Linux Audio

Check our new training course

Loading...
v5.4
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
  29#include <linux/idr.h>
  30#include <linux/rfkill.h>
  31#include <linux/debugfs.h>
  32#include <linux/crypto.h>
 
  33#include <linux/property.h>
 
 
  34#include <asm/unaligned.h>
  35
  36#include <net/bluetooth/bluetooth.h>
  37#include <net/bluetooth/hci_core.h>
  38#include <net/bluetooth/l2cap.h>
  39#include <net/bluetooth/mgmt.h>
  40
  41#include "hci_request.h"
  42#include "hci_debugfs.h"
  43#include "smp.h"
  44#include "leds.h"
 
 
 
  45
  46static void hci_rx_work(struct work_struct *work);
  47static void hci_cmd_work(struct work_struct *work);
  48static void hci_tx_work(struct work_struct *work);
  49
  50/* HCI device list */
  51LIST_HEAD(hci_dev_list);
  52DEFINE_RWLOCK(hci_dev_list_lock);
  53
  54/* HCI callback list */
  55LIST_HEAD(hci_cb_list);
  56DEFINE_MUTEX(hci_cb_list_lock);
  57
  58/* HCI ID Numbering */
  59static DEFINE_IDA(hci_index_ida);
  60
  61/* ---- HCI debugfs entries ---- */
  62
  63static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
  64			     size_t count, loff_t *ppos)
  65{
  66	struct hci_dev *hdev = file->private_data;
  67	char buf[3];
  68
  69	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
  70	buf[1] = '\n';
  71	buf[2] = '\0';
  72	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
  73}
  74
  75static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
  76			      size_t count, loff_t *ppos)
  77{
  78	struct hci_dev *hdev = file->private_data;
  79	struct sk_buff *skb;
  80	bool enable;
  81	int err;
  82
  83	if (!test_bit(HCI_UP, &hdev->flags))
  84		return -ENETDOWN;
  85
  86	err = kstrtobool_from_user(user_buf, count, &enable);
  87	if (err)
  88		return err;
  89
  90	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
  91		return -EALREADY;
  92
  93	hci_req_sync_lock(hdev);
  94	if (enable)
  95		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
  96				     HCI_CMD_TIMEOUT);
  97	else
  98		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
  99				     HCI_CMD_TIMEOUT);
 100	hci_req_sync_unlock(hdev);
 101
 102	if (IS_ERR(skb))
 103		return PTR_ERR(skb);
 104
 105	kfree_skb(skb);
 106
 107	hci_dev_change_flag(hdev, HCI_DUT_MODE);
 108
 109	return count;
 110}
 111
 112static const struct file_operations dut_mode_fops = {
 113	.open		= simple_open,
 114	.read		= dut_mode_read,
 115	.write		= dut_mode_write,
 116	.llseek		= default_llseek,
 117};
 118
 119static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
 120				size_t count, loff_t *ppos)
 121{
 122	struct hci_dev *hdev = file->private_data;
 123	char buf[3];
 124
 125	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
 126	buf[1] = '\n';
 127	buf[2] = '\0';
 128	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 129}
 130
 131static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
 132				 size_t count, loff_t *ppos)
 133{
 134	struct hci_dev *hdev = file->private_data;
 135	bool enable;
 136	int err;
 137
 138	err = kstrtobool_from_user(user_buf, count, &enable);
 139	if (err)
 140		return err;
 141
 142	/* When the diagnostic flags are not persistent and the transport
 143	 * is not active or in user channel operation, then there is no need
 144	 * for the vendor callback. Instead just store the desired value and
 145	 * the setting will be programmed when the controller gets powered on.
 146	 */
 147	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
 148	    (!test_bit(HCI_RUNNING, &hdev->flags) ||
 149	     hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
 150		goto done;
 151
 152	hci_req_sync_lock(hdev);
 153	err = hdev->set_diag(hdev, enable);
 154	hci_req_sync_unlock(hdev);
 155
 156	if (err < 0)
 157		return err;
 158
 159done:
 160	if (enable)
 161		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
 162	else
 163		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
 164
 165	return count;
 166}
 167
 168static const struct file_operations vendor_diag_fops = {
 169	.open		= simple_open,
 170	.read		= vendor_diag_read,
 171	.write		= vendor_diag_write,
 172	.llseek		= default_llseek,
 173};
 174
 175static void hci_debugfs_create_basic(struct hci_dev *hdev)
 176{
 177	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
 178			    &dut_mode_fops);
 179
 180	if (hdev->set_diag)
 181		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
 182				    &vendor_diag_fops);
 183}
 184
 185static int hci_reset_req(struct hci_request *req, unsigned long opt)
 186{
 187	BT_DBG("%s %ld", req->hdev->name, opt);
 188
 189	/* Reset device */
 190	set_bit(HCI_RESET, &req->hdev->flags);
 191	hci_req_add(req, HCI_OP_RESET, 0, NULL);
 192	return 0;
 193}
 194
 195static void bredr_init(struct hci_request *req)
 196{
 197	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
 198
 199	/* Read Local Supported Features */
 200	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 201
 202	/* Read Local Version */
 203	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 204
 205	/* Read BD Address */
 206	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 207}
 208
 209static void amp_init1(struct hci_request *req)
 210{
 211	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
 212
 213	/* Read Local Version */
 214	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 215
 216	/* Read Local Supported Commands */
 217	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 218
 219	/* Read Local AMP Info */
 220	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
 221
 222	/* Read Data Blk size */
 223	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
 224
 225	/* Read Flow Control Mode */
 226	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
 227
 228	/* Read Location Data */
 229	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
 230}
 231
 232static int amp_init2(struct hci_request *req)
 233{
 234	/* Read Local Supported Features. Not all AMP controllers
 235	 * support this so it's placed conditionally in the second
 236	 * stage init.
 237	 */
 238	if (req->hdev->commands[14] & 0x20)
 239		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 240
 241	return 0;
 242}
 243
 244static int hci_init1_req(struct hci_request *req, unsigned long opt)
 245{
 246	struct hci_dev *hdev = req->hdev;
 247
 248	BT_DBG("%s %ld", hdev->name, opt);
 249
 250	/* Reset */
 251	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 252		hci_reset_req(req, 0);
 253
 254	switch (hdev->dev_type) {
 255	case HCI_PRIMARY:
 256		bredr_init(req);
 257		break;
 258	case HCI_AMP:
 259		amp_init1(req);
 260		break;
 261	default:
 262		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
 263		break;
 264	}
 265
 266	return 0;
 267}
 268
 269static void bredr_setup(struct hci_request *req)
 270{
 271	__le16 param;
 272	__u8 flt_type;
 273
 274	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
 275	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
 276
 277	/* Read Class of Device */
 278	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
 279
 280	/* Read Local Name */
 281	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
 282
 283	/* Read Voice Setting */
 284	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
 285
 286	/* Read Number of Supported IAC */
 287	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
 288
 289	/* Read Current IAC LAP */
 290	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
 291
 292	/* Clear Event Filters */
 293	flt_type = HCI_FLT_CLEAR_ALL;
 294	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
 295
 296	/* Connection accept timeout ~20 secs */
 297	param = cpu_to_le16(0x7d00);
 298	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
 299}
 300
 301static void le_setup(struct hci_request *req)
 302{
 303	struct hci_dev *hdev = req->hdev;
 304
 305	/* Read LE Buffer Size */
 306	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
 307
 308	/* Read LE Local Supported Features */
 309	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
 310
 311	/* Read LE Supported States */
 312	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
 313
 314	/* LE-only controllers have LE implicitly enabled */
 315	if (!lmp_bredr_capable(hdev))
 316		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
 317}
 318
 319static void hci_setup_event_mask(struct hci_request *req)
 320{
 321	struct hci_dev *hdev = req->hdev;
 322
 323	/* The second byte is 0xff instead of 0x9f (two reserved bits
 324	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
 325	 * command otherwise.
 326	 */
 327	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
 328
 329	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
 330	 * any event mask for pre 1.2 devices.
 331	 */
 332	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 333		return;
 334
 335	if (lmp_bredr_capable(hdev)) {
 336		events[4] |= 0x01; /* Flow Specification Complete */
 337	} else {
 338		/* Use a different default for LE-only devices */
 339		memset(events, 0, sizeof(events));
 340		events[1] |= 0x20; /* Command Complete */
 341		events[1] |= 0x40; /* Command Status */
 342		events[1] |= 0x80; /* Hardware Error */
 343
 344		/* If the controller supports the Disconnect command, enable
 345		 * the corresponding event. In addition enable packet flow
 346		 * control related events.
 347		 */
 348		if (hdev->commands[0] & 0x20) {
 349			events[0] |= 0x10; /* Disconnection Complete */
 350			events[2] |= 0x04; /* Number of Completed Packets */
 351			events[3] |= 0x02; /* Data Buffer Overflow */
 352		}
 353
 354		/* If the controller supports the Read Remote Version
 355		 * Information command, enable the corresponding event.
 356		 */
 357		if (hdev->commands[2] & 0x80)
 358			events[1] |= 0x08; /* Read Remote Version Information
 359					    * Complete
 360					    */
 361
 362		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
 363			events[0] |= 0x80; /* Encryption Change */
 364			events[5] |= 0x80; /* Encryption Key Refresh Complete */
 365		}
 366	}
 367
 368	if (lmp_inq_rssi_capable(hdev) ||
 369	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
 370		events[4] |= 0x02; /* Inquiry Result with RSSI */
 371
 372	if (lmp_ext_feat_capable(hdev))
 373		events[4] |= 0x04; /* Read Remote Extended Features Complete */
 374
 375	if (lmp_esco_capable(hdev)) {
 376		events[5] |= 0x08; /* Synchronous Connection Complete */
 377		events[5] |= 0x10; /* Synchronous Connection Changed */
 378	}
 379
 380	if (lmp_sniffsubr_capable(hdev))
 381		events[5] |= 0x20; /* Sniff Subrating */
 382
 383	if (lmp_pause_enc_capable(hdev))
 384		events[5] |= 0x80; /* Encryption Key Refresh Complete */
 385
 386	if (lmp_ext_inq_capable(hdev))
 387		events[5] |= 0x40; /* Extended Inquiry Result */
 388
 389	if (lmp_no_flush_capable(hdev))
 390		events[7] |= 0x01; /* Enhanced Flush Complete */
 391
 392	if (lmp_lsto_capable(hdev))
 393		events[6] |= 0x80; /* Link Supervision Timeout Changed */
 394
 395	if (lmp_ssp_capable(hdev)) {
 396		events[6] |= 0x01;	/* IO Capability Request */
 397		events[6] |= 0x02;	/* IO Capability Response */
 398		events[6] |= 0x04;	/* User Confirmation Request */
 399		events[6] |= 0x08;	/* User Passkey Request */
 400		events[6] |= 0x10;	/* Remote OOB Data Request */
 401		events[6] |= 0x20;	/* Simple Pairing Complete */
 402		events[7] |= 0x04;	/* User Passkey Notification */
 403		events[7] |= 0x08;	/* Keypress Notification */
 404		events[7] |= 0x10;	/* Remote Host Supported
 405					 * Features Notification
 406					 */
 407	}
 408
 409	if (lmp_le_capable(hdev))
 410		events[7] |= 0x20;	/* LE Meta-Event */
 411
 412	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
 413}
 414
 415static int hci_init2_req(struct hci_request *req, unsigned long opt)
 416{
 417	struct hci_dev *hdev = req->hdev;
 418
 419	if (hdev->dev_type == HCI_AMP)
 420		return amp_init2(req);
 421
 422	if (lmp_bredr_capable(hdev))
 423		bredr_setup(req);
 424	else
 425		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
 426
 427	if (lmp_le_capable(hdev))
 428		le_setup(req);
 429
 430	/* All Bluetooth 1.2 and later controllers should support the
 431	 * HCI command for reading the local supported commands.
 432	 *
 433	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
 434	 * but do not have support for this command. If that is the case,
 435	 * the driver can quirk the behavior and skip reading the local
 436	 * supported commands.
 437	 */
 438	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
 439	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
 440		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 441
 442	if (lmp_ssp_capable(hdev)) {
 443		/* When SSP is available, then the host features page
 444		 * should also be available as well. However some
 445		 * controllers list the max_page as 0 as long as SSP
 446		 * has not been enabled. To achieve proper debugging
 447		 * output, force the minimum max_page to 1 at least.
 448		 */
 449		hdev->max_page = 0x01;
 450
 451		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
 452			u8 mode = 0x01;
 453
 454			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
 455				    sizeof(mode), &mode);
 456		} else {
 457			struct hci_cp_write_eir cp;
 458
 459			memset(hdev->eir, 0, sizeof(hdev->eir));
 460			memset(&cp, 0, sizeof(cp));
 461
 462			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 463		}
 464	}
 465
 466	if (lmp_inq_rssi_capable(hdev) ||
 467	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
 468		u8 mode;
 469
 470		/* If Extended Inquiry Result events are supported, then
 471		 * they are clearly preferred over Inquiry Result with RSSI
 472		 * events.
 473		 */
 474		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
 475
 476		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
 477	}
 478
 479	if (lmp_inq_tx_pwr_capable(hdev))
 480		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
 481
 482	if (lmp_ext_feat_capable(hdev)) {
 483		struct hci_cp_read_local_ext_features cp;
 484
 485		cp.page = 0x01;
 486		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 487			    sizeof(cp), &cp);
 488	}
 489
 490	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
 491		u8 enable = 1;
 492		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
 493			    &enable);
 494	}
 495
 496	return 0;
 497}
 498
 499static void hci_setup_link_policy(struct hci_request *req)
 500{
 501	struct hci_dev *hdev = req->hdev;
 502	struct hci_cp_write_def_link_policy cp;
 503	u16 link_policy = 0;
 504
 505	if (lmp_rswitch_capable(hdev))
 506		link_policy |= HCI_LP_RSWITCH;
 507	if (lmp_hold_capable(hdev))
 508		link_policy |= HCI_LP_HOLD;
 509	if (lmp_sniff_capable(hdev))
 510		link_policy |= HCI_LP_SNIFF;
 511	if (lmp_park_capable(hdev))
 512		link_policy |= HCI_LP_PARK;
 513
 514	cp.policy = cpu_to_le16(link_policy);
 515	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
 516}
 517
 518static void hci_set_le_support(struct hci_request *req)
 519{
 520	struct hci_dev *hdev = req->hdev;
 521	struct hci_cp_write_le_host_supported cp;
 522
 523	/* LE-only devices do not support explicit enablement */
 524	if (!lmp_bredr_capable(hdev))
 525		return;
 526
 527	memset(&cp, 0, sizeof(cp));
 528
 529	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
 530		cp.le = 0x01;
 531		cp.simul = 0x00;
 532	}
 533
 534	if (cp.le != lmp_host_le_capable(hdev))
 535		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
 536			    &cp);
 537}
 538
 539static void hci_set_event_mask_page_2(struct hci_request *req)
 540{
 541	struct hci_dev *hdev = req->hdev;
 542	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
 543	bool changed = false;
 544
 545	/* If Connectionless Slave Broadcast master role is supported
 546	 * enable all necessary events for it.
 547	 */
 548	if (lmp_csb_master_capable(hdev)) {
 549		events[1] |= 0x40;	/* Triggered Clock Capture */
 550		events[1] |= 0x80;	/* Synchronization Train Complete */
 551		events[2] |= 0x10;	/* Slave Page Response Timeout */
 552		events[2] |= 0x20;	/* CSB Channel Map Change */
 553		changed = true;
 554	}
 555
 556	/* If Connectionless Slave Broadcast slave role is supported
 557	 * enable all necessary events for it.
 558	 */
 559	if (lmp_csb_slave_capable(hdev)) {
 560		events[2] |= 0x01;	/* Synchronization Train Received */
 561		events[2] |= 0x02;	/* CSB Receive */
 562		events[2] |= 0x04;	/* CSB Timeout */
 563		events[2] |= 0x08;	/* Truncated Page Complete */
 564		changed = true;
 565	}
 566
 567	/* Enable Authenticated Payload Timeout Expired event if supported */
 568	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
 569		events[2] |= 0x80;
 570		changed = true;
 571	}
 572
 573	/* Some Broadcom based controllers indicate support for Set Event
 574	 * Mask Page 2 command, but then actually do not support it. Since
 575	 * the default value is all bits set to zero, the command is only
 576	 * required if the event mask has to be changed. In case no change
 577	 * to the event mask is needed, skip this command.
 578	 */
 579	if (changed)
 580		hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
 581			    sizeof(events), events);
 582}
 583
 584static int hci_init3_req(struct hci_request *req, unsigned long opt)
 585{
 586	struct hci_dev *hdev = req->hdev;
 587	u8 p;
 588
 589	hci_setup_event_mask(req);
 590
 591	if (hdev->commands[6] & 0x20 &&
 592	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 593		struct hci_cp_read_stored_link_key cp;
 594
 595		bacpy(&cp.bdaddr, BDADDR_ANY);
 596		cp.read_all = 0x01;
 597		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
 598	}
 599
 600	if (hdev->commands[5] & 0x10)
 601		hci_setup_link_policy(req);
 602
 603	if (hdev->commands[8] & 0x01)
 604		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
 605
 606	/* Some older Broadcom based Bluetooth 1.2 controllers do not
 607	 * support the Read Page Scan Type command. Check support for
 608	 * this command in the bit mask of supported commands.
 609	 */
 610	if (hdev->commands[13] & 0x01)
 611		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
 612
 613	if (lmp_le_capable(hdev)) {
 614		u8 events[8];
 615
 616		memset(events, 0, sizeof(events));
 617
 618		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
 619			events[0] |= 0x10;	/* LE Long Term Key Request */
 620
 621		/* If controller supports the Connection Parameters Request
 622		 * Link Layer Procedure, enable the corresponding event.
 623		 */
 624		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
 625			events[0] |= 0x20;	/* LE Remote Connection
 626						 * Parameter Request
 627						 */
 628
 629		/* If the controller supports the Data Length Extension
 630		 * feature, enable the corresponding event.
 631		 */
 632		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
 633			events[0] |= 0x40;	/* LE Data Length Change */
 634
 635		/* If the controller supports Extended Scanner Filter
 636		 * Policies, enable the correspondig event.
 637		 */
 638		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
 639			events[1] |= 0x04;	/* LE Direct Advertising
 640						 * Report
 641						 */
 642
 643		/* If the controller supports Channel Selection Algorithm #2
 644		 * feature, enable the corresponding event.
 645		 */
 646		if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
 647			events[2] |= 0x08;	/* LE Channel Selection
 648						 * Algorithm
 649						 */
 650
 651		/* If the controller supports the LE Set Scan Enable command,
 652		 * enable the corresponding advertising report event.
 653		 */
 654		if (hdev->commands[26] & 0x08)
 655			events[0] |= 0x02;	/* LE Advertising Report */
 656
 657		/* If the controller supports the LE Create Connection
 658		 * command, enable the corresponding event.
 659		 */
 660		if (hdev->commands[26] & 0x10)
 661			events[0] |= 0x01;	/* LE Connection Complete */
 662
 663		/* If the controller supports the LE Connection Update
 664		 * command, enable the corresponding event.
 665		 */
 666		if (hdev->commands[27] & 0x04)
 667			events[0] |= 0x04;	/* LE Connection Update
 668						 * Complete
 669						 */
 670
 671		/* If the controller supports the LE Read Remote Used Features
 672		 * command, enable the corresponding event.
 673		 */
 674		if (hdev->commands[27] & 0x20)
 675			events[0] |= 0x08;	/* LE Read Remote Used
 676						 * Features Complete
 677						 */
 678
 679		/* If the controller supports the LE Read Local P-256
 680		 * Public Key command, enable the corresponding event.
 681		 */
 682		if (hdev->commands[34] & 0x02)
 683			events[0] |= 0x80;	/* LE Read Local P-256
 684						 * Public Key Complete
 685						 */
 686
 687		/* If the controller supports the LE Generate DHKey
 688		 * command, enable the corresponding event.
 689		 */
 690		if (hdev->commands[34] & 0x04)
 691			events[1] |= 0x01;	/* LE Generate DHKey Complete */
 692
 693		/* If the controller supports the LE Set Default PHY or
 694		 * LE Set PHY commands, enable the corresponding event.
 695		 */
 696		if (hdev->commands[35] & (0x20 | 0x40))
 697			events[1] |= 0x08;        /* LE PHY Update Complete */
 698
 699		/* If the controller supports LE Set Extended Scan Parameters
 700		 * and LE Set Extended Scan Enable commands, enable the
 701		 * corresponding event.
 702		 */
 703		if (use_ext_scan(hdev))
 704			events[1] |= 0x10;	/* LE Extended Advertising
 705						 * Report
 706						 */
 707
 708		/* If the controller supports the LE Extended Create Connection
 709		 * command, enable the corresponding event.
 710		 */
 711		if (use_ext_conn(hdev))
 712			events[1] |= 0x02;      /* LE Enhanced Connection
 713						 * Complete
 714						 */
 715
 716		/* If the controller supports the LE Extended Advertising
 717		 * command, enable the corresponding event.
 718		 */
 719		if (ext_adv_capable(hdev))
 720			events[2] |= 0x02;	/* LE Advertising Set
 721						 * Terminated
 722						 */
 723
 724		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
 725			    events);
 726
 727		/* Read LE Advertising Channel TX Power */
 728		if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
 729			/* HCI TS spec forbids mixing of legacy and extended
 730			 * advertising commands wherein READ_ADV_TX_POWER is
 731			 * also included. So do not call it if extended adv
 732			 * is supported otherwise controller will return
 733			 * COMMAND_DISALLOWED for extended commands.
 734			 */
 735			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
 736		}
 737
 738		if (hdev->commands[26] & 0x40) {
 739			/* Read LE White List Size */
 740			hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
 741				    0, NULL);
 742		}
 743
 744		if (hdev->commands[26] & 0x80) {
 745			/* Clear LE White List */
 746			hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
 747		}
 748
 749		if (hdev->commands[34] & 0x40) {
 750			/* Read LE Resolving List Size */
 751			hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
 752				    0, NULL);
 753		}
 754
 755		if (hdev->commands[34] & 0x20) {
 756			/* Clear LE Resolving List */
 757			hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
 758		}
 759
 760		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 761			/* Read LE Maximum Data Length */
 762			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
 763
 764			/* Read LE Suggested Default Data Length */
 765			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
 766		}
 767
 768		if (ext_adv_capable(hdev)) {
 769			/* Read LE Number of Supported Advertising Sets */
 770			hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
 771				    0, NULL);
 772		}
 773
 774		hci_set_le_support(req);
 775	}
 776
 777	/* Read features beyond page 1 if available */
 778	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
 779		struct hci_cp_read_local_ext_features cp;
 780
 781		cp.page = p;
 782		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 783			    sizeof(cp), &cp);
 784	}
 785
 786	return 0;
 787}
 788
 789static int hci_init4_req(struct hci_request *req, unsigned long opt)
 790{
 791	struct hci_dev *hdev = req->hdev;
 792
 793	/* Some Broadcom based Bluetooth controllers do not support the
 794	 * Delete Stored Link Key command. They are clearly indicating its
 795	 * absence in the bit mask of supported commands.
 796	 *
 797	 * Check the supported commands and only if the the command is marked
 798	 * as supported send it. If not supported assume that the controller
 799	 * does not have actual support for stored link keys which makes this
 800	 * command redundant anyway.
 801	 *
 802	 * Some controllers indicate that they support handling deleting
 803	 * stored link keys, but they don't. The quirk lets a driver
 804	 * just disable this command.
 805	 */
 806	if (hdev->commands[6] & 0x80 &&
 807	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 808		struct hci_cp_delete_stored_link_key cp;
 809
 810		bacpy(&cp.bdaddr, BDADDR_ANY);
 811		cp.delete_all = 0x01;
 812		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
 813			    sizeof(cp), &cp);
 814	}
 815
 816	/* Set event mask page 2 if the HCI command for it is supported */
 817	if (hdev->commands[22] & 0x04)
 818		hci_set_event_mask_page_2(req);
 819
 820	/* Read local codec list if the HCI command is supported */
 821	if (hdev->commands[29] & 0x20)
 822		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
 823
 824	/* Get MWS transport configuration if the HCI command is supported */
 825	if (hdev->commands[30] & 0x08)
 826		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
 827
 828	/* Check for Synchronization Train support */
 829	if (lmp_sync_train_capable(hdev))
 830		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
 831
 832	/* Enable Secure Connections if supported and configured */
 833	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
 834	    bredr_sc_enabled(hdev)) {
 835		u8 support = 0x01;
 836
 837		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
 838			    sizeof(support), &support);
 839	}
 840
 841	/* Set Suggested Default Data Length to maximum if supported */
 842	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 843		struct hci_cp_le_write_def_data_len cp;
 844
 845		cp.tx_len = hdev->le_max_tx_len;
 846		cp.tx_time = hdev->le_max_tx_time;
 847		hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
 848	}
 849
 850	/* Set Default PHY parameters if command is supported */
 851	if (hdev->commands[35] & 0x20) {
 852		struct hci_cp_le_set_default_phy cp;
 853
 854		cp.all_phys = 0x00;
 855		cp.tx_phys = hdev->le_tx_def_phys;
 856		cp.rx_phys = hdev->le_rx_def_phys;
 857
 858		hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
 859	}
 860
 861	return 0;
 862}
 863
 864static int __hci_init(struct hci_dev *hdev)
 865{
 866	int err;
 867
 868	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
 869	if (err < 0)
 870		return err;
 871
 872	if (hci_dev_test_flag(hdev, HCI_SETUP))
 873		hci_debugfs_create_basic(hdev);
 874
 875	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
 876	if (err < 0)
 877		return err;
 878
 879	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
 880	 * BR/EDR/LE type controllers. AMP controllers only need the
 881	 * first two stages of init.
 882	 */
 883	if (hdev->dev_type != HCI_PRIMARY)
 884		return 0;
 885
 886	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
 887	if (err < 0)
 888		return err;
 889
 890	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
 891	if (err < 0)
 892		return err;
 893
 894	/* This function is only called when the controller is actually in
 895	 * configured state. When the controller is marked as unconfigured,
 896	 * this initialization procedure is not run.
 897	 *
 898	 * It means that it is possible that a controller runs through its
 899	 * setup phase and then discovers missing settings. If that is the
 900	 * case, then this function will not be called. It then will only
 901	 * be called during the config phase.
 902	 *
 903	 * So only when in setup phase or config phase, create the debugfs
 904	 * entries and register the SMP channels.
 905	 */
 906	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 907	    !hci_dev_test_flag(hdev, HCI_CONFIG))
 908		return 0;
 909
 910	hci_debugfs_create_common(hdev);
 911
 912	if (lmp_bredr_capable(hdev))
 913		hci_debugfs_create_bredr(hdev);
 914
 915	if (lmp_le_capable(hdev))
 916		hci_debugfs_create_le(hdev);
 917
 918	return 0;
 919}
 920
 921static int hci_init0_req(struct hci_request *req, unsigned long opt)
 922{
 923	struct hci_dev *hdev = req->hdev;
 924
 925	BT_DBG("%s %ld", hdev->name, opt);
 926
 927	/* Reset */
 928	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 929		hci_reset_req(req, 0);
 930
 931	/* Read Local Version */
 932	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 933
 934	/* Read BD Address */
 935	if (hdev->set_bdaddr)
 936		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 937
 938	return 0;
 939}
 940
 941static int __hci_unconf_init(struct hci_dev *hdev)
 942{
 943	int err;
 944
 945	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
 946		return 0;
 947
 948	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
 949	if (err < 0)
 950		return err;
 951
 952	if (hci_dev_test_flag(hdev, HCI_SETUP))
 953		hci_debugfs_create_basic(hdev);
 954
 955	return 0;
 956}
 957
 958static int hci_scan_req(struct hci_request *req, unsigned long opt)
 959{
 960	__u8 scan = opt;
 961
 962	BT_DBG("%s %x", req->hdev->name, scan);
 963
 964	/* Inquiry and Page scans */
 965	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
 966	return 0;
 967}
 968
 969static int hci_auth_req(struct hci_request *req, unsigned long opt)
 970{
 971	__u8 auth = opt;
 972
 973	BT_DBG("%s %x", req->hdev->name, auth);
 974
 975	/* Authentication */
 976	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
 977	return 0;
 978}
 979
 980static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
 981{
 982	__u8 encrypt = opt;
 983
 984	BT_DBG("%s %x", req->hdev->name, encrypt);
 985
 986	/* Encryption */
 987	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
 988	return 0;
 989}
 990
 991static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
 992{
 993	__le16 policy = cpu_to_le16(opt);
 994
 995	BT_DBG("%s %x", req->hdev->name, policy);
 996
 997	/* Default link policy */
 998	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 999	return 0;
1000}
1001
1002/* Get HCI device by index.
1003 * Device is held on return. */
1004struct hci_dev *hci_dev_get(int index)
1005{
1006	struct hci_dev *hdev = NULL, *d;
1007
1008	BT_DBG("%d", index);
1009
1010	if (index < 0)
1011		return NULL;
1012
1013	read_lock(&hci_dev_list_lock);
1014	list_for_each_entry(d, &hci_dev_list, list) {
1015		if (d->id == index) {
1016			hdev = hci_dev_hold(d);
1017			break;
1018		}
1019	}
1020	read_unlock(&hci_dev_list_lock);
1021	return hdev;
1022}
1023
1024/* ---- Inquiry support ---- */
1025
1026bool hci_discovery_active(struct hci_dev *hdev)
1027{
1028	struct discovery_state *discov = &hdev->discovery;
1029
1030	switch (discov->state) {
1031	case DISCOVERY_FINDING:
1032	case DISCOVERY_RESOLVING:
1033		return true;
1034
1035	default:
1036		return false;
1037	}
1038}
1039
1040void hci_discovery_set_state(struct hci_dev *hdev, int state)
1041{
1042	int old_state = hdev->discovery.state;
1043
1044	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1045
1046	if (old_state == state)
1047		return;
1048
1049	hdev->discovery.state = state;
1050
1051	switch (state) {
1052	case DISCOVERY_STOPPED:
1053		hci_update_background_scan(hdev);
1054
1055		if (old_state != DISCOVERY_STARTING)
1056			mgmt_discovering(hdev, 0);
1057		break;
1058	case DISCOVERY_STARTING:
1059		break;
1060	case DISCOVERY_FINDING:
1061		mgmt_discovering(hdev, 1);
1062		break;
1063	case DISCOVERY_RESOLVING:
1064		break;
1065	case DISCOVERY_STOPPING:
1066		break;
1067	}
1068}
1069
1070void hci_inquiry_cache_flush(struct hci_dev *hdev)
1071{
1072	struct discovery_state *cache = &hdev->discovery;
1073	struct inquiry_entry *p, *n;
1074
1075	list_for_each_entry_safe(p, n, &cache->all, all) {
1076		list_del(&p->all);
1077		kfree(p);
1078	}
1079
1080	INIT_LIST_HEAD(&cache->unknown);
1081	INIT_LIST_HEAD(&cache->resolve);
1082}
1083
1084struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1085					       bdaddr_t *bdaddr)
1086{
1087	struct discovery_state *cache = &hdev->discovery;
1088	struct inquiry_entry *e;
1089
1090	BT_DBG("cache %p, %pMR", cache, bdaddr);
1091
1092	list_for_each_entry(e, &cache->all, all) {
1093		if (!bacmp(&e->data.bdaddr, bdaddr))
1094			return e;
1095	}
1096
1097	return NULL;
1098}
1099
1100struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1101						       bdaddr_t *bdaddr)
1102{
1103	struct discovery_state *cache = &hdev->discovery;
1104	struct inquiry_entry *e;
1105
1106	BT_DBG("cache %p, %pMR", cache, bdaddr);
1107
1108	list_for_each_entry(e, &cache->unknown, list) {
1109		if (!bacmp(&e->data.bdaddr, bdaddr))
1110			return e;
1111	}
1112
1113	return NULL;
1114}
1115
1116struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1117						       bdaddr_t *bdaddr,
1118						       int state)
1119{
1120	struct discovery_state *cache = &hdev->discovery;
1121	struct inquiry_entry *e;
1122
1123	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1124
1125	list_for_each_entry(e, &cache->resolve, list) {
1126		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1127			return e;
1128		if (!bacmp(&e->data.bdaddr, bdaddr))
1129			return e;
1130	}
1131
1132	return NULL;
1133}
1134
1135void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1136				      struct inquiry_entry *ie)
1137{
1138	struct discovery_state *cache = &hdev->discovery;
1139	struct list_head *pos = &cache->resolve;
1140	struct inquiry_entry *p;
1141
1142	list_del(&ie->list);
1143
1144	list_for_each_entry(p, &cache->resolve, list) {
1145		if (p->name_state != NAME_PENDING &&
1146		    abs(p->data.rssi) >= abs(ie->data.rssi))
1147			break;
1148		pos = &p->list;
1149	}
1150
1151	list_add(&ie->list, pos);
1152}
1153
1154u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1155			     bool name_known)
1156{
1157	struct discovery_state *cache = &hdev->discovery;
1158	struct inquiry_entry *ie;
1159	u32 flags = 0;
1160
1161	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1162
1163	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1164
1165	if (!data->ssp_mode)
1166		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1167
1168	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1169	if (ie) {
1170		if (!ie->data.ssp_mode)
1171			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1172
1173		if (ie->name_state == NAME_NEEDED &&
1174		    data->rssi != ie->data.rssi) {
1175			ie->data.rssi = data->rssi;
1176			hci_inquiry_cache_update_resolve(hdev, ie);
1177		}
1178
1179		goto update;
1180	}
1181
1182	/* Entry not in the cache. Add new one. */
1183	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1184	if (!ie) {
1185		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1186		goto done;
1187	}
1188
1189	list_add(&ie->all, &cache->all);
1190
1191	if (name_known) {
1192		ie->name_state = NAME_KNOWN;
1193	} else {
1194		ie->name_state = NAME_NOT_KNOWN;
1195		list_add(&ie->list, &cache->unknown);
1196	}
1197
1198update:
1199	if (name_known && ie->name_state != NAME_KNOWN &&
1200	    ie->name_state != NAME_PENDING) {
1201		ie->name_state = NAME_KNOWN;
1202		list_del(&ie->list);
1203	}
1204
1205	memcpy(&ie->data, data, sizeof(*data));
1206	ie->timestamp = jiffies;
1207	cache->timestamp = jiffies;
1208
1209	if (ie->name_state == NAME_NOT_KNOWN)
1210		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1211
1212done:
1213	return flags;
1214}
1215
1216static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1217{
1218	struct discovery_state *cache = &hdev->discovery;
1219	struct inquiry_info *info = (struct inquiry_info *) buf;
1220	struct inquiry_entry *e;
1221	int copied = 0;
1222
1223	list_for_each_entry(e, &cache->all, all) {
1224		struct inquiry_data *data = &e->data;
1225
1226		if (copied >= num)
1227			break;
1228
1229		bacpy(&info->bdaddr, &data->bdaddr);
1230		info->pscan_rep_mode	= data->pscan_rep_mode;
1231		info->pscan_period_mode	= data->pscan_period_mode;
1232		info->pscan_mode	= data->pscan_mode;
1233		memcpy(info->dev_class, data->dev_class, 3);
1234		info->clock_offset	= data->clock_offset;
1235
1236		info++;
1237		copied++;
1238	}
1239
1240	BT_DBG("cache %p, copied %d", cache, copied);
1241	return copied;
1242}
1243
1244static int hci_inq_req(struct hci_request *req, unsigned long opt)
1245{
1246	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1247	struct hci_dev *hdev = req->hdev;
1248	struct hci_cp_inquiry cp;
1249
1250	BT_DBG("%s", hdev->name);
1251
1252	if (test_bit(HCI_INQUIRY, &hdev->flags))
1253		return 0;
1254
1255	/* Start Inquiry */
1256	memcpy(&cp.lap, &ir->lap, 3);
1257	cp.length  = ir->length;
1258	cp.num_rsp = ir->num_rsp;
1259	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1260
1261	return 0;
1262}
1263
1264int hci_inquiry(void __user *arg)
1265{
1266	__u8 __user *ptr = arg;
1267	struct hci_inquiry_req ir;
1268	struct hci_dev *hdev;
1269	int err = 0, do_inquiry = 0, max_rsp;
1270	long timeo;
1271	__u8 *buf;
1272
1273	if (copy_from_user(&ir, ptr, sizeof(ir)))
1274		return -EFAULT;
1275
1276	hdev = hci_dev_get(ir.dev_id);
1277	if (!hdev)
1278		return -ENODEV;
1279
1280	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1281		err = -EBUSY;
1282		goto done;
1283	}
1284
1285	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1286		err = -EOPNOTSUPP;
1287		goto done;
1288	}
1289
1290	if (hdev->dev_type != HCI_PRIMARY) {
1291		err = -EOPNOTSUPP;
1292		goto done;
1293	}
1294
1295	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1296		err = -EOPNOTSUPP;
1297		goto done;
1298	}
1299
 
 
 
 
 
 
1300	hci_dev_lock(hdev);
1301	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1302	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1303		hci_inquiry_cache_flush(hdev);
1304		do_inquiry = 1;
1305	}
1306	hci_dev_unlock(hdev);
1307
1308	timeo = ir.length * msecs_to_jiffies(2000);
1309
1310	if (do_inquiry) {
1311		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1312				   timeo, NULL);
1313		if (err < 0)
1314			goto done;
1315
1316		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1317		 * cleared). If it is interrupted by a signal, return -EINTR.
1318		 */
1319		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1320				TASK_INTERRUPTIBLE))
1321			return -EINTR;
 
 
1322	}
1323
1324	/* for unlimited number of responses we will use buffer with
1325	 * 255 entries
1326	 */
1327	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1328
1329	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1330	 * copy it to the user space.
1331	 */
1332	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1333	if (!buf) {
1334		err = -ENOMEM;
1335		goto done;
1336	}
1337
1338	hci_dev_lock(hdev);
1339	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1340	hci_dev_unlock(hdev);
1341
1342	BT_DBG("num_rsp %d", ir.num_rsp);
1343
1344	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1345		ptr += sizeof(ir);
1346		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1347				 ir.num_rsp))
1348			err = -EFAULT;
1349	} else
1350		err = -EFAULT;
1351
1352	kfree(buf);
1353
1354done:
1355	hci_dev_put(hdev);
1356	return err;
1357}
1358
1359/**
1360 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1361 *				       (BD_ADDR) for a HCI device from
1362 *				       a firmware node property.
1363 * @hdev:	The HCI device
1364 *
1365 * Search the firmware node for 'local-bd-address'.
1366 *
1367 * All-zero BD addresses are rejected, because those could be properties
1368 * that exist in the firmware tables, but were not updated by the firmware. For
1369 * example, the DTS could define 'local-bd-address', with zero BD addresses.
1370 */
1371static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1372{
1373	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1374	bdaddr_t ba;
1375	int ret;
1376
1377	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1378					    (u8 *)&ba, sizeof(ba));
1379	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1380		return;
1381
1382	bacpy(&hdev->public_addr, &ba);
1383}
1384
1385static int hci_dev_do_open(struct hci_dev *hdev)
1386{
1387	int ret = 0;
1388
1389	BT_DBG("%s %p", hdev->name, hdev);
1390
1391	hci_req_sync_lock(hdev);
1392
1393	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1394		ret = -ENODEV;
1395		goto done;
1396	}
1397
1398	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1399	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1400		/* Check for rfkill but allow the HCI setup stage to
1401		 * proceed (which in itself doesn't cause any RF activity).
1402		 */
1403		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1404			ret = -ERFKILL;
1405			goto done;
1406		}
1407
1408		/* Check for valid public address or a configured static
1409		 * random adddress, but let the HCI setup proceed to
1410		 * be able to determine if there is a public address
1411		 * or not.
1412		 *
1413		 * In case of user channel usage, it is not important
1414		 * if a public address or static random address is
1415		 * available.
1416		 *
1417		 * This check is only valid for BR/EDR controllers
1418		 * since AMP controllers do not have an address.
1419		 */
1420		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1421		    hdev->dev_type == HCI_PRIMARY &&
1422		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1423		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1424			ret = -EADDRNOTAVAIL;
1425			goto done;
1426		}
1427	}
1428
1429	if (test_bit(HCI_UP, &hdev->flags)) {
1430		ret = -EALREADY;
1431		goto done;
1432	}
1433
1434	if (hdev->open(hdev)) {
1435		ret = -EIO;
1436		goto done;
1437	}
1438
1439	set_bit(HCI_RUNNING, &hdev->flags);
1440	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1441
1442	atomic_set(&hdev->cmd_cnt, 1);
1443	set_bit(HCI_INIT, &hdev->flags);
1444
1445	if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1446	    test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
1447		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1448
1449		if (hdev->setup)
1450			ret = hdev->setup(hdev);
1451
1452		if (ret)
1453			goto setup_failed;
1454
1455		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1456			if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1457				hci_dev_get_bd_addr_from_property(hdev);
1458
1459			if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1460			    hdev->set_bdaddr)
1461				ret = hdev->set_bdaddr(hdev,
1462						       &hdev->public_addr);
1463		}
1464
1465setup_failed:
1466		/* The transport driver can set these quirks before
1467		 * creating the HCI device or in its setup callback.
1468		 *
1469		 * In case any of them is set, the controller has to
1470		 * start up as unconfigured.
1471		 */
1472		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1473		    test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1474			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1475
1476		/* For an unconfigured controller it is required to
1477		 * read at least the version information provided by
1478		 * the Read Local Version Information command.
1479		 *
1480		 * If the set_bdaddr driver callback is provided, then
1481		 * also the original Bluetooth public device address
1482		 * will be read using the Read BD Address command.
1483		 */
1484		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1485			ret = __hci_unconf_init(hdev);
1486	}
1487
1488	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1489		/* If public address change is configured, ensure that
1490		 * the address gets programmed. If the driver does not
1491		 * support changing the public address, fail the power
1492		 * on procedure.
1493		 */
1494		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1495		    hdev->set_bdaddr)
1496			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1497		else
1498			ret = -EADDRNOTAVAIL;
1499	}
1500
1501	if (!ret) {
1502		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1503		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1504			ret = __hci_init(hdev);
1505			if (!ret && hdev->post_init)
1506				ret = hdev->post_init(hdev);
1507		}
1508	}
1509
1510	/* If the HCI Reset command is clearing all diagnostic settings,
1511	 * then they need to be reprogrammed after the init procedure
1512	 * completed.
1513	 */
1514	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1515	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1516	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1517		ret = hdev->set_diag(hdev, true);
1518
1519	clear_bit(HCI_INIT, &hdev->flags);
1520
1521	if (!ret) {
1522		hci_dev_hold(hdev);
1523		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1524		hci_adv_instances_set_rpa_expired(hdev, true);
1525		set_bit(HCI_UP, &hdev->flags);
1526		hci_sock_dev_event(hdev, HCI_DEV_UP);
1527		hci_leds_update_powered(hdev, true);
1528		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1529		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1530		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1531		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1532		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1533		    hdev->dev_type == HCI_PRIMARY) {
1534			ret = __hci_req_hci_power_on(hdev);
1535			mgmt_power_on(hdev, ret);
1536		}
1537	} else {
1538		/* Init failed, cleanup */
1539		flush_work(&hdev->tx_work);
1540		flush_work(&hdev->cmd_work);
1541		flush_work(&hdev->rx_work);
1542
1543		skb_queue_purge(&hdev->cmd_q);
1544		skb_queue_purge(&hdev->rx_q);
1545
1546		if (hdev->flush)
1547			hdev->flush(hdev);
1548
1549		if (hdev->sent_cmd) {
1550			kfree_skb(hdev->sent_cmd);
1551			hdev->sent_cmd = NULL;
1552		}
1553
1554		clear_bit(HCI_RUNNING, &hdev->flags);
1555		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1556
1557		hdev->close(hdev);
1558		hdev->flags &= BIT(HCI_RAW);
1559	}
1560
1561done:
1562	hci_req_sync_unlock(hdev);
1563	return ret;
1564}
1565
1566/* ---- HCI ioctl helpers ---- */
1567
1568int hci_dev_open(__u16 dev)
1569{
1570	struct hci_dev *hdev;
1571	int err;
1572
1573	hdev = hci_dev_get(dev);
1574	if (!hdev)
1575		return -ENODEV;
1576
1577	/* Devices that are marked as unconfigured can only be powered
1578	 * up as user channel. Trying to bring them up as normal devices
1579	 * will result into a failure. Only user channel operation is
1580	 * possible.
1581	 *
1582	 * When this function is called for a user channel, the flag
1583	 * HCI_USER_CHANNEL will be set first before attempting to
1584	 * open the device.
1585	 */
1586	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1587	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1588		err = -EOPNOTSUPP;
1589		goto done;
1590	}
1591
1592	/* We need to ensure that no other power on/off work is pending
1593	 * before proceeding to call hci_dev_do_open. This is
1594	 * particularly important if the setup procedure has not yet
1595	 * completed.
1596	 */
1597	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1598		cancel_delayed_work(&hdev->power_off);
1599
1600	/* After this call it is guaranteed that the setup procedure
1601	 * has finished. This means that error conditions like RFKILL
1602	 * or no valid public or static random address apply.
1603	 */
1604	flush_workqueue(hdev->req_workqueue);
1605
1606	/* For controllers not using the management interface and that
1607	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1608	 * so that pairing works for them. Once the management interface
1609	 * is in use this bit will be cleared again and userspace has
1610	 * to explicitly enable it.
1611	 */
1612	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1613	    !hci_dev_test_flag(hdev, HCI_MGMT))
1614		hci_dev_set_flag(hdev, HCI_BONDABLE);
1615
1616	err = hci_dev_do_open(hdev);
1617
1618done:
1619	hci_dev_put(hdev);
1620	return err;
1621}
1622
1623/* This function requires the caller holds hdev->lock */
1624static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1625{
1626	struct hci_conn_params *p;
1627
1628	list_for_each_entry(p, &hdev->le_conn_params, list) {
1629		if (p->conn) {
1630			hci_conn_drop(p->conn);
1631			hci_conn_put(p->conn);
1632			p->conn = NULL;
1633		}
1634		list_del_init(&p->action);
1635	}
1636
1637	BT_DBG("All LE pending actions cleared");
1638}
1639
1640int hci_dev_do_close(struct hci_dev *hdev)
1641{
1642	bool auto_off;
1643
1644	BT_DBG("%s %p", hdev->name, hdev);
1645
1646	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1647	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1648	    test_bit(HCI_UP, &hdev->flags)) {
1649		/* Execute vendor specific shutdown routine */
1650		if (hdev->shutdown)
1651			hdev->shutdown(hdev);
1652	}
1653
1654	cancel_delayed_work(&hdev->power_off);
1655
1656	hci_request_cancel_all(hdev);
1657	hci_req_sync_lock(hdev);
1658
1659	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1660		cancel_delayed_work_sync(&hdev->cmd_timer);
1661		hci_req_sync_unlock(hdev);
1662		return 0;
1663	}
1664
1665	hci_leds_update_powered(hdev, false);
1666
1667	/* Flush RX and TX works */
1668	flush_work(&hdev->tx_work);
1669	flush_work(&hdev->rx_work);
1670
1671	if (hdev->discov_timeout > 0) {
1672		hdev->discov_timeout = 0;
1673		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1674		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1675	}
1676
1677	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1678		cancel_delayed_work(&hdev->service_cache);
1679
1680	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1681		struct adv_info *adv_instance;
1682
1683		cancel_delayed_work_sync(&hdev->rpa_expired);
1684
1685		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1686			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1687	}
1688
1689	/* Avoid potential lockdep warnings from the *_flush() calls by
1690	 * ensuring the workqueue is empty up front.
1691	 */
1692	drain_workqueue(hdev->workqueue);
1693
1694	hci_dev_lock(hdev);
1695
1696	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1697
1698	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1699
1700	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1701	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1702	    hci_dev_test_flag(hdev, HCI_MGMT))
1703		__mgmt_power_off(hdev);
1704
1705	hci_inquiry_cache_flush(hdev);
1706	hci_pend_le_actions_clear(hdev);
1707	hci_conn_hash_flush(hdev);
1708	hci_dev_unlock(hdev);
1709
1710	smp_unregister(hdev);
1711
1712	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1713
1714	if (hdev->flush)
1715		hdev->flush(hdev);
1716
1717	/* Reset device */
1718	skb_queue_purge(&hdev->cmd_q);
1719	atomic_set(&hdev->cmd_cnt, 1);
1720	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1721	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1722		set_bit(HCI_INIT, &hdev->flags);
1723		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1724		clear_bit(HCI_INIT, &hdev->flags);
1725	}
1726
1727	/* flush cmd  work */
1728	flush_work(&hdev->cmd_work);
1729
1730	/* Drop queues */
1731	skb_queue_purge(&hdev->rx_q);
1732	skb_queue_purge(&hdev->cmd_q);
1733	skb_queue_purge(&hdev->raw_q);
1734
1735	/* Drop last sent command */
1736	if (hdev->sent_cmd) {
1737		cancel_delayed_work_sync(&hdev->cmd_timer);
1738		kfree_skb(hdev->sent_cmd);
1739		hdev->sent_cmd = NULL;
1740	}
1741
1742	clear_bit(HCI_RUNNING, &hdev->flags);
1743	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1744
1745	/* After this point our queues are empty
1746	 * and no tasks are scheduled. */
1747	hdev->close(hdev);
1748
1749	/* Clear flags */
1750	hdev->flags &= BIT(HCI_RAW);
1751	hci_dev_clear_volatile_flags(hdev);
1752
1753	/* Controller radio is available but is currently powered down */
1754	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1755
1756	memset(hdev->eir, 0, sizeof(hdev->eir));
1757	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1758	bacpy(&hdev->random_addr, BDADDR_ANY);
1759
1760	hci_req_sync_unlock(hdev);
1761
1762	hci_dev_put(hdev);
1763	return 0;
1764}
1765
1766int hci_dev_close(__u16 dev)
1767{
1768	struct hci_dev *hdev;
1769	int err;
1770
1771	hdev = hci_dev_get(dev);
1772	if (!hdev)
1773		return -ENODEV;
1774
1775	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1776		err = -EBUSY;
1777		goto done;
1778	}
1779
 
1780	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1781		cancel_delayed_work(&hdev->power_off);
1782
1783	err = hci_dev_do_close(hdev);
1784
1785done:
1786	hci_dev_put(hdev);
1787	return err;
1788}
1789
1790static int hci_dev_do_reset(struct hci_dev *hdev)
1791{
1792	int ret;
1793
1794	BT_DBG("%s %p", hdev->name, hdev);
1795
1796	hci_req_sync_lock(hdev);
1797
1798	/* Drop queues */
1799	skb_queue_purge(&hdev->rx_q);
1800	skb_queue_purge(&hdev->cmd_q);
1801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1802	/* Avoid potential lockdep warnings from the *_flush() calls by
1803	 * ensuring the workqueue is empty up front.
1804	 */
1805	drain_workqueue(hdev->workqueue);
1806
1807	hci_dev_lock(hdev);
1808	hci_inquiry_cache_flush(hdev);
1809	hci_conn_hash_flush(hdev);
1810	hci_dev_unlock(hdev);
1811
1812	if (hdev->flush)
1813		hdev->flush(hdev);
1814
 
 
1815	atomic_set(&hdev->cmd_cnt, 1);
1816	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
 
 
 
1817
1818	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1819
1820	hci_req_sync_unlock(hdev);
1821	return ret;
1822}
1823
1824int hci_dev_reset(__u16 dev)
1825{
1826	struct hci_dev *hdev;
1827	int err;
1828
1829	hdev = hci_dev_get(dev);
1830	if (!hdev)
1831		return -ENODEV;
1832
1833	if (!test_bit(HCI_UP, &hdev->flags)) {
1834		err = -ENETDOWN;
1835		goto done;
1836	}
1837
1838	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1839		err = -EBUSY;
1840		goto done;
1841	}
1842
1843	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1844		err = -EOPNOTSUPP;
1845		goto done;
1846	}
1847
1848	err = hci_dev_do_reset(hdev);
1849
1850done:
1851	hci_dev_put(hdev);
1852	return err;
1853}
1854
1855int hci_dev_reset_stat(__u16 dev)
1856{
1857	struct hci_dev *hdev;
1858	int ret = 0;
1859
1860	hdev = hci_dev_get(dev);
1861	if (!hdev)
1862		return -ENODEV;
1863
1864	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1865		ret = -EBUSY;
1866		goto done;
1867	}
1868
1869	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1870		ret = -EOPNOTSUPP;
1871		goto done;
1872	}
1873
1874	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1875
1876done:
1877	hci_dev_put(hdev);
1878	return ret;
1879}
1880
1881static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1882{
1883	bool conn_changed, discov_changed;
1884
1885	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1886
1887	if ((scan & SCAN_PAGE))
1888		conn_changed = !hci_dev_test_and_set_flag(hdev,
1889							  HCI_CONNECTABLE);
1890	else
1891		conn_changed = hci_dev_test_and_clear_flag(hdev,
1892							   HCI_CONNECTABLE);
1893
1894	if ((scan & SCAN_INQUIRY)) {
1895		discov_changed = !hci_dev_test_and_set_flag(hdev,
1896							    HCI_DISCOVERABLE);
1897	} else {
1898		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1899		discov_changed = hci_dev_test_and_clear_flag(hdev,
1900							     HCI_DISCOVERABLE);
1901	}
1902
1903	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1904		return;
1905
1906	if (conn_changed || discov_changed) {
1907		/* In case this was disabled through mgmt */
1908		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1909
1910		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1911			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1912
1913		mgmt_new_settings(hdev);
1914	}
1915}
1916
1917int hci_dev_cmd(unsigned int cmd, void __user *arg)
1918{
1919	struct hci_dev *hdev;
1920	struct hci_dev_req dr;
1921	int err = 0;
1922
1923	if (copy_from_user(&dr, arg, sizeof(dr)))
1924		return -EFAULT;
1925
1926	hdev = hci_dev_get(dr.dev_id);
1927	if (!hdev)
1928		return -ENODEV;
1929
1930	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1931		err = -EBUSY;
1932		goto done;
1933	}
1934
1935	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1936		err = -EOPNOTSUPP;
1937		goto done;
1938	}
1939
1940	if (hdev->dev_type != HCI_PRIMARY) {
1941		err = -EOPNOTSUPP;
1942		goto done;
1943	}
1944
1945	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1946		err = -EOPNOTSUPP;
1947		goto done;
1948	}
1949
1950	switch (cmd) {
1951	case HCISETAUTH:
1952		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1953				   HCI_INIT_TIMEOUT, NULL);
1954		break;
1955
1956	case HCISETENCRYPT:
1957		if (!lmp_encrypt_capable(hdev)) {
1958			err = -EOPNOTSUPP;
1959			break;
1960		}
1961
1962		if (!test_bit(HCI_AUTH, &hdev->flags)) {
1963			/* Auth must be enabled first */
1964			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1965					   HCI_INIT_TIMEOUT, NULL);
1966			if (err)
1967				break;
1968		}
1969
1970		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1971				   HCI_INIT_TIMEOUT, NULL);
1972		break;
1973
1974	case HCISETSCAN:
1975		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1976				   HCI_INIT_TIMEOUT, NULL);
1977
1978		/* Ensure that the connectable and discoverable states
1979		 * get correctly modified as this was a non-mgmt change.
1980		 */
1981		if (!err)
1982			hci_update_scan_state(hdev, dr.dev_opt);
1983		break;
1984
1985	case HCISETLINKPOL:
1986		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1987				   HCI_INIT_TIMEOUT, NULL);
1988		break;
1989
1990	case HCISETLINKMODE:
1991		hdev->link_mode = ((__u16) dr.dev_opt) &
1992					(HCI_LM_MASTER | HCI_LM_ACCEPT);
1993		break;
1994
1995	case HCISETPTYPE:
1996		if (hdev->pkt_type == (__u16) dr.dev_opt)
1997			break;
1998
1999		hdev->pkt_type = (__u16) dr.dev_opt;
2000		mgmt_phy_configuration_changed(hdev, NULL);
2001		break;
2002
2003	case HCISETACLMTU:
2004		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
2005		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2006		break;
2007
2008	case HCISETSCOMTU:
2009		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
2010		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2011		break;
2012
2013	default:
2014		err = -EINVAL;
2015		break;
2016	}
2017
2018done:
2019	hci_dev_put(hdev);
2020	return err;
2021}
2022
2023int hci_get_dev_list(void __user *arg)
2024{
2025	struct hci_dev *hdev;
2026	struct hci_dev_list_req *dl;
2027	struct hci_dev_req *dr;
2028	int n = 0, size, err;
2029	__u16 dev_num;
2030
2031	if (get_user(dev_num, (__u16 __user *) arg))
2032		return -EFAULT;
2033
2034	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2035		return -EINVAL;
2036
2037	size = sizeof(*dl) + dev_num * sizeof(*dr);
2038
2039	dl = kzalloc(size, GFP_KERNEL);
2040	if (!dl)
2041		return -ENOMEM;
2042
2043	dr = dl->dev_req;
2044
2045	read_lock(&hci_dev_list_lock);
2046	list_for_each_entry(hdev, &hci_dev_list, list) {
2047		unsigned long flags = hdev->flags;
2048
2049		/* When the auto-off is configured it means the transport
2050		 * is running, but in that case still indicate that the
2051		 * device is actually down.
2052		 */
2053		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2054			flags &= ~BIT(HCI_UP);
2055
2056		(dr + n)->dev_id  = hdev->id;
2057		(dr + n)->dev_opt = flags;
2058
2059		if (++n >= dev_num)
2060			break;
2061	}
2062	read_unlock(&hci_dev_list_lock);
2063
2064	dl->dev_num = n;
2065	size = sizeof(*dl) + n * sizeof(*dr);
2066
2067	err = copy_to_user(arg, dl, size);
2068	kfree(dl);
2069
2070	return err ? -EFAULT : 0;
2071}
2072
2073int hci_get_dev_info(void __user *arg)
2074{
2075	struct hci_dev *hdev;
2076	struct hci_dev_info di;
2077	unsigned long flags;
2078	int err = 0;
2079
2080	if (copy_from_user(&di, arg, sizeof(di)))
2081		return -EFAULT;
2082
2083	hdev = hci_dev_get(di.dev_id);
2084	if (!hdev)
2085		return -ENODEV;
2086
2087	/* When the auto-off is configured it means the transport
2088	 * is running, but in that case still indicate that the
2089	 * device is actually down.
2090	 */
2091	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2092		flags = hdev->flags & ~BIT(HCI_UP);
2093	else
2094		flags = hdev->flags;
2095
2096	strcpy(di.name, hdev->name);
2097	di.bdaddr   = hdev->bdaddr;
2098	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2099	di.flags    = flags;
2100	di.pkt_type = hdev->pkt_type;
2101	if (lmp_bredr_capable(hdev)) {
2102		di.acl_mtu  = hdev->acl_mtu;
2103		di.acl_pkts = hdev->acl_pkts;
2104		di.sco_mtu  = hdev->sco_mtu;
2105		di.sco_pkts = hdev->sco_pkts;
2106	} else {
2107		di.acl_mtu  = hdev->le_mtu;
2108		di.acl_pkts = hdev->le_pkts;
2109		di.sco_mtu  = 0;
2110		di.sco_pkts = 0;
2111	}
2112	di.link_policy = hdev->link_policy;
2113	di.link_mode   = hdev->link_mode;
2114
2115	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2116	memcpy(&di.features, &hdev->features, sizeof(di.features));
2117
2118	if (copy_to_user(arg, &di, sizeof(di)))
2119		err = -EFAULT;
2120
2121	hci_dev_put(hdev);
2122
2123	return err;
2124}
2125
2126/* ---- Interface to HCI drivers ---- */
2127
2128static int hci_rfkill_set_block(void *data, bool blocked)
2129{
2130	struct hci_dev *hdev = data;
2131
2132	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2133
2134	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2135		return -EBUSY;
2136
2137	if (blocked) {
2138		hci_dev_set_flag(hdev, HCI_RFKILLED);
2139		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2140		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2141			hci_dev_do_close(hdev);
2142	} else {
2143		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2144	}
2145
2146	return 0;
2147}
2148
2149static const struct rfkill_ops hci_rfkill_ops = {
2150	.set_block = hci_rfkill_set_block,
2151};
2152
2153static void hci_power_on(struct work_struct *work)
2154{
2155	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2156	int err;
2157
2158	BT_DBG("%s", hdev->name);
2159
2160	if (test_bit(HCI_UP, &hdev->flags) &&
2161	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2162	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2163		cancel_delayed_work(&hdev->power_off);
2164		hci_req_sync_lock(hdev);
2165		err = __hci_req_hci_power_on(hdev);
2166		hci_req_sync_unlock(hdev);
2167		mgmt_power_on(hdev, err);
2168		return;
2169	}
2170
2171	err = hci_dev_do_open(hdev);
2172	if (err < 0) {
2173		hci_dev_lock(hdev);
2174		mgmt_set_powered_failed(hdev, err);
2175		hci_dev_unlock(hdev);
2176		return;
2177	}
2178
2179	/* During the HCI setup phase, a few error conditions are
2180	 * ignored and they need to be checked now. If they are still
2181	 * valid, it is important to turn the device back off.
2182	 */
2183	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2184	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2185	    (hdev->dev_type == HCI_PRIMARY &&
2186	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2187	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2188		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2189		hci_dev_do_close(hdev);
2190	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2191		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2192				   HCI_AUTO_OFF_TIMEOUT);
2193	}
2194
2195	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2196		/* For unconfigured devices, set the HCI_RAW flag
2197		 * so that userspace can easily identify them.
2198		 */
2199		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2200			set_bit(HCI_RAW, &hdev->flags);
2201
2202		/* For fully configured devices, this will send
2203		 * the Index Added event. For unconfigured devices,
2204		 * it will send Unconfigued Index Added event.
2205		 *
2206		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2207		 * and no event will be send.
2208		 */
2209		mgmt_index_added(hdev);
2210	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2211		/* When the controller is now configured, then it
2212		 * is important to clear the HCI_RAW flag.
2213		 */
2214		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2215			clear_bit(HCI_RAW, &hdev->flags);
2216
2217		/* Powering on the controller with HCI_CONFIG set only
2218		 * happens with the transition from unconfigured to
2219		 * configured. This will send the Index Added event.
2220		 */
2221		mgmt_index_added(hdev);
2222	}
2223}
2224
2225static void hci_power_off(struct work_struct *work)
2226{
2227	struct hci_dev *hdev = container_of(work, struct hci_dev,
2228					    power_off.work);
2229
2230	BT_DBG("%s", hdev->name);
2231
2232	hci_dev_do_close(hdev);
2233}
2234
2235static void hci_error_reset(struct work_struct *work)
2236{
2237	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2238
2239	BT_DBG("%s", hdev->name);
2240
2241	if (hdev->hw_error)
2242		hdev->hw_error(hdev, hdev->hw_error_code);
2243	else
2244		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2245
2246	if (hci_dev_do_close(hdev))
2247		return;
2248
2249	hci_dev_do_open(hdev);
2250}
2251
2252void hci_uuids_clear(struct hci_dev *hdev)
2253{
2254	struct bt_uuid *uuid, *tmp;
2255
2256	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2257		list_del(&uuid->list);
2258		kfree(uuid);
2259	}
2260}
2261
2262void hci_link_keys_clear(struct hci_dev *hdev)
2263{
2264	struct link_key *key;
2265
2266	list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2267		list_del_rcu(&key->list);
2268		kfree_rcu(key, rcu);
2269	}
2270}
2271
2272void hci_smp_ltks_clear(struct hci_dev *hdev)
2273{
2274	struct smp_ltk *k;
2275
2276	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2277		list_del_rcu(&k->list);
2278		kfree_rcu(k, rcu);
2279	}
2280}
2281
2282void hci_smp_irks_clear(struct hci_dev *hdev)
2283{
2284	struct smp_irk *k;
2285
2286	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2287		list_del_rcu(&k->list);
2288		kfree_rcu(k, rcu);
2289	}
2290}
2291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2292struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2293{
2294	struct link_key *k;
2295
2296	rcu_read_lock();
2297	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2298		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2299			rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
2300			return k;
2301		}
2302	}
2303	rcu_read_unlock();
2304
2305	return NULL;
2306}
2307
2308static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2309			       u8 key_type, u8 old_key_type)
2310{
2311	/* Legacy key */
2312	if (key_type < 0x03)
2313		return true;
2314
2315	/* Debug keys are insecure so don't store them persistently */
2316	if (key_type == HCI_LK_DEBUG_COMBINATION)
2317		return false;
2318
2319	/* Changed combination key and there's no previous one */
2320	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2321		return false;
2322
2323	/* Security mode 3 case */
2324	if (!conn)
2325		return true;
2326
2327	/* BR/EDR key derived using SC from an LE link */
2328	if (conn->type == LE_LINK)
2329		return true;
2330
2331	/* Neither local nor remote side had no-bonding as requirement */
2332	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2333		return true;
2334
2335	/* Local side had dedicated bonding as requirement */
2336	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2337		return true;
2338
2339	/* Remote side had dedicated bonding as requirement */
2340	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2341		return true;
2342
2343	/* If none of the above criteria match, then don't store the key
2344	 * persistently */
2345	return false;
2346}
2347
2348static u8 ltk_role(u8 type)
2349{
2350	if (type == SMP_LTK)
2351		return HCI_ROLE_MASTER;
2352
2353	return HCI_ROLE_SLAVE;
2354}
2355
2356struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2357			     u8 addr_type, u8 role)
2358{
2359	struct smp_ltk *k;
2360
2361	rcu_read_lock();
2362	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2363		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2364			continue;
2365
2366		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2367			rcu_read_unlock();
 
 
 
 
 
 
 
 
 
2368			return k;
2369		}
2370	}
2371	rcu_read_unlock();
2372
2373	return NULL;
2374}
2375
2376struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2377{
 
2378	struct smp_irk *irk;
2379
2380	rcu_read_lock();
2381	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2382		if (!bacmp(&irk->rpa, rpa)) {
2383			rcu_read_unlock();
2384			return irk;
2385		}
2386	}
2387
2388	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2389		if (smp_irk_matches(hdev, irk->val, rpa)) {
2390			bacpy(&irk->rpa, rpa);
2391			rcu_read_unlock();
2392			return irk;
2393		}
2394	}
 
 
 
 
 
 
 
 
 
2395	rcu_read_unlock();
2396
2397	return NULL;
2398}
2399
2400struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2401				     u8 addr_type)
2402{
 
2403	struct smp_irk *irk;
2404
2405	/* Identity Address must be public or static random */
2406	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2407		return NULL;
2408
2409	rcu_read_lock();
2410	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2411		if (addr_type == irk->addr_type &&
2412		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2413			rcu_read_unlock();
2414			return irk;
2415		}
2416	}
 
 
 
 
 
 
 
 
 
 
2417	rcu_read_unlock();
2418
2419	return NULL;
2420}
2421
2422struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2423				  bdaddr_t *bdaddr, u8 *val, u8 type,
2424				  u8 pin_len, bool *persistent)
2425{
2426	struct link_key *key, *old_key;
2427	u8 old_key_type;
2428
2429	old_key = hci_find_link_key(hdev, bdaddr);
2430	if (old_key) {
2431		old_key_type = old_key->type;
2432		key = old_key;
2433	} else {
2434		old_key_type = conn ? conn->key_type : 0xff;
2435		key = kzalloc(sizeof(*key), GFP_KERNEL);
2436		if (!key)
2437			return NULL;
2438		list_add_rcu(&key->list, &hdev->link_keys);
2439	}
2440
2441	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2442
2443	/* Some buggy controller combinations generate a changed
2444	 * combination key for legacy pairing even when there's no
2445	 * previous key */
2446	if (type == HCI_LK_CHANGED_COMBINATION &&
2447	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2448		type = HCI_LK_COMBINATION;
2449		if (conn)
2450			conn->key_type = type;
2451	}
2452
2453	bacpy(&key->bdaddr, bdaddr);
2454	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2455	key->pin_len = pin_len;
2456
2457	if (type == HCI_LK_CHANGED_COMBINATION)
2458		key->type = old_key_type;
2459	else
2460		key->type = type;
2461
2462	if (persistent)
2463		*persistent = hci_persistent_key(hdev, conn, type,
2464						 old_key_type);
2465
2466	return key;
2467}
2468
2469struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2470			    u8 addr_type, u8 type, u8 authenticated,
2471			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2472{
2473	struct smp_ltk *key, *old_key;
2474	u8 role = ltk_role(type);
2475
2476	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2477	if (old_key)
2478		key = old_key;
2479	else {
2480		key = kzalloc(sizeof(*key), GFP_KERNEL);
2481		if (!key)
2482			return NULL;
2483		list_add_rcu(&key->list, &hdev->long_term_keys);
2484	}
2485
2486	bacpy(&key->bdaddr, bdaddr);
2487	key->bdaddr_type = addr_type;
2488	memcpy(key->val, tk, sizeof(key->val));
2489	key->authenticated = authenticated;
2490	key->ediv = ediv;
2491	key->rand = rand;
2492	key->enc_size = enc_size;
2493	key->type = type;
2494
2495	return key;
2496}
2497
2498struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2499			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2500{
2501	struct smp_irk *irk;
2502
2503	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2504	if (!irk) {
2505		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2506		if (!irk)
2507			return NULL;
2508
2509		bacpy(&irk->bdaddr, bdaddr);
2510		irk->addr_type = addr_type;
2511
2512		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2513	}
2514
2515	memcpy(irk->val, val, 16);
2516	bacpy(&irk->rpa, rpa);
2517
2518	return irk;
2519}
2520
2521int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2522{
2523	struct link_key *key;
2524
2525	key = hci_find_link_key(hdev, bdaddr);
2526	if (!key)
2527		return -ENOENT;
2528
2529	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2530
2531	list_del_rcu(&key->list);
2532	kfree_rcu(key, rcu);
2533
2534	return 0;
2535}
2536
2537int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2538{
2539	struct smp_ltk *k;
2540	int removed = 0;
2541
2542	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2543		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2544			continue;
2545
2546		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2547
2548		list_del_rcu(&k->list);
2549		kfree_rcu(k, rcu);
2550		removed++;
2551	}
2552
2553	return removed ? 0 : -ENOENT;
2554}
2555
2556void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2557{
2558	struct smp_irk *k;
2559
2560	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2561		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2562			continue;
2563
2564		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2565
2566		list_del_rcu(&k->list);
2567		kfree_rcu(k, rcu);
2568	}
2569}
2570
2571bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2572{
2573	struct smp_ltk *k;
2574	struct smp_irk *irk;
2575	u8 addr_type;
2576
2577	if (type == BDADDR_BREDR) {
2578		if (hci_find_link_key(hdev, bdaddr))
2579			return true;
2580		return false;
2581	}
2582
2583	/* Convert to HCI addr type which struct smp_ltk uses */
2584	if (type == BDADDR_LE_PUBLIC)
2585		addr_type = ADDR_LE_DEV_PUBLIC;
2586	else
2587		addr_type = ADDR_LE_DEV_RANDOM;
2588
2589	irk = hci_get_irk(hdev, bdaddr, addr_type);
2590	if (irk) {
2591		bdaddr = &irk->bdaddr;
2592		addr_type = irk->addr_type;
2593	}
2594
2595	rcu_read_lock();
2596	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2597		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2598			rcu_read_unlock();
2599			return true;
2600		}
2601	}
2602	rcu_read_unlock();
2603
2604	return false;
2605}
2606
2607/* HCI command timer function */
2608static void hci_cmd_timeout(struct work_struct *work)
2609{
2610	struct hci_dev *hdev = container_of(work, struct hci_dev,
2611					    cmd_timer.work);
2612
2613	if (hdev->sent_cmd) {
2614		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2615		u16 opcode = __le16_to_cpu(sent->opcode);
2616
2617		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2618	} else {
2619		bt_dev_err(hdev, "command tx timeout");
2620	}
2621
2622	if (hdev->cmd_timeout)
2623		hdev->cmd_timeout(hdev);
2624
2625	atomic_set(&hdev->cmd_cnt, 1);
2626	queue_work(hdev->workqueue, &hdev->cmd_work);
2627}
2628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2629struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2630					  bdaddr_t *bdaddr, u8 bdaddr_type)
2631{
2632	struct oob_data *data;
2633
2634	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2635		if (bacmp(bdaddr, &data->bdaddr) != 0)
2636			continue;
2637		if (data->bdaddr_type != bdaddr_type)
2638			continue;
2639		return data;
2640	}
2641
2642	return NULL;
2643}
2644
2645int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2646			       u8 bdaddr_type)
2647{
2648	struct oob_data *data;
2649
2650	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2651	if (!data)
2652		return -ENOENT;
2653
2654	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2655
2656	list_del(&data->list);
2657	kfree(data);
2658
2659	return 0;
2660}
2661
2662void hci_remote_oob_data_clear(struct hci_dev *hdev)
2663{
2664	struct oob_data *data, *n;
2665
2666	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2667		list_del(&data->list);
2668		kfree(data);
2669	}
2670}
2671
2672int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2673			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2674			    u8 *hash256, u8 *rand256)
2675{
2676	struct oob_data *data;
2677
2678	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2679	if (!data) {
2680		data = kmalloc(sizeof(*data), GFP_KERNEL);
2681		if (!data)
2682			return -ENOMEM;
2683
2684		bacpy(&data->bdaddr, bdaddr);
2685		data->bdaddr_type = bdaddr_type;
2686		list_add(&data->list, &hdev->remote_oob_data);
2687	}
2688
2689	if (hash192 && rand192) {
2690		memcpy(data->hash192, hash192, sizeof(data->hash192));
2691		memcpy(data->rand192, rand192, sizeof(data->rand192));
2692		if (hash256 && rand256)
2693			data->present = 0x03;
2694	} else {
2695		memset(data->hash192, 0, sizeof(data->hash192));
2696		memset(data->rand192, 0, sizeof(data->rand192));
2697		if (hash256 && rand256)
2698			data->present = 0x02;
2699		else
2700			data->present = 0x00;
2701	}
2702
2703	if (hash256 && rand256) {
2704		memcpy(data->hash256, hash256, sizeof(data->hash256));
2705		memcpy(data->rand256, rand256, sizeof(data->rand256));
2706	} else {
2707		memset(data->hash256, 0, sizeof(data->hash256));
2708		memset(data->rand256, 0, sizeof(data->rand256));
2709		if (hash192 && rand192)
2710			data->present = 0x01;
2711	}
2712
2713	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2714
2715	return 0;
2716}
2717
2718/* This function requires the caller holds hdev->lock */
2719struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2720{
2721	struct adv_info *adv_instance;
2722
2723	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2724		if (adv_instance->instance == instance)
2725			return adv_instance;
2726	}
2727
2728	return NULL;
2729}
2730
2731/* This function requires the caller holds hdev->lock */
2732struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2733{
2734	struct adv_info *cur_instance;
2735
2736	cur_instance = hci_find_adv_instance(hdev, instance);
2737	if (!cur_instance)
2738		return NULL;
2739
2740	if (cur_instance == list_last_entry(&hdev->adv_instances,
2741					    struct adv_info, list))
2742		return list_first_entry(&hdev->adv_instances,
2743						 struct adv_info, list);
2744	else
2745		return list_next_entry(cur_instance, list);
2746}
2747
2748/* This function requires the caller holds hdev->lock */
2749int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2750{
2751	struct adv_info *adv_instance;
2752
2753	adv_instance = hci_find_adv_instance(hdev, instance);
2754	if (!adv_instance)
2755		return -ENOENT;
2756
2757	BT_DBG("%s removing %dMR", hdev->name, instance);
2758
2759	if (hdev->cur_adv_instance == instance) {
2760		if (hdev->adv_instance_timeout) {
2761			cancel_delayed_work(&hdev->adv_instance_expire);
2762			hdev->adv_instance_timeout = 0;
2763		}
2764		hdev->cur_adv_instance = 0x00;
2765	}
2766
2767	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2768
2769	list_del(&adv_instance->list);
2770	kfree(adv_instance);
2771
2772	hdev->adv_instance_cnt--;
2773
2774	return 0;
2775}
2776
2777void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2778{
2779	struct adv_info *adv_instance, *n;
2780
2781	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2782		adv_instance->rpa_expired = rpa_expired;
2783}
2784
2785/* This function requires the caller holds hdev->lock */
2786void hci_adv_instances_clear(struct hci_dev *hdev)
2787{
2788	struct adv_info *adv_instance, *n;
2789
2790	if (hdev->adv_instance_timeout) {
2791		cancel_delayed_work(&hdev->adv_instance_expire);
2792		hdev->adv_instance_timeout = 0;
2793	}
2794
2795	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2796		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2797		list_del(&adv_instance->list);
2798		kfree(adv_instance);
2799	}
2800
2801	hdev->adv_instance_cnt = 0;
2802	hdev->cur_adv_instance = 0x00;
2803}
2804
2805static void adv_instance_rpa_expired(struct work_struct *work)
2806{
2807	struct adv_info *adv_instance = container_of(work, struct adv_info,
2808						     rpa_expired_cb.work);
2809
2810	BT_DBG("");
2811
2812	adv_instance->rpa_expired = true;
2813}
2814
2815/* This function requires the caller holds hdev->lock */
2816int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2817			 u16 adv_data_len, u8 *adv_data,
2818			 u16 scan_rsp_len, u8 *scan_rsp_data,
2819			 u16 timeout, u16 duration)
2820{
2821	struct adv_info *adv_instance;
2822
2823	adv_instance = hci_find_adv_instance(hdev, instance);
2824	if (adv_instance) {
2825		memset(adv_instance->adv_data, 0,
2826		       sizeof(adv_instance->adv_data));
2827		memset(adv_instance->scan_rsp_data, 0,
2828		       sizeof(adv_instance->scan_rsp_data));
 
2829	} else {
2830		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
2831		    instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2832			return -EOVERFLOW;
2833
2834		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2835		if (!adv_instance)
2836			return -ENOMEM;
2837
2838		adv_instance->pending = true;
2839		adv_instance->instance = instance;
2840		list_add(&adv_instance->list, &hdev->adv_instances);
 
 
 
 
2841		hdev->adv_instance_cnt++;
2842	}
2843
2844	adv_instance->flags = flags;
2845	adv_instance->adv_data_len = adv_data_len;
2846	adv_instance->scan_rsp_len = scan_rsp_len;
2847
2848	if (adv_data_len)
2849		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2850
2851	if (scan_rsp_len)
2852		memcpy(adv_instance->scan_rsp_data,
2853		       scan_rsp_data, scan_rsp_len);
 
 
2854
2855	adv_instance->timeout = timeout;
2856	adv_instance->remaining_time = timeout;
2857
2858	if (duration == 0)
2859		adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2860	else
2861		adv_instance->duration = duration;
2862
2863	adv_instance->tx_power = HCI_TX_POWER_INVALID;
2864
2865	INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
2866			  adv_instance_rpa_expired);
2867
2868	BT_DBG("%s for %dMR", hdev->name, instance);
2869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2870	return 0;
2871}
2872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2873struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2874					 bdaddr_t *bdaddr, u8 type)
2875{
2876	struct bdaddr_list *b;
2877
2878	list_for_each_entry(b, bdaddr_list, list) {
2879		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2880			return b;
2881	}
2882
2883	return NULL;
2884}
2885
2886struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2887				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2888				u8 type)
2889{
2890	struct bdaddr_list_with_irk *b;
2891
2892	list_for_each_entry(b, bdaddr_list, list) {
2893		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2894			return b;
2895	}
2896
2897	return NULL;
2898}
2899
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2900void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2901{
2902	struct bdaddr_list *b, *n;
2903
2904	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2905		list_del(&b->list);
2906		kfree(b);
2907	}
2908}
2909
2910int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2911{
2912	struct bdaddr_list *entry;
2913
2914	if (!bacmp(bdaddr, BDADDR_ANY))
2915		return -EBADF;
2916
2917	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2918		return -EEXIST;
2919
2920	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2921	if (!entry)
2922		return -ENOMEM;
2923
2924	bacpy(&entry->bdaddr, bdaddr);
2925	entry->bdaddr_type = type;
2926
2927	list_add(&entry->list, list);
2928
2929	return 0;
2930}
2931
2932int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2933					u8 type, u8 *peer_irk, u8 *local_irk)
2934{
2935	struct bdaddr_list_with_irk *entry;
2936
2937	if (!bacmp(bdaddr, BDADDR_ANY))
2938		return -EBADF;
2939
2940	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2941		return -EEXIST;
2942
2943	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2944	if (!entry)
2945		return -ENOMEM;
2946
2947	bacpy(&entry->bdaddr, bdaddr);
2948	entry->bdaddr_type = type;
2949
2950	if (peer_irk)
2951		memcpy(entry->peer_irk, peer_irk, 16);
2952
2953	if (local_irk)
2954		memcpy(entry->local_irk, local_irk, 16);
2955
2956	list_add(&entry->list, list);
2957
2958	return 0;
2959}
2960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2961int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2962{
2963	struct bdaddr_list *entry;
2964
2965	if (!bacmp(bdaddr, BDADDR_ANY)) {
2966		hci_bdaddr_list_clear(list);
2967		return 0;
2968	}
2969
2970	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2971	if (!entry)
2972		return -ENOENT;
2973
2974	list_del(&entry->list);
2975	kfree(entry);
2976
2977	return 0;
2978}
2979
2980int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2981							u8 type)
2982{
2983	struct bdaddr_list_with_irk *entry;
2984
2985	if (!bacmp(bdaddr, BDADDR_ANY)) {
2986		hci_bdaddr_list_clear(list);
2987		return 0;
2988	}
2989
2990	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2991	if (!entry)
2992		return -ENOENT;
2993
2994	list_del(&entry->list);
2995	kfree(entry);
2996
2997	return 0;
2998}
2999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3000/* This function requires the caller holds hdev->lock */
3001struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3002					       bdaddr_t *addr, u8 addr_type)
3003{
3004	struct hci_conn_params *params;
3005
3006	list_for_each_entry(params, &hdev->le_conn_params, list) {
3007		if (bacmp(&params->addr, addr) == 0 &&
3008		    params->addr_type == addr_type) {
3009			return params;
3010		}
3011	}
3012
3013	return NULL;
3014}
3015
3016/* This function requires the caller holds hdev->lock */
3017struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3018						  bdaddr_t *addr, u8 addr_type)
3019{
3020	struct hci_conn_params *param;
3021
3022	list_for_each_entry(param, list, action) {
3023		if (bacmp(&param->addr, addr) == 0 &&
3024		    param->addr_type == addr_type)
3025			return param;
3026	}
3027
3028	return NULL;
3029}
3030
3031/* This function requires the caller holds hdev->lock */
3032struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3033					    bdaddr_t *addr, u8 addr_type)
3034{
3035	struct hci_conn_params *params;
3036
3037	params = hci_conn_params_lookup(hdev, addr, addr_type);
3038	if (params)
3039		return params;
3040
3041	params = kzalloc(sizeof(*params), GFP_KERNEL);
3042	if (!params) {
3043		bt_dev_err(hdev, "out of memory");
3044		return NULL;
3045	}
3046
3047	bacpy(&params->addr, addr);
3048	params->addr_type = addr_type;
3049
3050	list_add(&params->list, &hdev->le_conn_params);
3051	INIT_LIST_HEAD(&params->action);
3052
3053	params->conn_min_interval = hdev->le_conn_min_interval;
3054	params->conn_max_interval = hdev->le_conn_max_interval;
3055	params->conn_latency = hdev->le_conn_latency;
3056	params->supervision_timeout = hdev->le_supv_timeout;
3057	params->auto_connect = HCI_AUTO_CONN_DISABLED;
3058
3059	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3060
3061	return params;
3062}
3063
3064static void hci_conn_params_free(struct hci_conn_params *params)
3065{
3066	if (params->conn) {
3067		hci_conn_drop(params->conn);
3068		hci_conn_put(params->conn);
3069	}
3070
3071	list_del(&params->action);
3072	list_del(&params->list);
3073	kfree(params);
3074}
3075
3076/* This function requires the caller holds hdev->lock */
3077void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3078{
3079	struct hci_conn_params *params;
3080
3081	params = hci_conn_params_lookup(hdev, addr, addr_type);
3082	if (!params)
3083		return;
3084
3085	hci_conn_params_free(params);
3086
3087	hci_update_background_scan(hdev);
3088
3089	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3090}
3091
3092/* This function requires the caller holds hdev->lock */
3093void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3094{
3095	struct hci_conn_params *params, *tmp;
3096
3097	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3098		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3099			continue;
3100
3101		/* If trying to estabilish one time connection to disabled
3102		 * device, leave the params, but mark them as just once.
3103		 */
3104		if (params->explicit_connect) {
3105			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3106			continue;
3107		}
3108
3109		list_del(&params->list);
3110		kfree(params);
3111	}
3112
3113	BT_DBG("All LE disabled connection parameters were removed");
3114}
3115
3116/* This function requires the caller holds hdev->lock */
3117static void hci_conn_params_clear_all(struct hci_dev *hdev)
3118{
3119	struct hci_conn_params *params, *tmp;
3120
3121	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3122		hci_conn_params_free(params);
3123
3124	BT_DBG("All LE connection parameters were removed");
3125}
3126
3127/* Copy the Identity Address of the controller.
3128 *
3129 * If the controller has a public BD_ADDR, then by default use that one.
3130 * If this is a LE only controller without a public address, default to
3131 * the static random address.
3132 *
3133 * For debugging purposes it is possible to force controllers with a
3134 * public address to use the static random address instead.
3135 *
3136 * In case BR/EDR has been disabled on a dual-mode controller and
3137 * userspace has configured a static address, then that address
3138 * becomes the identity address instead of the public BR/EDR address.
3139 */
3140void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3141			       u8 *bdaddr_type)
3142{
3143	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3144	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3145	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3146	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
3147		bacpy(bdaddr, &hdev->static_addr);
3148		*bdaddr_type = ADDR_LE_DEV_RANDOM;
3149	} else {
3150		bacpy(bdaddr, &hdev->bdaddr);
3151		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
3152	}
3153}
3154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3155/* Alloc HCI device */
3156struct hci_dev *hci_alloc_dev(void)
3157{
3158	struct hci_dev *hdev;
 
 
 
 
 
 
 
3159
3160	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3161	if (!hdev)
3162		return NULL;
3163
3164	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3165	hdev->esco_type = (ESCO_HV1);
3166	hdev->link_mode = (HCI_LM_ACCEPT);
3167	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
3168	hdev->io_capability = 0x03;	/* No Input No Output */
3169	hdev->manufacturer = 0xffff;	/* Default to internal use */
3170	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3171	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3172	hdev->adv_instance_cnt = 0;
3173	hdev->cur_adv_instance = 0x00;
3174	hdev->adv_instance_timeout = 0;
3175
 
 
 
 
3176	hdev->sniff_max_interval = 800;
3177	hdev->sniff_min_interval = 80;
3178
3179	hdev->le_adv_channel_map = 0x07;
3180	hdev->le_adv_min_interval = 0x0800;
3181	hdev->le_adv_max_interval = 0x0800;
3182	hdev->le_scan_interval = 0x0060;
3183	hdev->le_scan_window = 0x0030;
 
 
 
 
 
 
 
 
3184	hdev->le_conn_min_interval = 0x0018;
3185	hdev->le_conn_max_interval = 0x0028;
3186	hdev->le_conn_latency = 0x0000;
3187	hdev->le_supv_timeout = 0x002a;
3188	hdev->le_def_tx_len = 0x001b;
3189	hdev->le_def_tx_time = 0x0148;
3190	hdev->le_max_tx_len = 0x001b;
3191	hdev->le_max_tx_time = 0x0148;
3192	hdev->le_max_rx_len = 0x001b;
3193	hdev->le_max_rx_time = 0x0148;
3194	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3195	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3196	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3197	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3198	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
 
 
 
 
3199
3200	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3201	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3202	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3203	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3204	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
3205	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
3206
 
 
 
 
 
3207	mutex_init(&hdev->lock);
3208	mutex_init(&hdev->req_lock);
3209
 
3210	INIT_LIST_HEAD(&hdev->mgmt_pending);
3211	INIT_LIST_HEAD(&hdev->blacklist);
3212	INIT_LIST_HEAD(&hdev->whitelist);
3213	INIT_LIST_HEAD(&hdev->uuids);
3214	INIT_LIST_HEAD(&hdev->link_keys);
3215	INIT_LIST_HEAD(&hdev->long_term_keys);
3216	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3217	INIT_LIST_HEAD(&hdev->remote_oob_data);
3218	INIT_LIST_HEAD(&hdev->le_white_list);
3219	INIT_LIST_HEAD(&hdev->le_resolv_list);
3220	INIT_LIST_HEAD(&hdev->le_conn_params);
3221	INIT_LIST_HEAD(&hdev->pend_le_conns);
3222	INIT_LIST_HEAD(&hdev->pend_le_reports);
3223	INIT_LIST_HEAD(&hdev->conn_hash.list);
3224	INIT_LIST_HEAD(&hdev->adv_instances);
 
 
3225
 
3226	INIT_WORK(&hdev->rx_work, hci_rx_work);
3227	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3228	INIT_WORK(&hdev->tx_work, hci_tx_work);
3229	INIT_WORK(&hdev->power_on, hci_power_on);
3230	INIT_WORK(&hdev->error_reset, hci_error_reset);
3231
 
 
3232	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3233
3234	skb_queue_head_init(&hdev->rx_q);
3235	skb_queue_head_init(&hdev->cmd_q);
3236	skb_queue_head_init(&hdev->raw_q);
3237
3238	init_waitqueue_head(&hdev->req_wait_q);
3239
3240	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
 
3241
3242	hci_request_setup(hdev);
3243
3244	hci_init_sysfs(hdev);
3245	discovery_init(hdev);
3246
3247	return hdev;
3248}
3249EXPORT_SYMBOL(hci_alloc_dev);
3250
3251/* Free HCI device */
3252void hci_free_dev(struct hci_dev *hdev)
3253{
3254	/* will free via device release */
3255	put_device(&hdev->dev);
3256}
3257EXPORT_SYMBOL(hci_free_dev);
3258
3259/* Register HCI device */
3260int hci_register_dev(struct hci_dev *hdev)
3261{
3262	int id, error;
3263
3264	if (!hdev->open || !hdev->close || !hdev->send)
3265		return -EINVAL;
3266
3267	/* Do not allow HCI_AMP devices to register at index 0,
3268	 * so the index can be used as the AMP controller ID.
3269	 */
3270	switch (hdev->dev_type) {
3271	case HCI_PRIMARY:
3272		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3273		break;
3274	case HCI_AMP:
3275		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3276		break;
3277	default:
3278		return -EINVAL;
3279	}
3280
3281	if (id < 0)
3282		return id;
3283
3284	sprintf(hdev->name, "hci%d", id);
3285	hdev->id = id;
3286
3287	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3288
3289	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3290	if (!hdev->workqueue) {
3291		error = -ENOMEM;
3292		goto err;
3293	}
3294
3295	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3296						      hdev->name);
3297	if (!hdev->req_workqueue) {
3298		destroy_workqueue(hdev->workqueue);
3299		error = -ENOMEM;
3300		goto err;
3301	}
3302
3303	if (!IS_ERR_OR_NULL(bt_debugfs))
3304		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3305
3306	dev_set_name(&hdev->dev, "%s", hdev->name);
3307
3308	error = device_add(&hdev->dev);
3309	if (error < 0)
3310		goto err_wqueue;
3311
3312	hci_leds_init(hdev);
3313
3314	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3315				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3316				    hdev);
3317	if (hdev->rfkill) {
3318		if (rfkill_register(hdev->rfkill) < 0) {
3319			rfkill_destroy(hdev->rfkill);
3320			hdev->rfkill = NULL;
3321		}
3322	}
3323
3324	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3325		hci_dev_set_flag(hdev, HCI_RFKILLED);
3326
3327	hci_dev_set_flag(hdev, HCI_SETUP);
3328	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3329
3330	if (hdev->dev_type == HCI_PRIMARY) {
3331		/* Assume BR/EDR support until proven otherwise (such as
3332		 * through reading supported features during init.
3333		 */
3334		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3335	}
3336
3337	write_lock(&hci_dev_list_lock);
3338	list_add(&hdev->list, &hci_dev_list);
3339	write_unlock(&hci_dev_list_lock);
3340
3341	/* Devices that are marked for raw-only usage are unconfigured
3342	 * and should not be included in normal operation.
3343	 */
3344	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3345		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3346
 
 
 
 
 
 
3347	hci_sock_dev_event(hdev, HCI_DEV_REG);
3348	hci_dev_hold(hdev);
3349
 
 
 
 
3350	queue_work(hdev->req_workqueue, &hdev->power_on);
3351
 
 
 
3352	return id;
3353
3354err_wqueue:
 
3355	destroy_workqueue(hdev->workqueue);
3356	destroy_workqueue(hdev->req_workqueue);
3357err:
3358	ida_simple_remove(&hci_index_ida, hdev->id);
3359
3360	return error;
3361}
3362EXPORT_SYMBOL(hci_register_dev);
3363
3364/* Unregister HCI device */
3365void hci_unregister_dev(struct hci_dev *hdev)
3366{
3367	int id;
3368
3369	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3370
3371	hci_dev_set_flag(hdev, HCI_UNREGISTER);
3372
3373	id = hdev->id;
3374
3375	write_lock(&hci_dev_list_lock);
3376	list_del(&hdev->list);
3377	write_unlock(&hci_dev_list_lock);
3378
3379	cancel_work_sync(&hdev->power_on);
3380
 
 
 
 
 
 
3381	hci_dev_do_close(hdev);
3382
3383	if (!test_bit(HCI_INIT, &hdev->flags) &&
3384	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
3385	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3386		hci_dev_lock(hdev);
3387		mgmt_index_removed(hdev);
3388		hci_dev_unlock(hdev);
3389	}
3390
3391	/* mgmt_index_removed should take care of emptying the
3392	 * pending list */
3393	BUG_ON(!list_empty(&hdev->mgmt_pending));
3394
3395	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3396
3397	if (hdev->rfkill) {
3398		rfkill_unregister(hdev->rfkill);
3399		rfkill_destroy(hdev->rfkill);
3400	}
3401
3402	device_del(&hdev->dev);
 
 
 
 
3403
 
 
 
3404	debugfs_remove_recursive(hdev->debugfs);
3405	kfree_const(hdev->hw_info);
3406	kfree_const(hdev->fw_info);
3407
3408	destroy_workqueue(hdev->workqueue);
3409	destroy_workqueue(hdev->req_workqueue);
3410
3411	hci_dev_lock(hdev);
3412	hci_bdaddr_list_clear(&hdev->blacklist);
3413	hci_bdaddr_list_clear(&hdev->whitelist);
3414	hci_uuids_clear(hdev);
3415	hci_link_keys_clear(hdev);
3416	hci_smp_ltks_clear(hdev);
3417	hci_smp_irks_clear(hdev);
3418	hci_remote_oob_data_clear(hdev);
3419	hci_adv_instances_clear(hdev);
3420	hci_bdaddr_list_clear(&hdev->le_white_list);
 
3421	hci_bdaddr_list_clear(&hdev->le_resolv_list);
3422	hci_conn_params_clear_all(hdev);
3423	hci_discovery_filter_clear(hdev);
 
3424	hci_dev_unlock(hdev);
3425
3426	hci_dev_put(hdev);
 
 
 
 
 
3427
3428	ida_simple_remove(&hci_index_ida, id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3429}
3430EXPORT_SYMBOL(hci_unregister_dev);
3431
3432/* Suspend HCI device */
3433int hci_suspend_dev(struct hci_dev *hdev)
3434{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3435	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3436	return 0;
3437}
3438EXPORT_SYMBOL(hci_suspend_dev);
3439
3440/* Resume HCI device */
3441int hci_resume_dev(struct hci_dev *hdev)
3442{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3443	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3444	return 0;
3445}
3446EXPORT_SYMBOL(hci_resume_dev);
3447
3448/* Reset HCI device */
3449int hci_reset_dev(struct hci_dev *hdev)
3450{
3451	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3452	struct sk_buff *skb;
3453
3454	skb = bt_skb_alloc(3, GFP_ATOMIC);
3455	if (!skb)
3456		return -ENOMEM;
3457
3458	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3459	skb_put_data(skb, hw_err, 3);
3460
 
 
3461	/* Send Hardware Error to upper stack */
3462	return hci_recv_frame(hdev, skb);
3463}
3464EXPORT_SYMBOL(hci_reset_dev);
3465
3466/* Receive frame from HCI drivers */
3467int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3468{
3469	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3470		      && !test_bit(HCI_INIT, &hdev->flags))) {
3471		kfree_skb(skb);
3472		return -ENXIO;
3473	}
3474
3475	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3476	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3477	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
 
3478		kfree_skb(skb);
3479		return -EINVAL;
3480	}
3481
3482	/* Incoming skb */
3483	bt_cb(skb)->incoming = 1;
3484
3485	/* Time stamp */
3486	__net_timestamp(skb);
3487
3488	skb_queue_tail(&hdev->rx_q, skb);
3489	queue_work(hdev->workqueue, &hdev->rx_work);
3490
3491	return 0;
3492}
3493EXPORT_SYMBOL(hci_recv_frame);
3494
3495/* Receive diagnostic message from HCI drivers */
3496int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3497{
3498	/* Mark as diagnostic packet */
3499	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3500
3501	/* Time stamp */
3502	__net_timestamp(skb);
3503
3504	skb_queue_tail(&hdev->rx_q, skb);
3505	queue_work(hdev->workqueue, &hdev->rx_work);
3506
3507	return 0;
3508}
3509EXPORT_SYMBOL(hci_recv_diag);
3510
3511void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3512{
3513	va_list vargs;
3514
3515	va_start(vargs, fmt);
3516	kfree_const(hdev->hw_info);
3517	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3518	va_end(vargs);
3519}
3520EXPORT_SYMBOL(hci_set_hw_info);
3521
3522void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3523{
3524	va_list vargs;
3525
3526	va_start(vargs, fmt);
3527	kfree_const(hdev->fw_info);
3528	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3529	va_end(vargs);
3530}
3531EXPORT_SYMBOL(hci_set_fw_info);
3532
3533/* ---- Interface to upper protocols ---- */
3534
3535int hci_register_cb(struct hci_cb *cb)
3536{
3537	BT_DBG("%p name %s", cb, cb->name);
3538
3539	mutex_lock(&hci_cb_list_lock);
3540	list_add_tail(&cb->list, &hci_cb_list);
3541	mutex_unlock(&hci_cb_list_lock);
3542
3543	return 0;
3544}
3545EXPORT_SYMBOL(hci_register_cb);
3546
3547int hci_unregister_cb(struct hci_cb *cb)
3548{
3549	BT_DBG("%p name %s", cb, cb->name);
3550
3551	mutex_lock(&hci_cb_list_lock);
3552	list_del(&cb->list);
3553	mutex_unlock(&hci_cb_list_lock);
3554
3555	return 0;
3556}
3557EXPORT_SYMBOL(hci_unregister_cb);
3558
3559static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3560{
3561	int err;
3562
3563	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3564	       skb->len);
3565
3566	/* Time stamp */
3567	__net_timestamp(skb);
3568
3569	/* Send copy to monitor */
3570	hci_send_to_monitor(hdev, skb);
3571
3572	if (atomic_read(&hdev->promisc)) {
3573		/* Send copy to the sockets */
3574		hci_send_to_sock(hdev, skb);
3575	}
3576
3577	/* Get rid of skb owner, prior to sending to the driver. */
3578	skb_orphan(skb);
3579
3580	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3581		kfree_skb(skb);
3582		return;
3583	}
3584
3585	err = hdev->send(hdev, skb);
3586	if (err < 0) {
3587		bt_dev_err(hdev, "sending frame failed (%d)", err);
3588		kfree_skb(skb);
 
3589	}
 
 
3590}
3591
3592/* Send HCI command */
3593int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3594		 const void *param)
3595{
3596	struct sk_buff *skb;
3597
3598	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3599
3600	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3601	if (!skb) {
3602		bt_dev_err(hdev, "no memory for command");
3603		return -ENOMEM;
3604	}
3605
3606	/* Stand-alone HCI commands must be flagged as
3607	 * single-command requests.
3608	 */
3609	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3610
3611	skb_queue_tail(&hdev->cmd_q, skb);
3612	queue_work(hdev->workqueue, &hdev->cmd_work);
3613
3614	return 0;
3615}
3616
3617int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3618		   const void *param)
3619{
3620	struct sk_buff *skb;
3621
3622	if (hci_opcode_ogf(opcode) != 0x3f) {
3623		/* A controller receiving a command shall respond with either
3624		 * a Command Status Event or a Command Complete Event.
3625		 * Therefore, all standard HCI commands must be sent via the
3626		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3627		 * Some vendors do not comply with this rule for vendor-specific
3628		 * commands and do not return any event. We want to support
3629		 * unresponded commands for such cases only.
3630		 */
3631		bt_dev_err(hdev, "unresponded command not supported");
3632		return -EINVAL;
3633	}
3634
3635	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3636	if (!skb) {
3637		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3638			   opcode);
3639		return -ENOMEM;
3640	}
3641
3642	hci_send_frame(hdev, skb);
3643
3644	return 0;
3645}
3646EXPORT_SYMBOL(__hci_cmd_send);
3647
3648/* Get data from the previously sent command */
3649void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3650{
3651	struct hci_command_hdr *hdr;
3652
3653	if (!hdev->sent_cmd)
3654		return NULL;
3655
3656	hdr = (void *) hdev->sent_cmd->data;
3657
3658	if (hdr->opcode != cpu_to_le16(opcode))
3659		return NULL;
3660
3661	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3662
3663	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3664}
3665
3666/* Send HCI command and wait for command commplete event */
3667struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3668			     const void *param, u32 timeout)
3669{
3670	struct sk_buff *skb;
 
3671
3672	if (!test_bit(HCI_UP, &hdev->flags))
3673		return ERR_PTR(-ENETDOWN);
3674
3675	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
 
3676
3677	hci_req_sync_lock(hdev);
3678	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3679	hci_req_sync_unlock(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
3680
3681	return skb;
3682}
3683EXPORT_SYMBOL(hci_cmd_sync);
3684
3685/* Send ACL data */
3686static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3687{
3688	struct hci_acl_hdr *hdr;
3689	int len = skb->len;
3690
3691	skb_push(skb, HCI_ACL_HDR_SIZE);
3692	skb_reset_transport_header(skb);
3693	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3694	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3695	hdr->dlen   = cpu_to_le16(len);
3696}
3697
3698static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3699			  struct sk_buff *skb, __u16 flags)
3700{
3701	struct hci_conn *conn = chan->conn;
3702	struct hci_dev *hdev = conn->hdev;
3703	struct sk_buff *list;
3704
3705	skb->len = skb_headlen(skb);
3706	skb->data_len = 0;
3707
3708	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3709
3710	switch (hdev->dev_type) {
3711	case HCI_PRIMARY:
3712		hci_add_acl_hdr(skb, conn->handle, flags);
3713		break;
3714	case HCI_AMP:
3715		hci_add_acl_hdr(skb, chan->handle, flags);
3716		break;
3717	default:
3718		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3719		return;
3720	}
3721
3722	list = skb_shinfo(skb)->frag_list;
3723	if (!list) {
3724		/* Non fragmented */
3725		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3726
3727		skb_queue_tail(queue, skb);
3728	} else {
3729		/* Fragmented */
3730		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3731
3732		skb_shinfo(skb)->frag_list = NULL;
3733
3734		/* Queue all fragments atomically. We need to use spin_lock_bh
3735		 * here because of 6LoWPAN links, as there this function is
3736		 * called from softirq and using normal spin lock could cause
3737		 * deadlocks.
3738		 */
3739		spin_lock_bh(&queue->lock);
3740
3741		__skb_queue_tail(queue, skb);
3742
3743		flags &= ~ACL_START;
3744		flags |= ACL_CONT;
3745		do {
3746			skb = list; list = list->next;
3747
3748			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3749			hci_add_acl_hdr(skb, conn->handle, flags);
3750
3751			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3752
3753			__skb_queue_tail(queue, skb);
3754		} while (list);
3755
3756		spin_unlock_bh(&queue->lock);
3757	}
3758}
3759
3760void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3761{
3762	struct hci_dev *hdev = chan->conn->hdev;
3763
3764	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3765
3766	hci_queue_acl(chan, &chan->data_q, skb, flags);
3767
3768	queue_work(hdev->workqueue, &hdev->tx_work);
3769}
3770
3771/* Send SCO data */
3772void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3773{
3774	struct hci_dev *hdev = conn->hdev;
3775	struct hci_sco_hdr hdr;
3776
3777	BT_DBG("%s len %d", hdev->name, skb->len);
3778
3779	hdr.handle = cpu_to_le16(conn->handle);
3780	hdr.dlen   = skb->len;
3781
3782	skb_push(skb, HCI_SCO_HDR_SIZE);
3783	skb_reset_transport_header(skb);
3784	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3785
3786	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3787
3788	skb_queue_tail(&conn->data_q, skb);
3789	queue_work(hdev->workqueue, &hdev->tx_work);
3790}
3791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3792/* ---- HCI TX task (outgoing data) ---- */
3793
3794/* HCI Connection scheduler */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3795static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3796				     int *quote)
3797{
3798	struct hci_conn_hash *h = &hdev->conn_hash;
3799	struct hci_conn *conn = NULL, *c;
3800	unsigned int num = 0, min = ~0;
3801
3802	/* We don't have to lock device here. Connections are always
3803	 * added and removed with TX task disabled. */
3804
3805	rcu_read_lock();
3806
3807	list_for_each_entry_rcu(c, &h->list, list) {
3808		if (c->type != type || skb_queue_empty(&c->data_q))
3809			continue;
3810
3811		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3812			continue;
3813
3814		num++;
3815
3816		if (c->sent < min) {
3817			min  = c->sent;
3818			conn = c;
3819		}
3820
3821		if (hci_conn_num(hdev, type) == num)
3822			break;
3823	}
3824
3825	rcu_read_unlock();
3826
3827	if (conn) {
3828		int cnt, q;
3829
3830		switch (conn->type) {
3831		case ACL_LINK:
3832			cnt = hdev->acl_cnt;
3833			break;
3834		case SCO_LINK:
3835		case ESCO_LINK:
3836			cnt = hdev->sco_cnt;
3837			break;
3838		case LE_LINK:
3839			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3840			break;
3841		default:
3842			cnt = 0;
3843			bt_dev_err(hdev, "unknown link type %d", conn->type);
3844		}
3845
3846		q = cnt / num;
3847		*quote = q ? q : 1;
3848	} else
3849		*quote = 0;
3850
3851	BT_DBG("conn %p quote %d", conn, *quote);
3852	return conn;
3853}
3854
3855static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3856{
3857	struct hci_conn_hash *h = &hdev->conn_hash;
3858	struct hci_conn *c;
3859
3860	bt_dev_err(hdev, "link tx timeout");
3861
3862	rcu_read_lock();
3863
3864	/* Kill stalled connections */
3865	list_for_each_entry_rcu(c, &h->list, list) {
3866		if (c->type == type && c->sent) {
3867			bt_dev_err(hdev, "killing stalled connection %pMR",
3868				   &c->dst);
3869			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3870		}
3871	}
3872
3873	rcu_read_unlock();
3874}
3875
3876static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3877				      int *quote)
3878{
3879	struct hci_conn_hash *h = &hdev->conn_hash;
3880	struct hci_chan *chan = NULL;
3881	unsigned int num = 0, min = ~0, cur_prio = 0;
3882	struct hci_conn *conn;
3883	int cnt, q, conn_num = 0;
3884
3885	BT_DBG("%s", hdev->name);
3886
3887	rcu_read_lock();
3888
3889	list_for_each_entry_rcu(conn, &h->list, list) {
3890		struct hci_chan *tmp;
3891
3892		if (conn->type != type)
3893			continue;
3894
3895		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3896			continue;
3897
3898		conn_num++;
3899
3900		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3901			struct sk_buff *skb;
3902
3903			if (skb_queue_empty(&tmp->data_q))
3904				continue;
3905
3906			skb = skb_peek(&tmp->data_q);
3907			if (skb->priority < cur_prio)
3908				continue;
3909
3910			if (skb->priority > cur_prio) {
3911				num = 0;
3912				min = ~0;
3913				cur_prio = skb->priority;
3914			}
3915
3916			num++;
3917
3918			if (conn->sent < min) {
3919				min  = conn->sent;
3920				chan = tmp;
3921			}
3922		}
3923
3924		if (hci_conn_num(hdev, type) == conn_num)
3925			break;
3926	}
3927
3928	rcu_read_unlock();
3929
3930	if (!chan)
3931		return NULL;
3932
3933	switch (chan->conn->type) {
3934	case ACL_LINK:
3935		cnt = hdev->acl_cnt;
3936		break;
3937	case AMP_LINK:
3938		cnt = hdev->block_cnt;
3939		break;
3940	case SCO_LINK:
3941	case ESCO_LINK:
3942		cnt = hdev->sco_cnt;
3943		break;
3944	case LE_LINK:
3945		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3946		break;
3947	default:
3948		cnt = 0;
3949		bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
3950	}
3951
3952	q = cnt / num;
3953	*quote = q ? q : 1;
3954	BT_DBG("chan %p quote %d", chan, *quote);
3955	return chan;
3956}
3957
3958static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3959{
3960	struct hci_conn_hash *h = &hdev->conn_hash;
3961	struct hci_conn *conn;
3962	int num = 0;
3963
3964	BT_DBG("%s", hdev->name);
3965
3966	rcu_read_lock();
3967
3968	list_for_each_entry_rcu(conn, &h->list, list) {
3969		struct hci_chan *chan;
3970
3971		if (conn->type != type)
3972			continue;
3973
3974		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3975			continue;
3976
3977		num++;
3978
3979		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3980			struct sk_buff *skb;
3981
3982			if (chan->sent) {
3983				chan->sent = 0;
3984				continue;
3985			}
3986
3987			if (skb_queue_empty(&chan->data_q))
3988				continue;
3989
3990			skb = skb_peek(&chan->data_q);
3991			if (skb->priority >= HCI_PRIO_MAX - 1)
3992				continue;
3993
3994			skb->priority = HCI_PRIO_MAX - 1;
3995
3996			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3997			       skb->priority);
3998		}
3999
4000		if (hci_conn_num(hdev, type) == num)
4001			break;
4002	}
4003
4004	rcu_read_unlock();
4005
4006}
4007
4008static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4009{
4010	/* Calculate count of blocks used by this packet */
4011	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4012}
4013
4014static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4015{
4016	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4017		/* ACL tx timeout must be longer than maximum
4018		 * link supervision timeout (40.9 seconds) */
4019		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4020				       HCI_ACL_TX_TIMEOUT))
4021			hci_link_tx_to(hdev, ACL_LINK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4022	}
4023}
4024
4025static void hci_sched_acl_pkt(struct hci_dev *hdev)
4026{
4027	unsigned int cnt = hdev->acl_cnt;
4028	struct hci_chan *chan;
4029	struct sk_buff *skb;
4030	int quote;
4031
4032	__check_timeout(hdev, cnt);
4033
4034	while (hdev->acl_cnt &&
4035	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
4036		u32 priority = (skb_peek(&chan->data_q))->priority;
4037		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4038			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4039			       skb->len, skb->priority);
4040
4041			/* Stop if priority has changed */
4042			if (skb->priority < priority)
4043				break;
4044
4045			skb = skb_dequeue(&chan->data_q);
4046
4047			hci_conn_enter_active_mode(chan->conn,
4048						   bt_cb(skb)->force_active);
4049
4050			hci_send_frame(hdev, skb);
4051			hdev->acl_last_tx = jiffies;
4052
4053			hdev->acl_cnt--;
4054			chan->sent++;
4055			chan->conn->sent++;
 
 
 
 
4056		}
4057	}
4058
4059	if (cnt != hdev->acl_cnt)
4060		hci_prio_recalculate(hdev, ACL_LINK);
4061}
4062
4063static void hci_sched_acl_blk(struct hci_dev *hdev)
4064{
4065	unsigned int cnt = hdev->block_cnt;
4066	struct hci_chan *chan;
4067	struct sk_buff *skb;
4068	int quote;
4069	u8 type;
4070
4071	__check_timeout(hdev, cnt);
4072
4073	BT_DBG("%s", hdev->name);
4074
4075	if (hdev->dev_type == HCI_AMP)
4076		type = AMP_LINK;
4077	else
4078		type = ACL_LINK;
4079
 
 
4080	while (hdev->block_cnt > 0 &&
4081	       (chan = hci_chan_sent(hdev, type, &quote))) {
4082		u32 priority = (skb_peek(&chan->data_q))->priority;
4083		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4084			int blocks;
4085
4086			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4087			       skb->len, skb->priority);
4088
4089			/* Stop if priority has changed */
4090			if (skb->priority < priority)
4091				break;
4092
4093			skb = skb_dequeue(&chan->data_q);
4094
4095			blocks = __get_blocks(hdev, skb);
4096			if (blocks > hdev->block_cnt)
4097				return;
4098
4099			hci_conn_enter_active_mode(chan->conn,
4100						   bt_cb(skb)->force_active);
4101
4102			hci_send_frame(hdev, skb);
4103			hdev->acl_last_tx = jiffies;
4104
4105			hdev->block_cnt -= blocks;
4106			quote -= blocks;
4107
4108			chan->sent += blocks;
4109			chan->conn->sent += blocks;
4110		}
4111	}
4112
4113	if (cnt != hdev->block_cnt)
4114		hci_prio_recalculate(hdev, type);
4115}
4116
4117static void hci_sched_acl(struct hci_dev *hdev)
4118{
4119	BT_DBG("%s", hdev->name);
4120
4121	/* No ACL link over BR/EDR controller */
4122	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4123		return;
4124
4125	/* No AMP link over AMP controller */
4126	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4127		return;
4128
4129	switch (hdev->flow_ctl_mode) {
4130	case HCI_FLOW_CTL_MODE_PACKET_BASED:
4131		hci_sched_acl_pkt(hdev);
4132		break;
4133
4134	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4135		hci_sched_acl_blk(hdev);
4136		break;
4137	}
4138}
4139
4140/* Schedule SCO */
4141static void hci_sched_sco(struct hci_dev *hdev)
4142{
4143	struct hci_conn *conn;
4144	struct sk_buff *skb;
4145	int quote;
4146
4147	BT_DBG("%s", hdev->name);
4148
4149	if (!hci_conn_num(hdev, SCO_LINK))
4150		return;
4151
4152	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
4153		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4154			BT_DBG("skb %p len %d", skb, skb->len);
4155			hci_send_frame(hdev, skb);
4156
4157			conn->sent++;
4158			if (conn->sent == ~0)
4159				conn->sent = 0;
4160		}
4161	}
4162}
4163
4164static void hci_sched_esco(struct hci_dev *hdev)
4165{
4166	struct hci_conn *conn;
4167	struct sk_buff *skb;
4168	int quote;
4169
4170	BT_DBG("%s", hdev->name);
4171
4172	if (!hci_conn_num(hdev, ESCO_LINK))
4173		return;
4174
4175	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4176						     &quote))) {
4177		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4178			BT_DBG("skb %p len %d", skb, skb->len);
4179			hci_send_frame(hdev, skb);
4180
4181			conn->sent++;
4182			if (conn->sent == ~0)
4183				conn->sent = 0;
4184		}
4185	}
4186}
4187
4188static void hci_sched_le(struct hci_dev *hdev)
4189{
4190	struct hci_chan *chan;
4191	struct sk_buff *skb;
4192	int quote, cnt, tmp;
4193
4194	BT_DBG("%s", hdev->name);
4195
4196	if (!hci_conn_num(hdev, LE_LINK))
4197		return;
4198
4199	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4200		/* LE tx timeout must be longer than maximum
4201		 * link supervision timeout (40.9 seconds) */
4202		if (!hdev->le_cnt && hdev->le_pkts &&
4203		    time_after(jiffies, hdev->le_last_tx + HZ * 45))
4204			hci_link_tx_to(hdev, LE_LINK);
4205	}
4206
4207	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
 
 
 
4208	tmp = cnt;
4209	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
4210		u32 priority = (skb_peek(&chan->data_q))->priority;
4211		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4212			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4213			       skb->len, skb->priority);
4214
4215			/* Stop if priority has changed */
4216			if (skb->priority < priority)
4217				break;
4218
4219			skb = skb_dequeue(&chan->data_q);
4220
4221			hci_send_frame(hdev, skb);
4222			hdev->le_last_tx = jiffies;
4223
4224			cnt--;
4225			chan->sent++;
4226			chan->conn->sent++;
 
 
 
 
4227		}
4228	}
4229
4230	if (hdev->le_pkts)
4231		hdev->le_cnt = cnt;
4232	else
4233		hdev->acl_cnt = cnt;
4234
4235	if (cnt != tmp)
4236		hci_prio_recalculate(hdev, LE_LINK);
4237}
4238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4239static void hci_tx_work(struct work_struct *work)
4240{
4241	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4242	struct sk_buff *skb;
4243
4244	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4245	       hdev->sco_cnt, hdev->le_cnt);
4246
4247	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4248		/* Schedule queues and send stuff to HCI driver */
4249		hci_sched_acl(hdev);
4250		hci_sched_sco(hdev);
4251		hci_sched_esco(hdev);
 
 
4252		hci_sched_le(hdev);
4253	}
4254
4255	/* Send next queued raw (unknown type) packet */
4256	while ((skb = skb_dequeue(&hdev->raw_q)))
4257		hci_send_frame(hdev, skb);
4258}
4259
4260/* ----- HCI RX task (incoming data processing) ----- */
4261
4262/* ACL data packet */
4263static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4264{
4265	struct hci_acl_hdr *hdr = (void *) skb->data;
4266	struct hci_conn *conn;
4267	__u16 handle, flags;
4268
4269	skb_pull(skb, HCI_ACL_HDR_SIZE);
4270
4271	handle = __le16_to_cpu(hdr->handle);
4272	flags  = hci_flags(handle);
4273	handle = hci_handle(handle);
4274
4275	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4276	       handle, flags);
4277
4278	hdev->stat.acl_rx++;
4279
4280	hci_dev_lock(hdev);
4281	conn = hci_conn_hash_lookup_handle(hdev, handle);
4282	hci_dev_unlock(hdev);
4283
4284	if (conn) {
4285		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4286
4287		/* Send to upper protocol */
4288		l2cap_recv_acldata(conn, skb, flags);
4289		return;
4290	} else {
4291		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4292			   handle);
4293	}
4294
4295	kfree_skb(skb);
4296}
4297
4298/* SCO data packet */
4299static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4300{
4301	struct hci_sco_hdr *hdr = (void *) skb->data;
4302	struct hci_conn *conn;
4303	__u16 handle;
4304
4305	skb_pull(skb, HCI_SCO_HDR_SIZE);
4306
4307	handle = __le16_to_cpu(hdr->handle);
 
 
4308
4309	BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
 
4310
4311	hdev->stat.sco_rx++;
4312
4313	hci_dev_lock(hdev);
4314	conn = hci_conn_hash_lookup_handle(hdev, handle);
4315	hci_dev_unlock(hdev);
4316
4317	if (conn) {
4318		/* Send to upper protocol */
 
4319		sco_recv_scodata(conn, skb);
4320		return;
4321	} else {
4322		bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4323			   handle);
 
4324	}
4325
 
 
 
 
 
4326	kfree_skb(skb);
4327}
4328
4329static bool hci_req_is_complete(struct hci_dev *hdev)
4330{
4331	struct sk_buff *skb;
4332
4333	skb = skb_peek(&hdev->cmd_q);
4334	if (!skb)
4335		return true;
4336
4337	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4338}
4339
4340static void hci_resend_last(struct hci_dev *hdev)
4341{
4342	struct hci_command_hdr *sent;
4343	struct sk_buff *skb;
4344	u16 opcode;
4345
4346	if (!hdev->sent_cmd)
4347		return;
4348
4349	sent = (void *) hdev->sent_cmd->data;
4350	opcode = __le16_to_cpu(sent->opcode);
4351	if (opcode == HCI_OP_RESET)
4352		return;
4353
4354	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4355	if (!skb)
4356		return;
4357
4358	skb_queue_head(&hdev->cmd_q, skb);
4359	queue_work(hdev->workqueue, &hdev->cmd_work);
4360}
4361
4362void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4363			  hci_req_complete_t *req_complete,
4364			  hci_req_complete_skb_t *req_complete_skb)
4365{
4366	struct sk_buff *skb;
4367	unsigned long flags;
4368
4369	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4370
4371	/* If the completed command doesn't match the last one that was
4372	 * sent we need to do special handling of it.
4373	 */
4374	if (!hci_sent_cmd_data(hdev, opcode)) {
4375		/* Some CSR based controllers generate a spontaneous
4376		 * reset complete event during init and any pending
4377		 * command will never be completed. In such a case we
4378		 * need to resend whatever was the last sent
4379		 * command.
4380		 */
4381		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4382			hci_resend_last(hdev);
4383
4384		return;
4385	}
4386
4387	/* If we reach this point this event matches the last command sent */
4388	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4389
4390	/* If the command succeeded and there's still more commands in
4391	 * this request the request is not yet complete.
4392	 */
4393	if (!status && !hci_req_is_complete(hdev))
4394		return;
4395
4396	/* If this was the last command in a request the complete
4397	 * callback would be found in hdev->sent_cmd instead of the
4398	 * command queue (hdev->cmd_q).
4399	 */
4400	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4401		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4402		return;
4403	}
4404
4405	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4406		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4407		return;
4408	}
4409
4410	/* Remove all pending commands belonging to this request */
4411	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4412	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4413		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4414			__skb_queue_head(&hdev->cmd_q, skb);
4415			break;
4416		}
4417
4418		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4419			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4420		else
4421			*req_complete = bt_cb(skb)->hci.req_complete;
4422		kfree_skb(skb);
4423	}
4424	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4425}
4426
4427static void hci_rx_work(struct work_struct *work)
4428{
4429	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4430	struct sk_buff *skb;
4431
4432	BT_DBG("%s", hdev->name);
4433
4434	while ((skb = skb_dequeue(&hdev->rx_q))) {
 
 
 
 
 
 
 
4435		/* Send copy to monitor */
4436		hci_send_to_monitor(hdev, skb);
4437
4438		if (atomic_read(&hdev->promisc)) {
4439			/* Send copy to the sockets */
4440			hci_send_to_sock(hdev, skb);
4441		}
4442
4443		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 
 
 
 
 
 
 
4444			kfree_skb(skb);
4445			continue;
4446		}
4447
4448		if (test_bit(HCI_INIT, &hdev->flags)) {
4449			/* Don't process data packets in this states. */
4450			switch (hci_skb_pkt_type(skb)) {
4451			case HCI_ACLDATA_PKT:
4452			case HCI_SCODATA_PKT:
 
4453				kfree_skb(skb);
4454				continue;
4455			}
4456		}
4457
4458		/* Process frame */
4459		switch (hci_skb_pkt_type(skb)) {
4460		case HCI_EVENT_PKT:
4461			BT_DBG("%s Event packet", hdev->name);
4462			hci_event_packet(hdev, skb);
4463			break;
4464
4465		case HCI_ACLDATA_PKT:
4466			BT_DBG("%s ACL data packet", hdev->name);
4467			hci_acldata_packet(hdev, skb);
4468			break;
4469
4470		case HCI_SCODATA_PKT:
4471			BT_DBG("%s SCO data packet", hdev->name);
4472			hci_scodata_packet(hdev, skb);
4473			break;
4474
 
 
 
 
 
4475		default:
4476			kfree_skb(skb);
4477			break;
4478		}
4479	}
4480}
4481
4482static void hci_cmd_work(struct work_struct *work)
4483{
4484	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4485	struct sk_buff *skb;
4486
4487	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4488	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4489
4490	/* Send queued commands */
4491	if (atomic_read(&hdev->cmd_cnt)) {
4492		skb = skb_dequeue(&hdev->cmd_q);
4493		if (!skb)
4494			return;
4495
4496		kfree_skb(hdev->sent_cmd);
4497
4498		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4499		if (hdev->sent_cmd) {
 
4500			if (hci_req_status_pend(hdev))
4501				hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4502			atomic_dec(&hdev->cmd_cnt);
4503			hci_send_frame(hdev, skb);
4504			if (test_bit(HCI_RESET, &hdev->flags))
 
 
 
 
 
 
4505				cancel_delayed_work(&hdev->cmd_timer);
4506			else
4507				schedule_delayed_work(&hdev->cmd_timer,
4508						      HCI_CMD_TIMEOUT);
 
4509		} else {
4510			skb_queue_head(&hdev->cmd_q, skb);
4511			queue_work(hdev->workqueue, &hdev->cmd_work);
4512		}
4513	}
4514}
v6.2
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
 
  29#include <linux/rfkill.h>
  30#include <linux/debugfs.h>
  31#include <linux/crypto.h>
  32#include <linux/kcov.h>
  33#include <linux/property.h>
  34#include <linux/suspend.h>
  35#include <linux/wait.h>
  36#include <asm/unaligned.h>
  37
  38#include <net/bluetooth/bluetooth.h>
  39#include <net/bluetooth/hci_core.h>
  40#include <net/bluetooth/l2cap.h>
  41#include <net/bluetooth/mgmt.h>
  42
  43#include "hci_request.h"
  44#include "hci_debugfs.h"
  45#include "smp.h"
  46#include "leds.h"
  47#include "msft.h"
  48#include "aosp.h"
  49#include "hci_codec.h"
  50
  51static void hci_rx_work(struct work_struct *work);
  52static void hci_cmd_work(struct work_struct *work);
  53static void hci_tx_work(struct work_struct *work);
  54
  55/* HCI device list */
  56LIST_HEAD(hci_dev_list);
  57DEFINE_RWLOCK(hci_dev_list_lock);
  58
  59/* HCI callback list */
  60LIST_HEAD(hci_cb_list);
  61DEFINE_MUTEX(hci_cb_list_lock);
  62
  63/* HCI ID Numbering */
  64static DEFINE_IDA(hci_index_ida);
  65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66static int hci_scan_req(struct hci_request *req, unsigned long opt)
  67{
  68	__u8 scan = opt;
  69
  70	BT_DBG("%s %x", req->hdev->name, scan);
  71
  72	/* Inquiry and Page scans */
  73	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
  74	return 0;
  75}
  76
  77static int hci_auth_req(struct hci_request *req, unsigned long opt)
  78{
  79	__u8 auth = opt;
  80
  81	BT_DBG("%s %x", req->hdev->name, auth);
  82
  83	/* Authentication */
  84	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
  85	return 0;
  86}
  87
  88static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
  89{
  90	__u8 encrypt = opt;
  91
  92	BT_DBG("%s %x", req->hdev->name, encrypt);
  93
  94	/* Encryption */
  95	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
  96	return 0;
  97}
  98
  99static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
 100{
 101	__le16 policy = cpu_to_le16(opt);
 102
 103	BT_DBG("%s %x", req->hdev->name, policy);
 104
 105	/* Default link policy */
 106	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 107	return 0;
 108}
 109
 110/* Get HCI device by index.
 111 * Device is held on return. */
 112struct hci_dev *hci_dev_get(int index)
 113{
 114	struct hci_dev *hdev = NULL, *d;
 115
 116	BT_DBG("%d", index);
 117
 118	if (index < 0)
 119		return NULL;
 120
 121	read_lock(&hci_dev_list_lock);
 122	list_for_each_entry(d, &hci_dev_list, list) {
 123		if (d->id == index) {
 124			hdev = hci_dev_hold(d);
 125			break;
 126		}
 127	}
 128	read_unlock(&hci_dev_list_lock);
 129	return hdev;
 130}
 131
 132/* ---- Inquiry support ---- */
 133
 134bool hci_discovery_active(struct hci_dev *hdev)
 135{
 136	struct discovery_state *discov = &hdev->discovery;
 137
 138	switch (discov->state) {
 139	case DISCOVERY_FINDING:
 140	case DISCOVERY_RESOLVING:
 141		return true;
 142
 143	default:
 144		return false;
 145	}
 146}
 147
 148void hci_discovery_set_state(struct hci_dev *hdev, int state)
 149{
 150	int old_state = hdev->discovery.state;
 151
 152	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
 153
 154	if (old_state == state)
 155		return;
 156
 157	hdev->discovery.state = state;
 158
 159	switch (state) {
 160	case DISCOVERY_STOPPED:
 161		hci_update_passive_scan(hdev);
 162
 163		if (old_state != DISCOVERY_STARTING)
 164			mgmt_discovering(hdev, 0);
 165		break;
 166	case DISCOVERY_STARTING:
 167		break;
 168	case DISCOVERY_FINDING:
 169		mgmt_discovering(hdev, 1);
 170		break;
 171	case DISCOVERY_RESOLVING:
 172		break;
 173	case DISCOVERY_STOPPING:
 174		break;
 175	}
 176}
 177
 178void hci_inquiry_cache_flush(struct hci_dev *hdev)
 179{
 180	struct discovery_state *cache = &hdev->discovery;
 181	struct inquiry_entry *p, *n;
 182
 183	list_for_each_entry_safe(p, n, &cache->all, all) {
 184		list_del(&p->all);
 185		kfree(p);
 186	}
 187
 188	INIT_LIST_HEAD(&cache->unknown);
 189	INIT_LIST_HEAD(&cache->resolve);
 190}
 191
 192struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
 193					       bdaddr_t *bdaddr)
 194{
 195	struct discovery_state *cache = &hdev->discovery;
 196	struct inquiry_entry *e;
 197
 198	BT_DBG("cache %p, %pMR", cache, bdaddr);
 199
 200	list_for_each_entry(e, &cache->all, all) {
 201		if (!bacmp(&e->data.bdaddr, bdaddr))
 202			return e;
 203	}
 204
 205	return NULL;
 206}
 207
 208struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
 209						       bdaddr_t *bdaddr)
 210{
 211	struct discovery_state *cache = &hdev->discovery;
 212	struct inquiry_entry *e;
 213
 214	BT_DBG("cache %p, %pMR", cache, bdaddr);
 215
 216	list_for_each_entry(e, &cache->unknown, list) {
 217		if (!bacmp(&e->data.bdaddr, bdaddr))
 218			return e;
 219	}
 220
 221	return NULL;
 222}
 223
 224struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
 225						       bdaddr_t *bdaddr,
 226						       int state)
 227{
 228	struct discovery_state *cache = &hdev->discovery;
 229	struct inquiry_entry *e;
 230
 231	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
 232
 233	list_for_each_entry(e, &cache->resolve, list) {
 234		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
 235			return e;
 236		if (!bacmp(&e->data.bdaddr, bdaddr))
 237			return e;
 238	}
 239
 240	return NULL;
 241}
 242
 243void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
 244				      struct inquiry_entry *ie)
 245{
 246	struct discovery_state *cache = &hdev->discovery;
 247	struct list_head *pos = &cache->resolve;
 248	struct inquiry_entry *p;
 249
 250	list_del(&ie->list);
 251
 252	list_for_each_entry(p, &cache->resolve, list) {
 253		if (p->name_state != NAME_PENDING &&
 254		    abs(p->data.rssi) >= abs(ie->data.rssi))
 255			break;
 256		pos = &p->list;
 257	}
 258
 259	list_add(&ie->list, pos);
 260}
 261
 262u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
 263			     bool name_known)
 264{
 265	struct discovery_state *cache = &hdev->discovery;
 266	struct inquiry_entry *ie;
 267	u32 flags = 0;
 268
 269	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
 270
 271	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
 272
 273	if (!data->ssp_mode)
 274		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
 275
 276	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
 277	if (ie) {
 278		if (!ie->data.ssp_mode)
 279			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
 280
 281		if (ie->name_state == NAME_NEEDED &&
 282		    data->rssi != ie->data.rssi) {
 283			ie->data.rssi = data->rssi;
 284			hci_inquiry_cache_update_resolve(hdev, ie);
 285		}
 286
 287		goto update;
 288	}
 289
 290	/* Entry not in the cache. Add new one. */
 291	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
 292	if (!ie) {
 293		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
 294		goto done;
 295	}
 296
 297	list_add(&ie->all, &cache->all);
 298
 299	if (name_known) {
 300		ie->name_state = NAME_KNOWN;
 301	} else {
 302		ie->name_state = NAME_NOT_KNOWN;
 303		list_add(&ie->list, &cache->unknown);
 304	}
 305
 306update:
 307	if (name_known && ie->name_state != NAME_KNOWN &&
 308	    ie->name_state != NAME_PENDING) {
 309		ie->name_state = NAME_KNOWN;
 310		list_del(&ie->list);
 311	}
 312
 313	memcpy(&ie->data, data, sizeof(*data));
 314	ie->timestamp = jiffies;
 315	cache->timestamp = jiffies;
 316
 317	if (ie->name_state == NAME_NOT_KNOWN)
 318		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
 319
 320done:
 321	return flags;
 322}
 323
 324static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
 325{
 326	struct discovery_state *cache = &hdev->discovery;
 327	struct inquiry_info *info = (struct inquiry_info *) buf;
 328	struct inquiry_entry *e;
 329	int copied = 0;
 330
 331	list_for_each_entry(e, &cache->all, all) {
 332		struct inquiry_data *data = &e->data;
 333
 334		if (copied >= num)
 335			break;
 336
 337		bacpy(&info->bdaddr, &data->bdaddr);
 338		info->pscan_rep_mode	= data->pscan_rep_mode;
 339		info->pscan_period_mode	= data->pscan_period_mode;
 340		info->pscan_mode	= data->pscan_mode;
 341		memcpy(info->dev_class, data->dev_class, 3);
 342		info->clock_offset	= data->clock_offset;
 343
 344		info++;
 345		copied++;
 346	}
 347
 348	BT_DBG("cache %p, copied %d", cache, copied);
 349	return copied;
 350}
 351
 352static int hci_inq_req(struct hci_request *req, unsigned long opt)
 353{
 354	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
 355	struct hci_dev *hdev = req->hdev;
 356	struct hci_cp_inquiry cp;
 357
 358	BT_DBG("%s", hdev->name);
 359
 360	if (test_bit(HCI_INQUIRY, &hdev->flags))
 361		return 0;
 362
 363	/* Start Inquiry */
 364	memcpy(&cp.lap, &ir->lap, 3);
 365	cp.length  = ir->length;
 366	cp.num_rsp = ir->num_rsp;
 367	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
 368
 369	return 0;
 370}
 371
 372int hci_inquiry(void __user *arg)
 373{
 374	__u8 __user *ptr = arg;
 375	struct hci_inquiry_req ir;
 376	struct hci_dev *hdev;
 377	int err = 0, do_inquiry = 0, max_rsp;
 378	long timeo;
 379	__u8 *buf;
 380
 381	if (copy_from_user(&ir, ptr, sizeof(ir)))
 382		return -EFAULT;
 383
 384	hdev = hci_dev_get(ir.dev_id);
 385	if (!hdev)
 386		return -ENODEV;
 387
 388	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 389		err = -EBUSY;
 390		goto done;
 391	}
 392
 393	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 394		err = -EOPNOTSUPP;
 395		goto done;
 396	}
 397
 398	if (hdev->dev_type != HCI_PRIMARY) {
 399		err = -EOPNOTSUPP;
 400		goto done;
 401	}
 402
 403	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 404		err = -EOPNOTSUPP;
 405		goto done;
 406	}
 407
 408	/* Restrict maximum inquiry length to 60 seconds */
 409	if (ir.length > 60) {
 410		err = -EINVAL;
 411		goto done;
 412	}
 413
 414	hci_dev_lock(hdev);
 415	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
 416	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
 417		hci_inquiry_cache_flush(hdev);
 418		do_inquiry = 1;
 419	}
 420	hci_dev_unlock(hdev);
 421
 422	timeo = ir.length * msecs_to_jiffies(2000);
 423
 424	if (do_inquiry) {
 425		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
 426				   timeo, NULL);
 427		if (err < 0)
 428			goto done;
 429
 430		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
 431		 * cleared). If it is interrupted by a signal, return -EINTR.
 432		 */
 433		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
 434				TASK_INTERRUPTIBLE)) {
 435			err = -EINTR;
 436			goto done;
 437		}
 438	}
 439
 440	/* for unlimited number of responses we will use buffer with
 441	 * 255 entries
 442	 */
 443	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
 444
 445	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
 446	 * copy it to the user space.
 447	 */
 448	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
 449	if (!buf) {
 450		err = -ENOMEM;
 451		goto done;
 452	}
 453
 454	hci_dev_lock(hdev);
 455	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
 456	hci_dev_unlock(hdev);
 457
 458	BT_DBG("num_rsp %d", ir.num_rsp);
 459
 460	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
 461		ptr += sizeof(ir);
 462		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
 463				 ir.num_rsp))
 464			err = -EFAULT;
 465	} else
 466		err = -EFAULT;
 467
 468	kfree(buf);
 469
 470done:
 471	hci_dev_put(hdev);
 472	return err;
 473}
 474
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 475static int hci_dev_do_open(struct hci_dev *hdev)
 476{
 477	int ret = 0;
 478
 479	BT_DBG("%s %p", hdev->name, hdev);
 480
 481	hci_req_sync_lock(hdev);
 482
 483	ret = hci_dev_open_sync(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 485	hci_req_sync_unlock(hdev);
 486	return ret;
 487}
 488
 489/* ---- HCI ioctl helpers ---- */
 490
 491int hci_dev_open(__u16 dev)
 492{
 493	struct hci_dev *hdev;
 494	int err;
 495
 496	hdev = hci_dev_get(dev);
 497	if (!hdev)
 498		return -ENODEV;
 499
 500	/* Devices that are marked as unconfigured can only be powered
 501	 * up as user channel. Trying to bring them up as normal devices
 502	 * will result into a failure. Only user channel operation is
 503	 * possible.
 504	 *
 505	 * When this function is called for a user channel, the flag
 506	 * HCI_USER_CHANNEL will be set first before attempting to
 507	 * open the device.
 508	 */
 509	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
 510	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 511		err = -EOPNOTSUPP;
 512		goto done;
 513	}
 514
 515	/* We need to ensure that no other power on/off work is pending
 516	 * before proceeding to call hci_dev_do_open. This is
 517	 * particularly important if the setup procedure has not yet
 518	 * completed.
 519	 */
 520	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
 521		cancel_delayed_work(&hdev->power_off);
 522
 523	/* After this call it is guaranteed that the setup procedure
 524	 * has finished. This means that error conditions like RFKILL
 525	 * or no valid public or static random address apply.
 526	 */
 527	flush_workqueue(hdev->req_workqueue);
 528
 529	/* For controllers not using the management interface and that
 530	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
 531	 * so that pairing works for them. Once the management interface
 532	 * is in use this bit will be cleared again and userspace has
 533	 * to explicitly enable it.
 534	 */
 535	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
 536	    !hci_dev_test_flag(hdev, HCI_MGMT))
 537		hci_dev_set_flag(hdev, HCI_BONDABLE);
 538
 539	err = hci_dev_do_open(hdev);
 540
 541done:
 542	hci_dev_put(hdev);
 543	return err;
 544}
 545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 546int hci_dev_do_close(struct hci_dev *hdev)
 547{
 548	int err;
 549
 550	BT_DBG("%s %p", hdev->name, hdev);
 551
 
 
 
 
 
 
 
 
 
 
 
 552	hci_req_sync_lock(hdev);
 553
 554	err = hci_dev_close_sync(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 555
 556	hci_req_sync_unlock(hdev);
 557
 558	return err;
 
 559}
 560
 561int hci_dev_close(__u16 dev)
 562{
 563	struct hci_dev *hdev;
 564	int err;
 565
 566	hdev = hci_dev_get(dev);
 567	if (!hdev)
 568		return -ENODEV;
 569
 570	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 571		err = -EBUSY;
 572		goto done;
 573	}
 574
 575	cancel_work_sync(&hdev->power_on);
 576	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
 577		cancel_delayed_work(&hdev->power_off);
 578
 579	err = hci_dev_do_close(hdev);
 580
 581done:
 582	hci_dev_put(hdev);
 583	return err;
 584}
 585
 586static int hci_dev_do_reset(struct hci_dev *hdev)
 587{
 588	int ret;
 589
 590	BT_DBG("%s %p", hdev->name, hdev);
 591
 592	hci_req_sync_lock(hdev);
 593
 594	/* Drop queues */
 595	skb_queue_purge(&hdev->rx_q);
 596	skb_queue_purge(&hdev->cmd_q);
 597
 598	/* Cancel these to avoid queueing non-chained pending work */
 599	hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
 600	/* Wait for
 601	 *
 602	 *    if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
 603	 *        queue_delayed_work(&hdev->{cmd,ncmd}_timer)
 604	 *
 605	 * inside RCU section to see the flag or complete scheduling.
 606	 */
 607	synchronize_rcu();
 608	/* Explicitly cancel works in case scheduled after setting the flag. */
 609	cancel_delayed_work(&hdev->cmd_timer);
 610	cancel_delayed_work(&hdev->ncmd_timer);
 611
 612	/* Avoid potential lockdep warnings from the *_flush() calls by
 613	 * ensuring the workqueue is empty up front.
 614	 */
 615	drain_workqueue(hdev->workqueue);
 616
 617	hci_dev_lock(hdev);
 618	hci_inquiry_cache_flush(hdev);
 619	hci_conn_hash_flush(hdev);
 620	hci_dev_unlock(hdev);
 621
 622	if (hdev->flush)
 623		hdev->flush(hdev);
 624
 625	hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
 626
 627	atomic_set(&hdev->cmd_cnt, 1);
 628	hdev->acl_cnt = 0;
 629	hdev->sco_cnt = 0;
 630	hdev->le_cnt = 0;
 631	hdev->iso_cnt = 0;
 632
 633	ret = hci_reset_sync(hdev);
 634
 635	hci_req_sync_unlock(hdev);
 636	return ret;
 637}
 638
 639int hci_dev_reset(__u16 dev)
 640{
 641	struct hci_dev *hdev;
 642	int err;
 643
 644	hdev = hci_dev_get(dev);
 645	if (!hdev)
 646		return -ENODEV;
 647
 648	if (!test_bit(HCI_UP, &hdev->flags)) {
 649		err = -ENETDOWN;
 650		goto done;
 651	}
 652
 653	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 654		err = -EBUSY;
 655		goto done;
 656	}
 657
 658	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 659		err = -EOPNOTSUPP;
 660		goto done;
 661	}
 662
 663	err = hci_dev_do_reset(hdev);
 664
 665done:
 666	hci_dev_put(hdev);
 667	return err;
 668}
 669
 670int hci_dev_reset_stat(__u16 dev)
 671{
 672	struct hci_dev *hdev;
 673	int ret = 0;
 674
 675	hdev = hci_dev_get(dev);
 676	if (!hdev)
 677		return -ENODEV;
 678
 679	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 680		ret = -EBUSY;
 681		goto done;
 682	}
 683
 684	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 685		ret = -EOPNOTSUPP;
 686		goto done;
 687	}
 688
 689	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
 690
 691done:
 692	hci_dev_put(hdev);
 693	return ret;
 694}
 695
 696static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
 697{
 698	bool conn_changed, discov_changed;
 699
 700	BT_DBG("%s scan 0x%02x", hdev->name, scan);
 701
 702	if ((scan & SCAN_PAGE))
 703		conn_changed = !hci_dev_test_and_set_flag(hdev,
 704							  HCI_CONNECTABLE);
 705	else
 706		conn_changed = hci_dev_test_and_clear_flag(hdev,
 707							   HCI_CONNECTABLE);
 708
 709	if ((scan & SCAN_INQUIRY)) {
 710		discov_changed = !hci_dev_test_and_set_flag(hdev,
 711							    HCI_DISCOVERABLE);
 712	} else {
 713		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
 714		discov_changed = hci_dev_test_and_clear_flag(hdev,
 715							     HCI_DISCOVERABLE);
 716	}
 717
 718	if (!hci_dev_test_flag(hdev, HCI_MGMT))
 719		return;
 720
 721	if (conn_changed || discov_changed) {
 722		/* In case this was disabled through mgmt */
 723		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
 724
 725		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 726			hci_update_adv_data(hdev, hdev->cur_adv_instance);
 727
 728		mgmt_new_settings(hdev);
 729	}
 730}
 731
 732int hci_dev_cmd(unsigned int cmd, void __user *arg)
 733{
 734	struct hci_dev *hdev;
 735	struct hci_dev_req dr;
 736	int err = 0;
 737
 738	if (copy_from_user(&dr, arg, sizeof(dr)))
 739		return -EFAULT;
 740
 741	hdev = hci_dev_get(dr.dev_id);
 742	if (!hdev)
 743		return -ENODEV;
 744
 745	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 746		err = -EBUSY;
 747		goto done;
 748	}
 749
 750	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 751		err = -EOPNOTSUPP;
 752		goto done;
 753	}
 754
 755	if (hdev->dev_type != HCI_PRIMARY) {
 756		err = -EOPNOTSUPP;
 757		goto done;
 758	}
 759
 760	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 761		err = -EOPNOTSUPP;
 762		goto done;
 763	}
 764
 765	switch (cmd) {
 766	case HCISETAUTH:
 767		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
 768				   HCI_INIT_TIMEOUT, NULL);
 769		break;
 770
 771	case HCISETENCRYPT:
 772		if (!lmp_encrypt_capable(hdev)) {
 773			err = -EOPNOTSUPP;
 774			break;
 775		}
 776
 777		if (!test_bit(HCI_AUTH, &hdev->flags)) {
 778			/* Auth must be enabled first */
 779			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
 780					   HCI_INIT_TIMEOUT, NULL);
 781			if (err)
 782				break;
 783		}
 784
 785		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
 786				   HCI_INIT_TIMEOUT, NULL);
 787		break;
 788
 789	case HCISETSCAN:
 790		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
 791				   HCI_INIT_TIMEOUT, NULL);
 792
 793		/* Ensure that the connectable and discoverable states
 794		 * get correctly modified as this was a non-mgmt change.
 795		 */
 796		if (!err)
 797			hci_update_passive_scan_state(hdev, dr.dev_opt);
 798		break;
 799
 800	case HCISETLINKPOL:
 801		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
 802				   HCI_INIT_TIMEOUT, NULL);
 803		break;
 804
 805	case HCISETLINKMODE:
 806		hdev->link_mode = ((__u16) dr.dev_opt) &
 807					(HCI_LM_MASTER | HCI_LM_ACCEPT);
 808		break;
 809
 810	case HCISETPTYPE:
 811		if (hdev->pkt_type == (__u16) dr.dev_opt)
 812			break;
 813
 814		hdev->pkt_type = (__u16) dr.dev_opt;
 815		mgmt_phy_configuration_changed(hdev, NULL);
 816		break;
 817
 818	case HCISETACLMTU:
 819		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
 820		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
 821		break;
 822
 823	case HCISETSCOMTU:
 824		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
 825		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
 826		break;
 827
 828	default:
 829		err = -EINVAL;
 830		break;
 831	}
 832
 833done:
 834	hci_dev_put(hdev);
 835	return err;
 836}
 837
 838int hci_get_dev_list(void __user *arg)
 839{
 840	struct hci_dev *hdev;
 841	struct hci_dev_list_req *dl;
 842	struct hci_dev_req *dr;
 843	int n = 0, size, err;
 844	__u16 dev_num;
 845
 846	if (get_user(dev_num, (__u16 __user *) arg))
 847		return -EFAULT;
 848
 849	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
 850		return -EINVAL;
 851
 852	size = sizeof(*dl) + dev_num * sizeof(*dr);
 853
 854	dl = kzalloc(size, GFP_KERNEL);
 855	if (!dl)
 856		return -ENOMEM;
 857
 858	dr = dl->dev_req;
 859
 860	read_lock(&hci_dev_list_lock);
 861	list_for_each_entry(hdev, &hci_dev_list, list) {
 862		unsigned long flags = hdev->flags;
 863
 864		/* When the auto-off is configured it means the transport
 865		 * is running, but in that case still indicate that the
 866		 * device is actually down.
 867		 */
 868		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
 869			flags &= ~BIT(HCI_UP);
 870
 871		(dr + n)->dev_id  = hdev->id;
 872		(dr + n)->dev_opt = flags;
 873
 874		if (++n >= dev_num)
 875			break;
 876	}
 877	read_unlock(&hci_dev_list_lock);
 878
 879	dl->dev_num = n;
 880	size = sizeof(*dl) + n * sizeof(*dr);
 881
 882	err = copy_to_user(arg, dl, size);
 883	kfree(dl);
 884
 885	return err ? -EFAULT : 0;
 886}
 887
 888int hci_get_dev_info(void __user *arg)
 889{
 890	struct hci_dev *hdev;
 891	struct hci_dev_info di;
 892	unsigned long flags;
 893	int err = 0;
 894
 895	if (copy_from_user(&di, arg, sizeof(di)))
 896		return -EFAULT;
 897
 898	hdev = hci_dev_get(di.dev_id);
 899	if (!hdev)
 900		return -ENODEV;
 901
 902	/* When the auto-off is configured it means the transport
 903	 * is running, but in that case still indicate that the
 904	 * device is actually down.
 905	 */
 906	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
 907		flags = hdev->flags & ~BIT(HCI_UP);
 908	else
 909		flags = hdev->flags;
 910
 911	strcpy(di.name, hdev->name);
 912	di.bdaddr   = hdev->bdaddr;
 913	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
 914	di.flags    = flags;
 915	di.pkt_type = hdev->pkt_type;
 916	if (lmp_bredr_capable(hdev)) {
 917		di.acl_mtu  = hdev->acl_mtu;
 918		di.acl_pkts = hdev->acl_pkts;
 919		di.sco_mtu  = hdev->sco_mtu;
 920		di.sco_pkts = hdev->sco_pkts;
 921	} else {
 922		di.acl_mtu  = hdev->le_mtu;
 923		di.acl_pkts = hdev->le_pkts;
 924		di.sco_mtu  = 0;
 925		di.sco_pkts = 0;
 926	}
 927	di.link_policy = hdev->link_policy;
 928	di.link_mode   = hdev->link_mode;
 929
 930	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
 931	memcpy(&di.features, &hdev->features, sizeof(di.features));
 932
 933	if (copy_to_user(arg, &di, sizeof(di)))
 934		err = -EFAULT;
 935
 936	hci_dev_put(hdev);
 937
 938	return err;
 939}
 940
 941/* ---- Interface to HCI drivers ---- */
 942
 943static int hci_rfkill_set_block(void *data, bool blocked)
 944{
 945	struct hci_dev *hdev = data;
 946
 947	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
 948
 949	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
 950		return -EBUSY;
 951
 952	if (blocked) {
 953		hci_dev_set_flag(hdev, HCI_RFKILLED);
 954		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 955		    !hci_dev_test_flag(hdev, HCI_CONFIG))
 956			hci_dev_do_close(hdev);
 957	} else {
 958		hci_dev_clear_flag(hdev, HCI_RFKILLED);
 959	}
 960
 961	return 0;
 962}
 963
 964static const struct rfkill_ops hci_rfkill_ops = {
 965	.set_block = hci_rfkill_set_block,
 966};
 967
 968static void hci_power_on(struct work_struct *work)
 969{
 970	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
 971	int err;
 972
 973	BT_DBG("%s", hdev->name);
 974
 975	if (test_bit(HCI_UP, &hdev->flags) &&
 976	    hci_dev_test_flag(hdev, HCI_MGMT) &&
 977	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
 978		cancel_delayed_work(&hdev->power_off);
 979		err = hci_powered_update_sync(hdev);
 
 
 980		mgmt_power_on(hdev, err);
 981		return;
 982	}
 983
 984	err = hci_dev_do_open(hdev);
 985	if (err < 0) {
 986		hci_dev_lock(hdev);
 987		mgmt_set_powered_failed(hdev, err);
 988		hci_dev_unlock(hdev);
 989		return;
 990	}
 991
 992	/* During the HCI setup phase, a few error conditions are
 993	 * ignored and they need to be checked now. If they are still
 994	 * valid, it is important to turn the device back off.
 995	 */
 996	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
 997	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
 998	    (hdev->dev_type == HCI_PRIMARY &&
 999	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1000	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
1001		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
1002		hci_dev_do_close(hdev);
1003	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
1004		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
1005				   HCI_AUTO_OFF_TIMEOUT);
1006	}
1007
1008	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
1009		/* For unconfigured devices, set the HCI_RAW flag
1010		 * so that userspace can easily identify them.
1011		 */
1012		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1013			set_bit(HCI_RAW, &hdev->flags);
1014
1015		/* For fully configured devices, this will send
1016		 * the Index Added event. For unconfigured devices,
1017		 * it will send Unconfigued Index Added event.
1018		 *
1019		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
1020		 * and no event will be send.
1021		 */
1022		mgmt_index_added(hdev);
1023	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
1024		/* When the controller is now configured, then it
1025		 * is important to clear the HCI_RAW flag.
1026		 */
1027		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1028			clear_bit(HCI_RAW, &hdev->flags);
1029
1030		/* Powering on the controller with HCI_CONFIG set only
1031		 * happens with the transition from unconfigured to
1032		 * configured. This will send the Index Added event.
1033		 */
1034		mgmt_index_added(hdev);
1035	}
1036}
1037
1038static void hci_power_off(struct work_struct *work)
1039{
1040	struct hci_dev *hdev = container_of(work, struct hci_dev,
1041					    power_off.work);
1042
1043	BT_DBG("%s", hdev->name);
1044
1045	hci_dev_do_close(hdev);
1046}
1047
1048static void hci_error_reset(struct work_struct *work)
1049{
1050	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1051
1052	BT_DBG("%s", hdev->name);
1053
1054	if (hdev->hw_error)
1055		hdev->hw_error(hdev, hdev->hw_error_code);
1056	else
1057		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
1058
1059	if (hci_dev_do_close(hdev))
1060		return;
1061
1062	hci_dev_do_open(hdev);
1063}
1064
1065void hci_uuids_clear(struct hci_dev *hdev)
1066{
1067	struct bt_uuid *uuid, *tmp;
1068
1069	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1070		list_del(&uuid->list);
1071		kfree(uuid);
1072	}
1073}
1074
1075void hci_link_keys_clear(struct hci_dev *hdev)
1076{
1077	struct link_key *key;
1078
1079	list_for_each_entry(key, &hdev->link_keys, list) {
1080		list_del_rcu(&key->list);
1081		kfree_rcu(key, rcu);
1082	}
1083}
1084
1085void hci_smp_ltks_clear(struct hci_dev *hdev)
1086{
1087	struct smp_ltk *k;
1088
1089	list_for_each_entry(k, &hdev->long_term_keys, list) {
1090		list_del_rcu(&k->list);
1091		kfree_rcu(k, rcu);
1092	}
1093}
1094
1095void hci_smp_irks_clear(struct hci_dev *hdev)
1096{
1097	struct smp_irk *k;
1098
1099	list_for_each_entry(k, &hdev->identity_resolving_keys, list) {
1100		list_del_rcu(&k->list);
1101		kfree_rcu(k, rcu);
1102	}
1103}
1104
1105void hci_blocked_keys_clear(struct hci_dev *hdev)
1106{
1107	struct blocked_key *b;
1108
1109	list_for_each_entry(b, &hdev->blocked_keys, list) {
1110		list_del_rcu(&b->list);
1111		kfree_rcu(b, rcu);
1112	}
1113}
1114
1115bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1116{
1117	bool blocked = false;
1118	struct blocked_key *b;
1119
1120	rcu_read_lock();
1121	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1122		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1123			blocked = true;
1124			break;
1125		}
1126	}
1127
1128	rcu_read_unlock();
1129	return blocked;
1130}
1131
1132struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1133{
1134	struct link_key *k;
1135
1136	rcu_read_lock();
1137	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1138		if (bacmp(bdaddr, &k->bdaddr) == 0) {
1139			rcu_read_unlock();
1140
1141			if (hci_is_blocked_key(hdev,
1142					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
1143					       k->val)) {
1144				bt_dev_warn_ratelimited(hdev,
1145							"Link key blocked for %pMR",
1146							&k->bdaddr);
1147				return NULL;
1148			}
1149
1150			return k;
1151		}
1152	}
1153	rcu_read_unlock();
1154
1155	return NULL;
1156}
1157
1158static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1159			       u8 key_type, u8 old_key_type)
1160{
1161	/* Legacy key */
1162	if (key_type < 0x03)
1163		return true;
1164
1165	/* Debug keys are insecure so don't store them persistently */
1166	if (key_type == HCI_LK_DEBUG_COMBINATION)
1167		return false;
1168
1169	/* Changed combination key and there's no previous one */
1170	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1171		return false;
1172
1173	/* Security mode 3 case */
1174	if (!conn)
1175		return true;
1176
1177	/* BR/EDR key derived using SC from an LE link */
1178	if (conn->type == LE_LINK)
1179		return true;
1180
1181	/* Neither local nor remote side had no-bonding as requirement */
1182	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1183		return true;
1184
1185	/* Local side had dedicated bonding as requirement */
1186	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1187		return true;
1188
1189	/* Remote side had dedicated bonding as requirement */
1190	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1191		return true;
1192
1193	/* If none of the above criteria match, then don't store the key
1194	 * persistently */
1195	return false;
1196}
1197
1198static u8 ltk_role(u8 type)
1199{
1200	if (type == SMP_LTK)
1201		return HCI_ROLE_MASTER;
1202
1203	return HCI_ROLE_SLAVE;
1204}
1205
1206struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1207			     u8 addr_type, u8 role)
1208{
1209	struct smp_ltk *k;
1210
1211	rcu_read_lock();
1212	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1213		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1214			continue;
1215
1216		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1217			rcu_read_unlock();
1218
1219			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1220					       k->val)) {
1221				bt_dev_warn_ratelimited(hdev,
1222							"LTK blocked for %pMR",
1223							&k->bdaddr);
1224				return NULL;
1225			}
1226
1227			return k;
1228		}
1229	}
1230	rcu_read_unlock();
1231
1232	return NULL;
1233}
1234
1235struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1236{
1237	struct smp_irk *irk_to_return = NULL;
1238	struct smp_irk *irk;
1239
1240	rcu_read_lock();
1241	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1242		if (!bacmp(&irk->rpa, rpa)) {
1243			irk_to_return = irk;
1244			goto done;
1245		}
1246	}
1247
1248	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1249		if (smp_irk_matches(hdev, irk->val, rpa)) {
1250			bacpy(&irk->rpa, rpa);
1251			irk_to_return = irk;
1252			goto done;
1253		}
1254	}
1255
1256done:
1257	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1258						irk_to_return->val)) {
1259		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1260					&irk_to_return->bdaddr);
1261		irk_to_return = NULL;
1262	}
1263
1264	rcu_read_unlock();
1265
1266	return irk_to_return;
1267}
1268
1269struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1270				     u8 addr_type)
1271{
1272	struct smp_irk *irk_to_return = NULL;
1273	struct smp_irk *irk;
1274
1275	/* Identity Address must be public or static random */
1276	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1277		return NULL;
1278
1279	rcu_read_lock();
1280	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1281		if (addr_type == irk->addr_type &&
1282		    bacmp(bdaddr, &irk->bdaddr) == 0) {
1283			irk_to_return = irk;
1284			goto done;
1285		}
1286	}
1287
1288done:
1289
1290	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1291						irk_to_return->val)) {
1292		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1293					&irk_to_return->bdaddr);
1294		irk_to_return = NULL;
1295	}
1296
1297	rcu_read_unlock();
1298
1299	return irk_to_return;
1300}
1301
1302struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1303				  bdaddr_t *bdaddr, u8 *val, u8 type,
1304				  u8 pin_len, bool *persistent)
1305{
1306	struct link_key *key, *old_key;
1307	u8 old_key_type;
1308
1309	old_key = hci_find_link_key(hdev, bdaddr);
1310	if (old_key) {
1311		old_key_type = old_key->type;
1312		key = old_key;
1313	} else {
1314		old_key_type = conn ? conn->key_type : 0xff;
1315		key = kzalloc(sizeof(*key), GFP_KERNEL);
1316		if (!key)
1317			return NULL;
1318		list_add_rcu(&key->list, &hdev->link_keys);
1319	}
1320
1321	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1322
1323	/* Some buggy controller combinations generate a changed
1324	 * combination key for legacy pairing even when there's no
1325	 * previous key */
1326	if (type == HCI_LK_CHANGED_COMBINATION &&
1327	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1328		type = HCI_LK_COMBINATION;
1329		if (conn)
1330			conn->key_type = type;
1331	}
1332
1333	bacpy(&key->bdaddr, bdaddr);
1334	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1335	key->pin_len = pin_len;
1336
1337	if (type == HCI_LK_CHANGED_COMBINATION)
1338		key->type = old_key_type;
1339	else
1340		key->type = type;
1341
1342	if (persistent)
1343		*persistent = hci_persistent_key(hdev, conn, type,
1344						 old_key_type);
1345
1346	return key;
1347}
1348
1349struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1350			    u8 addr_type, u8 type, u8 authenticated,
1351			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1352{
1353	struct smp_ltk *key, *old_key;
1354	u8 role = ltk_role(type);
1355
1356	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1357	if (old_key)
1358		key = old_key;
1359	else {
1360		key = kzalloc(sizeof(*key), GFP_KERNEL);
1361		if (!key)
1362			return NULL;
1363		list_add_rcu(&key->list, &hdev->long_term_keys);
1364	}
1365
1366	bacpy(&key->bdaddr, bdaddr);
1367	key->bdaddr_type = addr_type;
1368	memcpy(key->val, tk, sizeof(key->val));
1369	key->authenticated = authenticated;
1370	key->ediv = ediv;
1371	key->rand = rand;
1372	key->enc_size = enc_size;
1373	key->type = type;
1374
1375	return key;
1376}
1377
1378struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1379			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
1380{
1381	struct smp_irk *irk;
1382
1383	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1384	if (!irk) {
1385		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1386		if (!irk)
1387			return NULL;
1388
1389		bacpy(&irk->bdaddr, bdaddr);
1390		irk->addr_type = addr_type;
1391
1392		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1393	}
1394
1395	memcpy(irk->val, val, 16);
1396	bacpy(&irk->rpa, rpa);
1397
1398	return irk;
1399}
1400
1401int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1402{
1403	struct link_key *key;
1404
1405	key = hci_find_link_key(hdev, bdaddr);
1406	if (!key)
1407		return -ENOENT;
1408
1409	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1410
1411	list_del_rcu(&key->list);
1412	kfree_rcu(key, rcu);
1413
1414	return 0;
1415}
1416
1417int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1418{
1419	struct smp_ltk *k;
1420	int removed = 0;
1421
1422	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1423		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1424			continue;
1425
1426		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1427
1428		list_del_rcu(&k->list);
1429		kfree_rcu(k, rcu);
1430		removed++;
1431	}
1432
1433	return removed ? 0 : -ENOENT;
1434}
1435
1436void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1437{
1438	struct smp_irk *k;
1439
1440	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
1441		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1442			continue;
1443
1444		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1445
1446		list_del_rcu(&k->list);
1447		kfree_rcu(k, rcu);
1448	}
1449}
1450
1451bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1452{
1453	struct smp_ltk *k;
1454	struct smp_irk *irk;
1455	u8 addr_type;
1456
1457	if (type == BDADDR_BREDR) {
1458		if (hci_find_link_key(hdev, bdaddr))
1459			return true;
1460		return false;
1461	}
1462
1463	/* Convert to HCI addr type which struct smp_ltk uses */
1464	if (type == BDADDR_LE_PUBLIC)
1465		addr_type = ADDR_LE_DEV_PUBLIC;
1466	else
1467		addr_type = ADDR_LE_DEV_RANDOM;
1468
1469	irk = hci_get_irk(hdev, bdaddr, addr_type);
1470	if (irk) {
1471		bdaddr = &irk->bdaddr;
1472		addr_type = irk->addr_type;
1473	}
1474
1475	rcu_read_lock();
1476	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1477		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1478			rcu_read_unlock();
1479			return true;
1480		}
1481	}
1482	rcu_read_unlock();
1483
1484	return false;
1485}
1486
1487/* HCI command timer function */
1488static void hci_cmd_timeout(struct work_struct *work)
1489{
1490	struct hci_dev *hdev = container_of(work, struct hci_dev,
1491					    cmd_timer.work);
1492
1493	if (hdev->sent_cmd) {
1494		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
1495		u16 opcode = __le16_to_cpu(sent->opcode);
1496
1497		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1498	} else {
1499		bt_dev_err(hdev, "command tx timeout");
1500	}
1501
1502	if (hdev->cmd_timeout)
1503		hdev->cmd_timeout(hdev);
1504
1505	atomic_set(&hdev->cmd_cnt, 1);
1506	queue_work(hdev->workqueue, &hdev->cmd_work);
1507}
1508
1509/* HCI ncmd timer function */
1510static void hci_ncmd_timeout(struct work_struct *work)
1511{
1512	struct hci_dev *hdev = container_of(work, struct hci_dev,
1513					    ncmd_timer.work);
1514
1515	bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1516
1517	/* During HCI_INIT phase no events can be injected if the ncmd timer
1518	 * triggers since the procedure has its own timeout handling.
1519	 */
1520	if (test_bit(HCI_INIT, &hdev->flags))
1521		return;
1522
1523	/* This is an irrecoverable state, inject hardware error event */
1524	hci_reset_dev(hdev);
1525}
1526
1527struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1528					  bdaddr_t *bdaddr, u8 bdaddr_type)
1529{
1530	struct oob_data *data;
1531
1532	list_for_each_entry(data, &hdev->remote_oob_data, list) {
1533		if (bacmp(bdaddr, &data->bdaddr) != 0)
1534			continue;
1535		if (data->bdaddr_type != bdaddr_type)
1536			continue;
1537		return data;
1538	}
1539
1540	return NULL;
1541}
1542
1543int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1544			       u8 bdaddr_type)
1545{
1546	struct oob_data *data;
1547
1548	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1549	if (!data)
1550		return -ENOENT;
1551
1552	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1553
1554	list_del(&data->list);
1555	kfree(data);
1556
1557	return 0;
1558}
1559
1560void hci_remote_oob_data_clear(struct hci_dev *hdev)
1561{
1562	struct oob_data *data, *n;
1563
1564	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1565		list_del(&data->list);
1566		kfree(data);
1567	}
1568}
1569
1570int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1571			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
1572			    u8 *hash256, u8 *rand256)
1573{
1574	struct oob_data *data;
1575
1576	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1577	if (!data) {
1578		data = kmalloc(sizeof(*data), GFP_KERNEL);
1579		if (!data)
1580			return -ENOMEM;
1581
1582		bacpy(&data->bdaddr, bdaddr);
1583		data->bdaddr_type = bdaddr_type;
1584		list_add(&data->list, &hdev->remote_oob_data);
1585	}
1586
1587	if (hash192 && rand192) {
1588		memcpy(data->hash192, hash192, sizeof(data->hash192));
1589		memcpy(data->rand192, rand192, sizeof(data->rand192));
1590		if (hash256 && rand256)
1591			data->present = 0x03;
1592	} else {
1593		memset(data->hash192, 0, sizeof(data->hash192));
1594		memset(data->rand192, 0, sizeof(data->rand192));
1595		if (hash256 && rand256)
1596			data->present = 0x02;
1597		else
1598			data->present = 0x00;
1599	}
1600
1601	if (hash256 && rand256) {
1602		memcpy(data->hash256, hash256, sizeof(data->hash256));
1603		memcpy(data->rand256, rand256, sizeof(data->rand256));
1604	} else {
1605		memset(data->hash256, 0, sizeof(data->hash256));
1606		memset(data->rand256, 0, sizeof(data->rand256));
1607		if (hash192 && rand192)
1608			data->present = 0x01;
1609	}
1610
1611	BT_DBG("%s for %pMR", hdev->name, bdaddr);
1612
1613	return 0;
1614}
1615
1616/* This function requires the caller holds hdev->lock */
1617struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1618{
1619	struct adv_info *adv_instance;
1620
1621	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1622		if (adv_instance->instance == instance)
1623			return adv_instance;
1624	}
1625
1626	return NULL;
1627}
1628
1629/* This function requires the caller holds hdev->lock */
1630struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1631{
1632	struct adv_info *cur_instance;
1633
1634	cur_instance = hci_find_adv_instance(hdev, instance);
1635	if (!cur_instance)
1636		return NULL;
1637
1638	if (cur_instance == list_last_entry(&hdev->adv_instances,
1639					    struct adv_info, list))
1640		return list_first_entry(&hdev->adv_instances,
1641						 struct adv_info, list);
1642	else
1643		return list_next_entry(cur_instance, list);
1644}
1645
1646/* This function requires the caller holds hdev->lock */
1647int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1648{
1649	struct adv_info *adv_instance;
1650
1651	adv_instance = hci_find_adv_instance(hdev, instance);
1652	if (!adv_instance)
1653		return -ENOENT;
1654
1655	BT_DBG("%s removing %dMR", hdev->name, instance);
1656
1657	if (hdev->cur_adv_instance == instance) {
1658		if (hdev->adv_instance_timeout) {
1659			cancel_delayed_work(&hdev->adv_instance_expire);
1660			hdev->adv_instance_timeout = 0;
1661		}
1662		hdev->cur_adv_instance = 0x00;
1663	}
1664
1665	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1666
1667	list_del(&adv_instance->list);
1668	kfree(adv_instance);
1669
1670	hdev->adv_instance_cnt--;
1671
1672	return 0;
1673}
1674
1675void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1676{
1677	struct adv_info *adv_instance, *n;
1678
1679	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1680		adv_instance->rpa_expired = rpa_expired;
1681}
1682
1683/* This function requires the caller holds hdev->lock */
1684void hci_adv_instances_clear(struct hci_dev *hdev)
1685{
1686	struct adv_info *adv_instance, *n;
1687
1688	if (hdev->adv_instance_timeout) {
1689		cancel_delayed_work(&hdev->adv_instance_expire);
1690		hdev->adv_instance_timeout = 0;
1691	}
1692
1693	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1694		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1695		list_del(&adv_instance->list);
1696		kfree(adv_instance);
1697	}
1698
1699	hdev->adv_instance_cnt = 0;
1700	hdev->cur_adv_instance = 0x00;
1701}
1702
1703static void adv_instance_rpa_expired(struct work_struct *work)
1704{
1705	struct adv_info *adv_instance = container_of(work, struct adv_info,
1706						     rpa_expired_cb.work);
1707
1708	BT_DBG("");
1709
1710	adv_instance->rpa_expired = true;
1711}
1712
1713/* This function requires the caller holds hdev->lock */
1714struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1715				      u32 flags, u16 adv_data_len, u8 *adv_data,
1716				      u16 scan_rsp_len, u8 *scan_rsp_data,
1717				      u16 timeout, u16 duration, s8 tx_power,
1718				      u32 min_interval, u32 max_interval,
1719				      u8 mesh_handle)
1720{
1721	struct adv_info *adv;
1722
1723	adv = hci_find_adv_instance(hdev, instance);
1724	if (adv) {
1725		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1726		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1727		memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1728	} else {
1729		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1730		    instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1731			return ERR_PTR(-EOVERFLOW);
 
 
 
 
1732
1733		adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1734		if (!adv)
1735			return ERR_PTR(-ENOMEM);
1736
1737		adv->pending = true;
1738		adv->instance = instance;
1739		list_add(&adv->list, &hdev->adv_instances);
1740		hdev->adv_instance_cnt++;
1741	}
1742
1743	adv->flags = flags;
1744	adv->min_interval = min_interval;
1745	adv->max_interval = max_interval;
1746	adv->tx_power = tx_power;
1747	/* Defining a mesh_handle changes the timing units to ms,
1748	 * rather than seconds, and ties the instance to the requested
1749	 * mesh_tx queue.
1750	 */
1751	adv->mesh = mesh_handle;
1752
1753	hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1754				  scan_rsp_len, scan_rsp_data);
1755
1756	adv->timeout = timeout;
1757	adv->remaining_time = timeout;
1758
1759	if (duration == 0)
1760		adv->duration = hdev->def_multi_adv_rotation_duration;
1761	else
1762		adv->duration = duration;
 
 
1763
1764	INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
 
1765
1766	BT_DBG("%s for %dMR", hdev->name, instance);
1767
1768	return adv;
1769}
1770
1771/* This function requires the caller holds hdev->lock */
1772struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1773				      u32 flags, u8 data_len, u8 *data,
1774				      u32 min_interval, u32 max_interval)
1775{
1776	struct adv_info *adv;
1777
1778	adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1779				   0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1780				   min_interval, max_interval, 0);
1781	if (IS_ERR(adv))
1782		return adv;
1783
1784	adv->periodic = true;
1785	adv->per_adv_data_len = data_len;
1786
1787	if (data)
1788		memcpy(adv->per_adv_data, data, data_len);
1789
1790	return adv;
1791}
1792
1793/* This function requires the caller holds hdev->lock */
1794int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1795			      u16 adv_data_len, u8 *adv_data,
1796			      u16 scan_rsp_len, u8 *scan_rsp_data)
1797{
1798	struct adv_info *adv;
1799
1800	adv = hci_find_adv_instance(hdev, instance);
1801
1802	/* If advertisement doesn't exist, we can't modify its data */
1803	if (!adv)
1804		return -ENOENT;
1805
1806	if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1807		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1808		memcpy(adv->adv_data, adv_data, adv_data_len);
1809		adv->adv_data_len = adv_data_len;
1810		adv->adv_data_changed = true;
1811	}
1812
1813	if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1814		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1815		memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1816		adv->scan_rsp_len = scan_rsp_len;
1817		adv->scan_rsp_changed = true;
1818	}
1819
1820	/* Mark as changed if there are flags which would affect it */
1821	if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1822	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1823		adv->scan_rsp_changed = true;
1824
1825	return 0;
1826}
1827
1828/* This function requires the caller holds hdev->lock */
1829u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1830{
1831	u32 flags;
1832	struct adv_info *adv;
1833
1834	if (instance == 0x00) {
1835		/* Instance 0 always manages the "Tx Power" and "Flags"
1836		 * fields
1837		 */
1838		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1839
1840		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1841		 * corresponds to the "connectable" instance flag.
1842		 */
1843		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1844			flags |= MGMT_ADV_FLAG_CONNECTABLE;
1845
1846		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1847			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1848		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1849			flags |= MGMT_ADV_FLAG_DISCOV;
1850
1851		return flags;
1852	}
1853
1854	adv = hci_find_adv_instance(hdev, instance);
1855
1856	/* Return 0 when we got an invalid instance identifier. */
1857	if (!adv)
1858		return 0;
1859
1860	return adv->flags;
1861}
1862
1863bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1864{
1865	struct adv_info *adv;
1866
1867	/* Instance 0x00 always set local name */
1868	if (instance == 0x00)
1869		return true;
1870
1871	adv = hci_find_adv_instance(hdev, instance);
1872	if (!adv)
1873		return false;
1874
1875	if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1876	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1877		return true;
1878
1879	return adv->scan_rsp_len ? true : false;
1880}
1881
1882/* This function requires the caller holds hdev->lock */
1883void hci_adv_monitors_clear(struct hci_dev *hdev)
1884{
1885	struct adv_monitor *monitor;
1886	int handle;
1887
1888	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1889		hci_free_adv_monitor(hdev, monitor);
1890
1891	idr_destroy(&hdev->adv_monitors_idr);
1892}
1893
1894/* Frees the monitor structure and do some bookkeepings.
1895 * This function requires the caller holds hdev->lock.
1896 */
1897void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1898{
1899	struct adv_pattern *pattern;
1900	struct adv_pattern *tmp;
1901
1902	if (!monitor)
1903		return;
1904
1905	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1906		list_del(&pattern->list);
1907		kfree(pattern);
1908	}
1909
1910	if (monitor->handle)
1911		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1912
1913	if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1914		hdev->adv_monitors_cnt--;
1915		mgmt_adv_monitor_removed(hdev, monitor->handle);
1916	}
1917
1918	kfree(monitor);
1919}
1920
1921/* Assigns handle to a monitor, and if offloading is supported and power is on,
1922 * also attempts to forward the request to the controller.
1923 * This function requires the caller holds hci_req_sync_lock.
1924 */
1925int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1926{
1927	int min, max, handle;
1928	int status = 0;
1929
1930	if (!monitor)
1931		return -EINVAL;
1932
1933	hci_dev_lock(hdev);
1934
1935	min = HCI_MIN_ADV_MONITOR_HANDLE;
1936	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1937	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1938			   GFP_KERNEL);
1939
1940	hci_dev_unlock(hdev);
1941
1942	if (handle < 0)
1943		return handle;
1944
1945	monitor->handle = handle;
1946
1947	if (!hdev_is_powered(hdev))
1948		return status;
1949
1950	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1951	case HCI_ADV_MONITOR_EXT_NONE:
1952		bt_dev_dbg(hdev, "%s add monitor %d status %d", hdev->name,
1953			   monitor->handle, status);
1954		/* Message was not forwarded to controller - not an error */
1955		break;
1956
1957	case HCI_ADV_MONITOR_EXT_MSFT:
1958		status = msft_add_monitor_pattern(hdev, monitor);
1959		bt_dev_dbg(hdev, "%s add monitor %d msft status %d", hdev->name,
1960			   monitor->handle, status);
1961		break;
1962	}
1963
1964	return status;
1965}
1966
1967/* Attempts to tell the controller and free the monitor. If somehow the
1968 * controller doesn't have a corresponding handle, remove anyway.
1969 * This function requires the caller holds hci_req_sync_lock.
1970 */
1971static int hci_remove_adv_monitor(struct hci_dev *hdev,
1972				  struct adv_monitor *monitor)
1973{
1974	int status = 0;
1975
1976	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1977	case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1978		bt_dev_dbg(hdev, "%s remove monitor %d status %d", hdev->name,
1979			   monitor->handle, status);
1980		goto free_monitor;
1981
1982	case HCI_ADV_MONITOR_EXT_MSFT:
1983		status = msft_remove_monitor(hdev, monitor);
1984		bt_dev_dbg(hdev, "%s remove monitor %d msft status %d",
1985			   hdev->name, monitor->handle, status);
1986		break;
1987	}
1988
1989	/* In case no matching handle registered, just free the monitor */
1990	if (status == -ENOENT)
1991		goto free_monitor;
1992
1993	return status;
1994
1995free_monitor:
1996	if (status == -ENOENT)
1997		bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
1998			    monitor->handle);
1999	hci_free_adv_monitor(hdev, monitor);
2000
2001	return status;
2002}
2003
2004/* This function requires the caller holds hci_req_sync_lock */
2005int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
2006{
2007	struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
2008
2009	if (!monitor)
2010		return -EINVAL;
2011
2012	return hci_remove_adv_monitor(hdev, monitor);
2013}
2014
2015/* This function requires the caller holds hci_req_sync_lock */
2016int hci_remove_all_adv_monitor(struct hci_dev *hdev)
2017{
2018	struct adv_monitor *monitor;
2019	int idr_next_id = 0;
2020	int status = 0;
2021
2022	while (1) {
2023		monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
2024		if (!monitor)
2025			break;
2026
2027		status = hci_remove_adv_monitor(hdev, monitor);
2028		if (status)
2029			return status;
2030
2031		idr_next_id++;
2032	}
2033
2034	return status;
2035}
2036
2037/* This function requires the caller holds hdev->lock */
2038bool hci_is_adv_monitoring(struct hci_dev *hdev)
2039{
2040	return !idr_is_empty(&hdev->adv_monitors_idr);
2041}
2042
2043int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2044{
2045	if (msft_monitor_supported(hdev))
2046		return HCI_ADV_MONITOR_EXT_MSFT;
2047
2048	return HCI_ADV_MONITOR_EXT_NONE;
2049}
2050
2051struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2052					 bdaddr_t *bdaddr, u8 type)
2053{
2054	struct bdaddr_list *b;
2055
2056	list_for_each_entry(b, bdaddr_list, list) {
2057		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2058			return b;
2059	}
2060
2061	return NULL;
2062}
2063
2064struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2065				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2066				u8 type)
2067{
2068	struct bdaddr_list_with_irk *b;
2069
2070	list_for_each_entry(b, bdaddr_list, list) {
2071		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2072			return b;
2073	}
2074
2075	return NULL;
2076}
2077
2078struct bdaddr_list_with_flags *
2079hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2080				  bdaddr_t *bdaddr, u8 type)
2081{
2082	struct bdaddr_list_with_flags *b;
2083
2084	list_for_each_entry(b, bdaddr_list, list) {
2085		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2086			return b;
2087	}
2088
2089	return NULL;
2090}
2091
2092void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2093{
2094	struct bdaddr_list *b, *n;
2095
2096	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2097		list_del(&b->list);
2098		kfree(b);
2099	}
2100}
2101
2102int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2103{
2104	struct bdaddr_list *entry;
2105
2106	if (!bacmp(bdaddr, BDADDR_ANY))
2107		return -EBADF;
2108
2109	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2110		return -EEXIST;
2111
2112	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2113	if (!entry)
2114		return -ENOMEM;
2115
2116	bacpy(&entry->bdaddr, bdaddr);
2117	entry->bdaddr_type = type;
2118
2119	list_add(&entry->list, list);
2120
2121	return 0;
2122}
2123
2124int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2125					u8 type, u8 *peer_irk, u8 *local_irk)
2126{
2127	struct bdaddr_list_with_irk *entry;
2128
2129	if (!bacmp(bdaddr, BDADDR_ANY))
2130		return -EBADF;
2131
2132	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2133		return -EEXIST;
2134
2135	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2136	if (!entry)
2137		return -ENOMEM;
2138
2139	bacpy(&entry->bdaddr, bdaddr);
2140	entry->bdaddr_type = type;
2141
2142	if (peer_irk)
2143		memcpy(entry->peer_irk, peer_irk, 16);
2144
2145	if (local_irk)
2146		memcpy(entry->local_irk, local_irk, 16);
2147
2148	list_add(&entry->list, list);
2149
2150	return 0;
2151}
2152
2153int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2154				   u8 type, u32 flags)
2155{
2156	struct bdaddr_list_with_flags *entry;
2157
2158	if (!bacmp(bdaddr, BDADDR_ANY))
2159		return -EBADF;
2160
2161	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2162		return -EEXIST;
2163
2164	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2165	if (!entry)
2166		return -ENOMEM;
2167
2168	bacpy(&entry->bdaddr, bdaddr);
2169	entry->bdaddr_type = type;
2170	entry->flags = flags;
2171
2172	list_add(&entry->list, list);
2173
2174	return 0;
2175}
2176
2177int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2178{
2179	struct bdaddr_list *entry;
2180
2181	if (!bacmp(bdaddr, BDADDR_ANY)) {
2182		hci_bdaddr_list_clear(list);
2183		return 0;
2184	}
2185
2186	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2187	if (!entry)
2188		return -ENOENT;
2189
2190	list_del(&entry->list);
2191	kfree(entry);
2192
2193	return 0;
2194}
2195
2196int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2197							u8 type)
2198{
2199	struct bdaddr_list_with_irk *entry;
2200
2201	if (!bacmp(bdaddr, BDADDR_ANY)) {
2202		hci_bdaddr_list_clear(list);
2203		return 0;
2204	}
2205
2206	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2207	if (!entry)
2208		return -ENOENT;
2209
2210	list_del(&entry->list);
2211	kfree(entry);
2212
2213	return 0;
2214}
2215
2216int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2217				   u8 type)
2218{
2219	struct bdaddr_list_with_flags *entry;
2220
2221	if (!bacmp(bdaddr, BDADDR_ANY)) {
2222		hci_bdaddr_list_clear(list);
2223		return 0;
2224	}
2225
2226	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2227	if (!entry)
2228		return -ENOENT;
2229
2230	list_del(&entry->list);
2231	kfree(entry);
2232
2233	return 0;
2234}
2235
2236/* This function requires the caller holds hdev->lock */
2237struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2238					       bdaddr_t *addr, u8 addr_type)
2239{
2240	struct hci_conn_params *params;
2241
2242	list_for_each_entry(params, &hdev->le_conn_params, list) {
2243		if (bacmp(&params->addr, addr) == 0 &&
2244		    params->addr_type == addr_type) {
2245			return params;
2246		}
2247	}
2248
2249	return NULL;
2250}
2251
2252/* This function requires the caller holds hdev->lock */
2253struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2254						  bdaddr_t *addr, u8 addr_type)
2255{
2256	struct hci_conn_params *param;
2257
2258	list_for_each_entry(param, list, action) {
2259		if (bacmp(&param->addr, addr) == 0 &&
2260		    param->addr_type == addr_type)
2261			return param;
2262	}
2263
2264	return NULL;
2265}
2266
2267/* This function requires the caller holds hdev->lock */
2268struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2269					    bdaddr_t *addr, u8 addr_type)
2270{
2271	struct hci_conn_params *params;
2272
2273	params = hci_conn_params_lookup(hdev, addr, addr_type);
2274	if (params)
2275		return params;
2276
2277	params = kzalloc(sizeof(*params), GFP_KERNEL);
2278	if (!params) {
2279		bt_dev_err(hdev, "out of memory");
2280		return NULL;
2281	}
2282
2283	bacpy(&params->addr, addr);
2284	params->addr_type = addr_type;
2285
2286	list_add(&params->list, &hdev->le_conn_params);
2287	INIT_LIST_HEAD(&params->action);
2288
2289	params->conn_min_interval = hdev->le_conn_min_interval;
2290	params->conn_max_interval = hdev->le_conn_max_interval;
2291	params->conn_latency = hdev->le_conn_latency;
2292	params->supervision_timeout = hdev->le_supv_timeout;
2293	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2294
2295	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2296
2297	return params;
2298}
2299
2300static void hci_conn_params_free(struct hci_conn_params *params)
2301{
2302	if (params->conn) {
2303		hci_conn_drop(params->conn);
2304		hci_conn_put(params->conn);
2305	}
2306
2307	list_del(&params->action);
2308	list_del(&params->list);
2309	kfree(params);
2310}
2311
2312/* This function requires the caller holds hdev->lock */
2313void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2314{
2315	struct hci_conn_params *params;
2316
2317	params = hci_conn_params_lookup(hdev, addr, addr_type);
2318	if (!params)
2319		return;
2320
2321	hci_conn_params_free(params);
2322
2323	hci_update_passive_scan(hdev);
2324
2325	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2326}
2327
2328/* This function requires the caller holds hdev->lock */
2329void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2330{
2331	struct hci_conn_params *params, *tmp;
2332
2333	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2334		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2335			continue;
2336
2337		/* If trying to establish one time connection to disabled
2338		 * device, leave the params, but mark them as just once.
2339		 */
2340		if (params->explicit_connect) {
2341			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2342			continue;
2343		}
2344
2345		list_del(&params->list);
2346		kfree(params);
2347	}
2348
2349	BT_DBG("All LE disabled connection parameters were removed");
2350}
2351
2352/* This function requires the caller holds hdev->lock */
2353static void hci_conn_params_clear_all(struct hci_dev *hdev)
2354{
2355	struct hci_conn_params *params, *tmp;
2356
2357	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2358		hci_conn_params_free(params);
2359
2360	BT_DBG("All LE connection parameters were removed");
2361}
2362
2363/* Copy the Identity Address of the controller.
2364 *
2365 * If the controller has a public BD_ADDR, then by default use that one.
2366 * If this is a LE only controller without a public address, default to
2367 * the static random address.
2368 *
2369 * For debugging purposes it is possible to force controllers with a
2370 * public address to use the static random address instead.
2371 *
2372 * In case BR/EDR has been disabled on a dual-mode controller and
2373 * userspace has configured a static address, then that address
2374 * becomes the identity address instead of the public BR/EDR address.
2375 */
2376void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2377			       u8 *bdaddr_type)
2378{
2379	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2380	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2381	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2382	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2383		bacpy(bdaddr, &hdev->static_addr);
2384		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2385	} else {
2386		bacpy(bdaddr, &hdev->bdaddr);
2387		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2388	}
2389}
2390
2391static void hci_clear_wake_reason(struct hci_dev *hdev)
2392{
2393	hci_dev_lock(hdev);
2394
2395	hdev->wake_reason = 0;
2396	bacpy(&hdev->wake_addr, BDADDR_ANY);
2397	hdev->wake_addr_type = 0;
2398
2399	hci_dev_unlock(hdev);
2400}
2401
2402static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2403				void *data)
2404{
2405	struct hci_dev *hdev =
2406		container_of(nb, struct hci_dev, suspend_notifier);
2407	int ret = 0;
2408
2409	/* Userspace has full control of this device. Do nothing. */
2410	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2411		return NOTIFY_DONE;
2412
2413	if (action == PM_SUSPEND_PREPARE)
2414		ret = hci_suspend_dev(hdev);
2415	else if (action == PM_POST_SUSPEND)
2416		ret = hci_resume_dev(hdev);
2417
2418	if (ret)
2419		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2420			   action, ret);
2421
2422	return NOTIFY_DONE;
2423}
2424
2425/* Alloc HCI device */
2426struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2427{
2428	struct hci_dev *hdev;
2429	unsigned int alloc_size;
2430
2431	alloc_size = sizeof(*hdev);
2432	if (sizeof_priv) {
2433		/* Fixme: May need ALIGN-ment? */
2434		alloc_size += sizeof_priv;
2435	}
2436
2437	hdev = kzalloc(alloc_size, GFP_KERNEL);
2438	if (!hdev)
2439		return NULL;
2440
2441	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2442	hdev->esco_type = (ESCO_HV1);
2443	hdev->link_mode = (HCI_LM_ACCEPT);
2444	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2445	hdev->io_capability = 0x03;	/* No Input No Output */
2446	hdev->manufacturer = 0xffff;	/* Default to internal use */
2447	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2448	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2449	hdev->adv_instance_cnt = 0;
2450	hdev->cur_adv_instance = 0x00;
2451	hdev->adv_instance_timeout = 0;
2452
2453	hdev->advmon_allowlist_duration = 300;
2454	hdev->advmon_no_filter_duration = 500;
2455	hdev->enable_advmon_interleave_scan = 0x00;	/* Default to disable */
2456
2457	hdev->sniff_max_interval = 800;
2458	hdev->sniff_min_interval = 80;
2459
2460	hdev->le_adv_channel_map = 0x07;
2461	hdev->le_adv_min_interval = 0x0800;
2462	hdev->le_adv_max_interval = 0x0800;
2463	hdev->le_scan_interval = 0x0060;
2464	hdev->le_scan_window = 0x0030;
2465	hdev->le_scan_int_suspend = 0x0400;
2466	hdev->le_scan_window_suspend = 0x0012;
2467	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2468	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2469	hdev->le_scan_int_adv_monitor = 0x0060;
2470	hdev->le_scan_window_adv_monitor = 0x0030;
2471	hdev->le_scan_int_connect = 0x0060;
2472	hdev->le_scan_window_connect = 0x0060;
2473	hdev->le_conn_min_interval = 0x0018;
2474	hdev->le_conn_max_interval = 0x0028;
2475	hdev->le_conn_latency = 0x0000;
2476	hdev->le_supv_timeout = 0x002a;
2477	hdev->le_def_tx_len = 0x001b;
2478	hdev->le_def_tx_time = 0x0148;
2479	hdev->le_max_tx_len = 0x001b;
2480	hdev->le_max_tx_time = 0x0148;
2481	hdev->le_max_rx_len = 0x001b;
2482	hdev->le_max_rx_time = 0x0148;
2483	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2484	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2485	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2486	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2487	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2488	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2489	hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
2490	hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2491	hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2492
2493	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2494	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2495	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2496	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2497	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2498	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2499
2500	/* default 1.28 sec page scan */
2501	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2502	hdev->def_page_scan_int = 0x0800;
2503	hdev->def_page_scan_window = 0x0012;
2504
2505	mutex_init(&hdev->lock);
2506	mutex_init(&hdev->req_lock);
2507
2508	INIT_LIST_HEAD(&hdev->mesh_pending);
2509	INIT_LIST_HEAD(&hdev->mgmt_pending);
2510	INIT_LIST_HEAD(&hdev->reject_list);
2511	INIT_LIST_HEAD(&hdev->accept_list);
2512	INIT_LIST_HEAD(&hdev->uuids);
2513	INIT_LIST_HEAD(&hdev->link_keys);
2514	INIT_LIST_HEAD(&hdev->long_term_keys);
2515	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2516	INIT_LIST_HEAD(&hdev->remote_oob_data);
2517	INIT_LIST_HEAD(&hdev->le_accept_list);
2518	INIT_LIST_HEAD(&hdev->le_resolv_list);
2519	INIT_LIST_HEAD(&hdev->le_conn_params);
2520	INIT_LIST_HEAD(&hdev->pend_le_conns);
2521	INIT_LIST_HEAD(&hdev->pend_le_reports);
2522	INIT_LIST_HEAD(&hdev->conn_hash.list);
2523	INIT_LIST_HEAD(&hdev->adv_instances);
2524	INIT_LIST_HEAD(&hdev->blocked_keys);
2525	INIT_LIST_HEAD(&hdev->monitored_devices);
2526
2527	INIT_LIST_HEAD(&hdev->local_codecs);
2528	INIT_WORK(&hdev->rx_work, hci_rx_work);
2529	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2530	INIT_WORK(&hdev->tx_work, hci_tx_work);
2531	INIT_WORK(&hdev->power_on, hci_power_on);
2532	INIT_WORK(&hdev->error_reset, hci_error_reset);
2533
2534	hci_cmd_sync_init(hdev);
2535
2536	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2537
2538	skb_queue_head_init(&hdev->rx_q);
2539	skb_queue_head_init(&hdev->cmd_q);
2540	skb_queue_head_init(&hdev->raw_q);
2541
2542	init_waitqueue_head(&hdev->req_wait_q);
2543
2544	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2545	INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2546
2547	hci_request_setup(hdev);
2548
2549	hci_init_sysfs(hdev);
2550	discovery_init(hdev);
2551
2552	return hdev;
2553}
2554EXPORT_SYMBOL(hci_alloc_dev_priv);
2555
2556/* Free HCI device */
2557void hci_free_dev(struct hci_dev *hdev)
2558{
2559	/* will free via device release */
2560	put_device(&hdev->dev);
2561}
2562EXPORT_SYMBOL(hci_free_dev);
2563
2564/* Register HCI device */
2565int hci_register_dev(struct hci_dev *hdev)
2566{
2567	int id, error;
2568
2569	if (!hdev->open || !hdev->close || !hdev->send)
2570		return -EINVAL;
2571
2572	/* Do not allow HCI_AMP devices to register at index 0,
2573	 * so the index can be used as the AMP controller ID.
2574	 */
2575	switch (hdev->dev_type) {
2576	case HCI_PRIMARY:
2577		id = ida_simple_get(&hci_index_ida, 0, HCI_MAX_ID, GFP_KERNEL);
2578		break;
2579	case HCI_AMP:
2580		id = ida_simple_get(&hci_index_ida, 1, HCI_MAX_ID, GFP_KERNEL);
2581		break;
2582	default:
2583		return -EINVAL;
2584	}
2585
2586	if (id < 0)
2587		return id;
2588
2589	snprintf(hdev->name, sizeof(hdev->name), "hci%d", id);
2590	hdev->id = id;
2591
2592	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2593
2594	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
2595	if (!hdev->workqueue) {
2596		error = -ENOMEM;
2597		goto err;
2598	}
2599
2600	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2601						      hdev->name);
2602	if (!hdev->req_workqueue) {
2603		destroy_workqueue(hdev->workqueue);
2604		error = -ENOMEM;
2605		goto err;
2606	}
2607
2608	if (!IS_ERR_OR_NULL(bt_debugfs))
2609		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2610
2611	dev_set_name(&hdev->dev, "%s", hdev->name);
2612
2613	error = device_add(&hdev->dev);
2614	if (error < 0)
2615		goto err_wqueue;
2616
2617	hci_leds_init(hdev);
2618
2619	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2620				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2621				    hdev);
2622	if (hdev->rfkill) {
2623		if (rfkill_register(hdev->rfkill) < 0) {
2624			rfkill_destroy(hdev->rfkill);
2625			hdev->rfkill = NULL;
2626		}
2627	}
2628
2629	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2630		hci_dev_set_flag(hdev, HCI_RFKILLED);
2631
2632	hci_dev_set_flag(hdev, HCI_SETUP);
2633	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2634
2635	if (hdev->dev_type == HCI_PRIMARY) {
2636		/* Assume BR/EDR support until proven otherwise (such as
2637		 * through reading supported features during init.
2638		 */
2639		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2640	}
2641
2642	write_lock(&hci_dev_list_lock);
2643	list_add(&hdev->list, &hci_dev_list);
2644	write_unlock(&hci_dev_list_lock);
2645
2646	/* Devices that are marked for raw-only usage are unconfigured
2647	 * and should not be included in normal operation.
2648	 */
2649	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2650		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2651
2652	/* Mark Remote Wakeup connection flag as supported if driver has wakeup
2653	 * callback.
2654	 */
2655	if (hdev->wakeup)
2656		hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2657
2658	hci_sock_dev_event(hdev, HCI_DEV_REG);
2659	hci_dev_hold(hdev);
2660
2661	error = hci_register_suspend_notifier(hdev);
2662	if (error)
2663		BT_WARN("register suspend notifier failed error:%d\n", error);
2664
2665	queue_work(hdev->req_workqueue, &hdev->power_on);
2666
2667	idr_init(&hdev->adv_monitors_idr);
2668	msft_register(hdev);
2669
2670	return id;
2671
2672err_wqueue:
2673	debugfs_remove_recursive(hdev->debugfs);
2674	destroy_workqueue(hdev->workqueue);
2675	destroy_workqueue(hdev->req_workqueue);
2676err:
2677	ida_simple_remove(&hci_index_ida, hdev->id);
2678
2679	return error;
2680}
2681EXPORT_SYMBOL(hci_register_dev);
2682
2683/* Unregister HCI device */
2684void hci_unregister_dev(struct hci_dev *hdev)
2685{
 
 
2686	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2687
2688	hci_dev_set_flag(hdev, HCI_UNREGISTER);
2689
 
 
2690	write_lock(&hci_dev_list_lock);
2691	list_del(&hdev->list);
2692	write_unlock(&hci_dev_list_lock);
2693
2694	cancel_work_sync(&hdev->power_on);
2695
2696	hci_cmd_sync_clear(hdev);
2697
2698	hci_unregister_suspend_notifier(hdev);
2699
2700	msft_unregister(hdev);
2701
2702	hci_dev_do_close(hdev);
2703
2704	if (!test_bit(HCI_INIT, &hdev->flags) &&
2705	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
2706	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2707		hci_dev_lock(hdev);
2708		mgmt_index_removed(hdev);
2709		hci_dev_unlock(hdev);
2710	}
2711
2712	/* mgmt_index_removed should take care of emptying the
2713	 * pending list */
2714	BUG_ON(!list_empty(&hdev->mgmt_pending));
2715
2716	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2717
2718	if (hdev->rfkill) {
2719		rfkill_unregister(hdev->rfkill);
2720		rfkill_destroy(hdev->rfkill);
2721	}
2722
2723	device_del(&hdev->dev);
2724	/* Actual cleanup is deferred until hci_release_dev(). */
2725	hci_dev_put(hdev);
2726}
2727EXPORT_SYMBOL(hci_unregister_dev);
2728
2729/* Release HCI device */
2730void hci_release_dev(struct hci_dev *hdev)
2731{
2732	debugfs_remove_recursive(hdev->debugfs);
2733	kfree_const(hdev->hw_info);
2734	kfree_const(hdev->fw_info);
2735
2736	destroy_workqueue(hdev->workqueue);
2737	destroy_workqueue(hdev->req_workqueue);
2738
2739	hci_dev_lock(hdev);
2740	hci_bdaddr_list_clear(&hdev->reject_list);
2741	hci_bdaddr_list_clear(&hdev->accept_list);
2742	hci_uuids_clear(hdev);
2743	hci_link_keys_clear(hdev);
2744	hci_smp_ltks_clear(hdev);
2745	hci_smp_irks_clear(hdev);
2746	hci_remote_oob_data_clear(hdev);
2747	hci_adv_instances_clear(hdev);
2748	hci_adv_monitors_clear(hdev);
2749	hci_bdaddr_list_clear(&hdev->le_accept_list);
2750	hci_bdaddr_list_clear(&hdev->le_resolv_list);
2751	hci_conn_params_clear_all(hdev);
2752	hci_discovery_filter_clear(hdev);
2753	hci_blocked_keys_clear(hdev);
2754	hci_dev_unlock(hdev);
2755
2756	ida_simple_remove(&hci_index_ida, hdev->id);
2757	kfree_skb(hdev->sent_cmd);
2758	kfree_skb(hdev->recv_event);
2759	kfree(hdev);
2760}
2761EXPORT_SYMBOL(hci_release_dev);
2762
2763int hci_register_suspend_notifier(struct hci_dev *hdev)
2764{
2765	int ret = 0;
2766
2767	if (!hdev->suspend_notifier.notifier_call &&
2768	    !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2769		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2770		ret = register_pm_notifier(&hdev->suspend_notifier);
2771	}
2772
2773	return ret;
2774}
2775
2776int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2777{
2778	int ret = 0;
2779
2780	if (hdev->suspend_notifier.notifier_call) {
2781		ret = unregister_pm_notifier(&hdev->suspend_notifier);
2782		if (!ret)
2783			hdev->suspend_notifier.notifier_call = NULL;
2784	}
2785
2786	return ret;
2787}
 
2788
2789/* Suspend HCI device */
2790int hci_suspend_dev(struct hci_dev *hdev)
2791{
2792	int ret;
2793
2794	bt_dev_dbg(hdev, "");
2795
2796	/* Suspend should only act on when powered. */
2797	if (!hdev_is_powered(hdev) ||
2798	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2799		return 0;
2800
2801	/* If powering down don't attempt to suspend */
2802	if (mgmt_powering_down(hdev))
2803		return 0;
2804
2805	hci_req_sync_lock(hdev);
2806	ret = hci_suspend_sync(hdev);
2807	hci_req_sync_unlock(hdev);
2808
2809	hci_clear_wake_reason(hdev);
2810	mgmt_suspending(hdev, hdev->suspend_state);
2811
2812	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2813	return ret;
2814}
2815EXPORT_SYMBOL(hci_suspend_dev);
2816
2817/* Resume HCI device */
2818int hci_resume_dev(struct hci_dev *hdev)
2819{
2820	int ret;
2821
2822	bt_dev_dbg(hdev, "");
2823
2824	/* Resume should only act on when powered. */
2825	if (!hdev_is_powered(hdev) ||
2826	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2827		return 0;
2828
2829	/* If powering down don't attempt to resume */
2830	if (mgmt_powering_down(hdev))
2831		return 0;
2832
2833	hci_req_sync_lock(hdev);
2834	ret = hci_resume_sync(hdev);
2835	hci_req_sync_unlock(hdev);
2836
2837	mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2838		      hdev->wake_addr_type);
2839
2840	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2841	return ret;
2842}
2843EXPORT_SYMBOL(hci_resume_dev);
2844
2845/* Reset HCI device */
2846int hci_reset_dev(struct hci_dev *hdev)
2847{
2848	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2849	struct sk_buff *skb;
2850
2851	skb = bt_skb_alloc(3, GFP_ATOMIC);
2852	if (!skb)
2853		return -ENOMEM;
2854
2855	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2856	skb_put_data(skb, hw_err, 3);
2857
2858	bt_dev_err(hdev, "Injecting HCI hardware error event");
2859
2860	/* Send Hardware Error to upper stack */
2861	return hci_recv_frame(hdev, skb);
2862}
2863EXPORT_SYMBOL(hci_reset_dev);
2864
2865/* Receive frame from HCI drivers */
2866int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2867{
2868	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2869		      && !test_bit(HCI_INIT, &hdev->flags))) {
2870		kfree_skb(skb);
2871		return -ENXIO;
2872	}
2873
2874	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
2875	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
2876	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
2877	    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
2878		kfree_skb(skb);
2879		return -EINVAL;
2880	}
2881
2882	/* Incoming skb */
2883	bt_cb(skb)->incoming = 1;
2884
2885	/* Time stamp */
2886	__net_timestamp(skb);
2887
2888	skb_queue_tail(&hdev->rx_q, skb);
2889	queue_work(hdev->workqueue, &hdev->rx_work);
2890
2891	return 0;
2892}
2893EXPORT_SYMBOL(hci_recv_frame);
2894
2895/* Receive diagnostic message from HCI drivers */
2896int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2897{
2898	/* Mark as diagnostic packet */
2899	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2900
2901	/* Time stamp */
2902	__net_timestamp(skb);
2903
2904	skb_queue_tail(&hdev->rx_q, skb);
2905	queue_work(hdev->workqueue, &hdev->rx_work);
2906
2907	return 0;
2908}
2909EXPORT_SYMBOL(hci_recv_diag);
2910
2911void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2912{
2913	va_list vargs;
2914
2915	va_start(vargs, fmt);
2916	kfree_const(hdev->hw_info);
2917	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2918	va_end(vargs);
2919}
2920EXPORT_SYMBOL(hci_set_hw_info);
2921
2922void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
2923{
2924	va_list vargs;
2925
2926	va_start(vargs, fmt);
2927	kfree_const(hdev->fw_info);
2928	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2929	va_end(vargs);
2930}
2931EXPORT_SYMBOL(hci_set_fw_info);
2932
2933/* ---- Interface to upper protocols ---- */
2934
2935int hci_register_cb(struct hci_cb *cb)
2936{
2937	BT_DBG("%p name %s", cb, cb->name);
2938
2939	mutex_lock(&hci_cb_list_lock);
2940	list_add_tail(&cb->list, &hci_cb_list);
2941	mutex_unlock(&hci_cb_list_lock);
2942
2943	return 0;
2944}
2945EXPORT_SYMBOL(hci_register_cb);
2946
2947int hci_unregister_cb(struct hci_cb *cb)
2948{
2949	BT_DBG("%p name %s", cb, cb->name);
2950
2951	mutex_lock(&hci_cb_list_lock);
2952	list_del(&cb->list);
2953	mutex_unlock(&hci_cb_list_lock);
2954
2955	return 0;
2956}
2957EXPORT_SYMBOL(hci_unregister_cb);
2958
2959static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
2960{
2961	int err;
2962
2963	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
2964	       skb->len);
2965
2966	/* Time stamp */
2967	__net_timestamp(skb);
2968
2969	/* Send copy to monitor */
2970	hci_send_to_monitor(hdev, skb);
2971
2972	if (atomic_read(&hdev->promisc)) {
2973		/* Send copy to the sockets */
2974		hci_send_to_sock(hdev, skb);
2975	}
2976
2977	/* Get rid of skb owner, prior to sending to the driver. */
2978	skb_orphan(skb);
2979
2980	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
2981		kfree_skb(skb);
2982		return -EINVAL;
2983	}
2984
2985	err = hdev->send(hdev, skb);
2986	if (err < 0) {
2987		bt_dev_err(hdev, "sending frame failed (%d)", err);
2988		kfree_skb(skb);
2989		return err;
2990	}
2991
2992	return 0;
2993}
2994
2995/* Send HCI command */
2996int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
2997		 const void *param)
2998{
2999	struct sk_buff *skb;
3000
3001	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3002
3003	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3004	if (!skb) {
3005		bt_dev_err(hdev, "no memory for command");
3006		return -ENOMEM;
3007	}
3008
3009	/* Stand-alone HCI commands must be flagged as
3010	 * single-command requests.
3011	 */
3012	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3013
3014	skb_queue_tail(&hdev->cmd_q, skb);
3015	queue_work(hdev->workqueue, &hdev->cmd_work);
3016
3017	return 0;
3018}
3019
3020int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3021		   const void *param)
3022{
3023	struct sk_buff *skb;
3024
3025	if (hci_opcode_ogf(opcode) != 0x3f) {
3026		/* A controller receiving a command shall respond with either
3027		 * a Command Status Event or a Command Complete Event.
3028		 * Therefore, all standard HCI commands must be sent via the
3029		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3030		 * Some vendors do not comply with this rule for vendor-specific
3031		 * commands and do not return any event. We want to support
3032		 * unresponded commands for such cases only.
3033		 */
3034		bt_dev_err(hdev, "unresponded command not supported");
3035		return -EINVAL;
3036	}
3037
3038	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3039	if (!skb) {
3040		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3041			   opcode);
3042		return -ENOMEM;
3043	}
3044
3045	hci_send_frame(hdev, skb);
3046
3047	return 0;
3048}
3049EXPORT_SYMBOL(__hci_cmd_send);
3050
3051/* Get data from the previously sent command */
3052void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3053{
3054	struct hci_command_hdr *hdr;
3055
3056	if (!hdev->sent_cmd)
3057		return NULL;
3058
3059	hdr = (void *) hdev->sent_cmd->data;
3060
3061	if (hdr->opcode != cpu_to_le16(opcode))
3062		return NULL;
3063
3064	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3065
3066	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3067}
3068
3069/* Get data from last received event */
3070void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
 
3071{
3072	struct hci_event_hdr *hdr;
3073	int offset;
3074
3075	if (!hdev->recv_event)
3076		return NULL;
3077
3078	hdr = (void *)hdev->recv_event->data;
3079	offset = sizeof(*hdr);
3080
3081	if (hdr->evt != event) {
3082		/* In case of LE metaevent check the subevent match */
3083		if (hdr->evt == HCI_EV_LE_META) {
3084			struct hci_ev_le_meta *ev;
3085
3086			ev = (void *)hdev->recv_event->data + offset;
3087			offset += sizeof(*ev);
3088			if (ev->subevent == event)
3089				goto found;
3090		}
3091		return NULL;
3092	}
3093
3094found:
3095	bt_dev_dbg(hdev, "event 0x%2.2x", event);
3096
3097	return hdev->recv_event->data + offset;
3098}
 
3099
3100/* Send ACL data */
3101static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3102{
3103	struct hci_acl_hdr *hdr;
3104	int len = skb->len;
3105
3106	skb_push(skb, HCI_ACL_HDR_SIZE);
3107	skb_reset_transport_header(skb);
3108	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3109	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3110	hdr->dlen   = cpu_to_le16(len);
3111}
3112
3113static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3114			  struct sk_buff *skb, __u16 flags)
3115{
3116	struct hci_conn *conn = chan->conn;
3117	struct hci_dev *hdev = conn->hdev;
3118	struct sk_buff *list;
3119
3120	skb->len = skb_headlen(skb);
3121	skb->data_len = 0;
3122
3123	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3124
3125	switch (hdev->dev_type) {
3126	case HCI_PRIMARY:
3127		hci_add_acl_hdr(skb, conn->handle, flags);
3128		break;
3129	case HCI_AMP:
3130		hci_add_acl_hdr(skb, chan->handle, flags);
3131		break;
3132	default:
3133		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3134		return;
3135	}
3136
3137	list = skb_shinfo(skb)->frag_list;
3138	if (!list) {
3139		/* Non fragmented */
3140		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3141
3142		skb_queue_tail(queue, skb);
3143	} else {
3144		/* Fragmented */
3145		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3146
3147		skb_shinfo(skb)->frag_list = NULL;
3148
3149		/* Queue all fragments atomically. We need to use spin_lock_bh
3150		 * here because of 6LoWPAN links, as there this function is
3151		 * called from softirq and using normal spin lock could cause
3152		 * deadlocks.
3153		 */
3154		spin_lock_bh(&queue->lock);
3155
3156		__skb_queue_tail(queue, skb);
3157
3158		flags &= ~ACL_START;
3159		flags |= ACL_CONT;
3160		do {
3161			skb = list; list = list->next;
3162
3163			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3164			hci_add_acl_hdr(skb, conn->handle, flags);
3165
3166			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3167
3168			__skb_queue_tail(queue, skb);
3169		} while (list);
3170
3171		spin_unlock_bh(&queue->lock);
3172	}
3173}
3174
3175void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3176{
3177	struct hci_dev *hdev = chan->conn->hdev;
3178
3179	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3180
3181	hci_queue_acl(chan, &chan->data_q, skb, flags);
3182
3183	queue_work(hdev->workqueue, &hdev->tx_work);
3184}
3185
3186/* Send SCO data */
3187void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3188{
3189	struct hci_dev *hdev = conn->hdev;
3190	struct hci_sco_hdr hdr;
3191
3192	BT_DBG("%s len %d", hdev->name, skb->len);
3193
3194	hdr.handle = cpu_to_le16(conn->handle);
3195	hdr.dlen   = skb->len;
3196
3197	skb_push(skb, HCI_SCO_HDR_SIZE);
3198	skb_reset_transport_header(skb);
3199	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3200
3201	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3202
3203	skb_queue_tail(&conn->data_q, skb);
3204	queue_work(hdev->workqueue, &hdev->tx_work);
3205}
3206
3207/* Send ISO data */
3208static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3209{
3210	struct hci_iso_hdr *hdr;
3211	int len = skb->len;
3212
3213	skb_push(skb, HCI_ISO_HDR_SIZE);
3214	skb_reset_transport_header(skb);
3215	hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3216	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3217	hdr->dlen   = cpu_to_le16(len);
3218}
3219
3220static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3221			  struct sk_buff *skb)
3222{
3223	struct hci_dev *hdev = conn->hdev;
3224	struct sk_buff *list;
3225	__u16 flags;
3226
3227	skb->len = skb_headlen(skb);
3228	skb->data_len = 0;
3229
3230	hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3231
3232	list = skb_shinfo(skb)->frag_list;
3233
3234	flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3235	hci_add_iso_hdr(skb, conn->handle, flags);
3236
3237	if (!list) {
3238		/* Non fragmented */
3239		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3240
3241		skb_queue_tail(queue, skb);
3242	} else {
3243		/* Fragmented */
3244		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3245
3246		skb_shinfo(skb)->frag_list = NULL;
3247
3248		__skb_queue_tail(queue, skb);
3249
3250		do {
3251			skb = list; list = list->next;
3252
3253			hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3254			flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3255						   0x00);
3256			hci_add_iso_hdr(skb, conn->handle, flags);
3257
3258			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3259
3260			__skb_queue_tail(queue, skb);
3261		} while (list);
3262	}
3263}
3264
3265void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3266{
3267	struct hci_dev *hdev = conn->hdev;
3268
3269	BT_DBG("%s len %d", hdev->name, skb->len);
3270
3271	hci_queue_iso(conn, &conn->data_q, skb);
3272
3273	queue_work(hdev->workqueue, &hdev->tx_work);
3274}
3275
3276/* ---- HCI TX task (outgoing data) ---- */
3277
3278/* HCI Connection scheduler */
3279static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3280{
3281	struct hci_dev *hdev;
3282	int cnt, q;
3283
3284	if (!conn) {
3285		*quote = 0;
3286		return;
3287	}
3288
3289	hdev = conn->hdev;
3290
3291	switch (conn->type) {
3292	case ACL_LINK:
3293		cnt = hdev->acl_cnt;
3294		break;
3295	case AMP_LINK:
3296		cnt = hdev->block_cnt;
3297		break;
3298	case SCO_LINK:
3299	case ESCO_LINK:
3300		cnt = hdev->sco_cnt;
3301		break;
3302	case LE_LINK:
3303		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3304		break;
3305	case ISO_LINK:
3306		cnt = hdev->iso_mtu ? hdev->iso_cnt :
3307			hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3308		break;
3309	default:
3310		cnt = 0;
3311		bt_dev_err(hdev, "unknown link type %d", conn->type);
3312	}
3313
3314	q = cnt / num;
3315	*quote = q ? q : 1;
3316}
3317
3318static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3319				     int *quote)
3320{
3321	struct hci_conn_hash *h = &hdev->conn_hash;
3322	struct hci_conn *conn = NULL, *c;
3323	unsigned int num = 0, min = ~0;
3324
3325	/* We don't have to lock device here. Connections are always
3326	 * added and removed with TX task disabled. */
3327
3328	rcu_read_lock();
3329
3330	list_for_each_entry_rcu(c, &h->list, list) {
3331		if (c->type != type || skb_queue_empty(&c->data_q))
3332			continue;
3333
3334		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3335			continue;
3336
3337		num++;
3338
3339		if (c->sent < min) {
3340			min  = c->sent;
3341			conn = c;
3342		}
3343
3344		if (hci_conn_num(hdev, type) == num)
3345			break;
3346	}
3347
3348	rcu_read_unlock();
3349
3350	hci_quote_sent(conn, num, quote);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3351
3352	BT_DBG("conn %p quote %d", conn, *quote);
3353	return conn;
3354}
3355
3356static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3357{
3358	struct hci_conn_hash *h = &hdev->conn_hash;
3359	struct hci_conn *c;
3360
3361	bt_dev_err(hdev, "link tx timeout");
3362
3363	rcu_read_lock();
3364
3365	/* Kill stalled connections */
3366	list_for_each_entry_rcu(c, &h->list, list) {
3367		if (c->type == type && c->sent) {
3368			bt_dev_err(hdev, "killing stalled connection %pMR",
3369				   &c->dst);
3370			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3371		}
3372	}
3373
3374	rcu_read_unlock();
3375}
3376
3377static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3378				      int *quote)
3379{
3380	struct hci_conn_hash *h = &hdev->conn_hash;
3381	struct hci_chan *chan = NULL;
3382	unsigned int num = 0, min = ~0, cur_prio = 0;
3383	struct hci_conn *conn;
3384	int conn_num = 0;
3385
3386	BT_DBG("%s", hdev->name);
3387
3388	rcu_read_lock();
3389
3390	list_for_each_entry_rcu(conn, &h->list, list) {
3391		struct hci_chan *tmp;
3392
3393		if (conn->type != type)
3394			continue;
3395
3396		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3397			continue;
3398
3399		conn_num++;
3400
3401		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3402			struct sk_buff *skb;
3403
3404			if (skb_queue_empty(&tmp->data_q))
3405				continue;
3406
3407			skb = skb_peek(&tmp->data_q);
3408			if (skb->priority < cur_prio)
3409				continue;
3410
3411			if (skb->priority > cur_prio) {
3412				num = 0;
3413				min = ~0;
3414				cur_prio = skb->priority;
3415			}
3416
3417			num++;
3418
3419			if (conn->sent < min) {
3420				min  = conn->sent;
3421				chan = tmp;
3422			}
3423		}
3424
3425		if (hci_conn_num(hdev, type) == conn_num)
3426			break;
3427	}
3428
3429	rcu_read_unlock();
3430
3431	if (!chan)
3432		return NULL;
3433
3434	hci_quote_sent(chan->conn, num, quote);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3435
 
 
3436	BT_DBG("chan %p quote %d", chan, *quote);
3437	return chan;
3438}
3439
3440static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3441{
3442	struct hci_conn_hash *h = &hdev->conn_hash;
3443	struct hci_conn *conn;
3444	int num = 0;
3445
3446	BT_DBG("%s", hdev->name);
3447
3448	rcu_read_lock();
3449
3450	list_for_each_entry_rcu(conn, &h->list, list) {
3451		struct hci_chan *chan;
3452
3453		if (conn->type != type)
3454			continue;
3455
3456		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3457			continue;
3458
3459		num++;
3460
3461		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3462			struct sk_buff *skb;
3463
3464			if (chan->sent) {
3465				chan->sent = 0;
3466				continue;
3467			}
3468
3469			if (skb_queue_empty(&chan->data_q))
3470				continue;
3471
3472			skb = skb_peek(&chan->data_q);
3473			if (skb->priority >= HCI_PRIO_MAX - 1)
3474				continue;
3475
3476			skb->priority = HCI_PRIO_MAX - 1;
3477
3478			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3479			       skb->priority);
3480		}
3481
3482		if (hci_conn_num(hdev, type) == num)
3483			break;
3484	}
3485
3486	rcu_read_unlock();
3487
3488}
3489
3490static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3491{
3492	/* Calculate count of blocks used by this packet */
3493	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3494}
3495
3496static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3497{
3498	unsigned long last_tx;
3499
3500	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3501		return;
3502
3503	switch (type) {
3504	case LE_LINK:
3505		last_tx = hdev->le_last_tx;
3506		break;
3507	default:
3508		last_tx = hdev->acl_last_tx;
3509		break;
3510	}
3511
3512	/* tx timeout must be longer than maximum link supervision timeout
3513	 * (40.9 seconds)
3514	 */
3515	if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3516		hci_link_tx_to(hdev, type);
3517}
3518
3519/* Schedule SCO */
3520static void hci_sched_sco(struct hci_dev *hdev)
3521{
3522	struct hci_conn *conn;
3523	struct sk_buff *skb;
3524	int quote;
3525
3526	BT_DBG("%s", hdev->name);
3527
3528	if (!hci_conn_num(hdev, SCO_LINK))
3529		return;
3530
3531	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3532		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3533			BT_DBG("skb %p len %d", skb, skb->len);
3534			hci_send_frame(hdev, skb);
3535
3536			conn->sent++;
3537			if (conn->sent == ~0)
3538				conn->sent = 0;
3539		}
3540	}
3541}
3542
3543static void hci_sched_esco(struct hci_dev *hdev)
3544{
3545	struct hci_conn *conn;
3546	struct sk_buff *skb;
3547	int quote;
3548
3549	BT_DBG("%s", hdev->name);
3550
3551	if (!hci_conn_num(hdev, ESCO_LINK))
3552		return;
3553
3554	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3555						     &quote))) {
3556		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3557			BT_DBG("skb %p len %d", skb, skb->len);
3558			hci_send_frame(hdev, skb);
3559
3560			conn->sent++;
3561			if (conn->sent == ~0)
3562				conn->sent = 0;
3563		}
3564	}
3565}
3566
3567static void hci_sched_acl_pkt(struct hci_dev *hdev)
3568{
3569	unsigned int cnt = hdev->acl_cnt;
3570	struct hci_chan *chan;
3571	struct sk_buff *skb;
3572	int quote;
3573
3574	__check_timeout(hdev, cnt, ACL_LINK);
3575
3576	while (hdev->acl_cnt &&
3577	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3578		u32 priority = (skb_peek(&chan->data_q))->priority;
3579		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3580			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3581			       skb->len, skb->priority);
3582
3583			/* Stop if priority has changed */
3584			if (skb->priority < priority)
3585				break;
3586
3587			skb = skb_dequeue(&chan->data_q);
3588
3589			hci_conn_enter_active_mode(chan->conn,
3590						   bt_cb(skb)->force_active);
3591
3592			hci_send_frame(hdev, skb);
3593			hdev->acl_last_tx = jiffies;
3594
3595			hdev->acl_cnt--;
3596			chan->sent++;
3597			chan->conn->sent++;
3598
3599			/* Send pending SCO packets right away */
3600			hci_sched_sco(hdev);
3601			hci_sched_esco(hdev);
3602		}
3603	}
3604
3605	if (cnt != hdev->acl_cnt)
3606		hci_prio_recalculate(hdev, ACL_LINK);
3607}
3608
3609static void hci_sched_acl_blk(struct hci_dev *hdev)
3610{
3611	unsigned int cnt = hdev->block_cnt;
3612	struct hci_chan *chan;
3613	struct sk_buff *skb;
3614	int quote;
3615	u8 type;
3616
 
 
3617	BT_DBG("%s", hdev->name);
3618
3619	if (hdev->dev_type == HCI_AMP)
3620		type = AMP_LINK;
3621	else
3622		type = ACL_LINK;
3623
3624	__check_timeout(hdev, cnt, type);
3625
3626	while (hdev->block_cnt > 0 &&
3627	       (chan = hci_chan_sent(hdev, type, &quote))) {
3628		u32 priority = (skb_peek(&chan->data_q))->priority;
3629		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3630			int blocks;
3631
3632			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3633			       skb->len, skb->priority);
3634
3635			/* Stop if priority has changed */
3636			if (skb->priority < priority)
3637				break;
3638
3639			skb = skb_dequeue(&chan->data_q);
3640
3641			blocks = __get_blocks(hdev, skb);
3642			if (blocks > hdev->block_cnt)
3643				return;
3644
3645			hci_conn_enter_active_mode(chan->conn,
3646						   bt_cb(skb)->force_active);
3647
3648			hci_send_frame(hdev, skb);
3649			hdev->acl_last_tx = jiffies;
3650
3651			hdev->block_cnt -= blocks;
3652			quote -= blocks;
3653
3654			chan->sent += blocks;
3655			chan->conn->sent += blocks;
3656		}
3657	}
3658
3659	if (cnt != hdev->block_cnt)
3660		hci_prio_recalculate(hdev, type);
3661}
3662
3663static void hci_sched_acl(struct hci_dev *hdev)
3664{
3665	BT_DBG("%s", hdev->name);
3666
3667	/* No ACL link over BR/EDR controller */
3668	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3669		return;
3670
3671	/* No AMP link over AMP controller */
3672	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3673		return;
3674
3675	switch (hdev->flow_ctl_mode) {
3676	case HCI_FLOW_CTL_MODE_PACKET_BASED:
3677		hci_sched_acl_pkt(hdev);
3678		break;
3679
3680	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3681		hci_sched_acl_blk(hdev);
3682		break;
3683	}
3684}
3685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3686static void hci_sched_le(struct hci_dev *hdev)
3687{
3688	struct hci_chan *chan;
3689	struct sk_buff *skb;
3690	int quote, cnt, tmp;
3691
3692	BT_DBG("%s", hdev->name);
3693
3694	if (!hci_conn_num(hdev, LE_LINK))
3695		return;
3696
 
 
 
 
 
 
 
 
3697	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3698
3699	__check_timeout(hdev, cnt, LE_LINK);
3700
3701	tmp = cnt;
3702	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3703		u32 priority = (skb_peek(&chan->data_q))->priority;
3704		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3705			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3706			       skb->len, skb->priority);
3707
3708			/* Stop if priority has changed */
3709			if (skb->priority < priority)
3710				break;
3711
3712			skb = skb_dequeue(&chan->data_q);
3713
3714			hci_send_frame(hdev, skb);
3715			hdev->le_last_tx = jiffies;
3716
3717			cnt--;
3718			chan->sent++;
3719			chan->conn->sent++;
3720
3721			/* Send pending SCO packets right away */
3722			hci_sched_sco(hdev);
3723			hci_sched_esco(hdev);
3724		}
3725	}
3726
3727	if (hdev->le_pkts)
3728		hdev->le_cnt = cnt;
3729	else
3730		hdev->acl_cnt = cnt;
3731
3732	if (cnt != tmp)
3733		hci_prio_recalculate(hdev, LE_LINK);
3734}
3735
3736/* Schedule CIS */
3737static void hci_sched_iso(struct hci_dev *hdev)
3738{
3739	struct hci_conn *conn;
3740	struct sk_buff *skb;
3741	int quote, *cnt;
3742
3743	BT_DBG("%s", hdev->name);
3744
3745	if (!hci_conn_num(hdev, ISO_LINK))
3746		return;
3747
3748	cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3749		hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3750	while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, &quote))) {
3751		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3752			BT_DBG("skb %p len %d", skb, skb->len);
3753			hci_send_frame(hdev, skb);
3754
3755			conn->sent++;
3756			if (conn->sent == ~0)
3757				conn->sent = 0;
3758			(*cnt)--;
3759		}
3760	}
3761}
3762
3763static void hci_tx_work(struct work_struct *work)
3764{
3765	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3766	struct sk_buff *skb;
3767
3768	BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3769	       hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3770
3771	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3772		/* Schedule queues and send stuff to HCI driver */
 
3773		hci_sched_sco(hdev);
3774		hci_sched_esco(hdev);
3775		hci_sched_iso(hdev);
3776		hci_sched_acl(hdev);
3777		hci_sched_le(hdev);
3778	}
3779
3780	/* Send next queued raw (unknown type) packet */
3781	while ((skb = skb_dequeue(&hdev->raw_q)))
3782		hci_send_frame(hdev, skb);
3783}
3784
3785/* ----- HCI RX task (incoming data processing) ----- */
3786
3787/* ACL data packet */
3788static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3789{
3790	struct hci_acl_hdr *hdr = (void *) skb->data;
3791	struct hci_conn *conn;
3792	__u16 handle, flags;
3793
3794	skb_pull(skb, HCI_ACL_HDR_SIZE);
3795
3796	handle = __le16_to_cpu(hdr->handle);
3797	flags  = hci_flags(handle);
3798	handle = hci_handle(handle);
3799
3800	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3801	       handle, flags);
3802
3803	hdev->stat.acl_rx++;
3804
3805	hci_dev_lock(hdev);
3806	conn = hci_conn_hash_lookup_handle(hdev, handle);
3807	hci_dev_unlock(hdev);
3808
3809	if (conn) {
3810		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3811
3812		/* Send to upper protocol */
3813		l2cap_recv_acldata(conn, skb, flags);
3814		return;
3815	} else {
3816		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3817			   handle);
3818	}
3819
3820	kfree_skb(skb);
3821}
3822
3823/* SCO data packet */
3824static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3825{
3826	struct hci_sco_hdr *hdr = (void *) skb->data;
3827	struct hci_conn *conn;
3828	__u16 handle, flags;
3829
3830	skb_pull(skb, HCI_SCO_HDR_SIZE);
3831
3832	handle = __le16_to_cpu(hdr->handle);
3833	flags  = hci_flags(handle);
3834	handle = hci_handle(handle);
3835
3836	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3837	       handle, flags);
3838
3839	hdev->stat.sco_rx++;
3840
3841	hci_dev_lock(hdev);
3842	conn = hci_conn_hash_lookup_handle(hdev, handle);
3843	hci_dev_unlock(hdev);
3844
3845	if (conn) {
3846		/* Send to upper protocol */
3847		bt_cb(skb)->sco.pkt_status = flags & 0x03;
3848		sco_recv_scodata(conn, skb);
3849		return;
3850	} else {
3851		bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3852				       handle);
3853	}
3854
3855	kfree_skb(skb);
3856}
3857
3858static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3859{
3860	struct hci_iso_hdr *hdr;
3861	struct hci_conn *conn;
3862	__u16 handle, flags;
3863
3864	hdr = skb_pull_data(skb, sizeof(*hdr));
3865	if (!hdr) {
3866		bt_dev_err(hdev, "ISO packet too small");
3867		goto drop;
3868	}
3869
3870	handle = __le16_to_cpu(hdr->handle);
3871	flags  = hci_flags(handle);
3872	handle = hci_handle(handle);
3873
3874	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3875		   handle, flags);
3876
3877	hci_dev_lock(hdev);
3878	conn = hci_conn_hash_lookup_handle(hdev, handle);
3879	hci_dev_unlock(hdev);
3880
3881	if (!conn) {
3882		bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3883			   handle);
3884		goto drop;
3885	}
3886
3887	/* Send to upper protocol */
3888	iso_recv(conn, skb, flags);
3889	return;
3890
3891drop:
3892	kfree_skb(skb);
3893}
3894
3895static bool hci_req_is_complete(struct hci_dev *hdev)
3896{
3897	struct sk_buff *skb;
3898
3899	skb = skb_peek(&hdev->cmd_q);
3900	if (!skb)
3901		return true;
3902
3903	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3904}
3905
3906static void hci_resend_last(struct hci_dev *hdev)
3907{
3908	struct hci_command_hdr *sent;
3909	struct sk_buff *skb;
3910	u16 opcode;
3911
3912	if (!hdev->sent_cmd)
3913		return;
3914
3915	sent = (void *) hdev->sent_cmd->data;
3916	opcode = __le16_to_cpu(sent->opcode);
3917	if (opcode == HCI_OP_RESET)
3918		return;
3919
3920	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3921	if (!skb)
3922		return;
3923
3924	skb_queue_head(&hdev->cmd_q, skb);
3925	queue_work(hdev->workqueue, &hdev->cmd_work);
3926}
3927
3928void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3929			  hci_req_complete_t *req_complete,
3930			  hci_req_complete_skb_t *req_complete_skb)
3931{
3932	struct sk_buff *skb;
3933	unsigned long flags;
3934
3935	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3936
3937	/* If the completed command doesn't match the last one that was
3938	 * sent we need to do special handling of it.
3939	 */
3940	if (!hci_sent_cmd_data(hdev, opcode)) {
3941		/* Some CSR based controllers generate a spontaneous
3942		 * reset complete event during init and any pending
3943		 * command will never be completed. In such a case we
3944		 * need to resend whatever was the last sent
3945		 * command.
3946		 */
3947		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
3948			hci_resend_last(hdev);
3949
3950		return;
3951	}
3952
3953	/* If we reach this point this event matches the last command sent */
3954	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
3955
3956	/* If the command succeeded and there's still more commands in
3957	 * this request the request is not yet complete.
3958	 */
3959	if (!status && !hci_req_is_complete(hdev))
3960		return;
3961
3962	/* If this was the last command in a request the complete
3963	 * callback would be found in hdev->sent_cmd instead of the
3964	 * command queue (hdev->cmd_q).
3965	 */
3966	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
3967		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
3968		return;
3969	}
3970
3971	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
3972		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
3973		return;
3974	}
3975
3976	/* Remove all pending commands belonging to this request */
3977	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
3978	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
3979		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
3980			__skb_queue_head(&hdev->cmd_q, skb);
3981			break;
3982		}
3983
3984		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
3985			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3986		else
3987			*req_complete = bt_cb(skb)->hci.req_complete;
3988		dev_kfree_skb_irq(skb);
3989	}
3990	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
3991}
3992
3993static void hci_rx_work(struct work_struct *work)
3994{
3995	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
3996	struct sk_buff *skb;
3997
3998	BT_DBG("%s", hdev->name);
3999
4000	/* The kcov_remote functions used for collecting packet parsing
4001	 * coverage information from this background thread and associate
4002	 * the coverage with the syscall's thread which originally injected
4003	 * the packet. This helps fuzzing the kernel.
4004	 */
4005	for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
4006		kcov_remote_start_common(skb_get_kcov_handle(skb));
4007
4008		/* Send copy to monitor */
4009		hci_send_to_monitor(hdev, skb);
4010
4011		if (atomic_read(&hdev->promisc)) {
4012			/* Send copy to the sockets */
4013			hci_send_to_sock(hdev, skb);
4014		}
4015
4016		/* If the device has been opened in HCI_USER_CHANNEL,
4017		 * the userspace has exclusive access to device.
4018		 * When device is HCI_INIT, we still need to process
4019		 * the data packets to the driver in order
4020		 * to complete its setup().
4021		 */
4022		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4023		    !test_bit(HCI_INIT, &hdev->flags)) {
4024			kfree_skb(skb);
4025			continue;
4026		}
4027
4028		if (test_bit(HCI_INIT, &hdev->flags)) {
4029			/* Don't process data packets in this states. */
4030			switch (hci_skb_pkt_type(skb)) {
4031			case HCI_ACLDATA_PKT:
4032			case HCI_SCODATA_PKT:
4033			case HCI_ISODATA_PKT:
4034				kfree_skb(skb);
4035				continue;
4036			}
4037		}
4038
4039		/* Process frame */
4040		switch (hci_skb_pkt_type(skb)) {
4041		case HCI_EVENT_PKT:
4042			BT_DBG("%s Event packet", hdev->name);
4043			hci_event_packet(hdev, skb);
4044			break;
4045
4046		case HCI_ACLDATA_PKT:
4047			BT_DBG("%s ACL data packet", hdev->name);
4048			hci_acldata_packet(hdev, skb);
4049			break;
4050
4051		case HCI_SCODATA_PKT:
4052			BT_DBG("%s SCO data packet", hdev->name);
4053			hci_scodata_packet(hdev, skb);
4054			break;
4055
4056		case HCI_ISODATA_PKT:
4057			BT_DBG("%s ISO data packet", hdev->name);
4058			hci_isodata_packet(hdev, skb);
4059			break;
4060
4061		default:
4062			kfree_skb(skb);
4063			break;
4064		}
4065	}
4066}
4067
4068static void hci_cmd_work(struct work_struct *work)
4069{
4070	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4071	struct sk_buff *skb;
4072
4073	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4074	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4075
4076	/* Send queued commands */
4077	if (atomic_read(&hdev->cmd_cnt)) {
4078		skb = skb_dequeue(&hdev->cmd_q);
4079		if (!skb)
4080			return;
4081
4082		kfree_skb(hdev->sent_cmd);
4083
4084		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4085		if (hdev->sent_cmd) {
4086			int res;
4087			if (hci_req_status_pend(hdev))
4088				hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4089			atomic_dec(&hdev->cmd_cnt);
4090
4091			res = hci_send_frame(hdev, skb);
4092			if (res < 0)
4093				__hci_cmd_sync_cancel(hdev, -res);
4094
4095			rcu_read_lock();
4096			if (test_bit(HCI_RESET, &hdev->flags) ||
4097			    hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4098				cancel_delayed_work(&hdev->cmd_timer);
4099			else
4100				queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4101						   HCI_CMD_TIMEOUT);
4102			rcu_read_unlock();
4103		} else {
4104			skb_queue_head(&hdev->cmd_q, skb);
4105			queue_work(hdev->workqueue, &hdev->cmd_work);
4106		}
4107	}
4108}