Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/mm/vmscan.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *
   7 *  Swap reorganised 29.12.95, Stephen Tweedie.
   8 *  kswapd added: 7.1.96  sct
   9 *  Removed kswapd_ctl limits, and swap out as many pages as needed
  10 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  11 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  12 *  Multiqueue VM started 5.8.00, Rik van Riel.
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/mm.h>
  18#include <linux/sched/mm.h>
  19#include <linux/module.h>
  20#include <linux/gfp.h>
  21#include <linux/kernel_stat.h>
  22#include <linux/swap.h>
  23#include <linux/pagemap.h>
  24#include <linux/init.h>
  25#include <linux/highmem.h>
  26#include <linux/vmpressure.h>
  27#include <linux/vmstat.h>
  28#include <linux/file.h>
  29#include <linux/writeback.h>
  30#include <linux/blkdev.h>
  31#include <linux/buffer_head.h>	/* for try_to_release_page(),
  32					buffer_heads_over_limit */
  33#include <linux/mm_inline.h>
  34#include <linux/backing-dev.h>
  35#include <linux/rmap.h>
  36#include <linux/topology.h>
  37#include <linux/cpu.h>
  38#include <linux/cpuset.h>
  39#include <linux/compaction.h>
  40#include <linux/notifier.h>
  41#include <linux/rwsem.h>
  42#include <linux/delay.h>
  43#include <linux/kthread.h>
  44#include <linux/freezer.h>
  45#include <linux/memcontrol.h>
 
  46#include <linux/delayacct.h>
  47#include <linux/sysctl.h>
 
  48#include <linux/oom.h>
  49#include <linux/pagevec.h>
  50#include <linux/prefetch.h>
  51#include <linux/printk.h>
  52#include <linux/dax.h>
  53#include <linux/psi.h>
 
 
 
 
 
 
 
  54
  55#include <asm/tlbflush.h>
  56#include <asm/div64.h>
  57
  58#include <linux/swapops.h>
  59#include <linux/balloon_compaction.h>
 
  60
  61#include "internal.h"
 
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/vmscan.h>
  65
  66struct scan_control {
  67	/* How many pages shrink_list() should reclaim */
  68	unsigned long nr_to_reclaim;
  69
  70	/*
  71	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
  72	 * are scanned.
  73	 */
  74	nodemask_t	*nodemask;
  75
  76	/*
  77	 * The memory cgroup that hit its limit and as a result is the
  78	 * primary target of this reclaim invocation.
  79	 */
  80	struct mem_cgroup *target_mem_cgroup;
  81
 
 
 
 
 
 
 
 
 
 
 
 
 
  82	/* Writepage batching in laptop mode; RECLAIM_WRITE */
  83	unsigned int may_writepage:1;
  84
  85	/* Can mapped pages be reclaimed? */
  86	unsigned int may_unmap:1;
  87
  88	/* Can pages be swapped as part of reclaim? */
  89	unsigned int may_swap:1;
  90
 
 
 
 
 
 
 
 
 
  91	/*
  92	 * Cgroups are not reclaimed below their configured memory.low,
  93	 * unless we threaten to OOM. If any cgroups are skipped due to
  94	 * memory.low and nothing was reclaimed, go back for memory.low.
 
 
 
  95	 */
  96	unsigned int memcg_low_reclaim:1;
  97	unsigned int memcg_low_skipped:1;
  98
  99	unsigned int hibernation_mode:1;
 100
 101	/* One of the zones is ready for compaction */
 102	unsigned int compaction_ready:1;
 103
 
 
 
 
 
 
 
 
 
 104	/* Allocation order */
 105	s8 order;
 106
 107	/* Scan (total_size >> priority) pages at once */
 108	s8 priority;
 109
 110	/* The highest zone to isolate pages for reclaim from */
 111	s8 reclaim_idx;
 112
 113	/* This context's GFP mask */
 114	gfp_t gfp_mask;
 115
 116	/* Incremented by the number of inactive pages that were scanned */
 117	unsigned long nr_scanned;
 118
 119	/* Number of pages freed so far during a call to shrink_zones() */
 120	unsigned long nr_reclaimed;
 121
 122	struct {
 123		unsigned int dirty;
 124		unsigned int unqueued_dirty;
 125		unsigned int congested;
 126		unsigned int writeback;
 127		unsigned int immediate;
 128		unsigned int file_taken;
 129		unsigned int taken;
 130	} nr;
 131
 132	/* for recording the reclaimed slab by now */
 133	struct reclaim_state reclaim_state;
 134};
 135
 136#ifdef ARCH_HAS_PREFETCH
 137#define prefetch_prev_lru_page(_page, _base, _field)			\
 138	do {								\
 139		if ((_page)->lru.prev != _base) {			\
 140			struct page *prev;				\
 141									\
 142			prev = lru_to_page(&(_page->lru));		\
 143			prefetch(&prev->_field);			\
 144		}							\
 145	} while (0)
 146#else
 147#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 148#endif
 149
 150#ifdef ARCH_HAS_PREFETCHW
 151#define prefetchw_prev_lru_page(_page, _base, _field)			\
 152	do {								\
 153		if ((_page)->lru.prev != _base) {			\
 154			struct page *prev;				\
 155									\
 156			prev = lru_to_page(&(_page->lru));		\
 157			prefetchw(&prev->_field);			\
 158		}							\
 159	} while (0)
 160#else
 161#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 162#endif
 163
 164/*
 165 * From 0 .. 100.  Higher means more swappy.
 166 */
 167int vm_swappiness = 60;
 168/*
 169 * The total number of pages which are beyond the high watermark within all
 170 * zones.
 171 */
 172unsigned long vm_total_pages;
 173
 174static void set_task_reclaim_state(struct task_struct *task,
 175				   struct reclaim_state *rs)
 176{
 177	/* Check for an overwrite */
 178	WARN_ON_ONCE(rs && task->reclaim_state);
 179
 180	/* Check for the nulling of an already-nulled member */
 181	WARN_ON_ONCE(!rs && !task->reclaim_state);
 182
 183	task->reclaim_state = rs;
 184}
 185
 186static LIST_HEAD(shrinker_list);
 187static DECLARE_RWSEM(shrinker_rwsem);
 188
 189#ifdef CONFIG_MEMCG
 190/*
 191 * We allow subsystems to populate their shrinker-related
 192 * LRU lists before register_shrinker_prepared() is called
 193 * for the shrinker, since we don't want to impose
 194 * restrictions on their internal registration order.
 195 * In this case shrink_slab_memcg() may find corresponding
 196 * bit is set in the shrinkers map.
 197 *
 198 * This value is used by the function to detect registering
 199 * shrinkers and to skip do_shrink_slab() calls for them.
 200 */
 201#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
 202
 203static DEFINE_IDR(shrinker_idr);
 204static int shrinker_nr_max;
 205
 206static int prealloc_memcg_shrinker(struct shrinker *shrinker)
 207{
 208	int id, ret = -ENOMEM;
 209
 210	down_write(&shrinker_rwsem);
 211	/* This may call shrinker, so it must use down_read_trylock() */
 212	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
 213	if (id < 0)
 214		goto unlock;
 215
 216	if (id >= shrinker_nr_max) {
 217		if (memcg_expand_shrinker_maps(id)) {
 218			idr_remove(&shrinker_idr, id);
 219			goto unlock;
 220		}
 221
 222		shrinker_nr_max = id + 1;
 223	}
 224	shrinker->id = id;
 225	ret = 0;
 226unlock:
 227	up_write(&shrinker_rwsem);
 228	return ret;
 229}
 230
 231static void unregister_memcg_shrinker(struct shrinker *shrinker)
 
 232{
 233	int id = shrinker->id;
 234
 235	BUG_ON(id < 0);
 236
 237	down_write(&shrinker_rwsem);
 238	idr_remove(&shrinker_idr, id);
 239	up_write(&shrinker_rwsem);
 240}
 241
 242static bool global_reclaim(struct scan_control *sc)
 
 
 
 
 243{
 244	return !sc->target_mem_cgroup;
 245}
 246
 247/**
 248 * sane_reclaim - is the usual dirty throttling mechanism operational?
 249 * @sc: scan_control in question
 250 *
 251 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 252 * completely broken with the legacy memcg and direct stalling in
 253 * shrink_page_list() is used for throttling instead, which lacks all the
 254 * niceties such as fairness, adaptive pausing, bandwidth proportional
 255 * allocation and configurability.
 256 *
 257 * This function tests whether the vmscan currently in progress can assume
 258 * that the normal dirty throttling mechanism is operational.
 259 */
 260static bool sane_reclaim(struct scan_control *sc)
 261{
 262	struct mem_cgroup *memcg = sc->target_mem_cgroup;
 263
 264	if (!memcg)
 265		return true;
 266#ifdef CONFIG_CGROUP_WRITEBACK
 267	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 268		return true;
 269#endif
 270	return false;
 271}
 272
 273static void set_memcg_congestion(pg_data_t *pgdat,
 274				struct mem_cgroup *memcg,
 275				bool congested)
 276{
 277	struct mem_cgroup_per_node *mn;
 278
 279	if (!memcg)
 280		return;
 281
 282	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
 283	WRITE_ONCE(mn->congested, congested);
 284}
 285
 286static bool memcg_congested(pg_data_t *pgdat,
 287			struct mem_cgroup *memcg)
 288{
 289	struct mem_cgroup_per_node *mn;
 290
 291	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
 292	return READ_ONCE(mn->congested);
 293
 294}
 295#else
 296static int prealloc_memcg_shrinker(struct shrinker *shrinker)
 297{
 298	return 0;
 299}
 300
 301static void unregister_memcg_shrinker(struct shrinker *shrinker)
 302{
 
 303}
 
 304
 305static bool global_reclaim(struct scan_control *sc)
 
 306{
 307	return true;
 
 
 
 
 
 
 308}
 309
 310static bool sane_reclaim(struct scan_control *sc)
 
 
 
 
 311{
 312	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 313}
 314
 315static inline void set_memcg_congestion(struct pglist_data *pgdat,
 316				struct mem_cgroup *memcg, bool congested)
 317{
 
 
 
 
 
 
 
 
 318}
 319
 320static inline bool memcg_congested(struct pglist_data *pgdat,
 321			struct mem_cgroup *memcg)
 
 322{
 323	return false;
 
 
 
 
 
 
 
 
 
 
 
 324
 
 
 
 
 
 
 325}
 326#endif
 327
 328/*
 329 * This misses isolated pages which are not accounted for to save counters.
 330 * As the data only determines if reclaim or compaction continues, it is
 331 * not expected that isolated pages will be a dominating factor.
 332 */
 333unsigned long zone_reclaimable_pages(struct zone *zone)
 334{
 335	unsigned long nr;
 336
 337	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
 338		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
 339	if (get_nr_swap_pages() > 0)
 340		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
 341			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
 342
 343	return nr;
 344}
 345
 346/**
 347 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 348 * @lruvec: lru vector
 349 * @lru: lru to use
 350 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 351 */
 352unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
 
 353{
 354	unsigned long lru_size = 0;
 355	int zid;
 356
 357	if (!mem_cgroup_disabled()) {
 358		for (zid = 0; zid < MAX_NR_ZONES; zid++)
 359			lru_size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 360	} else
 361		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
 362
 363	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
 364		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
 365		unsigned long size;
 366
 367		if (!managed_zone(zone))
 368			continue;
 369
 370		if (!mem_cgroup_disabled())
 371			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 372		else
 373			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
 374				       NR_ZONE_LRU_BASE + lru);
 375		lru_size -= min(size, lru_size);
 376	}
 377
 378	return lru_size;
 379
 380}
 381
 382/*
 383 * Add a shrinker callback to be called from the vm.
 384 */
 385int prealloc_shrinker(struct shrinker *shrinker)
 386{
 387	unsigned int size = sizeof(*shrinker->nr_deferred);
 388
 389	if (shrinker->flags & SHRINKER_NUMA_AWARE)
 390		size *= nr_node_ids;
 391
 392	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
 393	if (!shrinker->nr_deferred)
 394		return -ENOMEM;
 395
 396	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
 397		if (prealloc_memcg_shrinker(shrinker))
 398			goto free_deferred;
 399	}
 400
 401	return 0;
 
 
 
 402
 403free_deferred:
 404	kfree(shrinker->nr_deferred);
 405	shrinker->nr_deferred = NULL;
 406	return -ENOMEM;
 407}
 408
 409void free_prealloced_shrinker(struct shrinker *shrinker)
 410{
 411	if (!shrinker->nr_deferred)
 412		return;
 
 413
 414	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 415		unregister_memcg_shrinker(shrinker);
 
 
 
 416
 417	kfree(shrinker->nr_deferred);
 418	shrinker->nr_deferred = NULL;
 
 419}
 420
 421void register_shrinker_prepared(struct shrinker *shrinker)
 422{
 423	down_write(&shrinker_rwsem);
 424	list_add_tail(&shrinker->list, &shrinker_list);
 425#ifdef CONFIG_MEMCG_KMEM
 426	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 427		idr_replace(&shrinker_idr, shrinker, shrinker->id);
 428#endif
 429	up_write(&shrinker_rwsem);
 
 
 
 
 
 
 
 430}
 431
 432int register_shrinker(struct shrinker *shrinker)
 433{
 434	int err = prealloc_shrinker(shrinker);
 435
 436	if (err)
 437		return err;
 438	register_shrinker_prepared(shrinker);
 439	return 0;
 
 440}
 441EXPORT_SYMBOL(register_shrinker);
 442
 443/*
 444 * Remove one
 
 
 
 
 
 
 
 
 
 445 */
 446void unregister_shrinker(struct shrinker *shrinker)
 
 447{
 448	if (!shrinker->nr_deferred)
 449		return;
 450	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 451		unregister_memcg_shrinker(shrinker);
 452	down_write(&shrinker_rwsem);
 453	list_del(&shrinker->list);
 454	up_write(&shrinker_rwsem);
 455	kfree(shrinker->nr_deferred);
 456	shrinker->nr_deferred = NULL;
 457}
 458EXPORT_SYMBOL(unregister_shrinker);
 459
 460#define SHRINK_BATCH 128
 461
 462static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
 463				    struct shrinker *shrinker, int priority)
 464{
 465	unsigned long freed = 0;
 466	unsigned long long delta;
 467	long total_scan;
 468	long freeable;
 469	long nr;
 470	long new_nr;
 471	int nid = shrinkctl->nid;
 472	long batch_size = shrinker->batch ? shrinker->batch
 473					  : SHRINK_BATCH;
 474	long scanned = 0, next_deferred;
 475
 476	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
 477		nid = 0;
 478
 479	freeable = shrinker->count_objects(shrinker, shrinkctl);
 480	if (freeable == 0 || freeable == SHRINK_EMPTY)
 481		return freeable;
 482
 483	/*
 484	 * copy the current shrinker scan count into a local variable
 485	 * and zero it so that other concurrent shrinker invocations
 486	 * don't also do this scanning work.
 487	 */
 488	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
 489
 490	total_scan = nr;
 491	if (shrinker->seeks) {
 492		delta = freeable >> priority;
 493		delta *= 4;
 494		do_div(delta, shrinker->seeks);
 495	} else {
 496		/*
 497		 * These objects don't require any IO to create. Trim
 498		 * them aggressively under memory pressure to keep
 499		 * them from causing refetches in the IO caches.
 500		 */
 501		delta = freeable / 2;
 502	}
 503
 504	total_scan += delta;
 505	if (total_scan < 0) {
 506		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
 507		       shrinker->scan_objects, total_scan);
 508		total_scan = freeable;
 509		next_deferred = nr;
 510	} else
 511		next_deferred = total_scan;
 512
 513	/*
 514	 * We need to avoid excessive windup on filesystem shrinkers
 515	 * due to large numbers of GFP_NOFS allocations causing the
 516	 * shrinkers to return -1 all the time. This results in a large
 517	 * nr being built up so when a shrink that can do some work
 518	 * comes along it empties the entire cache due to nr >>>
 519	 * freeable. This is bad for sustaining a working set in
 520	 * memory.
 521	 *
 522	 * Hence only allow the shrinker to scan the entire cache when
 523	 * a large delta change is calculated directly.
 524	 */
 525	if (delta < freeable / 4)
 526		total_scan = min(total_scan, freeable / 2);
 527
 528	/*
 529	 * Avoid risking looping forever due to too large nr value:
 530	 * never try to free more than twice the estimate number of
 531	 * freeable entries.
 532	 */
 533	if (total_scan > freeable * 2)
 534		total_scan = freeable * 2;
 535
 536	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
 537				   freeable, delta, total_scan, priority);
 538
 539	/*
 540	 * Normally, we should not scan less than batch_size objects in one
 541	 * pass to avoid too frequent shrinker calls, but if the slab has less
 542	 * than batch_size objects in total and we are really tight on memory,
 543	 * we will try to reclaim all available objects, otherwise we can end
 544	 * up failing allocations although there are plenty of reclaimable
 545	 * objects spread over several slabs with usage less than the
 546	 * batch_size.
 547	 *
 548	 * We detect the "tight on memory" situations by looking at the total
 549	 * number of objects we want to scan (total_scan). If it is greater
 550	 * than the total number of objects on slab (freeable), we must be
 551	 * scanning at high prio and therefore should try to reclaim as much as
 552	 * possible.
 553	 */
 554	while (total_scan >= batch_size ||
 555	       total_scan >= freeable) {
 556		unsigned long ret;
 557		unsigned long nr_to_scan = min(batch_size, total_scan);
 558
 559		shrinkctl->nr_to_scan = nr_to_scan;
 560		shrinkctl->nr_scanned = nr_to_scan;
 561		ret = shrinker->scan_objects(shrinker, shrinkctl);
 562		if (ret == SHRINK_STOP)
 563			break;
 564		freed += ret;
 565
 566		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
 567		total_scan -= shrinkctl->nr_scanned;
 568		scanned += shrinkctl->nr_scanned;
 569
 570		cond_resched();
 
 
 571	}
 
 
 572
 573	if (next_deferred >= scanned)
 574		next_deferred -= scanned;
 575	else
 576		next_deferred = 0;
 577	/*
 578	 * move the unused scan count back into the shrinker in a
 579	 * manner that handles concurrent updates. If we exhausted the
 580	 * scan, there is no need to do an update.
 581	 */
 582	if (next_deferred > 0)
 583		new_nr = atomic_long_add_return(next_deferred,
 584						&shrinker->nr_deferred[nid]);
 585	else
 586		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
 587
 588	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
 589	return freed;
 590}
 591
 592#ifdef CONFIG_MEMCG
 593static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
 594			struct mem_cgroup *memcg, int priority)
 595{
 596	struct memcg_shrinker_map *map;
 597	unsigned long ret, freed = 0;
 598	int i;
 599
 600	if (!mem_cgroup_online(memcg))
 601		return 0;
 602
 603	if (!down_read_trylock(&shrinker_rwsem))
 604		return 0;
 605
 606	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
 607					true);
 608	if (unlikely(!map))
 609		goto unlock;
 610
 611	for_each_set_bit(i, map->map, shrinker_nr_max) {
 612		struct shrink_control sc = {
 613			.gfp_mask = gfp_mask,
 614			.nid = nid,
 615			.memcg = memcg,
 616		};
 617		struct shrinker *shrinker;
 618
 619		shrinker = idr_find(&shrinker_idr, i);
 620		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
 621			if (!shrinker)
 622				clear_bit(i, map->map);
 623			continue;
 624		}
 625
 626		/* Call non-slab shrinkers even though kmem is disabled */
 627		if (!memcg_kmem_enabled() &&
 628		    !(shrinker->flags & SHRINKER_NONSLAB))
 629			continue;
 630
 631		ret = do_shrink_slab(&sc, shrinker, priority);
 632		if (ret == SHRINK_EMPTY) {
 633			clear_bit(i, map->map);
 634			/*
 635			 * After the shrinker reported that it had no objects to
 636			 * free, but before we cleared the corresponding bit in
 637			 * the memcg shrinker map, a new object might have been
 638			 * added. To make sure, we have the bit set in this
 639			 * case, we invoke the shrinker one more time and reset
 640			 * the bit if it reports that it is not empty anymore.
 641			 * The memory barrier here pairs with the barrier in
 642			 * memcg_set_shrinker_bit():
 643			 *
 644			 * list_lru_add()     shrink_slab_memcg()
 645			 *   list_add_tail()    clear_bit()
 646			 *   <MB>               <MB>
 647			 *   set_bit()          do_shrink_slab()
 648			 */
 649			smp_mb__after_atomic();
 650			ret = do_shrink_slab(&sc, shrinker, priority);
 651			if (ret == SHRINK_EMPTY)
 652				ret = 0;
 653			else
 654				memcg_set_shrinker_bit(memcg, nid, i);
 655		}
 656		freed += ret;
 657
 658		if (rwsem_is_contended(&shrinker_rwsem)) {
 659			freed = freed ? : 1;
 660			break;
 661		}
 
 
 
 
 
 662	}
 663unlock:
 664	up_read(&shrinker_rwsem);
 665	return freed;
 666}
 667#else /* CONFIG_MEMCG */
 668static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
 669			struct mem_cgroup *memcg, int priority)
 670{
 671	return 0;
 672}
 673#endif /* CONFIG_MEMCG */
 674
 675/**
 676 * shrink_slab - shrink slab caches
 677 * @gfp_mask: allocation context
 678 * @nid: node whose slab caches to target
 679 * @memcg: memory cgroup whose slab caches to target
 680 * @priority: the reclaim priority
 681 *
 682 * Call the shrink functions to age shrinkable caches.
 683 *
 684 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 685 * unaware shrinkers will receive a node id of 0 instead.
 686 *
 687 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 688 * are called only if it is the root cgroup.
 689 *
 690 * @priority is sc->priority, we take the number of objects and >> by priority
 691 * in order to get the scan target.
 692 *
 693 * Returns the number of reclaimed slab objects.
 694 */
 695static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
 696				 struct mem_cgroup *memcg,
 697				 int priority)
 698{
 699	unsigned long ret, freed = 0;
 700	struct shrinker *shrinker;
 701
 702	/*
 703	 * The root memcg might be allocated even though memcg is disabled
 704	 * via "cgroup_disable=memory" boot parameter.  This could make
 705	 * mem_cgroup_is_root() return false, then just run memcg slab
 706	 * shrink, but skip global shrink.  This may result in premature
 707	 * oom.
 708	 */
 709	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
 710		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
 
 
 
 
 
 
 
 
 
 711
 712	if (!down_read_trylock(&shrinker_rwsem))
 713		goto out;
 
 
 
 
 
 
 714
 715	list_for_each_entry(shrinker, &shrinker_list, list) {
 716		struct shrink_control sc = {
 717			.gfp_mask = gfp_mask,
 718			.nid = nid,
 719			.memcg = memcg,
 720		};
 721
 722		ret = do_shrink_slab(&sc, shrinker, priority);
 723		if (ret == SHRINK_EMPTY)
 724			ret = 0;
 725		freed += ret;
 726		/*
 727		 * Bail out if someone want to register a new shrinker to
 728		 * prevent the regsitration from being stalled for long periods
 729		 * by parallel ongoing shrinking.
 730		 */
 731		if (rwsem_is_contended(&shrinker_rwsem)) {
 732			freed = freed ? : 1;
 733			break;
 734		}
 735	}
 736
 737	up_read(&shrinker_rwsem);
 738out:
 739	cond_resched();
 740	return freed;
 741}
 742
 743void drop_slab_node(int nid)
 744{
 745	unsigned long freed;
 746
 747	do {
 748		struct mem_cgroup *memcg = NULL;
 749
 750		freed = 0;
 751		memcg = mem_cgroup_iter(NULL, NULL, NULL);
 752		do {
 753			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
 754		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 755	} while (freed > 10);
 756}
 757
 758void drop_slab(void)
 
 
 
 
 
 
 759{
 760	int nid;
 761
 762	for_each_online_node(nid)
 763		drop_slab_node(nid);
 764}
 765
 766static inline int is_page_cache_freeable(struct page *page)
 767{
 768	/*
 769	 * A freeable page cache page is referenced only by the caller
 770	 * that isolated the page, the page cache and optional buffer
 771	 * heads at page->private.
 
 
 772	 */
 773	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
 774		HPAGE_PMD_NR : 1;
 775	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
 776}
 777
 778static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
 779{
 780	if (current->flags & PF_SWAPWRITE)
 781		return 1;
 782	if (!inode_write_congested(inode))
 783		return 1;
 784	if (inode_to_bdi(inode) == current->backing_dev_info)
 785		return 1;
 786	return 0;
 787}
 788
 789/*
 790 * We detected a synchronous write error writing a page out.  Probably
 791 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 792 * fsync(), msync() or close().
 793 *
 794 * The tricky part is that after writepage we cannot touch the mapping: nothing
 795 * prevents it from being freed up.  But we have a ref on the page and once
 796 * that page is locked, the mapping is pinned.
 797 *
 798 * We're allowed to run sleeping lock_page() here because we know the caller has
 799 * __GFP_FS.
 800 */
 801static void handle_write_error(struct address_space *mapping,
 802				struct page *page, int error)
 803{
 804	lock_page(page);
 805	if (page_mapping(page) == mapping)
 806		mapping_set_error(mapping, error);
 807	unlock_page(page);
 808}
 809
 810/* possible outcome of pageout() */
 811typedef enum {
 812	/* failed to write page out, page is locked */
 813	PAGE_KEEP,
 814	/* move page to the active list, page is locked */
 815	PAGE_ACTIVATE,
 816	/* page has been sent to the disk successfully, page is unlocked */
 817	PAGE_SUCCESS,
 818	/* page is clean and locked */
 819	PAGE_CLEAN,
 820} pageout_t;
 821
 822/*
 823 * pageout is called by shrink_page_list() for each dirty page.
 824 * Calls ->writepage().
 825 */
 826static pageout_t pageout(struct page *page, struct address_space *mapping,
 827			 struct scan_control *sc)
 828{
 829	/*
 830	 * If the page is dirty, only perform writeback if that write
 831	 * will be non-blocking.  To prevent this allocation from being
 832	 * stalled by pagecache activity.  But note that there may be
 833	 * stalls if we need to run get_block().  We could test
 834	 * PagePrivate for that.
 835	 *
 836	 * If this process is currently in __generic_file_write_iter() against
 837	 * this page's queue, we can perform writeback even if that
 838	 * will block.
 839	 *
 840	 * If the page is swapcache, write it back even if that would
 841	 * block, for some throttling. This happens by accident, because
 842	 * swap_backing_dev_info is bust: it doesn't reflect the
 843	 * congestion state of the swapdevs.  Easy to fix, if needed.
 844	 */
 845	if (!is_page_cache_freeable(page))
 846		return PAGE_KEEP;
 847	if (!mapping) {
 848		/*
 849		 * Some data journaling orphaned pages can have
 850		 * page->mapping == NULL while being dirty with clean buffers.
 851		 */
 852		if (page_has_private(page)) {
 853			if (try_to_free_buffers(page)) {
 854				ClearPageDirty(page);
 855				pr_info("%s: orphaned page\n", __func__);
 856				return PAGE_CLEAN;
 857			}
 858		}
 859		return PAGE_KEEP;
 860	}
 861	if (mapping->a_ops->writepage == NULL)
 862		return PAGE_ACTIVATE;
 863	if (!may_write_to_inode(mapping->host, sc))
 864		return PAGE_KEEP;
 865
 866	if (clear_page_dirty_for_io(page)) {
 867		int res;
 868		struct writeback_control wbc = {
 869			.sync_mode = WB_SYNC_NONE,
 870			.nr_to_write = SWAP_CLUSTER_MAX,
 871			.range_start = 0,
 872			.range_end = LLONG_MAX,
 873			.for_reclaim = 1,
 
 874		};
 875
 876		SetPageReclaim(page);
 877		res = mapping->a_ops->writepage(page, &wbc);
 878		if (res < 0)
 879			handle_write_error(mapping, page, res);
 880		if (res == AOP_WRITEPAGE_ACTIVATE) {
 881			ClearPageReclaim(page);
 882			return PAGE_ACTIVATE;
 883		}
 884
 885		if (!PageWriteback(page)) {
 886			/* synchronous write or broken a_ops? */
 887			ClearPageReclaim(page);
 888		}
 889		trace_mm_vmscan_writepage(page);
 890		inc_node_page_state(page, NR_VMSCAN_WRITE);
 891		return PAGE_SUCCESS;
 892	}
 893
 894	return PAGE_CLEAN;
 895}
 896
 897/*
 898 * Same as remove_mapping, but if the page is removed from the mapping, it
 899 * gets returned with a refcount of 0.
 900 */
 901static int __remove_mapping(struct address_space *mapping, struct page *page,
 902			    bool reclaimed)
 903{
 904	unsigned long flags;
 905	int refcount;
 
 906
 907	BUG_ON(!PageLocked(page));
 908	BUG_ON(mapping != page_mapping(page));
 909
 910	xa_lock_irqsave(&mapping->i_pages, flags);
 
 
 911	/*
 912	 * The non racy check for a busy page.
 913	 *
 914	 * Must be careful with the order of the tests. When someone has
 915	 * a ref to the page, it may be possible that they dirty it then
 916	 * drop the reference. So if PageDirty is tested before page_count
 917	 * here, then the following race may occur:
 918	 *
 919	 * get_user_pages(&page);
 920	 * [user mapping goes away]
 921	 * write_to(page);
 922	 *				!PageDirty(page)    [good]
 923	 * SetPageDirty(page);
 924	 * put_page(page);
 925	 *				!page_count(page)   [good, discard it]
 926	 *
 927	 * [oops, our write_to data is lost]
 928	 *
 929	 * Reversing the order of the tests ensures such a situation cannot
 930	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 931	 * load is not satisfied before that of page->_refcount.
 932	 *
 933	 * Note that if SetPageDirty is always performed via set_page_dirty,
 934	 * and thus under the i_pages lock, then this ordering is not required.
 935	 */
 936	refcount = 1 + compound_nr(page);
 937	if (!page_ref_freeze(page, refcount))
 938		goto cannot_free;
 939	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
 940	if (unlikely(PageDirty(page))) {
 941		page_ref_unfreeze(page, refcount);
 942		goto cannot_free;
 943	}
 944
 945	if (PageSwapCache(page)) {
 946		swp_entry_t swap = { .val = page_private(page) };
 947		mem_cgroup_swapout(page, swap);
 948		__delete_from_swap_cache(page, swap);
 949		xa_unlock_irqrestore(&mapping->i_pages, flags);
 950		put_swap_page(page, swap);
 
 
 
 951	} else {
 952		void (*freepage)(struct page *);
 953		void *shadow = NULL;
 954
 955		freepage = mapping->a_ops->freepage;
 956		/*
 957		 * Remember a shadow entry for reclaimed file cache in
 958		 * order to detect refaults, thus thrashing, later on.
 959		 *
 960		 * But don't store shadows in an address space that is
 961		 * already exiting.  This is not just an optizimation,
 962		 * inode reclaim needs to empty out the radix tree or
 963		 * the nodes are lost.  Don't plant shadows behind its
 964		 * back.
 965		 *
 966		 * We also don't store shadows for DAX mappings because the
 967		 * only page cache pages found in these are zero pages
 968		 * covering holes, and because we don't want to mix DAX
 969		 * exceptional entries and shadow exceptional entries in the
 970		 * same address_space.
 971		 */
 972		if (reclaimed && page_is_file_cache(page) &&
 973		    !mapping_exiting(mapping) && !dax_mapping(mapping))
 974			shadow = workingset_eviction(page);
 975		__delete_from_page_cache(page, shadow);
 976		xa_unlock_irqrestore(&mapping->i_pages, flags);
 
 
 
 977
 978		if (freepage != NULL)
 979			freepage(page);
 980	}
 981
 982	return 1;
 983
 984cannot_free:
 985	xa_unlock_irqrestore(&mapping->i_pages, flags);
 
 
 986	return 0;
 987}
 988
 989/*
 990 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 991 * someone else has a ref on the page, abort and return 0.  If it was
 992 * successfully detached, return 1.  Assumes the caller has a single ref on
 993 * this page.
 
 
 
 
 
 
 994 */
 995int remove_mapping(struct address_space *mapping, struct page *page)
 996{
 997	if (__remove_mapping(mapping, page, false)) {
 998		/*
 999		 * Unfreezing the refcount with 1 rather than 2 effectively
1000		 * drops the pagecache ref for us without requiring another
1001		 * atomic operation.
1002		 */
1003		page_ref_unfreeze(page, 1);
1004		return 1;
1005	}
1006	return 0;
1007}
1008
1009/**
1010 * putback_lru_page - put previously isolated page onto appropriate LRU list
1011 * @page: page to be put back to appropriate lru list
1012 *
1013 * Add previously isolated @page to appropriate LRU list.
1014 * Page may still be unevictable for other reasons.
1015 *
1016 * lru_lock must not be held, interrupts must be enabled.
1017 */
1018void putback_lru_page(struct page *page)
1019{
1020	lru_cache_add(page);
1021	put_page(page);		/* drop ref from isolate */
1022}
1023
1024enum page_references {
1025	PAGEREF_RECLAIM,
1026	PAGEREF_RECLAIM_CLEAN,
1027	PAGEREF_KEEP,
1028	PAGEREF_ACTIVATE,
1029};
1030
1031static enum page_references page_check_references(struct page *page,
1032						  struct scan_control *sc)
1033{
1034	int referenced_ptes, referenced_page;
1035	unsigned long vm_flags;
1036
1037	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1038					  &vm_flags);
1039	referenced_page = TestClearPageReferenced(page);
1040
1041	/*
1042	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1043	 * move the page to the unevictable list.
1044	 */
1045	if (vm_flags & VM_LOCKED)
1046		return PAGEREF_RECLAIM;
 
 
 
 
1047
1048	if (referenced_ptes) {
1049		if (PageSwapBacked(page))
1050			return PAGEREF_ACTIVATE;
1051		/*
1052		 * All mapped pages start out with page table
1053		 * references from the instantiating fault, so we need
1054		 * to look twice if a mapped file page is used more
1055		 * than once.
1056		 *
1057		 * Mark it and spare it for another trip around the
1058		 * inactive list.  Another page table reference will
1059		 * lead to its activation.
1060		 *
1061		 * Note: the mark is set for activated pages as well
1062		 * so that recently deactivated but used pages are
1063		 * quickly recovered.
1064		 */
1065		SetPageReferenced(page);
1066
1067		if (referenced_page || referenced_ptes > 1)
1068			return PAGEREF_ACTIVATE;
1069
1070		/*
1071		 * Activate file-backed executable pages after first usage.
1072		 */
1073		if (vm_flags & VM_EXEC)
1074			return PAGEREF_ACTIVATE;
1075
1076		return PAGEREF_KEEP;
1077	}
1078
1079	/* Reclaim if clean, defer dirty pages to writeback */
1080	if (referenced_page && !PageSwapBacked(page))
1081		return PAGEREF_RECLAIM_CLEAN;
1082
1083	return PAGEREF_RECLAIM;
1084}
1085
1086/* Check if a page is dirty or under writeback */
1087static void page_check_dirty_writeback(struct page *page,
1088				       bool *dirty, bool *writeback)
1089{
1090	struct address_space *mapping;
1091
1092	/*
1093	 * Anonymous pages are not handled by flushers and must be written
1094	 * from reclaim context. Do not stall reclaim based on them
 
 
 
1095	 */
1096	if (!page_is_file_cache(page) ||
1097	    (PageAnon(page) && !PageSwapBacked(page))) {
1098		*dirty = false;
1099		*writeback = false;
1100		return;
1101	}
1102
1103	/* By default assume that the page flags are accurate */
1104	*dirty = PageDirty(page);
1105	*writeback = PageWriteback(page);
1106
1107	/* Verify dirty/writeback state if the filesystem supports it */
1108	if (!page_has_private(page))
1109		return;
1110
1111	mapping = page_mapping(page);
1112	if (mapping && mapping->a_ops->is_dirty_writeback)
1113		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1114}
1115
1116/*
1117 * shrink_page_list() returns the number of reclaimed pages
 
1118 */
1119static unsigned long shrink_page_list(struct list_head *page_list,
1120				      struct pglist_data *pgdat,
1121				      struct scan_control *sc,
1122				      enum ttu_flags ttu_flags,
1123				      struct reclaim_stat *stat,
1124				      bool ignore_references)
1125{
1126	LIST_HEAD(ret_pages);
1127	LIST_HEAD(free_pages);
1128	unsigned nr_reclaimed = 0;
1129	unsigned pgactivate = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1131	memset(stat, 0, sizeof(*stat));
1132	cond_resched();
 
1133
1134	while (!list_empty(page_list)) {
 
1135		struct address_space *mapping;
1136		struct page *page;
1137		int may_enter_fs;
1138		enum page_references references = PAGEREF_RECLAIM;
1139		bool dirty, writeback;
1140		unsigned int nr_pages;
1141
1142		cond_resched();
1143
1144		page = lru_to_page(page_list);
1145		list_del(&page->lru);
1146
1147		if (!trylock_page(page))
1148			goto keep;
1149
1150		VM_BUG_ON_PAGE(PageActive(page), page);
1151
1152		nr_pages = compound_nr(page);
1153
1154		/* Account the number of base pages even though THP */
1155		sc->nr_scanned += nr_pages;
1156
1157		if (unlikely(!page_evictable(page)))
1158			goto activate_locked;
1159
1160		if (!sc->may_unmap && page_mapped(page))
1161			goto keep_locked;
1162
1163		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1164			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
 
 
1165
1166		/*
1167		 * The number of dirty pages determines if a node is marked
1168		 * reclaim_congested which affects wait_iff_congested. kswapd
1169		 * will stall and start writing pages if the tail of the LRU
1170		 * is all dirty unqueued pages.
1171		 */
1172		page_check_dirty_writeback(page, &dirty, &writeback);
1173		if (dirty || writeback)
1174			stat->nr_dirty++;
1175
1176		if (dirty && !writeback)
1177			stat->nr_unqueued_dirty++;
1178
1179		/*
1180		 * Treat this page as congested if the underlying BDI is or if
1181		 * pages are cycling through the LRU so quickly that the
1182		 * pages marked for immediate reclaim are making it to the
1183		 * end of the LRU a second time.
1184		 */
1185		mapping = page_mapping(page);
1186		if (((dirty || writeback) && mapping &&
1187		     inode_write_congested(mapping->host)) ||
1188		    (writeback && PageReclaim(page)))
1189			stat->nr_congested++;
1190
1191		/*
1192		 * If a page at the tail of the LRU is under writeback, there
1193		 * are three cases to consider.
1194		 *
1195		 * 1) If reclaim is encountering an excessive number of pages
1196		 *    under writeback and this page is both under writeback and
1197		 *    PageReclaim then it indicates that pages are being queued
1198		 *    for IO but are being recycled through the LRU before the
1199		 *    IO can complete. Waiting on the page itself risks an
1200		 *    indefinite stall if it is impossible to writeback the
1201		 *    page due to IO error or disconnected storage so instead
1202		 *    note that the LRU is being scanned too quickly and the
1203		 *    caller can stall after page list has been processed.
 
 
1204		 *
1205		 * 2) Global or new memcg reclaim encounters a page that is
1206		 *    not marked for immediate reclaim, or the caller does not
1207		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1208		 *    not to fs). In this case mark the page for immediate
1209		 *    reclaim and continue scanning.
1210		 *
1211		 *    Require may_enter_fs because we would wait on fs, which
1212		 *    may not have submitted IO yet. And the loop driver might
1213		 *    enter reclaim, and deadlock if it waits on a page for
1214		 *    which it is needed to do the write (loop masks off
1215		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1216		 *    would probably show more reasons.
1217		 *
1218		 * 3) Legacy memcg encounters a page that is already marked
1219		 *    PageReclaim. memcg does not have any dirty pages
1220		 *    throttling so we could easily OOM just because too many
1221		 *    pages are in writeback and there is nothing else to
1222		 *    reclaim. Wait for the writeback to complete.
1223		 *
1224		 * In cases 1) and 2) we activate the pages to get them out of
1225		 * the way while we continue scanning for clean pages on the
1226		 * inactive list and refilling from the active list. The
1227		 * observation here is that waiting for disk writes is more
1228		 * expensive than potentially causing reloads down the line.
1229		 * Since they're marked for immediate reclaim, they won't put
1230		 * memory pressure on the cache working set any longer than it
1231		 * takes to write them to disk.
1232		 */
1233		if (PageWriteback(page)) {
1234			/* Case 1 above */
1235			if (current_is_kswapd() &&
1236			    PageReclaim(page) &&
1237			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1238				stat->nr_immediate++;
1239				goto activate_locked;
1240
1241			/* Case 2 above */
1242			} else if (sane_reclaim(sc) ||
1243			    !PageReclaim(page) || !may_enter_fs) {
 
1244				/*
1245				 * This is slightly racy - end_page_writeback()
1246				 * might have just cleared PageReclaim, then
1247				 * setting PageReclaim here end up interpreted
1248				 * as PageReadahead - but that does not matter
1249				 * enough to care.  What we do want is for this
1250				 * page to have PageReclaim set next time memcg
1251				 * reclaim reaches the tests above, so it will
1252				 * then wait_on_page_writeback() to avoid OOM;
1253				 * and it's also appropriate in global reclaim.
 
 
 
1254				 */
1255				SetPageReclaim(page);
1256				stat->nr_writeback++;
1257				goto activate_locked;
1258
1259			/* Case 3 above */
1260			} else {
1261				unlock_page(page);
1262				wait_on_page_writeback(page);
1263				/* then go back and try same page again */
1264				list_add_tail(&page->lru, page_list);
1265				continue;
1266			}
1267		}
1268
1269		if (!ignore_references)
1270			references = page_check_references(page, sc);
1271
1272		switch (references) {
1273		case PAGEREF_ACTIVATE:
1274			goto activate_locked;
1275		case PAGEREF_KEEP:
1276			stat->nr_ref_keep += nr_pages;
1277			goto keep_locked;
1278		case PAGEREF_RECLAIM:
1279		case PAGEREF_RECLAIM_CLEAN:
1280			; /* try to reclaim the page below */
 
 
 
 
 
 
 
 
 
 
 
1281		}
1282
1283		/*
1284		 * Anonymous process memory has backing store?
1285		 * Try to allocate it some swap space here.
1286		 * Lazyfree page could be freed directly
1287		 */
1288		if (PageAnon(page) && PageSwapBacked(page)) {
1289			if (!PageSwapCache(page)) {
1290				if (!(sc->gfp_mask & __GFP_IO))
1291					goto keep_locked;
1292				if (PageTransHuge(page)) {
1293					/* cannot split THP, skip it */
1294					if (!can_split_huge_page(page, NULL))
 
 
1295						goto activate_locked;
1296					/*
1297					 * Split pages without a PMD map right
1298					 * away. Chances are some or all of the
1299					 * tail pages can be freed without IO.
1300					 */
1301					if (!compound_mapcount(page) &&
1302					    split_huge_page_to_list(page,
1303								    page_list))
1304						goto activate_locked;
1305				}
1306				if (!add_to_swap(page)) {
1307					if (!PageTransHuge(page))
1308						goto activate_locked_split;
1309					/* Fallback to swap normal pages */
1310					if (split_huge_page_to_list(page,
1311								    page_list))
1312						goto activate_locked;
1313#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 
1314					count_vm_event(THP_SWPOUT_FALLBACK);
1315#endif
1316					if (!add_to_swap(page))
1317						goto activate_locked_split;
1318				}
1319
1320				may_enter_fs = 1;
1321
1322				/* Adding to swap updated mapping */
1323				mapping = page_mapping(page);
1324			}
1325		} else if (unlikely(PageTransHuge(page))) {
1326			/* Split file THP */
1327			if (split_huge_page_to_list(page, page_list))
 
1328				goto keep_locked;
1329		}
1330
1331		/*
1332		 * THP may get split above, need minus tail pages and update
1333		 * nr_pages to avoid accounting tail pages twice.
1334		 *
1335		 * The tail pages that are added into swap cache successfully
1336		 * reach here.
1337		 */
1338		if ((nr_pages > 1) && !PageTransHuge(page)) {
1339			sc->nr_scanned -= (nr_pages - 1);
1340			nr_pages = 1;
1341		}
1342
1343		/*
1344		 * The page is mapped into the page tables of one or more
1345		 * processes. Try to unmap it here.
1346		 */
1347		if (page_mapped(page)) {
1348			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
 
1349
1350			if (unlikely(PageTransHuge(page)))
1351				flags |= TTU_SPLIT_HUGE_PMD;
1352			if (!try_to_unmap(page, flags)) {
 
 
1353				stat->nr_unmap_fail += nr_pages;
 
 
 
1354				goto activate_locked;
1355			}
1356		}
1357
1358		if (PageDirty(page)) {
 
 
 
 
 
 
 
 
 
 
 
1359			/*
1360			 * Only kswapd can writeback filesystem pages
1361			 * to avoid risk of stack overflow. But avoid
1362			 * injecting inefficient single-page IO into
1363			 * flusher writeback as much as possible: only
1364			 * write pages when we've encountered many
1365			 * dirty pages, and when we've already scanned
1366			 * the rest of the LRU for clean pages and see
1367			 * the same dirty pages again (PageReclaim).
 
1368			 */
1369			if (page_is_file_cache(page) &&
1370			    (!current_is_kswapd() || !PageReclaim(page) ||
 
1371			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1372				/*
1373				 * Immediately reclaim when written back.
1374				 * Similar in principal to deactivate_page()
1375				 * except we already have the page isolated
1376				 * and know it's dirty
1377				 */
1378				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1379				SetPageReclaim(page);
 
1380
1381				goto activate_locked;
1382			}
1383
1384			if (references == PAGEREF_RECLAIM_CLEAN)
1385				goto keep_locked;
1386			if (!may_enter_fs)
1387				goto keep_locked;
1388			if (!sc->may_writepage)
1389				goto keep_locked;
1390
1391			/*
1392			 * Page is dirty. Flush the TLB if a writable entry
1393			 * potentially exists to avoid CPU writes after IO
1394			 * starts and then write it out here.
1395			 */
1396			try_to_unmap_flush_dirty();
1397			switch (pageout(page, mapping, sc)) {
1398			case PAGE_KEEP:
1399				goto keep_locked;
1400			case PAGE_ACTIVATE:
1401				goto activate_locked;
1402			case PAGE_SUCCESS:
1403				if (PageWriteback(page))
 
 
1404					goto keep;
1405				if (PageDirty(page))
1406					goto keep;
1407
1408				/*
1409				 * A synchronous write - probably a ramdisk.  Go
1410				 * ahead and try to reclaim the page.
1411				 */
1412				if (!trylock_page(page))
1413					goto keep;
1414				if (PageDirty(page) || PageWriteback(page))
 
1415					goto keep_locked;
1416				mapping = page_mapping(page);
 
1417			case PAGE_CLEAN:
1418				; /* try to free the page below */
1419			}
1420		}
1421
1422		/*
1423		 * If the page has buffers, try to free the buffer mappings
1424		 * associated with this page. If we succeed we try to free
1425		 * the page as well.
1426		 *
1427		 * We do this even if the page is PageDirty().
1428		 * try_to_release_page() does not perform I/O, but it is
1429		 * possible for a page to have PageDirty set, but it is actually
1430		 * clean (all its buffers are clean).  This happens if the
1431		 * buffers were written out directly, with submit_bh(). ext3
1432		 * will do this, as well as the blockdev mapping.
1433		 * try_to_release_page() will discover that cleanness and will
1434		 * drop the buffers and mark the page clean - it can be freed.
 
1435		 *
1436		 * Rarely, pages can have buffers and no ->mapping.  These are
1437		 * the pages which were not successfully invalidated in
1438		 * truncate_complete_page().  We try to drop those buffers here
1439		 * and if that worked, and the page is no longer mapped into
1440		 * process address space (page_count == 1) it can be freed.
1441		 * Otherwise, leave the page on the LRU so it is swappable.
 
1442		 */
1443		if (page_has_private(page)) {
1444			if (!try_to_release_page(page, sc->gfp_mask))
1445				goto activate_locked;
1446			if (!mapping && page_count(page) == 1) {
1447				unlock_page(page);
1448				if (put_page_testzero(page))
1449					goto free_it;
1450				else {
1451					/*
1452					 * rare race with speculative reference.
1453					 * the speculative reference will free
1454					 * this page shortly, so we may
1455					 * increment nr_reclaimed here (and
1456					 * leave it off the LRU).
1457					 */
1458					nr_reclaimed++;
1459					continue;
1460				}
1461			}
1462		}
1463
1464		if (PageAnon(page) && !PageSwapBacked(page)) {
1465			/* follow __remove_mapping for reference */
1466			if (!page_ref_freeze(page, 1))
1467				goto keep_locked;
1468			if (PageDirty(page)) {
1469				page_ref_unfreeze(page, 1);
1470				goto keep_locked;
1471			}
1472
1473			count_vm_event(PGLAZYFREED);
1474			count_memcg_page_event(page, PGLAZYFREED);
1475		} else if (!mapping || !__remove_mapping(mapping, page, true))
 
 
 
 
1476			goto keep_locked;
1477
1478		unlock_page(page);
1479free_it:
1480		/*
1481		 * THP may get swapped out in a whole, need account
1482		 * all base pages.
1483		 */
1484		nr_reclaimed += nr_pages;
1485
1486		/*
1487		 * Is there need to periodically free_page_list? It would
1488		 * appear not as the counts should be low
1489		 */
1490		if (unlikely(PageTransHuge(page)))
1491			(*get_compound_page_dtor(page))(page);
1492		else
1493			list_add(&page->lru, &free_pages);
1494		continue;
1495
1496activate_locked_split:
1497		/*
1498		 * The tail pages that are failed to add into swap cache
1499		 * reach here.  Fixup nr_scanned and nr_pages.
1500		 */
1501		if (nr_pages > 1) {
1502			sc->nr_scanned -= (nr_pages - 1);
1503			nr_pages = 1;
1504		}
1505activate_locked:
1506		/* Not a candidate for swapping, so reclaim swap space. */
1507		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1508						PageMlocked(page)))
1509			try_to_free_swap(page);
1510		VM_BUG_ON_PAGE(PageActive(page), page);
1511		if (!PageMlocked(page)) {
1512			int type = page_is_file_cache(page);
1513			SetPageActive(page);
1514			stat->nr_activate[type] += nr_pages;
1515			count_memcg_page_event(page, PGACTIVATE);
1516		}
1517keep_locked:
1518		unlock_page(page);
1519keep:
1520		list_add(&page->lru, &ret_pages);
1521		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1522	}
1523
1524	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1525
1526	mem_cgroup_uncharge_list(&free_pages);
1527	try_to_unmap_flush();
1528	free_unref_page_list(&free_pages);
1529
1530	list_splice(&ret_pages, page_list);
1531	count_vm_events(PGACTIVATE, pgactivate);
1532
 
 
1533	return nr_reclaimed;
1534}
1535
1536unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1537					    struct list_head *page_list)
1538{
1539	struct scan_control sc = {
1540		.gfp_mask = GFP_KERNEL,
1541		.priority = DEF_PRIORITY,
1542		.may_unmap = 1,
1543	};
1544	struct reclaim_stat dummy_stat;
1545	unsigned long ret;
1546	struct page *page, *next;
1547	LIST_HEAD(clean_pages);
1548
1549	list_for_each_entry_safe(page, next, page_list, lru) {
1550		if (page_is_file_cache(page) && !PageDirty(page) &&
1551		    !__PageMovable(page) && !PageUnevictable(page)) {
1552			ClearPageActive(page);
1553			list_move(&page->lru, &clean_pages);
 
 
1554		}
1555	}
1556
1557	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1558			TTU_IGNORE_ACCESS, &dummy_stat, true);
1559	list_splice(&clean_pages, page_list);
1560	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1561	return ret;
1562}
1563
1564/*
1565 * Attempt to remove the specified page from its LRU.  Only take this page
1566 * if it is of the appropriate PageActive status.  Pages which are being
1567 * freed elsewhere are also ignored.
1568 *
1569 * page:	page to consider
1570 * mode:	one of the LRU isolation modes defined above
1571 *
1572 * returns 0 on success, -ve errno on failure.
1573 */
1574int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1575{
1576	int ret = -EINVAL;
1577
1578	/* Only take pages on the LRU. */
1579	if (!PageLRU(page))
1580		return ret;
1581
1582	/* Compaction should not handle unevictable pages but CMA can do so */
1583	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1584		return ret;
1585
1586	ret = -EBUSY;
1587
1588	/*
1589	 * To minimise LRU disruption, the caller can indicate that it only
1590	 * wants to isolate pages it will be able to operate on without
1591	 * blocking - clean pages for the most part.
1592	 *
1593	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1594	 * that it is possible to migrate without blocking
1595	 */
1596	if (mode & ISOLATE_ASYNC_MIGRATE) {
1597		/* All the caller can do on PageWriteback is block */
1598		if (PageWriteback(page))
1599			return ret;
1600
1601		if (PageDirty(page)) {
1602			struct address_space *mapping;
1603			bool migrate_dirty;
1604
1605			/*
1606			 * Only pages without mappings or that have a
1607			 * ->migratepage callback are possible to migrate
1608			 * without blocking. However, we can be racing with
1609			 * truncation so it's necessary to lock the page
1610			 * to stabilise the mapping as truncation holds
1611			 * the page lock until after the page is removed
1612			 * from the page cache.
1613			 */
1614			if (!trylock_page(page))
1615				return ret;
1616
1617			mapping = page_mapping(page);
1618			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1619			unlock_page(page);
1620			if (!migrate_dirty)
1621				return ret;
1622		}
1623	}
1624
1625	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1626		return ret;
1627
1628	if (likely(get_page_unless_zero(page))) {
1629		/*
1630		 * Be careful not to clear PageLRU until after we're
1631		 * sure the page is not being freed elsewhere -- the
1632		 * page release code relies on it.
1633		 */
1634		ClearPageLRU(page);
1635		ret = 0;
1636	}
1637
1638	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
1639}
1640
1641
1642/*
1643 * Update LRU sizes after isolating pages. The LRU size updates must
1644 * be complete before mem_cgroup_update_lru_size due to a santity check.
1645 */
1646static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1647			enum lru_list lru, unsigned long *nr_zone_taken)
1648{
1649	int zid;
1650
1651	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1652		if (!nr_zone_taken[zid])
1653			continue;
1654
1655		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1656#ifdef CONFIG_MEMCG
1657		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1658#endif
1659	}
1660
1661}
1662
1663/**
1664 * pgdat->lru_lock is heavily contended.  Some of the functions that
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1665 * shrink the lists perform better by taking out a batch of pages
1666 * and working on them outside the LRU lock.
1667 *
1668 * For pagecache intensive workloads, this function is the hottest
1669 * spot in the kernel (apart from copy_*_user functions).
1670 *
1671 * Appropriate locks must be held before calling this function.
1672 *
1673 * @nr_to_scan:	The number of eligible pages to look through on the list.
1674 * @lruvec:	The LRU vector to pull pages from.
1675 * @dst:	The temp list to put pages on to.
1676 * @nr_scanned:	The number of pages that were scanned.
1677 * @sc:		The scan_control struct for this reclaim session
1678 * @mode:	One of the LRU isolation modes
1679 * @lru:	LRU list id for isolating
1680 *
1681 * returns how many pages were moved onto *@dst.
1682 */
1683static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1684		struct lruvec *lruvec, struct list_head *dst,
1685		unsigned long *nr_scanned, struct scan_control *sc,
1686		enum lru_list lru)
1687{
1688	struct list_head *src = &lruvec->lists[lru];
1689	unsigned long nr_taken = 0;
1690	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1691	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1692	unsigned long skipped = 0;
1693	unsigned long scan, total_scan, nr_pages;
1694	LIST_HEAD(pages_skipped);
1695	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1696
1697	total_scan = 0;
1698	scan = 0;
1699	while (scan < nr_to_scan && !list_empty(src)) {
1700		struct page *page;
 
1701
1702		page = lru_to_page(src);
1703		prefetchw_prev_lru_page(page, src, flags);
1704
1705		VM_BUG_ON_PAGE(!PageLRU(page), page);
1706
1707		nr_pages = compound_nr(page);
1708		total_scan += nr_pages;
1709
1710		if (page_zonenum(page) > sc->reclaim_idx) {
1711			list_move(&page->lru, &pages_skipped);
1712			nr_skipped[page_zonenum(page)] += nr_pages;
1713			continue;
 
1714		}
1715
1716		/*
1717		 * Do not count skipped pages because that makes the function
1718		 * return with no isolated pages if the LRU mostly contains
1719		 * ineligible pages.  This causes the VM to not reclaim any
1720		 * pages, triggering a premature OOM.
1721		 *
1722		 * Account all tail pages of THP.  This would not cause
1723		 * premature OOM since __isolate_lru_page() returns -EBUSY
1724		 * only when the page is being freed somewhere else.
1725		 */
1726		scan += nr_pages;
1727		switch (__isolate_lru_page(page, mode)) {
1728		case 0:
1729			nr_taken += nr_pages;
1730			nr_zone_taken[page_zonenum(page)] += nr_pages;
1731			list_move(&page->lru, dst);
1732			break;
1733
1734		case -EBUSY:
1735			/* else it is being freed elsewhere */
1736			list_move(&page->lru, src);
1737			continue;
1738
1739		default:
1740			BUG();
 
 
 
 
 
 
 
 
 
 
1741		}
 
 
 
 
 
 
1742	}
1743
1744	/*
1745	 * Splice any skipped pages to the start of the LRU list. Note that
1746	 * this disrupts the LRU order when reclaiming for lower zones but
1747	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1748	 * scanning would soon rescan the same pages to skip and put the
1749	 * system at risk of premature OOM.
1750	 */
1751	if (!list_empty(&pages_skipped)) {
1752		int zid;
1753
1754		list_splice(&pages_skipped, src);
1755		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1756			if (!nr_skipped[zid])
1757				continue;
1758
1759			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1760			skipped += nr_skipped[zid];
1761		}
1762	}
1763	*nr_scanned = total_scan;
1764	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1765				    total_scan, skipped, nr_taken, mode, lru);
1766	update_lru_sizes(lruvec, lru, nr_zone_taken);
1767	return nr_taken;
1768}
1769
1770/**
1771 * isolate_lru_page - tries to isolate a page from its LRU list
1772 * @page: page to isolate from its LRU list
1773 *
1774 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1775 * vmstat statistic corresponding to whatever LRU list the page was on.
1776 *
1777 * Returns 0 if the page was removed from an LRU list.
1778 * Returns -EBUSY if the page was not on an LRU list.
1779 *
1780 * The returned page will have PageLRU() cleared.  If it was found on
1781 * the active list, it will have PageActive set.  If it was found on
1782 * the unevictable list, it will have the PageUnevictable bit set. That flag
1783 * may need to be cleared by the caller before letting the page go.
1784 *
1785 * The vmstat statistic corresponding to the list on which the page was
1786 * found will be decremented.
1787 *
1788 * Restrictions:
1789 *
1790 * (1) Must be called with an elevated refcount on the page. This is a
1791 *     fundamentnal difference from isolate_lru_pages (which is called
1792 *     without a stable reference).
1793 * (2) the lru_lock must not be held.
1794 * (3) interrupts must be enabled.
 
 
 
1795 */
1796int isolate_lru_page(struct page *page)
1797{
1798	int ret = -EBUSY;
1799
1800	VM_BUG_ON_PAGE(!page_count(page), page);
1801	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1802
1803	if (PageLRU(page)) {
1804		pg_data_t *pgdat = page_pgdat(page);
1805		struct lruvec *lruvec;
1806
1807		spin_lock_irq(&pgdat->lru_lock);
1808		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1809		if (PageLRU(page)) {
1810			int lru = page_lru(page);
1811			get_page(page);
1812			ClearPageLRU(page);
1813			del_page_from_lru_list(page, lruvec, lru);
1814			ret = 0;
1815		}
1816		spin_unlock_irq(&pgdat->lru_lock);
1817	}
 
1818	return ret;
1819}
1820
1821/*
1822 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1823 * then get resheduled. When there are massive number of tasks doing page
1824 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1825 * the LRU list will go small and be scanned faster than necessary, leading to
1826 * unnecessary swapping, thrashing and OOM.
1827 */
1828static int too_many_isolated(struct pglist_data *pgdat, int file,
1829		struct scan_control *sc)
1830{
1831	unsigned long inactive, isolated;
 
1832
1833	if (current_is_kswapd())
1834		return 0;
1835
1836	if (!sane_reclaim(sc))
1837		return 0;
1838
1839	if (file) {
1840		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1841		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1842	} else {
1843		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1844		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1845	}
1846
1847	/*
1848	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1849	 * won't get blocked by normal direct-reclaimers, forming a circular
1850	 * deadlock.
1851	 */
1852	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1853		inactive >>= 3;
1854
1855	return isolated > inactive;
 
 
 
 
 
 
1856}
1857
1858/*
1859 * This moves pages from @list to corresponding LRU list.
1860 *
1861 * We move them the other way if the page is referenced by one or more
1862 * processes, from rmap.
1863 *
1864 * If the pages are mostly unmapped, the processing is fast and it is
1865 * appropriate to hold zone_lru_lock across the whole operation.  But if
1866 * the pages are mapped, the processing is slow (page_referenced()) so we
1867 * should drop zone_lru_lock around each page.  It's impossible to balance
1868 * this, so instead we remove the pages from the LRU while processing them.
1869 * It is safe to rely on PG_active against the non-LRU pages in here because
1870 * nobody will play with that bit on a non-LRU page.
1871 *
1872 * The downside is that we have to touch page->_refcount against each page.
1873 * But we had to alter page->flags anyway.
1874 *
1875 * Returns the number of pages moved to the given lruvec.
1876 */
1877
1878static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1879						     struct list_head *list)
1880{
1881	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1882	int nr_pages, nr_moved = 0;
1883	LIST_HEAD(pages_to_free);
1884	struct page *page;
1885	enum lru_list lru;
1886
 
1887	while (!list_empty(list)) {
1888		page = lru_to_page(list);
1889		VM_BUG_ON_PAGE(PageLRU(page), page);
1890		if (unlikely(!page_evictable(page))) {
1891			list_del(&page->lru);
1892			spin_unlock_irq(&pgdat->lru_lock);
1893			putback_lru_page(page);
1894			spin_lock_irq(&pgdat->lru_lock);
1895			continue;
1896		}
1897		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1898
1899		SetPageLRU(page);
1900		lru = page_lru(page);
1901
1902		nr_pages = hpage_nr_pages(page);
1903		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1904		list_move(&page->lru, &lruvec->lists[lru]);
1905
1906		if (put_page_testzero(page)) {
1907			__ClearPageLRU(page);
1908			__ClearPageActive(page);
1909			del_page_from_lru_list(page, lruvec, lru);
1910
1911			if (unlikely(PageCompound(page))) {
1912				spin_unlock_irq(&pgdat->lru_lock);
1913				(*get_compound_page_dtor(page))(page);
1914				spin_lock_irq(&pgdat->lru_lock);
1915			} else
1916				list_add(&page->lru, &pages_to_free);
1917		} else {
1918			nr_moved += nr_pages;
1919		}
1920	}
1921
1922	/*
1923	 * To save our caller's stack, now use input list for pages to free.
1924	 */
1925	list_splice(&pages_to_free, list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1926
1927	return nr_moved;
1928}
1929
1930/*
1931 * If a kernel thread (such as nfsd for loop-back mounts) services
1932 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1933 * In that case we should only throttle if the backing device it is
1934 * writing to is congested.  In other cases it is safe to throttle.
1935 */
1936static int current_may_throttle(void)
1937{
1938	return !(current->flags & PF_LESS_THROTTLE) ||
1939		current->backing_dev_info == NULL ||
1940		bdi_write_congested(current->backing_dev_info);
1941}
1942
1943/*
1944 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1945 * of reclaimed pages
1946 */
1947static noinline_for_stack unsigned long
1948shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1949		     struct scan_control *sc, enum lru_list lru)
1950{
1951	LIST_HEAD(page_list);
1952	unsigned long nr_scanned;
1953	unsigned long nr_reclaimed = 0;
1954	unsigned long nr_taken;
1955	struct reclaim_stat stat;
1956	int file = is_file_lru(lru);
1957	enum vm_event_item item;
1958	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1959	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1960	bool stalled = false;
1961
1962	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1963		if (stalled)
1964			return 0;
1965
1966		/* wait a bit for the reclaimer. */
1967		msleep(100);
1968		stalled = true;
 
1969
1970		/* We are about to die and free our memory. Return now. */
1971		if (fatal_signal_pending(current))
1972			return SWAP_CLUSTER_MAX;
1973	}
1974
1975	lru_add_drain();
1976
1977	spin_lock_irq(&pgdat->lru_lock);
1978
1979	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1980				     &nr_scanned, sc, lru);
1981
1982	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1983	reclaim_stat->recent_scanned[file] += nr_taken;
1984
1985	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1986	if (global_reclaim(sc))
1987		__count_vm_events(item, nr_scanned);
1988	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1989	spin_unlock_irq(&pgdat->lru_lock);
 
 
1990
1991	if (nr_taken == 0)
1992		return 0;
1993
1994	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1995				&stat, false);
1996
1997	spin_lock_irq(&pgdat->lru_lock);
 
1998
1999	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2000	if (global_reclaim(sc))
 
2001		__count_vm_events(item, nr_reclaimed);
2002	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2003	reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
2004	reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
2005
2006	move_pages_to_lru(lruvec, &page_list);
2007
2008	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2009
2010	spin_unlock_irq(&pgdat->lru_lock);
2011
2012	mem_cgroup_uncharge_list(&page_list);
2013	free_unref_page_list(&page_list);
2014
2015	/*
2016	 * If dirty pages are scanned that are not queued for IO, it
2017	 * implies that flushers are not doing their job. This can
2018	 * happen when memory pressure pushes dirty pages to the end of
2019	 * the LRU before the dirty limits are breached and the dirty
2020	 * data has expired. It can also happen when the proportion of
2021	 * dirty pages grows not through writes but through memory
2022	 * pressure reclaiming all the clean cache. And in some cases,
2023	 * the flushers simply cannot keep up with the allocation
2024	 * rate. Nudge the flusher threads in case they are asleep.
2025	 */
2026	if (stat.nr_unqueued_dirty == nr_taken)
2027		wakeup_flusher_threads(WB_REASON_VMSCAN);
 
 
 
 
 
 
 
 
 
 
 
 
2028
2029	sc->nr.dirty += stat.nr_dirty;
2030	sc->nr.congested += stat.nr_congested;
2031	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2032	sc->nr.writeback += stat.nr_writeback;
2033	sc->nr.immediate += stat.nr_immediate;
2034	sc->nr.taken += nr_taken;
2035	if (file)
2036		sc->nr.file_taken += nr_taken;
2037
2038	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2039			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2040	return nr_reclaimed;
2041}
2042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2043static void shrink_active_list(unsigned long nr_to_scan,
2044			       struct lruvec *lruvec,
2045			       struct scan_control *sc,
2046			       enum lru_list lru)
2047{
2048	unsigned long nr_taken;
2049	unsigned long nr_scanned;
2050	unsigned long vm_flags;
2051	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2052	LIST_HEAD(l_active);
2053	LIST_HEAD(l_inactive);
2054	struct page *page;
2055	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2056	unsigned nr_deactivate, nr_activate;
2057	unsigned nr_rotated = 0;
2058	int file = is_file_lru(lru);
2059	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2060
2061	lru_add_drain();
2062
2063	spin_lock_irq(&pgdat->lru_lock);
2064
2065	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2066				     &nr_scanned, sc, lru);
2067
2068	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2069	reclaim_stat->recent_scanned[file] += nr_taken;
2070
2071	__count_vm_events(PGREFILL, nr_scanned);
 
2072	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2073
2074	spin_unlock_irq(&pgdat->lru_lock);
2075
2076	while (!list_empty(&l_hold)) {
 
 
2077		cond_resched();
2078		page = lru_to_page(&l_hold);
2079		list_del(&page->lru);
2080
2081		if (unlikely(!page_evictable(page))) {
2082			putback_lru_page(page);
2083			continue;
2084		}
2085
2086		if (unlikely(buffer_heads_over_limit)) {
2087			if (page_has_private(page) && trylock_page(page)) {
2088				if (page_has_private(page))
2089					try_to_release_page(page, 0);
2090				unlock_page(page);
2091			}
2092		}
2093
2094		if (page_referenced(page, 0, sc->target_mem_cgroup,
2095				    &vm_flags)) {
2096			nr_rotated += hpage_nr_pages(page);
2097			/*
2098			 * Identify referenced, file-backed active pages and
2099			 * give them one more trip around the active list. So
2100			 * that executable code get better chances to stay in
2101			 * memory under moderate memory pressure.  Anon pages
2102			 * are not likely to be evicted by use-once streaming
2103			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2104			 * so we ignore them here.
2105			 */
2106			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2107				list_add(&page->lru, &l_active);
 
2108				continue;
2109			}
2110		}
2111
2112		ClearPageActive(page);	/* we are de-activating */
2113		SetPageWorkingset(page);
2114		list_add(&page->lru, &l_inactive);
2115	}
2116
2117	/*
2118	 * Move pages back to the lru list.
2119	 */
2120	spin_lock_irq(&pgdat->lru_lock);
2121	/*
2122	 * Count referenced pages from currently used mappings as rotated,
2123	 * even though only some of them are actually re-activated.  This
2124	 * helps balance scan pressure between file and anonymous pages in
2125	 * get_scan_count.
2126	 */
2127	reclaim_stat->recent_rotated[file] += nr_rotated;
2128
2129	nr_activate = move_pages_to_lru(lruvec, &l_active);
2130	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2131	/* Keep all free pages in l_active list */
2132	list_splice(&l_inactive, &l_active);
2133
2134	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2135	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2136
2137	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2138	spin_unlock_irq(&pgdat->lru_lock);
2139
2140	mem_cgroup_uncharge_list(&l_active);
2141	free_unref_page_list(&l_active);
2142	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2143			nr_deactivate, nr_rotated, sc->priority, file);
2144}
2145
2146unsigned long reclaim_pages(struct list_head *page_list)
 
 
2147{
2148	int nid = -1;
2149	unsigned long nr_reclaimed = 0;
2150	LIST_HEAD(node_page_list);
2151	struct reclaim_stat dummy_stat;
2152	struct page *page;
 
2153	struct scan_control sc = {
2154		.gfp_mask = GFP_KERNEL,
2155		.priority = DEF_PRIORITY,
2156		.may_writepage = 1,
2157		.may_unmap = 1,
2158		.may_swap = 1,
 
2159	};
2160
2161	while (!list_empty(page_list)) {
2162		page = lru_to_page(page_list);
2163		if (nid == -1) {
2164			nid = page_to_nid(page);
2165			INIT_LIST_HEAD(&node_page_list);
2166		}
 
 
 
 
 
 
 
 
 
 
2167
2168		if (nid == page_to_nid(page)) {
2169			ClearPageActive(page);
2170			list_move(&page->lru, &node_page_list);
 
 
 
 
 
 
 
 
 
2171			continue;
2172		}
2173
2174		nr_reclaimed += shrink_page_list(&node_page_list,
2175						NODE_DATA(nid),
2176						&sc, 0,
2177						&dummy_stat, false);
2178		while (!list_empty(&node_page_list)) {
2179			page = lru_to_page(&node_page_list);
2180			list_del(&page->lru);
2181			putback_lru_page(page);
2182		}
2183
2184		nid = -1;
2185	}
2186
2187	if (!list_empty(&node_page_list)) {
2188		nr_reclaimed += shrink_page_list(&node_page_list,
2189						NODE_DATA(nid),
2190						&sc, 0,
2191						&dummy_stat, false);
2192		while (!list_empty(&node_page_list)) {
2193			page = lru_to_page(&node_page_list);
2194			list_del(&page->lru);
2195			putback_lru_page(page);
2196		}
2197	}
2198
2199	return nr_reclaimed;
2200}
2201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2202/*
2203 * The inactive anon list should be small enough that the VM never has
2204 * to do too much work.
2205 *
2206 * The inactive file list should be small enough to leave most memory
2207 * to the established workingset on the scan-resistant active list,
2208 * but large enough to avoid thrashing the aggregate readahead window.
2209 *
2210 * Both inactive lists should also be large enough that each inactive
2211 * page has a chance to be referenced again before it is reclaimed.
2212 *
2213 * If that fails and refaulting is observed, the inactive list grows.
2214 *
2215 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2216 * on this LRU, maintained by the pageout code. An inactive_ratio
2217 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2218 *
2219 * total     target    max
2220 * memory    ratio     inactive
2221 * -------------------------------------
2222 *   10MB       1         5MB
2223 *  100MB       1        50MB
2224 *    1GB       3       250MB
2225 *   10GB      10       0.9GB
2226 *  100GB      31         3GB
2227 *    1TB     101        10GB
2228 *   10TB     320        32GB
2229 */
2230static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2231				 struct scan_control *sc, bool trace)
2232{
2233	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2234	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2235	enum lru_list inactive_lru = file * LRU_FILE;
2236	unsigned long inactive, active;
2237	unsigned long inactive_ratio;
2238	unsigned long refaults;
2239	unsigned long gb;
2240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2241	/*
2242	 * If we don't have swap space, anonymous page deactivation
2243	 * is pointless.
2244	 */
2245	if (!file && !total_swap_pages)
2246		return false;
2247
2248	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2249	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
 
 
 
 
 
2250
2251	/*
2252	 * When refaults are being observed, it means a new workingset
2253	 * is being established. Disable active list protection to get
2254	 * rid of the stale workingset quickly.
2255	 */
2256	refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2257	if (file && lruvec->refaults != refaults) {
2258		inactive_ratio = 0;
2259	} else {
2260		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2261		if (gb)
2262			inactive_ratio = int_sqrt(10 * gb);
 
 
 
 
 
 
2263		else
2264			inactive_ratio = 1;
2265	}
2266
2267	if (trace)
2268		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2269			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2270			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2271			inactive_ratio, file);
 
 
 
 
2272
2273	return inactive * inactive_ratio < active;
2274}
 
 
 
 
 
 
 
 
 
2275
2276static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2277				 struct lruvec *lruvec, struct scan_control *sc)
2278{
2279	if (is_active_lru(lru)) {
2280		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2281			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2282		return 0;
2283	}
 
 
 
 
 
2284
2285	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2286}
 
2287
2288enum scan_balance {
2289	SCAN_EQUAL,
2290	SCAN_FRACT,
2291	SCAN_ANON,
2292	SCAN_FILE,
2293};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2294
2295/*
2296 * Determine how aggressively the anon and file LRU lists should be
2297 * scanned.  The relative value of each set of LRU lists is determined
2298 * by looking at the fraction of the pages scanned we did rotate back
2299 * onto the active list instead of evict.
2300 *
2301 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2302 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2303 */
2304static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2305			   struct scan_control *sc, unsigned long *nr,
2306			   unsigned long *lru_pages)
2307{
 
 
 
2308	int swappiness = mem_cgroup_swappiness(memcg);
2309	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2310	u64 fraction[2];
2311	u64 denominator = 0;	/* gcc */
2312	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2313	unsigned long anon_prio, file_prio;
2314	enum scan_balance scan_balance;
2315	unsigned long anon, file;
2316	unsigned long ap, fp;
2317	enum lru_list lru;
2318
2319	/* If we have no swap space, do not bother scanning anon pages. */
2320	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2321		scan_balance = SCAN_FILE;
2322		goto out;
2323	}
2324
2325	/*
2326	 * Global reclaim will swap to prevent OOM even with no
2327	 * swappiness, but memcg users want to use this knob to
2328	 * disable swapping for individual groups completely when
2329	 * using the memory controller's swap limit feature would be
2330	 * too expensive.
2331	 */
2332	if (!global_reclaim(sc) && !swappiness) {
2333		scan_balance = SCAN_FILE;
2334		goto out;
2335	}
2336
2337	/*
2338	 * Do not apply any pressure balancing cleverness when the
2339	 * system is close to OOM, scan both anon and file equally
2340	 * (unless the swappiness setting disagrees with swapping).
2341	 */
2342	if (!sc->priority && swappiness) {
2343		scan_balance = SCAN_EQUAL;
2344		goto out;
2345	}
2346
2347	/*
2348	 * Prevent the reclaimer from falling into the cache trap: as
2349	 * cache pages start out inactive, every cache fault will tip
2350	 * the scan balance towards the file LRU.  And as the file LRU
2351	 * shrinks, so does the window for rotation from references.
2352	 * This means we have a runaway feedback loop where a tiny
2353	 * thrashing file LRU becomes infinitely more attractive than
2354	 * anon pages.  Try to detect this based on file LRU size.
2355	 */
2356	if (global_reclaim(sc)) {
2357		unsigned long pgdatfile;
2358		unsigned long pgdatfree;
2359		int z;
2360		unsigned long total_high_wmark = 0;
2361
2362		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2363		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2364			   node_page_state(pgdat, NR_INACTIVE_FILE);
2365
2366		for (z = 0; z < MAX_NR_ZONES; z++) {
2367			struct zone *zone = &pgdat->node_zones[z];
2368			if (!managed_zone(zone))
2369				continue;
2370
2371			total_high_wmark += high_wmark_pages(zone);
2372		}
2373
2374		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2375			/*
2376			 * Force SCAN_ANON if there are enough inactive
2377			 * anonymous pages on the LRU in eligible zones.
2378			 * Otherwise, the small LRU gets thrashed.
2379			 */
2380			if (!inactive_list_is_low(lruvec, false, sc, false) &&
2381			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2382					>> sc->priority) {
2383				scan_balance = SCAN_ANON;
2384				goto out;
2385			}
2386		}
2387	}
2388
2389	/*
2390	 * If there is enough inactive page cache, i.e. if the size of the
2391	 * inactive list is greater than that of the active list *and* the
2392	 * inactive list actually has some pages to scan on this priority, we
2393	 * do not reclaim anything from the anonymous working set right now.
2394	 * Without the second condition we could end up never scanning an
2395	 * lruvec even if it has plenty of old anonymous pages unless the
2396	 * system is under heavy pressure.
2397	 */
2398	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2399	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2400		scan_balance = SCAN_FILE;
2401		goto out;
2402	}
2403
2404	scan_balance = SCAN_FRACT;
2405
2406	/*
2407	 * With swappiness at 100, anonymous and file have the same priority.
2408	 * This scanning priority is essentially the inverse of IO cost.
2409	 */
2410	anon_prio = swappiness;
2411	file_prio = 200 - anon_prio;
2412
2413	/*
2414	 * OK, so we have swap space and a fair amount of page cache
2415	 * pages.  We use the recently rotated / recently scanned
2416	 * ratios to determine how valuable each cache is.
2417	 *
2418	 * Because workloads change over time (and to avoid overflow)
2419	 * we keep these statistics as a floating average, which ends
2420	 * up weighing recent references more than old ones.
2421	 *
2422	 * anon in [0], file in [1]
2423	 */
 
 
 
 
2424
2425	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2426		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2427	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2428		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2429
2430	spin_lock_irq(&pgdat->lru_lock);
2431	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2432		reclaim_stat->recent_scanned[0] /= 2;
2433		reclaim_stat->recent_rotated[0] /= 2;
2434	}
2435
2436	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2437		reclaim_stat->recent_scanned[1] /= 2;
2438		reclaim_stat->recent_rotated[1] /= 2;
2439	}
2440
2441	/*
2442	 * The amount of pressure on anon vs file pages is inversely
2443	 * proportional to the fraction of recently scanned pages on
2444	 * each list that were recently referenced and in active use.
2445	 */
2446	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2447	ap /= reclaim_stat->recent_rotated[0] + 1;
2448
2449	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2450	fp /= reclaim_stat->recent_rotated[1] + 1;
2451	spin_unlock_irq(&pgdat->lru_lock);
2452
2453	fraction[0] = ap;
2454	fraction[1] = fp;
2455	denominator = ap + fp + 1;
2456out:
2457	*lru_pages = 0;
2458	for_each_evictable_lru(lru) {
2459		int file = is_file_lru(lru);
2460		unsigned long lruvec_size;
 
2461		unsigned long scan;
2462		unsigned long protection;
2463
2464		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2465		protection = mem_cgroup_protection(memcg,
2466						   sc->memcg_low_reclaim);
2467
2468		if (protection) {
2469			/*
2470			 * Scale a cgroup's reclaim pressure by proportioning
2471			 * its current usage to its memory.low or memory.min
2472			 * setting.
2473			 *
2474			 * This is important, as otherwise scanning aggression
2475			 * becomes extremely binary -- from nothing as we
2476			 * approach the memory protection threshold, to totally
2477			 * nominal as we exceed it.  This results in requiring
2478			 * setting extremely liberal protection thresholds. It
2479			 * also means we simply get no protection at all if we
2480			 * set it too low, which is not ideal.
2481			 *
2482			 * If there is any protection in place, we reduce scan
2483			 * pressure by how much of the total memory used is
2484			 * within protection thresholds.
2485			 *
2486			 * There is one special case: in the first reclaim pass,
2487			 * we skip over all groups that are within their low
2488			 * protection. If that fails to reclaim enough pages to
2489			 * satisfy the reclaim goal, we come back and override
2490			 * the best-effort low protection. However, we still
2491			 * ideally want to honor how well-behaved groups are in
2492			 * that case instead of simply punishing them all
2493			 * equally. As such, we reclaim them based on how much
2494			 * memory they are using, reducing the scan pressure
2495			 * again by how much of the total memory used is under
2496			 * hard protection.
2497			 */
2498			unsigned long cgroup_size = mem_cgroup_size(memcg);
 
 
 
 
 
 
 
 
 
2499
2500			/* Avoid TOCTOU with earlier protection check */
2501			cgroup_size = max(cgroup_size, protection);
2502
2503			scan = lruvec_size - lruvec_size * protection /
2504				cgroup_size;
2505
2506			/*
2507			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2508			 * reclaim moving forwards, avoiding decremeting
2509			 * sc->priority further than desirable.
2510			 */
2511			scan = max(scan, SWAP_CLUSTER_MAX);
2512		} else {
2513			scan = lruvec_size;
2514		}
2515
2516		scan >>= sc->priority;
2517
2518		/*
2519		 * If the cgroup's already been deleted, make sure to
2520		 * scrape out the remaining cache.
2521		 */
2522		if (!scan && !mem_cgroup_online(memcg))
2523			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2524
2525		switch (scan_balance) {
2526		case SCAN_EQUAL:
2527			/* Scan lists relative to size */
2528			break;
2529		case SCAN_FRACT:
2530			/*
2531			 * Scan types proportional to swappiness and
2532			 * their relative recent reclaim efficiency.
2533			 * Make sure we don't miss the last page
2534			 * because of a round-off error.
 
2535			 */
2536			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
 
 
2537						  denominator);
2538			break;
2539		case SCAN_FILE:
2540		case SCAN_ANON:
2541			/* Scan one type exclusively */
2542			if ((scan_balance == SCAN_FILE) != file) {
2543				lruvec_size = 0;
2544				scan = 0;
2545			}
2546			break;
2547		default:
2548			/* Look ma, no brain */
2549			BUG();
2550		}
2551
2552		*lru_pages += lruvec_size;
2553		nr[lru] = scan;
2554	}
2555}
2556
2557/*
2558 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2559 */
2560static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2561			      struct scan_control *sc, unsigned long *lru_pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2562{
2563	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2564	unsigned long nr[NR_LRU_LISTS];
2565	unsigned long targets[NR_LRU_LISTS];
2566	unsigned long nr_to_scan;
2567	enum lru_list lru;
2568	unsigned long nr_reclaimed = 0;
2569	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
 
2570	struct blk_plug plug;
2571	bool scan_adjusted;
2572
2573	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
 
 
 
 
 
2574
2575	/* Record the original scan target for proportional adjustments later */
2576	memcpy(targets, nr, sizeof(nr));
2577
2578	/*
2579	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2580	 * event that can occur when there is little memory pressure e.g.
2581	 * multiple streaming readers/writers. Hence, we do not abort scanning
2582	 * when the requested number of pages are reclaimed when scanning at
2583	 * DEF_PRIORITY on the assumption that the fact we are direct
2584	 * reclaiming implies that kswapd is not keeping up and it is best to
2585	 * do a batch of work at once. For memcg reclaim one check is made to
2586	 * abort proportional reclaim if either the file or anon lru has already
2587	 * dropped to zero at the first pass.
2588	 */
2589	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2590			 sc->priority == DEF_PRIORITY);
2591
2592	blk_start_plug(&plug);
2593	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2594					nr[LRU_INACTIVE_FILE]) {
2595		unsigned long nr_anon, nr_file, percentage;
2596		unsigned long nr_scanned;
2597
2598		for_each_evictable_lru(lru) {
2599			if (nr[lru]) {
2600				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2601				nr[lru] -= nr_to_scan;
2602
2603				nr_reclaimed += shrink_list(lru, nr_to_scan,
2604							    lruvec, sc);
2605			}
2606		}
2607
2608		cond_resched();
2609
2610		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2611			continue;
2612
2613		/*
2614		 * For kswapd and memcg, reclaim at least the number of pages
2615		 * requested. Ensure that the anon and file LRUs are scanned
2616		 * proportionally what was requested by get_scan_count(). We
2617		 * stop reclaiming one LRU and reduce the amount scanning
2618		 * proportional to the original scan target.
2619		 */
2620		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2621		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2622
2623		/*
2624		 * It's just vindictive to attack the larger once the smaller
2625		 * has gone to zero.  And given the way we stop scanning the
2626		 * smaller below, this makes sure that we only make one nudge
2627		 * towards proportionality once we've got nr_to_reclaim.
2628		 */
2629		if (!nr_file || !nr_anon)
2630			break;
2631
2632		if (nr_file > nr_anon) {
2633			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2634						targets[LRU_ACTIVE_ANON] + 1;
2635			lru = LRU_BASE;
2636			percentage = nr_anon * 100 / scan_target;
2637		} else {
2638			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2639						targets[LRU_ACTIVE_FILE] + 1;
2640			lru = LRU_FILE;
2641			percentage = nr_file * 100 / scan_target;
2642		}
2643
2644		/* Stop scanning the smaller of the LRU */
2645		nr[lru] = 0;
2646		nr[lru + LRU_ACTIVE] = 0;
2647
2648		/*
2649		 * Recalculate the other LRU scan count based on its original
2650		 * scan target and the percentage scanning already complete
2651		 */
2652		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2653		nr_scanned = targets[lru] - nr[lru];
2654		nr[lru] = targets[lru] * (100 - percentage) / 100;
2655		nr[lru] -= min(nr[lru], nr_scanned);
2656
2657		lru += LRU_ACTIVE;
2658		nr_scanned = targets[lru] - nr[lru];
2659		nr[lru] = targets[lru] * (100 - percentage) / 100;
2660		nr[lru] -= min(nr[lru], nr_scanned);
2661
2662		scan_adjusted = true;
2663	}
2664	blk_finish_plug(&plug);
2665	sc->nr_reclaimed += nr_reclaimed;
2666
2667	/*
2668	 * Even if we did not try to evict anon pages at all, we want to
2669	 * rebalance the anon lru active/inactive ratio.
2670	 */
2671	if (inactive_list_is_low(lruvec, false, sc, true))
 
2672		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2673				   sc, LRU_ACTIVE_ANON);
2674}
2675
2676/* Use reclaim/compaction for costly allocs or under memory pressure */
2677static bool in_reclaim_compaction(struct scan_control *sc)
2678{
2679	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2680			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2681			 sc->priority < DEF_PRIORITY - 2))
2682		return true;
2683
2684	return false;
2685}
2686
2687/*
2688 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2689 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2690 * true if more pages should be reclaimed such that when the page allocator
2691 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2692 * It will give up earlier than that if there is difficulty reclaiming pages.
2693 */
2694static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2695					unsigned long nr_reclaimed,
2696					struct scan_control *sc)
2697{
2698	unsigned long pages_for_compaction;
2699	unsigned long inactive_lru_pages;
2700	int z;
2701
2702	/* If not in reclaim/compaction mode, stop */
2703	if (!in_reclaim_compaction(sc))
2704		return false;
2705
2706	/*
2707	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2708	 * number of pages that were scanned. This will return to the caller
2709	 * with the risk reclaim/compaction and the resulting allocation attempt
2710	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2711	 * allocations through requiring that the full LRU list has been scanned
2712	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2713	 * scan, but that approximation was wrong, and there were corner cases
2714	 * where always a non-zero amount of pages were scanned.
2715	 */
2716	if (!nr_reclaimed)
2717		return false;
2718
2719	/* If compaction would go ahead or the allocation would succeed, stop */
2720	for (z = 0; z <= sc->reclaim_idx; z++) {
2721		struct zone *zone = &pgdat->node_zones[z];
2722		if (!managed_zone(zone))
2723			continue;
2724
2725		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2726		case COMPACT_SUCCESS:
2727		case COMPACT_CONTINUE:
 
 
 
2728			return false;
2729		default:
2730			/* check next zone */
2731			;
2732		}
2733	}
2734
2735	/*
2736	 * If we have not reclaimed enough pages for compaction and the
2737	 * inactive lists are large enough, continue reclaiming
2738	 */
2739	pages_for_compaction = compact_gap(sc->order);
2740	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2741	if (get_nr_swap_pages() > 0)
2742		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2743
2744	return inactive_lru_pages > pages_for_compaction;
2745}
2746
2747static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2748{
2749	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2750		(memcg && memcg_congested(pgdat, memcg));
2751}
2752
2753static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2754{
2755	struct reclaim_state *reclaim_state = current->reclaim_state;
2756	unsigned long nr_reclaimed, nr_scanned;
2757	bool reclaimable = false;
2758
 
2759	do {
2760		struct mem_cgroup *root = sc->target_mem_cgroup;
2761		unsigned long node_lru_pages = 0;
2762		struct mem_cgroup *memcg;
2763
2764		memset(&sc->nr, 0, sizeof(sc->nr));
2765
2766		nr_reclaimed = sc->nr_reclaimed;
2767		nr_scanned = sc->nr_scanned;
 
 
 
2768
2769		memcg = mem_cgroup_iter(root, NULL, NULL);
2770		do {
2771			unsigned long lru_pages;
2772			unsigned long reclaimed;
2773			unsigned long scanned;
2774
2775			switch (mem_cgroup_protected(root, memcg)) {
2776			case MEMCG_PROT_MIN:
2777				/*
2778				 * Hard protection.
2779				 * If there is no reclaimable memory, OOM.
2780				 */
 
 
 
 
 
 
 
 
 
2781				continue;
2782			case MEMCG_PROT_LOW:
2783				/*
2784				 * Soft protection.
2785				 * Respect the protection only as long as
2786				 * there is an unprotected supply
2787				 * of reclaimable memory from other cgroups.
2788				 */
2789				if (!sc->memcg_low_reclaim) {
2790					sc->memcg_low_skipped = 1;
2791					continue;
2792				}
2793				memcg_memory_event(memcg, MEMCG_LOW);
2794				break;
2795			case MEMCG_PROT_NONE:
2796				/*
2797				 * All protection thresholds breached. We may
2798				 * still choose to vary the scan pressure
2799				 * applied based on by how much the cgroup in
2800				 * question has exceeded its protection
2801				 * thresholds (see get_scan_count).
2802				 */
2803				break;
2804			}
 
 
2805
2806			reclaimed = sc->nr_reclaimed;
2807			scanned = sc->nr_scanned;
2808			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2809			node_lru_pages += lru_pages;
2810
2811			shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2812					sc->priority);
2813
2814			/* Record the group's reclaim efficiency */
 
 
 
 
2815			vmpressure(sc->gfp_mask, memcg, false,
2816				   sc->nr_scanned - scanned,
2817				   sc->nr_reclaimed - reclaimed);
2818
2819		} while ((memcg = mem_cgroup_iter(root, memcg, NULL)));
 
2820
2821		if (reclaim_state) {
2822			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2823			reclaim_state->reclaimed_slab = 0;
2824		}
 
2825
2826		/* Record the subtree's reclaim efficiency */
2827		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2828			   sc->nr_scanned - nr_scanned,
2829			   sc->nr_reclaimed - nr_reclaimed);
2830
2831		if (sc->nr_reclaimed - nr_reclaimed)
2832			reclaimable = true;
2833
2834		if (current_is_kswapd()) {
2835			/*
2836			 * If reclaim is isolating dirty pages under writeback,
2837			 * it implies that the long-lived page allocation rate
2838			 * is exceeding the page laundering rate. Either the
2839			 * global limits are not being effective at throttling
2840			 * processes due to the page distribution throughout
2841			 * zones or there is heavy usage of a slow backing
2842			 * device. The only option is to throttle from reclaim
2843			 * context which is not ideal as there is no guarantee
2844			 * the dirtying process is throttled in the same way
2845			 * balance_dirty_pages() manages.
2846			 *
2847			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2848			 * count the number of pages under pages flagged for
2849			 * immediate reclaim and stall if any are encountered
2850			 * in the nr_immediate check below.
2851			 */
2852			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2853				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2854
2855			/*
2856			 * Tag a node as congested if all the dirty pages
2857			 * scanned were backed by a congested BDI and
2858			 * wait_iff_congested will stall.
2859			 */
2860			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2861				set_bit(PGDAT_CONGESTED, &pgdat->flags);
2862
2863			/* Allow kswapd to start writing pages during reclaim.*/
2864			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2865				set_bit(PGDAT_DIRTY, &pgdat->flags);
2866
2867			/*
2868			 * If kswapd scans pages marked marked for immediate
2869			 * reclaim and under writeback (nr_immediate), it
2870			 * implies that pages are cycling through the LRU
2871			 * faster than they are written so also forcibly stall.
2872			 */
2873			if (sc->nr.immediate)
2874				congestion_wait(BLK_RW_ASYNC, HZ/10);
2875		}
2876
 
 
 
 
 
 
 
 
 
2877		/*
2878		 * Legacy memcg will stall in page writeback so avoid forcibly
2879		 * stalling in wait_iff_congested().
 
 
 
 
 
 
 
 
 
 
 
 
 
2880		 */
2881		if (!global_reclaim(sc) && sane_reclaim(sc) &&
2882		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2883			set_memcg_congestion(pgdat, root, true);
 
 
 
2884
2885		/*
2886		 * Stall direct reclaim for IO completions if underlying BDIs
2887		 * and node is congested. Allow kswapd to continue until it
2888		 * starts encountering unqueued dirty pages or cycling through
2889		 * the LRU too quickly.
 
2890		 */
2891		if (!sc->hibernation_mode && !current_is_kswapd() &&
2892		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2893			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2894
2895	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2896					 sc));
 
 
 
 
 
 
 
 
 
 
 
 
2897
2898	/*
2899	 * Kswapd gives up on balancing particular nodes after too
2900	 * many failures to reclaim anything from them and goes to
2901	 * sleep. On reclaim progress, reset the failure counter. A
2902	 * successful direct reclaim run will revive a dormant kswapd.
2903	 */
2904	if (reclaimable)
2905		pgdat->kswapd_failures = 0;
2906
2907	return reclaimable;
2908}
2909
2910/*
2911 * Returns true if compaction should go ahead for a costly-order request, or
2912 * the allocation would already succeed without compaction. Return false if we
2913 * should reclaim first.
2914 */
2915static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2916{
2917	unsigned long watermark;
2918	enum compact_result suitable;
2919
2920	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2921	if (suitable == COMPACT_SUCCESS)
2922		/* Allocation should succeed already. Don't reclaim. */
 
 
 
2923		return true;
2924	if (suitable == COMPACT_SKIPPED)
2925		/* Compaction cannot yet proceed. Do reclaim. */
 
2926		return false;
2927
2928	/*
2929	 * Compaction is already possible, but it takes time to run and there
2930	 * are potentially other callers using the pages just freed. So proceed
2931	 * with reclaim to make a buffer of free pages available to give
2932	 * compaction a reasonable chance of completing and allocating the page.
2933	 * Note that we won't actually reclaim the whole buffer in one attempt
2934	 * as the target watermark in should_continue_reclaim() is lower. But if
2935	 * we are already above the high+gap watermark, don't reclaim at all.
2936	 */
2937	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2938
2939	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2940}
2941
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2942/*
2943 * This is the direct reclaim path, for page-allocating processes.  We only
2944 * try to reclaim pages from zones which will satisfy the caller's allocation
2945 * request.
2946 *
2947 * If a zone is deemed to be full of pinned pages then just give it a light
2948 * scan then give up on it.
2949 */
2950static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2951{
2952	struct zoneref *z;
2953	struct zone *zone;
2954	unsigned long nr_soft_reclaimed;
2955	unsigned long nr_soft_scanned;
2956	gfp_t orig_mask;
2957	pg_data_t *last_pgdat = NULL;
 
2958
2959	/*
2960	 * If the number of buffer_heads in the machine exceeds the maximum
2961	 * allowed level, force direct reclaim to scan the highmem zone as
2962	 * highmem pages could be pinning lowmem pages storing buffer_heads
2963	 */
2964	orig_mask = sc->gfp_mask;
2965	if (buffer_heads_over_limit) {
2966		sc->gfp_mask |= __GFP_HIGHMEM;
2967		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2968	}
2969
2970	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2971					sc->reclaim_idx, sc->nodemask) {
2972		/*
2973		 * Take care memory controller reclaiming has small influence
2974		 * to global LRU.
2975		 */
2976		if (global_reclaim(sc)) {
2977			if (!cpuset_zone_allowed(zone,
2978						 GFP_KERNEL | __GFP_HARDWALL))
2979				continue;
2980
2981			/*
2982			 * If we already have plenty of memory free for
2983			 * compaction in this zone, don't free any more.
2984			 * Even though compaction is invoked for any
2985			 * non-zero order, only frequent costly order
2986			 * reclamation is disruptive enough to become a
2987			 * noticeable problem, like transparent huge
2988			 * page allocations.
2989			 */
2990			if (IS_ENABLED(CONFIG_COMPACTION) &&
2991			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2992			    compaction_ready(zone, sc)) {
2993				sc->compaction_ready = true;
2994				continue;
2995			}
2996
2997			/*
2998			 * Shrink each node in the zonelist once. If the
2999			 * zonelist is ordered by zone (not the default) then a
3000			 * node may be shrunk multiple times but in that case
3001			 * the user prefers lower zones being preserved.
3002			 */
3003			if (zone->zone_pgdat == last_pgdat)
3004				continue;
3005
3006			/*
3007			 * This steals pages from memory cgroups over softlimit
3008			 * and returns the number of reclaimed pages and
3009			 * scanned pages. This works for global memory pressure
3010			 * and balancing, not for a memcg's limit.
3011			 */
3012			nr_soft_scanned = 0;
3013			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3014						sc->order, sc->gfp_mask,
3015						&nr_soft_scanned);
3016			sc->nr_reclaimed += nr_soft_reclaimed;
3017			sc->nr_scanned += nr_soft_scanned;
3018			/* need some check for avoid more shrink_zone() */
3019		}
3020
 
 
 
3021		/* See comment about same check for global reclaim above */
3022		if (zone->zone_pgdat == last_pgdat)
3023			continue;
3024		last_pgdat = zone->zone_pgdat;
3025		shrink_node(zone->zone_pgdat, sc);
3026	}
3027
 
 
 
3028	/*
3029	 * Restore to original mask to avoid the impact on the caller if we
3030	 * promoted it to __GFP_HIGHMEM.
3031	 */
3032	sc->gfp_mask = orig_mask;
3033}
3034
3035static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
3036{
3037	struct mem_cgroup *memcg;
 
3038
3039	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
3040	do {
3041		unsigned long refaults;
3042		struct lruvec *lruvec;
3043
3044		lruvec = mem_cgroup_lruvec(pgdat, memcg);
3045		refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
3046		lruvec->refaults = refaults;
3047	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
 
3048}
3049
3050/*
3051 * This is the main entry point to direct page reclaim.
3052 *
3053 * If a full scan of the inactive list fails to free enough memory then we
3054 * are "out of memory" and something needs to be killed.
3055 *
3056 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3057 * high - the zone may be full of dirty or under-writeback pages, which this
3058 * caller can't do much about.  We kick the writeback threads and take explicit
3059 * naps in the hope that some of these pages can be written.  But if the
3060 * allocating task holds filesystem locks which prevent writeout this might not
3061 * work, and the allocation attempt will fail.
3062 *
3063 * returns:	0, if no pages reclaimed
3064 * 		else, the number of pages reclaimed
3065 */
3066static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3067					  struct scan_control *sc)
3068{
3069	int initial_priority = sc->priority;
3070	pg_data_t *last_pgdat;
3071	struct zoneref *z;
3072	struct zone *zone;
3073retry:
3074	delayacct_freepages_start();
3075
3076	if (global_reclaim(sc))
3077		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3078
3079	do {
3080		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3081				sc->priority);
 
3082		sc->nr_scanned = 0;
3083		shrink_zones(zonelist, sc);
3084
3085		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3086			break;
3087
3088		if (sc->compaction_ready)
3089			break;
3090
3091		/*
3092		 * If we're getting trouble reclaiming, start doing
3093		 * writepage even in laptop mode.
3094		 */
3095		if (sc->priority < DEF_PRIORITY - 2)
3096			sc->may_writepage = 1;
3097	} while (--sc->priority >= 0);
3098
3099	last_pgdat = NULL;
3100	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3101					sc->nodemask) {
3102		if (zone->zone_pgdat == last_pgdat)
3103			continue;
3104		last_pgdat = zone->zone_pgdat;
 
3105		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3106		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
 
 
 
 
 
 
 
3107	}
3108
3109	delayacct_freepages_end();
3110
3111	if (sc->nr_reclaimed)
3112		return sc->nr_reclaimed;
3113
3114	/* Aborted reclaim to try compaction? don't OOM, then */
3115	if (sc->compaction_ready)
3116		return 1;
3117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3118	/* Untapped cgroup reserves?  Don't OOM, retry. */
3119	if (sc->memcg_low_skipped) {
3120		sc->priority = initial_priority;
 
3121		sc->memcg_low_reclaim = 1;
3122		sc->memcg_low_skipped = 0;
3123		goto retry;
3124	}
3125
3126	return 0;
3127}
3128
3129static bool allow_direct_reclaim(pg_data_t *pgdat)
3130{
3131	struct zone *zone;
3132	unsigned long pfmemalloc_reserve = 0;
3133	unsigned long free_pages = 0;
3134	int i;
3135	bool wmark_ok;
3136
3137	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3138		return true;
3139
3140	for (i = 0; i <= ZONE_NORMAL; i++) {
3141		zone = &pgdat->node_zones[i];
3142		if (!managed_zone(zone))
3143			continue;
3144
3145		if (!zone_reclaimable_pages(zone))
3146			continue;
3147
3148		pfmemalloc_reserve += min_wmark_pages(zone);
3149		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3150	}
3151
3152	/* If there are no reserves (unexpected config) then do not throttle */
3153	if (!pfmemalloc_reserve)
3154		return true;
3155
3156	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3157
3158	/* kswapd must be awake if processes are being throttled */
3159	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3160		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3161						(enum zone_type)ZONE_NORMAL);
 
3162		wake_up_interruptible(&pgdat->kswapd_wait);
3163	}
3164
3165	return wmark_ok;
3166}
3167
3168/*
3169 * Throttle direct reclaimers if backing storage is backed by the network
3170 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3171 * depleted. kswapd will continue to make progress and wake the processes
3172 * when the low watermark is reached.
3173 *
3174 * Returns true if a fatal signal was delivered during throttling. If this
3175 * happens, the page allocator should not consider triggering the OOM killer.
3176 */
3177static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3178					nodemask_t *nodemask)
3179{
3180	struct zoneref *z;
3181	struct zone *zone;
3182	pg_data_t *pgdat = NULL;
3183
3184	/*
3185	 * Kernel threads should not be throttled as they may be indirectly
3186	 * responsible for cleaning pages necessary for reclaim to make forward
3187	 * progress. kjournald for example may enter direct reclaim while
3188	 * committing a transaction where throttling it could forcing other
3189	 * processes to block on log_wait_commit().
3190	 */
3191	if (current->flags & PF_KTHREAD)
3192		goto out;
3193
3194	/*
3195	 * If a fatal signal is pending, this process should not throttle.
3196	 * It should return quickly so it can exit and free its memory
3197	 */
3198	if (fatal_signal_pending(current))
3199		goto out;
3200
3201	/*
3202	 * Check if the pfmemalloc reserves are ok by finding the first node
3203	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3204	 * GFP_KERNEL will be required for allocating network buffers when
3205	 * swapping over the network so ZONE_HIGHMEM is unusable.
3206	 *
3207	 * Throttling is based on the first usable node and throttled processes
3208	 * wait on a queue until kswapd makes progress and wakes them. There
3209	 * is an affinity then between processes waking up and where reclaim
3210	 * progress has been made assuming the process wakes on the same node.
3211	 * More importantly, processes running on remote nodes will not compete
3212	 * for remote pfmemalloc reserves and processes on different nodes
3213	 * should make reasonable progress.
3214	 */
3215	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3216					gfp_zone(gfp_mask), nodemask) {
3217		if (zone_idx(zone) > ZONE_NORMAL)
3218			continue;
3219
3220		/* Throttle based on the first usable node */
3221		pgdat = zone->zone_pgdat;
3222		if (allow_direct_reclaim(pgdat))
3223			goto out;
3224		break;
3225	}
3226
3227	/* If no zone was usable by the allocation flags then do not throttle */
3228	if (!pgdat)
3229		goto out;
3230
3231	/* Account for the throttling */
3232	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3233
3234	/*
3235	 * If the caller cannot enter the filesystem, it's possible that it
3236	 * is due to the caller holding an FS lock or performing a journal
3237	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3238	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3239	 * blocked waiting on the same lock. Instead, throttle for up to a
3240	 * second before continuing.
3241	 */
3242	if (!(gfp_mask & __GFP_FS)) {
3243		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3244			allow_direct_reclaim(pgdat), HZ);
 
 
 
 
3245
3246		goto check_pending;
3247	}
3248
3249	/* Throttle until kswapd wakes the process */
3250	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3251		allow_direct_reclaim(pgdat));
3252
3253check_pending:
3254	if (fatal_signal_pending(current))
3255		return true;
3256
3257out:
3258	return false;
3259}
3260
3261unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3262				gfp_t gfp_mask, nodemask_t *nodemask)
3263{
3264	unsigned long nr_reclaimed;
3265	struct scan_control sc = {
3266		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3267		.gfp_mask = current_gfp_context(gfp_mask),
3268		.reclaim_idx = gfp_zone(gfp_mask),
3269		.order = order,
3270		.nodemask = nodemask,
3271		.priority = DEF_PRIORITY,
3272		.may_writepage = !laptop_mode,
3273		.may_unmap = 1,
3274		.may_swap = 1,
3275	};
3276
3277	/*
3278	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3279	 * Confirm they are large enough for max values.
3280	 */
3281	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3282	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3283	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3284
3285	/*
3286	 * Do not enter reclaim if fatal signal was delivered while throttled.
3287	 * 1 is returned so that the page allocator does not OOM kill at this
3288	 * point.
3289	 */
3290	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3291		return 1;
3292
3293	set_task_reclaim_state(current, &sc.reclaim_state);
3294	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3295
3296	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3297
3298	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3299	set_task_reclaim_state(current, NULL);
3300
3301	return nr_reclaimed;
3302}
3303
3304#ifdef CONFIG_MEMCG
3305
3306/* Only used by soft limit reclaim. Do not reuse for anything else. */
3307unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3308						gfp_t gfp_mask, bool noswap,
3309						pg_data_t *pgdat,
3310						unsigned long *nr_scanned)
3311{
 
3312	struct scan_control sc = {
3313		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3314		.target_mem_cgroup = memcg,
3315		.may_writepage = !laptop_mode,
3316		.may_unmap = 1,
3317		.reclaim_idx = MAX_NR_ZONES - 1,
3318		.may_swap = !noswap,
3319	};
3320	unsigned long lru_pages;
3321
3322	WARN_ON_ONCE(!current->reclaim_state);
3323
3324	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3325			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3326
3327	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3328						      sc.gfp_mask);
3329
3330	/*
3331	 * NOTE: Although we can get the priority field, using it
3332	 * here is not a good idea, since it limits the pages we can scan.
3333	 * if we don't reclaim here, the shrink_node from balance_pgdat
3334	 * will pick up pages from other mem cgroup's as well. We hack
3335	 * the priority and make it zero.
3336	 */
3337	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3338
3339	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3340
3341	*nr_scanned = sc.nr_scanned;
3342
3343	return sc.nr_reclaimed;
3344}
3345
3346unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3347					   unsigned long nr_pages,
3348					   gfp_t gfp_mask,
3349					   bool may_swap)
3350{
3351	struct zonelist *zonelist;
3352	unsigned long nr_reclaimed;
3353	unsigned long pflags;
3354	int nid;
3355	unsigned int noreclaim_flag;
3356	struct scan_control sc = {
3357		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3358		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3359				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3360		.reclaim_idx = MAX_NR_ZONES - 1,
3361		.target_mem_cgroup = memcg,
3362		.priority = DEF_PRIORITY,
3363		.may_writepage = !laptop_mode,
3364		.may_unmap = 1,
3365		.may_swap = may_swap,
 
3366	};
3367
3368	set_task_reclaim_state(current, &sc.reclaim_state);
3369	/*
3370	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3371	 * take care of from where we get pages. So the node where we start the
3372	 * scan does not need to be the current node.
3373	 */
3374	nid = mem_cgroup_select_victim_node(memcg);
3375
3376	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3377
 
3378	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3379
3380	psi_memstall_enter(&pflags);
3381	noreclaim_flag = memalloc_noreclaim_save();
3382
3383	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3384
3385	memalloc_noreclaim_restore(noreclaim_flag);
3386	psi_memstall_leave(&pflags);
3387
3388	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3389	set_task_reclaim_state(current, NULL);
3390
3391	return nr_reclaimed;
3392}
3393#endif
3394
3395static void age_active_anon(struct pglist_data *pgdat,
3396				struct scan_control *sc)
3397{
3398	struct mem_cgroup *memcg;
 
3399
3400	if (!total_swap_pages)
 
3401		return;
 
3402
3403	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3404	do {
3405		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3406
3407		if (inactive_list_is_low(lruvec, false, sc, true))
3408			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3409					   sc, LRU_ACTIVE_ANON);
3410
 
 
 
 
 
3411		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3412	} while (memcg);
3413}
3414
3415static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3416{
3417	int i;
3418	struct zone *zone;
3419
3420	/*
3421	 * Check for watermark boosts top-down as the higher zones
3422	 * are more likely to be boosted. Both watermarks and boosts
3423	 * should not be checked at the time time as reclaim would
3424	 * start prematurely when there is no boosting and a lower
3425	 * zone is balanced.
3426	 */
3427	for (i = classzone_idx; i >= 0; i--) {
3428		zone = pgdat->node_zones + i;
3429		if (!managed_zone(zone))
3430			continue;
3431
3432		if (zone->watermark_boost)
3433			return true;
3434	}
3435
3436	return false;
3437}
3438
3439/*
3440 * Returns true if there is an eligible zone balanced for the request order
3441 * and classzone_idx
3442 */
3443static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3444{
3445	int i;
3446	unsigned long mark = -1;
3447	struct zone *zone;
3448
3449	/*
3450	 * Check watermarks bottom-up as lower zones are more likely to
3451	 * meet watermarks.
3452	 */
3453	for (i = 0; i <= classzone_idx; i++) {
3454		zone = pgdat->node_zones + i;
3455
3456		if (!managed_zone(zone))
3457			continue;
3458
3459		mark = high_wmark_pages(zone);
3460		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
 
 
 
3461			return true;
3462	}
3463
3464	/*
3465	 * If a node has no populated zone within classzone_idx, it does not
3466	 * need balancing by definition. This can happen if a zone-restricted
3467	 * allocation tries to wake a remote kswapd.
3468	 */
3469	if (mark == -1)
3470		return true;
3471
3472	return false;
3473}
3474
3475/* Clear pgdat state for congested, dirty or under writeback. */
3476static void clear_pgdat_congested(pg_data_t *pgdat)
3477{
3478	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
 
 
 
3479	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3480	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3481}
3482
3483/*
3484 * Prepare kswapd for sleeping. This verifies that there are no processes
3485 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3486 *
3487 * Returns true if kswapd is ready to sleep
3488 */
3489static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
 
3490{
3491	/*
3492	 * The throttled processes are normally woken up in balance_pgdat() as
3493	 * soon as allow_direct_reclaim() is true. But there is a potential
3494	 * race between when kswapd checks the watermarks and a process gets
3495	 * throttled. There is also a potential race if processes get
3496	 * throttled, kswapd wakes, a large process exits thereby balancing the
3497	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3498	 * the wake up checks. If kswapd is going to sleep, no process should
3499	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3500	 * the wake up is premature, processes will wake kswapd and get
3501	 * throttled again. The difference from wake ups in balance_pgdat() is
3502	 * that here we are under prepare_to_wait().
3503	 */
3504	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3505		wake_up_all(&pgdat->pfmemalloc_wait);
3506
3507	/* Hopeless node, leave it to direct reclaim */
3508	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3509		return true;
3510
3511	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3512		clear_pgdat_congested(pgdat);
3513		return true;
3514	}
3515
3516	return false;
3517}
3518
3519/*
3520 * kswapd shrinks a node of pages that are at or below the highest usable
3521 * zone that is currently unbalanced.
3522 *
3523 * Returns true if kswapd scanned at least the requested number of pages to
3524 * reclaim or if the lack of progress was due to pages under writeback.
3525 * This is used to determine if the scanning priority needs to be raised.
3526 */
3527static bool kswapd_shrink_node(pg_data_t *pgdat,
3528			       struct scan_control *sc)
3529{
3530	struct zone *zone;
3531	int z;
3532
3533	/* Reclaim a number of pages proportional to the number of zones */
3534	sc->nr_to_reclaim = 0;
3535	for (z = 0; z <= sc->reclaim_idx; z++) {
3536		zone = pgdat->node_zones + z;
3537		if (!managed_zone(zone))
3538			continue;
3539
3540		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3541	}
3542
3543	/*
3544	 * Historically care was taken to put equal pressure on all zones but
3545	 * now pressure is applied based on node LRU order.
3546	 */
3547	shrink_node(pgdat, sc);
3548
3549	/*
3550	 * Fragmentation may mean that the system cannot be rebalanced for
3551	 * high-order allocations. If twice the allocation size has been
3552	 * reclaimed then recheck watermarks only at order-0 to prevent
3553	 * excessive reclaim. Assume that a process requested a high-order
3554	 * can direct reclaim/compact.
3555	 */
3556	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3557		sc->order = 0;
3558
3559	return sc->nr_scanned >= sc->nr_to_reclaim;
3560}
3561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3562/*
3563 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3564 * that are eligible for use by the caller until at least one zone is
3565 * balanced.
3566 *
3567 * Returns the order kswapd finished reclaiming at.
3568 *
3569 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3570 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3571 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3572 * or lower is eligible for reclaim until at least one usable zone is
3573 * balanced.
3574 */
3575static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3576{
3577	int i;
3578	unsigned long nr_soft_reclaimed;
3579	unsigned long nr_soft_scanned;
3580	unsigned long pflags;
3581	unsigned long nr_boost_reclaim;
3582	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3583	bool boosted;
3584	struct zone *zone;
3585	struct scan_control sc = {
3586		.gfp_mask = GFP_KERNEL,
3587		.order = order,
3588		.may_unmap = 1,
3589	};
3590
3591	set_task_reclaim_state(current, &sc.reclaim_state);
3592	psi_memstall_enter(&pflags);
3593	__fs_reclaim_acquire();
3594
3595	count_vm_event(PAGEOUTRUN);
3596
3597	/*
3598	 * Account for the reclaim boost. Note that the zone boost is left in
3599	 * place so that parallel allocations that are near the watermark will
3600	 * stall or direct reclaim until kswapd is finished.
3601	 */
3602	nr_boost_reclaim = 0;
3603	for (i = 0; i <= classzone_idx; i++) {
3604		zone = pgdat->node_zones + i;
3605		if (!managed_zone(zone))
3606			continue;
3607
3608		nr_boost_reclaim += zone->watermark_boost;
3609		zone_boosts[i] = zone->watermark_boost;
3610	}
3611	boosted = nr_boost_reclaim;
3612
3613restart:
 
3614	sc.priority = DEF_PRIORITY;
3615	do {
3616		unsigned long nr_reclaimed = sc.nr_reclaimed;
3617		bool raise_priority = true;
3618		bool balanced;
3619		bool ret;
 
3620
3621		sc.reclaim_idx = classzone_idx;
3622
3623		/*
3624		 * If the number of buffer_heads exceeds the maximum allowed
3625		 * then consider reclaiming from all zones. This has a dual
3626		 * purpose -- on 64-bit systems it is expected that
3627		 * buffer_heads are stripped during active rotation. On 32-bit
3628		 * systems, highmem pages can pin lowmem memory and shrinking
3629		 * buffers can relieve lowmem pressure. Reclaim may still not
3630		 * go ahead if all eligible zones for the original allocation
3631		 * request are balanced to avoid excessive reclaim from kswapd.
3632		 */
3633		if (buffer_heads_over_limit) {
3634			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3635				zone = pgdat->node_zones + i;
3636				if (!managed_zone(zone))
3637					continue;
3638
3639				sc.reclaim_idx = i;
3640				break;
3641			}
3642		}
3643
3644		/*
3645		 * If the pgdat is imbalanced then ignore boosting and preserve
3646		 * the watermarks for a later time and restart. Note that the
3647		 * zone watermarks will be still reset at the end of balancing
3648		 * on the grounds that the normal reclaim should be enough to
3649		 * re-evaluate if boosting is required when kswapd next wakes.
3650		 */
3651		balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3652		if (!balanced && nr_boost_reclaim) {
3653			nr_boost_reclaim = 0;
3654			goto restart;
3655		}
3656
3657		/*
3658		 * If boosting is not active then only reclaim if there are no
3659		 * eligible zones. Note that sc.reclaim_idx is not used as
3660		 * buffer_heads_over_limit may have adjusted it.
3661		 */
3662		if (!nr_boost_reclaim && balanced)
3663			goto out;
3664
3665		/* Limit the priority of boosting to avoid reclaim writeback */
3666		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3667			raise_priority = false;
3668
3669		/*
3670		 * Do not writeback or swap pages for boosted reclaim. The
3671		 * intent is to relieve pressure not issue sub-optimal IO
3672		 * from reclaim context. If no pages are reclaimed, the
3673		 * reclaim will be aborted.
3674		 */
3675		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3676		sc.may_swap = !nr_boost_reclaim;
3677
3678		/*
3679		 * Do some background aging of the anon list, to give
3680		 * pages a chance to be referenced before reclaiming. All
3681		 * pages are rotated regardless of classzone as this is
3682		 * about consistent aging.
3683		 */
3684		age_active_anon(pgdat, &sc);
3685
3686		/*
3687		 * If we're getting trouble reclaiming, start doing writepage
3688		 * even in laptop mode.
3689		 */
3690		if (sc.priority < DEF_PRIORITY - 2)
3691			sc.may_writepage = 1;
3692
3693		/* Call soft limit reclaim before calling shrink_node. */
3694		sc.nr_scanned = 0;
3695		nr_soft_scanned = 0;
3696		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3697						sc.gfp_mask, &nr_soft_scanned);
3698		sc.nr_reclaimed += nr_soft_reclaimed;
3699
3700		/*
3701		 * There should be no need to raise the scanning priority if
3702		 * enough pages are already being scanned that that high
3703		 * watermark would be met at 100% efficiency.
3704		 */
3705		if (kswapd_shrink_node(pgdat, &sc))
3706			raise_priority = false;
3707
3708		/*
3709		 * If the low watermark is met there is no need for processes
3710		 * to be throttled on pfmemalloc_wait as they should not be
3711		 * able to safely make forward progress. Wake them
3712		 */
3713		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3714				allow_direct_reclaim(pgdat))
3715			wake_up_all(&pgdat->pfmemalloc_wait);
3716
3717		/* Check if kswapd should be suspending */
3718		__fs_reclaim_release();
3719		ret = try_to_freeze();
3720		__fs_reclaim_acquire();
3721		if (ret || kthread_should_stop())
3722			break;
3723
3724		/*
3725		 * Raise priority if scanning rate is too low or there was no
3726		 * progress in reclaiming pages
3727		 */
3728		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3729		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3730
3731		/*
3732		 * If reclaim made no progress for a boost, stop reclaim as
3733		 * IO cannot be queued and it could be an infinite loop in
3734		 * extreme circumstances.
3735		 */
3736		if (nr_boost_reclaim && !nr_reclaimed)
3737			break;
3738
3739		if (raise_priority || !nr_reclaimed)
3740			sc.priority--;
3741	} while (sc.priority >= 1);
3742
 
 
 
 
 
 
 
 
 
 
3743	if (!sc.nr_reclaimed)
3744		pgdat->kswapd_failures++;
3745
3746out:
 
 
3747	/* If reclaim was boosted, account for the reclaim done in this pass */
3748	if (boosted) {
3749		unsigned long flags;
3750
3751		for (i = 0; i <= classzone_idx; i++) {
3752			if (!zone_boosts[i])
3753				continue;
3754
3755			/* Increments are under the zone lock */
3756			zone = pgdat->node_zones + i;
3757			spin_lock_irqsave(&zone->lock, flags);
3758			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3759			spin_unlock_irqrestore(&zone->lock, flags);
3760		}
3761
3762		/*
3763		 * As there is now likely space, wakeup kcompact to defragment
3764		 * pageblocks.
3765		 */
3766		wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3767	}
3768
3769	snapshot_refaults(NULL, pgdat);
3770	__fs_reclaim_release();
3771	psi_memstall_leave(&pflags);
3772	set_task_reclaim_state(current, NULL);
3773
3774	/*
3775	 * Return the order kswapd stopped reclaiming at as
3776	 * prepare_kswapd_sleep() takes it into account. If another caller
3777	 * entered the allocator slow path while kswapd was awake, order will
3778	 * remain at the higher level.
3779	 */
3780	return sc.order;
3781}
3782
3783/*
3784 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3785 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3786 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3787 * after previous reclaim attempt (node is still unbalanced). In that case
3788 * return the zone index of the previous kswapd reclaim cycle.
3789 */
3790static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3791					   enum zone_type prev_classzone_idx)
3792{
3793	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3794		return prev_classzone_idx;
3795	return pgdat->kswapd_classzone_idx;
3796}
3797
3798static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3799				unsigned int classzone_idx)
3800{
3801	long remaining = 0;
3802	DEFINE_WAIT(wait);
3803
3804	if (freezing(current) || kthread_should_stop())
3805		return;
3806
3807	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3808
3809	/*
3810	 * Try to sleep for a short interval. Note that kcompactd will only be
3811	 * woken if it is possible to sleep for a short interval. This is
3812	 * deliberate on the assumption that if reclaim cannot keep an
3813	 * eligible zone balanced that it's also unlikely that compaction will
3814	 * succeed.
3815	 */
3816	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3817		/*
3818		 * Compaction records what page blocks it recently failed to
3819		 * isolate pages from and skips them in the future scanning.
3820		 * When kswapd is going to sleep, it is reasonable to assume
3821		 * that pages and compaction may succeed so reset the cache.
3822		 */
3823		reset_isolation_suitable(pgdat);
3824
3825		/*
3826		 * We have freed the memory, now we should compact it to make
3827		 * allocation of the requested order possible.
3828		 */
3829		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3830
3831		remaining = schedule_timeout(HZ/10);
3832
3833		/*
3834		 * If woken prematurely then reset kswapd_classzone_idx and
3835		 * order. The values will either be from a wakeup request or
3836		 * the previous request that slept prematurely.
3837		 */
3838		if (remaining) {
3839			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3840			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
 
 
 
 
3841		}
3842
3843		finish_wait(&pgdat->kswapd_wait, &wait);
3844		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3845	}
3846
3847	/*
3848	 * After a short sleep, check if it was a premature sleep. If not, then
3849	 * go fully to sleep until explicitly woken up.
3850	 */
3851	if (!remaining &&
3852	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3853		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3854
3855		/*
3856		 * vmstat counters are not perfectly accurate and the estimated
3857		 * value for counters such as NR_FREE_PAGES can deviate from the
3858		 * true value by nr_online_cpus * threshold. To avoid the zone
3859		 * watermarks being breached while under pressure, we reduce the
3860		 * per-cpu vmstat threshold while kswapd is awake and restore
3861		 * them before going back to sleep.
3862		 */
3863		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3864
3865		if (!kthread_should_stop())
3866			schedule();
3867
3868		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3869	} else {
3870		if (remaining)
3871			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3872		else
3873			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3874	}
3875	finish_wait(&pgdat->kswapd_wait, &wait);
3876}
3877
3878/*
3879 * The background pageout daemon, started as a kernel thread
3880 * from the init process.
3881 *
3882 * This basically trickles out pages so that we have _some_
3883 * free memory available even if there is no other activity
3884 * that frees anything up. This is needed for things like routing
3885 * etc, where we otherwise might have all activity going on in
3886 * asynchronous contexts that cannot page things out.
3887 *
3888 * If there are applications that are active memory-allocators
3889 * (most normal use), this basically shouldn't matter.
3890 */
3891static int kswapd(void *p)
3892{
3893	unsigned int alloc_order, reclaim_order;
3894	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3895	pg_data_t *pgdat = (pg_data_t*)p;
3896	struct task_struct *tsk = current;
3897	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3898
3899	if (!cpumask_empty(cpumask))
3900		set_cpus_allowed_ptr(tsk, cpumask);
3901
3902	/*
3903	 * Tell the memory management that we're a "memory allocator",
3904	 * and that if we need more memory we should get access to it
3905	 * regardless (see "__alloc_pages()"). "kswapd" should
3906	 * never get caught in the normal page freeing logic.
3907	 *
3908	 * (Kswapd normally doesn't need memory anyway, but sometimes
3909	 * you need a small amount of memory in order to be able to
3910	 * page out something else, and this flag essentially protects
3911	 * us from recursively trying to free more memory as we're
3912	 * trying to free the first piece of memory in the first place).
3913	 */
3914	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3915	set_freezable();
3916
3917	pgdat->kswapd_order = 0;
3918	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
 
3919	for ( ; ; ) {
3920		bool ret;
3921
3922		alloc_order = reclaim_order = pgdat->kswapd_order;
3923		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
 
3924
3925kswapd_try_sleep:
3926		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3927					classzone_idx);
3928
3929		/* Read the new order and classzone_idx */
3930		alloc_order = reclaim_order = pgdat->kswapd_order;
3931		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3932		pgdat->kswapd_order = 0;
3933		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
 
3934
3935		ret = try_to_freeze();
3936		if (kthread_should_stop())
3937			break;
3938
3939		/*
3940		 * We can speed up thawing tasks if we don't call balance_pgdat
3941		 * after returning from the refrigerator
3942		 */
3943		if (ret)
3944			continue;
3945
3946		/*
3947		 * Reclaim begins at the requested order but if a high-order
3948		 * reclaim fails then kswapd falls back to reclaiming for
3949		 * order-0. If that happens, kswapd will consider sleeping
3950		 * for the order it finished reclaiming at (reclaim_order)
3951		 * but kcompactd is woken to compact for the original
3952		 * request (alloc_order).
3953		 */
3954		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3955						alloc_order);
3956		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
 
3957		if (reclaim_order < alloc_order)
3958			goto kswapd_try_sleep;
3959	}
3960
3961	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3962
3963	return 0;
3964}
3965
3966/*
3967 * A zone is low on free memory or too fragmented for high-order memory.  If
3968 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3969 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3970 * has failed or is not needed, still wake up kcompactd if only compaction is
3971 * needed.
3972 */
3973void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3974		   enum zone_type classzone_idx)
3975{
3976	pg_data_t *pgdat;
 
3977
3978	if (!managed_zone(zone))
3979		return;
3980
3981	if (!cpuset_zone_allowed(zone, gfp_flags))
3982		return;
 
3983	pgdat = zone->zone_pgdat;
 
 
 
 
 
 
 
3984
3985	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3986		pgdat->kswapd_classzone_idx = classzone_idx;
3987	else
3988		pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3989						  classzone_idx);
3990	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3991	if (!waitqueue_active(&pgdat->kswapd_wait))
3992		return;
3993
3994	/* Hopeless node, leave it to direct reclaim if possible */
3995	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3996	    (pgdat_balanced(pgdat, order, classzone_idx) &&
3997	     !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3998		/*
3999		 * There may be plenty of free memory available, but it's too
4000		 * fragmented for high-order allocations.  Wake up kcompactd
4001		 * and rely on compaction_suitable() to determine if it's
4002		 * needed.  If it fails, it will defer subsequent attempts to
4003		 * ratelimit its work.
4004		 */
4005		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4006			wakeup_kcompactd(pgdat, order, classzone_idx);
4007		return;
4008	}
4009
4010	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
4011				      gfp_flags);
4012	wake_up_interruptible(&pgdat->kswapd_wait);
4013}
4014
4015#ifdef CONFIG_HIBERNATION
4016/*
4017 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4018 * freed pages.
4019 *
4020 * Rather than trying to age LRUs the aim is to preserve the overall
4021 * LRU order by reclaiming preferentially
4022 * inactive > active > active referenced > active mapped
4023 */
4024unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4025{
4026	struct scan_control sc = {
4027		.nr_to_reclaim = nr_to_reclaim,
4028		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4029		.reclaim_idx = MAX_NR_ZONES - 1,
4030		.priority = DEF_PRIORITY,
4031		.may_writepage = 1,
4032		.may_unmap = 1,
4033		.may_swap = 1,
4034		.hibernation_mode = 1,
4035	};
4036	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4037	unsigned long nr_reclaimed;
4038	unsigned int noreclaim_flag;
4039
4040	fs_reclaim_acquire(sc.gfp_mask);
4041	noreclaim_flag = memalloc_noreclaim_save();
4042	set_task_reclaim_state(current, &sc.reclaim_state);
4043
4044	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4045
4046	set_task_reclaim_state(current, NULL);
4047	memalloc_noreclaim_restore(noreclaim_flag);
4048	fs_reclaim_release(sc.gfp_mask);
4049
4050	return nr_reclaimed;
4051}
4052#endif /* CONFIG_HIBERNATION */
4053
4054/* It's optimal to keep kswapds on the same CPUs as their memory, but
4055   not required for correctness.  So if the last cpu in a node goes
4056   away, we get changed to run anywhere: as the first one comes back,
4057   restore their cpu bindings. */
4058static int kswapd_cpu_online(unsigned int cpu)
4059{
4060	int nid;
4061
4062	for_each_node_state(nid, N_MEMORY) {
4063		pg_data_t *pgdat = NODE_DATA(nid);
4064		const struct cpumask *mask;
4065
4066		mask = cpumask_of_node(pgdat->node_id);
4067
4068		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
4069			/* One of our CPUs online: restore mask */
4070			set_cpus_allowed_ptr(pgdat->kswapd, mask);
4071	}
4072	return 0;
4073}
4074
4075/*
4076 * This kswapd start function will be called by init and node-hot-add.
4077 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4078 */
4079int kswapd_run(int nid)
4080{
4081	pg_data_t *pgdat = NODE_DATA(nid);
4082	int ret = 0;
4083
4084	if (pgdat->kswapd)
4085		return 0;
4086
4087	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4088	if (IS_ERR(pgdat->kswapd)) {
4089		/* failure at boot is fatal */
4090		BUG_ON(system_state < SYSTEM_RUNNING);
4091		pr_err("Failed to start kswapd on node %d\n", nid);
4092		ret = PTR_ERR(pgdat->kswapd);
4093		pgdat->kswapd = NULL;
 
 
 
4094	}
4095	return ret;
4096}
4097
4098/*
4099 * Called by memory hotplug when all memory in a node is offlined.  Caller must
4100 * hold mem_hotplug_begin/end().
4101 */
4102void kswapd_stop(int nid)
4103{
4104	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
 
4105
 
 
4106	if (kswapd) {
4107		kthread_stop(kswapd);
4108		NODE_DATA(nid)->kswapd = NULL;
4109	}
 
4110}
4111
4112static int __init kswapd_init(void)
4113{
4114	int nid, ret;
4115
4116	swap_setup();
4117	for_each_node_state(nid, N_MEMORY)
4118 		kswapd_run(nid);
4119	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4120					"mm/vmscan:online", kswapd_cpu_online,
4121					NULL);
4122	WARN_ON(ret < 0);
4123	return 0;
4124}
4125
4126module_init(kswapd_init)
4127
4128#ifdef CONFIG_NUMA
4129/*
4130 * Node reclaim mode
4131 *
4132 * If non-zero call node_reclaim when the number of free pages falls below
4133 * the watermarks.
4134 */
4135int node_reclaim_mode __read_mostly;
4136
4137#define RECLAIM_OFF 0
4138#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4139#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4140#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4141
4142/*
4143 * Priority for NODE_RECLAIM. This determines the fraction of pages
4144 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4145 * a zone.
4146 */
4147#define NODE_RECLAIM_PRIORITY 4
4148
4149/*
4150 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4151 * occur.
4152 */
4153int sysctl_min_unmapped_ratio = 1;
4154
4155/*
4156 * If the number of slab pages in a zone grows beyond this percentage then
4157 * slab reclaim needs to occur.
4158 */
4159int sysctl_min_slab_ratio = 5;
4160
4161static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4162{
4163	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4164	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4165		node_page_state(pgdat, NR_ACTIVE_FILE);
4166
4167	/*
4168	 * It's possible for there to be more file mapped pages than
4169	 * accounted for by the pages on the file LRU lists because
4170	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4171	 */
4172	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4173}
4174
4175/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4176static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4177{
4178	unsigned long nr_pagecache_reclaimable;
4179	unsigned long delta = 0;
4180
4181	/*
4182	 * If RECLAIM_UNMAP is set, then all file pages are considered
4183	 * potentially reclaimable. Otherwise, we have to worry about
4184	 * pages like swapcache and node_unmapped_file_pages() provides
4185	 * a better estimate
4186	 */
4187	if (node_reclaim_mode & RECLAIM_UNMAP)
4188		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4189	else
4190		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4191
4192	/* If we can't clean pages, remove dirty pages from consideration */
4193	if (!(node_reclaim_mode & RECLAIM_WRITE))
4194		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4195
4196	/* Watch for any possible underflows due to delta */
4197	if (unlikely(delta > nr_pagecache_reclaimable))
4198		delta = nr_pagecache_reclaimable;
4199
4200	return nr_pagecache_reclaimable - delta;
4201}
4202
4203/*
4204 * Try to free up some pages from this node through reclaim.
4205 */
4206static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4207{
4208	/* Minimum pages needed in order to stay on node */
4209	const unsigned long nr_pages = 1 << order;
4210	struct task_struct *p = current;
4211	unsigned int noreclaim_flag;
4212	struct scan_control sc = {
4213		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4214		.gfp_mask = current_gfp_context(gfp_mask),
4215		.order = order,
4216		.priority = NODE_RECLAIM_PRIORITY,
4217		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4218		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4219		.may_swap = 1,
4220		.reclaim_idx = gfp_zone(gfp_mask),
4221	};
 
4222
4223	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4224					   sc.gfp_mask);
4225
4226	cond_resched();
 
 
4227	fs_reclaim_acquire(sc.gfp_mask);
4228	/*
4229	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4230	 * and we also need to be able to write out pages for RECLAIM_WRITE
4231	 * and RECLAIM_UNMAP.
4232	 */
4233	noreclaim_flag = memalloc_noreclaim_save();
4234	p->flags |= PF_SWAPWRITE;
4235	set_task_reclaim_state(p, &sc.reclaim_state);
4236
4237	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
 
4238		/*
4239		 * Free memory by calling shrink node with increasing
4240		 * priorities until we have enough memory freed.
4241		 */
4242		do {
4243			shrink_node(pgdat, &sc);
4244		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4245	}
4246
4247	set_task_reclaim_state(p, NULL);
4248	current->flags &= ~PF_SWAPWRITE;
4249	memalloc_noreclaim_restore(noreclaim_flag);
4250	fs_reclaim_release(sc.gfp_mask);
 
 
4251
4252	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4253
4254	return sc.nr_reclaimed >= nr_pages;
4255}
4256
4257int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4258{
4259	int ret;
4260
4261	/*
4262	 * Node reclaim reclaims unmapped file backed pages and
4263	 * slab pages if we are over the defined limits.
4264	 *
4265	 * A small portion of unmapped file backed pages is needed for
4266	 * file I/O otherwise pages read by file I/O will be immediately
4267	 * thrown out if the node is overallocated. So we do not reclaim
4268	 * if less than a specified percentage of the node is used by
4269	 * unmapped file backed pages.
4270	 */
4271	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4272	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
 
4273		return NODE_RECLAIM_FULL;
4274
4275	/*
4276	 * Do not scan if the allocation should not be delayed.
4277	 */
4278	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4279		return NODE_RECLAIM_NOSCAN;
4280
4281	/*
4282	 * Only run node reclaim on the local node or on nodes that do not
4283	 * have associated processors. This will favor the local processor
4284	 * over remote processors and spread off node memory allocations
4285	 * as wide as possible.
4286	 */
4287	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4288		return NODE_RECLAIM_NOSCAN;
4289
4290	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4291		return NODE_RECLAIM_NOSCAN;
4292
4293	ret = __node_reclaim(pgdat, gfp_mask, order);
4294	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4295
4296	if (!ret)
4297		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4298
4299	return ret;
4300}
4301#endif
4302
4303/*
4304 * page_evictable - test whether a page is evictable
4305 * @page: the page to test
4306 *
4307 * Test whether page is evictable--i.e., should be placed on active/inactive
4308 * lists vs unevictable list.
4309 *
4310 * Reasons page might not be evictable:
4311 * (1) page's mapping marked unevictable
4312 * (2) page is part of an mlocked VMA
4313 *
4314 */
4315int page_evictable(struct page *page)
4316{
4317	int ret;
4318
4319	/* Prevent address_space of inode and swap cache from being freed */
4320	rcu_read_lock();
4321	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4322	rcu_read_unlock();
4323	return ret;
4324}
4325
4326/**
4327 * check_move_unevictable_pages - check pages for evictability and move to
4328 * appropriate zone lru list
4329 * @pvec: pagevec with lru pages to check
4330 *
4331 * Checks pages for evictability, if an evictable page is in the unevictable
4332 * lru list, moves it to the appropriate evictable lru list. This function
4333 * should be only used for lru pages.
4334 */
4335void check_move_unevictable_pages(struct pagevec *pvec)
4336{
4337	struct lruvec *lruvec;
4338	struct pglist_data *pgdat = NULL;
4339	int pgscanned = 0;
4340	int pgrescued = 0;
4341	int i;
4342
4343	for (i = 0; i < pvec->nr; i++) {
4344		struct page *page = pvec->pages[i];
4345		struct pglist_data *pagepgdat = page_pgdat(page);
4346
4347		pgscanned++;
4348		if (pagepgdat != pgdat) {
4349			if (pgdat)
4350				spin_unlock_irq(&pgdat->lru_lock);
4351			pgdat = pagepgdat;
4352			spin_lock_irq(&pgdat->lru_lock);
4353		}
4354		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4355
4356		if (!PageLRU(page) || !PageUnevictable(page))
 
4357			continue;
4358
4359		if (page_evictable(page)) {
4360			enum lru_list lru = page_lru_base_type(page);
4361
4362			VM_BUG_ON_PAGE(PageActive(page), page);
4363			ClearPageUnevictable(page);
4364			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4365			add_page_to_lru_list(page, lruvec, lru);
4366			pgrescued++;
4367		}
 
4368	}
4369
4370	if (pgdat) {
4371		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4372		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4373		spin_unlock_irq(&pgdat->lru_lock);
 
 
4374	}
4375}
4376EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
 
 
   3 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   4 *
   5 *  Swap reorganised 29.12.95, Stephen Tweedie.
   6 *  kswapd added: 7.1.96  sct
   7 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   8 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
   9 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  10 *  Multiqueue VM started 5.8.00, Rik van Riel.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/mm.h>
  16#include <linux/sched/mm.h>
  17#include <linux/module.h>
  18#include <linux/gfp.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/swap.h>
  21#include <linux/pagemap.h>
  22#include <linux/init.h>
  23#include <linux/highmem.h>
  24#include <linux/vmpressure.h>
  25#include <linux/vmstat.h>
  26#include <linux/file.h>
  27#include <linux/writeback.h>
  28#include <linux/blkdev.h>
  29#include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
 
  30#include <linux/mm_inline.h>
  31#include <linux/backing-dev.h>
  32#include <linux/rmap.h>
  33#include <linux/topology.h>
  34#include <linux/cpu.h>
  35#include <linux/cpuset.h>
  36#include <linux/compaction.h>
  37#include <linux/notifier.h>
 
  38#include <linux/delay.h>
  39#include <linux/kthread.h>
  40#include <linux/freezer.h>
  41#include <linux/memcontrol.h>
  42#include <linux/migrate.h>
  43#include <linux/delayacct.h>
  44#include <linux/sysctl.h>
  45#include <linux/memory-tiers.h>
  46#include <linux/oom.h>
  47#include <linux/pagevec.h>
  48#include <linux/prefetch.h>
  49#include <linux/printk.h>
  50#include <linux/dax.h>
  51#include <linux/psi.h>
  52#include <linux/pagewalk.h>
  53#include <linux/shmem_fs.h>
  54#include <linux/ctype.h>
  55#include <linux/debugfs.h>
  56#include <linux/khugepaged.h>
  57#include <linux/rculist_nulls.h>
  58#include <linux/random.h>
  59
  60#include <asm/tlbflush.h>
  61#include <asm/div64.h>
  62
  63#include <linux/swapops.h>
  64#include <linux/balloon_compaction.h>
  65#include <linux/sched/sysctl.h>
  66
  67#include "internal.h"
  68#include "swap.h"
  69
  70#define CREATE_TRACE_POINTS
  71#include <trace/events/vmscan.h>
  72
  73struct scan_control {
  74	/* How many pages shrink_list() should reclaim */
  75	unsigned long nr_to_reclaim;
  76
  77	/*
  78	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
  79	 * are scanned.
  80	 */
  81	nodemask_t	*nodemask;
  82
  83	/*
  84	 * The memory cgroup that hit its limit and as a result is the
  85	 * primary target of this reclaim invocation.
  86	 */
  87	struct mem_cgroup *target_mem_cgroup;
  88
  89	/*
  90	 * Scan pressure balancing between anon and file LRUs
  91	 */
  92	unsigned long	anon_cost;
  93	unsigned long	file_cost;
  94
  95	/* Can active folios be deactivated as part of reclaim? */
  96#define DEACTIVATE_ANON 1
  97#define DEACTIVATE_FILE 2
  98	unsigned int may_deactivate:2;
  99	unsigned int force_deactivate:1;
 100	unsigned int skipped_deactivate:1;
 101
 102	/* Writepage batching in laptop mode; RECLAIM_WRITE */
 103	unsigned int may_writepage:1;
 104
 105	/* Can mapped folios be reclaimed? */
 106	unsigned int may_unmap:1;
 107
 108	/* Can folios be swapped as part of reclaim? */
 109	unsigned int may_swap:1;
 110
 111	/* Not allow cache_trim_mode to be turned on as part of reclaim? */
 112	unsigned int no_cache_trim_mode:1;
 113
 114	/* Has cache_trim_mode failed at least once? */
 115	unsigned int cache_trim_mode_failed:1;
 116
 117	/* Proactive reclaim invoked by userspace through memory.reclaim */
 118	unsigned int proactive:1;
 119
 120	/*
 121	 * Cgroup memory below memory.low is protected as long as we
 122	 * don't threaten to OOM. If any cgroup is reclaimed at
 123	 * reduced force or passed over entirely due to its memory.low
 124	 * setting (memcg_low_skipped), and nothing is reclaimed as a
 125	 * result, then go back for one more cycle that reclaims the protected
 126	 * memory (memcg_low_reclaim) to avert OOM.
 127	 */
 128	unsigned int memcg_low_reclaim:1;
 129	unsigned int memcg_low_skipped:1;
 130
 131	unsigned int hibernation_mode:1;
 132
 133	/* One of the zones is ready for compaction */
 134	unsigned int compaction_ready:1;
 135
 136	/* There is easily reclaimable cold cache in the current node */
 137	unsigned int cache_trim_mode:1;
 138
 139	/* The file folios on the current node are dangerously low */
 140	unsigned int file_is_tiny:1;
 141
 142	/* Always discard instead of demoting to lower tier memory */
 143	unsigned int no_demotion:1;
 144
 145	/* Allocation order */
 146	s8 order;
 147
 148	/* Scan (total_size >> priority) pages at once */
 149	s8 priority;
 150
 151	/* The highest zone to isolate folios for reclaim from */
 152	s8 reclaim_idx;
 153
 154	/* This context's GFP mask */
 155	gfp_t gfp_mask;
 156
 157	/* Incremented by the number of inactive pages that were scanned */
 158	unsigned long nr_scanned;
 159
 160	/* Number of pages freed so far during a call to shrink_zones() */
 161	unsigned long nr_reclaimed;
 162
 163	struct {
 164		unsigned int dirty;
 165		unsigned int unqueued_dirty;
 166		unsigned int congested;
 167		unsigned int writeback;
 168		unsigned int immediate;
 169		unsigned int file_taken;
 170		unsigned int taken;
 171	} nr;
 172
 173	/* for recording the reclaimed slab by now */
 174	struct reclaim_state reclaim_state;
 175};
 176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 177#ifdef ARCH_HAS_PREFETCHW
 178#define prefetchw_prev_lru_folio(_folio, _base, _field)			\
 179	do {								\
 180		if ((_folio)->lru.prev != _base) {			\
 181			struct folio *prev;				\
 182									\
 183			prev = lru_to_folio(&(_folio->lru));		\
 184			prefetchw(&prev->_field);			\
 185		}							\
 186	} while (0)
 187#else
 188#define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
 189#endif
 190
 191/*
 192 * From 0 .. 200.  Higher means more swappy.
 193 */
 194int vm_swappiness = 60;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 195
 196#ifdef CONFIG_MEMCG
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 197
 198/* Returns true for reclaim through cgroup limits or cgroup interfaces. */
 199static bool cgroup_reclaim(struct scan_control *sc)
 200{
 201	return sc->target_mem_cgroup;
 
 
 
 
 
 
 202}
 203
 204/*
 205 * Returns true for reclaim on the root cgroup. This is true for direct
 206 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
 207 */
 208static bool root_reclaim(struct scan_control *sc)
 209{
 210	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
 211}
 212
 213/**
 214 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
 215 * @sc: scan_control in question
 216 *
 217 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 218 * completely broken with the legacy memcg and direct stalling in
 219 * shrink_folio_list() is used for throttling instead, which lacks all the
 220 * niceties such as fairness, adaptive pausing, bandwidth proportional
 221 * allocation and configurability.
 222 *
 223 * This function tests whether the vmscan currently in progress can assume
 224 * that the normal dirty throttling mechanism is operational.
 225 */
 226static bool writeback_throttling_sane(struct scan_control *sc)
 227{
 228	if (!cgroup_reclaim(sc))
 
 
 229		return true;
 230#ifdef CONFIG_CGROUP_WRITEBACK
 231	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 232		return true;
 233#endif
 234	return false;
 235}
 236#else
 237static bool cgroup_reclaim(struct scan_control *sc)
 
 
 238{
 239	return false;
 
 
 
 
 
 
 240}
 241
 242static bool root_reclaim(struct scan_control *sc)
 
 
 
 
 
 
 
 
 
 
 243{
 244	return true;
 245}
 246
 247static bool writeback_throttling_sane(struct scan_control *sc)
 248{
 249	return true;
 250}
 251#endif
 252
 253static void set_task_reclaim_state(struct task_struct *task,
 254				   struct reclaim_state *rs)
 255{
 256	/* Check for an overwrite */
 257	WARN_ON_ONCE(rs && task->reclaim_state);
 258
 259	/* Check for the nulling of an already-nulled member */
 260	WARN_ON_ONCE(!rs && !task->reclaim_state);
 261
 262	task->reclaim_state = rs;
 263}
 264
 265/*
 266 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
 267 * scan_control->nr_reclaimed.
 268 */
 269static void flush_reclaim_state(struct scan_control *sc)
 270{
 271	/*
 272	 * Currently, reclaim_state->reclaimed includes three types of pages
 273	 * freed outside of vmscan:
 274	 * (1) Slab pages.
 275	 * (2) Clean file pages from pruned inodes (on highmem systems).
 276	 * (3) XFS freed buffer pages.
 277	 *
 278	 * For all of these cases, we cannot universally link the pages to a
 279	 * single memcg. For example, a memcg-aware shrinker can free one object
 280	 * charged to the target memcg, causing an entire page to be freed.
 281	 * If we count the entire page as reclaimed from the memcg, we end up
 282	 * overestimating the reclaimed amount (potentially under-reclaiming).
 283	 *
 284	 * Only count such pages for global reclaim to prevent under-reclaiming
 285	 * from the target memcg; preventing unnecessary retries during memcg
 286	 * charging and false positives from proactive reclaim.
 287	 *
 288	 * For uncommon cases where the freed pages were actually mostly
 289	 * charged to the target memcg, we end up underestimating the reclaimed
 290	 * amount. This should be fine. The freed pages will be uncharged
 291	 * anyway, even if they are not counted here properly, and we will be
 292	 * able to make forward progress in charging (which is usually in a
 293	 * retry loop).
 294	 *
 295	 * We can go one step further, and report the uncharged objcg pages in
 296	 * memcg reclaim, to make reporting more accurate and reduce
 297	 * underestimation, but it's probably not worth the complexity for now.
 298	 */
 299	if (current->reclaim_state && root_reclaim(sc)) {
 300		sc->nr_reclaimed += current->reclaim_state->reclaimed;
 301		current->reclaim_state->reclaimed = 0;
 302	}
 303}
 304
 305static bool can_demote(int nid, struct scan_control *sc)
 
 306{
 307	if (!numa_demotion_enabled)
 308		return false;
 309	if (sc && sc->no_demotion)
 310		return false;
 311	if (next_demotion_node(nid) == NUMA_NO_NODE)
 312		return false;
 313
 314	return true;
 315}
 316
 317static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
 318					  int nid,
 319					  struct scan_control *sc)
 320{
 321	if (memcg == NULL) {
 322		/*
 323		 * For non-memcg reclaim, is there
 324		 * space in any swap device?
 325		 */
 326		if (get_nr_swap_pages() > 0)
 327			return true;
 328	} else {
 329		/* Is the memcg below its swap limit? */
 330		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
 331			return true;
 332	}
 333
 334	/*
 335	 * The page can not be swapped.
 336	 *
 337	 * Can it be reclaimed from this node via demotion?
 338	 */
 339	return can_demote(nid, sc);
 340}
 
 341
 342/*
 343 * This misses isolated folios which are not accounted for to save counters.
 344 * As the data only determines if reclaim or compaction continues, it is
 345 * not expected that isolated folios will be a dominating factor.
 346 */
 347unsigned long zone_reclaimable_pages(struct zone *zone)
 348{
 349	unsigned long nr;
 350
 351	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
 352		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
 353	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
 354		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
 355			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
 356
 357	return nr;
 358}
 359
 360/**
 361 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 362 * @lruvec: lru vector
 363 * @lru: lru to use
 364 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
 365 */
 366static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
 367				     int zone_idx)
 368{
 369	unsigned long size = 0;
 370	int zid;
 371
 372	for (zid = 0; zid <= zone_idx; zid++) {
 
 
 
 
 
 
 373		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
 
 374
 375		if (!managed_zone(zone))
 376			continue;
 377
 378		if (!mem_cgroup_disabled())
 379			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 380		else
 381			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
 
 
 382	}
 383	return size;
 
 
 384}
 385
 386static unsigned long drop_slab_node(int nid)
 
 
 
 387{
 388	unsigned long freed = 0;
 389	struct mem_cgroup *memcg = NULL;
 
 
 
 
 
 
 
 
 
 
 
 390
 391	memcg = mem_cgroup_iter(NULL, NULL, NULL);
 392	do {
 393		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
 394	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 395
 396	return freed;
 
 
 
 397}
 398
 399void drop_slab(void)
 400{
 401	int nid;
 402	int shift = 0;
 403	unsigned long freed;
 404
 405	do {
 406		freed = 0;
 407		for_each_online_node(nid) {
 408			if (fatal_signal_pending(current))
 409				return;
 410
 411			freed += drop_slab_node(nid);
 412		}
 413	} while ((freed >> shift++) > 1);
 414}
 415
 416static int reclaimer_offset(void)
 417{
 418	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
 419			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
 420	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
 421			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
 422	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
 423			PGSCAN_DIRECT - PGSCAN_KSWAPD);
 424	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
 425			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
 426
 427	if (current_is_kswapd())
 428		return 0;
 429	if (current_is_khugepaged())
 430		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
 431	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
 432}
 433
 434static inline int is_page_cache_freeable(struct folio *folio)
 435{
 436	/*
 437	 * A freeable page cache folio is referenced only by the caller
 438	 * that isolated the folio, the page cache and optional filesystem
 439	 * private data at folio->private.
 440	 */
 441	return folio_ref_count(folio) - folio_test_private(folio) ==
 442		1 + folio_nr_pages(folio);
 443}
 
 444
 445/*
 446 * We detected a synchronous write error writing a folio out.  Probably
 447 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 448 * fsync(), msync() or close().
 449 *
 450 * The tricky part is that after writepage we cannot touch the mapping: nothing
 451 * prevents it from being freed up.  But we have a ref on the folio and once
 452 * that folio is locked, the mapping is pinned.
 453 *
 454 * We're allowed to run sleeping folio_lock() here because we know the caller has
 455 * __GFP_FS.
 456 */
 457static void handle_write_error(struct address_space *mapping,
 458				struct folio *folio, int error)
 459{
 460	folio_lock(folio);
 461	if (folio_mapping(folio) == mapping)
 462		mapping_set_error(mapping, error);
 463	folio_unlock(folio);
 
 
 
 
 
 464}
 
 465
 466static bool skip_throttle_noprogress(pg_data_t *pgdat)
 
 
 
 467{
 468	int reclaimable = 0, write_pending = 0;
 469	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 470
 471	/*
 472	 * If kswapd is disabled, reschedule if necessary but do not
 473	 * throttle as the system is likely near OOM.
 
 
 
 
 
 
 
 
 474	 */
 475	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
 476		return true;
 477
 478	/*
 479	 * If there are a lot of dirty/writeback folios then do not
 480	 * throttle as throttling will occur when the folios cycle
 481	 * towards the end of the LRU if still under writeback.
 482	 */
 483	for (i = 0; i < MAX_NR_ZONES; i++) {
 484		struct zone *zone = pgdat->node_zones + i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 485
 486		if (!managed_zone(zone))
 487			continue;
 
 488
 489		reclaimable += zone_reclaimable_pages(zone);
 490		write_pending += zone_page_state_snapshot(zone,
 491						  NR_ZONE_WRITE_PENDING);
 492	}
 493	if (2 * write_pending <= reclaimable)
 494		return true;
 495
 496	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 497}
 498
 499void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
 
 
 500{
 501	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
 502	long timeout, ret;
 503	DEFINE_WAIT(wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 504
 505	/*
 506	 * Do not throttle user workers, kthreads other than kswapd or
 507	 * workqueues. They may be required for reclaim to make
 508	 * forward progress (e.g. journalling workqueues or kthreads).
 509	 */
 510	if (!current_is_kswapd() &&
 511	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
 512		cond_resched();
 513		return;
 514	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 515
 516	/*
 517	 * These figures are pulled out of thin air.
 518	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
 519	 * parallel reclaimers which is a short-lived event so the timeout is
 520	 * short. Failing to make progress or waiting on writeback are
 521	 * potentially long-lived events so use a longer timeout. This is shaky
 522	 * logic as a failure to make progress could be due to anything from
 523	 * writeback to a slow device to excessive referenced folios at the tail
 524	 * of the inactive LRU.
 525	 */
 526	switch(reason) {
 527	case VMSCAN_THROTTLE_WRITEBACK:
 528		timeout = HZ/10;
 529
 530		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
 531			WRITE_ONCE(pgdat->nr_reclaim_start,
 532				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
 533		}
 534
 535		break;
 536	case VMSCAN_THROTTLE_CONGESTED:
 537		fallthrough;
 538	case VMSCAN_THROTTLE_NOPROGRESS:
 539		if (skip_throttle_noprogress(pgdat)) {
 540			cond_resched();
 541			return;
 542		}
 543
 544		timeout = 1;
 
 
 
 
 
 545
 546		break;
 547	case VMSCAN_THROTTLE_ISOLATED:
 548		timeout = HZ/50;
 549		break;
 550	default:
 551		WARN_ON_ONCE(1);
 552		timeout = HZ;
 553		break;
 
 
 
 
 
 554	}
 555
 556	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
 557	ret = schedule_timeout(timeout);
 558	finish_wait(wqh, &wait);
 
 
 
 
 
 
 559
 560	if (reason == VMSCAN_THROTTLE_WRITEBACK)
 561		atomic_dec(&pgdat->nr_writeback_throttled);
 562
 563	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
 564				jiffies_to_usecs(timeout - ret),
 565				reason);
 
 
 
 566}
 567
 568/*
 569 * Account for folios written if tasks are throttled waiting on dirty
 570 * folios to clean. If enough folios have been cleaned since throttling
 571 * started then wakeup the throttled tasks.
 572 */
 573void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
 574							int nr_throttled)
 575{
 576	unsigned long nr_written;
 577
 578	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
 
 
 579
 
 
 580	/*
 581	 * This is an inaccurate read as the per-cpu deltas may not
 582	 * be synchronised. However, given that the system is
 583	 * writeback throttled, it is not worth taking the penalty
 584	 * of getting an accurate count. At worst, the throttle
 585	 * timeout guarantees forward progress.
 586	 */
 587	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
 588		READ_ONCE(pgdat->nr_reclaim_start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 589
 590	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
 591		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 592}
 593
 594/* possible outcome of pageout() */
 595typedef enum {
 596	/* failed to write folio out, folio is locked */
 597	PAGE_KEEP,
 598	/* move folio to the active list, folio is locked */
 599	PAGE_ACTIVATE,
 600	/* folio has been sent to the disk successfully, folio is unlocked */
 601	PAGE_SUCCESS,
 602	/* folio is clean and locked */
 603	PAGE_CLEAN,
 604} pageout_t;
 605
 606/*
 607 * pageout is called by shrink_folio_list() for each dirty folio.
 608 * Calls ->writepage().
 609 */
 610static pageout_t pageout(struct folio *folio, struct address_space *mapping,
 611			 struct swap_iocb **plug)
 612{
 613	/*
 614	 * If the folio is dirty, only perform writeback if that write
 615	 * will be non-blocking.  To prevent this allocation from being
 616	 * stalled by pagecache activity.  But note that there may be
 617	 * stalls if we need to run get_block().  We could test
 618	 * PagePrivate for that.
 619	 *
 620	 * If this process is currently in __generic_file_write_iter() against
 621	 * this folio's queue, we can perform writeback even if that
 622	 * will block.
 623	 *
 624	 * If the folio is swapcache, write it back even if that would
 625	 * block, for some throttling. This happens by accident, because
 626	 * swap_backing_dev_info is bust: it doesn't reflect the
 627	 * congestion state of the swapdevs.  Easy to fix, if needed.
 628	 */
 629	if (!is_page_cache_freeable(folio))
 630		return PAGE_KEEP;
 631	if (!mapping) {
 632		/*
 633		 * Some data journaling orphaned folios can have
 634		 * folio->mapping == NULL while being dirty with clean buffers.
 635		 */
 636		if (folio_test_private(folio)) {
 637			if (try_to_free_buffers(folio)) {
 638				folio_clear_dirty(folio);
 639				pr_info("%s: orphaned folio\n", __func__);
 640				return PAGE_CLEAN;
 641			}
 642		}
 643		return PAGE_KEEP;
 644	}
 645	if (mapping->a_ops->writepage == NULL)
 646		return PAGE_ACTIVATE;
 
 
 647
 648	if (folio_clear_dirty_for_io(folio)) {
 649		int res;
 650		struct writeback_control wbc = {
 651			.sync_mode = WB_SYNC_NONE,
 652			.nr_to_write = SWAP_CLUSTER_MAX,
 653			.range_start = 0,
 654			.range_end = LLONG_MAX,
 655			.for_reclaim = 1,
 656			.swap_plug = plug,
 657		};
 658
 659		folio_set_reclaim(folio);
 660		res = mapping->a_ops->writepage(&folio->page, &wbc);
 661		if (res < 0)
 662			handle_write_error(mapping, folio, res);
 663		if (res == AOP_WRITEPAGE_ACTIVATE) {
 664			folio_clear_reclaim(folio);
 665			return PAGE_ACTIVATE;
 666		}
 667
 668		if (!folio_test_writeback(folio)) {
 669			/* synchronous write or broken a_ops? */
 670			folio_clear_reclaim(folio);
 671		}
 672		trace_mm_vmscan_write_folio(folio);
 673		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
 674		return PAGE_SUCCESS;
 675	}
 676
 677	return PAGE_CLEAN;
 678}
 679
 680/*
 681 * Same as remove_mapping, but if the folio is removed from the mapping, it
 682 * gets returned with a refcount of 0.
 683 */
 684static int __remove_mapping(struct address_space *mapping, struct folio *folio,
 685			    bool reclaimed, struct mem_cgroup *target_memcg)
 686{
 
 687	int refcount;
 688	void *shadow = NULL;
 689
 690	BUG_ON(!folio_test_locked(folio));
 691	BUG_ON(mapping != folio_mapping(folio));
 692
 693	if (!folio_test_swapcache(folio))
 694		spin_lock(&mapping->host->i_lock);
 695	xa_lock_irq(&mapping->i_pages);
 696	/*
 697	 * The non racy check for a busy folio.
 698	 *
 699	 * Must be careful with the order of the tests. When someone has
 700	 * a ref to the folio, it may be possible that they dirty it then
 701	 * drop the reference. So if the dirty flag is tested before the
 702	 * refcount here, then the following race may occur:
 703	 *
 704	 * get_user_pages(&page);
 705	 * [user mapping goes away]
 706	 * write_to(page);
 707	 *				!folio_test_dirty(folio)    [good]
 708	 * folio_set_dirty(folio);
 709	 * folio_put(folio);
 710	 *				!refcount(folio)   [good, discard it]
 711	 *
 712	 * [oops, our write_to data is lost]
 713	 *
 714	 * Reversing the order of the tests ensures such a situation cannot
 715	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
 716	 * load is not satisfied before that of folio->_refcount.
 717	 *
 718	 * Note that if the dirty flag is always set via folio_mark_dirty,
 719	 * and thus under the i_pages lock, then this ordering is not required.
 720	 */
 721	refcount = 1 + folio_nr_pages(folio);
 722	if (!folio_ref_freeze(folio, refcount))
 723		goto cannot_free;
 724	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
 725	if (unlikely(folio_test_dirty(folio))) {
 726		folio_ref_unfreeze(folio, refcount);
 727		goto cannot_free;
 728	}
 729
 730	if (folio_test_swapcache(folio)) {
 731		swp_entry_t swap = folio->swap;
 732
 733		if (reclaimed && !mapping_exiting(mapping))
 734			shadow = workingset_eviction(folio, target_memcg);
 735		__delete_from_swap_cache(folio, swap, shadow);
 736		mem_cgroup_swapout(folio, swap);
 737		xa_unlock_irq(&mapping->i_pages);
 738		put_swap_folio(folio, swap);
 739	} else {
 740		void (*free_folio)(struct folio *);
 
 741
 742		free_folio = mapping->a_ops->free_folio;
 743		/*
 744		 * Remember a shadow entry for reclaimed file cache in
 745		 * order to detect refaults, thus thrashing, later on.
 746		 *
 747		 * But don't store shadows in an address space that is
 748		 * already exiting.  This is not just an optimization,
 749		 * inode reclaim needs to empty out the radix tree or
 750		 * the nodes are lost.  Don't plant shadows behind its
 751		 * back.
 752		 *
 753		 * We also don't store shadows for DAX mappings because the
 754		 * only page cache folios found in these are zero pages
 755		 * covering holes, and because we don't want to mix DAX
 756		 * exceptional entries and shadow exceptional entries in the
 757		 * same address_space.
 758		 */
 759		if (reclaimed && folio_is_file_lru(folio) &&
 760		    !mapping_exiting(mapping) && !dax_mapping(mapping))
 761			shadow = workingset_eviction(folio, target_memcg);
 762		__filemap_remove_folio(folio, shadow);
 763		xa_unlock_irq(&mapping->i_pages);
 764		if (mapping_shrinkable(mapping))
 765			inode_add_lru(mapping->host);
 766		spin_unlock(&mapping->host->i_lock);
 767
 768		if (free_folio)
 769			free_folio(folio);
 770	}
 771
 772	return 1;
 773
 774cannot_free:
 775	xa_unlock_irq(&mapping->i_pages);
 776	if (!folio_test_swapcache(folio))
 777		spin_unlock(&mapping->host->i_lock);
 778	return 0;
 779}
 780
 781/**
 782 * remove_mapping() - Attempt to remove a folio from its mapping.
 783 * @mapping: The address space.
 784 * @folio: The folio to remove.
 785 *
 786 * If the folio is dirty, under writeback or if someone else has a ref
 787 * on it, removal will fail.
 788 * Return: The number of pages removed from the mapping.  0 if the folio
 789 * could not be removed.
 790 * Context: The caller should have a single refcount on the folio and
 791 * hold its lock.
 792 */
 793long remove_mapping(struct address_space *mapping, struct folio *folio)
 794{
 795	if (__remove_mapping(mapping, folio, false, NULL)) {
 796		/*
 797		 * Unfreezing the refcount with 1 effectively
 798		 * drops the pagecache ref for us without requiring another
 799		 * atomic operation.
 800		 */
 801		folio_ref_unfreeze(folio, 1);
 802		return folio_nr_pages(folio);
 803	}
 804	return 0;
 805}
 806
 807/**
 808 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
 809 * @folio: Folio to be returned to an LRU list.
 810 *
 811 * Add previously isolated @folio to appropriate LRU list.
 812 * The folio may still be unevictable for other reasons.
 813 *
 814 * Context: lru_lock must not be held, interrupts must be enabled.
 815 */
 816void folio_putback_lru(struct folio *folio)
 817{
 818	folio_add_lru(folio);
 819	folio_put(folio);		/* drop ref from isolate */
 820}
 821
 822enum folio_references {
 823	FOLIOREF_RECLAIM,
 824	FOLIOREF_RECLAIM_CLEAN,
 825	FOLIOREF_KEEP,
 826	FOLIOREF_ACTIVATE,
 827};
 828
 829static enum folio_references folio_check_references(struct folio *folio,
 830						  struct scan_control *sc)
 831{
 832	int referenced_ptes, referenced_folio;
 833	unsigned long vm_flags;
 834
 835	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
 836					   &vm_flags);
 837	referenced_folio = folio_test_clear_referenced(folio);
 838
 839	/*
 840	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
 841	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
 842	 */
 843	if (vm_flags & VM_LOCKED)
 844		return FOLIOREF_ACTIVATE;
 845
 846	/* rmap lock contention: rotate */
 847	if (referenced_ptes == -1)
 848		return FOLIOREF_KEEP;
 849
 850	if (referenced_ptes) {
 
 
 851		/*
 852		 * All mapped folios start out with page table
 853		 * references from the instantiating fault, so we need
 854		 * to look twice if a mapped file/anon folio is used more
 855		 * than once.
 856		 *
 857		 * Mark it and spare it for another trip around the
 858		 * inactive list.  Another page table reference will
 859		 * lead to its activation.
 860		 *
 861		 * Note: the mark is set for activated folios as well
 862		 * so that recently deactivated but used folios are
 863		 * quickly recovered.
 864		 */
 865		folio_set_referenced(folio);
 866
 867		if (referenced_folio || referenced_ptes > 1)
 868			return FOLIOREF_ACTIVATE;
 869
 870		/*
 871		 * Activate file-backed executable folios after first usage.
 872		 */
 873		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
 874			return FOLIOREF_ACTIVATE;
 875
 876		return FOLIOREF_KEEP;
 877	}
 878
 879	/* Reclaim if clean, defer dirty folios to writeback */
 880	if (referenced_folio && folio_is_file_lru(folio))
 881		return FOLIOREF_RECLAIM_CLEAN;
 882
 883	return FOLIOREF_RECLAIM;
 884}
 885
 886/* Check if a folio is dirty or under writeback */
 887static void folio_check_dirty_writeback(struct folio *folio,
 888				       bool *dirty, bool *writeback)
 889{
 890	struct address_space *mapping;
 891
 892	/*
 893	 * Anonymous folios are not handled by flushers and must be written
 894	 * from reclaim context. Do not stall reclaim based on them.
 895	 * MADV_FREE anonymous folios are put into inactive file list too.
 896	 * They could be mistakenly treated as file lru. So further anon
 897	 * test is needed.
 898	 */
 899	if (!folio_is_file_lru(folio) ||
 900	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
 901		*dirty = false;
 902		*writeback = false;
 903		return;
 904	}
 905
 906	/* By default assume that the folio flags are accurate */
 907	*dirty = folio_test_dirty(folio);
 908	*writeback = folio_test_writeback(folio);
 909
 910	/* Verify dirty/writeback state if the filesystem supports it */
 911	if (!folio_test_private(folio))
 912		return;
 913
 914	mapping = folio_mapping(folio);
 915	if (mapping && mapping->a_ops->is_dirty_writeback)
 916		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
 917}
 918
 919static struct folio *alloc_demote_folio(struct folio *src,
 920		unsigned long private)
 921{
 922	struct folio *dst;
 923	nodemask_t *allowed_mask;
 924	struct migration_target_control *mtc;
 925
 926	mtc = (struct migration_target_control *)private;
 927
 928	allowed_mask = mtc->nmask;
 929	/*
 930	 * make sure we allocate from the target node first also trying to
 931	 * demote or reclaim pages from the target node via kswapd if we are
 932	 * low on free memory on target node. If we don't do this and if
 933	 * we have free memory on the slower(lower) memtier, we would start
 934	 * allocating pages from slower(lower) memory tiers without even forcing
 935	 * a demotion of cold pages from the target memtier. This can result
 936	 * in the kernel placing hot pages in slower(lower) memory tiers.
 937	 */
 938	mtc->nmask = NULL;
 939	mtc->gfp_mask |= __GFP_THISNODE;
 940	dst = alloc_migration_target(src, (unsigned long)mtc);
 941	if (dst)
 942		return dst;
 943
 944	mtc->gfp_mask &= ~__GFP_THISNODE;
 945	mtc->nmask = allowed_mask;
 946
 947	return alloc_migration_target(src, (unsigned long)mtc);
 948}
 949
 950/*
 951 * Take folios on @demote_folios and attempt to demote them to another node.
 952 * Folios which are not demoted are left on @demote_folios.
 953 */
 954static unsigned int demote_folio_list(struct list_head *demote_folios,
 955				     struct pglist_data *pgdat)
 
 
 
 
 956{
 957	int target_nid = next_demotion_node(pgdat->node_id);
 958	unsigned int nr_succeeded;
 959	nodemask_t allowed_mask;
 960
 961	struct migration_target_control mtc = {
 962		/*
 963		 * Allocate from 'node', or fail quickly and quietly.
 964		 * When this happens, 'page' will likely just be discarded
 965		 * instead of migrated.
 966		 */
 967		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
 968			__GFP_NOMEMALLOC | GFP_NOWAIT,
 969		.nid = target_nid,
 970		.nmask = &allowed_mask
 971	};
 972
 973	if (list_empty(demote_folios))
 974		return 0;
 975
 976	if (target_nid == NUMA_NO_NODE)
 977		return 0;
 978
 979	node_get_allowed_targets(pgdat, &allowed_mask);
 980
 981	/* Demotion ignores all cpuset and mempolicy settings */
 982	migrate_pages(demote_folios, alloc_demote_folio, NULL,
 983		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
 984		      &nr_succeeded);
 985
 986	mod_node_page_state(pgdat, PGDEMOTE_KSWAPD + reclaimer_offset(),
 987			    nr_succeeded);
 988
 989	return nr_succeeded;
 990}
 991
 992static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
 993{
 994	if (gfp_mask & __GFP_FS)
 995		return true;
 996	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
 997		return false;
 998	/*
 999	 * We can "enter_fs" for swap-cache with only __GFP_IO
1000	 * providing this isn't SWP_FS_OPS.
1001	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1002	 * but that will never affect SWP_FS_OPS, so the data_race
1003	 * is safe.
1004	 */
1005	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1006}
1007
1008/*
1009 * shrink_folio_list() returns the number of reclaimed pages
1010 */
1011static unsigned int shrink_folio_list(struct list_head *folio_list,
1012		struct pglist_data *pgdat, struct scan_control *sc,
1013		struct reclaim_stat *stat, bool ignore_references)
1014{
1015	struct folio_batch free_folios;
1016	LIST_HEAD(ret_folios);
1017	LIST_HEAD(demote_folios);
1018	unsigned int nr_reclaimed = 0;
1019	unsigned int pgactivate = 0;
1020	bool do_demote_pass;
1021	struct swap_iocb *plug = NULL;
1022
1023	folio_batch_init(&free_folios);
1024	memset(stat, 0, sizeof(*stat));
1025	cond_resched();
1026	do_demote_pass = can_demote(pgdat->node_id, sc);
1027
1028retry:
1029	while (!list_empty(folio_list)) {
1030		struct address_space *mapping;
1031		struct folio *folio;
1032		enum folio_references references = FOLIOREF_RECLAIM;
 
1033		bool dirty, writeback;
1034		unsigned int nr_pages;
1035
1036		cond_resched();
1037
1038		folio = lru_to_folio(folio_list);
1039		list_del(&folio->lru);
1040
1041		if (!folio_trylock(folio))
1042			goto keep;
1043
1044		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1045
1046		nr_pages = folio_nr_pages(folio);
1047
1048		/* Account the number of base pages */
1049		sc->nr_scanned += nr_pages;
1050
1051		if (unlikely(!folio_evictable(folio)))
1052			goto activate_locked;
1053
1054		if (!sc->may_unmap && folio_mapped(folio))
1055			goto keep_locked;
1056
1057		/* folio_update_gen() tried to promote this page? */
1058		if (lru_gen_enabled() && !ignore_references &&
1059		    folio_mapped(folio) && folio_test_referenced(folio))
1060			goto keep_locked;
1061
1062		/*
1063		 * The number of dirty pages determines if a node is marked
1064		 * reclaim_congested. kswapd will stall and start writing
1065		 * folios if the tail of the LRU is all dirty unqueued folios.
 
1066		 */
1067		folio_check_dirty_writeback(folio, &dirty, &writeback);
1068		if (dirty || writeback)
1069			stat->nr_dirty += nr_pages;
1070
1071		if (dirty && !writeback)
1072			stat->nr_unqueued_dirty += nr_pages;
1073
1074		/*
1075		 * Treat this folio as congested if folios are cycling
1076		 * through the LRU so quickly that the folios marked
1077		 * for immediate reclaim are making it to the end of
1078		 * the LRU a second time.
1079		 */
1080		if (writeback && folio_test_reclaim(folio))
1081			stat->nr_congested += nr_pages;
 
 
 
1082
1083		/*
1084		 * If a folio at the tail of the LRU is under writeback, there
1085		 * are three cases to consider.
1086		 *
1087		 * 1) If reclaim is encountering an excessive number
1088		 *    of folios under writeback and this folio has both
1089		 *    the writeback and reclaim flags set, then it
1090		 *    indicates that folios are being queued for I/O but
1091		 *    are being recycled through the LRU before the I/O
1092		 *    can complete. Waiting on the folio itself risks an
1093		 *    indefinite stall if it is impossible to writeback
1094		 *    the folio due to I/O error or disconnected storage
1095		 *    so instead note that the LRU is being scanned too
1096		 *    quickly and the caller can stall after the folio
1097		 *    list has been processed.
1098		 *
1099		 * 2) Global or new memcg reclaim encounters a folio that is
1100		 *    not marked for immediate reclaim, or the caller does not
1101		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1102		 *    not to fs). In this case mark the folio for immediate
1103		 *    reclaim and continue scanning.
1104		 *
1105		 *    Require may_enter_fs() because we would wait on fs, which
1106		 *    may not have submitted I/O yet. And the loop driver might
1107		 *    enter reclaim, and deadlock if it waits on a folio for
1108		 *    which it is needed to do the write (loop masks off
1109		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1110		 *    would probably show more reasons.
1111		 *
1112		 * 3) Legacy memcg encounters a folio that already has the
1113		 *    reclaim flag set. memcg does not have any dirty folio
1114		 *    throttling so we could easily OOM just because too many
1115		 *    folios are in writeback and there is nothing else to
1116		 *    reclaim. Wait for the writeback to complete.
1117		 *
1118		 * In cases 1) and 2) we activate the folios to get them out of
1119		 * the way while we continue scanning for clean folios on the
1120		 * inactive list and refilling from the active list. The
1121		 * observation here is that waiting for disk writes is more
1122		 * expensive than potentially causing reloads down the line.
1123		 * Since they're marked for immediate reclaim, they won't put
1124		 * memory pressure on the cache working set any longer than it
1125		 * takes to write them to disk.
1126		 */
1127		if (folio_test_writeback(folio)) {
1128			/* Case 1 above */
1129			if (current_is_kswapd() &&
1130			    folio_test_reclaim(folio) &&
1131			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1132				stat->nr_immediate += nr_pages;
1133				goto activate_locked;
1134
1135			/* Case 2 above */
1136			} else if (writeback_throttling_sane(sc) ||
1137			    !folio_test_reclaim(folio) ||
1138			    !may_enter_fs(folio, sc->gfp_mask)) {
1139				/*
1140				 * This is slightly racy -
1141				 * folio_end_writeback() might have
1142				 * just cleared the reclaim flag, then
1143				 * setting the reclaim flag here ends up
1144				 * interpreted as the readahead flag - but
1145				 * that does not matter enough to care.
1146				 * What we do want is for this folio to
1147				 * have the reclaim flag set next time
1148				 * memcg reclaim reaches the tests above,
1149				 * so it will then wait for writeback to
1150				 * avoid OOM; and it's also appropriate
1151				 * in global reclaim.
1152				 */
1153				folio_set_reclaim(folio);
1154				stat->nr_writeback += nr_pages;
1155				goto activate_locked;
1156
1157			/* Case 3 above */
1158			} else {
1159				folio_unlock(folio);
1160				folio_wait_writeback(folio);
1161				/* then go back and try same folio again */
1162				list_add_tail(&folio->lru, folio_list);
1163				continue;
1164			}
1165		}
1166
1167		if (!ignore_references)
1168			references = folio_check_references(folio, sc);
1169
1170		switch (references) {
1171		case FOLIOREF_ACTIVATE:
1172			goto activate_locked;
1173		case FOLIOREF_KEEP:
1174			stat->nr_ref_keep += nr_pages;
1175			goto keep_locked;
1176		case FOLIOREF_RECLAIM:
1177		case FOLIOREF_RECLAIM_CLEAN:
1178			; /* try to reclaim the folio below */
1179		}
1180
1181		/*
1182		 * Before reclaiming the folio, try to relocate
1183		 * its contents to another node.
1184		 */
1185		if (do_demote_pass &&
1186		    (thp_migration_supported() || !folio_test_large(folio))) {
1187			list_add(&folio->lru, &demote_folios);
1188			folio_unlock(folio);
1189			continue;
1190		}
1191
1192		/*
1193		 * Anonymous process memory has backing store?
1194		 * Try to allocate it some swap space here.
1195		 * Lazyfree folio could be freed directly
1196		 */
1197		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1198			if (!folio_test_swapcache(folio)) {
1199				if (!(sc->gfp_mask & __GFP_IO))
1200					goto keep_locked;
1201				if (folio_maybe_dma_pinned(folio))
1202					goto keep_locked;
1203				if (folio_test_large(folio)) {
1204					/* cannot split folio, skip it */
1205					if (!can_split_folio(folio, NULL))
1206						goto activate_locked;
1207					/*
1208					 * Split folios without a PMD map right
1209					 * away. Chances are some or all of the
1210					 * tail pages can be freed without IO.
1211					 */
1212					if (!folio_entire_mapcount(folio) &&
1213					    split_folio_to_list(folio,
1214								folio_list))
1215						goto activate_locked;
1216				}
1217				if (!add_to_swap(folio)) {
1218					if (!folio_test_large(folio))
1219						goto activate_locked_split;
1220					/* Fallback to swap normal pages */
1221					if (split_folio_to_list(folio,
1222								folio_list))
1223						goto activate_locked;
1224#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1225					count_memcg_folio_events(folio, THP_SWPOUT_FALLBACK, 1);
1226					count_vm_event(THP_SWPOUT_FALLBACK);
1227#endif
1228					if (!add_to_swap(folio))
1229						goto activate_locked_split;
1230				}
 
 
 
 
 
1231			}
1232		} else if (folio_test_swapbacked(folio) &&
1233			   folio_test_large(folio)) {
1234			/* Split shmem folio */
1235			if (split_folio_to_list(folio, folio_list))
1236				goto keep_locked;
1237		}
1238
1239		/*
1240		 * If the folio was split above, the tail pages will make
1241		 * their own pass through this function and be accounted
1242		 * then.
 
 
1243		 */
1244		if ((nr_pages > 1) && !folio_test_large(folio)) {
1245			sc->nr_scanned -= (nr_pages - 1);
1246			nr_pages = 1;
1247		}
1248
1249		/*
1250		 * The folio is mapped into the page tables of one or more
1251		 * processes. Try to unmap it here.
1252		 */
1253		if (folio_mapped(folio)) {
1254			enum ttu_flags flags = TTU_BATCH_FLUSH;
1255			bool was_swapbacked = folio_test_swapbacked(folio);
1256
1257			if (folio_test_pmd_mappable(folio))
1258				flags |= TTU_SPLIT_HUGE_PMD;
1259
1260			try_to_unmap(folio, flags);
1261			if (folio_mapped(folio)) {
1262				stat->nr_unmap_fail += nr_pages;
1263				if (!was_swapbacked &&
1264				    folio_test_swapbacked(folio))
1265					stat->nr_lazyfree_fail += nr_pages;
1266				goto activate_locked;
1267			}
1268		}
1269
1270		/*
1271		 * Folio is unmapped now so it cannot be newly pinned anymore.
1272		 * No point in trying to reclaim folio if it is pinned.
1273		 * Furthermore we don't want to reclaim underlying fs metadata
1274		 * if the folio is pinned and thus potentially modified by the
1275		 * pinning process as that may upset the filesystem.
1276		 */
1277		if (folio_maybe_dma_pinned(folio))
1278			goto activate_locked;
1279
1280		mapping = folio_mapping(folio);
1281		if (folio_test_dirty(folio)) {
1282			/*
1283			 * Only kswapd can writeback filesystem folios
1284			 * to avoid risk of stack overflow. But avoid
1285			 * injecting inefficient single-folio I/O into
1286			 * flusher writeback as much as possible: only
1287			 * write folios when we've encountered many
1288			 * dirty folios, and when we've already scanned
1289			 * the rest of the LRU for clean folios and see
1290			 * the same dirty folios again (with the reclaim
1291			 * flag set).
1292			 */
1293			if (folio_is_file_lru(folio) &&
1294			    (!current_is_kswapd() ||
1295			     !folio_test_reclaim(folio) ||
1296			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1297				/*
1298				 * Immediately reclaim when written back.
1299				 * Similar in principle to folio_deactivate()
1300				 * except we already have the folio isolated
1301				 * and know it's dirty
1302				 */
1303				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1304						nr_pages);
1305				folio_set_reclaim(folio);
1306
1307				goto activate_locked;
1308			}
1309
1310			if (references == FOLIOREF_RECLAIM_CLEAN)
1311				goto keep_locked;
1312			if (!may_enter_fs(folio, sc->gfp_mask))
1313				goto keep_locked;
1314			if (!sc->may_writepage)
1315				goto keep_locked;
1316
1317			/*
1318			 * Folio is dirty. Flush the TLB if a writable entry
1319			 * potentially exists to avoid CPU writes after I/O
1320			 * starts and then write it out here.
1321			 */
1322			try_to_unmap_flush_dirty();
1323			switch (pageout(folio, mapping, &plug)) {
1324			case PAGE_KEEP:
1325				goto keep_locked;
1326			case PAGE_ACTIVATE:
1327				goto activate_locked;
1328			case PAGE_SUCCESS:
1329				stat->nr_pageout += nr_pages;
1330
1331				if (folio_test_writeback(folio))
1332					goto keep;
1333				if (folio_test_dirty(folio))
1334					goto keep;
1335
1336				/*
1337				 * A synchronous write - probably a ramdisk.  Go
1338				 * ahead and try to reclaim the folio.
1339				 */
1340				if (!folio_trylock(folio))
1341					goto keep;
1342				if (folio_test_dirty(folio) ||
1343				    folio_test_writeback(folio))
1344					goto keep_locked;
1345				mapping = folio_mapping(folio);
1346				fallthrough;
1347			case PAGE_CLEAN:
1348				; /* try to free the folio below */
1349			}
1350		}
1351
1352		/*
1353		 * If the folio has buffers, try to free the buffer
1354		 * mappings associated with this folio. If we succeed
1355		 * we try to free the folio as well.
1356		 *
1357		 * We do this even if the folio is dirty.
1358		 * filemap_release_folio() does not perform I/O, but it
1359		 * is possible for a folio to have the dirty flag set,
1360		 * but it is actually clean (all its buffers are clean).
1361		 * This happens if the buffers were written out directly,
1362		 * with submit_bh(). ext3 will do this, as well as
1363		 * the blockdev mapping.  filemap_release_folio() will
1364		 * discover that cleanness and will drop the buffers
1365		 * and mark the folio clean - it can be freed.
1366		 *
1367		 * Rarely, folios can have buffers and no ->mapping.
1368		 * These are the folios which were not successfully
1369		 * invalidated in truncate_cleanup_folio().  We try to
1370		 * drop those buffers here and if that worked, and the
1371		 * folio is no longer mapped into process address space
1372		 * (refcount == 1) it can be freed.  Otherwise, leave
1373		 * the folio on the LRU so it is swappable.
1374		 */
1375		if (folio_needs_release(folio)) {
1376			if (!filemap_release_folio(folio, sc->gfp_mask))
1377				goto activate_locked;
1378			if (!mapping && folio_ref_count(folio) == 1) {
1379				folio_unlock(folio);
1380				if (folio_put_testzero(folio))
1381					goto free_it;
1382				else {
1383					/*
1384					 * rare race with speculative reference.
1385					 * the speculative reference will free
1386					 * this folio shortly, so we may
1387					 * increment nr_reclaimed here (and
1388					 * leave it off the LRU).
1389					 */
1390					nr_reclaimed += nr_pages;
1391					continue;
1392				}
1393			}
1394		}
1395
1396		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1397			/* follow __remove_mapping for reference */
1398			if (!folio_ref_freeze(folio, 1))
1399				goto keep_locked;
1400			/*
1401			 * The folio has only one reference left, which is
1402			 * from the isolation. After the caller puts the
1403			 * folio back on the lru and drops the reference, the
1404			 * folio will be freed anyway. It doesn't matter
1405			 * which lru it goes on. So we don't bother checking
1406			 * the dirty flag here.
1407			 */
1408			count_vm_events(PGLAZYFREED, nr_pages);
1409			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1410		} else if (!mapping || !__remove_mapping(mapping, folio, true,
1411							 sc->target_mem_cgroup))
1412			goto keep_locked;
1413
1414		folio_unlock(folio);
1415free_it:
1416		/*
1417		 * Folio may get swapped out as a whole, need to account
1418		 * all pages in it.
1419		 */
1420		nr_reclaimed += nr_pages;
1421
1422		if (folio_test_large(folio) &&
1423		    folio_test_large_rmappable(folio))
1424			folio_undo_large_rmappable(folio);
1425		if (folio_batch_add(&free_folios, folio) == 0) {
1426			mem_cgroup_uncharge_folios(&free_folios);
1427			try_to_unmap_flush();
1428			free_unref_folios(&free_folios);
1429		}
1430		continue;
1431
1432activate_locked_split:
1433		/*
1434		 * The tail pages that are failed to add into swap cache
1435		 * reach here.  Fixup nr_scanned and nr_pages.
1436		 */
1437		if (nr_pages > 1) {
1438			sc->nr_scanned -= (nr_pages - 1);
1439			nr_pages = 1;
1440		}
1441activate_locked:
1442		/* Not a candidate for swapping, so reclaim swap space. */
1443		if (folio_test_swapcache(folio) &&
1444		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1445			folio_free_swap(folio);
1446		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1447		if (!folio_test_mlocked(folio)) {
1448			int type = folio_is_file_lru(folio);
1449			folio_set_active(folio);
1450			stat->nr_activate[type] += nr_pages;
1451			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1452		}
1453keep_locked:
1454		folio_unlock(folio);
1455keep:
1456		list_add(&folio->lru, &ret_folios);
1457		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1458				folio_test_unevictable(folio), folio);
1459	}
1460	/* 'folio_list' is always empty here */
1461
1462	/* Migrate folios selected for demotion */
1463	nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
1464	/* Folios that could not be demoted are still in @demote_folios */
1465	if (!list_empty(&demote_folios)) {
1466		/* Folios which weren't demoted go back on @folio_list */
1467		list_splice_init(&demote_folios, folio_list);
1468
1469		/*
1470		 * goto retry to reclaim the undemoted folios in folio_list if
1471		 * desired.
1472		 *
1473		 * Reclaiming directly from top tier nodes is not often desired
1474		 * due to it breaking the LRU ordering: in general memory
1475		 * should be reclaimed from lower tier nodes and demoted from
1476		 * top tier nodes.
1477		 *
1478		 * However, disabling reclaim from top tier nodes entirely
1479		 * would cause ooms in edge scenarios where lower tier memory
1480		 * is unreclaimable for whatever reason, eg memory being
1481		 * mlocked or too hot to reclaim. We can disable reclaim
1482		 * from top tier nodes in proactive reclaim though as that is
1483		 * not real memory pressure.
1484		 */
1485		if (!sc->proactive) {
1486			do_demote_pass = false;
1487			goto retry;
1488		}
1489	}
1490
1491	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1492
1493	mem_cgroup_uncharge_folios(&free_folios);
1494	try_to_unmap_flush();
1495	free_unref_folios(&free_folios);
1496
1497	list_splice(&ret_folios, folio_list);
1498	count_vm_events(PGACTIVATE, pgactivate);
1499
1500	if (plug)
1501		swap_write_unplug(plug);
1502	return nr_reclaimed;
1503}
1504
1505unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1506					   struct list_head *folio_list)
1507{
1508	struct scan_control sc = {
1509		.gfp_mask = GFP_KERNEL,
 
1510		.may_unmap = 1,
1511	};
1512	struct reclaim_stat stat;
1513	unsigned int nr_reclaimed;
1514	struct folio *folio, *next;
1515	LIST_HEAD(clean_folios);
1516	unsigned int noreclaim_flag;
1517
1518	list_for_each_entry_safe(folio, next, folio_list, lru) {
1519		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1520		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
1521		    !folio_test_unevictable(folio)) {
1522			folio_clear_active(folio);
1523			list_move(&folio->lru, &clean_folios);
1524		}
1525	}
1526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1527	/*
1528	 * We should be safe here since we are only dealing with file pages and
1529	 * we are not kswapd and therefore cannot write dirty file pages. But
1530	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1531	 * change in the future.
 
 
1532	 */
1533	noreclaim_flag = memalloc_noreclaim_save();
1534	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1535					&stat, true);
1536	memalloc_noreclaim_restore(noreclaim_flag);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1537
1538	list_splice(&clean_folios, folio_list);
1539	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1540			    -(long)nr_reclaimed);
1541	/*
1542	 * Since lazyfree pages are isolated from file LRU from the beginning,
1543	 * they will rotate back to anonymous LRU in the end if it failed to
1544	 * discard so isolated count will be mismatched.
1545	 * Compensate the isolated count for both LRU lists.
1546	 */
1547	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1548			    stat.nr_lazyfree_fail);
1549	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1550			    -(long)stat.nr_lazyfree_fail);
1551	return nr_reclaimed;
1552}
1553
 
1554/*
1555 * Update LRU sizes after isolating pages. The LRU size updates must
1556 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1557 */
1558static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1559			enum lru_list lru, unsigned long *nr_zone_taken)
1560{
1561	int zid;
1562
1563	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1564		if (!nr_zone_taken[zid])
1565			continue;
1566
1567		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
 
 
 
1568	}
1569
1570}
1571
1572#ifdef CONFIG_CMA
1573/*
1574 * It is waste of effort to scan and reclaim CMA pages if it is not available
1575 * for current allocation context. Kswapd can not be enrolled as it can not
1576 * distinguish this scenario by using sc->gfp_mask = GFP_KERNEL
1577 */
1578static bool skip_cma(struct folio *folio, struct scan_control *sc)
1579{
1580	return !current_is_kswapd() &&
1581			gfp_migratetype(sc->gfp_mask) != MIGRATE_MOVABLE &&
1582			folio_migratetype(folio) == MIGRATE_CMA;
1583}
1584#else
1585static bool skip_cma(struct folio *folio, struct scan_control *sc)
1586{
1587	return false;
1588}
1589#endif
1590
1591/*
1592 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1593 *
1594 * lruvec->lru_lock is heavily contended.  Some of the functions that
1595 * shrink the lists perform better by taking out a batch of pages
1596 * and working on them outside the LRU lock.
1597 *
1598 * For pagecache intensive workloads, this function is the hottest
1599 * spot in the kernel (apart from copy_*_user functions).
1600 *
1601 * Lru_lock must be held before calling this function.
1602 *
1603 * @nr_to_scan:	The number of eligible pages to look through on the list.
1604 * @lruvec:	The LRU vector to pull pages from.
1605 * @dst:	The temp list to put pages on to.
1606 * @nr_scanned:	The number of pages that were scanned.
1607 * @sc:		The scan_control struct for this reclaim session
 
1608 * @lru:	LRU list id for isolating
1609 *
1610 * returns how many pages were moved onto *@dst.
1611 */
1612static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1613		struct lruvec *lruvec, struct list_head *dst,
1614		unsigned long *nr_scanned, struct scan_control *sc,
1615		enum lru_list lru)
1616{
1617	struct list_head *src = &lruvec->lists[lru];
1618	unsigned long nr_taken = 0;
1619	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1620	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1621	unsigned long skipped = 0;
1622	unsigned long scan, total_scan, nr_pages;
1623	LIST_HEAD(folios_skipped);
 
1624
1625	total_scan = 0;
1626	scan = 0;
1627	while (scan < nr_to_scan && !list_empty(src)) {
1628		struct list_head *move_to = src;
1629		struct folio *folio;
1630
1631		folio = lru_to_folio(src);
1632		prefetchw_prev_lru_folio(folio, src, flags);
1633
1634		nr_pages = folio_nr_pages(folio);
 
 
1635		total_scan += nr_pages;
1636
1637		if (folio_zonenum(folio) > sc->reclaim_idx ||
1638				skip_cma(folio, sc)) {
1639			nr_skipped[folio_zonenum(folio)] += nr_pages;
1640			move_to = &folios_skipped;
1641			goto move;
1642		}
1643
1644		/*
1645		 * Do not count skipped folios because that makes the function
1646		 * return with no isolated folios if the LRU mostly contains
1647		 * ineligible folios.  This causes the VM to not reclaim any
1648		 * folios, triggering a premature OOM.
1649		 * Account all pages in a folio.
 
 
 
1650		 */
1651		scan += nr_pages;
 
 
 
 
 
 
1652
1653		if (!folio_test_lru(folio))
1654			goto move;
1655		if (!sc->may_unmap && folio_mapped(folio))
1656			goto move;
1657
1658		/*
1659		 * Be careful not to clear the lru flag until after we're
1660		 * sure the folio is not being freed elsewhere -- the
1661		 * folio release code relies on it.
1662		 */
1663		if (unlikely(!folio_try_get(folio)))
1664			goto move;
1665
1666		if (!folio_test_clear_lru(folio)) {
1667			/* Another thread is already isolating this folio */
1668			folio_put(folio);
1669			goto move;
1670		}
1671
1672		nr_taken += nr_pages;
1673		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1674		move_to = dst;
1675move:
1676		list_move(&folio->lru, move_to);
1677	}
1678
1679	/*
1680	 * Splice any skipped folios to the start of the LRU list. Note that
1681	 * this disrupts the LRU order when reclaiming for lower zones but
1682	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1683	 * scanning would soon rescan the same folios to skip and waste lots
1684	 * of cpu cycles.
1685	 */
1686	if (!list_empty(&folios_skipped)) {
1687		int zid;
1688
1689		list_splice(&folios_skipped, src);
1690		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1691			if (!nr_skipped[zid])
1692				continue;
1693
1694			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1695			skipped += nr_skipped[zid];
1696		}
1697	}
1698	*nr_scanned = total_scan;
1699	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1700				    total_scan, skipped, nr_taken, lru);
1701	update_lru_sizes(lruvec, lru, nr_zone_taken);
1702	return nr_taken;
1703}
1704
1705/**
1706 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1707 * @folio: Folio to isolate from its LRU list.
1708 *
1709 * Isolate a @folio from an LRU list and adjust the vmstat statistic
1710 * corresponding to whatever LRU list the folio was on.
1711 *
1712 * The folio will have its LRU flag cleared.  If it was found on the
1713 * active list, it will have the Active flag set.  If it was found on the
1714 * unevictable list, it will have the Unevictable flag set.  These flags
 
 
 
1715 * may need to be cleared by the caller before letting the page go.
1716 *
1717 * Context:
 
 
 
1718 *
1719 * (1) Must be called with an elevated refcount on the folio. This is a
1720 *     fundamental difference from isolate_lru_folios() (which is called
1721 *     without a stable reference).
1722 * (2) The lru_lock must not be held.
1723 * (3) Interrupts must be enabled.
1724 *
1725 * Return: true if the folio was removed from an LRU list.
1726 * false if the folio was not on an LRU list.
1727 */
1728bool folio_isolate_lru(struct folio *folio)
1729{
1730	bool ret = false;
1731
1732	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
 
1733
1734	if (folio_test_clear_lru(folio)) {
 
1735		struct lruvec *lruvec;
1736
1737		folio_get(folio);
1738		lruvec = folio_lruvec_lock_irq(folio);
1739		lruvec_del_folio(lruvec, folio);
1740		unlock_page_lruvec_irq(lruvec);
1741		ret = true;
 
 
 
 
 
1742	}
1743
1744	return ret;
1745}
1746
1747/*
1748 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1749 * then get rescheduled. When there are massive number of tasks doing page
1750 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1751 * the LRU list will go small and be scanned faster than necessary, leading to
1752 * unnecessary swapping, thrashing and OOM.
1753 */
1754static bool too_many_isolated(struct pglist_data *pgdat, int file,
1755		struct scan_control *sc)
1756{
1757	unsigned long inactive, isolated;
1758	bool too_many;
1759
1760	if (current_is_kswapd())
1761		return false;
1762
1763	if (!writeback_throttling_sane(sc))
1764		return false;
1765
1766	if (file) {
1767		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1768		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1769	} else {
1770		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1771		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1772	}
1773
1774	/*
1775	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1776	 * won't get blocked by normal direct-reclaimers, forming a circular
1777	 * deadlock.
1778	 */
1779	if (gfp_has_io_fs(sc->gfp_mask))
1780		inactive >>= 3;
1781
1782	too_many = isolated > inactive;
1783
1784	/* Wake up tasks throttled due to too_many_isolated. */
1785	if (!too_many)
1786		wake_throttle_isolated(pgdat);
1787
1788	return too_many;
1789}
1790
1791/*
1792 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1793 *
1794 * Returns the number of pages moved to the given lruvec.
1795 */
1796static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1797		struct list_head *list)
 
1798{
 
1799	int nr_pages, nr_moved = 0;
1800	struct folio_batch free_folios;
 
 
1801
1802	folio_batch_init(&free_folios);
1803	while (!list_empty(list)) {
1804		struct folio *folio = lru_to_folio(list);
1805
1806		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1807		list_del(&folio->lru);
1808		if (unlikely(!folio_evictable(folio))) {
1809			spin_unlock_irq(&lruvec->lru_lock);
1810			folio_putback_lru(folio);
1811			spin_lock_irq(&lruvec->lru_lock);
1812			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1813		}
 
1814
1815		/*
1816		 * The folio_set_lru needs to be kept here for list integrity.
1817		 * Otherwise:
1818		 *   #0 move_folios_to_lru             #1 release_pages
1819		 *   if (!folio_put_testzero())
1820		 *				      if (folio_put_testzero())
1821		 *				        !lru //skip lru_lock
1822		 *     folio_set_lru()
1823		 *     list_add(&folio->lru,)
1824		 *                                        list_add(&folio->lru,)
1825		 */
1826		folio_set_lru(folio);
1827
1828		if (unlikely(folio_put_testzero(folio))) {
1829			__folio_clear_lru_flags(folio);
1830
1831			if (folio_test_large(folio) &&
1832			    folio_test_large_rmappable(folio))
1833				folio_undo_large_rmappable(folio);
1834			if (folio_batch_add(&free_folios, folio) == 0) {
1835				spin_unlock_irq(&lruvec->lru_lock);
1836				mem_cgroup_uncharge_folios(&free_folios);
1837				free_unref_folios(&free_folios);
1838				spin_lock_irq(&lruvec->lru_lock);
1839			}
1840
1841			continue;
1842		}
1843
1844		/*
1845		 * All pages were isolated from the same lruvec (and isolation
1846		 * inhibits memcg migration).
1847		 */
1848		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1849		lruvec_add_folio(lruvec, folio);
1850		nr_pages = folio_nr_pages(folio);
1851		nr_moved += nr_pages;
1852		if (folio_test_active(folio))
1853			workingset_age_nonresident(lruvec, nr_pages);
1854	}
1855
1856	if (free_folios.nr) {
1857		spin_unlock_irq(&lruvec->lru_lock);
1858		mem_cgroup_uncharge_folios(&free_folios);
1859		free_unref_folios(&free_folios);
1860		spin_lock_irq(&lruvec->lru_lock);
1861	}
1862
1863	return nr_moved;
1864}
1865
1866/*
1867 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1868 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1869 * we should not throttle.  Otherwise it is safe to do so.
 
1870 */
1871static int current_may_throttle(void)
1872{
1873	return !(current->flags & PF_LOCAL_THROTTLE);
 
 
1874}
1875
1876/*
1877 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1878 * of reclaimed pages
1879 */
1880static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
1881		struct lruvec *lruvec, struct scan_control *sc,
1882		enum lru_list lru)
1883{
1884	LIST_HEAD(folio_list);
1885	unsigned long nr_scanned;
1886	unsigned int nr_reclaimed = 0;
1887	unsigned long nr_taken;
1888	struct reclaim_stat stat;
1889	bool file = is_file_lru(lru);
1890	enum vm_event_item item;
1891	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
 
1892	bool stalled = false;
1893
1894	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1895		if (stalled)
1896			return 0;
1897
1898		/* wait a bit for the reclaimer. */
 
1899		stalled = true;
1900		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
1901
1902		/* We are about to die and free our memory. Return now. */
1903		if (fatal_signal_pending(current))
1904			return SWAP_CLUSTER_MAX;
1905	}
1906
1907	lru_add_drain();
1908
1909	spin_lock_irq(&lruvec->lru_lock);
1910
1911	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
1912				     &nr_scanned, sc, lru);
1913
1914	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1915	item = PGSCAN_KSWAPD + reclaimer_offset();
1916	if (!cgroup_reclaim(sc))
 
 
1917		__count_vm_events(item, nr_scanned);
1918	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1919	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
1920
1921	spin_unlock_irq(&lruvec->lru_lock);
1922
1923	if (nr_taken == 0)
1924		return 0;
1925
1926	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
 
1927
1928	spin_lock_irq(&lruvec->lru_lock);
1929	move_folios_to_lru(lruvec, &folio_list);
1930
1931	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1932	item = PGSTEAL_KSWAPD + reclaimer_offset();
1933	if (!cgroup_reclaim(sc))
1934		__count_vm_events(item, nr_reclaimed);
1935	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1936	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1937	spin_unlock_irq(&lruvec->lru_lock);
 
 
1938
1939	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
 
 
 
 
 
1940
1941	/*
1942	 * If dirty folios are scanned that are not queued for IO, it
1943	 * implies that flushers are not doing their job. This can
1944	 * happen when memory pressure pushes dirty folios to the end of
1945	 * the LRU before the dirty limits are breached and the dirty
1946	 * data has expired. It can also happen when the proportion of
1947	 * dirty folios grows not through writes but through memory
1948	 * pressure reclaiming all the clean cache. And in some cases,
1949	 * the flushers simply cannot keep up with the allocation
1950	 * rate. Nudge the flusher threads in case they are asleep.
1951	 */
1952	if (stat.nr_unqueued_dirty == nr_taken) {
1953		wakeup_flusher_threads(WB_REASON_VMSCAN);
1954		/*
1955		 * For cgroupv1 dirty throttling is achieved by waking up
1956		 * the kernel flusher here and later waiting on folios
1957		 * which are in writeback to finish (see shrink_folio_list()).
1958		 *
1959		 * Flusher may not be able to issue writeback quickly
1960		 * enough for cgroupv1 writeback throttling to work
1961		 * on a large system.
1962		 */
1963		if (!writeback_throttling_sane(sc))
1964			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
1965	}
1966
1967	sc->nr.dirty += stat.nr_dirty;
1968	sc->nr.congested += stat.nr_congested;
1969	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1970	sc->nr.writeback += stat.nr_writeback;
1971	sc->nr.immediate += stat.nr_immediate;
1972	sc->nr.taken += nr_taken;
1973	if (file)
1974		sc->nr.file_taken += nr_taken;
1975
1976	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1977			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1978	return nr_reclaimed;
1979}
1980
1981/*
1982 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
1983 *
1984 * We move them the other way if the folio is referenced by one or more
1985 * processes.
1986 *
1987 * If the folios are mostly unmapped, the processing is fast and it is
1988 * appropriate to hold lru_lock across the whole operation.  But if
1989 * the folios are mapped, the processing is slow (folio_referenced()), so
1990 * we should drop lru_lock around each folio.  It's impossible to balance
1991 * this, so instead we remove the folios from the LRU while processing them.
1992 * It is safe to rely on the active flag against the non-LRU folios in here
1993 * because nobody will play with that bit on a non-LRU folio.
1994 *
1995 * The downside is that we have to touch folio->_refcount against each folio.
1996 * But we had to alter folio->flags anyway.
1997 */
1998static void shrink_active_list(unsigned long nr_to_scan,
1999			       struct lruvec *lruvec,
2000			       struct scan_control *sc,
2001			       enum lru_list lru)
2002{
2003	unsigned long nr_taken;
2004	unsigned long nr_scanned;
2005	unsigned long vm_flags;
2006	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2007	LIST_HEAD(l_active);
2008	LIST_HEAD(l_inactive);
 
 
2009	unsigned nr_deactivate, nr_activate;
2010	unsigned nr_rotated = 0;
2011	bool file = is_file_lru(lru);
2012	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2013
2014	lru_add_drain();
2015
2016	spin_lock_irq(&lruvec->lru_lock);
2017
2018	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2019				     &nr_scanned, sc, lru);
2020
2021	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
 
2022
2023	if (!cgroup_reclaim(sc))
2024		__count_vm_events(PGREFILL, nr_scanned);
2025	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2026
2027	spin_unlock_irq(&lruvec->lru_lock);
2028
2029	while (!list_empty(&l_hold)) {
2030		struct folio *folio;
2031
2032		cond_resched();
2033		folio = lru_to_folio(&l_hold);
2034		list_del(&folio->lru);
2035
2036		if (unlikely(!folio_evictable(folio))) {
2037			folio_putback_lru(folio);
2038			continue;
2039		}
2040
2041		if (unlikely(buffer_heads_over_limit)) {
2042			if (folio_needs_release(folio) &&
2043			    folio_trylock(folio)) {
2044				filemap_release_folio(folio, 0);
2045				folio_unlock(folio);
2046			}
2047		}
2048
2049		/* Referenced or rmap lock contention: rotate */
2050		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2051				     &vm_flags) != 0) {
2052			/*
2053			 * Identify referenced, file-backed active folios and
2054			 * give them one more trip around the active list. So
2055			 * that executable code get better chances to stay in
2056			 * memory under moderate memory pressure.  Anon folios
2057			 * are not likely to be evicted by use-once streaming
2058			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2059			 * so we ignore them here.
2060			 */
2061			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2062				nr_rotated += folio_nr_pages(folio);
2063				list_add(&folio->lru, &l_active);
2064				continue;
2065			}
2066		}
2067
2068		folio_clear_active(folio);	/* we are de-activating */
2069		folio_set_workingset(folio);
2070		list_add(&folio->lru, &l_inactive);
2071	}
2072
2073	/*
2074	 * Move folios back to the lru list.
 
 
 
 
 
 
 
2075	 */
2076	spin_lock_irq(&lruvec->lru_lock);
2077
2078	nr_activate = move_folios_to_lru(lruvec, &l_active);
2079	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
 
 
2080
2081	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2082	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2083
2084	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2085	spin_unlock_irq(&lruvec->lru_lock);
2086
2087	if (nr_rotated)
2088		lru_note_cost(lruvec, file, 0, nr_rotated);
2089	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2090			nr_deactivate, nr_rotated, sc->priority, file);
2091}
2092
2093static unsigned int reclaim_folio_list(struct list_head *folio_list,
2094				      struct pglist_data *pgdat,
2095				      bool ignore_references)
2096{
 
 
 
2097	struct reclaim_stat dummy_stat;
2098	unsigned int nr_reclaimed;
2099	struct folio *folio;
2100	struct scan_control sc = {
2101		.gfp_mask = GFP_KERNEL,
 
2102		.may_writepage = 1,
2103		.may_unmap = 1,
2104		.may_swap = 1,
2105		.no_demotion = 1,
2106	};
2107
2108	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, ignore_references);
2109	while (!list_empty(folio_list)) {
2110		folio = lru_to_folio(folio_list);
2111		list_del(&folio->lru);
2112		folio_putback_lru(folio);
2113	}
2114
2115	return nr_reclaimed;
2116}
2117
2118unsigned long reclaim_pages(struct list_head *folio_list, bool ignore_references)
2119{
2120	int nid;
2121	unsigned int nr_reclaimed = 0;
2122	LIST_HEAD(node_folio_list);
2123	unsigned int noreclaim_flag;
2124
2125	if (list_empty(folio_list))
2126		return nr_reclaimed;
2127
2128	noreclaim_flag = memalloc_noreclaim_save();
2129
2130	nid = folio_nid(lru_to_folio(folio_list));
2131	do {
2132		struct folio *folio = lru_to_folio(folio_list);
2133
2134		if (nid == folio_nid(folio)) {
2135			folio_clear_active(folio);
2136			list_move(&folio->lru, &node_folio_list);
2137			continue;
2138		}
2139
2140		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid),
2141						   ignore_references);
2142		nid = folio_nid(lru_to_folio(folio_list));
2143	} while (!list_empty(folio_list));
 
 
 
 
 
2144
2145	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid), ignore_references);
 
2146
2147	memalloc_noreclaim_restore(noreclaim_flag);
 
 
 
 
 
 
 
 
 
 
2148
2149	return nr_reclaimed;
2150}
2151
2152static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2153				 struct lruvec *lruvec, struct scan_control *sc)
2154{
2155	if (is_active_lru(lru)) {
2156		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2157			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2158		else
2159			sc->skipped_deactivate = 1;
2160		return 0;
2161	}
2162
2163	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2164}
2165
2166/*
2167 * The inactive anon list should be small enough that the VM never has
2168 * to do too much work.
2169 *
2170 * The inactive file list should be small enough to leave most memory
2171 * to the established workingset on the scan-resistant active list,
2172 * but large enough to avoid thrashing the aggregate readahead window.
2173 *
2174 * Both inactive lists should also be large enough that each inactive
2175 * folio has a chance to be referenced again before it is reclaimed.
2176 *
2177 * If that fails and refaulting is observed, the inactive list grows.
2178 *
2179 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2180 * on this LRU, maintained by the pageout code. An inactive_ratio
2181 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2182 *
2183 * total     target    max
2184 * memory    ratio     inactive
2185 * -------------------------------------
2186 *   10MB       1         5MB
2187 *  100MB       1        50MB
2188 *    1GB       3       250MB
2189 *   10GB      10       0.9GB
2190 *  100GB      31         3GB
2191 *    1TB     101        10GB
2192 *   10TB     320        32GB
2193 */
2194static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
 
2195{
2196	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
 
 
2197	unsigned long inactive, active;
2198	unsigned long inactive_ratio;
 
2199	unsigned long gb;
2200
2201	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2202	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2203
2204	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2205	if (gb)
2206		inactive_ratio = int_sqrt(10 * gb);
2207	else
2208		inactive_ratio = 1;
2209
2210	return inactive * inactive_ratio < active;
2211}
2212
2213enum scan_balance {
2214	SCAN_EQUAL,
2215	SCAN_FRACT,
2216	SCAN_ANON,
2217	SCAN_FILE,
2218};
2219
2220static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2221{
2222	unsigned long file;
2223	struct lruvec *target_lruvec;
2224
2225	if (lru_gen_enabled())
2226		return;
2227
2228	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2229
2230	/*
2231	 * Flush the memory cgroup stats, so that we read accurate per-memcg
2232	 * lruvec stats for heuristics.
2233	 */
2234	mem_cgroup_flush_stats(sc->target_mem_cgroup);
 
2235
2236	/*
2237	 * Determine the scan balance between anon and file LRUs.
2238	 */
2239	spin_lock_irq(&target_lruvec->lru_lock);
2240	sc->anon_cost = target_lruvec->anon_cost;
2241	sc->file_cost = target_lruvec->file_cost;
2242	spin_unlock_irq(&target_lruvec->lru_lock);
2243
2244	/*
2245	 * Target desirable inactive:active list ratios for the anon
2246	 * and file LRU lists.
 
2247	 */
2248	if (!sc->force_deactivate) {
2249		unsigned long refaults;
2250
2251		/*
2252		 * When refaults are being observed, it means a new
2253		 * workingset is being established. Deactivate to get
2254		 * rid of any stale active pages quickly.
2255		 */
2256		refaults = lruvec_page_state(target_lruvec,
2257				WORKINGSET_ACTIVATE_ANON);
2258		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2259			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2260			sc->may_deactivate |= DEACTIVATE_ANON;
2261		else
2262			sc->may_deactivate &= ~DEACTIVATE_ANON;
 
2263
2264		refaults = lruvec_page_state(target_lruvec,
2265				WORKINGSET_ACTIVATE_FILE);
2266		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2267		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2268			sc->may_deactivate |= DEACTIVATE_FILE;
2269		else
2270			sc->may_deactivate &= ~DEACTIVATE_FILE;
2271	} else
2272		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2273
2274	/*
2275	 * If we have plenty of inactive file pages that aren't
2276	 * thrashing, try to reclaim those first before touching
2277	 * anonymous pages.
2278	 */
2279	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2280	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) &&
2281	    !sc->no_cache_trim_mode)
2282		sc->cache_trim_mode = 1;
2283	else
2284		sc->cache_trim_mode = 0;
2285
2286	/*
2287	 * Prevent the reclaimer from falling into the cache trap: as
2288	 * cache pages start out inactive, every cache fault will tip
2289	 * the scan balance towards the file LRU.  And as the file LRU
2290	 * shrinks, so does the window for rotation from references.
2291	 * This means we have a runaway feedback loop where a tiny
2292	 * thrashing file LRU becomes infinitely more attractive than
2293	 * anon pages.  Try to detect this based on file LRU size.
2294	 */
2295	if (!cgroup_reclaim(sc)) {
2296		unsigned long total_high_wmark = 0;
2297		unsigned long free, anon;
2298		int z;
2299
2300		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2301		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2302			   node_page_state(pgdat, NR_INACTIVE_FILE);
2303
2304		for (z = 0; z < MAX_NR_ZONES; z++) {
2305			struct zone *zone = &pgdat->node_zones[z];
2306
2307			if (!managed_zone(zone))
2308				continue;
2309
2310			total_high_wmark += high_wmark_pages(zone);
2311		}
2312
2313		/*
2314		 * Consider anon: if that's low too, this isn't a
2315		 * runaway file reclaim problem, but rather just
2316		 * extreme pressure. Reclaim as per usual then.
2317		 */
2318		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2319
2320		sc->file_is_tiny =
2321			file + free <= total_high_wmark &&
2322			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2323			anon >> sc->priority;
2324	}
2325}
2326
2327/*
2328 * Determine how aggressively the anon and file LRU lists should be
2329 * scanned.
2330 *
2331 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2332 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2333 */
2334static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2335			   unsigned long *nr)
 
 
 
2336{
2337	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2338	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2339	unsigned long anon_cost, file_cost, total_cost;
2340	int swappiness = mem_cgroup_swappiness(memcg);
2341	u64 fraction[ANON_AND_FILE];
 
2342	u64 denominator = 0;	/* gcc */
 
 
2343	enum scan_balance scan_balance;
 
2344	unsigned long ap, fp;
2345	enum lru_list lru;
2346
2347	/* If we have no swap space, do not bother scanning anon folios. */
2348	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2349		scan_balance = SCAN_FILE;
2350		goto out;
2351	}
2352
2353	/*
2354	 * Global reclaim will swap to prevent OOM even with no
2355	 * swappiness, but memcg users want to use this knob to
2356	 * disable swapping for individual groups completely when
2357	 * using the memory controller's swap limit feature would be
2358	 * too expensive.
2359	 */
2360	if (cgroup_reclaim(sc) && !swappiness) {
2361		scan_balance = SCAN_FILE;
2362		goto out;
2363	}
2364
2365	/*
2366	 * Do not apply any pressure balancing cleverness when the
2367	 * system is close to OOM, scan both anon and file equally
2368	 * (unless the swappiness setting disagrees with swapping).
2369	 */
2370	if (!sc->priority && swappiness) {
2371		scan_balance = SCAN_EQUAL;
2372		goto out;
2373	}
2374
2375	/*
2376	 * If the system is almost out of file pages, force-scan anon.
 
 
 
 
 
 
2377	 */
2378	if (sc->file_is_tiny) {
2379		scan_balance = SCAN_ANON;
2380		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2381	}
2382
2383	/*
2384	 * If there is enough inactive page cache, we do not reclaim
2385	 * anything from the anonymous working right now.
 
 
 
 
 
2386	 */
2387	if (sc->cache_trim_mode) {
 
2388		scan_balance = SCAN_FILE;
2389		goto out;
2390	}
2391
2392	scan_balance = SCAN_FRACT;
 
2393	/*
2394	 * Calculate the pressure balance between anon and file pages.
2395	 *
2396	 * The amount of pressure we put on each LRU is inversely
2397	 * proportional to the cost of reclaiming each list, as
2398	 * determined by the share of pages that are refaulting, times
2399	 * the relative IO cost of bringing back a swapped out
2400	 * anonymous page vs reloading a filesystem page (swappiness).
 
 
 
2401	 *
2402	 * Although we limit that influence to ensure no list gets
2403	 * left behind completely: at least a third of the pressure is
2404	 * applied, before swappiness.
2405	 *
2406	 * With swappiness at 100, anon and file have equal IO cost.
2407	 */
2408	total_cost = sc->anon_cost + sc->file_cost;
2409	anon_cost = total_cost + sc->anon_cost;
2410	file_cost = total_cost + sc->file_cost;
2411	total_cost = anon_cost + file_cost;
2412
2413	ap = swappiness * (total_cost + 1);
2414	ap /= anon_cost + 1;
 
 
2415
2416	fp = (200 - swappiness) * (total_cost + 1);
2417	fp /= file_cost + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2418
2419	fraction[0] = ap;
2420	fraction[1] = fp;
2421	denominator = ap + fp;
2422out:
 
2423	for_each_evictable_lru(lru) {
2424		bool file = is_file_lru(lru);
2425		unsigned long lruvec_size;
2426		unsigned long low, min;
2427		unsigned long scan;
 
2428
2429		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2430		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2431				      &min, &low);
2432
2433		if (min || low) {
2434			/*
2435			 * Scale a cgroup's reclaim pressure by proportioning
2436			 * its current usage to its memory.low or memory.min
2437			 * setting.
2438			 *
2439			 * This is important, as otherwise scanning aggression
2440			 * becomes extremely binary -- from nothing as we
2441			 * approach the memory protection threshold, to totally
2442			 * nominal as we exceed it.  This results in requiring
2443			 * setting extremely liberal protection thresholds. It
2444			 * also means we simply get no protection at all if we
2445			 * set it too low, which is not ideal.
2446			 *
2447			 * If there is any protection in place, we reduce scan
2448			 * pressure by how much of the total memory used is
2449			 * within protection thresholds.
2450			 *
2451			 * There is one special case: in the first reclaim pass,
2452			 * we skip over all groups that are within their low
2453			 * protection. If that fails to reclaim enough pages to
2454			 * satisfy the reclaim goal, we come back and override
2455			 * the best-effort low protection. However, we still
2456			 * ideally want to honor how well-behaved groups are in
2457			 * that case instead of simply punishing them all
2458			 * equally. As such, we reclaim them based on how much
2459			 * memory they are using, reducing the scan pressure
2460			 * again by how much of the total memory used is under
2461			 * hard protection.
2462			 */
2463			unsigned long cgroup_size = mem_cgroup_size(memcg);
2464			unsigned long protection;
2465
2466			/* memory.low scaling, make sure we retry before OOM */
2467			if (!sc->memcg_low_reclaim && low > min) {
2468				protection = low;
2469				sc->memcg_low_skipped = 1;
2470			} else {
2471				protection = min;
2472			}
2473
2474			/* Avoid TOCTOU with earlier protection check */
2475			cgroup_size = max(cgroup_size, protection);
2476
2477			scan = lruvec_size - lruvec_size * protection /
2478				(cgroup_size + 1);
2479
2480			/*
2481			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2482			 * reclaim moving forwards, avoiding decrementing
2483			 * sc->priority further than desirable.
2484			 */
2485			scan = max(scan, SWAP_CLUSTER_MAX);
2486		} else {
2487			scan = lruvec_size;
2488		}
2489
2490		scan >>= sc->priority;
2491
2492		/*
2493		 * If the cgroup's already been deleted, make sure to
2494		 * scrape out the remaining cache.
2495		 */
2496		if (!scan && !mem_cgroup_online(memcg))
2497			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2498
2499		switch (scan_balance) {
2500		case SCAN_EQUAL:
2501			/* Scan lists relative to size */
2502			break;
2503		case SCAN_FRACT:
2504			/*
2505			 * Scan types proportional to swappiness and
2506			 * their relative recent reclaim efficiency.
2507			 * Make sure we don't miss the last page on
2508			 * the offlined memory cgroups because of a
2509			 * round-off error.
2510			 */
2511			scan = mem_cgroup_online(memcg) ?
2512			       div64_u64(scan * fraction[file], denominator) :
2513			       DIV64_U64_ROUND_UP(scan * fraction[file],
2514						  denominator);
2515			break;
2516		case SCAN_FILE:
2517		case SCAN_ANON:
2518			/* Scan one type exclusively */
2519			if ((scan_balance == SCAN_FILE) != file)
 
2520				scan = 0;
 
2521			break;
2522		default:
2523			/* Look ma, no brain */
2524			BUG();
2525		}
2526
 
2527		nr[lru] = scan;
2528	}
2529}
2530
2531/*
2532 * Anonymous LRU management is a waste if there is
2533 * ultimately no way to reclaim the memory.
2534 */
2535static bool can_age_anon_pages(struct pglist_data *pgdat,
2536			       struct scan_control *sc)
2537{
2538	/* Aging the anon LRU is valuable if swap is present: */
2539	if (total_swap_pages > 0)
2540		return true;
2541
2542	/* Also valuable if anon pages can be demoted: */
2543	return can_demote(pgdat->node_id, sc);
2544}
2545
2546#ifdef CONFIG_LRU_GEN
2547
2548#ifdef CONFIG_LRU_GEN_ENABLED
2549DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2550#define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
2551#else
2552DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2553#define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
2554#endif
2555
2556static bool should_walk_mmu(void)
2557{
2558	return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2559}
2560
2561static bool should_clear_pmd_young(void)
2562{
2563	return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2564}
2565
2566/******************************************************************************
2567 *                          shorthand helpers
2568 ******************************************************************************/
2569
2570#define LRU_REFS_FLAGS	(BIT(PG_referenced) | BIT(PG_workingset))
2571
2572#define DEFINE_MAX_SEQ(lruvec)						\
2573	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2574
2575#define DEFINE_MIN_SEQ(lruvec)						\
2576	unsigned long min_seq[ANON_AND_FILE] = {			\
2577		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
2578		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
2579	}
2580
2581#define for_each_gen_type_zone(gen, type, zone)				\
2582	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
2583		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
2584			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2585
2586#define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
2587#define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
2588
2589static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2590{
2591	struct pglist_data *pgdat = NODE_DATA(nid);
2592
2593#ifdef CONFIG_MEMCG
2594	if (memcg) {
2595		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2596
2597		/* see the comment in mem_cgroup_lruvec() */
2598		if (!lruvec->pgdat)
2599			lruvec->pgdat = pgdat;
2600
2601		return lruvec;
2602	}
2603#endif
2604	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2605
2606	return &pgdat->__lruvec;
2607}
2608
2609static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2610{
2611	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2612	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2613
2614	if (!sc->may_swap)
2615		return 0;
2616
2617	if (!can_demote(pgdat->node_id, sc) &&
2618	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2619		return 0;
2620
2621	return mem_cgroup_swappiness(memcg);
2622}
2623
2624static int get_nr_gens(struct lruvec *lruvec, int type)
2625{
2626	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2627}
2628
2629static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2630{
2631	/* see the comment on lru_gen_folio */
2632	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
2633	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
2634	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
2635}
2636
2637/******************************************************************************
2638 *                          Bloom filters
2639 ******************************************************************************/
2640
2641/*
2642 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2643 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2644 * bits in a bitmap, k is the number of hash functions and n is the number of
2645 * inserted items.
2646 *
2647 * Page table walkers use one of the two filters to reduce their search space.
2648 * To get rid of non-leaf entries that no longer have enough leaf entries, the
2649 * aging uses the double-buffering technique to flip to the other filter each
2650 * time it produces a new generation. For non-leaf entries that have enough
2651 * leaf entries, the aging carries them over to the next generation in
2652 * walk_pmd_range(); the eviction also report them when walking the rmap
2653 * in lru_gen_look_around().
2654 *
2655 * For future optimizations:
2656 * 1. It's not necessary to keep both filters all the time. The spare one can be
2657 *    freed after the RCU grace period and reallocated if needed again.
2658 * 2. And when reallocating, it's worth scaling its size according to the number
2659 *    of inserted entries in the other filter, to reduce the memory overhead on
2660 *    small systems and false positives on large systems.
2661 * 3. Jenkins' hash function is an alternative to Knuth's.
2662 */
2663#define BLOOM_FILTER_SHIFT	15
2664
2665static inline int filter_gen_from_seq(unsigned long seq)
2666{
2667	return seq % NR_BLOOM_FILTERS;
2668}
2669
2670static void get_item_key(void *item, int *key)
2671{
2672	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2673
2674	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2675
2676	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2677	key[1] = hash >> BLOOM_FILTER_SHIFT;
2678}
2679
2680static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2681			      void *item)
2682{
2683	int key[2];
2684	unsigned long *filter;
2685	int gen = filter_gen_from_seq(seq);
2686
2687	filter = READ_ONCE(mm_state->filters[gen]);
2688	if (!filter)
2689		return true;
2690
2691	get_item_key(item, key);
2692
2693	return test_bit(key[0], filter) && test_bit(key[1], filter);
2694}
2695
2696static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2697				void *item)
2698{
2699	int key[2];
2700	unsigned long *filter;
2701	int gen = filter_gen_from_seq(seq);
2702
2703	filter = READ_ONCE(mm_state->filters[gen]);
2704	if (!filter)
2705		return;
2706
2707	get_item_key(item, key);
2708
2709	if (!test_bit(key[0], filter))
2710		set_bit(key[0], filter);
2711	if (!test_bit(key[1], filter))
2712		set_bit(key[1], filter);
2713}
2714
2715static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2716{
2717	unsigned long *filter;
2718	int gen = filter_gen_from_seq(seq);
2719
2720	filter = mm_state->filters[gen];
2721	if (filter) {
2722		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2723		return;
2724	}
2725
2726	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2727			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2728	WRITE_ONCE(mm_state->filters[gen], filter);
2729}
2730
2731/******************************************************************************
2732 *                          mm_struct list
2733 ******************************************************************************/
2734
2735#ifdef CONFIG_LRU_GEN_WALKS_MMU
2736
2737static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2738{
2739	static struct lru_gen_mm_list mm_list = {
2740		.fifo = LIST_HEAD_INIT(mm_list.fifo),
2741		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2742	};
2743
2744#ifdef CONFIG_MEMCG
2745	if (memcg)
2746		return &memcg->mm_list;
2747#endif
2748	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2749
2750	return &mm_list;
2751}
2752
2753static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2754{
2755	return &lruvec->mm_state;
2756}
2757
2758static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2759{
2760	int key;
2761	struct mm_struct *mm;
2762	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2763	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2764
2765	mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2766	key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2767
2768	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2769		return NULL;
2770
2771	clear_bit(key, &mm->lru_gen.bitmap);
2772
2773	return mmget_not_zero(mm) ? mm : NULL;
2774}
2775
2776void lru_gen_add_mm(struct mm_struct *mm)
2777{
2778	int nid;
2779	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2780	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2781
2782	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2783#ifdef CONFIG_MEMCG
2784	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2785	mm->lru_gen.memcg = memcg;
2786#endif
2787	spin_lock(&mm_list->lock);
2788
2789	for_each_node_state(nid, N_MEMORY) {
2790		struct lruvec *lruvec = get_lruvec(memcg, nid);
2791		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2792
2793		/* the first addition since the last iteration */
2794		if (mm_state->tail == &mm_list->fifo)
2795			mm_state->tail = &mm->lru_gen.list;
2796	}
2797
2798	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2799
2800	spin_unlock(&mm_list->lock);
2801}
2802
2803void lru_gen_del_mm(struct mm_struct *mm)
2804{
2805	int nid;
2806	struct lru_gen_mm_list *mm_list;
2807	struct mem_cgroup *memcg = NULL;
2808
2809	if (list_empty(&mm->lru_gen.list))
2810		return;
2811
2812#ifdef CONFIG_MEMCG
2813	memcg = mm->lru_gen.memcg;
2814#endif
2815	mm_list = get_mm_list(memcg);
2816
2817	spin_lock(&mm_list->lock);
2818
2819	for_each_node(nid) {
2820		struct lruvec *lruvec = get_lruvec(memcg, nid);
2821		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2822
2823		/* where the current iteration continues after */
2824		if (mm_state->head == &mm->lru_gen.list)
2825			mm_state->head = mm_state->head->prev;
2826
2827		/* where the last iteration ended before */
2828		if (mm_state->tail == &mm->lru_gen.list)
2829			mm_state->tail = mm_state->tail->next;
2830	}
2831
2832	list_del_init(&mm->lru_gen.list);
2833
2834	spin_unlock(&mm_list->lock);
2835
2836#ifdef CONFIG_MEMCG
2837	mem_cgroup_put(mm->lru_gen.memcg);
2838	mm->lru_gen.memcg = NULL;
2839#endif
2840}
2841
2842#ifdef CONFIG_MEMCG
2843void lru_gen_migrate_mm(struct mm_struct *mm)
2844{
2845	struct mem_cgroup *memcg;
2846	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2847
2848	VM_WARN_ON_ONCE(task->mm != mm);
2849	lockdep_assert_held(&task->alloc_lock);
2850
2851	/* for mm_update_next_owner() */
2852	if (mem_cgroup_disabled())
2853		return;
2854
2855	/* migration can happen before addition */
2856	if (!mm->lru_gen.memcg)
2857		return;
2858
2859	rcu_read_lock();
2860	memcg = mem_cgroup_from_task(task);
2861	rcu_read_unlock();
2862	if (memcg == mm->lru_gen.memcg)
2863		return;
2864
2865	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2866
2867	lru_gen_del_mm(mm);
2868	lru_gen_add_mm(mm);
2869}
2870#endif
2871
2872#else /* !CONFIG_LRU_GEN_WALKS_MMU */
2873
2874static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2875{
2876	return NULL;
2877}
2878
2879static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2880{
2881	return NULL;
2882}
2883
2884static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2885{
2886	return NULL;
2887}
2888
2889#endif
2890
2891static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
2892{
2893	int i;
2894	int hist;
2895	struct lruvec *lruvec = walk->lruvec;
2896	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2897
2898	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
2899
2900	hist = lru_hist_from_seq(walk->seq);
2901
2902	for (i = 0; i < NR_MM_STATS; i++) {
2903		WRITE_ONCE(mm_state->stats[hist][i],
2904			   mm_state->stats[hist][i] + walk->mm_stats[i]);
2905		walk->mm_stats[i] = 0;
2906	}
2907
2908	if (NR_HIST_GENS > 1 && last) {
2909		hist = lru_hist_from_seq(walk->seq + 1);
2910
2911		for (i = 0; i < NR_MM_STATS; i++)
2912			WRITE_ONCE(mm_state->stats[hist][i], 0);
2913	}
2914}
2915
2916static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
2917{
2918	bool first = false;
2919	bool last = false;
2920	struct mm_struct *mm = NULL;
2921	struct lruvec *lruvec = walk->lruvec;
2922	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2923	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2924	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2925
2926	/*
2927	 * mm_state->seq is incremented after each iteration of mm_list. There
2928	 * are three interesting cases for this page table walker:
2929	 * 1. It tries to start a new iteration with a stale max_seq: there is
2930	 *    nothing left to do.
2931	 * 2. It started the next iteration: it needs to reset the Bloom filter
2932	 *    so that a fresh set of PTE tables can be recorded.
2933	 * 3. It ended the current iteration: it needs to reset the mm stats
2934	 *    counters and tell its caller to increment max_seq.
2935	 */
2936	spin_lock(&mm_list->lock);
2937
2938	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
2939
2940	if (walk->seq <= mm_state->seq)
2941		goto done;
2942
2943	if (!mm_state->head)
2944		mm_state->head = &mm_list->fifo;
2945
2946	if (mm_state->head == &mm_list->fifo)
2947		first = true;
2948
2949	do {
2950		mm_state->head = mm_state->head->next;
2951		if (mm_state->head == &mm_list->fifo) {
2952			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2953			last = true;
2954			break;
2955		}
2956
2957		/* force scan for those added after the last iteration */
2958		if (!mm_state->tail || mm_state->tail == mm_state->head) {
2959			mm_state->tail = mm_state->head->next;
2960			walk->force_scan = true;
2961		}
2962	} while (!(mm = get_next_mm(walk)));
2963done:
2964	if (*iter || last)
2965		reset_mm_stats(walk, last);
2966
2967	spin_unlock(&mm_list->lock);
2968
2969	if (mm && first)
2970		reset_bloom_filter(mm_state, walk->seq + 1);
2971
2972	if (*iter)
2973		mmput_async(*iter);
2974
2975	*iter = mm;
2976
2977	return last;
2978}
2979
2980static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
2981{
2982	bool success = false;
2983	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2984	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2985	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2986
2987	spin_lock(&mm_list->lock);
2988
2989	VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
2990
2991	if (seq > mm_state->seq) {
2992		mm_state->head = NULL;
2993		mm_state->tail = NULL;
2994		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2995		success = true;
2996	}
2997
2998	spin_unlock(&mm_list->lock);
2999
3000	return success;
3001}
3002
3003/******************************************************************************
3004 *                          PID controller
3005 ******************************************************************************/
3006
3007/*
3008 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3009 *
3010 * The P term is refaulted/(evicted+protected) from a tier in the generation
3011 * currently being evicted; the I term is the exponential moving average of the
3012 * P term over the generations previously evicted, using the smoothing factor
3013 * 1/2; the D term isn't supported.
3014 *
3015 * The setpoint (SP) is always the first tier of one type; the process variable
3016 * (PV) is either any tier of the other type or any other tier of the same
3017 * type.
3018 *
3019 * The error is the difference between the SP and the PV; the correction is to
3020 * turn off protection when SP>PV or turn on protection when SP<PV.
3021 *
3022 * For future optimizations:
3023 * 1. The D term may discount the other two terms over time so that long-lived
3024 *    generations can resist stale information.
3025 */
3026struct ctrl_pos {
3027	unsigned long refaulted;
3028	unsigned long total;
3029	int gain;
3030};
3031
3032static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3033			  struct ctrl_pos *pos)
3034{
3035	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3036	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3037
3038	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3039			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3040	pos->total = lrugen->avg_total[type][tier] +
3041		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3042	if (tier)
3043		pos->total += lrugen->protected[hist][type][tier - 1];
3044	pos->gain = gain;
3045}
3046
3047static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3048{
3049	int hist, tier;
3050	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3051	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3052	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3053
3054	lockdep_assert_held(&lruvec->lru_lock);
3055
3056	if (!carryover && !clear)
3057		return;
3058
3059	hist = lru_hist_from_seq(seq);
3060
3061	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3062		if (carryover) {
3063			unsigned long sum;
3064
3065			sum = lrugen->avg_refaulted[type][tier] +
3066			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3067			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3068
3069			sum = lrugen->avg_total[type][tier] +
3070			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3071			if (tier)
3072				sum += lrugen->protected[hist][type][tier - 1];
3073			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3074		}
3075
3076		if (clear) {
3077			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3078			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3079			if (tier)
3080				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3081		}
3082	}
3083}
3084
3085static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3086{
3087	/*
3088	 * Return true if the PV has a limited number of refaults or a lower
3089	 * refaulted/total than the SP.
3090	 */
3091	return pv->refaulted < MIN_LRU_BATCH ||
3092	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3093	       (sp->refaulted + 1) * pv->total * pv->gain;
3094}
3095
3096/******************************************************************************
3097 *                          the aging
3098 ******************************************************************************/
3099
3100/* promote pages accessed through page tables */
3101static int folio_update_gen(struct folio *folio, int gen)
3102{
3103	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3104
3105	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3106	VM_WARN_ON_ONCE(!rcu_read_lock_held());
3107
3108	do {
3109		/* lru_gen_del_folio() has isolated this page? */
3110		if (!(old_flags & LRU_GEN_MASK)) {
3111			/* for shrink_folio_list() */
3112			new_flags = old_flags | BIT(PG_referenced);
3113			continue;
3114		}
3115
3116		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3117		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3118	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3119
3120	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3121}
3122
3123/* protect pages accessed multiple times through file descriptors */
3124static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3125{
3126	int type = folio_is_file_lru(folio);
3127	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3128	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3129	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3130
3131	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3132
3133	do {
3134		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3135		/* folio_update_gen() has promoted this page? */
3136		if (new_gen >= 0 && new_gen != old_gen)
3137			return new_gen;
3138
3139		new_gen = (old_gen + 1) % MAX_NR_GENS;
3140
3141		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3142		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3143		/* for folio_end_writeback() */
3144		if (reclaiming)
3145			new_flags |= BIT(PG_reclaim);
3146	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3147
3148	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3149
3150	return new_gen;
3151}
3152
3153static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3154			      int old_gen, int new_gen)
3155{
3156	int type = folio_is_file_lru(folio);
3157	int zone = folio_zonenum(folio);
3158	int delta = folio_nr_pages(folio);
3159
3160	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3161	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3162
3163	walk->batched++;
3164
3165	walk->nr_pages[old_gen][type][zone] -= delta;
3166	walk->nr_pages[new_gen][type][zone] += delta;
3167}
3168
3169static void reset_batch_size(struct lru_gen_mm_walk *walk)
3170{
3171	int gen, type, zone;
3172	struct lruvec *lruvec = walk->lruvec;
3173	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3174
3175	walk->batched = 0;
3176
3177	for_each_gen_type_zone(gen, type, zone) {
3178		enum lru_list lru = type * LRU_INACTIVE_FILE;
3179		int delta = walk->nr_pages[gen][type][zone];
3180
3181		if (!delta)
3182			continue;
3183
3184		walk->nr_pages[gen][type][zone] = 0;
3185		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3186			   lrugen->nr_pages[gen][type][zone] + delta);
3187
3188		if (lru_gen_is_active(lruvec, gen))
3189			lru += LRU_ACTIVE;
3190		__update_lru_size(lruvec, lru, zone, delta);
3191	}
3192}
3193
3194static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3195{
3196	struct address_space *mapping;
3197	struct vm_area_struct *vma = args->vma;
3198	struct lru_gen_mm_walk *walk = args->private;
3199
3200	if (!vma_is_accessible(vma))
3201		return true;
3202
3203	if (is_vm_hugetlb_page(vma))
3204		return true;
3205
3206	if (!vma_has_recency(vma))
3207		return true;
3208
3209	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3210		return true;
3211
3212	if (vma == get_gate_vma(vma->vm_mm))
3213		return true;
3214
3215	if (vma_is_anonymous(vma))
3216		return !walk->can_swap;
3217
3218	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3219		return true;
3220
3221	mapping = vma->vm_file->f_mapping;
3222	if (mapping_unevictable(mapping))
3223		return true;
3224
3225	if (shmem_mapping(mapping))
3226		return !walk->can_swap;
3227
3228	/* to exclude special mappings like dax, etc. */
3229	return !mapping->a_ops->read_folio;
3230}
3231
3232/*
3233 * Some userspace memory allocators map many single-page VMAs. Instead of
3234 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3235 * table to reduce zigzags and improve cache performance.
3236 */
3237static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3238			 unsigned long *vm_start, unsigned long *vm_end)
3239{
3240	unsigned long start = round_up(*vm_end, size);
3241	unsigned long end = (start | ~mask) + 1;
3242	VMA_ITERATOR(vmi, args->mm, start);
3243
3244	VM_WARN_ON_ONCE(mask & size);
3245	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3246
3247	for_each_vma(vmi, args->vma) {
3248		if (end && end <= args->vma->vm_start)
3249			return false;
3250
3251		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3252			continue;
3253
3254		*vm_start = max(start, args->vma->vm_start);
3255		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3256
3257		return true;
3258	}
3259
3260	return false;
3261}
3262
3263static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3264{
3265	unsigned long pfn = pte_pfn(pte);
3266
3267	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3268
3269	if (!pte_present(pte) || is_zero_pfn(pfn))
3270		return -1;
3271
3272	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3273		return -1;
3274
3275	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3276		return -1;
3277
3278	return pfn;
3279}
3280
3281static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3282{
3283	unsigned long pfn = pmd_pfn(pmd);
3284
3285	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3286
3287	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3288		return -1;
3289
3290	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3291		return -1;
3292
3293	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3294		return -1;
3295
3296	return pfn;
3297}
3298
3299static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3300				   struct pglist_data *pgdat, bool can_swap)
3301{
3302	struct folio *folio;
3303
3304	/* try to avoid unnecessary memory loads */
3305	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3306		return NULL;
3307
3308	folio = pfn_folio(pfn);
3309	if (folio_nid(folio) != pgdat->node_id)
3310		return NULL;
3311
3312	if (folio_memcg_rcu(folio) != memcg)
3313		return NULL;
3314
3315	/* file VMAs can contain anon pages from COW */
3316	if (!folio_is_file_lru(folio) && !can_swap)
3317		return NULL;
3318
3319	return folio;
3320}
3321
3322static bool suitable_to_scan(int total, int young)
3323{
3324	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3325
3326	/* suitable if the average number of young PTEs per cacheline is >=1 */
3327	return young * n >= total;
3328}
3329
3330static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3331			   struct mm_walk *args)
3332{
3333	int i;
3334	pte_t *pte;
3335	spinlock_t *ptl;
3336	unsigned long addr;
3337	int total = 0;
3338	int young = 0;
3339	struct lru_gen_mm_walk *walk = args->private;
3340	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3341	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3342	DEFINE_MAX_SEQ(walk->lruvec);
3343	int old_gen, new_gen = lru_gen_from_seq(max_seq);
3344
3345	pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl);
3346	if (!pte)
3347		return false;
3348	if (!spin_trylock(ptl)) {
3349		pte_unmap(pte);
3350		return false;
3351	}
3352
3353	arch_enter_lazy_mmu_mode();
3354restart:
3355	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3356		unsigned long pfn;
3357		struct folio *folio;
3358		pte_t ptent = ptep_get(pte + i);
3359
3360		total++;
3361		walk->mm_stats[MM_LEAF_TOTAL]++;
3362
3363		pfn = get_pte_pfn(ptent, args->vma, addr);
3364		if (pfn == -1)
3365			continue;
3366
3367		if (!pte_young(ptent)) {
3368			walk->mm_stats[MM_LEAF_OLD]++;
3369			continue;
3370		}
3371
3372		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3373		if (!folio)
3374			continue;
3375
3376		if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3377			VM_WARN_ON_ONCE(true);
3378
3379		young++;
3380		walk->mm_stats[MM_LEAF_YOUNG]++;
3381
3382		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
3383		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3384		      !folio_test_swapcache(folio)))
3385			folio_mark_dirty(folio);
3386
3387		old_gen = folio_update_gen(folio, new_gen);
3388		if (old_gen >= 0 && old_gen != new_gen)
3389			update_batch_size(walk, folio, old_gen, new_gen);
3390	}
3391
3392	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3393		goto restart;
3394
3395	arch_leave_lazy_mmu_mode();
3396	pte_unmap_unlock(pte, ptl);
3397
3398	return suitable_to_scan(total, young);
3399}
3400
3401static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3402				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3403{
3404	int i;
3405	pmd_t *pmd;
3406	spinlock_t *ptl;
3407	struct lru_gen_mm_walk *walk = args->private;
3408	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3409	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3410	DEFINE_MAX_SEQ(walk->lruvec);
3411	int old_gen, new_gen = lru_gen_from_seq(max_seq);
3412
3413	VM_WARN_ON_ONCE(pud_leaf(*pud));
3414
3415	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3416	if (*first == -1) {
3417		*first = addr;
3418		bitmap_zero(bitmap, MIN_LRU_BATCH);
3419		return;
3420	}
3421
3422	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3423	if (i && i <= MIN_LRU_BATCH) {
3424		__set_bit(i - 1, bitmap);
3425		return;
3426	}
3427
3428	pmd = pmd_offset(pud, *first);
3429
3430	ptl = pmd_lockptr(args->mm, pmd);
3431	if (!spin_trylock(ptl))
3432		goto done;
3433
3434	arch_enter_lazy_mmu_mode();
3435
3436	do {
3437		unsigned long pfn;
3438		struct folio *folio;
3439
3440		/* don't round down the first address */
3441		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3442
3443		pfn = get_pmd_pfn(pmd[i], vma, addr);
3444		if (pfn == -1)
3445			goto next;
3446
3447		if (!pmd_trans_huge(pmd[i])) {
3448			if (should_clear_pmd_young())
3449				pmdp_test_and_clear_young(vma, addr, pmd + i);
3450			goto next;
3451		}
3452
3453		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3454		if (!folio)
3455			goto next;
3456
3457		if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
3458			goto next;
3459
3460		walk->mm_stats[MM_LEAF_YOUNG]++;
3461
3462		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
3463		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3464		      !folio_test_swapcache(folio)))
3465			folio_mark_dirty(folio);
3466
3467		old_gen = folio_update_gen(folio, new_gen);
3468		if (old_gen >= 0 && old_gen != new_gen)
3469			update_batch_size(walk, folio, old_gen, new_gen);
3470next:
3471		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3472	} while (i <= MIN_LRU_BATCH);
3473
3474	arch_leave_lazy_mmu_mode();
3475	spin_unlock(ptl);
3476done:
3477	*first = -1;
3478}
3479
3480static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3481			   struct mm_walk *args)
3482{
3483	int i;
3484	pmd_t *pmd;
3485	unsigned long next;
3486	unsigned long addr;
3487	struct vm_area_struct *vma;
3488	DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3489	unsigned long first = -1;
3490	struct lru_gen_mm_walk *walk = args->private;
3491	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3492
3493	VM_WARN_ON_ONCE(pud_leaf(*pud));
3494
3495	/*
3496	 * Finish an entire PMD in two passes: the first only reaches to PTE
3497	 * tables to avoid taking the PMD lock; the second, if necessary, takes
3498	 * the PMD lock to clear the accessed bit in PMD entries.
3499	 */
3500	pmd = pmd_offset(pud, start & PUD_MASK);
3501restart:
3502	/* walk_pte_range() may call get_next_vma() */
3503	vma = args->vma;
3504	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3505		pmd_t val = pmdp_get_lockless(pmd + i);
3506
3507		next = pmd_addr_end(addr, end);
3508
3509		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3510			walk->mm_stats[MM_LEAF_TOTAL]++;
3511			continue;
3512		}
3513
3514		if (pmd_trans_huge(val)) {
3515			unsigned long pfn = pmd_pfn(val);
3516			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3517
3518			walk->mm_stats[MM_LEAF_TOTAL]++;
3519
3520			if (!pmd_young(val)) {
3521				walk->mm_stats[MM_LEAF_OLD]++;
3522				continue;
3523			}
3524
3525			/* try to avoid unnecessary memory loads */
3526			if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3527				continue;
3528
3529			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3530			continue;
3531		}
3532
3533		walk->mm_stats[MM_NONLEAF_TOTAL]++;
3534
3535		if (should_clear_pmd_young()) {
3536			if (!pmd_young(val))
3537				continue;
3538
3539			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3540		}
3541
3542		if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
3543			continue;
3544
3545		walk->mm_stats[MM_NONLEAF_FOUND]++;
3546
3547		if (!walk_pte_range(&val, addr, next, args))
3548			continue;
3549
3550		walk->mm_stats[MM_NONLEAF_ADDED]++;
3551
3552		/* carry over to the next generation */
3553		update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
3554	}
3555
3556	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3557
3558	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3559		goto restart;
3560}
3561
3562static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3563			  struct mm_walk *args)
3564{
3565	int i;
3566	pud_t *pud;
3567	unsigned long addr;
3568	unsigned long next;
3569	struct lru_gen_mm_walk *walk = args->private;
3570
3571	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3572
3573	pud = pud_offset(p4d, start & P4D_MASK);
3574restart:
3575	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3576		pud_t val = READ_ONCE(pud[i]);
3577
3578		next = pud_addr_end(addr, end);
3579
3580		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3581			continue;
3582
3583		walk_pmd_range(&val, addr, next, args);
3584
3585		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3586			end = (addr | ~PUD_MASK) + 1;
3587			goto done;
3588		}
3589	}
3590
3591	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3592		goto restart;
3593
3594	end = round_up(end, P4D_SIZE);
3595done:
3596	if (!end || !args->vma)
3597		return 1;
3598
3599	walk->next_addr = max(end, args->vma->vm_start);
3600
3601	return -EAGAIN;
3602}
3603
3604static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3605{
3606	static const struct mm_walk_ops mm_walk_ops = {
3607		.test_walk = should_skip_vma,
3608		.p4d_entry = walk_pud_range,
3609		.walk_lock = PGWALK_RDLOCK,
3610	};
3611
3612	int err;
3613	struct lruvec *lruvec = walk->lruvec;
3614	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3615
3616	walk->next_addr = FIRST_USER_ADDRESS;
3617
3618	do {
3619		DEFINE_MAX_SEQ(lruvec);
3620
3621		err = -EBUSY;
3622
3623		/* another thread might have called inc_max_seq() */
3624		if (walk->seq != max_seq)
3625			break;
3626
3627		/* folio_update_gen() requires stable folio_memcg() */
3628		if (!mem_cgroup_trylock_pages(memcg))
3629			break;
3630
3631		/* the caller might be holding the lock for write */
3632		if (mmap_read_trylock(mm)) {
3633			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3634
3635			mmap_read_unlock(mm);
3636		}
3637
3638		mem_cgroup_unlock_pages();
3639
3640		if (walk->batched) {
3641			spin_lock_irq(&lruvec->lru_lock);
3642			reset_batch_size(walk);
3643			spin_unlock_irq(&lruvec->lru_lock);
3644		}
3645
3646		cond_resched();
3647	} while (err == -EAGAIN);
3648}
3649
3650static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3651{
3652	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3653
3654	if (pgdat && current_is_kswapd()) {
3655		VM_WARN_ON_ONCE(walk);
3656
3657		walk = &pgdat->mm_walk;
3658	} else if (!walk && force_alloc) {
3659		VM_WARN_ON_ONCE(current_is_kswapd());
3660
3661		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3662	}
3663
3664	current->reclaim_state->mm_walk = walk;
3665
3666	return walk;
3667}
3668
3669static void clear_mm_walk(void)
3670{
3671	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3672
3673	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3674	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3675
3676	current->reclaim_state->mm_walk = NULL;
3677
3678	if (!current_is_kswapd())
3679		kfree(walk);
3680}
3681
3682static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
3683{
3684	int zone;
3685	int remaining = MAX_LRU_BATCH;
3686	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3687	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3688
3689	if (type == LRU_GEN_ANON && !can_swap)
3690		goto done;
3691
3692	/* prevent cold/hot inversion if force_scan is true */
3693	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3694		struct list_head *head = &lrugen->folios[old_gen][type][zone];
3695
3696		while (!list_empty(head)) {
3697			struct folio *folio = lru_to_folio(head);
3698
3699			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3700			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3701			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3702			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3703
3704			new_gen = folio_inc_gen(lruvec, folio, false);
3705			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3706
3707			if (!--remaining)
3708				return false;
3709		}
3710	}
3711done:
3712	reset_ctrl_pos(lruvec, type, true);
3713	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3714
3715	return true;
3716}
3717
3718static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
3719{
3720	int gen, type, zone;
3721	bool success = false;
3722	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3723	DEFINE_MIN_SEQ(lruvec);
3724
3725	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3726
3727	/* find the oldest populated generation */
3728	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3729		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3730			gen = lru_gen_from_seq(min_seq[type]);
3731
3732			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3733				if (!list_empty(&lrugen->folios[gen][type][zone]))
3734					goto next;
3735			}
3736
3737			min_seq[type]++;
3738		}
3739next:
3740		;
3741	}
3742
3743	/* see the comment on lru_gen_folio */
3744	if (can_swap) {
3745		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
3746		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
3747	}
3748
3749	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3750		if (min_seq[type] == lrugen->min_seq[type])
3751			continue;
3752
3753		reset_ctrl_pos(lruvec, type, true);
3754		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3755		success = true;
3756	}
3757
3758	return success;
3759}
3760
3761static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq,
3762			bool can_swap, bool force_scan)
3763{
3764	bool success;
3765	int prev, next;
3766	int type, zone;
3767	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3768restart:
3769	if (seq < READ_ONCE(lrugen->max_seq))
3770		return false;
3771
3772	spin_lock_irq(&lruvec->lru_lock);
3773
3774	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3775
3776	success = seq == lrugen->max_seq;
3777	if (!success)
3778		goto unlock;
3779
3780	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
3781		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3782			continue;
3783
3784		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
3785
3786		if (inc_min_seq(lruvec, type, can_swap))
3787			continue;
3788
3789		spin_unlock_irq(&lruvec->lru_lock);
3790		cond_resched();
3791		goto restart;
3792	}
3793
3794	/*
3795	 * Update the active/inactive LRU sizes for compatibility. Both sides of
3796	 * the current max_seq need to be covered, since max_seq+1 can overlap
3797	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3798	 * overlap, cold/hot inversion happens.
3799	 */
3800	prev = lru_gen_from_seq(lrugen->max_seq - 1);
3801	next = lru_gen_from_seq(lrugen->max_seq + 1);
3802
3803	for (type = 0; type < ANON_AND_FILE; type++) {
3804		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3805			enum lru_list lru = type * LRU_INACTIVE_FILE;
3806			long delta = lrugen->nr_pages[prev][type][zone] -
3807				     lrugen->nr_pages[next][type][zone];
3808
3809			if (!delta)
3810				continue;
3811
3812			__update_lru_size(lruvec, lru, zone, delta);
3813			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
3814		}
3815	}
3816
3817	for (type = 0; type < ANON_AND_FILE; type++)
3818		reset_ctrl_pos(lruvec, type, false);
3819
3820	WRITE_ONCE(lrugen->timestamps[next], jiffies);
3821	/* make sure preceding modifications appear */
3822	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
3823unlock:
3824	spin_unlock_irq(&lruvec->lru_lock);
3825
3826	return success;
3827}
3828
3829static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
3830			       bool can_swap, bool force_scan)
3831{
3832	bool success;
3833	struct lru_gen_mm_walk *walk;
3834	struct mm_struct *mm = NULL;
3835	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3836	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3837
3838	VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
3839
3840	if (!mm_state)
3841		return inc_max_seq(lruvec, seq, can_swap, force_scan);
3842
3843	/* see the comment in iterate_mm_list() */
3844	if (seq <= READ_ONCE(mm_state->seq))
3845		return false;
3846
3847	/*
3848	 * If the hardware doesn't automatically set the accessed bit, fallback
3849	 * to lru_gen_look_around(), which only clears the accessed bit in a
3850	 * handful of PTEs. Spreading the work out over a period of time usually
3851	 * is less efficient, but it avoids bursty page faults.
3852	 */
3853	if (!should_walk_mmu()) {
3854		success = iterate_mm_list_nowalk(lruvec, seq);
3855		goto done;
3856	}
3857
3858	walk = set_mm_walk(NULL, true);
3859	if (!walk) {
3860		success = iterate_mm_list_nowalk(lruvec, seq);
3861		goto done;
3862	}
3863
3864	walk->lruvec = lruvec;
3865	walk->seq = seq;
3866	walk->can_swap = can_swap;
3867	walk->force_scan = force_scan;
3868
3869	do {
3870		success = iterate_mm_list(walk, &mm);
3871		if (mm)
3872			walk_mm(mm, walk);
3873	} while (mm);
3874done:
3875	if (success) {
3876		success = inc_max_seq(lruvec, seq, can_swap, force_scan);
3877		WARN_ON_ONCE(!success);
3878	}
3879
3880	return success;
3881}
3882
3883/******************************************************************************
3884 *                          working set protection
3885 ******************************************************************************/
3886
3887static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
3888{
3889	int gen, type, zone;
3890	unsigned long total = 0;
3891	bool can_swap = get_swappiness(lruvec, sc);
3892	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3893	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3894	DEFINE_MAX_SEQ(lruvec);
3895	DEFINE_MIN_SEQ(lruvec);
3896
3897	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3898		unsigned long seq;
3899
3900		for (seq = min_seq[type]; seq <= max_seq; seq++) {
3901			gen = lru_gen_from_seq(seq);
3902
3903			for (zone = 0; zone < MAX_NR_ZONES; zone++)
3904				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
3905		}
3906	}
3907
3908	/* whether the size is big enough to be helpful */
3909	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
3910}
3911
3912static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
3913				  unsigned long min_ttl)
3914{
3915	int gen;
3916	unsigned long birth;
3917	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3918	DEFINE_MIN_SEQ(lruvec);
3919
3920	/* see the comment on lru_gen_folio */
3921	gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
3922	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
3923
3924	if (time_is_after_jiffies(birth + min_ttl))
3925		return false;
3926
3927	if (!lruvec_is_sizable(lruvec, sc))
3928		return false;
3929
3930	mem_cgroup_calculate_protection(NULL, memcg);
3931
3932	return !mem_cgroup_below_min(NULL, memcg);
3933}
3934
3935/* to protect the working set of the last N jiffies */
3936static unsigned long lru_gen_min_ttl __read_mostly;
3937
3938static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
3939{
3940	struct mem_cgroup *memcg;
3941	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
3942
3943	VM_WARN_ON_ONCE(!current_is_kswapd());
3944
3945	/* check the order to exclude compaction-induced reclaim */
3946	if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY)
3947		return;
3948
3949	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3950	do {
3951		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3952
3953		if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) {
3954			mem_cgroup_iter_break(NULL, memcg);
3955			return;
3956		}
3957
3958		cond_resched();
3959	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
3960
3961	/*
3962	 * The main goal is to OOM kill if every generation from all memcgs is
3963	 * younger than min_ttl. However, another possibility is all memcgs are
3964	 * either too small or below min.
3965	 */
3966	if (mutex_trylock(&oom_lock)) {
3967		struct oom_control oc = {
3968			.gfp_mask = sc->gfp_mask,
3969		};
3970
3971		out_of_memory(&oc);
3972
3973		mutex_unlock(&oom_lock);
3974	}
3975}
3976
3977/******************************************************************************
3978 *                          rmap/PT walk feedback
3979 ******************************************************************************/
3980
3981/*
3982 * This function exploits spatial locality when shrink_folio_list() walks the
3983 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
3984 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
3985 * the PTE table to the Bloom filter. This forms a feedback loop between the
3986 * eviction and the aging.
3987 */
3988void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
3989{
3990	int i;
3991	unsigned long start;
3992	unsigned long end;
3993	struct lru_gen_mm_walk *walk;
3994	int young = 0;
3995	pte_t *pte = pvmw->pte;
3996	unsigned long addr = pvmw->address;
3997	struct vm_area_struct *vma = pvmw->vma;
3998	struct folio *folio = pfn_folio(pvmw->pfn);
3999	bool can_swap = !folio_is_file_lru(folio);
4000	struct mem_cgroup *memcg = folio_memcg(folio);
4001	struct pglist_data *pgdat = folio_pgdat(folio);
4002	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4003	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4004	DEFINE_MAX_SEQ(lruvec);
4005	int old_gen, new_gen = lru_gen_from_seq(max_seq);
4006
4007	lockdep_assert_held(pvmw->ptl);
4008	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4009
4010	if (spin_is_contended(pvmw->ptl))
4011		return;
4012
4013	/* exclude special VMAs containing anon pages from COW */
4014	if (vma->vm_flags & VM_SPECIAL)
4015		return;
4016
4017	/* avoid taking the LRU lock under the PTL when possible */
4018	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4019
4020	start = max(addr & PMD_MASK, vma->vm_start);
4021	end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4022
4023	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4024		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4025			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4026		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4027			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4028		else {
4029			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4030			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4031		}
4032	}
4033
4034	/* folio_update_gen() requires stable folio_memcg() */
4035	if (!mem_cgroup_trylock_pages(memcg))
4036		return;
4037
4038	arch_enter_lazy_mmu_mode();
4039
4040	pte -= (addr - start) / PAGE_SIZE;
4041
4042	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4043		unsigned long pfn;
4044		pte_t ptent = ptep_get(pte + i);
4045
4046		pfn = get_pte_pfn(ptent, vma, addr);
4047		if (pfn == -1)
4048			continue;
4049
4050		if (!pte_young(ptent))
4051			continue;
4052
4053		folio = get_pfn_folio(pfn, memcg, pgdat, can_swap);
4054		if (!folio)
4055			continue;
4056
4057		if (!ptep_test_and_clear_young(vma, addr, pte + i))
4058			VM_WARN_ON_ONCE(true);
4059
4060		young++;
4061
4062		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4063		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4064		      !folio_test_swapcache(folio)))
4065			folio_mark_dirty(folio);
4066
4067		if (walk) {
4068			old_gen = folio_update_gen(folio, new_gen);
4069			if (old_gen >= 0 && old_gen != new_gen)
4070				update_batch_size(walk, folio, old_gen, new_gen);
4071
4072			continue;
4073		}
4074
4075		old_gen = folio_lru_gen(folio);
4076		if (old_gen < 0)
4077			folio_set_referenced(folio);
4078		else if (old_gen != new_gen)
4079			folio_activate(folio);
4080	}
4081
4082	arch_leave_lazy_mmu_mode();
4083	mem_cgroup_unlock_pages();
4084
4085	/* feedback from rmap walkers to page table walkers */
4086	if (mm_state && suitable_to_scan(i, young))
4087		update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4088}
4089
4090/******************************************************************************
4091 *                          memcg LRU
4092 ******************************************************************************/
4093
4094/* see the comment on MEMCG_NR_GENS */
4095enum {
4096	MEMCG_LRU_NOP,
4097	MEMCG_LRU_HEAD,
4098	MEMCG_LRU_TAIL,
4099	MEMCG_LRU_OLD,
4100	MEMCG_LRU_YOUNG,
4101};
4102
4103static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4104{
4105	int seg;
4106	int old, new;
4107	unsigned long flags;
4108	int bin = get_random_u32_below(MEMCG_NR_BINS);
4109	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4110
4111	spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4112
4113	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4114
4115	seg = 0;
4116	new = old = lruvec->lrugen.gen;
4117
4118	/* see the comment on MEMCG_NR_GENS */
4119	if (op == MEMCG_LRU_HEAD)
4120		seg = MEMCG_LRU_HEAD;
4121	else if (op == MEMCG_LRU_TAIL)
4122		seg = MEMCG_LRU_TAIL;
4123	else if (op == MEMCG_LRU_OLD)
4124		new = get_memcg_gen(pgdat->memcg_lru.seq);
4125	else if (op == MEMCG_LRU_YOUNG)
4126		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4127	else
4128		VM_WARN_ON_ONCE(true);
4129
4130	WRITE_ONCE(lruvec->lrugen.seg, seg);
4131	WRITE_ONCE(lruvec->lrugen.gen, new);
4132
4133	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4134
4135	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4136		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4137	else
4138		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4139
4140	pgdat->memcg_lru.nr_memcgs[old]--;
4141	pgdat->memcg_lru.nr_memcgs[new]++;
4142
4143	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4144		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4145
4146	spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4147}
4148
4149#ifdef CONFIG_MEMCG
4150
4151void lru_gen_online_memcg(struct mem_cgroup *memcg)
4152{
4153	int gen;
4154	int nid;
4155	int bin = get_random_u32_below(MEMCG_NR_BINS);
4156
4157	for_each_node(nid) {
4158		struct pglist_data *pgdat = NODE_DATA(nid);
4159		struct lruvec *lruvec = get_lruvec(memcg, nid);
4160
4161		spin_lock_irq(&pgdat->memcg_lru.lock);
4162
4163		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4164
4165		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4166
4167		lruvec->lrugen.gen = gen;
4168
4169		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4170		pgdat->memcg_lru.nr_memcgs[gen]++;
4171
4172		spin_unlock_irq(&pgdat->memcg_lru.lock);
4173	}
4174}
4175
4176void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4177{
4178	int nid;
4179
4180	for_each_node(nid) {
4181		struct lruvec *lruvec = get_lruvec(memcg, nid);
4182
4183		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4184	}
4185}
4186
4187void lru_gen_release_memcg(struct mem_cgroup *memcg)
4188{
4189	int gen;
4190	int nid;
4191
4192	for_each_node(nid) {
4193		struct pglist_data *pgdat = NODE_DATA(nid);
4194		struct lruvec *lruvec = get_lruvec(memcg, nid);
4195
4196		spin_lock_irq(&pgdat->memcg_lru.lock);
4197
4198		if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4199			goto unlock;
4200
4201		gen = lruvec->lrugen.gen;
4202
4203		hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4204		pgdat->memcg_lru.nr_memcgs[gen]--;
4205
4206		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4207			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4208unlock:
4209		spin_unlock_irq(&pgdat->memcg_lru.lock);
4210	}
4211}
4212
4213void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4214{
4215	struct lruvec *lruvec = get_lruvec(memcg, nid);
4216
4217	/* see the comment on MEMCG_NR_GENS */
4218	if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4219		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4220}
4221
4222#endif /* CONFIG_MEMCG */
4223
4224/******************************************************************************
4225 *                          the eviction
4226 ******************************************************************************/
4227
4228static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4229		       int tier_idx)
4230{
4231	bool success;
4232	int gen = folio_lru_gen(folio);
4233	int type = folio_is_file_lru(folio);
4234	int zone = folio_zonenum(folio);
4235	int delta = folio_nr_pages(folio);
4236	int refs = folio_lru_refs(folio);
4237	int tier = lru_tier_from_refs(refs);
4238	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4239
4240	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4241
4242	/* unevictable */
4243	if (!folio_evictable(folio)) {
4244		success = lru_gen_del_folio(lruvec, folio, true);
4245		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4246		folio_set_unevictable(folio);
4247		lruvec_add_folio(lruvec, folio);
4248		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4249		return true;
4250	}
4251
4252	/* dirty lazyfree */
4253	if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4254		success = lru_gen_del_folio(lruvec, folio, true);
4255		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4256		folio_set_swapbacked(folio);
4257		lruvec_add_folio_tail(lruvec, folio);
4258		return true;
4259	}
4260
4261	/* promoted */
4262	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4263		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4264		return true;
4265	}
4266
4267	/* protected */
4268	if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) {
4269		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4270
4271		gen = folio_inc_gen(lruvec, folio, false);
4272		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4273
4274		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4275			   lrugen->protected[hist][type][tier - 1] + delta);
4276		return true;
4277	}
4278
4279	/* ineligible */
4280	if (zone > sc->reclaim_idx || skip_cma(folio, sc)) {
4281		gen = folio_inc_gen(lruvec, folio, false);
4282		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4283		return true;
4284	}
4285
4286	/* waiting for writeback */
4287	if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4288	    (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4289		gen = folio_inc_gen(lruvec, folio, true);
4290		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4291		return true;
4292	}
4293
4294	return false;
4295}
4296
4297static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4298{
4299	bool success;
4300
4301	/* swap constrained */
4302	if (!(sc->gfp_mask & __GFP_IO) &&
4303	    (folio_test_dirty(folio) ||
4304	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4305		return false;
4306
4307	/* raced with release_pages() */
4308	if (!folio_try_get(folio))
4309		return false;
4310
4311	/* raced with another isolation */
4312	if (!folio_test_clear_lru(folio)) {
4313		folio_put(folio);
4314		return false;
4315	}
4316
4317	/* see the comment on MAX_NR_TIERS */
4318	if (!folio_test_referenced(folio))
4319		set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4320
4321	/* for shrink_folio_list() */
4322	folio_clear_reclaim(folio);
4323	folio_clear_referenced(folio);
4324
4325	success = lru_gen_del_folio(lruvec, folio, true);
4326	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4327
4328	return true;
4329}
4330
4331static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4332		       int type, int tier, struct list_head *list)
4333{
4334	int i;
4335	int gen;
4336	enum vm_event_item item;
4337	int sorted = 0;
4338	int scanned = 0;
4339	int isolated = 0;
4340	int skipped = 0;
4341	int remaining = MAX_LRU_BATCH;
4342	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4343	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4344
4345	VM_WARN_ON_ONCE(!list_empty(list));
4346
4347	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4348		return 0;
4349
4350	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4351
4352	for (i = MAX_NR_ZONES; i > 0; i--) {
4353		LIST_HEAD(moved);
4354		int skipped_zone = 0;
4355		int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4356		struct list_head *head = &lrugen->folios[gen][type][zone];
4357
4358		while (!list_empty(head)) {
4359			struct folio *folio = lru_to_folio(head);
4360			int delta = folio_nr_pages(folio);
4361
4362			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4363			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4364			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4365			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4366
4367			scanned += delta;
4368
4369			if (sort_folio(lruvec, folio, sc, tier))
4370				sorted += delta;
4371			else if (isolate_folio(lruvec, folio, sc)) {
4372				list_add(&folio->lru, list);
4373				isolated += delta;
4374			} else {
4375				list_move(&folio->lru, &moved);
4376				skipped_zone += delta;
4377			}
4378
4379			if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4380				break;
4381		}
4382
4383		if (skipped_zone) {
4384			list_splice(&moved, head);
4385			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4386			skipped += skipped_zone;
4387		}
4388
4389		if (!remaining || isolated >= MIN_LRU_BATCH)
4390			break;
4391	}
4392
4393	item = PGSCAN_KSWAPD + reclaimer_offset();
4394	if (!cgroup_reclaim(sc)) {
4395		__count_vm_events(item, isolated);
4396		__count_vm_events(PGREFILL, sorted);
4397	}
4398	__count_memcg_events(memcg, item, isolated);
4399	__count_memcg_events(memcg, PGREFILL, sorted);
4400	__count_vm_events(PGSCAN_ANON + type, isolated);
4401	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4402				scanned, skipped, isolated,
4403				type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4404
4405	/*
4406	 * There might not be eligible folios due to reclaim_idx. Check the
4407	 * remaining to prevent livelock if it's not making progress.
4408	 */
4409	return isolated || !remaining ? scanned : 0;
4410}
4411
4412static int get_tier_idx(struct lruvec *lruvec, int type)
4413{
4414	int tier;
4415	struct ctrl_pos sp, pv;
4416
4417	/*
4418	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4419	 * This value is chosen because any other tier would have at least twice
4420	 * as many refaults as the first tier.
4421	 */
4422	read_ctrl_pos(lruvec, type, 0, 1, &sp);
4423	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4424		read_ctrl_pos(lruvec, type, tier, 2, &pv);
4425		if (!positive_ctrl_err(&sp, &pv))
4426			break;
4427	}
4428
4429	return tier - 1;
4430}
4431
4432static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4433{
4434	int type, tier;
4435	struct ctrl_pos sp, pv;
4436	int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
4437
4438	/*
4439	 * Compare the first tier of anon with that of file to determine which
4440	 * type to scan. Also need to compare other tiers of the selected type
4441	 * with the first tier of the other type to determine the last tier (of
4442	 * the selected type) to evict.
4443	 */
4444	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4445	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4446	type = positive_ctrl_err(&sp, &pv);
4447
4448	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4449	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4450		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4451		if (!positive_ctrl_err(&sp, &pv))
4452			break;
4453	}
4454
4455	*tier_idx = tier - 1;
4456
4457	return type;
4458}
4459
4460static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4461			  int *type_scanned, struct list_head *list)
4462{
4463	int i;
4464	int type;
4465	int scanned;
4466	int tier = -1;
4467	DEFINE_MIN_SEQ(lruvec);
4468
4469	/*
4470	 * Try to make the obvious choice first, and if anon and file are both
4471	 * available from the same generation,
4472	 * 1. Interpret swappiness 1 as file first and MAX_SWAPPINESS as anon
4473	 *    first.
4474	 * 2. If !__GFP_IO, file first since clean pagecache is more likely to
4475	 *    exist than clean swapcache.
4476	 */
4477	if (!swappiness)
4478		type = LRU_GEN_FILE;
4479	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4480		type = LRU_GEN_ANON;
4481	else if (swappiness == 1)
4482		type = LRU_GEN_FILE;
4483	else if (swappiness == 200)
4484		type = LRU_GEN_ANON;
4485	else if (!(sc->gfp_mask & __GFP_IO))
4486		type = LRU_GEN_FILE;
4487	else
4488		type = get_type_to_scan(lruvec, swappiness, &tier);
4489
4490	for (i = !swappiness; i < ANON_AND_FILE; i++) {
4491		if (tier < 0)
4492			tier = get_tier_idx(lruvec, type);
4493
4494		scanned = scan_folios(lruvec, sc, type, tier, list);
4495		if (scanned)
4496			break;
4497
4498		type = !type;
4499		tier = -1;
4500	}
4501
4502	*type_scanned = type;
4503
4504	return scanned;
4505}
4506
4507static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4508{
4509	int type;
4510	int scanned;
4511	int reclaimed;
4512	LIST_HEAD(list);
4513	LIST_HEAD(clean);
4514	struct folio *folio;
4515	struct folio *next;
4516	enum vm_event_item item;
4517	struct reclaim_stat stat;
4518	struct lru_gen_mm_walk *walk;
4519	bool skip_retry = false;
4520	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4521	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4522
4523	spin_lock_irq(&lruvec->lru_lock);
4524
4525	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4526
4527	scanned += try_to_inc_min_seq(lruvec, swappiness);
4528
4529	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
4530		scanned = 0;
4531
4532	spin_unlock_irq(&lruvec->lru_lock);
4533
4534	if (list_empty(&list))
4535		return scanned;
4536retry:
4537	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
4538	sc->nr_reclaimed += reclaimed;
4539	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4540			scanned, reclaimed, &stat, sc->priority,
4541			type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4542
4543	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4544		if (!folio_evictable(folio)) {
4545			list_del(&folio->lru);
4546			folio_putback_lru(folio);
4547			continue;
4548		}
4549
4550		if (folio_test_reclaim(folio) &&
4551		    (folio_test_dirty(folio) || folio_test_writeback(folio))) {
4552			/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
4553			if (folio_test_workingset(folio))
4554				folio_set_referenced(folio);
4555			continue;
4556		}
4557
4558		if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
4559		    folio_mapped(folio) || folio_test_locked(folio) ||
4560		    folio_test_dirty(folio) || folio_test_writeback(folio)) {
4561			/* don't add rejected folios to the oldest generation */
4562			set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
4563				      BIT(PG_active));
4564			continue;
4565		}
4566
4567		/* retry folios that may have missed folio_rotate_reclaimable() */
4568		list_move(&folio->lru, &clean);
4569		sc->nr_scanned -= folio_nr_pages(folio);
4570	}
4571
4572	spin_lock_irq(&lruvec->lru_lock);
4573
4574	move_folios_to_lru(lruvec, &list);
4575
4576	walk = current->reclaim_state->mm_walk;
4577	if (walk && walk->batched) {
4578		walk->lruvec = lruvec;
4579		reset_batch_size(walk);
4580	}
4581
4582	item = PGSTEAL_KSWAPD + reclaimer_offset();
4583	if (!cgroup_reclaim(sc))
4584		__count_vm_events(item, reclaimed);
4585	__count_memcg_events(memcg, item, reclaimed);
4586	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
4587
4588	spin_unlock_irq(&lruvec->lru_lock);
4589
4590	list_splice_init(&clean, &list);
4591
4592	if (!list_empty(&list)) {
4593		skip_retry = true;
4594		goto retry;
4595	}
4596
4597	return scanned;
4598}
4599
4600static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4601			     bool can_swap, unsigned long *nr_to_scan)
4602{
4603	int gen, type, zone;
4604	unsigned long old = 0;
4605	unsigned long young = 0;
4606	unsigned long total = 0;
4607	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4608	DEFINE_MIN_SEQ(lruvec);
4609
4610	/* whether this lruvec is completely out of cold folios */
4611	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
4612		*nr_to_scan = 0;
4613		return true;
4614	}
4615
4616	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4617		unsigned long seq;
4618
4619		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4620			unsigned long size = 0;
4621
4622			gen = lru_gen_from_seq(seq);
4623
4624			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4625				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4626
4627			total += size;
4628			if (seq == max_seq)
4629				young += size;
4630			else if (seq + MIN_NR_GENS == max_seq)
4631				old += size;
4632		}
4633	}
4634
4635	*nr_to_scan = total;
4636
4637	/*
4638	 * The aging tries to be lazy to reduce the overhead, while the eviction
4639	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4640	 * ideal number of generations is MIN_NR_GENS+1.
4641	 */
4642	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4643		return false;
4644
4645	/*
4646	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4647	 * of the total number of pages for each generation. A reasonable range
4648	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4649	 * aging cares about the upper bound of hot pages, while the eviction
4650	 * cares about the lower bound of cold pages.
4651	 */
4652	if (young * MIN_NR_GENS > total)
4653		return true;
4654	if (old * (MIN_NR_GENS + 2) < total)
4655		return true;
4656
4657	return false;
4658}
4659
4660/*
4661 * For future optimizations:
4662 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4663 *    reclaim.
4664 */
4665static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
4666{
4667	bool success;
4668	unsigned long nr_to_scan;
4669	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4670	DEFINE_MAX_SEQ(lruvec);
4671
4672	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4673		return -1;
4674
4675	success = should_run_aging(lruvec, max_seq, can_swap, &nr_to_scan);
4676
4677	/* try to scrape all its memory if this memcg was deleted */
4678	if (nr_to_scan && !mem_cgroup_online(memcg))
4679		return nr_to_scan;
4680
4681	/* try to get away with not aging at the default priority */
4682	if (!success || sc->priority == DEF_PRIORITY)
4683		return nr_to_scan >> sc->priority;
4684
4685	/* stop scanning this lruvec as it's low on cold folios */
4686	return try_to_inc_max_seq(lruvec, max_seq, can_swap, false) ? -1 : 0;
4687}
4688
4689static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4690{
4691	int i;
4692	enum zone_watermarks mark;
4693
4694	/* don't abort memcg reclaim to ensure fairness */
4695	if (!root_reclaim(sc))
4696		return false;
4697
4698	if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4699		return true;
4700
4701	/* check the order to exclude compaction-induced reclaim */
4702	if (!current_is_kswapd() || sc->order)
4703		return false;
4704
4705	mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4706	       WMARK_PROMO : WMARK_HIGH;
4707
4708	for (i = 0; i <= sc->reclaim_idx; i++) {
4709		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4710		unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4711
4712		if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4713			return false;
4714	}
4715
4716	/* kswapd should abort if all eligible zones are safe */
4717	return true;
4718}
4719
4720static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4721{
4722	long nr_to_scan;
4723	unsigned long scanned = 0;
4724	int swappiness = get_swappiness(lruvec, sc);
4725
4726	while (true) {
4727		int delta;
4728
4729		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4730		if (nr_to_scan <= 0)
4731			break;
4732
4733		delta = evict_folios(lruvec, sc, swappiness);
4734		if (!delta)
4735			break;
4736
4737		scanned += delta;
4738		if (scanned >= nr_to_scan)
4739			break;
4740
4741		if (should_abort_scan(lruvec, sc))
4742			break;
4743
4744		cond_resched();
4745	}
4746
4747	/* whether this lruvec should be rotated */
4748	return nr_to_scan < 0;
4749}
4750
4751static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4752{
4753	bool success;
4754	unsigned long scanned = sc->nr_scanned;
4755	unsigned long reclaimed = sc->nr_reclaimed;
4756	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4757	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4758
4759	mem_cgroup_calculate_protection(NULL, memcg);
4760
4761	if (mem_cgroup_below_min(NULL, memcg))
4762		return MEMCG_LRU_YOUNG;
4763
4764	if (mem_cgroup_below_low(NULL, memcg)) {
4765		/* see the comment on MEMCG_NR_GENS */
4766		if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4767			return MEMCG_LRU_TAIL;
4768
4769		memcg_memory_event(memcg, MEMCG_LOW);
4770	}
4771
4772	success = try_to_shrink_lruvec(lruvec, sc);
4773
4774	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4775
4776	if (!sc->proactive)
4777		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4778			   sc->nr_reclaimed - reclaimed);
4779
4780	flush_reclaim_state(sc);
4781
4782	if (success && mem_cgroup_online(memcg))
4783		return MEMCG_LRU_YOUNG;
4784
4785	if (!success && lruvec_is_sizable(lruvec, sc))
4786		return 0;
4787
4788	/* one retry if offlined or too small */
4789	return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4790	       MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4791}
4792
4793static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4794{
4795	int op;
4796	int gen;
4797	int bin;
4798	int first_bin;
4799	struct lruvec *lruvec;
4800	struct lru_gen_folio *lrugen;
4801	struct mem_cgroup *memcg;
4802	struct hlist_nulls_node *pos;
4803
4804	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4805	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4806restart:
4807	op = 0;
4808	memcg = NULL;
4809
4810	rcu_read_lock();
4811
4812	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4813		if (op) {
4814			lru_gen_rotate_memcg(lruvec, op);
4815			op = 0;
4816		}
4817
4818		mem_cgroup_put(memcg);
4819		memcg = NULL;
4820
4821		if (gen != READ_ONCE(lrugen->gen))
4822			continue;
4823
4824		lruvec = container_of(lrugen, struct lruvec, lrugen);
4825		memcg = lruvec_memcg(lruvec);
4826
4827		if (!mem_cgroup_tryget(memcg)) {
4828			lru_gen_release_memcg(memcg);
4829			memcg = NULL;
4830			continue;
4831		}
4832
4833		rcu_read_unlock();
4834
4835		op = shrink_one(lruvec, sc);
4836
4837		rcu_read_lock();
4838
4839		if (should_abort_scan(lruvec, sc))
4840			break;
4841	}
4842
4843	rcu_read_unlock();
4844
4845	if (op)
4846		lru_gen_rotate_memcg(lruvec, op);
4847
4848	mem_cgroup_put(memcg);
4849
4850	if (!is_a_nulls(pos))
4851		return;
4852
4853	/* restart if raced with lru_gen_rotate_memcg() */
4854	if (gen != get_nulls_value(pos))
4855		goto restart;
4856
4857	/* try the rest of the bins of the current generation */
4858	bin = get_memcg_bin(bin + 1);
4859	if (bin != first_bin)
4860		goto restart;
4861}
4862
4863static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4864{
4865	struct blk_plug plug;
4866
4867	VM_WARN_ON_ONCE(root_reclaim(sc));
4868	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
4869
4870	lru_add_drain();
4871
4872	blk_start_plug(&plug);
4873
4874	set_mm_walk(NULL, sc->proactive);
4875
4876	if (try_to_shrink_lruvec(lruvec, sc))
4877		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
4878
4879	clear_mm_walk();
4880
4881	blk_finish_plug(&plug);
4882}
4883
4884static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
4885{
4886	int priority;
4887	unsigned long reclaimable;
4888
4889	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
4890		return;
4891	/*
4892	 * Determine the initial priority based on
4893	 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
4894	 * where reclaimed_to_scanned_ratio = inactive / total.
4895	 */
4896	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
4897	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
4898		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
4899
4900	/* round down reclaimable and round up sc->nr_to_reclaim */
4901	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
4902
4903	sc->priority = clamp(priority, 0, DEF_PRIORITY);
4904}
4905
4906static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
4907{
4908	struct blk_plug plug;
4909	unsigned long reclaimed = sc->nr_reclaimed;
4910
4911	VM_WARN_ON_ONCE(!root_reclaim(sc));
4912
4913	/*
4914	 * Unmapped clean folios are already prioritized. Scanning for more of
4915	 * them is likely futile and can cause high reclaim latency when there
4916	 * is a large number of memcgs.
4917	 */
4918	if (!sc->may_writepage || !sc->may_unmap)
4919		goto done;
4920
4921	lru_add_drain();
4922
4923	blk_start_plug(&plug);
4924
4925	set_mm_walk(pgdat, sc->proactive);
4926
4927	set_initial_priority(pgdat, sc);
4928
4929	if (current_is_kswapd())
4930		sc->nr_reclaimed = 0;
4931
4932	if (mem_cgroup_disabled())
4933		shrink_one(&pgdat->__lruvec, sc);
4934	else
4935		shrink_many(pgdat, sc);
4936
4937	if (current_is_kswapd())
4938		sc->nr_reclaimed += reclaimed;
4939
4940	clear_mm_walk();
4941
4942	blk_finish_plug(&plug);
4943done:
4944	/* kswapd should never fail */
4945	pgdat->kswapd_failures = 0;
4946}
4947
4948/******************************************************************************
4949 *                          state change
4950 ******************************************************************************/
4951
4952static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
4953{
4954	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4955
4956	if (lrugen->enabled) {
4957		enum lru_list lru;
4958
4959		for_each_evictable_lru(lru) {
4960			if (!list_empty(&lruvec->lists[lru]))
4961				return false;
4962		}
4963	} else {
4964		int gen, type, zone;
4965
4966		for_each_gen_type_zone(gen, type, zone) {
4967			if (!list_empty(&lrugen->folios[gen][type][zone]))
4968				return false;
4969		}
4970	}
4971
4972	return true;
4973}
4974
4975static bool fill_evictable(struct lruvec *lruvec)
4976{
4977	enum lru_list lru;
4978	int remaining = MAX_LRU_BATCH;
4979
4980	for_each_evictable_lru(lru) {
4981		int type = is_file_lru(lru);
4982		bool active = is_active_lru(lru);
4983		struct list_head *head = &lruvec->lists[lru];
4984
4985		while (!list_empty(head)) {
4986			bool success;
4987			struct folio *folio = lru_to_folio(head);
4988
4989			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4990			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
4991			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4992			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
4993
4994			lruvec_del_folio(lruvec, folio);
4995			success = lru_gen_add_folio(lruvec, folio, false);
4996			VM_WARN_ON_ONCE(!success);
4997
4998			if (!--remaining)
4999				return false;
5000		}
5001	}
5002
5003	return true;
5004}
5005
5006static bool drain_evictable(struct lruvec *lruvec)
5007{
5008	int gen, type, zone;
5009	int remaining = MAX_LRU_BATCH;
5010
5011	for_each_gen_type_zone(gen, type, zone) {
5012		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5013
5014		while (!list_empty(head)) {
5015			bool success;
5016			struct folio *folio = lru_to_folio(head);
5017
5018			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5019			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5020			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5021			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5022
5023			success = lru_gen_del_folio(lruvec, folio, false);
5024			VM_WARN_ON_ONCE(!success);
5025			lruvec_add_folio(lruvec, folio);
5026
5027			if (!--remaining)
5028				return false;
5029		}
5030	}
5031
5032	return true;
5033}
5034
5035static void lru_gen_change_state(bool enabled)
5036{
5037	static DEFINE_MUTEX(state_mutex);
5038
5039	struct mem_cgroup *memcg;
5040
5041	cgroup_lock();
5042	cpus_read_lock();
5043	get_online_mems();
5044	mutex_lock(&state_mutex);
5045
5046	if (enabled == lru_gen_enabled())
5047		goto unlock;
5048
5049	if (enabled)
5050		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5051	else
5052		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5053
5054	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5055	do {
5056		int nid;
5057
5058		for_each_node(nid) {
5059			struct lruvec *lruvec = get_lruvec(memcg, nid);
5060
5061			spin_lock_irq(&lruvec->lru_lock);
5062
5063			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5064			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5065
5066			lruvec->lrugen.enabled = enabled;
5067
5068			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5069				spin_unlock_irq(&lruvec->lru_lock);
5070				cond_resched();
5071				spin_lock_irq(&lruvec->lru_lock);
5072			}
5073
5074			spin_unlock_irq(&lruvec->lru_lock);
5075		}
5076
5077		cond_resched();
5078	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5079unlock:
5080	mutex_unlock(&state_mutex);
5081	put_online_mems();
5082	cpus_read_unlock();
5083	cgroup_unlock();
5084}
5085
5086/******************************************************************************
5087 *                          sysfs interface
5088 ******************************************************************************/
5089
5090static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5091{
5092	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5093}
5094
5095/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5096static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5097				const char *buf, size_t len)
5098{
5099	unsigned int msecs;
5100
5101	if (kstrtouint(buf, 0, &msecs))
5102		return -EINVAL;
5103
5104	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5105
5106	return len;
5107}
5108
5109static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5110
5111static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5112{
5113	unsigned int caps = 0;
5114
5115	if (get_cap(LRU_GEN_CORE))
5116		caps |= BIT(LRU_GEN_CORE);
5117
5118	if (should_walk_mmu())
5119		caps |= BIT(LRU_GEN_MM_WALK);
5120
5121	if (should_clear_pmd_young())
5122		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5123
5124	return sysfs_emit(buf, "0x%04x\n", caps);
5125}
5126
5127/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5128static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5129			     const char *buf, size_t len)
5130{
5131	int i;
5132	unsigned int caps;
5133
5134	if (tolower(*buf) == 'n')
5135		caps = 0;
5136	else if (tolower(*buf) == 'y')
5137		caps = -1;
5138	else if (kstrtouint(buf, 0, &caps))
5139		return -EINVAL;
5140
5141	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5142		bool enabled = caps & BIT(i);
5143
5144		if (i == LRU_GEN_CORE)
5145			lru_gen_change_state(enabled);
5146		else if (enabled)
5147			static_branch_enable(&lru_gen_caps[i]);
5148		else
5149			static_branch_disable(&lru_gen_caps[i]);
5150	}
5151
5152	return len;
5153}
5154
5155static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5156
5157static struct attribute *lru_gen_attrs[] = {
5158	&lru_gen_min_ttl_attr.attr,
5159	&lru_gen_enabled_attr.attr,
5160	NULL
5161};
5162
5163static const struct attribute_group lru_gen_attr_group = {
5164	.name = "lru_gen",
5165	.attrs = lru_gen_attrs,
5166};
5167
5168/******************************************************************************
5169 *                          debugfs interface
5170 ******************************************************************************/
5171
5172static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5173{
5174	struct mem_cgroup *memcg;
5175	loff_t nr_to_skip = *pos;
5176
5177	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5178	if (!m->private)
5179		return ERR_PTR(-ENOMEM);
5180
5181	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5182	do {
5183		int nid;
5184
5185		for_each_node_state(nid, N_MEMORY) {
5186			if (!nr_to_skip--)
5187				return get_lruvec(memcg, nid);
5188		}
5189	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5190
5191	return NULL;
5192}
5193
5194static void lru_gen_seq_stop(struct seq_file *m, void *v)
5195{
5196	if (!IS_ERR_OR_NULL(v))
5197		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5198
5199	kvfree(m->private);
5200	m->private = NULL;
5201}
5202
5203static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5204{
5205	int nid = lruvec_pgdat(v)->node_id;
5206	struct mem_cgroup *memcg = lruvec_memcg(v);
5207
5208	++*pos;
5209
5210	nid = next_memory_node(nid);
5211	if (nid == MAX_NUMNODES) {
5212		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5213		if (!memcg)
5214			return NULL;
5215
5216		nid = first_memory_node;
5217	}
5218
5219	return get_lruvec(memcg, nid);
5220}
5221
5222static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5223				  unsigned long max_seq, unsigned long *min_seq,
5224				  unsigned long seq)
5225{
5226	int i;
5227	int type, tier;
5228	int hist = lru_hist_from_seq(seq);
5229	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5230	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5231
5232	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5233		seq_printf(m, "            %10d", tier);
5234		for (type = 0; type < ANON_AND_FILE; type++) {
5235			const char *s = "   ";
5236			unsigned long n[3] = {};
5237
5238			if (seq == max_seq) {
5239				s = "RT ";
5240				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5241				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5242			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5243				s = "rep";
5244				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5245				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5246				if (tier)
5247					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5248			}
5249
5250			for (i = 0; i < 3; i++)
5251				seq_printf(m, " %10lu%c", n[i], s[i]);
5252		}
5253		seq_putc(m, '\n');
5254	}
5255
5256	if (!mm_state)
5257		return;
5258
5259	seq_puts(m, "                      ");
5260	for (i = 0; i < NR_MM_STATS; i++) {
5261		const char *s = "      ";
5262		unsigned long n = 0;
5263
5264		if (seq == max_seq && NR_HIST_GENS == 1) {
5265			s = "LOYNFA";
5266			n = READ_ONCE(mm_state->stats[hist][i]);
5267		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5268			s = "loynfa";
5269			n = READ_ONCE(mm_state->stats[hist][i]);
5270		}
5271
5272		seq_printf(m, " %10lu%c", n, s[i]);
5273	}
5274	seq_putc(m, '\n');
5275}
5276
5277/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5278static int lru_gen_seq_show(struct seq_file *m, void *v)
5279{
5280	unsigned long seq;
5281	bool full = !debugfs_real_fops(m->file)->write;
5282	struct lruvec *lruvec = v;
5283	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5284	int nid = lruvec_pgdat(lruvec)->node_id;
5285	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5286	DEFINE_MAX_SEQ(lruvec);
5287	DEFINE_MIN_SEQ(lruvec);
5288
5289	if (nid == first_memory_node) {
5290		const char *path = memcg ? m->private : "";
5291
5292#ifdef CONFIG_MEMCG
5293		if (memcg)
5294			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5295#endif
5296		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5297	}
5298
5299	seq_printf(m, " node %5d\n", nid);
5300
5301	if (!full)
5302		seq = min_seq[LRU_GEN_ANON];
5303	else if (max_seq >= MAX_NR_GENS)
5304		seq = max_seq - MAX_NR_GENS + 1;
5305	else
5306		seq = 0;
5307
5308	for (; seq <= max_seq; seq++) {
5309		int type, zone;
5310		int gen = lru_gen_from_seq(seq);
5311		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5312
5313		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5314
5315		for (type = 0; type < ANON_AND_FILE; type++) {
5316			unsigned long size = 0;
5317			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5318
5319			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5320				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5321
5322			seq_printf(m, " %10lu%c", size, mark);
5323		}
5324
5325		seq_putc(m, '\n');
5326
5327		if (full)
5328			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5329	}
5330
5331	return 0;
5332}
5333
5334static const struct seq_operations lru_gen_seq_ops = {
5335	.start = lru_gen_seq_start,
5336	.stop = lru_gen_seq_stop,
5337	.next = lru_gen_seq_next,
5338	.show = lru_gen_seq_show,
5339};
5340
5341static int run_aging(struct lruvec *lruvec, unsigned long seq,
5342		     bool can_swap, bool force_scan)
5343{
5344	DEFINE_MAX_SEQ(lruvec);
5345	DEFINE_MIN_SEQ(lruvec);
5346
5347	if (seq < max_seq)
5348		return 0;
5349
5350	if (seq > max_seq)
5351		return -EINVAL;
5352
5353	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5354		return -ERANGE;
5355
5356	try_to_inc_max_seq(lruvec, max_seq, can_swap, force_scan);
5357
5358	return 0;
5359}
5360
5361static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5362			int swappiness, unsigned long nr_to_reclaim)
5363{
5364	DEFINE_MAX_SEQ(lruvec);
5365
5366	if (seq + MIN_NR_GENS > max_seq)
5367		return -EINVAL;
5368
5369	sc->nr_reclaimed = 0;
5370
5371	while (!signal_pending(current)) {
5372		DEFINE_MIN_SEQ(lruvec);
5373
5374		if (seq < min_seq[!swappiness])
5375			return 0;
5376
5377		if (sc->nr_reclaimed >= nr_to_reclaim)
5378			return 0;
5379
5380		if (!evict_folios(lruvec, sc, swappiness))
5381			return 0;
5382
5383		cond_resched();
5384	}
5385
5386	return -EINTR;
5387}
5388
5389static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5390		   struct scan_control *sc, int swappiness, unsigned long opt)
5391{
5392	struct lruvec *lruvec;
5393	int err = -EINVAL;
5394	struct mem_cgroup *memcg = NULL;
5395
5396	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5397		return -EINVAL;
5398
5399	if (!mem_cgroup_disabled()) {
5400		rcu_read_lock();
5401
5402		memcg = mem_cgroup_from_id(memcg_id);
5403		if (!mem_cgroup_tryget(memcg))
5404			memcg = NULL;
5405
5406		rcu_read_unlock();
5407
5408		if (!memcg)
5409			return -EINVAL;
5410	}
5411
5412	if (memcg_id != mem_cgroup_id(memcg))
5413		goto done;
5414
5415	lruvec = get_lruvec(memcg, nid);
5416
5417	if (swappiness < 0)
5418		swappiness = get_swappiness(lruvec, sc);
5419	else if (swappiness > 200)
5420		goto done;
5421
5422	switch (cmd) {
5423	case '+':
5424		err = run_aging(lruvec, seq, swappiness, opt);
5425		break;
5426	case '-':
5427		err = run_eviction(lruvec, seq, sc, swappiness, opt);
5428		break;
5429	}
5430done:
5431	mem_cgroup_put(memcg);
5432
5433	return err;
5434}
5435
5436/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5437static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5438				 size_t len, loff_t *pos)
5439{
5440	void *buf;
5441	char *cur, *next;
5442	unsigned int flags;
5443	struct blk_plug plug;
5444	int err = -EINVAL;
5445	struct scan_control sc = {
5446		.may_writepage = true,
5447		.may_unmap = true,
5448		.may_swap = true,
5449		.reclaim_idx = MAX_NR_ZONES - 1,
5450		.gfp_mask = GFP_KERNEL,
5451	};
5452
5453	buf = kvmalloc(len + 1, GFP_KERNEL);
5454	if (!buf)
5455		return -ENOMEM;
5456
5457	if (copy_from_user(buf, src, len)) {
5458		kvfree(buf);
5459		return -EFAULT;
5460	}
5461
5462	set_task_reclaim_state(current, &sc.reclaim_state);
5463	flags = memalloc_noreclaim_save();
5464	blk_start_plug(&plug);
5465	if (!set_mm_walk(NULL, true)) {
5466		err = -ENOMEM;
5467		goto done;
5468	}
5469
5470	next = buf;
5471	next[len] = '\0';
5472
5473	while ((cur = strsep(&next, ",;\n"))) {
5474		int n;
5475		int end;
5476		char cmd;
5477		unsigned int memcg_id;
5478		unsigned int nid;
5479		unsigned long seq;
5480		unsigned int swappiness = -1;
5481		unsigned long opt = -1;
5482
5483		cur = skip_spaces(cur);
5484		if (!*cur)
5485			continue;
5486
5487		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5488			   &seq, &end, &swappiness, &end, &opt, &end);
5489		if (n < 4 || cur[end]) {
5490			err = -EINVAL;
5491			break;
5492		}
5493
5494		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5495		if (err)
5496			break;
5497	}
5498done:
5499	clear_mm_walk();
5500	blk_finish_plug(&plug);
5501	memalloc_noreclaim_restore(flags);
5502	set_task_reclaim_state(current, NULL);
5503
5504	kvfree(buf);
5505
5506	return err ? : len;
5507}
5508
5509static int lru_gen_seq_open(struct inode *inode, struct file *file)
5510{
5511	return seq_open(file, &lru_gen_seq_ops);
5512}
5513
5514static const struct file_operations lru_gen_rw_fops = {
5515	.open = lru_gen_seq_open,
5516	.read = seq_read,
5517	.write = lru_gen_seq_write,
5518	.llseek = seq_lseek,
5519	.release = seq_release,
5520};
5521
5522static const struct file_operations lru_gen_ro_fops = {
5523	.open = lru_gen_seq_open,
5524	.read = seq_read,
5525	.llseek = seq_lseek,
5526	.release = seq_release,
5527};
5528
5529/******************************************************************************
5530 *                          initialization
5531 ******************************************************************************/
5532
5533void lru_gen_init_pgdat(struct pglist_data *pgdat)
5534{
5535	int i, j;
5536
5537	spin_lock_init(&pgdat->memcg_lru.lock);
5538
5539	for (i = 0; i < MEMCG_NR_GENS; i++) {
5540		for (j = 0; j < MEMCG_NR_BINS; j++)
5541			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5542	}
5543}
5544
5545void lru_gen_init_lruvec(struct lruvec *lruvec)
5546{
5547	int i;
5548	int gen, type, zone;
5549	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5550	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5551
5552	lrugen->max_seq = MIN_NR_GENS + 1;
5553	lrugen->enabled = lru_gen_enabled();
5554
5555	for (i = 0; i <= MIN_NR_GENS + 1; i++)
5556		lrugen->timestamps[i] = jiffies;
5557
5558	for_each_gen_type_zone(gen, type, zone)
5559		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5560
5561	if (mm_state)
5562		mm_state->seq = MIN_NR_GENS;
5563}
5564
5565#ifdef CONFIG_MEMCG
5566
5567void lru_gen_init_memcg(struct mem_cgroup *memcg)
5568{
5569	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5570
5571	if (!mm_list)
5572		return;
5573
5574	INIT_LIST_HEAD(&mm_list->fifo);
5575	spin_lock_init(&mm_list->lock);
5576}
5577
5578void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5579{
5580	int i;
5581	int nid;
5582	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5583
5584	VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5585
5586	for_each_node(nid) {
5587		struct lruvec *lruvec = get_lruvec(memcg, nid);
5588		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5589
5590		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5591					   sizeof(lruvec->lrugen.nr_pages)));
5592
5593		lruvec->lrugen.list.next = LIST_POISON1;
5594
5595		if (!mm_state)
5596			continue;
5597
5598		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5599			bitmap_free(mm_state->filters[i]);
5600			mm_state->filters[i] = NULL;
5601		}
5602	}
5603}
5604
5605#endif /* CONFIG_MEMCG */
5606
5607static int __init init_lru_gen(void)
5608{
5609	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5610	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5611
5612	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5613		pr_err("lru_gen: failed to create sysfs group\n");
5614
5615	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5616	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5617
5618	return 0;
5619};
5620late_initcall(init_lru_gen);
5621
5622#else /* !CONFIG_LRU_GEN */
5623
5624static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5625{
5626	BUILD_BUG();
5627}
5628
5629static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5630{
5631	BUILD_BUG();
5632}
5633
5634static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5635{
5636	BUILD_BUG();
5637}
5638
5639#endif /* CONFIG_LRU_GEN */
5640
5641static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5642{
 
5643	unsigned long nr[NR_LRU_LISTS];
5644	unsigned long targets[NR_LRU_LISTS];
5645	unsigned long nr_to_scan;
5646	enum lru_list lru;
5647	unsigned long nr_reclaimed = 0;
5648	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5649	bool proportional_reclaim;
5650	struct blk_plug plug;
 
5651
5652	if (lru_gen_enabled() && !root_reclaim(sc)) {
5653		lru_gen_shrink_lruvec(lruvec, sc);
5654		return;
5655	}
5656
5657	get_scan_count(lruvec, sc, nr);
5658
5659	/* Record the original scan target for proportional adjustments later */
5660	memcpy(targets, nr, sizeof(nr));
5661
5662	/*
5663	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5664	 * event that can occur when there is little memory pressure e.g.
5665	 * multiple streaming readers/writers. Hence, we do not abort scanning
5666	 * when the requested number of pages are reclaimed when scanning at
5667	 * DEF_PRIORITY on the assumption that the fact we are direct
5668	 * reclaiming implies that kswapd is not keeping up and it is best to
5669	 * do a batch of work at once. For memcg reclaim one check is made to
5670	 * abort proportional reclaim if either the file or anon lru has already
5671	 * dropped to zero at the first pass.
5672	 */
5673	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5674				sc->priority == DEF_PRIORITY);
5675
5676	blk_start_plug(&plug);
5677	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5678					nr[LRU_INACTIVE_FILE]) {
5679		unsigned long nr_anon, nr_file, percentage;
5680		unsigned long nr_scanned;
5681
5682		for_each_evictable_lru(lru) {
5683			if (nr[lru]) {
5684				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5685				nr[lru] -= nr_to_scan;
5686
5687				nr_reclaimed += shrink_list(lru, nr_to_scan,
5688							    lruvec, sc);
5689			}
5690		}
5691
5692		cond_resched();
5693
5694		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5695			continue;
5696
5697		/*
5698		 * For kswapd and memcg, reclaim at least the number of pages
5699		 * requested. Ensure that the anon and file LRUs are scanned
5700		 * proportionally what was requested by get_scan_count(). We
5701		 * stop reclaiming one LRU and reduce the amount scanning
5702		 * proportional to the original scan target.
5703		 */
5704		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5705		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5706
5707		/*
5708		 * It's just vindictive to attack the larger once the smaller
5709		 * has gone to zero.  And given the way we stop scanning the
5710		 * smaller below, this makes sure that we only make one nudge
5711		 * towards proportionality once we've got nr_to_reclaim.
5712		 */
5713		if (!nr_file || !nr_anon)
5714			break;
5715
5716		if (nr_file > nr_anon) {
5717			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5718						targets[LRU_ACTIVE_ANON] + 1;
5719			lru = LRU_BASE;
5720			percentage = nr_anon * 100 / scan_target;
5721		} else {
5722			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5723						targets[LRU_ACTIVE_FILE] + 1;
5724			lru = LRU_FILE;
5725			percentage = nr_file * 100 / scan_target;
5726		}
5727
5728		/* Stop scanning the smaller of the LRU */
5729		nr[lru] = 0;
5730		nr[lru + LRU_ACTIVE] = 0;
5731
5732		/*
5733		 * Recalculate the other LRU scan count based on its original
5734		 * scan target and the percentage scanning already complete
5735		 */
5736		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5737		nr_scanned = targets[lru] - nr[lru];
5738		nr[lru] = targets[lru] * (100 - percentage) / 100;
5739		nr[lru] -= min(nr[lru], nr_scanned);
5740
5741		lru += LRU_ACTIVE;
5742		nr_scanned = targets[lru] - nr[lru];
5743		nr[lru] = targets[lru] * (100 - percentage) / 100;
5744		nr[lru] -= min(nr[lru], nr_scanned);
 
 
5745	}
5746	blk_finish_plug(&plug);
5747	sc->nr_reclaimed += nr_reclaimed;
5748
5749	/*
5750	 * Even if we did not try to evict anon pages at all, we want to
5751	 * rebalance the anon lru active/inactive ratio.
5752	 */
5753	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5754	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5755		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5756				   sc, LRU_ACTIVE_ANON);
5757}
5758
5759/* Use reclaim/compaction for costly allocs or under memory pressure */
5760static bool in_reclaim_compaction(struct scan_control *sc)
5761{
5762	if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
5763			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5764			 sc->priority < DEF_PRIORITY - 2))
5765		return true;
5766
5767	return false;
5768}
5769
5770/*
5771 * Reclaim/compaction is used for high-order allocation requests. It reclaims
5772 * order-0 pages before compacting the zone. should_continue_reclaim() returns
5773 * true if more pages should be reclaimed such that when the page allocator
5774 * calls try_to_compact_pages() that it will have enough free pages to succeed.
5775 * It will give up earlier than that if there is difficulty reclaiming pages.
5776 */
5777static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5778					unsigned long nr_reclaimed,
5779					struct scan_control *sc)
5780{
5781	unsigned long pages_for_compaction;
5782	unsigned long inactive_lru_pages;
5783	int z;
5784
5785	/* If not in reclaim/compaction mode, stop */
5786	if (!in_reclaim_compaction(sc))
5787		return false;
5788
5789	/*
5790	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5791	 * number of pages that were scanned. This will return to the caller
5792	 * with the risk reclaim/compaction and the resulting allocation attempt
5793	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5794	 * allocations through requiring that the full LRU list has been scanned
5795	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5796	 * scan, but that approximation was wrong, and there were corner cases
5797	 * where always a non-zero amount of pages were scanned.
5798	 */
5799	if (!nr_reclaimed)
5800		return false;
5801
5802	/* If compaction would go ahead or the allocation would succeed, stop */
5803	for (z = 0; z <= sc->reclaim_idx; z++) {
5804		struct zone *zone = &pgdat->node_zones[z];
5805		if (!managed_zone(zone))
5806			continue;
5807
5808		/* Allocation can already succeed, nothing to do */
5809		if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
5810				      sc->reclaim_idx, 0))
5811			return false;
5812
5813		if (compaction_suitable(zone, sc->order, sc->reclaim_idx))
5814			return false;
 
 
 
 
5815	}
5816
5817	/*
5818	 * If we have not reclaimed enough pages for compaction and the
5819	 * inactive lists are large enough, continue reclaiming
5820	 */
5821	pages_for_compaction = compact_gap(sc->order);
5822	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5823	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5824		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5825
5826	return inactive_lru_pages > pages_for_compaction;
5827}
5828
5829static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
 
 
 
 
 
 
5830{
5831	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5832	struct mem_cgroup *memcg;
 
5833
5834	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
5835	do {
5836		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5837		unsigned long reclaimed;
5838		unsigned long scanned;
5839
5840		/*
5841		 * This loop can become CPU-bound when target memcgs
5842		 * aren't eligible for reclaim - either because they
5843		 * don't have any reclaimable pages, or because their
5844		 * memory is explicitly protected. Avoid soft lockups.
5845		 */
5846		cond_resched();
5847
5848		mem_cgroup_calculate_protection(target_memcg, memcg);
 
 
 
 
5849
5850		if (mem_cgroup_below_min(target_memcg, memcg)) {
5851			/*
5852			 * Hard protection.
5853			 * If there is no reclaimable memory, OOM.
5854			 */
5855			continue;
5856		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
5857			/*
5858			 * Soft protection.
5859			 * Respect the protection only as long as
5860			 * there is an unprotected supply
5861			 * of reclaimable memory from other cgroups.
5862			 */
5863			if (!sc->memcg_low_reclaim) {
5864				sc->memcg_low_skipped = 1;
5865				continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5866			}
5867			memcg_memory_event(memcg, MEMCG_LOW);
5868		}
5869
5870		reclaimed = sc->nr_reclaimed;
5871		scanned = sc->nr_scanned;
 
 
5872
5873		shrink_lruvec(lruvec, sc);
 
5874
5875		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
5876			    sc->priority);
5877
5878		/* Record the group's reclaim efficiency */
5879		if (!sc->proactive)
5880			vmpressure(sc->gfp_mask, memcg, false,
5881				   sc->nr_scanned - scanned,
5882				   sc->nr_reclaimed - reclaimed);
5883
5884	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
5885}
5886
5887static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
5888{
5889	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
5890	struct lruvec *target_lruvec;
5891	bool reclaimable = false;
5892
5893	if (lru_gen_enabled() && root_reclaim(sc)) {
5894		lru_gen_shrink_node(pgdat, sc);
5895		return;
5896	}
5897
5898	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
 
5899
5900again:
5901	memset(&sc->nr, 0, sizeof(sc->nr));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5902
5903	nr_reclaimed = sc->nr_reclaimed;
5904	nr_scanned = sc->nr_scanned;
 
 
 
 
 
5905
5906	prepare_scan_control(pgdat, sc);
 
 
5907
5908	shrink_node_memcgs(pgdat, sc);
5909
5910	flush_reclaim_state(sc);
5911
5912	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
 
 
 
 
5913
5914	/* Record the subtree's reclaim efficiency */
5915	if (!sc->proactive)
5916		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
5917			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
5918
5919	if (nr_node_reclaimed)
5920		reclaimable = true;
5921
5922	if (current_is_kswapd()) {
5923		/*
5924		 * If reclaim is isolating dirty pages under writeback,
5925		 * it implies that the long-lived page allocation rate
5926		 * is exceeding the page laundering rate. Either the
5927		 * global limits are not being effective at throttling
5928		 * processes due to the page distribution throughout
5929		 * zones or there is heavy usage of a slow backing
5930		 * device. The only option is to throttle from reclaim
5931		 * context which is not ideal as there is no guarantee
5932		 * the dirtying process is throttled in the same way
5933		 * balance_dirty_pages() manages.
5934		 *
5935		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
5936		 * count the number of pages under pages flagged for
5937		 * immediate reclaim and stall if any are encountered
5938		 * in the nr_immediate check below.
5939		 */
5940		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
5941			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
5942
5943		/* Allow kswapd to start writing pages during reclaim.*/
5944		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
5945			set_bit(PGDAT_DIRTY, &pgdat->flags);
5946
5947		/*
5948		 * If kswapd scans pages marked for immediate
5949		 * reclaim and under writeback (nr_immediate), it
5950		 * implies that pages are cycling through the LRU
5951		 * faster than they are written so forcibly stall
5952		 * until some pages complete writeback.
5953		 */
5954		if (sc->nr.immediate)
5955			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
5956	}
5957
5958	/*
5959	 * Tag a node/memcg as congested if all the dirty pages were marked
5960	 * for writeback and immediate reclaim (counted in nr.congested).
5961	 *
5962	 * Legacy memcg will stall in page writeback so avoid forcibly
5963	 * stalling in reclaim_throttle().
5964	 */
5965	if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
5966		if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
5967			set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
5968
5969		if (current_is_kswapd())
5970			set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
5971	}
5972
5973	/*
5974	 * Stall direct reclaim for IO completions if the lruvec is
5975	 * node is congested. Allow kswapd to continue until it
5976	 * starts encountering unqueued dirty pages or cycling through
5977	 * the LRU too quickly.
5978	 */
5979	if (!current_is_kswapd() && current_may_throttle() &&
5980	    !sc->hibernation_mode &&
5981	    (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
5982	     test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
5983		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
5984
5985	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
5986		goto again;
5987
5988	/*
5989	 * Kswapd gives up on balancing particular nodes after too
5990	 * many failures to reclaim anything from them and goes to
5991	 * sleep. On reclaim progress, reset the failure counter. A
5992	 * successful direct reclaim run will revive a dormant kswapd.
5993	 */
5994	if (reclaimable)
5995		pgdat->kswapd_failures = 0;
5996	else if (sc->cache_trim_mode)
5997		sc->cache_trim_mode_failed = 1;
5998}
5999
6000/*
6001 * Returns true if compaction should go ahead for a costly-order request, or
6002 * the allocation would already succeed without compaction. Return false if we
6003 * should reclaim first.
6004 */
6005static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6006{
6007	unsigned long watermark;
 
6008
6009	if (!gfp_compaction_allowed(sc->gfp_mask))
6010		return false;
6011
6012	/* Allocation can already succeed, nothing to do */
6013	if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6014			      sc->reclaim_idx, 0))
6015		return true;
6016
6017	/* Compaction cannot yet proceed. Do reclaim. */
6018	if (!compaction_suitable(zone, sc->order, sc->reclaim_idx))
6019		return false;
6020
6021	/*
6022	 * Compaction is already possible, but it takes time to run and there
6023	 * are potentially other callers using the pages just freed. So proceed
6024	 * with reclaim to make a buffer of free pages available to give
6025	 * compaction a reasonable chance of completing and allocating the page.
6026	 * Note that we won't actually reclaim the whole buffer in one attempt
6027	 * as the target watermark in should_continue_reclaim() is lower. But if
6028	 * we are already above the high+gap watermark, don't reclaim at all.
6029	 */
6030	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6031
6032	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6033}
6034
6035static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6036{
6037	/*
6038	 * If reclaim is making progress greater than 12% efficiency then
6039	 * wake all the NOPROGRESS throttled tasks.
6040	 */
6041	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6042		wait_queue_head_t *wqh;
6043
6044		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6045		if (waitqueue_active(wqh))
6046			wake_up(wqh);
6047
6048		return;
6049	}
6050
6051	/*
6052	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6053	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6054	 * under writeback and marked for immediate reclaim at the tail of the
6055	 * LRU.
6056	 */
6057	if (current_is_kswapd() || cgroup_reclaim(sc))
6058		return;
6059
6060	/* Throttle if making no progress at high prioities. */
6061	if (sc->priority == 1 && !sc->nr_reclaimed)
6062		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6063}
6064
6065/*
6066 * This is the direct reclaim path, for page-allocating processes.  We only
6067 * try to reclaim pages from zones which will satisfy the caller's allocation
6068 * request.
6069 *
6070 * If a zone is deemed to be full of pinned pages then just give it a light
6071 * scan then give up on it.
6072 */
6073static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6074{
6075	struct zoneref *z;
6076	struct zone *zone;
6077	unsigned long nr_soft_reclaimed;
6078	unsigned long nr_soft_scanned;
6079	gfp_t orig_mask;
6080	pg_data_t *last_pgdat = NULL;
6081	pg_data_t *first_pgdat = NULL;
6082
6083	/*
6084	 * If the number of buffer_heads in the machine exceeds the maximum
6085	 * allowed level, force direct reclaim to scan the highmem zone as
6086	 * highmem pages could be pinning lowmem pages storing buffer_heads
6087	 */
6088	orig_mask = sc->gfp_mask;
6089	if (buffer_heads_over_limit) {
6090		sc->gfp_mask |= __GFP_HIGHMEM;
6091		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6092	}
6093
6094	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6095					sc->reclaim_idx, sc->nodemask) {
6096		/*
6097		 * Take care memory controller reclaiming has small influence
6098		 * to global LRU.
6099		 */
6100		if (!cgroup_reclaim(sc)) {
6101			if (!cpuset_zone_allowed(zone,
6102						 GFP_KERNEL | __GFP_HARDWALL))
6103				continue;
6104
6105			/*
6106			 * If we already have plenty of memory free for
6107			 * compaction in this zone, don't free any more.
6108			 * Even though compaction is invoked for any
6109			 * non-zero order, only frequent costly order
6110			 * reclamation is disruptive enough to become a
6111			 * noticeable problem, like transparent huge
6112			 * page allocations.
6113			 */
6114			if (IS_ENABLED(CONFIG_COMPACTION) &&
6115			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6116			    compaction_ready(zone, sc)) {
6117				sc->compaction_ready = true;
6118				continue;
6119			}
6120
6121			/*
6122			 * Shrink each node in the zonelist once. If the
6123			 * zonelist is ordered by zone (not the default) then a
6124			 * node may be shrunk multiple times but in that case
6125			 * the user prefers lower zones being preserved.
6126			 */
6127			if (zone->zone_pgdat == last_pgdat)
6128				continue;
6129
6130			/*
6131			 * This steals pages from memory cgroups over softlimit
6132			 * and returns the number of reclaimed pages and
6133			 * scanned pages. This works for global memory pressure
6134			 * and balancing, not for a memcg's limit.
6135			 */
6136			nr_soft_scanned = 0;
6137			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6138						sc->order, sc->gfp_mask,
6139						&nr_soft_scanned);
6140			sc->nr_reclaimed += nr_soft_reclaimed;
6141			sc->nr_scanned += nr_soft_scanned;
6142			/* need some check for avoid more shrink_zone() */
6143		}
6144
6145		if (!first_pgdat)
6146			first_pgdat = zone->zone_pgdat;
6147
6148		/* See comment about same check for global reclaim above */
6149		if (zone->zone_pgdat == last_pgdat)
6150			continue;
6151		last_pgdat = zone->zone_pgdat;
6152		shrink_node(zone->zone_pgdat, sc);
6153	}
6154
6155	if (first_pgdat)
6156		consider_reclaim_throttle(first_pgdat, sc);
6157
6158	/*
6159	 * Restore to original mask to avoid the impact on the caller if we
6160	 * promoted it to __GFP_HIGHMEM.
6161	 */
6162	sc->gfp_mask = orig_mask;
6163}
6164
6165static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6166{
6167	struct lruvec *target_lruvec;
6168	unsigned long refaults;
6169
6170	if (lru_gen_enabled())
6171		return;
 
 
6172
6173	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6174	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6175	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6176	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6177	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6178}
6179
6180/*
6181 * This is the main entry point to direct page reclaim.
6182 *
6183 * If a full scan of the inactive list fails to free enough memory then we
6184 * are "out of memory" and something needs to be killed.
6185 *
6186 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6187 * high - the zone may be full of dirty or under-writeback pages, which this
6188 * caller can't do much about.  We kick the writeback threads and take explicit
6189 * naps in the hope that some of these pages can be written.  But if the
6190 * allocating task holds filesystem locks which prevent writeout this might not
6191 * work, and the allocation attempt will fail.
6192 *
6193 * returns:	0, if no pages reclaimed
6194 * 		else, the number of pages reclaimed
6195 */
6196static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6197					  struct scan_control *sc)
6198{
6199	int initial_priority = sc->priority;
6200	pg_data_t *last_pgdat;
6201	struct zoneref *z;
6202	struct zone *zone;
6203retry:
6204	delayacct_freepages_start();
6205
6206	if (!cgroup_reclaim(sc))
6207		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6208
6209	do {
6210		if (!sc->proactive)
6211			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6212					sc->priority);
6213		sc->nr_scanned = 0;
6214		shrink_zones(zonelist, sc);
6215
6216		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6217			break;
6218
6219		if (sc->compaction_ready)
6220			break;
6221
6222		/*
6223		 * If we're getting trouble reclaiming, start doing
6224		 * writepage even in laptop mode.
6225		 */
6226		if (sc->priority < DEF_PRIORITY - 2)
6227			sc->may_writepage = 1;
6228	} while (--sc->priority >= 0);
6229
6230	last_pgdat = NULL;
6231	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6232					sc->nodemask) {
6233		if (zone->zone_pgdat == last_pgdat)
6234			continue;
6235		last_pgdat = zone->zone_pgdat;
6236
6237		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6238
6239		if (cgroup_reclaim(sc)) {
6240			struct lruvec *lruvec;
6241
6242			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6243						   zone->zone_pgdat);
6244			clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6245		}
6246	}
6247
6248	delayacct_freepages_end();
6249
6250	if (sc->nr_reclaimed)
6251		return sc->nr_reclaimed;
6252
6253	/* Aborted reclaim to try compaction? don't OOM, then */
6254	if (sc->compaction_ready)
6255		return 1;
6256
6257	/*
6258	 * We make inactive:active ratio decisions based on the node's
6259	 * composition of memory, but a restrictive reclaim_idx or a
6260	 * memory.low cgroup setting can exempt large amounts of
6261	 * memory from reclaim. Neither of which are very common, so
6262	 * instead of doing costly eligibility calculations of the
6263	 * entire cgroup subtree up front, we assume the estimates are
6264	 * good, and retry with forcible deactivation if that fails.
6265	 */
6266	if (sc->skipped_deactivate) {
6267		sc->priority = initial_priority;
6268		sc->force_deactivate = 1;
6269		sc->skipped_deactivate = 0;
6270		goto retry;
6271	}
6272
6273	/* Untapped cgroup reserves?  Don't OOM, retry. */
6274	if (sc->memcg_low_skipped) {
6275		sc->priority = initial_priority;
6276		sc->force_deactivate = 0;
6277		sc->memcg_low_reclaim = 1;
6278		sc->memcg_low_skipped = 0;
6279		goto retry;
6280	}
6281
6282	return 0;
6283}
6284
6285static bool allow_direct_reclaim(pg_data_t *pgdat)
6286{
6287	struct zone *zone;
6288	unsigned long pfmemalloc_reserve = 0;
6289	unsigned long free_pages = 0;
6290	int i;
6291	bool wmark_ok;
6292
6293	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6294		return true;
6295
6296	for (i = 0; i <= ZONE_NORMAL; i++) {
6297		zone = &pgdat->node_zones[i];
6298		if (!managed_zone(zone))
6299			continue;
6300
6301		if (!zone_reclaimable_pages(zone))
6302			continue;
6303
6304		pfmemalloc_reserve += min_wmark_pages(zone);
6305		free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6306	}
6307
6308	/* If there are no reserves (unexpected config) then do not throttle */
6309	if (!pfmemalloc_reserve)
6310		return true;
6311
6312	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6313
6314	/* kswapd must be awake if processes are being throttled */
6315	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6316		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6317			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6318
6319		wake_up_interruptible(&pgdat->kswapd_wait);
6320	}
6321
6322	return wmark_ok;
6323}
6324
6325/*
6326 * Throttle direct reclaimers if backing storage is backed by the network
6327 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6328 * depleted. kswapd will continue to make progress and wake the processes
6329 * when the low watermark is reached.
6330 *
6331 * Returns true if a fatal signal was delivered during throttling. If this
6332 * happens, the page allocator should not consider triggering the OOM killer.
6333 */
6334static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6335					nodemask_t *nodemask)
6336{
6337	struct zoneref *z;
6338	struct zone *zone;
6339	pg_data_t *pgdat = NULL;
6340
6341	/*
6342	 * Kernel threads should not be throttled as they may be indirectly
6343	 * responsible for cleaning pages necessary for reclaim to make forward
6344	 * progress. kjournald for example may enter direct reclaim while
6345	 * committing a transaction where throttling it could forcing other
6346	 * processes to block on log_wait_commit().
6347	 */
6348	if (current->flags & PF_KTHREAD)
6349		goto out;
6350
6351	/*
6352	 * If a fatal signal is pending, this process should not throttle.
6353	 * It should return quickly so it can exit and free its memory
6354	 */
6355	if (fatal_signal_pending(current))
6356		goto out;
6357
6358	/*
6359	 * Check if the pfmemalloc reserves are ok by finding the first node
6360	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6361	 * GFP_KERNEL will be required for allocating network buffers when
6362	 * swapping over the network so ZONE_HIGHMEM is unusable.
6363	 *
6364	 * Throttling is based on the first usable node and throttled processes
6365	 * wait on a queue until kswapd makes progress and wakes them. There
6366	 * is an affinity then between processes waking up and where reclaim
6367	 * progress has been made assuming the process wakes on the same node.
6368	 * More importantly, processes running on remote nodes will not compete
6369	 * for remote pfmemalloc reserves and processes on different nodes
6370	 * should make reasonable progress.
6371	 */
6372	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6373					gfp_zone(gfp_mask), nodemask) {
6374		if (zone_idx(zone) > ZONE_NORMAL)
6375			continue;
6376
6377		/* Throttle based on the first usable node */
6378		pgdat = zone->zone_pgdat;
6379		if (allow_direct_reclaim(pgdat))
6380			goto out;
6381		break;
6382	}
6383
6384	/* If no zone was usable by the allocation flags then do not throttle */
6385	if (!pgdat)
6386		goto out;
6387
6388	/* Account for the throttling */
6389	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6390
6391	/*
6392	 * If the caller cannot enter the filesystem, it's possible that it
6393	 * is due to the caller holding an FS lock or performing a journal
6394	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6395	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6396	 * blocked waiting on the same lock. Instead, throttle for up to a
6397	 * second before continuing.
6398	 */
6399	if (!(gfp_mask & __GFP_FS))
6400		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6401			allow_direct_reclaim(pgdat), HZ);
6402	else
6403		/* Throttle until kswapd wakes the process */
6404		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6405			allow_direct_reclaim(pgdat));
6406
 
 
 
 
 
 
 
 
6407	if (fatal_signal_pending(current))
6408		return true;
6409
6410out:
6411	return false;
6412}
6413
6414unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6415				gfp_t gfp_mask, nodemask_t *nodemask)
6416{
6417	unsigned long nr_reclaimed;
6418	struct scan_control sc = {
6419		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6420		.gfp_mask = current_gfp_context(gfp_mask),
6421		.reclaim_idx = gfp_zone(gfp_mask),
6422		.order = order,
6423		.nodemask = nodemask,
6424		.priority = DEF_PRIORITY,
6425		.may_writepage = !laptop_mode,
6426		.may_unmap = 1,
6427		.may_swap = 1,
6428	};
6429
6430	/*
6431	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6432	 * Confirm they are large enough for max values.
6433	 */
6434	BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6435	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6436	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6437
6438	/*
6439	 * Do not enter reclaim if fatal signal was delivered while throttled.
6440	 * 1 is returned so that the page allocator does not OOM kill at this
6441	 * point.
6442	 */
6443	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6444		return 1;
6445
6446	set_task_reclaim_state(current, &sc.reclaim_state);
6447	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6448
6449	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6450
6451	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6452	set_task_reclaim_state(current, NULL);
6453
6454	return nr_reclaimed;
6455}
6456
6457#ifdef CONFIG_MEMCG
6458
6459/* Only used by soft limit reclaim. Do not reuse for anything else. */
6460unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6461						gfp_t gfp_mask, bool noswap,
6462						pg_data_t *pgdat,
6463						unsigned long *nr_scanned)
6464{
6465	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6466	struct scan_control sc = {
6467		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6468		.target_mem_cgroup = memcg,
6469		.may_writepage = !laptop_mode,
6470		.may_unmap = 1,
6471		.reclaim_idx = MAX_NR_ZONES - 1,
6472		.may_swap = !noswap,
6473	};
 
6474
6475	WARN_ON_ONCE(!current->reclaim_state);
6476
6477	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6478			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6479
6480	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6481						      sc.gfp_mask);
6482
6483	/*
6484	 * NOTE: Although we can get the priority field, using it
6485	 * here is not a good idea, since it limits the pages we can scan.
6486	 * if we don't reclaim here, the shrink_node from balance_pgdat
6487	 * will pick up pages from other mem cgroup's as well. We hack
6488	 * the priority and make it zero.
6489	 */
6490	shrink_lruvec(lruvec, &sc);
6491
6492	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6493
6494	*nr_scanned = sc.nr_scanned;
6495
6496	return sc.nr_reclaimed;
6497}
6498
6499unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6500					   unsigned long nr_pages,
6501					   gfp_t gfp_mask,
6502					   unsigned int reclaim_options)
6503{
 
6504	unsigned long nr_reclaimed;
 
 
6505	unsigned int noreclaim_flag;
6506	struct scan_control sc = {
6507		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6508		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6509				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6510		.reclaim_idx = MAX_NR_ZONES - 1,
6511		.target_mem_cgroup = memcg,
6512		.priority = DEF_PRIORITY,
6513		.may_writepage = !laptop_mode,
6514		.may_unmap = 1,
6515		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6516		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6517	};
 
 
6518	/*
6519	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6520	 * equal pressure on all the nodes. This is based on the assumption that
6521	 * the reclaim does not bail out early.
6522	 */
6523	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
 
 
6524
6525	set_task_reclaim_state(current, &sc.reclaim_state);
6526	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
 
 
6527	noreclaim_flag = memalloc_noreclaim_save();
6528
6529	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6530
6531	memalloc_noreclaim_restore(noreclaim_flag);
 
 
6532	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6533	set_task_reclaim_state(current, NULL);
6534
6535	return nr_reclaimed;
6536}
6537#endif
6538
6539static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
 
6540{
6541	struct mem_cgroup *memcg;
6542	struct lruvec *lruvec;
6543
6544	if (lru_gen_enabled()) {
6545		lru_gen_age_node(pgdat, sc);
6546		return;
6547	}
6548
6549	if (!can_age_anon_pages(pgdat, sc))
6550		return;
 
6551
6552	lruvec = mem_cgroup_lruvec(NULL, pgdat);
6553	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6554		return;
6555
6556	memcg = mem_cgroup_iter(NULL, NULL, NULL);
6557	do {
6558		lruvec = mem_cgroup_lruvec(memcg, pgdat);
6559		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6560				   sc, LRU_ACTIVE_ANON);
6561		memcg = mem_cgroup_iter(NULL, memcg, NULL);
6562	} while (memcg);
6563}
6564
6565static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6566{
6567	int i;
6568	struct zone *zone;
6569
6570	/*
6571	 * Check for watermark boosts top-down as the higher zones
6572	 * are more likely to be boosted. Both watermarks and boosts
6573	 * should not be checked at the same time as reclaim would
6574	 * start prematurely when there is no boosting and a lower
6575	 * zone is balanced.
6576	 */
6577	for (i = highest_zoneidx; i >= 0; i--) {
6578		zone = pgdat->node_zones + i;
6579		if (!managed_zone(zone))
6580			continue;
6581
6582		if (zone->watermark_boost)
6583			return true;
6584	}
6585
6586	return false;
6587}
6588
6589/*
6590 * Returns true if there is an eligible zone balanced for the request order
6591 * and highest_zoneidx
6592 */
6593static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6594{
6595	int i;
6596	unsigned long mark = -1;
6597	struct zone *zone;
6598
6599	/*
6600	 * Check watermarks bottom-up as lower zones are more likely to
6601	 * meet watermarks.
6602	 */
6603	for (i = 0; i <= highest_zoneidx; i++) {
6604		zone = pgdat->node_zones + i;
6605
6606		if (!managed_zone(zone))
6607			continue;
6608
6609		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6610			mark = wmark_pages(zone, WMARK_PROMO);
6611		else
6612			mark = high_wmark_pages(zone);
6613		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6614			return true;
6615	}
6616
6617	/*
6618	 * If a node has no managed zone within highest_zoneidx, it does not
6619	 * need balancing by definition. This can happen if a zone-restricted
6620	 * allocation tries to wake a remote kswapd.
6621	 */
6622	if (mark == -1)
6623		return true;
6624
6625	return false;
6626}
6627
6628/* Clear pgdat state for congested, dirty or under writeback. */
6629static void clear_pgdat_congested(pg_data_t *pgdat)
6630{
6631	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6632
6633	clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6634	clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6635	clear_bit(PGDAT_DIRTY, &pgdat->flags);
6636	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6637}
6638
6639/*
6640 * Prepare kswapd for sleeping. This verifies that there are no processes
6641 * waiting in throttle_direct_reclaim() and that watermarks have been met.
6642 *
6643 * Returns true if kswapd is ready to sleep
6644 */
6645static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6646				int highest_zoneidx)
6647{
6648	/*
6649	 * The throttled processes are normally woken up in balance_pgdat() as
6650	 * soon as allow_direct_reclaim() is true. But there is a potential
6651	 * race between when kswapd checks the watermarks and a process gets
6652	 * throttled. There is also a potential race if processes get
6653	 * throttled, kswapd wakes, a large process exits thereby balancing the
6654	 * zones, which causes kswapd to exit balance_pgdat() before reaching
6655	 * the wake up checks. If kswapd is going to sleep, no process should
6656	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6657	 * the wake up is premature, processes will wake kswapd and get
6658	 * throttled again. The difference from wake ups in balance_pgdat() is
6659	 * that here we are under prepare_to_wait().
6660	 */
6661	if (waitqueue_active(&pgdat->pfmemalloc_wait))
6662		wake_up_all(&pgdat->pfmemalloc_wait);
6663
6664	/* Hopeless node, leave it to direct reclaim */
6665	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6666		return true;
6667
6668	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6669		clear_pgdat_congested(pgdat);
6670		return true;
6671	}
6672
6673	return false;
6674}
6675
6676/*
6677 * kswapd shrinks a node of pages that are at or below the highest usable
6678 * zone that is currently unbalanced.
6679 *
6680 * Returns true if kswapd scanned at least the requested number of pages to
6681 * reclaim or if the lack of progress was due to pages under writeback.
6682 * This is used to determine if the scanning priority needs to be raised.
6683 */
6684static bool kswapd_shrink_node(pg_data_t *pgdat,
6685			       struct scan_control *sc)
6686{
6687	struct zone *zone;
6688	int z;
6689
6690	/* Reclaim a number of pages proportional to the number of zones */
6691	sc->nr_to_reclaim = 0;
6692	for (z = 0; z <= sc->reclaim_idx; z++) {
6693		zone = pgdat->node_zones + z;
6694		if (!managed_zone(zone))
6695			continue;
6696
6697		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6698	}
6699
6700	/*
6701	 * Historically care was taken to put equal pressure on all zones but
6702	 * now pressure is applied based on node LRU order.
6703	 */
6704	shrink_node(pgdat, sc);
6705
6706	/*
6707	 * Fragmentation may mean that the system cannot be rebalanced for
6708	 * high-order allocations. If twice the allocation size has been
6709	 * reclaimed then recheck watermarks only at order-0 to prevent
6710	 * excessive reclaim. Assume that a process requested a high-order
6711	 * can direct reclaim/compact.
6712	 */
6713	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6714		sc->order = 0;
6715
6716	return sc->nr_scanned >= sc->nr_to_reclaim;
6717}
6718
6719/* Page allocator PCP high watermark is lowered if reclaim is active. */
6720static inline void
6721update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6722{
6723	int i;
6724	struct zone *zone;
6725
6726	for (i = 0; i <= highest_zoneidx; i++) {
6727		zone = pgdat->node_zones + i;
6728
6729		if (!managed_zone(zone))
6730			continue;
6731
6732		if (active)
6733			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6734		else
6735			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6736	}
6737}
6738
6739static inline void
6740set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6741{
6742	update_reclaim_active(pgdat, highest_zoneidx, true);
6743}
6744
6745static inline void
6746clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6747{
6748	update_reclaim_active(pgdat, highest_zoneidx, false);
6749}
6750
6751/*
6752 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6753 * that are eligible for use by the caller until at least one zone is
6754 * balanced.
6755 *
6756 * Returns the order kswapd finished reclaiming at.
6757 *
6758 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
6759 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6760 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6761 * or lower is eligible for reclaim until at least one usable zone is
6762 * balanced.
6763 */
6764static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6765{
6766	int i;
6767	unsigned long nr_soft_reclaimed;
6768	unsigned long nr_soft_scanned;
6769	unsigned long pflags;
6770	unsigned long nr_boost_reclaim;
6771	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6772	bool boosted;
6773	struct zone *zone;
6774	struct scan_control sc = {
6775		.gfp_mask = GFP_KERNEL,
6776		.order = order,
6777		.may_unmap = 1,
6778	};
6779
6780	set_task_reclaim_state(current, &sc.reclaim_state);
6781	psi_memstall_enter(&pflags);
6782	__fs_reclaim_acquire(_THIS_IP_);
6783
6784	count_vm_event(PAGEOUTRUN);
6785
6786	/*
6787	 * Account for the reclaim boost. Note that the zone boost is left in
6788	 * place so that parallel allocations that are near the watermark will
6789	 * stall or direct reclaim until kswapd is finished.
6790	 */
6791	nr_boost_reclaim = 0;
6792	for (i = 0; i <= highest_zoneidx; i++) {
6793		zone = pgdat->node_zones + i;
6794		if (!managed_zone(zone))
6795			continue;
6796
6797		nr_boost_reclaim += zone->watermark_boost;
6798		zone_boosts[i] = zone->watermark_boost;
6799	}
6800	boosted = nr_boost_reclaim;
6801
6802restart:
6803	set_reclaim_active(pgdat, highest_zoneidx);
6804	sc.priority = DEF_PRIORITY;
6805	do {
6806		unsigned long nr_reclaimed = sc.nr_reclaimed;
6807		bool raise_priority = true;
6808		bool balanced;
6809		bool ret;
6810		bool was_frozen;
6811
6812		sc.reclaim_idx = highest_zoneidx;
6813
6814		/*
6815		 * If the number of buffer_heads exceeds the maximum allowed
6816		 * then consider reclaiming from all zones. This has a dual
6817		 * purpose -- on 64-bit systems it is expected that
6818		 * buffer_heads are stripped during active rotation. On 32-bit
6819		 * systems, highmem pages can pin lowmem memory and shrinking
6820		 * buffers can relieve lowmem pressure. Reclaim may still not
6821		 * go ahead if all eligible zones for the original allocation
6822		 * request are balanced to avoid excessive reclaim from kswapd.
6823		 */
6824		if (buffer_heads_over_limit) {
6825			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
6826				zone = pgdat->node_zones + i;
6827				if (!managed_zone(zone))
6828					continue;
6829
6830				sc.reclaim_idx = i;
6831				break;
6832			}
6833		}
6834
6835		/*
6836		 * If the pgdat is imbalanced then ignore boosting and preserve
6837		 * the watermarks for a later time and restart. Note that the
6838		 * zone watermarks will be still reset at the end of balancing
6839		 * on the grounds that the normal reclaim should be enough to
6840		 * re-evaluate if boosting is required when kswapd next wakes.
6841		 */
6842		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
6843		if (!balanced && nr_boost_reclaim) {
6844			nr_boost_reclaim = 0;
6845			goto restart;
6846		}
6847
6848		/*
6849		 * If boosting is not active then only reclaim if there are no
6850		 * eligible zones. Note that sc.reclaim_idx is not used as
6851		 * buffer_heads_over_limit may have adjusted it.
6852		 */
6853		if (!nr_boost_reclaim && balanced)
6854			goto out;
6855
6856		/* Limit the priority of boosting to avoid reclaim writeback */
6857		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
6858			raise_priority = false;
6859
6860		/*
6861		 * Do not writeback or swap pages for boosted reclaim. The
6862		 * intent is to relieve pressure not issue sub-optimal IO
6863		 * from reclaim context. If no pages are reclaimed, the
6864		 * reclaim will be aborted.
6865		 */
6866		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
6867		sc.may_swap = !nr_boost_reclaim;
6868
6869		/*
6870		 * Do some background aging, to give pages a chance to be
6871		 * referenced before reclaiming. All pages are rotated
6872		 * regardless of classzone as this is about consistent aging.
 
6873		 */
6874		kswapd_age_node(pgdat, &sc);
6875
6876		/*
6877		 * If we're getting trouble reclaiming, start doing writepage
6878		 * even in laptop mode.
6879		 */
6880		if (sc.priority < DEF_PRIORITY - 2)
6881			sc.may_writepage = 1;
6882
6883		/* Call soft limit reclaim before calling shrink_node. */
6884		sc.nr_scanned = 0;
6885		nr_soft_scanned = 0;
6886		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
6887						sc.gfp_mask, &nr_soft_scanned);
6888		sc.nr_reclaimed += nr_soft_reclaimed;
6889
6890		/*
6891		 * There should be no need to raise the scanning priority if
6892		 * enough pages are already being scanned that that high
6893		 * watermark would be met at 100% efficiency.
6894		 */
6895		if (kswapd_shrink_node(pgdat, &sc))
6896			raise_priority = false;
6897
6898		/*
6899		 * If the low watermark is met there is no need for processes
6900		 * to be throttled on pfmemalloc_wait as they should not be
6901		 * able to safely make forward progress. Wake them
6902		 */
6903		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
6904				allow_direct_reclaim(pgdat))
6905			wake_up_all(&pgdat->pfmemalloc_wait);
6906
6907		/* Check if kswapd should be suspending */
6908		__fs_reclaim_release(_THIS_IP_);
6909		ret = kthread_freezable_should_stop(&was_frozen);
6910		__fs_reclaim_acquire(_THIS_IP_);
6911		if (was_frozen || ret)
6912			break;
6913
6914		/*
6915		 * Raise priority if scanning rate is too low or there was no
6916		 * progress in reclaiming pages
6917		 */
6918		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
6919		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
6920
6921		/*
6922		 * If reclaim made no progress for a boost, stop reclaim as
6923		 * IO cannot be queued and it could be an infinite loop in
6924		 * extreme circumstances.
6925		 */
6926		if (nr_boost_reclaim && !nr_reclaimed)
6927			break;
6928
6929		if (raise_priority || !nr_reclaimed)
6930			sc.priority--;
6931	} while (sc.priority >= 1);
6932
6933	/*
6934	 * Restart only if it went through the priority loop all the way,
6935	 * but cache_trim_mode didn't work.
6936	 */
6937	if (!sc.nr_reclaimed && sc.priority < 1 &&
6938	    !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) {
6939		sc.no_cache_trim_mode = 1;
6940		goto restart;
6941	}
6942
6943	if (!sc.nr_reclaimed)
6944		pgdat->kswapd_failures++;
6945
6946out:
6947	clear_reclaim_active(pgdat, highest_zoneidx);
6948
6949	/* If reclaim was boosted, account for the reclaim done in this pass */
6950	if (boosted) {
6951		unsigned long flags;
6952
6953		for (i = 0; i <= highest_zoneidx; i++) {
6954			if (!zone_boosts[i])
6955				continue;
6956
6957			/* Increments are under the zone lock */
6958			zone = pgdat->node_zones + i;
6959			spin_lock_irqsave(&zone->lock, flags);
6960			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
6961			spin_unlock_irqrestore(&zone->lock, flags);
6962		}
6963
6964		/*
6965		 * As there is now likely space, wakeup kcompact to defragment
6966		 * pageblocks.
6967		 */
6968		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
6969	}
6970
6971	snapshot_refaults(NULL, pgdat);
6972	__fs_reclaim_release(_THIS_IP_);
6973	psi_memstall_leave(&pflags);
6974	set_task_reclaim_state(current, NULL);
6975
6976	/*
6977	 * Return the order kswapd stopped reclaiming at as
6978	 * prepare_kswapd_sleep() takes it into account. If another caller
6979	 * entered the allocator slow path while kswapd was awake, order will
6980	 * remain at the higher level.
6981	 */
6982	return sc.order;
6983}
6984
6985/*
6986 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
6987 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
6988 * not a valid index then either kswapd runs for first time or kswapd couldn't
6989 * sleep after previous reclaim attempt (node is still unbalanced). In that
6990 * case return the zone index of the previous kswapd reclaim cycle.
6991 */
6992static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
6993					   enum zone_type prev_highest_zoneidx)
6994{
6995	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
6996
6997	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
6998}
6999
7000static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7001				unsigned int highest_zoneidx)
7002{
7003	long remaining = 0;
7004	DEFINE_WAIT(wait);
7005
7006	if (freezing(current) || kthread_should_stop())
7007		return;
7008
7009	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7010
7011	/*
7012	 * Try to sleep for a short interval. Note that kcompactd will only be
7013	 * woken if it is possible to sleep for a short interval. This is
7014	 * deliberate on the assumption that if reclaim cannot keep an
7015	 * eligible zone balanced that it's also unlikely that compaction will
7016	 * succeed.
7017	 */
7018	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7019		/*
7020		 * Compaction records what page blocks it recently failed to
7021		 * isolate pages from and skips them in the future scanning.
7022		 * When kswapd is going to sleep, it is reasonable to assume
7023		 * that pages and compaction may succeed so reset the cache.
7024		 */
7025		reset_isolation_suitable(pgdat);
7026
7027		/*
7028		 * We have freed the memory, now we should compact it to make
7029		 * allocation of the requested order possible.
7030		 */
7031		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7032
7033		remaining = schedule_timeout(HZ/10);
7034
7035		/*
7036		 * If woken prematurely then reset kswapd_highest_zoneidx and
7037		 * order. The values will either be from a wakeup request or
7038		 * the previous request that slept prematurely.
7039		 */
7040		if (remaining) {
7041			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7042					kswapd_highest_zoneidx(pgdat,
7043							highest_zoneidx));
7044
7045			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7046				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7047		}
7048
7049		finish_wait(&pgdat->kswapd_wait, &wait);
7050		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7051	}
7052
7053	/*
7054	 * After a short sleep, check if it was a premature sleep. If not, then
7055	 * go fully to sleep until explicitly woken up.
7056	 */
7057	if (!remaining &&
7058	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7059		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7060
7061		/*
7062		 * vmstat counters are not perfectly accurate and the estimated
7063		 * value for counters such as NR_FREE_PAGES can deviate from the
7064		 * true value by nr_online_cpus * threshold. To avoid the zone
7065		 * watermarks being breached while under pressure, we reduce the
7066		 * per-cpu vmstat threshold while kswapd is awake and restore
7067		 * them before going back to sleep.
7068		 */
7069		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7070
7071		if (!kthread_should_stop())
7072			schedule();
7073
7074		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7075	} else {
7076		if (remaining)
7077			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7078		else
7079			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7080	}
7081	finish_wait(&pgdat->kswapd_wait, &wait);
7082}
7083
7084/*
7085 * The background pageout daemon, started as a kernel thread
7086 * from the init process.
7087 *
7088 * This basically trickles out pages so that we have _some_
7089 * free memory available even if there is no other activity
7090 * that frees anything up. This is needed for things like routing
7091 * etc, where we otherwise might have all activity going on in
7092 * asynchronous contexts that cannot page things out.
7093 *
7094 * If there are applications that are active memory-allocators
7095 * (most normal use), this basically shouldn't matter.
7096 */
7097static int kswapd(void *p)
7098{
7099	unsigned int alloc_order, reclaim_order;
7100	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7101	pg_data_t *pgdat = (pg_data_t *)p;
7102	struct task_struct *tsk = current;
7103	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7104
7105	if (!cpumask_empty(cpumask))
7106		set_cpus_allowed_ptr(tsk, cpumask);
7107
7108	/*
7109	 * Tell the memory management that we're a "memory allocator",
7110	 * and that if we need more memory we should get access to it
7111	 * regardless (see "__alloc_pages()"). "kswapd" should
7112	 * never get caught in the normal page freeing logic.
7113	 *
7114	 * (Kswapd normally doesn't need memory anyway, but sometimes
7115	 * you need a small amount of memory in order to be able to
7116	 * page out something else, and this flag essentially protects
7117	 * us from recursively trying to free more memory as we're
7118	 * trying to free the first piece of memory in the first place).
7119	 */
7120	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7121	set_freezable();
7122
7123	WRITE_ONCE(pgdat->kswapd_order, 0);
7124	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7125	atomic_set(&pgdat->nr_writeback_throttled, 0);
7126	for ( ; ; ) {
7127		bool was_frozen;
7128
7129		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7130		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7131							highest_zoneidx);
7132
7133kswapd_try_sleep:
7134		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7135					highest_zoneidx);
7136
7137		/* Read the new order and highest_zoneidx */
7138		alloc_order = READ_ONCE(pgdat->kswapd_order);
7139		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7140							highest_zoneidx);
7141		WRITE_ONCE(pgdat->kswapd_order, 0);
7142		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7143
7144		if (kthread_freezable_should_stop(&was_frozen))
 
7145			break;
7146
7147		/*
7148		 * We can speed up thawing tasks if we don't call balance_pgdat
7149		 * after returning from the refrigerator
7150		 */
7151		if (was_frozen)
7152			continue;
7153
7154		/*
7155		 * Reclaim begins at the requested order but if a high-order
7156		 * reclaim fails then kswapd falls back to reclaiming for
7157		 * order-0. If that happens, kswapd will consider sleeping
7158		 * for the order it finished reclaiming at (reclaim_order)
7159		 * but kcompactd is woken to compact for the original
7160		 * request (alloc_order).
7161		 */
7162		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7163						alloc_order);
7164		reclaim_order = balance_pgdat(pgdat, alloc_order,
7165						highest_zoneidx);
7166		if (reclaim_order < alloc_order)
7167			goto kswapd_try_sleep;
7168	}
7169
7170	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7171
7172	return 0;
7173}
7174
7175/*
7176 * A zone is low on free memory or too fragmented for high-order memory.  If
7177 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7178 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7179 * has failed or is not needed, still wake up kcompactd if only compaction is
7180 * needed.
7181 */
7182void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7183		   enum zone_type highest_zoneidx)
7184{
7185	pg_data_t *pgdat;
7186	enum zone_type curr_idx;
7187
7188	if (!managed_zone(zone))
7189		return;
7190
7191	if (!cpuset_zone_allowed(zone, gfp_flags))
7192		return;
7193
7194	pgdat = zone->zone_pgdat;
7195	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7196
7197	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7198		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7199
7200	if (READ_ONCE(pgdat->kswapd_order) < order)
7201		WRITE_ONCE(pgdat->kswapd_order, order);
7202
 
 
 
 
 
 
7203	if (!waitqueue_active(&pgdat->kswapd_wait))
7204		return;
7205
7206	/* Hopeless node, leave it to direct reclaim if possible */
7207	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7208	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7209	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7210		/*
7211		 * There may be plenty of free memory available, but it's too
7212		 * fragmented for high-order allocations.  Wake up kcompactd
7213		 * and rely on compaction_suitable() to determine if it's
7214		 * needed.  If it fails, it will defer subsequent attempts to
7215		 * ratelimit its work.
7216		 */
7217		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7218			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7219		return;
7220	}
7221
7222	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7223				      gfp_flags);
7224	wake_up_interruptible(&pgdat->kswapd_wait);
7225}
7226
7227#ifdef CONFIG_HIBERNATION
7228/*
7229 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7230 * freed pages.
7231 *
7232 * Rather than trying to age LRUs the aim is to preserve the overall
7233 * LRU order by reclaiming preferentially
7234 * inactive > active > active referenced > active mapped
7235 */
7236unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7237{
7238	struct scan_control sc = {
7239		.nr_to_reclaim = nr_to_reclaim,
7240		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7241		.reclaim_idx = MAX_NR_ZONES - 1,
7242		.priority = DEF_PRIORITY,
7243		.may_writepage = 1,
7244		.may_unmap = 1,
7245		.may_swap = 1,
7246		.hibernation_mode = 1,
7247	};
7248	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7249	unsigned long nr_reclaimed;
7250	unsigned int noreclaim_flag;
7251
7252	fs_reclaim_acquire(sc.gfp_mask);
7253	noreclaim_flag = memalloc_noreclaim_save();
7254	set_task_reclaim_state(current, &sc.reclaim_state);
7255
7256	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7257
7258	set_task_reclaim_state(current, NULL);
7259	memalloc_noreclaim_restore(noreclaim_flag);
7260	fs_reclaim_release(sc.gfp_mask);
7261
7262	return nr_reclaimed;
7263}
7264#endif /* CONFIG_HIBERNATION */
7265
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7266/*
7267 * This kswapd start function will be called by init and node-hot-add.
 
7268 */
7269void __meminit kswapd_run(int nid)
7270{
7271	pg_data_t *pgdat = NODE_DATA(nid);
 
 
 
 
7272
7273	pgdat_kswapd_lock(pgdat);
7274	if (!pgdat->kswapd) {
7275		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7276		if (IS_ERR(pgdat->kswapd)) {
7277			/* failure at boot is fatal */
7278			pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7279				   nid, PTR_ERR(pgdat->kswapd));
7280			BUG_ON(system_state < SYSTEM_RUNNING);
7281			pgdat->kswapd = NULL;
7282		}
7283	}
7284	pgdat_kswapd_unlock(pgdat);
7285}
7286
7287/*
7288 * Called by memory hotplug when all memory in a node is offlined.  Caller must
7289 * be holding mem_hotplug_begin/done().
7290 */
7291void __meminit kswapd_stop(int nid)
7292{
7293	pg_data_t *pgdat = NODE_DATA(nid);
7294	struct task_struct *kswapd;
7295
7296	pgdat_kswapd_lock(pgdat);
7297	kswapd = pgdat->kswapd;
7298	if (kswapd) {
7299		kthread_stop(kswapd);
7300		pgdat->kswapd = NULL;
7301	}
7302	pgdat_kswapd_unlock(pgdat);
7303}
7304
7305static int __init kswapd_init(void)
7306{
7307	int nid;
7308
7309	swap_setup();
7310	for_each_node_state(nid, N_MEMORY)
7311 		kswapd_run(nid);
 
 
 
 
7312	return 0;
7313}
7314
7315module_init(kswapd_init)
7316
7317#ifdef CONFIG_NUMA
7318/*
7319 * Node reclaim mode
7320 *
7321 * If non-zero call node_reclaim when the number of free pages falls below
7322 * the watermarks.
7323 */
7324int node_reclaim_mode __read_mostly;
7325
 
 
 
 
 
7326/*
7327 * Priority for NODE_RECLAIM. This determines the fraction of pages
7328 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7329 * a zone.
7330 */
7331#define NODE_RECLAIM_PRIORITY 4
7332
7333/*
7334 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7335 * occur.
7336 */
7337int sysctl_min_unmapped_ratio = 1;
7338
7339/*
7340 * If the number of slab pages in a zone grows beyond this percentage then
7341 * slab reclaim needs to occur.
7342 */
7343int sysctl_min_slab_ratio = 5;
7344
7345static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7346{
7347	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7348	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7349		node_page_state(pgdat, NR_ACTIVE_FILE);
7350
7351	/*
7352	 * It's possible for there to be more file mapped pages than
7353	 * accounted for by the pages on the file LRU lists because
7354	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7355	 */
7356	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7357}
7358
7359/* Work out how many page cache pages we can reclaim in this reclaim_mode */
7360static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7361{
7362	unsigned long nr_pagecache_reclaimable;
7363	unsigned long delta = 0;
7364
7365	/*
7366	 * If RECLAIM_UNMAP is set, then all file pages are considered
7367	 * potentially reclaimable. Otherwise, we have to worry about
7368	 * pages like swapcache and node_unmapped_file_pages() provides
7369	 * a better estimate
7370	 */
7371	if (node_reclaim_mode & RECLAIM_UNMAP)
7372		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7373	else
7374		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7375
7376	/* If we can't clean pages, remove dirty pages from consideration */
7377	if (!(node_reclaim_mode & RECLAIM_WRITE))
7378		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7379
7380	/* Watch for any possible underflows due to delta */
7381	if (unlikely(delta > nr_pagecache_reclaimable))
7382		delta = nr_pagecache_reclaimable;
7383
7384	return nr_pagecache_reclaimable - delta;
7385}
7386
7387/*
7388 * Try to free up some pages from this node through reclaim.
7389 */
7390static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7391{
7392	/* Minimum pages needed in order to stay on node */
7393	const unsigned long nr_pages = 1 << order;
7394	struct task_struct *p = current;
7395	unsigned int noreclaim_flag;
7396	struct scan_control sc = {
7397		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7398		.gfp_mask = current_gfp_context(gfp_mask),
7399		.order = order,
7400		.priority = NODE_RECLAIM_PRIORITY,
7401		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7402		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7403		.may_swap = 1,
7404		.reclaim_idx = gfp_zone(gfp_mask),
7405	};
7406	unsigned long pflags;
7407
7408	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7409					   sc.gfp_mask);
7410
7411	cond_resched();
7412	psi_memstall_enter(&pflags);
7413	delayacct_freepages_start();
7414	fs_reclaim_acquire(sc.gfp_mask);
7415	/*
7416	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
 
 
7417	 */
7418	noreclaim_flag = memalloc_noreclaim_save();
 
7419	set_task_reclaim_state(p, &sc.reclaim_state);
7420
7421	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7422	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7423		/*
7424		 * Free memory by calling shrink node with increasing
7425		 * priorities until we have enough memory freed.
7426		 */
7427		do {
7428			shrink_node(pgdat, &sc);
7429		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7430	}
7431
7432	set_task_reclaim_state(p, NULL);
 
7433	memalloc_noreclaim_restore(noreclaim_flag);
7434	fs_reclaim_release(sc.gfp_mask);
7435	psi_memstall_leave(&pflags);
7436	delayacct_freepages_end();
7437
7438	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7439
7440	return sc.nr_reclaimed >= nr_pages;
7441}
7442
7443int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7444{
7445	int ret;
7446
7447	/*
7448	 * Node reclaim reclaims unmapped file backed pages and
7449	 * slab pages if we are over the defined limits.
7450	 *
7451	 * A small portion of unmapped file backed pages is needed for
7452	 * file I/O otherwise pages read by file I/O will be immediately
7453	 * thrown out if the node is overallocated. So we do not reclaim
7454	 * if less than a specified percentage of the node is used by
7455	 * unmapped file backed pages.
7456	 */
7457	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7458	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7459	    pgdat->min_slab_pages)
7460		return NODE_RECLAIM_FULL;
7461
7462	/*
7463	 * Do not scan if the allocation should not be delayed.
7464	 */
7465	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7466		return NODE_RECLAIM_NOSCAN;
7467
7468	/*
7469	 * Only run node reclaim on the local node or on nodes that do not
7470	 * have associated processors. This will favor the local processor
7471	 * over remote processors and spread off node memory allocations
7472	 * as wide as possible.
7473	 */
7474	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7475		return NODE_RECLAIM_NOSCAN;
7476
7477	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7478		return NODE_RECLAIM_NOSCAN;
7479
7480	ret = __node_reclaim(pgdat, gfp_mask, order);
7481	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7482
7483	if (!ret)
7484		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7485
7486	return ret;
7487}
7488#endif
7489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7490/**
7491 * check_move_unevictable_folios - Move evictable folios to appropriate zone
7492 * lru list
7493 * @fbatch: Batch of lru folios to check.
7494 *
7495 * Checks folios for evictability, if an evictable folio is in the unevictable
7496 * lru list, moves it to the appropriate evictable lru list. This function
7497 * should be only used for lru folios.
7498 */
7499void check_move_unevictable_folios(struct folio_batch *fbatch)
7500{
7501	struct lruvec *lruvec = NULL;
 
7502	int pgscanned = 0;
7503	int pgrescued = 0;
7504	int i;
7505
7506	for (i = 0; i < fbatch->nr; i++) {
7507		struct folio *folio = fbatch->folios[i];
7508		int nr_pages = folio_nr_pages(folio);
7509
7510		pgscanned += nr_pages;
 
 
 
 
 
 
 
7511
7512		/* block memcg migration while the folio moves between lrus */
7513		if (!folio_test_clear_lru(folio))
7514			continue;
7515
7516		lruvec = folio_lruvec_relock_irq(folio, lruvec);
7517		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7518			lruvec_del_folio(lruvec, folio);
7519			folio_clear_unevictable(folio);
7520			lruvec_add_folio(lruvec, folio);
7521			pgrescued += nr_pages;
 
 
7522		}
7523		folio_set_lru(folio);
7524	}
7525
7526	if (lruvec) {
7527		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7528		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7529		unlock_page_lruvec_irq(lruvec);
7530	} else if (pgscanned) {
7531		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7532	}
7533}
7534EXPORT_SYMBOL_GPL(check_move_unevictable_folios);