Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/mm/vmscan.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *
   7 *  Swap reorganised 29.12.95, Stephen Tweedie.
   8 *  kswapd added: 7.1.96  sct
   9 *  Removed kswapd_ctl limits, and swap out as many pages as needed
  10 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  11 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  12 *  Multiqueue VM started 5.8.00, Rik van Riel.
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/mm.h>
  18#include <linux/sched/mm.h>
  19#include <linux/module.h>
  20#include <linux/gfp.h>
  21#include <linux/kernel_stat.h>
  22#include <linux/swap.h>
  23#include <linux/pagemap.h>
  24#include <linux/init.h>
  25#include <linux/highmem.h>
  26#include <linux/vmpressure.h>
  27#include <linux/vmstat.h>
  28#include <linux/file.h>
  29#include <linux/writeback.h>
  30#include <linux/blkdev.h>
  31#include <linux/buffer_head.h>	/* for try_to_release_page(),
  32					buffer_heads_over_limit */
  33#include <linux/mm_inline.h>
  34#include <linux/backing-dev.h>
  35#include <linux/rmap.h>
  36#include <linux/topology.h>
  37#include <linux/cpu.h>
  38#include <linux/cpuset.h>
  39#include <linux/compaction.h>
  40#include <linux/notifier.h>
  41#include <linux/rwsem.h>
  42#include <linux/delay.h>
  43#include <linux/kthread.h>
  44#include <linux/freezer.h>
  45#include <linux/memcontrol.h>
 
  46#include <linux/delayacct.h>
  47#include <linux/sysctl.h>
 
  48#include <linux/oom.h>
  49#include <linux/pagevec.h>
  50#include <linux/prefetch.h>
  51#include <linux/printk.h>
  52#include <linux/dax.h>
  53#include <linux/psi.h>
 
 
 
 
 
 
 
  54
  55#include <asm/tlbflush.h>
  56#include <asm/div64.h>
  57
  58#include <linux/swapops.h>
  59#include <linux/balloon_compaction.h>
 
  60
  61#include "internal.h"
 
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/vmscan.h>
  65
  66struct scan_control {
  67	/* How many pages shrink_list() should reclaim */
  68	unsigned long nr_to_reclaim;
  69
  70	/*
  71	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
  72	 * are scanned.
  73	 */
  74	nodemask_t	*nodemask;
  75
  76	/*
  77	 * The memory cgroup that hit its limit and as a result is the
  78	 * primary target of this reclaim invocation.
  79	 */
  80	struct mem_cgroup *target_mem_cgroup;
  81
 
 
 
 
 
 
 
 
 
 
 
 
 
  82	/* Writepage batching in laptop mode; RECLAIM_WRITE */
  83	unsigned int may_writepage:1;
  84
  85	/* Can mapped pages be reclaimed? */
  86	unsigned int may_unmap:1;
  87
  88	/* Can pages be swapped as part of reclaim? */
  89	unsigned int may_swap:1;
  90
 
 
 
  91	/*
  92	 * Cgroups are not reclaimed below their configured memory.low,
  93	 * unless we threaten to OOM. If any cgroups are skipped due to
  94	 * memory.low and nothing was reclaimed, go back for memory.low.
 
 
 
  95	 */
  96	unsigned int memcg_low_reclaim:1;
  97	unsigned int memcg_low_skipped:1;
  98
  99	unsigned int hibernation_mode:1;
 100
 101	/* One of the zones is ready for compaction */
 102	unsigned int compaction_ready:1;
 103
 
 
 
 
 
 
 
 
 
 104	/* Allocation order */
 105	s8 order;
 106
 107	/* Scan (total_size >> priority) pages at once */
 108	s8 priority;
 109
 110	/* The highest zone to isolate pages for reclaim from */
 111	s8 reclaim_idx;
 112
 113	/* This context's GFP mask */
 114	gfp_t gfp_mask;
 115
 116	/* Incremented by the number of inactive pages that were scanned */
 117	unsigned long nr_scanned;
 118
 119	/* Number of pages freed so far during a call to shrink_zones() */
 120	unsigned long nr_reclaimed;
 121
 122	struct {
 123		unsigned int dirty;
 124		unsigned int unqueued_dirty;
 125		unsigned int congested;
 126		unsigned int writeback;
 127		unsigned int immediate;
 128		unsigned int file_taken;
 129		unsigned int taken;
 130	} nr;
 131
 132	/* for recording the reclaimed slab by now */
 133	struct reclaim_state reclaim_state;
 134};
 135
 136#ifdef ARCH_HAS_PREFETCH
 137#define prefetch_prev_lru_page(_page, _base, _field)			\
 138	do {								\
 139		if ((_page)->lru.prev != _base) {			\
 140			struct page *prev;				\
 141									\
 142			prev = lru_to_page(&(_page->lru));		\
 143			prefetch(&prev->_field);			\
 144		}							\
 145	} while (0)
 146#else
 147#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 148#endif
 149
 150#ifdef ARCH_HAS_PREFETCHW
 151#define prefetchw_prev_lru_page(_page, _base, _field)			\
 152	do {								\
 153		if ((_page)->lru.prev != _base) {			\
 154			struct page *prev;				\
 155									\
 156			prev = lru_to_page(&(_page->lru));		\
 157			prefetchw(&prev->_field);			\
 158		}							\
 159	} while (0)
 160#else
 161#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 162#endif
 163
 164/*
 165 * From 0 .. 100.  Higher means more swappy.
 166 */
 167int vm_swappiness = 60;
 168/*
 169 * The total number of pages which are beyond the high watermark within all
 170 * zones.
 171 */
 172unsigned long vm_total_pages;
 173
 174static void set_task_reclaim_state(struct task_struct *task,
 175				   struct reclaim_state *rs)
 176{
 177	/* Check for an overwrite */
 178	WARN_ON_ONCE(rs && task->reclaim_state);
 179
 180	/* Check for the nulling of an already-nulled member */
 181	WARN_ON_ONCE(!rs && !task->reclaim_state);
 182
 183	task->reclaim_state = rs;
 184}
 185
 186static LIST_HEAD(shrinker_list);
 187static DECLARE_RWSEM(shrinker_rwsem);
 188
 189#ifdef CONFIG_MEMCG
 190/*
 191 * We allow subsystems to populate their shrinker-related
 192 * LRU lists before register_shrinker_prepared() is called
 193 * for the shrinker, since we don't want to impose
 194 * restrictions on their internal registration order.
 195 * In this case shrink_slab_memcg() may find corresponding
 196 * bit is set in the shrinkers map.
 197 *
 198 * This value is used by the function to detect registering
 199 * shrinkers and to skip do_shrink_slab() calls for them.
 200 */
 201#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
 202
 203static DEFINE_IDR(shrinker_idr);
 204static int shrinker_nr_max;
 205
 206static int prealloc_memcg_shrinker(struct shrinker *shrinker)
 207{
 208	int id, ret = -ENOMEM;
 209
 210	down_write(&shrinker_rwsem);
 211	/* This may call shrinker, so it must use down_read_trylock() */
 212	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
 213	if (id < 0)
 214		goto unlock;
 215
 216	if (id >= shrinker_nr_max) {
 217		if (memcg_expand_shrinker_maps(id)) {
 218			idr_remove(&shrinker_idr, id);
 219			goto unlock;
 220		}
 221
 222		shrinker_nr_max = id + 1;
 223	}
 224	shrinker->id = id;
 225	ret = 0;
 226unlock:
 227	up_write(&shrinker_rwsem);
 228	return ret;
 229}
 230
 231static void unregister_memcg_shrinker(struct shrinker *shrinker)
 
 232{
 233	int id = shrinker->id;
 234
 235	BUG_ON(id < 0);
 236
 237	down_write(&shrinker_rwsem);
 238	idr_remove(&shrinker_idr, id);
 239	up_write(&shrinker_rwsem);
 240}
 241
 242static bool global_reclaim(struct scan_control *sc)
 
 
 
 
 243{
 244	return !sc->target_mem_cgroup;
 245}
 246
 247/**
 248 * sane_reclaim - is the usual dirty throttling mechanism operational?
 249 * @sc: scan_control in question
 250 *
 251 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 252 * completely broken with the legacy memcg and direct stalling in
 253 * shrink_page_list() is used for throttling instead, which lacks all the
 254 * niceties such as fairness, adaptive pausing, bandwidth proportional
 255 * allocation and configurability.
 256 *
 257 * This function tests whether the vmscan currently in progress can assume
 258 * that the normal dirty throttling mechanism is operational.
 259 */
 260static bool sane_reclaim(struct scan_control *sc)
 261{
 262	struct mem_cgroup *memcg = sc->target_mem_cgroup;
 263
 264	if (!memcg)
 265		return true;
 266#ifdef CONFIG_CGROUP_WRITEBACK
 267	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 268		return true;
 269#endif
 270	return false;
 271}
 272
 273static void set_memcg_congestion(pg_data_t *pgdat,
 274				struct mem_cgroup *memcg,
 275				bool congested)
 276{
 277	struct mem_cgroup_per_node *mn;
 278
 279	if (!memcg)
 280		return;
 281
 282	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
 283	WRITE_ONCE(mn->congested, congested);
 284}
 285
 286static bool memcg_congested(pg_data_t *pgdat,
 287			struct mem_cgroup *memcg)
 288{
 289	struct mem_cgroup_per_node *mn;
 290
 291	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
 292	return READ_ONCE(mn->congested);
 293
 294}
 295#else
 296static int prealloc_memcg_shrinker(struct shrinker *shrinker)
 297{
 298	return 0;
 299}
 300
 301static void unregister_memcg_shrinker(struct shrinker *shrinker)
 302{
 
 303}
 
 304
 305static bool global_reclaim(struct scan_control *sc)
 
 306{
 307	return true;
 
 
 
 
 
 
 308}
 309
 310static bool sane_reclaim(struct scan_control *sc)
 
 
 
 
 311{
 312	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 313}
 314
 315static inline void set_memcg_congestion(struct pglist_data *pgdat,
 316				struct mem_cgroup *memcg, bool congested)
 317{
 
 
 
 
 
 
 
 
 318}
 319
 320static inline bool memcg_congested(struct pglist_data *pgdat,
 321			struct mem_cgroup *memcg)
 
 322{
 323	return false;
 
 
 
 
 
 
 
 
 
 
 
 324
 
 
 
 
 
 
 325}
 326#endif
 327
 328/*
 329 * This misses isolated pages which are not accounted for to save counters.
 330 * As the data only determines if reclaim or compaction continues, it is
 331 * not expected that isolated pages will be a dominating factor.
 332 */
 333unsigned long zone_reclaimable_pages(struct zone *zone)
 334{
 335	unsigned long nr;
 336
 337	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
 338		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
 339	if (get_nr_swap_pages() > 0)
 340		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
 341			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
 342
 343	return nr;
 344}
 345
 346/**
 347 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 348 * @lruvec: lru vector
 349 * @lru: lru to use
 350 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 351 */
 352unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
 
 353{
 354	unsigned long lru_size = 0;
 355	int zid;
 356
 357	if (!mem_cgroup_disabled()) {
 358		for (zid = 0; zid < MAX_NR_ZONES; zid++)
 359			lru_size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 360	} else
 361		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
 362
 363	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
 364		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
 365		unsigned long size;
 366
 367		if (!managed_zone(zone))
 368			continue;
 369
 370		if (!mem_cgroup_disabled())
 371			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 372		else
 373			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
 374				       NR_ZONE_LRU_BASE + lru);
 375		lru_size -= min(size, lru_size);
 376	}
 377
 378	return lru_size;
 379
 380}
 381
 382/*
 383 * Add a shrinker callback to be called from the vm.
 384 */
 385int prealloc_shrinker(struct shrinker *shrinker)
 386{
 387	unsigned int size = sizeof(*shrinker->nr_deferred);
 388
 389	if (shrinker->flags & SHRINKER_NUMA_AWARE)
 390		size *= nr_node_ids;
 391
 392	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
 393	if (!shrinker->nr_deferred)
 394		return -ENOMEM;
 395
 396	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
 397		if (prealloc_memcg_shrinker(shrinker))
 398			goto free_deferred;
 399	}
 400
 401	return 0;
 
 
 
 402
 403free_deferred:
 404	kfree(shrinker->nr_deferred);
 405	shrinker->nr_deferred = NULL;
 406	return -ENOMEM;
 407}
 408
 409void free_prealloced_shrinker(struct shrinker *shrinker)
 410{
 411	if (!shrinker->nr_deferred)
 412		return;
 
 413
 414	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 415		unregister_memcg_shrinker(shrinker);
 
 
 
 416
 417	kfree(shrinker->nr_deferred);
 418	shrinker->nr_deferred = NULL;
 
 419}
 420
 421void register_shrinker_prepared(struct shrinker *shrinker)
 422{
 423	down_write(&shrinker_rwsem);
 424	list_add_tail(&shrinker->list, &shrinker_list);
 425#ifdef CONFIG_MEMCG_KMEM
 426	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 427		idr_replace(&shrinker_idr, shrinker, shrinker->id);
 428#endif
 429	up_write(&shrinker_rwsem);
 
 
 
 
 
 
 
 430}
 431
 432int register_shrinker(struct shrinker *shrinker)
 433{
 434	int err = prealloc_shrinker(shrinker);
 435
 436	if (err)
 437		return err;
 438	register_shrinker_prepared(shrinker);
 439	return 0;
 
 440}
 441EXPORT_SYMBOL(register_shrinker);
 442
 443/*
 444 * Remove one
 
 
 
 
 
 
 
 
 
 445 */
 446void unregister_shrinker(struct shrinker *shrinker)
 
 447{
 448	if (!shrinker->nr_deferred)
 449		return;
 450	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 451		unregister_memcg_shrinker(shrinker);
 452	down_write(&shrinker_rwsem);
 453	list_del(&shrinker->list);
 454	up_write(&shrinker_rwsem);
 455	kfree(shrinker->nr_deferred);
 456	shrinker->nr_deferred = NULL;
 457}
 458EXPORT_SYMBOL(unregister_shrinker);
 459
 460#define SHRINK_BATCH 128
 461
 462static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
 463				    struct shrinker *shrinker, int priority)
 464{
 465	unsigned long freed = 0;
 466	unsigned long long delta;
 467	long total_scan;
 468	long freeable;
 469	long nr;
 470	long new_nr;
 471	int nid = shrinkctl->nid;
 472	long batch_size = shrinker->batch ? shrinker->batch
 473					  : SHRINK_BATCH;
 474	long scanned = 0, next_deferred;
 475
 476	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
 477		nid = 0;
 478
 479	freeable = shrinker->count_objects(shrinker, shrinkctl);
 480	if (freeable == 0 || freeable == SHRINK_EMPTY)
 481		return freeable;
 482
 483	/*
 484	 * copy the current shrinker scan count into a local variable
 485	 * and zero it so that other concurrent shrinker invocations
 486	 * don't also do this scanning work.
 487	 */
 488	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
 489
 490	total_scan = nr;
 491	if (shrinker->seeks) {
 492		delta = freeable >> priority;
 493		delta *= 4;
 494		do_div(delta, shrinker->seeks);
 495	} else {
 496		/*
 497		 * These objects don't require any IO to create. Trim
 498		 * them aggressively under memory pressure to keep
 499		 * them from causing refetches in the IO caches.
 500		 */
 501		delta = freeable / 2;
 502	}
 503
 504	total_scan += delta;
 505	if (total_scan < 0) {
 506		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
 507		       shrinker->scan_objects, total_scan);
 508		total_scan = freeable;
 509		next_deferred = nr;
 510	} else
 511		next_deferred = total_scan;
 512
 513	/*
 514	 * We need to avoid excessive windup on filesystem shrinkers
 515	 * due to large numbers of GFP_NOFS allocations causing the
 516	 * shrinkers to return -1 all the time. This results in a large
 517	 * nr being built up so when a shrink that can do some work
 518	 * comes along it empties the entire cache due to nr >>>
 519	 * freeable. This is bad for sustaining a working set in
 520	 * memory.
 521	 *
 522	 * Hence only allow the shrinker to scan the entire cache when
 523	 * a large delta change is calculated directly.
 524	 */
 525	if (delta < freeable / 4)
 526		total_scan = min(total_scan, freeable / 2);
 527
 528	/*
 529	 * Avoid risking looping forever due to too large nr value:
 530	 * never try to free more than twice the estimate number of
 531	 * freeable entries.
 532	 */
 533	if (total_scan > freeable * 2)
 534		total_scan = freeable * 2;
 535
 536	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
 537				   freeable, delta, total_scan, priority);
 538
 539	/*
 540	 * Normally, we should not scan less than batch_size objects in one
 541	 * pass to avoid too frequent shrinker calls, but if the slab has less
 542	 * than batch_size objects in total and we are really tight on memory,
 543	 * we will try to reclaim all available objects, otherwise we can end
 544	 * up failing allocations although there are plenty of reclaimable
 545	 * objects spread over several slabs with usage less than the
 546	 * batch_size.
 547	 *
 548	 * We detect the "tight on memory" situations by looking at the total
 549	 * number of objects we want to scan (total_scan). If it is greater
 550	 * than the total number of objects on slab (freeable), we must be
 551	 * scanning at high prio and therefore should try to reclaim as much as
 552	 * possible.
 553	 */
 554	while (total_scan >= batch_size ||
 555	       total_scan >= freeable) {
 556		unsigned long ret;
 557		unsigned long nr_to_scan = min(batch_size, total_scan);
 558
 559		shrinkctl->nr_to_scan = nr_to_scan;
 560		shrinkctl->nr_scanned = nr_to_scan;
 561		ret = shrinker->scan_objects(shrinker, shrinkctl);
 562		if (ret == SHRINK_STOP)
 563			break;
 564		freed += ret;
 565
 566		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
 567		total_scan -= shrinkctl->nr_scanned;
 568		scanned += shrinkctl->nr_scanned;
 569
 570		cond_resched();
 
 
 571	}
 
 
 572
 573	if (next_deferred >= scanned)
 574		next_deferred -= scanned;
 575	else
 576		next_deferred = 0;
 577	/*
 578	 * move the unused scan count back into the shrinker in a
 579	 * manner that handles concurrent updates. If we exhausted the
 580	 * scan, there is no need to do an update.
 581	 */
 582	if (next_deferred > 0)
 583		new_nr = atomic_long_add_return(next_deferred,
 584						&shrinker->nr_deferred[nid]);
 585	else
 586		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
 587
 588	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
 589	return freed;
 590}
 591
 592#ifdef CONFIG_MEMCG
 593static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
 594			struct mem_cgroup *memcg, int priority)
 595{
 596	struct memcg_shrinker_map *map;
 597	unsigned long ret, freed = 0;
 598	int i;
 599
 600	if (!mem_cgroup_online(memcg))
 601		return 0;
 602
 603	if (!down_read_trylock(&shrinker_rwsem))
 604		return 0;
 605
 606	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
 607					true);
 608	if (unlikely(!map))
 609		goto unlock;
 610
 611	for_each_set_bit(i, map->map, shrinker_nr_max) {
 612		struct shrink_control sc = {
 613			.gfp_mask = gfp_mask,
 614			.nid = nid,
 615			.memcg = memcg,
 616		};
 617		struct shrinker *shrinker;
 618
 619		shrinker = idr_find(&shrinker_idr, i);
 620		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
 621			if (!shrinker)
 622				clear_bit(i, map->map);
 623			continue;
 624		}
 625
 626		/* Call non-slab shrinkers even though kmem is disabled */
 627		if (!memcg_kmem_enabled() &&
 628		    !(shrinker->flags & SHRINKER_NONSLAB))
 629			continue;
 630
 631		ret = do_shrink_slab(&sc, shrinker, priority);
 632		if (ret == SHRINK_EMPTY) {
 633			clear_bit(i, map->map);
 634			/*
 635			 * After the shrinker reported that it had no objects to
 636			 * free, but before we cleared the corresponding bit in
 637			 * the memcg shrinker map, a new object might have been
 638			 * added. To make sure, we have the bit set in this
 639			 * case, we invoke the shrinker one more time and reset
 640			 * the bit if it reports that it is not empty anymore.
 641			 * The memory barrier here pairs with the barrier in
 642			 * memcg_set_shrinker_bit():
 643			 *
 644			 * list_lru_add()     shrink_slab_memcg()
 645			 *   list_add_tail()    clear_bit()
 646			 *   <MB>               <MB>
 647			 *   set_bit()          do_shrink_slab()
 648			 */
 649			smp_mb__after_atomic();
 650			ret = do_shrink_slab(&sc, shrinker, priority);
 651			if (ret == SHRINK_EMPTY)
 652				ret = 0;
 653			else
 654				memcg_set_shrinker_bit(memcg, nid, i);
 655		}
 656		freed += ret;
 657
 658		if (rwsem_is_contended(&shrinker_rwsem)) {
 659			freed = freed ? : 1;
 660			break;
 661		}
 
 
 
 
 
 662	}
 663unlock:
 664	up_read(&shrinker_rwsem);
 665	return freed;
 666}
 667#else /* CONFIG_MEMCG */
 668static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
 669			struct mem_cgroup *memcg, int priority)
 670{
 671	return 0;
 672}
 673#endif /* CONFIG_MEMCG */
 674
 675/**
 676 * shrink_slab - shrink slab caches
 677 * @gfp_mask: allocation context
 678 * @nid: node whose slab caches to target
 679 * @memcg: memory cgroup whose slab caches to target
 680 * @priority: the reclaim priority
 681 *
 682 * Call the shrink functions to age shrinkable caches.
 683 *
 684 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 685 * unaware shrinkers will receive a node id of 0 instead.
 686 *
 687 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 688 * are called only if it is the root cgroup.
 689 *
 690 * @priority is sc->priority, we take the number of objects and >> by priority
 691 * in order to get the scan target.
 692 *
 693 * Returns the number of reclaimed slab objects.
 694 */
 695static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
 696				 struct mem_cgroup *memcg,
 697				 int priority)
 698{
 699	unsigned long ret, freed = 0;
 700	struct shrinker *shrinker;
 701
 702	/*
 703	 * The root memcg might be allocated even though memcg is disabled
 704	 * via "cgroup_disable=memory" boot parameter.  This could make
 705	 * mem_cgroup_is_root() return false, then just run memcg slab
 706	 * shrink, but skip global shrink.  This may result in premature
 707	 * oom.
 708	 */
 709	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
 710		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
 
 
 
 
 
 
 
 
 
 711
 712	if (!down_read_trylock(&shrinker_rwsem))
 713		goto out;
 
 
 
 
 
 
 714
 715	list_for_each_entry(shrinker, &shrinker_list, list) {
 716		struct shrink_control sc = {
 717			.gfp_mask = gfp_mask,
 718			.nid = nid,
 719			.memcg = memcg,
 720		};
 721
 722		ret = do_shrink_slab(&sc, shrinker, priority);
 723		if (ret == SHRINK_EMPTY)
 724			ret = 0;
 725		freed += ret;
 726		/*
 727		 * Bail out if someone want to register a new shrinker to
 728		 * prevent the regsitration from being stalled for long periods
 729		 * by parallel ongoing shrinking.
 730		 */
 731		if (rwsem_is_contended(&shrinker_rwsem)) {
 732			freed = freed ? : 1;
 733			break;
 734		}
 735	}
 736
 737	up_read(&shrinker_rwsem);
 738out:
 739	cond_resched();
 740	return freed;
 741}
 742
 743void drop_slab_node(int nid)
 744{
 745	unsigned long freed;
 746
 747	do {
 748		struct mem_cgroup *memcg = NULL;
 749
 750		freed = 0;
 751		memcg = mem_cgroup_iter(NULL, NULL, NULL);
 752		do {
 753			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
 754		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 755	} while (freed > 10);
 756}
 757
 758void drop_slab(void)
 
 
 
 
 
 
 759{
 760	int nid;
 761
 762	for_each_online_node(nid)
 763		drop_slab_node(nid);
 764}
 765
 766static inline int is_page_cache_freeable(struct page *page)
 767{
 768	/*
 769	 * A freeable page cache page is referenced only by the caller
 770	 * that isolated the page, the page cache and optional buffer
 771	 * heads at page->private.
 
 
 772	 */
 773	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
 774		HPAGE_PMD_NR : 1;
 775	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
 776}
 777
 778static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
 779{
 780	if (current->flags & PF_SWAPWRITE)
 781		return 1;
 782	if (!inode_write_congested(inode))
 783		return 1;
 784	if (inode_to_bdi(inode) == current->backing_dev_info)
 785		return 1;
 786	return 0;
 787}
 788
 789/*
 790 * We detected a synchronous write error writing a page out.  Probably
 791 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 792 * fsync(), msync() or close().
 793 *
 794 * The tricky part is that after writepage we cannot touch the mapping: nothing
 795 * prevents it from being freed up.  But we have a ref on the page and once
 796 * that page is locked, the mapping is pinned.
 797 *
 798 * We're allowed to run sleeping lock_page() here because we know the caller has
 799 * __GFP_FS.
 800 */
 801static void handle_write_error(struct address_space *mapping,
 802				struct page *page, int error)
 803{
 804	lock_page(page);
 805	if (page_mapping(page) == mapping)
 806		mapping_set_error(mapping, error);
 807	unlock_page(page);
 808}
 809
 810/* possible outcome of pageout() */
 811typedef enum {
 812	/* failed to write page out, page is locked */
 813	PAGE_KEEP,
 814	/* move page to the active list, page is locked */
 815	PAGE_ACTIVATE,
 816	/* page has been sent to the disk successfully, page is unlocked */
 817	PAGE_SUCCESS,
 818	/* page is clean and locked */
 819	PAGE_CLEAN,
 820} pageout_t;
 821
 822/*
 823 * pageout is called by shrink_page_list() for each dirty page.
 824 * Calls ->writepage().
 825 */
 826static pageout_t pageout(struct page *page, struct address_space *mapping,
 827			 struct scan_control *sc)
 828{
 829	/*
 830	 * If the page is dirty, only perform writeback if that write
 831	 * will be non-blocking.  To prevent this allocation from being
 832	 * stalled by pagecache activity.  But note that there may be
 833	 * stalls if we need to run get_block().  We could test
 834	 * PagePrivate for that.
 835	 *
 836	 * If this process is currently in __generic_file_write_iter() against
 837	 * this page's queue, we can perform writeback even if that
 838	 * will block.
 839	 *
 840	 * If the page is swapcache, write it back even if that would
 841	 * block, for some throttling. This happens by accident, because
 842	 * swap_backing_dev_info is bust: it doesn't reflect the
 843	 * congestion state of the swapdevs.  Easy to fix, if needed.
 844	 */
 845	if (!is_page_cache_freeable(page))
 846		return PAGE_KEEP;
 847	if (!mapping) {
 848		/*
 849		 * Some data journaling orphaned pages can have
 850		 * page->mapping == NULL while being dirty with clean buffers.
 851		 */
 852		if (page_has_private(page)) {
 853			if (try_to_free_buffers(page)) {
 854				ClearPageDirty(page);
 855				pr_info("%s: orphaned page\n", __func__);
 856				return PAGE_CLEAN;
 857			}
 858		}
 859		return PAGE_KEEP;
 860	}
 861	if (mapping->a_ops->writepage == NULL)
 862		return PAGE_ACTIVATE;
 863	if (!may_write_to_inode(mapping->host, sc))
 864		return PAGE_KEEP;
 865
 866	if (clear_page_dirty_for_io(page)) {
 867		int res;
 868		struct writeback_control wbc = {
 869			.sync_mode = WB_SYNC_NONE,
 870			.nr_to_write = SWAP_CLUSTER_MAX,
 871			.range_start = 0,
 872			.range_end = LLONG_MAX,
 873			.for_reclaim = 1,
 
 874		};
 875
 876		SetPageReclaim(page);
 877		res = mapping->a_ops->writepage(page, &wbc);
 878		if (res < 0)
 879			handle_write_error(mapping, page, res);
 880		if (res == AOP_WRITEPAGE_ACTIVATE) {
 881			ClearPageReclaim(page);
 882			return PAGE_ACTIVATE;
 883		}
 884
 885		if (!PageWriteback(page)) {
 886			/* synchronous write or broken a_ops? */
 887			ClearPageReclaim(page);
 888		}
 889		trace_mm_vmscan_writepage(page);
 890		inc_node_page_state(page, NR_VMSCAN_WRITE);
 891		return PAGE_SUCCESS;
 892	}
 893
 894	return PAGE_CLEAN;
 895}
 896
 897/*
 898 * Same as remove_mapping, but if the page is removed from the mapping, it
 899 * gets returned with a refcount of 0.
 900 */
 901static int __remove_mapping(struct address_space *mapping, struct page *page,
 902			    bool reclaimed)
 903{
 904	unsigned long flags;
 905	int refcount;
 
 906
 907	BUG_ON(!PageLocked(page));
 908	BUG_ON(mapping != page_mapping(page));
 909
 910	xa_lock_irqsave(&mapping->i_pages, flags);
 
 
 911	/*
 912	 * The non racy check for a busy page.
 913	 *
 914	 * Must be careful with the order of the tests. When someone has
 915	 * a ref to the page, it may be possible that they dirty it then
 916	 * drop the reference. So if PageDirty is tested before page_count
 917	 * here, then the following race may occur:
 918	 *
 919	 * get_user_pages(&page);
 920	 * [user mapping goes away]
 921	 * write_to(page);
 922	 *				!PageDirty(page)    [good]
 923	 * SetPageDirty(page);
 924	 * put_page(page);
 925	 *				!page_count(page)   [good, discard it]
 926	 *
 927	 * [oops, our write_to data is lost]
 928	 *
 929	 * Reversing the order of the tests ensures such a situation cannot
 930	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 931	 * load is not satisfied before that of page->_refcount.
 932	 *
 933	 * Note that if SetPageDirty is always performed via set_page_dirty,
 934	 * and thus under the i_pages lock, then this ordering is not required.
 935	 */
 936	refcount = 1 + compound_nr(page);
 937	if (!page_ref_freeze(page, refcount))
 938		goto cannot_free;
 939	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
 940	if (unlikely(PageDirty(page))) {
 941		page_ref_unfreeze(page, refcount);
 942		goto cannot_free;
 943	}
 944
 945	if (PageSwapCache(page)) {
 946		swp_entry_t swap = { .val = page_private(page) };
 947		mem_cgroup_swapout(page, swap);
 948		__delete_from_swap_cache(page, swap);
 949		xa_unlock_irqrestore(&mapping->i_pages, flags);
 950		put_swap_page(page, swap);
 
 
 
 951	} else {
 952		void (*freepage)(struct page *);
 953		void *shadow = NULL;
 954
 955		freepage = mapping->a_ops->freepage;
 956		/*
 957		 * Remember a shadow entry for reclaimed file cache in
 958		 * order to detect refaults, thus thrashing, later on.
 959		 *
 960		 * But don't store shadows in an address space that is
 961		 * already exiting.  This is not just an optizimation,
 962		 * inode reclaim needs to empty out the radix tree or
 963		 * the nodes are lost.  Don't plant shadows behind its
 964		 * back.
 965		 *
 966		 * We also don't store shadows for DAX mappings because the
 967		 * only page cache pages found in these are zero pages
 968		 * covering holes, and because we don't want to mix DAX
 969		 * exceptional entries and shadow exceptional entries in the
 970		 * same address_space.
 971		 */
 972		if (reclaimed && page_is_file_cache(page) &&
 973		    !mapping_exiting(mapping) && !dax_mapping(mapping))
 974			shadow = workingset_eviction(page);
 975		__delete_from_page_cache(page, shadow);
 976		xa_unlock_irqrestore(&mapping->i_pages, flags);
 
 
 
 977
 978		if (freepage != NULL)
 979			freepage(page);
 980	}
 981
 982	return 1;
 983
 984cannot_free:
 985	xa_unlock_irqrestore(&mapping->i_pages, flags);
 
 
 986	return 0;
 987}
 988
 989/*
 990 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 991 * someone else has a ref on the page, abort and return 0.  If it was
 992 * successfully detached, return 1.  Assumes the caller has a single ref on
 993 * this page.
 
 
 
 
 
 
 994 */
 995int remove_mapping(struct address_space *mapping, struct page *page)
 996{
 997	if (__remove_mapping(mapping, page, false)) {
 998		/*
 999		 * Unfreezing the refcount with 1 rather than 2 effectively
1000		 * drops the pagecache ref for us without requiring another
1001		 * atomic operation.
1002		 */
1003		page_ref_unfreeze(page, 1);
1004		return 1;
1005	}
1006	return 0;
1007}
1008
1009/**
1010 * putback_lru_page - put previously isolated page onto appropriate LRU list
1011 * @page: page to be put back to appropriate lru list
1012 *
1013 * Add previously isolated @page to appropriate LRU list.
1014 * Page may still be unevictable for other reasons.
1015 *
1016 * lru_lock must not be held, interrupts must be enabled.
1017 */
1018void putback_lru_page(struct page *page)
1019{
1020	lru_cache_add(page);
1021	put_page(page);		/* drop ref from isolate */
1022}
1023
1024enum page_references {
1025	PAGEREF_RECLAIM,
1026	PAGEREF_RECLAIM_CLEAN,
1027	PAGEREF_KEEP,
1028	PAGEREF_ACTIVATE,
1029};
1030
1031static enum page_references page_check_references(struct page *page,
1032						  struct scan_control *sc)
1033{
1034	int referenced_ptes, referenced_page;
1035	unsigned long vm_flags;
1036
1037	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1038					  &vm_flags);
1039	referenced_page = TestClearPageReferenced(page);
1040
1041	/*
1042	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1043	 * move the page to the unevictable list.
1044	 */
1045	if (vm_flags & VM_LOCKED)
1046		return PAGEREF_RECLAIM;
 
 
 
 
1047
1048	if (referenced_ptes) {
1049		if (PageSwapBacked(page))
1050			return PAGEREF_ACTIVATE;
1051		/*
1052		 * All mapped pages start out with page table
1053		 * references from the instantiating fault, so we need
1054		 * to look twice if a mapped file page is used more
1055		 * than once.
1056		 *
1057		 * Mark it and spare it for another trip around the
1058		 * inactive list.  Another page table reference will
1059		 * lead to its activation.
1060		 *
1061		 * Note: the mark is set for activated pages as well
1062		 * so that recently deactivated but used pages are
1063		 * quickly recovered.
1064		 */
1065		SetPageReferenced(page);
1066
1067		if (referenced_page || referenced_ptes > 1)
1068			return PAGEREF_ACTIVATE;
1069
1070		/*
1071		 * Activate file-backed executable pages after first usage.
1072		 */
1073		if (vm_flags & VM_EXEC)
1074			return PAGEREF_ACTIVATE;
1075
1076		return PAGEREF_KEEP;
1077	}
1078
1079	/* Reclaim if clean, defer dirty pages to writeback */
1080	if (referenced_page && !PageSwapBacked(page))
1081		return PAGEREF_RECLAIM_CLEAN;
1082
1083	return PAGEREF_RECLAIM;
1084}
1085
1086/* Check if a page is dirty or under writeback */
1087static void page_check_dirty_writeback(struct page *page,
1088				       bool *dirty, bool *writeback)
1089{
1090	struct address_space *mapping;
1091
1092	/*
1093	 * Anonymous pages are not handled by flushers and must be written
1094	 * from reclaim context. Do not stall reclaim based on them
 
 
 
1095	 */
1096	if (!page_is_file_cache(page) ||
1097	    (PageAnon(page) && !PageSwapBacked(page))) {
1098		*dirty = false;
1099		*writeback = false;
1100		return;
1101	}
1102
1103	/* By default assume that the page flags are accurate */
1104	*dirty = PageDirty(page);
1105	*writeback = PageWriteback(page);
1106
1107	/* Verify dirty/writeback state if the filesystem supports it */
1108	if (!page_has_private(page))
1109		return;
1110
1111	mapping = page_mapping(page);
1112	if (mapping && mapping->a_ops->is_dirty_writeback)
1113		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1114}
1115
1116/*
1117 * shrink_page_list() returns the number of reclaimed pages
1118 */
1119static unsigned long shrink_page_list(struct list_head *page_list,
1120				      struct pglist_data *pgdat,
1121				      struct scan_control *sc,
1122				      enum ttu_flags ttu_flags,
1123				      struct reclaim_stat *stat,
1124				      bool ignore_references)
1125{
1126	LIST_HEAD(ret_pages);
1127	LIST_HEAD(free_pages);
1128	unsigned nr_reclaimed = 0;
1129	unsigned pgactivate = 0;
 
 
 
1130
1131	memset(stat, 0, sizeof(*stat));
1132	cond_resched();
 
1133
1134	while (!list_empty(page_list)) {
 
1135		struct address_space *mapping;
1136		struct page *page;
1137		int may_enter_fs;
1138		enum page_references references = PAGEREF_RECLAIM;
1139		bool dirty, writeback;
1140		unsigned int nr_pages;
1141
1142		cond_resched();
1143
1144		page = lru_to_page(page_list);
1145		list_del(&page->lru);
1146
1147		if (!trylock_page(page))
1148			goto keep;
1149
1150		VM_BUG_ON_PAGE(PageActive(page), page);
1151
1152		nr_pages = compound_nr(page);
1153
1154		/* Account the number of base pages even though THP */
1155		sc->nr_scanned += nr_pages;
1156
1157		if (unlikely(!page_evictable(page)))
1158			goto activate_locked;
1159
1160		if (!sc->may_unmap && page_mapped(page))
1161			goto keep_locked;
1162
1163		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1164			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
 
 
1165
1166		/*
1167		 * The number of dirty pages determines if a node is marked
1168		 * reclaim_congested which affects wait_iff_congested. kswapd
1169		 * will stall and start writing pages if the tail of the LRU
1170		 * is all dirty unqueued pages.
1171		 */
1172		page_check_dirty_writeback(page, &dirty, &writeback);
1173		if (dirty || writeback)
1174			stat->nr_dirty++;
1175
1176		if (dirty && !writeback)
1177			stat->nr_unqueued_dirty++;
1178
1179		/*
1180		 * Treat this page as congested if the underlying BDI is or if
1181		 * pages are cycling through the LRU so quickly that the
1182		 * pages marked for immediate reclaim are making it to the
1183		 * end of the LRU a second time.
1184		 */
1185		mapping = page_mapping(page);
1186		if (((dirty || writeback) && mapping &&
1187		     inode_write_congested(mapping->host)) ||
1188		    (writeback && PageReclaim(page)))
1189			stat->nr_congested++;
1190
1191		/*
1192		 * If a page at the tail of the LRU is under writeback, there
1193		 * are three cases to consider.
1194		 *
1195		 * 1) If reclaim is encountering an excessive number of pages
1196		 *    under writeback and this page is both under writeback and
1197		 *    PageReclaim then it indicates that pages are being queued
1198		 *    for IO but are being recycled through the LRU before the
1199		 *    IO can complete. Waiting on the page itself risks an
1200		 *    indefinite stall if it is impossible to writeback the
1201		 *    page due to IO error or disconnected storage so instead
1202		 *    note that the LRU is being scanned too quickly and the
1203		 *    caller can stall after page list has been processed.
 
 
1204		 *
1205		 * 2) Global or new memcg reclaim encounters a page that is
1206		 *    not marked for immediate reclaim, or the caller does not
1207		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1208		 *    not to fs). In this case mark the page for immediate
1209		 *    reclaim and continue scanning.
1210		 *
1211		 *    Require may_enter_fs because we would wait on fs, which
1212		 *    may not have submitted IO yet. And the loop driver might
1213		 *    enter reclaim, and deadlock if it waits on a page for
1214		 *    which it is needed to do the write (loop masks off
1215		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1216		 *    would probably show more reasons.
1217		 *
1218		 * 3) Legacy memcg encounters a page that is already marked
1219		 *    PageReclaim. memcg does not have any dirty pages
1220		 *    throttling so we could easily OOM just because too many
1221		 *    pages are in writeback and there is nothing else to
1222		 *    reclaim. Wait for the writeback to complete.
1223		 *
1224		 * In cases 1) and 2) we activate the pages to get them out of
1225		 * the way while we continue scanning for clean pages on the
1226		 * inactive list and refilling from the active list. The
1227		 * observation here is that waiting for disk writes is more
1228		 * expensive than potentially causing reloads down the line.
1229		 * Since they're marked for immediate reclaim, they won't put
1230		 * memory pressure on the cache working set any longer than it
1231		 * takes to write them to disk.
1232		 */
1233		if (PageWriteback(page)) {
1234			/* Case 1 above */
1235			if (current_is_kswapd() &&
1236			    PageReclaim(page) &&
1237			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1238				stat->nr_immediate++;
1239				goto activate_locked;
1240
1241			/* Case 2 above */
1242			} else if (sane_reclaim(sc) ||
1243			    !PageReclaim(page) || !may_enter_fs) {
 
1244				/*
1245				 * This is slightly racy - end_page_writeback()
1246				 * might have just cleared PageReclaim, then
1247				 * setting PageReclaim here end up interpreted
1248				 * as PageReadahead - but that does not matter
1249				 * enough to care.  What we do want is for this
1250				 * page to have PageReclaim set next time memcg
1251				 * reclaim reaches the tests above, so it will
1252				 * then wait_on_page_writeback() to avoid OOM;
1253				 * and it's also appropriate in global reclaim.
 
 
 
1254				 */
1255				SetPageReclaim(page);
1256				stat->nr_writeback++;
1257				goto activate_locked;
1258
1259			/* Case 3 above */
1260			} else {
1261				unlock_page(page);
1262				wait_on_page_writeback(page);
1263				/* then go back and try same page again */
1264				list_add_tail(&page->lru, page_list);
1265				continue;
1266			}
1267		}
1268
1269		if (!ignore_references)
1270			references = page_check_references(page, sc);
1271
1272		switch (references) {
1273		case PAGEREF_ACTIVATE:
1274			goto activate_locked;
1275		case PAGEREF_KEEP:
1276			stat->nr_ref_keep += nr_pages;
1277			goto keep_locked;
1278		case PAGEREF_RECLAIM:
1279		case PAGEREF_RECLAIM_CLEAN:
1280			; /* try to reclaim the page below */
 
 
 
 
 
 
 
 
 
 
 
1281		}
1282
1283		/*
1284		 * Anonymous process memory has backing store?
1285		 * Try to allocate it some swap space here.
1286		 * Lazyfree page could be freed directly
1287		 */
1288		if (PageAnon(page) && PageSwapBacked(page)) {
1289			if (!PageSwapCache(page)) {
1290				if (!(sc->gfp_mask & __GFP_IO))
1291					goto keep_locked;
1292				if (PageTransHuge(page)) {
1293					/* cannot split THP, skip it */
1294					if (!can_split_huge_page(page, NULL))
 
 
1295						goto activate_locked;
1296					/*
1297					 * Split pages without a PMD map right
1298					 * away. Chances are some or all of the
1299					 * tail pages can be freed without IO.
1300					 */
1301					if (!compound_mapcount(page) &&
1302					    split_huge_page_to_list(page,
1303								    page_list))
1304						goto activate_locked;
1305				}
1306				if (!add_to_swap(page)) {
1307					if (!PageTransHuge(page))
1308						goto activate_locked_split;
1309					/* Fallback to swap normal pages */
1310					if (split_huge_page_to_list(page,
1311								    page_list))
1312						goto activate_locked;
1313#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 
1314					count_vm_event(THP_SWPOUT_FALLBACK);
1315#endif
1316					if (!add_to_swap(page))
1317						goto activate_locked_split;
1318				}
1319
1320				may_enter_fs = 1;
1321
1322				/* Adding to swap updated mapping */
1323				mapping = page_mapping(page);
1324			}
1325		} else if (unlikely(PageTransHuge(page))) {
1326			/* Split file THP */
1327			if (split_huge_page_to_list(page, page_list))
 
1328				goto keep_locked;
1329		}
1330
1331		/*
1332		 * THP may get split above, need minus tail pages and update
1333		 * nr_pages to avoid accounting tail pages twice.
1334		 *
1335		 * The tail pages that are added into swap cache successfully
1336		 * reach here.
1337		 */
1338		if ((nr_pages > 1) && !PageTransHuge(page)) {
1339			sc->nr_scanned -= (nr_pages - 1);
1340			nr_pages = 1;
1341		}
1342
1343		/*
1344		 * The page is mapped into the page tables of one or more
1345		 * processes. Try to unmap it here.
1346		 */
1347		if (page_mapped(page)) {
1348			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
 
1349
1350			if (unlikely(PageTransHuge(page)))
1351				flags |= TTU_SPLIT_HUGE_PMD;
1352			if (!try_to_unmap(page, flags)) {
 
 
1353				stat->nr_unmap_fail += nr_pages;
 
 
 
1354				goto activate_locked;
1355			}
1356		}
1357
1358		if (PageDirty(page)) {
 
 
 
 
 
 
 
 
 
 
 
1359			/*
1360			 * Only kswapd can writeback filesystem pages
1361			 * to avoid risk of stack overflow. But avoid
1362			 * injecting inefficient single-page IO into
1363			 * flusher writeback as much as possible: only
1364			 * write pages when we've encountered many
1365			 * dirty pages, and when we've already scanned
1366			 * the rest of the LRU for clean pages and see
1367			 * the same dirty pages again (PageReclaim).
 
1368			 */
1369			if (page_is_file_cache(page) &&
1370			    (!current_is_kswapd() || !PageReclaim(page) ||
 
1371			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1372				/*
1373				 * Immediately reclaim when written back.
1374				 * Similar in principal to deactivate_page()
1375				 * except we already have the page isolated
1376				 * and know it's dirty
1377				 */
1378				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1379				SetPageReclaim(page);
 
1380
1381				goto activate_locked;
1382			}
1383
1384			if (references == PAGEREF_RECLAIM_CLEAN)
1385				goto keep_locked;
1386			if (!may_enter_fs)
1387				goto keep_locked;
1388			if (!sc->may_writepage)
1389				goto keep_locked;
1390
1391			/*
1392			 * Page is dirty. Flush the TLB if a writable entry
1393			 * potentially exists to avoid CPU writes after IO
1394			 * starts and then write it out here.
1395			 */
1396			try_to_unmap_flush_dirty();
1397			switch (pageout(page, mapping, sc)) {
1398			case PAGE_KEEP:
1399				goto keep_locked;
1400			case PAGE_ACTIVATE:
1401				goto activate_locked;
1402			case PAGE_SUCCESS:
1403				if (PageWriteback(page))
 
 
1404					goto keep;
1405				if (PageDirty(page))
1406					goto keep;
1407
1408				/*
1409				 * A synchronous write - probably a ramdisk.  Go
1410				 * ahead and try to reclaim the page.
1411				 */
1412				if (!trylock_page(page))
1413					goto keep;
1414				if (PageDirty(page) || PageWriteback(page))
 
1415					goto keep_locked;
1416				mapping = page_mapping(page);
 
1417			case PAGE_CLEAN:
1418				; /* try to free the page below */
1419			}
1420		}
1421
1422		/*
1423		 * If the page has buffers, try to free the buffer mappings
1424		 * associated with this page. If we succeed we try to free
1425		 * the page as well.
1426		 *
1427		 * We do this even if the page is PageDirty().
1428		 * try_to_release_page() does not perform I/O, but it is
1429		 * possible for a page to have PageDirty set, but it is actually
1430		 * clean (all its buffers are clean).  This happens if the
1431		 * buffers were written out directly, with submit_bh(). ext3
1432		 * will do this, as well as the blockdev mapping.
1433		 * try_to_release_page() will discover that cleanness and will
1434		 * drop the buffers and mark the page clean - it can be freed.
 
1435		 *
1436		 * Rarely, pages can have buffers and no ->mapping.  These are
1437		 * the pages which were not successfully invalidated in
1438		 * truncate_complete_page().  We try to drop those buffers here
1439		 * and if that worked, and the page is no longer mapped into
1440		 * process address space (page_count == 1) it can be freed.
1441		 * Otherwise, leave the page on the LRU so it is swappable.
 
1442		 */
1443		if (page_has_private(page)) {
1444			if (!try_to_release_page(page, sc->gfp_mask))
1445				goto activate_locked;
1446			if (!mapping && page_count(page) == 1) {
1447				unlock_page(page);
1448				if (put_page_testzero(page))
1449					goto free_it;
1450				else {
1451					/*
1452					 * rare race with speculative reference.
1453					 * the speculative reference will free
1454					 * this page shortly, so we may
1455					 * increment nr_reclaimed here (and
1456					 * leave it off the LRU).
1457					 */
1458					nr_reclaimed++;
1459					continue;
1460				}
1461			}
1462		}
1463
1464		if (PageAnon(page) && !PageSwapBacked(page)) {
1465			/* follow __remove_mapping for reference */
1466			if (!page_ref_freeze(page, 1))
1467				goto keep_locked;
1468			if (PageDirty(page)) {
1469				page_ref_unfreeze(page, 1);
1470				goto keep_locked;
1471			}
1472
1473			count_vm_event(PGLAZYFREED);
1474			count_memcg_page_event(page, PGLAZYFREED);
1475		} else if (!mapping || !__remove_mapping(mapping, page, true))
 
 
 
 
 
 
 
1476			goto keep_locked;
1477
1478		unlock_page(page);
1479free_it:
1480		/*
1481		 * THP may get swapped out in a whole, need account
1482		 * all base pages.
1483		 */
1484		nr_reclaimed += nr_pages;
1485
1486		/*
1487		 * Is there need to periodically free_page_list? It would
1488		 * appear not as the counts should be low
1489		 */
1490		if (unlikely(PageTransHuge(page)))
1491			(*get_compound_page_dtor(page))(page);
1492		else
1493			list_add(&page->lru, &free_pages);
1494		continue;
1495
1496activate_locked_split:
1497		/*
1498		 * The tail pages that are failed to add into swap cache
1499		 * reach here.  Fixup nr_scanned and nr_pages.
1500		 */
1501		if (nr_pages > 1) {
1502			sc->nr_scanned -= (nr_pages - 1);
1503			nr_pages = 1;
1504		}
1505activate_locked:
1506		/* Not a candidate for swapping, so reclaim swap space. */
1507		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1508						PageMlocked(page)))
1509			try_to_free_swap(page);
1510		VM_BUG_ON_PAGE(PageActive(page), page);
1511		if (!PageMlocked(page)) {
1512			int type = page_is_file_cache(page);
1513			SetPageActive(page);
1514			stat->nr_activate[type] += nr_pages;
1515			count_memcg_page_event(page, PGACTIVATE);
1516		}
1517keep_locked:
1518		unlock_page(page);
1519keep:
1520		list_add(&page->lru, &ret_pages);
1521		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1522	}
1523
1524	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1525
1526	mem_cgroup_uncharge_list(&free_pages);
1527	try_to_unmap_flush();
1528	free_unref_page_list(&free_pages);
1529
1530	list_splice(&ret_pages, page_list);
1531	count_vm_events(PGACTIVATE, pgactivate);
1532
 
 
1533	return nr_reclaimed;
1534}
1535
1536unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1537					    struct list_head *page_list)
1538{
1539	struct scan_control sc = {
1540		.gfp_mask = GFP_KERNEL,
1541		.priority = DEF_PRIORITY,
1542		.may_unmap = 1,
1543	};
1544	struct reclaim_stat dummy_stat;
1545	unsigned long ret;
1546	struct page *page, *next;
1547	LIST_HEAD(clean_pages);
1548
1549	list_for_each_entry_safe(page, next, page_list, lru) {
1550		if (page_is_file_cache(page) && !PageDirty(page) &&
1551		    !__PageMovable(page) && !PageUnevictable(page)) {
1552			ClearPageActive(page);
1553			list_move(&page->lru, &clean_pages);
 
 
1554		}
1555	}
1556
1557	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1558			TTU_IGNORE_ACCESS, &dummy_stat, true);
1559	list_splice(&clean_pages, page_list);
1560	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1561	return ret;
1562}
1563
1564/*
1565 * Attempt to remove the specified page from its LRU.  Only take this page
1566 * if it is of the appropriate PageActive status.  Pages which are being
1567 * freed elsewhere are also ignored.
1568 *
1569 * page:	page to consider
1570 * mode:	one of the LRU isolation modes defined above
1571 *
1572 * returns 0 on success, -ve errno on failure.
1573 */
1574int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1575{
1576	int ret = -EINVAL;
1577
1578	/* Only take pages on the LRU. */
1579	if (!PageLRU(page))
1580		return ret;
1581
1582	/* Compaction should not handle unevictable pages but CMA can do so */
1583	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1584		return ret;
1585
1586	ret = -EBUSY;
1587
1588	/*
1589	 * To minimise LRU disruption, the caller can indicate that it only
1590	 * wants to isolate pages it will be able to operate on without
1591	 * blocking - clean pages for the most part.
1592	 *
1593	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1594	 * that it is possible to migrate without blocking
1595	 */
1596	if (mode & ISOLATE_ASYNC_MIGRATE) {
1597		/* All the caller can do on PageWriteback is block */
1598		if (PageWriteback(page))
1599			return ret;
1600
1601		if (PageDirty(page)) {
1602			struct address_space *mapping;
1603			bool migrate_dirty;
1604
1605			/*
1606			 * Only pages without mappings or that have a
1607			 * ->migratepage callback are possible to migrate
1608			 * without blocking. However, we can be racing with
1609			 * truncation so it's necessary to lock the page
1610			 * to stabilise the mapping as truncation holds
1611			 * the page lock until after the page is removed
1612			 * from the page cache.
1613			 */
1614			if (!trylock_page(page))
1615				return ret;
1616
1617			mapping = page_mapping(page);
1618			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1619			unlock_page(page);
1620			if (!migrate_dirty)
1621				return ret;
1622		}
1623	}
1624
1625	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1626		return ret;
1627
1628	if (likely(get_page_unless_zero(page))) {
1629		/*
1630		 * Be careful not to clear PageLRU until after we're
1631		 * sure the page is not being freed elsewhere -- the
1632		 * page release code relies on it.
1633		 */
1634		ClearPageLRU(page);
1635		ret = 0;
1636	}
1637
1638	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
1639}
1640
1641
1642/*
1643 * Update LRU sizes after isolating pages. The LRU size updates must
1644 * be complete before mem_cgroup_update_lru_size due to a santity check.
1645 */
1646static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1647			enum lru_list lru, unsigned long *nr_zone_taken)
1648{
1649	int zid;
1650
1651	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1652		if (!nr_zone_taken[zid])
1653			continue;
1654
1655		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1656#ifdef CONFIG_MEMCG
1657		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1658#endif
1659	}
1660
1661}
1662
1663/**
1664 * pgdat->lru_lock is heavily contended.  Some of the functions that
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1665 * shrink the lists perform better by taking out a batch of pages
1666 * and working on them outside the LRU lock.
1667 *
1668 * For pagecache intensive workloads, this function is the hottest
1669 * spot in the kernel (apart from copy_*_user functions).
1670 *
1671 * Appropriate locks must be held before calling this function.
1672 *
1673 * @nr_to_scan:	The number of eligible pages to look through on the list.
1674 * @lruvec:	The LRU vector to pull pages from.
1675 * @dst:	The temp list to put pages on to.
1676 * @nr_scanned:	The number of pages that were scanned.
1677 * @sc:		The scan_control struct for this reclaim session
1678 * @mode:	One of the LRU isolation modes
1679 * @lru:	LRU list id for isolating
1680 *
1681 * returns how many pages were moved onto *@dst.
1682 */
1683static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1684		struct lruvec *lruvec, struct list_head *dst,
1685		unsigned long *nr_scanned, struct scan_control *sc,
1686		enum lru_list lru)
1687{
1688	struct list_head *src = &lruvec->lists[lru];
1689	unsigned long nr_taken = 0;
1690	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1691	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1692	unsigned long skipped = 0;
1693	unsigned long scan, total_scan, nr_pages;
1694	LIST_HEAD(pages_skipped);
1695	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1696
1697	total_scan = 0;
1698	scan = 0;
1699	while (scan < nr_to_scan && !list_empty(src)) {
1700		struct page *page;
 
1701
1702		page = lru_to_page(src);
1703		prefetchw_prev_lru_page(page, src, flags);
1704
1705		VM_BUG_ON_PAGE(!PageLRU(page), page);
1706
1707		nr_pages = compound_nr(page);
1708		total_scan += nr_pages;
1709
1710		if (page_zonenum(page) > sc->reclaim_idx) {
1711			list_move(&page->lru, &pages_skipped);
1712			nr_skipped[page_zonenum(page)] += nr_pages;
1713			continue;
 
1714		}
1715
1716		/*
1717		 * Do not count skipped pages because that makes the function
1718		 * return with no isolated pages if the LRU mostly contains
1719		 * ineligible pages.  This causes the VM to not reclaim any
1720		 * pages, triggering a premature OOM.
1721		 *
1722		 * Account all tail pages of THP.  This would not cause
1723		 * premature OOM since __isolate_lru_page() returns -EBUSY
1724		 * only when the page is being freed somewhere else.
1725		 */
1726		scan += nr_pages;
1727		switch (__isolate_lru_page(page, mode)) {
1728		case 0:
1729			nr_taken += nr_pages;
1730			nr_zone_taken[page_zonenum(page)] += nr_pages;
1731			list_move(&page->lru, dst);
1732			break;
1733
1734		case -EBUSY:
1735			/* else it is being freed elsewhere */
1736			list_move(&page->lru, src);
1737			continue;
1738
1739		default:
1740			BUG();
 
 
 
 
 
 
 
 
 
 
1741		}
 
 
 
 
 
 
1742	}
1743
1744	/*
1745	 * Splice any skipped pages to the start of the LRU list. Note that
1746	 * this disrupts the LRU order when reclaiming for lower zones but
1747	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1748	 * scanning would soon rescan the same pages to skip and put the
1749	 * system at risk of premature OOM.
1750	 */
1751	if (!list_empty(&pages_skipped)) {
1752		int zid;
1753
1754		list_splice(&pages_skipped, src);
1755		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1756			if (!nr_skipped[zid])
1757				continue;
1758
1759			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1760			skipped += nr_skipped[zid];
1761		}
1762	}
1763	*nr_scanned = total_scan;
1764	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1765				    total_scan, skipped, nr_taken, mode, lru);
1766	update_lru_sizes(lruvec, lru, nr_zone_taken);
1767	return nr_taken;
1768}
1769
1770/**
1771 * isolate_lru_page - tries to isolate a page from its LRU list
1772 * @page: page to isolate from its LRU list
1773 *
1774 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1775 * vmstat statistic corresponding to whatever LRU list the page was on.
1776 *
1777 * Returns 0 if the page was removed from an LRU list.
1778 * Returns -EBUSY if the page was not on an LRU list.
1779 *
1780 * The returned page will have PageLRU() cleared.  If it was found on
1781 * the active list, it will have PageActive set.  If it was found on
1782 * the unevictable list, it will have the PageUnevictable bit set. That flag
1783 * may need to be cleared by the caller before letting the page go.
1784 *
1785 * The vmstat statistic corresponding to the list on which the page was
1786 * found will be decremented.
1787 *
1788 * Restrictions:
1789 *
1790 * (1) Must be called with an elevated refcount on the page. This is a
1791 *     fundamentnal difference from isolate_lru_pages (which is called
1792 *     without a stable reference).
1793 * (2) the lru_lock must not be held.
1794 * (3) interrupts must be enabled.
 
 
 
1795 */
1796int isolate_lru_page(struct page *page)
1797{
1798	int ret = -EBUSY;
1799
1800	VM_BUG_ON_PAGE(!page_count(page), page);
1801	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1802
1803	if (PageLRU(page)) {
1804		pg_data_t *pgdat = page_pgdat(page);
1805		struct lruvec *lruvec;
1806
1807		spin_lock_irq(&pgdat->lru_lock);
1808		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1809		if (PageLRU(page)) {
1810			int lru = page_lru(page);
1811			get_page(page);
1812			ClearPageLRU(page);
1813			del_page_from_lru_list(page, lruvec, lru);
1814			ret = 0;
1815		}
1816		spin_unlock_irq(&pgdat->lru_lock);
1817	}
 
1818	return ret;
1819}
1820
1821/*
1822 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1823 * then get resheduled. When there are massive number of tasks doing page
1824 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1825 * the LRU list will go small and be scanned faster than necessary, leading to
1826 * unnecessary swapping, thrashing and OOM.
1827 */
1828static int too_many_isolated(struct pglist_data *pgdat, int file,
1829		struct scan_control *sc)
1830{
1831	unsigned long inactive, isolated;
 
1832
1833	if (current_is_kswapd())
1834		return 0;
1835
1836	if (!sane_reclaim(sc))
1837		return 0;
1838
1839	if (file) {
1840		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1841		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1842	} else {
1843		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1844		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1845	}
1846
1847	/*
1848	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1849	 * won't get blocked by normal direct-reclaimers, forming a circular
1850	 * deadlock.
1851	 */
1852	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1853		inactive >>= 3;
1854
1855	return isolated > inactive;
 
 
 
 
 
 
1856}
1857
1858/*
1859 * This moves pages from @list to corresponding LRU list.
1860 *
1861 * We move them the other way if the page is referenced by one or more
1862 * processes, from rmap.
1863 *
1864 * If the pages are mostly unmapped, the processing is fast and it is
1865 * appropriate to hold zone_lru_lock across the whole operation.  But if
1866 * the pages are mapped, the processing is slow (page_referenced()) so we
1867 * should drop zone_lru_lock around each page.  It's impossible to balance
1868 * this, so instead we remove the pages from the LRU while processing them.
1869 * It is safe to rely on PG_active against the non-LRU pages in here because
1870 * nobody will play with that bit on a non-LRU page.
1871 *
1872 * The downside is that we have to touch page->_refcount against each page.
1873 * But we had to alter page->flags anyway.
1874 *
1875 * Returns the number of pages moved to the given lruvec.
1876 */
1877
1878static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1879						     struct list_head *list)
1880{
1881	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1882	int nr_pages, nr_moved = 0;
1883	LIST_HEAD(pages_to_free);
1884	struct page *page;
1885	enum lru_list lru;
1886
1887	while (!list_empty(list)) {
1888		page = lru_to_page(list);
1889		VM_BUG_ON_PAGE(PageLRU(page), page);
1890		if (unlikely(!page_evictable(page))) {
1891			list_del(&page->lru);
1892			spin_unlock_irq(&pgdat->lru_lock);
1893			putback_lru_page(page);
1894			spin_lock_irq(&pgdat->lru_lock);
1895			continue;
1896		}
1897		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1898
1899		SetPageLRU(page);
1900		lru = page_lru(page);
1901
1902		nr_pages = hpage_nr_pages(page);
1903		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1904		list_move(&page->lru, &lruvec->lists[lru]);
1905
1906		if (put_page_testzero(page)) {
1907			__ClearPageLRU(page);
1908			__ClearPageActive(page);
1909			del_page_from_lru_list(page, lruvec, lru);
1910
1911			if (unlikely(PageCompound(page))) {
1912				spin_unlock_irq(&pgdat->lru_lock);
1913				(*get_compound_page_dtor(page))(page);
1914				spin_lock_irq(&pgdat->lru_lock);
 
 
 
 
1915			} else
1916				list_add(&page->lru, &pages_to_free);
1917		} else {
1918			nr_moved += nr_pages;
1919		}
 
 
 
 
 
 
 
 
 
 
 
1920	}
1921
1922	/*
1923	 * To save our caller's stack, now use input list for pages to free.
1924	 */
1925	list_splice(&pages_to_free, list);
1926
1927	return nr_moved;
1928}
1929
1930/*
1931 * If a kernel thread (such as nfsd for loop-back mounts) services
1932 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1933 * In that case we should only throttle if the backing device it is
1934 * writing to is congested.  In other cases it is safe to throttle.
1935 */
1936static int current_may_throttle(void)
1937{
1938	return !(current->flags & PF_LESS_THROTTLE) ||
1939		current->backing_dev_info == NULL ||
1940		bdi_write_congested(current->backing_dev_info);
1941}
1942
1943/*
1944 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1945 * of reclaimed pages
1946 */
1947static noinline_for_stack unsigned long
1948shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1949		     struct scan_control *sc, enum lru_list lru)
1950{
1951	LIST_HEAD(page_list);
1952	unsigned long nr_scanned;
1953	unsigned long nr_reclaimed = 0;
1954	unsigned long nr_taken;
1955	struct reclaim_stat stat;
1956	int file = is_file_lru(lru);
1957	enum vm_event_item item;
1958	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1959	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1960	bool stalled = false;
1961
1962	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1963		if (stalled)
1964			return 0;
1965
1966		/* wait a bit for the reclaimer. */
1967		msleep(100);
1968		stalled = true;
 
1969
1970		/* We are about to die and free our memory. Return now. */
1971		if (fatal_signal_pending(current))
1972			return SWAP_CLUSTER_MAX;
1973	}
1974
1975	lru_add_drain();
1976
1977	spin_lock_irq(&pgdat->lru_lock);
1978
1979	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1980				     &nr_scanned, sc, lru);
1981
1982	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1983	reclaim_stat->recent_scanned[file] += nr_taken;
1984
1985	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1986	if (global_reclaim(sc))
1987		__count_vm_events(item, nr_scanned);
1988	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1989	spin_unlock_irq(&pgdat->lru_lock);
 
 
1990
1991	if (nr_taken == 0)
1992		return 0;
1993
1994	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1995				&stat, false);
1996
1997	spin_lock_irq(&pgdat->lru_lock);
 
1998
1999	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2000	if (global_reclaim(sc))
 
2001		__count_vm_events(item, nr_reclaimed);
2002	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2003	reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
2004	reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
2005
2006	move_pages_to_lru(lruvec, &page_list);
2007
2008	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2009
2010	spin_unlock_irq(&pgdat->lru_lock);
2011
2012	mem_cgroup_uncharge_list(&page_list);
2013	free_unref_page_list(&page_list);
2014
2015	/*
2016	 * If dirty pages are scanned that are not queued for IO, it
2017	 * implies that flushers are not doing their job. This can
2018	 * happen when memory pressure pushes dirty pages to the end of
2019	 * the LRU before the dirty limits are breached and the dirty
2020	 * data has expired. It can also happen when the proportion of
2021	 * dirty pages grows not through writes but through memory
2022	 * pressure reclaiming all the clean cache. And in some cases,
2023	 * the flushers simply cannot keep up with the allocation
2024	 * rate. Nudge the flusher threads in case they are asleep.
2025	 */
2026	if (stat.nr_unqueued_dirty == nr_taken)
2027		wakeup_flusher_threads(WB_REASON_VMSCAN);
 
 
 
 
 
 
 
 
 
 
 
 
2028
2029	sc->nr.dirty += stat.nr_dirty;
2030	sc->nr.congested += stat.nr_congested;
2031	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2032	sc->nr.writeback += stat.nr_writeback;
2033	sc->nr.immediate += stat.nr_immediate;
2034	sc->nr.taken += nr_taken;
2035	if (file)
2036		sc->nr.file_taken += nr_taken;
2037
2038	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2039			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2040	return nr_reclaimed;
2041}
2042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2043static void shrink_active_list(unsigned long nr_to_scan,
2044			       struct lruvec *lruvec,
2045			       struct scan_control *sc,
2046			       enum lru_list lru)
2047{
2048	unsigned long nr_taken;
2049	unsigned long nr_scanned;
2050	unsigned long vm_flags;
2051	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2052	LIST_HEAD(l_active);
2053	LIST_HEAD(l_inactive);
2054	struct page *page;
2055	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2056	unsigned nr_deactivate, nr_activate;
2057	unsigned nr_rotated = 0;
2058	int file = is_file_lru(lru);
2059	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2060
2061	lru_add_drain();
2062
2063	spin_lock_irq(&pgdat->lru_lock);
2064
2065	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2066				     &nr_scanned, sc, lru);
2067
2068	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2069	reclaim_stat->recent_scanned[file] += nr_taken;
2070
2071	__count_vm_events(PGREFILL, nr_scanned);
 
2072	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2073
2074	spin_unlock_irq(&pgdat->lru_lock);
2075
2076	while (!list_empty(&l_hold)) {
 
 
2077		cond_resched();
2078		page = lru_to_page(&l_hold);
2079		list_del(&page->lru);
2080
2081		if (unlikely(!page_evictable(page))) {
2082			putback_lru_page(page);
2083			continue;
2084		}
2085
2086		if (unlikely(buffer_heads_over_limit)) {
2087			if (page_has_private(page) && trylock_page(page)) {
2088				if (page_has_private(page))
2089					try_to_release_page(page, 0);
2090				unlock_page(page);
2091			}
2092		}
2093
2094		if (page_referenced(page, 0, sc->target_mem_cgroup,
2095				    &vm_flags)) {
2096			nr_rotated += hpage_nr_pages(page);
2097			/*
2098			 * Identify referenced, file-backed active pages and
2099			 * give them one more trip around the active list. So
2100			 * that executable code get better chances to stay in
2101			 * memory under moderate memory pressure.  Anon pages
2102			 * are not likely to be evicted by use-once streaming
2103			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2104			 * so we ignore them here.
2105			 */
2106			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2107				list_add(&page->lru, &l_active);
 
2108				continue;
2109			}
2110		}
2111
2112		ClearPageActive(page);	/* we are de-activating */
2113		SetPageWorkingset(page);
2114		list_add(&page->lru, &l_inactive);
2115	}
2116
2117	/*
2118	 * Move pages back to the lru list.
2119	 */
2120	spin_lock_irq(&pgdat->lru_lock);
2121	/*
2122	 * Count referenced pages from currently used mappings as rotated,
2123	 * even though only some of them are actually re-activated.  This
2124	 * helps balance scan pressure between file and anonymous pages in
2125	 * get_scan_count.
2126	 */
2127	reclaim_stat->recent_rotated[file] += nr_rotated;
2128
2129	nr_activate = move_pages_to_lru(lruvec, &l_active);
2130	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2131	/* Keep all free pages in l_active list */
2132	list_splice(&l_inactive, &l_active);
2133
2134	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2135	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2136
2137	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2138	spin_unlock_irq(&pgdat->lru_lock);
2139
 
 
2140	mem_cgroup_uncharge_list(&l_active);
2141	free_unref_page_list(&l_active);
2142	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2143			nr_deactivate, nr_rotated, sc->priority, file);
2144}
2145
2146unsigned long reclaim_pages(struct list_head *page_list)
 
2147{
2148	int nid = -1;
2149	unsigned long nr_reclaimed = 0;
2150	LIST_HEAD(node_page_list);
2151	struct reclaim_stat dummy_stat;
2152	struct page *page;
 
2153	struct scan_control sc = {
2154		.gfp_mask = GFP_KERNEL,
2155		.priority = DEF_PRIORITY,
2156		.may_writepage = 1,
2157		.may_unmap = 1,
2158		.may_swap = 1,
 
2159	};
2160
2161	while (!list_empty(page_list)) {
2162		page = lru_to_page(page_list);
2163		if (nid == -1) {
2164			nid = page_to_nid(page);
2165			INIT_LIST_HEAD(&node_page_list);
2166		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2167
2168		if (nid == page_to_nid(page)) {
2169			ClearPageActive(page);
2170			list_move(&page->lru, &node_page_list);
2171			continue;
2172		}
2173
2174		nr_reclaimed += shrink_page_list(&node_page_list,
2175						NODE_DATA(nid),
2176						&sc, 0,
2177						&dummy_stat, false);
2178		while (!list_empty(&node_page_list)) {
2179			page = lru_to_page(&node_page_list);
2180			list_del(&page->lru);
2181			putback_lru_page(page);
2182		}
2183
2184		nid = -1;
2185	}
2186
2187	if (!list_empty(&node_page_list)) {
2188		nr_reclaimed += shrink_page_list(&node_page_list,
2189						NODE_DATA(nid),
2190						&sc, 0,
2191						&dummy_stat, false);
2192		while (!list_empty(&node_page_list)) {
2193			page = lru_to_page(&node_page_list);
2194			list_del(&page->lru);
2195			putback_lru_page(page);
2196		}
2197	}
2198
2199	return nr_reclaimed;
2200}
2201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2202/*
2203 * The inactive anon list should be small enough that the VM never has
2204 * to do too much work.
2205 *
2206 * The inactive file list should be small enough to leave most memory
2207 * to the established workingset on the scan-resistant active list,
2208 * but large enough to avoid thrashing the aggregate readahead window.
2209 *
2210 * Both inactive lists should also be large enough that each inactive
2211 * page has a chance to be referenced again before it is reclaimed.
2212 *
2213 * If that fails and refaulting is observed, the inactive list grows.
2214 *
2215 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2216 * on this LRU, maintained by the pageout code. An inactive_ratio
2217 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2218 *
2219 * total     target    max
2220 * memory    ratio     inactive
2221 * -------------------------------------
2222 *   10MB       1         5MB
2223 *  100MB       1        50MB
2224 *    1GB       3       250MB
2225 *   10GB      10       0.9GB
2226 *  100GB      31         3GB
2227 *    1TB     101        10GB
2228 *   10TB     320        32GB
2229 */
2230static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2231				 struct scan_control *sc, bool trace)
2232{
2233	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2234	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2235	enum lru_list inactive_lru = file * LRU_FILE;
2236	unsigned long inactive, active;
2237	unsigned long inactive_ratio;
2238	unsigned long refaults;
2239	unsigned long gb;
2240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2241	/*
2242	 * If we don't have swap space, anonymous page deactivation
2243	 * is pointless.
2244	 */
2245	if (!file && !total_swap_pages)
2246		return false;
2247
2248	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2249	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
 
 
 
 
 
2250
2251	/*
2252	 * When refaults are being observed, it means a new workingset
2253	 * is being established. Disable active list protection to get
2254	 * rid of the stale workingset quickly.
2255	 */
2256	refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2257	if (file && lruvec->refaults != refaults) {
2258		inactive_ratio = 0;
2259	} else {
2260		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2261		if (gb)
2262			inactive_ratio = int_sqrt(10 * gb);
 
 
 
 
 
 
2263		else
2264			inactive_ratio = 1;
2265	}
2266
2267	if (trace)
2268		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2269			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2270			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2271			inactive_ratio, file);
 
 
 
 
2272
2273	return inactive * inactive_ratio < active;
2274}
 
 
 
 
 
 
 
 
2275
2276static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2277				 struct lruvec *lruvec, struct scan_control *sc)
2278{
2279	if (is_active_lru(lru)) {
2280		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2281			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2282		return 0;
2283	}
 
 
 
 
 
2284
2285	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2286}
 
2287
2288enum scan_balance {
2289	SCAN_EQUAL,
2290	SCAN_FRACT,
2291	SCAN_ANON,
2292	SCAN_FILE,
2293};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2294
2295/*
2296 * Determine how aggressively the anon and file LRU lists should be
2297 * scanned.  The relative value of each set of LRU lists is determined
2298 * by looking at the fraction of the pages scanned we did rotate back
2299 * onto the active list instead of evict.
2300 *
2301 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2302 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2303 */
2304static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2305			   struct scan_control *sc, unsigned long *nr,
2306			   unsigned long *lru_pages)
2307{
 
 
 
2308	int swappiness = mem_cgroup_swappiness(memcg);
2309	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2310	u64 fraction[2];
2311	u64 denominator = 0;	/* gcc */
2312	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2313	unsigned long anon_prio, file_prio;
2314	enum scan_balance scan_balance;
2315	unsigned long anon, file;
2316	unsigned long ap, fp;
2317	enum lru_list lru;
2318
2319	/* If we have no swap space, do not bother scanning anon pages. */
2320	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2321		scan_balance = SCAN_FILE;
2322		goto out;
2323	}
2324
2325	/*
2326	 * Global reclaim will swap to prevent OOM even with no
2327	 * swappiness, but memcg users want to use this knob to
2328	 * disable swapping for individual groups completely when
2329	 * using the memory controller's swap limit feature would be
2330	 * too expensive.
2331	 */
2332	if (!global_reclaim(sc) && !swappiness) {
2333		scan_balance = SCAN_FILE;
2334		goto out;
2335	}
2336
2337	/*
2338	 * Do not apply any pressure balancing cleverness when the
2339	 * system is close to OOM, scan both anon and file equally
2340	 * (unless the swappiness setting disagrees with swapping).
2341	 */
2342	if (!sc->priority && swappiness) {
2343		scan_balance = SCAN_EQUAL;
2344		goto out;
2345	}
2346
2347	/*
2348	 * Prevent the reclaimer from falling into the cache trap: as
2349	 * cache pages start out inactive, every cache fault will tip
2350	 * the scan balance towards the file LRU.  And as the file LRU
2351	 * shrinks, so does the window for rotation from references.
2352	 * This means we have a runaway feedback loop where a tiny
2353	 * thrashing file LRU becomes infinitely more attractive than
2354	 * anon pages.  Try to detect this based on file LRU size.
2355	 */
2356	if (global_reclaim(sc)) {
2357		unsigned long pgdatfile;
2358		unsigned long pgdatfree;
2359		int z;
2360		unsigned long total_high_wmark = 0;
2361
2362		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2363		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2364			   node_page_state(pgdat, NR_INACTIVE_FILE);
2365
2366		for (z = 0; z < MAX_NR_ZONES; z++) {
2367			struct zone *zone = &pgdat->node_zones[z];
2368			if (!managed_zone(zone))
2369				continue;
2370
2371			total_high_wmark += high_wmark_pages(zone);
2372		}
2373
2374		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2375			/*
2376			 * Force SCAN_ANON if there are enough inactive
2377			 * anonymous pages on the LRU in eligible zones.
2378			 * Otherwise, the small LRU gets thrashed.
2379			 */
2380			if (!inactive_list_is_low(lruvec, false, sc, false) &&
2381			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2382					>> sc->priority) {
2383				scan_balance = SCAN_ANON;
2384				goto out;
2385			}
2386		}
2387	}
2388
2389	/*
2390	 * If there is enough inactive page cache, i.e. if the size of the
2391	 * inactive list is greater than that of the active list *and* the
2392	 * inactive list actually has some pages to scan on this priority, we
2393	 * do not reclaim anything from the anonymous working set right now.
2394	 * Without the second condition we could end up never scanning an
2395	 * lruvec even if it has plenty of old anonymous pages unless the
2396	 * system is under heavy pressure.
2397	 */
2398	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2399	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2400		scan_balance = SCAN_FILE;
2401		goto out;
2402	}
2403
2404	scan_balance = SCAN_FRACT;
2405
2406	/*
2407	 * With swappiness at 100, anonymous and file have the same priority.
2408	 * This scanning priority is essentially the inverse of IO cost.
2409	 */
2410	anon_prio = swappiness;
2411	file_prio = 200 - anon_prio;
2412
2413	/*
2414	 * OK, so we have swap space and a fair amount of page cache
2415	 * pages.  We use the recently rotated / recently scanned
2416	 * ratios to determine how valuable each cache is.
2417	 *
2418	 * Because workloads change over time (and to avoid overflow)
2419	 * we keep these statistics as a floating average, which ends
2420	 * up weighing recent references more than old ones.
 
 
2421	 *
2422	 * anon in [0], file in [1]
 
 
 
 
2423	 */
 
 
 
 
2424
2425	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2426		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2427	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2428		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2429
2430	spin_lock_irq(&pgdat->lru_lock);
2431	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2432		reclaim_stat->recent_scanned[0] /= 2;
2433		reclaim_stat->recent_rotated[0] /= 2;
2434	}
2435
2436	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2437		reclaim_stat->recent_scanned[1] /= 2;
2438		reclaim_stat->recent_rotated[1] /= 2;
2439	}
2440
2441	/*
2442	 * The amount of pressure on anon vs file pages is inversely
2443	 * proportional to the fraction of recently scanned pages on
2444	 * each list that were recently referenced and in active use.
2445	 */
2446	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2447	ap /= reclaim_stat->recent_rotated[0] + 1;
2448
2449	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2450	fp /= reclaim_stat->recent_rotated[1] + 1;
2451	spin_unlock_irq(&pgdat->lru_lock);
2452
2453	fraction[0] = ap;
2454	fraction[1] = fp;
2455	denominator = ap + fp + 1;
2456out:
2457	*lru_pages = 0;
2458	for_each_evictable_lru(lru) {
2459		int file = is_file_lru(lru);
2460		unsigned long lruvec_size;
 
2461		unsigned long scan;
2462		unsigned long protection;
2463
2464		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2465		protection = mem_cgroup_protection(memcg,
2466						   sc->memcg_low_reclaim);
2467
2468		if (protection) {
2469			/*
2470			 * Scale a cgroup's reclaim pressure by proportioning
2471			 * its current usage to its memory.low or memory.min
2472			 * setting.
2473			 *
2474			 * This is important, as otherwise scanning aggression
2475			 * becomes extremely binary -- from nothing as we
2476			 * approach the memory protection threshold, to totally
2477			 * nominal as we exceed it.  This results in requiring
2478			 * setting extremely liberal protection thresholds. It
2479			 * also means we simply get no protection at all if we
2480			 * set it too low, which is not ideal.
2481			 *
2482			 * If there is any protection in place, we reduce scan
2483			 * pressure by how much of the total memory used is
2484			 * within protection thresholds.
2485			 *
2486			 * There is one special case: in the first reclaim pass,
2487			 * we skip over all groups that are within their low
2488			 * protection. If that fails to reclaim enough pages to
2489			 * satisfy the reclaim goal, we come back and override
2490			 * the best-effort low protection. However, we still
2491			 * ideally want to honor how well-behaved groups are in
2492			 * that case instead of simply punishing them all
2493			 * equally. As such, we reclaim them based on how much
2494			 * memory they are using, reducing the scan pressure
2495			 * again by how much of the total memory used is under
2496			 * hard protection.
2497			 */
2498			unsigned long cgroup_size = mem_cgroup_size(memcg);
 
 
 
 
 
 
 
 
 
2499
2500			/* Avoid TOCTOU with earlier protection check */
2501			cgroup_size = max(cgroup_size, protection);
2502
2503			scan = lruvec_size - lruvec_size * protection /
2504				cgroup_size;
2505
2506			/*
2507			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2508			 * reclaim moving forwards, avoiding decremeting
2509			 * sc->priority further than desirable.
2510			 */
2511			scan = max(scan, SWAP_CLUSTER_MAX);
2512		} else {
2513			scan = lruvec_size;
2514		}
2515
2516		scan >>= sc->priority;
2517
2518		/*
2519		 * If the cgroup's already been deleted, make sure to
2520		 * scrape out the remaining cache.
2521		 */
2522		if (!scan && !mem_cgroup_online(memcg))
2523			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2524
2525		switch (scan_balance) {
2526		case SCAN_EQUAL:
2527			/* Scan lists relative to size */
2528			break;
2529		case SCAN_FRACT:
2530			/*
2531			 * Scan types proportional to swappiness and
2532			 * their relative recent reclaim efficiency.
2533			 * Make sure we don't miss the last page
2534			 * because of a round-off error.
 
2535			 */
2536			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
 
 
2537						  denominator);
2538			break;
2539		case SCAN_FILE:
2540		case SCAN_ANON:
2541			/* Scan one type exclusively */
2542			if ((scan_balance == SCAN_FILE) != file) {
2543				lruvec_size = 0;
2544				scan = 0;
2545			}
2546			break;
2547		default:
2548			/* Look ma, no brain */
2549			BUG();
2550		}
2551
2552		*lru_pages += lruvec_size;
2553		nr[lru] = scan;
2554	}
2555}
2556
2557/*
2558 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2559 */
2560static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2561			      struct scan_control *sc, unsigned long *lru_pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2562{
2563	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2564	unsigned long nr[NR_LRU_LISTS];
2565	unsigned long targets[NR_LRU_LISTS];
2566	unsigned long nr_to_scan;
2567	enum lru_list lru;
2568	unsigned long nr_reclaimed = 0;
2569	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
 
2570	struct blk_plug plug;
2571	bool scan_adjusted;
2572
2573	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
 
 
 
 
 
2574
2575	/* Record the original scan target for proportional adjustments later */
2576	memcpy(targets, nr, sizeof(nr));
2577
2578	/*
2579	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2580	 * event that can occur when there is little memory pressure e.g.
2581	 * multiple streaming readers/writers. Hence, we do not abort scanning
2582	 * when the requested number of pages are reclaimed when scanning at
2583	 * DEF_PRIORITY on the assumption that the fact we are direct
2584	 * reclaiming implies that kswapd is not keeping up and it is best to
2585	 * do a batch of work at once. For memcg reclaim one check is made to
2586	 * abort proportional reclaim if either the file or anon lru has already
2587	 * dropped to zero at the first pass.
2588	 */
2589	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2590			 sc->priority == DEF_PRIORITY);
2591
2592	blk_start_plug(&plug);
2593	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2594					nr[LRU_INACTIVE_FILE]) {
2595		unsigned long nr_anon, nr_file, percentage;
2596		unsigned long nr_scanned;
2597
2598		for_each_evictable_lru(lru) {
2599			if (nr[lru]) {
2600				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2601				nr[lru] -= nr_to_scan;
2602
2603				nr_reclaimed += shrink_list(lru, nr_to_scan,
2604							    lruvec, sc);
2605			}
2606		}
2607
2608		cond_resched();
2609
2610		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2611			continue;
2612
2613		/*
2614		 * For kswapd and memcg, reclaim at least the number of pages
2615		 * requested. Ensure that the anon and file LRUs are scanned
2616		 * proportionally what was requested by get_scan_count(). We
2617		 * stop reclaiming one LRU and reduce the amount scanning
2618		 * proportional to the original scan target.
2619		 */
2620		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2621		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2622
2623		/*
2624		 * It's just vindictive to attack the larger once the smaller
2625		 * has gone to zero.  And given the way we stop scanning the
2626		 * smaller below, this makes sure that we only make one nudge
2627		 * towards proportionality once we've got nr_to_reclaim.
2628		 */
2629		if (!nr_file || !nr_anon)
2630			break;
2631
2632		if (nr_file > nr_anon) {
2633			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2634						targets[LRU_ACTIVE_ANON] + 1;
2635			lru = LRU_BASE;
2636			percentage = nr_anon * 100 / scan_target;
2637		} else {
2638			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2639						targets[LRU_ACTIVE_FILE] + 1;
2640			lru = LRU_FILE;
2641			percentage = nr_file * 100 / scan_target;
2642		}
2643
2644		/* Stop scanning the smaller of the LRU */
2645		nr[lru] = 0;
2646		nr[lru + LRU_ACTIVE] = 0;
2647
2648		/*
2649		 * Recalculate the other LRU scan count based on its original
2650		 * scan target and the percentage scanning already complete
2651		 */
2652		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2653		nr_scanned = targets[lru] - nr[lru];
2654		nr[lru] = targets[lru] * (100 - percentage) / 100;
2655		nr[lru] -= min(nr[lru], nr_scanned);
2656
2657		lru += LRU_ACTIVE;
2658		nr_scanned = targets[lru] - nr[lru];
2659		nr[lru] = targets[lru] * (100 - percentage) / 100;
2660		nr[lru] -= min(nr[lru], nr_scanned);
2661
2662		scan_adjusted = true;
2663	}
2664	blk_finish_plug(&plug);
2665	sc->nr_reclaimed += nr_reclaimed;
2666
2667	/*
2668	 * Even if we did not try to evict anon pages at all, we want to
2669	 * rebalance the anon lru active/inactive ratio.
2670	 */
2671	if (inactive_list_is_low(lruvec, false, sc, true))
 
2672		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2673				   sc, LRU_ACTIVE_ANON);
2674}
2675
2676/* Use reclaim/compaction for costly allocs or under memory pressure */
2677static bool in_reclaim_compaction(struct scan_control *sc)
2678{
2679	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2680			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2681			 sc->priority < DEF_PRIORITY - 2))
2682		return true;
2683
2684	return false;
2685}
2686
2687/*
2688 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2689 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2690 * true if more pages should be reclaimed such that when the page allocator
2691 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2692 * It will give up earlier than that if there is difficulty reclaiming pages.
2693 */
2694static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2695					unsigned long nr_reclaimed,
2696					struct scan_control *sc)
2697{
2698	unsigned long pages_for_compaction;
2699	unsigned long inactive_lru_pages;
2700	int z;
2701
2702	/* If not in reclaim/compaction mode, stop */
2703	if (!in_reclaim_compaction(sc))
2704		return false;
2705
2706	/*
2707	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2708	 * number of pages that were scanned. This will return to the caller
2709	 * with the risk reclaim/compaction and the resulting allocation attempt
2710	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2711	 * allocations through requiring that the full LRU list has been scanned
2712	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2713	 * scan, but that approximation was wrong, and there were corner cases
2714	 * where always a non-zero amount of pages were scanned.
2715	 */
2716	if (!nr_reclaimed)
2717		return false;
2718
2719	/* If compaction would go ahead or the allocation would succeed, stop */
2720	for (z = 0; z <= sc->reclaim_idx; z++) {
2721		struct zone *zone = &pgdat->node_zones[z];
2722		if (!managed_zone(zone))
2723			continue;
2724
2725		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2726		case COMPACT_SUCCESS:
2727		case COMPACT_CONTINUE:
 
 
 
2728			return false;
2729		default:
2730			/* check next zone */
2731			;
2732		}
2733	}
2734
2735	/*
2736	 * If we have not reclaimed enough pages for compaction and the
2737	 * inactive lists are large enough, continue reclaiming
2738	 */
2739	pages_for_compaction = compact_gap(sc->order);
2740	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2741	if (get_nr_swap_pages() > 0)
2742		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2743
2744	return inactive_lru_pages > pages_for_compaction;
2745}
2746
2747static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2748{
2749	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2750		(memcg && memcg_congested(pgdat, memcg));
2751}
2752
2753static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2754{
2755	struct reclaim_state *reclaim_state = current->reclaim_state;
2756	unsigned long nr_reclaimed, nr_scanned;
2757	bool reclaimable = false;
2758
 
2759	do {
2760		struct mem_cgroup *root = sc->target_mem_cgroup;
2761		unsigned long node_lru_pages = 0;
2762		struct mem_cgroup *memcg;
2763
2764		memset(&sc->nr, 0, sizeof(sc->nr));
2765
2766		nr_reclaimed = sc->nr_reclaimed;
2767		nr_scanned = sc->nr_scanned;
 
 
 
2768
2769		memcg = mem_cgroup_iter(root, NULL, NULL);
2770		do {
2771			unsigned long lru_pages;
2772			unsigned long reclaimed;
2773			unsigned long scanned;
2774
2775			switch (mem_cgroup_protected(root, memcg)) {
2776			case MEMCG_PROT_MIN:
2777				/*
2778				 * Hard protection.
2779				 * If there is no reclaimable memory, OOM.
2780				 */
 
 
 
 
 
 
 
 
 
2781				continue;
2782			case MEMCG_PROT_LOW:
2783				/*
2784				 * Soft protection.
2785				 * Respect the protection only as long as
2786				 * there is an unprotected supply
2787				 * of reclaimable memory from other cgroups.
2788				 */
2789				if (!sc->memcg_low_reclaim) {
2790					sc->memcg_low_skipped = 1;
2791					continue;
2792				}
2793				memcg_memory_event(memcg, MEMCG_LOW);
2794				break;
2795			case MEMCG_PROT_NONE:
2796				/*
2797				 * All protection thresholds breached. We may
2798				 * still choose to vary the scan pressure
2799				 * applied based on by how much the cgroup in
2800				 * question has exceeded its protection
2801				 * thresholds (see get_scan_count).
2802				 */
2803				break;
2804			}
 
 
2805
2806			reclaimed = sc->nr_reclaimed;
2807			scanned = sc->nr_scanned;
2808			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2809			node_lru_pages += lru_pages;
2810
2811			shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2812					sc->priority);
2813
2814			/* Record the group's reclaim efficiency */
 
 
 
 
2815			vmpressure(sc->gfp_mask, memcg, false,
2816				   sc->nr_scanned - scanned,
2817				   sc->nr_reclaimed - reclaimed);
2818
2819		} while ((memcg = mem_cgroup_iter(root, memcg, NULL)));
 
2820
2821		if (reclaim_state) {
2822			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2823			reclaim_state->reclaimed_slab = 0;
2824		}
 
2825
2826		/* Record the subtree's reclaim efficiency */
2827		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2828			   sc->nr_scanned - nr_scanned,
2829			   sc->nr_reclaimed - nr_reclaimed);
2830
2831		if (sc->nr_reclaimed - nr_reclaimed)
2832			reclaimable = true;
2833
2834		if (current_is_kswapd()) {
2835			/*
2836			 * If reclaim is isolating dirty pages under writeback,
2837			 * it implies that the long-lived page allocation rate
2838			 * is exceeding the page laundering rate. Either the
2839			 * global limits are not being effective at throttling
2840			 * processes due to the page distribution throughout
2841			 * zones or there is heavy usage of a slow backing
2842			 * device. The only option is to throttle from reclaim
2843			 * context which is not ideal as there is no guarantee
2844			 * the dirtying process is throttled in the same way
2845			 * balance_dirty_pages() manages.
2846			 *
2847			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2848			 * count the number of pages under pages flagged for
2849			 * immediate reclaim and stall if any are encountered
2850			 * in the nr_immediate check below.
2851			 */
2852			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2853				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2854
2855			/*
2856			 * Tag a node as congested if all the dirty pages
2857			 * scanned were backed by a congested BDI and
2858			 * wait_iff_congested will stall.
2859			 */
2860			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2861				set_bit(PGDAT_CONGESTED, &pgdat->flags);
2862
2863			/* Allow kswapd to start writing pages during reclaim.*/
2864			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2865				set_bit(PGDAT_DIRTY, &pgdat->flags);
2866
2867			/*
2868			 * If kswapd scans pages marked marked for immediate
2869			 * reclaim and under writeback (nr_immediate), it
2870			 * implies that pages are cycling through the LRU
2871			 * faster than they are written so also forcibly stall.
2872			 */
2873			if (sc->nr.immediate)
2874				congestion_wait(BLK_RW_ASYNC, HZ/10);
2875		}
2876
 
 
 
 
 
 
 
 
 
2877		/*
2878		 * Legacy memcg will stall in page writeback so avoid forcibly
2879		 * stalling in wait_iff_congested().
 
 
 
 
 
 
 
 
 
 
 
 
 
2880		 */
2881		if (!global_reclaim(sc) && sane_reclaim(sc) &&
2882		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2883			set_memcg_congestion(pgdat, root, true);
 
 
 
2884
2885		/*
2886		 * Stall direct reclaim for IO completions if underlying BDIs
2887		 * and node is congested. Allow kswapd to continue until it
2888		 * starts encountering unqueued dirty pages or cycling through
2889		 * the LRU too quickly.
 
2890		 */
2891		if (!sc->hibernation_mode && !current_is_kswapd() &&
2892		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2893			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2894
2895	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2896					 sc));
 
 
 
 
 
 
 
 
 
 
 
 
2897
2898	/*
2899	 * Kswapd gives up on balancing particular nodes after too
2900	 * many failures to reclaim anything from them and goes to
2901	 * sleep. On reclaim progress, reset the failure counter. A
2902	 * successful direct reclaim run will revive a dormant kswapd.
2903	 */
2904	if (reclaimable)
2905		pgdat->kswapd_failures = 0;
2906
2907	return reclaimable;
2908}
2909
2910/*
2911 * Returns true if compaction should go ahead for a costly-order request, or
2912 * the allocation would already succeed without compaction. Return false if we
2913 * should reclaim first.
2914 */
2915static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2916{
2917	unsigned long watermark;
2918	enum compact_result suitable;
2919
2920	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2921	if (suitable == COMPACT_SUCCESS)
2922		/* Allocation should succeed already. Don't reclaim. */
 
 
 
2923		return true;
2924	if (suitable == COMPACT_SKIPPED)
2925		/* Compaction cannot yet proceed. Do reclaim. */
 
2926		return false;
2927
2928	/*
2929	 * Compaction is already possible, but it takes time to run and there
2930	 * are potentially other callers using the pages just freed. So proceed
2931	 * with reclaim to make a buffer of free pages available to give
2932	 * compaction a reasonable chance of completing and allocating the page.
2933	 * Note that we won't actually reclaim the whole buffer in one attempt
2934	 * as the target watermark in should_continue_reclaim() is lower. But if
2935	 * we are already above the high+gap watermark, don't reclaim at all.
2936	 */
2937	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2938
2939	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2940}
2941
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2942/*
2943 * This is the direct reclaim path, for page-allocating processes.  We only
2944 * try to reclaim pages from zones which will satisfy the caller's allocation
2945 * request.
2946 *
2947 * If a zone is deemed to be full of pinned pages then just give it a light
2948 * scan then give up on it.
2949 */
2950static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2951{
2952	struct zoneref *z;
2953	struct zone *zone;
2954	unsigned long nr_soft_reclaimed;
2955	unsigned long nr_soft_scanned;
2956	gfp_t orig_mask;
2957	pg_data_t *last_pgdat = NULL;
 
2958
2959	/*
2960	 * If the number of buffer_heads in the machine exceeds the maximum
2961	 * allowed level, force direct reclaim to scan the highmem zone as
2962	 * highmem pages could be pinning lowmem pages storing buffer_heads
2963	 */
2964	orig_mask = sc->gfp_mask;
2965	if (buffer_heads_over_limit) {
2966		sc->gfp_mask |= __GFP_HIGHMEM;
2967		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2968	}
2969
2970	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2971					sc->reclaim_idx, sc->nodemask) {
2972		/*
2973		 * Take care memory controller reclaiming has small influence
2974		 * to global LRU.
2975		 */
2976		if (global_reclaim(sc)) {
2977			if (!cpuset_zone_allowed(zone,
2978						 GFP_KERNEL | __GFP_HARDWALL))
2979				continue;
2980
2981			/*
2982			 * If we already have plenty of memory free for
2983			 * compaction in this zone, don't free any more.
2984			 * Even though compaction is invoked for any
2985			 * non-zero order, only frequent costly order
2986			 * reclamation is disruptive enough to become a
2987			 * noticeable problem, like transparent huge
2988			 * page allocations.
2989			 */
2990			if (IS_ENABLED(CONFIG_COMPACTION) &&
2991			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2992			    compaction_ready(zone, sc)) {
2993				sc->compaction_ready = true;
2994				continue;
2995			}
2996
2997			/*
2998			 * Shrink each node in the zonelist once. If the
2999			 * zonelist is ordered by zone (not the default) then a
3000			 * node may be shrunk multiple times but in that case
3001			 * the user prefers lower zones being preserved.
3002			 */
3003			if (zone->zone_pgdat == last_pgdat)
3004				continue;
3005
3006			/*
3007			 * This steals pages from memory cgroups over softlimit
3008			 * and returns the number of reclaimed pages and
3009			 * scanned pages. This works for global memory pressure
3010			 * and balancing, not for a memcg's limit.
3011			 */
3012			nr_soft_scanned = 0;
3013			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3014						sc->order, sc->gfp_mask,
3015						&nr_soft_scanned);
3016			sc->nr_reclaimed += nr_soft_reclaimed;
3017			sc->nr_scanned += nr_soft_scanned;
3018			/* need some check for avoid more shrink_zone() */
3019		}
3020
 
 
 
3021		/* See comment about same check for global reclaim above */
3022		if (zone->zone_pgdat == last_pgdat)
3023			continue;
3024		last_pgdat = zone->zone_pgdat;
3025		shrink_node(zone->zone_pgdat, sc);
3026	}
3027
 
 
 
3028	/*
3029	 * Restore to original mask to avoid the impact on the caller if we
3030	 * promoted it to __GFP_HIGHMEM.
3031	 */
3032	sc->gfp_mask = orig_mask;
3033}
3034
3035static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
3036{
3037	struct mem_cgroup *memcg;
 
3038
3039	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
3040	do {
3041		unsigned long refaults;
3042		struct lruvec *lruvec;
3043
3044		lruvec = mem_cgroup_lruvec(pgdat, memcg);
3045		refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
3046		lruvec->refaults = refaults;
3047	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
 
3048}
3049
3050/*
3051 * This is the main entry point to direct page reclaim.
3052 *
3053 * If a full scan of the inactive list fails to free enough memory then we
3054 * are "out of memory" and something needs to be killed.
3055 *
3056 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3057 * high - the zone may be full of dirty or under-writeback pages, which this
3058 * caller can't do much about.  We kick the writeback threads and take explicit
3059 * naps in the hope that some of these pages can be written.  But if the
3060 * allocating task holds filesystem locks which prevent writeout this might not
3061 * work, and the allocation attempt will fail.
3062 *
3063 * returns:	0, if no pages reclaimed
3064 * 		else, the number of pages reclaimed
3065 */
3066static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3067					  struct scan_control *sc)
3068{
3069	int initial_priority = sc->priority;
3070	pg_data_t *last_pgdat;
3071	struct zoneref *z;
3072	struct zone *zone;
3073retry:
3074	delayacct_freepages_start();
3075
3076	if (global_reclaim(sc))
3077		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3078
3079	do {
3080		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3081				sc->priority);
 
3082		sc->nr_scanned = 0;
3083		shrink_zones(zonelist, sc);
3084
3085		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3086			break;
3087
3088		if (sc->compaction_ready)
3089			break;
3090
3091		/*
3092		 * If we're getting trouble reclaiming, start doing
3093		 * writepage even in laptop mode.
3094		 */
3095		if (sc->priority < DEF_PRIORITY - 2)
3096			sc->may_writepage = 1;
3097	} while (--sc->priority >= 0);
3098
3099	last_pgdat = NULL;
3100	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3101					sc->nodemask) {
3102		if (zone->zone_pgdat == last_pgdat)
3103			continue;
3104		last_pgdat = zone->zone_pgdat;
 
3105		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3106		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
 
 
 
 
 
 
 
3107	}
3108
3109	delayacct_freepages_end();
3110
3111	if (sc->nr_reclaimed)
3112		return sc->nr_reclaimed;
3113
3114	/* Aborted reclaim to try compaction? don't OOM, then */
3115	if (sc->compaction_ready)
3116		return 1;
3117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3118	/* Untapped cgroup reserves?  Don't OOM, retry. */
3119	if (sc->memcg_low_skipped) {
3120		sc->priority = initial_priority;
 
3121		sc->memcg_low_reclaim = 1;
3122		sc->memcg_low_skipped = 0;
3123		goto retry;
3124	}
3125
3126	return 0;
3127}
3128
3129static bool allow_direct_reclaim(pg_data_t *pgdat)
3130{
3131	struct zone *zone;
3132	unsigned long pfmemalloc_reserve = 0;
3133	unsigned long free_pages = 0;
3134	int i;
3135	bool wmark_ok;
3136
3137	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3138		return true;
3139
3140	for (i = 0; i <= ZONE_NORMAL; i++) {
3141		zone = &pgdat->node_zones[i];
3142		if (!managed_zone(zone))
3143			continue;
3144
3145		if (!zone_reclaimable_pages(zone))
3146			continue;
3147
3148		pfmemalloc_reserve += min_wmark_pages(zone);
3149		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3150	}
3151
3152	/* If there are no reserves (unexpected config) then do not throttle */
3153	if (!pfmemalloc_reserve)
3154		return true;
3155
3156	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3157
3158	/* kswapd must be awake if processes are being throttled */
3159	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3160		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3161						(enum zone_type)ZONE_NORMAL);
 
3162		wake_up_interruptible(&pgdat->kswapd_wait);
3163	}
3164
3165	return wmark_ok;
3166}
3167
3168/*
3169 * Throttle direct reclaimers if backing storage is backed by the network
3170 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3171 * depleted. kswapd will continue to make progress and wake the processes
3172 * when the low watermark is reached.
3173 *
3174 * Returns true if a fatal signal was delivered during throttling. If this
3175 * happens, the page allocator should not consider triggering the OOM killer.
3176 */
3177static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3178					nodemask_t *nodemask)
3179{
3180	struct zoneref *z;
3181	struct zone *zone;
3182	pg_data_t *pgdat = NULL;
3183
3184	/*
3185	 * Kernel threads should not be throttled as they may be indirectly
3186	 * responsible for cleaning pages necessary for reclaim to make forward
3187	 * progress. kjournald for example may enter direct reclaim while
3188	 * committing a transaction where throttling it could forcing other
3189	 * processes to block on log_wait_commit().
3190	 */
3191	if (current->flags & PF_KTHREAD)
3192		goto out;
3193
3194	/*
3195	 * If a fatal signal is pending, this process should not throttle.
3196	 * It should return quickly so it can exit and free its memory
3197	 */
3198	if (fatal_signal_pending(current))
3199		goto out;
3200
3201	/*
3202	 * Check if the pfmemalloc reserves are ok by finding the first node
3203	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3204	 * GFP_KERNEL will be required for allocating network buffers when
3205	 * swapping over the network so ZONE_HIGHMEM is unusable.
3206	 *
3207	 * Throttling is based on the first usable node and throttled processes
3208	 * wait on a queue until kswapd makes progress and wakes them. There
3209	 * is an affinity then between processes waking up and where reclaim
3210	 * progress has been made assuming the process wakes on the same node.
3211	 * More importantly, processes running on remote nodes will not compete
3212	 * for remote pfmemalloc reserves and processes on different nodes
3213	 * should make reasonable progress.
3214	 */
3215	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3216					gfp_zone(gfp_mask), nodemask) {
3217		if (zone_idx(zone) > ZONE_NORMAL)
3218			continue;
3219
3220		/* Throttle based on the first usable node */
3221		pgdat = zone->zone_pgdat;
3222		if (allow_direct_reclaim(pgdat))
3223			goto out;
3224		break;
3225	}
3226
3227	/* If no zone was usable by the allocation flags then do not throttle */
3228	if (!pgdat)
3229		goto out;
3230
3231	/* Account for the throttling */
3232	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3233
3234	/*
3235	 * If the caller cannot enter the filesystem, it's possible that it
3236	 * is due to the caller holding an FS lock or performing a journal
3237	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3238	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3239	 * blocked waiting on the same lock. Instead, throttle for up to a
3240	 * second before continuing.
3241	 */
3242	if (!(gfp_mask & __GFP_FS)) {
3243		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3244			allow_direct_reclaim(pgdat), HZ);
 
 
 
 
3245
3246		goto check_pending;
3247	}
3248
3249	/* Throttle until kswapd wakes the process */
3250	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3251		allow_direct_reclaim(pgdat));
3252
3253check_pending:
3254	if (fatal_signal_pending(current))
3255		return true;
3256
3257out:
3258	return false;
3259}
3260
3261unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3262				gfp_t gfp_mask, nodemask_t *nodemask)
3263{
3264	unsigned long nr_reclaimed;
3265	struct scan_control sc = {
3266		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3267		.gfp_mask = current_gfp_context(gfp_mask),
3268		.reclaim_idx = gfp_zone(gfp_mask),
3269		.order = order,
3270		.nodemask = nodemask,
3271		.priority = DEF_PRIORITY,
3272		.may_writepage = !laptop_mode,
3273		.may_unmap = 1,
3274		.may_swap = 1,
3275	};
3276
3277	/*
3278	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3279	 * Confirm they are large enough for max values.
3280	 */
3281	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3282	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3283	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3284
3285	/*
3286	 * Do not enter reclaim if fatal signal was delivered while throttled.
3287	 * 1 is returned so that the page allocator does not OOM kill at this
3288	 * point.
3289	 */
3290	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3291		return 1;
3292
3293	set_task_reclaim_state(current, &sc.reclaim_state);
3294	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3295
3296	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3297
3298	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3299	set_task_reclaim_state(current, NULL);
3300
3301	return nr_reclaimed;
3302}
3303
3304#ifdef CONFIG_MEMCG
3305
3306/* Only used by soft limit reclaim. Do not reuse for anything else. */
3307unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3308						gfp_t gfp_mask, bool noswap,
3309						pg_data_t *pgdat,
3310						unsigned long *nr_scanned)
3311{
 
3312	struct scan_control sc = {
3313		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3314		.target_mem_cgroup = memcg,
3315		.may_writepage = !laptop_mode,
3316		.may_unmap = 1,
3317		.reclaim_idx = MAX_NR_ZONES - 1,
3318		.may_swap = !noswap,
3319	};
3320	unsigned long lru_pages;
3321
3322	WARN_ON_ONCE(!current->reclaim_state);
3323
3324	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3325			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3326
3327	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3328						      sc.gfp_mask);
3329
3330	/*
3331	 * NOTE: Although we can get the priority field, using it
3332	 * here is not a good idea, since it limits the pages we can scan.
3333	 * if we don't reclaim here, the shrink_node from balance_pgdat
3334	 * will pick up pages from other mem cgroup's as well. We hack
3335	 * the priority and make it zero.
3336	 */
3337	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3338
3339	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3340
3341	*nr_scanned = sc.nr_scanned;
3342
3343	return sc.nr_reclaimed;
3344}
3345
3346unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3347					   unsigned long nr_pages,
3348					   gfp_t gfp_mask,
3349					   bool may_swap)
3350{
3351	struct zonelist *zonelist;
3352	unsigned long nr_reclaimed;
3353	unsigned long pflags;
3354	int nid;
3355	unsigned int noreclaim_flag;
3356	struct scan_control sc = {
3357		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3358		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3359				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3360		.reclaim_idx = MAX_NR_ZONES - 1,
3361		.target_mem_cgroup = memcg,
3362		.priority = DEF_PRIORITY,
3363		.may_writepage = !laptop_mode,
3364		.may_unmap = 1,
3365		.may_swap = may_swap,
 
3366	};
3367
3368	set_task_reclaim_state(current, &sc.reclaim_state);
3369	/*
3370	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3371	 * take care of from where we get pages. So the node where we start the
3372	 * scan does not need to be the current node.
3373	 */
3374	nid = mem_cgroup_select_victim_node(memcg);
3375
3376	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3377
 
3378	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3379
3380	psi_memstall_enter(&pflags);
3381	noreclaim_flag = memalloc_noreclaim_save();
3382
3383	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3384
3385	memalloc_noreclaim_restore(noreclaim_flag);
3386	psi_memstall_leave(&pflags);
3387
3388	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3389	set_task_reclaim_state(current, NULL);
3390
3391	return nr_reclaimed;
3392}
3393#endif
3394
3395static void age_active_anon(struct pglist_data *pgdat,
3396				struct scan_control *sc)
3397{
3398	struct mem_cgroup *memcg;
 
3399
3400	if (!total_swap_pages)
 
3401		return;
 
3402
3403	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3404	do {
3405		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3406
3407		if (inactive_list_is_low(lruvec, false, sc, true))
3408			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3409					   sc, LRU_ACTIVE_ANON);
3410
 
 
 
 
 
3411		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3412	} while (memcg);
3413}
3414
3415static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3416{
3417	int i;
3418	struct zone *zone;
3419
3420	/*
3421	 * Check for watermark boosts top-down as the higher zones
3422	 * are more likely to be boosted. Both watermarks and boosts
3423	 * should not be checked at the time time as reclaim would
3424	 * start prematurely when there is no boosting and a lower
3425	 * zone is balanced.
3426	 */
3427	for (i = classzone_idx; i >= 0; i--) {
3428		zone = pgdat->node_zones + i;
3429		if (!managed_zone(zone))
3430			continue;
3431
3432		if (zone->watermark_boost)
3433			return true;
3434	}
3435
3436	return false;
3437}
3438
3439/*
3440 * Returns true if there is an eligible zone balanced for the request order
3441 * and classzone_idx
3442 */
3443static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3444{
3445	int i;
3446	unsigned long mark = -1;
3447	struct zone *zone;
3448
3449	/*
3450	 * Check watermarks bottom-up as lower zones are more likely to
3451	 * meet watermarks.
3452	 */
3453	for (i = 0; i <= classzone_idx; i++) {
3454		zone = pgdat->node_zones + i;
3455
3456		if (!managed_zone(zone))
3457			continue;
3458
3459		mark = high_wmark_pages(zone);
3460		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
 
 
 
3461			return true;
3462	}
3463
3464	/*
3465	 * If a node has no populated zone within classzone_idx, it does not
3466	 * need balancing by definition. This can happen if a zone-restricted
3467	 * allocation tries to wake a remote kswapd.
3468	 */
3469	if (mark == -1)
3470		return true;
3471
3472	return false;
3473}
3474
3475/* Clear pgdat state for congested, dirty or under writeback. */
3476static void clear_pgdat_congested(pg_data_t *pgdat)
3477{
3478	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
 
 
 
3479	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3480	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3481}
3482
3483/*
3484 * Prepare kswapd for sleeping. This verifies that there are no processes
3485 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3486 *
3487 * Returns true if kswapd is ready to sleep
3488 */
3489static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
 
3490{
3491	/*
3492	 * The throttled processes are normally woken up in balance_pgdat() as
3493	 * soon as allow_direct_reclaim() is true. But there is a potential
3494	 * race between when kswapd checks the watermarks and a process gets
3495	 * throttled. There is also a potential race if processes get
3496	 * throttled, kswapd wakes, a large process exits thereby balancing the
3497	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3498	 * the wake up checks. If kswapd is going to sleep, no process should
3499	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3500	 * the wake up is premature, processes will wake kswapd and get
3501	 * throttled again. The difference from wake ups in balance_pgdat() is
3502	 * that here we are under prepare_to_wait().
3503	 */
3504	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3505		wake_up_all(&pgdat->pfmemalloc_wait);
3506
3507	/* Hopeless node, leave it to direct reclaim */
3508	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3509		return true;
3510
3511	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3512		clear_pgdat_congested(pgdat);
3513		return true;
3514	}
3515
3516	return false;
3517}
3518
3519/*
3520 * kswapd shrinks a node of pages that are at or below the highest usable
3521 * zone that is currently unbalanced.
3522 *
3523 * Returns true if kswapd scanned at least the requested number of pages to
3524 * reclaim or if the lack of progress was due to pages under writeback.
3525 * This is used to determine if the scanning priority needs to be raised.
3526 */
3527static bool kswapd_shrink_node(pg_data_t *pgdat,
3528			       struct scan_control *sc)
3529{
3530	struct zone *zone;
3531	int z;
3532
3533	/* Reclaim a number of pages proportional to the number of zones */
3534	sc->nr_to_reclaim = 0;
3535	for (z = 0; z <= sc->reclaim_idx; z++) {
3536		zone = pgdat->node_zones + z;
3537		if (!managed_zone(zone))
3538			continue;
3539
3540		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3541	}
3542
3543	/*
3544	 * Historically care was taken to put equal pressure on all zones but
3545	 * now pressure is applied based on node LRU order.
3546	 */
3547	shrink_node(pgdat, sc);
3548
3549	/*
3550	 * Fragmentation may mean that the system cannot be rebalanced for
3551	 * high-order allocations. If twice the allocation size has been
3552	 * reclaimed then recheck watermarks only at order-0 to prevent
3553	 * excessive reclaim. Assume that a process requested a high-order
3554	 * can direct reclaim/compact.
3555	 */
3556	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3557		sc->order = 0;
3558
3559	return sc->nr_scanned >= sc->nr_to_reclaim;
3560}
3561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3562/*
3563 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3564 * that are eligible for use by the caller until at least one zone is
3565 * balanced.
3566 *
3567 * Returns the order kswapd finished reclaiming at.
3568 *
3569 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3570 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3571 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3572 * or lower is eligible for reclaim until at least one usable zone is
3573 * balanced.
3574 */
3575static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3576{
3577	int i;
3578	unsigned long nr_soft_reclaimed;
3579	unsigned long nr_soft_scanned;
3580	unsigned long pflags;
3581	unsigned long nr_boost_reclaim;
3582	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3583	bool boosted;
3584	struct zone *zone;
3585	struct scan_control sc = {
3586		.gfp_mask = GFP_KERNEL,
3587		.order = order,
3588		.may_unmap = 1,
3589	};
3590
3591	set_task_reclaim_state(current, &sc.reclaim_state);
3592	psi_memstall_enter(&pflags);
3593	__fs_reclaim_acquire();
3594
3595	count_vm_event(PAGEOUTRUN);
3596
3597	/*
3598	 * Account for the reclaim boost. Note that the zone boost is left in
3599	 * place so that parallel allocations that are near the watermark will
3600	 * stall or direct reclaim until kswapd is finished.
3601	 */
3602	nr_boost_reclaim = 0;
3603	for (i = 0; i <= classzone_idx; i++) {
3604		zone = pgdat->node_zones + i;
3605		if (!managed_zone(zone))
3606			continue;
3607
3608		nr_boost_reclaim += zone->watermark_boost;
3609		zone_boosts[i] = zone->watermark_boost;
3610	}
3611	boosted = nr_boost_reclaim;
3612
3613restart:
 
3614	sc.priority = DEF_PRIORITY;
3615	do {
3616		unsigned long nr_reclaimed = sc.nr_reclaimed;
3617		bool raise_priority = true;
3618		bool balanced;
3619		bool ret;
3620
3621		sc.reclaim_idx = classzone_idx;
3622
3623		/*
3624		 * If the number of buffer_heads exceeds the maximum allowed
3625		 * then consider reclaiming from all zones. This has a dual
3626		 * purpose -- on 64-bit systems it is expected that
3627		 * buffer_heads are stripped during active rotation. On 32-bit
3628		 * systems, highmem pages can pin lowmem memory and shrinking
3629		 * buffers can relieve lowmem pressure. Reclaim may still not
3630		 * go ahead if all eligible zones for the original allocation
3631		 * request are balanced to avoid excessive reclaim from kswapd.
3632		 */
3633		if (buffer_heads_over_limit) {
3634			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3635				zone = pgdat->node_zones + i;
3636				if (!managed_zone(zone))
3637					continue;
3638
3639				sc.reclaim_idx = i;
3640				break;
3641			}
3642		}
3643
3644		/*
3645		 * If the pgdat is imbalanced then ignore boosting and preserve
3646		 * the watermarks for a later time and restart. Note that the
3647		 * zone watermarks will be still reset at the end of balancing
3648		 * on the grounds that the normal reclaim should be enough to
3649		 * re-evaluate if boosting is required when kswapd next wakes.
3650		 */
3651		balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3652		if (!balanced && nr_boost_reclaim) {
3653			nr_boost_reclaim = 0;
3654			goto restart;
3655		}
3656
3657		/*
3658		 * If boosting is not active then only reclaim if there are no
3659		 * eligible zones. Note that sc.reclaim_idx is not used as
3660		 * buffer_heads_over_limit may have adjusted it.
3661		 */
3662		if (!nr_boost_reclaim && balanced)
3663			goto out;
3664
3665		/* Limit the priority of boosting to avoid reclaim writeback */
3666		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3667			raise_priority = false;
3668
3669		/*
3670		 * Do not writeback or swap pages for boosted reclaim. The
3671		 * intent is to relieve pressure not issue sub-optimal IO
3672		 * from reclaim context. If no pages are reclaimed, the
3673		 * reclaim will be aborted.
3674		 */
3675		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3676		sc.may_swap = !nr_boost_reclaim;
3677
3678		/*
3679		 * Do some background aging of the anon list, to give
3680		 * pages a chance to be referenced before reclaiming. All
3681		 * pages are rotated regardless of classzone as this is
3682		 * about consistent aging.
3683		 */
3684		age_active_anon(pgdat, &sc);
3685
3686		/*
3687		 * If we're getting trouble reclaiming, start doing writepage
3688		 * even in laptop mode.
3689		 */
3690		if (sc.priority < DEF_PRIORITY - 2)
3691			sc.may_writepage = 1;
3692
3693		/* Call soft limit reclaim before calling shrink_node. */
3694		sc.nr_scanned = 0;
3695		nr_soft_scanned = 0;
3696		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3697						sc.gfp_mask, &nr_soft_scanned);
3698		sc.nr_reclaimed += nr_soft_reclaimed;
3699
3700		/*
3701		 * There should be no need to raise the scanning priority if
3702		 * enough pages are already being scanned that that high
3703		 * watermark would be met at 100% efficiency.
3704		 */
3705		if (kswapd_shrink_node(pgdat, &sc))
3706			raise_priority = false;
3707
3708		/*
3709		 * If the low watermark is met there is no need for processes
3710		 * to be throttled on pfmemalloc_wait as they should not be
3711		 * able to safely make forward progress. Wake them
3712		 */
3713		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3714				allow_direct_reclaim(pgdat))
3715			wake_up_all(&pgdat->pfmemalloc_wait);
3716
3717		/* Check if kswapd should be suspending */
3718		__fs_reclaim_release();
3719		ret = try_to_freeze();
3720		__fs_reclaim_acquire();
3721		if (ret || kthread_should_stop())
3722			break;
3723
3724		/*
3725		 * Raise priority if scanning rate is too low or there was no
3726		 * progress in reclaiming pages
3727		 */
3728		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3729		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3730
3731		/*
3732		 * If reclaim made no progress for a boost, stop reclaim as
3733		 * IO cannot be queued and it could be an infinite loop in
3734		 * extreme circumstances.
3735		 */
3736		if (nr_boost_reclaim && !nr_reclaimed)
3737			break;
3738
3739		if (raise_priority || !nr_reclaimed)
3740			sc.priority--;
3741	} while (sc.priority >= 1);
3742
3743	if (!sc.nr_reclaimed)
3744		pgdat->kswapd_failures++;
3745
3746out:
 
 
3747	/* If reclaim was boosted, account for the reclaim done in this pass */
3748	if (boosted) {
3749		unsigned long flags;
3750
3751		for (i = 0; i <= classzone_idx; i++) {
3752			if (!zone_boosts[i])
3753				continue;
3754
3755			/* Increments are under the zone lock */
3756			zone = pgdat->node_zones + i;
3757			spin_lock_irqsave(&zone->lock, flags);
3758			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3759			spin_unlock_irqrestore(&zone->lock, flags);
3760		}
3761
3762		/*
3763		 * As there is now likely space, wakeup kcompact to defragment
3764		 * pageblocks.
3765		 */
3766		wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3767	}
3768
3769	snapshot_refaults(NULL, pgdat);
3770	__fs_reclaim_release();
3771	psi_memstall_leave(&pflags);
3772	set_task_reclaim_state(current, NULL);
3773
3774	/*
3775	 * Return the order kswapd stopped reclaiming at as
3776	 * prepare_kswapd_sleep() takes it into account. If another caller
3777	 * entered the allocator slow path while kswapd was awake, order will
3778	 * remain at the higher level.
3779	 */
3780	return sc.order;
3781}
3782
3783/*
3784 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3785 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3786 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3787 * after previous reclaim attempt (node is still unbalanced). In that case
3788 * return the zone index of the previous kswapd reclaim cycle.
3789 */
3790static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3791					   enum zone_type prev_classzone_idx)
3792{
3793	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3794		return prev_classzone_idx;
3795	return pgdat->kswapd_classzone_idx;
3796}
3797
3798static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3799				unsigned int classzone_idx)
3800{
3801	long remaining = 0;
3802	DEFINE_WAIT(wait);
3803
3804	if (freezing(current) || kthread_should_stop())
3805		return;
3806
3807	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3808
3809	/*
3810	 * Try to sleep for a short interval. Note that kcompactd will only be
3811	 * woken if it is possible to sleep for a short interval. This is
3812	 * deliberate on the assumption that if reclaim cannot keep an
3813	 * eligible zone balanced that it's also unlikely that compaction will
3814	 * succeed.
3815	 */
3816	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3817		/*
3818		 * Compaction records what page blocks it recently failed to
3819		 * isolate pages from and skips them in the future scanning.
3820		 * When kswapd is going to sleep, it is reasonable to assume
3821		 * that pages and compaction may succeed so reset the cache.
3822		 */
3823		reset_isolation_suitable(pgdat);
3824
3825		/*
3826		 * We have freed the memory, now we should compact it to make
3827		 * allocation of the requested order possible.
3828		 */
3829		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3830
3831		remaining = schedule_timeout(HZ/10);
3832
3833		/*
3834		 * If woken prematurely then reset kswapd_classzone_idx and
3835		 * order. The values will either be from a wakeup request or
3836		 * the previous request that slept prematurely.
3837		 */
3838		if (remaining) {
3839			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3840			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
 
 
 
 
3841		}
3842
3843		finish_wait(&pgdat->kswapd_wait, &wait);
3844		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3845	}
3846
3847	/*
3848	 * After a short sleep, check if it was a premature sleep. If not, then
3849	 * go fully to sleep until explicitly woken up.
3850	 */
3851	if (!remaining &&
3852	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3853		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3854
3855		/*
3856		 * vmstat counters are not perfectly accurate and the estimated
3857		 * value for counters such as NR_FREE_PAGES can deviate from the
3858		 * true value by nr_online_cpus * threshold. To avoid the zone
3859		 * watermarks being breached while under pressure, we reduce the
3860		 * per-cpu vmstat threshold while kswapd is awake and restore
3861		 * them before going back to sleep.
3862		 */
3863		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3864
3865		if (!kthread_should_stop())
3866			schedule();
3867
3868		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3869	} else {
3870		if (remaining)
3871			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3872		else
3873			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3874	}
3875	finish_wait(&pgdat->kswapd_wait, &wait);
3876}
3877
3878/*
3879 * The background pageout daemon, started as a kernel thread
3880 * from the init process.
3881 *
3882 * This basically trickles out pages so that we have _some_
3883 * free memory available even if there is no other activity
3884 * that frees anything up. This is needed for things like routing
3885 * etc, where we otherwise might have all activity going on in
3886 * asynchronous contexts that cannot page things out.
3887 *
3888 * If there are applications that are active memory-allocators
3889 * (most normal use), this basically shouldn't matter.
3890 */
3891static int kswapd(void *p)
3892{
3893	unsigned int alloc_order, reclaim_order;
3894	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3895	pg_data_t *pgdat = (pg_data_t*)p;
3896	struct task_struct *tsk = current;
3897	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3898
3899	if (!cpumask_empty(cpumask))
3900		set_cpus_allowed_ptr(tsk, cpumask);
3901
3902	/*
3903	 * Tell the memory management that we're a "memory allocator",
3904	 * and that if we need more memory we should get access to it
3905	 * regardless (see "__alloc_pages()"). "kswapd" should
3906	 * never get caught in the normal page freeing logic.
3907	 *
3908	 * (Kswapd normally doesn't need memory anyway, but sometimes
3909	 * you need a small amount of memory in order to be able to
3910	 * page out something else, and this flag essentially protects
3911	 * us from recursively trying to free more memory as we're
3912	 * trying to free the first piece of memory in the first place).
3913	 */
3914	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3915	set_freezable();
3916
3917	pgdat->kswapd_order = 0;
3918	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
 
3919	for ( ; ; ) {
3920		bool ret;
3921
3922		alloc_order = reclaim_order = pgdat->kswapd_order;
3923		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
 
3924
3925kswapd_try_sleep:
3926		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3927					classzone_idx);
3928
3929		/* Read the new order and classzone_idx */
3930		alloc_order = reclaim_order = pgdat->kswapd_order;
3931		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3932		pgdat->kswapd_order = 0;
3933		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
 
3934
3935		ret = try_to_freeze();
3936		if (kthread_should_stop())
3937			break;
3938
3939		/*
3940		 * We can speed up thawing tasks if we don't call balance_pgdat
3941		 * after returning from the refrigerator
3942		 */
3943		if (ret)
3944			continue;
3945
3946		/*
3947		 * Reclaim begins at the requested order but if a high-order
3948		 * reclaim fails then kswapd falls back to reclaiming for
3949		 * order-0. If that happens, kswapd will consider sleeping
3950		 * for the order it finished reclaiming at (reclaim_order)
3951		 * but kcompactd is woken to compact for the original
3952		 * request (alloc_order).
3953		 */
3954		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3955						alloc_order);
3956		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
 
3957		if (reclaim_order < alloc_order)
3958			goto kswapd_try_sleep;
3959	}
3960
3961	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3962
3963	return 0;
3964}
3965
3966/*
3967 * A zone is low on free memory or too fragmented for high-order memory.  If
3968 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3969 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3970 * has failed or is not needed, still wake up kcompactd if only compaction is
3971 * needed.
3972 */
3973void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3974		   enum zone_type classzone_idx)
3975{
3976	pg_data_t *pgdat;
 
3977
3978	if (!managed_zone(zone))
3979		return;
3980
3981	if (!cpuset_zone_allowed(zone, gfp_flags))
3982		return;
 
3983	pgdat = zone->zone_pgdat;
 
 
 
 
 
 
 
3984
3985	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3986		pgdat->kswapd_classzone_idx = classzone_idx;
3987	else
3988		pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3989						  classzone_idx);
3990	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3991	if (!waitqueue_active(&pgdat->kswapd_wait))
3992		return;
3993
3994	/* Hopeless node, leave it to direct reclaim if possible */
3995	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3996	    (pgdat_balanced(pgdat, order, classzone_idx) &&
3997	     !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3998		/*
3999		 * There may be plenty of free memory available, but it's too
4000		 * fragmented for high-order allocations.  Wake up kcompactd
4001		 * and rely on compaction_suitable() to determine if it's
4002		 * needed.  If it fails, it will defer subsequent attempts to
4003		 * ratelimit its work.
4004		 */
4005		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4006			wakeup_kcompactd(pgdat, order, classzone_idx);
4007		return;
4008	}
4009
4010	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
4011				      gfp_flags);
4012	wake_up_interruptible(&pgdat->kswapd_wait);
4013}
4014
4015#ifdef CONFIG_HIBERNATION
4016/*
4017 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4018 * freed pages.
4019 *
4020 * Rather than trying to age LRUs the aim is to preserve the overall
4021 * LRU order by reclaiming preferentially
4022 * inactive > active > active referenced > active mapped
4023 */
4024unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4025{
4026	struct scan_control sc = {
4027		.nr_to_reclaim = nr_to_reclaim,
4028		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4029		.reclaim_idx = MAX_NR_ZONES - 1,
4030		.priority = DEF_PRIORITY,
4031		.may_writepage = 1,
4032		.may_unmap = 1,
4033		.may_swap = 1,
4034		.hibernation_mode = 1,
4035	};
4036	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4037	unsigned long nr_reclaimed;
4038	unsigned int noreclaim_flag;
4039
4040	fs_reclaim_acquire(sc.gfp_mask);
4041	noreclaim_flag = memalloc_noreclaim_save();
4042	set_task_reclaim_state(current, &sc.reclaim_state);
4043
4044	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4045
4046	set_task_reclaim_state(current, NULL);
4047	memalloc_noreclaim_restore(noreclaim_flag);
4048	fs_reclaim_release(sc.gfp_mask);
4049
4050	return nr_reclaimed;
4051}
4052#endif /* CONFIG_HIBERNATION */
4053
4054/* It's optimal to keep kswapds on the same CPUs as their memory, but
4055   not required for correctness.  So if the last cpu in a node goes
4056   away, we get changed to run anywhere: as the first one comes back,
4057   restore their cpu bindings. */
4058static int kswapd_cpu_online(unsigned int cpu)
4059{
4060	int nid;
4061
4062	for_each_node_state(nid, N_MEMORY) {
4063		pg_data_t *pgdat = NODE_DATA(nid);
4064		const struct cpumask *mask;
4065
4066		mask = cpumask_of_node(pgdat->node_id);
4067
4068		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
4069			/* One of our CPUs online: restore mask */
4070			set_cpus_allowed_ptr(pgdat->kswapd, mask);
4071	}
4072	return 0;
4073}
4074
4075/*
4076 * This kswapd start function will be called by init and node-hot-add.
4077 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4078 */
4079int kswapd_run(int nid)
4080{
4081	pg_data_t *pgdat = NODE_DATA(nid);
4082	int ret = 0;
4083
4084	if (pgdat->kswapd)
4085		return 0;
4086
4087	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4088	if (IS_ERR(pgdat->kswapd)) {
4089		/* failure at boot is fatal */
4090		BUG_ON(system_state < SYSTEM_RUNNING);
4091		pr_err("Failed to start kswapd on node %d\n", nid);
4092		ret = PTR_ERR(pgdat->kswapd);
4093		pgdat->kswapd = NULL;
 
 
 
4094	}
4095	return ret;
4096}
4097
4098/*
4099 * Called by memory hotplug when all memory in a node is offlined.  Caller must
4100 * hold mem_hotplug_begin/end().
4101 */
4102void kswapd_stop(int nid)
4103{
4104	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
 
4105
 
 
4106	if (kswapd) {
4107		kthread_stop(kswapd);
4108		NODE_DATA(nid)->kswapd = NULL;
4109	}
 
4110}
4111
4112static int __init kswapd_init(void)
4113{
4114	int nid, ret;
4115
4116	swap_setup();
4117	for_each_node_state(nid, N_MEMORY)
4118 		kswapd_run(nid);
4119	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4120					"mm/vmscan:online", kswapd_cpu_online,
4121					NULL);
4122	WARN_ON(ret < 0);
4123	return 0;
4124}
4125
4126module_init(kswapd_init)
4127
4128#ifdef CONFIG_NUMA
4129/*
4130 * Node reclaim mode
4131 *
4132 * If non-zero call node_reclaim when the number of free pages falls below
4133 * the watermarks.
4134 */
4135int node_reclaim_mode __read_mostly;
4136
4137#define RECLAIM_OFF 0
4138#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4139#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4140#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4141
4142/*
4143 * Priority for NODE_RECLAIM. This determines the fraction of pages
4144 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4145 * a zone.
4146 */
4147#define NODE_RECLAIM_PRIORITY 4
4148
4149/*
4150 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4151 * occur.
4152 */
4153int sysctl_min_unmapped_ratio = 1;
4154
4155/*
4156 * If the number of slab pages in a zone grows beyond this percentage then
4157 * slab reclaim needs to occur.
4158 */
4159int sysctl_min_slab_ratio = 5;
4160
4161static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4162{
4163	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4164	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4165		node_page_state(pgdat, NR_ACTIVE_FILE);
4166
4167	/*
4168	 * It's possible for there to be more file mapped pages than
4169	 * accounted for by the pages on the file LRU lists because
4170	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4171	 */
4172	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4173}
4174
4175/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4176static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4177{
4178	unsigned long nr_pagecache_reclaimable;
4179	unsigned long delta = 0;
4180
4181	/*
4182	 * If RECLAIM_UNMAP is set, then all file pages are considered
4183	 * potentially reclaimable. Otherwise, we have to worry about
4184	 * pages like swapcache and node_unmapped_file_pages() provides
4185	 * a better estimate
4186	 */
4187	if (node_reclaim_mode & RECLAIM_UNMAP)
4188		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4189	else
4190		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4191
4192	/* If we can't clean pages, remove dirty pages from consideration */
4193	if (!(node_reclaim_mode & RECLAIM_WRITE))
4194		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4195
4196	/* Watch for any possible underflows due to delta */
4197	if (unlikely(delta > nr_pagecache_reclaimable))
4198		delta = nr_pagecache_reclaimable;
4199
4200	return nr_pagecache_reclaimable - delta;
4201}
4202
4203/*
4204 * Try to free up some pages from this node through reclaim.
4205 */
4206static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4207{
4208	/* Minimum pages needed in order to stay on node */
4209	const unsigned long nr_pages = 1 << order;
4210	struct task_struct *p = current;
4211	unsigned int noreclaim_flag;
4212	struct scan_control sc = {
4213		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4214		.gfp_mask = current_gfp_context(gfp_mask),
4215		.order = order,
4216		.priority = NODE_RECLAIM_PRIORITY,
4217		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4218		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4219		.may_swap = 1,
4220		.reclaim_idx = gfp_zone(gfp_mask),
4221	};
 
4222
4223	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4224					   sc.gfp_mask);
4225
4226	cond_resched();
 
 
4227	fs_reclaim_acquire(sc.gfp_mask);
4228	/*
4229	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4230	 * and we also need to be able to write out pages for RECLAIM_WRITE
4231	 * and RECLAIM_UNMAP.
4232	 */
4233	noreclaim_flag = memalloc_noreclaim_save();
4234	p->flags |= PF_SWAPWRITE;
4235	set_task_reclaim_state(p, &sc.reclaim_state);
4236
4237	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
 
4238		/*
4239		 * Free memory by calling shrink node with increasing
4240		 * priorities until we have enough memory freed.
4241		 */
4242		do {
4243			shrink_node(pgdat, &sc);
4244		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4245	}
4246
4247	set_task_reclaim_state(p, NULL);
4248	current->flags &= ~PF_SWAPWRITE;
4249	memalloc_noreclaim_restore(noreclaim_flag);
4250	fs_reclaim_release(sc.gfp_mask);
 
 
4251
4252	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4253
4254	return sc.nr_reclaimed >= nr_pages;
4255}
4256
4257int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4258{
4259	int ret;
4260
4261	/*
4262	 * Node reclaim reclaims unmapped file backed pages and
4263	 * slab pages if we are over the defined limits.
4264	 *
4265	 * A small portion of unmapped file backed pages is needed for
4266	 * file I/O otherwise pages read by file I/O will be immediately
4267	 * thrown out if the node is overallocated. So we do not reclaim
4268	 * if less than a specified percentage of the node is used by
4269	 * unmapped file backed pages.
4270	 */
4271	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4272	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
 
4273		return NODE_RECLAIM_FULL;
4274
4275	/*
4276	 * Do not scan if the allocation should not be delayed.
4277	 */
4278	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4279		return NODE_RECLAIM_NOSCAN;
4280
4281	/*
4282	 * Only run node reclaim on the local node or on nodes that do not
4283	 * have associated processors. This will favor the local processor
4284	 * over remote processors and spread off node memory allocations
4285	 * as wide as possible.
4286	 */
4287	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4288		return NODE_RECLAIM_NOSCAN;
4289
4290	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4291		return NODE_RECLAIM_NOSCAN;
4292
4293	ret = __node_reclaim(pgdat, gfp_mask, order);
4294	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4295
4296	if (!ret)
4297		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4298
4299	return ret;
4300}
4301#endif
4302
4303/*
4304 * page_evictable - test whether a page is evictable
4305 * @page: the page to test
4306 *
4307 * Test whether page is evictable--i.e., should be placed on active/inactive
4308 * lists vs unevictable list.
4309 *
4310 * Reasons page might not be evictable:
4311 * (1) page's mapping marked unevictable
4312 * (2) page is part of an mlocked VMA
4313 *
4314 */
4315int page_evictable(struct page *page)
4316{
4317	int ret;
4318
4319	/* Prevent address_space of inode and swap cache from being freed */
4320	rcu_read_lock();
4321	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4322	rcu_read_unlock();
4323	return ret;
4324}
4325
4326/**
4327 * check_move_unevictable_pages - check pages for evictability and move to
4328 * appropriate zone lru list
4329 * @pvec: pagevec with lru pages to check
4330 *
4331 * Checks pages for evictability, if an evictable page is in the unevictable
4332 * lru list, moves it to the appropriate evictable lru list. This function
4333 * should be only used for lru pages.
4334 */
4335void check_move_unevictable_pages(struct pagevec *pvec)
4336{
4337	struct lruvec *lruvec;
4338	struct pglist_data *pgdat = NULL;
4339	int pgscanned = 0;
4340	int pgrescued = 0;
4341	int i;
4342
4343	for (i = 0; i < pvec->nr; i++) {
4344		struct page *page = pvec->pages[i];
4345		struct pglist_data *pagepgdat = page_pgdat(page);
4346
4347		pgscanned++;
4348		if (pagepgdat != pgdat) {
4349			if (pgdat)
4350				spin_unlock_irq(&pgdat->lru_lock);
4351			pgdat = pagepgdat;
4352			spin_lock_irq(&pgdat->lru_lock);
4353		}
4354		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4355
4356		if (!PageLRU(page) || !PageUnevictable(page))
 
4357			continue;
4358
4359		if (page_evictable(page)) {
4360			enum lru_list lru = page_lru_base_type(page);
4361
4362			VM_BUG_ON_PAGE(PageActive(page), page);
4363			ClearPageUnevictable(page);
4364			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4365			add_page_to_lru_list(page, lruvec, lru);
4366			pgrescued++;
4367		}
 
4368	}
4369
4370	if (pgdat) {
4371		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4372		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4373		spin_unlock_irq(&pgdat->lru_lock);
 
 
4374	}
4375}
4376EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
 
 
   3 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   4 *
   5 *  Swap reorganised 29.12.95, Stephen Tweedie.
   6 *  kswapd added: 7.1.96  sct
   7 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   8 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
   9 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  10 *  Multiqueue VM started 5.8.00, Rik van Riel.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/mm.h>
  16#include <linux/sched/mm.h>
  17#include <linux/module.h>
  18#include <linux/gfp.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/swap.h>
  21#include <linux/pagemap.h>
  22#include <linux/init.h>
  23#include <linux/highmem.h>
  24#include <linux/vmpressure.h>
  25#include <linux/vmstat.h>
  26#include <linux/file.h>
  27#include <linux/writeback.h>
  28#include <linux/blkdev.h>
  29#include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
 
  30#include <linux/mm_inline.h>
  31#include <linux/backing-dev.h>
  32#include <linux/rmap.h>
  33#include <linux/topology.h>
  34#include <linux/cpu.h>
  35#include <linux/cpuset.h>
  36#include <linux/compaction.h>
  37#include <linux/notifier.h>
 
  38#include <linux/delay.h>
  39#include <linux/kthread.h>
  40#include <linux/freezer.h>
  41#include <linux/memcontrol.h>
  42#include <linux/migrate.h>
  43#include <linux/delayacct.h>
  44#include <linux/sysctl.h>
  45#include <linux/memory-tiers.h>
  46#include <linux/oom.h>
  47#include <linux/pagevec.h>
  48#include <linux/prefetch.h>
  49#include <linux/printk.h>
  50#include <linux/dax.h>
  51#include <linux/psi.h>
  52#include <linux/pagewalk.h>
  53#include <linux/shmem_fs.h>
  54#include <linux/ctype.h>
  55#include <linux/debugfs.h>
  56#include <linux/khugepaged.h>
  57#include <linux/rculist_nulls.h>
  58#include <linux/random.h>
  59
  60#include <asm/tlbflush.h>
  61#include <asm/div64.h>
  62
  63#include <linux/swapops.h>
  64#include <linux/balloon_compaction.h>
  65#include <linux/sched/sysctl.h>
  66
  67#include "internal.h"
  68#include "swap.h"
  69
  70#define CREATE_TRACE_POINTS
  71#include <trace/events/vmscan.h>
  72
  73struct scan_control {
  74	/* How many pages shrink_list() should reclaim */
  75	unsigned long nr_to_reclaim;
  76
  77	/*
  78	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
  79	 * are scanned.
  80	 */
  81	nodemask_t	*nodemask;
  82
  83	/*
  84	 * The memory cgroup that hit its limit and as a result is the
  85	 * primary target of this reclaim invocation.
  86	 */
  87	struct mem_cgroup *target_mem_cgroup;
  88
  89	/*
  90	 * Scan pressure balancing between anon and file LRUs
  91	 */
  92	unsigned long	anon_cost;
  93	unsigned long	file_cost;
  94
  95	/* Can active folios be deactivated as part of reclaim? */
  96#define DEACTIVATE_ANON 1
  97#define DEACTIVATE_FILE 2
  98	unsigned int may_deactivate:2;
  99	unsigned int force_deactivate:1;
 100	unsigned int skipped_deactivate:1;
 101
 102	/* Writepage batching in laptop mode; RECLAIM_WRITE */
 103	unsigned int may_writepage:1;
 104
 105	/* Can mapped folios be reclaimed? */
 106	unsigned int may_unmap:1;
 107
 108	/* Can folios be swapped as part of reclaim? */
 109	unsigned int may_swap:1;
 110
 111	/* Proactive reclaim invoked by userspace through memory.reclaim */
 112	unsigned int proactive:1;
 113
 114	/*
 115	 * Cgroup memory below memory.low is protected as long as we
 116	 * don't threaten to OOM. If any cgroup is reclaimed at
 117	 * reduced force or passed over entirely due to its memory.low
 118	 * setting (memcg_low_skipped), and nothing is reclaimed as a
 119	 * result, then go back for one more cycle that reclaims the protected
 120	 * memory (memcg_low_reclaim) to avert OOM.
 121	 */
 122	unsigned int memcg_low_reclaim:1;
 123	unsigned int memcg_low_skipped:1;
 124
 125	unsigned int hibernation_mode:1;
 126
 127	/* One of the zones is ready for compaction */
 128	unsigned int compaction_ready:1;
 129
 130	/* There is easily reclaimable cold cache in the current node */
 131	unsigned int cache_trim_mode:1;
 132
 133	/* The file folios on the current node are dangerously low */
 134	unsigned int file_is_tiny:1;
 135
 136	/* Always discard instead of demoting to lower tier memory */
 137	unsigned int no_demotion:1;
 138
 139	/* Allocation order */
 140	s8 order;
 141
 142	/* Scan (total_size >> priority) pages at once */
 143	s8 priority;
 144
 145	/* The highest zone to isolate folios for reclaim from */
 146	s8 reclaim_idx;
 147
 148	/* This context's GFP mask */
 149	gfp_t gfp_mask;
 150
 151	/* Incremented by the number of inactive pages that were scanned */
 152	unsigned long nr_scanned;
 153
 154	/* Number of pages freed so far during a call to shrink_zones() */
 155	unsigned long nr_reclaimed;
 156
 157	struct {
 158		unsigned int dirty;
 159		unsigned int unqueued_dirty;
 160		unsigned int congested;
 161		unsigned int writeback;
 162		unsigned int immediate;
 163		unsigned int file_taken;
 164		unsigned int taken;
 165	} nr;
 166
 167	/* for recording the reclaimed slab by now */
 168	struct reclaim_state reclaim_state;
 169};
 170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 171#ifdef ARCH_HAS_PREFETCHW
 172#define prefetchw_prev_lru_folio(_folio, _base, _field)			\
 173	do {								\
 174		if ((_folio)->lru.prev != _base) {			\
 175			struct folio *prev;				\
 176									\
 177			prev = lru_to_folio(&(_folio->lru));		\
 178			prefetchw(&prev->_field);			\
 179		}							\
 180	} while (0)
 181#else
 182#define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
 183#endif
 184
 185/*
 186 * From 0 .. 200.  Higher means more swappy.
 187 */
 188int vm_swappiness = 60;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 189
 190#ifdef CONFIG_MEMCG
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191
 192/* Returns true for reclaim through cgroup limits or cgroup interfaces. */
 193static bool cgroup_reclaim(struct scan_control *sc)
 194{
 195	return sc->target_mem_cgroup;
 
 
 
 
 
 
 196}
 197
 198/*
 199 * Returns true for reclaim on the root cgroup. This is true for direct
 200 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
 201 */
 202static bool root_reclaim(struct scan_control *sc)
 203{
 204	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
 205}
 206
 207/**
 208 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
 209 * @sc: scan_control in question
 210 *
 211 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 212 * completely broken with the legacy memcg and direct stalling in
 213 * shrink_folio_list() is used for throttling instead, which lacks all the
 214 * niceties such as fairness, adaptive pausing, bandwidth proportional
 215 * allocation and configurability.
 216 *
 217 * This function tests whether the vmscan currently in progress can assume
 218 * that the normal dirty throttling mechanism is operational.
 219 */
 220static bool writeback_throttling_sane(struct scan_control *sc)
 221{
 222	if (!cgroup_reclaim(sc))
 
 
 223		return true;
 224#ifdef CONFIG_CGROUP_WRITEBACK
 225	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 226		return true;
 227#endif
 228	return false;
 229}
 230#else
 231static bool cgroup_reclaim(struct scan_control *sc)
 
 
 232{
 233	return false;
 
 
 
 
 
 
 234}
 235
 236static bool root_reclaim(struct scan_control *sc)
 
 
 
 
 
 
 
 
 
 
 237{
 238	return true;
 239}
 240
 241static bool writeback_throttling_sane(struct scan_control *sc)
 242{
 243	return true;
 244}
 245#endif
 246
 247static void set_task_reclaim_state(struct task_struct *task,
 248				   struct reclaim_state *rs)
 249{
 250	/* Check for an overwrite */
 251	WARN_ON_ONCE(rs && task->reclaim_state);
 252
 253	/* Check for the nulling of an already-nulled member */
 254	WARN_ON_ONCE(!rs && !task->reclaim_state);
 255
 256	task->reclaim_state = rs;
 257}
 258
 259/*
 260 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
 261 * scan_control->nr_reclaimed.
 262 */
 263static void flush_reclaim_state(struct scan_control *sc)
 264{
 265	/*
 266	 * Currently, reclaim_state->reclaimed includes three types of pages
 267	 * freed outside of vmscan:
 268	 * (1) Slab pages.
 269	 * (2) Clean file pages from pruned inodes (on highmem systems).
 270	 * (3) XFS freed buffer pages.
 271	 *
 272	 * For all of these cases, we cannot universally link the pages to a
 273	 * single memcg. For example, a memcg-aware shrinker can free one object
 274	 * charged to the target memcg, causing an entire page to be freed.
 275	 * If we count the entire page as reclaimed from the memcg, we end up
 276	 * overestimating the reclaimed amount (potentially under-reclaiming).
 277	 *
 278	 * Only count such pages for global reclaim to prevent under-reclaiming
 279	 * from the target memcg; preventing unnecessary retries during memcg
 280	 * charging and false positives from proactive reclaim.
 281	 *
 282	 * For uncommon cases where the freed pages were actually mostly
 283	 * charged to the target memcg, we end up underestimating the reclaimed
 284	 * amount. This should be fine. The freed pages will be uncharged
 285	 * anyway, even if they are not counted here properly, and we will be
 286	 * able to make forward progress in charging (which is usually in a
 287	 * retry loop).
 288	 *
 289	 * We can go one step further, and report the uncharged objcg pages in
 290	 * memcg reclaim, to make reporting more accurate and reduce
 291	 * underestimation, but it's probably not worth the complexity for now.
 292	 */
 293	if (current->reclaim_state && root_reclaim(sc)) {
 294		sc->nr_reclaimed += current->reclaim_state->reclaimed;
 295		current->reclaim_state->reclaimed = 0;
 296	}
 297}
 298
 299static bool can_demote(int nid, struct scan_control *sc)
 
 300{
 301	if (!numa_demotion_enabled)
 302		return false;
 303	if (sc && sc->no_demotion)
 304		return false;
 305	if (next_demotion_node(nid) == NUMA_NO_NODE)
 306		return false;
 307
 308	return true;
 309}
 310
 311static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
 312					  int nid,
 313					  struct scan_control *sc)
 314{
 315	if (memcg == NULL) {
 316		/*
 317		 * For non-memcg reclaim, is there
 318		 * space in any swap device?
 319		 */
 320		if (get_nr_swap_pages() > 0)
 321			return true;
 322	} else {
 323		/* Is the memcg below its swap limit? */
 324		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
 325			return true;
 326	}
 327
 328	/*
 329	 * The page can not be swapped.
 330	 *
 331	 * Can it be reclaimed from this node via demotion?
 332	 */
 333	return can_demote(nid, sc);
 334}
 
 335
 336/*
 337 * This misses isolated folios which are not accounted for to save counters.
 338 * As the data only determines if reclaim or compaction continues, it is
 339 * not expected that isolated folios will be a dominating factor.
 340 */
 341unsigned long zone_reclaimable_pages(struct zone *zone)
 342{
 343	unsigned long nr;
 344
 345	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
 346		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
 347	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
 348		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
 349			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
 350
 351	return nr;
 352}
 353
 354/**
 355 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 356 * @lruvec: lru vector
 357 * @lru: lru to use
 358 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
 359 */
 360static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
 361				     int zone_idx)
 362{
 363	unsigned long size = 0;
 364	int zid;
 365
 366	for (zid = 0; zid <= zone_idx; zid++) {
 
 
 
 
 
 
 367		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
 
 368
 369		if (!managed_zone(zone))
 370			continue;
 371
 372		if (!mem_cgroup_disabled())
 373			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 374		else
 375			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
 
 
 376	}
 377	return size;
 
 
 378}
 379
 380static unsigned long drop_slab_node(int nid)
 
 
 
 381{
 382	unsigned long freed = 0;
 383	struct mem_cgroup *memcg = NULL;
 
 
 
 
 
 
 
 
 
 
 
 384
 385	memcg = mem_cgroup_iter(NULL, NULL, NULL);
 386	do {
 387		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
 388	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 389
 390	return freed;
 
 
 
 391}
 392
 393void drop_slab(void)
 394{
 395	int nid;
 396	int shift = 0;
 397	unsigned long freed;
 398
 399	do {
 400		freed = 0;
 401		for_each_online_node(nid) {
 402			if (fatal_signal_pending(current))
 403				return;
 404
 405			freed += drop_slab_node(nid);
 406		}
 407	} while ((freed >> shift++) > 1);
 408}
 409
 410static int reclaimer_offset(void)
 411{
 412	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
 413			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
 414	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
 415			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
 416	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
 417			PGSCAN_DIRECT - PGSCAN_KSWAPD);
 418	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
 419			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
 420
 421	if (current_is_kswapd())
 422		return 0;
 423	if (current_is_khugepaged())
 424		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
 425	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
 426}
 427
 428static inline int is_page_cache_freeable(struct folio *folio)
 429{
 430	/*
 431	 * A freeable page cache folio is referenced only by the caller
 432	 * that isolated the folio, the page cache and optional filesystem
 433	 * private data at folio->private.
 434	 */
 435	return folio_ref_count(folio) - folio_test_private(folio) ==
 436		1 + folio_nr_pages(folio);
 437}
 
 438
 439/*
 440 * We detected a synchronous write error writing a folio out.  Probably
 441 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 442 * fsync(), msync() or close().
 443 *
 444 * The tricky part is that after writepage we cannot touch the mapping: nothing
 445 * prevents it from being freed up.  But we have a ref on the folio and once
 446 * that folio is locked, the mapping is pinned.
 447 *
 448 * We're allowed to run sleeping folio_lock() here because we know the caller has
 449 * __GFP_FS.
 450 */
 451static void handle_write_error(struct address_space *mapping,
 452				struct folio *folio, int error)
 453{
 454	folio_lock(folio);
 455	if (folio_mapping(folio) == mapping)
 456		mapping_set_error(mapping, error);
 457	folio_unlock(folio);
 
 
 
 
 
 458}
 
 459
 460static bool skip_throttle_noprogress(pg_data_t *pgdat)
 
 
 
 461{
 462	int reclaimable = 0, write_pending = 0;
 463	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 464
 465	/*
 466	 * If kswapd is disabled, reschedule if necessary but do not
 467	 * throttle as the system is likely near OOM.
 
 
 
 
 
 
 
 
 468	 */
 469	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
 470		return true;
 471
 472	/*
 473	 * If there are a lot of dirty/writeback folios then do not
 474	 * throttle as throttling will occur when the folios cycle
 475	 * towards the end of the LRU if still under writeback.
 476	 */
 477	for (i = 0; i < MAX_NR_ZONES; i++) {
 478		struct zone *zone = pgdat->node_zones + i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 479
 480		if (!managed_zone(zone))
 481			continue;
 
 482
 483		reclaimable += zone_reclaimable_pages(zone);
 484		write_pending += zone_page_state_snapshot(zone,
 485						  NR_ZONE_WRITE_PENDING);
 486	}
 487	if (2 * write_pending <= reclaimable)
 488		return true;
 489
 490	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 491}
 492
 493void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
 
 
 494{
 495	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
 496	long timeout, ret;
 497	DEFINE_WAIT(wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 498
 499	/*
 500	 * Do not throttle user workers, kthreads other than kswapd or
 501	 * workqueues. They may be required for reclaim to make
 502	 * forward progress (e.g. journalling workqueues or kthreads).
 503	 */
 504	if (!current_is_kswapd() &&
 505	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
 506		cond_resched();
 507		return;
 508	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 509
 510	/*
 511	 * These figures are pulled out of thin air.
 512	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
 513	 * parallel reclaimers which is a short-lived event so the timeout is
 514	 * short. Failing to make progress or waiting on writeback are
 515	 * potentially long-lived events so use a longer timeout. This is shaky
 516	 * logic as a failure to make progress could be due to anything from
 517	 * writeback to a slow device to excessive referenced folios at the tail
 518	 * of the inactive LRU.
 519	 */
 520	switch(reason) {
 521	case VMSCAN_THROTTLE_WRITEBACK:
 522		timeout = HZ/10;
 523
 524		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
 525			WRITE_ONCE(pgdat->nr_reclaim_start,
 526				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
 527		}
 528
 529		break;
 530	case VMSCAN_THROTTLE_CONGESTED:
 531		fallthrough;
 532	case VMSCAN_THROTTLE_NOPROGRESS:
 533		if (skip_throttle_noprogress(pgdat)) {
 534			cond_resched();
 535			return;
 536		}
 537
 538		timeout = 1;
 
 
 
 
 
 539
 540		break;
 541	case VMSCAN_THROTTLE_ISOLATED:
 542		timeout = HZ/50;
 543		break;
 544	default:
 545		WARN_ON_ONCE(1);
 546		timeout = HZ;
 547		break;
 
 
 
 
 
 548	}
 549
 550	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
 551	ret = schedule_timeout(timeout);
 552	finish_wait(wqh, &wait);
 
 
 
 
 
 
 553
 554	if (reason == VMSCAN_THROTTLE_WRITEBACK)
 555		atomic_dec(&pgdat->nr_writeback_throttled);
 556
 557	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
 558				jiffies_to_usecs(timeout - ret),
 559				reason);
 
 
 
 560}
 561
 562/*
 563 * Account for folios written if tasks are throttled waiting on dirty
 564 * folios to clean. If enough folios have been cleaned since throttling
 565 * started then wakeup the throttled tasks.
 566 */
 567void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
 568							int nr_throttled)
 569{
 570	unsigned long nr_written;
 571
 572	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
 
 
 573
 
 
 574	/*
 575	 * This is an inaccurate read as the per-cpu deltas may not
 576	 * be synchronised. However, given that the system is
 577	 * writeback throttled, it is not worth taking the penalty
 578	 * of getting an accurate count. At worst, the throttle
 579	 * timeout guarantees forward progress.
 580	 */
 581	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
 582		READ_ONCE(pgdat->nr_reclaim_start);
 
 
 583
 584	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
 585		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 586}
 587
 588/* possible outcome of pageout() */
 589typedef enum {
 590	/* failed to write folio out, folio is locked */
 591	PAGE_KEEP,
 592	/* move folio to the active list, folio is locked */
 593	PAGE_ACTIVATE,
 594	/* folio has been sent to the disk successfully, folio is unlocked */
 595	PAGE_SUCCESS,
 596	/* folio is clean and locked */
 597	PAGE_CLEAN,
 598} pageout_t;
 599
 600/*
 601 * pageout is called by shrink_folio_list() for each dirty folio.
 602 * Calls ->writepage().
 603 */
 604static pageout_t pageout(struct folio *folio, struct address_space *mapping,
 605			 struct swap_iocb **plug)
 606{
 607	/*
 608	 * If the folio is dirty, only perform writeback if that write
 609	 * will be non-blocking.  To prevent this allocation from being
 610	 * stalled by pagecache activity.  But note that there may be
 611	 * stalls if we need to run get_block().  We could test
 612	 * PagePrivate for that.
 613	 *
 614	 * If this process is currently in __generic_file_write_iter() against
 615	 * this folio's queue, we can perform writeback even if that
 616	 * will block.
 617	 *
 618	 * If the folio is swapcache, write it back even if that would
 619	 * block, for some throttling. This happens by accident, because
 620	 * swap_backing_dev_info is bust: it doesn't reflect the
 621	 * congestion state of the swapdevs.  Easy to fix, if needed.
 622	 */
 623	if (!is_page_cache_freeable(folio))
 624		return PAGE_KEEP;
 625	if (!mapping) {
 626		/*
 627		 * Some data journaling orphaned folios can have
 628		 * folio->mapping == NULL while being dirty with clean buffers.
 629		 */
 630		if (folio_test_private(folio)) {
 631			if (try_to_free_buffers(folio)) {
 632				folio_clear_dirty(folio);
 633				pr_info("%s: orphaned folio\n", __func__);
 634				return PAGE_CLEAN;
 635			}
 636		}
 637		return PAGE_KEEP;
 638	}
 639	if (mapping->a_ops->writepage == NULL)
 640		return PAGE_ACTIVATE;
 
 
 641
 642	if (folio_clear_dirty_for_io(folio)) {
 643		int res;
 644		struct writeback_control wbc = {
 645			.sync_mode = WB_SYNC_NONE,
 646			.nr_to_write = SWAP_CLUSTER_MAX,
 647			.range_start = 0,
 648			.range_end = LLONG_MAX,
 649			.for_reclaim = 1,
 650			.swap_plug = plug,
 651		};
 652
 653		folio_set_reclaim(folio);
 654		res = mapping->a_ops->writepage(&folio->page, &wbc);
 655		if (res < 0)
 656			handle_write_error(mapping, folio, res);
 657		if (res == AOP_WRITEPAGE_ACTIVATE) {
 658			folio_clear_reclaim(folio);
 659			return PAGE_ACTIVATE;
 660		}
 661
 662		if (!folio_test_writeback(folio)) {
 663			/* synchronous write or broken a_ops? */
 664			folio_clear_reclaim(folio);
 665		}
 666		trace_mm_vmscan_write_folio(folio);
 667		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
 668		return PAGE_SUCCESS;
 669	}
 670
 671	return PAGE_CLEAN;
 672}
 673
 674/*
 675 * Same as remove_mapping, but if the folio is removed from the mapping, it
 676 * gets returned with a refcount of 0.
 677 */
 678static int __remove_mapping(struct address_space *mapping, struct folio *folio,
 679			    bool reclaimed, struct mem_cgroup *target_memcg)
 680{
 
 681	int refcount;
 682	void *shadow = NULL;
 683
 684	BUG_ON(!folio_test_locked(folio));
 685	BUG_ON(mapping != folio_mapping(folio));
 686
 687	if (!folio_test_swapcache(folio))
 688		spin_lock(&mapping->host->i_lock);
 689	xa_lock_irq(&mapping->i_pages);
 690	/*
 691	 * The non racy check for a busy folio.
 692	 *
 693	 * Must be careful with the order of the tests. When someone has
 694	 * a ref to the folio, it may be possible that they dirty it then
 695	 * drop the reference. So if the dirty flag is tested before the
 696	 * refcount here, then the following race may occur:
 697	 *
 698	 * get_user_pages(&page);
 699	 * [user mapping goes away]
 700	 * write_to(page);
 701	 *				!folio_test_dirty(folio)    [good]
 702	 * folio_set_dirty(folio);
 703	 * folio_put(folio);
 704	 *				!refcount(folio)   [good, discard it]
 705	 *
 706	 * [oops, our write_to data is lost]
 707	 *
 708	 * Reversing the order of the tests ensures such a situation cannot
 709	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
 710	 * load is not satisfied before that of folio->_refcount.
 711	 *
 712	 * Note that if the dirty flag is always set via folio_mark_dirty,
 713	 * and thus under the i_pages lock, then this ordering is not required.
 714	 */
 715	refcount = 1 + folio_nr_pages(folio);
 716	if (!folio_ref_freeze(folio, refcount))
 717		goto cannot_free;
 718	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
 719	if (unlikely(folio_test_dirty(folio))) {
 720		folio_ref_unfreeze(folio, refcount);
 721		goto cannot_free;
 722	}
 723
 724	if (folio_test_swapcache(folio)) {
 725		swp_entry_t swap = folio->swap;
 726
 727		if (reclaimed && !mapping_exiting(mapping))
 728			shadow = workingset_eviction(folio, target_memcg);
 729		__delete_from_swap_cache(folio, swap, shadow);
 730		mem_cgroup_swapout(folio, swap);
 731		xa_unlock_irq(&mapping->i_pages);
 732		put_swap_folio(folio, swap);
 733	} else {
 734		void (*free_folio)(struct folio *);
 
 735
 736		free_folio = mapping->a_ops->free_folio;
 737		/*
 738		 * Remember a shadow entry for reclaimed file cache in
 739		 * order to detect refaults, thus thrashing, later on.
 740		 *
 741		 * But don't store shadows in an address space that is
 742		 * already exiting.  This is not just an optimization,
 743		 * inode reclaim needs to empty out the radix tree or
 744		 * the nodes are lost.  Don't plant shadows behind its
 745		 * back.
 746		 *
 747		 * We also don't store shadows for DAX mappings because the
 748		 * only page cache folios found in these are zero pages
 749		 * covering holes, and because we don't want to mix DAX
 750		 * exceptional entries and shadow exceptional entries in the
 751		 * same address_space.
 752		 */
 753		if (reclaimed && folio_is_file_lru(folio) &&
 754		    !mapping_exiting(mapping) && !dax_mapping(mapping))
 755			shadow = workingset_eviction(folio, target_memcg);
 756		__filemap_remove_folio(folio, shadow);
 757		xa_unlock_irq(&mapping->i_pages);
 758		if (mapping_shrinkable(mapping))
 759			inode_add_lru(mapping->host);
 760		spin_unlock(&mapping->host->i_lock);
 761
 762		if (free_folio)
 763			free_folio(folio);
 764	}
 765
 766	return 1;
 767
 768cannot_free:
 769	xa_unlock_irq(&mapping->i_pages);
 770	if (!folio_test_swapcache(folio))
 771		spin_unlock(&mapping->host->i_lock);
 772	return 0;
 773}
 774
 775/**
 776 * remove_mapping() - Attempt to remove a folio from its mapping.
 777 * @mapping: The address space.
 778 * @folio: The folio to remove.
 779 *
 780 * If the folio is dirty, under writeback or if someone else has a ref
 781 * on it, removal will fail.
 782 * Return: The number of pages removed from the mapping.  0 if the folio
 783 * could not be removed.
 784 * Context: The caller should have a single refcount on the folio and
 785 * hold its lock.
 786 */
 787long remove_mapping(struct address_space *mapping, struct folio *folio)
 788{
 789	if (__remove_mapping(mapping, folio, false, NULL)) {
 790		/*
 791		 * Unfreezing the refcount with 1 effectively
 792		 * drops the pagecache ref for us without requiring another
 793		 * atomic operation.
 794		 */
 795		folio_ref_unfreeze(folio, 1);
 796		return folio_nr_pages(folio);
 797	}
 798	return 0;
 799}
 800
 801/**
 802 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
 803 * @folio: Folio to be returned to an LRU list.
 804 *
 805 * Add previously isolated @folio to appropriate LRU list.
 806 * The folio may still be unevictable for other reasons.
 807 *
 808 * Context: lru_lock must not be held, interrupts must be enabled.
 809 */
 810void folio_putback_lru(struct folio *folio)
 811{
 812	folio_add_lru(folio);
 813	folio_put(folio);		/* drop ref from isolate */
 814}
 815
 816enum folio_references {
 817	FOLIOREF_RECLAIM,
 818	FOLIOREF_RECLAIM_CLEAN,
 819	FOLIOREF_KEEP,
 820	FOLIOREF_ACTIVATE,
 821};
 822
 823static enum folio_references folio_check_references(struct folio *folio,
 824						  struct scan_control *sc)
 825{
 826	int referenced_ptes, referenced_folio;
 827	unsigned long vm_flags;
 828
 829	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
 830					   &vm_flags);
 831	referenced_folio = folio_test_clear_referenced(folio);
 832
 833	/*
 834	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
 835	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
 836	 */
 837	if (vm_flags & VM_LOCKED)
 838		return FOLIOREF_ACTIVATE;
 839
 840	/* rmap lock contention: rotate */
 841	if (referenced_ptes == -1)
 842		return FOLIOREF_KEEP;
 843
 844	if (referenced_ptes) {
 
 
 845		/*
 846		 * All mapped folios start out with page table
 847		 * references from the instantiating fault, so we need
 848		 * to look twice if a mapped file/anon folio is used more
 849		 * than once.
 850		 *
 851		 * Mark it and spare it for another trip around the
 852		 * inactive list.  Another page table reference will
 853		 * lead to its activation.
 854		 *
 855		 * Note: the mark is set for activated folios as well
 856		 * so that recently deactivated but used folios are
 857		 * quickly recovered.
 858		 */
 859		folio_set_referenced(folio);
 860
 861		if (referenced_folio || referenced_ptes > 1)
 862			return FOLIOREF_ACTIVATE;
 863
 864		/*
 865		 * Activate file-backed executable folios after first usage.
 866		 */
 867		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
 868			return FOLIOREF_ACTIVATE;
 869
 870		return FOLIOREF_KEEP;
 871	}
 872
 873	/* Reclaim if clean, defer dirty folios to writeback */
 874	if (referenced_folio && folio_is_file_lru(folio))
 875		return FOLIOREF_RECLAIM_CLEAN;
 876
 877	return FOLIOREF_RECLAIM;
 878}
 879
 880/* Check if a folio is dirty or under writeback */
 881static void folio_check_dirty_writeback(struct folio *folio,
 882				       bool *dirty, bool *writeback)
 883{
 884	struct address_space *mapping;
 885
 886	/*
 887	 * Anonymous folios are not handled by flushers and must be written
 888	 * from reclaim context. Do not stall reclaim based on them.
 889	 * MADV_FREE anonymous folios are put into inactive file list too.
 890	 * They could be mistakenly treated as file lru. So further anon
 891	 * test is needed.
 892	 */
 893	if (!folio_is_file_lru(folio) ||
 894	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
 895		*dirty = false;
 896		*writeback = false;
 897		return;
 898	}
 899
 900	/* By default assume that the folio flags are accurate */
 901	*dirty = folio_test_dirty(folio);
 902	*writeback = folio_test_writeback(folio);
 903
 904	/* Verify dirty/writeback state if the filesystem supports it */
 905	if (!folio_test_private(folio))
 906		return;
 907
 908	mapping = folio_mapping(folio);
 909	if (mapping && mapping->a_ops->is_dirty_writeback)
 910		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
 911}
 912
 913static struct folio *alloc_demote_folio(struct folio *src,
 914		unsigned long private)
 915{
 916	struct folio *dst;
 917	nodemask_t *allowed_mask;
 918	struct migration_target_control *mtc;
 919
 920	mtc = (struct migration_target_control *)private;
 921
 922	allowed_mask = mtc->nmask;
 923	/*
 924	 * make sure we allocate from the target node first also trying to
 925	 * demote or reclaim pages from the target node via kswapd if we are
 926	 * low on free memory on target node. If we don't do this and if
 927	 * we have free memory on the slower(lower) memtier, we would start
 928	 * allocating pages from slower(lower) memory tiers without even forcing
 929	 * a demotion of cold pages from the target memtier. This can result
 930	 * in the kernel placing hot pages in slower(lower) memory tiers.
 931	 */
 932	mtc->nmask = NULL;
 933	mtc->gfp_mask |= __GFP_THISNODE;
 934	dst = alloc_migration_target(src, (unsigned long)mtc);
 935	if (dst)
 936		return dst;
 937
 938	mtc->gfp_mask &= ~__GFP_THISNODE;
 939	mtc->nmask = allowed_mask;
 940
 941	return alloc_migration_target(src, (unsigned long)mtc);
 942}
 943
 944/*
 945 * Take folios on @demote_folios and attempt to demote them to another node.
 946 * Folios which are not demoted are left on @demote_folios.
 947 */
 948static unsigned int demote_folio_list(struct list_head *demote_folios,
 949				     struct pglist_data *pgdat)
 950{
 951	int target_nid = next_demotion_node(pgdat->node_id);
 952	unsigned int nr_succeeded;
 953	nodemask_t allowed_mask;
 954
 955	struct migration_target_control mtc = {
 956		/*
 957		 * Allocate from 'node', or fail quickly and quietly.
 958		 * When this happens, 'page' will likely just be discarded
 959		 * instead of migrated.
 960		 */
 961		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
 962			__GFP_NOMEMALLOC | GFP_NOWAIT,
 963		.nid = target_nid,
 964		.nmask = &allowed_mask
 965	};
 966
 967	if (list_empty(demote_folios))
 968		return 0;
 969
 970	if (target_nid == NUMA_NO_NODE)
 971		return 0;
 972
 973	node_get_allowed_targets(pgdat, &allowed_mask);
 974
 975	/* Demotion ignores all cpuset and mempolicy settings */
 976	migrate_pages(demote_folios, alloc_demote_folio, NULL,
 977		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
 978		      &nr_succeeded);
 979
 980	mod_node_page_state(pgdat, PGDEMOTE_KSWAPD + reclaimer_offset(),
 981			    nr_succeeded);
 982
 983	return nr_succeeded;
 984}
 985
 986static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
 987{
 988	if (gfp_mask & __GFP_FS)
 989		return true;
 990	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
 991		return false;
 992	/*
 993	 * We can "enter_fs" for swap-cache with only __GFP_IO
 994	 * providing this isn't SWP_FS_OPS.
 995	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
 996	 * but that will never affect SWP_FS_OPS, so the data_race
 997	 * is safe.
 998	 */
 999	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1000}
1001
1002/*
1003 * shrink_folio_list() returns the number of reclaimed pages
1004 */
1005static unsigned int shrink_folio_list(struct list_head *folio_list,
1006		struct pglist_data *pgdat, struct scan_control *sc,
1007		struct reclaim_stat *stat, bool ignore_references)
 
 
 
1008{
1009	LIST_HEAD(ret_folios);
1010	LIST_HEAD(free_folios);
1011	LIST_HEAD(demote_folios);
1012	unsigned int nr_reclaimed = 0;
1013	unsigned int pgactivate = 0;
1014	bool do_demote_pass;
1015	struct swap_iocb *plug = NULL;
1016
1017	memset(stat, 0, sizeof(*stat));
1018	cond_resched();
1019	do_demote_pass = can_demote(pgdat->node_id, sc);
1020
1021retry:
1022	while (!list_empty(folio_list)) {
1023		struct address_space *mapping;
1024		struct folio *folio;
1025		enum folio_references references = FOLIOREF_RECLAIM;
 
1026		bool dirty, writeback;
1027		unsigned int nr_pages;
1028
1029		cond_resched();
1030
1031		folio = lru_to_folio(folio_list);
1032		list_del(&folio->lru);
1033
1034		if (!folio_trylock(folio))
1035			goto keep;
1036
1037		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1038
1039		nr_pages = folio_nr_pages(folio);
1040
1041		/* Account the number of base pages */
1042		sc->nr_scanned += nr_pages;
1043
1044		if (unlikely(!folio_evictable(folio)))
1045			goto activate_locked;
1046
1047		if (!sc->may_unmap && folio_mapped(folio))
1048			goto keep_locked;
1049
1050		/* folio_update_gen() tried to promote this page? */
1051		if (lru_gen_enabled() && !ignore_references &&
1052		    folio_mapped(folio) && folio_test_referenced(folio))
1053			goto keep_locked;
1054
1055		/*
1056		 * The number of dirty pages determines if a node is marked
1057		 * reclaim_congested. kswapd will stall and start writing
1058		 * folios if the tail of the LRU is all dirty unqueued folios.
 
1059		 */
1060		folio_check_dirty_writeback(folio, &dirty, &writeback);
1061		if (dirty || writeback)
1062			stat->nr_dirty += nr_pages;
1063
1064		if (dirty && !writeback)
1065			stat->nr_unqueued_dirty += nr_pages;
1066
1067		/*
1068		 * Treat this folio as congested if folios are cycling
1069		 * through the LRU so quickly that the folios marked
1070		 * for immediate reclaim are making it to the end of
1071		 * the LRU a second time.
1072		 */
1073		if (writeback && folio_test_reclaim(folio))
1074			stat->nr_congested += nr_pages;
 
 
 
1075
1076		/*
1077		 * If a folio at the tail of the LRU is under writeback, there
1078		 * are three cases to consider.
1079		 *
1080		 * 1) If reclaim is encountering an excessive number
1081		 *    of folios under writeback and this folio has both
1082		 *    the writeback and reclaim flags set, then it
1083		 *    indicates that folios are being queued for I/O but
1084		 *    are being recycled through the LRU before the I/O
1085		 *    can complete. Waiting on the folio itself risks an
1086		 *    indefinite stall if it is impossible to writeback
1087		 *    the folio due to I/O error or disconnected storage
1088		 *    so instead note that the LRU is being scanned too
1089		 *    quickly and the caller can stall after the folio
1090		 *    list has been processed.
1091		 *
1092		 * 2) Global or new memcg reclaim encounters a folio that is
1093		 *    not marked for immediate reclaim, or the caller does not
1094		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1095		 *    not to fs). In this case mark the folio for immediate
1096		 *    reclaim and continue scanning.
1097		 *
1098		 *    Require may_enter_fs() because we would wait on fs, which
1099		 *    may not have submitted I/O yet. And the loop driver might
1100		 *    enter reclaim, and deadlock if it waits on a folio for
1101		 *    which it is needed to do the write (loop masks off
1102		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1103		 *    would probably show more reasons.
1104		 *
1105		 * 3) Legacy memcg encounters a folio that already has the
1106		 *    reclaim flag set. memcg does not have any dirty folio
1107		 *    throttling so we could easily OOM just because too many
1108		 *    folios are in writeback and there is nothing else to
1109		 *    reclaim. Wait for the writeback to complete.
1110		 *
1111		 * In cases 1) and 2) we activate the folios to get them out of
1112		 * the way while we continue scanning for clean folios on the
1113		 * inactive list and refilling from the active list. The
1114		 * observation here is that waiting for disk writes is more
1115		 * expensive than potentially causing reloads down the line.
1116		 * Since they're marked for immediate reclaim, they won't put
1117		 * memory pressure on the cache working set any longer than it
1118		 * takes to write them to disk.
1119		 */
1120		if (folio_test_writeback(folio)) {
1121			/* Case 1 above */
1122			if (current_is_kswapd() &&
1123			    folio_test_reclaim(folio) &&
1124			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1125				stat->nr_immediate += nr_pages;
1126				goto activate_locked;
1127
1128			/* Case 2 above */
1129			} else if (writeback_throttling_sane(sc) ||
1130			    !folio_test_reclaim(folio) ||
1131			    !may_enter_fs(folio, sc->gfp_mask)) {
1132				/*
1133				 * This is slightly racy -
1134				 * folio_end_writeback() might have
1135				 * just cleared the reclaim flag, then
1136				 * setting the reclaim flag here ends up
1137				 * interpreted as the readahead flag - but
1138				 * that does not matter enough to care.
1139				 * What we do want is for this folio to
1140				 * have the reclaim flag set next time
1141				 * memcg reclaim reaches the tests above,
1142				 * so it will then wait for writeback to
1143				 * avoid OOM; and it's also appropriate
1144				 * in global reclaim.
1145				 */
1146				folio_set_reclaim(folio);
1147				stat->nr_writeback += nr_pages;
1148				goto activate_locked;
1149
1150			/* Case 3 above */
1151			} else {
1152				folio_unlock(folio);
1153				folio_wait_writeback(folio);
1154				/* then go back and try same folio again */
1155				list_add_tail(&folio->lru, folio_list);
1156				continue;
1157			}
1158		}
1159
1160		if (!ignore_references)
1161			references = folio_check_references(folio, sc);
1162
1163		switch (references) {
1164		case FOLIOREF_ACTIVATE:
1165			goto activate_locked;
1166		case FOLIOREF_KEEP:
1167			stat->nr_ref_keep += nr_pages;
1168			goto keep_locked;
1169		case FOLIOREF_RECLAIM:
1170		case FOLIOREF_RECLAIM_CLEAN:
1171			; /* try to reclaim the folio below */
1172		}
1173
1174		/*
1175		 * Before reclaiming the folio, try to relocate
1176		 * its contents to another node.
1177		 */
1178		if (do_demote_pass &&
1179		    (thp_migration_supported() || !folio_test_large(folio))) {
1180			list_add(&folio->lru, &demote_folios);
1181			folio_unlock(folio);
1182			continue;
1183		}
1184
1185		/*
1186		 * Anonymous process memory has backing store?
1187		 * Try to allocate it some swap space here.
1188		 * Lazyfree folio could be freed directly
1189		 */
1190		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1191			if (!folio_test_swapcache(folio)) {
1192				if (!(sc->gfp_mask & __GFP_IO))
1193					goto keep_locked;
1194				if (folio_maybe_dma_pinned(folio))
1195					goto keep_locked;
1196				if (folio_test_large(folio)) {
1197					/* cannot split folio, skip it */
1198					if (!can_split_folio(folio, NULL))
1199						goto activate_locked;
1200					/*
1201					 * Split folios without a PMD map right
1202					 * away. Chances are some or all of the
1203					 * tail pages can be freed without IO.
1204					 */
1205					if (!folio_entire_mapcount(folio) &&
1206					    split_folio_to_list(folio,
1207								folio_list))
1208						goto activate_locked;
1209				}
1210				if (!add_to_swap(folio)) {
1211					if (!folio_test_large(folio))
1212						goto activate_locked_split;
1213					/* Fallback to swap normal pages */
1214					if (split_folio_to_list(folio,
1215								folio_list))
1216						goto activate_locked;
1217#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1218					count_memcg_folio_events(folio, THP_SWPOUT_FALLBACK, 1);
1219					count_vm_event(THP_SWPOUT_FALLBACK);
1220#endif
1221					if (!add_to_swap(folio))
1222						goto activate_locked_split;
1223				}
 
 
 
 
 
1224			}
1225		} else if (folio_test_swapbacked(folio) &&
1226			   folio_test_large(folio)) {
1227			/* Split shmem folio */
1228			if (split_folio_to_list(folio, folio_list))
1229				goto keep_locked;
1230		}
1231
1232		/*
1233		 * If the folio was split above, the tail pages will make
1234		 * their own pass through this function and be accounted
1235		 * then.
 
 
1236		 */
1237		if ((nr_pages > 1) && !folio_test_large(folio)) {
1238			sc->nr_scanned -= (nr_pages - 1);
1239			nr_pages = 1;
1240		}
1241
1242		/*
1243		 * The folio is mapped into the page tables of one or more
1244		 * processes. Try to unmap it here.
1245		 */
1246		if (folio_mapped(folio)) {
1247			enum ttu_flags flags = TTU_BATCH_FLUSH;
1248			bool was_swapbacked = folio_test_swapbacked(folio);
1249
1250			if (folio_test_pmd_mappable(folio))
1251				flags |= TTU_SPLIT_HUGE_PMD;
1252
1253			try_to_unmap(folio, flags);
1254			if (folio_mapped(folio)) {
1255				stat->nr_unmap_fail += nr_pages;
1256				if (!was_swapbacked &&
1257				    folio_test_swapbacked(folio))
1258					stat->nr_lazyfree_fail += nr_pages;
1259				goto activate_locked;
1260			}
1261		}
1262
1263		/*
1264		 * Folio is unmapped now so it cannot be newly pinned anymore.
1265		 * No point in trying to reclaim folio if it is pinned.
1266		 * Furthermore we don't want to reclaim underlying fs metadata
1267		 * if the folio is pinned and thus potentially modified by the
1268		 * pinning process as that may upset the filesystem.
1269		 */
1270		if (folio_maybe_dma_pinned(folio))
1271			goto activate_locked;
1272
1273		mapping = folio_mapping(folio);
1274		if (folio_test_dirty(folio)) {
1275			/*
1276			 * Only kswapd can writeback filesystem folios
1277			 * to avoid risk of stack overflow. But avoid
1278			 * injecting inefficient single-folio I/O into
1279			 * flusher writeback as much as possible: only
1280			 * write folios when we've encountered many
1281			 * dirty folios, and when we've already scanned
1282			 * the rest of the LRU for clean folios and see
1283			 * the same dirty folios again (with the reclaim
1284			 * flag set).
1285			 */
1286			if (folio_is_file_lru(folio) &&
1287			    (!current_is_kswapd() ||
1288			     !folio_test_reclaim(folio) ||
1289			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1290				/*
1291				 * Immediately reclaim when written back.
1292				 * Similar in principle to folio_deactivate()
1293				 * except we already have the folio isolated
1294				 * and know it's dirty
1295				 */
1296				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1297						nr_pages);
1298				folio_set_reclaim(folio);
1299
1300				goto activate_locked;
1301			}
1302
1303			if (references == FOLIOREF_RECLAIM_CLEAN)
1304				goto keep_locked;
1305			if (!may_enter_fs(folio, sc->gfp_mask))
1306				goto keep_locked;
1307			if (!sc->may_writepage)
1308				goto keep_locked;
1309
1310			/*
1311			 * Folio is dirty. Flush the TLB if a writable entry
1312			 * potentially exists to avoid CPU writes after I/O
1313			 * starts and then write it out here.
1314			 */
1315			try_to_unmap_flush_dirty();
1316			switch (pageout(folio, mapping, &plug)) {
1317			case PAGE_KEEP:
1318				goto keep_locked;
1319			case PAGE_ACTIVATE:
1320				goto activate_locked;
1321			case PAGE_SUCCESS:
1322				stat->nr_pageout += nr_pages;
1323
1324				if (folio_test_writeback(folio))
1325					goto keep;
1326				if (folio_test_dirty(folio))
1327					goto keep;
1328
1329				/*
1330				 * A synchronous write - probably a ramdisk.  Go
1331				 * ahead and try to reclaim the folio.
1332				 */
1333				if (!folio_trylock(folio))
1334					goto keep;
1335				if (folio_test_dirty(folio) ||
1336				    folio_test_writeback(folio))
1337					goto keep_locked;
1338				mapping = folio_mapping(folio);
1339				fallthrough;
1340			case PAGE_CLEAN:
1341				; /* try to free the folio below */
1342			}
1343		}
1344
1345		/*
1346		 * If the folio has buffers, try to free the buffer
1347		 * mappings associated with this folio. If we succeed
1348		 * we try to free the folio as well.
1349		 *
1350		 * We do this even if the folio is dirty.
1351		 * filemap_release_folio() does not perform I/O, but it
1352		 * is possible for a folio to have the dirty flag set,
1353		 * but it is actually clean (all its buffers are clean).
1354		 * This happens if the buffers were written out directly,
1355		 * with submit_bh(). ext3 will do this, as well as
1356		 * the blockdev mapping.  filemap_release_folio() will
1357		 * discover that cleanness and will drop the buffers
1358		 * and mark the folio clean - it can be freed.
1359		 *
1360		 * Rarely, folios can have buffers and no ->mapping.
1361		 * These are the folios which were not successfully
1362		 * invalidated in truncate_cleanup_folio().  We try to
1363		 * drop those buffers here and if that worked, and the
1364		 * folio is no longer mapped into process address space
1365		 * (refcount == 1) it can be freed.  Otherwise, leave
1366		 * the folio on the LRU so it is swappable.
1367		 */
1368		if (folio_needs_release(folio)) {
1369			if (!filemap_release_folio(folio, sc->gfp_mask))
1370				goto activate_locked;
1371			if (!mapping && folio_ref_count(folio) == 1) {
1372				folio_unlock(folio);
1373				if (folio_put_testzero(folio))
1374					goto free_it;
1375				else {
1376					/*
1377					 * rare race with speculative reference.
1378					 * the speculative reference will free
1379					 * this folio shortly, so we may
1380					 * increment nr_reclaimed here (and
1381					 * leave it off the LRU).
1382					 */
1383					nr_reclaimed += nr_pages;
1384					continue;
1385				}
1386			}
1387		}
1388
1389		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1390			/* follow __remove_mapping for reference */
1391			if (!folio_ref_freeze(folio, 1))
 
 
 
1392				goto keep_locked;
1393			/*
1394			 * The folio has only one reference left, which is
1395			 * from the isolation. After the caller puts the
1396			 * folio back on the lru and drops the reference, the
1397			 * folio will be freed anyway. It doesn't matter
1398			 * which lru it goes on. So we don't bother checking
1399			 * the dirty flag here.
1400			 */
1401			count_vm_events(PGLAZYFREED, nr_pages);
1402			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1403		} else if (!mapping || !__remove_mapping(mapping, folio, true,
1404							 sc->target_mem_cgroup))
1405			goto keep_locked;
1406
1407		folio_unlock(folio);
1408free_it:
1409		/*
1410		 * Folio may get swapped out as a whole, need to account
1411		 * all pages in it.
1412		 */
1413		nr_reclaimed += nr_pages;
1414
1415		/*
1416		 * Is there need to periodically free_folio_list? It would
1417		 * appear not as the counts should be low
1418		 */
1419		if (unlikely(folio_test_large(folio)))
1420			destroy_large_folio(folio);
1421		else
1422			list_add(&folio->lru, &free_folios);
1423		continue;
1424
1425activate_locked_split:
1426		/*
1427		 * The tail pages that are failed to add into swap cache
1428		 * reach here.  Fixup nr_scanned and nr_pages.
1429		 */
1430		if (nr_pages > 1) {
1431			sc->nr_scanned -= (nr_pages - 1);
1432			nr_pages = 1;
1433		}
1434activate_locked:
1435		/* Not a candidate for swapping, so reclaim swap space. */
1436		if (folio_test_swapcache(folio) &&
1437		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1438			folio_free_swap(folio);
1439		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1440		if (!folio_test_mlocked(folio)) {
1441			int type = folio_is_file_lru(folio);
1442			folio_set_active(folio);
1443			stat->nr_activate[type] += nr_pages;
1444			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1445		}
1446keep_locked:
1447		folio_unlock(folio);
1448keep:
1449		list_add(&folio->lru, &ret_folios);
1450		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1451				folio_test_unevictable(folio), folio);
1452	}
1453	/* 'folio_list' is always empty here */
1454
1455	/* Migrate folios selected for demotion */
1456	nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
1457	/* Folios that could not be demoted are still in @demote_folios */
1458	if (!list_empty(&demote_folios)) {
1459		/* Folios which weren't demoted go back on @folio_list */
1460		list_splice_init(&demote_folios, folio_list);
1461
1462		/*
1463		 * goto retry to reclaim the undemoted folios in folio_list if
1464		 * desired.
1465		 *
1466		 * Reclaiming directly from top tier nodes is not often desired
1467		 * due to it breaking the LRU ordering: in general memory
1468		 * should be reclaimed from lower tier nodes and demoted from
1469		 * top tier nodes.
1470		 *
1471		 * However, disabling reclaim from top tier nodes entirely
1472		 * would cause ooms in edge scenarios where lower tier memory
1473		 * is unreclaimable for whatever reason, eg memory being
1474		 * mlocked or too hot to reclaim. We can disable reclaim
1475		 * from top tier nodes in proactive reclaim though as that is
1476		 * not real memory pressure.
1477		 */
1478		if (!sc->proactive) {
1479			do_demote_pass = false;
1480			goto retry;
1481		}
1482	}
1483
1484	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1485
1486	mem_cgroup_uncharge_list(&free_folios);
1487	try_to_unmap_flush();
1488	free_unref_page_list(&free_folios);
1489
1490	list_splice(&ret_folios, folio_list);
1491	count_vm_events(PGACTIVATE, pgactivate);
1492
1493	if (plug)
1494		swap_write_unplug(plug);
1495	return nr_reclaimed;
1496}
1497
1498unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1499					   struct list_head *folio_list)
1500{
1501	struct scan_control sc = {
1502		.gfp_mask = GFP_KERNEL,
 
1503		.may_unmap = 1,
1504	};
1505	struct reclaim_stat stat;
1506	unsigned int nr_reclaimed;
1507	struct folio *folio, *next;
1508	LIST_HEAD(clean_folios);
1509	unsigned int noreclaim_flag;
1510
1511	list_for_each_entry_safe(folio, next, folio_list, lru) {
1512		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1513		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
1514		    !folio_test_unevictable(folio)) {
1515			folio_clear_active(folio);
1516			list_move(&folio->lru, &clean_folios);
1517		}
1518	}
1519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1520	/*
1521	 * We should be safe here since we are only dealing with file pages and
1522	 * we are not kswapd and therefore cannot write dirty file pages. But
1523	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1524	 * change in the future.
 
 
1525	 */
1526	noreclaim_flag = memalloc_noreclaim_save();
1527	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1528					&stat, true);
1529	memalloc_noreclaim_restore(noreclaim_flag);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1530
1531	list_splice(&clean_folios, folio_list);
1532	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1533			    -(long)nr_reclaimed);
1534	/*
1535	 * Since lazyfree pages are isolated from file LRU from the beginning,
1536	 * they will rotate back to anonymous LRU in the end if it failed to
1537	 * discard so isolated count will be mismatched.
1538	 * Compensate the isolated count for both LRU lists.
1539	 */
1540	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1541			    stat.nr_lazyfree_fail);
1542	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1543			    -(long)stat.nr_lazyfree_fail);
1544	return nr_reclaimed;
1545}
1546
 
1547/*
1548 * Update LRU sizes after isolating pages. The LRU size updates must
1549 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1550 */
1551static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1552			enum lru_list lru, unsigned long *nr_zone_taken)
1553{
1554	int zid;
1555
1556	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1557		if (!nr_zone_taken[zid])
1558			continue;
1559
1560		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
 
 
 
1561	}
1562
1563}
1564
1565#ifdef CONFIG_CMA
1566/*
1567 * It is waste of effort to scan and reclaim CMA pages if it is not available
1568 * for current allocation context. Kswapd can not be enrolled as it can not
1569 * distinguish this scenario by using sc->gfp_mask = GFP_KERNEL
1570 */
1571static bool skip_cma(struct folio *folio, struct scan_control *sc)
1572{
1573	return !current_is_kswapd() &&
1574			gfp_migratetype(sc->gfp_mask) != MIGRATE_MOVABLE &&
1575			folio_migratetype(folio) == MIGRATE_CMA;
1576}
1577#else
1578static bool skip_cma(struct folio *folio, struct scan_control *sc)
1579{
1580	return false;
1581}
1582#endif
1583
1584/*
1585 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1586 *
1587 * lruvec->lru_lock is heavily contended.  Some of the functions that
1588 * shrink the lists perform better by taking out a batch of pages
1589 * and working on them outside the LRU lock.
1590 *
1591 * For pagecache intensive workloads, this function is the hottest
1592 * spot in the kernel (apart from copy_*_user functions).
1593 *
1594 * Lru_lock must be held before calling this function.
1595 *
1596 * @nr_to_scan:	The number of eligible pages to look through on the list.
1597 * @lruvec:	The LRU vector to pull pages from.
1598 * @dst:	The temp list to put pages on to.
1599 * @nr_scanned:	The number of pages that were scanned.
1600 * @sc:		The scan_control struct for this reclaim session
 
1601 * @lru:	LRU list id for isolating
1602 *
1603 * returns how many pages were moved onto *@dst.
1604 */
1605static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1606		struct lruvec *lruvec, struct list_head *dst,
1607		unsigned long *nr_scanned, struct scan_control *sc,
1608		enum lru_list lru)
1609{
1610	struct list_head *src = &lruvec->lists[lru];
1611	unsigned long nr_taken = 0;
1612	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1613	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1614	unsigned long skipped = 0;
1615	unsigned long scan, total_scan, nr_pages;
1616	LIST_HEAD(folios_skipped);
 
1617
1618	total_scan = 0;
1619	scan = 0;
1620	while (scan < nr_to_scan && !list_empty(src)) {
1621		struct list_head *move_to = src;
1622		struct folio *folio;
1623
1624		folio = lru_to_folio(src);
1625		prefetchw_prev_lru_folio(folio, src, flags);
1626
1627		nr_pages = folio_nr_pages(folio);
 
 
1628		total_scan += nr_pages;
1629
1630		if (folio_zonenum(folio) > sc->reclaim_idx ||
1631				skip_cma(folio, sc)) {
1632			nr_skipped[folio_zonenum(folio)] += nr_pages;
1633			move_to = &folios_skipped;
1634			goto move;
1635		}
1636
1637		/*
1638		 * Do not count skipped folios because that makes the function
1639		 * return with no isolated folios if the LRU mostly contains
1640		 * ineligible folios.  This causes the VM to not reclaim any
1641		 * folios, triggering a premature OOM.
1642		 * Account all pages in a folio.
 
 
 
1643		 */
1644		scan += nr_pages;
 
 
 
 
 
 
1645
1646		if (!folio_test_lru(folio))
1647			goto move;
1648		if (!sc->may_unmap && folio_mapped(folio))
1649			goto move;
1650
1651		/*
1652		 * Be careful not to clear the lru flag until after we're
1653		 * sure the folio is not being freed elsewhere -- the
1654		 * folio release code relies on it.
1655		 */
1656		if (unlikely(!folio_try_get(folio)))
1657			goto move;
1658
1659		if (!folio_test_clear_lru(folio)) {
1660			/* Another thread is already isolating this folio */
1661			folio_put(folio);
1662			goto move;
1663		}
1664
1665		nr_taken += nr_pages;
1666		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1667		move_to = dst;
1668move:
1669		list_move(&folio->lru, move_to);
1670	}
1671
1672	/*
1673	 * Splice any skipped folios to the start of the LRU list. Note that
1674	 * this disrupts the LRU order when reclaiming for lower zones but
1675	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1676	 * scanning would soon rescan the same folios to skip and waste lots
1677	 * of cpu cycles.
1678	 */
1679	if (!list_empty(&folios_skipped)) {
1680		int zid;
1681
1682		list_splice(&folios_skipped, src);
1683		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1684			if (!nr_skipped[zid])
1685				continue;
1686
1687			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1688			skipped += nr_skipped[zid];
1689		}
1690	}
1691	*nr_scanned = total_scan;
1692	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1693				    total_scan, skipped, nr_taken, lru);
1694	update_lru_sizes(lruvec, lru, nr_zone_taken);
1695	return nr_taken;
1696}
1697
1698/**
1699 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1700 * @folio: Folio to isolate from its LRU list.
 
 
 
1701 *
1702 * Isolate a @folio from an LRU list and adjust the vmstat statistic
1703 * corresponding to whatever LRU list the folio was on.
1704 *
1705 * The folio will have its LRU flag cleared.  If it was found on the
1706 * active list, it will have the Active flag set.  If it was found on the
1707 * unevictable list, it will have the Unevictable flag set.  These flags
1708 * may need to be cleared by the caller before letting the page go.
1709 *
1710 * Context:
 
1711 *
1712 * (1) Must be called with an elevated refcount on the folio. This is a
1713 *     fundamental difference from isolate_lru_folios() (which is called
 
 
1714 *     without a stable reference).
1715 * (2) The lru_lock must not be held.
1716 * (3) Interrupts must be enabled.
1717 *
1718 * Return: true if the folio was removed from an LRU list.
1719 * false if the folio was not on an LRU list.
1720 */
1721bool folio_isolate_lru(struct folio *folio)
1722{
1723	bool ret = false;
1724
1725	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
 
1726
1727	if (folio_test_clear_lru(folio)) {
 
1728		struct lruvec *lruvec;
1729
1730		folio_get(folio);
1731		lruvec = folio_lruvec_lock_irq(folio);
1732		lruvec_del_folio(lruvec, folio);
1733		unlock_page_lruvec_irq(lruvec);
1734		ret = true;
 
 
 
 
 
1735	}
1736
1737	return ret;
1738}
1739
1740/*
1741 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1742 * then get rescheduled. When there are massive number of tasks doing page
1743 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1744 * the LRU list will go small and be scanned faster than necessary, leading to
1745 * unnecessary swapping, thrashing and OOM.
1746 */
1747static int too_many_isolated(struct pglist_data *pgdat, int file,
1748		struct scan_control *sc)
1749{
1750	unsigned long inactive, isolated;
1751	bool too_many;
1752
1753	if (current_is_kswapd())
1754		return 0;
1755
1756	if (!writeback_throttling_sane(sc))
1757		return 0;
1758
1759	if (file) {
1760		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1761		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1762	} else {
1763		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1764		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1765	}
1766
1767	/*
1768	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1769	 * won't get blocked by normal direct-reclaimers, forming a circular
1770	 * deadlock.
1771	 */
1772	if (gfp_has_io_fs(sc->gfp_mask))
1773		inactive >>= 3;
1774
1775	too_many = isolated > inactive;
1776
1777	/* Wake up tasks throttled due to too_many_isolated. */
1778	if (!too_many)
1779		wake_throttle_isolated(pgdat);
1780
1781	return too_many;
1782}
1783
1784/*
1785 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1786 * On return, @list is reused as a list of folios to be freed by the caller.
 
 
 
 
 
 
 
 
 
 
 
 
 
1787 *
1788 * Returns the number of pages moved to the given lruvec.
1789 */
1790static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1791		struct list_head *list)
 
1792{
 
1793	int nr_pages, nr_moved = 0;
1794	LIST_HEAD(folios_to_free);
 
 
1795
1796	while (!list_empty(list)) {
1797		struct folio *folio = lru_to_folio(list);
1798
1799		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1800		list_del(&folio->lru);
1801		if (unlikely(!folio_evictable(folio))) {
1802			spin_unlock_irq(&lruvec->lru_lock);
1803			folio_putback_lru(folio);
1804			spin_lock_irq(&lruvec->lru_lock);
1805			continue;
1806		}
1807
1808		/*
1809		 * The folio_set_lru needs to be kept here for list integrity.
1810		 * Otherwise:
1811		 *   #0 move_folios_to_lru             #1 release_pages
1812		 *   if (!folio_put_testzero())
1813		 *				      if (folio_put_testzero())
1814		 *				        !lru //skip lru_lock
1815		 *     folio_set_lru()
1816		 *     list_add(&folio->lru,)
1817		 *                                        list_add(&folio->lru,)
1818		 */
1819		folio_set_lru(folio);
1820
1821		if (unlikely(folio_put_testzero(folio))) {
1822			__folio_clear_lru_flags(folio);
1823
1824			if (unlikely(folio_test_large(folio))) {
1825				spin_unlock_irq(&lruvec->lru_lock);
1826				destroy_large_folio(folio);
1827				spin_lock_irq(&lruvec->lru_lock);
1828			} else
1829				list_add(&folio->lru, &folios_to_free);
1830
1831			continue;
1832		}
1833
1834		/*
1835		 * All pages were isolated from the same lruvec (and isolation
1836		 * inhibits memcg migration).
1837		 */
1838		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1839		lruvec_add_folio(lruvec, folio);
1840		nr_pages = folio_nr_pages(folio);
1841		nr_moved += nr_pages;
1842		if (folio_test_active(folio))
1843			workingset_age_nonresident(lruvec, nr_pages);
1844	}
1845
1846	/*
1847	 * To save our caller's stack, now use input list for pages to free.
1848	 */
1849	list_splice(&folios_to_free, list);
1850
1851	return nr_moved;
1852}
1853
1854/*
1855 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1856 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1857 * we should not throttle.  Otherwise it is safe to do so.
 
1858 */
1859static int current_may_throttle(void)
1860{
1861	return !(current->flags & PF_LOCAL_THROTTLE);
 
 
1862}
1863
1864/*
1865 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1866 * of reclaimed pages
1867 */
1868static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
1869		struct lruvec *lruvec, struct scan_control *sc,
1870		enum lru_list lru)
1871{
1872	LIST_HEAD(folio_list);
1873	unsigned long nr_scanned;
1874	unsigned int nr_reclaimed = 0;
1875	unsigned long nr_taken;
1876	struct reclaim_stat stat;
1877	bool file = is_file_lru(lru);
1878	enum vm_event_item item;
1879	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
 
1880	bool stalled = false;
1881
1882	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1883		if (stalled)
1884			return 0;
1885
1886		/* wait a bit for the reclaimer. */
 
1887		stalled = true;
1888		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
1889
1890		/* We are about to die and free our memory. Return now. */
1891		if (fatal_signal_pending(current))
1892			return SWAP_CLUSTER_MAX;
1893	}
1894
1895	lru_add_drain();
1896
1897	spin_lock_irq(&lruvec->lru_lock);
1898
1899	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
1900				     &nr_scanned, sc, lru);
1901
1902	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1903	item = PGSCAN_KSWAPD + reclaimer_offset();
1904	if (!cgroup_reclaim(sc))
 
 
1905		__count_vm_events(item, nr_scanned);
1906	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1907	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
1908
1909	spin_unlock_irq(&lruvec->lru_lock);
1910
1911	if (nr_taken == 0)
1912		return 0;
1913
1914	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
 
1915
1916	spin_lock_irq(&lruvec->lru_lock);
1917	move_folios_to_lru(lruvec, &folio_list);
1918
1919	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1920	item = PGSTEAL_KSWAPD + reclaimer_offset();
1921	if (!cgroup_reclaim(sc))
1922		__count_vm_events(item, nr_reclaimed);
1923	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1924	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1925	spin_unlock_irq(&lruvec->lru_lock);
 
 
 
 
1926
1927	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
1928	mem_cgroup_uncharge_list(&folio_list);
1929	free_unref_page_list(&folio_list);
 
1930
1931	/*
1932	 * If dirty folios are scanned that are not queued for IO, it
1933	 * implies that flushers are not doing their job. This can
1934	 * happen when memory pressure pushes dirty folios to the end of
1935	 * the LRU before the dirty limits are breached and the dirty
1936	 * data has expired. It can also happen when the proportion of
1937	 * dirty folios grows not through writes but through memory
1938	 * pressure reclaiming all the clean cache. And in some cases,
1939	 * the flushers simply cannot keep up with the allocation
1940	 * rate. Nudge the flusher threads in case they are asleep.
1941	 */
1942	if (stat.nr_unqueued_dirty == nr_taken) {
1943		wakeup_flusher_threads(WB_REASON_VMSCAN);
1944		/*
1945		 * For cgroupv1 dirty throttling is achieved by waking up
1946		 * the kernel flusher here and later waiting on folios
1947		 * which are in writeback to finish (see shrink_folio_list()).
1948		 *
1949		 * Flusher may not be able to issue writeback quickly
1950		 * enough for cgroupv1 writeback throttling to work
1951		 * on a large system.
1952		 */
1953		if (!writeback_throttling_sane(sc))
1954			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
1955	}
1956
1957	sc->nr.dirty += stat.nr_dirty;
1958	sc->nr.congested += stat.nr_congested;
1959	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1960	sc->nr.writeback += stat.nr_writeback;
1961	sc->nr.immediate += stat.nr_immediate;
1962	sc->nr.taken += nr_taken;
1963	if (file)
1964		sc->nr.file_taken += nr_taken;
1965
1966	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1967			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1968	return nr_reclaimed;
1969}
1970
1971/*
1972 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
1973 *
1974 * We move them the other way if the folio is referenced by one or more
1975 * processes.
1976 *
1977 * If the folios are mostly unmapped, the processing is fast and it is
1978 * appropriate to hold lru_lock across the whole operation.  But if
1979 * the folios are mapped, the processing is slow (folio_referenced()), so
1980 * we should drop lru_lock around each folio.  It's impossible to balance
1981 * this, so instead we remove the folios from the LRU while processing them.
1982 * It is safe to rely on the active flag against the non-LRU folios in here
1983 * because nobody will play with that bit on a non-LRU folio.
1984 *
1985 * The downside is that we have to touch folio->_refcount against each folio.
1986 * But we had to alter folio->flags anyway.
1987 */
1988static void shrink_active_list(unsigned long nr_to_scan,
1989			       struct lruvec *lruvec,
1990			       struct scan_control *sc,
1991			       enum lru_list lru)
1992{
1993	unsigned long nr_taken;
1994	unsigned long nr_scanned;
1995	unsigned long vm_flags;
1996	LIST_HEAD(l_hold);	/* The folios which were snipped off */
1997	LIST_HEAD(l_active);
1998	LIST_HEAD(l_inactive);
 
 
1999	unsigned nr_deactivate, nr_activate;
2000	unsigned nr_rotated = 0;
2001	int file = is_file_lru(lru);
2002	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2003
2004	lru_add_drain();
2005
2006	spin_lock_irq(&lruvec->lru_lock);
2007
2008	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2009				     &nr_scanned, sc, lru);
2010
2011	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
 
2012
2013	if (!cgroup_reclaim(sc))
2014		__count_vm_events(PGREFILL, nr_scanned);
2015	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2016
2017	spin_unlock_irq(&lruvec->lru_lock);
2018
2019	while (!list_empty(&l_hold)) {
2020		struct folio *folio;
2021
2022		cond_resched();
2023		folio = lru_to_folio(&l_hold);
2024		list_del(&folio->lru);
2025
2026		if (unlikely(!folio_evictable(folio))) {
2027			folio_putback_lru(folio);
2028			continue;
2029		}
2030
2031		if (unlikely(buffer_heads_over_limit)) {
2032			if (folio_needs_release(folio) &&
2033			    folio_trylock(folio)) {
2034				filemap_release_folio(folio, 0);
2035				folio_unlock(folio);
2036			}
2037		}
2038
2039		/* Referenced or rmap lock contention: rotate */
2040		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2041				     &vm_flags) != 0) {
2042			/*
2043			 * Identify referenced, file-backed active folios and
2044			 * give them one more trip around the active list. So
2045			 * that executable code get better chances to stay in
2046			 * memory under moderate memory pressure.  Anon folios
2047			 * are not likely to be evicted by use-once streaming
2048			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2049			 * so we ignore them here.
2050			 */
2051			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2052				nr_rotated += folio_nr_pages(folio);
2053				list_add(&folio->lru, &l_active);
2054				continue;
2055			}
2056		}
2057
2058		folio_clear_active(folio);	/* we are de-activating */
2059		folio_set_workingset(folio);
2060		list_add(&folio->lru, &l_inactive);
2061	}
2062
2063	/*
2064	 * Move folios back to the lru list.
 
 
 
 
 
 
 
2065	 */
2066	spin_lock_irq(&lruvec->lru_lock);
2067
2068	nr_activate = move_folios_to_lru(lruvec, &l_active);
2069	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2070	/* Keep all free folios in l_active list */
2071	list_splice(&l_inactive, &l_active);
2072
2073	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2074	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2075
2076	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2077	spin_unlock_irq(&lruvec->lru_lock);
2078
2079	if (nr_rotated)
2080		lru_note_cost(lruvec, file, 0, nr_rotated);
2081	mem_cgroup_uncharge_list(&l_active);
2082	free_unref_page_list(&l_active);
2083	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2084			nr_deactivate, nr_rotated, sc->priority, file);
2085}
2086
2087static unsigned int reclaim_folio_list(struct list_head *folio_list,
2088				      struct pglist_data *pgdat)
2089{
 
 
 
2090	struct reclaim_stat dummy_stat;
2091	unsigned int nr_reclaimed;
2092	struct folio *folio;
2093	struct scan_control sc = {
2094		.gfp_mask = GFP_KERNEL,
 
2095		.may_writepage = 1,
2096		.may_unmap = 1,
2097		.may_swap = 1,
2098		.no_demotion = 1,
2099	};
2100
2101	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2102	while (!list_empty(folio_list)) {
2103		folio = lru_to_folio(folio_list);
2104		list_del(&folio->lru);
2105		folio_putback_lru(folio);
2106	}
2107
2108	return nr_reclaimed;
2109}
2110
2111unsigned long reclaim_pages(struct list_head *folio_list)
2112{
2113	int nid;
2114	unsigned int nr_reclaimed = 0;
2115	LIST_HEAD(node_folio_list);
2116	unsigned int noreclaim_flag;
2117
2118	if (list_empty(folio_list))
2119		return nr_reclaimed;
2120
2121	noreclaim_flag = memalloc_noreclaim_save();
2122
2123	nid = folio_nid(lru_to_folio(folio_list));
2124	do {
2125		struct folio *folio = lru_to_folio(folio_list);
2126
2127		if (nid == folio_nid(folio)) {
2128			folio_clear_active(folio);
2129			list_move(&folio->lru, &node_folio_list);
2130			continue;
2131		}
2132
2133		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2134		nid = folio_nid(lru_to_folio(folio_list));
2135	} while (!list_empty(folio_list));
 
 
 
 
 
 
2136
2137	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
 
2138
2139	memalloc_noreclaim_restore(noreclaim_flag);
 
 
 
 
 
 
 
 
 
 
2140
2141	return nr_reclaimed;
2142}
2143
2144static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2145				 struct lruvec *lruvec, struct scan_control *sc)
2146{
2147	if (is_active_lru(lru)) {
2148		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2149			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2150		else
2151			sc->skipped_deactivate = 1;
2152		return 0;
2153	}
2154
2155	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2156}
2157
2158/*
2159 * The inactive anon list should be small enough that the VM never has
2160 * to do too much work.
2161 *
2162 * The inactive file list should be small enough to leave most memory
2163 * to the established workingset on the scan-resistant active list,
2164 * but large enough to avoid thrashing the aggregate readahead window.
2165 *
2166 * Both inactive lists should also be large enough that each inactive
2167 * folio has a chance to be referenced again before it is reclaimed.
2168 *
2169 * If that fails and refaulting is observed, the inactive list grows.
2170 *
2171 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2172 * on this LRU, maintained by the pageout code. An inactive_ratio
2173 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2174 *
2175 * total     target    max
2176 * memory    ratio     inactive
2177 * -------------------------------------
2178 *   10MB       1         5MB
2179 *  100MB       1        50MB
2180 *    1GB       3       250MB
2181 *   10GB      10       0.9GB
2182 *  100GB      31         3GB
2183 *    1TB     101        10GB
2184 *   10TB     320        32GB
2185 */
2186static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
 
2187{
2188	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
 
 
2189	unsigned long inactive, active;
2190	unsigned long inactive_ratio;
 
2191	unsigned long gb;
2192
2193	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2194	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2195
2196	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2197	if (gb)
2198		inactive_ratio = int_sqrt(10 * gb);
2199	else
2200		inactive_ratio = 1;
2201
2202	return inactive * inactive_ratio < active;
2203}
2204
2205enum scan_balance {
2206	SCAN_EQUAL,
2207	SCAN_FRACT,
2208	SCAN_ANON,
2209	SCAN_FILE,
2210};
2211
2212static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2213{
2214	unsigned long file;
2215	struct lruvec *target_lruvec;
2216
2217	if (lru_gen_enabled())
2218		return;
2219
2220	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2221
2222	/*
2223	 * Flush the memory cgroup stats, so that we read accurate per-memcg
2224	 * lruvec stats for heuristics.
2225	 */
2226	mem_cgroup_flush_stats(sc->target_mem_cgroup);
 
2227
2228	/*
2229	 * Determine the scan balance between anon and file LRUs.
2230	 */
2231	spin_lock_irq(&target_lruvec->lru_lock);
2232	sc->anon_cost = target_lruvec->anon_cost;
2233	sc->file_cost = target_lruvec->file_cost;
2234	spin_unlock_irq(&target_lruvec->lru_lock);
2235
2236	/*
2237	 * Target desirable inactive:active list ratios for the anon
2238	 * and file LRU lists.
 
2239	 */
2240	if (!sc->force_deactivate) {
2241		unsigned long refaults;
2242
2243		/*
2244		 * When refaults are being observed, it means a new
2245		 * workingset is being established. Deactivate to get
2246		 * rid of any stale active pages quickly.
2247		 */
2248		refaults = lruvec_page_state(target_lruvec,
2249				WORKINGSET_ACTIVATE_ANON);
2250		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2251			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2252			sc->may_deactivate |= DEACTIVATE_ANON;
2253		else
2254			sc->may_deactivate &= ~DEACTIVATE_ANON;
 
2255
2256		refaults = lruvec_page_state(target_lruvec,
2257				WORKINGSET_ACTIVATE_FILE);
2258		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2259		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2260			sc->may_deactivate |= DEACTIVATE_FILE;
2261		else
2262			sc->may_deactivate &= ~DEACTIVATE_FILE;
2263	} else
2264		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2265
2266	/*
2267	 * If we have plenty of inactive file pages that aren't
2268	 * thrashing, try to reclaim those first before touching
2269	 * anonymous pages.
2270	 */
2271	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2272	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2273		sc->cache_trim_mode = 1;
2274	else
2275		sc->cache_trim_mode = 0;
2276
2277	/*
2278	 * Prevent the reclaimer from falling into the cache trap: as
2279	 * cache pages start out inactive, every cache fault will tip
2280	 * the scan balance towards the file LRU.  And as the file LRU
2281	 * shrinks, so does the window for rotation from references.
2282	 * This means we have a runaway feedback loop where a tiny
2283	 * thrashing file LRU becomes infinitely more attractive than
2284	 * anon pages.  Try to detect this based on file LRU size.
2285	 */
2286	if (!cgroup_reclaim(sc)) {
2287		unsigned long total_high_wmark = 0;
2288		unsigned long free, anon;
2289		int z;
2290
2291		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2292		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2293			   node_page_state(pgdat, NR_INACTIVE_FILE);
2294
2295		for (z = 0; z < MAX_NR_ZONES; z++) {
2296			struct zone *zone = &pgdat->node_zones[z];
2297
2298			if (!managed_zone(zone))
2299				continue;
2300
2301			total_high_wmark += high_wmark_pages(zone);
2302		}
2303
2304		/*
2305		 * Consider anon: if that's low too, this isn't a
2306		 * runaway file reclaim problem, but rather just
2307		 * extreme pressure. Reclaim as per usual then.
2308		 */
2309		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2310
2311		sc->file_is_tiny =
2312			file + free <= total_high_wmark &&
2313			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2314			anon >> sc->priority;
2315	}
2316}
2317
2318/*
2319 * Determine how aggressively the anon and file LRU lists should be
2320 * scanned.
2321 *
2322 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2323 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2324 */
2325static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2326			   unsigned long *nr)
 
 
 
2327{
2328	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2329	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2330	unsigned long anon_cost, file_cost, total_cost;
2331	int swappiness = mem_cgroup_swappiness(memcg);
2332	u64 fraction[ANON_AND_FILE];
 
2333	u64 denominator = 0;	/* gcc */
 
 
2334	enum scan_balance scan_balance;
 
2335	unsigned long ap, fp;
2336	enum lru_list lru;
2337
2338	/* If we have no swap space, do not bother scanning anon folios. */
2339	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2340		scan_balance = SCAN_FILE;
2341		goto out;
2342	}
2343
2344	/*
2345	 * Global reclaim will swap to prevent OOM even with no
2346	 * swappiness, but memcg users want to use this knob to
2347	 * disable swapping for individual groups completely when
2348	 * using the memory controller's swap limit feature would be
2349	 * too expensive.
2350	 */
2351	if (cgroup_reclaim(sc) && !swappiness) {
2352		scan_balance = SCAN_FILE;
2353		goto out;
2354	}
2355
2356	/*
2357	 * Do not apply any pressure balancing cleverness when the
2358	 * system is close to OOM, scan both anon and file equally
2359	 * (unless the swappiness setting disagrees with swapping).
2360	 */
2361	if (!sc->priority && swappiness) {
2362		scan_balance = SCAN_EQUAL;
2363		goto out;
2364	}
2365
2366	/*
2367	 * If the system is almost out of file pages, force-scan anon.
 
 
 
 
 
 
2368	 */
2369	if (sc->file_is_tiny) {
2370		scan_balance = SCAN_ANON;
2371		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2372	}
2373
2374	/*
2375	 * If there is enough inactive page cache, we do not reclaim
2376	 * anything from the anonymous working right now.
 
 
 
 
 
2377	 */
2378	if (sc->cache_trim_mode) {
 
2379		scan_balance = SCAN_FILE;
2380		goto out;
2381	}
2382
2383	scan_balance = SCAN_FRACT;
 
 
 
 
 
 
 
 
2384	/*
2385	 * Calculate the pressure balance between anon and file pages.
 
 
2386	 *
2387	 * The amount of pressure we put on each LRU is inversely
2388	 * proportional to the cost of reclaiming each list, as
2389	 * determined by the share of pages that are refaulting, times
2390	 * the relative IO cost of bringing back a swapped out
2391	 * anonymous page vs reloading a filesystem page (swappiness).
2392	 *
2393	 * Although we limit that influence to ensure no list gets
2394	 * left behind completely: at least a third of the pressure is
2395	 * applied, before swappiness.
2396	 *
2397	 * With swappiness at 100, anon and file have equal IO cost.
2398	 */
2399	total_cost = sc->anon_cost + sc->file_cost;
2400	anon_cost = total_cost + sc->anon_cost;
2401	file_cost = total_cost + sc->file_cost;
2402	total_cost = anon_cost + file_cost;
2403
2404	ap = swappiness * (total_cost + 1);
2405	ap /= anon_cost + 1;
 
 
 
 
 
 
 
 
2406
2407	fp = (200 - swappiness) * (total_cost + 1);
2408	fp /= file_cost + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2409
2410	fraction[0] = ap;
2411	fraction[1] = fp;
2412	denominator = ap + fp;
2413out:
 
2414	for_each_evictable_lru(lru) {
2415		int file = is_file_lru(lru);
2416		unsigned long lruvec_size;
2417		unsigned long low, min;
2418		unsigned long scan;
 
2419
2420		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2421		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2422				      &min, &low);
2423
2424		if (min || low) {
2425			/*
2426			 * Scale a cgroup's reclaim pressure by proportioning
2427			 * its current usage to its memory.low or memory.min
2428			 * setting.
2429			 *
2430			 * This is important, as otherwise scanning aggression
2431			 * becomes extremely binary -- from nothing as we
2432			 * approach the memory protection threshold, to totally
2433			 * nominal as we exceed it.  This results in requiring
2434			 * setting extremely liberal protection thresholds. It
2435			 * also means we simply get no protection at all if we
2436			 * set it too low, which is not ideal.
2437			 *
2438			 * If there is any protection in place, we reduce scan
2439			 * pressure by how much of the total memory used is
2440			 * within protection thresholds.
2441			 *
2442			 * There is one special case: in the first reclaim pass,
2443			 * we skip over all groups that are within their low
2444			 * protection. If that fails to reclaim enough pages to
2445			 * satisfy the reclaim goal, we come back and override
2446			 * the best-effort low protection. However, we still
2447			 * ideally want to honor how well-behaved groups are in
2448			 * that case instead of simply punishing them all
2449			 * equally. As such, we reclaim them based on how much
2450			 * memory they are using, reducing the scan pressure
2451			 * again by how much of the total memory used is under
2452			 * hard protection.
2453			 */
2454			unsigned long cgroup_size = mem_cgroup_size(memcg);
2455			unsigned long protection;
2456
2457			/* memory.low scaling, make sure we retry before OOM */
2458			if (!sc->memcg_low_reclaim && low > min) {
2459				protection = low;
2460				sc->memcg_low_skipped = 1;
2461			} else {
2462				protection = min;
2463			}
2464
2465			/* Avoid TOCTOU with earlier protection check */
2466			cgroup_size = max(cgroup_size, protection);
2467
2468			scan = lruvec_size - lruvec_size * protection /
2469				(cgroup_size + 1);
2470
2471			/*
2472			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2473			 * reclaim moving forwards, avoiding decrementing
2474			 * sc->priority further than desirable.
2475			 */
2476			scan = max(scan, SWAP_CLUSTER_MAX);
2477		} else {
2478			scan = lruvec_size;
2479		}
2480
2481		scan >>= sc->priority;
2482
2483		/*
2484		 * If the cgroup's already been deleted, make sure to
2485		 * scrape out the remaining cache.
2486		 */
2487		if (!scan && !mem_cgroup_online(memcg))
2488			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2489
2490		switch (scan_balance) {
2491		case SCAN_EQUAL:
2492			/* Scan lists relative to size */
2493			break;
2494		case SCAN_FRACT:
2495			/*
2496			 * Scan types proportional to swappiness and
2497			 * their relative recent reclaim efficiency.
2498			 * Make sure we don't miss the last page on
2499			 * the offlined memory cgroups because of a
2500			 * round-off error.
2501			 */
2502			scan = mem_cgroup_online(memcg) ?
2503			       div64_u64(scan * fraction[file], denominator) :
2504			       DIV64_U64_ROUND_UP(scan * fraction[file],
2505						  denominator);
2506			break;
2507		case SCAN_FILE:
2508		case SCAN_ANON:
2509			/* Scan one type exclusively */
2510			if ((scan_balance == SCAN_FILE) != file)
 
2511				scan = 0;
 
2512			break;
2513		default:
2514			/* Look ma, no brain */
2515			BUG();
2516		}
2517
 
2518		nr[lru] = scan;
2519	}
2520}
2521
2522/*
2523 * Anonymous LRU management is a waste if there is
2524 * ultimately no way to reclaim the memory.
2525 */
2526static bool can_age_anon_pages(struct pglist_data *pgdat,
2527			       struct scan_control *sc)
2528{
2529	/* Aging the anon LRU is valuable if swap is present: */
2530	if (total_swap_pages > 0)
2531		return true;
2532
2533	/* Also valuable if anon pages can be demoted: */
2534	return can_demote(pgdat->node_id, sc);
2535}
2536
2537#ifdef CONFIG_LRU_GEN
2538
2539#ifdef CONFIG_LRU_GEN_ENABLED
2540DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2541#define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
2542#else
2543DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2544#define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
2545#endif
2546
2547static bool should_walk_mmu(void)
2548{
2549	return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2550}
2551
2552static bool should_clear_pmd_young(void)
2553{
2554	return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2555}
2556
2557/******************************************************************************
2558 *                          shorthand helpers
2559 ******************************************************************************/
2560
2561#define LRU_REFS_FLAGS	(BIT(PG_referenced) | BIT(PG_workingset))
2562
2563#define DEFINE_MAX_SEQ(lruvec)						\
2564	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2565
2566#define DEFINE_MIN_SEQ(lruvec)						\
2567	unsigned long min_seq[ANON_AND_FILE] = {			\
2568		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
2569		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
2570	}
2571
2572#define for_each_gen_type_zone(gen, type, zone)				\
2573	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
2574		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
2575			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2576
2577#define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
2578#define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
2579
2580static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2581{
2582	struct pglist_data *pgdat = NODE_DATA(nid);
2583
2584#ifdef CONFIG_MEMCG
2585	if (memcg) {
2586		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2587
2588		/* see the comment in mem_cgroup_lruvec() */
2589		if (!lruvec->pgdat)
2590			lruvec->pgdat = pgdat;
2591
2592		return lruvec;
2593	}
2594#endif
2595	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2596
2597	return &pgdat->__lruvec;
2598}
2599
2600static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2601{
2602	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2603	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2604
2605	if (!sc->may_swap)
2606		return 0;
2607
2608	if (!can_demote(pgdat->node_id, sc) &&
2609	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2610		return 0;
2611
2612	return mem_cgroup_swappiness(memcg);
2613}
2614
2615static int get_nr_gens(struct lruvec *lruvec, int type)
2616{
2617	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2618}
2619
2620static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2621{
2622	/* see the comment on lru_gen_folio */
2623	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
2624	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
2625	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
2626}
2627
2628/******************************************************************************
2629 *                          Bloom filters
2630 ******************************************************************************/
2631
2632/*
2633 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2634 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2635 * bits in a bitmap, k is the number of hash functions and n is the number of
2636 * inserted items.
2637 *
2638 * Page table walkers use one of the two filters to reduce their search space.
2639 * To get rid of non-leaf entries that no longer have enough leaf entries, the
2640 * aging uses the double-buffering technique to flip to the other filter each
2641 * time it produces a new generation. For non-leaf entries that have enough
2642 * leaf entries, the aging carries them over to the next generation in
2643 * walk_pmd_range(); the eviction also report them when walking the rmap
2644 * in lru_gen_look_around().
2645 *
2646 * For future optimizations:
2647 * 1. It's not necessary to keep both filters all the time. The spare one can be
2648 *    freed after the RCU grace period and reallocated if needed again.
2649 * 2. And when reallocating, it's worth scaling its size according to the number
2650 *    of inserted entries in the other filter, to reduce the memory overhead on
2651 *    small systems and false positives on large systems.
2652 * 3. Jenkins' hash function is an alternative to Knuth's.
2653 */
2654#define BLOOM_FILTER_SHIFT	15
2655
2656static inline int filter_gen_from_seq(unsigned long seq)
2657{
2658	return seq % NR_BLOOM_FILTERS;
2659}
2660
2661static void get_item_key(void *item, int *key)
2662{
2663	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2664
2665	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2666
2667	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2668	key[1] = hash >> BLOOM_FILTER_SHIFT;
2669}
2670
2671static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2672			      void *item)
2673{
2674	int key[2];
2675	unsigned long *filter;
2676	int gen = filter_gen_from_seq(seq);
2677
2678	filter = READ_ONCE(mm_state->filters[gen]);
2679	if (!filter)
2680		return true;
2681
2682	get_item_key(item, key);
2683
2684	return test_bit(key[0], filter) && test_bit(key[1], filter);
2685}
2686
2687static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2688				void *item)
2689{
2690	int key[2];
2691	unsigned long *filter;
2692	int gen = filter_gen_from_seq(seq);
2693
2694	filter = READ_ONCE(mm_state->filters[gen]);
2695	if (!filter)
2696		return;
2697
2698	get_item_key(item, key);
2699
2700	if (!test_bit(key[0], filter))
2701		set_bit(key[0], filter);
2702	if (!test_bit(key[1], filter))
2703		set_bit(key[1], filter);
2704}
2705
2706static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2707{
2708	unsigned long *filter;
2709	int gen = filter_gen_from_seq(seq);
2710
2711	filter = mm_state->filters[gen];
2712	if (filter) {
2713		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2714		return;
2715	}
2716
2717	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2718			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2719	WRITE_ONCE(mm_state->filters[gen], filter);
2720}
2721
2722/******************************************************************************
2723 *                          mm_struct list
2724 ******************************************************************************/
2725
2726#ifdef CONFIG_LRU_GEN_WALKS_MMU
2727
2728static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2729{
2730	static struct lru_gen_mm_list mm_list = {
2731		.fifo = LIST_HEAD_INIT(mm_list.fifo),
2732		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2733	};
2734
2735#ifdef CONFIG_MEMCG
2736	if (memcg)
2737		return &memcg->mm_list;
2738#endif
2739	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2740
2741	return &mm_list;
2742}
2743
2744static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2745{
2746	return &lruvec->mm_state;
2747}
2748
2749static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2750{
2751	int key;
2752	struct mm_struct *mm;
2753	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2754	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2755
2756	mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2757	key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2758
2759	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2760		return NULL;
2761
2762	clear_bit(key, &mm->lru_gen.bitmap);
2763
2764	return mmget_not_zero(mm) ? mm : NULL;
2765}
2766
2767void lru_gen_add_mm(struct mm_struct *mm)
2768{
2769	int nid;
2770	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2771	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2772
2773	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2774#ifdef CONFIG_MEMCG
2775	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2776	mm->lru_gen.memcg = memcg;
2777#endif
2778	spin_lock(&mm_list->lock);
2779
2780	for_each_node_state(nid, N_MEMORY) {
2781		struct lruvec *lruvec = get_lruvec(memcg, nid);
2782		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2783
2784		/* the first addition since the last iteration */
2785		if (mm_state->tail == &mm_list->fifo)
2786			mm_state->tail = &mm->lru_gen.list;
2787	}
2788
2789	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2790
2791	spin_unlock(&mm_list->lock);
2792}
2793
2794void lru_gen_del_mm(struct mm_struct *mm)
2795{
2796	int nid;
2797	struct lru_gen_mm_list *mm_list;
2798	struct mem_cgroup *memcg = NULL;
2799
2800	if (list_empty(&mm->lru_gen.list))
2801		return;
2802
2803#ifdef CONFIG_MEMCG
2804	memcg = mm->lru_gen.memcg;
2805#endif
2806	mm_list = get_mm_list(memcg);
2807
2808	spin_lock(&mm_list->lock);
2809
2810	for_each_node(nid) {
2811		struct lruvec *lruvec = get_lruvec(memcg, nid);
2812		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2813
2814		/* where the current iteration continues after */
2815		if (mm_state->head == &mm->lru_gen.list)
2816			mm_state->head = mm_state->head->prev;
2817
2818		/* where the last iteration ended before */
2819		if (mm_state->tail == &mm->lru_gen.list)
2820			mm_state->tail = mm_state->tail->next;
2821	}
2822
2823	list_del_init(&mm->lru_gen.list);
2824
2825	spin_unlock(&mm_list->lock);
2826
2827#ifdef CONFIG_MEMCG
2828	mem_cgroup_put(mm->lru_gen.memcg);
2829	mm->lru_gen.memcg = NULL;
2830#endif
2831}
2832
2833#ifdef CONFIG_MEMCG
2834void lru_gen_migrate_mm(struct mm_struct *mm)
2835{
2836	struct mem_cgroup *memcg;
2837	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2838
2839	VM_WARN_ON_ONCE(task->mm != mm);
2840	lockdep_assert_held(&task->alloc_lock);
2841
2842	/* for mm_update_next_owner() */
2843	if (mem_cgroup_disabled())
2844		return;
2845
2846	/* migration can happen before addition */
2847	if (!mm->lru_gen.memcg)
2848		return;
2849
2850	rcu_read_lock();
2851	memcg = mem_cgroup_from_task(task);
2852	rcu_read_unlock();
2853	if (memcg == mm->lru_gen.memcg)
2854		return;
2855
2856	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2857
2858	lru_gen_del_mm(mm);
2859	lru_gen_add_mm(mm);
2860}
2861#endif
2862
2863#else /* !CONFIG_LRU_GEN_WALKS_MMU */
2864
2865static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2866{
2867	return NULL;
2868}
2869
2870static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2871{
2872	return NULL;
2873}
2874
2875static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2876{
2877	return NULL;
2878}
2879
2880#endif
2881
2882static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
2883{
2884	int i;
2885	int hist;
2886	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2887
2888	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
2889
2890	if (walk) {
2891		hist = lru_hist_from_seq(walk->max_seq);
2892
2893		for (i = 0; i < NR_MM_STATS; i++) {
2894			WRITE_ONCE(mm_state->stats[hist][i],
2895				   mm_state->stats[hist][i] + walk->mm_stats[i]);
2896			walk->mm_stats[i] = 0;
2897		}
2898	}
2899
2900	if (NR_HIST_GENS > 1 && last) {
2901		hist = lru_hist_from_seq(mm_state->seq + 1);
2902
2903		for (i = 0; i < NR_MM_STATS; i++)
2904			WRITE_ONCE(mm_state->stats[hist][i], 0);
2905	}
2906}
2907
2908static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
2909			    struct mm_struct **iter)
2910{
2911	bool first = false;
2912	bool last = false;
2913	struct mm_struct *mm = NULL;
2914	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2915	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2916	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2917
2918	/*
2919	 * mm_state->seq is incremented after each iteration of mm_list. There
2920	 * are three interesting cases for this page table walker:
2921	 * 1. It tries to start a new iteration with a stale max_seq: there is
2922	 *    nothing left to do.
2923	 * 2. It started the next iteration: it needs to reset the Bloom filter
2924	 *    so that a fresh set of PTE tables can be recorded.
2925	 * 3. It ended the current iteration: it needs to reset the mm stats
2926	 *    counters and tell its caller to increment max_seq.
2927	 */
2928	spin_lock(&mm_list->lock);
2929
2930	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
2931
2932	if (walk->max_seq <= mm_state->seq)
2933		goto done;
2934
2935	if (!mm_state->head)
2936		mm_state->head = &mm_list->fifo;
2937
2938	if (mm_state->head == &mm_list->fifo)
2939		first = true;
2940
2941	do {
2942		mm_state->head = mm_state->head->next;
2943		if (mm_state->head == &mm_list->fifo) {
2944			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2945			last = true;
2946			break;
2947		}
2948
2949		/* force scan for those added after the last iteration */
2950		if (!mm_state->tail || mm_state->tail == mm_state->head) {
2951			mm_state->tail = mm_state->head->next;
2952			walk->force_scan = true;
2953		}
2954	} while (!(mm = get_next_mm(walk)));
2955done:
2956	if (*iter || last)
2957		reset_mm_stats(lruvec, walk, last);
2958
2959	spin_unlock(&mm_list->lock);
2960
2961	if (mm && first)
2962		reset_bloom_filter(mm_state, walk->max_seq + 1);
2963
2964	if (*iter)
2965		mmput_async(*iter);
2966
2967	*iter = mm;
2968
2969	return last;
2970}
2971
2972static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
2973{
2974	bool success = false;
2975	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2976	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2977	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2978
2979	spin_lock(&mm_list->lock);
2980
2981	VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
2982
2983	if (max_seq > mm_state->seq) {
2984		mm_state->head = NULL;
2985		mm_state->tail = NULL;
2986		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2987		reset_mm_stats(lruvec, NULL, true);
2988		success = true;
2989	}
2990
2991	spin_unlock(&mm_list->lock);
2992
2993	return success;
2994}
2995
2996/******************************************************************************
2997 *                          PID controller
2998 ******************************************************************************/
2999
3000/*
3001 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3002 *
3003 * The P term is refaulted/(evicted+protected) from a tier in the generation
3004 * currently being evicted; the I term is the exponential moving average of the
3005 * P term over the generations previously evicted, using the smoothing factor
3006 * 1/2; the D term isn't supported.
3007 *
3008 * The setpoint (SP) is always the first tier of one type; the process variable
3009 * (PV) is either any tier of the other type or any other tier of the same
3010 * type.
3011 *
3012 * The error is the difference between the SP and the PV; the correction is to
3013 * turn off protection when SP>PV or turn on protection when SP<PV.
3014 *
3015 * For future optimizations:
3016 * 1. The D term may discount the other two terms over time so that long-lived
3017 *    generations can resist stale information.
3018 */
3019struct ctrl_pos {
3020	unsigned long refaulted;
3021	unsigned long total;
3022	int gain;
3023};
3024
3025static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3026			  struct ctrl_pos *pos)
3027{
3028	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3029	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3030
3031	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3032			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3033	pos->total = lrugen->avg_total[type][tier] +
3034		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3035	if (tier)
3036		pos->total += lrugen->protected[hist][type][tier - 1];
3037	pos->gain = gain;
3038}
3039
3040static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3041{
3042	int hist, tier;
3043	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3044	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3045	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3046
3047	lockdep_assert_held(&lruvec->lru_lock);
3048
3049	if (!carryover && !clear)
3050		return;
3051
3052	hist = lru_hist_from_seq(seq);
3053
3054	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3055		if (carryover) {
3056			unsigned long sum;
3057
3058			sum = lrugen->avg_refaulted[type][tier] +
3059			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3060			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3061
3062			sum = lrugen->avg_total[type][tier] +
3063			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3064			if (tier)
3065				sum += lrugen->protected[hist][type][tier - 1];
3066			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3067		}
3068
3069		if (clear) {
3070			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3071			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3072			if (tier)
3073				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3074		}
3075	}
3076}
3077
3078static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3079{
3080	/*
3081	 * Return true if the PV has a limited number of refaults or a lower
3082	 * refaulted/total than the SP.
3083	 */
3084	return pv->refaulted < MIN_LRU_BATCH ||
3085	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3086	       (sp->refaulted + 1) * pv->total * pv->gain;
3087}
3088
3089/******************************************************************************
3090 *                          the aging
3091 ******************************************************************************/
3092
3093/* promote pages accessed through page tables */
3094static int folio_update_gen(struct folio *folio, int gen)
3095{
3096	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3097
3098	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3099	VM_WARN_ON_ONCE(!rcu_read_lock_held());
3100
3101	do {
3102		/* lru_gen_del_folio() has isolated this page? */
3103		if (!(old_flags & LRU_GEN_MASK)) {
3104			/* for shrink_folio_list() */
3105			new_flags = old_flags | BIT(PG_referenced);
3106			continue;
3107		}
3108
3109		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3110		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3111	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3112
3113	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3114}
3115
3116/* protect pages accessed multiple times through file descriptors */
3117static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3118{
3119	int type = folio_is_file_lru(folio);
3120	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3121	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3122	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3123
3124	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3125
3126	do {
3127		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3128		/* folio_update_gen() has promoted this page? */
3129		if (new_gen >= 0 && new_gen != old_gen)
3130			return new_gen;
3131
3132		new_gen = (old_gen + 1) % MAX_NR_GENS;
3133
3134		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3135		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3136		/* for folio_end_writeback() */
3137		if (reclaiming)
3138			new_flags |= BIT(PG_reclaim);
3139	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3140
3141	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3142
3143	return new_gen;
3144}
3145
3146static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3147			      int old_gen, int new_gen)
3148{
3149	int type = folio_is_file_lru(folio);
3150	int zone = folio_zonenum(folio);
3151	int delta = folio_nr_pages(folio);
3152
3153	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3154	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3155
3156	walk->batched++;
3157
3158	walk->nr_pages[old_gen][type][zone] -= delta;
3159	walk->nr_pages[new_gen][type][zone] += delta;
3160}
3161
3162static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3163{
3164	int gen, type, zone;
3165	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3166
3167	walk->batched = 0;
3168
3169	for_each_gen_type_zone(gen, type, zone) {
3170		enum lru_list lru = type * LRU_INACTIVE_FILE;
3171		int delta = walk->nr_pages[gen][type][zone];
3172
3173		if (!delta)
3174			continue;
3175
3176		walk->nr_pages[gen][type][zone] = 0;
3177		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3178			   lrugen->nr_pages[gen][type][zone] + delta);
3179
3180		if (lru_gen_is_active(lruvec, gen))
3181			lru += LRU_ACTIVE;
3182		__update_lru_size(lruvec, lru, zone, delta);
3183	}
3184}
3185
3186static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3187{
3188	struct address_space *mapping;
3189	struct vm_area_struct *vma = args->vma;
3190	struct lru_gen_mm_walk *walk = args->private;
3191
3192	if (!vma_is_accessible(vma))
3193		return true;
3194
3195	if (is_vm_hugetlb_page(vma))
3196		return true;
3197
3198	if (!vma_has_recency(vma))
3199		return true;
3200
3201	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3202		return true;
3203
3204	if (vma == get_gate_vma(vma->vm_mm))
3205		return true;
3206
3207	if (vma_is_anonymous(vma))
3208		return !walk->can_swap;
3209
3210	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3211		return true;
3212
3213	mapping = vma->vm_file->f_mapping;
3214	if (mapping_unevictable(mapping))
3215		return true;
3216
3217	if (shmem_mapping(mapping))
3218		return !walk->can_swap;
3219
3220	/* to exclude special mappings like dax, etc. */
3221	return !mapping->a_ops->read_folio;
3222}
3223
3224/*
3225 * Some userspace memory allocators map many single-page VMAs. Instead of
3226 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3227 * table to reduce zigzags and improve cache performance.
3228 */
3229static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3230			 unsigned long *vm_start, unsigned long *vm_end)
3231{
3232	unsigned long start = round_up(*vm_end, size);
3233	unsigned long end = (start | ~mask) + 1;
3234	VMA_ITERATOR(vmi, args->mm, start);
3235
3236	VM_WARN_ON_ONCE(mask & size);
3237	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3238
3239	for_each_vma(vmi, args->vma) {
3240		if (end && end <= args->vma->vm_start)
3241			return false;
3242
3243		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3244			continue;
3245
3246		*vm_start = max(start, args->vma->vm_start);
3247		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3248
3249		return true;
3250	}
3251
3252	return false;
3253}
3254
3255static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3256{
3257	unsigned long pfn = pte_pfn(pte);
3258
3259	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3260
3261	if (!pte_present(pte) || is_zero_pfn(pfn))
3262		return -1;
3263
3264	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3265		return -1;
3266
3267	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3268		return -1;
3269
3270	return pfn;
3271}
3272
3273static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3274{
3275	unsigned long pfn = pmd_pfn(pmd);
3276
3277	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3278
3279	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3280		return -1;
3281
3282	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3283		return -1;
3284
3285	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3286		return -1;
3287
3288	return pfn;
3289}
3290
3291static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3292				   struct pglist_data *pgdat, bool can_swap)
3293{
3294	struct folio *folio;
3295
3296	/* try to avoid unnecessary memory loads */
3297	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3298		return NULL;
3299
3300	folio = pfn_folio(pfn);
3301	if (folio_nid(folio) != pgdat->node_id)
3302		return NULL;
3303
3304	if (folio_memcg_rcu(folio) != memcg)
3305		return NULL;
3306
3307	/* file VMAs can contain anon pages from COW */
3308	if (!folio_is_file_lru(folio) && !can_swap)
3309		return NULL;
3310
3311	return folio;
3312}
3313
3314static bool suitable_to_scan(int total, int young)
3315{
3316	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3317
3318	/* suitable if the average number of young PTEs per cacheline is >=1 */
3319	return young * n >= total;
3320}
3321
3322static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3323			   struct mm_walk *args)
3324{
3325	int i;
3326	pte_t *pte;
3327	spinlock_t *ptl;
3328	unsigned long addr;
3329	int total = 0;
3330	int young = 0;
3331	struct lru_gen_mm_walk *walk = args->private;
3332	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3333	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3334	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3335
3336	pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl);
3337	if (!pte)
3338		return false;
3339	if (!spin_trylock(ptl)) {
3340		pte_unmap(pte);
3341		return false;
3342	}
3343
3344	arch_enter_lazy_mmu_mode();
3345restart:
3346	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3347		unsigned long pfn;
3348		struct folio *folio;
3349		pte_t ptent = ptep_get(pte + i);
3350
3351		total++;
3352		walk->mm_stats[MM_LEAF_TOTAL]++;
3353
3354		pfn = get_pte_pfn(ptent, args->vma, addr);
3355		if (pfn == -1)
3356			continue;
3357
3358		if (!pte_young(ptent)) {
3359			walk->mm_stats[MM_LEAF_OLD]++;
3360			continue;
3361		}
3362
3363		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3364		if (!folio)
3365			continue;
3366
3367		if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3368			VM_WARN_ON_ONCE(true);
3369
3370		young++;
3371		walk->mm_stats[MM_LEAF_YOUNG]++;
3372
3373		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
3374		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3375		      !folio_test_swapcache(folio)))
3376			folio_mark_dirty(folio);
3377
3378		old_gen = folio_update_gen(folio, new_gen);
3379		if (old_gen >= 0 && old_gen != new_gen)
3380			update_batch_size(walk, folio, old_gen, new_gen);
3381	}
3382
3383	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3384		goto restart;
3385
3386	arch_leave_lazy_mmu_mode();
3387	pte_unmap_unlock(pte, ptl);
3388
3389	return suitable_to_scan(total, young);
3390}
3391
3392static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3393				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3394{
3395	int i;
3396	pmd_t *pmd;
3397	spinlock_t *ptl;
3398	struct lru_gen_mm_walk *walk = args->private;
3399	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3400	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3401	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3402
3403	VM_WARN_ON_ONCE(pud_leaf(*pud));
3404
3405	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3406	if (*first == -1) {
3407		*first = addr;
3408		bitmap_zero(bitmap, MIN_LRU_BATCH);
3409		return;
3410	}
3411
3412	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3413	if (i && i <= MIN_LRU_BATCH) {
3414		__set_bit(i - 1, bitmap);
3415		return;
3416	}
3417
3418	pmd = pmd_offset(pud, *first);
3419
3420	ptl = pmd_lockptr(args->mm, pmd);
3421	if (!spin_trylock(ptl))
3422		goto done;
3423
3424	arch_enter_lazy_mmu_mode();
3425
3426	do {
3427		unsigned long pfn;
3428		struct folio *folio;
3429
3430		/* don't round down the first address */
3431		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3432
3433		pfn = get_pmd_pfn(pmd[i], vma, addr);
3434		if (pfn == -1)
3435			goto next;
3436
3437		if (!pmd_trans_huge(pmd[i])) {
3438			if (should_clear_pmd_young())
3439				pmdp_test_and_clear_young(vma, addr, pmd + i);
3440			goto next;
3441		}
3442
3443		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3444		if (!folio)
3445			goto next;
3446
3447		if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
3448			goto next;
3449
3450		walk->mm_stats[MM_LEAF_YOUNG]++;
3451
3452		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
3453		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3454		      !folio_test_swapcache(folio)))
3455			folio_mark_dirty(folio);
3456
3457		old_gen = folio_update_gen(folio, new_gen);
3458		if (old_gen >= 0 && old_gen != new_gen)
3459			update_batch_size(walk, folio, old_gen, new_gen);
3460next:
3461		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3462	} while (i <= MIN_LRU_BATCH);
3463
3464	arch_leave_lazy_mmu_mode();
3465	spin_unlock(ptl);
3466done:
3467	*first = -1;
3468}
3469
3470static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3471			   struct mm_walk *args)
3472{
3473	int i;
3474	pmd_t *pmd;
3475	unsigned long next;
3476	unsigned long addr;
3477	struct vm_area_struct *vma;
3478	DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3479	unsigned long first = -1;
3480	struct lru_gen_mm_walk *walk = args->private;
3481	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3482
3483	VM_WARN_ON_ONCE(pud_leaf(*pud));
3484
3485	/*
3486	 * Finish an entire PMD in two passes: the first only reaches to PTE
3487	 * tables to avoid taking the PMD lock; the second, if necessary, takes
3488	 * the PMD lock to clear the accessed bit in PMD entries.
3489	 */
3490	pmd = pmd_offset(pud, start & PUD_MASK);
3491restart:
3492	/* walk_pte_range() may call get_next_vma() */
3493	vma = args->vma;
3494	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3495		pmd_t val = pmdp_get_lockless(pmd + i);
3496
3497		next = pmd_addr_end(addr, end);
3498
3499		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3500			walk->mm_stats[MM_LEAF_TOTAL]++;
3501			continue;
3502		}
3503
3504		if (pmd_trans_huge(val)) {
3505			unsigned long pfn = pmd_pfn(val);
3506			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3507
3508			walk->mm_stats[MM_LEAF_TOTAL]++;
3509
3510			if (!pmd_young(val)) {
3511				walk->mm_stats[MM_LEAF_OLD]++;
3512				continue;
3513			}
3514
3515			/* try to avoid unnecessary memory loads */
3516			if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3517				continue;
3518
3519			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3520			continue;
3521		}
3522
3523		walk->mm_stats[MM_NONLEAF_TOTAL]++;
3524
3525		if (should_clear_pmd_young()) {
3526			if (!pmd_young(val))
3527				continue;
3528
3529			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3530		}
3531
3532		if (!walk->force_scan && !test_bloom_filter(mm_state, walk->max_seq, pmd + i))
3533			continue;
3534
3535		walk->mm_stats[MM_NONLEAF_FOUND]++;
3536
3537		if (!walk_pte_range(&val, addr, next, args))
3538			continue;
3539
3540		walk->mm_stats[MM_NONLEAF_ADDED]++;
3541
3542		/* carry over to the next generation */
3543		update_bloom_filter(mm_state, walk->max_seq + 1, pmd + i);
3544	}
3545
3546	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3547
3548	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3549		goto restart;
3550}
3551
3552static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3553			  struct mm_walk *args)
3554{
3555	int i;
3556	pud_t *pud;
3557	unsigned long addr;
3558	unsigned long next;
3559	struct lru_gen_mm_walk *walk = args->private;
3560
3561	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3562
3563	pud = pud_offset(p4d, start & P4D_MASK);
3564restart:
3565	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3566		pud_t val = READ_ONCE(pud[i]);
3567
3568		next = pud_addr_end(addr, end);
3569
3570		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3571			continue;
3572
3573		walk_pmd_range(&val, addr, next, args);
3574
3575		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3576			end = (addr | ~PUD_MASK) + 1;
3577			goto done;
3578		}
3579	}
3580
3581	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3582		goto restart;
3583
3584	end = round_up(end, P4D_SIZE);
3585done:
3586	if (!end || !args->vma)
3587		return 1;
3588
3589	walk->next_addr = max(end, args->vma->vm_start);
3590
3591	return -EAGAIN;
3592}
3593
3594static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3595{
3596	static const struct mm_walk_ops mm_walk_ops = {
3597		.test_walk = should_skip_vma,
3598		.p4d_entry = walk_pud_range,
3599		.walk_lock = PGWALK_RDLOCK,
3600	};
3601
3602	int err;
3603	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3604
3605	walk->next_addr = FIRST_USER_ADDRESS;
3606
3607	do {
3608		DEFINE_MAX_SEQ(lruvec);
3609
3610		err = -EBUSY;
3611
3612		/* another thread might have called inc_max_seq() */
3613		if (walk->max_seq != max_seq)
3614			break;
3615
3616		/* folio_update_gen() requires stable folio_memcg() */
3617		if (!mem_cgroup_trylock_pages(memcg))
3618			break;
3619
3620		/* the caller might be holding the lock for write */
3621		if (mmap_read_trylock(mm)) {
3622			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3623
3624			mmap_read_unlock(mm);
3625		}
3626
3627		mem_cgroup_unlock_pages();
3628
3629		if (walk->batched) {
3630			spin_lock_irq(&lruvec->lru_lock);
3631			reset_batch_size(lruvec, walk);
3632			spin_unlock_irq(&lruvec->lru_lock);
3633		}
3634
3635		cond_resched();
3636	} while (err == -EAGAIN);
3637}
3638
3639static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3640{
3641	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3642
3643	if (pgdat && current_is_kswapd()) {
3644		VM_WARN_ON_ONCE(walk);
3645
3646		walk = &pgdat->mm_walk;
3647	} else if (!walk && force_alloc) {
3648		VM_WARN_ON_ONCE(current_is_kswapd());
3649
3650		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3651	}
3652
3653	current->reclaim_state->mm_walk = walk;
3654
3655	return walk;
3656}
3657
3658static void clear_mm_walk(void)
3659{
3660	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3661
3662	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3663	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3664
3665	current->reclaim_state->mm_walk = NULL;
3666
3667	if (!current_is_kswapd())
3668		kfree(walk);
3669}
3670
3671static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
3672{
3673	int zone;
3674	int remaining = MAX_LRU_BATCH;
3675	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3676	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3677
3678	if (type == LRU_GEN_ANON && !can_swap)
3679		goto done;
3680
3681	/* prevent cold/hot inversion if force_scan is true */
3682	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3683		struct list_head *head = &lrugen->folios[old_gen][type][zone];
3684
3685		while (!list_empty(head)) {
3686			struct folio *folio = lru_to_folio(head);
3687
3688			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3689			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3690			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3691			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3692
3693			new_gen = folio_inc_gen(lruvec, folio, false);
3694			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3695
3696			if (!--remaining)
3697				return false;
3698		}
3699	}
3700done:
3701	reset_ctrl_pos(lruvec, type, true);
3702	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3703
3704	return true;
3705}
3706
3707static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
3708{
3709	int gen, type, zone;
3710	bool success = false;
3711	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3712	DEFINE_MIN_SEQ(lruvec);
3713
3714	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3715
3716	/* find the oldest populated generation */
3717	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3718		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3719			gen = lru_gen_from_seq(min_seq[type]);
3720
3721			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3722				if (!list_empty(&lrugen->folios[gen][type][zone]))
3723					goto next;
3724			}
3725
3726			min_seq[type]++;
3727		}
3728next:
3729		;
3730	}
3731
3732	/* see the comment on lru_gen_folio */
3733	if (can_swap) {
3734		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
3735		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
3736	}
3737
3738	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3739		if (min_seq[type] == lrugen->min_seq[type])
3740			continue;
3741
3742		reset_ctrl_pos(lruvec, type, true);
3743		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3744		success = true;
3745	}
3746
3747	return success;
3748}
3749
3750static bool inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
3751			bool can_swap, bool force_scan)
3752{
3753	bool success;
3754	int prev, next;
3755	int type, zone;
3756	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3757restart:
3758	if (max_seq < READ_ONCE(lrugen->max_seq))
3759		return false;
3760
3761	spin_lock_irq(&lruvec->lru_lock);
3762
3763	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3764
3765	success = max_seq == lrugen->max_seq;
3766	if (!success)
3767		goto unlock;
3768
3769	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
3770		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3771			continue;
3772
3773		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
3774
3775		if (inc_min_seq(lruvec, type, can_swap))
3776			continue;
3777
3778		spin_unlock_irq(&lruvec->lru_lock);
3779		cond_resched();
3780		goto restart;
3781	}
3782
3783	/*
3784	 * Update the active/inactive LRU sizes for compatibility. Both sides of
3785	 * the current max_seq need to be covered, since max_seq+1 can overlap
3786	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3787	 * overlap, cold/hot inversion happens.
3788	 */
3789	prev = lru_gen_from_seq(lrugen->max_seq - 1);
3790	next = lru_gen_from_seq(lrugen->max_seq + 1);
3791
3792	for (type = 0; type < ANON_AND_FILE; type++) {
3793		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3794			enum lru_list lru = type * LRU_INACTIVE_FILE;
3795			long delta = lrugen->nr_pages[prev][type][zone] -
3796				     lrugen->nr_pages[next][type][zone];
3797
3798			if (!delta)
3799				continue;
3800
3801			__update_lru_size(lruvec, lru, zone, delta);
3802			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
3803		}
3804	}
3805
3806	for (type = 0; type < ANON_AND_FILE; type++)
3807		reset_ctrl_pos(lruvec, type, false);
3808
3809	WRITE_ONCE(lrugen->timestamps[next], jiffies);
3810	/* make sure preceding modifications appear */
3811	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
3812unlock:
3813	spin_unlock_irq(&lruvec->lru_lock);
3814
3815	return success;
3816}
3817
3818static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
3819			       struct scan_control *sc, bool can_swap, bool force_scan)
3820{
3821	bool success;
3822	struct lru_gen_mm_walk *walk;
3823	struct mm_struct *mm = NULL;
3824	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3825	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3826
3827	VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
3828
3829	if (!mm_state)
3830		return inc_max_seq(lruvec, max_seq, can_swap, force_scan);
3831
3832	/* see the comment in iterate_mm_list() */
3833	if (max_seq <= READ_ONCE(mm_state->seq))
3834		return false;
3835
3836	/*
3837	 * If the hardware doesn't automatically set the accessed bit, fallback
3838	 * to lru_gen_look_around(), which only clears the accessed bit in a
3839	 * handful of PTEs. Spreading the work out over a period of time usually
3840	 * is less efficient, but it avoids bursty page faults.
3841	 */
3842	if (!should_walk_mmu()) {
3843		success = iterate_mm_list_nowalk(lruvec, max_seq);
3844		goto done;
3845	}
3846
3847	walk = set_mm_walk(NULL, true);
3848	if (!walk) {
3849		success = iterate_mm_list_nowalk(lruvec, max_seq);
3850		goto done;
3851	}
3852
3853	walk->lruvec = lruvec;
3854	walk->max_seq = max_seq;
3855	walk->can_swap = can_swap;
3856	walk->force_scan = force_scan;
3857
3858	do {
3859		success = iterate_mm_list(lruvec, walk, &mm);
3860		if (mm)
3861			walk_mm(lruvec, mm, walk);
3862	} while (mm);
3863done:
3864	if (success) {
3865		success = inc_max_seq(lruvec, max_seq, can_swap, force_scan);
3866		WARN_ON_ONCE(!success);
3867	}
3868
3869	return success;
3870}
3871
3872/******************************************************************************
3873 *                          working set protection
3874 ******************************************************************************/
3875
3876static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
3877{
3878	int gen, type, zone;
3879	unsigned long total = 0;
3880	bool can_swap = get_swappiness(lruvec, sc);
3881	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3882	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3883	DEFINE_MAX_SEQ(lruvec);
3884	DEFINE_MIN_SEQ(lruvec);
3885
3886	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3887		unsigned long seq;
3888
3889		for (seq = min_seq[type]; seq <= max_seq; seq++) {
3890			gen = lru_gen_from_seq(seq);
3891
3892			for (zone = 0; zone < MAX_NR_ZONES; zone++)
3893				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
3894		}
3895	}
3896
3897	/* whether the size is big enough to be helpful */
3898	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
3899}
3900
3901static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
3902				  unsigned long min_ttl)
3903{
3904	int gen;
3905	unsigned long birth;
3906	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3907	DEFINE_MIN_SEQ(lruvec);
3908
3909	/* see the comment on lru_gen_folio */
3910	gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
3911	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
3912
3913	if (time_is_after_jiffies(birth + min_ttl))
3914		return false;
3915
3916	if (!lruvec_is_sizable(lruvec, sc))
3917		return false;
3918
3919	mem_cgroup_calculate_protection(NULL, memcg);
3920
3921	return !mem_cgroup_below_min(NULL, memcg);
3922}
3923
3924/* to protect the working set of the last N jiffies */
3925static unsigned long lru_gen_min_ttl __read_mostly;
3926
3927static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
3928{
3929	struct mem_cgroup *memcg;
3930	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
3931
3932	VM_WARN_ON_ONCE(!current_is_kswapd());
3933
3934	/* check the order to exclude compaction-induced reclaim */
3935	if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY)
3936		return;
3937
3938	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3939	do {
3940		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3941
3942		if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) {
3943			mem_cgroup_iter_break(NULL, memcg);
3944			return;
3945		}
3946
3947		cond_resched();
3948	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
3949
3950	/*
3951	 * The main goal is to OOM kill if every generation from all memcgs is
3952	 * younger than min_ttl. However, another possibility is all memcgs are
3953	 * either too small or below min.
3954	 */
3955	if (mutex_trylock(&oom_lock)) {
3956		struct oom_control oc = {
3957			.gfp_mask = sc->gfp_mask,
3958		};
3959
3960		out_of_memory(&oc);
3961
3962		mutex_unlock(&oom_lock);
3963	}
3964}
3965
3966/******************************************************************************
3967 *                          rmap/PT walk feedback
3968 ******************************************************************************/
3969
3970/*
3971 * This function exploits spatial locality when shrink_folio_list() walks the
3972 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
3973 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
3974 * the PTE table to the Bloom filter. This forms a feedback loop between the
3975 * eviction and the aging.
3976 */
3977void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
3978{
3979	int i;
3980	unsigned long start;
3981	unsigned long end;
3982	struct lru_gen_mm_walk *walk;
3983	int young = 0;
3984	pte_t *pte = pvmw->pte;
3985	unsigned long addr = pvmw->address;
3986	struct vm_area_struct *vma = pvmw->vma;
3987	struct folio *folio = pfn_folio(pvmw->pfn);
3988	bool can_swap = !folio_is_file_lru(folio);
3989	struct mem_cgroup *memcg = folio_memcg(folio);
3990	struct pglist_data *pgdat = folio_pgdat(folio);
3991	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3992	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3993	DEFINE_MAX_SEQ(lruvec);
3994	int old_gen, new_gen = lru_gen_from_seq(max_seq);
3995
3996	lockdep_assert_held(pvmw->ptl);
3997	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
3998
3999	if (spin_is_contended(pvmw->ptl))
4000		return;
4001
4002	/* exclude special VMAs containing anon pages from COW */
4003	if (vma->vm_flags & VM_SPECIAL)
4004		return;
4005
4006	/* avoid taking the LRU lock under the PTL when possible */
4007	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4008
4009	start = max(addr & PMD_MASK, vma->vm_start);
4010	end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4011
4012	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4013		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4014			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4015		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4016			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4017		else {
4018			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4019			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4020		}
4021	}
4022
4023	/* folio_update_gen() requires stable folio_memcg() */
4024	if (!mem_cgroup_trylock_pages(memcg))
4025		return;
4026
4027	arch_enter_lazy_mmu_mode();
4028
4029	pte -= (addr - start) / PAGE_SIZE;
4030
4031	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4032		unsigned long pfn;
4033		pte_t ptent = ptep_get(pte + i);
4034
4035		pfn = get_pte_pfn(ptent, vma, addr);
4036		if (pfn == -1)
4037			continue;
4038
4039		if (!pte_young(ptent))
4040			continue;
4041
4042		folio = get_pfn_folio(pfn, memcg, pgdat, can_swap);
4043		if (!folio)
4044			continue;
4045
4046		if (!ptep_test_and_clear_young(vma, addr, pte + i))
4047			VM_WARN_ON_ONCE(true);
4048
4049		young++;
4050
4051		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4052		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4053		      !folio_test_swapcache(folio)))
4054			folio_mark_dirty(folio);
4055
4056		if (walk) {
4057			old_gen = folio_update_gen(folio, new_gen);
4058			if (old_gen >= 0 && old_gen != new_gen)
4059				update_batch_size(walk, folio, old_gen, new_gen);
4060
4061			continue;
4062		}
4063
4064		old_gen = folio_lru_gen(folio);
4065		if (old_gen < 0)
4066			folio_set_referenced(folio);
4067		else if (old_gen != new_gen)
4068			folio_activate(folio);
4069	}
4070
4071	arch_leave_lazy_mmu_mode();
4072	mem_cgroup_unlock_pages();
4073
4074	/* feedback from rmap walkers to page table walkers */
4075	if (mm_state && suitable_to_scan(i, young))
4076		update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4077}
4078
4079/******************************************************************************
4080 *                          memcg LRU
4081 ******************************************************************************/
4082
4083/* see the comment on MEMCG_NR_GENS */
4084enum {
4085	MEMCG_LRU_NOP,
4086	MEMCG_LRU_HEAD,
4087	MEMCG_LRU_TAIL,
4088	MEMCG_LRU_OLD,
4089	MEMCG_LRU_YOUNG,
4090};
4091
4092static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4093{
4094	int seg;
4095	int old, new;
4096	unsigned long flags;
4097	int bin = get_random_u32_below(MEMCG_NR_BINS);
4098	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4099
4100	spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4101
4102	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4103
4104	seg = 0;
4105	new = old = lruvec->lrugen.gen;
4106
4107	/* see the comment on MEMCG_NR_GENS */
4108	if (op == MEMCG_LRU_HEAD)
4109		seg = MEMCG_LRU_HEAD;
4110	else if (op == MEMCG_LRU_TAIL)
4111		seg = MEMCG_LRU_TAIL;
4112	else if (op == MEMCG_LRU_OLD)
4113		new = get_memcg_gen(pgdat->memcg_lru.seq);
4114	else if (op == MEMCG_LRU_YOUNG)
4115		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4116	else
4117		VM_WARN_ON_ONCE(true);
4118
4119	WRITE_ONCE(lruvec->lrugen.seg, seg);
4120	WRITE_ONCE(lruvec->lrugen.gen, new);
4121
4122	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4123
4124	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4125		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4126	else
4127		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4128
4129	pgdat->memcg_lru.nr_memcgs[old]--;
4130	pgdat->memcg_lru.nr_memcgs[new]++;
4131
4132	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4133		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4134
4135	spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4136}
4137
4138#ifdef CONFIG_MEMCG
4139
4140void lru_gen_online_memcg(struct mem_cgroup *memcg)
4141{
4142	int gen;
4143	int nid;
4144	int bin = get_random_u32_below(MEMCG_NR_BINS);
4145
4146	for_each_node(nid) {
4147		struct pglist_data *pgdat = NODE_DATA(nid);
4148		struct lruvec *lruvec = get_lruvec(memcg, nid);
4149
4150		spin_lock_irq(&pgdat->memcg_lru.lock);
4151
4152		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4153
4154		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4155
4156		lruvec->lrugen.gen = gen;
4157
4158		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4159		pgdat->memcg_lru.nr_memcgs[gen]++;
4160
4161		spin_unlock_irq(&pgdat->memcg_lru.lock);
4162	}
4163}
4164
4165void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4166{
4167	int nid;
4168
4169	for_each_node(nid) {
4170		struct lruvec *lruvec = get_lruvec(memcg, nid);
4171
4172		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4173	}
4174}
4175
4176void lru_gen_release_memcg(struct mem_cgroup *memcg)
4177{
4178	int gen;
4179	int nid;
4180
4181	for_each_node(nid) {
4182		struct pglist_data *pgdat = NODE_DATA(nid);
4183		struct lruvec *lruvec = get_lruvec(memcg, nid);
4184
4185		spin_lock_irq(&pgdat->memcg_lru.lock);
4186
4187		if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4188			goto unlock;
4189
4190		gen = lruvec->lrugen.gen;
4191
4192		hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4193		pgdat->memcg_lru.nr_memcgs[gen]--;
4194
4195		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4196			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4197unlock:
4198		spin_unlock_irq(&pgdat->memcg_lru.lock);
4199	}
4200}
4201
4202void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4203{
4204	struct lruvec *lruvec = get_lruvec(memcg, nid);
4205
4206	/* see the comment on MEMCG_NR_GENS */
4207	if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4208		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4209}
4210
4211#endif /* CONFIG_MEMCG */
4212
4213/******************************************************************************
4214 *                          the eviction
4215 ******************************************************************************/
4216
4217static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4218		       int tier_idx)
4219{
4220	bool success;
4221	int gen = folio_lru_gen(folio);
4222	int type = folio_is_file_lru(folio);
4223	int zone = folio_zonenum(folio);
4224	int delta = folio_nr_pages(folio);
4225	int refs = folio_lru_refs(folio);
4226	int tier = lru_tier_from_refs(refs);
4227	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4228
4229	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4230
4231	/* unevictable */
4232	if (!folio_evictable(folio)) {
4233		success = lru_gen_del_folio(lruvec, folio, true);
4234		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4235		folio_set_unevictable(folio);
4236		lruvec_add_folio(lruvec, folio);
4237		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4238		return true;
4239	}
4240
4241	/* dirty lazyfree */
4242	if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4243		success = lru_gen_del_folio(lruvec, folio, true);
4244		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4245		folio_set_swapbacked(folio);
4246		lruvec_add_folio_tail(lruvec, folio);
4247		return true;
4248	}
4249
4250	/* promoted */
4251	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4252		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4253		return true;
4254	}
4255
4256	/* protected */
4257	if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) {
4258		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4259
4260		gen = folio_inc_gen(lruvec, folio, false);
4261		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4262
4263		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4264			   lrugen->protected[hist][type][tier - 1] + delta);
4265		return true;
4266	}
4267
4268	/* ineligible */
4269	if (zone > sc->reclaim_idx || skip_cma(folio, sc)) {
4270		gen = folio_inc_gen(lruvec, folio, false);
4271		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4272		return true;
4273	}
4274
4275	/* waiting for writeback */
4276	if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4277	    (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4278		gen = folio_inc_gen(lruvec, folio, true);
4279		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4280		return true;
4281	}
4282
4283	return false;
4284}
4285
4286static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4287{
4288	bool success;
4289
4290	/* swapping inhibited */
4291	if (!(sc->gfp_mask & __GFP_IO) &&
4292	    (folio_test_dirty(folio) ||
4293	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4294		return false;
4295
4296	/* raced with release_pages() */
4297	if (!folio_try_get(folio))
4298		return false;
4299
4300	/* raced with another isolation */
4301	if (!folio_test_clear_lru(folio)) {
4302		folio_put(folio);
4303		return false;
4304	}
4305
4306	/* see the comment on MAX_NR_TIERS */
4307	if (!folio_test_referenced(folio))
4308		set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4309
4310	/* for shrink_folio_list() */
4311	folio_clear_reclaim(folio);
4312	folio_clear_referenced(folio);
4313
4314	success = lru_gen_del_folio(lruvec, folio, true);
4315	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4316
4317	return true;
4318}
4319
4320static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4321		       int type, int tier, struct list_head *list)
4322{
4323	int i;
4324	int gen;
4325	enum vm_event_item item;
4326	int sorted = 0;
4327	int scanned = 0;
4328	int isolated = 0;
4329	int skipped = 0;
4330	int remaining = MAX_LRU_BATCH;
4331	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4332	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4333
4334	VM_WARN_ON_ONCE(!list_empty(list));
4335
4336	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4337		return 0;
4338
4339	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4340
4341	for (i = MAX_NR_ZONES; i > 0; i--) {
4342		LIST_HEAD(moved);
4343		int skipped_zone = 0;
4344		int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4345		struct list_head *head = &lrugen->folios[gen][type][zone];
4346
4347		while (!list_empty(head)) {
4348			struct folio *folio = lru_to_folio(head);
4349			int delta = folio_nr_pages(folio);
4350
4351			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4352			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4353			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4354			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4355
4356			scanned += delta;
4357
4358			if (sort_folio(lruvec, folio, sc, tier))
4359				sorted += delta;
4360			else if (isolate_folio(lruvec, folio, sc)) {
4361				list_add(&folio->lru, list);
4362				isolated += delta;
4363			} else {
4364				list_move(&folio->lru, &moved);
4365				skipped_zone += delta;
4366			}
4367
4368			if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4369				break;
4370		}
4371
4372		if (skipped_zone) {
4373			list_splice(&moved, head);
4374			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4375			skipped += skipped_zone;
4376		}
4377
4378		if (!remaining || isolated >= MIN_LRU_BATCH)
4379			break;
4380	}
4381
4382	item = PGSCAN_KSWAPD + reclaimer_offset();
4383	if (!cgroup_reclaim(sc)) {
4384		__count_vm_events(item, isolated);
4385		__count_vm_events(PGREFILL, sorted);
4386	}
4387	__count_memcg_events(memcg, item, isolated);
4388	__count_memcg_events(memcg, PGREFILL, sorted);
4389	__count_vm_events(PGSCAN_ANON + type, isolated);
4390	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4391				scanned, skipped, isolated,
4392				type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4393
4394	/*
4395	 * There might not be eligible folios due to reclaim_idx. Check the
4396	 * remaining to prevent livelock if it's not making progress.
4397	 */
4398	return isolated || !remaining ? scanned : 0;
4399}
4400
4401static int get_tier_idx(struct lruvec *lruvec, int type)
4402{
4403	int tier;
4404	struct ctrl_pos sp, pv;
4405
4406	/*
4407	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4408	 * This value is chosen because any other tier would have at least twice
4409	 * as many refaults as the first tier.
4410	 */
4411	read_ctrl_pos(lruvec, type, 0, 1, &sp);
4412	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4413		read_ctrl_pos(lruvec, type, tier, 2, &pv);
4414		if (!positive_ctrl_err(&sp, &pv))
4415			break;
4416	}
4417
4418	return tier - 1;
4419}
4420
4421static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4422{
4423	int type, tier;
4424	struct ctrl_pos sp, pv;
4425	int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
4426
4427	/*
4428	 * Compare the first tier of anon with that of file to determine which
4429	 * type to scan. Also need to compare other tiers of the selected type
4430	 * with the first tier of the other type to determine the last tier (of
4431	 * the selected type) to evict.
4432	 */
4433	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4434	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4435	type = positive_ctrl_err(&sp, &pv);
4436
4437	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4438	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4439		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4440		if (!positive_ctrl_err(&sp, &pv))
4441			break;
4442	}
4443
4444	*tier_idx = tier - 1;
4445
4446	return type;
4447}
4448
4449static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4450			  int *type_scanned, struct list_head *list)
4451{
4452	int i;
4453	int type;
4454	int scanned;
4455	int tier = -1;
4456	DEFINE_MIN_SEQ(lruvec);
4457
4458	/*
4459	 * Try to make the obvious choice first. When anon and file are both
4460	 * available from the same generation, interpret swappiness 1 as file
4461	 * first and 200 as anon first.
4462	 */
4463	if (!swappiness)
4464		type = LRU_GEN_FILE;
4465	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4466		type = LRU_GEN_ANON;
4467	else if (swappiness == 1)
4468		type = LRU_GEN_FILE;
4469	else if (swappiness == 200)
4470		type = LRU_GEN_ANON;
4471	else
4472		type = get_type_to_scan(lruvec, swappiness, &tier);
4473
4474	for (i = !swappiness; i < ANON_AND_FILE; i++) {
4475		if (tier < 0)
4476			tier = get_tier_idx(lruvec, type);
4477
4478		scanned = scan_folios(lruvec, sc, type, tier, list);
4479		if (scanned)
4480			break;
4481
4482		type = !type;
4483		tier = -1;
4484	}
4485
4486	*type_scanned = type;
4487
4488	return scanned;
4489}
4490
4491static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4492{
4493	int type;
4494	int scanned;
4495	int reclaimed;
4496	LIST_HEAD(list);
4497	LIST_HEAD(clean);
4498	struct folio *folio;
4499	struct folio *next;
4500	enum vm_event_item item;
4501	struct reclaim_stat stat;
4502	struct lru_gen_mm_walk *walk;
4503	bool skip_retry = false;
4504	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4505	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4506
4507	spin_lock_irq(&lruvec->lru_lock);
4508
4509	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4510
4511	scanned += try_to_inc_min_seq(lruvec, swappiness);
4512
4513	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
4514		scanned = 0;
4515
4516	spin_unlock_irq(&lruvec->lru_lock);
4517
4518	if (list_empty(&list))
4519		return scanned;
4520retry:
4521	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
4522	sc->nr_reclaimed += reclaimed;
4523	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4524			scanned, reclaimed, &stat, sc->priority,
4525			type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4526
4527	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4528		if (!folio_evictable(folio)) {
4529			list_del(&folio->lru);
4530			folio_putback_lru(folio);
4531			continue;
4532		}
4533
4534		if (folio_test_reclaim(folio) &&
4535		    (folio_test_dirty(folio) || folio_test_writeback(folio))) {
4536			/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
4537			if (folio_test_workingset(folio))
4538				folio_set_referenced(folio);
4539			continue;
4540		}
4541
4542		if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
4543		    folio_mapped(folio) || folio_test_locked(folio) ||
4544		    folio_test_dirty(folio) || folio_test_writeback(folio)) {
4545			/* don't add rejected folios to the oldest generation */
4546			set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
4547				      BIT(PG_active));
4548			continue;
4549		}
4550
4551		/* retry folios that may have missed folio_rotate_reclaimable() */
4552		list_move(&folio->lru, &clean);
4553		sc->nr_scanned -= folio_nr_pages(folio);
4554	}
4555
4556	spin_lock_irq(&lruvec->lru_lock);
4557
4558	move_folios_to_lru(lruvec, &list);
4559
4560	walk = current->reclaim_state->mm_walk;
4561	if (walk && walk->batched)
4562		reset_batch_size(lruvec, walk);
4563
4564	item = PGSTEAL_KSWAPD + reclaimer_offset();
4565	if (!cgroup_reclaim(sc))
4566		__count_vm_events(item, reclaimed);
4567	__count_memcg_events(memcg, item, reclaimed);
4568	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
4569
4570	spin_unlock_irq(&lruvec->lru_lock);
4571
4572	mem_cgroup_uncharge_list(&list);
4573	free_unref_page_list(&list);
4574
4575	INIT_LIST_HEAD(&list);
4576	list_splice_init(&clean, &list);
4577
4578	if (!list_empty(&list)) {
4579		skip_retry = true;
4580		goto retry;
4581	}
4582
4583	return scanned;
4584}
4585
4586static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4587			     struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
4588{
4589	int gen, type, zone;
4590	unsigned long old = 0;
4591	unsigned long young = 0;
4592	unsigned long total = 0;
4593	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4594	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4595	DEFINE_MIN_SEQ(lruvec);
4596
4597	/* whether this lruvec is completely out of cold folios */
4598	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
4599		*nr_to_scan = 0;
4600		return true;
4601	}
4602
4603	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4604		unsigned long seq;
4605
4606		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4607			unsigned long size = 0;
4608
4609			gen = lru_gen_from_seq(seq);
4610
4611			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4612				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4613
4614			total += size;
4615			if (seq == max_seq)
4616				young += size;
4617			else if (seq + MIN_NR_GENS == max_seq)
4618				old += size;
4619		}
4620	}
4621
4622	/* try to scrape all its memory if this memcg was deleted */
4623	if (!mem_cgroup_online(memcg)) {
4624		*nr_to_scan = total;
4625		return false;
4626	}
4627
4628	*nr_to_scan = total >> sc->priority;
4629
4630	/*
4631	 * The aging tries to be lazy to reduce the overhead, while the eviction
4632	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4633	 * ideal number of generations is MIN_NR_GENS+1.
4634	 */
4635	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4636		return false;
4637
4638	/*
4639	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4640	 * of the total number of pages for each generation. A reasonable range
4641	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4642	 * aging cares about the upper bound of hot pages, while the eviction
4643	 * cares about the lower bound of cold pages.
4644	 */
4645	if (young * MIN_NR_GENS > total)
4646		return true;
4647	if (old * (MIN_NR_GENS + 2) < total)
4648		return true;
4649
4650	return false;
4651}
4652
4653/*
4654 * For future optimizations:
4655 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4656 *    reclaim.
4657 */
4658static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
4659{
4660	unsigned long nr_to_scan;
4661	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4662	DEFINE_MAX_SEQ(lruvec);
4663
4664	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4665		return -1;
4666
4667	if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan))
4668		return nr_to_scan;
4669
4670	/* skip the aging path at the default priority */
4671	if (sc->priority == DEF_PRIORITY)
4672		return nr_to_scan;
4673
4674	/* skip this lruvec as it's low on cold folios */
4675	return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0;
4676}
4677
4678static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4679{
4680	int i;
4681	enum zone_watermarks mark;
4682
4683	/* don't abort memcg reclaim to ensure fairness */
4684	if (!root_reclaim(sc))
4685		return false;
4686
4687	if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4688		return true;
4689
4690	/* check the order to exclude compaction-induced reclaim */
4691	if (!current_is_kswapd() || sc->order)
4692		return false;
4693
4694	mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4695	       WMARK_PROMO : WMARK_HIGH;
4696
4697	for (i = 0; i <= sc->reclaim_idx; i++) {
4698		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4699		unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4700
4701		if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4702			return false;
4703	}
4704
4705	/* kswapd should abort if all eligible zones are safe */
4706	return true;
4707}
4708
4709static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4710{
4711	long nr_to_scan;
4712	unsigned long scanned = 0;
4713	int swappiness = get_swappiness(lruvec, sc);
4714
4715	/* clean file folios are more likely to exist */
4716	if (swappiness && !(sc->gfp_mask & __GFP_IO))
4717		swappiness = 1;
4718
4719	while (true) {
4720		int delta;
4721
4722		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4723		if (nr_to_scan <= 0)
4724			break;
4725
4726		delta = evict_folios(lruvec, sc, swappiness);
4727		if (!delta)
4728			break;
4729
4730		scanned += delta;
4731		if (scanned >= nr_to_scan)
4732			break;
4733
4734		if (should_abort_scan(lruvec, sc))
4735			break;
4736
4737		cond_resched();
4738	}
4739
4740	/* whether this lruvec should be rotated */
4741	return nr_to_scan < 0;
4742}
4743
4744static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4745{
4746	bool success;
4747	unsigned long scanned = sc->nr_scanned;
4748	unsigned long reclaimed = sc->nr_reclaimed;
4749	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4750	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4751
4752	mem_cgroup_calculate_protection(NULL, memcg);
4753
4754	if (mem_cgroup_below_min(NULL, memcg))
4755		return MEMCG_LRU_YOUNG;
4756
4757	if (mem_cgroup_below_low(NULL, memcg)) {
4758		/* see the comment on MEMCG_NR_GENS */
4759		if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4760			return MEMCG_LRU_TAIL;
4761
4762		memcg_memory_event(memcg, MEMCG_LOW);
4763	}
4764
4765	success = try_to_shrink_lruvec(lruvec, sc);
4766
4767	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4768
4769	if (!sc->proactive)
4770		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4771			   sc->nr_reclaimed - reclaimed);
4772
4773	flush_reclaim_state(sc);
4774
4775	if (success && mem_cgroup_online(memcg))
4776		return MEMCG_LRU_YOUNG;
4777
4778	if (!success && lruvec_is_sizable(lruvec, sc))
4779		return 0;
4780
4781	/* one retry if offlined or too small */
4782	return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4783	       MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4784}
4785
4786static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4787{
4788	int op;
4789	int gen;
4790	int bin;
4791	int first_bin;
4792	struct lruvec *lruvec;
4793	struct lru_gen_folio *lrugen;
4794	struct mem_cgroup *memcg;
4795	struct hlist_nulls_node *pos;
4796
4797	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4798	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4799restart:
4800	op = 0;
4801	memcg = NULL;
4802
4803	rcu_read_lock();
4804
4805	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4806		if (op) {
4807			lru_gen_rotate_memcg(lruvec, op);
4808			op = 0;
4809		}
4810
4811		mem_cgroup_put(memcg);
4812		memcg = NULL;
4813
4814		if (gen != READ_ONCE(lrugen->gen))
4815			continue;
4816
4817		lruvec = container_of(lrugen, struct lruvec, lrugen);
4818		memcg = lruvec_memcg(lruvec);
4819
4820		if (!mem_cgroup_tryget(memcg)) {
4821			lru_gen_release_memcg(memcg);
4822			memcg = NULL;
4823			continue;
4824		}
4825
4826		rcu_read_unlock();
4827
4828		op = shrink_one(lruvec, sc);
4829
4830		rcu_read_lock();
4831
4832		if (should_abort_scan(lruvec, sc))
4833			break;
4834	}
4835
4836	rcu_read_unlock();
4837
4838	if (op)
4839		lru_gen_rotate_memcg(lruvec, op);
4840
4841	mem_cgroup_put(memcg);
4842
4843	if (!is_a_nulls(pos))
4844		return;
4845
4846	/* restart if raced with lru_gen_rotate_memcg() */
4847	if (gen != get_nulls_value(pos))
4848		goto restart;
4849
4850	/* try the rest of the bins of the current generation */
4851	bin = get_memcg_bin(bin + 1);
4852	if (bin != first_bin)
4853		goto restart;
4854}
4855
4856static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4857{
4858	struct blk_plug plug;
4859
4860	VM_WARN_ON_ONCE(root_reclaim(sc));
4861	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
4862
4863	lru_add_drain();
4864
4865	blk_start_plug(&plug);
4866
4867	set_mm_walk(NULL, sc->proactive);
4868
4869	if (try_to_shrink_lruvec(lruvec, sc))
4870		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
4871
4872	clear_mm_walk();
4873
4874	blk_finish_plug(&plug);
4875}
4876
4877static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
4878{
4879	int priority;
4880	unsigned long reclaimable;
4881	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
4882
4883	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
4884		return;
4885	/*
4886	 * Determine the initial priority based on
4887	 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
4888	 * where reclaimed_to_scanned_ratio = inactive / total.
4889	 */
4890	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
4891	if (get_swappiness(lruvec, sc))
4892		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
4893
4894	/* round down reclaimable and round up sc->nr_to_reclaim */
4895	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
4896
4897	sc->priority = clamp(priority, 0, DEF_PRIORITY);
4898}
4899
4900static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
4901{
4902	struct blk_plug plug;
4903	unsigned long reclaimed = sc->nr_reclaimed;
4904
4905	VM_WARN_ON_ONCE(!root_reclaim(sc));
4906
4907	/*
4908	 * Unmapped clean folios are already prioritized. Scanning for more of
4909	 * them is likely futile and can cause high reclaim latency when there
4910	 * is a large number of memcgs.
4911	 */
4912	if (!sc->may_writepage || !sc->may_unmap)
4913		goto done;
4914
4915	lru_add_drain();
4916
4917	blk_start_plug(&plug);
4918
4919	set_mm_walk(pgdat, sc->proactive);
4920
4921	set_initial_priority(pgdat, sc);
4922
4923	if (current_is_kswapd())
4924		sc->nr_reclaimed = 0;
4925
4926	if (mem_cgroup_disabled())
4927		shrink_one(&pgdat->__lruvec, sc);
4928	else
4929		shrink_many(pgdat, sc);
4930
4931	if (current_is_kswapd())
4932		sc->nr_reclaimed += reclaimed;
4933
4934	clear_mm_walk();
4935
4936	blk_finish_plug(&plug);
4937done:
4938	/* kswapd should never fail */
4939	pgdat->kswapd_failures = 0;
4940}
4941
4942/******************************************************************************
4943 *                          state change
4944 ******************************************************************************/
4945
4946static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
4947{
4948	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4949
4950	if (lrugen->enabled) {
4951		enum lru_list lru;
4952
4953		for_each_evictable_lru(lru) {
4954			if (!list_empty(&lruvec->lists[lru]))
4955				return false;
4956		}
4957	} else {
4958		int gen, type, zone;
4959
4960		for_each_gen_type_zone(gen, type, zone) {
4961			if (!list_empty(&lrugen->folios[gen][type][zone]))
4962				return false;
4963		}
4964	}
4965
4966	return true;
4967}
4968
4969static bool fill_evictable(struct lruvec *lruvec)
4970{
4971	enum lru_list lru;
4972	int remaining = MAX_LRU_BATCH;
4973
4974	for_each_evictable_lru(lru) {
4975		int type = is_file_lru(lru);
4976		bool active = is_active_lru(lru);
4977		struct list_head *head = &lruvec->lists[lru];
4978
4979		while (!list_empty(head)) {
4980			bool success;
4981			struct folio *folio = lru_to_folio(head);
4982
4983			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4984			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
4985			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4986			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
4987
4988			lruvec_del_folio(lruvec, folio);
4989			success = lru_gen_add_folio(lruvec, folio, false);
4990			VM_WARN_ON_ONCE(!success);
4991
4992			if (!--remaining)
4993				return false;
4994		}
4995	}
4996
4997	return true;
4998}
4999
5000static bool drain_evictable(struct lruvec *lruvec)
5001{
5002	int gen, type, zone;
5003	int remaining = MAX_LRU_BATCH;
5004
5005	for_each_gen_type_zone(gen, type, zone) {
5006		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5007
5008		while (!list_empty(head)) {
5009			bool success;
5010			struct folio *folio = lru_to_folio(head);
5011
5012			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5013			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5014			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5015			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5016
5017			success = lru_gen_del_folio(lruvec, folio, false);
5018			VM_WARN_ON_ONCE(!success);
5019			lruvec_add_folio(lruvec, folio);
5020
5021			if (!--remaining)
5022				return false;
5023		}
5024	}
5025
5026	return true;
5027}
5028
5029static void lru_gen_change_state(bool enabled)
5030{
5031	static DEFINE_MUTEX(state_mutex);
5032
5033	struct mem_cgroup *memcg;
5034
5035	cgroup_lock();
5036	cpus_read_lock();
5037	get_online_mems();
5038	mutex_lock(&state_mutex);
5039
5040	if (enabled == lru_gen_enabled())
5041		goto unlock;
5042
5043	if (enabled)
5044		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5045	else
5046		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5047
5048	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5049	do {
5050		int nid;
5051
5052		for_each_node(nid) {
5053			struct lruvec *lruvec = get_lruvec(memcg, nid);
5054
5055			spin_lock_irq(&lruvec->lru_lock);
5056
5057			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5058			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5059
5060			lruvec->lrugen.enabled = enabled;
5061
5062			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5063				spin_unlock_irq(&lruvec->lru_lock);
5064				cond_resched();
5065				spin_lock_irq(&lruvec->lru_lock);
5066			}
5067
5068			spin_unlock_irq(&lruvec->lru_lock);
5069		}
5070
5071		cond_resched();
5072	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5073unlock:
5074	mutex_unlock(&state_mutex);
5075	put_online_mems();
5076	cpus_read_unlock();
5077	cgroup_unlock();
5078}
5079
5080/******************************************************************************
5081 *                          sysfs interface
5082 ******************************************************************************/
5083
5084static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5085{
5086	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5087}
5088
5089/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5090static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5091				const char *buf, size_t len)
5092{
5093	unsigned int msecs;
5094
5095	if (kstrtouint(buf, 0, &msecs))
5096		return -EINVAL;
5097
5098	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5099
5100	return len;
5101}
5102
5103static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5104
5105static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5106{
5107	unsigned int caps = 0;
5108
5109	if (get_cap(LRU_GEN_CORE))
5110		caps |= BIT(LRU_GEN_CORE);
5111
5112	if (should_walk_mmu())
5113		caps |= BIT(LRU_GEN_MM_WALK);
5114
5115	if (should_clear_pmd_young())
5116		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5117
5118	return sysfs_emit(buf, "0x%04x\n", caps);
5119}
5120
5121/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5122static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5123			     const char *buf, size_t len)
5124{
5125	int i;
5126	unsigned int caps;
5127
5128	if (tolower(*buf) == 'n')
5129		caps = 0;
5130	else if (tolower(*buf) == 'y')
5131		caps = -1;
5132	else if (kstrtouint(buf, 0, &caps))
5133		return -EINVAL;
5134
5135	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5136		bool enabled = caps & BIT(i);
5137
5138		if (i == LRU_GEN_CORE)
5139			lru_gen_change_state(enabled);
5140		else if (enabled)
5141			static_branch_enable(&lru_gen_caps[i]);
5142		else
5143			static_branch_disable(&lru_gen_caps[i]);
5144	}
5145
5146	return len;
5147}
5148
5149static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5150
5151static struct attribute *lru_gen_attrs[] = {
5152	&lru_gen_min_ttl_attr.attr,
5153	&lru_gen_enabled_attr.attr,
5154	NULL
5155};
5156
5157static const struct attribute_group lru_gen_attr_group = {
5158	.name = "lru_gen",
5159	.attrs = lru_gen_attrs,
5160};
5161
5162/******************************************************************************
5163 *                          debugfs interface
5164 ******************************************************************************/
5165
5166static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5167{
5168	struct mem_cgroup *memcg;
5169	loff_t nr_to_skip = *pos;
5170
5171	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5172	if (!m->private)
5173		return ERR_PTR(-ENOMEM);
5174
5175	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5176	do {
5177		int nid;
5178
5179		for_each_node_state(nid, N_MEMORY) {
5180			if (!nr_to_skip--)
5181				return get_lruvec(memcg, nid);
5182		}
5183	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5184
5185	return NULL;
5186}
5187
5188static void lru_gen_seq_stop(struct seq_file *m, void *v)
5189{
5190	if (!IS_ERR_OR_NULL(v))
5191		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5192
5193	kvfree(m->private);
5194	m->private = NULL;
5195}
5196
5197static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5198{
5199	int nid = lruvec_pgdat(v)->node_id;
5200	struct mem_cgroup *memcg = lruvec_memcg(v);
5201
5202	++*pos;
5203
5204	nid = next_memory_node(nid);
5205	if (nid == MAX_NUMNODES) {
5206		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5207		if (!memcg)
5208			return NULL;
5209
5210		nid = first_memory_node;
5211	}
5212
5213	return get_lruvec(memcg, nid);
5214}
5215
5216static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5217				  unsigned long max_seq, unsigned long *min_seq,
5218				  unsigned long seq)
5219{
5220	int i;
5221	int type, tier;
5222	int hist = lru_hist_from_seq(seq);
5223	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5224	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5225
5226	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5227		seq_printf(m, "            %10d", tier);
5228		for (type = 0; type < ANON_AND_FILE; type++) {
5229			const char *s = "   ";
5230			unsigned long n[3] = {};
5231
5232			if (seq == max_seq) {
5233				s = "RT ";
5234				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5235				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5236			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5237				s = "rep";
5238				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5239				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5240				if (tier)
5241					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5242			}
5243
5244			for (i = 0; i < 3; i++)
5245				seq_printf(m, " %10lu%c", n[i], s[i]);
5246		}
5247		seq_putc(m, '\n');
5248	}
5249
5250	if (!mm_state)
5251		return;
5252
5253	seq_puts(m, "                      ");
5254	for (i = 0; i < NR_MM_STATS; i++) {
5255		const char *s = "      ";
5256		unsigned long n = 0;
5257
5258		if (seq == max_seq && NR_HIST_GENS == 1) {
5259			s = "LOYNFA";
5260			n = READ_ONCE(mm_state->stats[hist][i]);
5261		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5262			s = "loynfa";
5263			n = READ_ONCE(mm_state->stats[hist][i]);
5264		}
5265
5266		seq_printf(m, " %10lu%c", n, s[i]);
5267	}
5268	seq_putc(m, '\n');
5269}
5270
5271/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5272static int lru_gen_seq_show(struct seq_file *m, void *v)
5273{
5274	unsigned long seq;
5275	bool full = !debugfs_real_fops(m->file)->write;
5276	struct lruvec *lruvec = v;
5277	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5278	int nid = lruvec_pgdat(lruvec)->node_id;
5279	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5280	DEFINE_MAX_SEQ(lruvec);
5281	DEFINE_MIN_SEQ(lruvec);
5282
5283	if (nid == first_memory_node) {
5284		const char *path = memcg ? m->private : "";
5285
5286#ifdef CONFIG_MEMCG
5287		if (memcg)
5288			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5289#endif
5290		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5291	}
5292
5293	seq_printf(m, " node %5d\n", nid);
5294
5295	if (!full)
5296		seq = min_seq[LRU_GEN_ANON];
5297	else if (max_seq >= MAX_NR_GENS)
5298		seq = max_seq - MAX_NR_GENS + 1;
5299	else
5300		seq = 0;
5301
5302	for (; seq <= max_seq; seq++) {
5303		int type, zone;
5304		int gen = lru_gen_from_seq(seq);
5305		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5306
5307		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5308
5309		for (type = 0; type < ANON_AND_FILE; type++) {
5310			unsigned long size = 0;
5311			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5312
5313			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5314				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5315
5316			seq_printf(m, " %10lu%c", size, mark);
5317		}
5318
5319		seq_putc(m, '\n');
5320
5321		if (full)
5322			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5323	}
5324
5325	return 0;
5326}
5327
5328static const struct seq_operations lru_gen_seq_ops = {
5329	.start = lru_gen_seq_start,
5330	.stop = lru_gen_seq_stop,
5331	.next = lru_gen_seq_next,
5332	.show = lru_gen_seq_show,
5333};
5334
5335static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5336		     bool can_swap, bool force_scan)
5337{
5338	DEFINE_MAX_SEQ(lruvec);
5339	DEFINE_MIN_SEQ(lruvec);
5340
5341	if (seq < max_seq)
5342		return 0;
5343
5344	if (seq > max_seq)
5345		return -EINVAL;
5346
5347	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5348		return -ERANGE;
5349
5350	try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5351
5352	return 0;
5353}
5354
5355static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5356			int swappiness, unsigned long nr_to_reclaim)
5357{
5358	DEFINE_MAX_SEQ(lruvec);
5359
5360	if (seq + MIN_NR_GENS > max_seq)
5361		return -EINVAL;
5362
5363	sc->nr_reclaimed = 0;
5364
5365	while (!signal_pending(current)) {
5366		DEFINE_MIN_SEQ(lruvec);
5367
5368		if (seq < min_seq[!swappiness])
5369			return 0;
5370
5371		if (sc->nr_reclaimed >= nr_to_reclaim)
5372			return 0;
5373
5374		if (!evict_folios(lruvec, sc, swappiness))
5375			return 0;
5376
5377		cond_resched();
5378	}
5379
5380	return -EINTR;
5381}
5382
5383static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5384		   struct scan_control *sc, int swappiness, unsigned long opt)
5385{
5386	struct lruvec *lruvec;
5387	int err = -EINVAL;
5388	struct mem_cgroup *memcg = NULL;
5389
5390	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5391		return -EINVAL;
5392
5393	if (!mem_cgroup_disabled()) {
5394		rcu_read_lock();
5395
5396		memcg = mem_cgroup_from_id(memcg_id);
5397		if (!mem_cgroup_tryget(memcg))
5398			memcg = NULL;
5399
5400		rcu_read_unlock();
5401
5402		if (!memcg)
5403			return -EINVAL;
5404	}
5405
5406	if (memcg_id != mem_cgroup_id(memcg))
5407		goto done;
5408
5409	lruvec = get_lruvec(memcg, nid);
5410
5411	if (swappiness < 0)
5412		swappiness = get_swappiness(lruvec, sc);
5413	else if (swappiness > 200)
5414		goto done;
5415
5416	switch (cmd) {
5417	case '+':
5418		err = run_aging(lruvec, seq, sc, swappiness, opt);
5419		break;
5420	case '-':
5421		err = run_eviction(lruvec, seq, sc, swappiness, opt);
5422		break;
5423	}
5424done:
5425	mem_cgroup_put(memcg);
5426
5427	return err;
5428}
5429
5430/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5431static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5432				 size_t len, loff_t *pos)
5433{
5434	void *buf;
5435	char *cur, *next;
5436	unsigned int flags;
5437	struct blk_plug plug;
5438	int err = -EINVAL;
5439	struct scan_control sc = {
5440		.may_writepage = true,
5441		.may_unmap = true,
5442		.may_swap = true,
5443		.reclaim_idx = MAX_NR_ZONES - 1,
5444		.gfp_mask = GFP_KERNEL,
5445	};
5446
5447	buf = kvmalloc(len + 1, GFP_KERNEL);
5448	if (!buf)
5449		return -ENOMEM;
5450
5451	if (copy_from_user(buf, src, len)) {
5452		kvfree(buf);
5453		return -EFAULT;
5454	}
5455
5456	set_task_reclaim_state(current, &sc.reclaim_state);
5457	flags = memalloc_noreclaim_save();
5458	blk_start_plug(&plug);
5459	if (!set_mm_walk(NULL, true)) {
5460		err = -ENOMEM;
5461		goto done;
5462	}
5463
5464	next = buf;
5465	next[len] = '\0';
5466
5467	while ((cur = strsep(&next, ",;\n"))) {
5468		int n;
5469		int end;
5470		char cmd;
5471		unsigned int memcg_id;
5472		unsigned int nid;
5473		unsigned long seq;
5474		unsigned int swappiness = -1;
5475		unsigned long opt = -1;
5476
5477		cur = skip_spaces(cur);
5478		if (!*cur)
5479			continue;
5480
5481		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5482			   &seq, &end, &swappiness, &end, &opt, &end);
5483		if (n < 4 || cur[end]) {
5484			err = -EINVAL;
5485			break;
5486		}
5487
5488		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5489		if (err)
5490			break;
5491	}
5492done:
5493	clear_mm_walk();
5494	blk_finish_plug(&plug);
5495	memalloc_noreclaim_restore(flags);
5496	set_task_reclaim_state(current, NULL);
5497
5498	kvfree(buf);
5499
5500	return err ? : len;
5501}
5502
5503static int lru_gen_seq_open(struct inode *inode, struct file *file)
5504{
5505	return seq_open(file, &lru_gen_seq_ops);
5506}
5507
5508static const struct file_operations lru_gen_rw_fops = {
5509	.open = lru_gen_seq_open,
5510	.read = seq_read,
5511	.write = lru_gen_seq_write,
5512	.llseek = seq_lseek,
5513	.release = seq_release,
5514};
5515
5516static const struct file_operations lru_gen_ro_fops = {
5517	.open = lru_gen_seq_open,
5518	.read = seq_read,
5519	.llseek = seq_lseek,
5520	.release = seq_release,
5521};
5522
5523/******************************************************************************
5524 *                          initialization
5525 ******************************************************************************/
5526
5527void lru_gen_init_pgdat(struct pglist_data *pgdat)
5528{
5529	int i, j;
5530
5531	spin_lock_init(&pgdat->memcg_lru.lock);
5532
5533	for (i = 0; i < MEMCG_NR_GENS; i++) {
5534		for (j = 0; j < MEMCG_NR_BINS; j++)
5535			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5536	}
5537}
5538
5539void lru_gen_init_lruvec(struct lruvec *lruvec)
5540{
5541	int i;
5542	int gen, type, zone;
5543	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5544	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5545
5546	lrugen->max_seq = MIN_NR_GENS + 1;
5547	lrugen->enabled = lru_gen_enabled();
5548
5549	for (i = 0; i <= MIN_NR_GENS + 1; i++)
5550		lrugen->timestamps[i] = jiffies;
5551
5552	for_each_gen_type_zone(gen, type, zone)
5553		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5554
5555	if (mm_state)
5556		mm_state->seq = MIN_NR_GENS;
5557}
5558
5559#ifdef CONFIG_MEMCG
5560
5561void lru_gen_init_memcg(struct mem_cgroup *memcg)
5562{
5563	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5564
5565	if (!mm_list)
5566		return;
5567
5568	INIT_LIST_HEAD(&mm_list->fifo);
5569	spin_lock_init(&mm_list->lock);
5570}
5571
5572void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5573{
5574	int i;
5575	int nid;
5576	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5577
5578	VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5579
5580	for_each_node(nid) {
5581		struct lruvec *lruvec = get_lruvec(memcg, nid);
5582		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5583
5584		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5585					   sizeof(lruvec->lrugen.nr_pages)));
5586
5587		lruvec->lrugen.list.next = LIST_POISON1;
5588
5589		if (!mm_state)
5590			continue;
5591
5592		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5593			bitmap_free(mm_state->filters[i]);
5594			mm_state->filters[i] = NULL;
5595		}
5596	}
5597}
5598
5599#endif /* CONFIG_MEMCG */
5600
5601static int __init init_lru_gen(void)
5602{
5603	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5604	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5605
5606	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5607		pr_err("lru_gen: failed to create sysfs group\n");
5608
5609	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5610	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5611
5612	return 0;
5613};
5614late_initcall(init_lru_gen);
5615
5616#else /* !CONFIG_LRU_GEN */
5617
5618static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5619{
5620	BUILD_BUG();
5621}
5622
5623static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5624{
5625	BUILD_BUG();
5626}
5627
5628static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5629{
5630	BUILD_BUG();
5631}
5632
5633#endif /* CONFIG_LRU_GEN */
5634
5635static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5636{
 
5637	unsigned long nr[NR_LRU_LISTS];
5638	unsigned long targets[NR_LRU_LISTS];
5639	unsigned long nr_to_scan;
5640	enum lru_list lru;
5641	unsigned long nr_reclaimed = 0;
5642	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5643	bool proportional_reclaim;
5644	struct blk_plug plug;
 
5645
5646	if (lru_gen_enabled() && !root_reclaim(sc)) {
5647		lru_gen_shrink_lruvec(lruvec, sc);
5648		return;
5649	}
5650
5651	get_scan_count(lruvec, sc, nr);
5652
5653	/* Record the original scan target for proportional adjustments later */
5654	memcpy(targets, nr, sizeof(nr));
5655
5656	/*
5657	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5658	 * event that can occur when there is little memory pressure e.g.
5659	 * multiple streaming readers/writers. Hence, we do not abort scanning
5660	 * when the requested number of pages are reclaimed when scanning at
5661	 * DEF_PRIORITY on the assumption that the fact we are direct
5662	 * reclaiming implies that kswapd is not keeping up and it is best to
5663	 * do a batch of work at once. For memcg reclaim one check is made to
5664	 * abort proportional reclaim if either the file or anon lru has already
5665	 * dropped to zero at the first pass.
5666	 */
5667	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5668				sc->priority == DEF_PRIORITY);
5669
5670	blk_start_plug(&plug);
5671	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5672					nr[LRU_INACTIVE_FILE]) {
5673		unsigned long nr_anon, nr_file, percentage;
5674		unsigned long nr_scanned;
5675
5676		for_each_evictable_lru(lru) {
5677			if (nr[lru]) {
5678				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5679				nr[lru] -= nr_to_scan;
5680
5681				nr_reclaimed += shrink_list(lru, nr_to_scan,
5682							    lruvec, sc);
5683			}
5684		}
5685
5686		cond_resched();
5687
5688		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5689			continue;
5690
5691		/*
5692		 * For kswapd and memcg, reclaim at least the number of pages
5693		 * requested. Ensure that the anon and file LRUs are scanned
5694		 * proportionally what was requested by get_scan_count(). We
5695		 * stop reclaiming one LRU and reduce the amount scanning
5696		 * proportional to the original scan target.
5697		 */
5698		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5699		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5700
5701		/*
5702		 * It's just vindictive to attack the larger once the smaller
5703		 * has gone to zero.  And given the way we stop scanning the
5704		 * smaller below, this makes sure that we only make one nudge
5705		 * towards proportionality once we've got nr_to_reclaim.
5706		 */
5707		if (!nr_file || !nr_anon)
5708			break;
5709
5710		if (nr_file > nr_anon) {
5711			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5712						targets[LRU_ACTIVE_ANON] + 1;
5713			lru = LRU_BASE;
5714			percentage = nr_anon * 100 / scan_target;
5715		} else {
5716			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5717						targets[LRU_ACTIVE_FILE] + 1;
5718			lru = LRU_FILE;
5719			percentage = nr_file * 100 / scan_target;
5720		}
5721
5722		/* Stop scanning the smaller of the LRU */
5723		nr[lru] = 0;
5724		nr[lru + LRU_ACTIVE] = 0;
5725
5726		/*
5727		 * Recalculate the other LRU scan count based on its original
5728		 * scan target and the percentage scanning already complete
5729		 */
5730		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5731		nr_scanned = targets[lru] - nr[lru];
5732		nr[lru] = targets[lru] * (100 - percentage) / 100;
5733		nr[lru] -= min(nr[lru], nr_scanned);
5734
5735		lru += LRU_ACTIVE;
5736		nr_scanned = targets[lru] - nr[lru];
5737		nr[lru] = targets[lru] * (100 - percentage) / 100;
5738		nr[lru] -= min(nr[lru], nr_scanned);
 
 
5739	}
5740	blk_finish_plug(&plug);
5741	sc->nr_reclaimed += nr_reclaimed;
5742
5743	/*
5744	 * Even if we did not try to evict anon pages at all, we want to
5745	 * rebalance the anon lru active/inactive ratio.
5746	 */
5747	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5748	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5749		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5750				   sc, LRU_ACTIVE_ANON);
5751}
5752
5753/* Use reclaim/compaction for costly allocs or under memory pressure */
5754static bool in_reclaim_compaction(struct scan_control *sc)
5755{
5756	if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
5757			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5758			 sc->priority < DEF_PRIORITY - 2))
5759		return true;
5760
5761	return false;
5762}
5763
5764/*
5765 * Reclaim/compaction is used for high-order allocation requests. It reclaims
5766 * order-0 pages before compacting the zone. should_continue_reclaim() returns
5767 * true if more pages should be reclaimed such that when the page allocator
5768 * calls try_to_compact_pages() that it will have enough free pages to succeed.
5769 * It will give up earlier than that if there is difficulty reclaiming pages.
5770 */
5771static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5772					unsigned long nr_reclaimed,
5773					struct scan_control *sc)
5774{
5775	unsigned long pages_for_compaction;
5776	unsigned long inactive_lru_pages;
5777	int z;
5778
5779	/* If not in reclaim/compaction mode, stop */
5780	if (!in_reclaim_compaction(sc))
5781		return false;
5782
5783	/*
5784	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5785	 * number of pages that were scanned. This will return to the caller
5786	 * with the risk reclaim/compaction and the resulting allocation attempt
5787	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5788	 * allocations through requiring that the full LRU list has been scanned
5789	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5790	 * scan, but that approximation was wrong, and there were corner cases
5791	 * where always a non-zero amount of pages were scanned.
5792	 */
5793	if (!nr_reclaimed)
5794		return false;
5795
5796	/* If compaction would go ahead or the allocation would succeed, stop */
5797	for (z = 0; z <= sc->reclaim_idx; z++) {
5798		struct zone *zone = &pgdat->node_zones[z];
5799		if (!managed_zone(zone))
5800			continue;
5801
5802		/* Allocation can already succeed, nothing to do */
5803		if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
5804				      sc->reclaim_idx, 0))
5805			return false;
5806
5807		if (compaction_suitable(zone, sc->order, sc->reclaim_idx))
5808			return false;
 
 
 
 
5809	}
5810
5811	/*
5812	 * If we have not reclaimed enough pages for compaction and the
5813	 * inactive lists are large enough, continue reclaiming
5814	 */
5815	pages_for_compaction = compact_gap(sc->order);
5816	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5817	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5818		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5819
5820	return inactive_lru_pages > pages_for_compaction;
5821}
5822
5823static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
 
 
 
 
 
 
5824{
5825	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5826	struct mem_cgroup *memcg;
 
5827
5828	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
5829	do {
5830		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5831		unsigned long reclaimed;
5832		unsigned long scanned;
5833
5834		/*
5835		 * This loop can become CPU-bound when target memcgs
5836		 * aren't eligible for reclaim - either because they
5837		 * don't have any reclaimable pages, or because their
5838		 * memory is explicitly protected. Avoid soft lockups.
5839		 */
5840		cond_resched();
5841
5842		mem_cgroup_calculate_protection(target_memcg, memcg);
 
 
 
 
5843
5844		if (mem_cgroup_below_min(target_memcg, memcg)) {
5845			/*
5846			 * Hard protection.
5847			 * If there is no reclaimable memory, OOM.
5848			 */
5849			continue;
5850		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
5851			/*
5852			 * Soft protection.
5853			 * Respect the protection only as long as
5854			 * there is an unprotected supply
5855			 * of reclaimable memory from other cgroups.
5856			 */
5857			if (!sc->memcg_low_reclaim) {
5858				sc->memcg_low_skipped = 1;
5859				continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5860			}
5861			memcg_memory_event(memcg, MEMCG_LOW);
5862		}
5863
5864		reclaimed = sc->nr_reclaimed;
5865		scanned = sc->nr_scanned;
 
 
5866
5867		shrink_lruvec(lruvec, sc);
 
5868
5869		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
5870			    sc->priority);
5871
5872		/* Record the group's reclaim efficiency */
5873		if (!sc->proactive)
5874			vmpressure(sc->gfp_mask, memcg, false,
5875				   sc->nr_scanned - scanned,
5876				   sc->nr_reclaimed - reclaimed);
5877
5878	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
5879}
5880
5881static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
5882{
5883	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
5884	struct lruvec *target_lruvec;
5885	bool reclaimable = false;
5886
5887	if (lru_gen_enabled() && root_reclaim(sc)) {
5888		lru_gen_shrink_node(pgdat, sc);
5889		return;
5890	}
5891
5892	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
 
5893
5894again:
5895	memset(&sc->nr, 0, sizeof(sc->nr));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5896
5897	nr_reclaimed = sc->nr_reclaimed;
5898	nr_scanned = sc->nr_scanned;
 
 
 
 
 
5899
5900	prepare_scan_control(pgdat, sc);
 
 
5901
5902	shrink_node_memcgs(pgdat, sc);
5903
5904	flush_reclaim_state(sc);
5905
5906	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
 
 
 
 
5907
5908	/* Record the subtree's reclaim efficiency */
5909	if (!sc->proactive)
5910		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
5911			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
5912
5913	if (nr_node_reclaimed)
5914		reclaimable = true;
5915
5916	if (current_is_kswapd()) {
5917		/*
5918		 * If reclaim is isolating dirty pages under writeback,
5919		 * it implies that the long-lived page allocation rate
5920		 * is exceeding the page laundering rate. Either the
5921		 * global limits are not being effective at throttling
5922		 * processes due to the page distribution throughout
5923		 * zones or there is heavy usage of a slow backing
5924		 * device. The only option is to throttle from reclaim
5925		 * context which is not ideal as there is no guarantee
5926		 * the dirtying process is throttled in the same way
5927		 * balance_dirty_pages() manages.
5928		 *
5929		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
5930		 * count the number of pages under pages flagged for
5931		 * immediate reclaim and stall if any are encountered
5932		 * in the nr_immediate check below.
5933		 */
5934		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
5935			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
5936
5937		/* Allow kswapd to start writing pages during reclaim.*/
5938		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
5939			set_bit(PGDAT_DIRTY, &pgdat->flags);
5940
5941		/*
5942		 * If kswapd scans pages marked for immediate
5943		 * reclaim and under writeback (nr_immediate), it
5944		 * implies that pages are cycling through the LRU
5945		 * faster than they are written so forcibly stall
5946		 * until some pages complete writeback.
5947		 */
5948		if (sc->nr.immediate)
5949			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
5950	}
5951
5952	/*
5953	 * Tag a node/memcg as congested if all the dirty pages were marked
5954	 * for writeback and immediate reclaim (counted in nr.congested).
5955	 *
5956	 * Legacy memcg will stall in page writeback so avoid forcibly
5957	 * stalling in reclaim_throttle().
5958	 */
5959	if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
5960		if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
5961			set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
5962
5963		if (current_is_kswapd())
5964			set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
5965	}
5966
5967	/*
5968	 * Stall direct reclaim for IO completions if the lruvec is
5969	 * node is congested. Allow kswapd to continue until it
5970	 * starts encountering unqueued dirty pages or cycling through
5971	 * the LRU too quickly.
5972	 */
5973	if (!current_is_kswapd() && current_may_throttle() &&
5974	    !sc->hibernation_mode &&
5975	    (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
5976	     test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
5977		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
5978
5979	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
5980		goto again;
5981
5982	/*
5983	 * Kswapd gives up on balancing particular nodes after too
5984	 * many failures to reclaim anything from them and goes to
5985	 * sleep. On reclaim progress, reset the failure counter. A
5986	 * successful direct reclaim run will revive a dormant kswapd.
5987	 */
5988	if (reclaimable)
5989		pgdat->kswapd_failures = 0;
 
 
5990}
5991
5992/*
5993 * Returns true if compaction should go ahead for a costly-order request, or
5994 * the allocation would already succeed without compaction. Return false if we
5995 * should reclaim first.
5996 */
5997static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
5998{
5999	unsigned long watermark;
 
6000
6001	if (!gfp_compaction_allowed(sc->gfp_mask))
6002		return false;
6003
6004	/* Allocation can already succeed, nothing to do */
6005	if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6006			      sc->reclaim_idx, 0))
6007		return true;
6008
6009	/* Compaction cannot yet proceed. Do reclaim. */
6010	if (!compaction_suitable(zone, sc->order, sc->reclaim_idx))
6011		return false;
6012
6013	/*
6014	 * Compaction is already possible, but it takes time to run and there
6015	 * are potentially other callers using the pages just freed. So proceed
6016	 * with reclaim to make a buffer of free pages available to give
6017	 * compaction a reasonable chance of completing and allocating the page.
6018	 * Note that we won't actually reclaim the whole buffer in one attempt
6019	 * as the target watermark in should_continue_reclaim() is lower. But if
6020	 * we are already above the high+gap watermark, don't reclaim at all.
6021	 */
6022	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6023
6024	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6025}
6026
6027static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6028{
6029	/*
6030	 * If reclaim is making progress greater than 12% efficiency then
6031	 * wake all the NOPROGRESS throttled tasks.
6032	 */
6033	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6034		wait_queue_head_t *wqh;
6035
6036		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6037		if (waitqueue_active(wqh))
6038			wake_up(wqh);
6039
6040		return;
6041	}
6042
6043	/*
6044	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6045	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6046	 * under writeback and marked for immediate reclaim at the tail of the
6047	 * LRU.
6048	 */
6049	if (current_is_kswapd() || cgroup_reclaim(sc))
6050		return;
6051
6052	/* Throttle if making no progress at high prioities. */
6053	if (sc->priority == 1 && !sc->nr_reclaimed)
6054		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6055}
6056
6057/*
6058 * This is the direct reclaim path, for page-allocating processes.  We only
6059 * try to reclaim pages from zones which will satisfy the caller's allocation
6060 * request.
6061 *
6062 * If a zone is deemed to be full of pinned pages then just give it a light
6063 * scan then give up on it.
6064 */
6065static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6066{
6067	struct zoneref *z;
6068	struct zone *zone;
6069	unsigned long nr_soft_reclaimed;
6070	unsigned long nr_soft_scanned;
6071	gfp_t orig_mask;
6072	pg_data_t *last_pgdat = NULL;
6073	pg_data_t *first_pgdat = NULL;
6074
6075	/*
6076	 * If the number of buffer_heads in the machine exceeds the maximum
6077	 * allowed level, force direct reclaim to scan the highmem zone as
6078	 * highmem pages could be pinning lowmem pages storing buffer_heads
6079	 */
6080	orig_mask = sc->gfp_mask;
6081	if (buffer_heads_over_limit) {
6082		sc->gfp_mask |= __GFP_HIGHMEM;
6083		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6084	}
6085
6086	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6087					sc->reclaim_idx, sc->nodemask) {
6088		/*
6089		 * Take care memory controller reclaiming has small influence
6090		 * to global LRU.
6091		 */
6092		if (!cgroup_reclaim(sc)) {
6093			if (!cpuset_zone_allowed(zone,
6094						 GFP_KERNEL | __GFP_HARDWALL))
6095				continue;
6096
6097			/*
6098			 * If we already have plenty of memory free for
6099			 * compaction in this zone, don't free any more.
6100			 * Even though compaction is invoked for any
6101			 * non-zero order, only frequent costly order
6102			 * reclamation is disruptive enough to become a
6103			 * noticeable problem, like transparent huge
6104			 * page allocations.
6105			 */
6106			if (IS_ENABLED(CONFIG_COMPACTION) &&
6107			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6108			    compaction_ready(zone, sc)) {
6109				sc->compaction_ready = true;
6110				continue;
6111			}
6112
6113			/*
6114			 * Shrink each node in the zonelist once. If the
6115			 * zonelist is ordered by zone (not the default) then a
6116			 * node may be shrunk multiple times but in that case
6117			 * the user prefers lower zones being preserved.
6118			 */
6119			if (zone->zone_pgdat == last_pgdat)
6120				continue;
6121
6122			/*
6123			 * This steals pages from memory cgroups over softlimit
6124			 * and returns the number of reclaimed pages and
6125			 * scanned pages. This works for global memory pressure
6126			 * and balancing, not for a memcg's limit.
6127			 */
6128			nr_soft_scanned = 0;
6129			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6130						sc->order, sc->gfp_mask,
6131						&nr_soft_scanned);
6132			sc->nr_reclaimed += nr_soft_reclaimed;
6133			sc->nr_scanned += nr_soft_scanned;
6134			/* need some check for avoid more shrink_zone() */
6135		}
6136
6137		if (!first_pgdat)
6138			first_pgdat = zone->zone_pgdat;
6139
6140		/* See comment about same check for global reclaim above */
6141		if (zone->zone_pgdat == last_pgdat)
6142			continue;
6143		last_pgdat = zone->zone_pgdat;
6144		shrink_node(zone->zone_pgdat, sc);
6145	}
6146
6147	if (first_pgdat)
6148		consider_reclaim_throttle(first_pgdat, sc);
6149
6150	/*
6151	 * Restore to original mask to avoid the impact on the caller if we
6152	 * promoted it to __GFP_HIGHMEM.
6153	 */
6154	sc->gfp_mask = orig_mask;
6155}
6156
6157static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6158{
6159	struct lruvec *target_lruvec;
6160	unsigned long refaults;
6161
6162	if (lru_gen_enabled())
6163		return;
 
 
6164
6165	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6166	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6167	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6168	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6169	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6170}
6171
6172/*
6173 * This is the main entry point to direct page reclaim.
6174 *
6175 * If a full scan of the inactive list fails to free enough memory then we
6176 * are "out of memory" and something needs to be killed.
6177 *
6178 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6179 * high - the zone may be full of dirty or under-writeback pages, which this
6180 * caller can't do much about.  We kick the writeback threads and take explicit
6181 * naps in the hope that some of these pages can be written.  But if the
6182 * allocating task holds filesystem locks which prevent writeout this might not
6183 * work, and the allocation attempt will fail.
6184 *
6185 * returns:	0, if no pages reclaimed
6186 * 		else, the number of pages reclaimed
6187 */
6188static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6189					  struct scan_control *sc)
6190{
6191	int initial_priority = sc->priority;
6192	pg_data_t *last_pgdat;
6193	struct zoneref *z;
6194	struct zone *zone;
6195retry:
6196	delayacct_freepages_start();
6197
6198	if (!cgroup_reclaim(sc))
6199		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6200
6201	do {
6202		if (!sc->proactive)
6203			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6204					sc->priority);
6205		sc->nr_scanned = 0;
6206		shrink_zones(zonelist, sc);
6207
6208		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6209			break;
6210
6211		if (sc->compaction_ready)
6212			break;
6213
6214		/*
6215		 * If we're getting trouble reclaiming, start doing
6216		 * writepage even in laptop mode.
6217		 */
6218		if (sc->priority < DEF_PRIORITY - 2)
6219			sc->may_writepage = 1;
6220	} while (--sc->priority >= 0);
6221
6222	last_pgdat = NULL;
6223	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6224					sc->nodemask) {
6225		if (zone->zone_pgdat == last_pgdat)
6226			continue;
6227		last_pgdat = zone->zone_pgdat;
6228
6229		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6230
6231		if (cgroup_reclaim(sc)) {
6232			struct lruvec *lruvec;
6233
6234			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6235						   zone->zone_pgdat);
6236			clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6237		}
6238	}
6239
6240	delayacct_freepages_end();
6241
6242	if (sc->nr_reclaimed)
6243		return sc->nr_reclaimed;
6244
6245	/* Aborted reclaim to try compaction? don't OOM, then */
6246	if (sc->compaction_ready)
6247		return 1;
6248
6249	/*
6250	 * We make inactive:active ratio decisions based on the node's
6251	 * composition of memory, but a restrictive reclaim_idx or a
6252	 * memory.low cgroup setting can exempt large amounts of
6253	 * memory from reclaim. Neither of which are very common, so
6254	 * instead of doing costly eligibility calculations of the
6255	 * entire cgroup subtree up front, we assume the estimates are
6256	 * good, and retry with forcible deactivation if that fails.
6257	 */
6258	if (sc->skipped_deactivate) {
6259		sc->priority = initial_priority;
6260		sc->force_deactivate = 1;
6261		sc->skipped_deactivate = 0;
6262		goto retry;
6263	}
6264
6265	/* Untapped cgroup reserves?  Don't OOM, retry. */
6266	if (sc->memcg_low_skipped) {
6267		sc->priority = initial_priority;
6268		sc->force_deactivate = 0;
6269		sc->memcg_low_reclaim = 1;
6270		sc->memcg_low_skipped = 0;
6271		goto retry;
6272	}
6273
6274	return 0;
6275}
6276
6277static bool allow_direct_reclaim(pg_data_t *pgdat)
6278{
6279	struct zone *zone;
6280	unsigned long pfmemalloc_reserve = 0;
6281	unsigned long free_pages = 0;
6282	int i;
6283	bool wmark_ok;
6284
6285	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6286		return true;
6287
6288	for (i = 0; i <= ZONE_NORMAL; i++) {
6289		zone = &pgdat->node_zones[i];
6290		if (!managed_zone(zone))
6291			continue;
6292
6293		if (!zone_reclaimable_pages(zone))
6294			continue;
6295
6296		pfmemalloc_reserve += min_wmark_pages(zone);
6297		free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6298	}
6299
6300	/* If there are no reserves (unexpected config) then do not throttle */
6301	if (!pfmemalloc_reserve)
6302		return true;
6303
6304	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6305
6306	/* kswapd must be awake if processes are being throttled */
6307	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6308		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6309			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6310
6311		wake_up_interruptible(&pgdat->kswapd_wait);
6312	}
6313
6314	return wmark_ok;
6315}
6316
6317/*
6318 * Throttle direct reclaimers if backing storage is backed by the network
6319 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6320 * depleted. kswapd will continue to make progress and wake the processes
6321 * when the low watermark is reached.
6322 *
6323 * Returns true if a fatal signal was delivered during throttling. If this
6324 * happens, the page allocator should not consider triggering the OOM killer.
6325 */
6326static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6327					nodemask_t *nodemask)
6328{
6329	struct zoneref *z;
6330	struct zone *zone;
6331	pg_data_t *pgdat = NULL;
6332
6333	/*
6334	 * Kernel threads should not be throttled as they may be indirectly
6335	 * responsible for cleaning pages necessary for reclaim to make forward
6336	 * progress. kjournald for example may enter direct reclaim while
6337	 * committing a transaction where throttling it could forcing other
6338	 * processes to block on log_wait_commit().
6339	 */
6340	if (current->flags & PF_KTHREAD)
6341		goto out;
6342
6343	/*
6344	 * If a fatal signal is pending, this process should not throttle.
6345	 * It should return quickly so it can exit and free its memory
6346	 */
6347	if (fatal_signal_pending(current))
6348		goto out;
6349
6350	/*
6351	 * Check if the pfmemalloc reserves are ok by finding the first node
6352	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6353	 * GFP_KERNEL will be required for allocating network buffers when
6354	 * swapping over the network so ZONE_HIGHMEM is unusable.
6355	 *
6356	 * Throttling is based on the first usable node and throttled processes
6357	 * wait on a queue until kswapd makes progress and wakes them. There
6358	 * is an affinity then between processes waking up and where reclaim
6359	 * progress has been made assuming the process wakes on the same node.
6360	 * More importantly, processes running on remote nodes will not compete
6361	 * for remote pfmemalloc reserves and processes on different nodes
6362	 * should make reasonable progress.
6363	 */
6364	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6365					gfp_zone(gfp_mask), nodemask) {
6366		if (zone_idx(zone) > ZONE_NORMAL)
6367			continue;
6368
6369		/* Throttle based on the first usable node */
6370		pgdat = zone->zone_pgdat;
6371		if (allow_direct_reclaim(pgdat))
6372			goto out;
6373		break;
6374	}
6375
6376	/* If no zone was usable by the allocation flags then do not throttle */
6377	if (!pgdat)
6378		goto out;
6379
6380	/* Account for the throttling */
6381	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6382
6383	/*
6384	 * If the caller cannot enter the filesystem, it's possible that it
6385	 * is due to the caller holding an FS lock or performing a journal
6386	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6387	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6388	 * blocked waiting on the same lock. Instead, throttle for up to a
6389	 * second before continuing.
6390	 */
6391	if (!(gfp_mask & __GFP_FS))
6392		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6393			allow_direct_reclaim(pgdat), HZ);
6394	else
6395		/* Throttle until kswapd wakes the process */
6396		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6397			allow_direct_reclaim(pgdat));
6398
 
 
 
 
 
 
 
 
6399	if (fatal_signal_pending(current))
6400		return true;
6401
6402out:
6403	return false;
6404}
6405
6406unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6407				gfp_t gfp_mask, nodemask_t *nodemask)
6408{
6409	unsigned long nr_reclaimed;
6410	struct scan_control sc = {
6411		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6412		.gfp_mask = current_gfp_context(gfp_mask),
6413		.reclaim_idx = gfp_zone(gfp_mask),
6414		.order = order,
6415		.nodemask = nodemask,
6416		.priority = DEF_PRIORITY,
6417		.may_writepage = !laptop_mode,
6418		.may_unmap = 1,
6419		.may_swap = 1,
6420	};
6421
6422	/*
6423	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6424	 * Confirm they are large enough for max values.
6425	 */
6426	BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6427	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6428	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6429
6430	/*
6431	 * Do not enter reclaim if fatal signal was delivered while throttled.
6432	 * 1 is returned so that the page allocator does not OOM kill at this
6433	 * point.
6434	 */
6435	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6436		return 1;
6437
6438	set_task_reclaim_state(current, &sc.reclaim_state);
6439	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6440
6441	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6442
6443	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6444	set_task_reclaim_state(current, NULL);
6445
6446	return nr_reclaimed;
6447}
6448
6449#ifdef CONFIG_MEMCG
6450
6451/* Only used by soft limit reclaim. Do not reuse for anything else. */
6452unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6453						gfp_t gfp_mask, bool noswap,
6454						pg_data_t *pgdat,
6455						unsigned long *nr_scanned)
6456{
6457	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6458	struct scan_control sc = {
6459		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6460		.target_mem_cgroup = memcg,
6461		.may_writepage = !laptop_mode,
6462		.may_unmap = 1,
6463		.reclaim_idx = MAX_NR_ZONES - 1,
6464		.may_swap = !noswap,
6465	};
 
6466
6467	WARN_ON_ONCE(!current->reclaim_state);
6468
6469	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6470			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6471
6472	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6473						      sc.gfp_mask);
6474
6475	/*
6476	 * NOTE: Although we can get the priority field, using it
6477	 * here is not a good idea, since it limits the pages we can scan.
6478	 * if we don't reclaim here, the shrink_node from balance_pgdat
6479	 * will pick up pages from other mem cgroup's as well. We hack
6480	 * the priority and make it zero.
6481	 */
6482	shrink_lruvec(lruvec, &sc);
6483
6484	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6485
6486	*nr_scanned = sc.nr_scanned;
6487
6488	return sc.nr_reclaimed;
6489}
6490
6491unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6492					   unsigned long nr_pages,
6493					   gfp_t gfp_mask,
6494					   unsigned int reclaim_options)
6495{
 
6496	unsigned long nr_reclaimed;
 
 
6497	unsigned int noreclaim_flag;
6498	struct scan_control sc = {
6499		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6500		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6501				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6502		.reclaim_idx = MAX_NR_ZONES - 1,
6503		.target_mem_cgroup = memcg,
6504		.priority = DEF_PRIORITY,
6505		.may_writepage = !laptop_mode,
6506		.may_unmap = 1,
6507		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6508		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6509	};
 
 
6510	/*
6511	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6512	 * equal pressure on all the nodes. This is based on the assumption that
6513	 * the reclaim does not bail out early.
6514	 */
6515	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
 
 
6516
6517	set_task_reclaim_state(current, &sc.reclaim_state);
6518	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
 
 
6519	noreclaim_flag = memalloc_noreclaim_save();
6520
6521	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6522
6523	memalloc_noreclaim_restore(noreclaim_flag);
 
 
6524	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6525	set_task_reclaim_state(current, NULL);
6526
6527	return nr_reclaimed;
6528}
6529#endif
6530
6531static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
 
6532{
6533	struct mem_cgroup *memcg;
6534	struct lruvec *lruvec;
6535
6536	if (lru_gen_enabled()) {
6537		lru_gen_age_node(pgdat, sc);
6538		return;
6539	}
6540
6541	if (!can_age_anon_pages(pgdat, sc))
6542		return;
 
6543
6544	lruvec = mem_cgroup_lruvec(NULL, pgdat);
6545	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6546		return;
6547
6548	memcg = mem_cgroup_iter(NULL, NULL, NULL);
6549	do {
6550		lruvec = mem_cgroup_lruvec(memcg, pgdat);
6551		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6552				   sc, LRU_ACTIVE_ANON);
6553		memcg = mem_cgroup_iter(NULL, memcg, NULL);
6554	} while (memcg);
6555}
6556
6557static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6558{
6559	int i;
6560	struct zone *zone;
6561
6562	/*
6563	 * Check for watermark boosts top-down as the higher zones
6564	 * are more likely to be boosted. Both watermarks and boosts
6565	 * should not be checked at the same time as reclaim would
6566	 * start prematurely when there is no boosting and a lower
6567	 * zone is balanced.
6568	 */
6569	for (i = highest_zoneidx; i >= 0; i--) {
6570		zone = pgdat->node_zones + i;
6571		if (!managed_zone(zone))
6572			continue;
6573
6574		if (zone->watermark_boost)
6575			return true;
6576	}
6577
6578	return false;
6579}
6580
6581/*
6582 * Returns true if there is an eligible zone balanced for the request order
6583 * and highest_zoneidx
6584 */
6585static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6586{
6587	int i;
6588	unsigned long mark = -1;
6589	struct zone *zone;
6590
6591	/*
6592	 * Check watermarks bottom-up as lower zones are more likely to
6593	 * meet watermarks.
6594	 */
6595	for (i = 0; i <= highest_zoneidx; i++) {
6596		zone = pgdat->node_zones + i;
6597
6598		if (!managed_zone(zone))
6599			continue;
6600
6601		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6602			mark = wmark_pages(zone, WMARK_PROMO);
6603		else
6604			mark = high_wmark_pages(zone);
6605		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6606			return true;
6607	}
6608
6609	/*
6610	 * If a node has no managed zone within highest_zoneidx, it does not
6611	 * need balancing by definition. This can happen if a zone-restricted
6612	 * allocation tries to wake a remote kswapd.
6613	 */
6614	if (mark == -1)
6615		return true;
6616
6617	return false;
6618}
6619
6620/* Clear pgdat state for congested, dirty or under writeback. */
6621static void clear_pgdat_congested(pg_data_t *pgdat)
6622{
6623	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6624
6625	clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6626	clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6627	clear_bit(PGDAT_DIRTY, &pgdat->flags);
6628	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6629}
6630
6631/*
6632 * Prepare kswapd for sleeping. This verifies that there are no processes
6633 * waiting in throttle_direct_reclaim() and that watermarks have been met.
6634 *
6635 * Returns true if kswapd is ready to sleep
6636 */
6637static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6638				int highest_zoneidx)
6639{
6640	/*
6641	 * The throttled processes are normally woken up in balance_pgdat() as
6642	 * soon as allow_direct_reclaim() is true. But there is a potential
6643	 * race between when kswapd checks the watermarks and a process gets
6644	 * throttled. There is also a potential race if processes get
6645	 * throttled, kswapd wakes, a large process exits thereby balancing the
6646	 * zones, which causes kswapd to exit balance_pgdat() before reaching
6647	 * the wake up checks. If kswapd is going to sleep, no process should
6648	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6649	 * the wake up is premature, processes will wake kswapd and get
6650	 * throttled again. The difference from wake ups in balance_pgdat() is
6651	 * that here we are under prepare_to_wait().
6652	 */
6653	if (waitqueue_active(&pgdat->pfmemalloc_wait))
6654		wake_up_all(&pgdat->pfmemalloc_wait);
6655
6656	/* Hopeless node, leave it to direct reclaim */
6657	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6658		return true;
6659
6660	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6661		clear_pgdat_congested(pgdat);
6662		return true;
6663	}
6664
6665	return false;
6666}
6667
6668/*
6669 * kswapd shrinks a node of pages that are at or below the highest usable
6670 * zone that is currently unbalanced.
6671 *
6672 * Returns true if kswapd scanned at least the requested number of pages to
6673 * reclaim or if the lack of progress was due to pages under writeback.
6674 * This is used to determine if the scanning priority needs to be raised.
6675 */
6676static bool kswapd_shrink_node(pg_data_t *pgdat,
6677			       struct scan_control *sc)
6678{
6679	struct zone *zone;
6680	int z;
6681
6682	/* Reclaim a number of pages proportional to the number of zones */
6683	sc->nr_to_reclaim = 0;
6684	for (z = 0; z <= sc->reclaim_idx; z++) {
6685		zone = pgdat->node_zones + z;
6686		if (!managed_zone(zone))
6687			continue;
6688
6689		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6690	}
6691
6692	/*
6693	 * Historically care was taken to put equal pressure on all zones but
6694	 * now pressure is applied based on node LRU order.
6695	 */
6696	shrink_node(pgdat, sc);
6697
6698	/*
6699	 * Fragmentation may mean that the system cannot be rebalanced for
6700	 * high-order allocations. If twice the allocation size has been
6701	 * reclaimed then recheck watermarks only at order-0 to prevent
6702	 * excessive reclaim. Assume that a process requested a high-order
6703	 * can direct reclaim/compact.
6704	 */
6705	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6706		sc->order = 0;
6707
6708	return sc->nr_scanned >= sc->nr_to_reclaim;
6709}
6710
6711/* Page allocator PCP high watermark is lowered if reclaim is active. */
6712static inline void
6713update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6714{
6715	int i;
6716	struct zone *zone;
6717
6718	for (i = 0; i <= highest_zoneidx; i++) {
6719		zone = pgdat->node_zones + i;
6720
6721		if (!managed_zone(zone))
6722			continue;
6723
6724		if (active)
6725			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6726		else
6727			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6728	}
6729}
6730
6731static inline void
6732set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6733{
6734	update_reclaim_active(pgdat, highest_zoneidx, true);
6735}
6736
6737static inline void
6738clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6739{
6740	update_reclaim_active(pgdat, highest_zoneidx, false);
6741}
6742
6743/*
6744 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6745 * that are eligible for use by the caller until at least one zone is
6746 * balanced.
6747 *
6748 * Returns the order kswapd finished reclaiming at.
6749 *
6750 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
6751 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6752 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6753 * or lower is eligible for reclaim until at least one usable zone is
6754 * balanced.
6755 */
6756static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6757{
6758	int i;
6759	unsigned long nr_soft_reclaimed;
6760	unsigned long nr_soft_scanned;
6761	unsigned long pflags;
6762	unsigned long nr_boost_reclaim;
6763	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6764	bool boosted;
6765	struct zone *zone;
6766	struct scan_control sc = {
6767		.gfp_mask = GFP_KERNEL,
6768		.order = order,
6769		.may_unmap = 1,
6770	};
6771
6772	set_task_reclaim_state(current, &sc.reclaim_state);
6773	psi_memstall_enter(&pflags);
6774	__fs_reclaim_acquire(_THIS_IP_);
6775
6776	count_vm_event(PAGEOUTRUN);
6777
6778	/*
6779	 * Account for the reclaim boost. Note that the zone boost is left in
6780	 * place so that parallel allocations that are near the watermark will
6781	 * stall or direct reclaim until kswapd is finished.
6782	 */
6783	nr_boost_reclaim = 0;
6784	for (i = 0; i <= highest_zoneidx; i++) {
6785		zone = pgdat->node_zones + i;
6786		if (!managed_zone(zone))
6787			continue;
6788
6789		nr_boost_reclaim += zone->watermark_boost;
6790		zone_boosts[i] = zone->watermark_boost;
6791	}
6792	boosted = nr_boost_reclaim;
6793
6794restart:
6795	set_reclaim_active(pgdat, highest_zoneidx);
6796	sc.priority = DEF_PRIORITY;
6797	do {
6798		unsigned long nr_reclaimed = sc.nr_reclaimed;
6799		bool raise_priority = true;
6800		bool balanced;
6801		bool ret;
6802
6803		sc.reclaim_idx = highest_zoneidx;
6804
6805		/*
6806		 * If the number of buffer_heads exceeds the maximum allowed
6807		 * then consider reclaiming from all zones. This has a dual
6808		 * purpose -- on 64-bit systems it is expected that
6809		 * buffer_heads are stripped during active rotation. On 32-bit
6810		 * systems, highmem pages can pin lowmem memory and shrinking
6811		 * buffers can relieve lowmem pressure. Reclaim may still not
6812		 * go ahead if all eligible zones for the original allocation
6813		 * request are balanced to avoid excessive reclaim from kswapd.
6814		 */
6815		if (buffer_heads_over_limit) {
6816			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
6817				zone = pgdat->node_zones + i;
6818				if (!managed_zone(zone))
6819					continue;
6820
6821				sc.reclaim_idx = i;
6822				break;
6823			}
6824		}
6825
6826		/*
6827		 * If the pgdat is imbalanced then ignore boosting and preserve
6828		 * the watermarks for a later time and restart. Note that the
6829		 * zone watermarks will be still reset at the end of balancing
6830		 * on the grounds that the normal reclaim should be enough to
6831		 * re-evaluate if boosting is required when kswapd next wakes.
6832		 */
6833		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
6834		if (!balanced && nr_boost_reclaim) {
6835			nr_boost_reclaim = 0;
6836			goto restart;
6837		}
6838
6839		/*
6840		 * If boosting is not active then only reclaim if there are no
6841		 * eligible zones. Note that sc.reclaim_idx is not used as
6842		 * buffer_heads_over_limit may have adjusted it.
6843		 */
6844		if (!nr_boost_reclaim && balanced)
6845			goto out;
6846
6847		/* Limit the priority of boosting to avoid reclaim writeback */
6848		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
6849			raise_priority = false;
6850
6851		/*
6852		 * Do not writeback or swap pages for boosted reclaim. The
6853		 * intent is to relieve pressure not issue sub-optimal IO
6854		 * from reclaim context. If no pages are reclaimed, the
6855		 * reclaim will be aborted.
6856		 */
6857		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
6858		sc.may_swap = !nr_boost_reclaim;
6859
6860		/*
6861		 * Do some background aging, to give pages a chance to be
6862		 * referenced before reclaiming. All pages are rotated
6863		 * regardless of classzone as this is about consistent aging.
 
6864		 */
6865		kswapd_age_node(pgdat, &sc);
6866
6867		/*
6868		 * If we're getting trouble reclaiming, start doing writepage
6869		 * even in laptop mode.
6870		 */
6871		if (sc.priority < DEF_PRIORITY - 2)
6872			sc.may_writepage = 1;
6873
6874		/* Call soft limit reclaim before calling shrink_node. */
6875		sc.nr_scanned = 0;
6876		nr_soft_scanned = 0;
6877		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
6878						sc.gfp_mask, &nr_soft_scanned);
6879		sc.nr_reclaimed += nr_soft_reclaimed;
6880
6881		/*
6882		 * There should be no need to raise the scanning priority if
6883		 * enough pages are already being scanned that that high
6884		 * watermark would be met at 100% efficiency.
6885		 */
6886		if (kswapd_shrink_node(pgdat, &sc))
6887			raise_priority = false;
6888
6889		/*
6890		 * If the low watermark is met there is no need for processes
6891		 * to be throttled on pfmemalloc_wait as they should not be
6892		 * able to safely make forward progress. Wake them
6893		 */
6894		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
6895				allow_direct_reclaim(pgdat))
6896			wake_up_all(&pgdat->pfmemalloc_wait);
6897
6898		/* Check if kswapd should be suspending */
6899		__fs_reclaim_release(_THIS_IP_);
6900		ret = try_to_freeze();
6901		__fs_reclaim_acquire(_THIS_IP_);
6902		if (ret || kthread_should_stop())
6903			break;
6904
6905		/*
6906		 * Raise priority if scanning rate is too low or there was no
6907		 * progress in reclaiming pages
6908		 */
6909		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
6910		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
6911
6912		/*
6913		 * If reclaim made no progress for a boost, stop reclaim as
6914		 * IO cannot be queued and it could be an infinite loop in
6915		 * extreme circumstances.
6916		 */
6917		if (nr_boost_reclaim && !nr_reclaimed)
6918			break;
6919
6920		if (raise_priority || !nr_reclaimed)
6921			sc.priority--;
6922	} while (sc.priority >= 1);
6923
6924	if (!sc.nr_reclaimed)
6925		pgdat->kswapd_failures++;
6926
6927out:
6928	clear_reclaim_active(pgdat, highest_zoneidx);
6929
6930	/* If reclaim was boosted, account for the reclaim done in this pass */
6931	if (boosted) {
6932		unsigned long flags;
6933
6934		for (i = 0; i <= highest_zoneidx; i++) {
6935			if (!zone_boosts[i])
6936				continue;
6937
6938			/* Increments are under the zone lock */
6939			zone = pgdat->node_zones + i;
6940			spin_lock_irqsave(&zone->lock, flags);
6941			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
6942			spin_unlock_irqrestore(&zone->lock, flags);
6943		}
6944
6945		/*
6946		 * As there is now likely space, wakeup kcompact to defragment
6947		 * pageblocks.
6948		 */
6949		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
6950	}
6951
6952	snapshot_refaults(NULL, pgdat);
6953	__fs_reclaim_release(_THIS_IP_);
6954	psi_memstall_leave(&pflags);
6955	set_task_reclaim_state(current, NULL);
6956
6957	/*
6958	 * Return the order kswapd stopped reclaiming at as
6959	 * prepare_kswapd_sleep() takes it into account. If another caller
6960	 * entered the allocator slow path while kswapd was awake, order will
6961	 * remain at the higher level.
6962	 */
6963	return sc.order;
6964}
6965
6966/*
6967 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
6968 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
6969 * not a valid index then either kswapd runs for first time or kswapd couldn't
6970 * sleep after previous reclaim attempt (node is still unbalanced). In that
6971 * case return the zone index of the previous kswapd reclaim cycle.
6972 */
6973static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
6974					   enum zone_type prev_highest_zoneidx)
6975{
6976	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
6977
6978	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
6979}
6980
6981static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
6982				unsigned int highest_zoneidx)
6983{
6984	long remaining = 0;
6985	DEFINE_WAIT(wait);
6986
6987	if (freezing(current) || kthread_should_stop())
6988		return;
6989
6990	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
6991
6992	/*
6993	 * Try to sleep for a short interval. Note that kcompactd will only be
6994	 * woken if it is possible to sleep for a short interval. This is
6995	 * deliberate on the assumption that if reclaim cannot keep an
6996	 * eligible zone balanced that it's also unlikely that compaction will
6997	 * succeed.
6998	 */
6999	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7000		/*
7001		 * Compaction records what page blocks it recently failed to
7002		 * isolate pages from and skips them in the future scanning.
7003		 * When kswapd is going to sleep, it is reasonable to assume
7004		 * that pages and compaction may succeed so reset the cache.
7005		 */
7006		reset_isolation_suitable(pgdat);
7007
7008		/*
7009		 * We have freed the memory, now we should compact it to make
7010		 * allocation of the requested order possible.
7011		 */
7012		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7013
7014		remaining = schedule_timeout(HZ/10);
7015
7016		/*
7017		 * If woken prematurely then reset kswapd_highest_zoneidx and
7018		 * order. The values will either be from a wakeup request or
7019		 * the previous request that slept prematurely.
7020		 */
7021		if (remaining) {
7022			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7023					kswapd_highest_zoneidx(pgdat,
7024							highest_zoneidx));
7025
7026			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7027				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7028		}
7029
7030		finish_wait(&pgdat->kswapd_wait, &wait);
7031		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7032	}
7033
7034	/*
7035	 * After a short sleep, check if it was a premature sleep. If not, then
7036	 * go fully to sleep until explicitly woken up.
7037	 */
7038	if (!remaining &&
7039	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7040		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7041
7042		/*
7043		 * vmstat counters are not perfectly accurate and the estimated
7044		 * value for counters such as NR_FREE_PAGES can deviate from the
7045		 * true value by nr_online_cpus * threshold. To avoid the zone
7046		 * watermarks being breached while under pressure, we reduce the
7047		 * per-cpu vmstat threshold while kswapd is awake and restore
7048		 * them before going back to sleep.
7049		 */
7050		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7051
7052		if (!kthread_should_stop())
7053			schedule();
7054
7055		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7056	} else {
7057		if (remaining)
7058			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7059		else
7060			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7061	}
7062	finish_wait(&pgdat->kswapd_wait, &wait);
7063}
7064
7065/*
7066 * The background pageout daemon, started as a kernel thread
7067 * from the init process.
7068 *
7069 * This basically trickles out pages so that we have _some_
7070 * free memory available even if there is no other activity
7071 * that frees anything up. This is needed for things like routing
7072 * etc, where we otherwise might have all activity going on in
7073 * asynchronous contexts that cannot page things out.
7074 *
7075 * If there are applications that are active memory-allocators
7076 * (most normal use), this basically shouldn't matter.
7077 */
7078static int kswapd(void *p)
7079{
7080	unsigned int alloc_order, reclaim_order;
7081	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7082	pg_data_t *pgdat = (pg_data_t *)p;
7083	struct task_struct *tsk = current;
7084	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7085
7086	if (!cpumask_empty(cpumask))
7087		set_cpus_allowed_ptr(tsk, cpumask);
7088
7089	/*
7090	 * Tell the memory management that we're a "memory allocator",
7091	 * and that if we need more memory we should get access to it
7092	 * regardless (see "__alloc_pages()"). "kswapd" should
7093	 * never get caught in the normal page freeing logic.
7094	 *
7095	 * (Kswapd normally doesn't need memory anyway, but sometimes
7096	 * you need a small amount of memory in order to be able to
7097	 * page out something else, and this flag essentially protects
7098	 * us from recursively trying to free more memory as we're
7099	 * trying to free the first piece of memory in the first place).
7100	 */
7101	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7102	set_freezable();
7103
7104	WRITE_ONCE(pgdat->kswapd_order, 0);
7105	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7106	atomic_set(&pgdat->nr_writeback_throttled, 0);
7107	for ( ; ; ) {
7108		bool ret;
7109
7110		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7111		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7112							highest_zoneidx);
7113
7114kswapd_try_sleep:
7115		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7116					highest_zoneidx);
7117
7118		/* Read the new order and highest_zoneidx */
7119		alloc_order = READ_ONCE(pgdat->kswapd_order);
7120		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7121							highest_zoneidx);
7122		WRITE_ONCE(pgdat->kswapd_order, 0);
7123		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7124
7125		ret = try_to_freeze();
7126		if (kthread_should_stop())
7127			break;
7128
7129		/*
7130		 * We can speed up thawing tasks if we don't call balance_pgdat
7131		 * after returning from the refrigerator
7132		 */
7133		if (ret)
7134			continue;
7135
7136		/*
7137		 * Reclaim begins at the requested order but if a high-order
7138		 * reclaim fails then kswapd falls back to reclaiming for
7139		 * order-0. If that happens, kswapd will consider sleeping
7140		 * for the order it finished reclaiming at (reclaim_order)
7141		 * but kcompactd is woken to compact for the original
7142		 * request (alloc_order).
7143		 */
7144		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7145						alloc_order);
7146		reclaim_order = balance_pgdat(pgdat, alloc_order,
7147						highest_zoneidx);
7148		if (reclaim_order < alloc_order)
7149			goto kswapd_try_sleep;
7150	}
7151
7152	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7153
7154	return 0;
7155}
7156
7157/*
7158 * A zone is low on free memory or too fragmented for high-order memory.  If
7159 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7160 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7161 * has failed or is not needed, still wake up kcompactd if only compaction is
7162 * needed.
7163 */
7164void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7165		   enum zone_type highest_zoneidx)
7166{
7167	pg_data_t *pgdat;
7168	enum zone_type curr_idx;
7169
7170	if (!managed_zone(zone))
7171		return;
7172
7173	if (!cpuset_zone_allowed(zone, gfp_flags))
7174		return;
7175
7176	pgdat = zone->zone_pgdat;
7177	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7178
7179	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7180		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7181
7182	if (READ_ONCE(pgdat->kswapd_order) < order)
7183		WRITE_ONCE(pgdat->kswapd_order, order);
7184
 
 
 
 
 
 
7185	if (!waitqueue_active(&pgdat->kswapd_wait))
7186		return;
7187
7188	/* Hopeless node, leave it to direct reclaim if possible */
7189	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7190	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7191	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7192		/*
7193		 * There may be plenty of free memory available, but it's too
7194		 * fragmented for high-order allocations.  Wake up kcompactd
7195		 * and rely on compaction_suitable() to determine if it's
7196		 * needed.  If it fails, it will defer subsequent attempts to
7197		 * ratelimit its work.
7198		 */
7199		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7200			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7201		return;
7202	}
7203
7204	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7205				      gfp_flags);
7206	wake_up_interruptible(&pgdat->kswapd_wait);
7207}
7208
7209#ifdef CONFIG_HIBERNATION
7210/*
7211 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7212 * freed pages.
7213 *
7214 * Rather than trying to age LRUs the aim is to preserve the overall
7215 * LRU order by reclaiming preferentially
7216 * inactive > active > active referenced > active mapped
7217 */
7218unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7219{
7220	struct scan_control sc = {
7221		.nr_to_reclaim = nr_to_reclaim,
7222		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7223		.reclaim_idx = MAX_NR_ZONES - 1,
7224		.priority = DEF_PRIORITY,
7225		.may_writepage = 1,
7226		.may_unmap = 1,
7227		.may_swap = 1,
7228		.hibernation_mode = 1,
7229	};
7230	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7231	unsigned long nr_reclaimed;
7232	unsigned int noreclaim_flag;
7233
7234	fs_reclaim_acquire(sc.gfp_mask);
7235	noreclaim_flag = memalloc_noreclaim_save();
7236	set_task_reclaim_state(current, &sc.reclaim_state);
7237
7238	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7239
7240	set_task_reclaim_state(current, NULL);
7241	memalloc_noreclaim_restore(noreclaim_flag);
7242	fs_reclaim_release(sc.gfp_mask);
7243
7244	return nr_reclaimed;
7245}
7246#endif /* CONFIG_HIBERNATION */
7247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7248/*
7249 * This kswapd start function will be called by init and node-hot-add.
 
7250 */
7251void __meminit kswapd_run(int nid)
7252{
7253	pg_data_t *pgdat = NODE_DATA(nid);
 
 
 
 
7254
7255	pgdat_kswapd_lock(pgdat);
7256	if (!pgdat->kswapd) {
7257		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7258		if (IS_ERR(pgdat->kswapd)) {
7259			/* failure at boot is fatal */
7260			pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7261				   nid, PTR_ERR(pgdat->kswapd));
7262			BUG_ON(system_state < SYSTEM_RUNNING);
7263			pgdat->kswapd = NULL;
7264		}
7265	}
7266	pgdat_kswapd_unlock(pgdat);
7267}
7268
7269/*
7270 * Called by memory hotplug when all memory in a node is offlined.  Caller must
7271 * be holding mem_hotplug_begin/done().
7272 */
7273void __meminit kswapd_stop(int nid)
7274{
7275	pg_data_t *pgdat = NODE_DATA(nid);
7276	struct task_struct *kswapd;
7277
7278	pgdat_kswapd_lock(pgdat);
7279	kswapd = pgdat->kswapd;
7280	if (kswapd) {
7281		kthread_stop(kswapd);
7282		pgdat->kswapd = NULL;
7283	}
7284	pgdat_kswapd_unlock(pgdat);
7285}
7286
7287static int __init kswapd_init(void)
7288{
7289	int nid;
7290
7291	swap_setup();
7292	for_each_node_state(nid, N_MEMORY)
7293 		kswapd_run(nid);
 
 
 
 
7294	return 0;
7295}
7296
7297module_init(kswapd_init)
7298
7299#ifdef CONFIG_NUMA
7300/*
7301 * Node reclaim mode
7302 *
7303 * If non-zero call node_reclaim when the number of free pages falls below
7304 * the watermarks.
7305 */
7306int node_reclaim_mode __read_mostly;
7307
 
 
 
 
 
7308/*
7309 * Priority for NODE_RECLAIM. This determines the fraction of pages
7310 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7311 * a zone.
7312 */
7313#define NODE_RECLAIM_PRIORITY 4
7314
7315/*
7316 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7317 * occur.
7318 */
7319int sysctl_min_unmapped_ratio = 1;
7320
7321/*
7322 * If the number of slab pages in a zone grows beyond this percentage then
7323 * slab reclaim needs to occur.
7324 */
7325int sysctl_min_slab_ratio = 5;
7326
7327static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7328{
7329	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7330	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7331		node_page_state(pgdat, NR_ACTIVE_FILE);
7332
7333	/*
7334	 * It's possible for there to be more file mapped pages than
7335	 * accounted for by the pages on the file LRU lists because
7336	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7337	 */
7338	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7339}
7340
7341/* Work out how many page cache pages we can reclaim in this reclaim_mode */
7342static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7343{
7344	unsigned long nr_pagecache_reclaimable;
7345	unsigned long delta = 0;
7346
7347	/*
7348	 * If RECLAIM_UNMAP is set, then all file pages are considered
7349	 * potentially reclaimable. Otherwise, we have to worry about
7350	 * pages like swapcache and node_unmapped_file_pages() provides
7351	 * a better estimate
7352	 */
7353	if (node_reclaim_mode & RECLAIM_UNMAP)
7354		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7355	else
7356		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7357
7358	/* If we can't clean pages, remove dirty pages from consideration */
7359	if (!(node_reclaim_mode & RECLAIM_WRITE))
7360		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7361
7362	/* Watch for any possible underflows due to delta */
7363	if (unlikely(delta > nr_pagecache_reclaimable))
7364		delta = nr_pagecache_reclaimable;
7365
7366	return nr_pagecache_reclaimable - delta;
7367}
7368
7369/*
7370 * Try to free up some pages from this node through reclaim.
7371 */
7372static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7373{
7374	/* Minimum pages needed in order to stay on node */
7375	const unsigned long nr_pages = 1 << order;
7376	struct task_struct *p = current;
7377	unsigned int noreclaim_flag;
7378	struct scan_control sc = {
7379		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7380		.gfp_mask = current_gfp_context(gfp_mask),
7381		.order = order,
7382		.priority = NODE_RECLAIM_PRIORITY,
7383		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7384		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7385		.may_swap = 1,
7386		.reclaim_idx = gfp_zone(gfp_mask),
7387	};
7388	unsigned long pflags;
7389
7390	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7391					   sc.gfp_mask);
7392
7393	cond_resched();
7394	psi_memstall_enter(&pflags);
7395	delayacct_freepages_start();
7396	fs_reclaim_acquire(sc.gfp_mask);
7397	/*
7398	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
 
 
7399	 */
7400	noreclaim_flag = memalloc_noreclaim_save();
 
7401	set_task_reclaim_state(p, &sc.reclaim_state);
7402
7403	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7404	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7405		/*
7406		 * Free memory by calling shrink node with increasing
7407		 * priorities until we have enough memory freed.
7408		 */
7409		do {
7410			shrink_node(pgdat, &sc);
7411		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7412	}
7413
7414	set_task_reclaim_state(p, NULL);
 
7415	memalloc_noreclaim_restore(noreclaim_flag);
7416	fs_reclaim_release(sc.gfp_mask);
7417	psi_memstall_leave(&pflags);
7418	delayacct_freepages_end();
7419
7420	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7421
7422	return sc.nr_reclaimed >= nr_pages;
7423}
7424
7425int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7426{
7427	int ret;
7428
7429	/*
7430	 * Node reclaim reclaims unmapped file backed pages and
7431	 * slab pages if we are over the defined limits.
7432	 *
7433	 * A small portion of unmapped file backed pages is needed for
7434	 * file I/O otherwise pages read by file I/O will be immediately
7435	 * thrown out if the node is overallocated. So we do not reclaim
7436	 * if less than a specified percentage of the node is used by
7437	 * unmapped file backed pages.
7438	 */
7439	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7440	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7441	    pgdat->min_slab_pages)
7442		return NODE_RECLAIM_FULL;
7443
7444	/*
7445	 * Do not scan if the allocation should not be delayed.
7446	 */
7447	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7448		return NODE_RECLAIM_NOSCAN;
7449
7450	/*
7451	 * Only run node reclaim on the local node or on nodes that do not
7452	 * have associated processors. This will favor the local processor
7453	 * over remote processors and spread off node memory allocations
7454	 * as wide as possible.
7455	 */
7456	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7457		return NODE_RECLAIM_NOSCAN;
7458
7459	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7460		return NODE_RECLAIM_NOSCAN;
7461
7462	ret = __node_reclaim(pgdat, gfp_mask, order);
7463	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7464
7465	if (!ret)
7466		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7467
7468	return ret;
7469}
7470#endif
7471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7472/**
7473 * check_move_unevictable_folios - Move evictable folios to appropriate zone
7474 * lru list
7475 * @fbatch: Batch of lru folios to check.
7476 *
7477 * Checks folios for evictability, if an evictable folio is in the unevictable
7478 * lru list, moves it to the appropriate evictable lru list. This function
7479 * should be only used for lru folios.
7480 */
7481void check_move_unevictable_folios(struct folio_batch *fbatch)
7482{
7483	struct lruvec *lruvec = NULL;
 
7484	int pgscanned = 0;
7485	int pgrescued = 0;
7486	int i;
7487
7488	for (i = 0; i < fbatch->nr; i++) {
7489		struct folio *folio = fbatch->folios[i];
7490		int nr_pages = folio_nr_pages(folio);
7491
7492		pgscanned += nr_pages;
 
 
 
 
 
 
 
7493
7494		/* block memcg migration while the folio moves between lrus */
7495		if (!folio_test_clear_lru(folio))
7496			continue;
7497
7498		lruvec = folio_lruvec_relock_irq(folio, lruvec);
7499		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7500			lruvec_del_folio(lruvec, folio);
7501			folio_clear_unevictable(folio);
7502			lruvec_add_folio(lruvec, folio);
7503			pgrescued += nr_pages;
 
 
7504		}
7505		folio_set_lru(folio);
7506	}
7507
7508	if (lruvec) {
7509		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7510		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7511		unlock_page_lruvec_irq(lruvec);
7512	} else if (pgscanned) {
7513		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7514	}
7515}
7516EXPORT_SYMBOL_GPL(check_move_unevictable_folios);