Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2015 Broadcom
   4 */
   5
   6/**
   7 * DOC: VC4 CRTC module
   8 *
   9 * In VC4, the Pixel Valve is what most closely corresponds to the
  10 * DRM's concept of a CRTC.  The PV generates video timings from the
  11 * encoder's clock plus its configuration.  It pulls scaled pixels from
  12 * the HVS at that timing, and feeds it to the encoder.
  13 *
  14 * However, the DRM CRTC also collects the configuration of all the
  15 * DRM planes attached to it.  As a result, the CRTC is also
  16 * responsible for writing the display list for the HVS channel that
  17 * the CRTC will use.
  18 *
  19 * The 2835 has 3 different pixel valves.  pv0 in the audio power
  20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
  21 * image domain can feed either HDMI or the SDTV controller.  The
  22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
  23 * SDTV, etc.) according to which output type is chosen in the mux.
  24 *
  25 * For power management, the pixel valve's registers are all clocked
  26 * by the AXI clock, while the timings and FIFOs make use of the
  27 * output-specific clock.  Since the encoders also directly consume
  28 * the CPRMAN clocks, and know what timings they need, they are the
  29 * ones that set the clock.
  30 */
  31
  32#include <linux/clk.h>
  33#include <linux/component.h>
  34#include <linux/of_device.h>
 
 
  35
  36#include <drm/drm_atomic.h>
  37#include <drm/drm_atomic_helper.h>
  38#include <drm/drm_atomic_uapi.h>
  39#include <drm/drm_fb_cma_helper.h>
 
 
  40#include <drm/drm_print.h>
  41#include <drm/drm_probe_helper.h>
  42#include <drm/drm_vblank.h>
  43
  44#include "vc4_drv.h"
 
  45#include "vc4_regs.h"
  46
  47struct vc4_crtc_state {
  48	struct drm_crtc_state base;
  49	/* Dlist area for this CRTC configuration. */
  50	struct drm_mm_node mm;
  51	bool feed_txp;
  52	bool txp_armed;
  53
  54	struct {
  55		unsigned int left;
  56		unsigned int right;
  57		unsigned int top;
  58		unsigned int bottom;
  59	} margins;
  60};
  61
  62static inline struct vc4_crtc_state *
  63to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
  64{
  65	return (struct vc4_crtc_state *)crtc_state;
  66}
  67
  68#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
  69#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
 
 
 
 
 
 
 
 
 
  70
  71static const struct debugfs_reg32 crtc_regs[] = {
  72	VC4_REG32(PV_CONTROL),
  73	VC4_REG32(PV_V_CONTROL),
  74	VC4_REG32(PV_VSYNCD_EVEN),
  75	VC4_REG32(PV_HORZA),
  76	VC4_REG32(PV_HORZB),
  77	VC4_REG32(PV_VERTA),
  78	VC4_REG32(PV_VERTB),
  79	VC4_REG32(PV_VERTA_EVEN),
  80	VC4_REG32(PV_VERTB_EVEN),
  81	VC4_REG32(PV_INTEN),
  82	VC4_REG32(PV_INTSTAT),
  83	VC4_REG32(PV_STAT),
  84	VC4_REG32(PV_HACT_ACT),
  85};
  86
  87bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
  88			     bool in_vblank_irq, int *vpos, int *hpos,
  89			     ktime_t *stime, ktime_t *etime,
  90			     const struct drm_display_mode *mode)
  91{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  92	struct vc4_dev *vc4 = to_vc4_dev(dev);
  93	struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
  94	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 
 
 
  95	u32 val;
  96	int fifo_lines;
  97	int vblank_lines;
  98	bool ret = false;
  99
 100	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
 101
 102	/* Get optional system timestamp before query. */
 103	if (stime)
 104		*stime = ktime_get();
 105
 106	/*
 107	 * Read vertical scanline which is currently composed for our
 108	 * pixelvalve by the HVS, and also the scaler status.
 109	 */
 110	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
 111
 112	/* Get optional system timestamp after query. */
 113	if (etime)
 114		*etime = ktime_get();
 115
 116	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
 117
 118	/* Vertical position of hvs composed scanline. */
 119	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
 120	*hpos = 0;
 121
 122	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 123		*vpos /= 2;
 124
 125		/* Use hpos to correct for field offset in interlaced mode. */
 126		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
 127			*hpos += mode->crtc_htotal / 2;
 128	}
 129
 
 130	/* This is the offset we need for translating hvs -> pv scanout pos. */
 131	fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
 132
 133	if (fifo_lines > 0)
 134		ret = true;
 135
 136	/* HVS more than fifo_lines into frame for compositing? */
 137	if (*vpos > fifo_lines) {
 138		/*
 139		 * We are in active scanout and can get some meaningful results
 140		 * from HVS. The actual PV scanout can not trail behind more
 141		 * than fifo_lines as that is the fifo's capacity. Assume that
 142		 * in active scanout the HVS and PV work in lockstep wrt. HVS
 143		 * refilling the fifo and PV consuming from the fifo, ie.
 144		 * whenever the PV consumes and frees up a scanline in the
 145		 * fifo, the HVS will immediately refill it, therefore
 146		 * incrementing vpos. Therefore we choose HVS read position -
 147		 * fifo size in scanlines as a estimate of the real scanout
 148		 * position of the PV.
 149		 */
 150		*vpos -= fifo_lines + 1;
 151
 152		return ret;
 153	}
 154
 155	/*
 156	 * Less: This happens when we are in vblank and the HVS, after getting
 157	 * the VSTART restart signal from the PV, just started refilling its
 158	 * fifo with new lines from the top-most lines of the new framebuffers.
 159	 * The PV does not scan out in vblank, so does not remove lines from
 160	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
 161	 * We can't get meaningful readings wrt. scanline position of the PV
 162	 * and need to make things up in a approximative but consistent way.
 163	 */
 164	vblank_lines = mode->vtotal - mode->vdisplay;
 165
 166	if (in_vblank_irq) {
 167		/*
 168		 * Assume the irq handler got called close to first
 169		 * line of vblank, so PV has about a full vblank
 170		 * scanlines to go, and as a base timestamp use the
 171		 * one taken at entry into vblank irq handler, so it
 172		 * is not affected by random delays due to lock
 173		 * contention on event_lock or vblank_time lock in
 174		 * the core.
 175		 */
 176		*vpos = -vblank_lines;
 177
 178		if (stime)
 179			*stime = vc4_crtc->t_vblank;
 180		if (etime)
 181			*etime = vc4_crtc->t_vblank;
 182
 183		/*
 184		 * If the HVS fifo is not yet full then we know for certain
 185		 * we are at the very beginning of vblank, as the hvs just
 186		 * started refilling, and the stime and etime timestamps
 187		 * truly correspond to start of vblank.
 188		 *
 189		 * Unfortunately there's no way to report this to upper levels
 190		 * and make it more useful.
 191		 */
 192	} else {
 193		/*
 194		 * No clue where we are inside vblank. Return a vpos of zero,
 195		 * which will cause calling code to just return the etime
 196		 * timestamp uncorrected. At least this is no worse than the
 197		 * standard fallback.
 198		 */
 199		*vpos = 0;
 200	}
 201
 202	return ret;
 203}
 204
 205static void vc4_crtc_destroy(struct drm_crtc *crtc)
 206{
 207	drm_crtc_cleanup(crtc);
 208}
 209
 210static void
 211vc4_crtc_lut_load(struct drm_crtc *crtc)
 212{
 213	struct drm_device *dev = crtc->dev;
 214	struct vc4_dev *vc4 = to_vc4_dev(dev);
 215	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 216	u32 i;
 217
 218	/* The LUT memory is laid out with each HVS channel in order,
 219	 * each of which takes 256 writes for R, 256 for G, then 256
 220	 * for B.
 
 
 
 
 
 
 221	 */
 222	HVS_WRITE(SCALER_GAMADDR,
 223		  SCALER_GAMADDR_AUTOINC |
 224		  (vc4_crtc->channel * 3 * crtc->gamma_size));
 225
 226	for (i = 0; i < crtc->gamma_size; i++)
 227		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
 228	for (i = 0; i < crtc->gamma_size; i++)
 229		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
 230	for (i = 0; i < crtc->gamma_size; i++)
 231		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
 232}
 233
 234static void
 235vc4_crtc_update_gamma_lut(struct drm_crtc *crtc)
 236{
 237	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 238	struct drm_color_lut *lut = crtc->state->gamma_lut->data;
 239	u32 length = drm_color_lut_size(crtc->state->gamma_lut);
 240	u32 i;
 241
 242	for (i = 0; i < length; i++) {
 243		vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
 244		vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
 245		vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
 246	}
 247
 248	vc4_crtc_lut_load(crtc);
 249}
 250
 251static u32 vc4_get_fifo_full_level(u32 format)
 252{
 253	static const u32 fifo_len_bytes = 64;
 254	static const u32 hvs_latency_pix = 6;
 255
 256	switch (format) {
 257	case PV_CONTROL_FORMAT_DSIV_16:
 258	case PV_CONTROL_FORMAT_DSIC_16:
 259		return fifo_len_bytes - 2 * hvs_latency_pix;
 260	case PV_CONTROL_FORMAT_DSIV_18:
 261		return fifo_len_bytes - 14;
 262	case PV_CONTROL_FORMAT_24:
 263	case PV_CONTROL_FORMAT_DSIV_24:
 264	default:
 265		return fifo_len_bytes - 3 * hvs_latency_pix;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 266	}
 267}
 268
 
 
 
 
 
 
 
 
 
 
 
 
 
 269/*
 270 * Returns the encoder attached to the CRTC.
 271 *
 272 * VC4 can only scan out to one encoder at a time, while the DRM core
 273 * allows drivers to push pixels to more than one encoder from the
 274 * same CRTC.
 275 */
 276static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
 
 277{
 278	struct drm_connector *connector;
 279	struct drm_connector_list_iter conn_iter;
 280
 281	drm_connector_list_iter_begin(crtc->dev, &conn_iter);
 282	drm_for_each_connector_iter(connector, &conn_iter) {
 283		if (connector->state->crtc == crtc) {
 284			drm_connector_list_iter_end(&conn_iter);
 285			return connector->encoder;
 286		}
 287	}
 288	drm_connector_list_iter_end(&conn_iter);
 289
 290	return NULL;
 291}
 292
 293static void vc4_crtc_config_pv(struct drm_crtc *crtc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 294{
 295	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
 
 296	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 297	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 298	struct drm_crtc_state *state = crtc->state;
 299	struct drm_display_mode *mode = &state->adjusted_mode;
 
 300	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
 301	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
 
 
 302	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
 303		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
 304	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
 
 
 
 
 
 
 
 
 
 
 305
 306	/* Reset the PV fifo. */
 307	CRTC_WRITE(PV_CONTROL, 0);
 308	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
 309	CRTC_WRITE(PV_CONTROL, 0);
 
 
 
 
 
 
 
 310
 311	CRTC_WRITE(PV_HORZA,
 312		   VC4_SET_FIELD((mode->htotal -
 313				  mode->hsync_end) * pixel_rep,
 314				 PV_HORZA_HBP) |
 315		   VC4_SET_FIELD((mode->hsync_end -
 316				  mode->hsync_start) * pixel_rep,
 317				 PV_HORZA_HSYNC));
 
 318	CRTC_WRITE(PV_HORZB,
 319		   VC4_SET_FIELD((mode->hsync_start -
 320				  mode->hdisplay) * pixel_rep,
 321				 PV_HORZB_HFP) |
 322		   VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
 323
 324	CRTC_WRITE(PV_VERTA,
 325		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
 326				 PV_VERTA_VBP) |
 327		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
 328				 PV_VERTA_VSYNC));
 329	CRTC_WRITE(PV_VERTB,
 330		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
 331				 PV_VERTB_VFP) |
 332		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
 333
 334	if (interlace) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 335		CRTC_WRITE(PV_VERTA_EVEN,
 336			   VC4_SET_FIELD(mode->crtc_vtotal -
 337					 mode->crtc_vsync_end - 1,
 338					 PV_VERTA_VBP) |
 339			   VC4_SET_FIELD(mode->crtc_vsync_end -
 340					 mode->crtc_vsync_start,
 341					 PV_VERTA_VSYNC));
 342		CRTC_WRITE(PV_VERTB_EVEN,
 343			   VC4_SET_FIELD(mode->crtc_vsync_start -
 344					 mode->crtc_vdisplay,
 345					 PV_VERTB_VFP) |
 346			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
 347
 348		/* We set up first field even mode for HDMI.  VEC's
 349		 * NTSC mode would want first field odd instead, once
 350		 * we support it (to do so, set ODD_FIRST and put the
 351		 * delay in VSYNCD_EVEN instead).
 352		 */
 353		CRTC_WRITE(PV_V_CONTROL,
 354			   PV_VCONTROL_CONTINUOUS |
 355			   (is_dsi ? PV_VCONTROL_DSI : 0) |
 356			   PV_VCONTROL_INTERLACE |
 357			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
 358					 PV_VCONTROL_ODD_DELAY));
 359		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
 
 
 
 360	} else {
 361		CRTC_WRITE(PV_V_CONTROL,
 362			   PV_VCONTROL_CONTINUOUS |
 363			   (is_dsi ? PV_VCONTROL_DSI : 0));
 
 364	}
 365
 366	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
 
 
 
 
 
 367
 368	CRTC_WRITE(PV_CONTROL,
 
 
 
 
 
 
 
 
 
 369		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
 370		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
 371				 PV_CONTROL_FIFO_LEVEL) |
 372		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
 373		   PV_CONTROL_CLR_AT_START |
 374		   PV_CONTROL_TRIGGER_UNDERFLOW |
 375		   PV_CONTROL_WAIT_HSTART |
 376		   VC4_SET_FIELD(vc4_encoder->clock_select,
 377				 PV_CONTROL_CLK_SELECT) |
 378		   PV_CONTROL_FIFO_CLR |
 379		   PV_CONTROL_EN);
 380}
 381
 382static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
 383{
 384	struct drm_device *dev = crtc->dev;
 385	struct vc4_dev *vc4 = to_vc4_dev(dev);
 386	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 387	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 388	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
 389	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
 390	bool debug_dump_regs = false;
 391
 392	if (debug_dump_regs) {
 393		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
 394		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
 395			 drm_crtc_index(crtc));
 396		drm_print_regset32(&p, &vc4_crtc->regset);
 397	}
 398
 399	if (vc4_crtc->channel == 2) {
 400		u32 dispctrl;
 401		u32 dsp3_mux;
 402
 403		/*
 404		 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
 405		 * FIFO X'.
 406		 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
 407		 *
 408		 * DSP3 is connected to FIFO2 unless the transposer is
 409		 * enabled. In this case, FIFO 2 is directly accessed by the
 410		 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
 411		 * route.
 412		 */
 413		if (vc4_state->feed_txp)
 414			dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
 415		else
 416			dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
 417
 418		dispctrl = HVS_READ(SCALER_DISPCTRL) &
 419			   ~SCALER_DISPCTRL_DSP3_MUX_MASK;
 420		HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
 421	}
 422
 423	if (!vc4_state->feed_txp)
 424		vc4_crtc_config_pv(crtc);
 425
 426	HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
 427		  SCALER_DISPBKGND_AUTOHS |
 428		  SCALER_DISPBKGND_GAMMA |
 429		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
 430
 431	/* Reload the LUT, since the SRAMs would have been disabled if
 432	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
 433	 */
 434	vc4_crtc_lut_load(crtc);
 435
 436	if (debug_dump_regs) {
 437		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
 438		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
 439			 drm_crtc_index(crtc));
 440		drm_print_regset32(&p, &vc4_crtc->regset);
 441	}
 
 
 442}
 443
 444static void require_hvs_enabled(struct drm_device *dev)
 445{
 446	struct vc4_dev *vc4 = to_vc4_dev(dev);
 
 447
 448	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
 449		     SCALER_DISPCTRL_ENABLE);
 450}
 451
 452static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
 453				    struct drm_crtc_state *old_state)
 
 
 454{
 
 
 455	struct drm_device *dev = crtc->dev;
 456	struct vc4_dev *vc4 = to_vc4_dev(dev);
 457	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 458	u32 chan = vc4_crtc->channel;
 459	int ret;
 460	require_hvs_enabled(dev);
 461
 462	/* Disable vblank irq handling before crtc is disabled. */
 463	drm_crtc_vblank_off(crtc);
 464
 465	CRTC_WRITE(PV_V_CONTROL,
 466		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
 467	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
 468	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
 469
 470	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
 471	    SCALER_DISPCTRLX_ENABLE) {
 472		HVS_WRITE(SCALER_DISPCTRLX(chan),
 473			  SCALER_DISPCTRLX_RESET);
 
 
 
 
 
 
 
 
 
 
 
 
 
 474
 475		/* While the docs say that reset is self-clearing, it
 476		 * seems it doesn't actually.
 477		 */
 478		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
 479	}
 
 
 
 
 
 
 
 
 480
 481	/* Once we leave, the scaler should be disabled and its fifo empty. */
 
 
 
 
 
 
 
 
 
 
 
 482
 483	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 484
 485	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
 486				   SCALER_DISPSTATX_MODE) !=
 487		     SCALER_DISPSTATX_MODE_DISABLED);
 
 488
 489	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
 490		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
 491		     SCALER_DISPSTATX_EMPTY);
 492
 493	/*
 494	 * Make sure we issue a vblank event after disabling the CRTC if
 495	 * someone was waiting it.
 
 496	 */
 497	if (crtc->state->event) {
 498		unsigned long flags;
 499
 500		spin_lock_irqsave(&dev->event_lock, flags);
 501		drm_crtc_send_vblank_event(crtc, crtc->state->event);
 502		crtc->state->event = NULL;
 503		spin_unlock_irqrestore(&dev->event_lock, flags);
 504	}
 505}
 506
 507void vc4_crtc_txp_armed(struct drm_crtc_state *state)
 508{
 509	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 
 510
 511	vc4_state->txp_armed = true;
 
 
 
 
 
 
 512}
 513
 514static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
 
 515{
 
 
 
 
 516	struct drm_device *dev = crtc->dev;
 517	struct vc4_dev *vc4 = to_vc4_dev(dev);
 518	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 519	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 520
 521	if (crtc->state->event) {
 522		unsigned long flags;
 523
 524		crtc->state->event->pipe = drm_crtc_index(crtc);
 525
 526		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 
 527
 528		spin_lock_irqsave(&dev->event_lock, flags);
 529
 530		if (!vc4_state->feed_txp || vc4_state->txp_armed) {
 531			vc4_crtc->event = crtc->state->event;
 532			crtc->state->event = NULL;
 533		}
 534
 535		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
 536			  vc4_state->mm.start);
 537
 538		spin_unlock_irqrestore(&dev->event_lock, flags);
 539	} else {
 540		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
 541			  vc4_state->mm.start);
 542	}
 543}
 544
 545static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
 546				   struct drm_crtc_state *old_state)
 547{
 
 
 548	struct drm_device *dev = crtc->dev;
 549	struct vc4_dev *vc4 = to_vc4_dev(dev);
 550	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 551	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 552	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
 
 
 
 
 
 
 
 553
 554	require_hvs_enabled(dev);
 555
 556	/* Enable vblank irq handling before crtc is started otherwise
 557	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
 558	 */
 559	drm_crtc_vblank_on(crtc);
 560	vc4_crtc_update_dlist(crtc);
 561
 562	/* Turn on the scaler, which will wait for vstart to start
 563	 * compositing.
 564	 * When feeding the transposer, we should operate in oneshot
 565	 * mode.
 566	 */
 567	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
 568		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
 569		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
 570		  SCALER_DISPCTRLX_ENABLE |
 571		  (vc4_state->feed_txp ? SCALER_DISPCTRLX_ONESHOT : 0));
 
 572
 573	/* When feeding the transposer block the pixelvalve is unneeded and
 574	 * should not be enabled.
 575	 */
 576	if (!vc4_state->feed_txp)
 577		CRTC_WRITE(PV_V_CONTROL,
 578			   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
 
 
 
 
 579}
 580
 581static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
 582						const struct drm_display_mode *mode)
 583{
 584	/* Do not allow doublescan modes from user space */
 585	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
 586		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
 587			      crtc->base.id);
 588		return MODE_NO_DBLESCAN;
 589	}
 590
 591	return MODE_OK;
 592}
 593
 594void vc4_crtc_get_margins(struct drm_crtc_state *state,
 595			  unsigned int *left, unsigned int *right,
 596			  unsigned int *top, unsigned int *bottom)
 597{
 598	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 599	struct drm_connector_state *conn_state;
 600	struct drm_connector *conn;
 601	int i;
 602
 603	*left = vc4_state->margins.left;
 604	*right = vc4_state->margins.right;
 605	*top = vc4_state->margins.top;
 606	*bottom = vc4_state->margins.bottom;
 607
 608	/* We have to interate over all new connector states because
 609	 * vc4_crtc_get_margins() might be called before
 610	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
 611	 * might be outdated.
 612	 */
 613	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
 614		if (conn_state->crtc != state->crtc)
 615			continue;
 616
 617		*left = conn_state->tv.margins.left;
 618		*right = conn_state->tv.margins.right;
 619		*top = conn_state->tv.margins.top;
 620		*bottom = conn_state->tv.margins.bottom;
 621		break;
 622	}
 623}
 624
 625static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
 626				 struct drm_crtc_state *state)
 627{
 628	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 629	struct drm_device *dev = crtc->dev;
 630	struct vc4_dev *vc4 = to_vc4_dev(dev);
 631	struct drm_plane *plane;
 632	unsigned long flags;
 633	const struct drm_plane_state *plane_state;
 634	struct drm_connector *conn;
 635	struct drm_connector_state *conn_state;
 636	u32 dlist_count = 0;
 637	int ret, i;
 638
 639	/* The pixelvalve can only feed one encoder (and encoders are
 640	 * 1:1 with connectors.)
 641	 */
 642	if (hweight32(state->connector_mask) > 1)
 643		return -EINVAL;
 644
 645	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
 646		dlist_count += vc4_plane_dlist_size(plane_state);
 647
 648	dlist_count++; /* Account for SCALER_CTL0_END. */
 649
 650	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
 651	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
 652				 dlist_count);
 653	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
 654	if (ret)
 655		return ret;
 656
 657	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
 658		if (conn_state->crtc != crtc)
 659			continue;
 660
 661		/* The writeback connector is implemented using the transposer
 662		 * block which is directly taking its data from the HVS FIFO.
 663		 */
 664		if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) {
 665			state->no_vblank = true;
 666			vc4_state->feed_txp = true;
 667		} else {
 668			state->no_vblank = false;
 669			vc4_state->feed_txp = false;
 670		}
 671
 672		vc4_state->margins.left = conn_state->tv.margins.left;
 673		vc4_state->margins.right = conn_state->tv.margins.right;
 674		vc4_state->margins.top = conn_state->tv.margins.top;
 675		vc4_state->margins.bottom = conn_state->tv.margins.bottom;
 676		break;
 677	}
 678
 679	return 0;
 680}
 681
 682static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
 683				  struct drm_crtc_state *old_state)
 684{
 685	struct drm_device *dev = crtc->dev;
 686	struct vc4_dev *vc4 = to_vc4_dev(dev);
 687	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 688	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 689	struct drm_plane *plane;
 690	struct vc4_plane_state *vc4_plane_state;
 691	bool debug_dump_regs = false;
 692	bool enable_bg_fill = false;
 693	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
 694	u32 __iomem *dlist_next = dlist_start;
 695
 696	if (debug_dump_regs) {
 697		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
 698		vc4_hvs_dump_state(dev);
 699	}
 700
 701	/* Copy all the active planes' dlist contents to the hardware dlist. */
 702	drm_atomic_crtc_for_each_plane(plane, crtc) {
 703		/* Is this the first active plane? */
 704		if (dlist_next == dlist_start) {
 705			/* We need to enable background fill when a plane
 706			 * could be alpha blending from the background, i.e.
 707			 * where no other plane is underneath. It suffices to
 708			 * consider the first active plane here since we set
 709			 * needs_bg_fill such that either the first plane
 710			 * already needs it or all planes on top blend from
 711			 * the first or a lower plane.
 712			 */
 713			vc4_plane_state = to_vc4_plane_state(plane->state);
 714			enable_bg_fill = vc4_plane_state->needs_bg_fill;
 715		}
 716
 717		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
 718	}
 719
 720	writel(SCALER_CTL0_END, dlist_next);
 721	dlist_next++;
 722
 723	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
 724
 725	if (enable_bg_fill)
 726		/* This sets a black background color fill, as is the case
 727		 * with other DRM drivers.
 728		 */
 729		HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
 730			  HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
 731			  SCALER_DISPBKGND_FILL);
 732
 733	/* Only update DISPLIST if the CRTC was already running and is not
 734	 * being disabled.
 735	 * vc4_crtc_enable() takes care of updating the dlist just after
 736	 * re-enabling VBLANK interrupts and before enabling the engine.
 737	 * If the CRTC is being disabled, there's no point in updating this
 738	 * information.
 739	 */
 740	if (crtc->state->active && old_state->active)
 741		vc4_crtc_update_dlist(crtc);
 742
 743	if (crtc->state->color_mgmt_changed) {
 744		u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));
 745
 746		if (crtc->state->gamma_lut) {
 747			vc4_crtc_update_gamma_lut(crtc);
 748			dispbkgndx |= SCALER_DISPBKGND_GAMMA;
 749		} else {
 750			/* Unsetting DISPBKGND_GAMMA skips the gamma lut step
 751			 * in hardware, which is the same as a linear lut that
 752			 * DRM expects us to use in absence of a user lut.
 
 753			 */
 754			dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
 755		}
 756		HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
 757	}
 758
 759	if (debug_dump_regs) {
 760		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
 761		vc4_hvs_dump_state(dev);
 762	}
 763}
 764
 765static int vc4_enable_vblank(struct drm_crtc *crtc)
 766{
 767	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 
 
 
 
 
 768
 769	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
 770
 
 
 771	return 0;
 772}
 773
 774static void vc4_disable_vblank(struct drm_crtc *crtc)
 775{
 776	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 
 
 
 
 
 777
 778	CRTC_WRITE(PV_INTEN, 0);
 
 
 779}
 780
 781static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
 782{
 783	struct drm_crtc *crtc = &vc4_crtc->base;
 784	struct drm_device *dev = crtc->dev;
 785	struct vc4_dev *vc4 = to_vc4_dev(dev);
 786	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 787	u32 chan = vc4_crtc->channel;
 788	unsigned long flags;
 789
 790	spin_lock_irqsave(&dev->event_lock, flags);
 
 791	if (vc4_crtc->event &&
 792	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
 793	     vc4_state->feed_txp)) {
 794		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
 795		vc4_crtc->event = NULL;
 796		drm_crtc_vblank_put(crtc);
 797
 798		/* Wait for the page flip to unmask the underrun to ensure that
 799		 * the display list was updated by the hardware. Before that
 800		 * happens, the HVS will be using the previous display list with
 801		 * the CRTC and encoder already reconfigured, leading to
 802		 * underruns. This can be seen when reconfiguring the CRTC.
 803		 */
 804		vc4_hvs_unmask_underrun(dev, vc4_crtc->channel);
 805	}
 
 806	spin_unlock_irqrestore(&dev->event_lock, flags);
 807}
 808
 809void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
 810{
 811	crtc->t_vblank = ktime_get();
 812	drm_crtc_handle_vblank(&crtc->base);
 813	vc4_crtc_handle_page_flip(crtc);
 814}
 815
 816static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
 817{
 818	struct vc4_crtc *vc4_crtc = data;
 819	u32 stat = CRTC_READ(PV_INTSTAT);
 820	irqreturn_t ret = IRQ_NONE;
 821
 822	if (stat & PV_INT_VFP_START) {
 823		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
 824		vc4_crtc_handle_vblank(vc4_crtc);
 825		ret = IRQ_HANDLED;
 826	}
 827
 828	return ret;
 829}
 830
 831struct vc4_async_flip_state {
 832	struct drm_crtc *crtc;
 833	struct drm_framebuffer *fb;
 834	struct drm_framebuffer *old_fb;
 835	struct drm_pending_vblank_event *event;
 836
 837	struct vc4_seqno_cb cb;
 
 
 
 838};
 839
 840/* Called when the V3D execution for the BO being flipped to is done, so that
 841 * we can actually update the plane's address to point to it.
 842 */
 843static void
 844vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
 845{
 846	struct vc4_async_flip_state *flip_state =
 847		container_of(cb, struct vc4_async_flip_state, cb);
 848	struct drm_crtc *crtc = flip_state->crtc;
 849	struct drm_device *dev = crtc->dev;
 850	struct vc4_dev *vc4 = to_vc4_dev(dev);
 851	struct drm_plane *plane = crtc->primary;
 852
 853	vc4_plane_async_set_fb(plane, flip_state->fb);
 854	if (flip_state->event) {
 855		unsigned long flags;
 856
 857		spin_lock_irqsave(&dev->event_lock, flags);
 858		drm_crtc_send_vblank_event(crtc, flip_state->event);
 859		spin_unlock_irqrestore(&dev->event_lock, flags);
 860	}
 861
 862	drm_crtc_vblank_put(crtc);
 863	drm_framebuffer_put(flip_state->fb);
 864
 865	/* Decrement the BO usecnt in order to keep the inc/dec calls balanced
 866	 * when the planes are updated through the async update path.
 867	 * FIXME: we should move to generic async-page-flip when it's
 868	 * available, so that we can get rid of this hand-made cleanup_fb()
 869	 * logic.
 870	 */
 
 
 
 
 
 
 871	if (flip_state->old_fb) {
 872		struct drm_gem_cma_object *cma_bo;
 873		struct vc4_bo *bo;
 
 
 874
 875		cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
 876		bo = to_vc4_bo(&cma_bo->base);
 
 
 
 
 
 
 
 
 
 
 877		vc4_bo_dec_usecnt(bo);
 878		drm_framebuffer_put(flip_state->old_fb);
 879	}
 880
 881	kfree(flip_state);
 
 
 
 
 882
 883	up(&vc4->async_modeset);
 
 884}
 885
 886/* Implements async (non-vblank-synced) page flips.
 887 *
 888 * The page flip ioctl needs to return immediately, so we grab the
 889 * modeset semaphore on the pipe, and queue the address update for
 890 * when V3D is done with the BO being flipped to.
 891 */
 892static int vc4_async_page_flip(struct drm_crtc *crtc,
 893			       struct drm_framebuffer *fb,
 894			       struct drm_pending_vblank_event *event,
 895			       uint32_t flags)
 896{
 897	struct drm_device *dev = crtc->dev;
 
 898	struct vc4_dev *vc4 = to_vc4_dev(dev);
 899	struct drm_plane *plane = crtc->primary;
 900	int ret = 0;
 901	struct vc4_async_flip_state *flip_state;
 902	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
 903	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
 904
 905	/* Increment the BO usecnt here, so that we never end up with an
 906	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
 907	 * plane is later updated through the non-async path.
 908	 * FIXME: we should move to generic async-page-flip when it's
 909	 * available, so that we can get rid of this hand-made prepare_fb()
 910	 * logic.
 911	 */
 912	ret = vc4_bo_inc_usecnt(bo);
 913	if (ret)
 914		return ret;
 915
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 916	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
 917	if (!flip_state) {
 918		vc4_bo_dec_usecnt(bo);
 919		return -ENOMEM;
 920	}
 921
 922	drm_framebuffer_get(fb);
 923	flip_state->fb = fb;
 924	flip_state->crtc = crtc;
 925	flip_state->event = event;
 926
 927	/* Make sure all other async modesetes have landed. */
 928	ret = down_interruptible(&vc4->async_modeset);
 929	if (ret) {
 930		drm_framebuffer_put(fb);
 931		vc4_bo_dec_usecnt(bo);
 932		kfree(flip_state);
 933		return ret;
 934	}
 935
 936	/* Save the current FB before it's replaced by the new one in
 937	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
 938	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
 939	 * it consistent.
 940	 * FIXME: we should move to generic async-page-flip when it's
 941	 * available, so that we can get rid of this hand-made cleanup_fb()
 942	 * logic.
 943	 */
 944	flip_state->old_fb = plane->state->fb;
 945	if (flip_state->old_fb)
 946		drm_framebuffer_get(flip_state->old_fb);
 947
 948	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 949
 950	/* Immediately update the plane's legacy fb pointer, so that later
 951	 * modeset prep sees the state that will be present when the semaphore
 952	 * is released.
 953	 */
 954	drm_atomic_set_fb_for_plane(plane->state, fb);
 955
 956	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
 957			   vc4_async_page_flip_complete);
 958
 959	/* Driver takes ownership of state on successful async commit. */
 960	return 0;
 961}
 962
 963static int vc4_page_flip(struct drm_crtc *crtc,
 964			 struct drm_framebuffer *fb,
 965			 struct drm_pending_vblank_event *event,
 966			 uint32_t flags,
 967			 struct drm_modeset_acquire_ctx *ctx)
 968{
 969	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
 970		return vc4_async_page_flip(crtc, fb, event, flags);
 971	else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 972		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
 
 973}
 974
 975static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
 976{
 977	struct vc4_crtc_state *vc4_state, *old_vc4_state;
 978
 979	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
 980	if (!vc4_state)
 981		return NULL;
 982
 983	old_vc4_state = to_vc4_crtc_state(crtc->state);
 984	vc4_state->feed_txp = old_vc4_state->feed_txp;
 985	vc4_state->margins = old_vc4_state->margins;
 
 986
 987	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
 988	return &vc4_state->base;
 989}
 990
 991static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
 992				   struct drm_crtc_state *state)
 993{
 994	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
 995	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 996
 997	if (vc4_state->mm.allocated) {
 998		unsigned long flags;
 999
1000		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1001		drm_mm_remove_node(&vc4_state->mm);
1002		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1003
1004	}
1005
1006	drm_atomic_helper_crtc_destroy_state(crtc, state);
1007}
1008
1009static void
1010vc4_crtc_reset(struct drm_crtc *crtc)
1011{
 
 
1012	if (crtc->state)
1013		vc4_crtc_destroy_state(crtc, crtc->state);
1014
1015	crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
1016	if (crtc->state)
1017		crtc->state->crtc = crtc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1018}
1019
1020static const struct drm_crtc_funcs vc4_crtc_funcs = {
1021	.set_config = drm_atomic_helper_set_config,
1022	.destroy = vc4_crtc_destroy,
1023	.page_flip = vc4_page_flip,
1024	.set_property = NULL,
1025	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1026	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1027	.reset = vc4_crtc_reset,
1028	.atomic_duplicate_state = vc4_crtc_duplicate_state,
1029	.atomic_destroy_state = vc4_crtc_destroy_state,
1030	.gamma_set = drm_atomic_helper_legacy_gamma_set,
1031	.enable_vblank = vc4_enable_vblank,
1032	.disable_vblank = vc4_disable_vblank,
 
 
1033};
1034
1035static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1036	.mode_set_nofb = vc4_crtc_mode_set_nofb,
1037	.mode_valid = vc4_crtc_mode_valid,
1038	.atomic_check = vc4_crtc_atomic_check,
1039	.atomic_flush = vc4_crtc_atomic_flush,
 
1040	.atomic_enable = vc4_crtc_atomic_enable,
1041	.atomic_disable = vc4_crtc_atomic_disable,
 
1042};
1043
1044static const struct vc4_crtc_data pv0_data = {
1045	.hvs_channel = 0,
1046	.debugfs_name = "crtc0_regs",
 
 
 
 
 
 
1047	.encoder_types = {
1048		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1049		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1050	},
1051};
1052
1053static const struct vc4_crtc_data pv1_data = {
1054	.hvs_channel = 2,
1055	.debugfs_name = "crtc1_regs",
 
 
 
 
 
 
1056	.encoder_types = {
1057		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1058		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1059	},
1060};
1061
1062static const struct vc4_crtc_data pv2_data = {
1063	.hvs_channel = 1,
1064	.debugfs_name = "crtc2_regs",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1065	.encoder_types = {
1066		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
1067		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1068	},
1069};
1070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1071static const struct of_device_id vc4_crtc_dt_match[] = {
1072	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
1073	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
1074	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
 
 
 
 
 
1075	{}
1076};
1077
1078static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1079					struct drm_crtc *crtc)
1080{
1081	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1082	const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
1083	const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
1084	struct drm_encoder *encoder;
1085
1086	drm_for_each_encoder(encoder, drm) {
1087		struct vc4_encoder *vc4_encoder;
1088		int i;
1089
1090		/* HVS FIFO2 can feed the TXP IP. */
1091		if (crtc_data->hvs_channel == 2 &&
1092		    encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1093			encoder->possible_crtcs |= drm_crtc_mask(crtc);
1094			continue;
1095		}
1096
1097		vc4_encoder = to_vc4_encoder(encoder);
1098		for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
1099			if (vc4_encoder->type == encoder_types[i]) {
1100				vc4_encoder->clock_select = i;
1101				encoder->possible_crtcs |= drm_crtc_mask(crtc);
1102				break;
1103			}
1104		}
1105	}
1106}
1107
1108static void
1109vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1110{
1111	struct drm_device *drm = vc4_crtc->base.dev;
1112	struct vc4_dev *vc4 = to_vc4_dev(drm);
1113	u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
1114	/* Top/base are supposed to be 4-pixel aligned, but the
1115	 * Raspberry Pi firmware fills the low bits (which are
1116	 * presumably ignored).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1117	 */
1118	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
1119	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
 
 
 
1120
1121	vc4_crtc->cob_size = top - base + 4;
 
1122}
1123
1124static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1125{
1126	struct platform_device *pdev = to_platform_device(dev);
1127	struct drm_device *drm = dev_get_drvdata(master);
 
1128	struct vc4_crtc *vc4_crtc;
1129	struct drm_crtc *crtc;
1130	struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
1131	const struct of_device_id *match;
1132	int ret, i;
1133
1134	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1135	if (!vc4_crtc)
1136		return -ENOMEM;
1137	crtc = &vc4_crtc->base;
1138
1139	match = of_match_device(vc4_crtc_dt_match, dev);
1140	if (!match)
1141		return -ENODEV;
1142	vc4_crtc->data = match->data;
1143	vc4_crtc->pdev = pdev;
1144
1145	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1146	if (IS_ERR(vc4_crtc->regs))
1147		return PTR_ERR(vc4_crtc->regs);
1148
1149	vc4_crtc->regset.base = vc4_crtc->regs;
1150	vc4_crtc->regset.regs = crtc_regs;
1151	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1152
1153	/* For now, we create just the primary and the legacy cursor
1154	 * planes.  We should be able to stack more planes on easily,
1155	 * but to do that we would need to compute the bandwidth
1156	 * requirement of the plane configuration, and reject ones
1157	 * that will take too much.
1158	 */
1159	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1160	if (IS_ERR(primary_plane)) {
1161		dev_err(dev, "failed to construct primary plane\n");
1162		ret = PTR_ERR(primary_plane);
1163		goto err;
1164	}
1165
1166	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1167				  &vc4_crtc_funcs, NULL);
1168	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1169	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1170	drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1171	drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1172
1173	/* We support CTM, but only for one CRTC at a time. It's therefore
1174	 * implemented as private driver state in vc4_kms, not here.
1175	 */
1176	drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1177
1178	/* Set up some arbitrary number of planes.  We're not limited
1179	 * by a set number of physical registers, just the space in
1180	 * the HVS (16k) and how small an plane can be (28 bytes).
1181	 * However, each plane we set up takes up some memory, and
1182	 * increases the cost of looping over planes, which atomic
1183	 * modesetting does quite a bit.  As a result, we pick a
1184	 * modest number of planes to expose, that should hopefully
1185	 * still cover any sane usecase.
1186	 */
1187	for (i = 0; i < 8; i++) {
1188		struct drm_plane *plane =
1189			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1190
1191		if (IS_ERR(plane))
1192			continue;
1193
1194		plane->possible_crtcs = drm_crtc_mask(crtc);
1195	}
1196
1197	/* Set up the legacy cursor after overlay initialization,
1198	 * since we overlay planes on the CRTC in the order they were
1199	 * initialized.
1200	 */
1201	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1202	if (!IS_ERR(cursor_plane)) {
1203		cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
1204		crtc->cursor = cursor_plane;
1205	}
1206
1207	vc4_crtc_get_cob_allocation(vc4_crtc);
1208
1209	CRTC_WRITE(PV_INTEN, 0);
1210	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1211	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1212			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
 
 
1213	if (ret)
1214		goto err_destroy_planes;
1215
1216	vc4_set_crtc_possible_masks(drm, crtc);
1217
1218	for (i = 0; i < crtc->gamma_size; i++) {
1219		vc4_crtc->lut_r[i] = i;
1220		vc4_crtc->lut_g[i] = i;
1221		vc4_crtc->lut_b[i] = i;
1222	}
1223
1224	platform_set_drvdata(pdev, vc4_crtc);
1225
1226	vc4_debugfs_add_regset32(drm, vc4_crtc->data->debugfs_name,
1227				 &vc4_crtc->regset);
1228
1229	return 0;
1230
1231err_destroy_planes:
1232	list_for_each_entry_safe(destroy_plane, temp,
1233				 &drm->mode_config.plane_list, head) {
1234		if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1235		    destroy_plane->funcs->destroy(destroy_plane);
1236	}
1237err:
1238	return ret;
1239}
1240
1241static void vc4_crtc_unbind(struct device *dev, struct device *master,
1242			    void *data)
1243{
1244	struct platform_device *pdev = to_platform_device(dev);
1245	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1246
1247	vc4_crtc_destroy(&vc4_crtc->base);
1248
1249	CRTC_WRITE(PV_INTEN, 0);
1250
1251	platform_set_drvdata(pdev, NULL);
1252}
1253
1254static const struct component_ops vc4_crtc_ops = {
1255	.bind   = vc4_crtc_bind,
1256	.unbind = vc4_crtc_unbind,
1257};
1258
1259static int vc4_crtc_dev_probe(struct platform_device *pdev)
1260{
1261	return component_add(&pdev->dev, &vc4_crtc_ops);
1262}
1263
1264static int vc4_crtc_dev_remove(struct platform_device *pdev)
1265{
1266	component_del(&pdev->dev, &vc4_crtc_ops);
1267	return 0;
1268}
1269
1270struct platform_driver vc4_crtc_driver = {
1271	.probe = vc4_crtc_dev_probe,
1272	.remove = vc4_crtc_dev_remove,
1273	.driver = {
1274		.name = "vc4_crtc",
1275		.of_match_table = vc4_crtc_dt_match,
1276	},
1277};
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2015 Broadcom
   4 */
   5
   6/**
   7 * DOC: VC4 CRTC module
   8 *
   9 * In VC4, the Pixel Valve is what most closely corresponds to the
  10 * DRM's concept of a CRTC.  The PV generates video timings from the
  11 * encoder's clock plus its configuration.  It pulls scaled pixels from
  12 * the HVS at that timing, and feeds it to the encoder.
  13 *
  14 * However, the DRM CRTC also collects the configuration of all the
  15 * DRM planes attached to it.  As a result, the CRTC is also
  16 * responsible for writing the display list for the HVS channel that
  17 * the CRTC will use.
  18 *
  19 * The 2835 has 3 different pixel valves.  pv0 in the audio power
  20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
  21 * image domain can feed either HDMI or the SDTV controller.  The
  22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
  23 * SDTV, etc.) according to which output type is chosen in the mux.
  24 *
  25 * For power management, the pixel valve's registers are all clocked
  26 * by the AXI clock, while the timings and FIFOs make use of the
  27 * output-specific clock.  Since the encoders also directly consume
  28 * the CPRMAN clocks, and know what timings they need, they are the
  29 * ones that set the clock.
  30 */
  31
  32#include <linux/clk.h>
  33#include <linux/component.h>
  34#include <linux/of.h>
  35#include <linux/platform_device.h>
  36#include <linux/pm_runtime.h>
  37
  38#include <drm/drm_atomic.h>
  39#include <drm/drm_atomic_helper.h>
  40#include <drm/drm_atomic_uapi.h>
  41#include <drm/drm_fb_dma_helper.h>
  42#include <drm/drm_framebuffer.h>
  43#include <drm/drm_drv.h>
  44#include <drm/drm_print.h>
  45#include <drm/drm_probe_helper.h>
  46#include <drm/drm_vblank.h>
  47
  48#include "vc4_drv.h"
  49#include "vc4_hdmi.h"
  50#include "vc4_regs.h"
  51
  52#define HVS_FIFO_LATENCY_PIX	6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  53
  54#define CRTC_WRITE(offset, val)								\
  55	do {										\
  56		kunit_fail_current_test("Accessing a register in a unit test!\n");	\
  57		writel(val, vc4_crtc->regs + (offset));					\
  58	} while (0)
  59
  60#define CRTC_READ(offset)								\
  61	({										\
  62		kunit_fail_current_test("Accessing a register in a unit test!\n");	\
  63		readl(vc4_crtc->regs + (offset));					\
  64	})
  65
  66static const struct debugfs_reg32 crtc_regs[] = {
  67	VC4_REG32(PV_CONTROL),
  68	VC4_REG32(PV_V_CONTROL),
  69	VC4_REG32(PV_VSYNCD_EVEN),
  70	VC4_REG32(PV_HORZA),
  71	VC4_REG32(PV_HORZB),
  72	VC4_REG32(PV_VERTA),
  73	VC4_REG32(PV_VERTB),
  74	VC4_REG32(PV_VERTA_EVEN),
  75	VC4_REG32(PV_VERTB_EVEN),
  76	VC4_REG32(PV_INTEN),
  77	VC4_REG32(PV_INTSTAT),
  78	VC4_REG32(PV_STAT),
  79	VC4_REG32(PV_HACT_ACT),
  80};
  81
  82static unsigned int
  83vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
 
 
  84{
  85	struct vc4_hvs *hvs = vc4->hvs;
  86	u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
  87	/* Top/base are supposed to be 4-pixel aligned, but the
  88	 * Raspberry Pi firmware fills the low bits (which are
  89	 * presumably ignored).
  90	 */
  91	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
  92	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
  93
  94	return top - base + 4;
  95}
  96
  97static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
  98					  bool in_vblank_irq,
  99					  int *vpos, int *hpos,
 100					  ktime_t *stime, ktime_t *etime,
 101					  const struct drm_display_mode *mode)
 102{
 103	struct drm_device *dev = crtc->dev;
 104	struct vc4_dev *vc4 = to_vc4_dev(dev);
 105	struct vc4_hvs *hvs = vc4->hvs;
 106	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 107	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
 108	unsigned int channel = vc4_crtc_state->assigned_channel;
 109	unsigned int cob_size;
 110	u32 val;
 111	int fifo_lines;
 112	int vblank_lines;
 113	bool ret = false;
 114
 115	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
 116
 117	/* Get optional system timestamp before query. */
 118	if (stime)
 119		*stime = ktime_get();
 120
 121	/*
 122	 * Read vertical scanline which is currently composed for our
 123	 * pixelvalve by the HVS, and also the scaler status.
 124	 */
 125	val = HVS_READ(SCALER_DISPSTATX(channel));
 126
 127	/* Get optional system timestamp after query. */
 128	if (etime)
 129		*etime = ktime_get();
 130
 131	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
 132
 133	/* Vertical position of hvs composed scanline. */
 134	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
 135	*hpos = 0;
 136
 137	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 138		*vpos /= 2;
 139
 140		/* Use hpos to correct for field offset in interlaced mode. */
 141		if (vc4_hvs_get_fifo_frame_count(hvs, channel) % 2)
 142			*hpos += mode->crtc_htotal / 2;
 143	}
 144
 145	cob_size = vc4_crtc_get_cob_allocation(vc4, channel);
 146	/* This is the offset we need for translating hvs -> pv scanout pos. */
 147	fifo_lines = cob_size / mode->crtc_hdisplay;
 148
 149	if (fifo_lines > 0)
 150		ret = true;
 151
 152	/* HVS more than fifo_lines into frame for compositing? */
 153	if (*vpos > fifo_lines) {
 154		/*
 155		 * We are in active scanout and can get some meaningful results
 156		 * from HVS. The actual PV scanout can not trail behind more
 157		 * than fifo_lines as that is the fifo's capacity. Assume that
 158		 * in active scanout the HVS and PV work in lockstep wrt. HVS
 159		 * refilling the fifo and PV consuming from the fifo, ie.
 160		 * whenever the PV consumes and frees up a scanline in the
 161		 * fifo, the HVS will immediately refill it, therefore
 162		 * incrementing vpos. Therefore we choose HVS read position -
 163		 * fifo size in scanlines as a estimate of the real scanout
 164		 * position of the PV.
 165		 */
 166		*vpos -= fifo_lines + 1;
 167
 168		return ret;
 169	}
 170
 171	/*
 172	 * Less: This happens when we are in vblank and the HVS, after getting
 173	 * the VSTART restart signal from the PV, just started refilling its
 174	 * fifo with new lines from the top-most lines of the new framebuffers.
 175	 * The PV does not scan out in vblank, so does not remove lines from
 176	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
 177	 * We can't get meaningful readings wrt. scanline position of the PV
 178	 * and need to make things up in a approximative but consistent way.
 179	 */
 180	vblank_lines = mode->vtotal - mode->vdisplay;
 181
 182	if (in_vblank_irq) {
 183		/*
 184		 * Assume the irq handler got called close to first
 185		 * line of vblank, so PV has about a full vblank
 186		 * scanlines to go, and as a base timestamp use the
 187		 * one taken at entry into vblank irq handler, so it
 188		 * is not affected by random delays due to lock
 189		 * contention on event_lock or vblank_time lock in
 190		 * the core.
 191		 */
 192		*vpos = -vblank_lines;
 193
 194		if (stime)
 195			*stime = vc4_crtc->t_vblank;
 196		if (etime)
 197			*etime = vc4_crtc->t_vblank;
 198
 199		/*
 200		 * If the HVS fifo is not yet full then we know for certain
 201		 * we are at the very beginning of vblank, as the hvs just
 202		 * started refilling, and the stime and etime timestamps
 203		 * truly correspond to start of vblank.
 204		 *
 205		 * Unfortunately there's no way to report this to upper levels
 206		 * and make it more useful.
 207		 */
 208	} else {
 209		/*
 210		 * No clue where we are inside vblank. Return a vpos of zero,
 211		 * which will cause calling code to just return the etime
 212		 * timestamp uncorrected. At least this is no worse than the
 213		 * standard fallback.
 214		 */
 215		*vpos = 0;
 216	}
 217
 218	return ret;
 219}
 220
 221static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
 222{
 223	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
 224	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
 225	struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
 226	u32 fifo_len_bytes = pv_data->fifo_depth;
 
 
 
 
 
 
 227
 228	/*
 229	 * Pixels are pulled from the HVS if the number of bytes is
 230	 * lower than the FIFO full level.
 231	 *
 232	 * The latency of the pixel fetch mechanism is 6 pixels, so we
 233	 * need to convert those 6 pixels in bytes, depending on the
 234	 * format, and then subtract that from the length of the FIFO
 235	 * to make sure we never end up in a situation where the FIFO
 236	 * is full.
 237	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 238	switch (format) {
 239	case PV_CONTROL_FORMAT_DSIV_16:
 240	case PV_CONTROL_FORMAT_DSIC_16:
 241		return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
 242	case PV_CONTROL_FORMAT_DSIV_18:
 243		return fifo_len_bytes - 14;
 244	case PV_CONTROL_FORMAT_24:
 245	case PV_CONTROL_FORMAT_DSIV_24:
 246	default:
 247		/*
 248		 * For some reason, the pixelvalve4 doesn't work with
 249		 * the usual formula and will only work with 32.
 250		 */
 251		if (crtc_data->hvs_output == 5)
 252			return 32;
 253
 254		/*
 255		 * It looks like in some situations, we will overflow
 256		 * the PixelValve FIFO (with the bit 10 of PV stat being
 257		 * set) and stall the HVS / PV, eventually resulting in
 258		 * a page flip timeout.
 259		 *
 260		 * Displaying the video overlay during a playback with
 261		 * Kodi on an RPi3 seems to be a great solution with a
 262		 * failure rate around 50%.
 263		 *
 264		 * Removing 1 from the FIFO full level however
 265		 * seems to completely remove that issue.
 266		 */
 267		if (vc4->gen == VC4_GEN_4)
 268			return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
 269
 270		return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
 271	}
 272}
 273
 274static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
 275					     u32 format)
 276{
 277	u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
 278	u32 ret = 0;
 279
 280	ret |= VC4_SET_FIELD((level >> 6),
 281			     PV5_CONTROL_FIFO_LEVEL_HIGH);
 282
 283	return ret | VC4_SET_FIELD(level & 0x3f,
 284				   PV_CONTROL_FIFO_LEVEL);
 285}
 286
 287/*
 288 * Returns the encoder attached to the CRTC.
 289 *
 290 * VC4 can only scan out to one encoder at a time, while the DRM core
 291 * allows drivers to push pixels to more than one encoder from the
 292 * same CRTC.
 293 */
 294struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
 295					 struct drm_crtc_state *state)
 296{
 297	struct drm_encoder *encoder;
 
 298
 299	WARN_ON(hweight32(state->encoder_mask) > 1);
 300
 301	drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
 302		return encoder;
 
 
 
 
 303
 304	return NULL;
 305}
 306
 307static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
 308{
 309	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 310	struct drm_device *dev = crtc->dev;
 311	int idx;
 312
 313	if (!drm_dev_enter(dev, &idx))
 314		return;
 315
 316	/* The PV needs to be disabled before it can be flushed */
 317	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
 318	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
 319
 320	drm_dev_exit(idx);
 321}
 322
 323static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
 324			       struct drm_atomic_state *state)
 325{
 326	struct drm_device *dev = crtc->dev;
 327	struct vc4_dev *vc4 = to_vc4_dev(dev);
 328	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 329	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 330	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
 331	struct drm_crtc_state *crtc_state = crtc->state;
 332	struct drm_display_mode *mode = &crtc_state->adjusted_mode;
 333	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
 334	bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 ||
 335		       vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1;
 336	u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1;
 337	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
 338		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
 339	bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1;
 340	bool is_vec = vc4_encoder->type == VC4_ENCODER_TYPE_VEC;
 341	u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
 342	u8 ppc = pv_data->pixels_per_clock;
 343
 344	u16 vert_bp = mode->crtc_vtotal - mode->crtc_vsync_end;
 345	u16 vert_sync = mode->crtc_vsync_end - mode->crtc_vsync_start;
 346	u16 vert_fp = mode->crtc_vsync_start - mode->crtc_vdisplay;
 347
 348	bool debug_dump_regs = false;
 349	int idx;
 350
 351	if (!drm_dev_enter(dev, &idx))
 352		return;
 353
 354	if (debug_dump_regs) {
 355		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
 356		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
 357			 drm_crtc_index(crtc));
 358		drm_print_regset32(&p, &vc4_crtc->regset);
 359	}
 360
 361	vc4_crtc_pixelvalve_reset(crtc);
 362
 363	CRTC_WRITE(PV_HORZA,
 364		   VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
 
 365				 PV_HORZA_HBP) |
 366		   VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
 
 367				 PV_HORZA_HSYNC));
 368
 369	CRTC_WRITE(PV_HORZB,
 370		   VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
 
 371				 PV_HORZB_HFP) |
 372		   VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
 373				 PV_HORZB_HACTIVE));
 
 
 
 
 
 
 
 
 
 374
 375	if (interlace) {
 376		bool odd_field_first = false;
 377		u32 field_delay = mode->htotal * pixel_rep / (2 * ppc);
 378		u16 vert_bp_even = vert_bp;
 379		u16 vert_fp_even = vert_fp;
 380
 381		if (is_vec) {
 382			/* VEC (composite output) */
 383			++field_delay;
 384			if (mode->htotal == 858) {
 385				/* 525-line mode (NTSC or PAL-M) */
 386				odd_field_first = true;
 387			}
 388		}
 389
 390		if (odd_field_first)
 391			++vert_fp_even;
 392		else
 393			++vert_bp;
 394
 395		CRTC_WRITE(PV_VERTA_EVEN,
 396			   VC4_SET_FIELD(vert_bp_even, PV_VERTA_VBP) |
 397			   VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC));
 
 
 
 
 398		CRTC_WRITE(PV_VERTB_EVEN,
 399			   VC4_SET_FIELD(vert_fp_even, PV_VERTB_VFP) |
 
 
 400			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
 401
 402		/* We set up first field even mode for HDMI and VEC's PAL.
 403		 * For NTSC, we need first field odd.
 
 
 404		 */
 405		CRTC_WRITE(PV_V_CONTROL,
 406			   PV_VCONTROL_CONTINUOUS |
 407			   (is_dsi ? PV_VCONTROL_DSI : 0) |
 408			   PV_VCONTROL_INTERLACE |
 409			   (odd_field_first
 410				   ? PV_VCONTROL_ODD_FIRST
 411				   : VC4_SET_FIELD(field_delay,
 412						   PV_VCONTROL_ODD_DELAY)));
 413		CRTC_WRITE(PV_VSYNCD_EVEN,
 414			   (odd_field_first ? field_delay : 0));
 415	} else {
 416		CRTC_WRITE(PV_V_CONTROL,
 417			   PV_VCONTROL_CONTINUOUS |
 418			   (is_dsi ? PV_VCONTROL_DSI : 0));
 419		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
 420	}
 421
 422	CRTC_WRITE(PV_VERTA,
 423		   VC4_SET_FIELD(vert_bp, PV_VERTA_VBP) |
 424		   VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC));
 425	CRTC_WRITE(PV_VERTB,
 426		   VC4_SET_FIELD(vert_fp, PV_VERTB_VFP) |
 427		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
 428
 429	if (is_dsi)
 430		CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
 431
 432	if (vc4->gen == VC4_GEN_5)
 433		CRTC_WRITE(PV_MUX_CFG,
 434			   VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
 435					 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
 436
 437	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
 438		   vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
 439		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
 
 
 440		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
 441		   PV_CONTROL_CLR_AT_START |
 442		   PV_CONTROL_TRIGGER_UNDERFLOW |
 443		   PV_CONTROL_WAIT_HSTART |
 444		   VC4_SET_FIELD(vc4_encoder->clock_select,
 445				 PV_CONTROL_CLK_SELECT));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 446
 447	if (debug_dump_regs) {
 448		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
 449		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
 450			 drm_crtc_index(crtc));
 451		drm_print_regset32(&p, &vc4_crtc->regset);
 452	}
 453
 454	drm_dev_exit(idx);
 455}
 456
 457static void require_hvs_enabled(struct drm_device *dev)
 458{
 459	struct vc4_dev *vc4 = to_vc4_dev(dev);
 460	struct vc4_hvs *hvs = vc4->hvs;
 461
 462	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
 463		     SCALER_DISPCTRL_ENABLE);
 464}
 465
 466static int vc4_crtc_disable(struct drm_crtc *crtc,
 467			    struct drm_encoder *encoder,
 468			    struct drm_atomic_state *state,
 469			    unsigned int channel)
 470{
 471	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 472	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 473	struct drm_device *dev = crtc->dev;
 474	struct vc4_dev *vc4 = to_vc4_dev(dev);
 475	int idx, ret;
 
 
 
 476
 477	if (!drm_dev_enter(dev, &idx))
 478		return -ENODEV;
 479
 480	CRTC_WRITE(PV_V_CONTROL,
 481		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
 482	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
 483	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
 484
 485	/*
 486	 * This delay is needed to avoid to get a pixel stuck in an
 487	 * unflushable FIFO between the pixelvalve and the HDMI
 488	 * controllers on the BCM2711.
 489	 *
 490	 * Timing is fairly sensitive here, so mdelay is the safest
 491	 * approach.
 492	 *
 493	 * If it was to be reworked, the stuck pixel happens on a
 494	 * BCM2711 when changing mode with a good probability, so a
 495	 * script that changes mode on a regular basis should trigger
 496	 * the bug after less than 10 attempts. It manifests itself with
 497	 * every pixels being shifted by one to the right, and thus the
 498	 * last pixel of a line actually being displayed as the first
 499	 * pixel on the next line.
 500	 */
 501	mdelay(20);
 502
 503	if (vc4_encoder && vc4_encoder->post_crtc_disable)
 504		vc4_encoder->post_crtc_disable(encoder, state);
 505
 506	vc4_crtc_pixelvalve_reset(crtc);
 507	vc4_hvs_stop_channel(vc4->hvs, channel);
 508
 509	if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
 510		vc4_encoder->post_crtc_powerdown(encoder, state);
 511
 512	drm_dev_exit(idx);
 513
 514	return 0;
 515}
 516
 517int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
 518{
 519	struct drm_device *drm = crtc->dev;
 520	struct vc4_dev *vc4 = to_vc4_dev(drm);
 521	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 522	enum vc4_encoder_type encoder_type;
 523	const struct vc4_pv_data *pv_data;
 524	struct drm_encoder *encoder;
 525	struct vc4_hdmi *vc4_hdmi;
 526	unsigned encoder_sel;
 527	int channel;
 528	int ret;
 529
 530	if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
 531				      "brcm,bcm2711-pixelvalve2") ||
 532	      of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
 533				      "brcm,bcm2711-pixelvalve4")))
 534		return 0;
 535
 536	if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
 537		return 0;
 538
 539	if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
 540		return 0;
 541
 542	channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output);
 543	if (channel < 0)
 544		return 0;
 545
 546	encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
 547	if (WARN_ON(encoder_sel != 0))
 548		return 0;
 549
 550	pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
 551	encoder_type = pv_data->encoder_types[encoder_sel];
 552	encoder = vc4_find_encoder_by_type(drm, encoder_type);
 553	if (WARN_ON(!encoder))
 554		return 0;
 555
 556	vc4_hdmi = encoder_to_vc4_hdmi(encoder);
 557	ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
 558	if (ret)
 559		return ret;
 560
 561	ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
 562	if (ret)
 563		return ret;
 564
 565	/*
 566	 * post_crtc_powerdown will have called pm_runtime_put, so we
 567	 * don't need it here otherwise we'll get the reference counting
 568	 * wrong.
 569	 */
 
 
 570
 571	return 0;
 
 
 
 
 572}
 573
 574void vc4_crtc_send_vblank(struct drm_crtc *crtc)
 575{
 576	struct drm_device *dev = crtc->dev;
 577	unsigned long flags;
 578
 579	if (!crtc->state || !crtc->state->event)
 580		return;
 581
 582	spin_lock_irqsave(&dev->event_lock, flags);
 583	drm_crtc_send_vblank_event(crtc, crtc->state->event);
 584	crtc->state->event = NULL;
 585	spin_unlock_irqrestore(&dev->event_lock, flags);
 586}
 587
 588static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
 589				    struct drm_atomic_state *state)
 590{
 591	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
 592									 crtc);
 593	struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
 594	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
 595	struct drm_device *dev = crtc->dev;
 
 
 
 
 
 
 
 
 596
 597	drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
 598		crtc->name, crtc->base.id, encoder->name, encoder->base.id);
 599
 600	require_hvs_enabled(dev);
 601
 602	/* Disable vblank irq handling before crtc is disabled. */
 603	drm_crtc_vblank_off(crtc);
 
 
 604
 605	vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
 
 606
 607	/*
 608	 * Make sure we issue a vblank event after disabling the CRTC if
 609	 * someone was waiting it.
 610	 */
 611	vc4_crtc_send_vblank(crtc);
 612}
 613
 614static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
 615				   struct drm_atomic_state *state)
 616{
 617	struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
 618									 crtc);
 619	struct drm_device *dev = crtc->dev;
 
 620	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 621	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
 622	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 623	int idx;
 624
 625	drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
 626		crtc->name, crtc->base.id, encoder->name, encoder->base.id);
 627
 628	if (!drm_dev_enter(dev, &idx))
 629		return;
 630
 631	require_hvs_enabled(dev);
 632
 633	/* Enable vblank irq handling before crtc is started otherwise
 634	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
 635	 */
 636	drm_crtc_vblank_on(crtc);
 
 637
 638	vc4_hvs_atomic_enable(crtc, state);
 639
 640	if (vc4_encoder->pre_crtc_configure)
 641		vc4_encoder->pre_crtc_configure(encoder, state);
 642
 643	vc4_crtc_config_pv(crtc, encoder, state);
 644
 645	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
 646
 647	if (vc4_encoder->pre_crtc_enable)
 648		vc4_encoder->pre_crtc_enable(encoder, state);
 649
 650	/* When feeding the transposer block the pixelvalve is unneeded and
 651	 * should not be enabled.
 652	 */
 653	CRTC_WRITE(PV_V_CONTROL,
 654		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
 655
 656	if (vc4_encoder->post_crtc_enable)
 657		vc4_encoder->post_crtc_enable(encoder, state);
 658
 659	drm_dev_exit(idx);
 660}
 661
 662static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
 663						const struct drm_display_mode *mode)
 664{
 665	/* Do not allow doublescan modes from user space */
 666	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
 667		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
 668			      crtc->base.id);
 669		return MODE_NO_DBLESCAN;
 670	}
 671
 672	return MODE_OK;
 673}
 674
 675void vc4_crtc_get_margins(struct drm_crtc_state *state,
 676			  unsigned int *left, unsigned int *right,
 677			  unsigned int *top, unsigned int *bottom)
 678{
 679	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 680	struct drm_connector_state *conn_state;
 681	struct drm_connector *conn;
 682	int i;
 683
 684	*left = vc4_state->margins.left;
 685	*right = vc4_state->margins.right;
 686	*top = vc4_state->margins.top;
 687	*bottom = vc4_state->margins.bottom;
 688
 689	/* We have to interate over all new connector states because
 690	 * vc4_crtc_get_margins() might be called before
 691	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
 692	 * might be outdated.
 693	 */
 694	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
 695		if (conn_state->crtc != state->crtc)
 696			continue;
 697
 698		*left = conn_state->tv.margins.left;
 699		*right = conn_state->tv.margins.right;
 700		*top = conn_state->tv.margins.top;
 701		*bottom = conn_state->tv.margins.bottom;
 702		break;
 703	}
 704}
 705
 706int vc4_crtc_atomic_check(struct drm_crtc *crtc,
 707			  struct drm_atomic_state *state)
 708{
 709	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
 710									  crtc);
 711	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
 
 
 
 712	struct drm_connector *conn;
 713	struct drm_connector_state *conn_state;
 714	struct drm_encoder *encoder;
 715	int ret, i;
 716
 717	ret = vc4_hvs_atomic_check(crtc, state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 718	if (ret)
 719		return ret;
 720
 721	encoder = vc4_get_crtc_encoder(crtc, crtc_state);
 722	if (encoder) {
 723		const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
 724		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 725
 726		if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
 727			vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 8000,
 728						  mode->clock * 9 / 10) * 1000;
 
 
 729		} else {
 730			vc4_state->hvs_load = mode->clock * 1000;
 
 731		}
 
 
 
 
 
 
 732	}
 733
 734	for_each_new_connector_in_state(state, conn, conn_state,
 735					i) {
 736		if (conn_state->crtc != crtc)
 737			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 738
 739		if (memcmp(&vc4_state->margins, &conn_state->tv.margins,
 740			   sizeof(vc4_state->margins))) {
 741			memcpy(&vc4_state->margins, &conn_state->tv.margins,
 742			       sizeof(vc4_state->margins));
 743
 744			/*
 745			 * Need to force the dlist entries for all planes to be
 746			 * updated so that the dest rectangles are changed.
 747			 */
 748			crtc_state->zpos_changed = true;
 749		}
 750		break;
 751	}
 752
 753	return 0;
 
 
 
 754}
 755
 756static int vc4_enable_vblank(struct drm_crtc *crtc)
 757{
 758	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 759	struct drm_device *dev = crtc->dev;
 760	int idx;
 761
 762	if (!drm_dev_enter(dev, &idx))
 763		return -ENODEV;
 764
 765	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
 766
 767	drm_dev_exit(idx);
 768
 769	return 0;
 770}
 771
 772static void vc4_disable_vblank(struct drm_crtc *crtc)
 773{
 774	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 775	struct drm_device *dev = crtc->dev;
 776	int idx;
 777
 778	if (!drm_dev_enter(dev, &idx))
 779		return;
 780
 781	CRTC_WRITE(PV_INTEN, 0);
 782
 783	drm_dev_exit(idx);
 784}
 785
 786static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
 787{
 788	struct drm_crtc *crtc = &vc4_crtc->base;
 789	struct drm_device *dev = crtc->dev;
 790	struct vc4_dev *vc4 = to_vc4_dev(dev);
 791	struct vc4_hvs *hvs = vc4->hvs;
 792	u32 chan = vc4_crtc->current_hvs_channel;
 793	unsigned long flags;
 794
 795	spin_lock_irqsave(&dev->event_lock, flags);
 796	spin_lock(&vc4_crtc->irq_lock);
 797	if (vc4_crtc->event &&
 798	    (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
 799	     vc4_crtc->feeds_txp)) {
 800		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
 801		vc4_crtc->event = NULL;
 802		drm_crtc_vblank_put(crtc);
 803
 804		/* Wait for the page flip to unmask the underrun to ensure that
 805		 * the display list was updated by the hardware. Before that
 806		 * happens, the HVS will be using the previous display list with
 807		 * the CRTC and encoder already reconfigured, leading to
 808		 * underruns. This can be seen when reconfiguring the CRTC.
 809		 */
 810		vc4_hvs_unmask_underrun(hvs, chan);
 811	}
 812	spin_unlock(&vc4_crtc->irq_lock);
 813	spin_unlock_irqrestore(&dev->event_lock, flags);
 814}
 815
 816void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
 817{
 818	crtc->t_vblank = ktime_get();
 819	drm_crtc_handle_vblank(&crtc->base);
 820	vc4_crtc_handle_page_flip(crtc);
 821}
 822
 823static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
 824{
 825	struct vc4_crtc *vc4_crtc = data;
 826	u32 stat = CRTC_READ(PV_INTSTAT);
 827	irqreturn_t ret = IRQ_NONE;
 828
 829	if (stat & PV_INT_VFP_START) {
 830		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
 831		vc4_crtc_handle_vblank(vc4_crtc);
 832		ret = IRQ_HANDLED;
 833	}
 834
 835	return ret;
 836}
 837
 838struct vc4_async_flip_state {
 839	struct drm_crtc *crtc;
 840	struct drm_framebuffer *fb;
 841	struct drm_framebuffer *old_fb;
 842	struct drm_pending_vblank_event *event;
 843
 844	union {
 845		struct dma_fence_cb fence;
 846		struct vc4_seqno_cb seqno;
 847	} cb;
 848};
 849
 850/* Called when the V3D execution for the BO being flipped to is done, so that
 851 * we can actually update the plane's address to point to it.
 852 */
 853static void
 854vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state)
 855{
 
 
 856	struct drm_crtc *crtc = flip_state->crtc;
 857	struct drm_device *dev = crtc->dev;
 
 858	struct drm_plane *plane = crtc->primary;
 859
 860	vc4_plane_async_set_fb(plane, flip_state->fb);
 861	if (flip_state->event) {
 862		unsigned long flags;
 863
 864		spin_lock_irqsave(&dev->event_lock, flags);
 865		drm_crtc_send_vblank_event(crtc, flip_state->event);
 866		spin_unlock_irqrestore(&dev->event_lock, flags);
 867	}
 868
 869	drm_crtc_vblank_put(crtc);
 870	drm_framebuffer_put(flip_state->fb);
 871
 872	if (flip_state->old_fb)
 873		drm_framebuffer_put(flip_state->old_fb);
 874
 875	kfree(flip_state);
 876}
 877
 878static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb)
 879{
 880	struct vc4_async_flip_state *flip_state =
 881		container_of(cb, struct vc4_async_flip_state, cb.seqno);
 882	struct vc4_bo *bo = NULL;
 883
 884	if (flip_state->old_fb) {
 885		struct drm_gem_dma_object *dma_bo =
 886			drm_fb_dma_get_gem_obj(flip_state->old_fb, 0);
 887		bo = to_vc4_bo(&dma_bo->base);
 888	}
 889
 890	vc4_async_page_flip_complete(flip_state);
 891
 892	/*
 893	 * Decrement the BO usecnt in order to keep the inc/dec
 894	 * calls balanced when the planes are updated through
 895	 * the async update path.
 896	 *
 897	 * FIXME: we should move to generic async-page-flip when
 898	 * it's available, so that we can get rid of this
 899	 * hand-made cleanup_fb() logic.
 900	 */
 901	if (bo)
 902		vc4_bo_dec_usecnt(bo);
 903}
 
 904
 905static void vc4_async_page_flip_fence_complete(struct dma_fence *fence,
 906					       struct dma_fence_cb *cb)
 907{
 908	struct vc4_async_flip_state *flip_state =
 909		container_of(cb, struct vc4_async_flip_state, cb.fence);
 910
 911	vc4_async_page_flip_complete(flip_state);
 912	dma_fence_put(fence);
 913}
 914
 915static int vc4_async_set_fence_cb(struct drm_device *dev,
 916				  struct vc4_async_flip_state *flip_state)
 
 
 
 
 
 
 
 
 917{
 918	struct drm_framebuffer *fb = flip_state->fb;
 919	struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
 920	struct vc4_dev *vc4 = to_vc4_dev(dev);
 921	struct dma_fence *fence;
 922	int ret;
 
 
 
 923
 924	if (vc4->gen == VC4_GEN_4) {
 925		struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
 926
 927		return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno,
 928					  vc4_async_page_flip_seqno_complete);
 929	}
 930
 931	ret = dma_resv_get_singleton(dma_bo->base.resv, DMA_RESV_USAGE_READ, &fence);
 932	if (ret)
 933		return ret;
 934
 935	/* If there's no fence, complete the page flip immediately */
 936	if (!fence) {
 937		vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
 938		return 0;
 939	}
 940
 941	/* If the fence has already been completed, complete the page flip */
 942	if (dma_fence_add_callback(fence, &flip_state->cb.fence,
 943				   vc4_async_page_flip_fence_complete))
 944		vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
 945
 946	return 0;
 947}
 948
 949static int
 950vc4_async_page_flip_common(struct drm_crtc *crtc,
 951			   struct drm_framebuffer *fb,
 952			   struct drm_pending_vblank_event *event,
 953			   uint32_t flags)
 954{
 955	struct drm_device *dev = crtc->dev;
 956	struct drm_plane *plane = crtc->primary;
 957	struct vc4_async_flip_state *flip_state;
 958
 959	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
 960	if (!flip_state)
 
 961		return -ENOMEM;
 
 962
 963	drm_framebuffer_get(fb);
 964	flip_state->fb = fb;
 965	flip_state->crtc = crtc;
 966	flip_state->event = event;
 967
 
 
 
 
 
 
 
 
 
 968	/* Save the current FB before it's replaced by the new one in
 969	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
 970	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
 971	 * it consistent.
 972	 * FIXME: we should move to generic async-page-flip when it's
 973	 * available, so that we can get rid of this hand-made cleanup_fb()
 974	 * logic.
 975	 */
 976	flip_state->old_fb = plane->state->fb;
 977	if (flip_state->old_fb)
 978		drm_framebuffer_get(flip_state->old_fb);
 979
 980	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 981
 982	/* Immediately update the plane's legacy fb pointer, so that later
 983	 * modeset prep sees the state that will be present when the semaphore
 984	 * is released.
 985	 */
 986	drm_atomic_set_fb_for_plane(plane->state, fb);
 987
 988	vc4_async_set_fence_cb(dev, flip_state);
 
 989
 990	/* Driver takes ownership of state on successful async commit. */
 991	return 0;
 992}
 993
 994/* Implements async (non-vblank-synced) page flips.
 995 *
 996 * The page flip ioctl needs to return immediately, so we grab the
 997 * modeset semaphore on the pipe, and queue the address update for
 998 * when V3D is done with the BO being flipped to.
 999 */
1000static int vc4_async_page_flip(struct drm_crtc *crtc,
1001			       struct drm_framebuffer *fb,
1002			       struct drm_pending_vblank_event *event,
1003			       uint32_t flags)
1004{
1005	struct drm_device *dev = crtc->dev;
1006	struct vc4_dev *vc4 = to_vc4_dev(dev);
1007	struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
1008	struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
1009	int ret;
1010
1011	if (WARN_ON_ONCE(vc4->gen > VC4_GEN_4))
1012		return -ENODEV;
1013
1014	/*
1015	 * Increment the BO usecnt here, so that we never end up with an
1016	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
1017	 * plane is later updated through the non-async path.
1018	 *
1019	 * FIXME: we should move to generic async-page-flip when
1020	 * it's available, so that we can get rid of this
1021	 * hand-made prepare_fb() logic.
1022	 */
1023	ret = vc4_bo_inc_usecnt(bo);
1024	if (ret)
1025		return ret;
1026
1027	ret = vc4_async_page_flip_common(crtc, fb, event, flags);
1028	if (ret) {
1029		vc4_bo_dec_usecnt(bo);
1030		return ret;
1031	}
1032
1033	return 0;
1034}
1035
1036static int vc5_async_page_flip(struct drm_crtc *crtc,
1037			       struct drm_framebuffer *fb,
1038			       struct drm_pending_vblank_event *event,
1039			       uint32_t flags)
1040{
1041	return vc4_async_page_flip_common(crtc, fb, event, flags);
1042}
1043
1044int vc4_page_flip(struct drm_crtc *crtc,
1045		  struct drm_framebuffer *fb,
1046		  struct drm_pending_vblank_event *event,
1047		  uint32_t flags,
1048		  struct drm_modeset_acquire_ctx *ctx)
1049{
1050	if (flags & DRM_MODE_PAGE_FLIP_ASYNC) {
1051		struct drm_device *dev = crtc->dev;
1052		struct vc4_dev *vc4 = to_vc4_dev(dev);
1053
1054		if (vc4->gen > VC4_GEN_4)
1055			return vc5_async_page_flip(crtc, fb, event, flags);
1056		else
1057			return vc4_async_page_flip(crtc, fb, event, flags);
1058	} else {
1059		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
1060	}
1061}
1062
1063struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
1064{
1065	struct vc4_crtc_state *vc4_state, *old_vc4_state;
1066
1067	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
1068	if (!vc4_state)
1069		return NULL;
1070
1071	old_vc4_state = to_vc4_crtc_state(crtc->state);
 
1072	vc4_state->margins = old_vc4_state->margins;
1073	vc4_state->assigned_channel = old_vc4_state->assigned_channel;
1074
1075	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
1076	return &vc4_state->base;
1077}
1078
1079void vc4_crtc_destroy_state(struct drm_crtc *crtc,
1080			    struct drm_crtc_state *state)
1081{
1082	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
1083	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
1084
1085	if (drm_mm_node_allocated(&vc4_state->mm)) {
1086		unsigned long flags;
1087
1088		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1089		drm_mm_remove_node(&vc4_state->mm);
1090		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1091
1092	}
1093
1094	drm_atomic_helper_crtc_destroy_state(crtc, state);
1095}
1096
1097void vc4_crtc_reset(struct drm_crtc *crtc)
 
1098{
1099	struct vc4_crtc_state *vc4_crtc_state;
1100
1101	if (crtc->state)
1102		vc4_crtc_destroy_state(crtc, crtc->state);
1103
1104	vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
1105	if (!vc4_crtc_state) {
1106		crtc->state = NULL;
1107		return;
1108	}
1109
1110	vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
1111	__drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
1112}
1113
1114int vc4_crtc_late_register(struct drm_crtc *crtc)
1115{
1116	struct drm_device *drm = crtc->dev;
1117	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1118	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
1119
1120	vc4_debugfs_add_regset32(drm, crtc_data->debugfs_name,
1121				 &vc4_crtc->regset);
1122
1123	return 0;
1124}
1125
1126static const struct drm_crtc_funcs vc4_crtc_funcs = {
1127	.set_config = drm_atomic_helper_set_config,
 
1128	.page_flip = vc4_page_flip,
1129	.set_property = NULL,
1130	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1131	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1132	.reset = vc4_crtc_reset,
1133	.atomic_duplicate_state = vc4_crtc_duplicate_state,
1134	.atomic_destroy_state = vc4_crtc_destroy_state,
 
1135	.enable_vblank = vc4_enable_vblank,
1136	.disable_vblank = vc4_disable_vblank,
1137	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1138	.late_register = vc4_crtc_late_register,
1139};
1140
1141static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
 
1142	.mode_valid = vc4_crtc_mode_valid,
1143	.atomic_check = vc4_crtc_atomic_check,
1144	.atomic_begin = vc4_hvs_atomic_begin,
1145	.atomic_flush = vc4_hvs_atomic_flush,
1146	.atomic_enable = vc4_crtc_atomic_enable,
1147	.atomic_disable = vc4_crtc_atomic_disable,
1148	.get_scanout_position = vc4_crtc_get_scanout_position,
1149};
1150
1151const struct vc4_pv_data bcm2835_pv0_data = {
1152	.base = {
1153		.name = "pixelvalve-0",
1154		.debugfs_name = "crtc0_regs",
1155		.hvs_available_channels = BIT(0),
1156		.hvs_output = 0,
1157	},
1158	.fifo_depth = 64,
1159	.pixels_per_clock = 1,
1160	.encoder_types = {
1161		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1162		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1163	},
1164};
1165
1166const struct vc4_pv_data bcm2835_pv1_data = {
1167	.base = {
1168		.name = "pixelvalve-1",
1169		.debugfs_name = "crtc1_regs",
1170		.hvs_available_channels = BIT(2),
1171		.hvs_output = 2,
1172	},
1173	.fifo_depth = 64,
1174	.pixels_per_clock = 1,
1175	.encoder_types = {
1176		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1177		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1178	},
1179};
1180
1181const struct vc4_pv_data bcm2835_pv2_data = {
1182	.base = {
1183		.name = "pixelvalve-2",
1184		.debugfs_name = "crtc2_regs",
1185		.hvs_available_channels = BIT(1),
1186		.hvs_output = 1,
1187	},
1188	.fifo_depth = 64,
1189	.pixels_per_clock = 1,
1190	.encoder_types = {
1191		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1192		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1193	},
1194};
1195
1196const struct vc4_pv_data bcm2711_pv0_data = {
1197	.base = {
1198		.name = "pixelvalve-0",
1199		.debugfs_name = "crtc0_regs",
1200		.hvs_available_channels = BIT(0),
1201		.hvs_output = 0,
1202	},
1203	.fifo_depth = 64,
1204	.pixels_per_clock = 1,
1205	.encoder_types = {
1206		[0] = VC4_ENCODER_TYPE_DSI0,
1207		[1] = VC4_ENCODER_TYPE_DPI,
1208	},
1209};
1210
1211const struct vc4_pv_data bcm2711_pv1_data = {
1212	.base = {
1213		.name = "pixelvalve-1",
1214		.debugfs_name = "crtc1_regs",
1215		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1216		.hvs_output = 3,
1217	},
1218	.fifo_depth = 64,
1219	.pixels_per_clock = 1,
1220	.encoder_types = {
1221		[0] = VC4_ENCODER_TYPE_DSI1,
1222		[1] = VC4_ENCODER_TYPE_SMI,
1223	},
1224};
1225
1226const struct vc4_pv_data bcm2711_pv2_data = {
1227	.base = {
1228		.name = "pixelvalve-2",
1229		.debugfs_name = "crtc2_regs",
1230		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1231		.hvs_output = 4,
1232	},
1233	.fifo_depth = 256,
1234	.pixels_per_clock = 2,
1235	.encoder_types = {
1236		[0] = VC4_ENCODER_TYPE_HDMI0,
1237	},
1238};
1239
1240const struct vc4_pv_data bcm2711_pv3_data = {
1241	.base = {
1242		.name = "pixelvalve-3",
1243		.debugfs_name = "crtc3_regs",
1244		.hvs_available_channels = BIT(1),
1245		.hvs_output = 1,
1246	},
1247	.fifo_depth = 64,
1248	.pixels_per_clock = 1,
1249	.encoder_types = {
 
1250		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1251	},
1252};
1253
1254const struct vc4_pv_data bcm2711_pv4_data = {
1255	.base = {
1256		.name = "pixelvalve-4",
1257		.debugfs_name = "crtc4_regs",
1258		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1259		.hvs_output = 5,
1260	},
1261	.fifo_depth = 64,
1262	.pixels_per_clock = 2,
1263	.encoder_types = {
1264		[0] = VC4_ENCODER_TYPE_HDMI1,
1265	},
1266};
1267
1268static const struct of_device_id vc4_crtc_dt_match[] = {
1269	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1270	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1271	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1272	{ .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1273	{ .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1274	{ .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1275	{ .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1276	{ .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1277	{}
1278};
1279
1280static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1281					struct drm_crtc *crtc)
1282{
1283	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1284	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1285	const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1286	struct drm_encoder *encoder;
1287
1288	drm_for_each_encoder(encoder, drm) {
1289		struct vc4_encoder *vc4_encoder;
1290		int i;
1291
1292		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
 
 
 
1293			continue;
 
1294
1295		vc4_encoder = to_vc4_encoder(encoder);
1296		for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1297			if (vc4_encoder->type == encoder_types[i]) {
1298				vc4_encoder->clock_select = i;
1299				encoder->possible_crtcs |= drm_crtc_mask(crtc);
1300				break;
1301			}
1302		}
1303	}
1304}
1305
1306/**
1307 * __vc4_crtc_init - Initializes a CRTC
1308 * @drm: DRM Device
1309 * @pdev: CRTC Platform Device
1310 * @vc4_crtc: CRTC Object to Initialize
1311 * @data: Configuration data associated with this CRTC
1312 * @primary_plane: Primary plane for CRTC
1313 * @crtc_funcs: Callbacks for the new CRTC
1314 * @crtc_helper_funcs: Helper Callbacks for the new CRTC
1315 * @feeds_txp: Is this CRTC connected to the TXP?
1316 *
1317 * Initializes our private CRTC structure. This function is mostly
1318 * relevant for KUnit testing, all other users should use
1319 * vc4_crtc_init() instead.
1320 *
1321 * Returns:
1322 * 0 on success, a negative error code on failure.
1323 */
1324int __vc4_crtc_init(struct drm_device *drm,
1325		    struct platform_device *pdev,
1326		    struct vc4_crtc *vc4_crtc,
1327		    const struct vc4_crtc_data *data,
1328		    struct drm_plane *primary_plane,
1329		    const struct drm_crtc_funcs *crtc_funcs,
1330		    const struct drm_crtc_helper_funcs *crtc_helper_funcs,
1331		    bool feeds_txp)
1332{
 
1333	struct vc4_dev *vc4 = to_vc4_dev(drm);
1334	struct drm_crtc *crtc = &vc4_crtc->base;
1335	unsigned int i;
1336	int ret;
1337
1338	vc4_crtc->data = data;
1339	vc4_crtc->pdev = pdev;
1340	vc4_crtc->feeds_txp = feeds_txp;
1341	spin_lock_init(&vc4_crtc->irq_lock);
1342	ret = drmm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1343					 crtc_funcs, data->name);
1344	if (ret)
1345		return ret;
1346
1347	drm_crtc_helper_add(crtc, crtc_helper_funcs);
1348
1349	if (vc4->gen == VC4_GEN_4) {
1350		drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1351		drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1352
1353		/* We support CTM, but only for one CRTC at a time. It's therefore
1354		 * implemented as private driver state in vc4_kms, not here.
1355		 */
1356		drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1357	}
1358
1359	for (i = 0; i < crtc->gamma_size; i++) {
1360		vc4_crtc->lut_r[i] = i;
1361		vc4_crtc->lut_g[i] = i;
1362		vc4_crtc->lut_b[i] = i;
1363	}
1364
1365	return 0;
1366}
1367
1368int vc4_crtc_init(struct drm_device *drm, struct platform_device *pdev,
1369		  struct vc4_crtc *vc4_crtc,
1370		  const struct vc4_crtc_data *data,
1371		  const struct drm_crtc_funcs *crtc_funcs,
1372		  const struct drm_crtc_helper_funcs *crtc_helper_funcs,
1373		  bool feeds_txp)
1374{
1375	struct drm_plane *primary_plane;
1376
1377	/* For now, we create just the primary and the legacy cursor
1378	 * planes.  We should be able to stack more planes on easily,
1379	 * but to do that we would need to compute the bandwidth
1380	 * requirement of the plane configuration, and reject ones
1381	 * that will take too much.
1382	 */
1383	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY, 0);
1384	if (IS_ERR(primary_plane)) {
1385		dev_err(drm->dev, "failed to construct primary plane\n");
1386		return PTR_ERR(primary_plane);
1387	}
1388
1389	return __vc4_crtc_init(drm, pdev, vc4_crtc, data, primary_plane,
1390			       crtc_funcs, crtc_helper_funcs, feeds_txp);
1391}
1392
1393static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1394{
1395	struct platform_device *pdev = to_platform_device(dev);
1396	struct drm_device *drm = dev_get_drvdata(master);
1397	const struct vc4_pv_data *pv_data;
1398	struct vc4_crtc *vc4_crtc;
1399	struct drm_crtc *crtc;
1400	int ret;
 
 
1401
1402	vc4_crtc = drmm_kzalloc(drm, sizeof(*vc4_crtc), GFP_KERNEL);
1403	if (!vc4_crtc)
1404		return -ENOMEM;
1405	crtc = &vc4_crtc->base;
1406
1407	pv_data = of_device_get_match_data(dev);
1408	if (!pv_data)
1409		return -ENODEV;
 
 
1410
1411	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1412	if (IS_ERR(vc4_crtc->regs))
1413		return PTR_ERR(vc4_crtc->regs);
1414
1415	vc4_crtc->regset.base = vc4_crtc->regs;
1416	vc4_crtc->regset.regs = crtc_regs;
1417	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1418
1419	ret = vc4_crtc_init(drm, pdev, vc4_crtc, &pv_data->base,
1420			    &vc4_crtc_funcs, &vc4_crtc_helper_funcs,
1421			    false);
1422	if (ret)
1423		return ret;
1424	vc4_set_crtc_possible_masks(drm, crtc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1425
1426	CRTC_WRITE(PV_INTEN, 0);
1427	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1428	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1429			       vc4_crtc_irq_handler,
1430			       IRQF_SHARED,
1431			       "vc4 crtc", vc4_crtc);
1432	if (ret)
1433		return ret;
 
 
 
 
 
 
 
 
1434
1435	platform_set_drvdata(pdev, vc4_crtc);
1436
 
 
 
1437	return 0;
 
 
 
 
 
 
 
 
 
1438}
1439
1440static void vc4_crtc_unbind(struct device *dev, struct device *master,
1441			    void *data)
1442{
1443	struct platform_device *pdev = to_platform_device(dev);
1444	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1445
 
 
1446	CRTC_WRITE(PV_INTEN, 0);
1447
1448	platform_set_drvdata(pdev, NULL);
1449}
1450
1451static const struct component_ops vc4_crtc_ops = {
1452	.bind   = vc4_crtc_bind,
1453	.unbind = vc4_crtc_unbind,
1454};
1455
1456static int vc4_crtc_dev_probe(struct platform_device *pdev)
1457{
1458	return component_add(&pdev->dev, &vc4_crtc_ops);
1459}
1460
1461static void vc4_crtc_dev_remove(struct platform_device *pdev)
1462{
1463	component_del(&pdev->dev, &vc4_crtc_ops);
 
1464}
1465
1466struct platform_driver vc4_crtc_driver = {
1467	.probe = vc4_crtc_dev_probe,
1468	.remove = vc4_crtc_dev_remove,
1469	.driver = {
1470		.name = "vc4_crtc",
1471		.of_match_table = vc4_crtc_dt_match,
1472	},
1473};