757}
4758
4759static void hci_resend_last(struct hci_dev *hdev)
4760{
4761 struct hci_command_hdr *sent;
4762 struct sk_buff *skb;
4763 u16 opcode;
4764
4765 if (!hdev->sent_cmd)
4766 return;
4767
4768 sent = (void *) hdev->sent_cmd->data;
4769 opcode = __le16_to_cpu(sent->opcode);
4770 if (opcode == HCI_OP_RESET)
4771 return;
4772
4773 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4774 if (!skb)
4775 return;
4776
4777 skb_queue_head(&hdev->cmd_q, skb);
4778 queue_work(hdev->workqueue, &hdev->cmd_work);
4779}
4780
4781void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4782 hci_req_complete_t *req_complete,
4783 hci_req_complete_skb_t *req_complete_skb)
4784{
4785 struct sk_buff *skb;
4786 unsigned long flags;
4787
4788 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4789
4790 /* If the completed command doesn't match the last one that was
4791 * sent we need to do special handling of it.
4792 */
4793 if (!hci_sent_cmd_data(hdev, opcode)) {
4794 /* Some CSR based controllers generate a spontaneous
4795 * reset complete event during init and any pending
4796 * command will never be completed. In such a case we
4797 * need to resend whatever was the last sent
4798 * command.
4799 */
4800 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4801 hci_resend_last(hdev);
4802
4803 return;
4804 }
4805
4806 /* If we reach this point this event matches the last command sent */
4807 hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4808
4809 /* If the command succeeded and there's still more commands in
4810 * this request the request is not yet complete.
4811 */
4812 if (!status && !hci_req_is_complete(hdev))
4813 return;
4814
4815 /* If this was the last command in a request the complete
4816 * callback would be found in hdev->sent_cmd instead of the
4817 * command queue (hdev->cmd_q).
4818 */
4819 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4820 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4821 return;
4822 }
4823
4824 if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4825 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4826 return;
4827 }
4828
4829 /* Remove all pending commands belonging to this request */
4830 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4831 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4832 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4833 __skb_queue_head(&hdev->cmd_q, skb);
4834 break;
4835 }
4836
4837 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4838 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4839 else
4840 *req_complete = bt_cb(skb)->hci.req_complete;
4841 kfree_skb(skb);
4842 }
4843 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4844}
4845
4846static void hci_rx_work(struct work_struct *work)
4847{
4848 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4849 struct sk_buff *skb;
4850
4851 BT_DBG("%s", hdev->name);
4852
4853 while ((skb = skb_dequeue(&hdev->rx_q))) {
4854 /* Send copy to monitor */
4855 hci_send_to_monitor(hdev, skb);
4856
4857 if (atomic_read(&hdev->promisc)) {
4858 /* Send copy to the sockets */
4859 hci_send_to_sock(hdev, skb);
4860 }
4861
4862 /* If the device has been opened in HCI_USER_CHANNEL,
4863 * the userspace has exclusive access to device.
4864 * When device is HCI_INIT, we still need to process
4865 * the data packets to the driver in order
4866 * to complete its setup().
4867 */
4868 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4869 !test_bit(HCI_INIT, &hdev->flags)) {
4870 kfree_skb(skb);
4871 continue;
4872 }
4873
4874 if (test_bit(HCI_INIT, &hdev->flags)) {
4875 /* Don't process data packets in this states. */
4876 switch (hci_skb_pkt_type(skb)) {
4877 case HCI_ACLDATA_PKT:
4878 case HCI_SCODATA_PKT:
4879 case HCI_ISODATA_PKT:
4880 kfree_skb(skb);
4881 continue;
4882 }
4883 }
4884
4885 /* Process frame */
4886 switch (hci_skb_pkt_type(skb)) {
4887 case HCI_EVENT_PKT:
4888 BT_DBG("%s Event packet", hdev->name);
4889 hci_event_packet(hdev, skb);
4890 break;
4891
4892 case HCI_ACLDATA_PKT:
4893 BT_DBG("%s ACL data packet", hdev->name);
4894 hci_acldata_packet(hdev, skb);
4895 break;
4896
4897 case HCI_SCODATA_PKT:
4898 BT_DBG("%s SCO data packet", hdev->name);
4899 hci_scodata_packet(hdev, skb);
4900 break;
4901
4902 default:
4903 kfree_skb(skb);
4904 break;
4905 }
4906 }
4907}
4908
4909static void hci_cmd_work(struct work_struct *work)
4910{
4911 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4912 struct sk_buff *skb;
4913
4914 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4915 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4916
4917 /* Send queued commands */
4918 if (atomic_read(&hdev->cmd_cnt)) {
4919 skb = skb_dequeue(&hdev->cmd_q);
4920 if (!skb)
4921 return;
4922
4923 kfree_skb(hdev->sent_cmd);
4924
4925 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4926 if (hdev->sent_cmd) {
4927 if (hci_req_status_pend(hdev))
4928 hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4929 atomic_dec(&hdev->cmd_cnt);
4930 hci_send_frame(hdev, skb);
4931 if (test_bit(HCI_RESET, &hdev->flags))
4932 cancel_delayed_work(&hdev->cmd_timer);
4933 else
4934 schedule_delayed_work(&hdev->cmd_timer,
4935 HCI_CMD_TIMEOUT);
4936 } else {
4937 skb_queue_head(&hdev->cmd_q, skb);
4938 queue_work(hdev->workqueue, &hdev->cmd_work);
4939 }
4940 }
4941}