Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swapfile.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *  Swap reorganised 29.12.95, Stephen Tweedie
   7 */
   8
 
   9#include <linux/mm.h>
  10#include <linux/sched/mm.h>
  11#include <linux/sched/task.h>
  12#include <linux/hugetlb.h>
  13#include <linux/mman.h>
  14#include <linux/slab.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/swap.h>
  17#include <linux/vmalloc.h>
  18#include <linux/pagemap.h>
  19#include <linux/namei.h>
  20#include <linux/shmem_fs.h>
  21#include <linux/blkdev.h>
  22#include <linux/random.h>
  23#include <linux/writeback.h>
  24#include <linux/proc_fs.h>
  25#include <linux/seq_file.h>
  26#include <linux/init.h>
  27#include <linux/ksm.h>
  28#include <linux/rmap.h>
  29#include <linux/security.h>
  30#include <linux/backing-dev.h>
  31#include <linux/mutex.h>
  32#include <linux/capability.h>
  33#include <linux/syscalls.h>
  34#include <linux/memcontrol.h>
  35#include <linux/poll.h>
  36#include <linux/oom.h>
  37#include <linux/frontswap.h>
  38#include <linux/swapfile.h>
  39#include <linux/export.h>
  40#include <linux/swap_slots.h>
  41#include <linux/sort.h>
 
 
 
 
  42
  43#include <asm/pgtable.h>
  44#include <asm/tlbflush.h>
  45#include <linux/swapops.h>
  46#include <linux/swap_cgroup.h>
 
 
  47
  48static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  49				 unsigned char);
  50static void free_swap_count_continuations(struct swap_info_struct *);
  51static sector_t map_swap_entry(swp_entry_t, struct block_device**);
  52
  53DEFINE_SPINLOCK(swap_lock);
  54static unsigned int nr_swapfiles;
  55atomic_long_t nr_swap_pages;
  56/*
  57 * Some modules use swappable objects and may try to swap them out under
  58 * memory pressure (via the shrinker). Before doing so, they may wish to
  59 * check to see if any swap space is available.
  60 */
  61EXPORT_SYMBOL_GPL(nr_swap_pages);
  62/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
  63long total_swap_pages;
  64static int least_priority = -1;
 
 
 
 
  65
  66static const char Bad_file[] = "Bad swap file entry ";
  67static const char Unused_file[] = "Unused swap file entry ";
  68static const char Bad_offset[] = "Bad swap offset entry ";
  69static const char Unused_offset[] = "Unused swap offset entry ";
  70
  71/*
  72 * all active swap_info_structs
  73 * protected with swap_lock, and ordered by priority.
  74 */
  75PLIST_HEAD(swap_active_head);
  76
  77/*
  78 * all available (active, not full) swap_info_structs
  79 * protected with swap_avail_lock, ordered by priority.
  80 * This is used by get_swap_page() instead of swap_active_head
  81 * because swap_active_head includes all swap_info_structs,
  82 * but get_swap_page() doesn't need to look at full ones.
  83 * This uses its own lock instead of swap_lock because when a
  84 * swap_info_struct changes between not-full/full, it needs to
  85 * add/remove itself to/from this list, but the swap_info_struct->lock
  86 * is held and the locking order requires swap_lock to be taken
  87 * before any swap_info_struct->lock.
  88 */
  89static struct plist_head *swap_avail_heads;
  90static DEFINE_SPINLOCK(swap_avail_lock);
  91
  92struct swap_info_struct *swap_info[MAX_SWAPFILES];
  93
  94static DEFINE_MUTEX(swapon_mutex);
  95
  96static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
  97/* Activity counter to indicate that a swapon or swapoff has occurred */
  98static atomic_t proc_poll_event = ATOMIC_INIT(0);
  99
 100atomic_t nr_rotate_swap = ATOMIC_INIT(0);
 101
 102static struct swap_info_struct *swap_type_to_swap_info(int type)
 103{
 104	if (type >= READ_ONCE(nr_swapfiles))
 105		return NULL;
 106
 107	smp_rmb();	/* Pairs with smp_wmb in alloc_swap_info. */
 108	return READ_ONCE(swap_info[type]);
 109}
 110
 111static inline unsigned char swap_count(unsigned char ent)
 112{
 113	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
 114}
 115
 116/* Reclaim the swap entry anyway if possible */
 117#define TTRS_ANYWAY		0x1
 118/*
 119 * Reclaim the swap entry if there are no more mappings of the
 120 * corresponding page
 121 */
 122#define TTRS_UNMAPPED		0x2
 123/* Reclaim the swap entry if swap is getting full*/
 124#define TTRS_FULL		0x4
 125
 126/* returns 1 if swap entry is freed */
 127static int __try_to_reclaim_swap(struct swap_info_struct *si,
 128				 unsigned long offset, unsigned long flags)
 129{
 130	swp_entry_t entry = swp_entry(si->type, offset);
 131	struct page *page;
 132	int ret = 0;
 133
 134	page = find_get_page(swap_address_space(entry), offset);
 135	if (!page)
 136		return 0;
 137	/*
 138	 * When this function is called from scan_swap_map_slots() and it's
 139	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
 140	 * here. We have to use trylock for avoiding deadlock. This is a special
 141	 * case and you should use try_to_free_swap() with explicit lock_page()
 142	 * in usual operations.
 143	 */
 144	if (trylock_page(page)) {
 145		if ((flags & TTRS_ANYWAY) ||
 146		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
 147		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
 148			ret = try_to_free_swap(page);
 149		unlock_page(page);
 150	}
 151	put_page(page);
 152	return ret;
 153}
 154
 155static inline struct swap_extent *first_se(struct swap_info_struct *sis)
 156{
 157	struct rb_node *rb = rb_first(&sis->swap_extent_root);
 158	return rb_entry(rb, struct swap_extent, rb_node);
 159}
 160
 161static inline struct swap_extent *next_se(struct swap_extent *se)
 162{
 163	struct rb_node *rb = rb_next(&se->rb_node);
 164	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
 165}
 166
 167/*
 168 * swapon tell device that all the old swap contents can be discarded,
 169 * to allow the swap device to optimize its wear-levelling.
 170 */
 171static int discard_swap(struct swap_info_struct *si)
 172{
 173	struct swap_extent *se;
 174	sector_t start_block;
 175	sector_t nr_blocks;
 176	int err = 0;
 177
 178	/* Do not discard the swap header page! */
 179	se = first_se(si);
 180	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 181	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 182	if (nr_blocks) {
 183		err = blkdev_issue_discard(si->bdev, start_block,
 184				nr_blocks, GFP_KERNEL, 0);
 185		if (err)
 186			return err;
 187		cond_resched();
 188	}
 189
 190	for (se = next_se(se); se; se = next_se(se)) {
 191		start_block = se->start_block << (PAGE_SHIFT - 9);
 192		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 193
 194		err = blkdev_issue_discard(si->bdev, start_block,
 195				nr_blocks, GFP_KERNEL, 0);
 196		if (err)
 197			break;
 198
 199		cond_resched();
 200	}
 201	return err;		/* That will often be -EOPNOTSUPP */
 202}
 203
 204static struct swap_extent *
 205offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
 206{
 207	struct swap_extent *se;
 208	struct rb_node *rb;
 209
 210	rb = sis->swap_extent_root.rb_node;
 211	while (rb) {
 212		se = rb_entry(rb, struct swap_extent, rb_node);
 213		if (offset < se->start_page)
 214			rb = rb->rb_left;
 215		else if (offset >= se->start_page + se->nr_pages)
 216			rb = rb->rb_right;
 217		else
 218			return se;
 219	}
 220	/* It *must* be present */
 221	BUG();
 222}
 223
 
 
 
 
 
 
 
 
 
 
 
 
 
 224/*
 225 * swap allocation tell device that a cluster of swap can now be discarded,
 226 * to allow the swap device to optimize its wear-levelling.
 227 */
 228static void discard_swap_cluster(struct swap_info_struct *si,
 229				 pgoff_t start_page, pgoff_t nr_pages)
 230{
 231	struct swap_extent *se = offset_to_swap_extent(si, start_page);
 232
 233	while (nr_pages) {
 234		pgoff_t offset = start_page - se->start_page;
 235		sector_t start_block = se->start_block + offset;
 236		sector_t nr_blocks = se->nr_pages - offset;
 237
 238		if (nr_blocks > nr_pages)
 239			nr_blocks = nr_pages;
 240		start_page += nr_blocks;
 241		nr_pages -= nr_blocks;
 242
 243		start_block <<= PAGE_SHIFT - 9;
 244		nr_blocks <<= PAGE_SHIFT - 9;
 245		if (blkdev_issue_discard(si->bdev, start_block,
 246					nr_blocks, GFP_NOIO, 0))
 247			break;
 248
 249		se = next_se(se);
 250	}
 251}
 252
 253#ifdef CONFIG_THP_SWAP
 254#define SWAPFILE_CLUSTER	HPAGE_PMD_NR
 255
 256#define swap_entry_size(size)	(size)
 257#else
 258#define SWAPFILE_CLUSTER	256
 259
 260/*
 261 * Define swap_entry_size() as constant to let compiler to optimize
 262 * out some code if !CONFIG_THP_SWAP
 263 */
 264#define swap_entry_size(size)	1
 265#endif
 266#define LATENCY_LIMIT		256
 267
 268static inline void cluster_set_flag(struct swap_cluster_info *info,
 269	unsigned int flag)
 270{
 271	info->flags = flag;
 272}
 273
 274static inline unsigned int cluster_count(struct swap_cluster_info *info)
 275{
 276	return info->data;
 277}
 278
 279static inline void cluster_set_count(struct swap_cluster_info *info,
 280				     unsigned int c)
 281{
 282	info->data = c;
 283}
 284
 285static inline void cluster_set_count_flag(struct swap_cluster_info *info,
 286					 unsigned int c, unsigned int f)
 287{
 288	info->flags = f;
 289	info->data = c;
 290}
 291
 292static inline unsigned int cluster_next(struct swap_cluster_info *info)
 293{
 294	return info->data;
 295}
 296
 297static inline void cluster_set_next(struct swap_cluster_info *info,
 298				    unsigned int n)
 299{
 300	info->data = n;
 301}
 302
 303static inline void cluster_set_next_flag(struct swap_cluster_info *info,
 304					 unsigned int n, unsigned int f)
 305{
 306	info->flags = f;
 307	info->data = n;
 308}
 309
 310static inline bool cluster_is_free(struct swap_cluster_info *info)
 311{
 312	return info->flags & CLUSTER_FLAG_FREE;
 313}
 314
 315static inline bool cluster_is_null(struct swap_cluster_info *info)
 316{
 317	return info->flags & CLUSTER_FLAG_NEXT_NULL;
 318}
 319
 320static inline void cluster_set_null(struct swap_cluster_info *info)
 321{
 322	info->flags = CLUSTER_FLAG_NEXT_NULL;
 323	info->data = 0;
 324}
 325
 326static inline bool cluster_is_huge(struct swap_cluster_info *info)
 327{
 328	if (IS_ENABLED(CONFIG_THP_SWAP))
 329		return info->flags & CLUSTER_FLAG_HUGE;
 330	return false;
 331}
 332
 333static inline void cluster_clear_huge(struct swap_cluster_info *info)
 334{
 335	info->flags &= ~CLUSTER_FLAG_HUGE;
 336}
 337
 338static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
 339						     unsigned long offset)
 340{
 341	struct swap_cluster_info *ci;
 342
 343	ci = si->cluster_info;
 344	if (ci) {
 345		ci += offset / SWAPFILE_CLUSTER;
 346		spin_lock(&ci->lock);
 347	}
 348	return ci;
 349}
 350
 351static inline void unlock_cluster(struct swap_cluster_info *ci)
 352{
 353	if (ci)
 354		spin_unlock(&ci->lock);
 355}
 356
 357/*
 358 * Determine the locking method in use for this device.  Return
 359 * swap_cluster_info if SSD-style cluster-based locking is in place.
 360 */
 361static inline struct swap_cluster_info *lock_cluster_or_swap_info(
 362		struct swap_info_struct *si, unsigned long offset)
 363{
 364	struct swap_cluster_info *ci;
 365
 366	/* Try to use fine-grained SSD-style locking if available: */
 367	ci = lock_cluster(si, offset);
 368	/* Otherwise, fall back to traditional, coarse locking: */
 369	if (!ci)
 370		spin_lock(&si->lock);
 371
 372	return ci;
 373}
 374
 375static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
 376					       struct swap_cluster_info *ci)
 377{
 378	if (ci)
 379		unlock_cluster(ci);
 380	else
 381		spin_unlock(&si->lock);
 382}
 383
 384static inline bool cluster_list_empty(struct swap_cluster_list *list)
 385{
 386	return cluster_is_null(&list->head);
 387}
 388
 389static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
 390{
 391	return cluster_next(&list->head);
 392}
 393
 394static void cluster_list_init(struct swap_cluster_list *list)
 395{
 396	cluster_set_null(&list->head);
 397	cluster_set_null(&list->tail);
 398}
 399
 400static void cluster_list_add_tail(struct swap_cluster_list *list,
 401				  struct swap_cluster_info *ci,
 402				  unsigned int idx)
 403{
 404	if (cluster_list_empty(list)) {
 405		cluster_set_next_flag(&list->head, idx, 0);
 406		cluster_set_next_flag(&list->tail, idx, 0);
 407	} else {
 408		struct swap_cluster_info *ci_tail;
 409		unsigned int tail = cluster_next(&list->tail);
 410
 411		/*
 412		 * Nested cluster lock, but both cluster locks are
 413		 * only acquired when we held swap_info_struct->lock
 414		 */
 415		ci_tail = ci + tail;
 416		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
 417		cluster_set_next(ci_tail, idx);
 418		spin_unlock(&ci_tail->lock);
 419		cluster_set_next_flag(&list->tail, idx, 0);
 420	}
 421}
 422
 423static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
 424					   struct swap_cluster_info *ci)
 425{
 426	unsigned int idx;
 427
 428	idx = cluster_next(&list->head);
 429	if (cluster_next(&list->tail) == idx) {
 430		cluster_set_null(&list->head);
 431		cluster_set_null(&list->tail);
 432	} else
 433		cluster_set_next_flag(&list->head,
 434				      cluster_next(&ci[idx]), 0);
 435
 436	return idx;
 437}
 438
 439/* Add a cluster to discard list and schedule it to do discard */
 440static void swap_cluster_schedule_discard(struct swap_info_struct *si,
 441		unsigned int idx)
 442{
 443	/*
 444	 * If scan_swap_map() can't find a free cluster, it will check
 445	 * si->swap_map directly. To make sure the discarding cluster isn't
 446	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
 447	 * will be cleared after discard
 448	 */
 449	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 450			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
 451
 452	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
 453
 454	schedule_work(&si->discard_work);
 455}
 456
 457static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
 458{
 459	struct swap_cluster_info *ci = si->cluster_info;
 460
 461	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
 462	cluster_list_add_tail(&si->free_clusters, ci, idx);
 463}
 464
 465/*
 466 * Doing discard actually. After a cluster discard is finished, the cluster
 467 * will be added to free cluster list. caller should hold si->lock.
 468*/
 469static void swap_do_scheduled_discard(struct swap_info_struct *si)
 470{
 471	struct swap_cluster_info *info, *ci;
 472	unsigned int idx;
 473
 474	info = si->cluster_info;
 475
 476	while (!cluster_list_empty(&si->discard_clusters)) {
 477		idx = cluster_list_del_first(&si->discard_clusters, info);
 478		spin_unlock(&si->lock);
 479
 480		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
 481				SWAPFILE_CLUSTER);
 482
 483		spin_lock(&si->lock);
 484		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
 485		__free_cluster(si, idx);
 486		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 487				0, SWAPFILE_CLUSTER);
 488		unlock_cluster(ci);
 489	}
 490}
 491
 492static void swap_discard_work(struct work_struct *work)
 493{
 494	struct swap_info_struct *si;
 495
 496	si = container_of(work, struct swap_info_struct, discard_work);
 497
 498	spin_lock(&si->lock);
 499	swap_do_scheduled_discard(si);
 500	spin_unlock(&si->lock);
 501}
 502
 
 
 
 
 
 
 
 
 503static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
 504{
 505	struct swap_cluster_info *ci = si->cluster_info;
 506
 507	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
 508	cluster_list_del_first(&si->free_clusters, ci);
 509	cluster_set_count_flag(ci + idx, 0, 0);
 510}
 511
 512static void free_cluster(struct swap_info_struct *si, unsigned long idx)
 513{
 514	struct swap_cluster_info *ci = si->cluster_info + idx;
 515
 516	VM_BUG_ON(cluster_count(ci) != 0);
 517	/*
 518	 * If the swap is discardable, prepare discard the cluster
 519	 * instead of free it immediately. The cluster will be freed
 520	 * after discard.
 521	 */
 522	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
 523	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
 524		swap_cluster_schedule_discard(si, idx);
 525		return;
 526	}
 527
 528	__free_cluster(si, idx);
 529}
 530
 531/*
 532 * The cluster corresponding to page_nr will be used. The cluster will be
 533 * removed from free cluster list and its usage counter will be increased.
 534 */
 535static void inc_cluster_info_page(struct swap_info_struct *p,
 536	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 537{
 538	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 539
 540	if (!cluster_info)
 541		return;
 542	if (cluster_is_free(&cluster_info[idx]))
 543		alloc_cluster(p, idx);
 544
 545	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
 546	cluster_set_count(&cluster_info[idx],
 547		cluster_count(&cluster_info[idx]) + 1);
 548}
 549
 550/*
 551 * The cluster corresponding to page_nr decreases one usage. If the usage
 552 * counter becomes 0, which means no page in the cluster is in using, we can
 553 * optionally discard the cluster and add it to free cluster list.
 554 */
 555static void dec_cluster_info_page(struct swap_info_struct *p,
 556	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 557{
 558	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 559
 560	if (!cluster_info)
 561		return;
 562
 563	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
 564	cluster_set_count(&cluster_info[idx],
 565		cluster_count(&cluster_info[idx]) - 1);
 566
 567	if (cluster_count(&cluster_info[idx]) == 0)
 568		free_cluster(p, idx);
 569}
 570
 571/*
 572 * It's possible scan_swap_map() uses a free cluster in the middle of free
 573 * cluster list. Avoiding such abuse to avoid list corruption.
 574 */
 575static bool
 576scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
 577	unsigned long offset)
 578{
 579	struct percpu_cluster *percpu_cluster;
 580	bool conflict;
 581
 582	offset /= SWAPFILE_CLUSTER;
 583	conflict = !cluster_list_empty(&si->free_clusters) &&
 584		offset != cluster_list_first(&si->free_clusters) &&
 585		cluster_is_free(&si->cluster_info[offset]);
 586
 587	if (!conflict)
 588		return false;
 589
 590	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
 591	cluster_set_null(&percpu_cluster->index);
 592	return true;
 593}
 594
 595/*
 596 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
 597 * might involve allocating a new cluster for current CPU too.
 598 */
 599static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
 600	unsigned long *offset, unsigned long *scan_base)
 601{
 602	struct percpu_cluster *cluster;
 603	struct swap_cluster_info *ci;
 604	bool found_free;
 605	unsigned long tmp, max;
 606
 607new_cluster:
 608	cluster = this_cpu_ptr(si->percpu_cluster);
 609	if (cluster_is_null(&cluster->index)) {
 610		if (!cluster_list_empty(&si->free_clusters)) {
 611			cluster->index = si->free_clusters.head;
 612			cluster->next = cluster_next(&cluster->index) *
 613					SWAPFILE_CLUSTER;
 614		} else if (!cluster_list_empty(&si->discard_clusters)) {
 615			/*
 616			 * we don't have free cluster but have some clusters in
 617			 * discarding, do discard now and reclaim them
 
 618			 */
 619			swap_do_scheduled_discard(si);
 620			*scan_base = *offset = si->cluster_next;
 
 621			goto new_cluster;
 622		} else
 623			return false;
 624	}
 625
 626	found_free = false;
 627
 628	/*
 629	 * Other CPUs can use our cluster if they can't find a free cluster,
 630	 * check if there is still free entry in the cluster
 631	 */
 632	tmp = cluster->next;
 633	max = min_t(unsigned long, si->max,
 634		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
 635	if (tmp >= max) {
 636		cluster_set_null(&cluster->index);
 637		goto new_cluster;
 638	}
 639	ci = lock_cluster(si, tmp);
 640	while (tmp < max) {
 641		if (!si->swap_map[tmp]) {
 642			found_free = true;
 643			break;
 644		}
 645		tmp++;
 646	}
 647	unlock_cluster(ci);
 648	if (!found_free) {
 649		cluster_set_null(&cluster->index);
 650		goto new_cluster;
 651	}
 652	cluster->next = tmp + 1;
 653	*offset = tmp;
 654	*scan_base = tmp;
 655	return found_free;
 656}
 657
 658static void __del_from_avail_list(struct swap_info_struct *p)
 659{
 660	int nid;
 661
 
 662	for_each_node(nid)
 663		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
 664}
 665
 666static void del_from_avail_list(struct swap_info_struct *p)
 667{
 668	spin_lock(&swap_avail_lock);
 669	__del_from_avail_list(p);
 670	spin_unlock(&swap_avail_lock);
 671}
 672
 673static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
 674			     unsigned int nr_entries)
 675{
 676	unsigned int end = offset + nr_entries - 1;
 677
 678	if (offset == si->lowest_bit)
 679		si->lowest_bit += nr_entries;
 680	if (end == si->highest_bit)
 681		si->highest_bit -= nr_entries;
 682	si->inuse_pages += nr_entries;
 683	if (si->inuse_pages == si->pages) {
 684		si->lowest_bit = si->max;
 685		si->highest_bit = 0;
 686		del_from_avail_list(si);
 687	}
 688}
 689
 690static void add_to_avail_list(struct swap_info_struct *p)
 691{
 692	int nid;
 693
 694	spin_lock(&swap_avail_lock);
 695	for_each_node(nid) {
 696		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
 697		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
 698	}
 699	spin_unlock(&swap_avail_lock);
 700}
 701
 702static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
 703			    unsigned int nr_entries)
 704{
 
 705	unsigned long end = offset + nr_entries - 1;
 706	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
 707
 708	if (offset < si->lowest_bit)
 709		si->lowest_bit = offset;
 710	if (end > si->highest_bit) {
 711		bool was_full = !si->highest_bit;
 712
 713		si->highest_bit = end;
 714		if (was_full && (si->flags & SWP_WRITEOK))
 715			add_to_avail_list(si);
 716	}
 717	atomic_long_add(nr_entries, &nr_swap_pages);
 718	si->inuse_pages -= nr_entries;
 719	if (si->flags & SWP_BLKDEV)
 720		swap_slot_free_notify =
 721			si->bdev->bd_disk->fops->swap_slot_free_notify;
 722	else
 723		swap_slot_free_notify = NULL;
 724	while (offset <= end) {
 725		frontswap_invalidate_page(si->type, offset);
 
 726		if (swap_slot_free_notify)
 727			swap_slot_free_notify(si->bdev, offset);
 728		offset++;
 729	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 730}
 731
 732static int scan_swap_map_slots(struct swap_info_struct *si,
 733			       unsigned char usage, int nr,
 734			       swp_entry_t slots[])
 735{
 736	struct swap_cluster_info *ci;
 737	unsigned long offset;
 738	unsigned long scan_base;
 739	unsigned long last_in_cluster = 0;
 740	int latency_ration = LATENCY_LIMIT;
 741	int n_ret = 0;
 742
 743	if (nr > SWAP_BATCH)
 744		nr = SWAP_BATCH;
 745
 746	/*
 747	 * We try to cluster swap pages by allocating them sequentially
 748	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 749	 * way, however, we resort to first-free allocation, starting
 750	 * a new cluster.  This prevents us from scattering swap pages
 751	 * all over the entire swap partition, so that we reduce
 752	 * overall disk seek times between swap pages.  -- sct
 753	 * But we do now try to find an empty cluster.  -Andrea
 754	 * And we let swap pages go all over an SSD partition.  Hugh
 755	 */
 756
 757	si->flags += SWP_SCANNING;
 758	scan_base = offset = si->cluster_next;
 
 
 
 
 
 
 
 
 
 759
 760	/* SSD algorithm */
 761	if (si->cluster_info) {
 762		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 763			goto checks;
 764		else
 765			goto scan;
 766	}
 767
 768	if (unlikely(!si->cluster_nr--)) {
 769		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 770			si->cluster_nr = SWAPFILE_CLUSTER - 1;
 771			goto checks;
 772		}
 773
 774		spin_unlock(&si->lock);
 775
 776		/*
 777		 * If seek is expensive, start searching for new cluster from
 778		 * start of partition, to minimize the span of allocated swap.
 779		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
 780		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
 781		 */
 782		scan_base = offset = si->lowest_bit;
 783		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 784
 785		/* Locate the first empty (unaligned) cluster */
 786		for (; last_in_cluster <= si->highest_bit; offset++) {
 787			if (si->swap_map[offset])
 788				last_in_cluster = offset + SWAPFILE_CLUSTER;
 789			else if (offset == last_in_cluster) {
 790				spin_lock(&si->lock);
 791				offset -= SWAPFILE_CLUSTER - 1;
 792				si->cluster_next = offset;
 793				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 794				goto checks;
 795			}
 796			if (unlikely(--latency_ration < 0)) {
 797				cond_resched();
 798				latency_ration = LATENCY_LIMIT;
 799			}
 800		}
 801
 802		offset = scan_base;
 803		spin_lock(&si->lock);
 804		si->cluster_nr = SWAPFILE_CLUSTER - 1;
 805	}
 806
 807checks:
 808	if (si->cluster_info) {
 809		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
 810		/* take a break if we already got some slots */
 811			if (n_ret)
 812				goto done;
 813			if (!scan_swap_map_try_ssd_cluster(si, &offset,
 814							&scan_base))
 815				goto scan;
 816		}
 817	}
 818	if (!(si->flags & SWP_WRITEOK))
 819		goto no_page;
 820	if (!si->highest_bit)
 821		goto no_page;
 822	if (offset > si->highest_bit)
 823		scan_base = offset = si->lowest_bit;
 824
 825	ci = lock_cluster(si, offset);
 826	/* reuse swap entry of cache-only swap if not busy. */
 827	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 828		int swap_was_freed;
 829		unlock_cluster(ci);
 830		spin_unlock(&si->lock);
 831		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
 832		spin_lock(&si->lock);
 833		/* entry was freed successfully, try to use this again */
 834		if (swap_was_freed)
 835			goto checks;
 836		goto scan; /* check next one */
 837	}
 838
 839	if (si->swap_map[offset]) {
 840		unlock_cluster(ci);
 841		if (!n_ret)
 842			goto scan;
 843		else
 844			goto done;
 845	}
 846	si->swap_map[offset] = usage;
 847	inc_cluster_info_page(si, si->cluster_info, offset);
 848	unlock_cluster(ci);
 849
 850	swap_range_alloc(si, offset, 1);
 851	si->cluster_next = offset + 1;
 852	slots[n_ret++] = swp_entry(si->type, offset);
 853
 854	/* got enough slots or reach max slots? */
 855	if ((n_ret == nr) || (offset >= si->highest_bit))
 856		goto done;
 857
 858	/* search for next available slot */
 859
 860	/* time to take a break? */
 861	if (unlikely(--latency_ration < 0)) {
 862		if (n_ret)
 863			goto done;
 864		spin_unlock(&si->lock);
 865		cond_resched();
 866		spin_lock(&si->lock);
 867		latency_ration = LATENCY_LIMIT;
 868	}
 869
 870	/* try to get more slots in cluster */
 871	if (si->cluster_info) {
 872		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 873			goto checks;
 874		else
 875			goto done;
 876	}
 877	/* non-ssd case */
 878	++offset;
 879
 880	/* non-ssd case, still more slots in cluster? */
 881	if (si->cluster_nr && !si->swap_map[offset]) {
 882		--si->cluster_nr;
 883		goto checks;
 884	}
 885
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 886done:
 
 887	si->flags -= SWP_SCANNING;
 888	return n_ret;
 889
 890scan:
 891	spin_unlock(&si->lock);
 892	while (++offset <= si->highest_bit) {
 893		if (!si->swap_map[offset]) {
 894			spin_lock(&si->lock);
 895			goto checks;
 896		}
 897		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 898			spin_lock(&si->lock);
 899			goto checks;
 900		}
 901		if (unlikely(--latency_ration < 0)) {
 902			cond_resched();
 903			latency_ration = LATENCY_LIMIT;
 
 904		}
 
 
 905	}
 906	offset = si->lowest_bit;
 907	while (offset < scan_base) {
 908		if (!si->swap_map[offset]) {
 909			spin_lock(&si->lock);
 910			goto checks;
 911		}
 912		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 913			spin_lock(&si->lock);
 914			goto checks;
 915		}
 916		if (unlikely(--latency_ration < 0)) {
 917			cond_resched();
 918			latency_ration = LATENCY_LIMIT;
 
 919		}
 
 
 920		offset++;
 921	}
 922	spin_lock(&si->lock);
 923
 924no_page:
 925	si->flags -= SWP_SCANNING;
 926	return n_ret;
 927}
 928
 929static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
 930{
 931	unsigned long idx;
 932	struct swap_cluster_info *ci;
 933	unsigned long offset, i;
 934	unsigned char *map;
 935
 936	/*
 937	 * Should not even be attempting cluster allocations when huge
 938	 * page swap is disabled.  Warn and fail the allocation.
 939	 */
 940	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
 941		VM_WARN_ON_ONCE(1);
 942		return 0;
 943	}
 944
 945	if (cluster_list_empty(&si->free_clusters))
 946		return 0;
 947
 948	idx = cluster_list_first(&si->free_clusters);
 949	offset = idx * SWAPFILE_CLUSTER;
 950	ci = lock_cluster(si, offset);
 951	alloc_cluster(si, idx);
 952	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
 953
 954	map = si->swap_map + offset;
 955	for (i = 0; i < SWAPFILE_CLUSTER; i++)
 956		map[i] = SWAP_HAS_CACHE;
 957	unlock_cluster(ci);
 958	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
 959	*slot = swp_entry(si->type, offset);
 960
 961	return 1;
 962}
 963
 964static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
 965{
 966	unsigned long offset = idx * SWAPFILE_CLUSTER;
 967	struct swap_cluster_info *ci;
 968
 969	ci = lock_cluster(si, offset);
 970	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
 971	cluster_set_count_flag(ci, 0, 0);
 972	free_cluster(si, idx);
 973	unlock_cluster(ci);
 974	swap_range_free(si, offset, SWAPFILE_CLUSTER);
 975}
 976
 977static unsigned long scan_swap_map(struct swap_info_struct *si,
 978				   unsigned char usage)
 979{
 980	swp_entry_t entry;
 981	int n_ret;
 982
 983	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
 984
 985	if (n_ret)
 986		return swp_offset(entry);
 987	else
 988		return 0;
 989
 990}
 991
 992int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
 993{
 994	unsigned long size = swap_entry_size(entry_size);
 995	struct swap_info_struct *si, *next;
 996	long avail_pgs;
 997	int n_ret = 0;
 998	int node;
 999
1000	/* Only single cluster request supported */
1001	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1002
 
 
1003	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1004	if (avail_pgs <= 0)
 
1005		goto noswap;
 
1006
1007	if (n_goal > SWAP_BATCH)
1008		n_goal = SWAP_BATCH;
1009
1010	if (n_goal > avail_pgs)
1011		n_goal = avail_pgs;
1012
1013	atomic_long_sub(n_goal * size, &nr_swap_pages);
1014
1015	spin_lock(&swap_avail_lock);
1016
1017start_over:
1018	node = numa_node_id();
1019	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1020		/* requeue si to after same-priority siblings */
1021		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1022		spin_unlock(&swap_avail_lock);
1023		spin_lock(&si->lock);
1024		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1025			spin_lock(&swap_avail_lock);
1026			if (plist_node_empty(&si->avail_lists[node])) {
1027				spin_unlock(&si->lock);
1028				goto nextsi;
1029			}
1030			WARN(!si->highest_bit,
1031			     "swap_info %d in list but !highest_bit\n",
1032			     si->type);
1033			WARN(!(si->flags & SWP_WRITEOK),
1034			     "swap_info %d in list but !SWP_WRITEOK\n",
1035			     si->type);
1036			__del_from_avail_list(si);
1037			spin_unlock(&si->lock);
1038			goto nextsi;
1039		}
1040		if (size == SWAPFILE_CLUSTER) {
1041			if (!(si->flags & SWP_FS))
1042				n_ret = swap_alloc_cluster(si, swp_entries);
1043		} else
1044			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1045						    n_goal, swp_entries);
1046		spin_unlock(&si->lock);
1047		if (n_ret || size == SWAPFILE_CLUSTER)
1048			goto check_out;
1049		pr_debug("scan_swap_map of si %d failed to find offset\n",
1050			si->type);
1051
1052		spin_lock(&swap_avail_lock);
1053nextsi:
1054		/*
1055		 * if we got here, it's likely that si was almost full before,
1056		 * and since scan_swap_map() can drop the si->lock, multiple
1057		 * callers probably all tried to get a page from the same si
1058		 * and it filled up before we could get one; or, the si filled
1059		 * up between us dropping swap_avail_lock and taking si->lock.
1060		 * Since we dropped the swap_avail_lock, the swap_avail_head
1061		 * list may have been modified; so if next is still in the
1062		 * swap_avail_head list then try it, otherwise start over
1063		 * if we have not gotten any slots.
1064		 */
1065		if (plist_node_empty(&next->avail_lists[node]))
1066			goto start_over;
1067	}
1068
1069	spin_unlock(&swap_avail_lock);
1070
1071check_out:
1072	if (n_ret < n_goal)
1073		atomic_long_add((long)(n_goal - n_ret) * size,
1074				&nr_swap_pages);
1075noswap:
1076	return n_ret;
1077}
1078
1079/* The only caller of this function is now suspend routine */
1080swp_entry_t get_swap_page_of_type(int type)
1081{
1082	struct swap_info_struct *si = swap_type_to_swap_info(type);
1083	pgoff_t offset;
1084
1085	if (!si)
1086		goto fail;
1087
1088	spin_lock(&si->lock);
1089	if (si->flags & SWP_WRITEOK) {
1090		atomic_long_dec(&nr_swap_pages);
1091		/* This is called for allocating swap entry, not cache */
1092		offset = scan_swap_map(si, 1);
1093		if (offset) {
1094			spin_unlock(&si->lock);
1095			return swp_entry(type, offset);
1096		}
1097		atomic_long_inc(&nr_swap_pages);
1098	}
1099	spin_unlock(&si->lock);
1100fail:
1101	return (swp_entry_t) {0};
1102}
1103
1104static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1105{
1106	struct swap_info_struct *p;
1107	unsigned long offset;
1108
1109	if (!entry.val)
1110		goto out;
1111	p = swp_swap_info(entry);
1112	if (!p)
1113		goto bad_nofile;
1114	if (!(p->flags & SWP_USED))
1115		goto bad_device;
1116	offset = swp_offset(entry);
1117	if (offset >= p->max)
1118		goto bad_offset;
 
 
1119	return p;
1120
 
 
 
1121bad_offset:
1122	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1123	goto out;
1124bad_device:
1125	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1126	goto out;
1127bad_nofile:
1128	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1129out:
1130	return NULL;
1131}
1132
1133static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1134{
1135	struct swap_info_struct *p;
1136
1137	p = __swap_info_get(entry);
1138	if (!p)
1139		goto out;
1140	if (!p->swap_map[swp_offset(entry)])
1141		goto bad_free;
1142	return p;
1143
1144bad_free:
1145	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1146	goto out;
1147out:
1148	return NULL;
1149}
1150
1151static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1152{
1153	struct swap_info_struct *p;
1154
1155	p = _swap_info_get(entry);
1156	if (p)
1157		spin_lock(&p->lock);
1158	return p;
1159}
1160
1161static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1162					struct swap_info_struct *q)
1163{
1164	struct swap_info_struct *p;
1165
1166	p = _swap_info_get(entry);
1167
1168	if (p != q) {
1169		if (q != NULL)
1170			spin_unlock(&q->lock);
1171		if (p != NULL)
1172			spin_lock(&p->lock);
1173	}
1174	return p;
1175}
1176
1177static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1178					      unsigned long offset,
1179					      unsigned char usage)
1180{
1181	unsigned char count;
1182	unsigned char has_cache;
1183
1184	count = p->swap_map[offset];
1185
1186	has_cache = count & SWAP_HAS_CACHE;
1187	count &= ~SWAP_HAS_CACHE;
1188
1189	if (usage == SWAP_HAS_CACHE) {
1190		VM_BUG_ON(!has_cache);
1191		has_cache = 0;
1192	} else if (count == SWAP_MAP_SHMEM) {
1193		/*
1194		 * Or we could insist on shmem.c using a special
1195		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1196		 */
1197		count = 0;
1198	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1199		if (count == COUNT_CONTINUED) {
1200			if (swap_count_continued(p, offset, count))
1201				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1202			else
1203				count = SWAP_MAP_MAX;
1204		} else
1205			count--;
1206	}
1207
1208	usage = count | has_cache;
1209	p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
 
 
 
1210
1211	return usage;
1212}
1213
1214/*
 
 
 
 
 
 
 
1215 * Check whether swap entry is valid in the swap device.  If so,
1216 * return pointer to swap_info_struct, and keep the swap entry valid
1217 * via preventing the swap device from being swapoff, until
1218 * put_swap_device() is called.  Otherwise return NULL.
1219 *
1220 * The entirety of the RCU read critical section must come before the
1221 * return from or after the call to synchronize_rcu() in
1222 * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1223 * true, the si->map, si->cluster_info, etc. must be valid in the
1224 * critical section.
1225 *
1226 * Notice that swapoff or swapoff+swapon can still happen before the
1227 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1228 * in put_swap_device() if there isn't any other way to prevent
1229 * swapoff, such as page lock, page table lock, etc.  The caller must
1230 * be prepared for that.  For example, the following situation is
1231 * possible.
1232 *
1233 *   CPU1				CPU2
1234 *   do_swap_page()
1235 *     ...				swapoff+swapon
1236 *     __read_swap_cache_async()
1237 *       swapcache_prepare()
1238 *         __swap_duplicate()
1239 *           // check swap_map
1240 *     // verify PTE not changed
1241 *
1242 * In __swap_duplicate(), the swap_map need to be checked before
1243 * changing partly because the specified swap entry may be for another
1244 * swap device which has been swapoff.  And in do_swap_page(), after
1245 * the page is read from the swap device, the PTE is verified not
1246 * changed with the page table locked to check whether the swap device
1247 * has been swapoff or swapoff+swapon.
1248 */
1249struct swap_info_struct *get_swap_device(swp_entry_t entry)
1250{
1251	struct swap_info_struct *si;
1252	unsigned long offset;
1253
1254	if (!entry.val)
1255		goto out;
1256	si = swp_swap_info(entry);
1257	if (!si)
1258		goto bad_nofile;
1259
1260	rcu_read_lock();
1261	if (!(si->flags & SWP_VALID))
1262		goto unlock_out;
 
 
 
 
 
 
1263	offset = swp_offset(entry);
1264	if (offset >= si->max)
1265		goto unlock_out;
1266
1267	return si;
1268bad_nofile:
1269	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1270out:
1271	return NULL;
1272unlock_out:
1273	rcu_read_unlock();
 
1274	return NULL;
1275}
1276
1277static unsigned char __swap_entry_free(struct swap_info_struct *p,
1278				       swp_entry_t entry, unsigned char usage)
1279{
1280	struct swap_cluster_info *ci;
1281	unsigned long offset = swp_offset(entry);
 
1282
1283	ci = lock_cluster_or_swap_info(p, offset);
1284	usage = __swap_entry_free_locked(p, offset, usage);
1285	unlock_cluster_or_swap_info(p, ci);
1286	if (!usage)
1287		free_swap_slot(entry);
1288
1289	return usage;
1290}
1291
1292static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1293{
1294	struct swap_cluster_info *ci;
1295	unsigned long offset = swp_offset(entry);
1296	unsigned char count;
1297
1298	ci = lock_cluster(p, offset);
1299	count = p->swap_map[offset];
1300	VM_BUG_ON(count != SWAP_HAS_CACHE);
1301	p->swap_map[offset] = 0;
1302	dec_cluster_info_page(p, p->cluster_info, offset);
1303	unlock_cluster(ci);
1304
1305	mem_cgroup_uncharge_swap(entry, 1);
1306	swap_range_free(p, offset, 1);
1307}
1308
1309/*
1310 * Caller has made sure that the swap device corresponding to entry
1311 * is still around or has not been recycled.
1312 */
1313void swap_free(swp_entry_t entry)
1314{
1315	struct swap_info_struct *p;
1316
1317	p = _swap_info_get(entry);
1318	if (p)
1319		__swap_entry_free(p, entry, 1);
1320}
1321
1322/*
1323 * Called after dropping swapcache to decrease refcnt to swap entries.
1324 */
1325void put_swap_page(struct page *page, swp_entry_t entry)
1326{
1327	unsigned long offset = swp_offset(entry);
1328	unsigned long idx = offset / SWAPFILE_CLUSTER;
1329	struct swap_cluster_info *ci;
1330	struct swap_info_struct *si;
1331	unsigned char *map;
1332	unsigned int i, free_entries = 0;
1333	unsigned char val;
1334	int size = swap_entry_size(hpage_nr_pages(page));
1335
1336	si = _swap_info_get(entry);
1337	if (!si)
1338		return;
1339
1340	ci = lock_cluster_or_swap_info(si, offset);
1341	if (size == SWAPFILE_CLUSTER) {
1342		VM_BUG_ON(!cluster_is_huge(ci));
1343		map = si->swap_map + offset;
1344		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1345			val = map[i];
1346			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1347			if (val == SWAP_HAS_CACHE)
1348				free_entries++;
1349		}
1350		cluster_clear_huge(ci);
1351		if (free_entries == SWAPFILE_CLUSTER) {
1352			unlock_cluster_or_swap_info(si, ci);
1353			spin_lock(&si->lock);
1354			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1355			swap_free_cluster(si, idx);
1356			spin_unlock(&si->lock);
1357			return;
1358		}
1359	}
1360	for (i = 0; i < size; i++, entry.val++) {
1361		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1362			unlock_cluster_or_swap_info(si, ci);
1363			free_swap_slot(entry);
1364			if (i == size - 1)
1365				return;
1366			lock_cluster_or_swap_info(si, offset);
1367		}
1368	}
1369	unlock_cluster_or_swap_info(si, ci);
1370}
1371
1372#ifdef CONFIG_THP_SWAP
1373int split_swap_cluster(swp_entry_t entry)
1374{
1375	struct swap_info_struct *si;
1376	struct swap_cluster_info *ci;
1377	unsigned long offset = swp_offset(entry);
1378
1379	si = _swap_info_get(entry);
1380	if (!si)
1381		return -EBUSY;
1382	ci = lock_cluster(si, offset);
1383	cluster_clear_huge(ci);
1384	unlock_cluster(ci);
1385	return 0;
1386}
1387#endif
1388
1389static int swp_entry_cmp(const void *ent1, const void *ent2)
1390{
1391	const swp_entry_t *e1 = ent1, *e2 = ent2;
1392
1393	return (int)swp_type(*e1) - (int)swp_type(*e2);
1394}
1395
1396void swapcache_free_entries(swp_entry_t *entries, int n)
1397{
1398	struct swap_info_struct *p, *prev;
1399	int i;
1400
1401	if (n <= 0)
1402		return;
1403
1404	prev = NULL;
1405	p = NULL;
1406
1407	/*
1408	 * Sort swap entries by swap device, so each lock is only taken once.
1409	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1410	 * so low that it isn't necessary to optimize further.
1411	 */
1412	if (nr_swapfiles > 1)
1413		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1414	for (i = 0; i < n; ++i) {
1415		p = swap_info_get_cont(entries[i], prev);
1416		if (p)
1417			swap_entry_free(p, entries[i]);
1418		prev = p;
1419	}
1420	if (p)
1421		spin_unlock(&p->lock);
1422}
1423
1424/*
1425 * How many references to page are currently swapped out?
1426 * This does not give an exact answer when swap count is continued,
1427 * but does include the high COUNT_CONTINUED flag to allow for that.
1428 */
1429int page_swapcount(struct page *page)
1430{
1431	int count = 0;
1432	struct swap_info_struct *p;
1433	struct swap_cluster_info *ci;
1434	swp_entry_t entry;
1435	unsigned long offset;
1436
1437	entry.val = page_private(page);
1438	p = _swap_info_get(entry);
1439	if (p) {
1440		offset = swp_offset(entry);
1441		ci = lock_cluster_or_swap_info(p, offset);
1442		count = swap_count(p->swap_map[offset]);
1443		unlock_cluster_or_swap_info(p, ci);
1444	}
1445	return count;
1446}
1447
1448int __swap_count(swp_entry_t entry)
1449{
1450	struct swap_info_struct *si;
1451	pgoff_t offset = swp_offset(entry);
1452	int count = 0;
1453
1454	si = get_swap_device(entry);
1455	if (si) {
1456		count = swap_count(si->swap_map[offset]);
1457		put_swap_device(si);
1458	}
1459	return count;
1460}
1461
1462static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1463{
1464	int count = 0;
1465	pgoff_t offset = swp_offset(entry);
1466	struct swap_cluster_info *ci;
1467
1468	ci = lock_cluster_or_swap_info(si, offset);
1469	count = swap_count(si->swap_map[offset]);
1470	unlock_cluster_or_swap_info(si, ci);
1471	return count;
1472}
1473
1474/*
1475 * How many references to @entry are currently swapped out?
1476 * This does not give an exact answer when swap count is continued,
1477 * but does include the high COUNT_CONTINUED flag to allow for that.
1478 */
1479int __swp_swapcount(swp_entry_t entry)
1480{
1481	int count = 0;
1482	struct swap_info_struct *si;
 
1483
1484	si = get_swap_device(entry);
1485	if (si) {
1486		count = swap_swapcount(si, entry);
1487		put_swap_device(si);
1488	}
1489	return count;
1490}
1491
1492/*
1493 * How many references to @entry are currently swapped out?
1494 * This considers COUNT_CONTINUED so it returns exact answer.
1495 */
1496int swp_swapcount(swp_entry_t entry)
1497{
1498	int count, tmp_count, n;
1499	struct swap_info_struct *p;
1500	struct swap_cluster_info *ci;
1501	struct page *page;
1502	pgoff_t offset;
1503	unsigned char *map;
1504
1505	p = _swap_info_get(entry);
1506	if (!p)
1507		return 0;
1508
1509	offset = swp_offset(entry);
1510
1511	ci = lock_cluster_or_swap_info(p, offset);
1512
1513	count = swap_count(p->swap_map[offset]);
1514	if (!(count & COUNT_CONTINUED))
1515		goto out;
1516
1517	count &= ~COUNT_CONTINUED;
1518	n = SWAP_MAP_MAX + 1;
1519
1520	page = vmalloc_to_page(p->swap_map + offset);
1521	offset &= ~PAGE_MASK;
1522	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1523
1524	do {
1525		page = list_next_entry(page, lru);
1526		map = kmap_atomic(page);
1527		tmp_count = map[offset];
1528		kunmap_atomic(map);
1529
1530		count += (tmp_count & ~COUNT_CONTINUED) * n;
1531		n *= (SWAP_CONT_MAX + 1);
1532	} while (tmp_count & COUNT_CONTINUED);
1533out:
1534	unlock_cluster_or_swap_info(p, ci);
1535	return count;
1536}
1537
1538static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1539					 swp_entry_t entry)
1540{
1541	struct swap_cluster_info *ci;
1542	unsigned char *map = si->swap_map;
1543	unsigned long roffset = swp_offset(entry);
1544	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1545	int i;
1546	bool ret = false;
1547
1548	ci = lock_cluster_or_swap_info(si, offset);
1549	if (!ci || !cluster_is_huge(ci)) {
1550		if (swap_count(map[roffset]))
1551			ret = true;
1552		goto unlock_out;
1553	}
1554	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1555		if (swap_count(map[offset + i])) {
1556			ret = true;
1557			break;
1558		}
1559	}
1560unlock_out:
1561	unlock_cluster_or_swap_info(si, ci);
1562	return ret;
1563}
1564
1565static bool page_swapped(struct page *page)
1566{
1567	swp_entry_t entry;
1568	struct swap_info_struct *si;
1569
1570	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1571		return page_swapcount(page) != 0;
1572
1573	page = compound_head(page);
1574	entry.val = page_private(page);
1575	si = _swap_info_get(entry);
1576	if (si)
1577		return swap_page_trans_huge_swapped(si, entry);
1578	return false;
1579}
1580
1581static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1582					 int *total_swapcount)
1583{
1584	int i, map_swapcount, _total_mapcount, _total_swapcount;
1585	unsigned long offset = 0;
1586	struct swap_info_struct *si;
1587	struct swap_cluster_info *ci = NULL;
1588	unsigned char *map = NULL;
1589	int mapcount, swapcount = 0;
1590
1591	/* hugetlbfs shouldn't call it */
1592	VM_BUG_ON_PAGE(PageHuge(page), page);
1593
1594	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1595		mapcount = page_trans_huge_mapcount(page, total_mapcount);
1596		if (PageSwapCache(page))
1597			swapcount = page_swapcount(page);
1598		if (total_swapcount)
1599			*total_swapcount = swapcount;
1600		return mapcount + swapcount;
1601	}
1602
1603	page = compound_head(page);
1604
1605	_total_mapcount = _total_swapcount = map_swapcount = 0;
1606	if (PageSwapCache(page)) {
1607		swp_entry_t entry;
1608
1609		entry.val = page_private(page);
1610		si = _swap_info_get(entry);
1611		if (si) {
1612			map = si->swap_map;
1613			offset = swp_offset(entry);
1614		}
1615	}
1616	if (map)
1617		ci = lock_cluster(si, offset);
1618	for (i = 0; i < HPAGE_PMD_NR; i++) {
1619		mapcount = atomic_read(&page[i]._mapcount) + 1;
1620		_total_mapcount += mapcount;
1621		if (map) {
1622			swapcount = swap_count(map[offset + i]);
1623			_total_swapcount += swapcount;
1624		}
1625		map_swapcount = max(map_swapcount, mapcount + swapcount);
1626	}
1627	unlock_cluster(ci);
1628	if (PageDoubleMap(page)) {
1629		map_swapcount -= 1;
1630		_total_mapcount -= HPAGE_PMD_NR;
1631	}
1632	mapcount = compound_mapcount(page);
1633	map_swapcount += mapcount;
1634	_total_mapcount += mapcount;
1635	if (total_mapcount)
1636		*total_mapcount = _total_mapcount;
1637	if (total_swapcount)
1638		*total_swapcount = _total_swapcount;
1639
1640	return map_swapcount;
1641}
1642
1643/*
1644 * We can write to an anon page without COW if there are no other references
1645 * to it.  And as a side-effect, free up its swap: because the old content
1646 * on disk will never be read, and seeking back there to write new content
1647 * later would only waste time away from clustering.
1648 *
1649 * NOTE: total_map_swapcount should not be relied upon by the caller if
1650 * reuse_swap_page() returns false, but it may be always overwritten
1651 * (see the other implementation for CONFIG_SWAP=n).
 
1652 */
1653bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1654{
1655	int count, total_mapcount, total_swapcount;
1656
1657	VM_BUG_ON_PAGE(!PageLocked(page), page);
1658	if (unlikely(PageKsm(page)))
 
 
 
1659		return false;
1660	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1661					      &total_swapcount);
1662	if (total_map_swapcount)
1663		*total_map_swapcount = total_mapcount + total_swapcount;
1664	if (count == 1 && PageSwapCache(page) &&
1665	    (likely(!PageTransCompound(page)) ||
1666	     /* The remaining swap count will be freed soon */
1667	     total_swapcount == page_swapcount(page))) {
1668		if (!PageWriteback(page)) {
1669			page = compound_head(page);
1670			delete_from_swap_cache(page);
1671			SetPageDirty(page);
1672		} else {
1673			swp_entry_t entry;
1674			struct swap_info_struct *p;
1675
1676			entry.val = page_private(page);
1677			p = swap_info_get(entry);
1678			if (p->flags & SWP_STABLE_WRITES) {
1679				spin_unlock(&p->lock);
1680				return false;
1681			}
1682			spin_unlock(&p->lock);
1683		}
1684	}
1685
1686	return count <= 1;
1687}
1688
1689/*
1690 * If swap is getting full, or if there are no more mappings of this page,
1691 * then try_to_free_swap is called to free its swap space.
1692 */
1693int try_to_free_swap(struct page *page)
1694{
1695	VM_BUG_ON_PAGE(!PageLocked(page), page);
1696
1697	if (!PageSwapCache(page))
1698		return 0;
1699	if (PageWriteback(page))
1700		return 0;
1701	if (page_swapped(page))
1702		return 0;
1703
1704	/*
1705	 * Once hibernation has begun to create its image of memory,
1706	 * there's a danger that one of the calls to try_to_free_swap()
1707	 * - most probably a call from __try_to_reclaim_swap() while
1708	 * hibernation is allocating its own swap pages for the image,
1709	 * but conceivably even a call from memory reclaim - will free
1710	 * the swap from a page which has already been recorded in the
1711	 * image as a clean swapcache page, and then reuse its swap for
1712	 * another page of the image.  On waking from hibernation, the
1713	 * original page might be freed under memory pressure, then
1714	 * later read back in from swap, now with the wrong data.
1715	 *
1716	 * Hibernation suspends storage while it is writing the image
1717	 * to disk so check that here.
1718	 */
1719	if (pm_suspended_storage())
1720		return 0;
1721
1722	page = compound_head(page);
1723	delete_from_swap_cache(page);
1724	SetPageDirty(page);
1725	return 1;
1726}
1727
1728/*
1729 * Free the swap entry like above, but also try to
1730 * free the page cache entry if it is the last user.
1731 */
1732int free_swap_and_cache(swp_entry_t entry)
1733{
1734	struct swap_info_struct *p;
1735	unsigned char count;
1736
1737	if (non_swap_entry(entry))
1738		return 1;
1739
1740	p = _swap_info_get(entry);
1741	if (p) {
1742		count = __swap_entry_free(p, entry, 1);
1743		if (count == SWAP_HAS_CACHE &&
1744		    !swap_page_trans_huge_swapped(p, entry))
1745			__try_to_reclaim_swap(p, swp_offset(entry),
1746					      TTRS_UNMAPPED | TTRS_FULL);
1747	}
1748	return p != NULL;
1749}
1750
1751#ifdef CONFIG_HIBERNATION
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1752/*
1753 * Find the swap type that corresponds to given device (if any).
1754 *
1755 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1756 * from 0, in which the swap header is expected to be located.
1757 *
1758 * This is needed for the suspend to disk (aka swsusp).
1759 */
1760int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1761{
1762	struct block_device *bdev = NULL;
1763	int type;
1764
1765	if (device)
1766		bdev = bdget(device);
1767
1768	spin_lock(&swap_lock);
1769	for (type = 0; type < nr_swapfiles; type++) {
1770		struct swap_info_struct *sis = swap_info[type];
1771
1772		if (!(sis->flags & SWP_WRITEOK))
1773			continue;
1774
1775		if (!bdev) {
1776			if (bdev_p)
1777				*bdev_p = bdgrab(sis->bdev);
1778
1779			spin_unlock(&swap_lock);
1780			return type;
1781		}
1782		if (bdev == sis->bdev) {
1783			struct swap_extent *se = first_se(sis);
1784
1785			if (se->start_block == offset) {
1786				if (bdev_p)
1787					*bdev_p = bdgrab(sis->bdev);
1788
1789				spin_unlock(&swap_lock);
1790				bdput(bdev);
1791				return type;
1792			}
1793		}
1794	}
1795	spin_unlock(&swap_lock);
1796	if (bdev)
1797		bdput(bdev);
 
 
 
 
1798
 
 
 
 
 
 
 
 
 
 
 
1799	return -ENODEV;
1800}
1801
1802/*
1803 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1804 * corresponding to given index in swap_info (swap type).
1805 */
1806sector_t swapdev_block(int type, pgoff_t offset)
1807{
1808	struct block_device *bdev;
1809	struct swap_info_struct *si = swap_type_to_swap_info(type);
 
1810
1811	if (!si || !(si->flags & SWP_WRITEOK))
1812		return 0;
1813	return map_swap_entry(swp_entry(type, offset), &bdev);
 
1814}
1815
1816/*
1817 * Return either the total number of swap pages of given type, or the number
1818 * of free pages of that type (depending on @free)
1819 *
1820 * This is needed for software suspend
1821 */
1822unsigned int count_swap_pages(int type, int free)
1823{
1824	unsigned int n = 0;
1825
1826	spin_lock(&swap_lock);
1827	if ((unsigned int)type < nr_swapfiles) {
1828		struct swap_info_struct *sis = swap_info[type];
1829
1830		spin_lock(&sis->lock);
1831		if (sis->flags & SWP_WRITEOK) {
1832			n = sis->pages;
1833			if (free)
1834				n -= sis->inuse_pages;
1835		}
1836		spin_unlock(&sis->lock);
1837	}
1838	spin_unlock(&swap_lock);
1839	return n;
1840}
1841#endif /* CONFIG_HIBERNATION */
1842
1843static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1844{
1845	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1846}
1847
1848/*
1849 * No need to decide whether this PTE shares the swap entry with others,
1850 * just let do_wp_page work it out if a write is requested later - to
1851 * force COW, vm_page_prot omits write permission from any private vma.
1852 */
1853static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1854		unsigned long addr, swp_entry_t entry, struct page *page)
1855{
1856	struct page *swapcache;
1857	struct mem_cgroup *memcg;
1858	spinlock_t *ptl;
1859	pte_t *pte;
 
1860	int ret = 1;
1861
1862	swapcache = page;
1863	page = ksm_might_need_to_copy(page, vma, addr);
1864	if (unlikely(!page))
1865		return -ENOMEM;
1866
1867	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1868				&memcg, false)) {
1869		ret = -ENOMEM;
1870		goto out_nolock;
1871	}
1872
 
 
 
 
1873	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1874	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1875		mem_cgroup_cancel_charge(page, memcg, false);
1876		ret = 0;
1877		goto out;
1878	}
1879
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1880	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1881	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1882	get_page(page);
1883	set_pte_at(vma->vm_mm, addr, pte,
1884		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1885	if (page == swapcache) {
1886		page_add_anon_rmap(page, vma, addr, false);
1887		mem_cgroup_commit_charge(page, memcg, true, false);
 
 
 
 
 
 
 
 
1888	} else { /* ksm created a completely new copy */
1889		page_add_new_anon_rmap(page, vma, addr, false);
1890		mem_cgroup_commit_charge(page, memcg, false, false);
1891		lru_cache_add_active_or_unevictable(page, vma);
1892	}
 
 
 
 
 
 
 
1893	swap_free(entry);
1894	/*
1895	 * Move the page to the active list so it is not
1896	 * immediately swapped out again after swapon.
1897	 */
1898	activate_page(page);
1899out:
1900	pte_unmap_unlock(pte, ptl);
1901out_nolock:
1902	if (page != swapcache) {
1903		unlock_page(page);
1904		put_page(page);
1905	}
1906	return ret;
1907}
1908
1909static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1910			unsigned long addr, unsigned long end,
1911			unsigned int type, bool frontswap,
1912			unsigned long *fs_pages_to_unuse)
1913{
1914	struct page *page;
1915	swp_entry_t entry;
1916	pte_t *pte;
1917	struct swap_info_struct *si;
1918	unsigned long offset;
1919	int ret = 0;
1920	volatile unsigned char *swap_map;
1921
1922	si = swap_info[type];
1923	pte = pte_offset_map(pmd, addr);
1924	do {
1925		struct vm_fault vmf;
 
 
 
 
 
1926
1927		if (!is_swap_pte(*pte))
 
 
 
 
 
 
 
 
1928			continue;
1929
1930		entry = pte_to_swp_entry(*pte);
1931		if (swp_type(entry) != type)
1932			continue;
1933
1934		offset = swp_offset(entry);
1935		if (frontswap && !frontswap_test(si, offset))
1936			continue;
1937
1938		pte_unmap(pte);
1939		swap_map = &si->swap_map[offset];
1940		vmf.vma = vma;
1941		vmf.address = addr;
1942		vmf.pmd = pmd;
1943		page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, &vmf);
1944		if (!page) {
1945			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1946				goto try_next;
 
 
 
 
 
 
 
 
 
 
 
 
 
1947			return -ENOMEM;
1948		}
1949
1950		lock_page(page);
1951		wait_on_page_writeback(page);
1952		ret = unuse_pte(vma, pmd, addr, entry, page);
1953		if (ret < 0) {
1954			unlock_page(page);
1955			put_page(page);
1956			goto out;
1957		}
1958
1959		try_to_free_swap(page);
1960		unlock_page(page);
1961		put_page(page);
1962
1963		if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1964			ret = FRONTSWAP_PAGES_UNUSED;
1965			goto out;
1966		}
1967try_next:
1968		pte = pte_offset_map(pmd, addr);
1969	} while (pte++, addr += PAGE_SIZE, addr != end);
1970	pte_unmap(pte - 1);
1971
1972	ret = 0;
1973out:
1974	return ret;
1975}
1976
1977static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1978				unsigned long addr, unsigned long end,
1979				unsigned int type, bool frontswap,
1980				unsigned long *fs_pages_to_unuse)
1981{
1982	pmd_t *pmd;
1983	unsigned long next;
1984	int ret;
1985
1986	pmd = pmd_offset(pud, addr);
1987	do {
1988		cond_resched();
1989		next = pmd_addr_end(addr, end);
1990		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1991			continue;
1992		ret = unuse_pte_range(vma, pmd, addr, next, type,
1993				      frontswap, fs_pages_to_unuse);
1994		if (ret)
1995			return ret;
1996	} while (pmd++, addr = next, addr != end);
1997	return 0;
1998}
1999
2000static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2001				unsigned long addr, unsigned long end,
2002				unsigned int type, bool frontswap,
2003				unsigned long *fs_pages_to_unuse)
2004{
2005	pud_t *pud;
2006	unsigned long next;
2007	int ret;
2008
2009	pud = pud_offset(p4d, addr);
2010	do {
2011		next = pud_addr_end(addr, end);
2012		if (pud_none_or_clear_bad(pud))
2013			continue;
2014		ret = unuse_pmd_range(vma, pud, addr, next, type,
2015				      frontswap, fs_pages_to_unuse);
2016		if (ret)
2017			return ret;
2018	} while (pud++, addr = next, addr != end);
2019	return 0;
2020}
2021
2022static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2023				unsigned long addr, unsigned long end,
2024				unsigned int type, bool frontswap,
2025				unsigned long *fs_pages_to_unuse)
2026{
2027	p4d_t *p4d;
2028	unsigned long next;
2029	int ret;
2030
2031	p4d = p4d_offset(pgd, addr);
2032	do {
2033		next = p4d_addr_end(addr, end);
2034		if (p4d_none_or_clear_bad(p4d))
2035			continue;
2036		ret = unuse_pud_range(vma, p4d, addr, next, type,
2037				      frontswap, fs_pages_to_unuse);
2038		if (ret)
2039			return ret;
2040	} while (p4d++, addr = next, addr != end);
2041	return 0;
2042}
2043
2044static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2045		     bool frontswap, unsigned long *fs_pages_to_unuse)
2046{
2047	pgd_t *pgd;
2048	unsigned long addr, end, next;
2049	int ret;
2050
2051	addr = vma->vm_start;
2052	end = vma->vm_end;
2053
2054	pgd = pgd_offset(vma->vm_mm, addr);
2055	do {
2056		next = pgd_addr_end(addr, end);
2057		if (pgd_none_or_clear_bad(pgd))
2058			continue;
2059		ret = unuse_p4d_range(vma, pgd, addr, next, type,
2060				      frontswap, fs_pages_to_unuse);
2061		if (ret)
2062			return ret;
2063	} while (pgd++, addr = next, addr != end);
2064	return 0;
2065}
2066
2067static int unuse_mm(struct mm_struct *mm, unsigned int type,
2068		    bool frontswap, unsigned long *fs_pages_to_unuse)
2069{
2070	struct vm_area_struct *vma;
2071	int ret = 0;
 
2072
2073	down_read(&mm->mmap_sem);
2074	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2075		if (vma->anon_vma) {
2076			ret = unuse_vma(vma, type, frontswap,
2077					fs_pages_to_unuse);
2078			if (ret)
2079				break;
2080		}
 
2081		cond_resched();
2082	}
2083	up_read(&mm->mmap_sem);
2084	return ret;
2085}
2086
2087/*
2088 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2089 * from current position to next entry still in use. Return 0
2090 * if there are no inuse entries after prev till end of the map.
2091 */
2092static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2093					unsigned int prev, bool frontswap)
2094{
2095	unsigned int i;
2096	unsigned char count;
2097
2098	/*
2099	 * No need for swap_lock here: we're just looking
2100	 * for whether an entry is in use, not modifying it; false
2101	 * hits are okay, and sys_swapoff() has already prevented new
2102	 * allocations from this area (while holding swap_lock).
2103	 */
2104	for (i = prev + 1; i < si->max; i++) {
2105		count = READ_ONCE(si->swap_map[i]);
2106		if (count && swap_count(count) != SWAP_MAP_BAD)
2107			if (!frontswap || frontswap_test(si, i))
2108				break;
2109		if ((i % LATENCY_LIMIT) == 0)
2110			cond_resched();
2111	}
2112
2113	if (i == si->max)
2114		i = 0;
2115
2116	return i;
2117}
2118
2119/*
2120 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2121 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2122 */
2123int try_to_unuse(unsigned int type, bool frontswap,
2124		 unsigned long pages_to_unuse)
2125{
2126	struct mm_struct *prev_mm;
2127	struct mm_struct *mm;
2128	struct list_head *p;
2129	int retval = 0;
2130	struct swap_info_struct *si = swap_info[type];
2131	struct page *page;
2132	swp_entry_t entry;
2133	unsigned int i;
2134
2135	if (!si->inuse_pages)
2136		return 0;
2137
2138	if (!frontswap)
2139		pages_to_unuse = 0;
2140
2141retry:
2142	retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2143	if (retval)
2144		goto out;
2145
2146	prev_mm = &init_mm;
2147	mmget(prev_mm);
2148
2149	spin_lock(&mmlist_lock);
2150	p = &init_mm.mmlist;
2151	while (si->inuse_pages &&
2152	       !signal_pending(current) &&
2153	       (p = p->next) != &init_mm.mmlist) {
2154
2155		mm = list_entry(p, struct mm_struct, mmlist);
2156		if (!mmget_not_zero(mm))
2157			continue;
2158		spin_unlock(&mmlist_lock);
2159		mmput(prev_mm);
2160		prev_mm = mm;
2161		retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2162
2163		if (retval) {
2164			mmput(prev_mm);
2165			goto out;
2166		}
2167
2168		/*
2169		 * Make sure that we aren't completely killing
2170		 * interactive performance.
2171		 */
2172		cond_resched();
2173		spin_lock(&mmlist_lock);
2174	}
2175	spin_unlock(&mmlist_lock);
2176
2177	mmput(prev_mm);
2178
2179	i = 0;
2180	while (si->inuse_pages &&
2181	       !signal_pending(current) &&
2182	       (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2183
2184		entry = swp_entry(type, i);
2185		page = find_get_page(swap_address_space(entry), i);
2186		if (!page)
2187			continue;
2188
2189		/*
2190		 * It is conceivable that a racing task removed this page from
2191		 * swap cache just before we acquired the page lock. The page
2192		 * might even be back in swap cache on another swap area. But
2193		 * that is okay, try_to_free_swap() only removes stale pages.
2194		 */
2195		lock_page(page);
2196		wait_on_page_writeback(page);
2197		try_to_free_swap(page);
2198		unlock_page(page);
2199		put_page(page);
2200
2201		/*
2202		 * For frontswap, we just need to unuse pages_to_unuse, if
2203		 * it was specified. Need not check frontswap again here as
2204		 * we already zeroed out pages_to_unuse if not frontswap.
2205		 */
2206		if (pages_to_unuse && --pages_to_unuse == 0)
2207			goto out;
 
 
 
2208	}
2209
2210	/*
2211	 * Lets check again to see if there are still swap entries in the map.
2212	 * If yes, we would need to do retry the unuse logic again.
2213	 * Under global memory pressure, swap entries can be reinserted back
2214	 * into process space after the mmlist loop above passes over them.
2215	 *
2216	 * Limit the number of retries? No: when mmget_not_zero() above fails,
2217	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2218	 * at its own independent pace; and even shmem_writepage() could have
2219	 * been preempted after get_swap_page(), temporarily hiding that swap.
2220	 * It's easy and robust (though cpu-intensive) just to keep retrying.
 
2221	 */
2222	if (si->inuse_pages) {
2223		if (!signal_pending(current))
2224			goto retry;
2225		retval = -EINTR;
2226	}
2227out:
2228	return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2229}
2230
2231/*
2232 * After a successful try_to_unuse, if no swap is now in use, we know
2233 * we can empty the mmlist.  swap_lock must be held on entry and exit.
2234 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2235 * added to the mmlist just after page_duplicate - before would be racy.
2236 */
2237static void drain_mmlist(void)
2238{
2239	struct list_head *p, *next;
2240	unsigned int type;
2241
2242	for (type = 0; type < nr_swapfiles; type++)
2243		if (swap_info[type]->inuse_pages)
2244			return;
2245	spin_lock(&mmlist_lock);
2246	list_for_each_safe(p, next, &init_mm.mmlist)
2247		list_del_init(p);
2248	spin_unlock(&mmlist_lock);
2249}
2250
2251/*
2252 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2253 * corresponds to page offset for the specified swap entry.
2254 * Note that the type of this function is sector_t, but it returns page offset
2255 * into the bdev, not sector offset.
2256 */
2257static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2258{
2259	struct swap_info_struct *sis;
2260	struct swap_extent *se;
2261	pgoff_t offset;
2262
2263	sis = swp_swap_info(entry);
2264	*bdev = sis->bdev;
2265
2266	offset = swp_offset(entry);
2267	se = offset_to_swap_extent(sis, offset);
2268	return se->start_block + (offset - se->start_page);
2269}
2270
2271/*
2272 * Returns the page offset into bdev for the specified page's swap entry.
2273 */
2274sector_t map_swap_page(struct page *page, struct block_device **bdev)
2275{
2276	swp_entry_t entry;
2277	entry.val = page_private(page);
2278	return map_swap_entry(entry, bdev);
2279}
2280
2281/*
2282 * Free all of a swapdev's extent information
2283 */
2284static void destroy_swap_extents(struct swap_info_struct *sis)
2285{
2286	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2287		struct rb_node *rb = sis->swap_extent_root.rb_node;
2288		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2289
2290		rb_erase(rb, &sis->swap_extent_root);
2291		kfree(se);
2292	}
2293
2294	if (sis->flags & SWP_ACTIVATED) {
2295		struct file *swap_file = sis->swap_file;
2296		struct address_space *mapping = swap_file->f_mapping;
2297
2298		sis->flags &= ~SWP_ACTIVATED;
2299		if (mapping->a_ops->swap_deactivate)
2300			mapping->a_ops->swap_deactivate(swap_file);
2301	}
2302}
2303
2304/*
2305 * Add a block range (and the corresponding page range) into this swapdev's
2306 * extent tree.
2307 *
2308 * This function rather assumes that it is called in ascending page order.
2309 */
2310int
2311add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2312		unsigned long nr_pages, sector_t start_block)
2313{
2314	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2315	struct swap_extent *se;
2316	struct swap_extent *new_se;
2317
2318	/*
2319	 * place the new node at the right most since the
2320	 * function is called in ascending page order.
2321	 */
2322	while (*link) {
2323		parent = *link;
2324		link = &parent->rb_right;
2325	}
2326
2327	if (parent) {
2328		se = rb_entry(parent, struct swap_extent, rb_node);
2329		BUG_ON(se->start_page + se->nr_pages != start_page);
2330		if (se->start_block + se->nr_pages == start_block) {
2331			/* Merge it */
2332			se->nr_pages += nr_pages;
2333			return 0;
2334		}
2335	}
2336
2337	/* No merge, insert a new extent. */
2338	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2339	if (new_se == NULL)
2340		return -ENOMEM;
2341	new_se->start_page = start_page;
2342	new_se->nr_pages = nr_pages;
2343	new_se->start_block = start_block;
2344
2345	rb_link_node(&new_se->rb_node, parent, link);
2346	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2347	return 1;
2348}
2349EXPORT_SYMBOL_GPL(add_swap_extent);
2350
2351/*
2352 * A `swap extent' is a simple thing which maps a contiguous range of pages
2353 * onto a contiguous range of disk blocks.  An ordered list of swap extents
2354 * is built at swapon time and is then used at swap_writepage/swap_readpage
2355 * time for locating where on disk a page belongs.
2356 *
2357 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2358 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2359 * swap files identically.
2360 *
2361 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2362 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2363 * swapfiles are handled *identically* after swapon time.
2364 *
2365 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2366 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2367 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2368 * requirements, they are simply tossed out - we will never use those blocks
2369 * for swapping.
2370 *
2371 * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2372 * prevents users from writing to the swap device, which will corrupt memory.
2373 *
2374 * The amount of disk space which a single swap extent represents varies.
2375 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2376 * extents in the list.  To avoid much list walking, we cache the previous
2377 * search location in `curr_swap_extent', and start new searches from there.
2378 * This is extremely effective.  The average number of iterations in
2379 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2380 */
2381static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2382{
2383	struct file *swap_file = sis->swap_file;
2384	struct address_space *mapping = swap_file->f_mapping;
2385	struct inode *inode = mapping->host;
2386	int ret;
2387
2388	if (S_ISBLK(inode->i_mode)) {
2389		ret = add_swap_extent(sis, 0, sis->max, 0);
2390		*span = sis->pages;
2391		return ret;
2392	}
2393
2394	if (mapping->a_ops->swap_activate) {
2395		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2396		if (ret >= 0)
2397			sis->flags |= SWP_ACTIVATED;
2398		if (!ret) {
2399			sis->flags |= SWP_FS;
2400			ret = add_swap_extent(sis, 0, sis->max, 0);
2401			*span = sis->pages;
 
2402		}
2403		return ret;
2404	}
2405
2406	return generic_swapfile_activate(sis, swap_file, span);
2407}
2408
2409static int swap_node(struct swap_info_struct *p)
2410{
2411	struct block_device *bdev;
2412
2413	if (p->bdev)
2414		bdev = p->bdev;
2415	else
2416		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2417
2418	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2419}
2420
2421static void setup_swap_info(struct swap_info_struct *p, int prio,
2422			    unsigned char *swap_map,
2423			    struct swap_cluster_info *cluster_info)
2424{
2425	int i;
2426
2427	if (prio >= 0)
2428		p->prio = prio;
2429	else
2430		p->prio = --least_priority;
2431	/*
2432	 * the plist prio is negated because plist ordering is
2433	 * low-to-high, while swap ordering is high-to-low
2434	 */
2435	p->list.prio = -p->prio;
2436	for_each_node(i) {
2437		if (p->prio >= 0)
2438			p->avail_lists[i].prio = -p->prio;
2439		else {
2440			if (swap_node(p) == i)
2441				p->avail_lists[i].prio = 1;
2442			else
2443				p->avail_lists[i].prio = -p->prio;
2444		}
2445	}
2446	p->swap_map = swap_map;
2447	p->cluster_info = cluster_info;
2448}
2449
2450static void _enable_swap_info(struct swap_info_struct *p)
2451{
2452	p->flags |= SWP_WRITEOK | SWP_VALID;
2453	atomic_long_add(p->pages, &nr_swap_pages);
2454	total_swap_pages += p->pages;
2455
2456	assert_spin_locked(&swap_lock);
2457	/*
2458	 * both lists are plists, and thus priority ordered.
2459	 * swap_active_head needs to be priority ordered for swapoff(),
2460	 * which on removal of any swap_info_struct with an auto-assigned
2461	 * (i.e. negative) priority increments the auto-assigned priority
2462	 * of any lower-priority swap_info_structs.
2463	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2464	 * which allocates swap pages from the highest available priority
2465	 * swap_info_struct.
2466	 */
2467	plist_add(&p->list, &swap_active_head);
2468	add_to_avail_list(p);
 
 
 
2469}
2470
2471static void enable_swap_info(struct swap_info_struct *p, int prio,
2472				unsigned char *swap_map,
2473				struct swap_cluster_info *cluster_info,
2474				unsigned long *frontswap_map)
2475{
2476	frontswap_init(p->type, frontswap_map);
 
2477	spin_lock(&swap_lock);
2478	spin_lock(&p->lock);
2479	setup_swap_info(p, prio, swap_map, cluster_info);
2480	spin_unlock(&p->lock);
2481	spin_unlock(&swap_lock);
2482	/*
2483	 * Guarantee swap_map, cluster_info, etc. fields are valid
2484	 * between get/put_swap_device() if SWP_VALID bit is set
2485	 */
2486	synchronize_rcu();
2487	spin_lock(&swap_lock);
2488	spin_lock(&p->lock);
2489	_enable_swap_info(p);
2490	spin_unlock(&p->lock);
2491	spin_unlock(&swap_lock);
2492}
2493
2494static void reinsert_swap_info(struct swap_info_struct *p)
2495{
2496	spin_lock(&swap_lock);
2497	spin_lock(&p->lock);
2498	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2499	_enable_swap_info(p);
2500	spin_unlock(&p->lock);
2501	spin_unlock(&swap_lock);
2502}
2503
2504bool has_usable_swap(void)
2505{
2506	bool ret = true;
2507
2508	spin_lock(&swap_lock);
2509	if (plist_head_empty(&swap_active_head))
2510		ret = false;
2511	spin_unlock(&swap_lock);
2512	return ret;
2513}
2514
2515SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2516{
2517	struct swap_info_struct *p = NULL;
2518	unsigned char *swap_map;
2519	struct swap_cluster_info *cluster_info;
2520	unsigned long *frontswap_map;
2521	struct file *swap_file, *victim;
2522	struct address_space *mapping;
2523	struct inode *inode;
2524	struct filename *pathname;
2525	int err, found = 0;
2526	unsigned int old_block_size;
2527
2528	if (!capable(CAP_SYS_ADMIN))
2529		return -EPERM;
2530
2531	BUG_ON(!current->mm);
2532
2533	pathname = getname(specialfile);
2534	if (IS_ERR(pathname))
2535		return PTR_ERR(pathname);
2536
2537	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2538	err = PTR_ERR(victim);
2539	if (IS_ERR(victim))
2540		goto out;
2541
2542	mapping = victim->f_mapping;
2543	spin_lock(&swap_lock);
2544	plist_for_each_entry(p, &swap_active_head, list) {
2545		if (p->flags & SWP_WRITEOK) {
2546			if (p->swap_file->f_mapping == mapping) {
2547				found = 1;
2548				break;
2549			}
2550		}
2551	}
2552	if (!found) {
2553		err = -EINVAL;
2554		spin_unlock(&swap_lock);
2555		goto out_dput;
2556	}
2557	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2558		vm_unacct_memory(p->pages);
2559	else {
2560		err = -ENOMEM;
2561		spin_unlock(&swap_lock);
2562		goto out_dput;
2563	}
2564	del_from_avail_list(p);
2565	spin_lock(&p->lock);
 
2566	if (p->prio < 0) {
2567		struct swap_info_struct *si = p;
2568		int nid;
2569
2570		plist_for_each_entry_continue(si, &swap_active_head, list) {
2571			si->prio++;
2572			si->list.prio--;
2573			for_each_node(nid) {
2574				if (si->avail_lists[nid].prio != 1)
2575					si->avail_lists[nid].prio--;
2576			}
2577		}
2578		least_priority++;
2579	}
2580	plist_del(&p->list, &swap_active_head);
2581	atomic_long_sub(p->pages, &nr_swap_pages);
2582	total_swap_pages -= p->pages;
2583	p->flags &= ~SWP_WRITEOK;
2584	spin_unlock(&p->lock);
2585	spin_unlock(&swap_lock);
2586
2587	disable_swap_slots_cache_lock();
2588
2589	set_current_oom_origin();
2590	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2591	clear_current_oom_origin();
2592
2593	if (err) {
2594		/* re-insert swap space back into swap_list */
2595		reinsert_swap_info(p);
2596		reenable_swap_slots_cache_unlock();
2597		goto out_dput;
2598	}
2599
2600	reenable_swap_slots_cache_unlock();
2601
2602	spin_lock(&swap_lock);
2603	spin_lock(&p->lock);
2604	p->flags &= ~SWP_VALID;		/* mark swap device as invalid */
2605	spin_unlock(&p->lock);
2606	spin_unlock(&swap_lock);
2607	/*
2608	 * wait for swap operations protected by get/put_swap_device()
2609	 * to complete
 
 
 
2610	 */
 
2611	synchronize_rcu();
 
2612
2613	flush_work(&p->discard_work);
2614
2615	destroy_swap_extents(p);
2616	if (p->flags & SWP_CONTINUED)
2617		free_swap_count_continuations(p);
2618
2619	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2620		atomic_dec(&nr_rotate_swap);
2621
2622	mutex_lock(&swapon_mutex);
2623	spin_lock(&swap_lock);
2624	spin_lock(&p->lock);
2625	drain_mmlist();
2626
2627	/* wait for anyone still in scan_swap_map */
2628	p->highest_bit = 0;		/* cuts scans short */
2629	while (p->flags >= SWP_SCANNING) {
2630		spin_unlock(&p->lock);
2631		spin_unlock(&swap_lock);
2632		schedule_timeout_uninterruptible(1);
2633		spin_lock(&swap_lock);
2634		spin_lock(&p->lock);
2635	}
2636
2637	swap_file = p->swap_file;
2638	old_block_size = p->old_block_size;
2639	p->swap_file = NULL;
2640	p->max = 0;
2641	swap_map = p->swap_map;
2642	p->swap_map = NULL;
2643	cluster_info = p->cluster_info;
2644	p->cluster_info = NULL;
2645	frontswap_map = frontswap_map_get(p);
2646	spin_unlock(&p->lock);
2647	spin_unlock(&swap_lock);
2648	frontswap_invalidate_area(p->type);
2649	frontswap_map_set(p, NULL);
2650	mutex_unlock(&swapon_mutex);
2651	free_percpu(p->percpu_cluster);
2652	p->percpu_cluster = NULL;
 
 
2653	vfree(swap_map);
2654	kvfree(cluster_info);
2655	kvfree(frontswap_map);
2656	/* Destroy swap account information */
2657	swap_cgroup_swapoff(p->type);
2658	exit_swap_address_space(p->type);
2659
2660	inode = mapping->host;
2661	if (S_ISBLK(inode->i_mode)) {
2662		struct block_device *bdev = I_BDEV(inode);
2663
2664		set_blocksize(bdev, old_block_size);
2665		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2666	}
2667
2668	inode_lock(inode);
2669	inode->i_flags &= ~S_SWAPFILE;
2670	inode_unlock(inode);
2671	filp_close(swap_file, NULL);
2672
2673	/*
2674	 * Clear the SWP_USED flag after all resources are freed so that swapon
2675	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2676	 * not hold p->lock after we cleared its SWP_WRITEOK.
2677	 */
2678	spin_lock(&swap_lock);
2679	p->flags = 0;
2680	spin_unlock(&swap_lock);
2681
2682	err = 0;
2683	atomic_inc(&proc_poll_event);
2684	wake_up_interruptible(&proc_poll_wait);
2685
2686out_dput:
2687	filp_close(victim, NULL);
2688out:
2689	putname(pathname);
2690	return err;
2691}
2692
2693#ifdef CONFIG_PROC_FS
2694static __poll_t swaps_poll(struct file *file, poll_table *wait)
2695{
2696	struct seq_file *seq = file->private_data;
2697
2698	poll_wait(file, &proc_poll_wait, wait);
2699
2700	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2701		seq->poll_event = atomic_read(&proc_poll_event);
2702		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2703	}
2704
2705	return EPOLLIN | EPOLLRDNORM;
2706}
2707
2708/* iterator */
2709static void *swap_start(struct seq_file *swap, loff_t *pos)
2710{
2711	struct swap_info_struct *si;
2712	int type;
2713	loff_t l = *pos;
2714
2715	mutex_lock(&swapon_mutex);
2716
2717	if (!l)
2718		return SEQ_START_TOKEN;
2719
2720	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2721		if (!(si->flags & SWP_USED) || !si->swap_map)
2722			continue;
2723		if (!--l)
2724			return si;
2725	}
2726
2727	return NULL;
2728}
2729
2730static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2731{
2732	struct swap_info_struct *si = v;
2733	int type;
2734
2735	if (v == SEQ_START_TOKEN)
2736		type = 0;
2737	else
2738		type = si->type + 1;
2739
 
2740	for (; (si = swap_type_to_swap_info(type)); type++) {
2741		if (!(si->flags & SWP_USED) || !si->swap_map)
2742			continue;
2743		++*pos;
2744		return si;
2745	}
2746
2747	return NULL;
2748}
2749
2750static void swap_stop(struct seq_file *swap, void *v)
2751{
2752	mutex_unlock(&swapon_mutex);
2753}
2754
2755static int swap_show(struct seq_file *swap, void *v)
2756{
2757	struct swap_info_struct *si = v;
2758	struct file *file;
2759	int len;
 
2760
2761	if (si == SEQ_START_TOKEN) {
2762		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2763		return 0;
2764	}
2765
 
 
 
2766	file = si->swap_file;
2767	len = seq_file_path(swap, file, " \t\n\\");
2768	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2769			len < 40 ? 40 - len : 1, " ",
2770			S_ISBLK(file_inode(file)->i_mode) ?
2771				"partition" : "file\t",
2772			si->pages << (PAGE_SHIFT - 10),
2773			si->inuse_pages << (PAGE_SHIFT - 10),
2774			si->prio);
2775	return 0;
2776}
2777
2778static const struct seq_operations swaps_op = {
2779	.start =	swap_start,
2780	.next =		swap_next,
2781	.stop =		swap_stop,
2782	.show =		swap_show
2783};
2784
2785static int swaps_open(struct inode *inode, struct file *file)
2786{
2787	struct seq_file *seq;
2788	int ret;
2789
2790	ret = seq_open(file, &swaps_op);
2791	if (ret)
2792		return ret;
2793
2794	seq = file->private_data;
2795	seq->poll_event = atomic_read(&proc_poll_event);
2796	return 0;
2797}
2798
2799static const struct file_operations proc_swaps_operations = {
2800	.open		= swaps_open,
2801	.read		= seq_read,
2802	.llseek		= seq_lseek,
2803	.release	= seq_release,
2804	.poll		= swaps_poll,
 
2805};
2806
2807static int __init procswaps_init(void)
2808{
2809	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2810	return 0;
2811}
2812__initcall(procswaps_init);
2813#endif /* CONFIG_PROC_FS */
2814
2815#ifdef MAX_SWAPFILES_CHECK
2816static int __init max_swapfiles_check(void)
2817{
2818	MAX_SWAPFILES_CHECK();
2819	return 0;
2820}
2821late_initcall(max_swapfiles_check);
2822#endif
2823
2824static struct swap_info_struct *alloc_swap_info(void)
2825{
2826	struct swap_info_struct *p;
 
2827	unsigned int type;
2828	int i;
2829
2830	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2831	if (!p)
2832		return ERR_PTR(-ENOMEM);
2833
 
 
 
 
 
 
2834	spin_lock(&swap_lock);
2835	for (type = 0; type < nr_swapfiles; type++) {
2836		if (!(swap_info[type]->flags & SWP_USED))
2837			break;
2838	}
2839	if (type >= MAX_SWAPFILES) {
2840		spin_unlock(&swap_lock);
 
2841		kvfree(p);
2842		return ERR_PTR(-EPERM);
2843	}
2844	if (type >= nr_swapfiles) {
2845		p->type = type;
2846		WRITE_ONCE(swap_info[type], p);
2847		/*
2848		 * Write swap_info[type] before nr_swapfiles, in case a
2849		 * racing procfs swap_start() or swap_next() is reading them.
2850		 * (We never shrink nr_swapfiles, we never free this entry.)
2851		 */
2852		smp_wmb();
2853		WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2854	} else {
2855		kvfree(p);
2856		p = swap_info[type];
2857		/*
2858		 * Do not memset this entry: a racing procfs swap_next()
2859		 * would be relying on p->type to remain valid.
2860		 */
2861	}
2862	p->swap_extent_root = RB_ROOT;
2863	plist_node_init(&p->list, 0);
2864	for_each_node(i)
2865		plist_node_init(&p->avail_lists[i], 0);
2866	p->flags = SWP_USED;
2867	spin_unlock(&swap_lock);
 
 
 
 
2868	spin_lock_init(&p->lock);
2869	spin_lock_init(&p->cont_lock);
 
2870
2871	return p;
2872}
2873
2874static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2875{
2876	int error;
2877
2878	if (S_ISBLK(inode->i_mode)) {
2879		p->bdev = bdgrab(I_BDEV(inode));
2880		error = blkdev_get(p->bdev,
2881				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2882		if (error < 0) {
2883			p->bdev = NULL;
2884			return error;
2885		}
 
2886		p->old_block_size = block_size(p->bdev);
2887		error = set_blocksize(p->bdev, PAGE_SIZE);
2888		if (error < 0)
2889			return error;
 
 
 
 
 
 
 
2890		p->flags |= SWP_BLKDEV;
2891	} else if (S_ISREG(inode->i_mode)) {
2892		p->bdev = inode->i_sb->s_bdev;
2893	}
2894
2895	inode_lock(inode);
2896	if (IS_SWAPFILE(inode))
2897		return -EBUSY;
2898
2899	return 0;
2900}
2901
2902
2903/*
2904 * Find out how many pages are allowed for a single swap device. There
2905 * are two limiting factors:
2906 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2907 * 2) the number of bits in the swap pte, as defined by the different
2908 * architectures.
2909 *
2910 * In order to find the largest possible bit mask, a swap entry with
2911 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2912 * decoded to a swp_entry_t again, and finally the swap offset is
2913 * extracted.
2914 *
2915 * This will mask all the bits from the initial ~0UL mask that can't
2916 * be encoded in either the swp_entry_t or the architecture definition
2917 * of a swap pte.
2918 */
2919unsigned long generic_max_swapfile_size(void)
2920{
2921	return swp_offset(pte_to_swp_entry(
2922			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2923}
2924
2925/* Can be overridden by an architecture for additional checks. */
2926__weak unsigned long max_swapfile_size(void)
2927{
2928	return generic_max_swapfile_size();
2929}
2930
2931static unsigned long read_swap_header(struct swap_info_struct *p,
2932					union swap_header *swap_header,
2933					struct inode *inode)
2934{
2935	int i;
2936	unsigned long maxpages;
2937	unsigned long swapfilepages;
2938	unsigned long last_page;
2939
2940	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2941		pr_err("Unable to find swap-space signature\n");
2942		return 0;
2943	}
2944
2945	/* swap partition endianess hack... */
2946	if (swab32(swap_header->info.version) == 1) {
2947		swab32s(&swap_header->info.version);
2948		swab32s(&swap_header->info.last_page);
2949		swab32s(&swap_header->info.nr_badpages);
2950		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2951			return 0;
2952		for (i = 0; i < swap_header->info.nr_badpages; i++)
2953			swab32s(&swap_header->info.badpages[i]);
2954	}
2955	/* Check the swap header's sub-version */
2956	if (swap_header->info.version != 1) {
2957		pr_warn("Unable to handle swap header version %d\n",
2958			swap_header->info.version);
2959		return 0;
2960	}
2961
2962	p->lowest_bit  = 1;
2963	p->cluster_next = 1;
2964	p->cluster_nr = 0;
2965
2966	maxpages = max_swapfile_size();
2967	last_page = swap_header->info.last_page;
2968	if (!last_page) {
2969		pr_warn("Empty swap-file\n");
2970		return 0;
2971	}
2972	if (last_page > maxpages) {
2973		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2974			maxpages << (PAGE_SHIFT - 10),
2975			last_page << (PAGE_SHIFT - 10));
2976	}
2977	if (maxpages > last_page) {
2978		maxpages = last_page + 1;
2979		/* p->max is an unsigned int: don't overflow it */
2980		if ((unsigned int)maxpages == 0)
2981			maxpages = UINT_MAX;
2982	}
2983	p->highest_bit = maxpages - 1;
2984
2985	if (!maxpages)
2986		return 0;
2987	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2988	if (swapfilepages && maxpages > swapfilepages) {
2989		pr_warn("Swap area shorter than signature indicates\n");
2990		return 0;
2991	}
2992	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2993		return 0;
2994	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2995		return 0;
2996
2997	return maxpages;
2998}
2999
3000#define SWAP_CLUSTER_INFO_COLS						\
3001	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3002#define SWAP_CLUSTER_SPACE_COLS						\
3003	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3004#define SWAP_CLUSTER_COLS						\
3005	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3006
3007static int setup_swap_map_and_extents(struct swap_info_struct *p,
3008					union swap_header *swap_header,
3009					unsigned char *swap_map,
3010					struct swap_cluster_info *cluster_info,
3011					unsigned long maxpages,
3012					sector_t *span)
3013{
3014	unsigned int j, k;
3015	unsigned int nr_good_pages;
3016	int nr_extents;
3017	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3018	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3019	unsigned long i, idx;
3020
3021	nr_good_pages = maxpages - 1;	/* omit header page */
3022
3023	cluster_list_init(&p->free_clusters);
3024	cluster_list_init(&p->discard_clusters);
3025
3026	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3027		unsigned int page_nr = swap_header->info.badpages[i];
3028		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3029			return -EINVAL;
3030		if (page_nr < maxpages) {
3031			swap_map[page_nr] = SWAP_MAP_BAD;
3032			nr_good_pages--;
3033			/*
3034			 * Haven't marked the cluster free yet, no list
3035			 * operation involved
3036			 */
3037			inc_cluster_info_page(p, cluster_info, page_nr);
3038		}
3039	}
3040
3041	/* Haven't marked the cluster free yet, no list operation involved */
3042	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3043		inc_cluster_info_page(p, cluster_info, i);
3044
3045	if (nr_good_pages) {
3046		swap_map[0] = SWAP_MAP_BAD;
3047		/*
3048		 * Not mark the cluster free yet, no list
3049		 * operation involved
3050		 */
3051		inc_cluster_info_page(p, cluster_info, 0);
3052		p->max = maxpages;
3053		p->pages = nr_good_pages;
3054		nr_extents = setup_swap_extents(p, span);
3055		if (nr_extents < 0)
3056			return nr_extents;
3057		nr_good_pages = p->pages;
3058	}
3059	if (!nr_good_pages) {
3060		pr_warn("Empty swap-file\n");
3061		return -EINVAL;
3062	}
3063
3064	if (!cluster_info)
3065		return nr_extents;
3066
3067
3068	/*
3069	 * Reduce false cache line sharing between cluster_info and
3070	 * sharing same address space.
3071	 */
3072	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3073		j = (k + col) % SWAP_CLUSTER_COLS;
3074		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3075			idx = i * SWAP_CLUSTER_COLS + j;
3076			if (idx >= nr_clusters)
3077				continue;
3078			if (cluster_count(&cluster_info[idx]))
3079				continue;
3080			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3081			cluster_list_add_tail(&p->free_clusters, cluster_info,
3082					      idx);
3083		}
3084	}
3085	return nr_extents;
3086}
3087
3088/*
3089 * Helper to sys_swapon determining if a given swap
3090 * backing device queue supports DISCARD operations.
3091 */
3092static bool swap_discardable(struct swap_info_struct *si)
3093{
3094	struct request_queue *q = bdev_get_queue(si->bdev);
3095
3096	if (!q || !blk_queue_discard(q))
3097		return false;
3098
3099	return true;
3100}
3101
3102SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3103{
3104	struct swap_info_struct *p;
3105	struct filename *name;
3106	struct file *swap_file = NULL;
3107	struct address_space *mapping;
 
3108	int prio;
3109	int error;
3110	union swap_header *swap_header;
3111	int nr_extents;
3112	sector_t span;
3113	unsigned long maxpages;
3114	unsigned char *swap_map = NULL;
3115	struct swap_cluster_info *cluster_info = NULL;
3116	unsigned long *frontswap_map = NULL;
3117	struct page *page = NULL;
3118	struct inode *inode = NULL;
3119	bool inced_nr_rotate_swap = false;
3120
3121	if (swap_flags & ~SWAP_FLAGS_VALID)
3122		return -EINVAL;
3123
3124	if (!capable(CAP_SYS_ADMIN))
3125		return -EPERM;
3126
3127	if (!swap_avail_heads)
3128		return -ENOMEM;
3129
3130	p = alloc_swap_info();
3131	if (IS_ERR(p))
3132		return PTR_ERR(p);
3133
3134	INIT_WORK(&p->discard_work, swap_discard_work);
3135
3136	name = getname(specialfile);
3137	if (IS_ERR(name)) {
3138		error = PTR_ERR(name);
3139		name = NULL;
3140		goto bad_swap;
3141	}
3142	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3143	if (IS_ERR(swap_file)) {
3144		error = PTR_ERR(swap_file);
3145		swap_file = NULL;
3146		goto bad_swap;
3147	}
3148
3149	p->swap_file = swap_file;
3150	mapping = swap_file->f_mapping;
 
3151	inode = mapping->host;
3152
3153	/* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3154	error = claim_swapfile(p, inode);
3155	if (unlikely(error))
3156		goto bad_swap;
3157
 
 
 
 
 
 
 
 
 
 
3158	/*
3159	 * Read the swap header.
3160	 */
3161	if (!mapping->a_ops->readpage) {
3162		error = -EINVAL;
3163		goto bad_swap;
3164	}
3165	page = read_mapping_page(mapping, 0, swap_file);
3166	if (IS_ERR(page)) {
3167		error = PTR_ERR(page);
3168		goto bad_swap;
3169	}
3170	swap_header = kmap(page);
3171
3172	maxpages = read_swap_header(p, swap_header, inode);
3173	if (unlikely(!maxpages)) {
3174		error = -EINVAL;
3175		goto bad_swap;
3176	}
3177
3178	/* OK, set up the swap map and apply the bad block list */
3179	swap_map = vzalloc(maxpages);
3180	if (!swap_map) {
3181		error = -ENOMEM;
3182		goto bad_swap;
3183	}
3184
3185	if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3186		p->flags |= SWP_STABLE_WRITES;
3187
3188	if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3189		p->flags |= SWP_SYNCHRONOUS_IO;
3190
3191	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3192		int cpu;
3193		unsigned long ci, nr_cluster;
3194
3195		p->flags |= SWP_SOLIDSTATE;
 
 
 
 
 
3196		/*
3197		 * select a random position to start with to help wear leveling
3198		 * SSD
3199		 */
3200		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
 
 
 
3201		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3202
3203		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3204					GFP_KERNEL);
3205		if (!cluster_info) {
3206			error = -ENOMEM;
3207			goto bad_swap;
3208		}
3209
3210		for (ci = 0; ci < nr_cluster; ci++)
3211			spin_lock_init(&((cluster_info + ci)->lock));
3212
3213		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3214		if (!p->percpu_cluster) {
3215			error = -ENOMEM;
3216			goto bad_swap;
3217		}
3218		for_each_possible_cpu(cpu) {
3219			struct percpu_cluster *cluster;
3220			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3221			cluster_set_null(&cluster->index);
3222		}
3223	} else {
3224		atomic_inc(&nr_rotate_swap);
3225		inced_nr_rotate_swap = true;
3226	}
3227
3228	error = swap_cgroup_swapon(p->type, maxpages);
3229	if (error)
3230		goto bad_swap;
3231
3232	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3233		cluster_info, maxpages, &span);
3234	if (unlikely(nr_extents < 0)) {
3235		error = nr_extents;
3236		goto bad_swap;
3237	}
3238	/* frontswap enabled? set up bit-per-page map for frontswap */
3239	if (IS_ENABLED(CONFIG_FRONTSWAP))
3240		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3241					 sizeof(long),
3242					 GFP_KERNEL);
3243
3244	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
 
3245		/*
3246		 * When discard is enabled for swap with no particular
3247		 * policy flagged, we set all swap discard flags here in
3248		 * order to sustain backward compatibility with older
3249		 * swapon(8) releases.
3250		 */
3251		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3252			     SWP_PAGE_DISCARD);
3253
3254		/*
3255		 * By flagging sys_swapon, a sysadmin can tell us to
3256		 * either do single-time area discards only, or to just
3257		 * perform discards for released swap page-clusters.
3258		 * Now it's time to adjust the p->flags accordingly.
3259		 */
3260		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3261			p->flags &= ~SWP_PAGE_DISCARD;
3262		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3263			p->flags &= ~SWP_AREA_DISCARD;
3264
3265		/* issue a swapon-time discard if it's still required */
3266		if (p->flags & SWP_AREA_DISCARD) {
3267			int err = discard_swap(p);
3268			if (unlikely(err))
3269				pr_err("swapon: discard_swap(%p): %d\n",
3270					p, err);
3271		}
3272	}
3273
3274	error = init_swap_address_space(p->type, maxpages);
3275	if (error)
3276		goto bad_swap;
3277
3278	/*
3279	 * Flush any pending IO and dirty mappings before we start using this
3280	 * swap device.
3281	 */
3282	inode->i_flags |= S_SWAPFILE;
3283	error = inode_drain_writes(inode);
3284	if (error) {
3285		inode->i_flags &= ~S_SWAPFILE;
3286		goto bad_swap;
3287	}
3288
3289	mutex_lock(&swapon_mutex);
3290	prio = -1;
3291	if (swap_flags & SWAP_FLAG_PREFER)
3292		prio =
3293		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3294	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3295
3296	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3297		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3298		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3299		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3300		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3301		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3302		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3303		(frontswap_map) ? "FS" : "");
3304
3305	mutex_unlock(&swapon_mutex);
3306	atomic_inc(&proc_poll_event);
3307	wake_up_interruptible(&proc_poll_wait);
3308
3309	error = 0;
3310	goto out;
 
 
 
 
3311bad_swap:
3312	free_percpu(p->percpu_cluster);
3313	p->percpu_cluster = NULL;
3314	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
 
 
3315		set_blocksize(p->bdev, p->old_block_size);
3316		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
 
3317	}
 
3318	destroy_swap_extents(p);
3319	swap_cgroup_swapoff(p->type);
3320	spin_lock(&swap_lock);
3321	p->swap_file = NULL;
3322	p->flags = 0;
3323	spin_unlock(&swap_lock);
3324	vfree(swap_map);
3325	kvfree(cluster_info);
3326	kvfree(frontswap_map);
3327	if (inced_nr_rotate_swap)
3328		atomic_dec(&nr_rotate_swap);
3329	if (swap_file) {
3330		if (inode) {
3331			inode_unlock(inode);
3332			inode = NULL;
3333		}
3334		filp_close(swap_file, NULL);
3335	}
3336out:
3337	if (page && !IS_ERR(page)) {
3338		kunmap(page);
3339		put_page(page);
3340	}
3341	if (name)
3342		putname(name);
3343	if (inode)
3344		inode_unlock(inode);
3345	if (!error)
3346		enable_swap_slots_cache();
3347	return error;
3348}
3349
3350void si_swapinfo(struct sysinfo *val)
3351{
3352	unsigned int type;
3353	unsigned long nr_to_be_unused = 0;
3354
3355	spin_lock(&swap_lock);
3356	for (type = 0; type < nr_swapfiles; type++) {
3357		struct swap_info_struct *si = swap_info[type];
3358
3359		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3360			nr_to_be_unused += si->inuse_pages;
3361	}
3362	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3363	val->totalswap = total_swap_pages + nr_to_be_unused;
3364	spin_unlock(&swap_lock);
3365}
3366
3367/*
3368 * Verify that a swap entry is valid and increment its swap map count.
3369 *
3370 * Returns error code in following case.
3371 * - success -> 0
3372 * - swp_entry is invalid -> EINVAL
3373 * - swp_entry is migration entry -> EINVAL
3374 * - swap-cache reference is requested but there is already one. -> EEXIST
3375 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3376 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3377 */
3378static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3379{
3380	struct swap_info_struct *p;
3381	struct swap_cluster_info *ci;
3382	unsigned long offset;
3383	unsigned char count;
3384	unsigned char has_cache;
3385	int err = -EINVAL;
3386
3387	p = get_swap_device(entry);
3388	if (!p)
3389		goto out;
3390
3391	offset = swp_offset(entry);
3392	ci = lock_cluster_or_swap_info(p, offset);
3393
3394	count = p->swap_map[offset];
3395
3396	/*
3397	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3398	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3399	 */
3400	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3401		err = -ENOENT;
3402		goto unlock_out;
3403	}
3404
3405	has_cache = count & SWAP_HAS_CACHE;
3406	count &= ~SWAP_HAS_CACHE;
3407	err = 0;
3408
3409	if (usage == SWAP_HAS_CACHE) {
3410
3411		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3412		if (!has_cache && count)
3413			has_cache = SWAP_HAS_CACHE;
3414		else if (has_cache)		/* someone else added cache */
3415			err = -EEXIST;
3416		else				/* no users remaining */
3417			err = -ENOENT;
3418
3419	} else if (count || has_cache) {
3420
3421		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3422			count += usage;
3423		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3424			err = -EINVAL;
3425		else if (swap_count_continued(p, offset, count))
3426			count = COUNT_CONTINUED;
3427		else
3428			err = -ENOMEM;
3429	} else
3430		err = -ENOENT;			/* unused swap entry */
3431
3432	p->swap_map[offset] = count | has_cache;
3433
3434unlock_out:
3435	unlock_cluster_or_swap_info(p, ci);
3436out:
3437	if (p)
3438		put_swap_device(p);
3439	return err;
3440}
3441
3442/*
3443 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3444 * (in which case its reference count is never incremented).
3445 */
3446void swap_shmem_alloc(swp_entry_t entry)
3447{
3448	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3449}
3450
3451/*
3452 * Increase reference count of swap entry by 1.
3453 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3454 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3455 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3456 * might occur if a page table entry has got corrupted.
3457 */
3458int swap_duplicate(swp_entry_t entry)
3459{
3460	int err = 0;
3461
3462	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3463		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3464	return err;
3465}
3466
3467/*
3468 * @entry: swap entry for which we allocate swap cache.
3469 *
3470 * Called when allocating swap cache for existing swap entry,
3471 * This can return error codes. Returns 0 at success.
3472 * -EBUSY means there is a swap cache.
3473 * Note: return code is different from swap_duplicate().
3474 */
3475int swapcache_prepare(swp_entry_t entry)
3476{
3477	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3478}
3479
3480struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3481{
3482	return swap_type_to_swap_info(swp_type(entry));
 
 
 
 
 
 
 
 
3483}
3484
3485struct swap_info_struct *page_swap_info(struct page *page)
3486{
3487	swp_entry_t entry = { .val = page_private(page) };
3488	return swp_swap_info(entry);
3489}
3490
3491/*
3492 * out-of-line __page_file_ methods to avoid include hell.
3493 */
3494struct address_space *__page_file_mapping(struct page *page)
3495{
3496	return page_swap_info(page)->swap_file->f_mapping;
3497}
3498EXPORT_SYMBOL_GPL(__page_file_mapping);
3499
3500pgoff_t __page_file_index(struct page *page)
3501{
3502	swp_entry_t swap = { .val = page_private(page) };
3503	return swp_offset(swap);
3504}
3505EXPORT_SYMBOL_GPL(__page_file_index);
3506
3507/*
3508 * add_swap_count_continuation - called when a swap count is duplicated
3509 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3510 * page of the original vmalloc'ed swap_map, to hold the continuation count
3511 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3512 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3513 *
3514 * These continuation pages are seldom referenced: the common paths all work
3515 * on the original swap_map, only referring to a continuation page when the
3516 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3517 *
3518 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3519 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3520 * can be called after dropping locks.
3521 */
3522int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3523{
3524	struct swap_info_struct *si;
3525	struct swap_cluster_info *ci;
3526	struct page *head;
3527	struct page *page;
3528	struct page *list_page;
3529	pgoff_t offset;
3530	unsigned char count;
3531	int ret = 0;
3532
3533	/*
3534	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3535	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3536	 */
3537	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3538
3539	si = get_swap_device(entry);
3540	if (!si) {
3541		/*
3542		 * An acceptable race has occurred since the failing
3543		 * __swap_duplicate(): the swap device may be swapoff
3544		 */
3545		goto outer;
3546	}
3547	spin_lock(&si->lock);
3548
3549	offset = swp_offset(entry);
3550
3551	ci = lock_cluster(si, offset);
3552
3553	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3554
3555	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3556		/*
3557		 * The higher the swap count, the more likely it is that tasks
3558		 * will race to add swap count continuation: we need to avoid
3559		 * over-provisioning.
3560		 */
3561		goto out;
3562	}
3563
3564	if (!page) {
3565		ret = -ENOMEM;
3566		goto out;
3567	}
3568
3569	/*
3570	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3571	 * no architecture is using highmem pages for kernel page tables: so it
3572	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3573	 */
3574	head = vmalloc_to_page(si->swap_map + offset);
3575	offset &= ~PAGE_MASK;
3576
3577	spin_lock(&si->cont_lock);
3578	/*
3579	 * Page allocation does not initialize the page's lru field,
3580	 * but it does always reset its private field.
3581	 */
3582	if (!page_private(head)) {
3583		BUG_ON(count & COUNT_CONTINUED);
3584		INIT_LIST_HEAD(&head->lru);
3585		set_page_private(head, SWP_CONTINUED);
3586		si->flags |= SWP_CONTINUED;
3587	}
3588
3589	list_for_each_entry(list_page, &head->lru, lru) {
3590		unsigned char *map;
3591
3592		/*
3593		 * If the previous map said no continuation, but we've found
3594		 * a continuation page, free our allocation and use this one.
3595		 */
3596		if (!(count & COUNT_CONTINUED))
3597			goto out_unlock_cont;
3598
3599		map = kmap_atomic(list_page) + offset;
3600		count = *map;
3601		kunmap_atomic(map);
3602
3603		/*
3604		 * If this continuation count now has some space in it,
3605		 * free our allocation and use this one.
3606		 */
3607		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3608			goto out_unlock_cont;
3609	}
3610
3611	list_add_tail(&page->lru, &head->lru);
3612	page = NULL;			/* now it's attached, don't free it */
3613out_unlock_cont:
3614	spin_unlock(&si->cont_lock);
3615out:
3616	unlock_cluster(ci);
3617	spin_unlock(&si->lock);
3618	put_swap_device(si);
3619outer:
3620	if (page)
3621		__free_page(page);
3622	return ret;
3623}
3624
3625/*
3626 * swap_count_continued - when the original swap_map count is incremented
3627 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3628 * into, carry if so, or else fail until a new continuation page is allocated;
3629 * when the original swap_map count is decremented from 0 with continuation,
3630 * borrow from the continuation and report whether it still holds more.
3631 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3632 * lock.
3633 */
3634static bool swap_count_continued(struct swap_info_struct *si,
3635				 pgoff_t offset, unsigned char count)
3636{
3637	struct page *head;
3638	struct page *page;
3639	unsigned char *map;
3640	bool ret;
3641
3642	head = vmalloc_to_page(si->swap_map + offset);
3643	if (page_private(head) != SWP_CONTINUED) {
3644		BUG_ON(count & COUNT_CONTINUED);
3645		return false;		/* need to add count continuation */
3646	}
3647
3648	spin_lock(&si->cont_lock);
3649	offset &= ~PAGE_MASK;
3650	page = list_entry(head->lru.next, struct page, lru);
3651	map = kmap_atomic(page) + offset;
3652
3653	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3654		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3655
3656	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3657		/*
3658		 * Think of how you add 1 to 999
3659		 */
3660		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3661			kunmap_atomic(map);
3662			page = list_entry(page->lru.next, struct page, lru);
3663			BUG_ON(page == head);
3664			map = kmap_atomic(page) + offset;
3665		}
3666		if (*map == SWAP_CONT_MAX) {
3667			kunmap_atomic(map);
3668			page = list_entry(page->lru.next, struct page, lru);
3669			if (page == head) {
3670				ret = false;	/* add count continuation */
3671				goto out;
3672			}
3673			map = kmap_atomic(page) + offset;
3674init_map:		*map = 0;		/* we didn't zero the page */
3675		}
3676		*map += 1;
3677		kunmap_atomic(map);
3678		page = list_entry(page->lru.prev, struct page, lru);
3679		while (page != head) {
3680			map = kmap_atomic(page) + offset;
3681			*map = COUNT_CONTINUED;
3682			kunmap_atomic(map);
3683			page = list_entry(page->lru.prev, struct page, lru);
3684		}
3685		ret = true;			/* incremented */
3686
3687	} else {				/* decrementing */
3688		/*
3689		 * Think of how you subtract 1 from 1000
3690		 */
3691		BUG_ON(count != COUNT_CONTINUED);
3692		while (*map == COUNT_CONTINUED) {
3693			kunmap_atomic(map);
3694			page = list_entry(page->lru.next, struct page, lru);
3695			BUG_ON(page == head);
3696			map = kmap_atomic(page) + offset;
3697		}
3698		BUG_ON(*map == 0);
3699		*map -= 1;
3700		if (*map == 0)
3701			count = 0;
3702		kunmap_atomic(map);
3703		page = list_entry(page->lru.prev, struct page, lru);
3704		while (page != head) {
3705			map = kmap_atomic(page) + offset;
3706			*map = SWAP_CONT_MAX | count;
3707			count = COUNT_CONTINUED;
3708			kunmap_atomic(map);
3709			page = list_entry(page->lru.prev, struct page, lru);
3710		}
3711		ret = count == COUNT_CONTINUED;
3712	}
3713out:
3714	spin_unlock(&si->cont_lock);
3715	return ret;
3716}
3717
3718/*
3719 * free_swap_count_continuations - swapoff free all the continuation pages
3720 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3721 */
3722static void free_swap_count_continuations(struct swap_info_struct *si)
3723{
3724	pgoff_t offset;
3725
3726	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3727		struct page *head;
3728		head = vmalloc_to_page(si->swap_map + offset);
3729		if (page_private(head)) {
3730			struct page *page, *next;
3731
3732			list_for_each_entry_safe(page, next, &head->lru, lru) {
3733				list_del(&page->lru);
3734				__free_page(page);
3735			}
3736		}
3737	}
3738}
3739
3740#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3741void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3742				  gfp_t gfp_mask)
3743{
3744	struct swap_info_struct *si, *next;
3745	if (!(gfp_mask & __GFP_IO) || !memcg)
 
 
3746		return;
3747
3748	if (!blk_cgroup_congested())
3749		return;
3750
3751	/*
3752	 * We've already scheduled a throttle, avoid taking the global swap
3753	 * lock.
3754	 */
3755	if (current->throttle_queue)
3756		return;
3757
3758	spin_lock(&swap_avail_lock);
3759	plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3760				  avail_lists[node]) {
3761		if (si->bdev) {
3762			blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3763						true);
3764			break;
3765		}
3766	}
3767	spin_unlock(&swap_avail_lock);
3768}
3769#endif
3770
3771static int __init swapfile_init(void)
3772{
3773	int nid;
3774
3775	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3776					 GFP_KERNEL);
3777	if (!swap_avail_heads) {
3778		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3779		return -ENOMEM;
3780	}
3781
3782	for_each_node(nid)
3783		plist_head_init(&swap_avail_heads[nid]);
 
 
 
 
 
 
 
3784
3785	return 0;
3786}
3787subsys_initcall(swapfile_init);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swapfile.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *  Swap reorganised 29.12.95, Stephen Tweedie
   7 */
   8
   9#include <linux/blkdev.h>
  10#include <linux/mm.h>
  11#include <linux/sched/mm.h>
  12#include <linux/sched/task.h>
  13#include <linux/hugetlb.h>
  14#include <linux/mman.h>
  15#include <linux/slab.h>
  16#include <linux/kernel_stat.h>
  17#include <linux/swap.h>
  18#include <linux/vmalloc.h>
  19#include <linux/pagemap.h>
  20#include <linux/namei.h>
  21#include <linux/shmem_fs.h>
  22#include <linux/blk-cgroup.h>
  23#include <linux/random.h>
  24#include <linux/writeback.h>
  25#include <linux/proc_fs.h>
  26#include <linux/seq_file.h>
  27#include <linux/init.h>
  28#include <linux/ksm.h>
  29#include <linux/rmap.h>
  30#include <linux/security.h>
  31#include <linux/backing-dev.h>
  32#include <linux/mutex.h>
  33#include <linux/capability.h>
  34#include <linux/syscalls.h>
  35#include <linux/memcontrol.h>
  36#include <linux/poll.h>
  37#include <linux/oom.h>
 
  38#include <linux/swapfile.h>
  39#include <linux/export.h>
  40#include <linux/swap_slots.h>
  41#include <linux/sort.h>
  42#include <linux/completion.h>
  43#include <linux/suspend.h>
  44#include <linux/zswap.h>
  45#include <linux/plist.h>
  46
 
  47#include <asm/tlbflush.h>
  48#include <linux/swapops.h>
  49#include <linux/swap_cgroup.h>
  50#include "internal.h"
  51#include "swap.h"
  52
  53static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  54				 unsigned char);
  55static void free_swap_count_continuations(struct swap_info_struct *);
 
  56
  57static DEFINE_SPINLOCK(swap_lock);
  58static unsigned int nr_swapfiles;
  59atomic_long_t nr_swap_pages;
  60/*
  61 * Some modules use swappable objects and may try to swap them out under
  62 * memory pressure (via the shrinker). Before doing so, they may wish to
  63 * check to see if any swap space is available.
  64 */
  65EXPORT_SYMBOL_GPL(nr_swap_pages);
  66/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
  67long total_swap_pages;
  68static int least_priority = -1;
  69unsigned long swapfile_maximum_size;
  70#ifdef CONFIG_MIGRATION
  71bool swap_migration_ad_supported;
  72#endif	/* CONFIG_MIGRATION */
  73
  74static const char Bad_file[] = "Bad swap file entry ";
  75static const char Unused_file[] = "Unused swap file entry ";
  76static const char Bad_offset[] = "Bad swap offset entry ";
  77static const char Unused_offset[] = "Unused swap offset entry ";
  78
  79/*
  80 * all active swap_info_structs
  81 * protected with swap_lock, and ordered by priority.
  82 */
  83static PLIST_HEAD(swap_active_head);
  84
  85/*
  86 * all available (active, not full) swap_info_structs
  87 * protected with swap_avail_lock, ordered by priority.
  88 * This is used by folio_alloc_swap() instead of swap_active_head
  89 * because swap_active_head includes all swap_info_structs,
  90 * but folio_alloc_swap() doesn't need to look at full ones.
  91 * This uses its own lock instead of swap_lock because when a
  92 * swap_info_struct changes between not-full/full, it needs to
  93 * add/remove itself to/from this list, but the swap_info_struct->lock
  94 * is held and the locking order requires swap_lock to be taken
  95 * before any swap_info_struct->lock.
  96 */
  97static struct plist_head *swap_avail_heads;
  98static DEFINE_SPINLOCK(swap_avail_lock);
  99
 100static struct swap_info_struct *swap_info[MAX_SWAPFILES];
 101
 102static DEFINE_MUTEX(swapon_mutex);
 103
 104static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
 105/* Activity counter to indicate that a swapon or swapoff has occurred */
 106static atomic_t proc_poll_event = ATOMIC_INIT(0);
 107
 108atomic_t nr_rotate_swap = ATOMIC_INIT(0);
 109
 110static struct swap_info_struct *swap_type_to_swap_info(int type)
 111{
 112	if (type >= MAX_SWAPFILES)
 113		return NULL;
 114
 115	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
 
 116}
 117
 118static inline unsigned char swap_count(unsigned char ent)
 119{
 120	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
 121}
 122
 123/* Reclaim the swap entry anyway if possible */
 124#define TTRS_ANYWAY		0x1
 125/*
 126 * Reclaim the swap entry if there are no more mappings of the
 127 * corresponding page
 128 */
 129#define TTRS_UNMAPPED		0x2
 130/* Reclaim the swap entry if swap is getting full*/
 131#define TTRS_FULL		0x4
 132
 133/* returns 1 if swap entry is freed */
 134static int __try_to_reclaim_swap(struct swap_info_struct *si,
 135				 unsigned long offset, unsigned long flags)
 136{
 137	swp_entry_t entry = swp_entry(si->type, offset);
 138	struct folio *folio;
 139	int ret = 0;
 140
 141	folio = filemap_get_folio(swap_address_space(entry), offset);
 142	if (IS_ERR(folio))
 143		return 0;
 144	/*
 145	 * When this function is called from scan_swap_map_slots() and it's
 146	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
 147	 * here. We have to use trylock for avoiding deadlock. This is a special
 148	 * case and you should use folio_free_swap() with explicit folio_lock()
 149	 * in usual operations.
 150	 */
 151	if (folio_trylock(folio)) {
 152		if ((flags & TTRS_ANYWAY) ||
 153		    ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
 154		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
 155			ret = folio_free_swap(folio);
 156		folio_unlock(folio);
 157	}
 158	folio_put(folio);
 159	return ret;
 160}
 161
 162static inline struct swap_extent *first_se(struct swap_info_struct *sis)
 163{
 164	struct rb_node *rb = rb_first(&sis->swap_extent_root);
 165	return rb_entry(rb, struct swap_extent, rb_node);
 166}
 167
 168static inline struct swap_extent *next_se(struct swap_extent *se)
 169{
 170	struct rb_node *rb = rb_next(&se->rb_node);
 171	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
 172}
 173
 174/*
 175 * swapon tell device that all the old swap contents can be discarded,
 176 * to allow the swap device to optimize its wear-levelling.
 177 */
 178static int discard_swap(struct swap_info_struct *si)
 179{
 180	struct swap_extent *se;
 181	sector_t start_block;
 182	sector_t nr_blocks;
 183	int err = 0;
 184
 185	/* Do not discard the swap header page! */
 186	se = first_se(si);
 187	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 188	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 189	if (nr_blocks) {
 190		err = blkdev_issue_discard(si->bdev, start_block,
 191				nr_blocks, GFP_KERNEL);
 192		if (err)
 193			return err;
 194		cond_resched();
 195	}
 196
 197	for (se = next_se(se); se; se = next_se(se)) {
 198		start_block = se->start_block << (PAGE_SHIFT - 9);
 199		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 200
 201		err = blkdev_issue_discard(si->bdev, start_block,
 202				nr_blocks, GFP_KERNEL);
 203		if (err)
 204			break;
 205
 206		cond_resched();
 207	}
 208	return err;		/* That will often be -EOPNOTSUPP */
 209}
 210
 211static struct swap_extent *
 212offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
 213{
 214	struct swap_extent *se;
 215	struct rb_node *rb;
 216
 217	rb = sis->swap_extent_root.rb_node;
 218	while (rb) {
 219		se = rb_entry(rb, struct swap_extent, rb_node);
 220		if (offset < se->start_page)
 221			rb = rb->rb_left;
 222		else if (offset >= se->start_page + se->nr_pages)
 223			rb = rb->rb_right;
 224		else
 225			return se;
 226	}
 227	/* It *must* be present */
 228	BUG();
 229}
 230
 231sector_t swap_folio_sector(struct folio *folio)
 232{
 233	struct swap_info_struct *sis = swp_swap_info(folio->swap);
 234	struct swap_extent *se;
 235	sector_t sector;
 236	pgoff_t offset;
 237
 238	offset = swp_offset(folio->swap);
 239	se = offset_to_swap_extent(sis, offset);
 240	sector = se->start_block + (offset - se->start_page);
 241	return sector << (PAGE_SHIFT - 9);
 242}
 243
 244/*
 245 * swap allocation tell device that a cluster of swap can now be discarded,
 246 * to allow the swap device to optimize its wear-levelling.
 247 */
 248static void discard_swap_cluster(struct swap_info_struct *si,
 249				 pgoff_t start_page, pgoff_t nr_pages)
 250{
 251	struct swap_extent *se = offset_to_swap_extent(si, start_page);
 252
 253	while (nr_pages) {
 254		pgoff_t offset = start_page - se->start_page;
 255		sector_t start_block = se->start_block + offset;
 256		sector_t nr_blocks = se->nr_pages - offset;
 257
 258		if (nr_blocks > nr_pages)
 259			nr_blocks = nr_pages;
 260		start_page += nr_blocks;
 261		nr_pages -= nr_blocks;
 262
 263		start_block <<= PAGE_SHIFT - 9;
 264		nr_blocks <<= PAGE_SHIFT - 9;
 265		if (blkdev_issue_discard(si->bdev, start_block,
 266					nr_blocks, GFP_NOIO))
 267			break;
 268
 269		se = next_se(se);
 270	}
 271}
 272
 273#ifdef CONFIG_THP_SWAP
 274#define SWAPFILE_CLUSTER	HPAGE_PMD_NR
 275
 276#define swap_entry_size(size)	(size)
 277#else
 278#define SWAPFILE_CLUSTER	256
 279
 280/*
 281 * Define swap_entry_size() as constant to let compiler to optimize
 282 * out some code if !CONFIG_THP_SWAP
 283 */
 284#define swap_entry_size(size)	1
 285#endif
 286#define LATENCY_LIMIT		256
 287
 288static inline void cluster_set_flag(struct swap_cluster_info *info,
 289	unsigned int flag)
 290{
 291	info->flags = flag;
 292}
 293
 294static inline unsigned int cluster_count(struct swap_cluster_info *info)
 295{
 296	return info->data;
 297}
 298
 299static inline void cluster_set_count(struct swap_cluster_info *info,
 300				     unsigned int c)
 301{
 302	info->data = c;
 303}
 304
 305static inline void cluster_set_count_flag(struct swap_cluster_info *info,
 306					 unsigned int c, unsigned int f)
 307{
 308	info->flags = f;
 309	info->data = c;
 310}
 311
 312static inline unsigned int cluster_next(struct swap_cluster_info *info)
 313{
 314	return info->data;
 315}
 316
 317static inline void cluster_set_next(struct swap_cluster_info *info,
 318				    unsigned int n)
 319{
 320	info->data = n;
 321}
 322
 323static inline void cluster_set_next_flag(struct swap_cluster_info *info,
 324					 unsigned int n, unsigned int f)
 325{
 326	info->flags = f;
 327	info->data = n;
 328}
 329
 330static inline bool cluster_is_free(struct swap_cluster_info *info)
 331{
 332	return info->flags & CLUSTER_FLAG_FREE;
 333}
 334
 335static inline bool cluster_is_null(struct swap_cluster_info *info)
 336{
 337	return info->flags & CLUSTER_FLAG_NEXT_NULL;
 338}
 339
 340static inline void cluster_set_null(struct swap_cluster_info *info)
 341{
 342	info->flags = CLUSTER_FLAG_NEXT_NULL;
 343	info->data = 0;
 344}
 345
 346static inline bool cluster_is_huge(struct swap_cluster_info *info)
 347{
 348	if (IS_ENABLED(CONFIG_THP_SWAP))
 349		return info->flags & CLUSTER_FLAG_HUGE;
 350	return false;
 351}
 352
 353static inline void cluster_clear_huge(struct swap_cluster_info *info)
 354{
 355	info->flags &= ~CLUSTER_FLAG_HUGE;
 356}
 357
 358static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
 359						     unsigned long offset)
 360{
 361	struct swap_cluster_info *ci;
 362
 363	ci = si->cluster_info;
 364	if (ci) {
 365		ci += offset / SWAPFILE_CLUSTER;
 366		spin_lock(&ci->lock);
 367	}
 368	return ci;
 369}
 370
 371static inline void unlock_cluster(struct swap_cluster_info *ci)
 372{
 373	if (ci)
 374		spin_unlock(&ci->lock);
 375}
 376
 377/*
 378 * Determine the locking method in use for this device.  Return
 379 * swap_cluster_info if SSD-style cluster-based locking is in place.
 380 */
 381static inline struct swap_cluster_info *lock_cluster_or_swap_info(
 382		struct swap_info_struct *si, unsigned long offset)
 383{
 384	struct swap_cluster_info *ci;
 385
 386	/* Try to use fine-grained SSD-style locking if available: */
 387	ci = lock_cluster(si, offset);
 388	/* Otherwise, fall back to traditional, coarse locking: */
 389	if (!ci)
 390		spin_lock(&si->lock);
 391
 392	return ci;
 393}
 394
 395static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
 396					       struct swap_cluster_info *ci)
 397{
 398	if (ci)
 399		unlock_cluster(ci);
 400	else
 401		spin_unlock(&si->lock);
 402}
 403
 404static inline bool cluster_list_empty(struct swap_cluster_list *list)
 405{
 406	return cluster_is_null(&list->head);
 407}
 408
 409static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
 410{
 411	return cluster_next(&list->head);
 412}
 413
 414static void cluster_list_init(struct swap_cluster_list *list)
 415{
 416	cluster_set_null(&list->head);
 417	cluster_set_null(&list->tail);
 418}
 419
 420static void cluster_list_add_tail(struct swap_cluster_list *list,
 421				  struct swap_cluster_info *ci,
 422				  unsigned int idx)
 423{
 424	if (cluster_list_empty(list)) {
 425		cluster_set_next_flag(&list->head, idx, 0);
 426		cluster_set_next_flag(&list->tail, idx, 0);
 427	} else {
 428		struct swap_cluster_info *ci_tail;
 429		unsigned int tail = cluster_next(&list->tail);
 430
 431		/*
 432		 * Nested cluster lock, but both cluster locks are
 433		 * only acquired when we held swap_info_struct->lock
 434		 */
 435		ci_tail = ci + tail;
 436		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
 437		cluster_set_next(ci_tail, idx);
 438		spin_unlock(&ci_tail->lock);
 439		cluster_set_next_flag(&list->tail, idx, 0);
 440	}
 441}
 442
 443static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
 444					   struct swap_cluster_info *ci)
 445{
 446	unsigned int idx;
 447
 448	idx = cluster_next(&list->head);
 449	if (cluster_next(&list->tail) == idx) {
 450		cluster_set_null(&list->head);
 451		cluster_set_null(&list->tail);
 452	} else
 453		cluster_set_next_flag(&list->head,
 454				      cluster_next(&ci[idx]), 0);
 455
 456	return idx;
 457}
 458
 459/* Add a cluster to discard list and schedule it to do discard */
 460static void swap_cluster_schedule_discard(struct swap_info_struct *si,
 461		unsigned int idx)
 462{
 463	/*
 464	 * If scan_swap_map_slots() can't find a free cluster, it will check
 465	 * si->swap_map directly. To make sure the discarding cluster isn't
 466	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
 467	 * It will be cleared after discard
 468	 */
 469	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 470			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
 471
 472	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
 473
 474	schedule_work(&si->discard_work);
 475}
 476
 477static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
 478{
 479	struct swap_cluster_info *ci = si->cluster_info;
 480
 481	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
 482	cluster_list_add_tail(&si->free_clusters, ci, idx);
 483}
 484
 485/*
 486 * Doing discard actually. After a cluster discard is finished, the cluster
 487 * will be added to free cluster list. caller should hold si->lock.
 488*/
 489static void swap_do_scheduled_discard(struct swap_info_struct *si)
 490{
 491	struct swap_cluster_info *info, *ci;
 492	unsigned int idx;
 493
 494	info = si->cluster_info;
 495
 496	while (!cluster_list_empty(&si->discard_clusters)) {
 497		idx = cluster_list_del_first(&si->discard_clusters, info);
 498		spin_unlock(&si->lock);
 499
 500		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
 501				SWAPFILE_CLUSTER);
 502
 503		spin_lock(&si->lock);
 504		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
 505		__free_cluster(si, idx);
 506		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 507				0, SWAPFILE_CLUSTER);
 508		unlock_cluster(ci);
 509	}
 510}
 511
 512static void swap_discard_work(struct work_struct *work)
 513{
 514	struct swap_info_struct *si;
 515
 516	si = container_of(work, struct swap_info_struct, discard_work);
 517
 518	spin_lock(&si->lock);
 519	swap_do_scheduled_discard(si);
 520	spin_unlock(&si->lock);
 521}
 522
 523static void swap_users_ref_free(struct percpu_ref *ref)
 524{
 525	struct swap_info_struct *si;
 526
 527	si = container_of(ref, struct swap_info_struct, users);
 528	complete(&si->comp);
 529}
 530
 531static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
 532{
 533	struct swap_cluster_info *ci = si->cluster_info;
 534
 535	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
 536	cluster_list_del_first(&si->free_clusters, ci);
 537	cluster_set_count_flag(ci + idx, 0, 0);
 538}
 539
 540static void free_cluster(struct swap_info_struct *si, unsigned long idx)
 541{
 542	struct swap_cluster_info *ci = si->cluster_info + idx;
 543
 544	VM_BUG_ON(cluster_count(ci) != 0);
 545	/*
 546	 * If the swap is discardable, prepare discard the cluster
 547	 * instead of free it immediately. The cluster will be freed
 548	 * after discard.
 549	 */
 550	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
 551	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
 552		swap_cluster_schedule_discard(si, idx);
 553		return;
 554	}
 555
 556	__free_cluster(si, idx);
 557}
 558
 559/*
 560 * The cluster corresponding to page_nr will be used. The cluster will be
 561 * removed from free cluster list and its usage counter will be increased.
 562 */
 563static void inc_cluster_info_page(struct swap_info_struct *p,
 564	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 565{
 566	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 567
 568	if (!cluster_info)
 569		return;
 570	if (cluster_is_free(&cluster_info[idx]))
 571		alloc_cluster(p, idx);
 572
 573	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
 574	cluster_set_count(&cluster_info[idx],
 575		cluster_count(&cluster_info[idx]) + 1);
 576}
 577
 578/*
 579 * The cluster corresponding to page_nr decreases one usage. If the usage
 580 * counter becomes 0, which means no page in the cluster is in using, we can
 581 * optionally discard the cluster and add it to free cluster list.
 582 */
 583static void dec_cluster_info_page(struct swap_info_struct *p,
 584	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 585{
 586	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 587
 588	if (!cluster_info)
 589		return;
 590
 591	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
 592	cluster_set_count(&cluster_info[idx],
 593		cluster_count(&cluster_info[idx]) - 1);
 594
 595	if (cluster_count(&cluster_info[idx]) == 0)
 596		free_cluster(p, idx);
 597}
 598
 599/*
 600 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
 601 * cluster list. Avoiding such abuse to avoid list corruption.
 602 */
 603static bool
 604scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
 605	unsigned long offset)
 606{
 607	struct percpu_cluster *percpu_cluster;
 608	bool conflict;
 609
 610	offset /= SWAPFILE_CLUSTER;
 611	conflict = !cluster_list_empty(&si->free_clusters) &&
 612		offset != cluster_list_first(&si->free_clusters) &&
 613		cluster_is_free(&si->cluster_info[offset]);
 614
 615	if (!conflict)
 616		return false;
 617
 618	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
 619	cluster_set_null(&percpu_cluster->index);
 620	return true;
 621}
 622
 623/*
 624 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
 625 * might involve allocating a new cluster for current CPU too.
 626 */
 627static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
 628	unsigned long *offset, unsigned long *scan_base)
 629{
 630	struct percpu_cluster *cluster;
 631	struct swap_cluster_info *ci;
 
 632	unsigned long tmp, max;
 633
 634new_cluster:
 635	cluster = this_cpu_ptr(si->percpu_cluster);
 636	if (cluster_is_null(&cluster->index)) {
 637		if (!cluster_list_empty(&si->free_clusters)) {
 638			cluster->index = si->free_clusters.head;
 639			cluster->next = cluster_next(&cluster->index) *
 640					SWAPFILE_CLUSTER;
 641		} else if (!cluster_list_empty(&si->discard_clusters)) {
 642			/*
 643			 * we don't have free cluster but have some clusters in
 644			 * discarding, do discard now and reclaim them, then
 645			 * reread cluster_next_cpu since we dropped si->lock
 646			 */
 647			swap_do_scheduled_discard(si);
 648			*scan_base = this_cpu_read(*si->cluster_next_cpu);
 649			*offset = *scan_base;
 650			goto new_cluster;
 651		} else
 652			return false;
 653	}
 654
 
 
 655	/*
 656	 * Other CPUs can use our cluster if they can't find a free cluster,
 657	 * check if there is still free entry in the cluster
 658	 */
 659	tmp = cluster->next;
 660	max = min_t(unsigned long, si->max,
 661		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
 662	if (tmp < max) {
 663		ci = lock_cluster(si, tmp);
 664		while (tmp < max) {
 665			if (!si->swap_map[tmp])
 666				break;
 667			tmp++;
 
 
 
 668		}
 669		unlock_cluster(ci);
 670	}
 671	if (tmp >= max) {
 
 672		cluster_set_null(&cluster->index);
 673		goto new_cluster;
 674	}
 675	cluster->next = tmp + 1;
 676	*offset = tmp;
 677	*scan_base = tmp;
 678	return true;
 679}
 680
 681static void __del_from_avail_list(struct swap_info_struct *p)
 682{
 683	int nid;
 684
 685	assert_spin_locked(&p->lock);
 686	for_each_node(nid)
 687		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
 688}
 689
 690static void del_from_avail_list(struct swap_info_struct *p)
 691{
 692	spin_lock(&swap_avail_lock);
 693	__del_from_avail_list(p);
 694	spin_unlock(&swap_avail_lock);
 695}
 696
 697static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
 698			     unsigned int nr_entries)
 699{
 700	unsigned int end = offset + nr_entries - 1;
 701
 702	if (offset == si->lowest_bit)
 703		si->lowest_bit += nr_entries;
 704	if (end == si->highest_bit)
 705		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
 706	WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
 707	if (si->inuse_pages == si->pages) {
 708		si->lowest_bit = si->max;
 709		si->highest_bit = 0;
 710		del_from_avail_list(si);
 711	}
 712}
 713
 714static void add_to_avail_list(struct swap_info_struct *p)
 715{
 716	int nid;
 717
 718	spin_lock(&swap_avail_lock);
 719	for_each_node(nid)
 
 720		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
 
 721	spin_unlock(&swap_avail_lock);
 722}
 723
 724static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
 725			    unsigned int nr_entries)
 726{
 727	unsigned long begin = offset;
 728	unsigned long end = offset + nr_entries - 1;
 729	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
 730
 731	if (offset < si->lowest_bit)
 732		si->lowest_bit = offset;
 733	if (end > si->highest_bit) {
 734		bool was_full = !si->highest_bit;
 735
 736		WRITE_ONCE(si->highest_bit, end);
 737		if (was_full && (si->flags & SWP_WRITEOK))
 738			add_to_avail_list(si);
 739	}
 740	atomic_long_add(nr_entries, &nr_swap_pages);
 741	WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
 742	if (si->flags & SWP_BLKDEV)
 743		swap_slot_free_notify =
 744			si->bdev->bd_disk->fops->swap_slot_free_notify;
 745	else
 746		swap_slot_free_notify = NULL;
 747	while (offset <= end) {
 748		arch_swap_invalidate_page(si->type, offset);
 749		zswap_invalidate(si->type, offset);
 750		if (swap_slot_free_notify)
 751			swap_slot_free_notify(si->bdev, offset);
 752		offset++;
 753	}
 754	clear_shadow_from_swap_cache(si->type, begin, end);
 755}
 756
 757static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
 758{
 759	unsigned long prev;
 760
 761	if (!(si->flags & SWP_SOLIDSTATE)) {
 762		si->cluster_next = next;
 763		return;
 764	}
 765
 766	prev = this_cpu_read(*si->cluster_next_cpu);
 767	/*
 768	 * Cross the swap address space size aligned trunk, choose
 769	 * another trunk randomly to avoid lock contention on swap
 770	 * address space if possible.
 771	 */
 772	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
 773	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
 774		/* No free swap slots available */
 775		if (si->highest_bit <= si->lowest_bit)
 776			return;
 777		next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
 778		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
 779		next = max_t(unsigned int, next, si->lowest_bit);
 780	}
 781	this_cpu_write(*si->cluster_next_cpu, next);
 782}
 783
 784static bool swap_offset_available_and_locked(struct swap_info_struct *si,
 785					     unsigned long offset)
 786{
 787	if (data_race(!si->swap_map[offset])) {
 788		spin_lock(&si->lock);
 789		return true;
 790	}
 791
 792	if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
 793		spin_lock(&si->lock);
 794		return true;
 795	}
 796
 797	return false;
 798}
 799
 800static int scan_swap_map_slots(struct swap_info_struct *si,
 801			       unsigned char usage, int nr,
 802			       swp_entry_t slots[])
 803{
 804	struct swap_cluster_info *ci;
 805	unsigned long offset;
 806	unsigned long scan_base;
 807	unsigned long last_in_cluster = 0;
 808	int latency_ration = LATENCY_LIMIT;
 809	int n_ret = 0;
 810	bool scanned_many = false;
 
 
 811
 812	/*
 813	 * We try to cluster swap pages by allocating them sequentially
 814	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 815	 * way, however, we resort to first-free allocation, starting
 816	 * a new cluster.  This prevents us from scattering swap pages
 817	 * all over the entire swap partition, so that we reduce
 818	 * overall disk seek times between swap pages.  -- sct
 819	 * But we do now try to find an empty cluster.  -Andrea
 820	 * And we let swap pages go all over an SSD partition.  Hugh
 821	 */
 822
 823	si->flags += SWP_SCANNING;
 824	/*
 825	 * Use percpu scan base for SSD to reduce lock contention on
 826	 * cluster and swap cache.  For HDD, sequential access is more
 827	 * important.
 828	 */
 829	if (si->flags & SWP_SOLIDSTATE)
 830		scan_base = this_cpu_read(*si->cluster_next_cpu);
 831	else
 832		scan_base = si->cluster_next;
 833	offset = scan_base;
 834
 835	/* SSD algorithm */
 836	if (si->cluster_info) {
 837		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 
 
 838			goto scan;
 839	} else if (unlikely(!si->cluster_nr--)) {
 
 
 840		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 841			si->cluster_nr = SWAPFILE_CLUSTER - 1;
 842			goto checks;
 843		}
 844
 845		spin_unlock(&si->lock);
 846
 847		/*
 848		 * If seek is expensive, start searching for new cluster from
 849		 * start of partition, to minimize the span of allocated swap.
 850		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
 851		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
 852		 */
 853		scan_base = offset = si->lowest_bit;
 854		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 855
 856		/* Locate the first empty (unaligned) cluster */
 857		for (; last_in_cluster <= si->highest_bit; offset++) {
 858			if (si->swap_map[offset])
 859				last_in_cluster = offset + SWAPFILE_CLUSTER;
 860			else if (offset == last_in_cluster) {
 861				spin_lock(&si->lock);
 862				offset -= SWAPFILE_CLUSTER - 1;
 863				si->cluster_next = offset;
 864				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 865				goto checks;
 866			}
 867			if (unlikely(--latency_ration < 0)) {
 868				cond_resched();
 869				latency_ration = LATENCY_LIMIT;
 870			}
 871		}
 872
 873		offset = scan_base;
 874		spin_lock(&si->lock);
 875		si->cluster_nr = SWAPFILE_CLUSTER - 1;
 876	}
 877
 878checks:
 879	if (si->cluster_info) {
 880		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
 881		/* take a break if we already got some slots */
 882			if (n_ret)
 883				goto done;
 884			if (!scan_swap_map_try_ssd_cluster(si, &offset,
 885							&scan_base))
 886				goto scan;
 887		}
 888	}
 889	if (!(si->flags & SWP_WRITEOK))
 890		goto no_page;
 891	if (!si->highest_bit)
 892		goto no_page;
 893	if (offset > si->highest_bit)
 894		scan_base = offset = si->lowest_bit;
 895
 896	ci = lock_cluster(si, offset);
 897	/* reuse swap entry of cache-only swap if not busy. */
 898	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 899		int swap_was_freed;
 900		unlock_cluster(ci);
 901		spin_unlock(&si->lock);
 902		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
 903		spin_lock(&si->lock);
 904		/* entry was freed successfully, try to use this again */
 905		if (swap_was_freed)
 906			goto checks;
 907		goto scan; /* check next one */
 908	}
 909
 910	if (si->swap_map[offset]) {
 911		unlock_cluster(ci);
 912		if (!n_ret)
 913			goto scan;
 914		else
 915			goto done;
 916	}
 917	WRITE_ONCE(si->swap_map[offset], usage);
 918	inc_cluster_info_page(si, si->cluster_info, offset);
 919	unlock_cluster(ci);
 920
 921	swap_range_alloc(si, offset, 1);
 
 922	slots[n_ret++] = swp_entry(si->type, offset);
 923
 924	/* got enough slots or reach max slots? */
 925	if ((n_ret == nr) || (offset >= si->highest_bit))
 926		goto done;
 927
 928	/* search for next available slot */
 929
 930	/* time to take a break? */
 931	if (unlikely(--latency_ration < 0)) {
 932		if (n_ret)
 933			goto done;
 934		spin_unlock(&si->lock);
 935		cond_resched();
 936		spin_lock(&si->lock);
 937		latency_ration = LATENCY_LIMIT;
 938	}
 939
 940	/* try to get more slots in cluster */
 941	if (si->cluster_info) {
 942		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 943			goto checks;
 944	} else if (si->cluster_nr && !si->swap_map[++offset]) {
 945		/* non-ssd case, still more slots in cluster? */
 
 
 
 
 
 
 946		--si->cluster_nr;
 947		goto checks;
 948	}
 949
 950	/*
 951	 * Even if there's no free clusters available (fragmented),
 952	 * try to scan a little more quickly with lock held unless we
 953	 * have scanned too many slots already.
 954	 */
 955	if (!scanned_many) {
 956		unsigned long scan_limit;
 957
 958		if (offset < scan_base)
 959			scan_limit = scan_base;
 960		else
 961			scan_limit = si->highest_bit;
 962		for (; offset <= scan_limit && --latency_ration > 0;
 963		     offset++) {
 964			if (!si->swap_map[offset])
 965				goto checks;
 966		}
 967	}
 968
 969done:
 970	set_cluster_next(si, offset + 1);
 971	si->flags -= SWP_SCANNING;
 972	return n_ret;
 973
 974scan:
 975	spin_unlock(&si->lock);
 976	while (++offset <= READ_ONCE(si->highest_bit)) {
 
 
 
 
 
 
 
 
 977		if (unlikely(--latency_ration < 0)) {
 978			cond_resched();
 979			latency_ration = LATENCY_LIMIT;
 980			scanned_many = true;
 981		}
 982		if (swap_offset_available_and_locked(si, offset))
 983			goto checks;
 984	}
 985	offset = si->lowest_bit;
 986	while (offset < scan_base) {
 
 
 
 
 
 
 
 
 987		if (unlikely(--latency_ration < 0)) {
 988			cond_resched();
 989			latency_ration = LATENCY_LIMIT;
 990			scanned_many = true;
 991		}
 992		if (swap_offset_available_and_locked(si, offset))
 993			goto checks;
 994		offset++;
 995	}
 996	spin_lock(&si->lock);
 997
 998no_page:
 999	si->flags -= SWP_SCANNING;
1000	return n_ret;
1001}
1002
1003static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1004{
1005	unsigned long idx;
1006	struct swap_cluster_info *ci;
1007	unsigned long offset;
 
1008
1009	/*
1010	 * Should not even be attempting cluster allocations when huge
1011	 * page swap is disabled.  Warn and fail the allocation.
1012	 */
1013	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1014		VM_WARN_ON_ONCE(1);
1015		return 0;
1016	}
1017
1018	if (cluster_list_empty(&si->free_clusters))
1019		return 0;
1020
1021	idx = cluster_list_first(&si->free_clusters);
1022	offset = idx * SWAPFILE_CLUSTER;
1023	ci = lock_cluster(si, offset);
1024	alloc_cluster(si, idx);
1025	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1026
1027	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
 
 
1028	unlock_cluster(ci);
1029	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1030	*slot = swp_entry(si->type, offset);
1031
1032	return 1;
1033}
1034
1035static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1036{
1037	unsigned long offset = idx * SWAPFILE_CLUSTER;
1038	struct swap_cluster_info *ci;
1039
1040	ci = lock_cluster(si, offset);
1041	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1042	cluster_set_count_flag(ci, 0, 0);
1043	free_cluster(si, idx);
1044	unlock_cluster(ci);
1045	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1046}
1047
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1048int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1049{
1050	unsigned long size = swap_entry_size(entry_size);
1051	struct swap_info_struct *si, *next;
1052	long avail_pgs;
1053	int n_ret = 0;
1054	int node;
1055
1056	/* Only single cluster request supported */
1057	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1058
1059	spin_lock(&swap_avail_lock);
1060
1061	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1062	if (avail_pgs <= 0) {
1063		spin_unlock(&swap_avail_lock);
1064		goto noswap;
1065	}
1066
1067	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
 
 
 
 
1068
1069	atomic_long_sub(n_goal * size, &nr_swap_pages);
1070
 
 
1071start_over:
1072	node = numa_node_id();
1073	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1074		/* requeue si to after same-priority siblings */
1075		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1076		spin_unlock(&swap_avail_lock);
1077		spin_lock(&si->lock);
1078		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1079			spin_lock(&swap_avail_lock);
1080			if (plist_node_empty(&si->avail_lists[node])) {
1081				spin_unlock(&si->lock);
1082				goto nextsi;
1083			}
1084			WARN(!si->highest_bit,
1085			     "swap_info %d in list but !highest_bit\n",
1086			     si->type);
1087			WARN(!(si->flags & SWP_WRITEOK),
1088			     "swap_info %d in list but !SWP_WRITEOK\n",
1089			     si->type);
1090			__del_from_avail_list(si);
1091			spin_unlock(&si->lock);
1092			goto nextsi;
1093		}
1094		if (size == SWAPFILE_CLUSTER) {
1095			if (si->flags & SWP_BLKDEV)
1096				n_ret = swap_alloc_cluster(si, swp_entries);
1097		} else
1098			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1099						    n_goal, swp_entries);
1100		spin_unlock(&si->lock);
1101		if (n_ret || size == SWAPFILE_CLUSTER)
1102			goto check_out;
1103		cond_resched();
 
1104
1105		spin_lock(&swap_avail_lock);
1106nextsi:
1107		/*
1108		 * if we got here, it's likely that si was almost full before,
1109		 * and since scan_swap_map_slots() can drop the si->lock,
1110		 * multiple callers probably all tried to get a page from the
1111		 * same si and it filled up before we could get one; or, the si
1112		 * filled up between us dropping swap_avail_lock and taking
1113		 * si->lock. Since we dropped the swap_avail_lock, the
1114		 * swap_avail_head list may have been modified; so if next is
1115		 * still in the swap_avail_head list then try it, otherwise
1116		 * start over if we have not gotten any slots.
1117		 */
1118		if (plist_node_empty(&next->avail_lists[node]))
1119			goto start_over;
1120	}
1121
1122	spin_unlock(&swap_avail_lock);
1123
1124check_out:
1125	if (n_ret < n_goal)
1126		atomic_long_add((long)(n_goal - n_ret) * size,
1127				&nr_swap_pages);
1128noswap:
1129	return n_ret;
1130}
1131
1132static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1133{
1134	struct swap_info_struct *p;
1135	unsigned long offset;
1136
1137	if (!entry.val)
1138		goto out;
1139	p = swp_swap_info(entry);
1140	if (!p)
1141		goto bad_nofile;
1142	if (data_race(!(p->flags & SWP_USED)))
1143		goto bad_device;
1144	offset = swp_offset(entry);
1145	if (offset >= p->max)
1146		goto bad_offset;
1147	if (data_race(!p->swap_map[swp_offset(entry)]))
1148		goto bad_free;
1149	return p;
1150
1151bad_free:
1152	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1153	goto out;
1154bad_offset:
1155	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1156	goto out;
1157bad_device:
1158	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1159	goto out;
1160bad_nofile:
1161	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1162out:
1163	return NULL;
1164}
1165
 
 
 
 
 
 
 
 
 
 
1166static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1167					struct swap_info_struct *q)
1168{
1169	struct swap_info_struct *p;
1170
1171	p = _swap_info_get(entry);
1172
1173	if (p != q) {
1174		if (q != NULL)
1175			spin_unlock(&q->lock);
1176		if (p != NULL)
1177			spin_lock(&p->lock);
1178	}
1179	return p;
1180}
1181
1182static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1183					      unsigned long offset,
1184					      unsigned char usage)
1185{
1186	unsigned char count;
1187	unsigned char has_cache;
1188
1189	count = p->swap_map[offset];
1190
1191	has_cache = count & SWAP_HAS_CACHE;
1192	count &= ~SWAP_HAS_CACHE;
1193
1194	if (usage == SWAP_HAS_CACHE) {
1195		VM_BUG_ON(!has_cache);
1196		has_cache = 0;
1197	} else if (count == SWAP_MAP_SHMEM) {
1198		/*
1199		 * Or we could insist on shmem.c using a special
1200		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1201		 */
1202		count = 0;
1203	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1204		if (count == COUNT_CONTINUED) {
1205			if (swap_count_continued(p, offset, count))
1206				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1207			else
1208				count = SWAP_MAP_MAX;
1209		} else
1210			count--;
1211	}
1212
1213	usage = count | has_cache;
1214	if (usage)
1215		WRITE_ONCE(p->swap_map[offset], usage);
1216	else
1217		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1218
1219	return usage;
1220}
1221
1222/*
1223 * When we get a swap entry, if there aren't some other ways to
1224 * prevent swapoff, such as the folio in swap cache is locked, page
1225 * table lock is held, etc., the swap entry may become invalid because
1226 * of swapoff.  Then, we need to enclose all swap related functions
1227 * with get_swap_device() and put_swap_device(), unless the swap
1228 * functions call get/put_swap_device() by themselves.
1229 *
1230 * Check whether swap entry is valid in the swap device.  If so,
1231 * return pointer to swap_info_struct, and keep the swap entry valid
1232 * via preventing the swap device from being swapoff, until
1233 * put_swap_device() is called.  Otherwise return NULL.
1234 *
 
 
 
 
 
 
1235 * Notice that swapoff or swapoff+swapon can still happen before the
1236 * percpu_ref_tryget_live() in get_swap_device() or after the
1237 * percpu_ref_put() in put_swap_device() if there isn't any other way
1238 * to prevent swapoff.  The caller must be prepared for that.  For
1239 * example, the following situation is possible.
 
1240 *
1241 *   CPU1				CPU2
1242 *   do_swap_page()
1243 *     ...				swapoff+swapon
1244 *     __read_swap_cache_async()
1245 *       swapcache_prepare()
1246 *         __swap_duplicate()
1247 *           // check swap_map
1248 *     // verify PTE not changed
1249 *
1250 * In __swap_duplicate(), the swap_map need to be checked before
1251 * changing partly because the specified swap entry may be for another
1252 * swap device which has been swapoff.  And in do_swap_page(), after
1253 * the page is read from the swap device, the PTE is verified not
1254 * changed with the page table locked to check whether the swap device
1255 * has been swapoff or swapoff+swapon.
1256 */
1257struct swap_info_struct *get_swap_device(swp_entry_t entry)
1258{
1259	struct swap_info_struct *si;
1260	unsigned long offset;
1261
1262	if (!entry.val)
1263		goto out;
1264	si = swp_swap_info(entry);
1265	if (!si)
1266		goto bad_nofile;
1267	if (!percpu_ref_tryget_live(&si->users))
1268		goto out;
1269	/*
1270	 * Guarantee the si->users are checked before accessing other
1271	 * fields of swap_info_struct.
1272	 *
1273	 * Paired with the spin_unlock() after setup_swap_info() in
1274	 * enable_swap_info().
1275	 */
1276	smp_rmb();
1277	offset = swp_offset(entry);
1278	if (offset >= si->max)
1279		goto put_out;
1280
1281	return si;
1282bad_nofile:
1283	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1284out:
1285	return NULL;
1286put_out:
1287	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1288	percpu_ref_put(&si->users);
1289	return NULL;
1290}
1291
1292static unsigned char __swap_entry_free(struct swap_info_struct *p,
1293				       swp_entry_t entry)
1294{
1295	struct swap_cluster_info *ci;
1296	unsigned long offset = swp_offset(entry);
1297	unsigned char usage;
1298
1299	ci = lock_cluster_or_swap_info(p, offset);
1300	usage = __swap_entry_free_locked(p, offset, 1);
1301	unlock_cluster_or_swap_info(p, ci);
1302	if (!usage)
1303		free_swap_slot(entry);
1304
1305	return usage;
1306}
1307
1308static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1309{
1310	struct swap_cluster_info *ci;
1311	unsigned long offset = swp_offset(entry);
1312	unsigned char count;
1313
1314	ci = lock_cluster(p, offset);
1315	count = p->swap_map[offset];
1316	VM_BUG_ON(count != SWAP_HAS_CACHE);
1317	p->swap_map[offset] = 0;
1318	dec_cluster_info_page(p, p->cluster_info, offset);
1319	unlock_cluster(ci);
1320
1321	mem_cgroup_uncharge_swap(entry, 1);
1322	swap_range_free(p, offset, 1);
1323}
1324
1325/*
1326 * Caller has made sure that the swap device corresponding to entry
1327 * is still around or has not been recycled.
1328 */
1329void swap_free(swp_entry_t entry)
1330{
1331	struct swap_info_struct *p;
1332
1333	p = _swap_info_get(entry);
1334	if (p)
1335		__swap_entry_free(p, entry);
1336}
1337
1338/*
1339 * Called after dropping swapcache to decrease refcnt to swap entries.
1340 */
1341void put_swap_folio(struct folio *folio, swp_entry_t entry)
1342{
1343	unsigned long offset = swp_offset(entry);
1344	unsigned long idx = offset / SWAPFILE_CLUSTER;
1345	struct swap_cluster_info *ci;
1346	struct swap_info_struct *si;
1347	unsigned char *map;
1348	unsigned int i, free_entries = 0;
1349	unsigned char val;
1350	int size = swap_entry_size(folio_nr_pages(folio));
1351
1352	si = _swap_info_get(entry);
1353	if (!si)
1354		return;
1355
1356	ci = lock_cluster_or_swap_info(si, offset);
1357	if (size == SWAPFILE_CLUSTER) {
1358		VM_BUG_ON(!cluster_is_huge(ci));
1359		map = si->swap_map + offset;
1360		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1361			val = map[i];
1362			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1363			if (val == SWAP_HAS_CACHE)
1364				free_entries++;
1365		}
1366		cluster_clear_huge(ci);
1367		if (free_entries == SWAPFILE_CLUSTER) {
1368			unlock_cluster_or_swap_info(si, ci);
1369			spin_lock(&si->lock);
1370			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1371			swap_free_cluster(si, idx);
1372			spin_unlock(&si->lock);
1373			return;
1374		}
1375	}
1376	for (i = 0; i < size; i++, entry.val++) {
1377		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1378			unlock_cluster_or_swap_info(si, ci);
1379			free_swap_slot(entry);
1380			if (i == size - 1)
1381				return;
1382			lock_cluster_or_swap_info(si, offset);
1383		}
1384	}
1385	unlock_cluster_or_swap_info(si, ci);
1386}
1387
1388#ifdef CONFIG_THP_SWAP
1389int split_swap_cluster(swp_entry_t entry)
1390{
1391	struct swap_info_struct *si;
1392	struct swap_cluster_info *ci;
1393	unsigned long offset = swp_offset(entry);
1394
1395	si = _swap_info_get(entry);
1396	if (!si)
1397		return -EBUSY;
1398	ci = lock_cluster(si, offset);
1399	cluster_clear_huge(ci);
1400	unlock_cluster(ci);
1401	return 0;
1402}
1403#endif
1404
1405static int swp_entry_cmp(const void *ent1, const void *ent2)
1406{
1407	const swp_entry_t *e1 = ent1, *e2 = ent2;
1408
1409	return (int)swp_type(*e1) - (int)swp_type(*e2);
1410}
1411
1412void swapcache_free_entries(swp_entry_t *entries, int n)
1413{
1414	struct swap_info_struct *p, *prev;
1415	int i;
1416
1417	if (n <= 0)
1418		return;
1419
1420	prev = NULL;
1421	p = NULL;
1422
1423	/*
1424	 * Sort swap entries by swap device, so each lock is only taken once.
1425	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1426	 * so low that it isn't necessary to optimize further.
1427	 */
1428	if (nr_swapfiles > 1)
1429		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1430	for (i = 0; i < n; ++i) {
1431		p = swap_info_get_cont(entries[i], prev);
1432		if (p)
1433			swap_entry_free(p, entries[i]);
1434		prev = p;
1435	}
1436	if (p)
1437		spin_unlock(&p->lock);
1438}
1439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1440int __swap_count(swp_entry_t entry)
1441{
1442	struct swap_info_struct *si = swp_swap_info(entry);
1443	pgoff_t offset = swp_offset(entry);
 
1444
1445	return swap_count(si->swap_map[offset]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1446}
1447
1448/*
1449 * How many references to @entry are currently swapped out?
1450 * This does not give an exact answer when swap count is continued,
1451 * but does include the high COUNT_CONTINUED flag to allow for that.
1452 */
1453int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1454{
1455	pgoff_t offset = swp_offset(entry);
1456	struct swap_cluster_info *ci;
1457	int count;
1458
1459	ci = lock_cluster_or_swap_info(si, offset);
1460	count = swap_count(si->swap_map[offset]);
1461	unlock_cluster_or_swap_info(si, ci);
 
 
1462	return count;
1463}
1464
1465/*
1466 * How many references to @entry are currently swapped out?
1467 * This considers COUNT_CONTINUED so it returns exact answer.
1468 */
1469int swp_swapcount(swp_entry_t entry)
1470{
1471	int count, tmp_count, n;
1472	struct swap_info_struct *p;
1473	struct swap_cluster_info *ci;
1474	struct page *page;
1475	pgoff_t offset;
1476	unsigned char *map;
1477
1478	p = _swap_info_get(entry);
1479	if (!p)
1480		return 0;
1481
1482	offset = swp_offset(entry);
1483
1484	ci = lock_cluster_or_swap_info(p, offset);
1485
1486	count = swap_count(p->swap_map[offset]);
1487	if (!(count & COUNT_CONTINUED))
1488		goto out;
1489
1490	count &= ~COUNT_CONTINUED;
1491	n = SWAP_MAP_MAX + 1;
1492
1493	page = vmalloc_to_page(p->swap_map + offset);
1494	offset &= ~PAGE_MASK;
1495	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1496
1497	do {
1498		page = list_next_entry(page, lru);
1499		map = kmap_local_page(page);
1500		tmp_count = map[offset];
1501		kunmap_local(map);
1502
1503		count += (tmp_count & ~COUNT_CONTINUED) * n;
1504		n *= (SWAP_CONT_MAX + 1);
1505	} while (tmp_count & COUNT_CONTINUED);
1506out:
1507	unlock_cluster_or_swap_info(p, ci);
1508	return count;
1509}
1510
1511static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1512					 swp_entry_t entry)
1513{
1514	struct swap_cluster_info *ci;
1515	unsigned char *map = si->swap_map;
1516	unsigned long roffset = swp_offset(entry);
1517	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1518	int i;
1519	bool ret = false;
1520
1521	ci = lock_cluster_or_swap_info(si, offset);
1522	if (!ci || !cluster_is_huge(ci)) {
1523		if (swap_count(map[roffset]))
1524			ret = true;
1525		goto unlock_out;
1526	}
1527	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1528		if (swap_count(map[offset + i])) {
1529			ret = true;
1530			break;
1531		}
1532	}
1533unlock_out:
1534	unlock_cluster_or_swap_info(si, ci);
1535	return ret;
1536}
1537
1538static bool folio_swapped(struct folio *folio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1539{
1540	swp_entry_t entry = folio->swap;
1541	struct swap_info_struct *si = _swap_info_get(entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1542
1543	if (!si)
1544		return false;
 
1545
1546	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1547		return swap_swapcount(si, entry) != 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1548
1549	return swap_page_trans_huge_swapped(si, entry);
1550}
1551
1552/**
1553 * folio_free_swap() - Free the swap space used for this folio.
1554 * @folio: The folio to remove.
 
 
1555 *
1556 * If swap is getting full, or if there are no more mappings of this folio,
1557 * then call folio_free_swap to free its swap space.
1558 *
1559 * Return: true if we were able to release the swap space.
1560 */
1561bool folio_free_swap(struct folio *folio)
1562{
1563	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1564
1565	if (!folio_test_swapcache(folio))
1566		return false;
1567	if (folio_test_writeback(folio))
1568		return false;
1569	if (folio_swapped(folio))
1570		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1571
1572	/*
1573	 * Once hibernation has begun to create its image of memory,
1574	 * there's a danger that one of the calls to folio_free_swap()
1575	 * - most probably a call from __try_to_reclaim_swap() while
1576	 * hibernation is allocating its own swap pages for the image,
1577	 * but conceivably even a call from memory reclaim - will free
1578	 * the swap from a folio which has already been recorded in the
1579	 * image as a clean swapcache folio, and then reuse its swap for
1580	 * another page of the image.  On waking from hibernation, the
1581	 * original folio might be freed under memory pressure, then
1582	 * later read back in from swap, now with the wrong data.
1583	 *
1584	 * Hibernation suspends storage while it is writing the image
1585	 * to disk so check that here.
1586	 */
1587	if (pm_suspended_storage())
1588		return false;
1589
1590	delete_from_swap_cache(folio);
1591	folio_set_dirty(folio);
1592	return true;
 
1593}
1594
1595/*
1596 * Free the swap entry like above, but also try to
1597 * free the page cache entry if it is the last user.
1598 */
1599int free_swap_and_cache(swp_entry_t entry)
1600{
1601	struct swap_info_struct *p;
1602	unsigned char count;
1603
1604	if (non_swap_entry(entry))
1605		return 1;
1606
1607	p = _swap_info_get(entry);
1608	if (p) {
1609		count = __swap_entry_free(p, entry);
1610		if (count == SWAP_HAS_CACHE &&
1611		    !swap_page_trans_huge_swapped(p, entry))
1612			__try_to_reclaim_swap(p, swp_offset(entry),
1613					      TTRS_UNMAPPED | TTRS_FULL);
1614	}
1615	return p != NULL;
1616}
1617
1618#ifdef CONFIG_HIBERNATION
1619
1620swp_entry_t get_swap_page_of_type(int type)
1621{
1622	struct swap_info_struct *si = swap_type_to_swap_info(type);
1623	swp_entry_t entry = {0};
1624
1625	if (!si)
1626		goto fail;
1627
1628	/* This is called for allocating swap entry, not cache */
1629	spin_lock(&si->lock);
1630	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1631		atomic_long_dec(&nr_swap_pages);
1632	spin_unlock(&si->lock);
1633fail:
1634	return entry;
1635}
1636
1637/*
1638 * Find the swap type that corresponds to given device (if any).
1639 *
1640 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1641 * from 0, in which the swap header is expected to be located.
1642 *
1643 * This is needed for the suspend to disk (aka swsusp).
1644 */
1645int swap_type_of(dev_t device, sector_t offset)
1646{
 
1647	int type;
1648
1649	if (!device)
1650		return -1;
1651
1652	spin_lock(&swap_lock);
1653	for (type = 0; type < nr_swapfiles; type++) {
1654		struct swap_info_struct *sis = swap_info[type];
1655
1656		if (!(sis->flags & SWP_WRITEOK))
1657			continue;
1658
1659		if (device == sis->bdev->bd_dev) {
 
 
 
 
 
 
 
1660			struct swap_extent *se = first_se(sis);
1661
1662			if (se->start_block == offset) {
 
 
 
1663				spin_unlock(&swap_lock);
 
1664				return type;
1665			}
1666		}
1667	}
1668	spin_unlock(&swap_lock);
1669	return -ENODEV;
1670}
1671
1672int find_first_swap(dev_t *device)
1673{
1674	int type;
1675
1676	spin_lock(&swap_lock);
1677	for (type = 0; type < nr_swapfiles; type++) {
1678		struct swap_info_struct *sis = swap_info[type];
1679
1680		if (!(sis->flags & SWP_WRITEOK))
1681			continue;
1682		*device = sis->bdev->bd_dev;
1683		spin_unlock(&swap_lock);
1684		return type;
1685	}
1686	spin_unlock(&swap_lock);
1687	return -ENODEV;
1688}
1689
1690/*
1691 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1692 * corresponding to given index in swap_info (swap type).
1693 */
1694sector_t swapdev_block(int type, pgoff_t offset)
1695{
 
1696	struct swap_info_struct *si = swap_type_to_swap_info(type);
1697	struct swap_extent *se;
1698
1699	if (!si || !(si->flags & SWP_WRITEOK))
1700		return 0;
1701	se = offset_to_swap_extent(si, offset);
1702	return se->start_block + (offset - se->start_page);
1703}
1704
1705/*
1706 * Return either the total number of swap pages of given type, or the number
1707 * of free pages of that type (depending on @free)
1708 *
1709 * This is needed for software suspend
1710 */
1711unsigned int count_swap_pages(int type, int free)
1712{
1713	unsigned int n = 0;
1714
1715	spin_lock(&swap_lock);
1716	if ((unsigned int)type < nr_swapfiles) {
1717		struct swap_info_struct *sis = swap_info[type];
1718
1719		spin_lock(&sis->lock);
1720		if (sis->flags & SWP_WRITEOK) {
1721			n = sis->pages;
1722			if (free)
1723				n -= sis->inuse_pages;
1724		}
1725		spin_unlock(&sis->lock);
1726	}
1727	spin_unlock(&swap_lock);
1728	return n;
1729}
1730#endif /* CONFIG_HIBERNATION */
1731
1732static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1733{
1734	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1735}
1736
1737/*
1738 * No need to decide whether this PTE shares the swap entry with others,
1739 * just let do_wp_page work it out if a write is requested later - to
1740 * force COW, vm_page_prot omits write permission from any private vma.
1741 */
1742static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1743		unsigned long addr, swp_entry_t entry, struct folio *folio)
1744{
1745	struct page *page;
1746	struct folio *swapcache;
1747	spinlock_t *ptl;
1748	pte_t *pte, new_pte, old_pte;
1749	bool hwpoisoned = false;
1750	int ret = 1;
1751
1752	swapcache = folio;
1753	folio = ksm_might_need_to_copy(folio, vma, addr);
1754	if (unlikely(!folio))
1755		return -ENOMEM;
1756	else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
1757		hwpoisoned = true;
1758		folio = swapcache;
 
 
1759	}
1760
1761	page = folio_file_page(folio, swp_offset(entry));
1762	if (PageHWPoison(page))
1763		hwpoisoned = true;
1764
1765	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1766	if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1767						swp_entry_to_pte(entry)))) {
1768		ret = 0;
1769		goto out;
1770	}
1771
1772	old_pte = ptep_get(pte);
1773
1774	if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
1775		swp_entry_t swp_entry;
1776
1777		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1778		if (hwpoisoned) {
1779			swp_entry = make_hwpoison_entry(page);
1780		} else {
1781			swp_entry = make_poisoned_swp_entry();
1782		}
1783		new_pte = swp_entry_to_pte(swp_entry);
1784		ret = 0;
1785		goto setpte;
1786	}
1787
1788	/*
1789	 * Some architectures may have to restore extra metadata to the page
1790	 * when reading from swap. This metadata may be indexed by swap entry
1791	 * so this must be called before swap_free().
1792	 */
1793	arch_swap_restore(entry, folio);
1794
1795	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1796	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1797	folio_get(folio);
1798	if (folio == swapcache) {
1799		rmap_t rmap_flags = RMAP_NONE;
1800
1801		/*
1802		 * See do_swap_page(): writeback would be problematic.
1803		 * However, we do a folio_wait_writeback() just before this
1804		 * call and have the folio locked.
1805		 */
1806		VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
1807		if (pte_swp_exclusive(old_pte))
1808			rmap_flags |= RMAP_EXCLUSIVE;
1809
1810		folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
1811	} else { /* ksm created a completely new copy */
1812		folio_add_new_anon_rmap(folio, vma, addr);
1813		folio_add_lru_vma(folio, vma);
 
1814	}
1815	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1816	if (pte_swp_soft_dirty(old_pte))
1817		new_pte = pte_mksoft_dirty(new_pte);
1818	if (pte_swp_uffd_wp(old_pte))
1819		new_pte = pte_mkuffd_wp(new_pte);
1820setpte:
1821	set_pte_at(vma->vm_mm, addr, pte, new_pte);
1822	swap_free(entry);
 
 
 
 
 
1823out:
1824	if (pte)
1825		pte_unmap_unlock(pte, ptl);
1826	if (folio != swapcache) {
1827		folio_unlock(folio);
1828		folio_put(folio);
1829	}
1830	return ret;
1831}
1832
1833static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1834			unsigned long addr, unsigned long end,
1835			unsigned int type)
 
1836{
1837	pte_t *pte = NULL;
 
 
1838	struct swap_info_struct *si;
 
 
 
1839
1840	si = swap_info[type];
 
1841	do {
1842		struct folio *folio;
1843		unsigned long offset;
1844		unsigned char swp_count;
1845		swp_entry_t entry;
1846		int ret;
1847		pte_t ptent;
1848
1849		if (!pte++) {
1850			pte = pte_offset_map(pmd, addr);
1851			if (!pte)
1852				break;
1853		}
1854
1855		ptent = ptep_get_lockless(pte);
1856
1857		if (!is_swap_pte(ptent))
1858			continue;
1859
1860		entry = pte_to_swp_entry(ptent);
1861		if (swp_type(entry) != type)
1862			continue;
1863
1864		offset = swp_offset(entry);
 
 
 
1865		pte_unmap(pte);
1866		pte = NULL;
1867
1868		folio = swap_cache_get_folio(entry, vma, addr);
1869		if (!folio) {
1870			struct page *page;
1871			struct vm_fault vmf = {
1872				.vma = vma,
1873				.address = addr,
1874				.real_address = addr,
1875				.pmd = pmd,
1876			};
1877
1878			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1879						&vmf);
1880			if (page)
1881				folio = page_folio(page);
1882		}
1883		if (!folio) {
1884			swp_count = READ_ONCE(si->swap_map[offset]);
1885			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1886				continue;
1887			return -ENOMEM;
1888		}
1889
1890		folio_lock(folio);
1891		folio_wait_writeback(folio);
1892		ret = unuse_pte(vma, pmd, addr, entry, folio);
1893		if (ret < 0) {
1894			folio_unlock(folio);
1895			folio_put(folio);
1896			return ret;
1897		}
1898
1899		folio_free_swap(folio);
1900		folio_unlock(folio);
1901		folio_put(folio);
1902	} while (addr += PAGE_SIZE, addr != end);
 
 
 
 
 
 
 
 
1903
1904	if (pte)
1905		pte_unmap(pte);
1906	return 0;
1907}
1908
1909static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1910				unsigned long addr, unsigned long end,
1911				unsigned int type)
 
1912{
1913	pmd_t *pmd;
1914	unsigned long next;
1915	int ret;
1916
1917	pmd = pmd_offset(pud, addr);
1918	do {
1919		cond_resched();
1920		next = pmd_addr_end(addr, end);
1921		ret = unuse_pte_range(vma, pmd, addr, next, type);
 
 
 
1922		if (ret)
1923			return ret;
1924	} while (pmd++, addr = next, addr != end);
1925	return 0;
1926}
1927
1928static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1929				unsigned long addr, unsigned long end,
1930				unsigned int type)
 
1931{
1932	pud_t *pud;
1933	unsigned long next;
1934	int ret;
1935
1936	pud = pud_offset(p4d, addr);
1937	do {
1938		next = pud_addr_end(addr, end);
1939		if (pud_none_or_clear_bad(pud))
1940			continue;
1941		ret = unuse_pmd_range(vma, pud, addr, next, type);
 
1942		if (ret)
1943			return ret;
1944	} while (pud++, addr = next, addr != end);
1945	return 0;
1946}
1947
1948static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1949				unsigned long addr, unsigned long end,
1950				unsigned int type)
 
1951{
1952	p4d_t *p4d;
1953	unsigned long next;
1954	int ret;
1955
1956	p4d = p4d_offset(pgd, addr);
1957	do {
1958		next = p4d_addr_end(addr, end);
1959		if (p4d_none_or_clear_bad(p4d))
1960			continue;
1961		ret = unuse_pud_range(vma, p4d, addr, next, type);
 
1962		if (ret)
1963			return ret;
1964	} while (p4d++, addr = next, addr != end);
1965	return 0;
1966}
1967
1968static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
 
1969{
1970	pgd_t *pgd;
1971	unsigned long addr, end, next;
1972	int ret;
1973
1974	addr = vma->vm_start;
1975	end = vma->vm_end;
1976
1977	pgd = pgd_offset(vma->vm_mm, addr);
1978	do {
1979		next = pgd_addr_end(addr, end);
1980		if (pgd_none_or_clear_bad(pgd))
1981			continue;
1982		ret = unuse_p4d_range(vma, pgd, addr, next, type);
 
1983		if (ret)
1984			return ret;
1985	} while (pgd++, addr = next, addr != end);
1986	return 0;
1987}
1988
1989static int unuse_mm(struct mm_struct *mm, unsigned int type)
 
1990{
1991	struct vm_area_struct *vma;
1992	int ret = 0;
1993	VMA_ITERATOR(vmi, mm, 0);
1994
1995	mmap_read_lock(mm);
1996	for_each_vma(vmi, vma) {
1997		if (vma->anon_vma) {
1998			ret = unuse_vma(vma, type);
 
1999			if (ret)
2000				break;
2001		}
2002
2003		cond_resched();
2004	}
2005	mmap_read_unlock(mm);
2006	return ret;
2007}
2008
2009/*
2010 * Scan swap_map from current position to next entry still in use.
2011 * Return 0 if there are no inuse entries after prev till end of
2012 * the map.
2013 */
2014static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2015					unsigned int prev)
2016{
2017	unsigned int i;
2018	unsigned char count;
2019
2020	/*
2021	 * No need for swap_lock here: we're just looking
2022	 * for whether an entry is in use, not modifying it; false
2023	 * hits are okay, and sys_swapoff() has already prevented new
2024	 * allocations from this area (while holding swap_lock).
2025	 */
2026	for (i = prev + 1; i < si->max; i++) {
2027		count = READ_ONCE(si->swap_map[i]);
2028		if (count && swap_count(count) != SWAP_MAP_BAD)
2029			break;
 
2030		if ((i % LATENCY_LIMIT) == 0)
2031			cond_resched();
2032	}
2033
2034	if (i == si->max)
2035		i = 0;
2036
2037	return i;
2038}
2039
2040static int try_to_unuse(unsigned int type)
 
 
 
 
 
2041{
2042	struct mm_struct *prev_mm;
2043	struct mm_struct *mm;
2044	struct list_head *p;
2045	int retval = 0;
2046	struct swap_info_struct *si = swap_info[type];
2047	struct folio *folio;
2048	swp_entry_t entry;
2049	unsigned int i;
2050
2051	if (!READ_ONCE(si->inuse_pages))
2052		return 0;
2053
 
 
 
2054retry:
2055	retval = shmem_unuse(type);
2056	if (retval)
2057		return retval;
2058
2059	prev_mm = &init_mm;
2060	mmget(prev_mm);
2061
2062	spin_lock(&mmlist_lock);
2063	p = &init_mm.mmlist;
2064	while (READ_ONCE(si->inuse_pages) &&
2065	       !signal_pending(current) &&
2066	       (p = p->next) != &init_mm.mmlist) {
2067
2068		mm = list_entry(p, struct mm_struct, mmlist);
2069		if (!mmget_not_zero(mm))
2070			continue;
2071		spin_unlock(&mmlist_lock);
2072		mmput(prev_mm);
2073		prev_mm = mm;
2074		retval = unuse_mm(mm, type);
 
2075		if (retval) {
2076			mmput(prev_mm);
2077			return retval;
2078		}
2079
2080		/*
2081		 * Make sure that we aren't completely killing
2082		 * interactive performance.
2083		 */
2084		cond_resched();
2085		spin_lock(&mmlist_lock);
2086	}
2087	spin_unlock(&mmlist_lock);
2088
2089	mmput(prev_mm);
2090
2091	i = 0;
2092	while (READ_ONCE(si->inuse_pages) &&
2093	       !signal_pending(current) &&
2094	       (i = find_next_to_unuse(si, i)) != 0) {
2095
2096		entry = swp_entry(type, i);
2097		folio = filemap_get_folio(swap_address_space(entry), i);
2098		if (IS_ERR(folio))
2099			continue;
2100
2101		/*
2102		 * It is conceivable that a racing task removed this folio from
2103		 * swap cache just before we acquired the page lock. The folio
2104		 * might even be back in swap cache on another swap area. But
2105		 * that is okay, folio_free_swap() only removes stale folios.
 
 
 
 
 
 
 
 
 
 
 
2106		 */
2107		folio_lock(folio);
2108		folio_wait_writeback(folio);
2109		folio_free_swap(folio);
2110		folio_unlock(folio);
2111		folio_put(folio);
2112	}
2113
2114	/*
2115	 * Lets check again to see if there are still swap entries in the map.
2116	 * If yes, we would need to do retry the unuse logic again.
2117	 * Under global memory pressure, swap entries can be reinserted back
2118	 * into process space after the mmlist loop above passes over them.
2119	 *
2120	 * Limit the number of retries? No: when mmget_not_zero()
2121	 * above fails, that mm is likely to be freeing swap from
2122	 * exit_mmap(), which proceeds at its own independent pace;
2123	 * and even shmem_writepage() could have been preempted after
2124	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2125	 * and robust (though cpu-intensive) just to keep retrying.
2126	 */
2127	if (READ_ONCE(si->inuse_pages)) {
2128		if (!signal_pending(current))
2129			goto retry;
2130		return -EINTR;
2131	}
2132
2133	return 0;
2134}
2135
2136/*
2137 * After a successful try_to_unuse, if no swap is now in use, we know
2138 * we can empty the mmlist.  swap_lock must be held on entry and exit.
2139 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2140 * added to the mmlist just after page_duplicate - before would be racy.
2141 */
2142static void drain_mmlist(void)
2143{
2144	struct list_head *p, *next;
2145	unsigned int type;
2146
2147	for (type = 0; type < nr_swapfiles; type++)
2148		if (swap_info[type]->inuse_pages)
2149			return;
2150	spin_lock(&mmlist_lock);
2151	list_for_each_safe(p, next, &init_mm.mmlist)
2152		list_del_init(p);
2153	spin_unlock(&mmlist_lock);
2154}
2155
2156/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2157 * Free all of a swapdev's extent information
2158 */
2159static void destroy_swap_extents(struct swap_info_struct *sis)
2160{
2161	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2162		struct rb_node *rb = sis->swap_extent_root.rb_node;
2163		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2164
2165		rb_erase(rb, &sis->swap_extent_root);
2166		kfree(se);
2167	}
2168
2169	if (sis->flags & SWP_ACTIVATED) {
2170		struct file *swap_file = sis->swap_file;
2171		struct address_space *mapping = swap_file->f_mapping;
2172
2173		sis->flags &= ~SWP_ACTIVATED;
2174		if (mapping->a_ops->swap_deactivate)
2175			mapping->a_ops->swap_deactivate(swap_file);
2176	}
2177}
2178
2179/*
2180 * Add a block range (and the corresponding page range) into this swapdev's
2181 * extent tree.
2182 *
2183 * This function rather assumes that it is called in ascending page order.
2184 */
2185int
2186add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2187		unsigned long nr_pages, sector_t start_block)
2188{
2189	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2190	struct swap_extent *se;
2191	struct swap_extent *new_se;
2192
2193	/*
2194	 * place the new node at the right most since the
2195	 * function is called in ascending page order.
2196	 */
2197	while (*link) {
2198		parent = *link;
2199		link = &parent->rb_right;
2200	}
2201
2202	if (parent) {
2203		se = rb_entry(parent, struct swap_extent, rb_node);
2204		BUG_ON(se->start_page + se->nr_pages != start_page);
2205		if (se->start_block + se->nr_pages == start_block) {
2206			/* Merge it */
2207			se->nr_pages += nr_pages;
2208			return 0;
2209		}
2210	}
2211
2212	/* No merge, insert a new extent. */
2213	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2214	if (new_se == NULL)
2215		return -ENOMEM;
2216	new_se->start_page = start_page;
2217	new_se->nr_pages = nr_pages;
2218	new_se->start_block = start_block;
2219
2220	rb_link_node(&new_se->rb_node, parent, link);
2221	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2222	return 1;
2223}
2224EXPORT_SYMBOL_GPL(add_swap_extent);
2225
2226/*
2227 * A `swap extent' is a simple thing which maps a contiguous range of pages
2228 * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2229 * built at swapon time and is then used at swap_writepage/swap_read_folio
2230 * time for locating where on disk a page belongs.
2231 *
2232 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2233 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2234 * swap files identically.
2235 *
2236 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2237 * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2238 * swapfiles are handled *identically* after swapon time.
2239 *
2240 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2241 * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2242 * blocks are found which do not fall within the PAGE_SIZE alignment
2243 * requirements, they are simply tossed out - we will never use those blocks
2244 * for swapping.
2245 *
2246 * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2247 * prevents users from writing to the swap device, which will corrupt memory.
2248 *
2249 * The amount of disk space which a single swap extent represents varies.
2250 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2251 * extents in the rbtree. - akpm.
 
 
 
2252 */
2253static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2254{
2255	struct file *swap_file = sis->swap_file;
2256	struct address_space *mapping = swap_file->f_mapping;
2257	struct inode *inode = mapping->host;
2258	int ret;
2259
2260	if (S_ISBLK(inode->i_mode)) {
2261		ret = add_swap_extent(sis, 0, sis->max, 0);
2262		*span = sis->pages;
2263		return ret;
2264	}
2265
2266	if (mapping->a_ops->swap_activate) {
2267		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2268		if (ret < 0)
2269			return ret;
2270		sis->flags |= SWP_ACTIVATED;
2271		if ((sis->flags & SWP_FS_OPS) &&
2272		    sio_pool_init() != 0) {
2273			destroy_swap_extents(sis);
2274			return -ENOMEM;
2275		}
2276		return ret;
2277	}
2278
2279	return generic_swapfile_activate(sis, swap_file, span);
2280}
2281
2282static int swap_node(struct swap_info_struct *p)
2283{
2284	struct block_device *bdev;
2285
2286	if (p->bdev)
2287		bdev = p->bdev;
2288	else
2289		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2290
2291	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2292}
2293
2294static void setup_swap_info(struct swap_info_struct *p, int prio,
2295			    unsigned char *swap_map,
2296			    struct swap_cluster_info *cluster_info)
2297{
2298	int i;
2299
2300	if (prio >= 0)
2301		p->prio = prio;
2302	else
2303		p->prio = --least_priority;
2304	/*
2305	 * the plist prio is negated because plist ordering is
2306	 * low-to-high, while swap ordering is high-to-low
2307	 */
2308	p->list.prio = -p->prio;
2309	for_each_node(i) {
2310		if (p->prio >= 0)
2311			p->avail_lists[i].prio = -p->prio;
2312		else {
2313			if (swap_node(p) == i)
2314				p->avail_lists[i].prio = 1;
2315			else
2316				p->avail_lists[i].prio = -p->prio;
2317		}
2318	}
2319	p->swap_map = swap_map;
2320	p->cluster_info = cluster_info;
2321}
2322
2323static void _enable_swap_info(struct swap_info_struct *p)
2324{
2325	p->flags |= SWP_WRITEOK;
2326	atomic_long_add(p->pages, &nr_swap_pages);
2327	total_swap_pages += p->pages;
2328
2329	assert_spin_locked(&swap_lock);
2330	/*
2331	 * both lists are plists, and thus priority ordered.
2332	 * swap_active_head needs to be priority ordered for swapoff(),
2333	 * which on removal of any swap_info_struct with an auto-assigned
2334	 * (i.e. negative) priority increments the auto-assigned priority
2335	 * of any lower-priority swap_info_structs.
2336	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2337	 * which allocates swap pages from the highest available priority
2338	 * swap_info_struct.
2339	 */
2340	plist_add(&p->list, &swap_active_head);
2341
2342	/* add to available list iff swap device is not full */
2343	if (p->highest_bit)
2344		add_to_avail_list(p);
2345}
2346
2347static void enable_swap_info(struct swap_info_struct *p, int prio,
2348				unsigned char *swap_map,
2349				struct swap_cluster_info *cluster_info)
 
2350{
2351	zswap_swapon(p->type);
2352
2353	spin_lock(&swap_lock);
2354	spin_lock(&p->lock);
2355	setup_swap_info(p, prio, swap_map, cluster_info);
2356	spin_unlock(&p->lock);
2357	spin_unlock(&swap_lock);
2358	/*
2359	 * Finished initializing swap device, now it's safe to reference it.
 
2360	 */
2361	percpu_ref_resurrect(&p->users);
2362	spin_lock(&swap_lock);
2363	spin_lock(&p->lock);
2364	_enable_swap_info(p);
2365	spin_unlock(&p->lock);
2366	spin_unlock(&swap_lock);
2367}
2368
2369static void reinsert_swap_info(struct swap_info_struct *p)
2370{
2371	spin_lock(&swap_lock);
2372	spin_lock(&p->lock);
2373	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2374	_enable_swap_info(p);
2375	spin_unlock(&p->lock);
2376	spin_unlock(&swap_lock);
2377}
2378
2379bool has_usable_swap(void)
2380{
2381	bool ret = true;
2382
2383	spin_lock(&swap_lock);
2384	if (plist_head_empty(&swap_active_head))
2385		ret = false;
2386	spin_unlock(&swap_lock);
2387	return ret;
2388}
2389
2390SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2391{
2392	struct swap_info_struct *p = NULL;
2393	unsigned char *swap_map;
2394	struct swap_cluster_info *cluster_info;
 
2395	struct file *swap_file, *victim;
2396	struct address_space *mapping;
2397	struct inode *inode;
2398	struct filename *pathname;
2399	int err, found = 0;
2400	unsigned int old_block_size;
2401
2402	if (!capable(CAP_SYS_ADMIN))
2403		return -EPERM;
2404
2405	BUG_ON(!current->mm);
2406
2407	pathname = getname(specialfile);
2408	if (IS_ERR(pathname))
2409		return PTR_ERR(pathname);
2410
2411	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2412	err = PTR_ERR(victim);
2413	if (IS_ERR(victim))
2414		goto out;
2415
2416	mapping = victim->f_mapping;
2417	spin_lock(&swap_lock);
2418	plist_for_each_entry(p, &swap_active_head, list) {
2419		if (p->flags & SWP_WRITEOK) {
2420			if (p->swap_file->f_mapping == mapping) {
2421				found = 1;
2422				break;
2423			}
2424		}
2425	}
2426	if (!found) {
2427		err = -EINVAL;
2428		spin_unlock(&swap_lock);
2429		goto out_dput;
2430	}
2431	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2432		vm_unacct_memory(p->pages);
2433	else {
2434		err = -ENOMEM;
2435		spin_unlock(&swap_lock);
2436		goto out_dput;
2437	}
 
2438	spin_lock(&p->lock);
2439	del_from_avail_list(p);
2440	if (p->prio < 0) {
2441		struct swap_info_struct *si = p;
2442		int nid;
2443
2444		plist_for_each_entry_continue(si, &swap_active_head, list) {
2445			si->prio++;
2446			si->list.prio--;
2447			for_each_node(nid) {
2448				if (si->avail_lists[nid].prio != 1)
2449					si->avail_lists[nid].prio--;
2450			}
2451		}
2452		least_priority++;
2453	}
2454	plist_del(&p->list, &swap_active_head);
2455	atomic_long_sub(p->pages, &nr_swap_pages);
2456	total_swap_pages -= p->pages;
2457	p->flags &= ~SWP_WRITEOK;
2458	spin_unlock(&p->lock);
2459	spin_unlock(&swap_lock);
2460
2461	disable_swap_slots_cache_lock();
2462
2463	set_current_oom_origin();
2464	err = try_to_unuse(p->type);
2465	clear_current_oom_origin();
2466
2467	if (err) {
2468		/* re-insert swap space back into swap_list */
2469		reinsert_swap_info(p);
2470		reenable_swap_slots_cache_unlock();
2471		goto out_dput;
2472	}
2473
2474	reenable_swap_slots_cache_unlock();
2475
 
 
 
 
 
2476	/*
2477	 * Wait for swap operations protected by get/put_swap_device()
2478	 * to complete.
2479	 *
2480	 * We need synchronize_rcu() here to protect the accessing to
2481	 * the swap cache data structure.
2482	 */
2483	percpu_ref_kill(&p->users);
2484	synchronize_rcu();
2485	wait_for_completion(&p->comp);
2486
2487	flush_work(&p->discard_work);
2488
2489	destroy_swap_extents(p);
2490	if (p->flags & SWP_CONTINUED)
2491		free_swap_count_continuations(p);
2492
2493	if (!p->bdev || !bdev_nonrot(p->bdev))
2494		atomic_dec(&nr_rotate_swap);
2495
2496	mutex_lock(&swapon_mutex);
2497	spin_lock(&swap_lock);
2498	spin_lock(&p->lock);
2499	drain_mmlist();
2500
2501	/* wait for anyone still in scan_swap_map_slots */
2502	p->highest_bit = 0;		/* cuts scans short */
2503	while (p->flags >= SWP_SCANNING) {
2504		spin_unlock(&p->lock);
2505		spin_unlock(&swap_lock);
2506		schedule_timeout_uninterruptible(1);
2507		spin_lock(&swap_lock);
2508		spin_lock(&p->lock);
2509	}
2510
2511	swap_file = p->swap_file;
2512	old_block_size = p->old_block_size;
2513	p->swap_file = NULL;
2514	p->max = 0;
2515	swap_map = p->swap_map;
2516	p->swap_map = NULL;
2517	cluster_info = p->cluster_info;
2518	p->cluster_info = NULL;
 
2519	spin_unlock(&p->lock);
2520	spin_unlock(&swap_lock);
2521	arch_swap_invalidate_area(p->type);
2522	zswap_swapoff(p->type);
2523	mutex_unlock(&swapon_mutex);
2524	free_percpu(p->percpu_cluster);
2525	p->percpu_cluster = NULL;
2526	free_percpu(p->cluster_next_cpu);
2527	p->cluster_next_cpu = NULL;
2528	vfree(swap_map);
2529	kvfree(cluster_info);
 
2530	/* Destroy swap account information */
2531	swap_cgroup_swapoff(p->type);
2532	exit_swap_address_space(p->type);
2533
2534	inode = mapping->host;
2535	if (p->bdev_handle) {
2536		set_blocksize(p->bdev, old_block_size);
2537		bdev_release(p->bdev_handle);
2538		p->bdev_handle = NULL;
 
2539	}
2540
2541	inode_lock(inode);
2542	inode->i_flags &= ~S_SWAPFILE;
2543	inode_unlock(inode);
2544	filp_close(swap_file, NULL);
2545
2546	/*
2547	 * Clear the SWP_USED flag after all resources are freed so that swapon
2548	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2549	 * not hold p->lock after we cleared its SWP_WRITEOK.
2550	 */
2551	spin_lock(&swap_lock);
2552	p->flags = 0;
2553	spin_unlock(&swap_lock);
2554
2555	err = 0;
2556	atomic_inc(&proc_poll_event);
2557	wake_up_interruptible(&proc_poll_wait);
2558
2559out_dput:
2560	filp_close(victim, NULL);
2561out:
2562	putname(pathname);
2563	return err;
2564}
2565
2566#ifdef CONFIG_PROC_FS
2567static __poll_t swaps_poll(struct file *file, poll_table *wait)
2568{
2569	struct seq_file *seq = file->private_data;
2570
2571	poll_wait(file, &proc_poll_wait, wait);
2572
2573	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2574		seq->poll_event = atomic_read(&proc_poll_event);
2575		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2576	}
2577
2578	return EPOLLIN | EPOLLRDNORM;
2579}
2580
2581/* iterator */
2582static void *swap_start(struct seq_file *swap, loff_t *pos)
2583{
2584	struct swap_info_struct *si;
2585	int type;
2586	loff_t l = *pos;
2587
2588	mutex_lock(&swapon_mutex);
2589
2590	if (!l)
2591		return SEQ_START_TOKEN;
2592
2593	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2594		if (!(si->flags & SWP_USED) || !si->swap_map)
2595			continue;
2596		if (!--l)
2597			return si;
2598	}
2599
2600	return NULL;
2601}
2602
2603static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2604{
2605	struct swap_info_struct *si = v;
2606	int type;
2607
2608	if (v == SEQ_START_TOKEN)
2609		type = 0;
2610	else
2611		type = si->type + 1;
2612
2613	++(*pos);
2614	for (; (si = swap_type_to_swap_info(type)); type++) {
2615		if (!(si->flags & SWP_USED) || !si->swap_map)
2616			continue;
 
2617		return si;
2618	}
2619
2620	return NULL;
2621}
2622
2623static void swap_stop(struct seq_file *swap, void *v)
2624{
2625	mutex_unlock(&swapon_mutex);
2626}
2627
2628static int swap_show(struct seq_file *swap, void *v)
2629{
2630	struct swap_info_struct *si = v;
2631	struct file *file;
2632	int len;
2633	unsigned long bytes, inuse;
2634
2635	if (si == SEQ_START_TOKEN) {
2636		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2637		return 0;
2638	}
2639
2640	bytes = K(si->pages);
2641	inuse = K(READ_ONCE(si->inuse_pages));
2642
2643	file = si->swap_file;
2644	len = seq_file_path(swap, file, " \t\n\\");
2645	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2646			len < 40 ? 40 - len : 1, " ",
2647			S_ISBLK(file_inode(file)->i_mode) ?
2648				"partition" : "file\t",
2649			bytes, bytes < 10000000 ? "\t" : "",
2650			inuse, inuse < 10000000 ? "\t" : "",
2651			si->prio);
2652	return 0;
2653}
2654
2655static const struct seq_operations swaps_op = {
2656	.start =	swap_start,
2657	.next =		swap_next,
2658	.stop =		swap_stop,
2659	.show =		swap_show
2660};
2661
2662static int swaps_open(struct inode *inode, struct file *file)
2663{
2664	struct seq_file *seq;
2665	int ret;
2666
2667	ret = seq_open(file, &swaps_op);
2668	if (ret)
2669		return ret;
2670
2671	seq = file->private_data;
2672	seq->poll_event = atomic_read(&proc_poll_event);
2673	return 0;
2674}
2675
2676static const struct proc_ops swaps_proc_ops = {
2677	.proc_flags	= PROC_ENTRY_PERMANENT,
2678	.proc_open	= swaps_open,
2679	.proc_read	= seq_read,
2680	.proc_lseek	= seq_lseek,
2681	.proc_release	= seq_release,
2682	.proc_poll	= swaps_poll,
2683};
2684
2685static int __init procswaps_init(void)
2686{
2687	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2688	return 0;
2689}
2690__initcall(procswaps_init);
2691#endif /* CONFIG_PROC_FS */
2692
2693#ifdef MAX_SWAPFILES_CHECK
2694static int __init max_swapfiles_check(void)
2695{
2696	MAX_SWAPFILES_CHECK();
2697	return 0;
2698}
2699late_initcall(max_swapfiles_check);
2700#endif
2701
2702static struct swap_info_struct *alloc_swap_info(void)
2703{
2704	struct swap_info_struct *p;
2705	struct swap_info_struct *defer = NULL;
2706	unsigned int type;
2707	int i;
2708
2709	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2710	if (!p)
2711		return ERR_PTR(-ENOMEM);
2712
2713	if (percpu_ref_init(&p->users, swap_users_ref_free,
2714			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2715		kvfree(p);
2716		return ERR_PTR(-ENOMEM);
2717	}
2718
2719	spin_lock(&swap_lock);
2720	for (type = 0; type < nr_swapfiles; type++) {
2721		if (!(swap_info[type]->flags & SWP_USED))
2722			break;
2723	}
2724	if (type >= MAX_SWAPFILES) {
2725		spin_unlock(&swap_lock);
2726		percpu_ref_exit(&p->users);
2727		kvfree(p);
2728		return ERR_PTR(-EPERM);
2729	}
2730	if (type >= nr_swapfiles) {
2731		p->type = type;
 
2732		/*
2733		 * Publish the swap_info_struct after initializing it.
2734		 * Note that kvzalloc() above zeroes all its fields.
 
2735		 */
2736		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2737		nr_swapfiles++;
2738	} else {
2739		defer = p;
2740		p = swap_info[type];
2741		/*
2742		 * Do not memset this entry: a racing procfs swap_next()
2743		 * would be relying on p->type to remain valid.
2744		 */
2745	}
2746	p->swap_extent_root = RB_ROOT;
2747	plist_node_init(&p->list, 0);
2748	for_each_node(i)
2749		plist_node_init(&p->avail_lists[i], 0);
2750	p->flags = SWP_USED;
2751	spin_unlock(&swap_lock);
2752	if (defer) {
2753		percpu_ref_exit(&defer->users);
2754		kvfree(defer);
2755	}
2756	spin_lock_init(&p->lock);
2757	spin_lock_init(&p->cont_lock);
2758	init_completion(&p->comp);
2759
2760	return p;
2761}
2762
2763static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2764{
2765	int error;
2766
2767	if (S_ISBLK(inode->i_mode)) {
2768		p->bdev_handle = bdev_open_by_dev(inode->i_rdev,
2769				BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL);
2770		if (IS_ERR(p->bdev_handle)) {
2771			error = PTR_ERR(p->bdev_handle);
2772			p->bdev_handle = NULL;
2773			return error;
2774		}
2775		p->bdev = p->bdev_handle->bdev;
2776		p->old_block_size = block_size(p->bdev);
2777		error = set_blocksize(p->bdev, PAGE_SIZE);
2778		if (error < 0)
2779			return error;
2780		/*
2781		 * Zoned block devices contain zones that have a sequential
2782		 * write only restriction.  Hence zoned block devices are not
2783		 * suitable for swapping.  Disallow them here.
2784		 */
2785		if (bdev_is_zoned(p->bdev))
2786			return -EINVAL;
2787		p->flags |= SWP_BLKDEV;
2788	} else if (S_ISREG(inode->i_mode)) {
2789		p->bdev = inode->i_sb->s_bdev;
2790	}
2791
 
 
 
 
2792	return 0;
2793}
2794
2795
2796/*
2797 * Find out how many pages are allowed for a single swap device. There
2798 * are two limiting factors:
2799 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2800 * 2) the number of bits in the swap pte, as defined by the different
2801 * architectures.
2802 *
2803 * In order to find the largest possible bit mask, a swap entry with
2804 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2805 * decoded to a swp_entry_t again, and finally the swap offset is
2806 * extracted.
2807 *
2808 * This will mask all the bits from the initial ~0UL mask that can't
2809 * be encoded in either the swp_entry_t or the architecture definition
2810 * of a swap pte.
2811 */
2812unsigned long generic_max_swapfile_size(void)
2813{
2814	return swp_offset(pte_to_swp_entry(
2815			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2816}
2817
2818/* Can be overridden by an architecture for additional checks. */
2819__weak unsigned long arch_max_swapfile_size(void)
2820{
2821	return generic_max_swapfile_size();
2822}
2823
2824static unsigned long read_swap_header(struct swap_info_struct *p,
2825					union swap_header *swap_header,
2826					struct inode *inode)
2827{
2828	int i;
2829	unsigned long maxpages;
2830	unsigned long swapfilepages;
2831	unsigned long last_page;
2832
2833	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2834		pr_err("Unable to find swap-space signature\n");
2835		return 0;
2836	}
2837
2838	/* swap partition endianness hack... */
2839	if (swab32(swap_header->info.version) == 1) {
2840		swab32s(&swap_header->info.version);
2841		swab32s(&swap_header->info.last_page);
2842		swab32s(&swap_header->info.nr_badpages);
2843		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2844			return 0;
2845		for (i = 0; i < swap_header->info.nr_badpages; i++)
2846			swab32s(&swap_header->info.badpages[i]);
2847	}
2848	/* Check the swap header's sub-version */
2849	if (swap_header->info.version != 1) {
2850		pr_warn("Unable to handle swap header version %d\n",
2851			swap_header->info.version);
2852		return 0;
2853	}
2854
2855	p->lowest_bit  = 1;
2856	p->cluster_next = 1;
2857	p->cluster_nr = 0;
2858
2859	maxpages = swapfile_maximum_size;
2860	last_page = swap_header->info.last_page;
2861	if (!last_page) {
2862		pr_warn("Empty swap-file\n");
2863		return 0;
2864	}
2865	if (last_page > maxpages) {
2866		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2867			K(maxpages), K(last_page));
 
2868	}
2869	if (maxpages > last_page) {
2870		maxpages = last_page + 1;
2871		/* p->max is an unsigned int: don't overflow it */
2872		if ((unsigned int)maxpages == 0)
2873			maxpages = UINT_MAX;
2874	}
2875	p->highest_bit = maxpages - 1;
2876
2877	if (!maxpages)
2878		return 0;
2879	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2880	if (swapfilepages && maxpages > swapfilepages) {
2881		pr_warn("Swap area shorter than signature indicates\n");
2882		return 0;
2883	}
2884	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2885		return 0;
2886	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2887		return 0;
2888
2889	return maxpages;
2890}
2891
2892#define SWAP_CLUSTER_INFO_COLS						\
2893	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2894#define SWAP_CLUSTER_SPACE_COLS						\
2895	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2896#define SWAP_CLUSTER_COLS						\
2897	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2898
2899static int setup_swap_map_and_extents(struct swap_info_struct *p,
2900					union swap_header *swap_header,
2901					unsigned char *swap_map,
2902					struct swap_cluster_info *cluster_info,
2903					unsigned long maxpages,
2904					sector_t *span)
2905{
2906	unsigned int j, k;
2907	unsigned int nr_good_pages;
2908	int nr_extents;
2909	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2910	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2911	unsigned long i, idx;
2912
2913	nr_good_pages = maxpages - 1;	/* omit header page */
2914
2915	cluster_list_init(&p->free_clusters);
2916	cluster_list_init(&p->discard_clusters);
2917
2918	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2919		unsigned int page_nr = swap_header->info.badpages[i];
2920		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2921			return -EINVAL;
2922		if (page_nr < maxpages) {
2923			swap_map[page_nr] = SWAP_MAP_BAD;
2924			nr_good_pages--;
2925			/*
2926			 * Haven't marked the cluster free yet, no list
2927			 * operation involved
2928			 */
2929			inc_cluster_info_page(p, cluster_info, page_nr);
2930		}
2931	}
2932
2933	/* Haven't marked the cluster free yet, no list operation involved */
2934	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2935		inc_cluster_info_page(p, cluster_info, i);
2936
2937	if (nr_good_pages) {
2938		swap_map[0] = SWAP_MAP_BAD;
2939		/*
2940		 * Not mark the cluster free yet, no list
2941		 * operation involved
2942		 */
2943		inc_cluster_info_page(p, cluster_info, 0);
2944		p->max = maxpages;
2945		p->pages = nr_good_pages;
2946		nr_extents = setup_swap_extents(p, span);
2947		if (nr_extents < 0)
2948			return nr_extents;
2949		nr_good_pages = p->pages;
2950	}
2951	if (!nr_good_pages) {
2952		pr_warn("Empty swap-file\n");
2953		return -EINVAL;
2954	}
2955
2956	if (!cluster_info)
2957		return nr_extents;
2958
2959
2960	/*
2961	 * Reduce false cache line sharing between cluster_info and
2962	 * sharing same address space.
2963	 */
2964	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2965		j = (k + col) % SWAP_CLUSTER_COLS;
2966		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2967			idx = i * SWAP_CLUSTER_COLS + j;
2968			if (idx >= nr_clusters)
2969				continue;
2970			if (cluster_count(&cluster_info[idx]))
2971				continue;
2972			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2973			cluster_list_add_tail(&p->free_clusters, cluster_info,
2974					      idx);
2975		}
2976	}
2977	return nr_extents;
2978}
2979
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2980SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2981{
2982	struct swap_info_struct *p;
2983	struct filename *name;
2984	struct file *swap_file = NULL;
2985	struct address_space *mapping;
2986	struct dentry *dentry;
2987	int prio;
2988	int error;
2989	union swap_header *swap_header;
2990	int nr_extents;
2991	sector_t span;
2992	unsigned long maxpages;
2993	unsigned char *swap_map = NULL;
2994	struct swap_cluster_info *cluster_info = NULL;
 
2995	struct page *page = NULL;
2996	struct inode *inode = NULL;
2997	bool inced_nr_rotate_swap = false;
2998
2999	if (swap_flags & ~SWAP_FLAGS_VALID)
3000		return -EINVAL;
3001
3002	if (!capable(CAP_SYS_ADMIN))
3003		return -EPERM;
3004
3005	if (!swap_avail_heads)
3006		return -ENOMEM;
3007
3008	p = alloc_swap_info();
3009	if (IS_ERR(p))
3010		return PTR_ERR(p);
3011
3012	INIT_WORK(&p->discard_work, swap_discard_work);
3013
3014	name = getname(specialfile);
3015	if (IS_ERR(name)) {
3016		error = PTR_ERR(name);
3017		name = NULL;
3018		goto bad_swap;
3019	}
3020	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3021	if (IS_ERR(swap_file)) {
3022		error = PTR_ERR(swap_file);
3023		swap_file = NULL;
3024		goto bad_swap;
3025	}
3026
3027	p->swap_file = swap_file;
3028	mapping = swap_file->f_mapping;
3029	dentry = swap_file->f_path.dentry;
3030	inode = mapping->host;
3031
 
3032	error = claim_swapfile(p, inode);
3033	if (unlikely(error))
3034		goto bad_swap;
3035
3036	inode_lock(inode);
3037	if (d_unlinked(dentry) || cant_mount(dentry)) {
3038		error = -ENOENT;
3039		goto bad_swap_unlock_inode;
3040	}
3041	if (IS_SWAPFILE(inode)) {
3042		error = -EBUSY;
3043		goto bad_swap_unlock_inode;
3044	}
3045
3046	/*
3047	 * Read the swap header.
3048	 */
3049	if (!mapping->a_ops->read_folio) {
3050		error = -EINVAL;
3051		goto bad_swap_unlock_inode;
3052	}
3053	page = read_mapping_page(mapping, 0, swap_file);
3054	if (IS_ERR(page)) {
3055		error = PTR_ERR(page);
3056		goto bad_swap_unlock_inode;
3057	}
3058	swap_header = kmap(page);
3059
3060	maxpages = read_swap_header(p, swap_header, inode);
3061	if (unlikely(!maxpages)) {
3062		error = -EINVAL;
3063		goto bad_swap_unlock_inode;
3064	}
3065
3066	/* OK, set up the swap map and apply the bad block list */
3067	swap_map = vzalloc(maxpages);
3068	if (!swap_map) {
3069		error = -ENOMEM;
3070		goto bad_swap_unlock_inode;
3071	}
3072
3073	if (p->bdev && bdev_stable_writes(p->bdev))
3074		p->flags |= SWP_STABLE_WRITES;
3075
3076	if (p->bdev && bdev_synchronous(p->bdev))
3077		p->flags |= SWP_SYNCHRONOUS_IO;
3078
3079	if (p->bdev && bdev_nonrot(p->bdev)) {
3080		int cpu;
3081		unsigned long ci, nr_cluster;
3082
3083		p->flags |= SWP_SOLIDSTATE;
3084		p->cluster_next_cpu = alloc_percpu(unsigned int);
3085		if (!p->cluster_next_cpu) {
3086			error = -ENOMEM;
3087			goto bad_swap_unlock_inode;
3088		}
3089		/*
3090		 * select a random position to start with to help wear leveling
3091		 * SSD
3092		 */
3093		for_each_possible_cpu(cpu) {
3094			per_cpu(*p->cluster_next_cpu, cpu) =
3095				get_random_u32_inclusive(1, p->highest_bit);
3096		}
3097		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3098
3099		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3100					GFP_KERNEL);
3101		if (!cluster_info) {
3102			error = -ENOMEM;
3103			goto bad_swap_unlock_inode;
3104		}
3105
3106		for (ci = 0; ci < nr_cluster; ci++)
3107			spin_lock_init(&((cluster_info + ci)->lock));
3108
3109		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3110		if (!p->percpu_cluster) {
3111			error = -ENOMEM;
3112			goto bad_swap_unlock_inode;
3113		}
3114		for_each_possible_cpu(cpu) {
3115			struct percpu_cluster *cluster;
3116			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3117			cluster_set_null(&cluster->index);
3118		}
3119	} else {
3120		atomic_inc(&nr_rotate_swap);
3121		inced_nr_rotate_swap = true;
3122	}
3123
3124	error = swap_cgroup_swapon(p->type, maxpages);
3125	if (error)
3126		goto bad_swap_unlock_inode;
3127
3128	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3129		cluster_info, maxpages, &span);
3130	if (unlikely(nr_extents < 0)) {
3131		error = nr_extents;
3132		goto bad_swap_unlock_inode;
3133	}
 
 
 
 
 
3134
3135	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3136	    p->bdev && bdev_max_discard_sectors(p->bdev)) {
3137		/*
3138		 * When discard is enabled for swap with no particular
3139		 * policy flagged, we set all swap discard flags here in
3140		 * order to sustain backward compatibility with older
3141		 * swapon(8) releases.
3142		 */
3143		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3144			     SWP_PAGE_DISCARD);
3145
3146		/*
3147		 * By flagging sys_swapon, a sysadmin can tell us to
3148		 * either do single-time area discards only, or to just
3149		 * perform discards for released swap page-clusters.
3150		 * Now it's time to adjust the p->flags accordingly.
3151		 */
3152		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3153			p->flags &= ~SWP_PAGE_DISCARD;
3154		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3155			p->flags &= ~SWP_AREA_DISCARD;
3156
3157		/* issue a swapon-time discard if it's still required */
3158		if (p->flags & SWP_AREA_DISCARD) {
3159			int err = discard_swap(p);
3160			if (unlikely(err))
3161				pr_err("swapon: discard_swap(%p): %d\n",
3162					p, err);
3163		}
3164	}
3165
3166	error = init_swap_address_space(p->type, maxpages);
3167	if (error)
3168		goto bad_swap_unlock_inode;
3169
3170	/*
3171	 * Flush any pending IO and dirty mappings before we start using this
3172	 * swap device.
3173	 */
3174	inode->i_flags |= S_SWAPFILE;
3175	error = inode_drain_writes(inode);
3176	if (error) {
3177		inode->i_flags &= ~S_SWAPFILE;
3178		goto free_swap_address_space;
3179	}
3180
3181	mutex_lock(&swapon_mutex);
3182	prio = -1;
3183	if (swap_flags & SWAP_FLAG_PREFER)
3184		prio =
3185		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3186	enable_swap_info(p, prio, swap_map, cluster_info);
3187
3188	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3189		K(p->pages), name->name, p->prio, nr_extents,
3190		K((unsigned long long)span),
3191		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3192		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3193		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3194		(p->flags & SWP_PAGE_DISCARD) ? "c" : "");
 
3195
3196	mutex_unlock(&swapon_mutex);
3197	atomic_inc(&proc_poll_event);
3198	wake_up_interruptible(&proc_poll_wait);
3199
3200	error = 0;
3201	goto out;
3202free_swap_address_space:
3203	exit_swap_address_space(p->type);
3204bad_swap_unlock_inode:
3205	inode_unlock(inode);
3206bad_swap:
3207	free_percpu(p->percpu_cluster);
3208	p->percpu_cluster = NULL;
3209	free_percpu(p->cluster_next_cpu);
3210	p->cluster_next_cpu = NULL;
3211	if (p->bdev_handle) {
3212		set_blocksize(p->bdev, p->old_block_size);
3213		bdev_release(p->bdev_handle);
3214		p->bdev_handle = NULL;
3215	}
3216	inode = NULL;
3217	destroy_swap_extents(p);
3218	swap_cgroup_swapoff(p->type);
3219	spin_lock(&swap_lock);
3220	p->swap_file = NULL;
3221	p->flags = 0;
3222	spin_unlock(&swap_lock);
3223	vfree(swap_map);
3224	kvfree(cluster_info);
 
3225	if (inced_nr_rotate_swap)
3226		atomic_dec(&nr_rotate_swap);
3227	if (swap_file)
 
 
 
 
3228		filp_close(swap_file, NULL);
 
3229out:
3230	if (page && !IS_ERR(page)) {
3231		kunmap(page);
3232		put_page(page);
3233	}
3234	if (name)
3235		putname(name);
3236	if (inode)
3237		inode_unlock(inode);
3238	if (!error)
3239		enable_swap_slots_cache();
3240	return error;
3241}
3242
3243void si_swapinfo(struct sysinfo *val)
3244{
3245	unsigned int type;
3246	unsigned long nr_to_be_unused = 0;
3247
3248	spin_lock(&swap_lock);
3249	for (type = 0; type < nr_swapfiles; type++) {
3250		struct swap_info_struct *si = swap_info[type];
3251
3252		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3253			nr_to_be_unused += READ_ONCE(si->inuse_pages);
3254	}
3255	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3256	val->totalswap = total_swap_pages + nr_to_be_unused;
3257	spin_unlock(&swap_lock);
3258}
3259
3260/*
3261 * Verify that a swap entry is valid and increment its swap map count.
3262 *
3263 * Returns error code in following case.
3264 * - success -> 0
3265 * - swp_entry is invalid -> EINVAL
3266 * - swp_entry is migration entry -> EINVAL
3267 * - swap-cache reference is requested but there is already one. -> EEXIST
3268 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3269 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3270 */
3271static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3272{
3273	struct swap_info_struct *p;
3274	struct swap_cluster_info *ci;
3275	unsigned long offset;
3276	unsigned char count;
3277	unsigned char has_cache;
3278	int err;
3279
3280	p = swp_swap_info(entry);
 
 
3281
3282	offset = swp_offset(entry);
3283	ci = lock_cluster_or_swap_info(p, offset);
3284
3285	count = p->swap_map[offset];
3286
3287	/*
3288	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3289	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3290	 */
3291	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3292		err = -ENOENT;
3293		goto unlock_out;
3294	}
3295
3296	has_cache = count & SWAP_HAS_CACHE;
3297	count &= ~SWAP_HAS_CACHE;
3298	err = 0;
3299
3300	if (usage == SWAP_HAS_CACHE) {
3301
3302		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3303		if (!has_cache && count)
3304			has_cache = SWAP_HAS_CACHE;
3305		else if (has_cache)		/* someone else added cache */
3306			err = -EEXIST;
3307		else				/* no users remaining */
3308			err = -ENOENT;
3309
3310	} else if (count || has_cache) {
3311
3312		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3313			count += usage;
3314		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3315			err = -EINVAL;
3316		else if (swap_count_continued(p, offset, count))
3317			count = COUNT_CONTINUED;
3318		else
3319			err = -ENOMEM;
3320	} else
3321		err = -ENOENT;			/* unused swap entry */
3322
3323	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3324
3325unlock_out:
3326	unlock_cluster_or_swap_info(p, ci);
 
 
 
3327	return err;
3328}
3329
3330/*
3331 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3332 * (in which case its reference count is never incremented).
3333 */
3334void swap_shmem_alloc(swp_entry_t entry)
3335{
3336	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3337}
3338
3339/*
3340 * Increase reference count of swap entry by 1.
3341 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3342 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3343 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3344 * might occur if a page table entry has got corrupted.
3345 */
3346int swap_duplicate(swp_entry_t entry)
3347{
3348	int err = 0;
3349
3350	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3351		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3352	return err;
3353}
3354
3355/*
3356 * @entry: swap entry for which we allocate swap cache.
3357 *
3358 * Called when allocating swap cache for existing swap entry,
3359 * This can return error codes. Returns 0 at success.
3360 * -EEXIST means there is a swap cache.
3361 * Note: return code is different from swap_duplicate().
3362 */
3363int swapcache_prepare(swp_entry_t entry)
3364{
3365	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3366}
3367
3368void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry)
3369{
3370	struct swap_cluster_info *ci;
3371	unsigned long offset = swp_offset(entry);
3372	unsigned char usage;
3373
3374	ci = lock_cluster_or_swap_info(si, offset);
3375	usage = __swap_entry_free_locked(si, offset, SWAP_HAS_CACHE);
3376	unlock_cluster_or_swap_info(si, ci);
3377	if (!usage)
3378		free_swap_slot(entry);
3379}
3380
3381struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3382{
3383	return swap_type_to_swap_info(swp_type(entry));
 
3384}
3385
3386/*
3387 * out-of-line methods to avoid include hell.
3388 */
3389struct address_space *swapcache_mapping(struct folio *folio)
3390{
3391	return swp_swap_info(folio->swap)->swap_file->f_mapping;
3392}
3393EXPORT_SYMBOL_GPL(swapcache_mapping);
3394
3395pgoff_t __page_file_index(struct page *page)
3396{
3397	swp_entry_t swap = page_swap_entry(page);
3398	return swp_offset(swap);
3399}
3400EXPORT_SYMBOL_GPL(__page_file_index);
3401
3402/*
3403 * add_swap_count_continuation - called when a swap count is duplicated
3404 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3405 * page of the original vmalloc'ed swap_map, to hold the continuation count
3406 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3407 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3408 *
3409 * These continuation pages are seldom referenced: the common paths all work
3410 * on the original swap_map, only referring to a continuation page when the
3411 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3412 *
3413 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3414 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3415 * can be called after dropping locks.
3416 */
3417int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3418{
3419	struct swap_info_struct *si;
3420	struct swap_cluster_info *ci;
3421	struct page *head;
3422	struct page *page;
3423	struct page *list_page;
3424	pgoff_t offset;
3425	unsigned char count;
3426	int ret = 0;
3427
3428	/*
3429	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3430	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3431	 */
3432	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3433
3434	si = get_swap_device(entry);
3435	if (!si) {
3436		/*
3437		 * An acceptable race has occurred since the failing
3438		 * __swap_duplicate(): the swap device may be swapoff
3439		 */
3440		goto outer;
3441	}
3442	spin_lock(&si->lock);
3443
3444	offset = swp_offset(entry);
3445
3446	ci = lock_cluster(si, offset);
3447
3448	count = swap_count(si->swap_map[offset]);
3449
3450	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3451		/*
3452		 * The higher the swap count, the more likely it is that tasks
3453		 * will race to add swap count continuation: we need to avoid
3454		 * over-provisioning.
3455		 */
3456		goto out;
3457	}
3458
3459	if (!page) {
3460		ret = -ENOMEM;
3461		goto out;
3462	}
3463
 
 
 
 
 
3464	head = vmalloc_to_page(si->swap_map + offset);
3465	offset &= ~PAGE_MASK;
3466
3467	spin_lock(&si->cont_lock);
3468	/*
3469	 * Page allocation does not initialize the page's lru field,
3470	 * but it does always reset its private field.
3471	 */
3472	if (!page_private(head)) {
3473		BUG_ON(count & COUNT_CONTINUED);
3474		INIT_LIST_HEAD(&head->lru);
3475		set_page_private(head, SWP_CONTINUED);
3476		si->flags |= SWP_CONTINUED;
3477	}
3478
3479	list_for_each_entry(list_page, &head->lru, lru) {
3480		unsigned char *map;
3481
3482		/*
3483		 * If the previous map said no continuation, but we've found
3484		 * a continuation page, free our allocation and use this one.
3485		 */
3486		if (!(count & COUNT_CONTINUED))
3487			goto out_unlock_cont;
3488
3489		map = kmap_local_page(list_page) + offset;
3490		count = *map;
3491		kunmap_local(map);
3492
3493		/*
3494		 * If this continuation count now has some space in it,
3495		 * free our allocation and use this one.
3496		 */
3497		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3498			goto out_unlock_cont;
3499	}
3500
3501	list_add_tail(&page->lru, &head->lru);
3502	page = NULL;			/* now it's attached, don't free it */
3503out_unlock_cont:
3504	spin_unlock(&si->cont_lock);
3505out:
3506	unlock_cluster(ci);
3507	spin_unlock(&si->lock);
3508	put_swap_device(si);
3509outer:
3510	if (page)
3511		__free_page(page);
3512	return ret;
3513}
3514
3515/*
3516 * swap_count_continued - when the original swap_map count is incremented
3517 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3518 * into, carry if so, or else fail until a new continuation page is allocated;
3519 * when the original swap_map count is decremented from 0 with continuation,
3520 * borrow from the continuation and report whether it still holds more.
3521 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3522 * lock.
3523 */
3524static bool swap_count_continued(struct swap_info_struct *si,
3525				 pgoff_t offset, unsigned char count)
3526{
3527	struct page *head;
3528	struct page *page;
3529	unsigned char *map;
3530	bool ret;
3531
3532	head = vmalloc_to_page(si->swap_map + offset);
3533	if (page_private(head) != SWP_CONTINUED) {
3534		BUG_ON(count & COUNT_CONTINUED);
3535		return false;		/* need to add count continuation */
3536	}
3537
3538	spin_lock(&si->cont_lock);
3539	offset &= ~PAGE_MASK;
3540	page = list_next_entry(head, lru);
3541	map = kmap_local_page(page) + offset;
3542
3543	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3544		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3545
3546	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3547		/*
3548		 * Think of how you add 1 to 999
3549		 */
3550		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3551			kunmap_local(map);
3552			page = list_next_entry(page, lru);
3553			BUG_ON(page == head);
3554			map = kmap_local_page(page) + offset;
3555		}
3556		if (*map == SWAP_CONT_MAX) {
3557			kunmap_local(map);
3558			page = list_next_entry(page, lru);
3559			if (page == head) {
3560				ret = false;	/* add count continuation */
3561				goto out;
3562			}
3563			map = kmap_local_page(page) + offset;
3564init_map:		*map = 0;		/* we didn't zero the page */
3565		}
3566		*map += 1;
3567		kunmap_local(map);
3568		while ((page = list_prev_entry(page, lru)) != head) {
3569			map = kmap_local_page(page) + offset;
 
3570			*map = COUNT_CONTINUED;
3571			kunmap_local(map);
 
3572		}
3573		ret = true;			/* incremented */
3574
3575	} else {				/* decrementing */
3576		/*
3577		 * Think of how you subtract 1 from 1000
3578		 */
3579		BUG_ON(count != COUNT_CONTINUED);
3580		while (*map == COUNT_CONTINUED) {
3581			kunmap_local(map);
3582			page = list_next_entry(page, lru);
3583			BUG_ON(page == head);
3584			map = kmap_local_page(page) + offset;
3585		}
3586		BUG_ON(*map == 0);
3587		*map -= 1;
3588		if (*map == 0)
3589			count = 0;
3590		kunmap_local(map);
3591		while ((page = list_prev_entry(page, lru)) != head) {
3592			map = kmap_local_page(page) + offset;
 
3593			*map = SWAP_CONT_MAX | count;
3594			count = COUNT_CONTINUED;
3595			kunmap_local(map);
 
3596		}
3597		ret = count == COUNT_CONTINUED;
3598	}
3599out:
3600	spin_unlock(&si->cont_lock);
3601	return ret;
3602}
3603
3604/*
3605 * free_swap_count_continuations - swapoff free all the continuation pages
3606 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3607 */
3608static void free_swap_count_continuations(struct swap_info_struct *si)
3609{
3610	pgoff_t offset;
3611
3612	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3613		struct page *head;
3614		head = vmalloc_to_page(si->swap_map + offset);
3615		if (page_private(head)) {
3616			struct page *page, *next;
3617
3618			list_for_each_entry_safe(page, next, &head->lru, lru) {
3619				list_del(&page->lru);
3620				__free_page(page);
3621			}
3622		}
3623	}
3624}
3625
3626#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3627void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
 
3628{
3629	struct swap_info_struct *si, *next;
3630	int nid = folio_nid(folio);
3631
3632	if (!(gfp & __GFP_IO))
3633		return;
3634
3635	if (!blk_cgroup_congested())
3636		return;
3637
3638	/*
3639	 * We've already scheduled a throttle, avoid taking the global swap
3640	 * lock.
3641	 */
3642	if (current->throttle_disk)
3643		return;
3644
3645	spin_lock(&swap_avail_lock);
3646	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3647				  avail_lists[nid]) {
3648		if (si->bdev) {
3649			blkcg_schedule_throttle(si->bdev->bd_disk, true);
 
3650			break;
3651		}
3652	}
3653	spin_unlock(&swap_avail_lock);
3654}
3655#endif
3656
3657static int __init swapfile_init(void)
3658{
3659	int nid;
3660
3661	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3662					 GFP_KERNEL);
3663	if (!swap_avail_heads) {
3664		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3665		return -ENOMEM;
3666	}
3667
3668	for_each_node(nid)
3669		plist_head_init(&swap_avail_heads[nid]);
3670
3671	swapfile_maximum_size = arch_max_swapfile_size();
3672
3673#ifdef CONFIG_MIGRATION
3674	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3675		swap_migration_ad_supported = true;
3676#endif	/* CONFIG_MIGRATION */
3677
3678	return 0;
3679}
3680subsys_initcall(swapfile_init);