Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2015 Broadcom
4 */
5
6/**
7 * DOC: VC4 CRTC module
8 *
9 * In VC4, the Pixel Valve is what most closely corresponds to the
10 * DRM's concept of a CRTC. The PV generates video timings from the
11 * encoder's clock plus its configuration. It pulls scaled pixels from
12 * the HVS at that timing, and feeds it to the encoder.
13 *
14 * However, the DRM CRTC also collects the configuration of all the
15 * DRM planes attached to it. As a result, the CRTC is also
16 * responsible for writing the display list for the HVS channel that
17 * the CRTC will use.
18 *
19 * The 2835 has 3 different pixel valves. pv0 in the audio power
20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
21 * image domain can feed either HDMI or the SDTV controller. The
22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23 * SDTV, etc.) according to which output type is chosen in the mux.
24 *
25 * For power management, the pixel valve's registers are all clocked
26 * by the AXI clock, while the timings and FIFOs make use of the
27 * output-specific clock. Since the encoders also directly consume
28 * the CPRMAN clocks, and know what timings they need, they are the
29 * ones that set the clock.
30 */
31
32#include <linux/clk.h>
33#include <linux/component.h>
34#include <linux/of_device.h>
35
36#include <drm/drm_atomic.h>
37#include <drm/drm_atomic_helper.h>
38#include <drm/drm_atomic_uapi.h>
39#include <drm/drm_fb_cma_helper.h>
40#include <drm/drm_print.h>
41#include <drm/drm_probe_helper.h>
42#include <drm/drm_vblank.h>
43
44#include "vc4_drv.h"
45#include "vc4_regs.h"
46
47struct vc4_crtc_state {
48 struct drm_crtc_state base;
49 /* Dlist area for this CRTC configuration. */
50 struct drm_mm_node mm;
51 bool feed_txp;
52 bool txp_armed;
53
54 struct {
55 unsigned int left;
56 unsigned int right;
57 unsigned int top;
58 unsigned int bottom;
59 } margins;
60};
61
62static inline struct vc4_crtc_state *
63to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
64{
65 return (struct vc4_crtc_state *)crtc_state;
66}
67
68#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
69#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
70
71static const struct debugfs_reg32 crtc_regs[] = {
72 VC4_REG32(PV_CONTROL),
73 VC4_REG32(PV_V_CONTROL),
74 VC4_REG32(PV_VSYNCD_EVEN),
75 VC4_REG32(PV_HORZA),
76 VC4_REG32(PV_HORZB),
77 VC4_REG32(PV_VERTA),
78 VC4_REG32(PV_VERTB),
79 VC4_REG32(PV_VERTA_EVEN),
80 VC4_REG32(PV_VERTB_EVEN),
81 VC4_REG32(PV_INTEN),
82 VC4_REG32(PV_INTSTAT),
83 VC4_REG32(PV_STAT),
84 VC4_REG32(PV_HACT_ACT),
85};
86
87bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
88 bool in_vblank_irq, int *vpos, int *hpos,
89 ktime_t *stime, ktime_t *etime,
90 const struct drm_display_mode *mode)
91{
92 struct vc4_dev *vc4 = to_vc4_dev(dev);
93 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
94 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
95 u32 val;
96 int fifo_lines;
97 int vblank_lines;
98 bool ret = false;
99
100 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
101
102 /* Get optional system timestamp before query. */
103 if (stime)
104 *stime = ktime_get();
105
106 /*
107 * Read vertical scanline which is currently composed for our
108 * pixelvalve by the HVS, and also the scaler status.
109 */
110 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
111
112 /* Get optional system timestamp after query. */
113 if (etime)
114 *etime = ktime_get();
115
116 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
117
118 /* Vertical position of hvs composed scanline. */
119 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
120 *hpos = 0;
121
122 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
123 *vpos /= 2;
124
125 /* Use hpos to correct for field offset in interlaced mode. */
126 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
127 *hpos += mode->crtc_htotal / 2;
128 }
129
130 /* This is the offset we need for translating hvs -> pv scanout pos. */
131 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
132
133 if (fifo_lines > 0)
134 ret = true;
135
136 /* HVS more than fifo_lines into frame for compositing? */
137 if (*vpos > fifo_lines) {
138 /*
139 * We are in active scanout and can get some meaningful results
140 * from HVS. The actual PV scanout can not trail behind more
141 * than fifo_lines as that is the fifo's capacity. Assume that
142 * in active scanout the HVS and PV work in lockstep wrt. HVS
143 * refilling the fifo and PV consuming from the fifo, ie.
144 * whenever the PV consumes and frees up a scanline in the
145 * fifo, the HVS will immediately refill it, therefore
146 * incrementing vpos. Therefore we choose HVS read position -
147 * fifo size in scanlines as a estimate of the real scanout
148 * position of the PV.
149 */
150 *vpos -= fifo_lines + 1;
151
152 return ret;
153 }
154
155 /*
156 * Less: This happens when we are in vblank and the HVS, after getting
157 * the VSTART restart signal from the PV, just started refilling its
158 * fifo with new lines from the top-most lines of the new framebuffers.
159 * The PV does not scan out in vblank, so does not remove lines from
160 * the fifo, so the fifo will be full quickly and the HVS has to pause.
161 * We can't get meaningful readings wrt. scanline position of the PV
162 * and need to make things up in a approximative but consistent way.
163 */
164 vblank_lines = mode->vtotal - mode->vdisplay;
165
166 if (in_vblank_irq) {
167 /*
168 * Assume the irq handler got called close to first
169 * line of vblank, so PV has about a full vblank
170 * scanlines to go, and as a base timestamp use the
171 * one taken at entry into vblank irq handler, so it
172 * is not affected by random delays due to lock
173 * contention on event_lock or vblank_time lock in
174 * the core.
175 */
176 *vpos = -vblank_lines;
177
178 if (stime)
179 *stime = vc4_crtc->t_vblank;
180 if (etime)
181 *etime = vc4_crtc->t_vblank;
182
183 /*
184 * If the HVS fifo is not yet full then we know for certain
185 * we are at the very beginning of vblank, as the hvs just
186 * started refilling, and the stime and etime timestamps
187 * truly correspond to start of vblank.
188 *
189 * Unfortunately there's no way to report this to upper levels
190 * and make it more useful.
191 */
192 } else {
193 /*
194 * No clue where we are inside vblank. Return a vpos of zero,
195 * which will cause calling code to just return the etime
196 * timestamp uncorrected. At least this is no worse than the
197 * standard fallback.
198 */
199 *vpos = 0;
200 }
201
202 return ret;
203}
204
205static void vc4_crtc_destroy(struct drm_crtc *crtc)
206{
207 drm_crtc_cleanup(crtc);
208}
209
210static void
211vc4_crtc_lut_load(struct drm_crtc *crtc)
212{
213 struct drm_device *dev = crtc->dev;
214 struct vc4_dev *vc4 = to_vc4_dev(dev);
215 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
216 u32 i;
217
218 /* The LUT memory is laid out with each HVS channel in order,
219 * each of which takes 256 writes for R, 256 for G, then 256
220 * for B.
221 */
222 HVS_WRITE(SCALER_GAMADDR,
223 SCALER_GAMADDR_AUTOINC |
224 (vc4_crtc->channel * 3 * crtc->gamma_size));
225
226 for (i = 0; i < crtc->gamma_size; i++)
227 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
228 for (i = 0; i < crtc->gamma_size; i++)
229 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
230 for (i = 0; i < crtc->gamma_size; i++)
231 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
232}
233
234static void
235vc4_crtc_update_gamma_lut(struct drm_crtc *crtc)
236{
237 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
238 struct drm_color_lut *lut = crtc->state->gamma_lut->data;
239 u32 length = drm_color_lut_size(crtc->state->gamma_lut);
240 u32 i;
241
242 for (i = 0; i < length; i++) {
243 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
244 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
245 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
246 }
247
248 vc4_crtc_lut_load(crtc);
249}
250
251static u32 vc4_get_fifo_full_level(u32 format)
252{
253 static const u32 fifo_len_bytes = 64;
254 static const u32 hvs_latency_pix = 6;
255
256 switch (format) {
257 case PV_CONTROL_FORMAT_DSIV_16:
258 case PV_CONTROL_FORMAT_DSIC_16:
259 return fifo_len_bytes - 2 * hvs_latency_pix;
260 case PV_CONTROL_FORMAT_DSIV_18:
261 return fifo_len_bytes - 14;
262 case PV_CONTROL_FORMAT_24:
263 case PV_CONTROL_FORMAT_DSIV_24:
264 default:
265 return fifo_len_bytes - 3 * hvs_latency_pix;
266 }
267}
268
269/*
270 * Returns the encoder attached to the CRTC.
271 *
272 * VC4 can only scan out to one encoder at a time, while the DRM core
273 * allows drivers to push pixels to more than one encoder from the
274 * same CRTC.
275 */
276static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
277{
278 struct drm_connector *connector;
279 struct drm_connector_list_iter conn_iter;
280
281 drm_connector_list_iter_begin(crtc->dev, &conn_iter);
282 drm_for_each_connector_iter(connector, &conn_iter) {
283 if (connector->state->crtc == crtc) {
284 drm_connector_list_iter_end(&conn_iter);
285 return connector->encoder;
286 }
287 }
288 drm_connector_list_iter_end(&conn_iter);
289
290 return NULL;
291}
292
293static void vc4_crtc_config_pv(struct drm_crtc *crtc)
294{
295 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
296 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
297 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
298 struct drm_crtc_state *state = crtc->state;
299 struct drm_display_mode *mode = &state->adjusted_mode;
300 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
301 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
302 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
303 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
304 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
305
306 /* Reset the PV fifo. */
307 CRTC_WRITE(PV_CONTROL, 0);
308 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
309 CRTC_WRITE(PV_CONTROL, 0);
310
311 CRTC_WRITE(PV_HORZA,
312 VC4_SET_FIELD((mode->htotal -
313 mode->hsync_end) * pixel_rep,
314 PV_HORZA_HBP) |
315 VC4_SET_FIELD((mode->hsync_end -
316 mode->hsync_start) * pixel_rep,
317 PV_HORZA_HSYNC));
318 CRTC_WRITE(PV_HORZB,
319 VC4_SET_FIELD((mode->hsync_start -
320 mode->hdisplay) * pixel_rep,
321 PV_HORZB_HFP) |
322 VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
323
324 CRTC_WRITE(PV_VERTA,
325 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
326 PV_VERTA_VBP) |
327 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
328 PV_VERTA_VSYNC));
329 CRTC_WRITE(PV_VERTB,
330 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
331 PV_VERTB_VFP) |
332 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
333
334 if (interlace) {
335 CRTC_WRITE(PV_VERTA_EVEN,
336 VC4_SET_FIELD(mode->crtc_vtotal -
337 mode->crtc_vsync_end - 1,
338 PV_VERTA_VBP) |
339 VC4_SET_FIELD(mode->crtc_vsync_end -
340 mode->crtc_vsync_start,
341 PV_VERTA_VSYNC));
342 CRTC_WRITE(PV_VERTB_EVEN,
343 VC4_SET_FIELD(mode->crtc_vsync_start -
344 mode->crtc_vdisplay,
345 PV_VERTB_VFP) |
346 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
347
348 /* We set up first field even mode for HDMI. VEC's
349 * NTSC mode would want first field odd instead, once
350 * we support it (to do so, set ODD_FIRST and put the
351 * delay in VSYNCD_EVEN instead).
352 */
353 CRTC_WRITE(PV_V_CONTROL,
354 PV_VCONTROL_CONTINUOUS |
355 (is_dsi ? PV_VCONTROL_DSI : 0) |
356 PV_VCONTROL_INTERLACE |
357 VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
358 PV_VCONTROL_ODD_DELAY));
359 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
360 } else {
361 CRTC_WRITE(PV_V_CONTROL,
362 PV_VCONTROL_CONTINUOUS |
363 (is_dsi ? PV_VCONTROL_DSI : 0));
364 }
365
366 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
367
368 CRTC_WRITE(PV_CONTROL,
369 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
370 VC4_SET_FIELD(vc4_get_fifo_full_level(format),
371 PV_CONTROL_FIFO_LEVEL) |
372 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
373 PV_CONTROL_CLR_AT_START |
374 PV_CONTROL_TRIGGER_UNDERFLOW |
375 PV_CONTROL_WAIT_HSTART |
376 VC4_SET_FIELD(vc4_encoder->clock_select,
377 PV_CONTROL_CLK_SELECT) |
378 PV_CONTROL_FIFO_CLR |
379 PV_CONTROL_EN);
380}
381
382static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
383{
384 struct drm_device *dev = crtc->dev;
385 struct vc4_dev *vc4 = to_vc4_dev(dev);
386 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
387 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
388 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
389 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
390 bool debug_dump_regs = false;
391
392 if (debug_dump_regs) {
393 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
394 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
395 drm_crtc_index(crtc));
396 drm_print_regset32(&p, &vc4_crtc->regset);
397 }
398
399 if (vc4_crtc->channel == 2) {
400 u32 dispctrl;
401 u32 dsp3_mux;
402
403 /*
404 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
405 * FIFO X'.
406 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
407 *
408 * DSP3 is connected to FIFO2 unless the transposer is
409 * enabled. In this case, FIFO 2 is directly accessed by the
410 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
411 * route.
412 */
413 if (vc4_state->feed_txp)
414 dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
415 else
416 dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
417
418 dispctrl = HVS_READ(SCALER_DISPCTRL) &
419 ~SCALER_DISPCTRL_DSP3_MUX_MASK;
420 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
421 }
422
423 if (!vc4_state->feed_txp)
424 vc4_crtc_config_pv(crtc);
425
426 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
427 SCALER_DISPBKGND_AUTOHS |
428 SCALER_DISPBKGND_GAMMA |
429 (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
430
431 /* Reload the LUT, since the SRAMs would have been disabled if
432 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
433 */
434 vc4_crtc_lut_load(crtc);
435
436 if (debug_dump_regs) {
437 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
438 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
439 drm_crtc_index(crtc));
440 drm_print_regset32(&p, &vc4_crtc->regset);
441 }
442}
443
444static void require_hvs_enabled(struct drm_device *dev)
445{
446 struct vc4_dev *vc4 = to_vc4_dev(dev);
447
448 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
449 SCALER_DISPCTRL_ENABLE);
450}
451
452static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
453 struct drm_crtc_state *old_state)
454{
455 struct drm_device *dev = crtc->dev;
456 struct vc4_dev *vc4 = to_vc4_dev(dev);
457 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
458 u32 chan = vc4_crtc->channel;
459 int ret;
460 require_hvs_enabled(dev);
461
462 /* Disable vblank irq handling before crtc is disabled. */
463 drm_crtc_vblank_off(crtc);
464
465 CRTC_WRITE(PV_V_CONTROL,
466 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
467 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
468 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
469
470 if (HVS_READ(SCALER_DISPCTRLX(chan)) &
471 SCALER_DISPCTRLX_ENABLE) {
472 HVS_WRITE(SCALER_DISPCTRLX(chan),
473 SCALER_DISPCTRLX_RESET);
474
475 /* While the docs say that reset is self-clearing, it
476 * seems it doesn't actually.
477 */
478 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
479 }
480
481 /* Once we leave, the scaler should be disabled and its fifo empty. */
482
483 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
484
485 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
486 SCALER_DISPSTATX_MODE) !=
487 SCALER_DISPSTATX_MODE_DISABLED);
488
489 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
490 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
491 SCALER_DISPSTATX_EMPTY);
492
493 /*
494 * Make sure we issue a vblank event after disabling the CRTC if
495 * someone was waiting it.
496 */
497 if (crtc->state->event) {
498 unsigned long flags;
499
500 spin_lock_irqsave(&dev->event_lock, flags);
501 drm_crtc_send_vblank_event(crtc, crtc->state->event);
502 crtc->state->event = NULL;
503 spin_unlock_irqrestore(&dev->event_lock, flags);
504 }
505}
506
507void vc4_crtc_txp_armed(struct drm_crtc_state *state)
508{
509 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
510
511 vc4_state->txp_armed = true;
512}
513
514static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
515{
516 struct drm_device *dev = crtc->dev;
517 struct vc4_dev *vc4 = to_vc4_dev(dev);
518 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
519 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
520
521 if (crtc->state->event) {
522 unsigned long flags;
523
524 crtc->state->event->pipe = drm_crtc_index(crtc);
525
526 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
527
528 spin_lock_irqsave(&dev->event_lock, flags);
529
530 if (!vc4_state->feed_txp || vc4_state->txp_armed) {
531 vc4_crtc->event = crtc->state->event;
532 crtc->state->event = NULL;
533 }
534
535 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
536 vc4_state->mm.start);
537
538 spin_unlock_irqrestore(&dev->event_lock, flags);
539 } else {
540 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
541 vc4_state->mm.start);
542 }
543}
544
545static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
546 struct drm_crtc_state *old_state)
547{
548 struct drm_device *dev = crtc->dev;
549 struct vc4_dev *vc4 = to_vc4_dev(dev);
550 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
551 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
552 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
553
554 require_hvs_enabled(dev);
555
556 /* Enable vblank irq handling before crtc is started otherwise
557 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
558 */
559 drm_crtc_vblank_on(crtc);
560 vc4_crtc_update_dlist(crtc);
561
562 /* Turn on the scaler, which will wait for vstart to start
563 * compositing.
564 * When feeding the transposer, we should operate in oneshot
565 * mode.
566 */
567 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
568 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
569 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
570 SCALER_DISPCTRLX_ENABLE |
571 (vc4_state->feed_txp ? SCALER_DISPCTRLX_ONESHOT : 0));
572
573 /* When feeding the transposer block the pixelvalve is unneeded and
574 * should not be enabled.
575 */
576 if (!vc4_state->feed_txp)
577 CRTC_WRITE(PV_V_CONTROL,
578 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
579}
580
581static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
582 const struct drm_display_mode *mode)
583{
584 /* Do not allow doublescan modes from user space */
585 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
586 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
587 crtc->base.id);
588 return MODE_NO_DBLESCAN;
589 }
590
591 return MODE_OK;
592}
593
594void vc4_crtc_get_margins(struct drm_crtc_state *state,
595 unsigned int *left, unsigned int *right,
596 unsigned int *top, unsigned int *bottom)
597{
598 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
599 struct drm_connector_state *conn_state;
600 struct drm_connector *conn;
601 int i;
602
603 *left = vc4_state->margins.left;
604 *right = vc4_state->margins.right;
605 *top = vc4_state->margins.top;
606 *bottom = vc4_state->margins.bottom;
607
608 /* We have to interate over all new connector states because
609 * vc4_crtc_get_margins() might be called before
610 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
611 * might be outdated.
612 */
613 for_each_new_connector_in_state(state->state, conn, conn_state, i) {
614 if (conn_state->crtc != state->crtc)
615 continue;
616
617 *left = conn_state->tv.margins.left;
618 *right = conn_state->tv.margins.right;
619 *top = conn_state->tv.margins.top;
620 *bottom = conn_state->tv.margins.bottom;
621 break;
622 }
623}
624
625static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
626 struct drm_crtc_state *state)
627{
628 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
629 struct drm_device *dev = crtc->dev;
630 struct vc4_dev *vc4 = to_vc4_dev(dev);
631 struct drm_plane *plane;
632 unsigned long flags;
633 const struct drm_plane_state *plane_state;
634 struct drm_connector *conn;
635 struct drm_connector_state *conn_state;
636 u32 dlist_count = 0;
637 int ret, i;
638
639 /* The pixelvalve can only feed one encoder (and encoders are
640 * 1:1 with connectors.)
641 */
642 if (hweight32(state->connector_mask) > 1)
643 return -EINVAL;
644
645 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
646 dlist_count += vc4_plane_dlist_size(plane_state);
647
648 dlist_count++; /* Account for SCALER_CTL0_END. */
649
650 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
651 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
652 dlist_count);
653 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
654 if (ret)
655 return ret;
656
657 for_each_new_connector_in_state(state->state, conn, conn_state, i) {
658 if (conn_state->crtc != crtc)
659 continue;
660
661 /* The writeback connector is implemented using the transposer
662 * block which is directly taking its data from the HVS FIFO.
663 */
664 if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) {
665 state->no_vblank = true;
666 vc4_state->feed_txp = true;
667 } else {
668 state->no_vblank = false;
669 vc4_state->feed_txp = false;
670 }
671
672 vc4_state->margins.left = conn_state->tv.margins.left;
673 vc4_state->margins.right = conn_state->tv.margins.right;
674 vc4_state->margins.top = conn_state->tv.margins.top;
675 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
676 break;
677 }
678
679 return 0;
680}
681
682static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
683 struct drm_crtc_state *old_state)
684{
685 struct drm_device *dev = crtc->dev;
686 struct vc4_dev *vc4 = to_vc4_dev(dev);
687 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
688 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
689 struct drm_plane *plane;
690 struct vc4_plane_state *vc4_plane_state;
691 bool debug_dump_regs = false;
692 bool enable_bg_fill = false;
693 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
694 u32 __iomem *dlist_next = dlist_start;
695
696 if (debug_dump_regs) {
697 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
698 vc4_hvs_dump_state(dev);
699 }
700
701 /* Copy all the active planes' dlist contents to the hardware dlist. */
702 drm_atomic_crtc_for_each_plane(plane, crtc) {
703 /* Is this the first active plane? */
704 if (dlist_next == dlist_start) {
705 /* We need to enable background fill when a plane
706 * could be alpha blending from the background, i.e.
707 * where no other plane is underneath. It suffices to
708 * consider the first active plane here since we set
709 * needs_bg_fill such that either the first plane
710 * already needs it or all planes on top blend from
711 * the first or a lower plane.
712 */
713 vc4_plane_state = to_vc4_plane_state(plane->state);
714 enable_bg_fill = vc4_plane_state->needs_bg_fill;
715 }
716
717 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
718 }
719
720 writel(SCALER_CTL0_END, dlist_next);
721 dlist_next++;
722
723 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
724
725 if (enable_bg_fill)
726 /* This sets a black background color fill, as is the case
727 * with other DRM drivers.
728 */
729 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
730 HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
731 SCALER_DISPBKGND_FILL);
732
733 /* Only update DISPLIST if the CRTC was already running and is not
734 * being disabled.
735 * vc4_crtc_enable() takes care of updating the dlist just after
736 * re-enabling VBLANK interrupts and before enabling the engine.
737 * If the CRTC is being disabled, there's no point in updating this
738 * information.
739 */
740 if (crtc->state->active && old_state->active)
741 vc4_crtc_update_dlist(crtc);
742
743 if (crtc->state->color_mgmt_changed) {
744 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));
745
746 if (crtc->state->gamma_lut) {
747 vc4_crtc_update_gamma_lut(crtc);
748 dispbkgndx |= SCALER_DISPBKGND_GAMMA;
749 } else {
750 /* Unsetting DISPBKGND_GAMMA skips the gamma lut step
751 * in hardware, which is the same as a linear lut that
752 * DRM expects us to use in absence of a user lut.
753 */
754 dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
755 }
756 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
757 }
758
759 if (debug_dump_regs) {
760 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
761 vc4_hvs_dump_state(dev);
762 }
763}
764
765static int vc4_enable_vblank(struct drm_crtc *crtc)
766{
767 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
768
769 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
770
771 return 0;
772}
773
774static void vc4_disable_vblank(struct drm_crtc *crtc)
775{
776 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
777
778 CRTC_WRITE(PV_INTEN, 0);
779}
780
781static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
782{
783 struct drm_crtc *crtc = &vc4_crtc->base;
784 struct drm_device *dev = crtc->dev;
785 struct vc4_dev *vc4 = to_vc4_dev(dev);
786 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
787 u32 chan = vc4_crtc->channel;
788 unsigned long flags;
789
790 spin_lock_irqsave(&dev->event_lock, flags);
791 if (vc4_crtc->event &&
792 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
793 vc4_state->feed_txp)) {
794 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
795 vc4_crtc->event = NULL;
796 drm_crtc_vblank_put(crtc);
797
798 /* Wait for the page flip to unmask the underrun to ensure that
799 * the display list was updated by the hardware. Before that
800 * happens, the HVS will be using the previous display list with
801 * the CRTC and encoder already reconfigured, leading to
802 * underruns. This can be seen when reconfiguring the CRTC.
803 */
804 vc4_hvs_unmask_underrun(dev, vc4_crtc->channel);
805 }
806 spin_unlock_irqrestore(&dev->event_lock, flags);
807}
808
809void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
810{
811 crtc->t_vblank = ktime_get();
812 drm_crtc_handle_vblank(&crtc->base);
813 vc4_crtc_handle_page_flip(crtc);
814}
815
816static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
817{
818 struct vc4_crtc *vc4_crtc = data;
819 u32 stat = CRTC_READ(PV_INTSTAT);
820 irqreturn_t ret = IRQ_NONE;
821
822 if (stat & PV_INT_VFP_START) {
823 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
824 vc4_crtc_handle_vblank(vc4_crtc);
825 ret = IRQ_HANDLED;
826 }
827
828 return ret;
829}
830
831struct vc4_async_flip_state {
832 struct drm_crtc *crtc;
833 struct drm_framebuffer *fb;
834 struct drm_framebuffer *old_fb;
835 struct drm_pending_vblank_event *event;
836
837 struct vc4_seqno_cb cb;
838};
839
840/* Called when the V3D execution for the BO being flipped to is done, so that
841 * we can actually update the plane's address to point to it.
842 */
843static void
844vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
845{
846 struct vc4_async_flip_state *flip_state =
847 container_of(cb, struct vc4_async_flip_state, cb);
848 struct drm_crtc *crtc = flip_state->crtc;
849 struct drm_device *dev = crtc->dev;
850 struct vc4_dev *vc4 = to_vc4_dev(dev);
851 struct drm_plane *plane = crtc->primary;
852
853 vc4_plane_async_set_fb(plane, flip_state->fb);
854 if (flip_state->event) {
855 unsigned long flags;
856
857 spin_lock_irqsave(&dev->event_lock, flags);
858 drm_crtc_send_vblank_event(crtc, flip_state->event);
859 spin_unlock_irqrestore(&dev->event_lock, flags);
860 }
861
862 drm_crtc_vblank_put(crtc);
863 drm_framebuffer_put(flip_state->fb);
864
865 /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
866 * when the planes are updated through the async update path.
867 * FIXME: we should move to generic async-page-flip when it's
868 * available, so that we can get rid of this hand-made cleanup_fb()
869 * logic.
870 */
871 if (flip_state->old_fb) {
872 struct drm_gem_cma_object *cma_bo;
873 struct vc4_bo *bo;
874
875 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
876 bo = to_vc4_bo(&cma_bo->base);
877 vc4_bo_dec_usecnt(bo);
878 drm_framebuffer_put(flip_state->old_fb);
879 }
880
881 kfree(flip_state);
882
883 up(&vc4->async_modeset);
884}
885
886/* Implements async (non-vblank-synced) page flips.
887 *
888 * The page flip ioctl needs to return immediately, so we grab the
889 * modeset semaphore on the pipe, and queue the address update for
890 * when V3D is done with the BO being flipped to.
891 */
892static int vc4_async_page_flip(struct drm_crtc *crtc,
893 struct drm_framebuffer *fb,
894 struct drm_pending_vblank_event *event,
895 uint32_t flags)
896{
897 struct drm_device *dev = crtc->dev;
898 struct vc4_dev *vc4 = to_vc4_dev(dev);
899 struct drm_plane *plane = crtc->primary;
900 int ret = 0;
901 struct vc4_async_flip_state *flip_state;
902 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
903 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
904
905 /* Increment the BO usecnt here, so that we never end up with an
906 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
907 * plane is later updated through the non-async path.
908 * FIXME: we should move to generic async-page-flip when it's
909 * available, so that we can get rid of this hand-made prepare_fb()
910 * logic.
911 */
912 ret = vc4_bo_inc_usecnt(bo);
913 if (ret)
914 return ret;
915
916 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
917 if (!flip_state) {
918 vc4_bo_dec_usecnt(bo);
919 return -ENOMEM;
920 }
921
922 drm_framebuffer_get(fb);
923 flip_state->fb = fb;
924 flip_state->crtc = crtc;
925 flip_state->event = event;
926
927 /* Make sure all other async modesetes have landed. */
928 ret = down_interruptible(&vc4->async_modeset);
929 if (ret) {
930 drm_framebuffer_put(fb);
931 vc4_bo_dec_usecnt(bo);
932 kfree(flip_state);
933 return ret;
934 }
935
936 /* Save the current FB before it's replaced by the new one in
937 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
938 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
939 * it consistent.
940 * FIXME: we should move to generic async-page-flip when it's
941 * available, so that we can get rid of this hand-made cleanup_fb()
942 * logic.
943 */
944 flip_state->old_fb = plane->state->fb;
945 if (flip_state->old_fb)
946 drm_framebuffer_get(flip_state->old_fb);
947
948 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
949
950 /* Immediately update the plane's legacy fb pointer, so that later
951 * modeset prep sees the state that will be present when the semaphore
952 * is released.
953 */
954 drm_atomic_set_fb_for_plane(plane->state, fb);
955
956 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
957 vc4_async_page_flip_complete);
958
959 /* Driver takes ownership of state on successful async commit. */
960 return 0;
961}
962
963static int vc4_page_flip(struct drm_crtc *crtc,
964 struct drm_framebuffer *fb,
965 struct drm_pending_vblank_event *event,
966 uint32_t flags,
967 struct drm_modeset_acquire_ctx *ctx)
968{
969 if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
970 return vc4_async_page_flip(crtc, fb, event, flags);
971 else
972 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
973}
974
975static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
976{
977 struct vc4_crtc_state *vc4_state, *old_vc4_state;
978
979 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
980 if (!vc4_state)
981 return NULL;
982
983 old_vc4_state = to_vc4_crtc_state(crtc->state);
984 vc4_state->feed_txp = old_vc4_state->feed_txp;
985 vc4_state->margins = old_vc4_state->margins;
986
987 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
988 return &vc4_state->base;
989}
990
991static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
992 struct drm_crtc_state *state)
993{
994 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
995 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
996
997 if (vc4_state->mm.allocated) {
998 unsigned long flags;
999
1000 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1001 drm_mm_remove_node(&vc4_state->mm);
1002 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1003
1004 }
1005
1006 drm_atomic_helper_crtc_destroy_state(crtc, state);
1007}
1008
1009static void
1010vc4_crtc_reset(struct drm_crtc *crtc)
1011{
1012 if (crtc->state)
1013 vc4_crtc_destroy_state(crtc, crtc->state);
1014
1015 crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
1016 if (crtc->state)
1017 crtc->state->crtc = crtc;
1018}
1019
1020static const struct drm_crtc_funcs vc4_crtc_funcs = {
1021 .set_config = drm_atomic_helper_set_config,
1022 .destroy = vc4_crtc_destroy,
1023 .page_flip = vc4_page_flip,
1024 .set_property = NULL,
1025 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1026 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1027 .reset = vc4_crtc_reset,
1028 .atomic_duplicate_state = vc4_crtc_duplicate_state,
1029 .atomic_destroy_state = vc4_crtc_destroy_state,
1030 .gamma_set = drm_atomic_helper_legacy_gamma_set,
1031 .enable_vblank = vc4_enable_vblank,
1032 .disable_vblank = vc4_disable_vblank,
1033};
1034
1035static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1036 .mode_set_nofb = vc4_crtc_mode_set_nofb,
1037 .mode_valid = vc4_crtc_mode_valid,
1038 .atomic_check = vc4_crtc_atomic_check,
1039 .atomic_flush = vc4_crtc_atomic_flush,
1040 .atomic_enable = vc4_crtc_atomic_enable,
1041 .atomic_disable = vc4_crtc_atomic_disable,
1042};
1043
1044static const struct vc4_crtc_data pv0_data = {
1045 .hvs_channel = 0,
1046 .debugfs_name = "crtc0_regs",
1047 .encoder_types = {
1048 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1049 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1050 },
1051};
1052
1053static const struct vc4_crtc_data pv1_data = {
1054 .hvs_channel = 2,
1055 .debugfs_name = "crtc1_regs",
1056 .encoder_types = {
1057 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1058 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1059 },
1060};
1061
1062static const struct vc4_crtc_data pv2_data = {
1063 .hvs_channel = 1,
1064 .debugfs_name = "crtc2_regs",
1065 .encoder_types = {
1066 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
1067 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1068 },
1069};
1070
1071static const struct of_device_id vc4_crtc_dt_match[] = {
1072 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
1073 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
1074 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
1075 {}
1076};
1077
1078static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1079 struct drm_crtc *crtc)
1080{
1081 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1082 const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
1083 const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
1084 struct drm_encoder *encoder;
1085
1086 drm_for_each_encoder(encoder, drm) {
1087 struct vc4_encoder *vc4_encoder;
1088 int i;
1089
1090 /* HVS FIFO2 can feed the TXP IP. */
1091 if (crtc_data->hvs_channel == 2 &&
1092 encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1093 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1094 continue;
1095 }
1096
1097 vc4_encoder = to_vc4_encoder(encoder);
1098 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
1099 if (vc4_encoder->type == encoder_types[i]) {
1100 vc4_encoder->clock_select = i;
1101 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1102 break;
1103 }
1104 }
1105 }
1106}
1107
1108static void
1109vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
1110{
1111 struct drm_device *drm = vc4_crtc->base.dev;
1112 struct vc4_dev *vc4 = to_vc4_dev(drm);
1113 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
1114 /* Top/base are supposed to be 4-pixel aligned, but the
1115 * Raspberry Pi firmware fills the low bits (which are
1116 * presumably ignored).
1117 */
1118 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
1119 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
1120
1121 vc4_crtc->cob_size = top - base + 4;
1122}
1123
1124static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1125{
1126 struct platform_device *pdev = to_platform_device(dev);
1127 struct drm_device *drm = dev_get_drvdata(master);
1128 struct vc4_crtc *vc4_crtc;
1129 struct drm_crtc *crtc;
1130 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
1131 const struct of_device_id *match;
1132 int ret, i;
1133
1134 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1135 if (!vc4_crtc)
1136 return -ENOMEM;
1137 crtc = &vc4_crtc->base;
1138
1139 match = of_match_device(vc4_crtc_dt_match, dev);
1140 if (!match)
1141 return -ENODEV;
1142 vc4_crtc->data = match->data;
1143 vc4_crtc->pdev = pdev;
1144
1145 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1146 if (IS_ERR(vc4_crtc->regs))
1147 return PTR_ERR(vc4_crtc->regs);
1148
1149 vc4_crtc->regset.base = vc4_crtc->regs;
1150 vc4_crtc->regset.regs = crtc_regs;
1151 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1152
1153 /* For now, we create just the primary and the legacy cursor
1154 * planes. We should be able to stack more planes on easily,
1155 * but to do that we would need to compute the bandwidth
1156 * requirement of the plane configuration, and reject ones
1157 * that will take too much.
1158 */
1159 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1160 if (IS_ERR(primary_plane)) {
1161 dev_err(dev, "failed to construct primary plane\n");
1162 ret = PTR_ERR(primary_plane);
1163 goto err;
1164 }
1165
1166 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1167 &vc4_crtc_funcs, NULL);
1168 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1169 vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1170 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1171 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1172
1173 /* We support CTM, but only for one CRTC at a time. It's therefore
1174 * implemented as private driver state in vc4_kms, not here.
1175 */
1176 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1177
1178 /* Set up some arbitrary number of planes. We're not limited
1179 * by a set number of physical registers, just the space in
1180 * the HVS (16k) and how small an plane can be (28 bytes).
1181 * However, each plane we set up takes up some memory, and
1182 * increases the cost of looping over planes, which atomic
1183 * modesetting does quite a bit. As a result, we pick a
1184 * modest number of planes to expose, that should hopefully
1185 * still cover any sane usecase.
1186 */
1187 for (i = 0; i < 8; i++) {
1188 struct drm_plane *plane =
1189 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1190
1191 if (IS_ERR(plane))
1192 continue;
1193
1194 plane->possible_crtcs = drm_crtc_mask(crtc);
1195 }
1196
1197 /* Set up the legacy cursor after overlay initialization,
1198 * since we overlay planes on the CRTC in the order they were
1199 * initialized.
1200 */
1201 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1202 if (!IS_ERR(cursor_plane)) {
1203 cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
1204 crtc->cursor = cursor_plane;
1205 }
1206
1207 vc4_crtc_get_cob_allocation(vc4_crtc);
1208
1209 CRTC_WRITE(PV_INTEN, 0);
1210 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1211 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1212 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1213 if (ret)
1214 goto err_destroy_planes;
1215
1216 vc4_set_crtc_possible_masks(drm, crtc);
1217
1218 for (i = 0; i < crtc->gamma_size; i++) {
1219 vc4_crtc->lut_r[i] = i;
1220 vc4_crtc->lut_g[i] = i;
1221 vc4_crtc->lut_b[i] = i;
1222 }
1223
1224 platform_set_drvdata(pdev, vc4_crtc);
1225
1226 vc4_debugfs_add_regset32(drm, vc4_crtc->data->debugfs_name,
1227 &vc4_crtc->regset);
1228
1229 return 0;
1230
1231err_destroy_planes:
1232 list_for_each_entry_safe(destroy_plane, temp,
1233 &drm->mode_config.plane_list, head) {
1234 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1235 destroy_plane->funcs->destroy(destroy_plane);
1236 }
1237err:
1238 return ret;
1239}
1240
1241static void vc4_crtc_unbind(struct device *dev, struct device *master,
1242 void *data)
1243{
1244 struct platform_device *pdev = to_platform_device(dev);
1245 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1246
1247 vc4_crtc_destroy(&vc4_crtc->base);
1248
1249 CRTC_WRITE(PV_INTEN, 0);
1250
1251 platform_set_drvdata(pdev, NULL);
1252}
1253
1254static const struct component_ops vc4_crtc_ops = {
1255 .bind = vc4_crtc_bind,
1256 .unbind = vc4_crtc_unbind,
1257};
1258
1259static int vc4_crtc_dev_probe(struct platform_device *pdev)
1260{
1261 return component_add(&pdev->dev, &vc4_crtc_ops);
1262}
1263
1264static int vc4_crtc_dev_remove(struct platform_device *pdev)
1265{
1266 component_del(&pdev->dev, &vc4_crtc_ops);
1267 return 0;
1268}
1269
1270struct platform_driver vc4_crtc_driver = {
1271 .probe = vc4_crtc_dev_probe,
1272 .remove = vc4_crtc_dev_remove,
1273 .driver = {
1274 .name = "vc4_crtc",
1275 .of_match_table = vc4_crtc_dt_match,
1276 },
1277};
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2015 Broadcom
4 */
5
6/**
7 * DOC: VC4 CRTC module
8 *
9 * In VC4, the Pixel Valve is what most closely corresponds to the
10 * DRM's concept of a CRTC. The PV generates video timings from the
11 * encoder's clock plus its configuration. It pulls scaled pixels from
12 * the HVS at that timing, and feeds it to the encoder.
13 *
14 * However, the DRM CRTC also collects the configuration of all the
15 * DRM planes attached to it. As a result, the CRTC is also
16 * responsible for writing the display list for the HVS channel that
17 * the CRTC will use.
18 *
19 * The 2835 has 3 different pixel valves. pv0 in the audio power
20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
21 * image domain can feed either HDMI or the SDTV controller. The
22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23 * SDTV, etc.) according to which output type is chosen in the mux.
24 *
25 * For power management, the pixel valve's registers are all clocked
26 * by the AXI clock, while the timings and FIFOs make use of the
27 * output-specific clock. Since the encoders also directly consume
28 * the CPRMAN clocks, and know what timings they need, they are the
29 * ones that set the clock.
30 */
31
32#include <linux/clk.h>
33#include <linux/component.h>
34#include <linux/of.h>
35#include <linux/platform_device.h>
36#include <linux/pm_runtime.h>
37
38#include <drm/drm_atomic.h>
39#include <drm/drm_atomic_helper.h>
40#include <drm/drm_atomic_uapi.h>
41#include <drm/drm_fb_dma_helper.h>
42#include <drm/drm_framebuffer.h>
43#include <drm/drm_drv.h>
44#include <drm/drm_print.h>
45#include <drm/drm_probe_helper.h>
46#include <drm/drm_vblank.h>
47
48#include "vc4_drv.h"
49#include "vc4_hdmi.h"
50#include "vc4_regs.h"
51
52#define HVS_FIFO_LATENCY_PIX 6
53
54#define CRTC_WRITE(offset, val) \
55 do { \
56 kunit_fail_current_test("Accessing a register in a unit test!\n"); \
57 writel(val, vc4_crtc->regs + (offset)); \
58 } while (0)
59
60#define CRTC_READ(offset) \
61 ({ \
62 kunit_fail_current_test("Accessing a register in a unit test!\n"); \
63 readl(vc4_crtc->regs + (offset)); \
64 })
65
66static const struct debugfs_reg32 crtc_regs[] = {
67 VC4_REG32(PV_CONTROL),
68 VC4_REG32(PV_V_CONTROL),
69 VC4_REG32(PV_VSYNCD_EVEN),
70 VC4_REG32(PV_HORZA),
71 VC4_REG32(PV_HORZB),
72 VC4_REG32(PV_VERTA),
73 VC4_REG32(PV_VERTB),
74 VC4_REG32(PV_VERTA_EVEN),
75 VC4_REG32(PV_VERTB_EVEN),
76 VC4_REG32(PV_INTEN),
77 VC4_REG32(PV_INTSTAT),
78 VC4_REG32(PV_STAT),
79 VC4_REG32(PV_HACT_ACT),
80};
81
82static unsigned int
83vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
84{
85 struct vc4_hvs *hvs = vc4->hvs;
86 u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
87 /* Top/base are supposed to be 4-pixel aligned, but the
88 * Raspberry Pi firmware fills the low bits (which are
89 * presumably ignored).
90 */
91 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
92 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
93
94 return top - base + 4;
95}
96
97static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
98 bool in_vblank_irq,
99 int *vpos, int *hpos,
100 ktime_t *stime, ktime_t *etime,
101 const struct drm_display_mode *mode)
102{
103 struct drm_device *dev = crtc->dev;
104 struct vc4_dev *vc4 = to_vc4_dev(dev);
105 struct vc4_hvs *hvs = vc4->hvs;
106 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
107 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
108 unsigned int channel = vc4_crtc_state->assigned_channel;
109 unsigned int cob_size;
110 u32 val;
111 int fifo_lines;
112 int vblank_lines;
113 bool ret = false;
114
115 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
116
117 /* Get optional system timestamp before query. */
118 if (stime)
119 *stime = ktime_get();
120
121 /*
122 * Read vertical scanline which is currently composed for our
123 * pixelvalve by the HVS, and also the scaler status.
124 */
125 val = HVS_READ(SCALER_DISPSTATX(channel));
126
127 /* Get optional system timestamp after query. */
128 if (etime)
129 *etime = ktime_get();
130
131 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
132
133 /* Vertical position of hvs composed scanline. */
134 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
135 *hpos = 0;
136
137 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
138 *vpos /= 2;
139
140 /* Use hpos to correct for field offset in interlaced mode. */
141 if (vc4_hvs_get_fifo_frame_count(hvs, channel) % 2)
142 *hpos += mode->crtc_htotal / 2;
143 }
144
145 cob_size = vc4_crtc_get_cob_allocation(vc4, channel);
146 /* This is the offset we need for translating hvs -> pv scanout pos. */
147 fifo_lines = cob_size / mode->crtc_hdisplay;
148
149 if (fifo_lines > 0)
150 ret = true;
151
152 /* HVS more than fifo_lines into frame for compositing? */
153 if (*vpos > fifo_lines) {
154 /*
155 * We are in active scanout and can get some meaningful results
156 * from HVS. The actual PV scanout can not trail behind more
157 * than fifo_lines as that is the fifo's capacity. Assume that
158 * in active scanout the HVS and PV work in lockstep wrt. HVS
159 * refilling the fifo and PV consuming from the fifo, ie.
160 * whenever the PV consumes and frees up a scanline in the
161 * fifo, the HVS will immediately refill it, therefore
162 * incrementing vpos. Therefore we choose HVS read position -
163 * fifo size in scanlines as a estimate of the real scanout
164 * position of the PV.
165 */
166 *vpos -= fifo_lines + 1;
167
168 return ret;
169 }
170
171 /*
172 * Less: This happens when we are in vblank and the HVS, after getting
173 * the VSTART restart signal from the PV, just started refilling its
174 * fifo with new lines from the top-most lines of the new framebuffers.
175 * The PV does not scan out in vblank, so does not remove lines from
176 * the fifo, so the fifo will be full quickly and the HVS has to pause.
177 * We can't get meaningful readings wrt. scanline position of the PV
178 * and need to make things up in a approximative but consistent way.
179 */
180 vblank_lines = mode->vtotal - mode->vdisplay;
181
182 if (in_vblank_irq) {
183 /*
184 * Assume the irq handler got called close to first
185 * line of vblank, so PV has about a full vblank
186 * scanlines to go, and as a base timestamp use the
187 * one taken at entry into vblank irq handler, so it
188 * is not affected by random delays due to lock
189 * contention on event_lock or vblank_time lock in
190 * the core.
191 */
192 *vpos = -vblank_lines;
193
194 if (stime)
195 *stime = vc4_crtc->t_vblank;
196 if (etime)
197 *etime = vc4_crtc->t_vblank;
198
199 /*
200 * If the HVS fifo is not yet full then we know for certain
201 * we are at the very beginning of vblank, as the hvs just
202 * started refilling, and the stime and etime timestamps
203 * truly correspond to start of vblank.
204 *
205 * Unfortunately there's no way to report this to upper levels
206 * and make it more useful.
207 */
208 } else {
209 /*
210 * No clue where we are inside vblank. Return a vpos of zero,
211 * which will cause calling code to just return the etime
212 * timestamp uncorrected. At least this is no worse than the
213 * standard fallback.
214 */
215 *vpos = 0;
216 }
217
218 return ret;
219}
220
221static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
222{
223 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
224 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
225 struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
226 u32 fifo_len_bytes = pv_data->fifo_depth;
227
228 /*
229 * Pixels are pulled from the HVS if the number of bytes is
230 * lower than the FIFO full level.
231 *
232 * The latency of the pixel fetch mechanism is 6 pixels, so we
233 * need to convert those 6 pixels in bytes, depending on the
234 * format, and then subtract that from the length of the FIFO
235 * to make sure we never end up in a situation where the FIFO
236 * is full.
237 */
238 switch (format) {
239 case PV_CONTROL_FORMAT_DSIV_16:
240 case PV_CONTROL_FORMAT_DSIC_16:
241 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
242 case PV_CONTROL_FORMAT_DSIV_18:
243 return fifo_len_bytes - 14;
244 case PV_CONTROL_FORMAT_24:
245 case PV_CONTROL_FORMAT_DSIV_24:
246 default:
247 /*
248 * For some reason, the pixelvalve4 doesn't work with
249 * the usual formula and will only work with 32.
250 */
251 if (crtc_data->hvs_output == 5)
252 return 32;
253
254 /*
255 * It looks like in some situations, we will overflow
256 * the PixelValve FIFO (with the bit 10 of PV stat being
257 * set) and stall the HVS / PV, eventually resulting in
258 * a page flip timeout.
259 *
260 * Displaying the video overlay during a playback with
261 * Kodi on an RPi3 seems to be a great solution with a
262 * failure rate around 50%.
263 *
264 * Removing 1 from the FIFO full level however
265 * seems to completely remove that issue.
266 */
267 if (vc4->gen == VC4_GEN_4)
268 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
269
270 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
271 }
272}
273
274static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
275 u32 format)
276{
277 u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
278 u32 ret = 0;
279
280 ret |= VC4_SET_FIELD((level >> 6),
281 PV5_CONTROL_FIFO_LEVEL_HIGH);
282
283 return ret | VC4_SET_FIELD(level & 0x3f,
284 PV_CONTROL_FIFO_LEVEL);
285}
286
287/*
288 * Returns the encoder attached to the CRTC.
289 *
290 * VC4 can only scan out to one encoder at a time, while the DRM core
291 * allows drivers to push pixels to more than one encoder from the
292 * same CRTC.
293 */
294struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
295 struct drm_crtc_state *state)
296{
297 struct drm_encoder *encoder;
298
299 WARN_ON(hweight32(state->encoder_mask) > 1);
300
301 drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
302 return encoder;
303
304 return NULL;
305}
306
307static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
308{
309 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
310 struct drm_device *dev = crtc->dev;
311 int idx;
312
313 if (!drm_dev_enter(dev, &idx))
314 return;
315
316 /* The PV needs to be disabled before it can be flushed */
317 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
318 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
319
320 drm_dev_exit(idx);
321}
322
323static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
324 struct drm_atomic_state *state)
325{
326 struct drm_device *dev = crtc->dev;
327 struct vc4_dev *vc4 = to_vc4_dev(dev);
328 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
329 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
330 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
331 struct drm_crtc_state *crtc_state = crtc->state;
332 struct drm_display_mode *mode = &crtc_state->adjusted_mode;
333 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
334 bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 ||
335 vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1;
336 u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1;
337 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
338 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
339 bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1;
340 bool is_vec = vc4_encoder->type == VC4_ENCODER_TYPE_VEC;
341 u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
342 u8 ppc = pv_data->pixels_per_clock;
343
344 u16 vert_bp = mode->crtc_vtotal - mode->crtc_vsync_end;
345 u16 vert_sync = mode->crtc_vsync_end - mode->crtc_vsync_start;
346 u16 vert_fp = mode->crtc_vsync_start - mode->crtc_vdisplay;
347
348 bool debug_dump_regs = false;
349 int idx;
350
351 if (!drm_dev_enter(dev, &idx))
352 return;
353
354 if (debug_dump_regs) {
355 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
356 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
357 drm_crtc_index(crtc));
358 drm_print_regset32(&p, &vc4_crtc->regset);
359 }
360
361 vc4_crtc_pixelvalve_reset(crtc);
362
363 CRTC_WRITE(PV_HORZA,
364 VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
365 PV_HORZA_HBP) |
366 VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
367 PV_HORZA_HSYNC));
368
369 CRTC_WRITE(PV_HORZB,
370 VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
371 PV_HORZB_HFP) |
372 VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
373 PV_HORZB_HACTIVE));
374
375 if (interlace) {
376 bool odd_field_first = false;
377 u32 field_delay = mode->htotal * pixel_rep / (2 * ppc);
378 u16 vert_bp_even = vert_bp;
379 u16 vert_fp_even = vert_fp;
380
381 if (is_vec) {
382 /* VEC (composite output) */
383 ++field_delay;
384 if (mode->htotal == 858) {
385 /* 525-line mode (NTSC or PAL-M) */
386 odd_field_first = true;
387 }
388 }
389
390 if (odd_field_first)
391 ++vert_fp_even;
392 else
393 ++vert_bp;
394
395 CRTC_WRITE(PV_VERTA_EVEN,
396 VC4_SET_FIELD(vert_bp_even, PV_VERTA_VBP) |
397 VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC));
398 CRTC_WRITE(PV_VERTB_EVEN,
399 VC4_SET_FIELD(vert_fp_even, PV_VERTB_VFP) |
400 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
401
402 /* We set up first field even mode for HDMI and VEC's PAL.
403 * For NTSC, we need first field odd.
404 */
405 CRTC_WRITE(PV_V_CONTROL,
406 PV_VCONTROL_CONTINUOUS |
407 (is_dsi ? PV_VCONTROL_DSI : 0) |
408 PV_VCONTROL_INTERLACE |
409 (odd_field_first
410 ? PV_VCONTROL_ODD_FIRST
411 : VC4_SET_FIELD(field_delay,
412 PV_VCONTROL_ODD_DELAY)));
413 CRTC_WRITE(PV_VSYNCD_EVEN,
414 (odd_field_first ? field_delay : 0));
415 } else {
416 CRTC_WRITE(PV_V_CONTROL,
417 PV_VCONTROL_CONTINUOUS |
418 (is_dsi ? PV_VCONTROL_DSI : 0));
419 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
420 }
421
422 CRTC_WRITE(PV_VERTA,
423 VC4_SET_FIELD(vert_bp, PV_VERTA_VBP) |
424 VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC));
425 CRTC_WRITE(PV_VERTB,
426 VC4_SET_FIELD(vert_fp, PV_VERTB_VFP) |
427 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
428
429 if (is_dsi)
430 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
431
432 if (vc4->gen == VC4_GEN_5)
433 CRTC_WRITE(PV_MUX_CFG,
434 VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
435 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
436
437 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
438 vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
439 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
440 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
441 PV_CONTROL_CLR_AT_START |
442 PV_CONTROL_TRIGGER_UNDERFLOW |
443 PV_CONTROL_WAIT_HSTART |
444 VC4_SET_FIELD(vc4_encoder->clock_select,
445 PV_CONTROL_CLK_SELECT));
446
447 if (debug_dump_regs) {
448 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
449 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
450 drm_crtc_index(crtc));
451 drm_print_regset32(&p, &vc4_crtc->regset);
452 }
453
454 drm_dev_exit(idx);
455}
456
457static void require_hvs_enabled(struct drm_device *dev)
458{
459 struct vc4_dev *vc4 = to_vc4_dev(dev);
460 struct vc4_hvs *hvs = vc4->hvs;
461
462 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
463 SCALER_DISPCTRL_ENABLE);
464}
465
466static int vc4_crtc_disable(struct drm_crtc *crtc,
467 struct drm_encoder *encoder,
468 struct drm_atomic_state *state,
469 unsigned int channel)
470{
471 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
472 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
473 struct drm_device *dev = crtc->dev;
474 struct vc4_dev *vc4 = to_vc4_dev(dev);
475 int idx, ret;
476
477 if (!drm_dev_enter(dev, &idx))
478 return -ENODEV;
479
480 CRTC_WRITE(PV_V_CONTROL,
481 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
482 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
483 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
484
485 /*
486 * This delay is needed to avoid to get a pixel stuck in an
487 * unflushable FIFO between the pixelvalve and the HDMI
488 * controllers on the BCM2711.
489 *
490 * Timing is fairly sensitive here, so mdelay is the safest
491 * approach.
492 *
493 * If it was to be reworked, the stuck pixel happens on a
494 * BCM2711 when changing mode with a good probability, so a
495 * script that changes mode on a regular basis should trigger
496 * the bug after less than 10 attempts. It manifests itself with
497 * every pixels being shifted by one to the right, and thus the
498 * last pixel of a line actually being displayed as the first
499 * pixel on the next line.
500 */
501 mdelay(20);
502
503 if (vc4_encoder && vc4_encoder->post_crtc_disable)
504 vc4_encoder->post_crtc_disable(encoder, state);
505
506 vc4_crtc_pixelvalve_reset(crtc);
507 vc4_hvs_stop_channel(vc4->hvs, channel);
508
509 if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
510 vc4_encoder->post_crtc_powerdown(encoder, state);
511
512 drm_dev_exit(idx);
513
514 return 0;
515}
516
517int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
518{
519 struct drm_device *drm = crtc->dev;
520 struct vc4_dev *vc4 = to_vc4_dev(drm);
521 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
522 enum vc4_encoder_type encoder_type;
523 const struct vc4_pv_data *pv_data;
524 struct drm_encoder *encoder;
525 struct vc4_hdmi *vc4_hdmi;
526 unsigned encoder_sel;
527 int channel;
528 int ret;
529
530 if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
531 "brcm,bcm2711-pixelvalve2") ||
532 of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
533 "brcm,bcm2711-pixelvalve4")))
534 return 0;
535
536 if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
537 return 0;
538
539 if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
540 return 0;
541
542 channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output);
543 if (channel < 0)
544 return 0;
545
546 encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
547 if (WARN_ON(encoder_sel != 0))
548 return 0;
549
550 pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
551 encoder_type = pv_data->encoder_types[encoder_sel];
552 encoder = vc4_find_encoder_by_type(drm, encoder_type);
553 if (WARN_ON(!encoder))
554 return 0;
555
556 vc4_hdmi = encoder_to_vc4_hdmi(encoder);
557 ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
558 if (ret)
559 return ret;
560
561 ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
562 if (ret)
563 return ret;
564
565 /*
566 * post_crtc_powerdown will have called pm_runtime_put, so we
567 * don't need it here otherwise we'll get the reference counting
568 * wrong.
569 */
570
571 return 0;
572}
573
574void vc4_crtc_send_vblank(struct drm_crtc *crtc)
575{
576 struct drm_device *dev = crtc->dev;
577 unsigned long flags;
578
579 if (!crtc->state || !crtc->state->event)
580 return;
581
582 spin_lock_irqsave(&dev->event_lock, flags);
583 drm_crtc_send_vblank_event(crtc, crtc->state->event);
584 crtc->state->event = NULL;
585 spin_unlock_irqrestore(&dev->event_lock, flags);
586}
587
588static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
589 struct drm_atomic_state *state)
590{
591 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
592 crtc);
593 struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
594 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
595 struct drm_device *dev = crtc->dev;
596
597 drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
598 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
599
600 require_hvs_enabled(dev);
601
602 /* Disable vblank irq handling before crtc is disabled. */
603 drm_crtc_vblank_off(crtc);
604
605 vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
606
607 /*
608 * Make sure we issue a vblank event after disabling the CRTC if
609 * someone was waiting it.
610 */
611 vc4_crtc_send_vblank(crtc);
612}
613
614static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
615 struct drm_atomic_state *state)
616{
617 struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
618 crtc);
619 struct drm_device *dev = crtc->dev;
620 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
621 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
622 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
623 int idx;
624
625 drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
626 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
627
628 if (!drm_dev_enter(dev, &idx))
629 return;
630
631 require_hvs_enabled(dev);
632
633 /* Enable vblank irq handling before crtc is started otherwise
634 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
635 */
636 drm_crtc_vblank_on(crtc);
637
638 vc4_hvs_atomic_enable(crtc, state);
639
640 if (vc4_encoder->pre_crtc_configure)
641 vc4_encoder->pre_crtc_configure(encoder, state);
642
643 vc4_crtc_config_pv(crtc, encoder, state);
644
645 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
646
647 if (vc4_encoder->pre_crtc_enable)
648 vc4_encoder->pre_crtc_enable(encoder, state);
649
650 /* When feeding the transposer block the pixelvalve is unneeded and
651 * should not be enabled.
652 */
653 CRTC_WRITE(PV_V_CONTROL,
654 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
655
656 if (vc4_encoder->post_crtc_enable)
657 vc4_encoder->post_crtc_enable(encoder, state);
658
659 drm_dev_exit(idx);
660}
661
662static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
663 const struct drm_display_mode *mode)
664{
665 /* Do not allow doublescan modes from user space */
666 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
667 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
668 crtc->base.id);
669 return MODE_NO_DBLESCAN;
670 }
671
672 return MODE_OK;
673}
674
675void vc4_crtc_get_margins(struct drm_crtc_state *state,
676 unsigned int *left, unsigned int *right,
677 unsigned int *top, unsigned int *bottom)
678{
679 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
680 struct drm_connector_state *conn_state;
681 struct drm_connector *conn;
682 int i;
683
684 *left = vc4_state->margins.left;
685 *right = vc4_state->margins.right;
686 *top = vc4_state->margins.top;
687 *bottom = vc4_state->margins.bottom;
688
689 /* We have to interate over all new connector states because
690 * vc4_crtc_get_margins() might be called before
691 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
692 * might be outdated.
693 */
694 for_each_new_connector_in_state(state->state, conn, conn_state, i) {
695 if (conn_state->crtc != state->crtc)
696 continue;
697
698 *left = conn_state->tv.margins.left;
699 *right = conn_state->tv.margins.right;
700 *top = conn_state->tv.margins.top;
701 *bottom = conn_state->tv.margins.bottom;
702 break;
703 }
704}
705
706int vc4_crtc_atomic_check(struct drm_crtc *crtc,
707 struct drm_atomic_state *state)
708{
709 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
710 crtc);
711 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
712 struct drm_connector *conn;
713 struct drm_connector_state *conn_state;
714 struct drm_encoder *encoder;
715 int ret, i;
716
717 ret = vc4_hvs_atomic_check(crtc, state);
718 if (ret)
719 return ret;
720
721 encoder = vc4_get_crtc_encoder(crtc, crtc_state);
722 if (encoder) {
723 const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
724 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
725
726 if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
727 vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 8000,
728 mode->clock * 9 / 10) * 1000;
729 } else {
730 vc4_state->hvs_load = mode->clock * 1000;
731 }
732 }
733
734 for_each_new_connector_in_state(state, conn, conn_state,
735 i) {
736 if (conn_state->crtc != crtc)
737 continue;
738
739 if (memcmp(&vc4_state->margins, &conn_state->tv.margins,
740 sizeof(vc4_state->margins))) {
741 memcpy(&vc4_state->margins, &conn_state->tv.margins,
742 sizeof(vc4_state->margins));
743
744 /*
745 * Need to force the dlist entries for all planes to be
746 * updated so that the dest rectangles are changed.
747 */
748 crtc_state->zpos_changed = true;
749 }
750 break;
751 }
752
753 return 0;
754}
755
756static int vc4_enable_vblank(struct drm_crtc *crtc)
757{
758 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
759 struct drm_device *dev = crtc->dev;
760 int idx;
761
762 if (!drm_dev_enter(dev, &idx))
763 return -ENODEV;
764
765 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
766
767 drm_dev_exit(idx);
768
769 return 0;
770}
771
772static void vc4_disable_vblank(struct drm_crtc *crtc)
773{
774 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
775 struct drm_device *dev = crtc->dev;
776 int idx;
777
778 if (!drm_dev_enter(dev, &idx))
779 return;
780
781 CRTC_WRITE(PV_INTEN, 0);
782
783 drm_dev_exit(idx);
784}
785
786static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
787{
788 struct drm_crtc *crtc = &vc4_crtc->base;
789 struct drm_device *dev = crtc->dev;
790 struct vc4_dev *vc4 = to_vc4_dev(dev);
791 struct vc4_hvs *hvs = vc4->hvs;
792 u32 chan = vc4_crtc->current_hvs_channel;
793 unsigned long flags;
794
795 spin_lock_irqsave(&dev->event_lock, flags);
796 spin_lock(&vc4_crtc->irq_lock);
797 if (vc4_crtc->event &&
798 (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
799 vc4_crtc->feeds_txp)) {
800 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
801 vc4_crtc->event = NULL;
802 drm_crtc_vblank_put(crtc);
803
804 /* Wait for the page flip to unmask the underrun to ensure that
805 * the display list was updated by the hardware. Before that
806 * happens, the HVS will be using the previous display list with
807 * the CRTC and encoder already reconfigured, leading to
808 * underruns. This can be seen when reconfiguring the CRTC.
809 */
810 vc4_hvs_unmask_underrun(hvs, chan);
811 }
812 spin_unlock(&vc4_crtc->irq_lock);
813 spin_unlock_irqrestore(&dev->event_lock, flags);
814}
815
816void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
817{
818 crtc->t_vblank = ktime_get();
819 drm_crtc_handle_vblank(&crtc->base);
820 vc4_crtc_handle_page_flip(crtc);
821}
822
823static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
824{
825 struct vc4_crtc *vc4_crtc = data;
826 u32 stat = CRTC_READ(PV_INTSTAT);
827 irqreturn_t ret = IRQ_NONE;
828
829 if (stat & PV_INT_VFP_START) {
830 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
831 vc4_crtc_handle_vblank(vc4_crtc);
832 ret = IRQ_HANDLED;
833 }
834
835 return ret;
836}
837
838struct vc4_async_flip_state {
839 struct drm_crtc *crtc;
840 struct drm_framebuffer *fb;
841 struct drm_framebuffer *old_fb;
842 struct drm_pending_vblank_event *event;
843
844 union {
845 struct dma_fence_cb fence;
846 struct vc4_seqno_cb seqno;
847 } cb;
848};
849
850/* Called when the V3D execution for the BO being flipped to is done, so that
851 * we can actually update the plane's address to point to it.
852 */
853static void
854vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state)
855{
856 struct drm_crtc *crtc = flip_state->crtc;
857 struct drm_device *dev = crtc->dev;
858 struct drm_plane *plane = crtc->primary;
859
860 vc4_plane_async_set_fb(plane, flip_state->fb);
861 if (flip_state->event) {
862 unsigned long flags;
863
864 spin_lock_irqsave(&dev->event_lock, flags);
865 drm_crtc_send_vblank_event(crtc, flip_state->event);
866 spin_unlock_irqrestore(&dev->event_lock, flags);
867 }
868
869 drm_crtc_vblank_put(crtc);
870 drm_framebuffer_put(flip_state->fb);
871
872 if (flip_state->old_fb)
873 drm_framebuffer_put(flip_state->old_fb);
874
875 kfree(flip_state);
876}
877
878static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb)
879{
880 struct vc4_async_flip_state *flip_state =
881 container_of(cb, struct vc4_async_flip_state, cb.seqno);
882 struct vc4_bo *bo = NULL;
883
884 if (flip_state->old_fb) {
885 struct drm_gem_dma_object *dma_bo =
886 drm_fb_dma_get_gem_obj(flip_state->old_fb, 0);
887 bo = to_vc4_bo(&dma_bo->base);
888 }
889
890 vc4_async_page_flip_complete(flip_state);
891
892 /*
893 * Decrement the BO usecnt in order to keep the inc/dec
894 * calls balanced when the planes are updated through
895 * the async update path.
896 *
897 * FIXME: we should move to generic async-page-flip when
898 * it's available, so that we can get rid of this
899 * hand-made cleanup_fb() logic.
900 */
901 if (bo)
902 vc4_bo_dec_usecnt(bo);
903}
904
905static void vc4_async_page_flip_fence_complete(struct dma_fence *fence,
906 struct dma_fence_cb *cb)
907{
908 struct vc4_async_flip_state *flip_state =
909 container_of(cb, struct vc4_async_flip_state, cb.fence);
910
911 vc4_async_page_flip_complete(flip_state);
912 dma_fence_put(fence);
913}
914
915static int vc4_async_set_fence_cb(struct drm_device *dev,
916 struct vc4_async_flip_state *flip_state)
917{
918 struct drm_framebuffer *fb = flip_state->fb;
919 struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
920 struct vc4_dev *vc4 = to_vc4_dev(dev);
921 struct dma_fence *fence;
922 int ret;
923
924 if (vc4->gen == VC4_GEN_4) {
925 struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
926
927 return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno,
928 vc4_async_page_flip_seqno_complete);
929 }
930
931 ret = dma_resv_get_singleton(dma_bo->base.resv, DMA_RESV_USAGE_READ, &fence);
932 if (ret)
933 return ret;
934
935 /* If there's no fence, complete the page flip immediately */
936 if (!fence) {
937 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
938 return 0;
939 }
940
941 /* If the fence has already been completed, complete the page flip */
942 if (dma_fence_add_callback(fence, &flip_state->cb.fence,
943 vc4_async_page_flip_fence_complete))
944 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
945
946 return 0;
947}
948
949static int
950vc4_async_page_flip_common(struct drm_crtc *crtc,
951 struct drm_framebuffer *fb,
952 struct drm_pending_vblank_event *event,
953 uint32_t flags)
954{
955 struct drm_device *dev = crtc->dev;
956 struct drm_plane *plane = crtc->primary;
957 struct vc4_async_flip_state *flip_state;
958
959 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
960 if (!flip_state)
961 return -ENOMEM;
962
963 drm_framebuffer_get(fb);
964 flip_state->fb = fb;
965 flip_state->crtc = crtc;
966 flip_state->event = event;
967
968 /* Save the current FB before it's replaced by the new one in
969 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
970 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
971 * it consistent.
972 * FIXME: we should move to generic async-page-flip when it's
973 * available, so that we can get rid of this hand-made cleanup_fb()
974 * logic.
975 */
976 flip_state->old_fb = plane->state->fb;
977 if (flip_state->old_fb)
978 drm_framebuffer_get(flip_state->old_fb);
979
980 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
981
982 /* Immediately update the plane's legacy fb pointer, so that later
983 * modeset prep sees the state that will be present when the semaphore
984 * is released.
985 */
986 drm_atomic_set_fb_for_plane(plane->state, fb);
987
988 vc4_async_set_fence_cb(dev, flip_state);
989
990 /* Driver takes ownership of state on successful async commit. */
991 return 0;
992}
993
994/* Implements async (non-vblank-synced) page flips.
995 *
996 * The page flip ioctl needs to return immediately, so we grab the
997 * modeset semaphore on the pipe, and queue the address update for
998 * when V3D is done with the BO being flipped to.
999 */
1000static int vc4_async_page_flip(struct drm_crtc *crtc,
1001 struct drm_framebuffer *fb,
1002 struct drm_pending_vblank_event *event,
1003 uint32_t flags)
1004{
1005 struct drm_device *dev = crtc->dev;
1006 struct vc4_dev *vc4 = to_vc4_dev(dev);
1007 struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
1008 struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
1009 int ret;
1010
1011 if (WARN_ON_ONCE(vc4->gen > VC4_GEN_4))
1012 return -ENODEV;
1013
1014 /*
1015 * Increment the BO usecnt here, so that we never end up with an
1016 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
1017 * plane is later updated through the non-async path.
1018 *
1019 * FIXME: we should move to generic async-page-flip when
1020 * it's available, so that we can get rid of this
1021 * hand-made prepare_fb() logic.
1022 */
1023 ret = vc4_bo_inc_usecnt(bo);
1024 if (ret)
1025 return ret;
1026
1027 ret = vc4_async_page_flip_common(crtc, fb, event, flags);
1028 if (ret) {
1029 vc4_bo_dec_usecnt(bo);
1030 return ret;
1031 }
1032
1033 return 0;
1034}
1035
1036static int vc5_async_page_flip(struct drm_crtc *crtc,
1037 struct drm_framebuffer *fb,
1038 struct drm_pending_vblank_event *event,
1039 uint32_t flags)
1040{
1041 return vc4_async_page_flip_common(crtc, fb, event, flags);
1042}
1043
1044int vc4_page_flip(struct drm_crtc *crtc,
1045 struct drm_framebuffer *fb,
1046 struct drm_pending_vblank_event *event,
1047 uint32_t flags,
1048 struct drm_modeset_acquire_ctx *ctx)
1049{
1050 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) {
1051 struct drm_device *dev = crtc->dev;
1052 struct vc4_dev *vc4 = to_vc4_dev(dev);
1053
1054 if (vc4->gen > VC4_GEN_4)
1055 return vc5_async_page_flip(crtc, fb, event, flags);
1056 else
1057 return vc4_async_page_flip(crtc, fb, event, flags);
1058 } else {
1059 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
1060 }
1061}
1062
1063struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
1064{
1065 struct vc4_crtc_state *vc4_state, *old_vc4_state;
1066
1067 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
1068 if (!vc4_state)
1069 return NULL;
1070
1071 old_vc4_state = to_vc4_crtc_state(crtc->state);
1072 vc4_state->margins = old_vc4_state->margins;
1073 vc4_state->assigned_channel = old_vc4_state->assigned_channel;
1074
1075 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
1076 return &vc4_state->base;
1077}
1078
1079void vc4_crtc_destroy_state(struct drm_crtc *crtc,
1080 struct drm_crtc_state *state)
1081{
1082 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
1083 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
1084
1085 if (drm_mm_node_allocated(&vc4_state->mm)) {
1086 unsigned long flags;
1087
1088 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1089 drm_mm_remove_node(&vc4_state->mm);
1090 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1091
1092 }
1093
1094 drm_atomic_helper_crtc_destroy_state(crtc, state);
1095}
1096
1097void vc4_crtc_reset(struct drm_crtc *crtc)
1098{
1099 struct vc4_crtc_state *vc4_crtc_state;
1100
1101 if (crtc->state)
1102 vc4_crtc_destroy_state(crtc, crtc->state);
1103
1104 vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
1105 if (!vc4_crtc_state) {
1106 crtc->state = NULL;
1107 return;
1108 }
1109
1110 vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
1111 __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
1112}
1113
1114int vc4_crtc_late_register(struct drm_crtc *crtc)
1115{
1116 struct drm_device *drm = crtc->dev;
1117 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1118 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
1119
1120 vc4_debugfs_add_regset32(drm, crtc_data->debugfs_name,
1121 &vc4_crtc->regset);
1122
1123 return 0;
1124}
1125
1126static const struct drm_crtc_funcs vc4_crtc_funcs = {
1127 .set_config = drm_atomic_helper_set_config,
1128 .page_flip = vc4_page_flip,
1129 .set_property = NULL,
1130 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1131 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1132 .reset = vc4_crtc_reset,
1133 .atomic_duplicate_state = vc4_crtc_duplicate_state,
1134 .atomic_destroy_state = vc4_crtc_destroy_state,
1135 .enable_vblank = vc4_enable_vblank,
1136 .disable_vblank = vc4_disable_vblank,
1137 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1138 .late_register = vc4_crtc_late_register,
1139};
1140
1141static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1142 .mode_valid = vc4_crtc_mode_valid,
1143 .atomic_check = vc4_crtc_atomic_check,
1144 .atomic_begin = vc4_hvs_atomic_begin,
1145 .atomic_flush = vc4_hvs_atomic_flush,
1146 .atomic_enable = vc4_crtc_atomic_enable,
1147 .atomic_disable = vc4_crtc_atomic_disable,
1148 .get_scanout_position = vc4_crtc_get_scanout_position,
1149};
1150
1151const struct vc4_pv_data bcm2835_pv0_data = {
1152 .base = {
1153 .name = "pixelvalve-0",
1154 .debugfs_name = "crtc0_regs",
1155 .hvs_available_channels = BIT(0),
1156 .hvs_output = 0,
1157 },
1158 .fifo_depth = 64,
1159 .pixels_per_clock = 1,
1160 .encoder_types = {
1161 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1162 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1163 },
1164};
1165
1166const struct vc4_pv_data bcm2835_pv1_data = {
1167 .base = {
1168 .name = "pixelvalve-1",
1169 .debugfs_name = "crtc1_regs",
1170 .hvs_available_channels = BIT(2),
1171 .hvs_output = 2,
1172 },
1173 .fifo_depth = 64,
1174 .pixels_per_clock = 1,
1175 .encoder_types = {
1176 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1177 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1178 },
1179};
1180
1181const struct vc4_pv_data bcm2835_pv2_data = {
1182 .base = {
1183 .name = "pixelvalve-2",
1184 .debugfs_name = "crtc2_regs",
1185 .hvs_available_channels = BIT(1),
1186 .hvs_output = 1,
1187 },
1188 .fifo_depth = 64,
1189 .pixels_per_clock = 1,
1190 .encoder_types = {
1191 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1192 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1193 },
1194};
1195
1196const struct vc4_pv_data bcm2711_pv0_data = {
1197 .base = {
1198 .name = "pixelvalve-0",
1199 .debugfs_name = "crtc0_regs",
1200 .hvs_available_channels = BIT(0),
1201 .hvs_output = 0,
1202 },
1203 .fifo_depth = 64,
1204 .pixels_per_clock = 1,
1205 .encoder_types = {
1206 [0] = VC4_ENCODER_TYPE_DSI0,
1207 [1] = VC4_ENCODER_TYPE_DPI,
1208 },
1209};
1210
1211const struct vc4_pv_data bcm2711_pv1_data = {
1212 .base = {
1213 .name = "pixelvalve-1",
1214 .debugfs_name = "crtc1_regs",
1215 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1216 .hvs_output = 3,
1217 },
1218 .fifo_depth = 64,
1219 .pixels_per_clock = 1,
1220 .encoder_types = {
1221 [0] = VC4_ENCODER_TYPE_DSI1,
1222 [1] = VC4_ENCODER_TYPE_SMI,
1223 },
1224};
1225
1226const struct vc4_pv_data bcm2711_pv2_data = {
1227 .base = {
1228 .name = "pixelvalve-2",
1229 .debugfs_name = "crtc2_regs",
1230 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1231 .hvs_output = 4,
1232 },
1233 .fifo_depth = 256,
1234 .pixels_per_clock = 2,
1235 .encoder_types = {
1236 [0] = VC4_ENCODER_TYPE_HDMI0,
1237 },
1238};
1239
1240const struct vc4_pv_data bcm2711_pv3_data = {
1241 .base = {
1242 .name = "pixelvalve-3",
1243 .debugfs_name = "crtc3_regs",
1244 .hvs_available_channels = BIT(1),
1245 .hvs_output = 1,
1246 },
1247 .fifo_depth = 64,
1248 .pixels_per_clock = 1,
1249 .encoder_types = {
1250 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1251 },
1252};
1253
1254const struct vc4_pv_data bcm2711_pv4_data = {
1255 .base = {
1256 .name = "pixelvalve-4",
1257 .debugfs_name = "crtc4_regs",
1258 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1259 .hvs_output = 5,
1260 },
1261 .fifo_depth = 64,
1262 .pixels_per_clock = 2,
1263 .encoder_types = {
1264 [0] = VC4_ENCODER_TYPE_HDMI1,
1265 },
1266};
1267
1268static const struct of_device_id vc4_crtc_dt_match[] = {
1269 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1270 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1271 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1272 { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1273 { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1274 { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1275 { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1276 { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1277 {}
1278};
1279
1280static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1281 struct drm_crtc *crtc)
1282{
1283 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1284 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1285 const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1286 struct drm_encoder *encoder;
1287
1288 drm_for_each_encoder(encoder, drm) {
1289 struct vc4_encoder *vc4_encoder;
1290 int i;
1291
1292 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1293 continue;
1294
1295 vc4_encoder = to_vc4_encoder(encoder);
1296 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1297 if (vc4_encoder->type == encoder_types[i]) {
1298 vc4_encoder->clock_select = i;
1299 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1300 break;
1301 }
1302 }
1303 }
1304}
1305
1306/**
1307 * __vc4_crtc_init - Initializes a CRTC
1308 * @drm: DRM Device
1309 * @pdev: CRTC Platform Device
1310 * @vc4_crtc: CRTC Object to Initialize
1311 * @data: Configuration data associated with this CRTC
1312 * @primary_plane: Primary plane for CRTC
1313 * @crtc_funcs: Callbacks for the new CRTC
1314 * @crtc_helper_funcs: Helper Callbacks for the new CRTC
1315 * @feeds_txp: Is this CRTC connected to the TXP?
1316 *
1317 * Initializes our private CRTC structure. This function is mostly
1318 * relevant for KUnit testing, all other users should use
1319 * vc4_crtc_init() instead.
1320 *
1321 * Returns:
1322 * 0 on success, a negative error code on failure.
1323 */
1324int __vc4_crtc_init(struct drm_device *drm,
1325 struct platform_device *pdev,
1326 struct vc4_crtc *vc4_crtc,
1327 const struct vc4_crtc_data *data,
1328 struct drm_plane *primary_plane,
1329 const struct drm_crtc_funcs *crtc_funcs,
1330 const struct drm_crtc_helper_funcs *crtc_helper_funcs,
1331 bool feeds_txp)
1332{
1333 struct vc4_dev *vc4 = to_vc4_dev(drm);
1334 struct drm_crtc *crtc = &vc4_crtc->base;
1335 unsigned int i;
1336 int ret;
1337
1338 vc4_crtc->data = data;
1339 vc4_crtc->pdev = pdev;
1340 vc4_crtc->feeds_txp = feeds_txp;
1341 spin_lock_init(&vc4_crtc->irq_lock);
1342 ret = drmm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1343 crtc_funcs, data->name);
1344 if (ret)
1345 return ret;
1346
1347 drm_crtc_helper_add(crtc, crtc_helper_funcs);
1348
1349 if (vc4->gen == VC4_GEN_4) {
1350 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1351 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1352
1353 /* We support CTM, but only for one CRTC at a time. It's therefore
1354 * implemented as private driver state in vc4_kms, not here.
1355 */
1356 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1357 }
1358
1359 for (i = 0; i < crtc->gamma_size; i++) {
1360 vc4_crtc->lut_r[i] = i;
1361 vc4_crtc->lut_g[i] = i;
1362 vc4_crtc->lut_b[i] = i;
1363 }
1364
1365 return 0;
1366}
1367
1368int vc4_crtc_init(struct drm_device *drm, struct platform_device *pdev,
1369 struct vc4_crtc *vc4_crtc,
1370 const struct vc4_crtc_data *data,
1371 const struct drm_crtc_funcs *crtc_funcs,
1372 const struct drm_crtc_helper_funcs *crtc_helper_funcs,
1373 bool feeds_txp)
1374{
1375 struct drm_plane *primary_plane;
1376
1377 /* For now, we create just the primary and the legacy cursor
1378 * planes. We should be able to stack more planes on easily,
1379 * but to do that we would need to compute the bandwidth
1380 * requirement of the plane configuration, and reject ones
1381 * that will take too much.
1382 */
1383 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY, 0);
1384 if (IS_ERR(primary_plane)) {
1385 dev_err(drm->dev, "failed to construct primary plane\n");
1386 return PTR_ERR(primary_plane);
1387 }
1388
1389 return __vc4_crtc_init(drm, pdev, vc4_crtc, data, primary_plane,
1390 crtc_funcs, crtc_helper_funcs, feeds_txp);
1391}
1392
1393static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1394{
1395 struct platform_device *pdev = to_platform_device(dev);
1396 struct drm_device *drm = dev_get_drvdata(master);
1397 const struct vc4_pv_data *pv_data;
1398 struct vc4_crtc *vc4_crtc;
1399 struct drm_crtc *crtc;
1400 int ret;
1401
1402 vc4_crtc = drmm_kzalloc(drm, sizeof(*vc4_crtc), GFP_KERNEL);
1403 if (!vc4_crtc)
1404 return -ENOMEM;
1405 crtc = &vc4_crtc->base;
1406
1407 pv_data = of_device_get_match_data(dev);
1408 if (!pv_data)
1409 return -ENODEV;
1410
1411 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1412 if (IS_ERR(vc4_crtc->regs))
1413 return PTR_ERR(vc4_crtc->regs);
1414
1415 vc4_crtc->regset.base = vc4_crtc->regs;
1416 vc4_crtc->regset.regs = crtc_regs;
1417 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1418
1419 ret = vc4_crtc_init(drm, pdev, vc4_crtc, &pv_data->base,
1420 &vc4_crtc_funcs, &vc4_crtc_helper_funcs,
1421 false);
1422 if (ret)
1423 return ret;
1424 vc4_set_crtc_possible_masks(drm, crtc);
1425
1426 CRTC_WRITE(PV_INTEN, 0);
1427 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1428 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1429 vc4_crtc_irq_handler,
1430 IRQF_SHARED,
1431 "vc4 crtc", vc4_crtc);
1432 if (ret)
1433 return ret;
1434
1435 platform_set_drvdata(pdev, vc4_crtc);
1436
1437 return 0;
1438}
1439
1440static void vc4_crtc_unbind(struct device *dev, struct device *master,
1441 void *data)
1442{
1443 struct platform_device *pdev = to_platform_device(dev);
1444 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1445
1446 CRTC_WRITE(PV_INTEN, 0);
1447
1448 platform_set_drvdata(pdev, NULL);
1449}
1450
1451static const struct component_ops vc4_crtc_ops = {
1452 .bind = vc4_crtc_bind,
1453 .unbind = vc4_crtc_unbind,
1454};
1455
1456static int vc4_crtc_dev_probe(struct platform_device *pdev)
1457{
1458 return component_add(&pdev->dev, &vc4_crtc_ops);
1459}
1460
1461static void vc4_crtc_dev_remove(struct platform_device *pdev)
1462{
1463 component_del(&pdev->dev, &vc4_crtc_ops);
1464}
1465
1466struct platform_driver vc4_crtc_driver = {
1467 .probe = vc4_crtc_dev_probe,
1468 .remove = vc4_crtc_dev_remove,
1469 .driver = {
1470 .name = "vc4_crtc",
1471 .of_match_table = vc4_crtc_dt_match,
1472 },
1473};