Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2015 Broadcom
   4 */
   5
   6/**
   7 * DOC: VC4 CRTC module
   8 *
   9 * In VC4, the Pixel Valve is what most closely corresponds to the
  10 * DRM's concept of a CRTC.  The PV generates video timings from the
  11 * encoder's clock plus its configuration.  It pulls scaled pixels from
  12 * the HVS at that timing, and feeds it to the encoder.
  13 *
  14 * However, the DRM CRTC also collects the configuration of all the
  15 * DRM planes attached to it.  As a result, the CRTC is also
  16 * responsible for writing the display list for the HVS channel that
  17 * the CRTC will use.
  18 *
  19 * The 2835 has 3 different pixel valves.  pv0 in the audio power
  20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
  21 * image domain can feed either HDMI or the SDTV controller.  The
  22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
  23 * SDTV, etc.) according to which output type is chosen in the mux.
  24 *
  25 * For power management, the pixel valve's registers are all clocked
  26 * by the AXI clock, while the timings and FIFOs make use of the
  27 * output-specific clock.  Since the encoders also directly consume
  28 * the CPRMAN clocks, and know what timings they need, they are the
  29 * ones that set the clock.
  30 */
  31
  32#include <linux/clk.h>
  33#include <linux/component.h>
  34#include <linux/of_device.h>
 
 
  35
  36#include <drm/drm_atomic.h>
  37#include <drm/drm_atomic_helper.h>
  38#include <drm/drm_atomic_uapi.h>
  39#include <drm/drm_fb_cma_helper.h>
 
 
  40#include <drm/drm_print.h>
  41#include <drm/drm_probe_helper.h>
  42#include <drm/drm_vblank.h>
  43
  44#include "vc4_drv.h"
 
  45#include "vc4_regs.h"
  46
  47struct vc4_crtc_state {
  48	struct drm_crtc_state base;
  49	/* Dlist area for this CRTC configuration. */
  50	struct drm_mm_node mm;
  51	bool feed_txp;
  52	bool txp_armed;
  53
  54	struct {
  55		unsigned int left;
  56		unsigned int right;
  57		unsigned int top;
  58		unsigned int bottom;
  59	} margins;
  60};
  61
  62static inline struct vc4_crtc_state *
  63to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
  64{
  65	return (struct vc4_crtc_state *)crtc_state;
  66}
  67
  68#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
  69#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
 
 
 
 
 
 
 
 
 
  70
  71static const struct debugfs_reg32 crtc_regs[] = {
  72	VC4_REG32(PV_CONTROL),
  73	VC4_REG32(PV_V_CONTROL),
  74	VC4_REG32(PV_VSYNCD_EVEN),
  75	VC4_REG32(PV_HORZA),
  76	VC4_REG32(PV_HORZB),
  77	VC4_REG32(PV_VERTA),
  78	VC4_REG32(PV_VERTB),
  79	VC4_REG32(PV_VERTA_EVEN),
  80	VC4_REG32(PV_VERTB_EVEN),
  81	VC4_REG32(PV_INTEN),
  82	VC4_REG32(PV_INTSTAT),
  83	VC4_REG32(PV_STAT),
  84	VC4_REG32(PV_HACT_ACT),
  85};
  86
  87bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
  88			     bool in_vblank_irq, int *vpos, int *hpos,
  89			     ktime_t *stime, ktime_t *etime,
  90			     const struct drm_display_mode *mode)
  91{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  92	struct vc4_dev *vc4 = to_vc4_dev(dev);
  93	struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
  94	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 
 
  95	u32 val;
  96	int fifo_lines;
  97	int vblank_lines;
  98	bool ret = false;
  99
 100	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
 101
 102	/* Get optional system timestamp before query. */
 103	if (stime)
 104		*stime = ktime_get();
 105
 106	/*
 107	 * Read vertical scanline which is currently composed for our
 108	 * pixelvalve by the HVS, and also the scaler status.
 109	 */
 110	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
 111
 112	/* Get optional system timestamp after query. */
 113	if (etime)
 114		*etime = ktime_get();
 115
 116	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
 117
 118	/* Vertical position of hvs composed scanline. */
 119	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
 120	*hpos = 0;
 121
 122	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 123		*vpos /= 2;
 124
 125		/* Use hpos to correct for field offset in interlaced mode. */
 126		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
 127			*hpos += mode->crtc_htotal / 2;
 128	}
 129
 
 130	/* This is the offset we need for translating hvs -> pv scanout pos. */
 131	fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
 132
 133	if (fifo_lines > 0)
 134		ret = true;
 135
 136	/* HVS more than fifo_lines into frame for compositing? */
 137	if (*vpos > fifo_lines) {
 138		/*
 139		 * We are in active scanout and can get some meaningful results
 140		 * from HVS. The actual PV scanout can not trail behind more
 141		 * than fifo_lines as that is the fifo's capacity. Assume that
 142		 * in active scanout the HVS and PV work in lockstep wrt. HVS
 143		 * refilling the fifo and PV consuming from the fifo, ie.
 144		 * whenever the PV consumes and frees up a scanline in the
 145		 * fifo, the HVS will immediately refill it, therefore
 146		 * incrementing vpos. Therefore we choose HVS read position -
 147		 * fifo size in scanlines as a estimate of the real scanout
 148		 * position of the PV.
 149		 */
 150		*vpos -= fifo_lines + 1;
 151
 152		return ret;
 153	}
 154
 155	/*
 156	 * Less: This happens when we are in vblank and the HVS, after getting
 157	 * the VSTART restart signal from the PV, just started refilling its
 158	 * fifo with new lines from the top-most lines of the new framebuffers.
 159	 * The PV does not scan out in vblank, so does not remove lines from
 160	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
 161	 * We can't get meaningful readings wrt. scanline position of the PV
 162	 * and need to make things up in a approximative but consistent way.
 163	 */
 164	vblank_lines = mode->vtotal - mode->vdisplay;
 165
 166	if (in_vblank_irq) {
 167		/*
 168		 * Assume the irq handler got called close to first
 169		 * line of vblank, so PV has about a full vblank
 170		 * scanlines to go, and as a base timestamp use the
 171		 * one taken at entry into vblank irq handler, so it
 172		 * is not affected by random delays due to lock
 173		 * contention on event_lock or vblank_time lock in
 174		 * the core.
 175		 */
 176		*vpos = -vblank_lines;
 177
 178		if (stime)
 179			*stime = vc4_crtc->t_vblank;
 180		if (etime)
 181			*etime = vc4_crtc->t_vblank;
 182
 183		/*
 184		 * If the HVS fifo is not yet full then we know for certain
 185		 * we are at the very beginning of vblank, as the hvs just
 186		 * started refilling, and the stime and etime timestamps
 187		 * truly correspond to start of vblank.
 188		 *
 189		 * Unfortunately there's no way to report this to upper levels
 190		 * and make it more useful.
 191		 */
 192	} else {
 193		/*
 194		 * No clue where we are inside vblank. Return a vpos of zero,
 195		 * which will cause calling code to just return the etime
 196		 * timestamp uncorrected. At least this is no worse than the
 197		 * standard fallback.
 198		 */
 199		*vpos = 0;
 200	}
 201
 202	return ret;
 203}
 204
 205static void vc4_crtc_destroy(struct drm_crtc *crtc)
 206{
 207	drm_crtc_cleanup(crtc);
 208}
 209
 210static void
 211vc4_crtc_lut_load(struct drm_crtc *crtc)
 212{
 213	struct drm_device *dev = crtc->dev;
 214	struct vc4_dev *vc4 = to_vc4_dev(dev);
 215	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 216	u32 i;
 217
 218	/* The LUT memory is laid out with each HVS channel in order,
 219	 * each of which takes 256 writes for R, 256 for G, then 256
 220	 * for B.
 
 
 
 
 
 
 221	 */
 222	HVS_WRITE(SCALER_GAMADDR,
 223		  SCALER_GAMADDR_AUTOINC |
 224		  (vc4_crtc->channel * 3 * crtc->gamma_size));
 225
 226	for (i = 0; i < crtc->gamma_size; i++)
 227		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
 228	for (i = 0; i < crtc->gamma_size; i++)
 229		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
 230	for (i = 0; i < crtc->gamma_size; i++)
 231		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
 232}
 233
 234static void
 235vc4_crtc_update_gamma_lut(struct drm_crtc *crtc)
 236{
 237	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 238	struct drm_color_lut *lut = crtc->state->gamma_lut->data;
 239	u32 length = drm_color_lut_size(crtc->state->gamma_lut);
 240	u32 i;
 241
 242	for (i = 0; i < length; i++) {
 243		vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
 244		vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
 245		vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
 246	}
 247
 248	vc4_crtc_lut_load(crtc);
 249}
 250
 251static u32 vc4_get_fifo_full_level(u32 format)
 252{
 253	static const u32 fifo_len_bytes = 64;
 254	static const u32 hvs_latency_pix = 6;
 255
 256	switch (format) {
 257	case PV_CONTROL_FORMAT_DSIV_16:
 258	case PV_CONTROL_FORMAT_DSIC_16:
 259		return fifo_len_bytes - 2 * hvs_latency_pix;
 260	case PV_CONTROL_FORMAT_DSIV_18:
 261		return fifo_len_bytes - 14;
 262	case PV_CONTROL_FORMAT_24:
 263	case PV_CONTROL_FORMAT_DSIV_24:
 264	default:
 265		return fifo_len_bytes - 3 * hvs_latency_pix;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 266	}
 267}
 268
 
 
 
 
 
 
 
 
 
 
 
 
 
 269/*
 270 * Returns the encoder attached to the CRTC.
 271 *
 272 * VC4 can only scan out to one encoder at a time, while the DRM core
 273 * allows drivers to push pixels to more than one encoder from the
 274 * same CRTC.
 275 */
 276static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
 
 277{
 278	struct drm_connector *connector;
 279	struct drm_connector_list_iter conn_iter;
 280
 281	drm_connector_list_iter_begin(crtc->dev, &conn_iter);
 282	drm_for_each_connector_iter(connector, &conn_iter) {
 283		if (connector->state->crtc == crtc) {
 284			drm_connector_list_iter_end(&conn_iter);
 285			return connector->encoder;
 286		}
 287	}
 288	drm_connector_list_iter_end(&conn_iter);
 289
 290	return NULL;
 291}
 292
 293static void vc4_crtc_config_pv(struct drm_crtc *crtc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 294{
 295	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
 
 296	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 297	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 298	struct drm_crtc_state *state = crtc->state;
 299	struct drm_display_mode *mode = &state->adjusted_mode;
 
 300	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
 301	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
 
 
 302	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
 303		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
 304	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
 
 
 
 
 
 
 
 
 
 
 305
 306	/* Reset the PV fifo. */
 307	CRTC_WRITE(PV_CONTROL, 0);
 308	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
 309	CRTC_WRITE(PV_CONTROL, 0);
 
 
 
 
 
 
 
 310
 311	CRTC_WRITE(PV_HORZA,
 312		   VC4_SET_FIELD((mode->htotal -
 313				  mode->hsync_end) * pixel_rep,
 314				 PV_HORZA_HBP) |
 315		   VC4_SET_FIELD((mode->hsync_end -
 316				  mode->hsync_start) * pixel_rep,
 317				 PV_HORZA_HSYNC));
 
 318	CRTC_WRITE(PV_HORZB,
 319		   VC4_SET_FIELD((mode->hsync_start -
 320				  mode->hdisplay) * pixel_rep,
 321				 PV_HORZB_HFP) |
 322		   VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
 323
 324	CRTC_WRITE(PV_VERTA,
 325		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
 326				 PV_VERTA_VBP) |
 327		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
 328				 PV_VERTA_VSYNC));
 329	CRTC_WRITE(PV_VERTB,
 330		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
 331				 PV_VERTB_VFP) |
 332		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
 333
 334	if (interlace) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 335		CRTC_WRITE(PV_VERTA_EVEN,
 336			   VC4_SET_FIELD(mode->crtc_vtotal -
 337					 mode->crtc_vsync_end - 1,
 338					 PV_VERTA_VBP) |
 339			   VC4_SET_FIELD(mode->crtc_vsync_end -
 340					 mode->crtc_vsync_start,
 341					 PV_VERTA_VSYNC));
 342		CRTC_WRITE(PV_VERTB_EVEN,
 343			   VC4_SET_FIELD(mode->crtc_vsync_start -
 344					 mode->crtc_vdisplay,
 345					 PV_VERTB_VFP) |
 346			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
 347
 348		/* We set up first field even mode for HDMI.  VEC's
 349		 * NTSC mode would want first field odd instead, once
 350		 * we support it (to do so, set ODD_FIRST and put the
 351		 * delay in VSYNCD_EVEN instead).
 352		 */
 353		CRTC_WRITE(PV_V_CONTROL,
 354			   PV_VCONTROL_CONTINUOUS |
 355			   (is_dsi ? PV_VCONTROL_DSI : 0) |
 356			   PV_VCONTROL_INTERLACE |
 357			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
 358					 PV_VCONTROL_ODD_DELAY));
 359		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
 
 
 
 360	} else {
 361		CRTC_WRITE(PV_V_CONTROL,
 362			   PV_VCONTROL_CONTINUOUS |
 363			   (is_dsi ? PV_VCONTROL_DSI : 0));
 
 364	}
 365
 366	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
 
 
 
 
 
 367
 368	CRTC_WRITE(PV_CONTROL,
 
 
 
 
 
 
 
 
 
 369		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
 370		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
 371				 PV_CONTROL_FIFO_LEVEL) |
 372		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
 373		   PV_CONTROL_CLR_AT_START |
 374		   PV_CONTROL_TRIGGER_UNDERFLOW |
 375		   PV_CONTROL_WAIT_HSTART |
 376		   VC4_SET_FIELD(vc4_encoder->clock_select,
 377				 PV_CONTROL_CLK_SELECT) |
 378		   PV_CONTROL_FIFO_CLR |
 379		   PV_CONTROL_EN);
 380}
 381
 382static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
 383{
 384	struct drm_device *dev = crtc->dev;
 385	struct vc4_dev *vc4 = to_vc4_dev(dev);
 386	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 387	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 388	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
 389	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
 390	bool debug_dump_regs = false;
 391
 392	if (debug_dump_regs) {
 393		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
 394		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
 395			 drm_crtc_index(crtc));
 396		drm_print_regset32(&p, &vc4_crtc->regset);
 397	}
 398
 399	if (vc4_crtc->channel == 2) {
 400		u32 dispctrl;
 401		u32 dsp3_mux;
 402
 403		/*
 404		 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
 405		 * FIFO X'.
 406		 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
 407		 *
 408		 * DSP3 is connected to FIFO2 unless the transposer is
 409		 * enabled. In this case, FIFO 2 is directly accessed by the
 410		 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
 411		 * route.
 412		 */
 413		if (vc4_state->feed_txp)
 414			dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
 415		else
 416			dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
 417
 418		dispctrl = HVS_READ(SCALER_DISPCTRL) &
 419			   ~SCALER_DISPCTRL_DSP3_MUX_MASK;
 420		HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
 421	}
 422
 423	if (!vc4_state->feed_txp)
 424		vc4_crtc_config_pv(crtc);
 425
 426	HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
 427		  SCALER_DISPBKGND_AUTOHS |
 428		  SCALER_DISPBKGND_GAMMA |
 429		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
 430
 431	/* Reload the LUT, since the SRAMs would have been disabled if
 432	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
 433	 */
 434	vc4_crtc_lut_load(crtc);
 435
 436	if (debug_dump_regs) {
 437		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
 438		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
 439			 drm_crtc_index(crtc));
 440		drm_print_regset32(&p, &vc4_crtc->regset);
 441	}
 
 
 442}
 443
 444static void require_hvs_enabled(struct drm_device *dev)
 445{
 446	struct vc4_dev *vc4 = to_vc4_dev(dev);
 
 447
 448	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
 449		     SCALER_DISPCTRL_ENABLE);
 450}
 451
 452static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
 453				    struct drm_crtc_state *old_state)
 
 
 454{
 
 
 455	struct drm_device *dev = crtc->dev;
 456	struct vc4_dev *vc4 = to_vc4_dev(dev);
 457	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 458	u32 chan = vc4_crtc->channel;
 459	int ret;
 460	require_hvs_enabled(dev);
 461
 462	/* Disable vblank irq handling before crtc is disabled. */
 463	drm_crtc_vblank_off(crtc);
 464
 465	CRTC_WRITE(PV_V_CONTROL,
 466		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
 467	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
 468	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
 469
 470	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
 471	    SCALER_DISPCTRLX_ENABLE) {
 472		HVS_WRITE(SCALER_DISPCTRLX(chan),
 473			  SCALER_DISPCTRLX_RESET);
 
 
 
 
 
 
 
 
 
 
 
 
 
 474
 475		/* While the docs say that reset is self-clearing, it
 476		 * seems it doesn't actually.
 477		 */
 478		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
 479	}
 
 
 
 
 
 
 
 
 480
 481	/* Once we leave, the scaler should be disabled and its fifo empty. */
 
 
 
 
 
 
 
 
 
 
 
 482
 483	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 484
 485	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
 486				   SCALER_DISPSTATX_MODE) !=
 487		     SCALER_DISPSTATX_MODE_DISABLED);
 
 488
 489	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
 490		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
 491		     SCALER_DISPSTATX_EMPTY);
 492
 493	/*
 494	 * Make sure we issue a vblank event after disabling the CRTC if
 495	 * someone was waiting it.
 
 496	 */
 497	if (crtc->state->event) {
 498		unsigned long flags;
 499
 500		spin_lock_irqsave(&dev->event_lock, flags);
 501		drm_crtc_send_vblank_event(crtc, crtc->state->event);
 502		crtc->state->event = NULL;
 503		spin_unlock_irqrestore(&dev->event_lock, flags);
 504	}
 505}
 506
 507void vc4_crtc_txp_armed(struct drm_crtc_state *state)
 508{
 509	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 
 
 
 
 510
 511	vc4_state->txp_armed = true;
 
 
 
 512}
 513
 514static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
 
 515{
 
 
 
 
 516	struct drm_device *dev = crtc->dev;
 517	struct vc4_dev *vc4 = to_vc4_dev(dev);
 518	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 519	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 520
 521	if (crtc->state->event) {
 522		unsigned long flags;
 523
 524		crtc->state->event->pipe = drm_crtc_index(crtc);
 525
 526		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 527
 528		spin_lock_irqsave(&dev->event_lock, flags);
 529
 530		if (!vc4_state->feed_txp || vc4_state->txp_armed) {
 531			vc4_crtc->event = crtc->state->event;
 532			crtc->state->event = NULL;
 533		}
 534
 535		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
 536			  vc4_state->mm.start);
 537
 538		spin_unlock_irqrestore(&dev->event_lock, flags);
 539	} else {
 540		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
 541			  vc4_state->mm.start);
 542	}
 543}
 544
 545static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
 546				   struct drm_crtc_state *old_state)
 547{
 
 
 548	struct drm_device *dev = crtc->dev;
 549	struct vc4_dev *vc4 = to_vc4_dev(dev);
 550	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 551	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 552	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
 
 
 
 
 
 
 
 553
 554	require_hvs_enabled(dev);
 555
 556	/* Enable vblank irq handling before crtc is started otherwise
 557	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
 558	 */
 559	drm_crtc_vblank_on(crtc);
 560	vc4_crtc_update_dlist(crtc);
 561
 562	/* Turn on the scaler, which will wait for vstart to start
 563	 * compositing.
 564	 * When feeding the transposer, we should operate in oneshot
 565	 * mode.
 566	 */
 567	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
 568		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
 569		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
 570		  SCALER_DISPCTRLX_ENABLE |
 571		  (vc4_state->feed_txp ? SCALER_DISPCTRLX_ONESHOT : 0));
 
 572
 573	/* When feeding the transposer block the pixelvalve is unneeded and
 574	 * should not be enabled.
 575	 */
 576	if (!vc4_state->feed_txp)
 577		CRTC_WRITE(PV_V_CONTROL,
 578			   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
 
 
 
 
 579}
 580
 581static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
 582						const struct drm_display_mode *mode)
 583{
 584	/* Do not allow doublescan modes from user space */
 585	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
 586		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
 587			      crtc->base.id);
 588		return MODE_NO_DBLESCAN;
 589	}
 590
 591	return MODE_OK;
 592}
 593
 594void vc4_crtc_get_margins(struct drm_crtc_state *state,
 595			  unsigned int *left, unsigned int *right,
 596			  unsigned int *top, unsigned int *bottom)
 597{
 598	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 599	struct drm_connector_state *conn_state;
 600	struct drm_connector *conn;
 601	int i;
 602
 603	*left = vc4_state->margins.left;
 604	*right = vc4_state->margins.right;
 605	*top = vc4_state->margins.top;
 606	*bottom = vc4_state->margins.bottom;
 607
 608	/* We have to interate over all new connector states because
 609	 * vc4_crtc_get_margins() might be called before
 610	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
 611	 * might be outdated.
 612	 */
 613	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
 614		if (conn_state->crtc != state->crtc)
 615			continue;
 616
 617		*left = conn_state->tv.margins.left;
 618		*right = conn_state->tv.margins.right;
 619		*top = conn_state->tv.margins.top;
 620		*bottom = conn_state->tv.margins.bottom;
 621		break;
 622	}
 623}
 624
 625static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
 626				 struct drm_crtc_state *state)
 627{
 628	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 629	struct drm_device *dev = crtc->dev;
 630	struct vc4_dev *vc4 = to_vc4_dev(dev);
 631	struct drm_plane *plane;
 632	unsigned long flags;
 633	const struct drm_plane_state *plane_state;
 634	struct drm_connector *conn;
 635	struct drm_connector_state *conn_state;
 636	u32 dlist_count = 0;
 637	int ret, i;
 638
 639	/* The pixelvalve can only feed one encoder (and encoders are
 640	 * 1:1 with connectors.)
 641	 */
 642	if (hweight32(state->connector_mask) > 1)
 643		return -EINVAL;
 644
 645	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
 646		dlist_count += vc4_plane_dlist_size(plane_state);
 647
 648	dlist_count++; /* Account for SCALER_CTL0_END. */
 649
 650	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
 651	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
 652				 dlist_count);
 653	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
 654	if (ret)
 655		return ret;
 656
 657	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
 658		if (conn_state->crtc != crtc)
 659			continue;
 660
 661		/* The writeback connector is implemented using the transposer
 662		 * block which is directly taking its data from the HVS FIFO.
 663		 */
 664		if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) {
 665			state->no_vblank = true;
 666			vc4_state->feed_txp = true;
 667		} else {
 668			state->no_vblank = false;
 669			vc4_state->feed_txp = false;
 670		}
 
 
 
 
 
 
 671
 672		vc4_state->margins.left = conn_state->tv.margins.left;
 673		vc4_state->margins.right = conn_state->tv.margins.right;
 674		vc4_state->margins.top = conn_state->tv.margins.top;
 675		vc4_state->margins.bottom = conn_state->tv.margins.bottom;
 676		break;
 677	}
 678
 679	return 0;
 680}
 681
 682static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
 683				  struct drm_crtc_state *old_state)
 684{
 685	struct drm_device *dev = crtc->dev;
 686	struct vc4_dev *vc4 = to_vc4_dev(dev);
 687	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 688	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 689	struct drm_plane *plane;
 690	struct vc4_plane_state *vc4_plane_state;
 691	bool debug_dump_regs = false;
 692	bool enable_bg_fill = false;
 693	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
 694	u32 __iomem *dlist_next = dlist_start;
 695
 696	if (debug_dump_regs) {
 697		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
 698		vc4_hvs_dump_state(dev);
 699	}
 700
 701	/* Copy all the active planes' dlist contents to the hardware dlist. */
 702	drm_atomic_crtc_for_each_plane(plane, crtc) {
 703		/* Is this the first active plane? */
 704		if (dlist_next == dlist_start) {
 705			/* We need to enable background fill when a plane
 706			 * could be alpha blending from the background, i.e.
 707			 * where no other plane is underneath. It suffices to
 708			 * consider the first active plane here since we set
 709			 * needs_bg_fill such that either the first plane
 710			 * already needs it or all planes on top blend from
 711			 * the first or a lower plane.
 712			 */
 713			vc4_plane_state = to_vc4_plane_state(plane->state);
 714			enable_bg_fill = vc4_plane_state->needs_bg_fill;
 715		}
 716
 717		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
 718	}
 719
 720	writel(SCALER_CTL0_END, dlist_next);
 721	dlist_next++;
 722
 723	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
 724
 725	if (enable_bg_fill)
 726		/* This sets a black background color fill, as is the case
 727		 * with other DRM drivers.
 728		 */
 729		HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
 730			  HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
 731			  SCALER_DISPBKGND_FILL);
 732
 733	/* Only update DISPLIST if the CRTC was already running and is not
 734	 * being disabled.
 735	 * vc4_crtc_enable() takes care of updating the dlist just after
 736	 * re-enabling VBLANK interrupts and before enabling the engine.
 737	 * If the CRTC is being disabled, there's no point in updating this
 738	 * information.
 739	 */
 740	if (crtc->state->active && old_state->active)
 741		vc4_crtc_update_dlist(crtc);
 742
 743	if (crtc->state->color_mgmt_changed) {
 744		u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));
 745
 746		if (crtc->state->gamma_lut) {
 747			vc4_crtc_update_gamma_lut(crtc);
 748			dispbkgndx |= SCALER_DISPBKGND_GAMMA;
 749		} else {
 750			/* Unsetting DISPBKGND_GAMMA skips the gamma lut step
 751			 * in hardware, which is the same as a linear lut that
 752			 * DRM expects us to use in absence of a user lut.
 753			 */
 754			dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
 755		}
 756		HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
 757	}
 758
 759	if (debug_dump_regs) {
 760		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
 761		vc4_hvs_dump_state(dev);
 762	}
 763}
 764
 765static int vc4_enable_vblank(struct drm_crtc *crtc)
 766{
 767	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 
 
 
 
 
 768
 769	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
 770
 
 
 771	return 0;
 772}
 773
 774static void vc4_disable_vblank(struct drm_crtc *crtc)
 775{
 776	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 
 
 
 
 
 777
 778	CRTC_WRITE(PV_INTEN, 0);
 
 
 779}
 780
 781static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
 782{
 783	struct drm_crtc *crtc = &vc4_crtc->base;
 784	struct drm_device *dev = crtc->dev;
 785	struct vc4_dev *vc4 = to_vc4_dev(dev);
 786	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 787	u32 chan = vc4_crtc->channel;
 788	unsigned long flags;
 789
 790	spin_lock_irqsave(&dev->event_lock, flags);
 
 791	if (vc4_crtc->event &&
 792	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
 793	     vc4_state->feed_txp)) {
 794		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
 795		vc4_crtc->event = NULL;
 796		drm_crtc_vblank_put(crtc);
 797
 798		/* Wait for the page flip to unmask the underrun to ensure that
 799		 * the display list was updated by the hardware. Before that
 800		 * happens, the HVS will be using the previous display list with
 801		 * the CRTC and encoder already reconfigured, leading to
 802		 * underruns. This can be seen when reconfiguring the CRTC.
 803		 */
 804		vc4_hvs_unmask_underrun(dev, vc4_crtc->channel);
 805	}
 
 806	spin_unlock_irqrestore(&dev->event_lock, flags);
 807}
 808
 809void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
 810{
 811	crtc->t_vblank = ktime_get();
 812	drm_crtc_handle_vblank(&crtc->base);
 813	vc4_crtc_handle_page_flip(crtc);
 814}
 815
 816static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
 817{
 818	struct vc4_crtc *vc4_crtc = data;
 819	u32 stat = CRTC_READ(PV_INTSTAT);
 820	irqreturn_t ret = IRQ_NONE;
 821
 822	if (stat & PV_INT_VFP_START) {
 823		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
 824		vc4_crtc_handle_vblank(vc4_crtc);
 825		ret = IRQ_HANDLED;
 826	}
 827
 828	return ret;
 829}
 830
 831struct vc4_async_flip_state {
 832	struct drm_crtc *crtc;
 833	struct drm_framebuffer *fb;
 834	struct drm_framebuffer *old_fb;
 835	struct drm_pending_vblank_event *event;
 836
 837	struct vc4_seqno_cb cb;
 
 
 
 838};
 839
 840/* Called when the V3D execution for the BO being flipped to is done, so that
 841 * we can actually update the plane's address to point to it.
 842 */
 843static void
 844vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
 845{
 846	struct vc4_async_flip_state *flip_state =
 847		container_of(cb, struct vc4_async_flip_state, cb);
 848	struct drm_crtc *crtc = flip_state->crtc;
 849	struct drm_device *dev = crtc->dev;
 850	struct vc4_dev *vc4 = to_vc4_dev(dev);
 851	struct drm_plane *plane = crtc->primary;
 852
 853	vc4_plane_async_set_fb(plane, flip_state->fb);
 854	if (flip_state->event) {
 855		unsigned long flags;
 856
 857		spin_lock_irqsave(&dev->event_lock, flags);
 858		drm_crtc_send_vblank_event(crtc, flip_state->event);
 859		spin_unlock_irqrestore(&dev->event_lock, flags);
 860	}
 861
 862	drm_crtc_vblank_put(crtc);
 863	drm_framebuffer_put(flip_state->fb);
 864
 865	/* Decrement the BO usecnt in order to keep the inc/dec calls balanced
 866	 * when the planes are updated through the async update path.
 867	 * FIXME: we should move to generic async-page-flip when it's
 868	 * available, so that we can get rid of this hand-made cleanup_fb()
 869	 * logic.
 870	 */
 
 
 
 
 
 
 871	if (flip_state->old_fb) {
 872		struct drm_gem_cma_object *cma_bo;
 873		struct vc4_bo *bo;
 
 
 
 
 874
 875		cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
 876		bo = to_vc4_bo(&cma_bo->base);
 
 
 
 
 
 
 
 
 877		vc4_bo_dec_usecnt(bo);
 878		drm_framebuffer_put(flip_state->old_fb);
 879	}
 880
 881	kfree(flip_state);
 
 
 
 
 882
 883	up(&vc4->async_modeset);
 
 884}
 885
 886/* Implements async (non-vblank-synced) page flips.
 887 *
 888 * The page flip ioctl needs to return immediately, so we grab the
 889 * modeset semaphore on the pipe, and queue the address update for
 890 * when V3D is done with the BO being flipped to.
 891 */
 892static int vc4_async_page_flip(struct drm_crtc *crtc,
 893			       struct drm_framebuffer *fb,
 894			       struct drm_pending_vblank_event *event,
 895			       uint32_t flags)
 896{
 897	struct drm_device *dev = crtc->dev;
 
 898	struct vc4_dev *vc4 = to_vc4_dev(dev);
 899	struct drm_plane *plane = crtc->primary;
 900	int ret = 0;
 901	struct vc4_async_flip_state *flip_state;
 902	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
 903	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
 904
 905	/* Increment the BO usecnt here, so that we never end up with an
 906	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
 907	 * plane is later updated through the non-async path.
 908	 * FIXME: we should move to generic async-page-flip when it's
 909	 * available, so that we can get rid of this hand-made prepare_fb()
 910	 * logic.
 911	 */
 912	ret = vc4_bo_inc_usecnt(bo);
 913	if (ret)
 914		return ret;
 915
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 916	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
 917	if (!flip_state) {
 918		vc4_bo_dec_usecnt(bo);
 919		return -ENOMEM;
 920	}
 921
 922	drm_framebuffer_get(fb);
 923	flip_state->fb = fb;
 924	flip_state->crtc = crtc;
 925	flip_state->event = event;
 926
 927	/* Make sure all other async modesetes have landed. */
 928	ret = down_interruptible(&vc4->async_modeset);
 929	if (ret) {
 930		drm_framebuffer_put(fb);
 931		vc4_bo_dec_usecnt(bo);
 932		kfree(flip_state);
 933		return ret;
 934	}
 935
 936	/* Save the current FB before it's replaced by the new one in
 937	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
 938	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
 939	 * it consistent.
 940	 * FIXME: we should move to generic async-page-flip when it's
 941	 * available, so that we can get rid of this hand-made cleanup_fb()
 942	 * logic.
 943	 */
 944	flip_state->old_fb = plane->state->fb;
 945	if (flip_state->old_fb)
 946		drm_framebuffer_get(flip_state->old_fb);
 947
 948	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 949
 950	/* Immediately update the plane's legacy fb pointer, so that later
 951	 * modeset prep sees the state that will be present when the semaphore
 952	 * is released.
 953	 */
 954	drm_atomic_set_fb_for_plane(plane->state, fb);
 955
 956	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
 957			   vc4_async_page_flip_complete);
 958
 959	/* Driver takes ownership of state on successful async commit. */
 960	return 0;
 961}
 962
 963static int vc4_page_flip(struct drm_crtc *crtc,
 964			 struct drm_framebuffer *fb,
 965			 struct drm_pending_vblank_event *event,
 966			 uint32_t flags,
 967			 struct drm_modeset_acquire_ctx *ctx)
 968{
 969	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
 970		return vc4_async_page_flip(crtc, fb, event, flags);
 971	else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 972		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
 
 973}
 974
 975static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
 976{
 977	struct vc4_crtc_state *vc4_state, *old_vc4_state;
 978
 979	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
 980	if (!vc4_state)
 981		return NULL;
 982
 983	old_vc4_state = to_vc4_crtc_state(crtc->state);
 984	vc4_state->feed_txp = old_vc4_state->feed_txp;
 985	vc4_state->margins = old_vc4_state->margins;
 
 986
 987	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
 988	return &vc4_state->base;
 989}
 990
 991static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
 992				   struct drm_crtc_state *state)
 993{
 994	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
 995	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 996
 997	if (vc4_state->mm.allocated) {
 998		unsigned long flags;
 999
1000		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1001		drm_mm_remove_node(&vc4_state->mm);
1002		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1003
1004	}
1005
1006	drm_atomic_helper_crtc_destroy_state(crtc, state);
1007}
1008
1009static void
1010vc4_crtc_reset(struct drm_crtc *crtc)
1011{
 
 
1012	if (crtc->state)
1013		vc4_crtc_destroy_state(crtc, crtc->state);
1014
1015	crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
1016	if (crtc->state)
1017		crtc->state->crtc = crtc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1018}
1019
1020static const struct drm_crtc_funcs vc4_crtc_funcs = {
1021	.set_config = drm_atomic_helper_set_config,
1022	.destroy = vc4_crtc_destroy,
1023	.page_flip = vc4_page_flip,
1024	.set_property = NULL,
1025	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1026	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1027	.reset = vc4_crtc_reset,
1028	.atomic_duplicate_state = vc4_crtc_duplicate_state,
1029	.atomic_destroy_state = vc4_crtc_destroy_state,
1030	.gamma_set = drm_atomic_helper_legacy_gamma_set,
1031	.enable_vblank = vc4_enable_vblank,
1032	.disable_vblank = vc4_disable_vblank,
 
 
1033};
1034
1035static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1036	.mode_set_nofb = vc4_crtc_mode_set_nofb,
1037	.mode_valid = vc4_crtc_mode_valid,
1038	.atomic_check = vc4_crtc_atomic_check,
1039	.atomic_flush = vc4_crtc_atomic_flush,
 
1040	.atomic_enable = vc4_crtc_atomic_enable,
1041	.atomic_disable = vc4_crtc_atomic_disable,
 
1042};
1043
1044static const struct vc4_crtc_data pv0_data = {
1045	.hvs_channel = 0,
1046	.debugfs_name = "crtc0_regs",
 
 
 
 
 
 
1047	.encoder_types = {
1048		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1049		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1050	},
1051};
1052
1053static const struct vc4_crtc_data pv1_data = {
1054	.hvs_channel = 2,
1055	.debugfs_name = "crtc1_regs",
 
 
 
 
 
 
1056	.encoder_types = {
1057		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1058		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1059	},
1060};
1061
1062static const struct vc4_crtc_data pv2_data = {
1063	.hvs_channel = 1,
1064	.debugfs_name = "crtc2_regs",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1065	.encoder_types = {
1066		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
1067		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1068	},
1069};
1070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1071static const struct of_device_id vc4_crtc_dt_match[] = {
1072	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
1073	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
1074	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
 
 
 
 
 
1075	{}
1076};
1077
1078static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1079					struct drm_crtc *crtc)
1080{
1081	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1082	const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
1083	const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
1084	struct drm_encoder *encoder;
1085
1086	drm_for_each_encoder(encoder, drm) {
1087		struct vc4_encoder *vc4_encoder;
1088		int i;
1089
1090		/* HVS FIFO2 can feed the TXP IP. */
1091		if (crtc_data->hvs_channel == 2 &&
1092		    encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1093			encoder->possible_crtcs |= drm_crtc_mask(crtc);
1094			continue;
1095		}
1096
1097		vc4_encoder = to_vc4_encoder(encoder);
1098		for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
1099			if (vc4_encoder->type == encoder_types[i]) {
1100				vc4_encoder->clock_select = i;
1101				encoder->possible_crtcs |= drm_crtc_mask(crtc);
1102				break;
1103			}
1104		}
1105	}
1106}
1107
1108static void
1109vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1110{
1111	struct drm_device *drm = vc4_crtc->base.dev;
1112	struct vc4_dev *vc4 = to_vc4_dev(drm);
1113	u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
1114	/* Top/base are supposed to be 4-pixel aligned, but the
1115	 * Raspberry Pi firmware fills the low bits (which are
1116	 * presumably ignored).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1117	 */
1118	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
1119	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
 
 
 
1120
1121	vc4_crtc->cob_size = top - base + 4;
 
1122}
1123
1124static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1125{
1126	struct platform_device *pdev = to_platform_device(dev);
1127	struct drm_device *drm = dev_get_drvdata(master);
 
1128	struct vc4_crtc *vc4_crtc;
1129	struct drm_crtc *crtc;
1130	struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
1131	const struct of_device_id *match;
1132	int ret, i;
1133
1134	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1135	if (!vc4_crtc)
1136		return -ENOMEM;
1137	crtc = &vc4_crtc->base;
1138
1139	match = of_match_device(vc4_crtc_dt_match, dev);
1140	if (!match)
1141		return -ENODEV;
1142	vc4_crtc->data = match->data;
1143	vc4_crtc->pdev = pdev;
1144
1145	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1146	if (IS_ERR(vc4_crtc->regs))
1147		return PTR_ERR(vc4_crtc->regs);
1148
1149	vc4_crtc->regset.base = vc4_crtc->regs;
1150	vc4_crtc->regset.regs = crtc_regs;
1151	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1152
1153	/* For now, we create just the primary and the legacy cursor
1154	 * planes.  We should be able to stack more planes on easily,
1155	 * but to do that we would need to compute the bandwidth
1156	 * requirement of the plane configuration, and reject ones
1157	 * that will take too much.
1158	 */
1159	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1160	if (IS_ERR(primary_plane)) {
1161		dev_err(dev, "failed to construct primary plane\n");
1162		ret = PTR_ERR(primary_plane);
1163		goto err;
1164	}
1165
1166	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1167				  &vc4_crtc_funcs, NULL);
1168	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1169	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1170	drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1171	drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1172
1173	/* We support CTM, but only for one CRTC at a time. It's therefore
1174	 * implemented as private driver state in vc4_kms, not here.
1175	 */
1176	drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1177
1178	/* Set up some arbitrary number of planes.  We're not limited
1179	 * by a set number of physical registers, just the space in
1180	 * the HVS (16k) and how small an plane can be (28 bytes).
1181	 * However, each plane we set up takes up some memory, and
1182	 * increases the cost of looping over planes, which atomic
1183	 * modesetting does quite a bit.  As a result, we pick a
1184	 * modest number of planes to expose, that should hopefully
1185	 * still cover any sane usecase.
1186	 */
1187	for (i = 0; i < 8; i++) {
1188		struct drm_plane *plane =
1189			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1190
1191		if (IS_ERR(plane))
1192			continue;
1193
1194		plane->possible_crtcs = drm_crtc_mask(crtc);
1195	}
1196
1197	/* Set up the legacy cursor after overlay initialization,
1198	 * since we overlay planes on the CRTC in the order they were
1199	 * initialized.
1200	 */
1201	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1202	if (!IS_ERR(cursor_plane)) {
1203		cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
1204		crtc->cursor = cursor_plane;
1205	}
1206
1207	vc4_crtc_get_cob_allocation(vc4_crtc);
1208
1209	CRTC_WRITE(PV_INTEN, 0);
1210	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1211	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1212			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
 
 
1213	if (ret)
1214		goto err_destroy_planes;
1215
1216	vc4_set_crtc_possible_masks(drm, crtc);
1217
1218	for (i = 0; i < crtc->gamma_size; i++) {
1219		vc4_crtc->lut_r[i] = i;
1220		vc4_crtc->lut_g[i] = i;
1221		vc4_crtc->lut_b[i] = i;
1222	}
1223
1224	platform_set_drvdata(pdev, vc4_crtc);
1225
1226	vc4_debugfs_add_regset32(drm, vc4_crtc->data->debugfs_name,
1227				 &vc4_crtc->regset);
1228
1229	return 0;
1230
1231err_destroy_planes:
1232	list_for_each_entry_safe(destroy_plane, temp,
1233				 &drm->mode_config.plane_list, head) {
1234		if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1235		    destroy_plane->funcs->destroy(destroy_plane);
1236	}
1237err:
1238	return ret;
1239}
1240
1241static void vc4_crtc_unbind(struct device *dev, struct device *master,
1242			    void *data)
1243{
1244	struct platform_device *pdev = to_platform_device(dev);
1245	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1246
1247	vc4_crtc_destroy(&vc4_crtc->base);
1248
1249	CRTC_WRITE(PV_INTEN, 0);
1250
1251	platform_set_drvdata(pdev, NULL);
1252}
1253
1254static const struct component_ops vc4_crtc_ops = {
1255	.bind   = vc4_crtc_bind,
1256	.unbind = vc4_crtc_unbind,
1257};
1258
1259static int vc4_crtc_dev_probe(struct platform_device *pdev)
1260{
1261	return component_add(&pdev->dev, &vc4_crtc_ops);
1262}
1263
1264static int vc4_crtc_dev_remove(struct platform_device *pdev)
1265{
1266	component_del(&pdev->dev, &vc4_crtc_ops);
1267	return 0;
1268}
1269
1270struct platform_driver vc4_crtc_driver = {
1271	.probe = vc4_crtc_dev_probe,
1272	.remove = vc4_crtc_dev_remove,
1273	.driver = {
1274		.name = "vc4_crtc",
1275		.of_match_table = vc4_crtc_dt_match,
1276	},
1277};
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2015 Broadcom
   4 */
   5
   6/**
   7 * DOC: VC4 CRTC module
   8 *
   9 * In VC4, the Pixel Valve is what most closely corresponds to the
  10 * DRM's concept of a CRTC.  The PV generates video timings from the
  11 * encoder's clock plus its configuration.  It pulls scaled pixels from
  12 * the HVS at that timing, and feeds it to the encoder.
  13 *
  14 * However, the DRM CRTC also collects the configuration of all the
  15 * DRM planes attached to it.  As a result, the CRTC is also
  16 * responsible for writing the display list for the HVS channel that
  17 * the CRTC will use.
  18 *
  19 * The 2835 has 3 different pixel valves.  pv0 in the audio power
  20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
  21 * image domain can feed either HDMI or the SDTV controller.  The
  22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
  23 * SDTV, etc.) according to which output type is chosen in the mux.
  24 *
  25 * For power management, the pixel valve's registers are all clocked
  26 * by the AXI clock, while the timings and FIFOs make use of the
  27 * output-specific clock.  Since the encoders also directly consume
  28 * the CPRMAN clocks, and know what timings they need, they are the
  29 * ones that set the clock.
  30 */
  31
  32#include <linux/clk.h>
  33#include <linux/component.h>
  34#include <linux/of.h>
  35#include <linux/platform_device.h>
  36#include <linux/pm_runtime.h>
  37
  38#include <drm/drm_atomic.h>
  39#include <drm/drm_atomic_helper.h>
  40#include <drm/drm_atomic_uapi.h>
  41#include <drm/drm_fb_dma_helper.h>
  42#include <drm/drm_framebuffer.h>
  43#include <drm/drm_drv.h>
  44#include <drm/drm_print.h>
  45#include <drm/drm_probe_helper.h>
  46#include <drm/drm_vblank.h>
  47
  48#include "vc4_drv.h"
  49#include "vc4_hdmi.h"
  50#include "vc4_regs.h"
  51
  52#define HVS_FIFO_LATENCY_PIX	6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  53
  54#define CRTC_WRITE(offset, val)								\
  55	do {										\
  56		kunit_fail_current_test("Accessing a register in a unit test!\n");	\
  57		writel(val, vc4_crtc->regs + (offset));					\
  58	} while (0)
  59
  60#define CRTC_READ(offset)								\
  61	({										\
  62		kunit_fail_current_test("Accessing a register in a unit test!\n");	\
  63		readl(vc4_crtc->regs + (offset));					\
  64	})
  65
  66static const struct debugfs_reg32 crtc_regs[] = {
  67	VC4_REG32(PV_CONTROL),
  68	VC4_REG32(PV_V_CONTROL),
  69	VC4_REG32(PV_VSYNCD_EVEN),
  70	VC4_REG32(PV_HORZA),
  71	VC4_REG32(PV_HORZB),
  72	VC4_REG32(PV_VERTA),
  73	VC4_REG32(PV_VERTB),
  74	VC4_REG32(PV_VERTA_EVEN),
  75	VC4_REG32(PV_VERTB_EVEN),
  76	VC4_REG32(PV_INTEN),
  77	VC4_REG32(PV_INTSTAT),
  78	VC4_REG32(PV_STAT),
  79	VC4_REG32(PV_HACT_ACT),
  80};
  81
  82static unsigned int
  83vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
 
 
  84{
  85	struct vc4_hvs *hvs = vc4->hvs;
  86	u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
  87	/* Top/base are supposed to be 4-pixel aligned, but the
  88	 * Raspberry Pi firmware fills the low bits (which are
  89	 * presumably ignored).
  90	 */
  91	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
  92	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
  93
  94	return top - base + 4;
  95}
  96
  97static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
  98					  bool in_vblank_irq,
  99					  int *vpos, int *hpos,
 100					  ktime_t *stime, ktime_t *etime,
 101					  const struct drm_display_mode *mode)
 102{
 103	struct drm_device *dev = crtc->dev;
 104	struct vc4_dev *vc4 = to_vc4_dev(dev);
 105	struct vc4_hvs *hvs = vc4->hvs;
 106	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 107	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
 108	unsigned int cob_size;
 109	u32 val;
 110	int fifo_lines;
 111	int vblank_lines;
 112	bool ret = false;
 113
 114	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
 115
 116	/* Get optional system timestamp before query. */
 117	if (stime)
 118		*stime = ktime_get();
 119
 120	/*
 121	 * Read vertical scanline which is currently composed for our
 122	 * pixelvalve by the HVS, and also the scaler status.
 123	 */
 124	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
 125
 126	/* Get optional system timestamp after query. */
 127	if (etime)
 128		*etime = ktime_get();
 129
 130	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
 131
 132	/* Vertical position of hvs composed scanline. */
 133	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
 134	*hpos = 0;
 135
 136	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 137		*vpos /= 2;
 138
 139		/* Use hpos to correct for field offset in interlaced mode. */
 140		if (vc4_hvs_get_fifo_frame_count(hvs, vc4_crtc_state->assigned_channel) % 2)
 141			*hpos += mode->crtc_htotal / 2;
 142	}
 143
 144	cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
 145	/* This is the offset we need for translating hvs -> pv scanout pos. */
 146	fifo_lines = cob_size / mode->crtc_hdisplay;
 147
 148	if (fifo_lines > 0)
 149		ret = true;
 150
 151	/* HVS more than fifo_lines into frame for compositing? */
 152	if (*vpos > fifo_lines) {
 153		/*
 154		 * We are in active scanout and can get some meaningful results
 155		 * from HVS. The actual PV scanout can not trail behind more
 156		 * than fifo_lines as that is the fifo's capacity. Assume that
 157		 * in active scanout the HVS and PV work in lockstep wrt. HVS
 158		 * refilling the fifo and PV consuming from the fifo, ie.
 159		 * whenever the PV consumes and frees up a scanline in the
 160		 * fifo, the HVS will immediately refill it, therefore
 161		 * incrementing vpos. Therefore we choose HVS read position -
 162		 * fifo size in scanlines as a estimate of the real scanout
 163		 * position of the PV.
 164		 */
 165		*vpos -= fifo_lines + 1;
 166
 167		return ret;
 168	}
 169
 170	/*
 171	 * Less: This happens when we are in vblank and the HVS, after getting
 172	 * the VSTART restart signal from the PV, just started refilling its
 173	 * fifo with new lines from the top-most lines of the new framebuffers.
 174	 * The PV does not scan out in vblank, so does not remove lines from
 175	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
 176	 * We can't get meaningful readings wrt. scanline position of the PV
 177	 * and need to make things up in a approximative but consistent way.
 178	 */
 179	vblank_lines = mode->vtotal - mode->vdisplay;
 180
 181	if (in_vblank_irq) {
 182		/*
 183		 * Assume the irq handler got called close to first
 184		 * line of vblank, so PV has about a full vblank
 185		 * scanlines to go, and as a base timestamp use the
 186		 * one taken at entry into vblank irq handler, so it
 187		 * is not affected by random delays due to lock
 188		 * contention on event_lock or vblank_time lock in
 189		 * the core.
 190		 */
 191		*vpos = -vblank_lines;
 192
 193		if (stime)
 194			*stime = vc4_crtc->t_vblank;
 195		if (etime)
 196			*etime = vc4_crtc->t_vblank;
 197
 198		/*
 199		 * If the HVS fifo is not yet full then we know for certain
 200		 * we are at the very beginning of vblank, as the hvs just
 201		 * started refilling, and the stime and etime timestamps
 202		 * truly correspond to start of vblank.
 203		 *
 204		 * Unfortunately there's no way to report this to upper levels
 205		 * and make it more useful.
 206		 */
 207	} else {
 208		/*
 209		 * No clue where we are inside vblank. Return a vpos of zero,
 210		 * which will cause calling code to just return the etime
 211		 * timestamp uncorrected. At least this is no worse than the
 212		 * standard fallback.
 213		 */
 214		*vpos = 0;
 215	}
 216
 217	return ret;
 218}
 219
 220static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
 221{
 222	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
 223	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
 224	struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
 225	u32 fifo_len_bytes = pv_data->fifo_depth;
 
 
 
 
 
 
 226
 227	/*
 228	 * Pixels are pulled from the HVS if the number of bytes is
 229	 * lower than the FIFO full level.
 230	 *
 231	 * The latency of the pixel fetch mechanism is 6 pixels, so we
 232	 * need to convert those 6 pixels in bytes, depending on the
 233	 * format, and then subtract that from the length of the FIFO
 234	 * to make sure we never end up in a situation where the FIFO
 235	 * is full.
 236	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 237	switch (format) {
 238	case PV_CONTROL_FORMAT_DSIV_16:
 239	case PV_CONTROL_FORMAT_DSIC_16:
 240		return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
 241	case PV_CONTROL_FORMAT_DSIV_18:
 242		return fifo_len_bytes - 14;
 243	case PV_CONTROL_FORMAT_24:
 244	case PV_CONTROL_FORMAT_DSIV_24:
 245	default:
 246		/*
 247		 * For some reason, the pixelvalve4 doesn't work with
 248		 * the usual formula and will only work with 32.
 249		 */
 250		if (crtc_data->hvs_output == 5)
 251			return 32;
 252
 253		/*
 254		 * It looks like in some situations, we will overflow
 255		 * the PixelValve FIFO (with the bit 10 of PV stat being
 256		 * set) and stall the HVS / PV, eventually resulting in
 257		 * a page flip timeout.
 258		 *
 259		 * Displaying the video overlay during a playback with
 260		 * Kodi on an RPi3 seems to be a great solution with a
 261		 * failure rate around 50%.
 262		 *
 263		 * Removing 1 from the FIFO full level however
 264		 * seems to completely remove that issue.
 265		 */
 266		if (!vc4->is_vc5)
 267			return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
 268
 269		return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
 270	}
 271}
 272
 273static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
 274					     u32 format)
 275{
 276	u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
 277	u32 ret = 0;
 278
 279	ret |= VC4_SET_FIELD((level >> 6),
 280			     PV5_CONTROL_FIFO_LEVEL_HIGH);
 281
 282	return ret | VC4_SET_FIELD(level & 0x3f,
 283				   PV_CONTROL_FIFO_LEVEL);
 284}
 285
 286/*
 287 * Returns the encoder attached to the CRTC.
 288 *
 289 * VC4 can only scan out to one encoder at a time, while the DRM core
 290 * allows drivers to push pixels to more than one encoder from the
 291 * same CRTC.
 292 */
 293struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
 294					 struct drm_crtc_state *state)
 295{
 296	struct drm_encoder *encoder;
 
 297
 298	WARN_ON(hweight32(state->encoder_mask) > 1);
 299
 300	drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
 301		return encoder;
 
 
 
 
 302
 303	return NULL;
 304}
 305
 306static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
 307{
 308	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 309	struct drm_device *dev = crtc->dev;
 310	int idx;
 311
 312	if (!drm_dev_enter(dev, &idx))
 313		return;
 314
 315	/* The PV needs to be disabled before it can be flushed */
 316	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
 317	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
 318
 319	drm_dev_exit(idx);
 320}
 321
 322static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
 323			       struct drm_atomic_state *state)
 324{
 325	struct drm_device *dev = crtc->dev;
 326	struct vc4_dev *vc4 = to_vc4_dev(dev);
 327	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 328	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 329	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
 330	struct drm_crtc_state *crtc_state = crtc->state;
 331	struct drm_display_mode *mode = &crtc_state->adjusted_mode;
 332	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
 333	bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 ||
 334		       vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1;
 335	u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1;
 336	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
 337		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
 338	bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1;
 339	bool is_vec = vc4_encoder->type == VC4_ENCODER_TYPE_VEC;
 340	u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
 341	u8 ppc = pv_data->pixels_per_clock;
 342
 343	u16 vert_bp = mode->crtc_vtotal - mode->crtc_vsync_end;
 344	u16 vert_sync = mode->crtc_vsync_end - mode->crtc_vsync_start;
 345	u16 vert_fp = mode->crtc_vsync_start - mode->crtc_vdisplay;
 346
 347	bool debug_dump_regs = false;
 348	int idx;
 349
 350	if (!drm_dev_enter(dev, &idx))
 351		return;
 352
 353	if (debug_dump_regs) {
 354		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
 355		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
 356			 drm_crtc_index(crtc));
 357		drm_print_regset32(&p, &vc4_crtc->regset);
 358	}
 359
 360	vc4_crtc_pixelvalve_reset(crtc);
 361
 362	CRTC_WRITE(PV_HORZA,
 363		   VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
 
 364				 PV_HORZA_HBP) |
 365		   VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
 
 366				 PV_HORZA_HSYNC));
 367
 368	CRTC_WRITE(PV_HORZB,
 369		   VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
 
 370				 PV_HORZB_HFP) |
 371		   VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
 372				 PV_HORZB_HACTIVE));
 
 
 
 
 
 
 
 
 
 373
 374	if (interlace) {
 375		bool odd_field_first = false;
 376		u32 field_delay = mode->htotal * pixel_rep / (2 * ppc);
 377		u16 vert_bp_even = vert_bp;
 378		u16 vert_fp_even = vert_fp;
 379
 380		if (is_vec) {
 381			/* VEC (composite output) */
 382			++field_delay;
 383			if (mode->htotal == 858) {
 384				/* 525-line mode (NTSC or PAL-M) */
 385				odd_field_first = true;
 386			}
 387		}
 388
 389		if (odd_field_first)
 390			++vert_fp_even;
 391		else
 392			++vert_bp;
 393
 394		CRTC_WRITE(PV_VERTA_EVEN,
 395			   VC4_SET_FIELD(vert_bp_even, PV_VERTA_VBP) |
 396			   VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC));
 
 
 
 
 397		CRTC_WRITE(PV_VERTB_EVEN,
 398			   VC4_SET_FIELD(vert_fp_even, PV_VERTB_VFP) |
 
 
 399			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
 400
 401		/* We set up first field even mode for HDMI and VEC's PAL.
 402		 * For NTSC, we need first field odd.
 
 
 403		 */
 404		CRTC_WRITE(PV_V_CONTROL,
 405			   PV_VCONTROL_CONTINUOUS |
 406			   (is_dsi ? PV_VCONTROL_DSI : 0) |
 407			   PV_VCONTROL_INTERLACE |
 408			   (odd_field_first
 409				   ? PV_VCONTROL_ODD_FIRST
 410				   : VC4_SET_FIELD(field_delay,
 411						   PV_VCONTROL_ODD_DELAY)));
 412		CRTC_WRITE(PV_VSYNCD_EVEN,
 413			   (odd_field_first ? field_delay : 0));
 414	} else {
 415		CRTC_WRITE(PV_V_CONTROL,
 416			   PV_VCONTROL_CONTINUOUS |
 417			   (is_dsi ? PV_VCONTROL_DSI : 0));
 418		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
 419	}
 420
 421	CRTC_WRITE(PV_VERTA,
 422		   VC4_SET_FIELD(vert_bp, PV_VERTA_VBP) |
 423		   VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC));
 424	CRTC_WRITE(PV_VERTB,
 425		   VC4_SET_FIELD(vert_fp, PV_VERTB_VFP) |
 426		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
 427
 428	if (is_dsi)
 429		CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
 430
 431	if (vc4->is_vc5)
 432		CRTC_WRITE(PV_MUX_CFG,
 433			   VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
 434					 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
 435
 436	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
 437		   vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
 438		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
 
 
 439		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
 440		   PV_CONTROL_CLR_AT_START |
 441		   PV_CONTROL_TRIGGER_UNDERFLOW |
 442		   PV_CONTROL_WAIT_HSTART |
 443		   VC4_SET_FIELD(vc4_encoder->clock_select,
 444				 PV_CONTROL_CLK_SELECT));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 445
 446	if (debug_dump_regs) {
 447		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
 448		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
 449			 drm_crtc_index(crtc));
 450		drm_print_regset32(&p, &vc4_crtc->regset);
 451	}
 452
 453	drm_dev_exit(idx);
 454}
 455
 456static void require_hvs_enabled(struct drm_device *dev)
 457{
 458	struct vc4_dev *vc4 = to_vc4_dev(dev);
 459	struct vc4_hvs *hvs = vc4->hvs;
 460
 461	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
 462		     SCALER_DISPCTRL_ENABLE);
 463}
 464
 465static int vc4_crtc_disable(struct drm_crtc *crtc,
 466			    struct drm_encoder *encoder,
 467			    struct drm_atomic_state *state,
 468			    unsigned int channel)
 469{
 470	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 471	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 472	struct drm_device *dev = crtc->dev;
 473	struct vc4_dev *vc4 = to_vc4_dev(dev);
 474	int idx, ret;
 
 
 
 475
 476	if (!drm_dev_enter(dev, &idx))
 477		return -ENODEV;
 478
 479	CRTC_WRITE(PV_V_CONTROL,
 480		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
 481	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
 482	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
 483
 484	/*
 485	 * This delay is needed to avoid to get a pixel stuck in an
 486	 * unflushable FIFO between the pixelvalve and the HDMI
 487	 * controllers on the BCM2711.
 488	 *
 489	 * Timing is fairly sensitive here, so mdelay is the safest
 490	 * approach.
 491	 *
 492	 * If it was to be reworked, the stuck pixel happens on a
 493	 * BCM2711 when changing mode with a good probability, so a
 494	 * script that changes mode on a regular basis should trigger
 495	 * the bug after less than 10 attempts. It manifests itself with
 496	 * every pixels being shifted by one to the right, and thus the
 497	 * last pixel of a line actually being displayed as the first
 498	 * pixel on the next line.
 499	 */
 500	mdelay(20);
 501
 502	if (vc4_encoder && vc4_encoder->post_crtc_disable)
 503		vc4_encoder->post_crtc_disable(encoder, state);
 504
 505	vc4_crtc_pixelvalve_reset(crtc);
 506	vc4_hvs_stop_channel(vc4->hvs, channel);
 507
 508	if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
 509		vc4_encoder->post_crtc_powerdown(encoder, state);
 510
 511	drm_dev_exit(idx);
 512
 513	return 0;
 514}
 515
 516int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
 517{
 518	struct drm_device *drm = crtc->dev;
 519	struct vc4_dev *vc4 = to_vc4_dev(drm);
 520	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 521	enum vc4_encoder_type encoder_type;
 522	const struct vc4_pv_data *pv_data;
 523	struct drm_encoder *encoder;
 524	struct vc4_hdmi *vc4_hdmi;
 525	unsigned encoder_sel;
 526	int channel;
 527	int ret;
 528
 529	if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
 530				      "brcm,bcm2711-pixelvalve2") ||
 531	      of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
 532				      "brcm,bcm2711-pixelvalve4")))
 533		return 0;
 534
 535	if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
 536		return 0;
 537
 538	if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
 539		return 0;
 540
 541	channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output);
 542	if (channel < 0)
 543		return 0;
 544
 545	encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
 546	if (WARN_ON(encoder_sel != 0))
 547		return 0;
 548
 549	pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
 550	encoder_type = pv_data->encoder_types[encoder_sel];
 551	encoder = vc4_find_encoder_by_type(drm, encoder_type);
 552	if (WARN_ON(!encoder))
 553		return 0;
 554
 555	vc4_hdmi = encoder_to_vc4_hdmi(encoder);
 556	ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
 557	if (ret)
 558		return ret;
 559
 560	ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
 561	if (ret)
 562		return ret;
 563
 564	/*
 565	 * post_crtc_powerdown will have called pm_runtime_put, so we
 566	 * don't need it here otherwise we'll get the reference counting
 567	 * wrong.
 568	 */
 
 
 569
 570	return 0;
 
 
 
 
 571}
 572
 573void vc4_crtc_send_vblank(struct drm_crtc *crtc)
 574{
 575	struct drm_device *dev = crtc->dev;
 576	unsigned long flags;
 577
 578	if (!crtc->state || !crtc->state->event)
 579		return;
 580
 581	spin_lock_irqsave(&dev->event_lock, flags);
 582	drm_crtc_send_vblank_event(crtc, crtc->state->event);
 583	crtc->state->event = NULL;
 584	spin_unlock_irqrestore(&dev->event_lock, flags);
 585}
 586
 587static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
 588				    struct drm_atomic_state *state)
 589{
 590	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
 591									 crtc);
 592	struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
 593	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
 594	struct drm_device *dev = crtc->dev;
 
 
 
 595
 596	drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
 597		crtc->name, crtc->base.id, encoder->name, encoder->base.id);
 598
 599	require_hvs_enabled(dev);
 
 
 
 
 600
 601	/* Disable vblank irq handling before crtc is disabled. */
 602	drm_crtc_vblank_off(crtc);
 
 
 603
 604	vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
 
 605
 606	/*
 607	 * Make sure we issue a vblank event after disabling the CRTC if
 608	 * someone was waiting it.
 609	 */
 610	vc4_crtc_send_vblank(crtc);
 611}
 612
 613static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
 614				   struct drm_atomic_state *state)
 615{
 616	struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
 617									 crtc);
 618	struct drm_device *dev = crtc->dev;
 
 619	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 620	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
 621	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 622	int idx;
 623
 624	drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
 625		crtc->name, crtc->base.id, encoder->name, encoder->base.id);
 626
 627	if (!drm_dev_enter(dev, &idx))
 628		return;
 629
 630	require_hvs_enabled(dev);
 631
 632	/* Enable vblank irq handling before crtc is started otherwise
 633	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
 634	 */
 635	drm_crtc_vblank_on(crtc);
 
 636
 637	vc4_hvs_atomic_enable(crtc, state);
 638
 639	if (vc4_encoder->pre_crtc_configure)
 640		vc4_encoder->pre_crtc_configure(encoder, state);
 641
 642	vc4_crtc_config_pv(crtc, encoder, state);
 643
 644	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
 645
 646	if (vc4_encoder->pre_crtc_enable)
 647		vc4_encoder->pre_crtc_enable(encoder, state);
 648
 649	/* When feeding the transposer block the pixelvalve is unneeded and
 650	 * should not be enabled.
 651	 */
 652	CRTC_WRITE(PV_V_CONTROL,
 653		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
 654
 655	if (vc4_encoder->post_crtc_enable)
 656		vc4_encoder->post_crtc_enable(encoder, state);
 657
 658	drm_dev_exit(idx);
 659}
 660
 661static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
 662						const struct drm_display_mode *mode)
 663{
 664	/* Do not allow doublescan modes from user space */
 665	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
 666		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
 667			      crtc->base.id);
 668		return MODE_NO_DBLESCAN;
 669	}
 670
 671	return MODE_OK;
 672}
 673
 674void vc4_crtc_get_margins(struct drm_crtc_state *state,
 675			  unsigned int *left, unsigned int *right,
 676			  unsigned int *top, unsigned int *bottom)
 677{
 678	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 679	struct drm_connector_state *conn_state;
 680	struct drm_connector *conn;
 681	int i;
 682
 683	*left = vc4_state->margins.left;
 684	*right = vc4_state->margins.right;
 685	*top = vc4_state->margins.top;
 686	*bottom = vc4_state->margins.bottom;
 687
 688	/* We have to interate over all new connector states because
 689	 * vc4_crtc_get_margins() might be called before
 690	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
 691	 * might be outdated.
 692	 */
 693	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
 694		if (conn_state->crtc != state->crtc)
 695			continue;
 696
 697		*left = conn_state->tv.margins.left;
 698		*right = conn_state->tv.margins.right;
 699		*top = conn_state->tv.margins.top;
 700		*bottom = conn_state->tv.margins.bottom;
 701		break;
 702	}
 703}
 704
 705int vc4_crtc_atomic_check(struct drm_crtc *crtc,
 706			  struct drm_atomic_state *state)
 707{
 708	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
 709									  crtc);
 710	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
 
 
 
 711	struct drm_connector *conn;
 712	struct drm_connector_state *conn_state;
 713	struct drm_encoder *encoder;
 714	int ret, i;
 715
 716	ret = vc4_hvs_atomic_check(crtc, state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 717	if (ret)
 718		return ret;
 719
 720	encoder = vc4_get_crtc_encoder(crtc, crtc_state);
 721	if (encoder) {
 722		const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
 723		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 724
 725		if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
 726			vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 8000,
 727						  mode->clock * 9 / 10) * 1000;
 
 
 728		} else {
 729			vc4_state->hvs_load = mode->clock * 1000;
 
 730		}
 731	}
 732
 733	for_each_new_connector_in_state(state, conn, conn_state,
 734					i) {
 735		if (conn_state->crtc != crtc)
 736			continue;
 737
 738		vc4_state->margins.left = conn_state->tv.margins.left;
 739		vc4_state->margins.right = conn_state->tv.margins.right;
 740		vc4_state->margins.top = conn_state->tv.margins.top;
 741		vc4_state->margins.bottom = conn_state->tv.margins.bottom;
 742		break;
 743	}
 744
 745	return 0;
 746}
 747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 748static int vc4_enable_vblank(struct drm_crtc *crtc)
 749{
 750	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 751	struct drm_device *dev = crtc->dev;
 752	int idx;
 753
 754	if (!drm_dev_enter(dev, &idx))
 755		return -ENODEV;
 756
 757	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
 758
 759	drm_dev_exit(idx);
 760
 761	return 0;
 762}
 763
 764static void vc4_disable_vblank(struct drm_crtc *crtc)
 765{
 766	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 767	struct drm_device *dev = crtc->dev;
 768	int idx;
 769
 770	if (!drm_dev_enter(dev, &idx))
 771		return;
 772
 773	CRTC_WRITE(PV_INTEN, 0);
 774
 775	drm_dev_exit(idx);
 776}
 777
 778static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
 779{
 780	struct drm_crtc *crtc = &vc4_crtc->base;
 781	struct drm_device *dev = crtc->dev;
 782	struct vc4_dev *vc4 = to_vc4_dev(dev);
 783	struct vc4_hvs *hvs = vc4->hvs;
 784	u32 chan = vc4_crtc->current_hvs_channel;
 785	unsigned long flags;
 786
 787	spin_lock_irqsave(&dev->event_lock, flags);
 788	spin_lock(&vc4_crtc->irq_lock);
 789	if (vc4_crtc->event &&
 790	    (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
 791	     vc4_crtc->feeds_txp)) {
 792		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
 793		vc4_crtc->event = NULL;
 794		drm_crtc_vblank_put(crtc);
 795
 796		/* Wait for the page flip to unmask the underrun to ensure that
 797		 * the display list was updated by the hardware. Before that
 798		 * happens, the HVS will be using the previous display list with
 799		 * the CRTC and encoder already reconfigured, leading to
 800		 * underruns. This can be seen when reconfiguring the CRTC.
 801		 */
 802		vc4_hvs_unmask_underrun(hvs, chan);
 803	}
 804	spin_unlock(&vc4_crtc->irq_lock);
 805	spin_unlock_irqrestore(&dev->event_lock, flags);
 806}
 807
 808void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
 809{
 810	crtc->t_vblank = ktime_get();
 811	drm_crtc_handle_vblank(&crtc->base);
 812	vc4_crtc_handle_page_flip(crtc);
 813}
 814
 815static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
 816{
 817	struct vc4_crtc *vc4_crtc = data;
 818	u32 stat = CRTC_READ(PV_INTSTAT);
 819	irqreturn_t ret = IRQ_NONE;
 820
 821	if (stat & PV_INT_VFP_START) {
 822		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
 823		vc4_crtc_handle_vblank(vc4_crtc);
 824		ret = IRQ_HANDLED;
 825	}
 826
 827	return ret;
 828}
 829
 830struct vc4_async_flip_state {
 831	struct drm_crtc *crtc;
 832	struct drm_framebuffer *fb;
 833	struct drm_framebuffer *old_fb;
 834	struct drm_pending_vblank_event *event;
 835
 836	union {
 837		struct dma_fence_cb fence;
 838		struct vc4_seqno_cb seqno;
 839	} cb;
 840};
 841
 842/* Called when the V3D execution for the BO being flipped to is done, so that
 843 * we can actually update the plane's address to point to it.
 844 */
 845static void
 846vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state)
 847{
 
 
 848	struct drm_crtc *crtc = flip_state->crtc;
 849	struct drm_device *dev = crtc->dev;
 
 850	struct drm_plane *plane = crtc->primary;
 851
 852	vc4_plane_async_set_fb(plane, flip_state->fb);
 853	if (flip_state->event) {
 854		unsigned long flags;
 855
 856		spin_lock_irqsave(&dev->event_lock, flags);
 857		drm_crtc_send_vblank_event(crtc, flip_state->event);
 858		spin_unlock_irqrestore(&dev->event_lock, flags);
 859	}
 860
 861	drm_crtc_vblank_put(crtc);
 862	drm_framebuffer_put(flip_state->fb);
 863
 864	if (flip_state->old_fb)
 865		drm_framebuffer_put(flip_state->old_fb);
 866
 867	kfree(flip_state);
 868}
 869
 870static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb)
 871{
 872	struct vc4_async_flip_state *flip_state =
 873		container_of(cb, struct vc4_async_flip_state, cb.seqno);
 874	struct vc4_bo *bo = NULL;
 875
 876	if (flip_state->old_fb) {
 877		struct drm_gem_dma_object *dma_bo =
 878			drm_fb_dma_get_gem_obj(flip_state->old_fb, 0);
 879		bo = to_vc4_bo(&dma_bo->base);
 880	}
 881
 882	vc4_async_page_flip_complete(flip_state);
 883
 884	/*
 885	 * Decrement the BO usecnt in order to keep the inc/dec
 886	 * calls balanced when the planes are updated through
 887	 * the async update path.
 888	 *
 889	 * FIXME: we should move to generic async-page-flip when
 890	 * it's available, so that we can get rid of this
 891	 * hand-made cleanup_fb() logic.
 892	 */
 893	if (bo)
 894		vc4_bo_dec_usecnt(bo);
 895}
 
 896
 897static void vc4_async_page_flip_fence_complete(struct dma_fence *fence,
 898					       struct dma_fence_cb *cb)
 899{
 900	struct vc4_async_flip_state *flip_state =
 901		container_of(cb, struct vc4_async_flip_state, cb.fence);
 902
 903	vc4_async_page_flip_complete(flip_state);
 904	dma_fence_put(fence);
 905}
 906
 907static int vc4_async_set_fence_cb(struct drm_device *dev,
 908				  struct vc4_async_flip_state *flip_state)
 
 
 
 
 
 
 
 
 909{
 910	struct drm_framebuffer *fb = flip_state->fb;
 911	struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
 912	struct vc4_dev *vc4 = to_vc4_dev(dev);
 913	struct dma_fence *fence;
 914	int ret;
 
 
 
 915
 916	if (!vc4->is_vc5) {
 917		struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
 918
 919		return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno,
 920					  vc4_async_page_flip_seqno_complete);
 921	}
 922
 923	ret = dma_resv_get_singleton(dma_bo->base.resv, DMA_RESV_USAGE_READ, &fence);
 924	if (ret)
 925		return ret;
 926
 927	/* If there's no fence, complete the page flip immediately */
 928	if (!fence) {
 929		vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
 930		return 0;
 931	}
 932
 933	/* If the fence has already been completed, complete the page flip */
 934	if (dma_fence_add_callback(fence, &flip_state->cb.fence,
 935				   vc4_async_page_flip_fence_complete))
 936		vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
 937
 938	return 0;
 939}
 940
 941static int
 942vc4_async_page_flip_common(struct drm_crtc *crtc,
 943			   struct drm_framebuffer *fb,
 944			   struct drm_pending_vblank_event *event,
 945			   uint32_t flags)
 946{
 947	struct drm_device *dev = crtc->dev;
 948	struct drm_plane *plane = crtc->primary;
 949	struct vc4_async_flip_state *flip_state;
 950
 951	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
 952	if (!flip_state)
 
 953		return -ENOMEM;
 
 954
 955	drm_framebuffer_get(fb);
 956	flip_state->fb = fb;
 957	flip_state->crtc = crtc;
 958	flip_state->event = event;
 959
 
 
 
 
 
 
 
 
 
 960	/* Save the current FB before it's replaced by the new one in
 961	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
 962	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
 963	 * it consistent.
 964	 * FIXME: we should move to generic async-page-flip when it's
 965	 * available, so that we can get rid of this hand-made cleanup_fb()
 966	 * logic.
 967	 */
 968	flip_state->old_fb = plane->state->fb;
 969	if (flip_state->old_fb)
 970		drm_framebuffer_get(flip_state->old_fb);
 971
 972	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 973
 974	/* Immediately update the plane's legacy fb pointer, so that later
 975	 * modeset prep sees the state that will be present when the semaphore
 976	 * is released.
 977	 */
 978	drm_atomic_set_fb_for_plane(plane->state, fb);
 979
 980	vc4_async_set_fence_cb(dev, flip_state);
 
 981
 982	/* Driver takes ownership of state on successful async commit. */
 983	return 0;
 984}
 985
 986/* Implements async (non-vblank-synced) page flips.
 987 *
 988 * The page flip ioctl needs to return immediately, so we grab the
 989 * modeset semaphore on the pipe, and queue the address update for
 990 * when V3D is done with the BO being flipped to.
 991 */
 992static int vc4_async_page_flip(struct drm_crtc *crtc,
 993			       struct drm_framebuffer *fb,
 994			       struct drm_pending_vblank_event *event,
 995			       uint32_t flags)
 996{
 997	struct drm_device *dev = crtc->dev;
 998	struct vc4_dev *vc4 = to_vc4_dev(dev);
 999	struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
1000	struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
1001	int ret;
1002
1003	if (WARN_ON_ONCE(vc4->is_vc5))
1004		return -ENODEV;
1005
1006	/*
1007	 * Increment the BO usecnt here, so that we never end up with an
1008	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
1009	 * plane is later updated through the non-async path.
1010	 *
1011	 * FIXME: we should move to generic async-page-flip when
1012	 * it's available, so that we can get rid of this
1013	 * hand-made prepare_fb() logic.
1014	 */
1015	ret = vc4_bo_inc_usecnt(bo);
1016	if (ret)
1017		return ret;
1018
1019	ret = vc4_async_page_flip_common(crtc, fb, event, flags);
1020	if (ret) {
1021		vc4_bo_dec_usecnt(bo);
1022		return ret;
1023	}
1024
1025	return 0;
1026}
1027
1028static int vc5_async_page_flip(struct drm_crtc *crtc,
1029			       struct drm_framebuffer *fb,
1030			       struct drm_pending_vblank_event *event,
1031			       uint32_t flags)
1032{
1033	return vc4_async_page_flip_common(crtc, fb, event, flags);
1034}
1035
1036int vc4_page_flip(struct drm_crtc *crtc,
1037		  struct drm_framebuffer *fb,
1038		  struct drm_pending_vblank_event *event,
1039		  uint32_t flags,
1040		  struct drm_modeset_acquire_ctx *ctx)
1041{
1042	if (flags & DRM_MODE_PAGE_FLIP_ASYNC) {
1043		struct drm_device *dev = crtc->dev;
1044		struct vc4_dev *vc4 = to_vc4_dev(dev);
1045
1046		if (vc4->is_vc5)
1047			return vc5_async_page_flip(crtc, fb, event, flags);
1048		else
1049			return vc4_async_page_flip(crtc, fb, event, flags);
1050	} else {
1051		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
1052	}
1053}
1054
1055struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
1056{
1057	struct vc4_crtc_state *vc4_state, *old_vc4_state;
1058
1059	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
1060	if (!vc4_state)
1061		return NULL;
1062
1063	old_vc4_state = to_vc4_crtc_state(crtc->state);
 
1064	vc4_state->margins = old_vc4_state->margins;
1065	vc4_state->assigned_channel = old_vc4_state->assigned_channel;
1066
1067	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
1068	return &vc4_state->base;
1069}
1070
1071void vc4_crtc_destroy_state(struct drm_crtc *crtc,
1072			    struct drm_crtc_state *state)
1073{
1074	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
1075	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
1076
1077	if (drm_mm_node_allocated(&vc4_state->mm)) {
1078		unsigned long flags;
1079
1080		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1081		drm_mm_remove_node(&vc4_state->mm);
1082		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1083
1084	}
1085
1086	drm_atomic_helper_crtc_destroy_state(crtc, state);
1087}
1088
1089void vc4_crtc_reset(struct drm_crtc *crtc)
 
1090{
1091	struct vc4_crtc_state *vc4_crtc_state;
1092
1093	if (crtc->state)
1094		vc4_crtc_destroy_state(crtc, crtc->state);
1095
1096	vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
1097	if (!vc4_crtc_state) {
1098		crtc->state = NULL;
1099		return;
1100	}
1101
1102	vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
1103	__drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
1104}
1105
1106int vc4_crtc_late_register(struct drm_crtc *crtc)
1107{
1108	struct drm_device *drm = crtc->dev;
1109	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1110	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
1111
1112	vc4_debugfs_add_regset32(drm, crtc_data->debugfs_name,
1113				 &vc4_crtc->regset);
1114
1115	return 0;
1116}
1117
1118static const struct drm_crtc_funcs vc4_crtc_funcs = {
1119	.set_config = drm_atomic_helper_set_config,
 
1120	.page_flip = vc4_page_flip,
1121	.set_property = NULL,
1122	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1123	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1124	.reset = vc4_crtc_reset,
1125	.atomic_duplicate_state = vc4_crtc_duplicate_state,
1126	.atomic_destroy_state = vc4_crtc_destroy_state,
 
1127	.enable_vblank = vc4_enable_vblank,
1128	.disable_vblank = vc4_disable_vblank,
1129	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1130	.late_register = vc4_crtc_late_register,
1131};
1132
1133static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
 
1134	.mode_valid = vc4_crtc_mode_valid,
1135	.atomic_check = vc4_crtc_atomic_check,
1136	.atomic_begin = vc4_hvs_atomic_begin,
1137	.atomic_flush = vc4_hvs_atomic_flush,
1138	.atomic_enable = vc4_crtc_atomic_enable,
1139	.atomic_disable = vc4_crtc_atomic_disable,
1140	.get_scanout_position = vc4_crtc_get_scanout_position,
1141};
1142
1143const struct vc4_pv_data bcm2835_pv0_data = {
1144	.base = {
1145		.name = "pixelvalve-0",
1146		.debugfs_name = "crtc0_regs",
1147		.hvs_available_channels = BIT(0),
1148		.hvs_output = 0,
1149	},
1150	.fifo_depth = 64,
1151	.pixels_per_clock = 1,
1152	.encoder_types = {
1153		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1154		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1155	},
1156};
1157
1158const struct vc4_pv_data bcm2835_pv1_data = {
1159	.base = {
1160		.name = "pixelvalve-1",
1161		.debugfs_name = "crtc1_regs",
1162		.hvs_available_channels = BIT(2),
1163		.hvs_output = 2,
1164	},
1165	.fifo_depth = 64,
1166	.pixels_per_clock = 1,
1167	.encoder_types = {
1168		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1169		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1170	},
1171};
1172
1173const struct vc4_pv_data bcm2835_pv2_data = {
1174	.base = {
1175		.name = "pixelvalve-2",
1176		.debugfs_name = "crtc2_regs",
1177		.hvs_available_channels = BIT(1),
1178		.hvs_output = 1,
1179	},
1180	.fifo_depth = 64,
1181	.pixels_per_clock = 1,
1182	.encoder_types = {
1183		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1184		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1185	},
1186};
1187
1188const struct vc4_pv_data bcm2711_pv0_data = {
1189	.base = {
1190		.name = "pixelvalve-0",
1191		.debugfs_name = "crtc0_regs",
1192		.hvs_available_channels = BIT(0),
1193		.hvs_output = 0,
1194	},
1195	.fifo_depth = 64,
1196	.pixels_per_clock = 1,
1197	.encoder_types = {
1198		[0] = VC4_ENCODER_TYPE_DSI0,
1199		[1] = VC4_ENCODER_TYPE_DPI,
1200	},
1201};
1202
1203const struct vc4_pv_data bcm2711_pv1_data = {
1204	.base = {
1205		.name = "pixelvalve-1",
1206		.debugfs_name = "crtc1_regs",
1207		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1208		.hvs_output = 3,
1209	},
1210	.fifo_depth = 64,
1211	.pixels_per_clock = 1,
1212	.encoder_types = {
1213		[0] = VC4_ENCODER_TYPE_DSI1,
1214		[1] = VC4_ENCODER_TYPE_SMI,
1215	},
1216};
1217
1218const struct vc4_pv_data bcm2711_pv2_data = {
1219	.base = {
1220		.name = "pixelvalve-2",
1221		.debugfs_name = "crtc2_regs",
1222		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1223		.hvs_output = 4,
1224	},
1225	.fifo_depth = 256,
1226	.pixels_per_clock = 2,
1227	.encoder_types = {
1228		[0] = VC4_ENCODER_TYPE_HDMI0,
1229	},
1230};
1231
1232const struct vc4_pv_data bcm2711_pv3_data = {
1233	.base = {
1234		.name = "pixelvalve-3",
1235		.debugfs_name = "crtc3_regs",
1236		.hvs_available_channels = BIT(1),
1237		.hvs_output = 1,
1238	},
1239	.fifo_depth = 64,
1240	.pixels_per_clock = 1,
1241	.encoder_types = {
 
1242		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1243	},
1244};
1245
1246const struct vc4_pv_data bcm2711_pv4_data = {
1247	.base = {
1248		.name = "pixelvalve-4",
1249		.debugfs_name = "crtc4_regs",
1250		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1251		.hvs_output = 5,
1252	},
1253	.fifo_depth = 64,
1254	.pixels_per_clock = 2,
1255	.encoder_types = {
1256		[0] = VC4_ENCODER_TYPE_HDMI1,
1257	},
1258};
1259
1260static const struct of_device_id vc4_crtc_dt_match[] = {
1261	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1262	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1263	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1264	{ .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1265	{ .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1266	{ .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1267	{ .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1268	{ .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1269	{}
1270};
1271
1272static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1273					struct drm_crtc *crtc)
1274{
1275	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1276	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1277	const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1278	struct drm_encoder *encoder;
1279
1280	drm_for_each_encoder(encoder, drm) {
1281		struct vc4_encoder *vc4_encoder;
1282		int i;
1283
1284		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
 
 
 
1285			continue;
 
1286
1287		vc4_encoder = to_vc4_encoder(encoder);
1288		for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1289			if (vc4_encoder->type == encoder_types[i]) {
1290				vc4_encoder->clock_select = i;
1291				encoder->possible_crtcs |= drm_crtc_mask(crtc);
1292				break;
1293			}
1294		}
1295	}
1296}
1297
1298/**
1299 * __vc4_crtc_init - Initializes a CRTC
1300 * @drm: DRM Device
1301 * @pdev: CRTC Platform Device
1302 * @vc4_crtc: CRTC Object to Initialize
1303 * @data: Configuration data associated with this CRTC
1304 * @primary_plane: Primary plane for CRTC
1305 * @crtc_funcs: Callbacks for the new CRTC
1306 * @crtc_helper_funcs: Helper Callbacks for the new CRTC
1307 * @feeds_txp: Is this CRTC connected to the TXP?
1308 *
1309 * Initializes our private CRTC structure. This function is mostly
1310 * relevant for KUnit testing, all other users should use
1311 * vc4_crtc_init() instead.
1312 *
1313 * Returns:
1314 * 0 on success, a negative error code on failure.
1315 */
1316int __vc4_crtc_init(struct drm_device *drm,
1317		    struct platform_device *pdev,
1318		    struct vc4_crtc *vc4_crtc,
1319		    const struct vc4_crtc_data *data,
1320		    struct drm_plane *primary_plane,
1321		    const struct drm_crtc_funcs *crtc_funcs,
1322		    const struct drm_crtc_helper_funcs *crtc_helper_funcs,
1323		    bool feeds_txp)
1324{
 
1325	struct vc4_dev *vc4 = to_vc4_dev(drm);
1326	struct drm_crtc *crtc = &vc4_crtc->base;
1327	unsigned int i;
1328	int ret;
1329
1330	vc4_crtc->data = data;
1331	vc4_crtc->pdev = pdev;
1332	vc4_crtc->feeds_txp = feeds_txp;
1333	spin_lock_init(&vc4_crtc->irq_lock);
1334	ret = drmm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1335					 crtc_funcs, data->name);
1336	if (ret)
1337		return ret;
1338
1339	drm_crtc_helper_add(crtc, crtc_helper_funcs);
1340
1341	if (!vc4->is_vc5) {
1342		drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1343
1344		drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1345
1346		/* We support CTM, but only for one CRTC at a time. It's therefore
1347		 * implemented as private driver state in vc4_kms, not here.
1348		 */
1349		drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1350	}
1351
1352	for (i = 0; i < crtc->gamma_size; i++) {
1353		vc4_crtc->lut_r[i] = i;
1354		vc4_crtc->lut_g[i] = i;
1355		vc4_crtc->lut_b[i] = i;
1356	}
1357
1358	return 0;
1359}
1360
1361int vc4_crtc_init(struct drm_device *drm, struct platform_device *pdev,
1362		  struct vc4_crtc *vc4_crtc,
1363		  const struct vc4_crtc_data *data,
1364		  const struct drm_crtc_funcs *crtc_funcs,
1365		  const struct drm_crtc_helper_funcs *crtc_helper_funcs,
1366		  bool feeds_txp)
1367{
1368	struct drm_plane *primary_plane;
1369
1370	/* For now, we create just the primary and the legacy cursor
1371	 * planes.  We should be able to stack more planes on easily,
1372	 * but to do that we would need to compute the bandwidth
1373	 * requirement of the plane configuration, and reject ones
1374	 * that will take too much.
1375	 */
1376	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY, 0);
1377	if (IS_ERR(primary_plane)) {
1378		dev_err(drm->dev, "failed to construct primary plane\n");
1379		return PTR_ERR(primary_plane);
1380	}
1381
1382	return __vc4_crtc_init(drm, pdev, vc4_crtc, data, primary_plane,
1383			       crtc_funcs, crtc_helper_funcs, feeds_txp);
1384}
1385
1386static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1387{
1388	struct platform_device *pdev = to_platform_device(dev);
1389	struct drm_device *drm = dev_get_drvdata(master);
1390	const struct vc4_pv_data *pv_data;
1391	struct vc4_crtc *vc4_crtc;
1392	struct drm_crtc *crtc;
1393	int ret;
 
 
1394
1395	vc4_crtc = drmm_kzalloc(drm, sizeof(*vc4_crtc), GFP_KERNEL);
1396	if (!vc4_crtc)
1397		return -ENOMEM;
1398	crtc = &vc4_crtc->base;
1399
1400	pv_data = of_device_get_match_data(dev);
1401	if (!pv_data)
1402		return -ENODEV;
 
 
1403
1404	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1405	if (IS_ERR(vc4_crtc->regs))
1406		return PTR_ERR(vc4_crtc->regs);
1407
1408	vc4_crtc->regset.base = vc4_crtc->regs;
1409	vc4_crtc->regset.regs = crtc_regs;
1410	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1411
1412	ret = vc4_crtc_init(drm, pdev, vc4_crtc, &pv_data->base,
1413			    &vc4_crtc_funcs, &vc4_crtc_helper_funcs,
1414			    false);
1415	if (ret)
1416		return ret;
1417	vc4_set_crtc_possible_masks(drm, crtc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1418
1419	CRTC_WRITE(PV_INTEN, 0);
1420	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1421	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1422			       vc4_crtc_irq_handler,
1423			       IRQF_SHARED,
1424			       "vc4 crtc", vc4_crtc);
1425	if (ret)
1426		return ret;
 
 
 
 
 
 
 
 
1427
1428	platform_set_drvdata(pdev, vc4_crtc);
1429
 
 
 
1430	return 0;
 
 
 
 
 
 
 
 
 
1431}
1432
1433static void vc4_crtc_unbind(struct device *dev, struct device *master,
1434			    void *data)
1435{
1436	struct platform_device *pdev = to_platform_device(dev);
1437	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1438
 
 
1439	CRTC_WRITE(PV_INTEN, 0);
1440
1441	platform_set_drvdata(pdev, NULL);
1442}
1443
1444static const struct component_ops vc4_crtc_ops = {
1445	.bind   = vc4_crtc_bind,
1446	.unbind = vc4_crtc_unbind,
1447};
1448
1449static int vc4_crtc_dev_probe(struct platform_device *pdev)
1450{
1451	return component_add(&pdev->dev, &vc4_crtc_ops);
1452}
1453
1454static void vc4_crtc_dev_remove(struct platform_device *pdev)
1455{
1456	component_del(&pdev->dev, &vc4_crtc_ops);
 
1457}
1458
1459struct platform_driver vc4_crtc_driver = {
1460	.probe = vc4_crtc_dev_probe,
1461	.remove_new = vc4_crtc_dev_remove,
1462	.driver = {
1463		.name = "vc4_crtc",
1464		.of_match_table = vc4_crtc_dt_match,
1465	},
1466};