Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/mm/vmscan.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *
   7 *  Swap reorganised 29.12.95, Stephen Tweedie.
   8 *  kswapd added: 7.1.96  sct
   9 *  Removed kswapd_ctl limits, and swap out as many pages as needed
  10 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  11 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  12 *  Multiqueue VM started 5.8.00, Rik van Riel.
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/mm.h>
  18#include <linux/sched/mm.h>
  19#include <linux/module.h>
  20#include <linux/gfp.h>
  21#include <linux/kernel_stat.h>
  22#include <linux/swap.h>
  23#include <linux/pagemap.h>
  24#include <linux/init.h>
  25#include <linux/highmem.h>
  26#include <linux/vmpressure.h>
  27#include <linux/vmstat.h>
  28#include <linux/file.h>
  29#include <linux/writeback.h>
  30#include <linux/blkdev.h>
  31#include <linux/buffer_head.h>	/* for try_to_release_page(),
  32					buffer_heads_over_limit */
  33#include <linux/mm_inline.h>
  34#include <linux/backing-dev.h>
  35#include <linux/rmap.h>
  36#include <linux/topology.h>
  37#include <linux/cpu.h>
  38#include <linux/cpuset.h>
  39#include <linux/compaction.h>
  40#include <linux/notifier.h>
  41#include <linux/rwsem.h>
  42#include <linux/delay.h>
  43#include <linux/kthread.h>
  44#include <linux/freezer.h>
  45#include <linux/memcontrol.h>
  46#include <linux/delayacct.h>
  47#include <linux/sysctl.h>
  48#include <linux/oom.h>
  49#include <linux/pagevec.h>
  50#include <linux/prefetch.h>
  51#include <linux/printk.h>
  52#include <linux/dax.h>
  53#include <linux/psi.h>
  54
  55#include <asm/tlbflush.h>
  56#include <asm/div64.h>
  57
  58#include <linux/swapops.h>
  59#include <linux/balloon_compaction.h>
  60
  61#include "internal.h"
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/vmscan.h>
  65
  66struct scan_control {
 
 
 
 
 
 
  67	/* How many pages shrink_list() should reclaim */
  68	unsigned long nr_to_reclaim;
  69
  70	/*
  71	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
  72	 * are scanned.
  73	 */
  74	nodemask_t	*nodemask;
  75
  76	/*
  77	 * The memory cgroup that hit its limit and as a result is the
  78	 * primary target of this reclaim invocation.
  79	 */
  80	struct mem_cgroup *target_mem_cgroup;
  81
  82	/* Writepage batching in laptop mode; RECLAIM_WRITE */
  83	unsigned int may_writepage:1;
  84
  85	/* Can mapped pages be reclaimed? */
  86	unsigned int may_unmap:1;
  87
  88	/* Can pages be swapped as part of reclaim? */
  89	unsigned int may_swap:1;
  90
  91	/*
  92	 * Cgroups are not reclaimed below their configured memory.low,
  93	 * unless we threaten to OOM. If any cgroups are skipped due to
  94	 * memory.low and nothing was reclaimed, go back for memory.low.
  95	 */
  96	unsigned int memcg_low_reclaim:1;
  97	unsigned int memcg_low_skipped:1;
  98
  99	unsigned int hibernation_mode:1;
 100
 101	/* One of the zones is ready for compaction */
 102	unsigned int compaction_ready:1;
 103
 104	/* Allocation order */
 105	s8 order;
 106
 107	/* Scan (total_size >> priority) pages at once */
 108	s8 priority;
 109
 110	/* The highest zone to isolate pages for reclaim from */
 111	s8 reclaim_idx;
 112
 113	/* This context's GFP mask */
 114	gfp_t gfp_mask;
 115
 116	/* Incremented by the number of inactive pages that were scanned */
 117	unsigned long nr_scanned;
 118
 119	/* Number of pages freed so far during a call to shrink_zones() */
 120	unsigned long nr_reclaimed;
 121
 122	struct {
 123		unsigned int dirty;
 124		unsigned int unqueued_dirty;
 125		unsigned int congested;
 126		unsigned int writeback;
 127		unsigned int immediate;
 128		unsigned int file_taken;
 129		unsigned int taken;
 130	} nr;
 131
 132	/* for recording the reclaimed slab by now */
 133	struct reclaim_state reclaim_state;
 
 
 
 134};
 135
 
 
 136#ifdef ARCH_HAS_PREFETCH
 137#define prefetch_prev_lru_page(_page, _base, _field)			\
 138	do {								\
 139		if ((_page)->lru.prev != _base) {			\
 140			struct page *prev;				\
 141									\
 142			prev = lru_to_page(&(_page->lru));		\
 143			prefetch(&prev->_field);			\
 144		}							\
 145	} while (0)
 146#else
 147#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 148#endif
 149
 150#ifdef ARCH_HAS_PREFETCHW
 151#define prefetchw_prev_lru_page(_page, _base, _field)			\
 152	do {								\
 153		if ((_page)->lru.prev != _base) {			\
 154			struct page *prev;				\
 155									\
 156			prev = lru_to_page(&(_page->lru));		\
 157			prefetchw(&prev->_field);			\
 158		}							\
 159	} while (0)
 160#else
 161#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 162#endif
 163
 164/*
 165 * From 0 .. 100.  Higher means more swappy.
 166 */
 167int vm_swappiness = 60;
 168/*
 169 * The total number of pages which are beyond the high watermark within all
 170 * zones.
 171 */
 172unsigned long vm_total_pages;
 173
 174static void set_task_reclaim_state(struct task_struct *task,
 175				   struct reclaim_state *rs)
 176{
 177	/* Check for an overwrite */
 178	WARN_ON_ONCE(rs && task->reclaim_state);
 179
 180	/* Check for the nulling of an already-nulled member */
 181	WARN_ON_ONCE(!rs && !task->reclaim_state);
 182
 183	task->reclaim_state = rs;
 184}
 185
 186static LIST_HEAD(shrinker_list);
 187static DECLARE_RWSEM(shrinker_rwsem);
 188
 189#ifdef CONFIG_MEMCG
 190/*
 191 * We allow subsystems to populate their shrinker-related
 192 * LRU lists before register_shrinker_prepared() is called
 193 * for the shrinker, since we don't want to impose
 194 * restrictions on their internal registration order.
 195 * In this case shrink_slab_memcg() may find corresponding
 196 * bit is set in the shrinkers map.
 197 *
 198 * This value is used by the function to detect registering
 199 * shrinkers and to skip do_shrink_slab() calls for them.
 200 */
 201#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
 202
 203static DEFINE_IDR(shrinker_idr);
 204static int shrinker_nr_max;
 205
 206static int prealloc_memcg_shrinker(struct shrinker *shrinker)
 207{
 208	int id, ret = -ENOMEM;
 209
 210	down_write(&shrinker_rwsem);
 211	/* This may call shrinker, so it must use down_read_trylock() */
 212	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
 213	if (id < 0)
 214		goto unlock;
 215
 216	if (id >= shrinker_nr_max) {
 217		if (memcg_expand_shrinker_maps(id)) {
 218			idr_remove(&shrinker_idr, id);
 219			goto unlock;
 220		}
 221
 222		shrinker_nr_max = id + 1;
 223	}
 224	shrinker->id = id;
 225	ret = 0;
 226unlock:
 227	up_write(&shrinker_rwsem);
 228	return ret;
 229}
 230
 231static void unregister_memcg_shrinker(struct shrinker *shrinker)
 232{
 233	int id = shrinker->id;
 234
 235	BUG_ON(id < 0);
 236
 237	down_write(&shrinker_rwsem);
 238	idr_remove(&shrinker_idr, id);
 239	up_write(&shrinker_rwsem);
 240}
 241
 242static bool global_reclaim(struct scan_control *sc)
 243{
 244	return !sc->target_mem_cgroup;
 245}
 246
 247/**
 248 * sane_reclaim - is the usual dirty throttling mechanism operational?
 249 * @sc: scan_control in question
 250 *
 251 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 252 * completely broken with the legacy memcg and direct stalling in
 253 * shrink_page_list() is used for throttling instead, which lacks all the
 254 * niceties such as fairness, adaptive pausing, bandwidth proportional
 255 * allocation and configurability.
 256 *
 257 * This function tests whether the vmscan currently in progress can assume
 258 * that the normal dirty throttling mechanism is operational.
 259 */
 260static bool sane_reclaim(struct scan_control *sc)
 261{
 262	struct mem_cgroup *memcg = sc->target_mem_cgroup;
 263
 264	if (!memcg)
 265		return true;
 266#ifdef CONFIG_CGROUP_WRITEBACK
 267	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 268		return true;
 269#endif
 270	return false;
 271}
 272
 273static void set_memcg_congestion(pg_data_t *pgdat,
 274				struct mem_cgroup *memcg,
 275				bool congested)
 276{
 277	struct mem_cgroup_per_node *mn;
 278
 279	if (!memcg)
 280		return;
 281
 282	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
 283	WRITE_ONCE(mn->congested, congested);
 284}
 285
 286static bool memcg_congested(pg_data_t *pgdat,
 287			struct mem_cgroup *memcg)
 288{
 289	struct mem_cgroup_per_node *mn;
 290
 291	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
 292	return READ_ONCE(mn->congested);
 293
 294}
 295#else
 296static int prealloc_memcg_shrinker(struct shrinker *shrinker)
 297{
 298	return 0;
 299}
 300
 301static void unregister_memcg_shrinker(struct shrinker *shrinker)
 302{
 303}
 304
 305static bool global_reclaim(struct scan_control *sc)
 306{
 307	return true;
 308}
 309
 310static bool sane_reclaim(struct scan_control *sc)
 311{
 312	return true;
 313}
 314
 315static inline void set_memcg_congestion(struct pglist_data *pgdat,
 316				struct mem_cgroup *memcg, bool congested)
 317{
 318}
 319
 320static inline bool memcg_congested(struct pglist_data *pgdat,
 321			struct mem_cgroup *memcg)
 322{
 323	return false;
 324
 325}
 326#endif
 327
 328/*
 329 * This misses isolated pages which are not accounted for to save counters.
 330 * As the data only determines if reclaim or compaction continues, it is
 331 * not expected that isolated pages will be a dominating factor.
 332 */
 333unsigned long zone_reclaimable_pages(struct zone *zone)
 334{
 335	unsigned long nr;
 336
 337	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
 338		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
 339	if (get_nr_swap_pages() > 0)
 340		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
 341			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
 342
 343	return nr;
 344}
 345
 346/**
 347 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 348 * @lruvec: lru vector
 349 * @lru: lru to use
 350 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 351 */
 352unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
 353{
 354	unsigned long lru_size = 0;
 355	int zid;
 356
 357	if (!mem_cgroup_disabled()) {
 358		for (zid = 0; zid < MAX_NR_ZONES; zid++)
 359			lru_size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 360	} else
 361		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
 362
 363	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
 364		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
 365		unsigned long size;
 366
 367		if (!managed_zone(zone))
 368			continue;
 369
 370		if (!mem_cgroup_disabled())
 371			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 372		else
 373			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
 374				       NR_ZONE_LRU_BASE + lru);
 375		lru_size -= min(size, lru_size);
 376	}
 377
 378	return lru_size;
 379
 
 380}
 381
 382/*
 383 * Add a shrinker callback to be called from the vm.
 384 */
 385int prealloc_shrinker(struct shrinker *shrinker)
 386{
 387	unsigned int size = sizeof(*shrinker->nr_deferred);
 388
 389	if (shrinker->flags & SHRINKER_NUMA_AWARE)
 390		size *= nr_node_ids;
 391
 392	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
 393	if (!shrinker->nr_deferred)
 394		return -ENOMEM;
 395
 396	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
 397		if (prealloc_memcg_shrinker(shrinker))
 398			goto free_deferred;
 399	}
 400
 401	return 0;
 402
 403free_deferred:
 404	kfree(shrinker->nr_deferred);
 405	shrinker->nr_deferred = NULL;
 406	return -ENOMEM;
 407}
 408
 409void free_prealloced_shrinker(struct shrinker *shrinker)
 410{
 411	if (!shrinker->nr_deferred)
 412		return;
 413
 414	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 415		unregister_memcg_shrinker(shrinker);
 416
 417	kfree(shrinker->nr_deferred);
 418	shrinker->nr_deferred = NULL;
 419}
 420
 421void register_shrinker_prepared(struct shrinker *shrinker)
 422{
 
 423	down_write(&shrinker_rwsem);
 424	list_add_tail(&shrinker->list, &shrinker_list);
 425#ifdef CONFIG_MEMCG_KMEM
 426	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 427		idr_replace(&shrinker_idr, shrinker, shrinker->id);
 428#endif
 429	up_write(&shrinker_rwsem);
 430}
 431
 432int register_shrinker(struct shrinker *shrinker)
 433{
 434	int err = prealloc_shrinker(shrinker);
 435
 436	if (err)
 437		return err;
 438	register_shrinker_prepared(shrinker);
 439	return 0;
 440}
 441EXPORT_SYMBOL(register_shrinker);
 442
 443/*
 444 * Remove one
 445 */
 446void unregister_shrinker(struct shrinker *shrinker)
 447{
 448	if (!shrinker->nr_deferred)
 449		return;
 450	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 451		unregister_memcg_shrinker(shrinker);
 452	down_write(&shrinker_rwsem);
 453	list_del(&shrinker->list);
 454	up_write(&shrinker_rwsem);
 455	kfree(shrinker->nr_deferred);
 456	shrinker->nr_deferred = NULL;
 457}
 458EXPORT_SYMBOL(unregister_shrinker);
 459
 460#define SHRINK_BATCH 128
 461
 462static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
 463				    struct shrinker *shrinker, int priority)
 464{
 465	unsigned long freed = 0;
 466	unsigned long long delta;
 467	long total_scan;
 468	long freeable;
 469	long nr;
 470	long new_nr;
 471	int nid = shrinkctl->nid;
 472	long batch_size = shrinker->batch ? shrinker->batch
 473					  : SHRINK_BATCH;
 474	long scanned = 0, next_deferred;
 475
 476	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
 477		nid = 0;
 478
 479	freeable = shrinker->count_objects(shrinker, shrinkctl);
 480	if (freeable == 0 || freeable == SHRINK_EMPTY)
 481		return freeable;
 482
 483	/*
 484	 * copy the current shrinker scan count into a local variable
 485	 * and zero it so that other concurrent shrinker invocations
 486	 * don't also do this scanning work.
 487	 */
 488	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
 489
 490	total_scan = nr;
 491	if (shrinker->seeks) {
 492		delta = freeable >> priority;
 493		delta *= 4;
 494		do_div(delta, shrinker->seeks);
 495	} else {
 496		/*
 497		 * These objects don't require any IO to create. Trim
 498		 * them aggressively under memory pressure to keep
 499		 * them from causing refetches in the IO caches.
 500		 */
 501		delta = freeable / 2;
 502	}
 503
 504	total_scan += delta;
 505	if (total_scan < 0) {
 506		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
 507		       shrinker->scan_objects, total_scan);
 508		total_scan = freeable;
 509		next_deferred = nr;
 510	} else
 511		next_deferred = total_scan;
 512
 513	/*
 514	 * We need to avoid excessive windup on filesystem shrinkers
 515	 * due to large numbers of GFP_NOFS allocations causing the
 516	 * shrinkers to return -1 all the time. This results in a large
 517	 * nr being built up so when a shrink that can do some work
 518	 * comes along it empties the entire cache due to nr >>>
 519	 * freeable. This is bad for sustaining a working set in
 520	 * memory.
 521	 *
 522	 * Hence only allow the shrinker to scan the entire cache when
 523	 * a large delta change is calculated directly.
 524	 */
 525	if (delta < freeable / 4)
 526		total_scan = min(total_scan, freeable / 2);
 527
 528	/*
 529	 * Avoid risking looping forever due to too large nr value:
 530	 * never try to free more than twice the estimate number of
 531	 * freeable entries.
 532	 */
 533	if (total_scan > freeable * 2)
 534		total_scan = freeable * 2;
 535
 536	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
 537				   freeable, delta, total_scan, priority);
 538
 539	/*
 540	 * Normally, we should not scan less than batch_size objects in one
 541	 * pass to avoid too frequent shrinker calls, but if the slab has less
 542	 * than batch_size objects in total and we are really tight on memory,
 543	 * we will try to reclaim all available objects, otherwise we can end
 544	 * up failing allocations although there are plenty of reclaimable
 545	 * objects spread over several slabs with usage less than the
 546	 * batch_size.
 547	 *
 548	 * We detect the "tight on memory" situations by looking at the total
 549	 * number of objects we want to scan (total_scan). If it is greater
 550	 * than the total number of objects on slab (freeable), we must be
 551	 * scanning at high prio and therefore should try to reclaim as much as
 552	 * possible.
 553	 */
 554	while (total_scan >= batch_size ||
 555	       total_scan >= freeable) {
 556		unsigned long ret;
 557		unsigned long nr_to_scan = min(batch_size, total_scan);
 558
 559		shrinkctl->nr_to_scan = nr_to_scan;
 560		shrinkctl->nr_scanned = nr_to_scan;
 561		ret = shrinker->scan_objects(shrinker, shrinkctl);
 562		if (ret == SHRINK_STOP)
 563			break;
 564		freed += ret;
 565
 566		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
 567		total_scan -= shrinkctl->nr_scanned;
 568		scanned += shrinkctl->nr_scanned;
 569
 570		cond_resched();
 571	}
 572
 573	if (next_deferred >= scanned)
 574		next_deferred -= scanned;
 575	else
 576		next_deferred = 0;
 577	/*
 578	 * move the unused scan count back into the shrinker in a
 579	 * manner that handles concurrent updates. If we exhausted the
 580	 * scan, there is no need to do an update.
 581	 */
 582	if (next_deferred > 0)
 583		new_nr = atomic_long_add_return(next_deferred,
 584						&shrinker->nr_deferred[nid]);
 585	else
 586		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
 587
 588	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
 589	return freed;
 590}
 591
 592#ifdef CONFIG_MEMCG
 593static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
 594			struct mem_cgroup *memcg, int priority)
 595{
 596	struct memcg_shrinker_map *map;
 597	unsigned long ret, freed = 0;
 598	int i;
 599
 600	if (!mem_cgroup_online(memcg))
 601		return 0;
 602
 603	if (!down_read_trylock(&shrinker_rwsem))
 604		return 0;
 605
 606	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
 607					true);
 608	if (unlikely(!map))
 609		goto unlock;
 610
 611	for_each_set_bit(i, map->map, shrinker_nr_max) {
 612		struct shrink_control sc = {
 613			.gfp_mask = gfp_mask,
 614			.nid = nid,
 615			.memcg = memcg,
 616		};
 617		struct shrinker *shrinker;
 618
 619		shrinker = idr_find(&shrinker_idr, i);
 620		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
 621			if (!shrinker)
 622				clear_bit(i, map->map);
 623			continue;
 624		}
 625
 626		/* Call non-slab shrinkers even though kmem is disabled */
 627		if (!memcg_kmem_enabled() &&
 628		    !(shrinker->flags & SHRINKER_NONSLAB))
 629			continue;
 630
 631		ret = do_shrink_slab(&sc, shrinker, priority);
 632		if (ret == SHRINK_EMPTY) {
 633			clear_bit(i, map->map);
 634			/*
 635			 * After the shrinker reported that it had no objects to
 636			 * free, but before we cleared the corresponding bit in
 637			 * the memcg shrinker map, a new object might have been
 638			 * added. To make sure, we have the bit set in this
 639			 * case, we invoke the shrinker one more time and reset
 640			 * the bit if it reports that it is not empty anymore.
 641			 * The memory barrier here pairs with the barrier in
 642			 * memcg_set_shrinker_bit():
 643			 *
 644			 * list_lru_add()     shrink_slab_memcg()
 645			 *   list_add_tail()    clear_bit()
 646			 *   <MB>               <MB>
 647			 *   set_bit()          do_shrink_slab()
 648			 */
 649			smp_mb__after_atomic();
 650			ret = do_shrink_slab(&sc, shrinker, priority);
 651			if (ret == SHRINK_EMPTY)
 652				ret = 0;
 653			else
 654				memcg_set_shrinker_bit(memcg, nid, i);
 655		}
 656		freed += ret;
 657
 658		if (rwsem_is_contended(&shrinker_rwsem)) {
 659			freed = freed ? : 1;
 660			break;
 661		}
 662	}
 663unlock:
 664	up_read(&shrinker_rwsem);
 665	return freed;
 666}
 667#else /* CONFIG_MEMCG */
 668static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
 669			struct mem_cgroup *memcg, int priority)
 670{
 671	return 0;
 672}
 673#endif /* CONFIG_MEMCG */
 674
 675/**
 676 * shrink_slab - shrink slab caches
 677 * @gfp_mask: allocation context
 678 * @nid: node whose slab caches to target
 679 * @memcg: memory cgroup whose slab caches to target
 680 * @priority: the reclaim priority
 681 *
 682 * Call the shrink functions to age shrinkable caches.
 
 
 
 683 *
 684 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 685 * unaware shrinkers will receive a node id of 0 instead.
 686 *
 687 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 688 * are called only if it is the root cgroup.
 689 *
 690 * @priority is sc->priority, we take the number of objects and >> by priority
 691 * in order to get the scan target.
 
 692 *
 693 * Returns the number of reclaimed slab objects.
 694 */
 695static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
 696				 struct mem_cgroup *memcg,
 697				 int priority)
 698{
 699	unsigned long ret, freed = 0;
 700	struct shrinker *shrinker;
 
 701
 702	/*
 703	 * The root memcg might be allocated even though memcg is disabled
 704	 * via "cgroup_disable=memory" boot parameter.  This could make
 705	 * mem_cgroup_is_root() return false, then just run memcg slab
 706	 * shrink, but skip global shrink.  This may result in premature
 707	 * oom.
 708	 */
 709	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
 710		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
 711
 712	if (!down_read_trylock(&shrinker_rwsem))
 
 
 713		goto out;
 
 714
 715	list_for_each_entry(shrinker, &shrinker_list, list) {
 716		struct shrink_control sc = {
 717			.gfp_mask = gfp_mask,
 718			.nid = nid,
 719			.memcg = memcg,
 720		};
 
 
 
 
 
 
 
 721
 722		ret = do_shrink_slab(&sc, shrinker, priority);
 723		if (ret == SHRINK_EMPTY)
 724			ret = 0;
 725		freed += ret;
 726		/*
 727		 * Bail out if someone want to register a new shrinker to
 728		 * prevent the regsitration from being stalled for long periods
 729		 * by parallel ongoing shrinking.
 730		 */
 731		if (rwsem_is_contended(&shrinker_rwsem)) {
 732			freed = freed ? : 1;
 733			break;
 
 
 
 
 
 
 
 
 
 734		}
 735	}
 736
 737	up_read(&shrinker_rwsem);
 738out:
 739	cond_resched();
 740	return freed;
 741}
 
 
 
 
 
 
 
 
 
 742
 743void drop_slab_node(int nid)
 744{
 745	unsigned long freed;
 
 
 
 
 746
 747	do {
 748		struct mem_cgroup *memcg = NULL;
 
 749
 750		freed = 0;
 751		memcg = mem_cgroup_iter(NULL, NULL, NULL);
 752		do {
 753			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
 754		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 755	} while (freed > 10);
 756}
 757
 758void drop_slab(void)
 759{
 760	int nid;
 
 
 
 
 
 
 761
 762	for_each_online_node(nid)
 763		drop_slab_node(nid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 764}
 765
 766static inline int is_page_cache_freeable(struct page *page)
 767{
 768	/*
 769	 * A freeable page cache page is referenced only by the caller
 770	 * that isolated the page, the page cache and optional buffer
 771	 * heads at page->private.
 772	 */
 773	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
 774		HPAGE_PMD_NR : 1;
 775	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
 776}
 777
 778static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
 
 779{
 780	if (current->flags & PF_SWAPWRITE)
 781		return 1;
 782	if (!inode_write_congested(inode))
 783		return 1;
 784	if (inode_to_bdi(inode) == current->backing_dev_info)
 785		return 1;
 786	return 0;
 787}
 788
 789/*
 790 * We detected a synchronous write error writing a page out.  Probably
 791 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 792 * fsync(), msync() or close().
 793 *
 794 * The tricky part is that after writepage we cannot touch the mapping: nothing
 795 * prevents it from being freed up.  But we have a ref on the page and once
 796 * that page is locked, the mapping is pinned.
 797 *
 798 * We're allowed to run sleeping lock_page() here because we know the caller has
 799 * __GFP_FS.
 800 */
 801static void handle_write_error(struct address_space *mapping,
 802				struct page *page, int error)
 803{
 804	lock_page(page);
 805	if (page_mapping(page) == mapping)
 806		mapping_set_error(mapping, error);
 807	unlock_page(page);
 808}
 809
 810/* possible outcome of pageout() */
 811typedef enum {
 812	/* failed to write page out, page is locked */
 813	PAGE_KEEP,
 814	/* move page to the active list, page is locked */
 815	PAGE_ACTIVATE,
 816	/* page has been sent to the disk successfully, page is unlocked */
 817	PAGE_SUCCESS,
 818	/* page is clean and locked */
 819	PAGE_CLEAN,
 820} pageout_t;
 821
 822/*
 823 * pageout is called by shrink_page_list() for each dirty page.
 824 * Calls ->writepage().
 825 */
 826static pageout_t pageout(struct page *page, struct address_space *mapping,
 827			 struct scan_control *sc)
 828{
 829	/*
 830	 * If the page is dirty, only perform writeback if that write
 831	 * will be non-blocking.  To prevent this allocation from being
 832	 * stalled by pagecache activity.  But note that there may be
 833	 * stalls if we need to run get_block().  We could test
 834	 * PagePrivate for that.
 835	 *
 836	 * If this process is currently in __generic_file_write_iter() against
 837	 * this page's queue, we can perform writeback even if that
 838	 * will block.
 839	 *
 840	 * If the page is swapcache, write it back even if that would
 841	 * block, for some throttling. This happens by accident, because
 842	 * swap_backing_dev_info is bust: it doesn't reflect the
 843	 * congestion state of the swapdevs.  Easy to fix, if needed.
 844	 */
 845	if (!is_page_cache_freeable(page))
 846		return PAGE_KEEP;
 847	if (!mapping) {
 848		/*
 849		 * Some data journaling orphaned pages can have
 850		 * page->mapping == NULL while being dirty with clean buffers.
 851		 */
 852		if (page_has_private(page)) {
 853			if (try_to_free_buffers(page)) {
 854				ClearPageDirty(page);
 855				pr_info("%s: orphaned page\n", __func__);
 856				return PAGE_CLEAN;
 857			}
 858		}
 859		return PAGE_KEEP;
 860	}
 861	if (mapping->a_ops->writepage == NULL)
 862		return PAGE_ACTIVATE;
 863	if (!may_write_to_inode(mapping->host, sc))
 864		return PAGE_KEEP;
 865
 866	if (clear_page_dirty_for_io(page)) {
 867		int res;
 868		struct writeback_control wbc = {
 869			.sync_mode = WB_SYNC_NONE,
 870			.nr_to_write = SWAP_CLUSTER_MAX,
 871			.range_start = 0,
 872			.range_end = LLONG_MAX,
 873			.for_reclaim = 1,
 874		};
 875
 876		SetPageReclaim(page);
 877		res = mapping->a_ops->writepage(page, &wbc);
 878		if (res < 0)
 879			handle_write_error(mapping, page, res);
 880		if (res == AOP_WRITEPAGE_ACTIVATE) {
 881			ClearPageReclaim(page);
 882			return PAGE_ACTIVATE;
 883		}
 884
 885		if (!PageWriteback(page)) {
 886			/* synchronous write or broken a_ops? */
 887			ClearPageReclaim(page);
 888		}
 889		trace_mm_vmscan_writepage(page);
 890		inc_node_page_state(page, NR_VMSCAN_WRITE);
 891		return PAGE_SUCCESS;
 892	}
 893
 894	return PAGE_CLEAN;
 895}
 896
 897/*
 898 * Same as remove_mapping, but if the page is removed from the mapping, it
 899 * gets returned with a refcount of 0.
 900 */
 901static int __remove_mapping(struct address_space *mapping, struct page *page,
 902			    bool reclaimed)
 903{
 904	unsigned long flags;
 905	int refcount;
 906
 907	BUG_ON(!PageLocked(page));
 908	BUG_ON(mapping != page_mapping(page));
 909
 910	xa_lock_irqsave(&mapping->i_pages, flags);
 911	/*
 912	 * The non racy check for a busy page.
 913	 *
 914	 * Must be careful with the order of the tests. When someone has
 915	 * a ref to the page, it may be possible that they dirty it then
 916	 * drop the reference. So if PageDirty is tested before page_count
 917	 * here, then the following race may occur:
 918	 *
 919	 * get_user_pages(&page);
 920	 * [user mapping goes away]
 921	 * write_to(page);
 922	 *				!PageDirty(page)    [good]
 923	 * SetPageDirty(page);
 924	 * put_page(page);
 925	 *				!page_count(page)   [good, discard it]
 926	 *
 927	 * [oops, our write_to data is lost]
 928	 *
 929	 * Reversing the order of the tests ensures such a situation cannot
 930	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 931	 * load is not satisfied before that of page->_refcount.
 932	 *
 933	 * Note that if SetPageDirty is always performed via set_page_dirty,
 934	 * and thus under the i_pages lock, then this ordering is not required.
 935	 */
 936	refcount = 1 + compound_nr(page);
 937	if (!page_ref_freeze(page, refcount))
 938		goto cannot_free;
 939	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
 940	if (unlikely(PageDirty(page))) {
 941		page_ref_unfreeze(page, refcount);
 942		goto cannot_free;
 943	}
 944
 945	if (PageSwapCache(page)) {
 946		swp_entry_t swap = { .val = page_private(page) };
 947		mem_cgroup_swapout(page, swap);
 948		__delete_from_swap_cache(page, swap);
 949		xa_unlock_irqrestore(&mapping->i_pages, flags);
 950		put_swap_page(page, swap);
 951	} else {
 952		void (*freepage)(struct page *);
 953		void *shadow = NULL;
 954
 955		freepage = mapping->a_ops->freepage;
 956		/*
 957		 * Remember a shadow entry for reclaimed file cache in
 958		 * order to detect refaults, thus thrashing, later on.
 959		 *
 960		 * But don't store shadows in an address space that is
 961		 * already exiting.  This is not just an optizimation,
 962		 * inode reclaim needs to empty out the radix tree or
 963		 * the nodes are lost.  Don't plant shadows behind its
 964		 * back.
 965		 *
 966		 * We also don't store shadows for DAX mappings because the
 967		 * only page cache pages found in these are zero pages
 968		 * covering holes, and because we don't want to mix DAX
 969		 * exceptional entries and shadow exceptional entries in the
 970		 * same address_space.
 971		 */
 972		if (reclaimed && page_is_file_cache(page) &&
 973		    !mapping_exiting(mapping) && !dax_mapping(mapping))
 974			shadow = workingset_eviction(page);
 975		__delete_from_page_cache(page, shadow);
 976		xa_unlock_irqrestore(&mapping->i_pages, flags);
 977
 978		if (freepage != NULL)
 979			freepage(page);
 980	}
 981
 982	return 1;
 983
 984cannot_free:
 985	xa_unlock_irqrestore(&mapping->i_pages, flags);
 986	return 0;
 987}
 988
 989/*
 990 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 991 * someone else has a ref on the page, abort and return 0.  If it was
 992 * successfully detached, return 1.  Assumes the caller has a single ref on
 993 * this page.
 994 */
 995int remove_mapping(struct address_space *mapping, struct page *page)
 996{
 997	if (__remove_mapping(mapping, page, false)) {
 998		/*
 999		 * Unfreezing the refcount with 1 rather than 2 effectively
1000		 * drops the pagecache ref for us without requiring another
1001		 * atomic operation.
1002		 */
1003		page_ref_unfreeze(page, 1);
1004		return 1;
1005	}
1006	return 0;
1007}
1008
1009/**
1010 * putback_lru_page - put previously isolated page onto appropriate LRU list
1011 * @page: page to be put back to appropriate lru list
1012 *
1013 * Add previously isolated @page to appropriate LRU list.
1014 * Page may still be unevictable for other reasons.
1015 *
1016 * lru_lock must not be held, interrupts must be enabled.
1017 */
1018void putback_lru_page(struct page *page)
1019{
1020	lru_cache_add(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1021	put_page(page);		/* drop ref from isolate */
1022}
1023
1024enum page_references {
1025	PAGEREF_RECLAIM,
1026	PAGEREF_RECLAIM_CLEAN,
1027	PAGEREF_KEEP,
1028	PAGEREF_ACTIVATE,
1029};
1030
1031static enum page_references page_check_references(struct page *page,
1032						  struct scan_control *sc)
1033{
1034	int referenced_ptes, referenced_page;
1035	unsigned long vm_flags;
1036
1037	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1038					  &vm_flags);
1039	referenced_page = TestClearPageReferenced(page);
1040
1041	/*
1042	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1043	 * move the page to the unevictable list.
1044	 */
1045	if (vm_flags & VM_LOCKED)
1046		return PAGEREF_RECLAIM;
1047
1048	if (referenced_ptes) {
1049		if (PageSwapBacked(page))
1050			return PAGEREF_ACTIVATE;
1051		/*
1052		 * All mapped pages start out with page table
1053		 * references from the instantiating fault, so we need
1054		 * to look twice if a mapped file page is used more
1055		 * than once.
1056		 *
1057		 * Mark it and spare it for another trip around the
1058		 * inactive list.  Another page table reference will
1059		 * lead to its activation.
1060		 *
1061		 * Note: the mark is set for activated pages as well
1062		 * so that recently deactivated but used pages are
1063		 * quickly recovered.
1064		 */
1065		SetPageReferenced(page);
1066
1067		if (referenced_page || referenced_ptes > 1)
1068			return PAGEREF_ACTIVATE;
1069
1070		/*
1071		 * Activate file-backed executable pages after first usage.
1072		 */
1073		if (vm_flags & VM_EXEC)
1074			return PAGEREF_ACTIVATE;
1075
1076		return PAGEREF_KEEP;
1077	}
1078
1079	/* Reclaim if clean, defer dirty pages to writeback */
1080	if (referenced_page && !PageSwapBacked(page))
1081		return PAGEREF_RECLAIM_CLEAN;
1082
1083	return PAGEREF_RECLAIM;
1084}
1085
1086/* Check if a page is dirty or under writeback */
1087static void page_check_dirty_writeback(struct page *page,
1088				       bool *dirty, bool *writeback)
1089{
1090	struct address_space *mapping;
1091
1092	/*
1093	 * Anonymous pages are not handled by flushers and must be written
1094	 * from reclaim context. Do not stall reclaim based on them
1095	 */
1096	if (!page_is_file_cache(page) ||
1097	    (PageAnon(page) && !PageSwapBacked(page))) {
1098		*dirty = false;
1099		*writeback = false;
1100		return;
1101	}
1102
1103	/* By default assume that the page flags are accurate */
1104	*dirty = PageDirty(page);
1105	*writeback = PageWriteback(page);
1106
1107	/* Verify dirty/writeback state if the filesystem supports it */
1108	if (!page_has_private(page))
1109		return;
1110
1111	mapping = page_mapping(page);
1112	if (mapping && mapping->a_ops->is_dirty_writeback)
1113		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1114}
1115
1116/*
1117 * shrink_page_list() returns the number of reclaimed pages
1118 */
1119static unsigned long shrink_page_list(struct list_head *page_list,
1120				      struct pglist_data *pgdat,
1121				      struct scan_control *sc,
1122				      enum ttu_flags ttu_flags,
1123				      struct reclaim_stat *stat,
1124				      bool ignore_references)
1125{
1126	LIST_HEAD(ret_pages);
1127	LIST_HEAD(free_pages);
1128	unsigned nr_reclaimed = 0;
1129	unsigned pgactivate = 0;
 
 
 
1130
1131	memset(stat, 0, sizeof(*stat));
1132	cond_resched();
1133
1134	while (!list_empty(page_list)) {
 
1135		struct address_space *mapping;
1136		struct page *page;
1137		int may_enter_fs;
1138		enum page_references references = PAGEREF_RECLAIM;
1139		bool dirty, writeback;
1140		unsigned int nr_pages;
1141
1142		cond_resched();
1143
1144		page = lru_to_page(page_list);
1145		list_del(&page->lru);
1146
1147		if (!trylock_page(page))
1148			goto keep;
1149
1150		VM_BUG_ON_PAGE(PageActive(page), page);
 
1151
1152		nr_pages = compound_nr(page);
1153
1154		/* Account the number of base pages even though THP */
1155		sc->nr_scanned += nr_pages;
1156
1157		if (unlikely(!page_evictable(page)))
1158			goto activate_locked;
1159
1160		if (!sc->may_unmap && page_mapped(page))
1161			goto keep_locked;
1162
 
 
 
 
1163		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1164			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1165
1166		/*
1167		 * The number of dirty pages determines if a node is marked
1168		 * reclaim_congested which affects wait_iff_congested. kswapd
1169		 * will stall and start writing pages if the tail of the LRU
1170		 * is all dirty unqueued pages.
1171		 */
1172		page_check_dirty_writeback(page, &dirty, &writeback);
1173		if (dirty || writeback)
1174			stat->nr_dirty++;
1175
1176		if (dirty && !writeback)
1177			stat->nr_unqueued_dirty++;
1178
1179		/*
1180		 * Treat this page as congested if the underlying BDI is or if
1181		 * pages are cycling through the LRU so quickly that the
1182		 * pages marked for immediate reclaim are making it to the
1183		 * end of the LRU a second time.
1184		 */
1185		mapping = page_mapping(page);
1186		if (((dirty || writeback) && mapping &&
1187		     inode_write_congested(mapping->host)) ||
1188		    (writeback && PageReclaim(page)))
1189			stat->nr_congested++;
1190
1191		/*
1192		 * If a page at the tail of the LRU is under writeback, there
1193		 * are three cases to consider.
1194		 *
1195		 * 1) If reclaim is encountering an excessive number of pages
1196		 *    under writeback and this page is both under writeback and
1197		 *    PageReclaim then it indicates that pages are being queued
1198		 *    for IO but are being recycled through the LRU before the
1199		 *    IO can complete. Waiting on the page itself risks an
1200		 *    indefinite stall if it is impossible to writeback the
1201		 *    page due to IO error or disconnected storage so instead
1202		 *    note that the LRU is being scanned too quickly and the
1203		 *    caller can stall after page list has been processed.
1204		 *
1205		 * 2) Global or new memcg reclaim encounters a page that is
1206		 *    not marked for immediate reclaim, or the caller does not
1207		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1208		 *    not to fs). In this case mark the page for immediate
1209		 *    reclaim and continue scanning.
1210		 *
1211		 *    Require may_enter_fs because we would wait on fs, which
1212		 *    may not have submitted IO yet. And the loop driver might
1213		 *    enter reclaim, and deadlock if it waits on a page for
1214		 *    which it is needed to do the write (loop masks off
1215		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1216		 *    would probably show more reasons.
1217		 *
1218		 * 3) Legacy memcg encounters a page that is already marked
1219		 *    PageReclaim. memcg does not have any dirty pages
1220		 *    throttling so we could easily OOM just because too many
1221		 *    pages are in writeback and there is nothing else to
1222		 *    reclaim. Wait for the writeback to complete.
1223		 *
1224		 * In cases 1) and 2) we activate the pages to get them out of
1225		 * the way while we continue scanning for clean pages on the
1226		 * inactive list and refilling from the active list. The
1227		 * observation here is that waiting for disk writes is more
1228		 * expensive than potentially causing reloads down the line.
1229		 * Since they're marked for immediate reclaim, they won't put
1230		 * memory pressure on the cache working set any longer than it
1231		 * takes to write them to disk.
1232		 */
1233		if (PageWriteback(page)) {
1234			/* Case 1 above */
1235			if (current_is_kswapd() &&
1236			    PageReclaim(page) &&
1237			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1238				stat->nr_immediate++;
1239				goto activate_locked;
1240
1241			/* Case 2 above */
1242			} else if (sane_reclaim(sc) ||
1243			    !PageReclaim(page) || !may_enter_fs) {
 
 
 
 
 
 
 
 
 
1244				/*
1245				 * This is slightly racy - end_page_writeback()
1246				 * might have just cleared PageReclaim, then
1247				 * setting PageReclaim here end up interpreted
1248				 * as PageReadahead - but that does not matter
1249				 * enough to care.  What we do want is for this
1250				 * page to have PageReclaim set next time memcg
1251				 * reclaim reaches the tests above, so it will
1252				 * then wait_on_page_writeback() to avoid OOM;
1253				 * and it's also appropriate in global reclaim.
1254				 */
1255				SetPageReclaim(page);
1256				stat->nr_writeback++;
1257				goto activate_locked;
1258
1259			/* Case 3 above */
1260			} else {
1261				unlock_page(page);
1262				wait_on_page_writeback(page);
1263				/* then go back and try same page again */
1264				list_add_tail(&page->lru, page_list);
1265				continue;
1266			}
 
1267		}
1268
1269		if (!ignore_references)
1270			references = page_check_references(page, sc);
1271
1272		switch (references) {
1273		case PAGEREF_ACTIVATE:
1274			goto activate_locked;
1275		case PAGEREF_KEEP:
1276			stat->nr_ref_keep += nr_pages;
1277			goto keep_locked;
1278		case PAGEREF_RECLAIM:
1279		case PAGEREF_RECLAIM_CLEAN:
1280			; /* try to reclaim the page below */
1281		}
1282
1283		/*
1284		 * Anonymous process memory has backing store?
1285		 * Try to allocate it some swap space here.
1286		 * Lazyfree page could be freed directly
1287		 */
1288		if (PageAnon(page) && PageSwapBacked(page)) {
1289			if (!PageSwapCache(page)) {
1290				if (!(sc->gfp_mask & __GFP_IO))
1291					goto keep_locked;
1292				if (PageTransHuge(page)) {
1293					/* cannot split THP, skip it */
1294					if (!can_split_huge_page(page, NULL))
1295						goto activate_locked;
1296					/*
1297					 * Split pages without a PMD map right
1298					 * away. Chances are some or all of the
1299					 * tail pages can be freed without IO.
1300					 */
1301					if (!compound_mapcount(page) &&
1302					    split_huge_page_to_list(page,
1303								    page_list))
1304						goto activate_locked;
1305				}
1306				if (!add_to_swap(page)) {
1307					if (!PageTransHuge(page))
1308						goto activate_locked_split;
1309					/* Fallback to swap normal pages */
1310					if (split_huge_page_to_list(page,
1311								    page_list))
1312						goto activate_locked;
1313#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1314					count_vm_event(THP_SWPOUT_FALLBACK);
1315#endif
1316					if (!add_to_swap(page))
1317						goto activate_locked_split;
1318				}
1319
1320				may_enter_fs = 1;
1321
1322				/* Adding to swap updated mapping */
1323				mapping = page_mapping(page);
1324			}
1325		} else if (unlikely(PageTransHuge(page))) {
1326			/* Split file THP */
1327			if (split_huge_page_to_list(page, page_list))
1328				goto keep_locked;
 
 
 
1329		}
1330
1331		/*
1332		 * THP may get split above, need minus tail pages and update
1333		 * nr_pages to avoid accounting tail pages twice.
1334		 *
1335		 * The tail pages that are added into swap cache successfully
1336		 * reach here.
1337		 */
1338		if ((nr_pages > 1) && !PageTransHuge(page)) {
1339			sc->nr_scanned -= (nr_pages - 1);
1340			nr_pages = 1;
1341		}
1342
1343		/*
1344		 * The page is mapped into the page tables of one or more
1345		 * processes. Try to unmap it here.
1346		 */
1347		if (page_mapped(page)) {
1348			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1349
1350			if (unlikely(PageTransHuge(page)))
1351				flags |= TTU_SPLIT_HUGE_PMD;
1352			if (!try_to_unmap(page, flags)) {
1353				stat->nr_unmap_fail += nr_pages;
1354				goto activate_locked;
 
 
 
 
 
 
1355			}
1356		}
1357
1358		if (PageDirty(page)) {
 
 
1359			/*
1360			 * Only kswapd can writeback filesystem pages
1361			 * to avoid risk of stack overflow. But avoid
1362			 * injecting inefficient single-page IO into
1363			 * flusher writeback as much as possible: only
1364			 * write pages when we've encountered many
1365			 * dirty pages, and when we've already scanned
1366			 * the rest of the LRU for clean pages and see
1367			 * the same dirty pages again (PageReclaim).
1368			 */
1369			if (page_is_file_cache(page) &&
1370			    (!current_is_kswapd() || !PageReclaim(page) ||
1371			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1372				/*
1373				 * Immediately reclaim when written back.
1374				 * Similar in principal to deactivate_page()
1375				 * except we already have the page isolated
1376				 * and know it's dirty
1377				 */
1378				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1379				SetPageReclaim(page);
1380
1381				goto activate_locked;
1382			}
1383
1384			if (references == PAGEREF_RECLAIM_CLEAN)
1385				goto keep_locked;
1386			if (!may_enter_fs)
1387				goto keep_locked;
1388			if (!sc->may_writepage)
1389				goto keep_locked;
1390
1391			/*
1392			 * Page is dirty. Flush the TLB if a writable entry
1393			 * potentially exists to avoid CPU writes after IO
1394			 * starts and then write it out here.
1395			 */
1396			try_to_unmap_flush_dirty();
1397			switch (pageout(page, mapping, sc)) {
1398			case PAGE_KEEP:
 
1399				goto keep_locked;
1400			case PAGE_ACTIVATE:
1401				goto activate_locked;
1402			case PAGE_SUCCESS:
1403				if (PageWriteback(page))
1404					goto keep;
1405				if (PageDirty(page))
1406					goto keep;
1407
1408				/*
1409				 * A synchronous write - probably a ramdisk.  Go
1410				 * ahead and try to reclaim the page.
1411				 */
1412				if (!trylock_page(page))
1413					goto keep;
1414				if (PageDirty(page) || PageWriteback(page))
1415					goto keep_locked;
1416				mapping = page_mapping(page);
1417			case PAGE_CLEAN:
1418				; /* try to free the page below */
1419			}
1420		}
1421
1422		/*
1423		 * If the page has buffers, try to free the buffer mappings
1424		 * associated with this page. If we succeed we try to free
1425		 * the page as well.
1426		 *
1427		 * We do this even if the page is PageDirty().
1428		 * try_to_release_page() does not perform I/O, but it is
1429		 * possible for a page to have PageDirty set, but it is actually
1430		 * clean (all its buffers are clean).  This happens if the
1431		 * buffers were written out directly, with submit_bh(). ext3
1432		 * will do this, as well as the blockdev mapping.
1433		 * try_to_release_page() will discover that cleanness and will
1434		 * drop the buffers and mark the page clean - it can be freed.
1435		 *
1436		 * Rarely, pages can have buffers and no ->mapping.  These are
1437		 * the pages which were not successfully invalidated in
1438		 * truncate_complete_page().  We try to drop those buffers here
1439		 * and if that worked, and the page is no longer mapped into
1440		 * process address space (page_count == 1) it can be freed.
1441		 * Otherwise, leave the page on the LRU so it is swappable.
1442		 */
1443		if (page_has_private(page)) {
1444			if (!try_to_release_page(page, sc->gfp_mask))
1445				goto activate_locked;
1446			if (!mapping && page_count(page) == 1) {
1447				unlock_page(page);
1448				if (put_page_testzero(page))
1449					goto free_it;
1450				else {
1451					/*
1452					 * rare race with speculative reference.
1453					 * the speculative reference will free
1454					 * this page shortly, so we may
1455					 * increment nr_reclaimed here (and
1456					 * leave it off the LRU).
1457					 */
1458					nr_reclaimed++;
1459					continue;
1460				}
1461			}
1462		}
1463
1464		if (PageAnon(page) && !PageSwapBacked(page)) {
1465			/* follow __remove_mapping for reference */
1466			if (!page_ref_freeze(page, 1))
1467				goto keep_locked;
1468			if (PageDirty(page)) {
1469				page_ref_unfreeze(page, 1);
1470				goto keep_locked;
1471			}
1472
1473			count_vm_event(PGLAZYFREED);
1474			count_memcg_page_event(page, PGLAZYFREED);
1475		} else if (!mapping || !__remove_mapping(mapping, page, true))
1476			goto keep_locked;
1477
1478		unlock_page(page);
1479free_it:
1480		/*
1481		 * THP may get swapped out in a whole, need account
1482		 * all base pages.
 
 
 
1483		 */
1484		nr_reclaimed += nr_pages;
 
 
1485
1486		/*
1487		 * Is there need to periodically free_page_list? It would
1488		 * appear not as the counts should be low
1489		 */
1490		if (unlikely(PageTransHuge(page)))
1491			(*get_compound_page_dtor(page))(page);
1492		else
1493			list_add(&page->lru, &free_pages);
 
 
 
 
1494		continue;
1495
1496activate_locked_split:
1497		/*
1498		 * The tail pages that are failed to add into swap cache
1499		 * reach here.  Fixup nr_scanned and nr_pages.
1500		 */
1501		if (nr_pages > 1) {
1502			sc->nr_scanned -= (nr_pages - 1);
1503			nr_pages = 1;
1504		}
1505activate_locked:
1506		/* Not a candidate for swapping, so reclaim swap space. */
1507		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1508						PageMlocked(page)))
1509			try_to_free_swap(page);
1510		VM_BUG_ON_PAGE(PageActive(page), page);
1511		if (!PageMlocked(page)) {
1512			int type = page_is_file_cache(page);
1513			SetPageActive(page);
1514			stat->nr_activate[type] += nr_pages;
1515			count_memcg_page_event(page, PGACTIVATE);
1516		}
1517keep_locked:
1518		unlock_page(page);
1519keep:
1520		list_add(&page->lru, &ret_pages);
1521		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1522	}
1523
1524	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
 
 
 
 
 
 
 
1525
1526	mem_cgroup_uncharge_list(&free_pages);
1527	try_to_unmap_flush();
1528	free_unref_page_list(&free_pages);
1529
1530	list_splice(&ret_pages, page_list);
1531	count_vm_events(PGACTIVATE, pgactivate);
1532
 
1533	return nr_reclaimed;
1534}
1535
1536unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1537					    struct list_head *page_list)
1538{
1539	struct scan_control sc = {
1540		.gfp_mask = GFP_KERNEL,
1541		.priority = DEF_PRIORITY,
1542		.may_unmap = 1,
1543	};
1544	struct reclaim_stat dummy_stat;
1545	unsigned long ret;
1546	struct page *page, *next;
1547	LIST_HEAD(clean_pages);
1548
1549	list_for_each_entry_safe(page, next, page_list, lru) {
1550		if (page_is_file_cache(page) && !PageDirty(page) &&
1551		    !__PageMovable(page) && !PageUnevictable(page)) {
1552			ClearPageActive(page);
1553			list_move(&page->lru, &clean_pages);
1554		}
1555	}
1556
1557	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1558			TTU_IGNORE_ACCESS, &dummy_stat, true);
1559	list_splice(&clean_pages, page_list);
1560	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1561	return ret;
1562}
1563
1564/*
1565 * Attempt to remove the specified page from its LRU.  Only take this page
1566 * if it is of the appropriate PageActive status.  Pages which are being
1567 * freed elsewhere are also ignored.
1568 *
1569 * page:	page to consider
1570 * mode:	one of the LRU isolation modes defined above
1571 *
1572 * returns 0 on success, -ve errno on failure.
1573 */
1574int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1575{
1576	int ret = -EINVAL;
1577
1578	/* Only take pages on the LRU. */
1579	if (!PageLRU(page))
1580		return ret;
1581
1582	/* Compaction should not handle unevictable pages but CMA can do so */
1583	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1584		return ret;
1585
1586	ret = -EBUSY;
1587
1588	/*
1589	 * To minimise LRU disruption, the caller can indicate that it only
1590	 * wants to isolate pages it will be able to operate on without
1591	 * blocking - clean pages for the most part.
1592	 *
 
 
 
1593	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1594	 * that it is possible to migrate without blocking
1595	 */
1596	if (mode & ISOLATE_ASYNC_MIGRATE) {
1597		/* All the caller can do on PageWriteback is block */
1598		if (PageWriteback(page))
1599			return ret;
1600
1601		if (PageDirty(page)) {
1602			struct address_space *mapping;
1603			bool migrate_dirty;
 
 
 
1604
1605			/*
1606			 * Only pages without mappings or that have a
1607			 * ->migratepage callback are possible to migrate
1608			 * without blocking. However, we can be racing with
1609			 * truncation so it's necessary to lock the page
1610			 * to stabilise the mapping as truncation holds
1611			 * the page lock until after the page is removed
1612			 * from the page cache.
1613			 */
1614			if (!trylock_page(page))
1615				return ret;
1616
1617			mapping = page_mapping(page);
1618			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1619			unlock_page(page);
1620			if (!migrate_dirty)
1621				return ret;
1622		}
1623	}
1624
1625	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1626		return ret;
1627
1628	if (likely(get_page_unless_zero(page))) {
1629		/*
1630		 * Be careful not to clear PageLRU until after we're
1631		 * sure the page is not being freed elsewhere -- the
1632		 * page release code relies on it.
1633		 */
1634		ClearPageLRU(page);
1635		ret = 0;
1636	}
1637
1638	return ret;
1639}
1640
1641
1642/*
1643 * Update LRU sizes after isolating pages. The LRU size updates must
1644 * be complete before mem_cgroup_update_lru_size due to a santity check.
1645 */
1646static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1647			enum lru_list lru, unsigned long *nr_zone_taken)
1648{
1649	int zid;
1650
1651	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1652		if (!nr_zone_taken[zid])
1653			continue;
1654
1655		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1656#ifdef CONFIG_MEMCG
1657		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1658#endif
1659	}
1660
1661}
1662
1663/**
1664 * pgdat->lru_lock is heavily contended.  Some of the functions that
1665 * shrink the lists perform better by taking out a batch of pages
1666 * and working on them outside the LRU lock.
1667 *
1668 * For pagecache intensive workloads, this function is the hottest
1669 * spot in the kernel (apart from copy_*_user functions).
1670 *
1671 * Appropriate locks must be held before calling this function.
1672 *
1673 * @nr_to_scan:	The number of eligible pages to look through on the list.
1674 * @lruvec:	The LRU vector to pull pages from.
1675 * @dst:	The temp list to put pages on to.
1676 * @nr_scanned:	The number of pages that were scanned.
1677 * @sc:		The scan_control struct for this reclaim session
1678 * @mode:	One of the LRU isolation modes
1679 * @lru:	LRU list id for isolating
1680 *
1681 * returns how many pages were moved onto *@dst.
1682 */
1683static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1684		struct lruvec *lruvec, struct list_head *dst,
1685		unsigned long *nr_scanned, struct scan_control *sc,
1686		enum lru_list lru)
1687{
1688	struct list_head *src = &lruvec->lists[lru];
1689	unsigned long nr_taken = 0;
1690	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1691	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1692	unsigned long skipped = 0;
1693	unsigned long scan, total_scan, nr_pages;
1694	LIST_HEAD(pages_skipped);
1695	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1696
1697	total_scan = 0;
1698	scan = 0;
1699	while (scan < nr_to_scan && !list_empty(src)) {
1700		struct page *page;
 
1701
1702		page = lru_to_page(src);
1703		prefetchw_prev_lru_page(page, src, flags);
1704
1705		VM_BUG_ON_PAGE(!PageLRU(page), page);
1706
1707		nr_pages = compound_nr(page);
1708		total_scan += nr_pages;
1709
1710		if (page_zonenum(page) > sc->reclaim_idx) {
1711			list_move(&page->lru, &pages_skipped);
1712			nr_skipped[page_zonenum(page)] += nr_pages;
1713			continue;
1714		}
1715
1716		/*
1717		 * Do not count skipped pages because that makes the function
1718		 * return with no isolated pages if the LRU mostly contains
1719		 * ineligible pages.  This causes the VM to not reclaim any
1720		 * pages, triggering a premature OOM.
1721		 *
1722		 * Account all tail pages of THP.  This would not cause
1723		 * premature OOM since __isolate_lru_page() returns -EBUSY
1724		 * only when the page is being freed somewhere else.
1725		 */
1726		scan += nr_pages;
1727		switch (__isolate_lru_page(page, mode)) {
1728		case 0:
1729			nr_taken += nr_pages;
1730			nr_zone_taken[page_zonenum(page)] += nr_pages;
1731			list_move(&page->lru, dst);
 
1732			break;
1733
1734		case -EBUSY:
1735			/* else it is being freed elsewhere */
1736			list_move(&page->lru, src);
1737			continue;
1738
1739		default:
1740			BUG();
1741		}
1742	}
1743
1744	/*
1745	 * Splice any skipped pages to the start of the LRU list. Note that
1746	 * this disrupts the LRU order when reclaiming for lower zones but
1747	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1748	 * scanning would soon rescan the same pages to skip and put the
1749	 * system at risk of premature OOM.
1750	 */
1751	if (!list_empty(&pages_skipped)) {
1752		int zid;
1753
1754		list_splice(&pages_skipped, src);
1755		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1756			if (!nr_skipped[zid])
1757				continue;
1758
1759			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1760			skipped += nr_skipped[zid];
1761		}
1762	}
1763	*nr_scanned = total_scan;
1764	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1765				    total_scan, skipped, nr_taken, mode, lru);
1766	update_lru_sizes(lruvec, lru, nr_zone_taken);
1767	return nr_taken;
1768}
1769
1770/**
1771 * isolate_lru_page - tries to isolate a page from its LRU list
1772 * @page: page to isolate from its LRU list
1773 *
1774 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1775 * vmstat statistic corresponding to whatever LRU list the page was on.
1776 *
1777 * Returns 0 if the page was removed from an LRU list.
1778 * Returns -EBUSY if the page was not on an LRU list.
1779 *
1780 * The returned page will have PageLRU() cleared.  If it was found on
1781 * the active list, it will have PageActive set.  If it was found on
1782 * the unevictable list, it will have the PageUnevictable bit set. That flag
1783 * may need to be cleared by the caller before letting the page go.
1784 *
1785 * The vmstat statistic corresponding to the list on which the page was
1786 * found will be decremented.
1787 *
1788 * Restrictions:
1789 *
1790 * (1) Must be called with an elevated refcount on the page. This is a
1791 *     fundamentnal difference from isolate_lru_pages (which is called
1792 *     without a stable reference).
1793 * (2) the lru_lock must not be held.
1794 * (3) interrupts must be enabled.
1795 */
1796int isolate_lru_page(struct page *page)
1797{
1798	int ret = -EBUSY;
1799
1800	VM_BUG_ON_PAGE(!page_count(page), page);
1801	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1802
1803	if (PageLRU(page)) {
1804		pg_data_t *pgdat = page_pgdat(page);
1805		struct lruvec *lruvec;
1806
1807		spin_lock_irq(&pgdat->lru_lock);
1808		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1809		if (PageLRU(page)) {
1810			int lru = page_lru(page);
1811			get_page(page);
1812			ClearPageLRU(page);
1813			del_page_from_lru_list(page, lruvec, lru);
1814			ret = 0;
1815		}
1816		spin_unlock_irq(&pgdat->lru_lock);
1817	}
1818	return ret;
1819}
1820
1821/*
1822 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1823 * then get resheduled. When there are massive number of tasks doing page
1824 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1825 * the LRU list will go small and be scanned faster than necessary, leading to
1826 * unnecessary swapping, thrashing and OOM.
1827 */
1828static int too_many_isolated(struct pglist_data *pgdat, int file,
1829		struct scan_control *sc)
1830{
1831	unsigned long inactive, isolated;
1832
1833	if (current_is_kswapd())
1834		return 0;
1835
1836	if (!sane_reclaim(sc))
1837		return 0;
1838
1839	if (file) {
1840		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1841		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1842	} else {
1843		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1844		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1845	}
1846
1847	/*
1848	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1849	 * won't get blocked by normal direct-reclaimers, forming a circular
1850	 * deadlock.
1851	 */
1852	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1853		inactive >>= 3;
1854
1855	return isolated > inactive;
1856}
1857
1858/*
1859 * This moves pages from @list to corresponding LRU list.
1860 *
1861 * We move them the other way if the page is referenced by one or more
1862 * processes, from rmap.
1863 *
1864 * If the pages are mostly unmapped, the processing is fast and it is
1865 * appropriate to hold zone_lru_lock across the whole operation.  But if
1866 * the pages are mapped, the processing is slow (page_referenced()) so we
1867 * should drop zone_lru_lock around each page.  It's impossible to balance
1868 * this, so instead we remove the pages from the LRU while processing them.
1869 * It is safe to rely on PG_active against the non-LRU pages in here because
1870 * nobody will play with that bit on a non-LRU page.
1871 *
1872 * The downside is that we have to touch page->_refcount against each page.
1873 * But we had to alter page->flags anyway.
1874 *
1875 * Returns the number of pages moved to the given lruvec.
1876 */
1877
1878static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1879						     struct list_head *list)
1880{
1881	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1882	int nr_pages, nr_moved = 0;
1883	LIST_HEAD(pages_to_free);
1884	struct page *page;
1885	enum lru_list lru;
1886
1887	while (!list_empty(list)) {
1888		page = lru_to_page(list);
1889		VM_BUG_ON_PAGE(PageLRU(page), page);
1890		if (unlikely(!page_evictable(page))) {
1891			list_del(&page->lru);
1892			spin_unlock_irq(&pgdat->lru_lock);
 
 
 
 
 
1893			putback_lru_page(page);
1894			spin_lock_irq(&pgdat->lru_lock);
1895			continue;
1896		}
1897		lruvec = mem_cgroup_page_lruvec(page, pgdat);
 
1898
1899		SetPageLRU(page);
1900		lru = page_lru(page);
 
1901
1902		nr_pages = hpage_nr_pages(page);
1903		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1904		list_move(&page->lru, &lruvec->lists[lru]);
1905
 
1906		if (put_page_testzero(page)) {
1907			__ClearPageLRU(page);
1908			__ClearPageActive(page);
1909			del_page_from_lru_list(page, lruvec, lru);
1910
1911			if (unlikely(PageCompound(page))) {
1912				spin_unlock_irq(&pgdat->lru_lock);
1913				(*get_compound_page_dtor(page))(page);
1914				spin_lock_irq(&pgdat->lru_lock);
1915			} else
1916				list_add(&page->lru, &pages_to_free);
1917		} else {
1918			nr_moved += nr_pages;
1919		}
1920	}
1921
1922	/*
1923	 * To save our caller's stack, now use input list for pages to free.
1924	 */
1925	list_splice(&pages_to_free, list);
1926
1927	return nr_moved;
1928}
1929
1930/*
1931 * If a kernel thread (such as nfsd for loop-back mounts) services
1932 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1933 * In that case we should only throttle if the backing device it is
1934 * writing to is congested.  In other cases it is safe to throttle.
1935 */
1936static int current_may_throttle(void)
1937{
1938	return !(current->flags & PF_LESS_THROTTLE) ||
1939		current->backing_dev_info == NULL ||
1940		bdi_write_congested(current->backing_dev_info);
1941}
1942
1943/*
1944 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1945 * of reclaimed pages
1946 */
1947static noinline_for_stack unsigned long
1948shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1949		     struct scan_control *sc, enum lru_list lru)
1950{
1951	LIST_HEAD(page_list);
1952	unsigned long nr_scanned;
1953	unsigned long nr_reclaimed = 0;
1954	unsigned long nr_taken;
1955	struct reclaim_stat stat;
 
 
1956	int file = is_file_lru(lru);
1957	enum vm_event_item item;
1958	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1959	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1960	bool stalled = false;
1961
1962	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1963		if (stalled)
1964			return 0;
1965
1966		/* wait a bit for the reclaimer. */
1967		msleep(100);
1968		stalled = true;
1969
1970		/* We are about to die and free our memory. Return now. */
1971		if (fatal_signal_pending(current))
1972			return SWAP_CLUSTER_MAX;
1973	}
1974
1975	lru_add_drain();
1976
1977	spin_lock_irq(&pgdat->lru_lock);
 
 
 
 
 
1978
1979	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1980				     &nr_scanned, sc, lru);
1981
1982	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1983	reclaim_stat->recent_scanned[file] += nr_taken;
1984
1985	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1986	if (global_reclaim(sc))
1987		__count_vm_events(item, nr_scanned);
1988	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1989	spin_unlock_irq(&pgdat->lru_lock);
 
 
 
1990
1991	if (nr_taken == 0)
1992		return 0;
1993
1994	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1995				&stat, false);
1996
1997	spin_lock_irq(&pgdat->lru_lock);
1998
1999	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2000	if (global_reclaim(sc))
2001		__count_vm_events(item, nr_reclaimed);
2002	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2003	reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
2004	reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
2005
2006	move_pages_to_lru(lruvec, &page_list);
 
 
 
 
 
 
 
2007
2008	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2009
2010	spin_unlock_irq(&pgdat->lru_lock);
2011
2012	mem_cgroup_uncharge_list(&page_list);
2013	free_unref_page_list(&page_list);
 
2014
2015	/*
2016	 * If dirty pages are scanned that are not queued for IO, it
2017	 * implies that flushers are not doing their job. This can
2018	 * happen when memory pressure pushes dirty pages to the end of
2019	 * the LRU before the dirty limits are breached and the dirty
2020	 * data has expired. It can also happen when the proportion of
2021	 * dirty pages grows not through writes but through memory
2022	 * pressure reclaiming all the clean cache. And in some cases,
2023	 * the flushers simply cannot keep up with the allocation
2024	 * rate. Nudge the flusher threads in case they are asleep.
2025	 */
2026	if (stat.nr_unqueued_dirty == nr_taken)
2027		wakeup_flusher_threads(WB_REASON_VMSCAN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2028
2029	sc->nr.dirty += stat.nr_dirty;
2030	sc->nr.congested += stat.nr_congested;
2031	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2032	sc->nr.writeback += stat.nr_writeback;
2033	sc->nr.immediate += stat.nr_immediate;
2034	sc->nr.taken += nr_taken;
2035	if (file)
2036		sc->nr.file_taken += nr_taken;
 
 
 
 
 
 
 
 
 
2037
2038	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2039			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2040	return nr_reclaimed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2041}
2042
2043static void shrink_active_list(unsigned long nr_to_scan,
2044			       struct lruvec *lruvec,
2045			       struct scan_control *sc,
2046			       enum lru_list lru)
2047{
2048	unsigned long nr_taken;
2049	unsigned long nr_scanned;
2050	unsigned long vm_flags;
2051	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2052	LIST_HEAD(l_active);
2053	LIST_HEAD(l_inactive);
2054	struct page *page;
2055	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2056	unsigned nr_deactivate, nr_activate;
2057	unsigned nr_rotated = 0;
2058	int file = is_file_lru(lru);
2059	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2060
2061	lru_add_drain();
2062
2063	spin_lock_irq(&pgdat->lru_lock);
 
 
 
 
 
2064
2065	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2066				     &nr_scanned, sc, lru);
 
 
2067
2068	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2069	reclaim_stat->recent_scanned[file] += nr_taken;
2070
2071	__count_vm_events(PGREFILL, nr_scanned);
2072	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2073
2074	spin_unlock_irq(&pgdat->lru_lock);
2075
2076	while (!list_empty(&l_hold)) {
2077		cond_resched();
2078		page = lru_to_page(&l_hold);
2079		list_del(&page->lru);
2080
2081		if (unlikely(!page_evictable(page))) {
2082			putback_lru_page(page);
2083			continue;
2084		}
2085
2086		if (unlikely(buffer_heads_over_limit)) {
2087			if (page_has_private(page) && trylock_page(page)) {
2088				if (page_has_private(page))
2089					try_to_release_page(page, 0);
2090				unlock_page(page);
2091			}
2092		}
2093
2094		if (page_referenced(page, 0, sc->target_mem_cgroup,
2095				    &vm_flags)) {
2096			nr_rotated += hpage_nr_pages(page);
2097			/*
2098			 * Identify referenced, file-backed active pages and
2099			 * give them one more trip around the active list. So
2100			 * that executable code get better chances to stay in
2101			 * memory under moderate memory pressure.  Anon pages
2102			 * are not likely to be evicted by use-once streaming
2103			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2104			 * so we ignore them here.
2105			 */
2106			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2107				list_add(&page->lru, &l_active);
2108				continue;
2109			}
2110		}
2111
2112		ClearPageActive(page);	/* we are de-activating */
2113		SetPageWorkingset(page);
2114		list_add(&page->lru, &l_inactive);
2115	}
2116
2117	/*
2118	 * Move pages back to the lru list.
2119	 */
2120	spin_lock_irq(&pgdat->lru_lock);
2121	/*
2122	 * Count referenced pages from currently used mappings as rotated,
2123	 * even though only some of them are actually re-activated.  This
2124	 * helps balance scan pressure between file and anonymous pages in
2125	 * get_scan_count.
2126	 */
2127	reclaim_stat->recent_rotated[file] += nr_rotated;
2128
2129	nr_activate = move_pages_to_lru(lruvec, &l_active);
2130	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2131	/* Keep all free pages in l_active list */
2132	list_splice(&l_inactive, &l_active);
2133
2134	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2135	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2136
2137	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2138	spin_unlock_irq(&pgdat->lru_lock);
2139
2140	mem_cgroup_uncharge_list(&l_active);
2141	free_unref_page_list(&l_active);
2142	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2143			nr_deactivate, nr_rotated, sc->priority, file);
2144}
2145
2146unsigned long reclaim_pages(struct list_head *page_list)
 
2147{
2148	int nid = -1;
2149	unsigned long nr_reclaimed = 0;
2150	LIST_HEAD(node_page_list);
2151	struct reclaim_stat dummy_stat;
2152	struct page *page;
2153	struct scan_control sc = {
2154		.gfp_mask = GFP_KERNEL,
2155		.priority = DEF_PRIORITY,
2156		.may_writepage = 1,
2157		.may_unmap = 1,
2158		.may_swap = 1,
2159	};
2160
2161	while (!list_empty(page_list)) {
2162		page = lru_to_page(page_list);
2163		if (nid == -1) {
2164			nid = page_to_nid(page);
2165			INIT_LIST_HEAD(&node_page_list);
2166		}
2167
2168		if (nid == page_to_nid(page)) {
2169			ClearPageActive(page);
2170			list_move(&page->lru, &node_page_list);
2171			continue;
2172		}
2173
2174		nr_reclaimed += shrink_page_list(&node_page_list,
2175						NODE_DATA(nid),
2176						&sc, 0,
2177						&dummy_stat, false);
2178		while (!list_empty(&node_page_list)) {
2179			page = lru_to_page(&node_page_list);
2180			list_del(&page->lru);
2181			putback_lru_page(page);
2182		}
2183
2184		nid = -1;
2185	}
2186
2187	if (!list_empty(&node_page_list)) {
2188		nr_reclaimed += shrink_page_list(&node_page_list,
2189						NODE_DATA(nid),
2190						&sc, 0,
2191						&dummy_stat, false);
2192		while (!list_empty(&node_page_list)) {
2193			page = lru_to_page(&node_page_list);
2194			list_del(&page->lru);
2195			putback_lru_page(page);
2196		}
2197	}
2198
2199	return nr_reclaimed;
2200}
2201
2202/*
2203 * The inactive anon list should be small enough that the VM never has
2204 * to do too much work.
2205 *
2206 * The inactive file list should be small enough to leave most memory
2207 * to the established workingset on the scan-resistant active list,
2208 * but large enough to avoid thrashing the aggregate readahead window.
2209 *
2210 * Both inactive lists should also be large enough that each inactive
2211 * page has a chance to be referenced again before it is reclaimed.
2212 *
2213 * If that fails and refaulting is observed, the inactive list grows.
2214 *
2215 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2216 * on this LRU, maintained by the pageout code. An inactive_ratio
2217 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2218 *
2219 * total     target    max
2220 * memory    ratio     inactive
2221 * -------------------------------------
2222 *   10MB       1         5MB
2223 *  100MB       1        50MB
2224 *    1GB       3       250MB
2225 *   10GB      10       0.9GB
2226 *  100GB      31         3GB
2227 *    1TB     101        10GB
2228 *   10TB     320        32GB
2229 */
2230static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2231				 struct scan_control *sc, bool trace)
2232{
2233	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2234	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2235	enum lru_list inactive_lru = file * LRU_FILE;
2236	unsigned long inactive, active;
2237	unsigned long inactive_ratio;
2238	unsigned long refaults;
2239	unsigned long gb;
2240
2241	/*
2242	 * If we don't have swap space, anonymous page deactivation
2243	 * is pointless.
2244	 */
2245	if (!file && !total_swap_pages)
2246		return false;
2247
2248	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2249	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2250
2251	/*
2252	 * When refaults are being observed, it means a new workingset
2253	 * is being established. Disable active list protection to get
2254	 * rid of the stale workingset quickly.
2255	 */
2256	refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2257	if (file && lruvec->refaults != refaults) {
2258		inactive_ratio = 0;
2259	} else {
2260		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2261		if (gb)
2262			inactive_ratio = int_sqrt(10 * gb);
2263		else
2264			inactive_ratio = 1;
2265	}
2266
2267	if (trace)
2268		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2269			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2270			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2271			inactive_ratio, file);
2272
2273	return inactive * inactive_ratio < active;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2274}
2275
2276static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2277				 struct lruvec *lruvec, struct scan_control *sc)
2278{
2279	if (is_active_lru(lru)) {
2280		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2281			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2282		return 0;
2283	}
2284
2285	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2286}
2287
2288enum scan_balance {
2289	SCAN_EQUAL,
2290	SCAN_FRACT,
2291	SCAN_ANON,
2292	SCAN_FILE,
2293};
2294
2295/*
2296 * Determine how aggressively the anon and file LRU lists should be
2297 * scanned.  The relative value of each set of LRU lists is determined
2298 * by looking at the fraction of the pages scanned we did rotate back
2299 * onto the active list instead of evict.
2300 *
2301 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2302 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2303 */
2304static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2305			   struct scan_control *sc, unsigned long *nr,
2306			   unsigned long *lru_pages)
2307{
2308	int swappiness = mem_cgroup_swappiness(memcg);
2309	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2310	u64 fraction[2];
2311	u64 denominator = 0;	/* gcc */
2312	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2313	unsigned long anon_prio, file_prio;
2314	enum scan_balance scan_balance;
2315	unsigned long anon, file;
2316	unsigned long ap, fp;
 
 
2317	enum lru_list lru;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2318
2319	/* If we have no swap space, do not bother scanning anon pages. */
2320	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2321		scan_balance = SCAN_FILE;
 
 
 
2322		goto out;
2323	}
2324
2325	/*
2326	 * Global reclaim will swap to prevent OOM even with no
2327	 * swappiness, but memcg users want to use this knob to
2328	 * disable swapping for individual groups completely when
2329	 * using the memory controller's swap limit feature would be
2330	 * too expensive.
2331	 */
2332	if (!global_reclaim(sc) && !swappiness) {
2333		scan_balance = SCAN_FILE;
2334		goto out;
2335	}
2336
2337	/*
2338	 * Do not apply any pressure balancing cleverness when the
2339	 * system is close to OOM, scan both anon and file equally
2340	 * (unless the swappiness setting disagrees with swapping).
2341	 */
2342	if (!sc->priority && swappiness) {
2343		scan_balance = SCAN_EQUAL;
2344		goto out;
2345	}
2346
2347	/*
2348	 * Prevent the reclaimer from falling into the cache trap: as
2349	 * cache pages start out inactive, every cache fault will tip
2350	 * the scan balance towards the file LRU.  And as the file LRU
2351	 * shrinks, so does the window for rotation from references.
2352	 * This means we have a runaway feedback loop where a tiny
2353	 * thrashing file LRU becomes infinitely more attractive than
2354	 * anon pages.  Try to detect this based on file LRU size.
2355	 */
2356	if (global_reclaim(sc)) {
2357		unsigned long pgdatfile;
2358		unsigned long pgdatfree;
2359		int z;
2360		unsigned long total_high_wmark = 0;
2361
2362		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2363		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2364			   node_page_state(pgdat, NR_INACTIVE_FILE);
2365
2366		for (z = 0; z < MAX_NR_ZONES; z++) {
2367			struct zone *zone = &pgdat->node_zones[z];
2368			if (!managed_zone(zone))
2369				continue;
2370
2371			total_high_wmark += high_wmark_pages(zone);
2372		}
2373
2374		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2375			/*
2376			 * Force SCAN_ANON if there are enough inactive
2377			 * anonymous pages on the LRU in eligible zones.
2378			 * Otherwise, the small LRU gets thrashed.
2379			 */
2380			if (!inactive_list_is_low(lruvec, false, sc, false) &&
2381			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2382					>> sc->priority) {
2383				scan_balance = SCAN_ANON;
2384				goto out;
2385			}
2386		}
2387	}
2388
2389	/*
2390	 * If there is enough inactive page cache, i.e. if the size of the
2391	 * inactive list is greater than that of the active list *and* the
2392	 * inactive list actually has some pages to scan on this priority, we
2393	 * do not reclaim anything from the anonymous working set right now.
2394	 * Without the second condition we could end up never scanning an
2395	 * lruvec even if it has plenty of old anonymous pages unless the
2396	 * system is under heavy pressure.
2397	 */
2398	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2399	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2400		scan_balance = SCAN_FILE;
2401		goto out;
2402	}
2403
2404	scan_balance = SCAN_FRACT;
2405
2406	/*
2407	 * With swappiness at 100, anonymous and file have the same priority.
2408	 * This scanning priority is essentially the inverse of IO cost.
2409	 */
2410	anon_prio = swappiness;
2411	file_prio = 200 - anon_prio;
2412
2413	/*
2414	 * OK, so we have swap space and a fair amount of page cache
2415	 * pages.  We use the recently rotated / recently scanned
2416	 * ratios to determine how valuable each cache is.
2417	 *
2418	 * Because workloads change over time (and to avoid overflow)
2419	 * we keep these statistics as a floating average, which ends
2420	 * up weighing recent references more than old ones.
2421	 *
2422	 * anon in [0], file in [1]
2423	 */
2424
2425	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2426		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2427	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2428		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2429
2430	spin_lock_irq(&pgdat->lru_lock);
2431	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2432		reclaim_stat->recent_scanned[0] /= 2;
2433		reclaim_stat->recent_rotated[0] /= 2;
2434	}
2435
2436	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2437		reclaim_stat->recent_scanned[1] /= 2;
2438		reclaim_stat->recent_rotated[1] /= 2;
2439	}
2440
2441	/*
2442	 * The amount of pressure on anon vs file pages is inversely
2443	 * proportional to the fraction of recently scanned pages on
2444	 * each list that were recently referenced and in active use.
2445	 */
2446	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2447	ap /= reclaim_stat->recent_rotated[0] + 1;
2448
2449	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2450	fp /= reclaim_stat->recent_rotated[1] + 1;
2451	spin_unlock_irq(&pgdat->lru_lock);
2452
2453	fraction[0] = ap;
2454	fraction[1] = fp;
2455	denominator = ap + fp + 1;
2456out:
2457	*lru_pages = 0;
2458	for_each_evictable_lru(lru) {
2459		int file = is_file_lru(lru);
2460		unsigned long lruvec_size;
2461		unsigned long scan;
2462		unsigned long protection;
2463
2464		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2465		protection = mem_cgroup_protection(memcg,
2466						   sc->memcg_low_reclaim);
2467
2468		if (protection) {
2469			/*
2470			 * Scale a cgroup's reclaim pressure by proportioning
2471			 * its current usage to its memory.low or memory.min
2472			 * setting.
2473			 *
2474			 * This is important, as otherwise scanning aggression
2475			 * becomes extremely binary -- from nothing as we
2476			 * approach the memory protection threshold, to totally
2477			 * nominal as we exceed it.  This results in requiring
2478			 * setting extremely liberal protection thresholds. It
2479			 * also means we simply get no protection at all if we
2480			 * set it too low, which is not ideal.
2481			 *
2482			 * If there is any protection in place, we reduce scan
2483			 * pressure by how much of the total memory used is
2484			 * within protection thresholds.
2485			 *
2486			 * There is one special case: in the first reclaim pass,
2487			 * we skip over all groups that are within their low
2488			 * protection. If that fails to reclaim enough pages to
2489			 * satisfy the reclaim goal, we come back and override
2490			 * the best-effort low protection. However, we still
2491			 * ideally want to honor how well-behaved groups are in
2492			 * that case instead of simply punishing them all
2493			 * equally. As such, we reclaim them based on how much
2494			 * memory they are using, reducing the scan pressure
2495			 * again by how much of the total memory used is under
2496			 * hard protection.
2497			 */
2498			unsigned long cgroup_size = mem_cgroup_size(memcg);
2499
2500			/* Avoid TOCTOU with earlier protection check */
2501			cgroup_size = max(cgroup_size, protection);
2502
2503			scan = lruvec_size - lruvec_size * protection /
2504				cgroup_size;
2505
2506			/*
2507			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2508			 * reclaim moving forwards, avoiding decremeting
2509			 * sc->priority further than desirable.
2510			 */
2511			scan = max(scan, SWAP_CLUSTER_MAX);
2512		} else {
2513			scan = lruvec_size;
2514		}
2515
2516		scan >>= sc->priority;
2517
2518		/*
2519		 * If the cgroup's already been deleted, make sure to
2520		 * scrape out the remaining cache.
2521		 */
2522		if (!scan && !mem_cgroup_online(memcg))
2523			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2524
2525		switch (scan_balance) {
2526		case SCAN_EQUAL:
2527			/* Scan lists relative to size */
2528			break;
2529		case SCAN_FRACT:
2530			/*
2531			 * Scan types proportional to swappiness and
2532			 * their relative recent reclaim efficiency.
2533			 * Make sure we don't miss the last page
2534			 * because of a round-off error.
2535			 */
2536			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2537						  denominator);
2538			break;
2539		case SCAN_FILE:
2540		case SCAN_ANON:
2541			/* Scan one type exclusively */
2542			if ((scan_balance == SCAN_FILE) != file) {
2543				lruvec_size = 0;
2544				scan = 0;
2545			}
2546			break;
2547		default:
2548			/* Look ma, no brain */
2549			BUG();
2550		}
2551
2552		*lru_pages += lruvec_size;
2553		nr[lru] = scan;
2554	}
2555}
2556
2557/*
2558 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2559 */
2560static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2561			      struct scan_control *sc, unsigned long *lru_pages)
2562{
2563	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2564	unsigned long nr[NR_LRU_LISTS];
2565	unsigned long targets[NR_LRU_LISTS];
2566	unsigned long nr_to_scan;
2567	enum lru_list lru;
2568	unsigned long nr_reclaimed = 0;
2569	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2570	struct blk_plug plug;
2571	bool scan_adjusted;
2572
2573	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2574
2575	/* Record the original scan target for proportional adjustments later */
2576	memcpy(targets, nr, sizeof(nr));
2577
2578	/*
2579	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2580	 * event that can occur when there is little memory pressure e.g.
2581	 * multiple streaming readers/writers. Hence, we do not abort scanning
2582	 * when the requested number of pages are reclaimed when scanning at
2583	 * DEF_PRIORITY on the assumption that the fact we are direct
2584	 * reclaiming implies that kswapd is not keeping up and it is best to
2585	 * do a batch of work at once. For memcg reclaim one check is made to
2586	 * abort proportional reclaim if either the file or anon lru has already
2587	 * dropped to zero at the first pass.
2588	 */
2589	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2590			 sc->priority == DEF_PRIORITY);
2591
2592	blk_start_plug(&plug);
2593	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2594					nr[LRU_INACTIVE_FILE]) {
2595		unsigned long nr_anon, nr_file, percentage;
2596		unsigned long nr_scanned;
2597
2598		for_each_evictable_lru(lru) {
2599			if (nr[lru]) {
2600				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2601				nr[lru] -= nr_to_scan;
2602
2603				nr_reclaimed += shrink_list(lru, nr_to_scan,
2604							    lruvec, sc);
2605			}
2606		}
2607
2608		cond_resched();
2609
2610		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2611			continue;
2612
2613		/*
2614		 * For kswapd and memcg, reclaim at least the number of pages
2615		 * requested. Ensure that the anon and file LRUs are scanned
2616		 * proportionally what was requested by get_scan_count(). We
2617		 * stop reclaiming one LRU and reduce the amount scanning
2618		 * proportional to the original scan target.
2619		 */
2620		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2621		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2622
2623		/*
2624		 * It's just vindictive to attack the larger once the smaller
2625		 * has gone to zero.  And given the way we stop scanning the
2626		 * smaller below, this makes sure that we only make one nudge
2627		 * towards proportionality once we've got nr_to_reclaim.
2628		 */
2629		if (!nr_file || !nr_anon)
2630			break;
2631
2632		if (nr_file > nr_anon) {
2633			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2634						targets[LRU_ACTIVE_ANON] + 1;
2635			lru = LRU_BASE;
2636			percentage = nr_anon * 100 / scan_target;
2637		} else {
2638			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2639						targets[LRU_ACTIVE_FILE] + 1;
2640			lru = LRU_FILE;
2641			percentage = nr_file * 100 / scan_target;
2642		}
2643
2644		/* Stop scanning the smaller of the LRU */
2645		nr[lru] = 0;
2646		nr[lru + LRU_ACTIVE] = 0;
2647
2648		/*
2649		 * Recalculate the other LRU scan count based on its original
2650		 * scan target and the percentage scanning already complete
2651		 */
2652		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2653		nr_scanned = targets[lru] - nr[lru];
2654		nr[lru] = targets[lru] * (100 - percentage) / 100;
2655		nr[lru] -= min(nr[lru], nr_scanned);
2656
2657		lru += LRU_ACTIVE;
2658		nr_scanned = targets[lru] - nr[lru];
2659		nr[lru] = targets[lru] * (100 - percentage) / 100;
2660		nr[lru] -= min(nr[lru], nr_scanned);
2661
2662		scan_adjusted = true;
2663	}
2664	blk_finish_plug(&plug);
2665	sc->nr_reclaimed += nr_reclaimed;
2666
2667	/*
2668	 * Even if we did not try to evict anon pages at all, we want to
2669	 * rebalance the anon lru active/inactive ratio.
2670	 */
2671	if (inactive_list_is_low(lruvec, false, sc, true))
2672		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2673				   sc, LRU_ACTIVE_ANON);
2674}
2675
2676/* Use reclaim/compaction for costly allocs or under memory pressure */
2677static bool in_reclaim_compaction(struct scan_control *sc)
2678{
2679	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2680			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2681			 sc->priority < DEF_PRIORITY - 2))
2682		return true;
2683
2684	return false;
2685}
2686
2687/*
2688 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2689 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2690 * true if more pages should be reclaimed such that when the page allocator
2691 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2692 * It will give up earlier than that if there is difficulty reclaiming pages.
2693 */
2694static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2695					unsigned long nr_reclaimed,
 
2696					struct scan_control *sc)
2697{
2698	unsigned long pages_for_compaction;
2699	unsigned long inactive_lru_pages;
2700	int z;
2701
2702	/* If not in reclaim/compaction mode, stop */
2703	if (!in_reclaim_compaction(sc))
2704		return false;
2705
2706	/*
2707	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2708	 * number of pages that were scanned. This will return to the caller
2709	 * with the risk reclaim/compaction and the resulting allocation attempt
2710	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2711	 * allocations through requiring that the full LRU list has been scanned
2712	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2713	 * scan, but that approximation was wrong, and there were corner cases
2714	 * where always a non-zero amount of pages were scanned.
2715	 */
2716	if (!nr_reclaimed)
2717		return false;
2718
2719	/* If compaction would go ahead or the allocation would succeed, stop */
2720	for (z = 0; z <= sc->reclaim_idx; z++) {
2721		struct zone *zone = &pgdat->node_zones[z];
2722		if (!managed_zone(zone))
2723			continue;
2724
2725		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2726		case COMPACT_SUCCESS:
2727		case COMPACT_CONTINUE:
2728			return false;
2729		default:
2730			/* check next zone */
2731			;
2732		}
2733	}
2734
2735	/*
2736	 * If we have not reclaimed enough pages for compaction and the
2737	 * inactive lists are large enough, continue reclaiming
2738	 */
2739	pages_for_compaction = compact_gap(sc->order);
2740	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2741	if (get_nr_swap_pages() > 0)
2742		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2743
2744	return inactive_lru_pages > pages_for_compaction;
2745}
2746
2747static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2748{
2749	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2750		(memcg && memcg_congested(pgdat, memcg));
 
 
 
 
2751}
2752
2753static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
 
 
 
2754{
2755	struct reclaim_state *reclaim_state = current->reclaim_state;
 
 
2756	unsigned long nr_reclaimed, nr_scanned;
2757	bool reclaimable = false;
2758
2759	do {
2760		struct mem_cgroup *root = sc->target_mem_cgroup;
2761		unsigned long node_lru_pages = 0;
2762		struct mem_cgroup *memcg;
2763
2764		memset(&sc->nr, 0, sizeof(sc->nr));
2765
2766		nr_reclaimed = sc->nr_reclaimed;
2767		nr_scanned = sc->nr_scanned;
 
 
2768
2769		memcg = mem_cgroup_iter(root, NULL, NULL);
2770		do {
2771			unsigned long lru_pages;
2772			unsigned long reclaimed;
2773			unsigned long scanned;
 
 
 
2774
2775			switch (mem_cgroup_protected(root, memcg)) {
2776			case MEMCG_PROT_MIN:
2777				/*
2778				 * Hard protection.
2779				 * If there is no reclaimable memory, OOM.
2780				 */
2781				continue;
2782			case MEMCG_PROT_LOW:
2783				/*
2784				 * Soft protection.
2785				 * Respect the protection only as long as
2786				 * there is an unprotected supply
2787				 * of reclaimable memory from other cgroups.
2788				 */
2789				if (!sc->memcg_low_reclaim) {
2790					sc->memcg_low_skipped = 1;
2791					continue;
2792				}
2793				memcg_memory_event(memcg, MEMCG_LOW);
2794				break;
2795			case MEMCG_PROT_NONE:
2796				/*
2797				 * All protection thresholds breached. We may
2798				 * still choose to vary the scan pressure
2799				 * applied based on by how much the cgroup in
2800				 * question has exceeded its protection
2801				 * thresholds (see get_scan_count).
2802				 */
2803				break;
2804			}
2805
2806			reclaimed = sc->nr_reclaimed;
2807			scanned = sc->nr_scanned;
2808			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2809			node_lru_pages += lru_pages;
2810
2811			shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2812					sc->priority);
2813
2814			/* Record the group's reclaim efficiency */
2815			vmpressure(sc->gfp_mask, memcg, false,
2816				   sc->nr_scanned - scanned,
2817				   sc->nr_reclaimed - reclaimed);
2818
2819		} while ((memcg = mem_cgroup_iter(root, memcg, NULL)));
2820
2821		if (reclaim_state) {
2822			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2823			reclaim_state->reclaimed_slab = 0;
2824		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2825
2826		/* Record the subtree's reclaim efficiency */
2827		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2828			   sc->nr_scanned - nr_scanned,
2829			   sc->nr_reclaimed - nr_reclaimed);
2830
2831		if (sc->nr_reclaimed - nr_reclaimed)
2832			reclaimable = true;
2833
2834		if (current_is_kswapd()) {
2835			/*
2836			 * If reclaim is isolating dirty pages under writeback,
2837			 * it implies that the long-lived page allocation rate
2838			 * is exceeding the page laundering rate. Either the
2839			 * global limits are not being effective at throttling
2840			 * processes due to the page distribution throughout
2841			 * zones or there is heavy usage of a slow backing
2842			 * device. The only option is to throttle from reclaim
2843			 * context which is not ideal as there is no guarantee
2844			 * the dirtying process is throttled in the same way
2845			 * balance_dirty_pages() manages.
2846			 *
2847			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2848			 * count the number of pages under pages flagged for
2849			 * immediate reclaim and stall if any are encountered
2850			 * in the nr_immediate check below.
2851			 */
2852			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2853				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2854
2855			/*
2856			 * Tag a node as congested if all the dirty pages
2857			 * scanned were backed by a congested BDI and
2858			 * wait_iff_congested will stall.
2859			 */
2860			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2861				set_bit(PGDAT_CONGESTED, &pgdat->flags);
2862
2863			/* Allow kswapd to start writing pages during reclaim.*/
2864			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2865				set_bit(PGDAT_DIRTY, &pgdat->flags);
 
 
 
 
 
2866
2867			/*
2868			 * If kswapd scans pages marked marked for immediate
2869			 * reclaim and under writeback (nr_immediate), it
2870			 * implies that pages are cycling through the LRU
2871			 * faster than they are written so also forcibly stall.
2872			 */
2873			if (sc->nr.immediate)
2874				congestion_wait(BLK_RW_ASYNC, HZ/10);
2875		}
2876
2877		/*
2878		 * Legacy memcg will stall in page writeback so avoid forcibly
2879		 * stalling in wait_iff_congested().
2880		 */
2881		if (!global_reclaim(sc) && sane_reclaim(sc) &&
2882		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2883			set_memcg_congestion(pgdat, root, true);
2884
2885		/*
2886		 * Stall direct reclaim for IO completions if underlying BDIs
2887		 * and node is congested. Allow kswapd to continue until it
2888		 * starts encountering unqueued dirty pages or cycling through
2889		 * the LRU too quickly.
 
 
 
 
2890		 */
2891		if (!sc->hibernation_mode && !current_is_kswapd() &&
2892		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2893			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2894
2895	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2896					 sc));
2897
2898	/*
2899	 * Kswapd gives up on balancing particular nodes after too
2900	 * many failures to reclaim anything from them and goes to
2901	 * sleep. On reclaim progress, reset the failure counter. A
2902	 * successful direct reclaim run will revive a dormant kswapd.
2903	 */
2904	if (reclaimable)
2905		pgdat->kswapd_failures = 0;
2906
2907	return reclaimable;
2908}
2909
2910/*
2911 * Returns true if compaction should go ahead for a costly-order request, or
2912 * the allocation would already succeed without compaction. Return false if we
2913 * should reclaim first.
2914 */
2915static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2916{
2917	unsigned long watermark;
2918	enum compact_result suitable;
2919
2920	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2921	if (suitable == COMPACT_SUCCESS)
2922		/* Allocation should succeed already. Don't reclaim. */
2923		return true;
2924	if (suitable == COMPACT_SKIPPED)
2925		/* Compaction cannot yet proceed. Do reclaim. */
2926		return false;
2927
2928	/*
2929	 * Compaction is already possible, but it takes time to run and there
2930	 * are potentially other callers using the pages just freed. So proceed
2931	 * with reclaim to make a buffer of free pages available to give
2932	 * compaction a reasonable chance of completing and allocating the page.
2933	 * Note that we won't actually reclaim the whole buffer in one attempt
2934	 * as the target watermark in should_continue_reclaim() is lower. But if
2935	 * we are already above the high+gap watermark, don't reclaim at all.
 
 
 
 
 
 
 
2936	 */
2937	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
 
 
 
 
 
2938
2939	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2940}
2941
2942/*
2943 * This is the direct reclaim path, for page-allocating processes.  We only
2944 * try to reclaim pages from zones which will satisfy the caller's allocation
2945 * request.
2946 *
 
 
 
 
 
 
 
 
2947 * If a zone is deemed to be full of pinned pages then just give it a light
2948 * scan then give up on it.
 
 
 
 
 
2949 */
2950static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2951{
2952	struct zoneref *z;
2953	struct zone *zone;
2954	unsigned long nr_soft_reclaimed;
2955	unsigned long nr_soft_scanned;
2956	gfp_t orig_mask;
2957	pg_data_t *last_pgdat = NULL;
2958
2959	/*
2960	 * If the number of buffer_heads in the machine exceeds the maximum
2961	 * allowed level, force direct reclaim to scan the highmem zone as
2962	 * highmem pages could be pinning lowmem pages storing buffer_heads
2963	 */
2964	orig_mask = sc->gfp_mask;
2965	if (buffer_heads_over_limit) {
2966		sc->gfp_mask |= __GFP_HIGHMEM;
2967		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2968	}
2969
2970	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2971					sc->reclaim_idx, sc->nodemask) {
 
 
2972		/*
2973		 * Take care memory controller reclaiming has small influence
2974		 * to global LRU.
2975		 */
2976		if (global_reclaim(sc)) {
2977			if (!cpuset_zone_allowed(zone,
2978						 GFP_KERNEL | __GFP_HARDWALL))
2979				continue;
2980
2981			/*
2982			 * If we already have plenty of memory free for
2983			 * compaction in this zone, don't free any more.
2984			 * Even though compaction is invoked for any
2985			 * non-zero order, only frequent costly order
2986			 * reclamation is disruptive enough to become a
2987			 * noticeable problem, like transparent huge
2988			 * page allocations.
2989			 */
2990			if (IS_ENABLED(CONFIG_COMPACTION) &&
2991			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2992			    compaction_ready(zone, sc)) {
2993				sc->compaction_ready = true;
2994				continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2995			}
2996
2997			/*
2998			 * Shrink each node in the zonelist once. If the
2999			 * zonelist is ordered by zone (not the default) then a
3000			 * node may be shrunk multiple times but in that case
3001			 * the user prefers lower zones being preserved.
3002			 */
3003			if (zone->zone_pgdat == last_pgdat)
3004				continue;
3005
3006			/*
3007			 * This steals pages from memory cgroups over softlimit
3008			 * and returns the number of reclaimed pages and
3009			 * scanned pages. This works for global memory pressure
3010			 * and balancing, not for a memcg's limit.
3011			 */
3012			nr_soft_scanned = 0;
3013			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3014						sc->order, sc->gfp_mask,
3015						&nr_soft_scanned);
3016			sc->nr_reclaimed += nr_soft_reclaimed;
3017			sc->nr_scanned += nr_soft_scanned;
3018			/* need some check for avoid more shrink_zone() */
3019		}
3020
3021		/* See comment about same check for global reclaim above */
3022		if (zone->zone_pgdat == last_pgdat)
3023			continue;
3024		last_pgdat = zone->zone_pgdat;
3025		shrink_node(zone->zone_pgdat, sc);
3026	}
3027
3028	/*
3029	 * Restore to original mask to avoid the impact on the caller if we
3030	 * promoted it to __GFP_HIGHMEM.
3031	 */
3032	sc->gfp_mask = orig_mask;
3033}
3034
3035static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
3036{
3037	struct mem_cgroup *memcg;
 
3038
3039	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
3040	do {
3041		unsigned long refaults;
3042		struct lruvec *lruvec;
 
 
 
 
 
 
 
 
 
 
 
 
3043
3044		lruvec = mem_cgroup_lruvec(pgdat, memcg);
3045		refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
3046		lruvec->refaults = refaults;
3047	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
3048}
3049
3050/*
3051 * This is the main entry point to direct page reclaim.
3052 *
3053 * If a full scan of the inactive list fails to free enough memory then we
3054 * are "out of memory" and something needs to be killed.
3055 *
3056 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3057 * high - the zone may be full of dirty or under-writeback pages, which this
3058 * caller can't do much about.  We kick the writeback threads and take explicit
3059 * naps in the hope that some of these pages can be written.  But if the
3060 * allocating task holds filesystem locks which prevent writeout this might not
3061 * work, and the allocation attempt will fail.
3062 *
3063 * returns:	0, if no pages reclaimed
3064 * 		else, the number of pages reclaimed
3065 */
3066static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3067					  struct scan_control *sc)
 
3068{
3069	int initial_priority = sc->priority;
3070	pg_data_t *last_pgdat;
3071	struct zoneref *z;
3072	struct zone *zone;
3073retry:
 
 
3074	delayacct_freepages_start();
3075
3076	if (global_reclaim(sc))
3077		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3078
3079	do {
3080		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3081				sc->priority);
3082		sc->nr_scanned = 0;
3083		shrink_zones(zonelist, sc);
3084
3085		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3086			break;
 
 
 
 
 
 
 
 
3087
3088		if (sc->compaction_ready)
3089			break;
 
 
 
 
 
 
 
 
 
 
3090
3091		/*
3092		 * If we're getting trouble reclaiming, start doing
3093		 * writepage even in laptop mode.
3094		 */
3095		if (sc->priority < DEF_PRIORITY - 2)
 
 
 
 
 
 
3096			sc->may_writepage = 1;
3097	} while (--sc->priority >= 0);
3098
3099	last_pgdat = NULL;
3100	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3101					sc->nodemask) {
3102		if (zone->zone_pgdat == last_pgdat)
3103			continue;
3104		last_pgdat = zone->zone_pgdat;
3105		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3106		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3107	}
 
 
3108
 
3109	delayacct_freepages_end();
3110
3111	if (sc->nr_reclaimed)
3112		return sc->nr_reclaimed;
3113
3114	/* Aborted reclaim to try compaction? don't OOM, then */
3115	if (sc->compaction_ready)
3116		return 1;
3117
3118	/* Untapped cgroup reserves?  Don't OOM, retry. */
3119	if (sc->memcg_low_skipped) {
3120		sc->priority = initial_priority;
3121		sc->memcg_low_reclaim = 1;
3122		sc->memcg_low_skipped = 0;
3123		goto retry;
3124	}
3125
3126	return 0;
3127}
3128
3129static bool allow_direct_reclaim(pg_data_t *pgdat)
3130{
3131	struct zone *zone;
3132	unsigned long pfmemalloc_reserve = 0;
3133	unsigned long free_pages = 0;
3134	int i;
3135	bool wmark_ok;
3136
3137	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3138		return true;
3139
3140	for (i = 0; i <= ZONE_NORMAL; i++) {
3141		zone = &pgdat->node_zones[i];
3142		if (!managed_zone(zone))
3143			continue;
3144
3145		if (!zone_reclaimable_pages(zone))
3146			continue;
3147
3148		pfmemalloc_reserve += min_wmark_pages(zone);
3149		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3150	}
3151
3152	/* If there are no reserves (unexpected config) then do not throttle */
3153	if (!pfmemalloc_reserve)
3154		return true;
3155
3156	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3157
3158	/* kswapd must be awake if processes are being throttled */
3159	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3160		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3161						(enum zone_type)ZONE_NORMAL);
3162		wake_up_interruptible(&pgdat->kswapd_wait);
3163	}
3164
3165	return wmark_ok;
3166}
3167
3168/*
3169 * Throttle direct reclaimers if backing storage is backed by the network
3170 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3171 * depleted. kswapd will continue to make progress and wake the processes
3172 * when the low watermark is reached.
3173 *
3174 * Returns true if a fatal signal was delivered during throttling. If this
3175 * happens, the page allocator should not consider triggering the OOM killer.
3176 */
3177static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3178					nodemask_t *nodemask)
3179{
3180	struct zoneref *z;
3181	struct zone *zone;
3182	pg_data_t *pgdat = NULL;
3183
3184	/*
3185	 * Kernel threads should not be throttled as they may be indirectly
3186	 * responsible for cleaning pages necessary for reclaim to make forward
3187	 * progress. kjournald for example may enter direct reclaim while
3188	 * committing a transaction where throttling it could forcing other
3189	 * processes to block on log_wait_commit().
3190	 */
3191	if (current->flags & PF_KTHREAD)
3192		goto out;
3193
3194	/*
3195	 * If a fatal signal is pending, this process should not throttle.
3196	 * It should return quickly so it can exit and free its memory
3197	 */
3198	if (fatal_signal_pending(current))
3199		goto out;
3200
3201	/*
3202	 * Check if the pfmemalloc reserves are ok by finding the first node
3203	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3204	 * GFP_KERNEL will be required for allocating network buffers when
3205	 * swapping over the network so ZONE_HIGHMEM is unusable.
3206	 *
3207	 * Throttling is based on the first usable node and throttled processes
3208	 * wait on a queue until kswapd makes progress and wakes them. There
3209	 * is an affinity then between processes waking up and where reclaim
3210	 * progress has been made assuming the process wakes on the same node.
3211	 * More importantly, processes running on remote nodes will not compete
3212	 * for remote pfmemalloc reserves and processes on different nodes
3213	 * should make reasonable progress.
3214	 */
3215	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3216					gfp_zone(gfp_mask), nodemask) {
3217		if (zone_idx(zone) > ZONE_NORMAL)
3218			continue;
3219
3220		/* Throttle based on the first usable node */
3221		pgdat = zone->zone_pgdat;
3222		if (allow_direct_reclaim(pgdat))
3223			goto out;
3224		break;
3225	}
3226
3227	/* If no zone was usable by the allocation flags then do not throttle */
3228	if (!pgdat)
3229		goto out;
3230
3231	/* Account for the throttling */
3232	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3233
3234	/*
3235	 * If the caller cannot enter the filesystem, it's possible that it
3236	 * is due to the caller holding an FS lock or performing a journal
3237	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3238	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3239	 * blocked waiting on the same lock. Instead, throttle for up to a
3240	 * second before continuing.
3241	 */
3242	if (!(gfp_mask & __GFP_FS)) {
3243		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3244			allow_direct_reclaim(pgdat), HZ);
3245
3246		goto check_pending;
3247	}
3248
3249	/* Throttle until kswapd wakes the process */
3250	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3251		allow_direct_reclaim(pgdat));
3252
3253check_pending:
3254	if (fatal_signal_pending(current))
3255		return true;
3256
3257out:
3258	return false;
3259}
3260
3261unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3262				gfp_t gfp_mask, nodemask_t *nodemask)
3263{
3264	unsigned long nr_reclaimed;
3265	struct scan_control sc = {
3266		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3267		.gfp_mask = current_gfp_context(gfp_mask),
3268		.reclaim_idx = gfp_zone(gfp_mask),
3269		.order = order,
3270		.nodemask = nodemask,
3271		.priority = DEF_PRIORITY,
3272		.may_writepage = !laptop_mode,
 
3273		.may_unmap = 1,
3274		.may_swap = 1,
 
 
 
 
 
 
 
3275	};
3276
3277	/*
3278	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3279	 * Confirm they are large enough for max values.
3280	 */
3281	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3282	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3283	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3284
3285	/*
3286	 * Do not enter reclaim if fatal signal was delivered while throttled.
3287	 * 1 is returned so that the page allocator does not OOM kill at this
3288	 * point.
3289	 */
3290	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3291		return 1;
3292
3293	set_task_reclaim_state(current, &sc.reclaim_state);
3294	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3295
3296	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3297
3298	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3299	set_task_reclaim_state(current, NULL);
3300
3301	return nr_reclaimed;
3302}
3303
3304#ifdef CONFIG_MEMCG
3305
3306/* Only used by soft limit reclaim. Do not reuse for anything else. */
3307unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3308						gfp_t gfp_mask, bool noswap,
3309						pg_data_t *pgdat,
3310						unsigned long *nr_scanned)
3311{
3312	struct scan_control sc = {
 
3313		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3314		.target_mem_cgroup = memcg,
3315		.may_writepage = !laptop_mode,
3316		.may_unmap = 1,
3317		.reclaim_idx = MAX_NR_ZONES - 1,
3318		.may_swap = !noswap,
 
 
 
3319	};
3320	unsigned long lru_pages;
3321
3322	WARN_ON_ONCE(!current->reclaim_state);
3323
3324	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3325			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3326
3327	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
 
3328						      sc.gfp_mask);
3329
3330	/*
3331	 * NOTE: Although we can get the priority field, using it
3332	 * here is not a good idea, since it limits the pages we can scan.
3333	 * if we don't reclaim here, the shrink_node from balance_pgdat
3334	 * will pick up pages from other mem cgroup's as well. We hack
3335	 * the priority and make it zero.
3336	 */
3337	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3338
3339	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3340
3341	*nr_scanned = sc.nr_scanned;
3342
3343	return sc.nr_reclaimed;
3344}
3345
3346unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3347					   unsigned long nr_pages,
3348					   gfp_t gfp_mask,
3349					   bool may_swap)
3350{
3351	struct zonelist *zonelist;
3352	unsigned long nr_reclaimed;
3353	unsigned long pflags;
3354	int nid;
3355	unsigned int noreclaim_flag;
3356	struct scan_control sc = {
3357		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3358		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3359				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3360		.reclaim_idx = MAX_NR_ZONES - 1,
3361		.target_mem_cgroup = memcg,
3362		.priority = DEF_PRIORITY,
3363		.may_writepage = !laptop_mode,
3364		.may_unmap = 1,
3365		.may_swap = may_swap,
 
 
 
 
 
 
 
 
 
 
3366	};
3367
3368	set_task_reclaim_state(current, &sc.reclaim_state);
3369	/*
3370	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3371	 * take care of from where we get pages. So the node where we start the
3372	 * scan does not need to be the current node.
3373	 */
3374	nid = mem_cgroup_select_victim_node(memcg);
3375
3376	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3377
3378	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3379
3380	psi_memstall_enter(&pflags);
3381	noreclaim_flag = memalloc_noreclaim_save();
3382
3383	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
 
 
3384
3385	memalloc_noreclaim_restore(noreclaim_flag);
3386	psi_memstall_leave(&pflags);
3387
3388	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3389	set_task_reclaim_state(current, NULL);
3390
3391	return nr_reclaimed;
3392}
3393#endif
3394
3395static void age_active_anon(struct pglist_data *pgdat,
3396				struct scan_control *sc)
3397{
3398	struct mem_cgroup *memcg;
3399
3400	if (!total_swap_pages)
3401		return;
3402
3403	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3404	do {
3405		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3406
3407		if (inactive_list_is_low(lruvec, false, sc, true))
3408			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3409					   sc, LRU_ACTIVE_ANON);
3410
3411		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3412	} while (memcg);
3413}
3414
3415static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3416{
3417	int i;
3418	struct zone *zone;
3419
3420	/*
3421	 * Check for watermark boosts top-down as the higher zones
3422	 * are more likely to be boosted. Both watermarks and boosts
3423	 * should not be checked at the time time as reclaim would
3424	 * start prematurely when there is no boosting and a lower
3425	 * zone is balanced.
3426	 */
3427	for (i = classzone_idx; i >= 0; i--) {
3428		zone = pgdat->node_zones + i;
3429		if (!managed_zone(zone))
3430			continue;
3431
3432		if (zone->watermark_boost)
3433			return true;
3434	}
3435
3436	return false;
3437}
3438
3439/*
3440 * Returns true if there is an eligible zone balanced for the request order
3441 * and classzone_idx
 
 
 
 
 
 
 
 
 
 
 
 
3442 */
3443static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
 
3444{
 
3445	int i;
3446	unsigned long mark = -1;
3447	struct zone *zone;
3448
3449	/*
3450	 * Check watermarks bottom-up as lower zones are more likely to
3451	 * meet watermarks.
3452	 */
3453	for (i = 0; i <= classzone_idx; i++) {
3454		zone = pgdat->node_zones + i;
3455
3456		if (!managed_zone(zone))
3457			continue;
3458
3459		mark = high_wmark_pages(zone);
3460		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3461			return true;
3462	}
3463
3464	/*
3465	 * If a node has no populated zone within classzone_idx, it does not
3466	 * need balancing by definition. This can happen if a zone-restricted
3467	 * allocation tries to wake a remote kswapd.
3468	 */
3469	if (mark == -1)
3470		return true;
3471
3472	return false;
3473}
3474
3475/* Clear pgdat state for congested, dirty or under writeback. */
3476static void clear_pgdat_congested(pg_data_t *pgdat)
 
3477{
3478	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3479	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3480	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3481}
3482
3483/*
3484 * Prepare kswapd for sleeping. This verifies that there are no processes
3485 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3486 *
3487 * Returns true if kswapd is ready to sleep
3488 */
3489static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3490{
3491	/*
3492	 * The throttled processes are normally woken up in balance_pgdat() as
3493	 * soon as allow_direct_reclaim() is true. But there is a potential
3494	 * race between when kswapd checks the watermarks and a process gets
3495	 * throttled. There is also a potential race if processes get
3496	 * throttled, kswapd wakes, a large process exits thereby balancing the
3497	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3498	 * the wake up checks. If kswapd is going to sleep, no process should
3499	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3500	 * the wake up is premature, processes will wake kswapd and get
3501	 * throttled again. The difference from wake ups in balance_pgdat() is
3502	 * that here we are under prepare_to_wait().
3503	 */
3504	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3505		wake_up_all(&pgdat->pfmemalloc_wait);
3506
3507	/* Hopeless node, leave it to direct reclaim */
3508	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3509		return true;
3510
3511	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3512		clear_pgdat_congested(pgdat);
3513		return true;
3514	}
3515
3516	return false;
3517}
 
3518
3519/*
3520 * kswapd shrinks a node of pages that are at or below the highest usable
3521 * zone that is currently unbalanced.
3522 *
3523 * Returns true if kswapd scanned at least the requested number of pages to
3524 * reclaim or if the lack of progress was due to pages under writeback.
3525 * This is used to determine if the scanning priority needs to be raised.
3526 */
3527static bool kswapd_shrink_node(pg_data_t *pgdat,
3528			       struct scan_control *sc)
3529{
3530	struct zone *zone;
3531	int z;
3532
3533	/* Reclaim a number of pages proportional to the number of zones */
3534	sc->nr_to_reclaim = 0;
3535	for (z = 0; z <= sc->reclaim_idx; z++) {
3536		zone = pgdat->node_zones + z;
3537		if (!managed_zone(zone))
 
 
 
3538			continue;
 
3539
3540		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
 
 
 
 
3541	}
3542
3543	/*
3544	 * Historically care was taken to put equal pressure on all zones but
3545	 * now pressure is applied based on node LRU order.
 
3546	 */
3547	shrink_node(pgdat, sc);
3548
3549	/*
3550	 * Fragmentation may mean that the system cannot be rebalanced for
3551	 * high-order allocations. If twice the allocation size has been
3552	 * reclaimed then recheck watermarks only at order-0 to prevent
3553	 * excessive reclaim. Assume that a process requested a high-order
3554	 * can direct reclaim/compact.
3555	 */
3556	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3557		sc->order = 0;
3558
3559	return sc->nr_scanned >= sc->nr_to_reclaim;
3560}
3561
3562/*
3563 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3564 * that are eligible for use by the caller until at least one zone is
3565 * balanced.
 
3566 *
3567 * Returns the order kswapd finished reclaiming at.
 
 
 
 
 
 
3568 *
3569 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3570 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3571 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3572 * or lower is eligible for reclaim until at least one usable zone is
3573 * balanced.
 
3574 */
3575static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
 
3576{
 
 
3577	int i;
 
 
 
3578	unsigned long nr_soft_reclaimed;
3579	unsigned long nr_soft_scanned;
3580	unsigned long pflags;
3581	unsigned long nr_boost_reclaim;
3582	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3583	bool boosted;
3584	struct zone *zone;
3585	struct scan_control sc = {
3586		.gfp_mask = GFP_KERNEL,
3587		.order = order,
3588		.may_unmap = 1,
 
 
 
 
 
 
 
 
3589	};
3590
3591	set_task_reclaim_state(current, &sc.reclaim_state);
3592	psi_memstall_enter(&pflags);
3593	__fs_reclaim_acquire();
3594
 
 
 
3595	count_vm_event(PAGEOUTRUN);
3596
3597	/*
3598	 * Account for the reclaim boost. Note that the zone boost is left in
3599	 * place so that parallel allocations that are near the watermark will
3600	 * stall or direct reclaim until kswapd is finished.
3601	 */
3602	nr_boost_reclaim = 0;
3603	for (i = 0; i <= classzone_idx; i++) {
3604		zone = pgdat->node_zones + i;
3605		if (!managed_zone(zone))
3606			continue;
3607
3608		nr_boost_reclaim += zone->watermark_boost;
3609		zone_boosts[i] = zone->watermark_boost;
3610	}
3611	boosted = nr_boost_reclaim;
3612
3613restart:
3614	sc.priority = DEF_PRIORITY;
3615	do {
3616		unsigned long nr_reclaimed = sc.nr_reclaimed;
3617		bool raise_priority = true;
3618		bool balanced;
3619		bool ret;
3620
3621		sc.reclaim_idx = classzone_idx;
 
3622
3623		/*
3624		 * If the number of buffer_heads exceeds the maximum allowed
3625		 * then consider reclaiming from all zones. This has a dual
3626		 * purpose -- on 64-bit systems it is expected that
3627		 * buffer_heads are stripped during active rotation. On 32-bit
3628		 * systems, highmem pages can pin lowmem memory and shrinking
3629		 * buffers can relieve lowmem pressure. Reclaim may still not
3630		 * go ahead if all eligible zones for the original allocation
3631		 * request are balanced to avoid excessive reclaim from kswapd.
3632		 */
3633		if (buffer_heads_over_limit) {
3634			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3635				zone = pgdat->node_zones + i;
3636				if (!managed_zone(zone))
3637					continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3638
3639				sc.reclaim_idx = i;
 
 
3640				break;
 
 
 
3641			}
3642		}
 
 
3643
3644		/*
3645		 * If the pgdat is imbalanced then ignore boosting and preserve
3646		 * the watermarks for a later time and restart. Note that the
3647		 * zone watermarks will be still reset at the end of balancing
3648		 * on the grounds that the normal reclaim should be enough to
3649		 * re-evaluate if boosting is required when kswapd next wakes.
3650		 */
3651		balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3652		if (!balanced && nr_boost_reclaim) {
3653			nr_boost_reclaim = 0;
3654			goto restart;
3655		}
3656
3657		/*
3658		 * If boosting is not active then only reclaim if there are no
3659		 * eligible zones. Note that sc.reclaim_idx is not used as
3660		 * buffer_heads_over_limit may have adjusted it.
3661		 */
3662		if (!nr_boost_reclaim && balanced)
3663			goto out;
 
 
 
 
 
 
3664
3665		/* Limit the priority of boosting to avoid reclaim writeback */
3666		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3667			raise_priority = false;
3668
3669		/*
3670		 * Do not writeback or swap pages for boosted reclaim. The
3671		 * intent is to relieve pressure not issue sub-optimal IO
3672		 * from reclaim context. If no pages are reclaimed, the
3673		 * reclaim will be aborted.
3674		 */
3675		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3676		sc.may_swap = !nr_boost_reclaim;
3677
3678		/*
3679		 * Do some background aging of the anon list, to give
3680		 * pages a chance to be referenced before reclaiming. All
3681		 * pages are rotated regardless of classzone as this is
3682		 * about consistent aging.
3683		 */
3684		age_active_anon(pgdat, &sc);
3685
3686		/*
3687		 * If we're getting trouble reclaiming, start doing writepage
3688		 * even in laptop mode.
3689		 */
3690		if (sc.priority < DEF_PRIORITY - 2)
3691			sc.may_writepage = 1;
 
 
 
3692
3693		/* Call soft limit reclaim before calling shrink_node. */
3694		sc.nr_scanned = 0;
3695		nr_soft_scanned = 0;
3696		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3697						sc.gfp_mask, &nr_soft_scanned);
3698		sc.nr_reclaimed += nr_soft_reclaimed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3700		/*
3701		 * There should be no need to raise the scanning priority if
3702		 * enough pages are already being scanned that that high
3703		 * watermark would be met at 100% efficiency.
3704		 */
3705		if (kswapd_shrink_node(pgdat, &sc))
3706			raise_priority = false;
 
 
 
 
3707
3708		/*
3709		 * If the low watermark is met there is no need for processes
3710		 * to be throttled on pfmemalloc_wait as they should not be
3711		 * able to safely make forward progress. Wake them
 
3712		 */
3713		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3714				allow_direct_reclaim(pgdat))
3715			wake_up_all(&pgdat->pfmemalloc_wait);
3716
3717		/* Check if kswapd should be suspending */
3718		__fs_reclaim_release();
3719		ret = try_to_freeze();
3720		__fs_reclaim_acquire();
3721		if (ret || kthread_should_stop())
3722			break;
 
 
3723
3724		/*
3725		 * Raise priority if scanning rate is too low or there was no
3726		 * progress in reclaiming pages
3727		 */
3728		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3729		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
 
 
 
3730
3731		/*
3732		 * If reclaim made no progress for a boost, stop reclaim as
3733		 * IO cannot be queued and it could be an infinite loop in
3734		 * extreme circumstances.
 
 
 
 
 
 
 
 
 
3735		 */
3736		if (nr_boost_reclaim && !nr_reclaimed)
3737			break;
 
 
 
3738
3739		if (raise_priority || !nr_reclaimed)
3740			sc.priority--;
3741	} while (sc.priority >= 1);
 
 
 
 
 
 
 
3742
3743	if (!sc.nr_reclaimed)
3744		pgdat->kswapd_failures++;
3745
3746out:
3747	/* If reclaim was boosted, account for the reclaim done in this pass */
3748	if (boosted) {
3749		unsigned long flags;
3750
3751		for (i = 0; i <= classzone_idx; i++) {
3752			if (!zone_boosts[i])
3753				continue;
3754
3755			/* Increments are under the zone lock */
3756			zone = pgdat->node_zones + i;
3757			spin_lock_irqsave(&zone->lock, flags);
3758			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3759			spin_unlock_irqrestore(&zone->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3760		}
3761
3762		/*
3763		 * As there is now likely space, wakeup kcompact to defragment
3764		 * pageblocks.
3765		 */
3766		wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3767	}
3768
3769	snapshot_refaults(NULL, pgdat);
3770	__fs_reclaim_release();
3771	psi_memstall_leave(&pflags);
3772	set_task_reclaim_state(current, NULL);
3773
3774	/*
3775	 * Return the order kswapd stopped reclaiming at as
3776	 * prepare_kswapd_sleep() takes it into account. If another caller
3777	 * entered the allocator slow path while kswapd was awake, order will
3778	 * remain at the higher level.
3779	 */
3780	return sc.order;
 
3781}
3782
3783/*
3784 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3785 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3786 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3787 * after previous reclaim attempt (node is still unbalanced). In that case
3788 * return the zone index of the previous kswapd reclaim cycle.
3789 */
3790static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3791					   enum zone_type prev_classzone_idx)
3792{
3793	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3794		return prev_classzone_idx;
3795	return pgdat->kswapd_classzone_idx;
3796}
3797
3798static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3799				unsigned int classzone_idx)
3800{
3801	long remaining = 0;
3802	DEFINE_WAIT(wait);
3803
3804	if (freezing(current) || kthread_should_stop())
3805		return;
3806
3807	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3808
3809	/*
3810	 * Try to sleep for a short interval. Note that kcompactd will only be
3811	 * woken if it is possible to sleep for a short interval. This is
3812	 * deliberate on the assumption that if reclaim cannot keep an
3813	 * eligible zone balanced that it's also unlikely that compaction will
3814	 * succeed.
3815	 */
3816	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3817		/*
3818		 * Compaction records what page blocks it recently failed to
3819		 * isolate pages from and skips them in the future scanning.
3820		 * When kswapd is going to sleep, it is reasonable to assume
3821		 * that pages and compaction may succeed so reset the cache.
3822		 */
3823		reset_isolation_suitable(pgdat);
3824
3825		/*
3826		 * We have freed the memory, now we should compact it to make
3827		 * allocation of the requested order possible.
3828		 */
3829		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3830
3831		remaining = schedule_timeout(HZ/10);
3832
3833		/*
3834		 * If woken prematurely then reset kswapd_classzone_idx and
3835		 * order. The values will either be from a wakeup request or
3836		 * the previous request that slept prematurely.
3837		 */
3838		if (remaining) {
3839			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3840			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3841		}
3842
3843		finish_wait(&pgdat->kswapd_wait, &wait);
3844		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3845	}
3846
3847	/*
3848	 * After a short sleep, check if it was a premature sleep. If not, then
3849	 * go fully to sleep until explicitly woken up.
3850	 */
3851	if (!remaining &&
3852	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3853		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3854
3855		/*
3856		 * vmstat counters are not perfectly accurate and the estimated
3857		 * value for counters such as NR_FREE_PAGES can deviate from the
3858		 * true value by nr_online_cpus * threshold. To avoid the zone
3859		 * watermarks being breached while under pressure, we reduce the
3860		 * per-cpu vmstat threshold while kswapd is awake and restore
3861		 * them before going back to sleep.
3862		 */
3863		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3864
3865		if (!kthread_should_stop())
3866			schedule();
3867
3868		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3869	} else {
3870		if (remaining)
3871			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3872		else
3873			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3874	}
3875	finish_wait(&pgdat->kswapd_wait, &wait);
3876}
3877
3878/*
3879 * The background pageout daemon, started as a kernel thread
3880 * from the init process.
3881 *
3882 * This basically trickles out pages so that we have _some_
3883 * free memory available even if there is no other activity
3884 * that frees anything up. This is needed for things like routing
3885 * etc, where we otherwise might have all activity going on in
3886 * asynchronous contexts that cannot page things out.
3887 *
3888 * If there are applications that are active memory-allocators
3889 * (most normal use), this basically shouldn't matter.
3890 */
3891static int kswapd(void *p)
3892{
3893	unsigned int alloc_order, reclaim_order;
3894	unsigned int classzone_idx = MAX_NR_ZONES - 1;
 
 
3895	pg_data_t *pgdat = (pg_data_t*)p;
3896	struct task_struct *tsk = current;
 
 
 
 
3897	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3898
 
 
3899	if (!cpumask_empty(cpumask))
3900		set_cpus_allowed_ptr(tsk, cpumask);
 
3901
3902	/*
3903	 * Tell the memory management that we're a "memory allocator",
3904	 * and that if we need more memory we should get access to it
3905	 * regardless (see "__alloc_pages()"). "kswapd" should
3906	 * never get caught in the normal page freeing logic.
3907	 *
3908	 * (Kswapd normally doesn't need memory anyway, but sometimes
3909	 * you need a small amount of memory in order to be able to
3910	 * page out something else, and this flag essentially protects
3911	 * us from recursively trying to free more memory as we're
3912	 * trying to free the first piece of memory in the first place).
3913	 */
3914	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3915	set_freezable();
3916
3917	pgdat->kswapd_order = 0;
3918	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
 
 
3919	for ( ; ; ) {
3920		bool ret;
3921
3922		alloc_order = reclaim_order = pgdat->kswapd_order;
3923		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
 
 
 
 
 
 
 
 
 
 
3924
3925kswapd_try_sleep:
3926		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3927					classzone_idx);
3928
3929		/* Read the new order and classzone_idx */
3930		alloc_order = reclaim_order = pgdat->kswapd_order;
3931		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3932		pgdat->kswapd_order = 0;
3933		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
 
 
 
 
 
 
 
 
3934
3935		ret = try_to_freeze();
3936		if (kthread_should_stop())
3937			break;
3938
3939		/*
3940		 * We can speed up thawing tasks if we don't call balance_pgdat
3941		 * after returning from the refrigerator
3942		 */
3943		if (ret)
3944			continue;
3945
3946		/*
3947		 * Reclaim begins at the requested order but if a high-order
3948		 * reclaim fails then kswapd falls back to reclaiming for
3949		 * order-0. If that happens, kswapd will consider sleeping
3950		 * for the order it finished reclaiming at (reclaim_order)
3951		 * but kcompactd is woken to compact for the original
3952		 * request (alloc_order).
3953		 */
3954		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3955						alloc_order);
3956		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3957		if (reclaim_order < alloc_order)
3958			goto kswapd_try_sleep;
3959	}
3960
3961	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3962
3963	return 0;
3964}
3965
3966/*
3967 * A zone is low on free memory or too fragmented for high-order memory.  If
3968 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3969 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3970 * has failed or is not needed, still wake up kcompactd if only compaction is
3971 * needed.
3972 */
3973void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3974		   enum zone_type classzone_idx)
3975{
3976	pg_data_t *pgdat;
3977
3978	if (!managed_zone(zone))
3979		return;
3980
3981	if (!cpuset_zone_allowed(zone, gfp_flags))
3982		return;
3983	pgdat = zone->zone_pgdat;
3984
3985	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3986		pgdat->kswapd_classzone_idx = classzone_idx;
3987	else
3988		pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3989						  classzone_idx);
3990	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3991	if (!waitqueue_active(&pgdat->kswapd_wait))
3992		return;
3993
3994	/* Hopeless node, leave it to direct reclaim if possible */
3995	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3996	    (pgdat_balanced(pgdat, order, classzone_idx) &&
3997	     !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3998		/*
3999		 * There may be plenty of free memory available, but it's too
4000		 * fragmented for high-order allocations.  Wake up kcompactd
4001		 * and rely on compaction_suitable() to determine if it's
4002		 * needed.  If it fails, it will defer subsequent attempts to
4003		 * ratelimit its work.
4004		 */
4005		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4006			wakeup_kcompactd(pgdat, order, classzone_idx);
4007		return;
4008	}
4009
4010	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
4011				      gfp_flags);
4012	wake_up_interruptible(&pgdat->kswapd_wait);
4013}
4014
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4015#ifdef CONFIG_HIBERNATION
4016/*
4017 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4018 * freed pages.
4019 *
4020 * Rather than trying to age LRUs the aim is to preserve the overall
4021 * LRU order by reclaiming preferentially
4022 * inactive > active > active referenced > active mapped
4023 */
4024unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4025{
 
4026	struct scan_control sc = {
4027		.nr_to_reclaim = nr_to_reclaim,
4028		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4029		.reclaim_idx = MAX_NR_ZONES - 1,
4030		.priority = DEF_PRIORITY,
4031		.may_writepage = 1,
4032		.may_unmap = 1,
4033		.may_swap = 1,
 
 
 
4034		.hibernation_mode = 1,
 
 
 
 
 
4035	};
4036	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
 
4037	unsigned long nr_reclaimed;
4038	unsigned int noreclaim_flag;
4039
4040	fs_reclaim_acquire(sc.gfp_mask);
4041	noreclaim_flag = memalloc_noreclaim_save();
4042	set_task_reclaim_state(current, &sc.reclaim_state);
4043
4044	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4045
4046	set_task_reclaim_state(current, NULL);
4047	memalloc_noreclaim_restore(noreclaim_flag);
4048	fs_reclaim_release(sc.gfp_mask);
 
 
 
 
 
 
 
4049
4050	return nr_reclaimed;
4051}
4052#endif /* CONFIG_HIBERNATION */
4053
4054/* It's optimal to keep kswapds on the same CPUs as their memory, but
4055   not required for correctness.  So if the last cpu in a node goes
4056   away, we get changed to run anywhere: as the first one comes back,
4057   restore their cpu bindings. */
4058static int kswapd_cpu_online(unsigned int cpu)
 
4059{
4060	int nid;
4061
4062	for_each_node_state(nid, N_MEMORY) {
4063		pg_data_t *pgdat = NODE_DATA(nid);
4064		const struct cpumask *mask;
4065
4066		mask = cpumask_of_node(pgdat->node_id);
4067
4068		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
4069			/* One of our CPUs online: restore mask */
4070			set_cpus_allowed_ptr(pgdat->kswapd, mask);
 
 
4071	}
4072	return 0;
4073}
4074
4075/*
4076 * This kswapd start function will be called by init and node-hot-add.
4077 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4078 */
4079int kswapd_run(int nid)
4080{
4081	pg_data_t *pgdat = NODE_DATA(nid);
4082	int ret = 0;
4083
4084	if (pgdat->kswapd)
4085		return 0;
4086
4087	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4088	if (IS_ERR(pgdat->kswapd)) {
4089		/* failure at boot is fatal */
4090		BUG_ON(system_state < SYSTEM_RUNNING);
4091		pr_err("Failed to start kswapd on node %d\n", nid);
4092		ret = PTR_ERR(pgdat->kswapd);
4093		pgdat->kswapd = NULL;
4094	}
4095	return ret;
4096}
4097
4098/*
4099 * Called by memory hotplug when all memory in a node is offlined.  Caller must
4100 * hold mem_hotplug_begin/end().
4101 */
4102void kswapd_stop(int nid)
4103{
4104	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4105
4106	if (kswapd) {
4107		kthread_stop(kswapd);
4108		NODE_DATA(nid)->kswapd = NULL;
4109	}
4110}
4111
4112static int __init kswapd_init(void)
4113{
4114	int nid, ret;
4115
4116	swap_setup();
4117	for_each_node_state(nid, N_MEMORY)
4118 		kswapd_run(nid);
4119	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4120					"mm/vmscan:online", kswapd_cpu_online,
4121					NULL);
4122	WARN_ON(ret < 0);
4123	return 0;
4124}
4125
4126module_init(kswapd_init)
4127
4128#ifdef CONFIG_NUMA
4129/*
4130 * Node reclaim mode
4131 *
4132 * If non-zero call node_reclaim when the number of free pages falls below
4133 * the watermarks.
4134 */
4135int node_reclaim_mode __read_mostly;
4136
4137#define RECLAIM_OFF 0
4138#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4139#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4140#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4141
4142/*
4143 * Priority for NODE_RECLAIM. This determines the fraction of pages
4144 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4145 * a zone.
4146 */
4147#define NODE_RECLAIM_PRIORITY 4
4148
4149/*
4150 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4151 * occur.
4152 */
4153int sysctl_min_unmapped_ratio = 1;
4154
4155/*
4156 * If the number of slab pages in a zone grows beyond this percentage then
4157 * slab reclaim needs to occur.
4158 */
4159int sysctl_min_slab_ratio = 5;
4160
4161static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4162{
4163	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4164	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4165		node_page_state(pgdat, NR_ACTIVE_FILE);
4166
4167	/*
4168	 * It's possible for there to be more file mapped pages than
4169	 * accounted for by the pages on the file LRU lists because
4170	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4171	 */
4172	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4173}
4174
4175/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4176static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4177{
4178	unsigned long nr_pagecache_reclaimable;
4179	unsigned long delta = 0;
4180
4181	/*
4182	 * If RECLAIM_UNMAP is set, then all file pages are considered
4183	 * potentially reclaimable. Otherwise, we have to worry about
4184	 * pages like swapcache and node_unmapped_file_pages() provides
4185	 * a better estimate
4186	 */
4187	if (node_reclaim_mode & RECLAIM_UNMAP)
4188		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4189	else
4190		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4191
4192	/* If we can't clean pages, remove dirty pages from consideration */
4193	if (!(node_reclaim_mode & RECLAIM_WRITE))
4194		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4195
4196	/* Watch for any possible underflows due to delta */
4197	if (unlikely(delta > nr_pagecache_reclaimable))
4198		delta = nr_pagecache_reclaimable;
4199
4200	return nr_pagecache_reclaimable - delta;
4201}
4202
4203/*
4204 * Try to free up some pages from this node through reclaim.
4205 */
4206static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4207{
4208	/* Minimum pages needed in order to stay on node */
4209	const unsigned long nr_pages = 1 << order;
4210	struct task_struct *p = current;
4211	unsigned int noreclaim_flag;
4212	struct scan_control sc = {
4213		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4214		.gfp_mask = current_gfp_context(gfp_mask),
4215		.order = order,
4216		.priority = NODE_RECLAIM_PRIORITY,
4217		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4218		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4219		.may_swap = 1,
4220		.reclaim_idx = gfp_zone(gfp_mask),
 
 
 
 
4221	};
4222
4223	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4224					   sc.gfp_mask);
 
4225
4226	cond_resched();
4227	fs_reclaim_acquire(sc.gfp_mask);
4228	/*
4229	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4230	 * and we also need to be able to write out pages for RECLAIM_WRITE
4231	 * and RECLAIM_UNMAP.
4232	 */
4233	noreclaim_flag = memalloc_noreclaim_save();
4234	p->flags |= PF_SWAPWRITE;
4235	set_task_reclaim_state(p, &sc.reclaim_state);
 
4236
4237	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4238		/*
4239		 * Free memory by calling shrink node with increasing
4240		 * priorities until we have enough memory freed.
4241		 */
4242		do {
4243			shrink_node(pgdat, &sc);
4244		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4245	}
4246
4247	set_task_reclaim_state(p, NULL);
4248	current->flags &= ~PF_SWAPWRITE;
4249	memalloc_noreclaim_restore(noreclaim_flag);
4250	fs_reclaim_release(sc.gfp_mask);
 
 
 
 
 
 
 
 
 
 
4251
4252	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
 
 
4253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4254	return sc.nr_reclaimed >= nr_pages;
4255}
4256
4257int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4258{
 
4259	int ret;
4260
4261	/*
4262	 * Node reclaim reclaims unmapped file backed pages and
4263	 * slab pages if we are over the defined limits.
4264	 *
4265	 * A small portion of unmapped file backed pages is needed for
4266	 * file I/O otherwise pages read by file I/O will be immediately
4267	 * thrown out if the node is overallocated. So we do not reclaim
4268	 * if less than a specified percentage of the node is used by
4269	 * unmapped file backed pages.
4270	 */
4271	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4272	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4273		return NODE_RECLAIM_FULL;
 
 
 
4274
4275	/*
4276	 * Do not scan if the allocation should not be delayed.
4277	 */
4278	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4279		return NODE_RECLAIM_NOSCAN;
4280
4281	/*
4282	 * Only run node reclaim on the local node or on nodes that do not
4283	 * have associated processors. This will favor the local processor
4284	 * over remote processors and spread off node memory allocations
4285	 * as wide as possible.
4286	 */
4287	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4288		return NODE_RECLAIM_NOSCAN;
 
4289
4290	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4291		return NODE_RECLAIM_NOSCAN;
4292
4293	ret = __node_reclaim(pgdat, gfp_mask, order);
4294	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4295
4296	if (!ret)
4297		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4298
4299	return ret;
4300}
4301#endif
4302
4303/*
4304 * page_evictable - test whether a page is evictable
4305 * @page: the page to test
 
4306 *
4307 * Test whether page is evictable--i.e., should be placed on active/inactive
4308 * lists vs unevictable list.
 
4309 *
4310 * Reasons page might not be evictable:
4311 * (1) page's mapping marked unevictable
4312 * (2) page is part of an mlocked VMA
4313 *
4314 */
4315int page_evictable(struct page *page)
4316{
4317	int ret;
4318
4319	/* Prevent address_space of inode and swap cache from being freed */
4320	rcu_read_lock();
4321	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4322	rcu_read_unlock();
4323	return ret;
 
 
4324}
4325
 
4326/**
4327 * check_move_unevictable_pages - check pages for evictability and move to
4328 * appropriate zone lru list
4329 * @pvec: pagevec with lru pages to check
4330 *
4331 * Checks pages for evictability, if an evictable page is in the unevictable
4332 * lru list, moves it to the appropriate evictable lru list. This function
4333 * should be only used for lru pages.
4334 */
4335void check_move_unevictable_pages(struct pagevec *pvec)
4336{
4337	struct lruvec *lruvec;
4338	struct pglist_data *pgdat = NULL;
4339	int pgscanned = 0;
4340	int pgrescued = 0;
4341	int i;
4342
4343	for (i = 0; i < pvec->nr; i++) {
4344		struct page *page = pvec->pages[i];
4345		struct pglist_data *pagepgdat = page_pgdat(page);
4346
4347		pgscanned++;
4348		if (pagepgdat != pgdat) {
4349			if (pgdat)
4350				spin_unlock_irq(&pgdat->lru_lock);
4351			pgdat = pagepgdat;
4352			spin_lock_irq(&pgdat->lru_lock);
 
4353		}
4354		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4355
4356		if (!PageLRU(page) || !PageUnevictable(page))
4357			continue;
4358
4359		if (page_evictable(page)) {
4360			enum lru_list lru = page_lru_base_type(page);
4361
4362			VM_BUG_ON_PAGE(PageActive(page), page);
4363			ClearPageUnevictable(page);
4364			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4365			add_page_to_lru_list(page, lruvec, lru);
4366			pgrescued++;
4367		}
4368	}
4369
4370	if (pgdat) {
4371		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4372		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4373		spin_unlock_irq(&pgdat->lru_lock);
4374	}
4375}
4376EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v3.5.6
 
   1/*
   2 *  linux/mm/vmscan.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *
   6 *  Swap reorganised 29.12.95, Stephen Tweedie.
   7 *  kswapd added: 7.1.96  sct
   8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11 *  Multiqueue VM started 5.8.00, Rik van Riel.
  12 */
  13
 
 
  14#include <linux/mm.h>
 
  15#include <linux/module.h>
  16#include <linux/gfp.h>
  17#include <linux/kernel_stat.h>
  18#include <linux/swap.h>
  19#include <linux/pagemap.h>
  20#include <linux/init.h>
  21#include <linux/highmem.h>
 
  22#include <linux/vmstat.h>
  23#include <linux/file.h>
  24#include <linux/writeback.h>
  25#include <linux/blkdev.h>
  26#include <linux/buffer_head.h>	/* for try_to_release_page(),
  27					buffer_heads_over_limit */
  28#include <linux/mm_inline.h>
  29#include <linux/backing-dev.h>
  30#include <linux/rmap.h>
  31#include <linux/topology.h>
  32#include <linux/cpu.h>
  33#include <linux/cpuset.h>
  34#include <linux/compaction.h>
  35#include <linux/notifier.h>
  36#include <linux/rwsem.h>
  37#include <linux/delay.h>
  38#include <linux/kthread.h>
  39#include <linux/freezer.h>
  40#include <linux/memcontrol.h>
  41#include <linux/delayacct.h>
  42#include <linux/sysctl.h>
  43#include <linux/oom.h>
 
  44#include <linux/prefetch.h>
 
 
 
  45
  46#include <asm/tlbflush.h>
  47#include <asm/div64.h>
  48
  49#include <linux/swapops.h>
 
  50
  51#include "internal.h"
  52
  53#define CREATE_TRACE_POINTS
  54#include <trace/events/vmscan.h>
  55
  56struct scan_control {
  57	/* Incremented by the number of inactive pages that were scanned */
  58	unsigned long nr_scanned;
  59
  60	/* Number of pages freed so far during a call to shrink_zones() */
  61	unsigned long nr_reclaimed;
  62
  63	/* How many pages shrink_list() should reclaim */
  64	unsigned long nr_to_reclaim;
  65
  66	unsigned long hibernation_mode;
 
 
 
 
  67
  68	/* This context's GFP mask */
  69	gfp_t gfp_mask;
 
 
 
  70
  71	int may_writepage;
 
  72
  73	/* Can mapped pages be reclaimed? */
  74	int may_unmap;
  75
  76	/* Can pages be swapped as part of reclaim? */
  77	int may_swap;
  78
  79	int order;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80
  81	/* Scan (total_size >> priority) pages at once */
  82	int priority;
 
 
 
  83
  84	/*
  85	 * The memory cgroup that hit its limit and as a result is the
  86	 * primary target of this reclaim invocation.
  87	 */
  88	struct mem_cgroup *target_mem_cgroup;
 
 
 
 
 
 
 
 
 
 
 
 
 
  89
  90	/*
  91	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
  92	 * are scanned.
  93	 */
  94	nodemask_t	*nodemask;
  95};
  96
  97#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
  98
  99#ifdef ARCH_HAS_PREFETCH
 100#define prefetch_prev_lru_page(_page, _base, _field)			\
 101	do {								\
 102		if ((_page)->lru.prev != _base) {			\
 103			struct page *prev;				\
 104									\
 105			prev = lru_to_page(&(_page->lru));		\
 106			prefetch(&prev->_field);			\
 107		}							\
 108	} while (0)
 109#else
 110#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 111#endif
 112
 113#ifdef ARCH_HAS_PREFETCHW
 114#define prefetchw_prev_lru_page(_page, _base, _field)			\
 115	do {								\
 116		if ((_page)->lru.prev != _base) {			\
 117			struct page *prev;				\
 118									\
 119			prev = lru_to_page(&(_page->lru));		\
 120			prefetchw(&prev->_field);			\
 121		}							\
 122	} while (0)
 123#else
 124#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 125#endif
 126
 127/*
 128 * From 0 .. 100.  Higher means more swappy.
 129 */
 130int vm_swappiness = 60;
 131long vm_total_pages;	/* The total number of pages which the VM controls */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132
 133static LIST_HEAD(shrinker_list);
 134static DECLARE_RWSEM(shrinker_rwsem);
 135
 136#ifdef CONFIG_CGROUP_MEM_RES_CTLR
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 137static bool global_reclaim(struct scan_control *sc)
 138{
 139	return !sc->target_mem_cgroup;
 140}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 141#else
 
 
 
 
 
 
 
 
 
 142static bool global_reclaim(struct scan_control *sc)
 143{
 144	return true;
 145}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 146#endif
 147
 148static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
 
 
 
 
 
 149{
 150	if (!mem_cgroup_disabled())
 151		return mem_cgroup_get_lru_size(lruvec, lru);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152
 153	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
 154}
 155
 156/*
 157 * Add a shrinker callback to be called from the vm
 158 */
 159void register_shrinker(struct shrinker *shrinker)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160{
 161	atomic_long_set(&shrinker->nr_in_batch, 0);
 162	down_write(&shrinker_rwsem);
 163	list_add_tail(&shrinker->list, &shrinker_list);
 
 
 
 
 164	up_write(&shrinker_rwsem);
 165}
 
 
 
 
 
 
 
 
 
 
 166EXPORT_SYMBOL(register_shrinker);
 167
 168/*
 169 * Remove one
 170 */
 171void unregister_shrinker(struct shrinker *shrinker)
 172{
 
 
 
 
 173	down_write(&shrinker_rwsem);
 174	list_del(&shrinker->list);
 175	up_write(&shrinker_rwsem);
 
 
 176}
 177EXPORT_SYMBOL(unregister_shrinker);
 178
 179static inline int do_shrinker_shrink(struct shrinker *shrinker,
 180				     struct shrink_control *sc,
 181				     unsigned long nr_to_scan)
 
 182{
 183	sc->nr_to_scan = nr_to_scan;
 184	return (*shrinker->shrink)(shrinker, sc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 185}
 186
 187#define SHRINK_BATCH 128
 188/*
 189 * Call the shrink functions to age shrinkable caches
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190 *
 191 * Here we assume it costs one seek to replace a lru page and that it also
 192 * takes a seek to recreate a cache object.  With this in mind we age equal
 193 * percentages of the lru and ageable caches.  This should balance the seeks
 194 * generated by these structures.
 195 *
 196 * If the vm encountered mapped pages on the LRU it increase the pressure on
 197 * slab to avoid swapping.
 198 *
 199 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 
 200 *
 201 * `lru_pages' represents the number of on-LRU pages in all the zones which
 202 * are eligible for the caller's allocation attempt.  It is used for balancing
 203 * slab reclaim versus page reclaim.
 204 *
 205 * Returns the number of slab objects which we shrunk.
 206 */
 207unsigned long shrink_slab(struct shrink_control *shrink,
 208			  unsigned long nr_pages_scanned,
 209			  unsigned long lru_pages)
 210{
 
 211	struct shrinker *shrinker;
 212	unsigned long ret = 0;
 213
 214	if (nr_pages_scanned == 0)
 215		nr_pages_scanned = SWAP_CLUSTER_MAX;
 
 
 
 
 
 
 
 216
 217	if (!down_read_trylock(&shrinker_rwsem)) {
 218		/* Assume we'll be able to shrink next time */
 219		ret = 1;
 220		goto out;
 221	}
 222
 223	list_for_each_entry(shrinker, &shrinker_list, list) {
 224		unsigned long long delta;
 225		long total_scan;
 226		long max_pass;
 227		int shrink_ret = 0;
 228		long nr;
 229		long new_nr;
 230		long batch_size = shrinker->batch ? shrinker->batch
 231						  : SHRINK_BATCH;
 232
 233		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
 234		if (max_pass <= 0)
 235			continue;
 236
 
 
 
 
 237		/*
 238		 * copy the current shrinker scan count into a local variable
 239		 * and zero it so that other concurrent shrinker invocations
 240		 * don't also do this scanning work.
 241		 */
 242		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
 243
 244		total_scan = nr;
 245		delta = (4 * nr_pages_scanned) / shrinker->seeks;
 246		delta *= max_pass;
 247		do_div(delta, lru_pages + 1);
 248		total_scan += delta;
 249		if (total_scan < 0) {
 250			printk(KERN_ERR "shrink_slab: %pF negative objects to "
 251			       "delete nr=%ld\n",
 252			       shrinker->shrink, total_scan);
 253			total_scan = max_pass;
 254		}
 
 255
 256		/*
 257		 * We need to avoid excessive windup on filesystem shrinkers
 258		 * due to large numbers of GFP_NOFS allocations causing the
 259		 * shrinkers to return -1 all the time. This results in a large
 260		 * nr being built up so when a shrink that can do some work
 261		 * comes along it empties the entire cache due to nr >>>
 262		 * max_pass.  This is bad for sustaining a working set in
 263		 * memory.
 264		 *
 265		 * Hence only allow the shrinker to scan the entire cache when
 266		 * a large delta change is calculated directly.
 267		 */
 268		if (delta < max_pass / 4)
 269			total_scan = min(total_scan, max_pass / 2);
 270
 271		/*
 272		 * Avoid risking looping forever due to too large nr value:
 273		 * never try to free more than twice the estimate number of
 274		 * freeable entries.
 275		 */
 276		if (total_scan > max_pass * 2)
 277			total_scan = max_pass * 2;
 278
 279		trace_mm_shrink_slab_start(shrinker, shrink, nr,
 280					nr_pages_scanned, lru_pages,
 281					max_pass, delta, total_scan);
 282
 283		while (total_scan >= batch_size) {
 284			int nr_before;
 
 
 
 
 
 285
 286			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
 287			shrink_ret = do_shrinker_shrink(shrinker, shrink,
 288							batch_size);
 289			if (shrink_ret == -1)
 290				break;
 291			if (shrink_ret < nr_before)
 292				ret += nr_before - shrink_ret;
 293			count_vm_events(SLABS_SCANNED, batch_size);
 294			total_scan -= batch_size;
 295
 296			cond_resched();
 297		}
 298
 299		/*
 300		 * move the unused scan count back into the shrinker in a
 301		 * manner that handles concurrent updates. If we exhausted the
 302		 * scan, there is no need to do an update.
 303		 */
 304		if (total_scan > 0)
 305			new_nr = atomic_long_add_return(total_scan,
 306					&shrinker->nr_in_batch);
 307		else
 308			new_nr = atomic_long_read(&shrinker->nr_in_batch);
 309
 310		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
 311	}
 312	up_read(&shrinker_rwsem);
 313out:
 314	cond_resched();
 315	return ret;
 316}
 317
 318static inline int is_page_cache_freeable(struct page *page)
 319{
 320	/*
 321	 * A freeable page cache page is referenced only by the caller
 322	 * that isolated the page, the page cache radix tree and
 323	 * optional buffer heads at page->private.
 324	 */
 325	return page_count(page) - page_has_private(page) == 2;
 
 
 326}
 327
 328static int may_write_to_queue(struct backing_dev_info *bdi,
 329			      struct scan_control *sc)
 330{
 331	if (current->flags & PF_SWAPWRITE)
 332		return 1;
 333	if (!bdi_write_congested(bdi))
 334		return 1;
 335	if (bdi == current->backing_dev_info)
 336		return 1;
 337	return 0;
 338}
 339
 340/*
 341 * We detected a synchronous write error writing a page out.  Probably
 342 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 343 * fsync(), msync() or close().
 344 *
 345 * The tricky part is that after writepage we cannot touch the mapping: nothing
 346 * prevents it from being freed up.  But we have a ref on the page and once
 347 * that page is locked, the mapping is pinned.
 348 *
 349 * We're allowed to run sleeping lock_page() here because we know the caller has
 350 * __GFP_FS.
 351 */
 352static void handle_write_error(struct address_space *mapping,
 353				struct page *page, int error)
 354{
 355	lock_page(page);
 356	if (page_mapping(page) == mapping)
 357		mapping_set_error(mapping, error);
 358	unlock_page(page);
 359}
 360
 361/* possible outcome of pageout() */
 362typedef enum {
 363	/* failed to write page out, page is locked */
 364	PAGE_KEEP,
 365	/* move page to the active list, page is locked */
 366	PAGE_ACTIVATE,
 367	/* page has been sent to the disk successfully, page is unlocked */
 368	PAGE_SUCCESS,
 369	/* page is clean and locked */
 370	PAGE_CLEAN,
 371} pageout_t;
 372
 373/*
 374 * pageout is called by shrink_page_list() for each dirty page.
 375 * Calls ->writepage().
 376 */
 377static pageout_t pageout(struct page *page, struct address_space *mapping,
 378			 struct scan_control *sc)
 379{
 380	/*
 381	 * If the page is dirty, only perform writeback if that write
 382	 * will be non-blocking.  To prevent this allocation from being
 383	 * stalled by pagecache activity.  But note that there may be
 384	 * stalls if we need to run get_block().  We could test
 385	 * PagePrivate for that.
 386	 *
 387	 * If this process is currently in __generic_file_aio_write() against
 388	 * this page's queue, we can perform writeback even if that
 389	 * will block.
 390	 *
 391	 * If the page is swapcache, write it back even if that would
 392	 * block, for some throttling. This happens by accident, because
 393	 * swap_backing_dev_info is bust: it doesn't reflect the
 394	 * congestion state of the swapdevs.  Easy to fix, if needed.
 395	 */
 396	if (!is_page_cache_freeable(page))
 397		return PAGE_KEEP;
 398	if (!mapping) {
 399		/*
 400		 * Some data journaling orphaned pages can have
 401		 * page->mapping == NULL while being dirty with clean buffers.
 402		 */
 403		if (page_has_private(page)) {
 404			if (try_to_free_buffers(page)) {
 405				ClearPageDirty(page);
 406				printk("%s: orphaned page\n", __func__);
 407				return PAGE_CLEAN;
 408			}
 409		}
 410		return PAGE_KEEP;
 411	}
 412	if (mapping->a_ops->writepage == NULL)
 413		return PAGE_ACTIVATE;
 414	if (!may_write_to_queue(mapping->backing_dev_info, sc))
 415		return PAGE_KEEP;
 416
 417	if (clear_page_dirty_for_io(page)) {
 418		int res;
 419		struct writeback_control wbc = {
 420			.sync_mode = WB_SYNC_NONE,
 421			.nr_to_write = SWAP_CLUSTER_MAX,
 422			.range_start = 0,
 423			.range_end = LLONG_MAX,
 424			.for_reclaim = 1,
 425		};
 426
 427		SetPageReclaim(page);
 428		res = mapping->a_ops->writepage(page, &wbc);
 429		if (res < 0)
 430			handle_write_error(mapping, page, res);
 431		if (res == AOP_WRITEPAGE_ACTIVATE) {
 432			ClearPageReclaim(page);
 433			return PAGE_ACTIVATE;
 434		}
 435
 436		if (!PageWriteback(page)) {
 437			/* synchronous write or broken a_ops? */
 438			ClearPageReclaim(page);
 439		}
 440		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
 441		inc_zone_page_state(page, NR_VMSCAN_WRITE);
 442		return PAGE_SUCCESS;
 443	}
 444
 445	return PAGE_CLEAN;
 446}
 447
 448/*
 449 * Same as remove_mapping, but if the page is removed from the mapping, it
 450 * gets returned with a refcount of 0.
 451 */
 452static int __remove_mapping(struct address_space *mapping, struct page *page)
 
 453{
 
 
 
 454	BUG_ON(!PageLocked(page));
 455	BUG_ON(mapping != page_mapping(page));
 456
 457	spin_lock_irq(&mapping->tree_lock);
 458	/*
 459	 * The non racy check for a busy page.
 460	 *
 461	 * Must be careful with the order of the tests. When someone has
 462	 * a ref to the page, it may be possible that they dirty it then
 463	 * drop the reference. So if PageDirty is tested before page_count
 464	 * here, then the following race may occur:
 465	 *
 466	 * get_user_pages(&page);
 467	 * [user mapping goes away]
 468	 * write_to(page);
 469	 *				!PageDirty(page)    [good]
 470	 * SetPageDirty(page);
 471	 * put_page(page);
 472	 *				!page_count(page)   [good, discard it]
 473	 *
 474	 * [oops, our write_to data is lost]
 475	 *
 476	 * Reversing the order of the tests ensures such a situation cannot
 477	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 478	 * load is not satisfied before that of page->_count.
 479	 *
 480	 * Note that if SetPageDirty is always performed via set_page_dirty,
 481	 * and thus under tree_lock, then this ordering is not required.
 482	 */
 483	if (!page_freeze_refs(page, 2))
 
 484		goto cannot_free;
 485	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
 486	if (unlikely(PageDirty(page))) {
 487		page_unfreeze_refs(page, 2);
 488		goto cannot_free;
 489	}
 490
 491	if (PageSwapCache(page)) {
 492		swp_entry_t swap = { .val = page_private(page) };
 493		__delete_from_swap_cache(page);
 494		spin_unlock_irq(&mapping->tree_lock);
 495		swapcache_free(swap, page);
 
 496	} else {
 497		void (*freepage)(struct page *);
 
 498
 499		freepage = mapping->a_ops->freepage;
 500
 501		__delete_from_page_cache(page);
 502		spin_unlock_irq(&mapping->tree_lock);
 503		mem_cgroup_uncharge_cache_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 504
 505		if (freepage != NULL)
 506			freepage(page);
 507	}
 508
 509	return 1;
 510
 511cannot_free:
 512	spin_unlock_irq(&mapping->tree_lock);
 513	return 0;
 514}
 515
 516/*
 517 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 518 * someone else has a ref on the page, abort and return 0.  If it was
 519 * successfully detached, return 1.  Assumes the caller has a single ref on
 520 * this page.
 521 */
 522int remove_mapping(struct address_space *mapping, struct page *page)
 523{
 524	if (__remove_mapping(mapping, page)) {
 525		/*
 526		 * Unfreezing the refcount with 1 rather than 2 effectively
 527		 * drops the pagecache ref for us without requiring another
 528		 * atomic operation.
 529		 */
 530		page_unfreeze_refs(page, 1);
 531		return 1;
 532	}
 533	return 0;
 534}
 535
 536/**
 537 * putback_lru_page - put previously isolated page onto appropriate LRU list
 538 * @page: page to be put back to appropriate lru list
 539 *
 540 * Add previously isolated @page to appropriate LRU list.
 541 * Page may still be unevictable for other reasons.
 542 *
 543 * lru_lock must not be held, interrupts must be enabled.
 544 */
 545void putback_lru_page(struct page *page)
 546{
 547	int lru;
 548	int active = !!TestClearPageActive(page);
 549	int was_unevictable = PageUnevictable(page);
 550
 551	VM_BUG_ON(PageLRU(page));
 552
 553redo:
 554	ClearPageUnevictable(page);
 555
 556	if (page_evictable(page, NULL)) {
 557		/*
 558		 * For evictable pages, we can use the cache.
 559		 * In event of a race, worst case is we end up with an
 560		 * unevictable page on [in]active list.
 561		 * We know how to handle that.
 562		 */
 563		lru = active + page_lru_base_type(page);
 564		lru_cache_add_lru(page, lru);
 565	} else {
 566		/*
 567		 * Put unevictable pages directly on zone's unevictable
 568		 * list.
 569		 */
 570		lru = LRU_UNEVICTABLE;
 571		add_page_to_unevictable_list(page);
 572		/*
 573		 * When racing with an mlock or AS_UNEVICTABLE clearing
 574		 * (page is unlocked) make sure that if the other thread
 575		 * does not observe our setting of PG_lru and fails
 576		 * isolation/check_move_unevictable_pages,
 577		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
 578		 * the page back to the evictable list.
 579		 *
 580		 * The other side is TestClearPageMlocked() or shmem_lock().
 581		 */
 582		smp_mb();
 583	}
 584
 585	/*
 586	 * page's status can change while we move it among lru. If an evictable
 587	 * page is on unevictable list, it never be freed. To avoid that,
 588	 * check after we added it to the list, again.
 589	 */
 590	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
 591		if (!isolate_lru_page(page)) {
 592			put_page(page);
 593			goto redo;
 594		}
 595		/* This means someone else dropped this page from LRU
 596		 * So, it will be freed or putback to LRU again. There is
 597		 * nothing to do here.
 598		 */
 599	}
 600
 601	if (was_unevictable && lru != LRU_UNEVICTABLE)
 602		count_vm_event(UNEVICTABLE_PGRESCUED);
 603	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
 604		count_vm_event(UNEVICTABLE_PGCULLED);
 605
 606	put_page(page);		/* drop ref from isolate */
 607}
 608
 609enum page_references {
 610	PAGEREF_RECLAIM,
 611	PAGEREF_RECLAIM_CLEAN,
 612	PAGEREF_KEEP,
 613	PAGEREF_ACTIVATE,
 614};
 615
 616static enum page_references page_check_references(struct page *page,
 617						  struct scan_control *sc)
 618{
 619	int referenced_ptes, referenced_page;
 620	unsigned long vm_flags;
 621
 622	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
 623					  &vm_flags);
 624	referenced_page = TestClearPageReferenced(page);
 625
 626	/*
 627	 * Mlock lost the isolation race with us.  Let try_to_unmap()
 628	 * move the page to the unevictable list.
 629	 */
 630	if (vm_flags & VM_LOCKED)
 631		return PAGEREF_RECLAIM;
 632
 633	if (referenced_ptes) {
 634		if (PageSwapBacked(page))
 635			return PAGEREF_ACTIVATE;
 636		/*
 637		 * All mapped pages start out with page table
 638		 * references from the instantiating fault, so we need
 639		 * to look twice if a mapped file page is used more
 640		 * than once.
 641		 *
 642		 * Mark it and spare it for another trip around the
 643		 * inactive list.  Another page table reference will
 644		 * lead to its activation.
 645		 *
 646		 * Note: the mark is set for activated pages as well
 647		 * so that recently deactivated but used pages are
 648		 * quickly recovered.
 649		 */
 650		SetPageReferenced(page);
 651
 652		if (referenced_page || referenced_ptes > 1)
 653			return PAGEREF_ACTIVATE;
 654
 655		/*
 656		 * Activate file-backed executable pages after first usage.
 657		 */
 658		if (vm_flags & VM_EXEC)
 659			return PAGEREF_ACTIVATE;
 660
 661		return PAGEREF_KEEP;
 662	}
 663
 664	/* Reclaim if clean, defer dirty pages to writeback */
 665	if (referenced_page && !PageSwapBacked(page))
 666		return PAGEREF_RECLAIM_CLEAN;
 667
 668	return PAGEREF_RECLAIM;
 669}
 670
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671/*
 672 * shrink_page_list() returns the number of reclaimed pages
 673 */
 674static unsigned long shrink_page_list(struct list_head *page_list,
 675				      struct zone *zone,
 676				      struct scan_control *sc,
 677				      unsigned long *ret_nr_dirty,
 678				      unsigned long *ret_nr_writeback)
 
 679{
 680	LIST_HEAD(ret_pages);
 681	LIST_HEAD(free_pages);
 682	int pgactivate = 0;
 683	unsigned long nr_dirty = 0;
 684	unsigned long nr_congested = 0;
 685	unsigned long nr_reclaimed = 0;
 686	unsigned long nr_writeback = 0;
 687
 
 688	cond_resched();
 689
 690	while (!list_empty(page_list)) {
 691		enum page_references references;
 692		struct address_space *mapping;
 693		struct page *page;
 694		int may_enter_fs;
 
 
 
 695
 696		cond_resched();
 697
 698		page = lru_to_page(page_list);
 699		list_del(&page->lru);
 700
 701		if (!trylock_page(page))
 702			goto keep;
 703
 704		VM_BUG_ON(PageActive(page));
 705		VM_BUG_ON(page_zone(page) != zone);
 706
 707		sc->nr_scanned++;
 708
 709		if (unlikely(!page_evictable(page, NULL)))
 710			goto cull_mlocked;
 
 
 
 711
 712		if (!sc->may_unmap && page_mapped(page))
 713			goto keep_locked;
 714
 715		/* Double the slab pressure for mapped and swapcache pages */
 716		if (page_mapped(page) || PageSwapCache(page))
 717			sc->nr_scanned++;
 718
 719		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
 720			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
 721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 722		if (PageWriteback(page)) {
 723			/*
 724			 * memcg doesn't have any dirty pages throttling so we
 725			 * could easily OOM just because too many pages are in
 726			 * writeback and there is nothing else to reclaim.
 727			 *
 728			 * Check __GFP_IO, certainly because a loop driver
 729			 * thread might enter reclaim, and deadlock if it waits
 730			 * on a page for which it is needed to do the write
 731			 * (loop masks off __GFP_IO|__GFP_FS for this reason);
 732			 * but more thought would probably show more reasons.
 733			 *
 734			 * Don't require __GFP_FS, since we're not going into
 735			 * the FS, just waiting on its writeback completion.
 736			 * Worryingly, ext4 gfs2 and xfs allocate pages with
 737			 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
 738			 * testing may_enter_fs here is liable to OOM on them.
 739			 */
 740			if (global_reclaim(sc) ||
 741			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
 742				/*
 743				 * This is slightly racy - end_page_writeback()
 744				 * might have just cleared PageReclaim, then
 745				 * setting PageReclaim here end up interpreted
 746				 * as PageReadahead - but that does not matter
 747				 * enough to care.  What we do want is for this
 748				 * page to have PageReclaim set next time memcg
 749				 * reclaim reaches the tests above, so it will
 750				 * then wait_on_page_writeback() to avoid OOM;
 751				 * and it's also appropriate in global reclaim.
 752				 */
 753				SetPageReclaim(page);
 754				nr_writeback++;
 755				goto keep_locked;
 
 
 
 
 
 
 
 
 756			}
 757			wait_on_page_writeback(page);
 758		}
 759
 760		references = page_check_references(page, sc);
 
 
 761		switch (references) {
 762		case PAGEREF_ACTIVATE:
 763			goto activate_locked;
 764		case PAGEREF_KEEP:
 
 765			goto keep_locked;
 766		case PAGEREF_RECLAIM:
 767		case PAGEREF_RECLAIM_CLEAN:
 768			; /* try to reclaim the page below */
 769		}
 770
 771		/*
 772		 * Anonymous process memory has backing store?
 773		 * Try to allocate it some swap space here.
 
 774		 */
 775		if (PageAnon(page) && !PageSwapCache(page)) {
 776			if (!(sc->gfp_mask & __GFP_IO))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 777				goto keep_locked;
 778			if (!add_to_swap(page))
 779				goto activate_locked;
 780			may_enter_fs = 1;
 781		}
 782
 783		mapping = page_mapping(page);
 
 
 
 
 
 
 
 
 
 
 784
 785		/*
 786		 * The page is mapped into the page tables of one or more
 787		 * processes. Try to unmap it here.
 788		 */
 789		if (page_mapped(page) && mapping) {
 790			switch (try_to_unmap(page, TTU_UNMAP)) {
 791			case SWAP_FAIL:
 
 
 
 
 792				goto activate_locked;
 793			case SWAP_AGAIN:
 794				goto keep_locked;
 795			case SWAP_MLOCK:
 796				goto cull_mlocked;
 797			case SWAP_SUCCESS:
 798				; /* try to free the page below */
 799			}
 800		}
 801
 802		if (PageDirty(page)) {
 803			nr_dirty++;
 804
 805			/*
 806			 * Only kswapd can writeback filesystem pages to
 807			 * avoid risk of stack overflow but do not writeback
 808			 * unless under significant pressure.
 
 
 
 
 
 809			 */
 810			if (page_is_file_cache(page) &&
 811					(!current_is_kswapd() ||
 812					 sc->priority >= DEF_PRIORITY - 2)) {
 813				/*
 814				 * Immediately reclaim when written back.
 815				 * Similar in principal to deactivate_page()
 816				 * except we already have the page isolated
 817				 * and know it's dirty
 818				 */
 819				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
 820				SetPageReclaim(page);
 821
 822				goto keep_locked;
 823			}
 824
 825			if (references == PAGEREF_RECLAIM_CLEAN)
 826				goto keep_locked;
 827			if (!may_enter_fs)
 828				goto keep_locked;
 829			if (!sc->may_writepage)
 830				goto keep_locked;
 831
 832			/* Page is dirty, try to write it out here */
 
 
 
 
 
 833			switch (pageout(page, mapping, sc)) {
 834			case PAGE_KEEP:
 835				nr_congested++;
 836				goto keep_locked;
 837			case PAGE_ACTIVATE:
 838				goto activate_locked;
 839			case PAGE_SUCCESS:
 840				if (PageWriteback(page))
 841					goto keep;
 842				if (PageDirty(page))
 843					goto keep;
 844
 845				/*
 846				 * A synchronous write - probably a ramdisk.  Go
 847				 * ahead and try to reclaim the page.
 848				 */
 849				if (!trylock_page(page))
 850					goto keep;
 851				if (PageDirty(page) || PageWriteback(page))
 852					goto keep_locked;
 853				mapping = page_mapping(page);
 854			case PAGE_CLEAN:
 855				; /* try to free the page below */
 856			}
 857		}
 858
 859		/*
 860		 * If the page has buffers, try to free the buffer mappings
 861		 * associated with this page. If we succeed we try to free
 862		 * the page as well.
 863		 *
 864		 * We do this even if the page is PageDirty().
 865		 * try_to_release_page() does not perform I/O, but it is
 866		 * possible for a page to have PageDirty set, but it is actually
 867		 * clean (all its buffers are clean).  This happens if the
 868		 * buffers were written out directly, with submit_bh(). ext3
 869		 * will do this, as well as the blockdev mapping.
 870		 * try_to_release_page() will discover that cleanness and will
 871		 * drop the buffers and mark the page clean - it can be freed.
 872		 *
 873		 * Rarely, pages can have buffers and no ->mapping.  These are
 874		 * the pages which were not successfully invalidated in
 875		 * truncate_complete_page().  We try to drop those buffers here
 876		 * and if that worked, and the page is no longer mapped into
 877		 * process address space (page_count == 1) it can be freed.
 878		 * Otherwise, leave the page on the LRU so it is swappable.
 879		 */
 880		if (page_has_private(page)) {
 881			if (!try_to_release_page(page, sc->gfp_mask))
 882				goto activate_locked;
 883			if (!mapping && page_count(page) == 1) {
 884				unlock_page(page);
 885				if (put_page_testzero(page))
 886					goto free_it;
 887				else {
 888					/*
 889					 * rare race with speculative reference.
 890					 * the speculative reference will free
 891					 * this page shortly, so we may
 892					 * increment nr_reclaimed here (and
 893					 * leave it off the LRU).
 894					 */
 895					nr_reclaimed++;
 896					continue;
 897				}
 898			}
 899		}
 900
 901		if (!mapping || !__remove_mapping(mapping, page))
 
 
 
 
 
 
 
 
 
 
 
 902			goto keep_locked;
 903
 
 
 904		/*
 905		 * At this point, we have no other references and there is
 906		 * no way to pick any more up (removed from LRU, removed
 907		 * from pagecache). Can use non-atomic bitops now (and
 908		 * we obviously don't have to worry about waking up a process
 909		 * waiting on the page lock, because there are no references.
 910		 */
 911		__clear_page_locked(page);
 912free_it:
 913		nr_reclaimed++;
 914
 915		/*
 916		 * Is there need to periodically free_page_list? It would
 917		 * appear not as the counts should be low
 918		 */
 919		list_add(&page->lru, &free_pages);
 920		continue;
 921
 922cull_mlocked:
 923		if (PageSwapCache(page))
 924			try_to_free_swap(page);
 925		unlock_page(page);
 926		putback_lru_page(page);
 927		continue;
 928
 
 
 
 
 
 
 
 
 
 929activate_locked:
 930		/* Not a candidate for swapping, so reclaim swap space. */
 931		if (PageSwapCache(page) && vm_swap_full())
 
 932			try_to_free_swap(page);
 933		VM_BUG_ON(PageActive(page));
 934		SetPageActive(page);
 935		pgactivate++;
 
 
 
 
 936keep_locked:
 937		unlock_page(page);
 938keep:
 939		list_add(&page->lru, &ret_pages);
 940		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
 941	}
 942
 943	/*
 944	 * Tag a zone as congested if all the dirty pages encountered were
 945	 * backed by a congested BDI. In this case, reclaimers should just
 946	 * back off and wait for congestion to clear because further reclaim
 947	 * will encounter the same problem
 948	 */
 949	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
 950		zone_set_flag(zone, ZONE_CONGESTED);
 951
 952	free_hot_cold_page_list(&free_pages, 1);
 
 
 953
 954	list_splice(&ret_pages, page_list);
 955	count_vm_events(PGACTIVATE, pgactivate);
 956	*ret_nr_dirty += nr_dirty;
 957	*ret_nr_writeback += nr_writeback;
 958	return nr_reclaimed;
 959}
 960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 961/*
 962 * Attempt to remove the specified page from its LRU.  Only take this page
 963 * if it is of the appropriate PageActive status.  Pages which are being
 964 * freed elsewhere are also ignored.
 965 *
 966 * page:	page to consider
 967 * mode:	one of the LRU isolation modes defined above
 968 *
 969 * returns 0 on success, -ve errno on failure.
 970 */
 971int __isolate_lru_page(struct page *page, isolate_mode_t mode)
 972{
 973	int ret = -EINVAL;
 974
 975	/* Only take pages on the LRU. */
 976	if (!PageLRU(page))
 977		return ret;
 978
 979	/* Do not give back unevictable pages for compaction */
 980	if (PageUnevictable(page))
 981		return ret;
 982
 983	ret = -EBUSY;
 984
 985	/*
 986	 * To minimise LRU disruption, the caller can indicate that it only
 987	 * wants to isolate pages it will be able to operate on without
 988	 * blocking - clean pages for the most part.
 989	 *
 990	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
 991	 * is used by reclaim when it is cannot write to backing storage
 992	 *
 993	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
 994	 * that it is possible to migrate without blocking
 995	 */
 996	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
 997		/* All the caller can do on PageWriteback is block */
 998		if (PageWriteback(page))
 999			return ret;
1000
1001		if (PageDirty(page)) {
1002			struct address_space *mapping;
1003
1004			/* ISOLATE_CLEAN means only clean pages */
1005			if (mode & ISOLATE_CLEAN)
1006				return ret;
1007
1008			/*
1009			 * Only pages without mappings or that have a
1010			 * ->migratepage callback are possible to migrate
1011			 * without blocking
 
 
 
 
1012			 */
 
 
 
1013			mapping = page_mapping(page);
1014			if (mapping && !mapping->a_ops->migratepage)
 
 
1015				return ret;
1016		}
1017	}
1018
1019	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1020		return ret;
1021
1022	if (likely(get_page_unless_zero(page))) {
1023		/*
1024		 * Be careful not to clear PageLRU until after we're
1025		 * sure the page is not being freed elsewhere -- the
1026		 * page release code relies on it.
1027		 */
1028		ClearPageLRU(page);
1029		ret = 0;
1030	}
1031
1032	return ret;
1033}
1034
 
1035/*
1036 * zone->lru_lock is heavily contended.  Some of the functions that
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1037 * shrink the lists perform better by taking out a batch of pages
1038 * and working on them outside the LRU lock.
1039 *
1040 * For pagecache intensive workloads, this function is the hottest
1041 * spot in the kernel (apart from copy_*_user functions).
1042 *
1043 * Appropriate locks must be held before calling this function.
1044 *
1045 * @nr_to_scan:	The number of pages to look through on the list.
1046 * @lruvec:	The LRU vector to pull pages from.
1047 * @dst:	The temp list to put pages on to.
1048 * @nr_scanned:	The number of pages that were scanned.
1049 * @sc:		The scan_control struct for this reclaim session
1050 * @mode:	One of the LRU isolation modes
1051 * @lru:	LRU list id for isolating
1052 *
1053 * returns how many pages were moved onto *@dst.
1054 */
1055static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1056		struct lruvec *lruvec, struct list_head *dst,
1057		unsigned long *nr_scanned, struct scan_control *sc,
1058		isolate_mode_t mode, enum lru_list lru)
1059{
1060	struct list_head *src = &lruvec->lists[lru];
1061	unsigned long nr_taken = 0;
1062	unsigned long scan;
1063
1064	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
 
 
 
 
 
 
 
1065		struct page *page;
1066		int nr_pages;
1067
1068		page = lru_to_page(src);
1069		prefetchw_prev_lru_page(page, src, flags);
1070
1071		VM_BUG_ON(!PageLRU(page));
1072
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1073		switch (__isolate_lru_page(page, mode)) {
1074		case 0:
1075			nr_pages = hpage_nr_pages(page);
1076			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1077			list_move(&page->lru, dst);
1078			nr_taken += nr_pages;
1079			break;
1080
1081		case -EBUSY:
1082			/* else it is being freed elsewhere */
1083			list_move(&page->lru, src);
1084			continue;
1085
1086		default:
1087			BUG();
1088		}
1089	}
1090
1091	*nr_scanned = scan;
1092	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1093				    nr_taken, mode, is_file_lru(lru));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1094	return nr_taken;
1095}
1096
1097/**
1098 * isolate_lru_page - tries to isolate a page from its LRU list
1099 * @page: page to isolate from its LRU list
1100 *
1101 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1102 * vmstat statistic corresponding to whatever LRU list the page was on.
1103 *
1104 * Returns 0 if the page was removed from an LRU list.
1105 * Returns -EBUSY if the page was not on an LRU list.
1106 *
1107 * The returned page will have PageLRU() cleared.  If it was found on
1108 * the active list, it will have PageActive set.  If it was found on
1109 * the unevictable list, it will have the PageUnevictable bit set. That flag
1110 * may need to be cleared by the caller before letting the page go.
1111 *
1112 * The vmstat statistic corresponding to the list on which the page was
1113 * found will be decremented.
1114 *
1115 * Restrictions:
 
1116 * (1) Must be called with an elevated refcount on the page. This is a
1117 *     fundamentnal difference from isolate_lru_pages (which is called
1118 *     without a stable reference).
1119 * (2) the lru_lock must not be held.
1120 * (3) interrupts must be enabled.
1121 */
1122int isolate_lru_page(struct page *page)
1123{
1124	int ret = -EBUSY;
1125
1126	VM_BUG_ON(!page_count(page));
 
1127
1128	if (PageLRU(page)) {
1129		struct zone *zone = page_zone(page);
1130		struct lruvec *lruvec;
1131
1132		spin_lock_irq(&zone->lru_lock);
1133		lruvec = mem_cgroup_page_lruvec(page, zone);
1134		if (PageLRU(page)) {
1135			int lru = page_lru(page);
1136			get_page(page);
1137			ClearPageLRU(page);
1138			del_page_from_lru_list(page, lruvec, lru);
1139			ret = 0;
1140		}
1141		spin_unlock_irq(&zone->lru_lock);
1142	}
1143	return ret;
1144}
1145
1146/*
1147 * Are there way too many processes in the direct reclaim path already?
 
 
 
 
1148 */
1149static int too_many_isolated(struct zone *zone, int file,
1150		struct scan_control *sc)
1151{
1152	unsigned long inactive, isolated;
1153
1154	if (current_is_kswapd())
1155		return 0;
1156
1157	if (!global_reclaim(sc))
1158		return 0;
1159
1160	if (file) {
1161		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1162		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1163	} else {
1164		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1165		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1166	}
1167
 
 
 
 
 
 
 
 
1168	return isolated > inactive;
1169}
1170
1171static noinline_for_stack void
1172putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1173{
1174	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1175	struct zone *zone = lruvec_zone(lruvec);
1176	LIST_HEAD(pages_to_free);
 
 
1177
1178	/*
1179	 * Put back any unfreeable pages.
1180	 */
1181	while (!list_empty(page_list)) {
1182		struct page *page = lru_to_page(page_list);
1183		int lru;
1184
1185		VM_BUG_ON(PageLRU(page));
1186		list_del(&page->lru);
1187		if (unlikely(!page_evictable(page, NULL))) {
1188			spin_unlock_irq(&zone->lru_lock);
1189			putback_lru_page(page);
1190			spin_lock_irq(&zone->lru_lock);
1191			continue;
1192		}
1193
1194		lruvec = mem_cgroup_page_lruvec(page, zone);
1195
1196		SetPageLRU(page);
1197		lru = page_lru(page);
1198		add_page_to_lru_list(page, lruvec, lru);
1199
1200		if (is_active_lru(lru)) {
1201			int file = is_file_lru(lru);
1202			int numpages = hpage_nr_pages(page);
1203			reclaim_stat->recent_rotated[file] += numpages;
1204		}
1205		if (put_page_testzero(page)) {
1206			__ClearPageLRU(page);
1207			__ClearPageActive(page);
1208			del_page_from_lru_list(page, lruvec, lru);
1209
1210			if (unlikely(PageCompound(page))) {
1211				spin_unlock_irq(&zone->lru_lock);
1212				(*get_compound_page_dtor(page))(page);
1213				spin_lock_irq(&zone->lru_lock);
1214			} else
1215				list_add(&page->lru, &pages_to_free);
 
 
1216		}
1217	}
1218
1219	/*
1220	 * To save our caller's stack, now use input list for pages to free.
1221	 */
1222	list_splice(&pages_to_free, page_list);
 
 
1223}
1224
1225/*
1226 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 
 
 
 
 
 
 
 
 
 
 
 
 
1227 * of reclaimed pages
1228 */
1229static noinline_for_stack unsigned long
1230shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1231		     struct scan_control *sc, enum lru_list lru)
1232{
1233	LIST_HEAD(page_list);
1234	unsigned long nr_scanned;
1235	unsigned long nr_reclaimed = 0;
1236	unsigned long nr_taken;
1237	unsigned long nr_dirty = 0;
1238	unsigned long nr_writeback = 0;
1239	isolate_mode_t isolate_mode = 0;
1240	int file = is_file_lru(lru);
1241	struct zone *zone = lruvec_zone(lruvec);
 
1242	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
 
1243
1244	while (unlikely(too_many_isolated(zone, file, sc))) {
1245		congestion_wait(BLK_RW_ASYNC, HZ/10);
 
 
 
 
 
1246
1247		/* We are about to die and free our memory. Return now. */
1248		if (fatal_signal_pending(current))
1249			return SWAP_CLUSTER_MAX;
1250	}
1251
1252	lru_add_drain();
1253
1254	if (!sc->may_unmap)
1255		isolate_mode |= ISOLATE_UNMAPPED;
1256	if (!sc->may_writepage)
1257		isolate_mode |= ISOLATE_CLEAN;
1258
1259	spin_lock_irq(&zone->lru_lock);
1260
1261	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1262				     &nr_scanned, sc, isolate_mode, lru);
1263
1264	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1265	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1266
1267	if (global_reclaim(sc)) {
1268		zone->pages_scanned += nr_scanned;
1269		if (current_is_kswapd())
1270			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1271		else
1272			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1273	}
1274	spin_unlock_irq(&zone->lru_lock);
1275
1276	if (nr_taken == 0)
1277		return 0;
1278
1279	nr_reclaimed = shrink_page_list(&page_list, zone, sc,
1280						&nr_dirty, &nr_writeback);
1281
1282	spin_lock_irq(&zone->lru_lock);
1283
1284	reclaim_stat->recent_scanned[file] += nr_taken;
 
 
 
 
 
1285
1286	if (global_reclaim(sc)) {
1287		if (current_is_kswapd())
1288			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1289					       nr_reclaimed);
1290		else
1291			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1292					       nr_reclaimed);
1293	}
1294
1295	putback_inactive_pages(lruvec, &page_list);
1296
1297	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1298
1299	spin_unlock_irq(&zone->lru_lock);
1300
1301	free_hot_cold_page_list(&page_list, 1);
1302
1303	/*
1304	 * If reclaim is isolating dirty pages under writeback, it implies
1305	 * that the long-lived page allocation rate is exceeding the page
1306	 * laundering rate. Either the global limits are not being effective
1307	 * at throttling processes due to the page distribution throughout
1308	 * zones or there is heavy usage of a slow backing device. The
1309	 * only option is to throttle from reclaim context which is not ideal
1310	 * as there is no guarantee the dirtying process is throttled in the
1311	 * same way balance_dirty_pages() manages.
1312	 *
1313	 * This scales the number of dirty pages that must be under writeback
1314	 * before throttling depending on priority. It is a simple backoff
1315	 * function that has the most effect in the range DEF_PRIORITY to
1316	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1317	 * in trouble and reclaim is considered to be in trouble.
1318	 *
1319	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1320	 * DEF_PRIORITY-1  50% must be PageWriteback
1321	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1322	 * ...
1323	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1324	 *                     isolated page is PageWriteback
1325	 */
1326	if (nr_writeback && nr_writeback >=
1327			(nr_taken >> (DEF_PRIORITY - sc->priority)))
1328		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1329
1330	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1331		zone_idx(zone),
1332		nr_scanned, nr_reclaimed,
1333		sc->priority,
1334		trace_shrink_flags(file));
1335	return nr_reclaimed;
1336}
1337
1338/*
1339 * This moves pages from the active list to the inactive list.
1340 *
1341 * We move them the other way if the page is referenced by one or more
1342 * processes, from rmap.
1343 *
1344 * If the pages are mostly unmapped, the processing is fast and it is
1345 * appropriate to hold zone->lru_lock across the whole operation.  But if
1346 * the pages are mapped, the processing is slow (page_referenced()) so we
1347 * should drop zone->lru_lock around each page.  It's impossible to balance
1348 * this, so instead we remove the pages from the LRU while processing them.
1349 * It is safe to rely on PG_active against the non-LRU pages in here because
1350 * nobody will play with that bit on a non-LRU page.
1351 *
1352 * The downside is that we have to touch page->_count against each page.
1353 * But we had to alter page->flags anyway.
1354 */
1355
1356static void move_active_pages_to_lru(struct lruvec *lruvec,
1357				     struct list_head *list,
1358				     struct list_head *pages_to_free,
1359				     enum lru_list lru)
1360{
1361	struct zone *zone = lruvec_zone(lruvec);
1362	unsigned long pgmoved = 0;
1363	struct page *page;
1364	int nr_pages;
1365
1366	while (!list_empty(list)) {
1367		page = lru_to_page(list);
1368		lruvec = mem_cgroup_page_lruvec(page, zone);
1369
1370		VM_BUG_ON(PageLRU(page));
1371		SetPageLRU(page);
1372
1373		nr_pages = hpage_nr_pages(page);
1374		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1375		list_move(&page->lru, &lruvec->lists[lru]);
1376		pgmoved += nr_pages;
1377
1378		if (put_page_testzero(page)) {
1379			__ClearPageLRU(page);
1380			__ClearPageActive(page);
1381			del_page_from_lru_list(page, lruvec, lru);
1382
1383			if (unlikely(PageCompound(page))) {
1384				spin_unlock_irq(&zone->lru_lock);
1385				(*get_compound_page_dtor(page))(page);
1386				spin_lock_irq(&zone->lru_lock);
1387			} else
1388				list_add(&page->lru, pages_to_free);
1389		}
1390	}
1391	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1392	if (!is_active_lru(lru))
1393		__count_vm_events(PGDEACTIVATE, pgmoved);
1394}
1395
1396static void shrink_active_list(unsigned long nr_to_scan,
1397			       struct lruvec *lruvec,
1398			       struct scan_control *sc,
1399			       enum lru_list lru)
1400{
1401	unsigned long nr_taken;
1402	unsigned long nr_scanned;
1403	unsigned long vm_flags;
1404	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1405	LIST_HEAD(l_active);
1406	LIST_HEAD(l_inactive);
1407	struct page *page;
1408	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1409	unsigned long nr_rotated = 0;
1410	isolate_mode_t isolate_mode = 0;
1411	int file = is_file_lru(lru);
1412	struct zone *zone = lruvec_zone(lruvec);
1413
1414	lru_add_drain();
1415
1416	if (!sc->may_unmap)
1417		isolate_mode |= ISOLATE_UNMAPPED;
1418	if (!sc->may_writepage)
1419		isolate_mode |= ISOLATE_CLEAN;
1420
1421	spin_lock_irq(&zone->lru_lock);
1422
1423	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1424				     &nr_scanned, sc, isolate_mode, lru);
1425	if (global_reclaim(sc))
1426		zone->pages_scanned += nr_scanned;
1427
 
1428	reclaim_stat->recent_scanned[file] += nr_taken;
1429
1430	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1431	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1432	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1433	spin_unlock_irq(&zone->lru_lock);
1434
1435	while (!list_empty(&l_hold)) {
1436		cond_resched();
1437		page = lru_to_page(&l_hold);
1438		list_del(&page->lru);
1439
1440		if (unlikely(!page_evictable(page, NULL))) {
1441			putback_lru_page(page);
1442			continue;
1443		}
1444
1445		if (unlikely(buffer_heads_over_limit)) {
1446			if (page_has_private(page) && trylock_page(page)) {
1447				if (page_has_private(page))
1448					try_to_release_page(page, 0);
1449				unlock_page(page);
1450			}
1451		}
1452
1453		if (page_referenced(page, 0, sc->target_mem_cgroup,
1454				    &vm_flags)) {
1455			nr_rotated += hpage_nr_pages(page);
1456			/*
1457			 * Identify referenced, file-backed active pages and
1458			 * give them one more trip around the active list. So
1459			 * that executable code get better chances to stay in
1460			 * memory under moderate memory pressure.  Anon pages
1461			 * are not likely to be evicted by use-once streaming
1462			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1463			 * so we ignore them here.
1464			 */
1465			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1466				list_add(&page->lru, &l_active);
1467				continue;
1468			}
1469		}
1470
1471		ClearPageActive(page);	/* we are de-activating */
 
1472		list_add(&page->lru, &l_inactive);
1473	}
1474
1475	/*
1476	 * Move pages back to the lru list.
1477	 */
1478	spin_lock_irq(&zone->lru_lock);
1479	/*
1480	 * Count referenced pages from currently used mappings as rotated,
1481	 * even though only some of them are actually re-activated.  This
1482	 * helps balance scan pressure between file and anonymous pages in
1483	 * get_scan_ratio.
1484	 */
1485	reclaim_stat->recent_rotated[file] += nr_rotated;
1486
1487	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1488	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1489	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1490	spin_unlock_irq(&zone->lru_lock);
 
 
 
 
 
 
1491
1492	free_hot_cold_page_list(&l_hold, 1);
 
 
 
1493}
1494
1495#ifdef CONFIG_SWAP
1496static int inactive_anon_is_low_global(struct zone *zone)
1497{
1498	unsigned long active, inactive;
 
 
 
 
 
 
 
 
 
 
 
1499
1500	active = zone_page_state(zone, NR_ACTIVE_ANON);
1501	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
 
 
 
 
 
 
 
 
 
 
1502
1503	if (inactive * zone->inactive_ratio < active)
1504		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1505
1506	return 0;
1507}
1508
1509/**
1510 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1511 * @lruvec: LRU vector to check
1512 *
1513 * Returns true if the zone does not have enough inactive anon pages,
1514 * meaning some active anon pages need to be deactivated.
1515 */
1516static int inactive_anon_is_low(struct lruvec *lruvec)
1517{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1518	/*
1519	 * If we don't have swap space, anonymous page deactivation
1520	 * is pointless.
1521	 */
1522	if (!total_swap_pages)
1523		return 0;
1524
1525	if (!mem_cgroup_disabled())
1526		return mem_cgroup_inactive_anon_is_low(lruvec);
1527
1528	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1529}
1530#else
1531static inline int inactive_anon_is_low(struct lruvec *lruvec)
1532{
1533	return 0;
1534}
1535#endif
1536
1537static int inactive_file_is_low_global(struct zone *zone)
1538{
1539	unsigned long active, inactive;
 
 
 
1540
1541	active = zone_page_state(zone, NR_ACTIVE_FILE);
1542	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
 
 
 
1543
1544	return (active > inactive);
1545}
1546
1547/**
1548 * inactive_file_is_low - check if file pages need to be deactivated
1549 * @lruvec: LRU vector to check
1550 *
1551 * When the system is doing streaming IO, memory pressure here
1552 * ensures that active file pages get deactivated, until more
1553 * than half of the file pages are on the inactive list.
1554 *
1555 * Once we get to that situation, protect the system's working
1556 * set from being evicted by disabling active file page aging.
1557 *
1558 * This uses a different ratio than the anonymous pages, because
1559 * the page cache uses a use-once replacement algorithm.
1560 */
1561static int inactive_file_is_low(struct lruvec *lruvec)
1562{
1563	if (!mem_cgroup_disabled())
1564		return mem_cgroup_inactive_file_is_low(lruvec);
1565
1566	return inactive_file_is_low_global(lruvec_zone(lruvec));
1567}
1568
1569static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1570{
1571	if (is_file_lru(lru))
1572		return inactive_file_is_low(lruvec);
1573	else
1574		return inactive_anon_is_low(lruvec);
1575}
1576
1577static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1578				 struct lruvec *lruvec, struct scan_control *sc)
1579{
1580	if (is_active_lru(lru)) {
1581		if (inactive_list_is_low(lruvec, lru))
1582			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1583		return 0;
1584	}
1585
1586	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1587}
1588
1589static int vmscan_swappiness(struct scan_control *sc)
1590{
1591	if (global_reclaim(sc))
1592		return vm_swappiness;
1593	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1594}
1595
1596/*
1597 * Determine how aggressively the anon and file LRU lists should be
1598 * scanned.  The relative value of each set of LRU lists is determined
1599 * by looking at the fraction of the pages scanned we did rotate back
1600 * onto the active list instead of evict.
1601 *
1602 * nr[0] = anon pages to scan; nr[1] = file pages to scan
 
1603 */
1604static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1605			   unsigned long *nr)
 
1606{
1607	unsigned long anon, file, free;
 
 
 
 
1608	unsigned long anon_prio, file_prio;
 
 
1609	unsigned long ap, fp;
1610	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1611	u64 fraction[2], denominator;
1612	enum lru_list lru;
1613	int noswap = 0;
1614	bool force_scan = false;
1615	struct zone *zone = lruvec_zone(lruvec);
1616
1617	/*
1618	 * If the zone or memcg is small, nr[l] can be 0.  This
1619	 * results in no scanning on this priority and a potential
1620	 * priority drop.  Global direct reclaim can go to the next
1621	 * zone and tends to have no problems. Global kswapd is for
1622	 * zone balancing and it needs to scan a minimum amount. When
1623	 * reclaiming for a memcg, a priority drop can cause high
1624	 * latencies, so it's better to scan a minimum amount there as
1625	 * well.
1626	 */
1627	if (current_is_kswapd() && zone->all_unreclaimable)
1628		force_scan = true;
1629	if (!global_reclaim(sc))
1630		force_scan = true;
1631
1632	/* If we have no swap space, do not bother scanning anon pages. */
1633	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1634		noswap = 1;
1635		fraction[0] = 0;
1636		fraction[1] = 1;
1637		denominator = 1;
1638		goto out;
1639	}
1640
1641	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1642		get_lru_size(lruvec, LRU_INACTIVE_ANON);
1643	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1644		get_lru_size(lruvec, LRU_INACTIVE_FILE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1645
 
 
 
 
 
 
 
 
 
1646	if (global_reclaim(sc)) {
1647		free  = zone_page_state(zone, NR_FREE_PAGES);
1648		/* If we have very few page cache pages,
1649		   force-scan anon pages. */
1650		if (unlikely(file + free <= high_wmark_pages(zone))) {
1651			fraction[0] = 1;
1652			fraction[1] = 0;
1653			denominator = 1;
1654			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1655		}
1656	}
1657
1658	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1659	 * With swappiness at 100, anonymous and file have the same priority.
1660	 * This scanning priority is essentially the inverse of IO cost.
1661	 */
1662	anon_prio = vmscan_swappiness(sc);
1663	file_prio = 200 - anon_prio;
1664
1665	/*
1666	 * OK, so we have swap space and a fair amount of page cache
1667	 * pages.  We use the recently rotated / recently scanned
1668	 * ratios to determine how valuable each cache is.
1669	 *
1670	 * Because workloads change over time (and to avoid overflow)
1671	 * we keep these statistics as a floating average, which ends
1672	 * up weighing recent references more than old ones.
1673	 *
1674	 * anon in [0], file in [1]
1675	 */
1676	spin_lock_irq(&zone->lru_lock);
 
 
 
 
 
 
1677	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1678		reclaim_stat->recent_scanned[0] /= 2;
1679		reclaim_stat->recent_rotated[0] /= 2;
1680	}
1681
1682	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1683		reclaim_stat->recent_scanned[1] /= 2;
1684		reclaim_stat->recent_rotated[1] /= 2;
1685	}
1686
1687	/*
1688	 * The amount of pressure on anon vs file pages is inversely
1689	 * proportional to the fraction of recently scanned pages on
1690	 * each list that were recently referenced and in active use.
1691	 */
1692	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1693	ap /= reclaim_stat->recent_rotated[0] + 1;
1694
1695	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1696	fp /= reclaim_stat->recent_rotated[1] + 1;
1697	spin_unlock_irq(&zone->lru_lock);
1698
1699	fraction[0] = ap;
1700	fraction[1] = fp;
1701	denominator = ap + fp + 1;
1702out:
 
1703	for_each_evictable_lru(lru) {
1704		int file = is_file_lru(lru);
 
1705		unsigned long scan;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1706
1707		scan = get_lru_size(lruvec, lru);
1708		if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1709			scan >>= sc->priority;
1710			if (!scan && force_scan)
1711				scan = SWAP_CLUSTER_MAX;
1712			scan = div64_u64(scan * fraction[file], denominator);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1713		}
 
 
1714		nr[lru] = scan;
1715	}
1716}
1717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1718/* Use reclaim/compaction for costly allocs or under memory pressure */
1719static bool in_reclaim_compaction(struct scan_control *sc)
1720{
1721	if (COMPACTION_BUILD && sc->order &&
1722			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1723			 sc->priority < DEF_PRIORITY - 2))
1724		return true;
1725
1726	return false;
1727}
1728
1729/*
1730 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1731 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1732 * true if more pages should be reclaimed such that when the page allocator
1733 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1734 * It will give up earlier than that if there is difficulty reclaiming pages.
1735 */
1736static inline bool should_continue_reclaim(struct lruvec *lruvec,
1737					unsigned long nr_reclaimed,
1738					unsigned long nr_scanned,
1739					struct scan_control *sc)
1740{
1741	unsigned long pages_for_compaction;
1742	unsigned long inactive_lru_pages;
 
1743
1744	/* If not in reclaim/compaction mode, stop */
1745	if (!in_reclaim_compaction(sc))
1746		return false;
1747
1748	/* Consider stopping depending on scan and reclaim activity */
1749	if (sc->gfp_mask & __GFP_REPEAT) {
1750		/*
1751		 * For __GFP_REPEAT allocations, stop reclaiming if the
1752		 * full LRU list has been scanned and we are still failing
1753		 * to reclaim pages. This full LRU scan is potentially
1754		 * expensive but a __GFP_REPEAT caller really wants to succeed
1755		 */
1756		if (!nr_reclaimed && !nr_scanned)
1757			return false;
1758	} else {
1759		/*
1760		 * For non-__GFP_REPEAT allocations which can presumably
1761		 * fail without consequence, stop if we failed to reclaim
1762		 * any pages from the last SWAP_CLUSTER_MAX number of
1763		 * pages that were scanned. This will return to the
1764		 * caller faster at the risk reclaim/compaction and
1765		 * the resulting allocation attempt fails
1766		 */
1767		if (!nr_reclaimed)
 
 
1768			return false;
 
 
 
 
1769	}
1770
1771	/*
1772	 * If we have not reclaimed enough pages for compaction and the
1773	 * inactive lists are large enough, continue reclaiming
1774	 */
1775	pages_for_compaction = (2UL << sc->order);
1776	inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1777	if (nr_swap_pages > 0)
1778		inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
1779	if (sc->nr_reclaimed < pages_for_compaction &&
1780			inactive_lru_pages > pages_for_compaction)
1781		return true;
1782
1783	/* If compaction would go ahead or the allocation would succeed, stop */
1784	switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
1785	case COMPACT_PARTIAL:
1786	case COMPACT_CONTINUE:
1787		return false;
1788	default:
1789		return true;
1790	}
1791}
1792
1793/*
1794 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1795 */
1796static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1797{
1798	unsigned long nr[NR_LRU_LISTS];
1799	unsigned long nr_to_scan;
1800	enum lru_list lru;
1801	unsigned long nr_reclaimed, nr_scanned;
1802	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1803	struct blk_plug plug;
 
 
 
 
 
 
1804
1805restart:
1806	nr_reclaimed = 0;
1807	nr_scanned = sc->nr_scanned;
1808	get_scan_count(lruvec, sc, nr);
1809
1810	blk_start_plug(&plug);
1811	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1812					nr[LRU_INACTIVE_FILE]) {
1813		for_each_evictable_lru(lru) {
1814			if (nr[lru]) {
1815				nr_to_scan = min_t(unsigned long,
1816						   nr[lru], SWAP_CLUSTER_MAX);
1817				nr[lru] -= nr_to_scan;
1818
1819				nr_reclaimed += shrink_list(lru, nr_to_scan,
1820							    lruvec, sc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1821			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1822		}
1823		/*
1824		 * On large memory systems, scan >> priority can become
1825		 * really large. This is fine for the starting priority;
1826		 * we want to put equal scanning pressure on each zone.
1827		 * However, if the VM has a harder time of freeing pages,
1828		 * with multiple processes reclaiming pages, the total
1829		 * freeing target can get unreasonably large.
1830		 */
1831		if (nr_reclaimed >= nr_to_reclaim &&
1832		    sc->priority < DEF_PRIORITY)
1833			break;
1834	}
1835	blk_finish_plug(&plug);
1836	sc->nr_reclaimed += nr_reclaimed;
1837
1838	/*
1839	 * Even if we did not try to evict anon pages at all, we want to
1840	 * rebalance the anon lru active/inactive ratio.
1841	 */
1842	if (inactive_anon_is_low(lruvec))
1843		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1844				   sc, LRU_ACTIVE_ANON);
1845
1846	/* reclaim/compaction might need reclaim to continue */
1847	if (should_continue_reclaim(lruvec, nr_reclaimed,
1848				    sc->nr_scanned - nr_scanned, sc))
1849		goto restart;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1850
1851	throttle_vm_writeout(sc->gfp_mask);
1852}
 
 
 
 
 
1853
1854static void shrink_zone(struct zone *zone, struct scan_control *sc)
1855{
1856	struct mem_cgroup *root = sc->target_mem_cgroup;
1857	struct mem_cgroup_reclaim_cookie reclaim = {
1858		.zone = zone,
1859		.priority = sc->priority,
1860	};
1861	struct mem_cgroup *memcg;
1862
1863	memcg = mem_cgroup_iter(root, NULL, &reclaim);
1864	do {
1865		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
 
 
 
 
 
 
1866
1867		shrink_lruvec(lruvec, sc);
 
 
 
 
 
 
1868
1869		/*
1870		 * Limit reclaim has historically picked one memcg and
1871		 * scanned it with decreasing priority levels until
1872		 * nr_to_reclaim had been reclaimed.  This priority
1873		 * cycle is thus over after a single memcg.
1874		 *
1875		 * Direct reclaim and kswapd, on the other hand, have
1876		 * to scan all memory cgroups to fulfill the overall
1877		 * scan target for the zone.
1878		 */
1879		if (!global_reclaim(sc)) {
1880			mem_cgroup_iter_break(root, memcg);
1881			break;
1882		}
1883		memcg = mem_cgroup_iter(root, memcg, &reclaim);
1884	} while (memcg);
 
 
 
 
 
 
 
 
 
 
 
1885}
1886
1887/* Returns true if compaction should go ahead for a high-order request */
 
 
 
 
1888static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1889{
1890	unsigned long balance_gap, watermark;
1891	bool watermark_ok;
1892
1893	/* Do not consider compaction for orders reclaim is meant to satisfy */
1894	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
 
 
 
 
1895		return false;
1896
1897	/*
1898	 * Compaction takes time to run and there are potentially other
1899	 * callers using the pages just freed. Continue reclaiming until
1900	 * there is a buffer of free pages available to give compaction
1901	 * a reasonable chance of completing and allocating the page
1902	 */
1903	balance_gap = min(low_wmark_pages(zone),
1904		(zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1905			KSWAPD_ZONE_BALANCE_GAP_RATIO);
1906	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1907	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1908
1909	/*
1910	 * If compaction is deferred, reclaim up to a point where
1911	 * compaction will have a chance of success when re-enabled
1912	 */
1913	if (compaction_deferred(zone, sc->order))
1914		return watermark_ok;
1915
1916	/* If compaction is not ready to start, keep reclaiming */
1917	if (!compaction_suitable(zone, sc->order))
1918		return false;
1919
1920	return watermark_ok;
1921}
1922
1923/*
1924 * This is the direct reclaim path, for page-allocating processes.  We only
1925 * try to reclaim pages from zones which will satisfy the caller's allocation
1926 * request.
1927 *
1928 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1929 * Because:
1930 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1931 *    allocation or
1932 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1933 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1934 *    zone defense algorithm.
1935 *
1936 * If a zone is deemed to be full of pinned pages then just give it a light
1937 * scan then give up on it.
1938 *
1939 * This function returns true if a zone is being reclaimed for a costly
1940 * high-order allocation and compaction is ready to begin. This indicates to
1941 * the caller that it should consider retrying the allocation instead of
1942 * further reclaim.
1943 */
1944static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1945{
1946	struct zoneref *z;
1947	struct zone *zone;
1948	unsigned long nr_soft_reclaimed;
1949	unsigned long nr_soft_scanned;
1950	bool aborted_reclaim = false;
 
1951
1952	/*
1953	 * If the number of buffer_heads in the machine exceeds the maximum
1954	 * allowed level, force direct reclaim to scan the highmem zone as
1955	 * highmem pages could be pinning lowmem pages storing buffer_heads
1956	 */
1957	if (buffer_heads_over_limit)
 
1958		sc->gfp_mask |= __GFP_HIGHMEM;
 
 
1959
1960	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1961					gfp_zone(sc->gfp_mask), sc->nodemask) {
1962		if (!populated_zone(zone))
1963			continue;
1964		/*
1965		 * Take care memory controller reclaiming has small influence
1966		 * to global LRU.
1967		 */
1968		if (global_reclaim(sc)) {
1969			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1970				continue;
1971			if (zone->all_unreclaimable &&
1972					sc->priority != DEF_PRIORITY)
1973				continue;	/* Let kswapd poll it */
1974			if (COMPACTION_BUILD) {
1975				/*
1976				 * If we already have plenty of memory free for
1977				 * compaction in this zone, don't free any more.
1978				 * Even though compaction is invoked for any
1979				 * non-zero order, only frequent costly order
1980				 * reclamation is disruptive enough to become a
1981				 * noticeable problem, like transparent huge
1982				 * page allocations.
1983				 */
1984				if (compaction_ready(zone, sc)) {
1985					aborted_reclaim = true;
1986					continue;
1987				}
1988			}
 
 
 
 
 
 
 
 
 
 
1989			/*
1990			 * This steals pages from memory cgroups over softlimit
1991			 * and returns the number of reclaimed pages and
1992			 * scanned pages. This works for global memory pressure
1993			 * and balancing, not for a memcg's limit.
1994			 */
1995			nr_soft_scanned = 0;
1996			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
1997						sc->order, sc->gfp_mask,
1998						&nr_soft_scanned);
1999			sc->nr_reclaimed += nr_soft_reclaimed;
2000			sc->nr_scanned += nr_soft_scanned;
2001			/* need some check for avoid more shrink_zone() */
2002		}
2003
2004		shrink_zone(zone, sc);
 
 
 
 
2005	}
2006
2007	return aborted_reclaim;
 
 
 
 
2008}
2009
2010static bool zone_reclaimable(struct zone *zone)
2011{
2012	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2013}
2014
2015/* All zones in zonelist are unreclaimable? */
2016static bool all_unreclaimable(struct zonelist *zonelist,
2017		struct scan_control *sc)
2018{
2019	struct zoneref *z;
2020	struct zone *zone;
2021
2022	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2023			gfp_zone(sc->gfp_mask), sc->nodemask) {
2024		if (!populated_zone(zone))
2025			continue;
2026		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2027			continue;
2028		if (!zone->all_unreclaimable)
2029			return false;
2030	}
2031
2032	return true;
 
 
 
2033}
2034
2035/*
2036 * This is the main entry point to direct page reclaim.
2037 *
2038 * If a full scan of the inactive list fails to free enough memory then we
2039 * are "out of memory" and something needs to be killed.
2040 *
2041 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2042 * high - the zone may be full of dirty or under-writeback pages, which this
2043 * caller can't do much about.  We kick the writeback threads and take explicit
2044 * naps in the hope that some of these pages can be written.  But if the
2045 * allocating task holds filesystem locks which prevent writeout this might not
2046 * work, and the allocation attempt will fail.
2047 *
2048 * returns:	0, if no pages reclaimed
2049 * 		else, the number of pages reclaimed
2050 */
2051static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2052					struct scan_control *sc,
2053					struct shrink_control *shrink)
2054{
2055	unsigned long total_scanned = 0;
2056	struct reclaim_state *reclaim_state = current->reclaim_state;
2057	struct zoneref *z;
2058	struct zone *zone;
2059	unsigned long writeback_threshold;
2060	bool aborted_reclaim;
2061
2062	delayacct_freepages_start();
2063
2064	if (global_reclaim(sc))
2065		count_vm_event(ALLOCSTALL);
2066
2067	do {
 
 
2068		sc->nr_scanned = 0;
2069		aborted_reclaim = shrink_zones(zonelist, sc);
2070
2071		/*
2072		 * Don't shrink slabs when reclaiming memory from
2073		 * over limit cgroups
2074		 */
2075		if (global_reclaim(sc)) {
2076			unsigned long lru_pages = 0;
2077			for_each_zone_zonelist(zone, z, zonelist,
2078					gfp_zone(sc->gfp_mask)) {
2079				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2080					continue;
2081
2082				lru_pages += zone_reclaimable_pages(zone);
2083			}
2084
2085			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2086			if (reclaim_state) {
2087				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2088				reclaim_state->reclaimed_slab = 0;
2089			}
2090		}
2091		total_scanned += sc->nr_scanned;
2092		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2093			goto out;
2094
2095		/*
2096		 * Try to write back as many pages as we just scanned.  This
2097		 * tends to cause slow streaming writers to write data to the
2098		 * disk smoothly, at the dirtying rate, which is nice.   But
2099		 * that's undesirable in laptop mode, where we *want* lumpy
2100		 * writeout.  So in laptop mode, write out the whole world.
2101		 */
2102		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2103		if (total_scanned > writeback_threshold) {
2104			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2105						WB_REASON_TRY_TO_FREE_PAGES);
2106			sc->may_writepage = 1;
2107		}
2108
2109		/* Take a nap, wait for some writeback to complete */
2110		if (!sc->hibernation_mode && sc->nr_scanned &&
2111		    sc->priority < DEF_PRIORITY - 2) {
2112			struct zone *preferred_zone;
2113
2114			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2115						&cpuset_current_mems_allowed,
2116						&preferred_zone);
2117			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2118		}
2119	} while (--sc->priority >= 0);
2120
2121out:
2122	delayacct_freepages_end();
2123
2124	if (sc->nr_reclaimed)
2125		return sc->nr_reclaimed;
2126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2127	/*
2128	 * As hibernation is going on, kswapd is freezed so that it can't mark
2129	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2130	 * check.
 
 
 
2131	 */
2132	if (oom_killer_disabled)
2133		return 0;
 
 
 
 
2134
2135	/* Aborted reclaim to try compaction? don't OOM, then */
2136	if (aborted_reclaim)
2137		return 1;
2138
2139	/* top priority shrink_zones still had more to do? don't OOM, then */
2140	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2141		return 1;
2142
2143	return 0;
 
2144}
2145
2146unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2147				gfp_t gfp_mask, nodemask_t *nodemask)
2148{
2149	unsigned long nr_reclaimed;
2150	struct scan_control sc = {
2151		.gfp_mask = gfp_mask,
 
 
 
 
 
2152		.may_writepage = !laptop_mode,
2153		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2154		.may_unmap = 1,
2155		.may_swap = 1,
2156		.order = order,
2157		.priority = DEF_PRIORITY,
2158		.target_mem_cgroup = NULL,
2159		.nodemask = nodemask,
2160	};
2161	struct shrink_control shrink = {
2162		.gfp_mask = sc.gfp_mask,
2163	};
2164
2165	trace_mm_vmscan_direct_reclaim_begin(order,
2166				sc.may_writepage,
2167				gfp_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2168
2169	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2170
2171	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
 
2172
2173	return nr_reclaimed;
2174}
2175
2176#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2177
2178unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
 
2179						gfp_t gfp_mask, bool noswap,
2180						struct zone *zone,
2181						unsigned long *nr_scanned)
2182{
2183	struct scan_control sc = {
2184		.nr_scanned = 0,
2185		.nr_to_reclaim = SWAP_CLUSTER_MAX,
 
2186		.may_writepage = !laptop_mode,
2187		.may_unmap = 1,
 
2188		.may_swap = !noswap,
2189		.order = 0,
2190		.priority = 0,
2191		.target_mem_cgroup = memcg,
2192	};
2193	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
 
 
2194
2195	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2196			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2197
2198	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2199						      sc.may_writepage,
2200						      sc.gfp_mask);
2201
2202	/*
2203	 * NOTE: Although we can get the priority field, using it
2204	 * here is not a good idea, since it limits the pages we can scan.
2205	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2206	 * will pick up pages from other mem cgroup's as well. We hack
2207	 * the priority and make it zero.
2208	 */
2209	shrink_lruvec(lruvec, &sc);
2210
2211	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2212
2213	*nr_scanned = sc.nr_scanned;
 
2214	return sc.nr_reclaimed;
2215}
2216
2217unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
 
2218					   gfp_t gfp_mask,
2219					   bool noswap)
2220{
2221	struct zonelist *zonelist;
2222	unsigned long nr_reclaimed;
 
2223	int nid;
 
2224	struct scan_control sc = {
 
 
 
 
 
 
2225		.may_writepage = !laptop_mode,
2226		.may_unmap = 1,
2227		.may_swap = !noswap,
2228		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2229		.order = 0,
2230		.priority = DEF_PRIORITY,
2231		.target_mem_cgroup = memcg,
2232		.nodemask = NULL, /* we don't care the placement */
2233		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2234				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2235	};
2236	struct shrink_control shrink = {
2237		.gfp_mask = sc.gfp_mask,
2238	};
2239
 
2240	/*
2241	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2242	 * take care of from where we get pages. So the node where we start the
2243	 * scan does not need to be the current node.
2244	 */
2245	nid = mem_cgroup_select_victim_node(memcg);
2246
2247	zonelist = NODE_DATA(nid)->node_zonelists;
 
 
 
 
 
2248
2249	trace_mm_vmscan_memcg_reclaim_begin(0,
2250					    sc.may_writepage,
2251					    sc.gfp_mask);
2252
2253	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
 
2254
2255	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
 
2256
2257	return nr_reclaimed;
2258}
2259#endif
2260
2261static void age_active_anon(struct zone *zone, struct scan_control *sc)
 
2262{
2263	struct mem_cgroup *memcg;
2264
2265	if (!total_swap_pages)
2266		return;
2267
2268	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2269	do {
2270		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2271
2272		if (inactive_anon_is_low(lruvec))
2273			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2274					   sc, LRU_ACTIVE_ANON);
2275
2276		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2277	} while (memcg);
2278}
2279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2280/*
2281 * pgdat_balanced is used when checking if a node is balanced for high-order
2282 * allocations. Only zones that meet watermarks and are in a zone allowed
2283 * by the callers classzone_idx are added to balanced_pages. The total of
2284 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2285 * for the node to be considered balanced. Forcing all zones to be balanced
2286 * for high orders can cause excessive reclaim when there are imbalanced zones.
2287 * The choice of 25% is due to
2288 *   o a 16M DMA zone that is balanced will not balance a zone on any
2289 *     reasonable sized machine
2290 *   o On all other machines, the top zone must be at least a reasonable
2291 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2292 *     would need to be at least 256M for it to be balance a whole node.
2293 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2294 *     to balance a node on its own. These seemed like reasonable ratios.
2295 */
2296static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2297						int classzone_idx)
2298{
2299	unsigned long present_pages = 0;
2300	int i;
 
 
2301
2302	for (i = 0; i <= classzone_idx; i++)
2303		present_pages += pgdat->node_zones[i].present_pages;
 
 
 
 
 
 
 
2304
2305	/* A special case here: if zone has no page, we think it's balanced */
2306	return balanced_pages >= (present_pages >> 2);
 
 
 
 
 
 
 
 
 
 
 
 
2307}
2308
2309/* is kswapd sleeping prematurely? */
2310static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2311					int classzone_idx)
2312{
2313	int i;
2314	unsigned long balanced = 0;
2315	bool all_zones_ok = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2316
2317	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2318	if (remaining)
2319		return true;
 
2320
2321	/* Check the watermark levels */
2322	for (i = 0; i <= classzone_idx; i++) {
2323		struct zone *zone = pgdat->node_zones + i;
2324
2325		if (!populated_zone(zone))
2326			continue;
 
 
 
 
 
 
 
 
 
 
 
2327
2328		/*
2329		 * balance_pgdat() skips over all_unreclaimable after
2330		 * DEF_PRIORITY. Effectively, it considers them balanced so
2331		 * they must be considered balanced here as well if kswapd
2332		 * is to sleep
2333		 */
2334		if (zone->all_unreclaimable) {
2335			balanced += zone->present_pages;
2336			continue;
2337		}
2338
2339		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2340							i, 0))
2341			all_zones_ok = false;
2342		else
2343			balanced += zone->present_pages;
2344	}
2345
2346	/*
2347	 * For high-order requests, the balanced zones must contain at least
2348	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2349	 * must be balanced
2350	 */
2351	if (order)
2352		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2353	else
2354		return !all_zones_ok;
 
 
 
 
 
 
 
 
 
2355}
2356
2357/*
2358 * For kswapd, balance_pgdat() will work across all this node's zones until
2359 * they are all at high_wmark_pages(zone).
2360 *
2361 * Returns the final order kswapd was reclaiming at
2362 *
2363 * There is special handling here for zones which are full of pinned pages.
2364 * This can happen if the pages are all mlocked, or if they are all used by
2365 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2366 * What we do is to detect the case where all pages in the zone have been
2367 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2368 * dead and from now on, only perform a short scan.  Basically we're polling
2369 * the zone for when the problem goes away.
2370 *
2371 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2372 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2373 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2374 * lower zones regardless of the number of free pages in the lower zones. This
2375 * interoperates with the page allocator fallback scheme to ensure that aging
2376 * of pages is balanced across the zones.
2377 */
2378static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2379							int *classzone_idx)
2380{
2381	int all_zones_ok;
2382	unsigned long balanced;
2383	int i;
2384	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2385	unsigned long total_scanned;
2386	struct reclaim_state *reclaim_state = current->reclaim_state;
2387	unsigned long nr_soft_reclaimed;
2388	unsigned long nr_soft_scanned;
 
 
 
 
 
2389	struct scan_control sc = {
2390		.gfp_mask = GFP_KERNEL,
 
2391		.may_unmap = 1,
2392		.may_swap = 1,
2393		/*
2394		 * kswapd doesn't want to be bailed out while reclaim. because
2395		 * we want to put equal scanning pressure on each zone.
2396		 */
2397		.nr_to_reclaim = ULONG_MAX,
2398		.order = order,
2399		.target_mem_cgroup = NULL,
2400	};
2401	struct shrink_control shrink = {
2402		.gfp_mask = sc.gfp_mask,
2403	};
2404loop_again:
2405	total_scanned = 0;
2406	sc.priority = DEF_PRIORITY;
2407	sc.nr_reclaimed = 0;
2408	sc.may_writepage = !laptop_mode;
2409	count_vm_event(PAGEOUTRUN);
2410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2411	do {
2412		unsigned long lru_pages = 0;
2413		int has_under_min_watermark_zone = 0;
 
 
2414
2415		all_zones_ok = 1;
2416		balanced = 0;
2417
2418		/*
2419		 * Scan in the highmem->dma direction for the highest
2420		 * zone which needs scanning
 
 
 
 
 
 
2421		 */
2422		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2423			struct zone *zone = pgdat->node_zones + i;
2424
2425			if (!populated_zone(zone))
2426				continue;
2427
2428			if (zone->all_unreclaimable &&
2429			    sc.priority != DEF_PRIORITY)
2430				continue;
2431
2432			/*
2433			 * Do some background aging of the anon list, to give
2434			 * pages a chance to be referenced before reclaiming.
2435			 */
2436			age_active_anon(zone, &sc);
2437
2438			/*
2439			 * If the number of buffer_heads in the machine
2440			 * exceeds the maximum allowed level and this node
2441			 * has a highmem zone, force kswapd to reclaim from
2442			 * it to relieve lowmem pressure.
2443			 */
2444			if (buffer_heads_over_limit && is_highmem_idx(i)) {
2445				end_zone = i;
2446				break;
2447			}
2448
2449			if (!zone_watermark_ok_safe(zone, order,
2450					high_wmark_pages(zone), 0, 0)) {
2451				end_zone = i;
2452				break;
2453			} else {
2454				/* If balanced, clear the congested flag */
2455				zone_clear_flag(zone, ZONE_CONGESTED);
2456			}
2457		}
2458		if (i < 0)
2459			goto out;
2460
2461		for (i = 0; i <= end_zone; i++) {
2462			struct zone *zone = pgdat->node_zones + i;
2463
2464			lru_pages += zone_reclaimable_pages(zone);
 
 
 
 
 
 
 
2465		}
2466
2467		/*
2468		 * Now scan the zone in the dma->highmem direction, stopping
2469		 * at the last zone which needs scanning.
2470		 *
2471		 * We do this because the page allocator works in the opposite
2472		 * direction.  This prevents the page allocator from allocating
2473		 * pages behind kswapd's direction of progress, which would
2474		 * cause too much scanning of the lower zones.
2475		 */
2476		for (i = 0; i <= end_zone; i++) {
2477			struct zone *zone = pgdat->node_zones + i;
2478			int nr_slab, testorder;
2479			unsigned long balance_gap;
2480
2481			if (!populated_zone(zone))
2482				continue;
 
2483
2484			if (zone->all_unreclaimable &&
2485			    sc.priority != DEF_PRIORITY)
2486				continue;
 
 
 
 
 
2487
2488			sc.nr_scanned = 0;
 
 
 
 
 
 
2489
2490			nr_soft_scanned = 0;
2491			/*
2492			 * Call soft limit reclaim before calling shrink_zone.
2493			 */
2494			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2495							order, sc.gfp_mask,
2496							&nr_soft_scanned);
2497			sc.nr_reclaimed += nr_soft_reclaimed;
2498			total_scanned += nr_soft_scanned;
2499
2500			/*
2501			 * We put equal pressure on every zone, unless
2502			 * one zone has way too many pages free
2503			 * already. The "too many pages" is defined
2504			 * as the high wmark plus a "gap" where the
2505			 * gap is either the low watermark or 1%
2506			 * of the zone, whichever is smaller.
2507			 */
2508			balance_gap = min(low_wmark_pages(zone),
2509				(zone->present_pages +
2510					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2511				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2512			/*
2513			 * Kswapd reclaims only single pages with compaction
2514			 * enabled. Trying too hard to reclaim until contiguous
2515			 * free pages have become available can hurt performance
2516			 * by evicting too much useful data from memory.
2517			 * Do not reclaim more than needed for compaction.
2518			 */
2519			testorder = order;
2520			if (COMPACTION_BUILD && order &&
2521					compaction_suitable(zone, order) !=
2522						COMPACT_SKIPPED)
2523				testorder = 0;
2524
2525			if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2526				    !zone_watermark_ok_safe(zone, testorder,
2527					high_wmark_pages(zone) + balance_gap,
2528					end_zone, 0)) {
2529				shrink_zone(zone, &sc);
2530
2531				reclaim_state->reclaimed_slab = 0;
2532				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2533				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2534				total_scanned += sc.nr_scanned;
2535
2536				if (nr_slab == 0 && !zone_reclaimable(zone))
2537					zone->all_unreclaimable = 1;
2538			}
2539
2540			/*
2541			 * If we've done a decent amount of scanning and
2542			 * the reclaim ratio is low, start doing writepage
2543			 * even in laptop mode
2544			 */
2545			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2546			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2547				sc.may_writepage = 1;
2548
2549			if (zone->all_unreclaimable) {
2550				if (end_zone && end_zone == i)
2551					end_zone--;
2552				continue;
2553			}
2554
2555			if (!zone_watermark_ok_safe(zone, testorder,
2556					high_wmark_pages(zone), end_zone, 0)) {
2557				all_zones_ok = 0;
2558				/*
2559				 * We are still under min water mark.  This
2560				 * means that we have a GFP_ATOMIC allocation
2561				 * failure risk. Hurry up!
2562				 */
2563				if (!zone_watermark_ok_safe(zone, order,
2564					    min_wmark_pages(zone), end_zone, 0))
2565					has_under_min_watermark_zone = 1;
2566			} else {
2567				/*
2568				 * If a zone reaches its high watermark,
2569				 * consider it to be no longer congested. It's
2570				 * possible there are dirty pages backed by
2571				 * congested BDIs but as pressure is relieved,
2572				 * spectulatively avoid congestion waits
2573				 */
2574				zone_clear_flag(zone, ZONE_CONGESTED);
2575				if (i <= *classzone_idx)
2576					balanced += zone->present_pages;
2577			}
2578
2579		}
2580		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2581			break;		/* kswapd: all done */
2582		/*
2583		 * OK, kswapd is getting into trouble.  Take a nap, then take
2584		 * another pass across the zones.
 
2585		 */
2586		if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2587			if (has_under_min_watermark_zone)
2588				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2589			else
2590				congestion_wait(BLK_RW_ASYNC, HZ/10);
2591		}
2592
2593		/*
2594		 * We do this so kswapd doesn't build up large priorities for
2595		 * example when it is freeing in parallel with allocators. It
2596		 * matches the direct reclaim path behaviour in terms of impact
2597		 * on zone->*_priority.
2598		 */
2599		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
 
 
 
 
 
 
 
 
2600			break;
2601	} while (--sc.priority >= 0);
2602out:
2603
2604	/*
2605	 * order-0: All zones must meet high watermark for a balanced node
2606	 * high-order: Balanced zones must make up at least 25% of the node
2607	 *             for the node to be balanced
2608	 */
2609	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2610		cond_resched();
2611
2612		try_to_freeze();
2613
2614		/*
2615		 * Fragmentation may mean that the system cannot be
2616		 * rebalanced for high-order allocations in all zones.
2617		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2618		 * it means the zones have been fully scanned and are still
2619		 * not balanced. For high-order allocations, there is
2620		 * little point trying all over again as kswapd may
2621		 * infinite loop.
2622		 *
2623		 * Instead, recheck all watermarks at order-0 as they
2624		 * are the most important. If watermarks are ok, kswapd will go
2625		 * back to sleep. High-order users can still perform direct
2626		 * reclaim if they wish.
2627		 */
2628		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2629			order = sc.order = 0;
2630
2631		goto loop_again;
2632	}
2633
2634	/*
2635	 * If kswapd was reclaiming at a higher order, it has the option of
2636	 * sleeping without all zones being balanced. Before it does, it must
2637	 * ensure that the watermarks for order-0 on *all* zones are met and
2638	 * that the congestion flags are cleared. The congestion flag must
2639	 * be cleared as kswapd is the only mechanism that clears the flag
2640	 * and it is potentially going to sleep here.
2641	 */
2642	if (order) {
2643		int zones_need_compaction = 1;
2644
2645		for (i = 0; i <= end_zone; i++) {
2646			struct zone *zone = pgdat->node_zones + i;
2647
2648			if (!populated_zone(zone))
2649				continue;
 
 
2650
2651			if (zone->all_unreclaimable &&
2652			    sc.priority != DEF_PRIORITY)
2653				continue;
2654
2655			/* Would compaction fail due to lack of free memory? */
2656			if (COMPACTION_BUILD &&
2657			    compaction_suitable(zone, order) == COMPACT_SKIPPED)
2658				goto loop_again;
2659
2660			/* Confirm the zone is balanced for order-0 */
2661			if (!zone_watermark_ok(zone, 0,
2662					high_wmark_pages(zone), 0, 0)) {
2663				order = sc.order = 0;
2664				goto loop_again;
2665			}
2666
2667			/* Check if the memory needs to be defragmented. */
2668			if (zone_watermark_ok(zone, order,
2669				    low_wmark_pages(zone), *classzone_idx, 0))
2670				zones_need_compaction = 0;
2671
2672			/* If balanced, clear the congested flag */
2673			zone_clear_flag(zone, ZONE_CONGESTED);
2674		}
2675
2676		if (zones_need_compaction)
2677			compact_pgdat(pgdat, order);
 
 
 
2678	}
2679
 
 
 
 
 
2680	/*
2681	 * Return the order we were reclaiming at so sleeping_prematurely()
2682	 * makes a decision on the order we were last reclaiming at. However,
2683	 * if another caller entered the allocator slow path while kswapd
2684	 * was awake, order will remain at the higher level
2685	 */
2686	*classzone_idx = end_zone;
2687	return order;
2688}
2689
2690static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2691{
2692	long remaining = 0;
2693	DEFINE_WAIT(wait);
2694
2695	if (freezing(current) || kthread_should_stop())
2696		return;
2697
2698	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2699
2700	/* Try to sleep for a short interval */
2701	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2702		remaining = schedule_timeout(HZ/10);
 
 
 
 
 
 
 
 
 
 
 
2703		finish_wait(&pgdat->kswapd_wait, &wait);
2704		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2705	}
2706
2707	/*
2708	 * After a short sleep, check if it was a premature sleep. If not, then
2709	 * go fully to sleep until explicitly woken up.
2710	 */
2711	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
 
2712		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2713
2714		/*
2715		 * vmstat counters are not perfectly accurate and the estimated
2716		 * value for counters such as NR_FREE_PAGES can deviate from the
2717		 * true value by nr_online_cpus * threshold. To avoid the zone
2718		 * watermarks being breached while under pressure, we reduce the
2719		 * per-cpu vmstat threshold while kswapd is awake and restore
2720		 * them before going back to sleep.
2721		 */
2722		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2723
2724		if (!kthread_should_stop())
2725			schedule();
2726
2727		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2728	} else {
2729		if (remaining)
2730			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2731		else
2732			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2733	}
2734	finish_wait(&pgdat->kswapd_wait, &wait);
2735}
2736
2737/*
2738 * The background pageout daemon, started as a kernel thread
2739 * from the init process.
2740 *
2741 * This basically trickles out pages so that we have _some_
2742 * free memory available even if there is no other activity
2743 * that frees anything up. This is needed for things like routing
2744 * etc, where we otherwise might have all activity going on in
2745 * asynchronous contexts that cannot page things out.
2746 *
2747 * If there are applications that are active memory-allocators
2748 * (most normal use), this basically shouldn't matter.
2749 */
2750static int kswapd(void *p)
2751{
2752	unsigned long order, new_order;
2753	unsigned balanced_order;
2754	int classzone_idx, new_classzone_idx;
2755	int balanced_classzone_idx;
2756	pg_data_t *pgdat = (pg_data_t*)p;
2757	struct task_struct *tsk = current;
2758
2759	struct reclaim_state reclaim_state = {
2760		.reclaimed_slab = 0,
2761	};
2762	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2763
2764	lockdep_set_current_reclaim_state(GFP_KERNEL);
2765
2766	if (!cpumask_empty(cpumask))
2767		set_cpus_allowed_ptr(tsk, cpumask);
2768	current->reclaim_state = &reclaim_state;
2769
2770	/*
2771	 * Tell the memory management that we're a "memory allocator",
2772	 * and that if we need more memory we should get access to it
2773	 * regardless (see "__alloc_pages()"). "kswapd" should
2774	 * never get caught in the normal page freeing logic.
2775	 *
2776	 * (Kswapd normally doesn't need memory anyway, but sometimes
2777	 * you need a small amount of memory in order to be able to
2778	 * page out something else, and this flag essentially protects
2779	 * us from recursively trying to free more memory as we're
2780	 * trying to free the first piece of memory in the first place).
2781	 */
2782	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2783	set_freezable();
2784
2785	order = new_order = 0;
2786	balanced_order = 0;
2787	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2788	balanced_classzone_idx = classzone_idx;
2789	for ( ; ; ) {
2790		int ret;
2791
2792		/*
2793		 * If the last balance_pgdat was unsuccessful it's unlikely a
2794		 * new request of a similar or harder type will succeed soon
2795		 * so consider going to sleep on the basis we reclaimed at
2796		 */
2797		if (balanced_classzone_idx >= new_classzone_idx &&
2798					balanced_order == new_order) {
2799			new_order = pgdat->kswapd_max_order;
2800			new_classzone_idx = pgdat->classzone_idx;
2801			pgdat->kswapd_max_order =  0;
2802			pgdat->classzone_idx = pgdat->nr_zones - 1;
2803		}
2804
2805		if (order < new_order || classzone_idx > new_classzone_idx) {
2806			/*
2807			 * Don't sleep if someone wants a larger 'order'
2808			 * allocation or has tigher zone constraints
2809			 */
2810			order = new_order;
2811			classzone_idx = new_classzone_idx;
2812		} else {
2813			kswapd_try_to_sleep(pgdat, balanced_order,
2814						balanced_classzone_idx);
2815			order = pgdat->kswapd_max_order;
2816			classzone_idx = pgdat->classzone_idx;
2817			new_order = order;
2818			new_classzone_idx = classzone_idx;
2819			pgdat->kswapd_max_order = 0;
2820			pgdat->classzone_idx = pgdat->nr_zones - 1;
2821		}
2822
2823		ret = try_to_freeze();
2824		if (kthread_should_stop())
2825			break;
2826
2827		/*
2828		 * We can speed up thawing tasks if we don't call balance_pgdat
2829		 * after returning from the refrigerator
2830		 */
2831		if (!ret) {
2832			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2833			balanced_classzone_idx = classzone_idx;
2834			balanced_order = balance_pgdat(pgdat, order,
2835						&balanced_classzone_idx);
2836		}
 
 
 
 
 
 
 
 
 
 
2837	}
 
 
 
2838	return 0;
2839}
2840
2841/*
2842 * A zone is low on free memory, so wake its kswapd task to service it.
 
 
 
 
2843 */
2844void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
 
2845{
2846	pg_data_t *pgdat;
2847
2848	if (!populated_zone(zone))
2849		return;
2850
2851	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2852		return;
2853	pgdat = zone->zone_pgdat;
2854	if (pgdat->kswapd_max_order < order) {
2855		pgdat->kswapd_max_order = order;
2856		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2857	}
 
 
 
2858	if (!waitqueue_active(&pgdat->kswapd_wait))
2859		return;
2860	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
 
 
 
 
 
 
 
 
 
 
 
 
 
2861		return;
 
2862
2863	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
 
2864	wake_up_interruptible(&pgdat->kswapd_wait);
2865}
2866
2867/*
2868 * The reclaimable count would be mostly accurate.
2869 * The less reclaimable pages may be
2870 * - mlocked pages, which will be moved to unevictable list when encountered
2871 * - mapped pages, which may require several travels to be reclaimed
2872 * - dirty pages, which is not "instantly" reclaimable
2873 */
2874unsigned long global_reclaimable_pages(void)
2875{
2876	int nr;
2877
2878	nr = global_page_state(NR_ACTIVE_FILE) +
2879	     global_page_state(NR_INACTIVE_FILE);
2880
2881	if (nr_swap_pages > 0)
2882		nr += global_page_state(NR_ACTIVE_ANON) +
2883		      global_page_state(NR_INACTIVE_ANON);
2884
2885	return nr;
2886}
2887
2888unsigned long zone_reclaimable_pages(struct zone *zone)
2889{
2890	int nr;
2891
2892	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2893	     zone_page_state(zone, NR_INACTIVE_FILE);
2894
2895	if (nr_swap_pages > 0)
2896		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2897		      zone_page_state(zone, NR_INACTIVE_ANON);
2898
2899	return nr;
2900}
2901
2902#ifdef CONFIG_HIBERNATION
2903/*
2904 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2905 * freed pages.
2906 *
2907 * Rather than trying to age LRUs the aim is to preserve the overall
2908 * LRU order by reclaiming preferentially
2909 * inactive > active > active referenced > active mapped
2910 */
2911unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2912{
2913	struct reclaim_state reclaim_state;
2914	struct scan_control sc = {
 
2915		.gfp_mask = GFP_HIGHUSER_MOVABLE,
 
 
 
 
2916		.may_swap = 1,
2917		.may_unmap = 1,
2918		.may_writepage = 1,
2919		.nr_to_reclaim = nr_to_reclaim,
2920		.hibernation_mode = 1,
2921		.order = 0,
2922		.priority = DEF_PRIORITY,
2923	};
2924	struct shrink_control shrink = {
2925		.gfp_mask = sc.gfp_mask,
2926	};
2927	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2928	struct task_struct *p = current;
2929	unsigned long nr_reclaimed;
 
 
 
 
 
 
 
2930
2931	p->flags |= PF_MEMALLOC;
2932	lockdep_set_current_reclaim_state(sc.gfp_mask);
2933	reclaim_state.reclaimed_slab = 0;
2934	p->reclaim_state = &reclaim_state;
2935
2936	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2937
2938	p->reclaim_state = NULL;
2939	lockdep_clear_current_reclaim_state();
2940	p->flags &= ~PF_MEMALLOC;
2941
2942	return nr_reclaimed;
2943}
2944#endif /* CONFIG_HIBERNATION */
2945
2946/* It's optimal to keep kswapds on the same CPUs as their memory, but
2947   not required for correctness.  So if the last cpu in a node goes
2948   away, we get changed to run anywhere: as the first one comes back,
2949   restore their cpu bindings. */
2950static int __devinit cpu_callback(struct notifier_block *nfb,
2951				  unsigned long action, void *hcpu)
2952{
2953	int nid;
2954
2955	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2956		for_each_node_state(nid, N_HIGH_MEMORY) {
2957			pg_data_t *pgdat = NODE_DATA(nid);
2958			const struct cpumask *mask;
2959
2960			mask = cpumask_of_node(pgdat->node_id);
2961
2962			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2963				/* One of our CPUs online: restore mask */
2964				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2965		}
2966	}
2967	return NOTIFY_OK;
2968}
2969
2970/*
2971 * This kswapd start function will be called by init and node-hot-add.
2972 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2973 */
2974int kswapd_run(int nid)
2975{
2976	pg_data_t *pgdat = NODE_DATA(nid);
2977	int ret = 0;
2978
2979	if (pgdat->kswapd)
2980		return 0;
2981
2982	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2983	if (IS_ERR(pgdat->kswapd)) {
2984		/* failure at boot is fatal */
2985		BUG_ON(system_state == SYSTEM_BOOTING);
2986		printk("Failed to start kswapd on node %d\n",nid);
2987		ret = -1;
 
2988	}
2989	return ret;
2990}
2991
2992/*
2993 * Called by memory hotplug when all memory in a node is offlined.  Caller must
2994 * hold lock_memory_hotplug().
2995 */
2996void kswapd_stop(int nid)
2997{
2998	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2999
3000	if (kswapd) {
3001		kthread_stop(kswapd);
3002		NODE_DATA(nid)->kswapd = NULL;
3003	}
3004}
3005
3006static int __init kswapd_init(void)
3007{
3008	int nid;
3009
3010	swap_setup();
3011	for_each_node_state(nid, N_HIGH_MEMORY)
3012 		kswapd_run(nid);
3013	hotcpu_notifier(cpu_callback, 0);
 
 
 
3014	return 0;
3015}
3016
3017module_init(kswapd_init)
3018
3019#ifdef CONFIG_NUMA
3020/*
3021 * Zone reclaim mode
3022 *
3023 * If non-zero call zone_reclaim when the number of free pages falls below
3024 * the watermarks.
3025 */
3026int zone_reclaim_mode __read_mostly;
3027
3028#define RECLAIM_OFF 0
3029#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3030#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3031#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3032
3033/*
3034 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3035 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3036 * a zone.
3037 */
3038#define ZONE_RECLAIM_PRIORITY 4
3039
3040/*
3041 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3042 * occur.
3043 */
3044int sysctl_min_unmapped_ratio = 1;
3045
3046/*
3047 * If the number of slab pages in a zone grows beyond this percentage then
3048 * slab reclaim needs to occur.
3049 */
3050int sysctl_min_slab_ratio = 5;
3051
3052static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3053{
3054	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3055	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3056		zone_page_state(zone, NR_ACTIVE_FILE);
3057
3058	/*
3059	 * It's possible for there to be more file mapped pages than
3060	 * accounted for by the pages on the file LRU lists because
3061	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3062	 */
3063	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3064}
3065
3066/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3067static long zone_pagecache_reclaimable(struct zone *zone)
3068{
3069	long nr_pagecache_reclaimable;
3070	long delta = 0;
3071
3072	/*
3073	 * If RECLAIM_SWAP is set, then all file pages are considered
3074	 * potentially reclaimable. Otherwise, we have to worry about
3075	 * pages like swapcache and zone_unmapped_file_pages() provides
3076	 * a better estimate
3077	 */
3078	if (zone_reclaim_mode & RECLAIM_SWAP)
3079		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3080	else
3081		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3082
3083	/* If we can't clean pages, remove dirty pages from consideration */
3084	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3085		delta += zone_page_state(zone, NR_FILE_DIRTY);
3086
3087	/* Watch for any possible underflows due to delta */
3088	if (unlikely(delta > nr_pagecache_reclaimable))
3089		delta = nr_pagecache_reclaimable;
3090
3091	return nr_pagecache_reclaimable - delta;
3092}
3093
3094/*
3095 * Try to free up some pages from this zone through reclaim.
3096 */
3097static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3098{
3099	/* Minimum pages needed in order to stay on node */
3100	const unsigned long nr_pages = 1 << order;
3101	struct task_struct *p = current;
3102	struct reclaim_state reclaim_state;
3103	struct scan_control sc = {
3104		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3105		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
 
 
 
 
3106		.may_swap = 1,
3107		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3108				       SWAP_CLUSTER_MAX),
3109		.gfp_mask = gfp_mask,
3110		.order = order,
3111		.priority = ZONE_RECLAIM_PRIORITY,
3112	};
3113	struct shrink_control shrink = {
3114		.gfp_mask = sc.gfp_mask,
3115	};
3116	unsigned long nr_slab_pages0, nr_slab_pages1;
3117
3118	cond_resched();
 
3119	/*
3120	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3121	 * and we also need to be able to write out pages for RECLAIM_WRITE
3122	 * and RECLAIM_SWAP.
3123	 */
3124	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3125	lockdep_set_current_reclaim_state(gfp_mask);
3126	reclaim_state.reclaimed_slab = 0;
3127	p->reclaim_state = &reclaim_state;
3128
3129	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3130		/*
3131		 * Free memory by calling shrink zone with increasing
3132		 * priorities until we have enough memory freed.
3133		 */
3134		do {
3135			shrink_zone(zone, &sc);
3136		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3137	}
3138
3139	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3140	if (nr_slab_pages0 > zone->min_slab_pages) {
3141		/*
3142		 * shrink_slab() does not currently allow us to determine how
3143		 * many pages were freed in this zone. So we take the current
3144		 * number of slab pages and shake the slab until it is reduced
3145		 * by the same nr_pages that we used for reclaiming unmapped
3146		 * pages.
3147		 *
3148		 * Note that shrink_slab will free memory on all zones and may
3149		 * take a long time.
3150		 */
3151		for (;;) {
3152			unsigned long lru_pages = zone_reclaimable_pages(zone);
3153
3154			/* No reclaimable slab or very low memory pressure */
3155			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3156				break;
3157
3158			/* Freed enough memory */
3159			nr_slab_pages1 = zone_page_state(zone,
3160							NR_SLAB_RECLAIMABLE);
3161			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3162				break;
3163		}
3164
3165		/*
3166		 * Update nr_reclaimed by the number of slab pages we
3167		 * reclaimed from this zone.
3168		 */
3169		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3170		if (nr_slab_pages1 < nr_slab_pages0)
3171			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3172	}
3173
3174	p->reclaim_state = NULL;
3175	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3176	lockdep_clear_current_reclaim_state();
3177	return sc.nr_reclaimed >= nr_pages;
3178}
3179
3180int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3181{
3182	int node_id;
3183	int ret;
3184
3185	/*
3186	 * Zone reclaim reclaims unmapped file backed pages and
3187	 * slab pages if we are over the defined limits.
3188	 *
3189	 * A small portion of unmapped file backed pages is needed for
3190	 * file I/O otherwise pages read by file I/O will be immediately
3191	 * thrown out if the zone is overallocated. So we do not reclaim
3192	 * if less than a specified percentage of the zone is used by
3193	 * unmapped file backed pages.
3194	 */
3195	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3196	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3197		return ZONE_RECLAIM_FULL;
3198
3199	if (zone->all_unreclaimable)
3200		return ZONE_RECLAIM_FULL;
3201
3202	/*
3203	 * Do not scan if the allocation should not be delayed.
3204	 */
3205	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3206		return ZONE_RECLAIM_NOSCAN;
3207
3208	/*
3209	 * Only run zone reclaim on the local zone or on zones that do not
3210	 * have associated processors. This will favor the local processor
3211	 * over remote processors and spread off node memory allocations
3212	 * as wide as possible.
3213	 */
3214	node_id = zone_to_nid(zone);
3215	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3216		return ZONE_RECLAIM_NOSCAN;
3217
3218	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3219		return ZONE_RECLAIM_NOSCAN;
3220
3221	ret = __zone_reclaim(zone, gfp_mask, order);
3222	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3223
3224	if (!ret)
3225		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3226
3227	return ret;
3228}
3229#endif
3230
3231/*
3232 * page_evictable - test whether a page is evictable
3233 * @page: the page to test
3234 * @vma: the VMA in which the page is or will be mapped, may be NULL
3235 *
3236 * Test whether page is evictable--i.e., should be placed on active/inactive
3237 * lists vs unevictable list.  The vma argument is !NULL when called from the
3238 * fault path to determine how to instantate a new page.
3239 *
3240 * Reasons page might not be evictable:
3241 * (1) page's mapping marked unevictable
3242 * (2) page is part of an mlocked VMA
3243 *
3244 */
3245int page_evictable(struct page *page, struct vm_area_struct *vma)
3246{
 
3247
3248	if (mapping_unevictable(page_mapping(page)))
3249		return 0;
3250
3251	if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
3252		return 0;
3253
3254	return 1;
3255}
3256
3257#ifdef CONFIG_SHMEM
3258/**
3259 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3260 * @pages:	array of pages to check
3261 * @nr_pages:	number of pages to check
3262 *
3263 * Checks pages for evictability and moves them to the appropriate lru list.
3264 *
3265 * This function is only used for SysV IPC SHM_UNLOCK.
3266 */
3267void check_move_unevictable_pages(struct page **pages, int nr_pages)
3268{
3269	struct lruvec *lruvec;
3270	struct zone *zone = NULL;
3271	int pgscanned = 0;
3272	int pgrescued = 0;
3273	int i;
3274
3275	for (i = 0; i < nr_pages; i++) {
3276		struct page *page = pages[i];
3277		struct zone *pagezone;
3278
3279		pgscanned++;
3280		pagezone = page_zone(page);
3281		if (pagezone != zone) {
3282			if (zone)
3283				spin_unlock_irq(&zone->lru_lock);
3284			zone = pagezone;
3285			spin_lock_irq(&zone->lru_lock);
3286		}
3287		lruvec = mem_cgroup_page_lruvec(page, zone);
3288
3289		if (!PageLRU(page) || !PageUnevictable(page))
3290			continue;
3291
3292		if (page_evictable(page, NULL)) {
3293			enum lru_list lru = page_lru_base_type(page);
3294
3295			VM_BUG_ON(PageActive(page));
3296			ClearPageUnevictable(page);
3297			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3298			add_page_to_lru_list(page, lruvec, lru);
3299			pgrescued++;
3300		}
3301	}
3302
3303	if (zone) {
3304		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3305		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3306		spin_unlock_irq(&zone->lru_lock);
3307	}
3308}
3309#endif /* CONFIG_SHMEM */
3310
3311static void warn_scan_unevictable_pages(void)
3312{
3313	printk_once(KERN_WARNING
3314		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3315		    "disabled for lack of a legitimate use case.  If you have "
3316		    "one, please send an email to linux-mm@kvack.org.\n",
3317		    current->comm);
3318}
3319
3320/*
3321 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3322 * all nodes' unevictable lists for evictable pages
3323 */
3324unsigned long scan_unevictable_pages;
3325
3326int scan_unevictable_handler(struct ctl_table *table, int write,
3327			   void __user *buffer,
3328			   size_t *length, loff_t *ppos)
3329{
3330	warn_scan_unevictable_pages();
3331	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3332	scan_unevictable_pages = 0;
3333	return 0;
3334}
3335
3336#ifdef CONFIG_NUMA
3337/*
3338 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3339 * a specified node's per zone unevictable lists for evictable pages.
3340 */
3341
3342static ssize_t read_scan_unevictable_node(struct device *dev,
3343					  struct device_attribute *attr,
3344					  char *buf)
3345{
3346	warn_scan_unevictable_pages();
3347	return sprintf(buf, "0\n");	/* always zero; should fit... */
3348}
3349
3350static ssize_t write_scan_unevictable_node(struct device *dev,
3351					   struct device_attribute *attr,
3352					const char *buf, size_t count)
3353{
3354	warn_scan_unevictable_pages();
3355	return 1;
3356}
3357
3358
3359static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3360			read_scan_unevictable_node,
3361			write_scan_unevictable_node);
3362
3363int scan_unevictable_register_node(struct node *node)
3364{
3365	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3366}
3367
3368void scan_unevictable_unregister_node(struct node *node)
3369{
3370	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3371}
3372#endif