Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swapfile.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *  Swap reorganised 29.12.95, Stephen Tweedie
   7 */
   8
   9#include <linux/mm.h>
  10#include <linux/sched/mm.h>
  11#include <linux/sched/task.h>
  12#include <linux/hugetlb.h>
  13#include <linux/mman.h>
  14#include <linux/slab.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/swap.h>
  17#include <linux/vmalloc.h>
  18#include <linux/pagemap.h>
  19#include <linux/namei.h>
  20#include <linux/shmem_fs.h>
  21#include <linux/blkdev.h>
  22#include <linux/random.h>
  23#include <linux/writeback.h>
  24#include <linux/proc_fs.h>
  25#include <linux/seq_file.h>
  26#include <linux/init.h>
  27#include <linux/ksm.h>
  28#include <linux/rmap.h>
  29#include <linux/security.h>
  30#include <linux/backing-dev.h>
  31#include <linux/mutex.h>
  32#include <linux/capability.h>
  33#include <linux/syscalls.h>
  34#include <linux/memcontrol.h>
  35#include <linux/poll.h>
  36#include <linux/oom.h>
  37#include <linux/frontswap.h>
  38#include <linux/swapfile.h>
  39#include <linux/export.h>
  40#include <linux/swap_slots.h>
  41#include <linux/sort.h>
  42
  43#include <asm/pgtable.h>
  44#include <asm/tlbflush.h>
  45#include <linux/swapops.h>
  46#include <linux/swap_cgroup.h>
  47
  48static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  49				 unsigned char);
  50static void free_swap_count_continuations(struct swap_info_struct *);
  51static sector_t map_swap_entry(swp_entry_t, struct block_device**);
  52
  53DEFINE_SPINLOCK(swap_lock);
  54static unsigned int nr_swapfiles;
  55atomic_long_t nr_swap_pages;
  56/*
  57 * Some modules use swappable objects and may try to swap them out under
  58 * memory pressure (via the shrinker). Before doing so, they may wish to
  59 * check to see if any swap space is available.
  60 */
  61EXPORT_SYMBOL_GPL(nr_swap_pages);
  62/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
  63long total_swap_pages;
  64static int least_priority = -1;
 
  65
  66static const char Bad_file[] = "Bad swap file entry ";
  67static const char Unused_file[] = "Unused swap file entry ";
  68static const char Bad_offset[] = "Bad swap offset entry ";
  69static const char Unused_offset[] = "Unused swap offset entry ";
  70
  71/*
  72 * all active swap_info_structs
  73 * protected with swap_lock, and ordered by priority.
  74 */
  75PLIST_HEAD(swap_active_head);
  76
  77/*
  78 * all available (active, not full) swap_info_structs
  79 * protected with swap_avail_lock, ordered by priority.
  80 * This is used by get_swap_page() instead of swap_active_head
  81 * because swap_active_head includes all swap_info_structs,
  82 * but get_swap_page() doesn't need to look at full ones.
  83 * This uses its own lock instead of swap_lock because when a
  84 * swap_info_struct changes between not-full/full, it needs to
  85 * add/remove itself to/from this list, but the swap_info_struct->lock
  86 * is held and the locking order requires swap_lock to be taken
  87 * before any swap_info_struct->lock.
  88 */
  89static struct plist_head *swap_avail_heads;
  90static DEFINE_SPINLOCK(swap_avail_lock);
  91
  92struct swap_info_struct *swap_info[MAX_SWAPFILES];
  93
  94static DEFINE_MUTEX(swapon_mutex);
  95
  96static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
  97/* Activity counter to indicate that a swapon or swapoff has occurred */
  98static atomic_t proc_poll_event = ATOMIC_INIT(0);
  99
 100atomic_t nr_rotate_swap = ATOMIC_INIT(0);
 101
 102static struct swap_info_struct *swap_type_to_swap_info(int type)
 103{
 104	if (type >= READ_ONCE(nr_swapfiles))
 105		return NULL;
 106
 107	smp_rmb();	/* Pairs with smp_wmb in alloc_swap_info. */
 108	return READ_ONCE(swap_info[type]);
 109}
 110
 111static inline unsigned char swap_count(unsigned char ent)
 112{
 113	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
 114}
 115
 116/* Reclaim the swap entry anyway if possible */
 117#define TTRS_ANYWAY		0x1
 118/*
 119 * Reclaim the swap entry if there are no more mappings of the
 120 * corresponding page
 121 */
 122#define TTRS_UNMAPPED		0x2
 123/* Reclaim the swap entry if swap is getting full*/
 124#define TTRS_FULL		0x4
 125
 126/* returns 1 if swap entry is freed */
 127static int __try_to_reclaim_swap(struct swap_info_struct *si,
 128				 unsigned long offset, unsigned long flags)
 129{
 130	swp_entry_t entry = swp_entry(si->type, offset);
 131	struct page *page;
 132	int ret = 0;
 133
 134	page = find_get_page(swap_address_space(entry), offset);
 135	if (!page)
 136		return 0;
 137	/*
 138	 * When this function is called from scan_swap_map_slots() and it's
 139	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
 140	 * here. We have to use trylock for avoiding deadlock. This is a special
 141	 * case and you should use try_to_free_swap() with explicit lock_page()
 142	 * in usual operations.
 143	 */
 144	if (trylock_page(page)) {
 145		if ((flags & TTRS_ANYWAY) ||
 146		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
 147		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
 148			ret = try_to_free_swap(page);
 149		unlock_page(page);
 150	}
 151	put_page(page);
 152	return ret;
 153}
 154
 155static inline struct swap_extent *first_se(struct swap_info_struct *sis)
 156{
 157	struct rb_node *rb = rb_first(&sis->swap_extent_root);
 158	return rb_entry(rb, struct swap_extent, rb_node);
 159}
 160
 161static inline struct swap_extent *next_se(struct swap_extent *se)
 162{
 163	struct rb_node *rb = rb_next(&se->rb_node);
 164	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
 165}
 166
 167/*
 168 * swapon tell device that all the old swap contents can be discarded,
 169 * to allow the swap device to optimize its wear-levelling.
 170 */
 171static int discard_swap(struct swap_info_struct *si)
 172{
 173	struct swap_extent *se;
 174	sector_t start_block;
 175	sector_t nr_blocks;
 176	int err = 0;
 177
 178	/* Do not discard the swap header page! */
 179	se = first_se(si);
 180	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 181	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 182	if (nr_blocks) {
 183		err = blkdev_issue_discard(si->bdev, start_block,
 184				nr_blocks, GFP_KERNEL, 0);
 185		if (err)
 186			return err;
 187		cond_resched();
 188	}
 189
 190	for (se = next_se(se); se; se = next_se(se)) {
 191		start_block = se->start_block << (PAGE_SHIFT - 9);
 192		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 193
 194		err = blkdev_issue_discard(si->bdev, start_block,
 195				nr_blocks, GFP_KERNEL, 0);
 196		if (err)
 197			break;
 198
 199		cond_resched();
 200	}
 201	return err;		/* That will often be -EOPNOTSUPP */
 202}
 203
 204static struct swap_extent *
 205offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
 206{
 207	struct swap_extent *se;
 208	struct rb_node *rb;
 209
 210	rb = sis->swap_extent_root.rb_node;
 211	while (rb) {
 212		se = rb_entry(rb, struct swap_extent, rb_node);
 213		if (offset < se->start_page)
 214			rb = rb->rb_left;
 215		else if (offset >= se->start_page + se->nr_pages)
 216			rb = rb->rb_right;
 217		else
 218			return se;
 219	}
 220	/* It *must* be present */
 221	BUG();
 222}
 223
 224/*
 225 * swap allocation tell device that a cluster of swap can now be discarded,
 226 * to allow the swap device to optimize its wear-levelling.
 227 */
 228static void discard_swap_cluster(struct swap_info_struct *si,
 229				 pgoff_t start_page, pgoff_t nr_pages)
 230{
 231	struct swap_extent *se = offset_to_swap_extent(si, start_page);
 
 232
 233	while (nr_pages) {
 234		pgoff_t offset = start_page - se->start_page;
 235		sector_t start_block = se->start_block + offset;
 236		sector_t nr_blocks = se->nr_pages - offset;
 237
 238		if (nr_blocks > nr_pages)
 239			nr_blocks = nr_pages;
 240		start_page += nr_blocks;
 241		nr_pages -= nr_blocks;
 242
 243		start_block <<= PAGE_SHIFT - 9;
 244		nr_blocks <<= PAGE_SHIFT - 9;
 245		if (blkdev_issue_discard(si->bdev, start_block,
 246					nr_blocks, GFP_NOIO, 0))
 247			break;
 248
 249		se = next_se(se);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 250	}
 251}
 252
 253#ifdef CONFIG_THP_SWAP
 254#define SWAPFILE_CLUSTER	HPAGE_PMD_NR
 255
 256#define swap_entry_size(size)	(size)
 257#else
 258#define SWAPFILE_CLUSTER	256
 259
 260/*
 261 * Define swap_entry_size() as constant to let compiler to optimize
 262 * out some code if !CONFIG_THP_SWAP
 263 */
 264#define swap_entry_size(size)	1
 265#endif
 266#define LATENCY_LIMIT		256
 267
 268static inline void cluster_set_flag(struct swap_cluster_info *info,
 269	unsigned int flag)
 270{
 271	info->flags = flag;
 272}
 273
 274static inline unsigned int cluster_count(struct swap_cluster_info *info)
 275{
 276	return info->data;
 277}
 278
 279static inline void cluster_set_count(struct swap_cluster_info *info,
 280				     unsigned int c)
 281{
 282	info->data = c;
 283}
 284
 285static inline void cluster_set_count_flag(struct swap_cluster_info *info,
 286					 unsigned int c, unsigned int f)
 287{
 288	info->flags = f;
 289	info->data = c;
 290}
 291
 292static inline unsigned int cluster_next(struct swap_cluster_info *info)
 293{
 294	return info->data;
 295}
 296
 297static inline void cluster_set_next(struct swap_cluster_info *info,
 298				    unsigned int n)
 299{
 300	info->data = n;
 301}
 302
 303static inline void cluster_set_next_flag(struct swap_cluster_info *info,
 304					 unsigned int n, unsigned int f)
 305{
 306	info->flags = f;
 307	info->data = n;
 308}
 309
 310static inline bool cluster_is_free(struct swap_cluster_info *info)
 311{
 312	return info->flags & CLUSTER_FLAG_FREE;
 313}
 314
 315static inline bool cluster_is_null(struct swap_cluster_info *info)
 316{
 317	return info->flags & CLUSTER_FLAG_NEXT_NULL;
 318}
 319
 320static inline void cluster_set_null(struct swap_cluster_info *info)
 321{
 322	info->flags = CLUSTER_FLAG_NEXT_NULL;
 323	info->data = 0;
 324}
 325
 326static inline bool cluster_is_huge(struct swap_cluster_info *info)
 327{
 328	if (IS_ENABLED(CONFIG_THP_SWAP))
 329		return info->flags & CLUSTER_FLAG_HUGE;
 330	return false;
 331}
 332
 333static inline void cluster_clear_huge(struct swap_cluster_info *info)
 334{
 335	info->flags &= ~CLUSTER_FLAG_HUGE;
 336}
 337
 338static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
 339						     unsigned long offset)
 340{
 341	struct swap_cluster_info *ci;
 342
 343	ci = si->cluster_info;
 344	if (ci) {
 345		ci += offset / SWAPFILE_CLUSTER;
 346		spin_lock(&ci->lock);
 347	}
 348	return ci;
 349}
 350
 351static inline void unlock_cluster(struct swap_cluster_info *ci)
 352{
 353	if (ci)
 354		spin_unlock(&ci->lock);
 355}
 356
 357/*
 358 * Determine the locking method in use for this device.  Return
 359 * swap_cluster_info if SSD-style cluster-based locking is in place.
 360 */
 361static inline struct swap_cluster_info *lock_cluster_or_swap_info(
 362		struct swap_info_struct *si, unsigned long offset)
 363{
 364	struct swap_cluster_info *ci;
 365
 366	/* Try to use fine-grained SSD-style locking if available: */
 367	ci = lock_cluster(si, offset);
 368	/* Otherwise, fall back to traditional, coarse locking: */
 369	if (!ci)
 370		spin_lock(&si->lock);
 371
 372	return ci;
 373}
 374
 375static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
 376					       struct swap_cluster_info *ci)
 377{
 378	if (ci)
 379		unlock_cluster(ci);
 380	else
 381		spin_unlock(&si->lock);
 382}
 383
 384static inline bool cluster_list_empty(struct swap_cluster_list *list)
 385{
 386	return cluster_is_null(&list->head);
 387}
 388
 389static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
 390{
 391	return cluster_next(&list->head);
 392}
 393
 394static void cluster_list_init(struct swap_cluster_list *list)
 395{
 396	cluster_set_null(&list->head);
 397	cluster_set_null(&list->tail);
 398}
 399
 400static void cluster_list_add_tail(struct swap_cluster_list *list,
 401				  struct swap_cluster_info *ci,
 402				  unsigned int idx)
 403{
 404	if (cluster_list_empty(list)) {
 405		cluster_set_next_flag(&list->head, idx, 0);
 406		cluster_set_next_flag(&list->tail, idx, 0);
 407	} else {
 408		struct swap_cluster_info *ci_tail;
 409		unsigned int tail = cluster_next(&list->tail);
 410
 411		/*
 412		 * Nested cluster lock, but both cluster locks are
 413		 * only acquired when we held swap_info_struct->lock
 414		 */
 415		ci_tail = ci + tail;
 416		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
 417		cluster_set_next(ci_tail, idx);
 418		spin_unlock(&ci_tail->lock);
 419		cluster_set_next_flag(&list->tail, idx, 0);
 420	}
 421}
 422
 423static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
 424					   struct swap_cluster_info *ci)
 425{
 426	unsigned int idx;
 427
 428	idx = cluster_next(&list->head);
 429	if (cluster_next(&list->tail) == idx) {
 430		cluster_set_null(&list->head);
 431		cluster_set_null(&list->tail);
 432	} else
 433		cluster_set_next_flag(&list->head,
 434				      cluster_next(&ci[idx]), 0);
 435
 436	return idx;
 437}
 438
 439/* Add a cluster to discard list and schedule it to do discard */
 440static void swap_cluster_schedule_discard(struct swap_info_struct *si,
 441		unsigned int idx)
 442{
 443	/*
 444	 * If scan_swap_map() can't find a free cluster, it will check
 445	 * si->swap_map directly. To make sure the discarding cluster isn't
 446	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
 447	 * will be cleared after discard
 448	 */
 449	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 450			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
 451
 452	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
 
 
 
 
 
 
 
 
 
 
 453
 454	schedule_work(&si->discard_work);
 455}
 456
 457static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
 458{
 459	struct swap_cluster_info *ci = si->cluster_info;
 460
 461	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
 462	cluster_list_add_tail(&si->free_clusters, ci, idx);
 463}
 464
 465/*
 466 * Doing discard actually. After a cluster discard is finished, the cluster
 467 * will be added to free cluster list. caller should hold si->lock.
 468*/
 469static void swap_do_scheduled_discard(struct swap_info_struct *si)
 470{
 471	struct swap_cluster_info *info, *ci;
 472	unsigned int idx;
 473
 474	info = si->cluster_info;
 475
 476	while (!cluster_list_empty(&si->discard_clusters)) {
 477		idx = cluster_list_del_first(&si->discard_clusters, info);
 
 
 
 
 
 
 
 478		spin_unlock(&si->lock);
 479
 480		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
 481				SWAPFILE_CLUSTER);
 482
 483		spin_lock(&si->lock);
 484		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
 485		__free_cluster(si, idx);
 
 
 
 
 
 
 
 
 
 
 
 
 486		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 487				0, SWAPFILE_CLUSTER);
 488		unlock_cluster(ci);
 489	}
 490}
 491
 492static void swap_discard_work(struct work_struct *work)
 493{
 494	struct swap_info_struct *si;
 495
 496	si = container_of(work, struct swap_info_struct, discard_work);
 497
 498	spin_lock(&si->lock);
 499	swap_do_scheduled_discard(si);
 500	spin_unlock(&si->lock);
 501}
 502
 503static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
 504{
 505	struct swap_cluster_info *ci = si->cluster_info;
 506
 507	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
 508	cluster_list_del_first(&si->free_clusters, ci);
 509	cluster_set_count_flag(ci + idx, 0, 0);
 510}
 511
 512static void free_cluster(struct swap_info_struct *si, unsigned long idx)
 513{
 514	struct swap_cluster_info *ci = si->cluster_info + idx;
 515
 516	VM_BUG_ON(cluster_count(ci) != 0);
 517	/*
 518	 * If the swap is discardable, prepare discard the cluster
 519	 * instead of free it immediately. The cluster will be freed
 520	 * after discard.
 521	 */
 522	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
 523	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
 524		swap_cluster_schedule_discard(si, idx);
 525		return;
 526	}
 527
 528	__free_cluster(si, idx);
 529}
 530
 531/*
 532 * The cluster corresponding to page_nr will be used. The cluster will be
 533 * removed from free cluster list and its usage counter will be increased.
 534 */
 535static void inc_cluster_info_page(struct swap_info_struct *p,
 536	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 537{
 538	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 539
 540	if (!cluster_info)
 541		return;
 542	if (cluster_is_free(&cluster_info[idx]))
 543		alloc_cluster(p, idx);
 
 
 
 
 
 
 
 
 544
 545	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
 546	cluster_set_count(&cluster_info[idx],
 547		cluster_count(&cluster_info[idx]) + 1);
 548}
 549
 550/*
 551 * The cluster corresponding to page_nr decreases one usage. If the usage
 552 * counter becomes 0, which means no page in the cluster is in using, we can
 553 * optionally discard the cluster and add it to free cluster list.
 554 */
 555static void dec_cluster_info_page(struct swap_info_struct *p,
 556	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 557{
 558	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 559
 560	if (!cluster_info)
 561		return;
 562
 563	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
 564	cluster_set_count(&cluster_info[idx],
 565		cluster_count(&cluster_info[idx]) - 1);
 566
 567	if (cluster_count(&cluster_info[idx]) == 0)
 568		free_cluster(p, idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 569}
 570
 571/*
 572 * It's possible scan_swap_map() uses a free cluster in the middle of free
 573 * cluster list. Avoiding such abuse to avoid list corruption.
 574 */
 575static bool
 576scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
 577	unsigned long offset)
 578{
 579	struct percpu_cluster *percpu_cluster;
 580	bool conflict;
 581
 582	offset /= SWAPFILE_CLUSTER;
 583	conflict = !cluster_list_empty(&si->free_clusters) &&
 584		offset != cluster_list_first(&si->free_clusters) &&
 585		cluster_is_free(&si->cluster_info[offset]);
 586
 587	if (!conflict)
 588		return false;
 589
 590	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
 591	cluster_set_null(&percpu_cluster->index);
 592	return true;
 593}
 594
 595/*
 596 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
 597 * might involve allocating a new cluster for current CPU too.
 598 */
 599static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
 600	unsigned long *offset, unsigned long *scan_base)
 601{
 602	struct percpu_cluster *cluster;
 603	struct swap_cluster_info *ci;
 604	bool found_free;
 605	unsigned long tmp, max;
 606
 607new_cluster:
 608	cluster = this_cpu_ptr(si->percpu_cluster);
 609	if (cluster_is_null(&cluster->index)) {
 610		if (!cluster_list_empty(&si->free_clusters)) {
 611			cluster->index = si->free_clusters.head;
 612			cluster->next = cluster_next(&cluster->index) *
 613					SWAPFILE_CLUSTER;
 614		} else if (!cluster_list_empty(&si->discard_clusters)) {
 615			/*
 616			 * we don't have free cluster but have some clusters in
 617			 * discarding, do discard now and reclaim them
 618			 */
 619			swap_do_scheduled_discard(si);
 620			*scan_base = *offset = si->cluster_next;
 621			goto new_cluster;
 622		} else
 623			return false;
 624	}
 625
 626	found_free = false;
 627
 628	/*
 629	 * Other CPUs can use our cluster if they can't find a free cluster,
 630	 * check if there is still free entry in the cluster
 631	 */
 632	tmp = cluster->next;
 633	max = min_t(unsigned long, si->max,
 634		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
 635	if (tmp >= max) {
 636		cluster_set_null(&cluster->index);
 637		goto new_cluster;
 638	}
 639	ci = lock_cluster(si, tmp);
 640	while (tmp < max) {
 641		if (!si->swap_map[tmp]) {
 642			found_free = true;
 643			break;
 644		}
 645		tmp++;
 646	}
 647	unlock_cluster(ci);
 648	if (!found_free) {
 649		cluster_set_null(&cluster->index);
 650		goto new_cluster;
 651	}
 652	cluster->next = tmp + 1;
 653	*offset = tmp;
 654	*scan_base = tmp;
 655	return found_free;
 656}
 657
 658static void __del_from_avail_list(struct swap_info_struct *p)
 659{
 660	int nid;
 661
 662	for_each_node(nid)
 663		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
 664}
 665
 666static void del_from_avail_list(struct swap_info_struct *p)
 667{
 668	spin_lock(&swap_avail_lock);
 669	__del_from_avail_list(p);
 670	spin_unlock(&swap_avail_lock);
 671}
 672
 673static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
 674			     unsigned int nr_entries)
 675{
 676	unsigned int end = offset + nr_entries - 1;
 677
 678	if (offset == si->lowest_bit)
 679		si->lowest_bit += nr_entries;
 680	if (end == si->highest_bit)
 681		si->highest_bit -= nr_entries;
 682	si->inuse_pages += nr_entries;
 683	if (si->inuse_pages == si->pages) {
 684		si->lowest_bit = si->max;
 685		si->highest_bit = 0;
 686		del_from_avail_list(si);
 687	}
 688}
 689
 690static void add_to_avail_list(struct swap_info_struct *p)
 691{
 692	int nid;
 693
 694	spin_lock(&swap_avail_lock);
 695	for_each_node(nid) {
 696		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
 697		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
 698	}
 699	spin_unlock(&swap_avail_lock);
 700}
 701
 702static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
 703			    unsigned int nr_entries)
 704{
 705	unsigned long end = offset + nr_entries - 1;
 706	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
 707
 708	if (offset < si->lowest_bit)
 709		si->lowest_bit = offset;
 710	if (end > si->highest_bit) {
 711		bool was_full = !si->highest_bit;
 712
 713		si->highest_bit = end;
 714		if (was_full && (si->flags & SWP_WRITEOK))
 715			add_to_avail_list(si);
 716	}
 717	atomic_long_add(nr_entries, &nr_swap_pages);
 718	si->inuse_pages -= nr_entries;
 719	if (si->flags & SWP_BLKDEV)
 720		swap_slot_free_notify =
 721			si->bdev->bd_disk->fops->swap_slot_free_notify;
 722	else
 723		swap_slot_free_notify = NULL;
 724	while (offset <= end) {
 725		frontswap_invalidate_page(si->type, offset);
 726		if (swap_slot_free_notify)
 727			swap_slot_free_notify(si->bdev, offset);
 728		offset++;
 729	}
 730}
 731
 732static int scan_swap_map_slots(struct swap_info_struct *si,
 733			       unsigned char usage, int nr,
 734			       swp_entry_t slots[])
 735{
 736	struct swap_cluster_info *ci;
 737	unsigned long offset;
 738	unsigned long scan_base;
 739	unsigned long last_in_cluster = 0;
 740	int latency_ration = LATENCY_LIMIT;
 741	int n_ret = 0;
 742
 743	if (nr > SWAP_BATCH)
 744		nr = SWAP_BATCH;
 745
 746	/*
 747	 * We try to cluster swap pages by allocating them sequentially
 748	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 749	 * way, however, we resort to first-free allocation, starting
 750	 * a new cluster.  This prevents us from scattering swap pages
 751	 * all over the entire swap partition, so that we reduce
 752	 * overall disk seek times between swap pages.  -- sct
 753	 * But we do now try to find an empty cluster.  -Andrea
 754	 * And we let swap pages go all over an SSD partition.  Hugh
 755	 */
 756
 757	si->flags += SWP_SCANNING;
 758	scan_base = offset = si->cluster_next;
 759
 760	/* SSD algorithm */
 761	if (si->cluster_info) {
 762		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 763			goto checks;
 764		else
 765			goto scan;
 766	}
 767
 768	if (unlikely(!si->cluster_nr--)) {
 769		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 770			si->cluster_nr = SWAPFILE_CLUSTER - 1;
 771			goto checks;
 772		}
 773
 774		spin_unlock(&si->lock);
 775
 776		/*
 777		 * If seek is expensive, start searching for new cluster from
 778		 * start of partition, to minimize the span of allocated swap.
 779		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
 780		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
 
 
 781		 */
 782		scan_base = offset = si->lowest_bit;
 
 783		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 784
 785		/* Locate the first empty (unaligned) cluster */
 786		for (; last_in_cluster <= si->highest_bit; offset++) {
 787			if (si->swap_map[offset])
 788				last_in_cluster = offset + SWAPFILE_CLUSTER;
 789			else if (offset == last_in_cluster) {
 790				spin_lock(&si->lock);
 791				offset -= SWAPFILE_CLUSTER - 1;
 792				si->cluster_next = offset;
 793				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 794				goto checks;
 795			}
 796			if (unlikely(--latency_ration < 0)) {
 797				cond_resched();
 798				latency_ration = LATENCY_LIMIT;
 799			}
 800		}
 801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802		offset = scan_base;
 803		spin_lock(&si->lock);
 804		si->cluster_nr = SWAPFILE_CLUSTER - 1;
 805	}
 806
 807checks:
 808	if (si->cluster_info) {
 809		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
 810		/* take a break if we already got some slots */
 811			if (n_ret)
 812				goto done;
 813			if (!scan_swap_map_try_ssd_cluster(si, &offset,
 814							&scan_base))
 815				goto scan;
 816		}
 817	}
 818	if (!(si->flags & SWP_WRITEOK))
 819		goto no_page;
 820	if (!si->highest_bit)
 821		goto no_page;
 822	if (offset > si->highest_bit)
 823		scan_base = offset = si->lowest_bit;
 824
 825	ci = lock_cluster(si, offset);
 826	/* reuse swap entry of cache-only swap if not busy. */
 827	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 828		int swap_was_freed;
 829		unlock_cluster(ci);
 830		spin_unlock(&si->lock);
 831		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
 832		spin_lock(&si->lock);
 833		/* entry was freed successfully, try to use this again */
 834		if (swap_was_freed)
 835			goto checks;
 836		goto scan; /* check next one */
 837	}
 838
 839	if (si->swap_map[offset]) {
 840		unlock_cluster(ci);
 841		if (!n_ret)
 842			goto scan;
 843		else
 844			goto done;
 
 
 
 
 
 845	}
 846	si->swap_map[offset] = usage;
 847	inc_cluster_info_page(si, si->cluster_info, offset);
 848	unlock_cluster(ci);
 849
 850	swap_range_alloc(si, offset, 1);
 851	si->cluster_next = offset + 1;
 852	slots[n_ret++] = swp_entry(si->type, offset);
 853
 854	/* got enough slots or reach max slots? */
 855	if ((n_ret == nr) || (offset >= si->highest_bit))
 856		goto done;
 857
 858	/* search for next available slot */
 859
 860	/* time to take a break? */
 861	if (unlikely(--latency_ration < 0)) {
 862		if (n_ret)
 863			goto done;
 864		spin_unlock(&si->lock);
 865		cond_resched();
 866		spin_lock(&si->lock);
 867		latency_ration = LATENCY_LIMIT;
 868	}
 869
 870	/* try to get more slots in cluster */
 871	if (si->cluster_info) {
 872		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 873			goto checks;
 874		else
 875			goto done;
 876	}
 877	/* non-ssd case */
 878	++offset;
 879
 880	/* non-ssd case, still more slots in cluster? */
 881	if (si->cluster_nr && !si->swap_map[offset]) {
 882		--si->cluster_nr;
 883		goto checks;
 884	}
 885
 886done:
 887	si->flags -= SWP_SCANNING;
 888	return n_ret;
 
 889
 890scan:
 891	spin_unlock(&si->lock);
 892	while (++offset <= si->highest_bit) {
 893		if (!si->swap_map[offset]) {
 894			spin_lock(&si->lock);
 895			goto checks;
 896		}
 897		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 898			spin_lock(&si->lock);
 899			goto checks;
 900		}
 901		if (unlikely(--latency_ration < 0)) {
 902			cond_resched();
 903			latency_ration = LATENCY_LIMIT;
 904		}
 905	}
 906	offset = si->lowest_bit;
 907	while (offset < scan_base) {
 908		if (!si->swap_map[offset]) {
 909			spin_lock(&si->lock);
 910			goto checks;
 911		}
 912		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 913			spin_lock(&si->lock);
 914			goto checks;
 915		}
 916		if (unlikely(--latency_ration < 0)) {
 917			cond_resched();
 918			latency_ration = LATENCY_LIMIT;
 919		}
 920		offset++;
 921	}
 922	spin_lock(&si->lock);
 923
 924no_page:
 925	si->flags -= SWP_SCANNING;
 926	return n_ret;
 927}
 928
 929static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
 930{
 931	unsigned long idx;
 932	struct swap_cluster_info *ci;
 933	unsigned long offset, i;
 934	unsigned char *map;
 935
 936	/*
 937	 * Should not even be attempting cluster allocations when huge
 938	 * page swap is disabled.  Warn and fail the allocation.
 939	 */
 940	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
 941		VM_WARN_ON_ONCE(1);
 942		return 0;
 943	}
 944
 945	if (cluster_list_empty(&si->free_clusters))
 946		return 0;
 947
 948	idx = cluster_list_first(&si->free_clusters);
 949	offset = idx * SWAPFILE_CLUSTER;
 950	ci = lock_cluster(si, offset);
 951	alloc_cluster(si, idx);
 952	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
 953
 954	map = si->swap_map + offset;
 955	for (i = 0; i < SWAPFILE_CLUSTER; i++)
 956		map[i] = SWAP_HAS_CACHE;
 957	unlock_cluster(ci);
 958	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
 959	*slot = swp_entry(si->type, offset);
 960
 961	return 1;
 962}
 963
 964static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
 965{
 966	unsigned long offset = idx * SWAPFILE_CLUSTER;
 967	struct swap_cluster_info *ci;
 968
 969	ci = lock_cluster(si, offset);
 970	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
 971	cluster_set_count_flag(ci, 0, 0);
 972	free_cluster(si, idx);
 973	unlock_cluster(ci);
 974	swap_range_free(si, offset, SWAPFILE_CLUSTER);
 975}
 976
 977static unsigned long scan_swap_map(struct swap_info_struct *si,
 978				   unsigned char usage)
 979{
 980	swp_entry_t entry;
 981	int n_ret;
 982
 983	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
 984
 985	if (n_ret)
 986		return swp_offset(entry);
 987	else
 988		return 0;
 989
 990}
 991
 992int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
 993{
 994	unsigned long size = swap_entry_size(entry_size);
 995	struct swap_info_struct *si, *next;
 996	long avail_pgs;
 997	int n_ret = 0;
 998	int node;
 999
1000	/* Only single cluster request supported */
1001	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1002
1003	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1004	if (avail_pgs <= 0)
1005		goto noswap;
 
1006
1007	if (n_goal > SWAP_BATCH)
1008		n_goal = SWAP_BATCH;
1009
1010	if (n_goal > avail_pgs)
1011		n_goal = avail_pgs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1012
1013	atomic_long_sub(n_goal * size, &nr_swap_pages);
 
 
 
 
 
 
1014
1015	spin_lock(&swap_avail_lock);
1016
1017start_over:
1018	node = numa_node_id();
1019	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1020		/* requeue si to after same-priority siblings */
1021		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1022		spin_unlock(&swap_avail_lock);
1023		spin_lock(&si->lock);
1024		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1025			spin_lock(&swap_avail_lock);
1026			if (plist_node_empty(&si->avail_lists[node])) {
1027				spin_unlock(&si->lock);
1028				goto nextsi;
1029			}
1030			WARN(!si->highest_bit,
1031			     "swap_info %d in list but !highest_bit\n",
1032			     si->type);
1033			WARN(!(si->flags & SWP_WRITEOK),
1034			     "swap_info %d in list but !SWP_WRITEOK\n",
1035			     si->type);
1036			__del_from_avail_list(si);
1037			spin_unlock(&si->lock);
1038			goto nextsi;
1039		}
1040		if (size == SWAPFILE_CLUSTER) {
1041			if (!(si->flags & SWP_FS))
1042				n_ret = swap_alloc_cluster(si, swp_entries);
1043		} else
1044			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1045						    n_goal, swp_entries);
 
 
 
 
1046		spin_unlock(&si->lock);
1047		if (n_ret || size == SWAPFILE_CLUSTER)
1048			goto check_out;
1049		pr_debug("scan_swap_map of si %d failed to find offset\n",
1050			si->type);
1051
1052		spin_lock(&swap_avail_lock);
1053nextsi:
1054		/*
1055		 * if we got here, it's likely that si was almost full before,
1056		 * and since scan_swap_map() can drop the si->lock, multiple
1057		 * callers probably all tried to get a page from the same si
1058		 * and it filled up before we could get one; or, the si filled
1059		 * up between us dropping swap_avail_lock and taking si->lock.
1060		 * Since we dropped the swap_avail_lock, the swap_avail_head
1061		 * list may have been modified; so if next is still in the
1062		 * swap_avail_head list then try it, otherwise start over
1063		 * if we have not gotten any slots.
1064		 */
1065		if (plist_node_empty(&next->avail_lists[node]))
1066			goto start_over;
1067	}
1068
1069	spin_unlock(&swap_avail_lock);
1070
1071check_out:
1072	if (n_ret < n_goal)
1073		atomic_long_add((long)(n_goal - n_ret) * size,
1074				&nr_swap_pages);
1075noswap:
1076	return n_ret;
 
1077}
1078
1079/* The only caller of this function is now suspend routine */
1080swp_entry_t get_swap_page_of_type(int type)
1081{
1082	struct swap_info_struct *si = swap_type_to_swap_info(type);
1083	pgoff_t offset;
1084
1085	if (!si)
1086		goto fail;
1087
1088	spin_lock(&si->lock);
1089	if (si->flags & SWP_WRITEOK) {
1090		atomic_long_dec(&nr_swap_pages);
1091		/* This is called for allocating swap entry, not cache */
1092		offset = scan_swap_map(si, 1);
1093		if (offset) {
1094			spin_unlock(&si->lock);
1095			return swp_entry(type, offset);
1096		}
1097		atomic_long_inc(&nr_swap_pages);
1098	}
1099	spin_unlock(&si->lock);
1100fail:
1101	return (swp_entry_t) {0};
1102}
1103
1104static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1105{
1106	struct swap_info_struct *p;
1107	unsigned long offset;
1108
1109	if (!entry.val)
1110		goto out;
1111	p = swp_swap_info(entry);
1112	if (!p)
1113		goto bad_nofile;
 
1114	if (!(p->flags & SWP_USED))
1115		goto bad_device;
1116	offset = swp_offset(entry);
1117	if (offset >= p->max)
1118		goto bad_offset;
 
 
 
1119	return p;
1120
 
 
 
1121bad_offset:
1122	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1123	goto out;
1124bad_device:
1125	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1126	goto out;
1127bad_nofile:
1128	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1129out:
1130	return NULL;
1131}
1132
1133static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1134{
1135	struct swap_info_struct *p;
1136
1137	p = __swap_info_get(entry);
1138	if (!p)
1139		goto out;
1140	if (!p->swap_map[swp_offset(entry)])
1141		goto bad_free;
1142	return p;
1143
1144bad_free:
1145	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1146	goto out;
1147out:
1148	return NULL;
1149}
1150
1151static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1152{
1153	struct swap_info_struct *p;
1154
1155	p = _swap_info_get(entry);
1156	if (p)
1157		spin_lock(&p->lock);
1158	return p;
1159}
1160
1161static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1162					struct swap_info_struct *q)
1163{
1164	struct swap_info_struct *p;
1165
1166	p = _swap_info_get(entry);
1167
1168	if (p != q) {
1169		if (q != NULL)
1170			spin_unlock(&q->lock);
1171		if (p != NULL)
1172			spin_lock(&p->lock);
1173	}
1174	return p;
1175}
1176
1177static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1178					      unsigned long offset,
1179					      unsigned char usage)
1180{
 
1181	unsigned char count;
1182	unsigned char has_cache;
1183
1184	count = p->swap_map[offset];
1185
1186	has_cache = count & SWAP_HAS_CACHE;
1187	count &= ~SWAP_HAS_CACHE;
1188
1189	if (usage == SWAP_HAS_CACHE) {
1190		VM_BUG_ON(!has_cache);
1191		has_cache = 0;
1192	} else if (count == SWAP_MAP_SHMEM) {
1193		/*
1194		 * Or we could insist on shmem.c using a special
1195		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1196		 */
1197		count = 0;
1198	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1199		if (count == COUNT_CONTINUED) {
1200			if (swap_count_continued(p, offset, count))
1201				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1202			else
1203				count = SWAP_MAP_MAX;
1204		} else
1205			count--;
1206	}
1207
1208	usage = count | has_cache;
1209	p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1210
1211	return usage;
1212}
1213
1214/*
1215 * Check whether swap entry is valid in the swap device.  If so,
1216 * return pointer to swap_info_struct, and keep the swap entry valid
1217 * via preventing the swap device from being swapoff, until
1218 * put_swap_device() is called.  Otherwise return NULL.
1219 *
1220 * The entirety of the RCU read critical section must come before the
1221 * return from or after the call to synchronize_rcu() in
1222 * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1223 * true, the si->map, si->cluster_info, etc. must be valid in the
1224 * critical section.
1225 *
1226 * Notice that swapoff or swapoff+swapon can still happen before the
1227 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1228 * in put_swap_device() if there isn't any other way to prevent
1229 * swapoff, such as page lock, page table lock, etc.  The caller must
1230 * be prepared for that.  For example, the following situation is
1231 * possible.
1232 *
1233 *   CPU1				CPU2
1234 *   do_swap_page()
1235 *     ...				swapoff+swapon
1236 *     __read_swap_cache_async()
1237 *       swapcache_prepare()
1238 *         __swap_duplicate()
1239 *           // check swap_map
1240 *     // verify PTE not changed
1241 *
1242 * In __swap_duplicate(), the swap_map need to be checked before
1243 * changing partly because the specified swap entry may be for another
1244 * swap device which has been swapoff.  And in do_swap_page(), after
1245 * the page is read from the swap device, the PTE is verified not
1246 * changed with the page table locked to check whether the swap device
1247 * has been swapoff or swapoff+swapon.
1248 */
1249struct swap_info_struct *get_swap_device(swp_entry_t entry)
1250{
1251	struct swap_info_struct *si;
1252	unsigned long offset;
1253
1254	if (!entry.val)
1255		goto out;
1256	si = swp_swap_info(entry);
1257	if (!si)
1258		goto bad_nofile;
1259
1260	rcu_read_lock();
1261	if (!(si->flags & SWP_VALID))
1262		goto unlock_out;
1263	offset = swp_offset(entry);
1264	if (offset >= si->max)
1265		goto unlock_out;
1266
1267	return si;
1268bad_nofile:
1269	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1270out:
1271	return NULL;
1272unlock_out:
1273	rcu_read_unlock();
1274	return NULL;
1275}
1276
1277static unsigned char __swap_entry_free(struct swap_info_struct *p,
1278				       swp_entry_t entry, unsigned char usage)
1279{
1280	struct swap_cluster_info *ci;
1281	unsigned long offset = swp_offset(entry);
1282
1283	ci = lock_cluster_or_swap_info(p, offset);
1284	usage = __swap_entry_free_locked(p, offset, usage);
1285	unlock_cluster_or_swap_info(p, ci);
1286	if (!usage)
1287		free_swap_slot(entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
1288
1289	return usage;
1290}
1291
1292static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1293{
1294	struct swap_cluster_info *ci;
1295	unsigned long offset = swp_offset(entry);
1296	unsigned char count;
1297
1298	ci = lock_cluster(p, offset);
1299	count = p->swap_map[offset];
1300	VM_BUG_ON(count != SWAP_HAS_CACHE);
1301	p->swap_map[offset] = 0;
1302	dec_cluster_info_page(p, p->cluster_info, offset);
1303	unlock_cluster(ci);
1304
1305	mem_cgroup_uncharge_swap(entry, 1);
1306	swap_range_free(p, offset, 1);
1307}
1308
1309/*
1310 * Caller has made sure that the swap device corresponding to entry
1311 * is still around or has not been recycled.
1312 */
1313void swap_free(swp_entry_t entry)
1314{
1315	struct swap_info_struct *p;
1316
1317	p = _swap_info_get(entry);
1318	if (p)
1319		__swap_entry_free(p, entry, 1);
 
 
1320}
1321
1322/*
1323 * Called after dropping swapcache to decrease refcnt to swap entries.
1324 */
1325void put_swap_page(struct page *page, swp_entry_t entry)
1326{
1327	unsigned long offset = swp_offset(entry);
1328	unsigned long idx = offset / SWAPFILE_CLUSTER;
1329	struct swap_cluster_info *ci;
1330	struct swap_info_struct *si;
1331	unsigned char *map;
1332	unsigned int i, free_entries = 0;
1333	unsigned char val;
1334	int size = swap_entry_size(hpage_nr_pages(page));
1335
1336	si = _swap_info_get(entry);
1337	if (!si)
1338		return;
1339
1340	ci = lock_cluster_or_swap_info(si, offset);
1341	if (size == SWAPFILE_CLUSTER) {
1342		VM_BUG_ON(!cluster_is_huge(ci));
1343		map = si->swap_map + offset;
1344		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1345			val = map[i];
1346			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1347			if (val == SWAP_HAS_CACHE)
1348				free_entries++;
1349		}
1350		cluster_clear_huge(ci);
1351		if (free_entries == SWAPFILE_CLUSTER) {
1352			unlock_cluster_or_swap_info(si, ci);
1353			spin_lock(&si->lock);
1354			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1355			swap_free_cluster(si, idx);
1356			spin_unlock(&si->lock);
1357			return;
1358		}
1359	}
1360	for (i = 0; i < size; i++, entry.val++) {
1361		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1362			unlock_cluster_or_swap_info(si, ci);
1363			free_swap_slot(entry);
1364			if (i == size - 1)
1365				return;
1366			lock_cluster_or_swap_info(si, offset);
1367		}
1368	}
1369	unlock_cluster_or_swap_info(si, ci);
1370}
1371
1372#ifdef CONFIG_THP_SWAP
1373int split_swap_cluster(swp_entry_t entry)
1374{
1375	struct swap_info_struct *si;
1376	struct swap_cluster_info *ci;
1377	unsigned long offset = swp_offset(entry);
1378
1379	si = _swap_info_get(entry);
1380	if (!si)
1381		return -EBUSY;
1382	ci = lock_cluster(si, offset);
1383	cluster_clear_huge(ci);
1384	unlock_cluster(ci);
1385	return 0;
1386}
1387#endif
1388
1389static int swp_entry_cmp(const void *ent1, const void *ent2)
1390{
1391	const swp_entry_t *e1 = ent1, *e2 = ent2;
1392
1393	return (int)swp_type(*e1) - (int)swp_type(*e2);
1394}
1395
1396void swapcache_free_entries(swp_entry_t *entries, int n)
1397{
1398	struct swap_info_struct *p, *prev;
1399	int i;
1400
1401	if (n <= 0)
1402		return;
1403
1404	prev = NULL;
1405	p = NULL;
1406
1407	/*
1408	 * Sort swap entries by swap device, so each lock is only taken once.
1409	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1410	 * so low that it isn't necessary to optimize further.
1411	 */
1412	if (nr_swapfiles > 1)
1413		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1414	for (i = 0; i < n; ++i) {
1415		p = swap_info_get_cont(entries[i], prev);
1416		if (p)
1417			swap_entry_free(p, entries[i]);
1418		prev = p;
1419	}
1420	if (p)
1421		spin_unlock(&p->lock);
 
1422}
1423
1424/*
1425 * How many references to page are currently swapped out?
1426 * This does not give an exact answer when swap count is continued,
1427 * but does include the high COUNT_CONTINUED flag to allow for that.
1428 */
1429int page_swapcount(struct page *page)
1430{
1431	int count = 0;
1432	struct swap_info_struct *p;
1433	struct swap_cluster_info *ci;
1434	swp_entry_t entry;
1435	unsigned long offset;
1436
1437	entry.val = page_private(page);
1438	p = _swap_info_get(entry);
1439	if (p) {
1440		offset = swp_offset(entry);
1441		ci = lock_cluster_or_swap_info(p, offset);
1442		count = swap_count(p->swap_map[offset]);
1443		unlock_cluster_or_swap_info(p, ci);
1444	}
1445	return count;
1446}
1447
1448int __swap_count(swp_entry_t entry)
1449{
1450	struct swap_info_struct *si;
1451	pgoff_t offset = swp_offset(entry);
1452	int count = 0;
1453
1454	si = get_swap_device(entry);
1455	if (si) {
1456		count = swap_count(si->swap_map[offset]);
1457		put_swap_device(si);
1458	}
1459	return count;
1460}
1461
1462static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1463{
1464	int count = 0;
1465	pgoff_t offset = swp_offset(entry);
1466	struct swap_cluster_info *ci;
1467
1468	ci = lock_cluster_or_swap_info(si, offset);
1469	count = swap_count(si->swap_map[offset]);
1470	unlock_cluster_or_swap_info(si, ci);
1471	return count;
1472}
1473
1474/*
1475 * How many references to @entry are currently swapped out?
1476 * This does not give an exact answer when swap count is continued,
1477 * but does include the high COUNT_CONTINUED flag to allow for that.
1478 */
1479int __swp_swapcount(swp_entry_t entry)
1480{
1481	int count = 0;
1482	struct swap_info_struct *si;
1483
1484	si = get_swap_device(entry);
1485	if (si) {
1486		count = swap_swapcount(si, entry);
1487		put_swap_device(si);
1488	}
1489	return count;
1490}
1491
1492/*
1493 * How many references to @entry are currently swapped out?
1494 * This considers COUNT_CONTINUED so it returns exact answer.
1495 */
1496int swp_swapcount(swp_entry_t entry)
1497{
1498	int count, tmp_count, n;
1499	struct swap_info_struct *p;
1500	struct swap_cluster_info *ci;
1501	struct page *page;
1502	pgoff_t offset;
1503	unsigned char *map;
1504
1505	p = _swap_info_get(entry);
1506	if (!p)
1507		return 0;
1508
1509	offset = swp_offset(entry);
1510
1511	ci = lock_cluster_or_swap_info(p, offset);
1512
1513	count = swap_count(p->swap_map[offset]);
1514	if (!(count & COUNT_CONTINUED))
1515		goto out;
1516
1517	count &= ~COUNT_CONTINUED;
1518	n = SWAP_MAP_MAX + 1;
1519
1520	page = vmalloc_to_page(p->swap_map + offset);
1521	offset &= ~PAGE_MASK;
1522	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1523
1524	do {
1525		page = list_next_entry(page, lru);
1526		map = kmap_atomic(page);
1527		tmp_count = map[offset];
1528		kunmap_atomic(map);
1529
1530		count += (tmp_count & ~COUNT_CONTINUED) * n;
1531		n *= (SWAP_CONT_MAX + 1);
1532	} while (tmp_count & COUNT_CONTINUED);
1533out:
1534	unlock_cluster_or_swap_info(p, ci);
1535	return count;
1536}
1537
1538static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1539					 swp_entry_t entry)
1540{
1541	struct swap_cluster_info *ci;
1542	unsigned char *map = si->swap_map;
1543	unsigned long roffset = swp_offset(entry);
1544	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1545	int i;
1546	bool ret = false;
1547
1548	ci = lock_cluster_or_swap_info(si, offset);
1549	if (!ci || !cluster_is_huge(ci)) {
1550		if (swap_count(map[roffset]))
1551			ret = true;
1552		goto unlock_out;
1553	}
1554	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1555		if (swap_count(map[offset + i])) {
1556			ret = true;
1557			break;
1558		}
1559	}
1560unlock_out:
1561	unlock_cluster_or_swap_info(si, ci);
1562	return ret;
1563}
1564
1565static bool page_swapped(struct page *page)
1566{
1567	swp_entry_t entry;
1568	struct swap_info_struct *si;
1569
1570	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1571		return page_swapcount(page) != 0;
1572
1573	page = compound_head(page);
1574	entry.val = page_private(page);
1575	si = _swap_info_get(entry);
1576	if (si)
1577		return swap_page_trans_huge_swapped(si, entry);
1578	return false;
1579}
1580
1581static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1582					 int *total_swapcount)
1583{
1584	int i, map_swapcount, _total_mapcount, _total_swapcount;
1585	unsigned long offset = 0;
1586	struct swap_info_struct *si;
1587	struct swap_cluster_info *ci = NULL;
1588	unsigned char *map = NULL;
1589	int mapcount, swapcount = 0;
1590
1591	/* hugetlbfs shouldn't call it */
1592	VM_BUG_ON_PAGE(PageHuge(page), page);
1593
1594	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1595		mapcount = page_trans_huge_mapcount(page, total_mapcount);
1596		if (PageSwapCache(page))
1597			swapcount = page_swapcount(page);
1598		if (total_swapcount)
1599			*total_swapcount = swapcount;
1600		return mapcount + swapcount;
1601	}
1602
1603	page = compound_head(page);
1604
1605	_total_mapcount = _total_swapcount = map_swapcount = 0;
1606	if (PageSwapCache(page)) {
1607		swp_entry_t entry;
1608
1609		entry.val = page_private(page);
1610		si = _swap_info_get(entry);
1611		if (si) {
1612			map = si->swap_map;
1613			offset = swp_offset(entry);
1614		}
1615	}
1616	if (map)
1617		ci = lock_cluster(si, offset);
1618	for (i = 0; i < HPAGE_PMD_NR; i++) {
1619		mapcount = atomic_read(&page[i]._mapcount) + 1;
1620		_total_mapcount += mapcount;
1621		if (map) {
1622			swapcount = swap_count(map[offset + i]);
1623			_total_swapcount += swapcount;
1624		}
1625		map_swapcount = max(map_swapcount, mapcount + swapcount);
1626	}
1627	unlock_cluster(ci);
1628	if (PageDoubleMap(page)) {
1629		map_swapcount -= 1;
1630		_total_mapcount -= HPAGE_PMD_NR;
1631	}
1632	mapcount = compound_mapcount(page);
1633	map_swapcount += mapcount;
1634	_total_mapcount += mapcount;
1635	if (total_mapcount)
1636		*total_mapcount = _total_mapcount;
1637	if (total_swapcount)
1638		*total_swapcount = _total_swapcount;
1639
1640	return map_swapcount;
1641}
1642
1643/*
1644 * We can write to an anon page without COW if there are no other references
1645 * to it.  And as a side-effect, free up its swap: because the old content
1646 * on disk will never be read, and seeking back there to write new content
1647 * later would only waste time away from clustering.
1648 *
1649 * NOTE: total_map_swapcount should not be relied upon by the caller if
1650 * reuse_swap_page() returns false, but it may be always overwritten
1651 * (see the other implementation for CONFIG_SWAP=n).
1652 */
1653bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1654{
1655	int count, total_mapcount, total_swapcount;
1656
1657	VM_BUG_ON_PAGE(!PageLocked(page), page);
1658	if (unlikely(PageKsm(page)))
1659		return false;
1660	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1661					      &total_swapcount);
1662	if (total_map_swapcount)
1663		*total_map_swapcount = total_mapcount + total_swapcount;
1664	if (count == 1 && PageSwapCache(page) &&
1665	    (likely(!PageTransCompound(page)) ||
1666	     /* The remaining swap count will be freed soon */
1667	     total_swapcount == page_swapcount(page))) {
1668		if (!PageWriteback(page)) {
1669			page = compound_head(page);
1670			delete_from_swap_cache(page);
1671			SetPageDirty(page);
1672		} else {
1673			swp_entry_t entry;
1674			struct swap_info_struct *p;
1675
1676			entry.val = page_private(page);
1677			p = swap_info_get(entry);
1678			if (p->flags & SWP_STABLE_WRITES) {
1679				spin_unlock(&p->lock);
1680				return false;
1681			}
1682			spin_unlock(&p->lock);
1683		}
1684	}
1685
1686	return count <= 1;
1687}
1688
1689/*
1690 * If swap is getting full, or if there are no more mappings of this page,
1691 * then try_to_free_swap is called to free its swap space.
1692 */
1693int try_to_free_swap(struct page *page)
1694{
1695	VM_BUG_ON_PAGE(!PageLocked(page), page);
1696
1697	if (!PageSwapCache(page))
1698		return 0;
1699	if (PageWriteback(page))
1700		return 0;
1701	if (page_swapped(page))
1702		return 0;
1703
1704	/*
1705	 * Once hibernation has begun to create its image of memory,
1706	 * there's a danger that one of the calls to try_to_free_swap()
1707	 * - most probably a call from __try_to_reclaim_swap() while
1708	 * hibernation is allocating its own swap pages for the image,
1709	 * but conceivably even a call from memory reclaim - will free
1710	 * the swap from a page which has already been recorded in the
1711	 * image as a clean swapcache page, and then reuse its swap for
1712	 * another page of the image.  On waking from hibernation, the
1713	 * original page might be freed under memory pressure, then
1714	 * later read back in from swap, now with the wrong data.
1715	 *
1716	 * Hibernation suspends storage while it is writing the image
1717	 * to disk so check that here.
1718	 */
1719	if (pm_suspended_storage())
1720		return 0;
1721
1722	page = compound_head(page);
1723	delete_from_swap_cache(page);
1724	SetPageDirty(page);
1725	return 1;
1726}
1727
1728/*
1729 * Free the swap entry like above, but also try to
1730 * free the page cache entry if it is the last user.
1731 */
1732int free_swap_and_cache(swp_entry_t entry)
1733{
1734	struct swap_info_struct *p;
1735	unsigned char count;
1736
1737	if (non_swap_entry(entry))
1738		return 1;
1739
1740	p = _swap_info_get(entry);
1741	if (p) {
1742		count = __swap_entry_free(p, entry, 1);
1743		if (count == SWAP_HAS_CACHE &&
1744		    !swap_page_trans_huge_swapped(p, entry))
1745			__try_to_reclaim_swap(p, swp_offset(entry),
1746					      TTRS_UNMAPPED | TTRS_FULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1747	}
1748	return p != NULL;
1749}
1750
1751#ifdef CONFIG_HIBERNATION
1752/*
1753 * Find the swap type that corresponds to given device (if any).
1754 *
1755 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1756 * from 0, in which the swap header is expected to be located.
1757 *
1758 * This is needed for the suspend to disk (aka swsusp).
1759 */
1760int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1761{
1762	struct block_device *bdev = NULL;
1763	int type;
1764
1765	if (device)
1766		bdev = bdget(device);
1767
1768	spin_lock(&swap_lock);
1769	for (type = 0; type < nr_swapfiles; type++) {
1770		struct swap_info_struct *sis = swap_info[type];
1771
1772		if (!(sis->flags & SWP_WRITEOK))
1773			continue;
1774
1775		if (!bdev) {
1776			if (bdev_p)
1777				*bdev_p = bdgrab(sis->bdev);
1778
1779			spin_unlock(&swap_lock);
1780			return type;
1781		}
1782		if (bdev == sis->bdev) {
1783			struct swap_extent *se = first_se(sis);
1784
1785			if (se->start_block == offset) {
1786				if (bdev_p)
1787					*bdev_p = bdgrab(sis->bdev);
1788
1789				spin_unlock(&swap_lock);
1790				bdput(bdev);
1791				return type;
1792			}
1793		}
1794	}
1795	spin_unlock(&swap_lock);
1796	if (bdev)
1797		bdput(bdev);
1798
1799	return -ENODEV;
1800}
1801
1802/*
1803 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1804 * corresponding to given index in swap_info (swap type).
1805 */
1806sector_t swapdev_block(int type, pgoff_t offset)
1807{
1808	struct block_device *bdev;
1809	struct swap_info_struct *si = swap_type_to_swap_info(type);
1810
1811	if (!si || !(si->flags & SWP_WRITEOK))
 
 
1812		return 0;
1813	return map_swap_entry(swp_entry(type, offset), &bdev);
1814}
1815
1816/*
1817 * Return either the total number of swap pages of given type, or the number
1818 * of free pages of that type (depending on @free)
1819 *
1820 * This is needed for software suspend
1821 */
1822unsigned int count_swap_pages(int type, int free)
1823{
1824	unsigned int n = 0;
1825
1826	spin_lock(&swap_lock);
1827	if ((unsigned int)type < nr_swapfiles) {
1828		struct swap_info_struct *sis = swap_info[type];
1829
1830		spin_lock(&sis->lock);
1831		if (sis->flags & SWP_WRITEOK) {
1832			n = sis->pages;
1833			if (free)
1834				n -= sis->inuse_pages;
1835		}
1836		spin_unlock(&sis->lock);
1837	}
1838	spin_unlock(&swap_lock);
1839	return n;
1840}
1841#endif /* CONFIG_HIBERNATION */
1842
1843static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1844{
1845	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
 
 
 
 
 
 
 
 
 
 
1846}
1847
1848/*
1849 * No need to decide whether this PTE shares the swap entry with others,
1850 * just let do_wp_page work it out if a write is requested later - to
1851 * force COW, vm_page_prot omits write permission from any private vma.
1852 */
1853static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1854		unsigned long addr, swp_entry_t entry, struct page *page)
1855{
1856	struct page *swapcache;
1857	struct mem_cgroup *memcg;
1858	spinlock_t *ptl;
1859	pte_t *pte;
1860	int ret = 1;
1861
1862	swapcache = page;
1863	page = ksm_might_need_to_copy(page, vma, addr);
1864	if (unlikely(!page))
1865		return -ENOMEM;
1866
1867	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1868				&memcg, false)) {
1869		ret = -ENOMEM;
1870		goto out_nolock;
1871	}
1872
1873	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1874	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1875		mem_cgroup_cancel_charge(page, memcg, false);
1876		ret = 0;
1877		goto out;
1878	}
1879
1880	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1881	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1882	get_page(page);
1883	set_pte_at(vma->vm_mm, addr, pte,
1884		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1885	if (page == swapcache) {
1886		page_add_anon_rmap(page, vma, addr, false);
1887		mem_cgroup_commit_charge(page, memcg, true, false);
1888	} else { /* ksm created a completely new copy */
1889		page_add_new_anon_rmap(page, vma, addr, false);
1890		mem_cgroup_commit_charge(page, memcg, false, false);
1891		lru_cache_add_active_or_unevictable(page, vma);
1892	}
1893	swap_free(entry);
1894	/*
1895	 * Move the page to the active list so it is not
1896	 * immediately swapped out again after swapon.
1897	 */
1898	activate_page(page);
1899out:
1900	pte_unmap_unlock(pte, ptl);
1901out_nolock:
1902	if (page != swapcache) {
1903		unlock_page(page);
1904		put_page(page);
1905	}
1906	return ret;
1907}
1908
1909static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1910			unsigned long addr, unsigned long end,
1911			unsigned int type, bool frontswap,
1912			unsigned long *fs_pages_to_unuse)
1913{
1914	struct page *page;
1915	swp_entry_t entry;
1916	pte_t *pte;
1917	struct swap_info_struct *si;
1918	unsigned long offset;
1919	int ret = 0;
1920	volatile unsigned char *swap_map;
1921
1922	si = swap_info[type];
 
 
 
 
 
 
 
 
1923	pte = pte_offset_map(pmd, addr);
1924	do {
1925		struct vm_fault vmf;
1926
1927		if (!is_swap_pte(*pte))
1928			continue;
1929
1930		entry = pte_to_swp_entry(*pte);
1931		if (swp_type(entry) != type)
1932			continue;
1933
1934		offset = swp_offset(entry);
1935		if (frontswap && !frontswap_test(si, offset))
1936			continue;
1937
1938		pte_unmap(pte);
1939		swap_map = &si->swap_map[offset];
1940		vmf.vma = vma;
1941		vmf.address = addr;
1942		vmf.pmd = pmd;
1943		page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, &vmf);
1944		if (!page) {
1945			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1946				goto try_next;
1947			return -ENOMEM;
1948		}
1949
1950		lock_page(page);
1951		wait_on_page_writeback(page);
1952		ret = unuse_pte(vma, pmd, addr, entry, page);
1953		if (ret < 0) {
1954			unlock_page(page);
1955			put_page(page);
1956			goto out;
1957		}
1958
1959		try_to_free_swap(page);
1960		unlock_page(page);
1961		put_page(page);
1962
1963		if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1964			ret = FRONTSWAP_PAGES_UNUSED;
1965			goto out;
1966		}
1967try_next:
1968		pte = pte_offset_map(pmd, addr);
1969	} while (pte++, addr += PAGE_SIZE, addr != end);
1970	pte_unmap(pte - 1);
1971
1972	ret = 0;
1973out:
1974	return ret;
1975}
1976
1977static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1978				unsigned long addr, unsigned long end,
1979				unsigned int type, bool frontswap,
1980				unsigned long *fs_pages_to_unuse)
1981{
1982	pmd_t *pmd;
1983	unsigned long next;
1984	int ret;
1985
1986	pmd = pmd_offset(pud, addr);
1987	do {
1988		cond_resched();
1989		next = pmd_addr_end(addr, end);
1990		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1991			continue;
1992		ret = unuse_pte_range(vma, pmd, addr, next, type,
1993				      frontswap, fs_pages_to_unuse);
1994		if (ret)
1995			return ret;
1996	} while (pmd++, addr = next, addr != end);
1997	return 0;
1998}
1999
2000static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2001				unsigned long addr, unsigned long end,
2002				unsigned int type, bool frontswap,
2003				unsigned long *fs_pages_to_unuse)
2004{
2005	pud_t *pud;
2006	unsigned long next;
2007	int ret;
2008
2009	pud = pud_offset(p4d, addr);
2010	do {
2011		next = pud_addr_end(addr, end);
2012		if (pud_none_or_clear_bad(pud))
2013			continue;
2014		ret = unuse_pmd_range(vma, pud, addr, next, type,
2015				      frontswap, fs_pages_to_unuse);
2016		if (ret)
2017			return ret;
2018	} while (pud++, addr = next, addr != end);
2019	return 0;
2020}
2021
2022static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2023				unsigned long addr, unsigned long end,
2024				unsigned int type, bool frontswap,
2025				unsigned long *fs_pages_to_unuse)
2026{
2027	p4d_t *p4d;
2028	unsigned long next;
2029	int ret;
2030
2031	p4d = p4d_offset(pgd, addr);
2032	do {
2033		next = p4d_addr_end(addr, end);
2034		if (p4d_none_or_clear_bad(p4d))
2035			continue;
2036		ret = unuse_pud_range(vma, p4d, addr, next, type,
2037				      frontswap, fs_pages_to_unuse);
2038		if (ret)
2039			return ret;
2040	} while (p4d++, addr = next, addr != end);
2041	return 0;
2042}
2043
2044static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2045		     bool frontswap, unsigned long *fs_pages_to_unuse)
2046{
2047	pgd_t *pgd;
2048	unsigned long addr, end, next;
2049	int ret;
2050
2051	addr = vma->vm_start;
2052	end = vma->vm_end;
 
 
 
 
 
 
 
 
2053
2054	pgd = pgd_offset(vma->vm_mm, addr);
2055	do {
2056		next = pgd_addr_end(addr, end);
2057		if (pgd_none_or_clear_bad(pgd))
2058			continue;
2059		ret = unuse_p4d_range(vma, pgd, addr, next, type,
2060				      frontswap, fs_pages_to_unuse);
2061		if (ret)
2062			return ret;
2063	} while (pgd++, addr = next, addr != end);
2064	return 0;
2065}
2066
2067static int unuse_mm(struct mm_struct *mm, unsigned int type,
2068		    bool frontswap, unsigned long *fs_pages_to_unuse)
2069{
2070	struct vm_area_struct *vma;
2071	int ret = 0;
2072
2073	down_read(&mm->mmap_sem);
 
 
 
 
 
 
 
 
 
2074	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2075		if (vma->anon_vma) {
2076			ret = unuse_vma(vma, type, frontswap,
2077					fs_pages_to_unuse);
2078			if (ret)
2079				break;
2080		}
2081		cond_resched();
2082	}
2083	up_read(&mm->mmap_sem);
2084	return ret;
2085}
2086
2087/*
2088 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2089 * from current position to next entry still in use. Return 0
2090 * if there are no inuse entries after prev till end of the map.
2091 */
2092static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2093					unsigned int prev, bool frontswap)
2094{
2095	unsigned int i;
 
2096	unsigned char count;
2097
2098	/*
2099	 * No need for swap_lock here: we're just looking
2100	 * for whether an entry is in use, not modifying it; false
2101	 * hits are okay, and sys_swapoff() has already prevented new
2102	 * allocations from this area (while holding swap_lock).
2103	 */
2104	for (i = prev + 1; i < si->max; i++) {
2105		count = READ_ONCE(si->swap_map[i]);
2106		if (count && swap_count(count) != SWAP_MAP_BAD)
2107			if (!frontswap || frontswap_test(si, i))
2108				break;
2109		if ((i % LATENCY_LIMIT) == 0)
2110			cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2111	}
2112
2113	if (i == si->max)
2114		i = 0;
2115
2116	return i;
2117}
2118
2119/*
2120 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
 
 
 
 
2121 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2122 */
2123int try_to_unuse(unsigned int type, bool frontswap,
2124		 unsigned long pages_to_unuse)
2125{
2126	struct mm_struct *prev_mm;
2127	struct mm_struct *mm;
2128	struct list_head *p;
2129	int retval = 0;
2130	struct swap_info_struct *si = swap_info[type];
 
 
 
 
 
 
 
2131	struct page *page;
2132	swp_entry_t entry;
2133	unsigned int i;
2134
2135	if (!si->inuse_pages)
2136		return 0;
2137
2138	if (!frontswap)
2139		pages_to_unuse = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2140
2141retry:
2142	retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2143	if (retval)
2144		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2145
2146	prev_mm = &init_mm;
2147	mmget(prev_mm);
 
 
 
 
 
 
2148
2149	spin_lock(&mmlist_lock);
2150	p = &init_mm.mmlist;
2151	while (si->inuse_pages &&
2152	       !signal_pending(current) &&
2153	       (p = p->next) != &init_mm.mmlist) {
 
 
 
 
 
 
 
2154
2155		mm = list_entry(p, struct mm_struct, mmlist);
2156		if (!mmget_not_zero(mm))
 
 
 
 
 
 
 
2157			continue;
2158		spin_unlock(&mmlist_lock);
2159		mmput(prev_mm);
2160		prev_mm = mm;
2161		retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2162
2163		if (retval) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2164			mmput(prev_mm);
2165			goto out;
 
 
 
 
 
 
2166		}
2167
2168		/*
2169		 * Make sure that we aren't completely killing
2170		 * interactive performance.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2171		 */
2172		cond_resched();
2173		spin_lock(&mmlist_lock);
2174	}
2175	spin_unlock(&mmlist_lock);
2176
2177	mmput(prev_mm);
2178
2179	i = 0;
2180	while (si->inuse_pages &&
2181	       !signal_pending(current) &&
2182	       (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2183
2184		entry = swp_entry(type, i);
2185		page = find_get_page(swap_address_space(entry), i);
2186		if (!page)
2187			continue;
2188
2189		/*
2190		 * It is conceivable that a racing task removed this page from
2191		 * swap cache just before we acquired the page lock. The page
2192		 * might even be back in swap cache on another swap area. But
2193		 * that is okay, try_to_free_swap() only removes stale pages.
 
2194		 */
2195		lock_page(page);
2196		wait_on_page_writeback(page);
2197		try_to_free_swap(page);
 
 
 
 
 
 
 
2198		unlock_page(page);
2199		put_page(page);
2200
2201		/*
2202		 * For frontswap, we just need to unuse pages_to_unuse, if
2203		 * it was specified. Need not check frontswap again here as
2204		 * we already zeroed out pages_to_unuse if not frontswap.
2205		 */
2206		if (pages_to_unuse && --pages_to_unuse == 0)
2207			goto out;
 
 
 
2208	}
2209
2210	/*
2211	 * Lets check again to see if there are still swap entries in the map.
2212	 * If yes, we would need to do retry the unuse logic again.
2213	 * Under global memory pressure, swap entries can be reinserted back
2214	 * into process space after the mmlist loop above passes over them.
2215	 *
2216	 * Limit the number of retries? No: when mmget_not_zero() above fails,
2217	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2218	 * at its own independent pace; and even shmem_writepage() could have
2219	 * been preempted after get_swap_page(), temporarily hiding that swap.
2220	 * It's easy and robust (though cpu-intensive) just to keep retrying.
2221	 */
2222	if (si->inuse_pages) {
2223		if (!signal_pending(current))
2224			goto retry;
2225		retval = -EINTR;
2226	}
2227out:
2228	return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2229}
2230
2231/*
2232 * After a successful try_to_unuse, if no swap is now in use, we know
2233 * we can empty the mmlist.  swap_lock must be held on entry and exit.
2234 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2235 * added to the mmlist just after page_duplicate - before would be racy.
2236 */
2237static void drain_mmlist(void)
2238{
2239	struct list_head *p, *next;
2240	unsigned int type;
2241
2242	for (type = 0; type < nr_swapfiles; type++)
2243		if (swap_info[type]->inuse_pages)
2244			return;
2245	spin_lock(&mmlist_lock);
2246	list_for_each_safe(p, next, &init_mm.mmlist)
2247		list_del_init(p);
2248	spin_unlock(&mmlist_lock);
2249}
2250
2251/*
2252 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2253 * corresponds to page offset for the specified swap entry.
2254 * Note that the type of this function is sector_t, but it returns page offset
2255 * into the bdev, not sector offset.
2256 */
2257static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2258{
2259	struct swap_info_struct *sis;
 
2260	struct swap_extent *se;
2261	pgoff_t offset;
2262
2263	sis = swp_swap_info(entry);
2264	*bdev = sis->bdev;
2265
2266	offset = swp_offset(entry);
2267	se = offset_to_swap_extent(sis, offset);
2268	return se->start_block + (offset - se->start_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
2269}
2270
2271/*
2272 * Returns the page offset into bdev for the specified page's swap entry.
2273 */
2274sector_t map_swap_page(struct page *page, struct block_device **bdev)
2275{
2276	swp_entry_t entry;
2277	entry.val = page_private(page);
2278	return map_swap_entry(entry, bdev);
2279}
2280
2281/*
2282 * Free all of a swapdev's extent information
2283 */
2284static void destroy_swap_extents(struct swap_info_struct *sis)
2285{
2286	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2287		struct rb_node *rb = sis->swap_extent_root.rb_node;
2288		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2289
2290		rb_erase(rb, &sis->swap_extent_root);
 
 
2291		kfree(se);
2292	}
2293
2294	if (sis->flags & SWP_ACTIVATED) {
2295		struct file *swap_file = sis->swap_file;
2296		struct address_space *mapping = swap_file->f_mapping;
2297
2298		sis->flags &= ~SWP_ACTIVATED;
2299		if (mapping->a_ops->swap_deactivate)
2300			mapping->a_ops->swap_deactivate(swap_file);
2301	}
2302}
2303
2304/*
2305 * Add a block range (and the corresponding page range) into this swapdev's
2306 * extent tree.
2307 *
2308 * This function rather assumes that it is called in ascending page order.
2309 */
2310int
2311add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2312		unsigned long nr_pages, sector_t start_block)
2313{
2314	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2315	struct swap_extent *se;
2316	struct swap_extent *new_se;
 
2317
2318	/*
2319	 * place the new node at the right most since the
2320	 * function is called in ascending page order.
2321	 */
2322	while (*link) {
2323		parent = *link;
2324		link = &parent->rb_right;
2325	}
2326
2327	if (parent) {
2328		se = rb_entry(parent, struct swap_extent, rb_node);
2329		BUG_ON(se->start_page + se->nr_pages != start_page);
2330		if (se->start_block + se->nr_pages == start_block) {
2331			/* Merge it */
2332			se->nr_pages += nr_pages;
2333			return 0;
2334		}
2335	}
2336
2337	/* No merge, insert a new extent. */
 
 
2338	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2339	if (new_se == NULL)
2340		return -ENOMEM;
2341	new_se->start_page = start_page;
2342	new_se->nr_pages = nr_pages;
2343	new_se->start_block = start_block;
2344
2345	rb_link_node(&new_se->rb_node, parent, link);
2346	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2347	return 1;
2348}
2349EXPORT_SYMBOL_GPL(add_swap_extent);
2350
2351/*
2352 * A `swap extent' is a simple thing which maps a contiguous range of pages
2353 * onto a contiguous range of disk blocks.  An ordered list of swap extents
2354 * is built at swapon time and is then used at swap_writepage/swap_readpage
2355 * time for locating where on disk a page belongs.
2356 *
2357 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2358 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2359 * swap files identically.
2360 *
2361 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2362 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2363 * swapfiles are handled *identically* after swapon time.
2364 *
2365 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2366 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2367 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2368 * requirements, they are simply tossed out - we will never use those blocks
2369 * for swapping.
2370 *
2371 * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2372 * prevents users from writing to the swap device, which will corrupt memory.
 
2373 *
2374 * The amount of disk space which a single swap extent represents varies.
2375 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2376 * extents in the list.  To avoid much list walking, we cache the previous
2377 * search location in `curr_swap_extent', and start new searches from there.
2378 * This is extremely effective.  The average number of iterations in
2379 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2380 */
2381static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2382{
2383	struct file *swap_file = sis->swap_file;
2384	struct address_space *mapping = swap_file->f_mapping;
2385	struct inode *inode = mapping->host;
2386	int ret;
2387
2388	if (S_ISBLK(inode->i_mode)) {
2389		ret = add_swap_extent(sis, 0, sis->max, 0);
2390		*span = sis->pages;
2391		return ret;
2392	}
2393
2394	if (mapping->a_ops->swap_activate) {
2395		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2396		if (ret >= 0)
2397			sis->flags |= SWP_ACTIVATED;
2398		if (!ret) {
2399			sis->flags |= SWP_FS;
2400			ret = add_swap_extent(sis, 0, sis->max, 0);
2401			*span = sis->pages;
2402		}
2403		return ret;
2404	}
2405
2406	return generic_swapfile_activate(sis, swap_file, span);
2407}
2408
2409static int swap_node(struct swap_info_struct *p)
2410{
2411	struct block_device *bdev;
2412
2413	if (p->bdev)
2414		bdev = p->bdev;
2415	else
2416		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2417
2418	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2419}
2420
2421static void setup_swap_info(struct swap_info_struct *p, int prio,
2422			    unsigned char *swap_map,
2423			    struct swap_cluster_info *cluster_info)
2424{
2425	int i;
2426
2427	if (prio >= 0)
2428		p->prio = prio;
2429	else
2430		p->prio = --least_priority;
2431	/*
2432	 * the plist prio is negated because plist ordering is
2433	 * low-to-high, while swap ordering is high-to-low
2434	 */
2435	p->list.prio = -p->prio;
2436	for_each_node(i) {
2437		if (p->prio >= 0)
2438			p->avail_lists[i].prio = -p->prio;
2439		else {
2440			if (swap_node(p) == i)
2441				p->avail_lists[i].prio = 1;
2442			else
2443				p->avail_lists[i].prio = -p->prio;
2444		}
2445	}
2446	p->swap_map = swap_map;
2447	p->cluster_info = cluster_info;
2448}
2449
2450static void _enable_swap_info(struct swap_info_struct *p)
2451{
2452	p->flags |= SWP_WRITEOK | SWP_VALID;
2453	atomic_long_add(p->pages, &nr_swap_pages);
2454	total_swap_pages += p->pages;
2455
2456	assert_spin_locked(&swap_lock);
2457	/*
2458	 * both lists are plists, and thus priority ordered.
2459	 * swap_active_head needs to be priority ordered for swapoff(),
2460	 * which on removal of any swap_info_struct with an auto-assigned
2461	 * (i.e. negative) priority increments the auto-assigned priority
2462	 * of any lower-priority swap_info_structs.
2463	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2464	 * which allocates swap pages from the highest available priority
2465	 * swap_info_struct.
2466	 */
2467	plist_add(&p->list, &swap_active_head);
2468	add_to_avail_list(p);
2469}
2470
2471static void enable_swap_info(struct swap_info_struct *p, int prio,
2472				unsigned char *swap_map,
2473				struct swap_cluster_info *cluster_info,
2474				unsigned long *frontswap_map)
2475{
2476	frontswap_init(p->type, frontswap_map);
2477	spin_lock(&swap_lock);
2478	spin_lock(&p->lock);
2479	setup_swap_info(p, prio, swap_map, cluster_info);
2480	spin_unlock(&p->lock);
2481	spin_unlock(&swap_lock);
2482	/*
2483	 * Guarantee swap_map, cluster_info, etc. fields are valid
2484	 * between get/put_swap_device() if SWP_VALID bit is set
2485	 */
2486	synchronize_rcu();
2487	spin_lock(&swap_lock);
2488	spin_lock(&p->lock);
2489	_enable_swap_info(p);
2490	spin_unlock(&p->lock);
2491	spin_unlock(&swap_lock);
2492}
2493
2494static void reinsert_swap_info(struct swap_info_struct *p)
2495{
2496	spin_lock(&swap_lock);
2497	spin_lock(&p->lock);
2498	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2499	_enable_swap_info(p);
2500	spin_unlock(&p->lock);
2501	spin_unlock(&swap_lock);
2502}
2503
2504bool has_usable_swap(void)
2505{
2506	bool ret = true;
2507
2508	spin_lock(&swap_lock);
2509	if (plist_head_empty(&swap_active_head))
2510		ret = false;
2511	spin_unlock(&swap_lock);
2512	return ret;
2513}
2514
2515SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2516{
2517	struct swap_info_struct *p = NULL;
2518	unsigned char *swap_map;
2519	struct swap_cluster_info *cluster_info;
2520	unsigned long *frontswap_map;
2521	struct file *swap_file, *victim;
2522	struct address_space *mapping;
2523	struct inode *inode;
2524	struct filename *pathname;
2525	int err, found = 0;
 
2526	unsigned int old_block_size;
2527
2528	if (!capable(CAP_SYS_ADMIN))
2529		return -EPERM;
2530
2531	BUG_ON(!current->mm);
2532
2533	pathname = getname(specialfile);
2534	if (IS_ERR(pathname))
2535		return PTR_ERR(pathname);
2536
2537	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2538	err = PTR_ERR(victim);
2539	if (IS_ERR(victim))
2540		goto out;
2541
2542	mapping = victim->f_mapping;
 
2543	spin_lock(&swap_lock);
2544	plist_for_each_entry(p, &swap_active_head, list) {
 
2545		if (p->flags & SWP_WRITEOK) {
2546			if (p->swap_file->f_mapping == mapping) {
2547				found = 1;
2548				break;
2549			}
2550		}
 
2551	}
2552	if (!found) {
2553		err = -EINVAL;
2554		spin_unlock(&swap_lock);
2555		goto out_dput;
2556	}
2557	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2558		vm_unacct_memory(p->pages);
2559	else {
2560		err = -ENOMEM;
2561		spin_unlock(&swap_lock);
2562		goto out_dput;
2563	}
2564	del_from_avail_list(p);
 
 
 
 
 
 
 
2565	spin_lock(&p->lock);
2566	if (p->prio < 0) {
2567		struct swap_info_struct *si = p;
2568		int nid;
2569
2570		plist_for_each_entry_continue(si, &swap_active_head, list) {
2571			si->prio++;
2572			si->list.prio--;
2573			for_each_node(nid) {
2574				if (si->avail_lists[nid].prio != 1)
2575					si->avail_lists[nid].prio--;
2576			}
2577		}
2578		least_priority++;
2579	}
2580	plist_del(&p->list, &swap_active_head);
2581	atomic_long_sub(p->pages, &nr_swap_pages);
2582	total_swap_pages -= p->pages;
2583	p->flags &= ~SWP_WRITEOK;
2584	spin_unlock(&p->lock);
2585	spin_unlock(&swap_lock);
2586
2587	disable_swap_slots_cache_lock();
2588
2589	set_current_oom_origin();
2590	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2591	clear_current_oom_origin();
2592
2593	if (err) {
2594		/* re-insert swap space back into swap_list */
2595		reinsert_swap_info(p);
2596		reenable_swap_slots_cache_unlock();
2597		goto out_dput;
2598	}
2599
2600	reenable_swap_slots_cache_unlock();
2601
2602	spin_lock(&swap_lock);
2603	spin_lock(&p->lock);
2604	p->flags &= ~SWP_VALID;		/* mark swap device as invalid */
2605	spin_unlock(&p->lock);
2606	spin_unlock(&swap_lock);
2607	/*
2608	 * wait for swap operations protected by get/put_swap_device()
2609	 * to complete
2610	 */
2611	synchronize_rcu();
2612
2613	flush_work(&p->discard_work);
2614
2615	destroy_swap_extents(p);
2616	if (p->flags & SWP_CONTINUED)
2617		free_swap_count_continuations(p);
2618
2619	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2620		atomic_dec(&nr_rotate_swap);
2621
2622	mutex_lock(&swapon_mutex);
2623	spin_lock(&swap_lock);
2624	spin_lock(&p->lock);
2625	drain_mmlist();
2626
2627	/* wait for anyone still in scan_swap_map */
2628	p->highest_bit = 0;		/* cuts scans short */
2629	while (p->flags >= SWP_SCANNING) {
2630		spin_unlock(&p->lock);
2631		spin_unlock(&swap_lock);
2632		schedule_timeout_uninterruptible(1);
2633		spin_lock(&swap_lock);
2634		spin_lock(&p->lock);
2635	}
2636
2637	swap_file = p->swap_file;
2638	old_block_size = p->old_block_size;
2639	p->swap_file = NULL;
2640	p->max = 0;
2641	swap_map = p->swap_map;
2642	p->swap_map = NULL;
2643	cluster_info = p->cluster_info;
2644	p->cluster_info = NULL;
2645	frontswap_map = frontswap_map_get(p);
2646	spin_unlock(&p->lock);
2647	spin_unlock(&swap_lock);
2648	frontswap_invalidate_area(p->type);
2649	frontswap_map_set(p, NULL);
2650	mutex_unlock(&swapon_mutex);
2651	free_percpu(p->percpu_cluster);
2652	p->percpu_cluster = NULL;
2653	vfree(swap_map);
2654	kvfree(cluster_info);
2655	kvfree(frontswap_map);
2656	/* Destroy swap account information */
2657	swap_cgroup_swapoff(p->type);
2658	exit_swap_address_space(p->type);
2659
2660	inode = mapping->host;
2661	if (S_ISBLK(inode->i_mode)) {
2662		struct block_device *bdev = I_BDEV(inode);
2663
2664		set_blocksize(bdev, old_block_size);
2665		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
 
 
 
 
2666	}
2667
2668	inode_lock(inode);
2669	inode->i_flags &= ~S_SWAPFILE;
2670	inode_unlock(inode);
2671	filp_close(swap_file, NULL);
2672
2673	/*
2674	 * Clear the SWP_USED flag after all resources are freed so that swapon
2675	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2676	 * not hold p->lock after we cleared its SWP_WRITEOK.
2677	 */
2678	spin_lock(&swap_lock);
2679	p->flags = 0;
2680	spin_unlock(&swap_lock);
2681
2682	err = 0;
2683	atomic_inc(&proc_poll_event);
2684	wake_up_interruptible(&proc_poll_wait);
2685
2686out_dput:
2687	filp_close(victim, NULL);
2688out:
2689	putname(pathname);
2690	return err;
2691}
2692
2693#ifdef CONFIG_PROC_FS
2694static __poll_t swaps_poll(struct file *file, poll_table *wait)
2695{
2696	struct seq_file *seq = file->private_data;
2697
2698	poll_wait(file, &proc_poll_wait, wait);
2699
2700	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2701		seq->poll_event = atomic_read(&proc_poll_event);
2702		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2703	}
2704
2705	return EPOLLIN | EPOLLRDNORM;
2706}
2707
2708/* iterator */
2709static void *swap_start(struct seq_file *swap, loff_t *pos)
2710{
2711	struct swap_info_struct *si;
2712	int type;
2713	loff_t l = *pos;
2714
2715	mutex_lock(&swapon_mutex);
2716
2717	if (!l)
2718		return SEQ_START_TOKEN;
2719
2720	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
 
 
2721		if (!(si->flags & SWP_USED) || !si->swap_map)
2722			continue;
2723		if (!--l)
2724			return si;
2725	}
2726
2727	return NULL;
2728}
2729
2730static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2731{
2732	struct swap_info_struct *si = v;
2733	int type;
2734
2735	if (v == SEQ_START_TOKEN)
2736		type = 0;
2737	else
2738		type = si->type + 1;
2739
2740	for (; (si = swap_type_to_swap_info(type)); type++) {
 
 
2741		if (!(si->flags & SWP_USED) || !si->swap_map)
2742			continue;
2743		++*pos;
2744		return si;
2745	}
2746
2747	return NULL;
2748}
2749
2750static void swap_stop(struct seq_file *swap, void *v)
2751{
2752	mutex_unlock(&swapon_mutex);
2753}
2754
2755static int swap_show(struct seq_file *swap, void *v)
2756{
2757	struct swap_info_struct *si = v;
2758	struct file *file;
2759	int len;
2760
2761	if (si == SEQ_START_TOKEN) {
2762		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2763		return 0;
2764	}
2765
2766	file = si->swap_file;
2767	len = seq_file_path(swap, file, " \t\n\\");
2768	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2769			len < 40 ? 40 - len : 1, " ",
2770			S_ISBLK(file_inode(file)->i_mode) ?
2771				"partition" : "file\t",
2772			si->pages << (PAGE_SHIFT - 10),
2773			si->inuse_pages << (PAGE_SHIFT - 10),
2774			si->prio);
2775	return 0;
2776}
2777
2778static const struct seq_operations swaps_op = {
2779	.start =	swap_start,
2780	.next =		swap_next,
2781	.stop =		swap_stop,
2782	.show =		swap_show
2783};
2784
2785static int swaps_open(struct inode *inode, struct file *file)
2786{
2787	struct seq_file *seq;
2788	int ret;
2789
2790	ret = seq_open(file, &swaps_op);
2791	if (ret)
2792		return ret;
2793
2794	seq = file->private_data;
2795	seq->poll_event = atomic_read(&proc_poll_event);
2796	return 0;
2797}
2798
2799static const struct file_operations proc_swaps_operations = {
2800	.open		= swaps_open,
2801	.read		= seq_read,
2802	.llseek		= seq_lseek,
2803	.release	= seq_release,
2804	.poll		= swaps_poll,
2805};
2806
2807static int __init procswaps_init(void)
2808{
2809	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2810	return 0;
2811}
2812__initcall(procswaps_init);
2813#endif /* CONFIG_PROC_FS */
2814
2815#ifdef MAX_SWAPFILES_CHECK
2816static int __init max_swapfiles_check(void)
2817{
2818	MAX_SWAPFILES_CHECK();
2819	return 0;
2820}
2821late_initcall(max_swapfiles_check);
2822#endif
2823
2824static struct swap_info_struct *alloc_swap_info(void)
2825{
2826	struct swap_info_struct *p;
2827	unsigned int type;
2828	int i;
2829
2830	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2831	if (!p)
2832		return ERR_PTR(-ENOMEM);
2833
2834	spin_lock(&swap_lock);
2835	for (type = 0; type < nr_swapfiles; type++) {
2836		if (!(swap_info[type]->flags & SWP_USED))
2837			break;
2838	}
2839	if (type >= MAX_SWAPFILES) {
2840		spin_unlock(&swap_lock);
2841		kvfree(p);
2842		return ERR_PTR(-EPERM);
2843	}
2844	if (type >= nr_swapfiles) {
2845		p->type = type;
2846		WRITE_ONCE(swap_info[type], p);
2847		/*
2848		 * Write swap_info[type] before nr_swapfiles, in case a
2849		 * racing procfs swap_start() or swap_next() is reading them.
2850		 * (We never shrink nr_swapfiles, we never free this entry.)
2851		 */
2852		smp_wmb();
2853		WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2854	} else {
2855		kvfree(p);
2856		p = swap_info[type];
2857		/*
2858		 * Do not memset this entry: a racing procfs swap_next()
2859		 * would be relying on p->type to remain valid.
2860		 */
2861	}
2862	p->swap_extent_root = RB_ROOT;
2863	plist_node_init(&p->list, 0);
2864	for_each_node(i)
2865		plist_node_init(&p->avail_lists[i], 0);
2866	p->flags = SWP_USED;
 
2867	spin_unlock(&swap_lock);
2868	spin_lock_init(&p->lock);
2869	spin_lock_init(&p->cont_lock);
2870
2871	return p;
2872}
2873
2874static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2875{
2876	int error;
2877
2878	if (S_ISBLK(inode->i_mode)) {
2879		p->bdev = bdgrab(I_BDEV(inode));
2880		error = blkdev_get(p->bdev,
2881				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
 
2882		if (error < 0) {
2883			p->bdev = NULL;
2884			return error;
2885		}
2886		p->old_block_size = block_size(p->bdev);
2887		error = set_blocksize(p->bdev, PAGE_SIZE);
2888		if (error < 0)
2889			return error;
2890		p->flags |= SWP_BLKDEV;
2891	} else if (S_ISREG(inode->i_mode)) {
2892		p->bdev = inode->i_sb->s_bdev;
2893	}
2894
2895	inode_lock(inode);
2896	if (IS_SWAPFILE(inode))
2897		return -EBUSY;
2898
2899	return 0;
2900}
2901
2902
2903/*
2904 * Find out how many pages are allowed for a single swap device. There
2905 * are two limiting factors:
2906 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2907 * 2) the number of bits in the swap pte, as defined by the different
2908 * architectures.
2909 *
2910 * In order to find the largest possible bit mask, a swap entry with
2911 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2912 * decoded to a swp_entry_t again, and finally the swap offset is
2913 * extracted.
2914 *
2915 * This will mask all the bits from the initial ~0UL mask that can't
2916 * be encoded in either the swp_entry_t or the architecture definition
2917 * of a swap pte.
2918 */
2919unsigned long generic_max_swapfile_size(void)
2920{
2921	return swp_offset(pte_to_swp_entry(
2922			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2923}
2924
2925/* Can be overridden by an architecture for additional checks. */
2926__weak unsigned long max_swapfile_size(void)
2927{
2928	return generic_max_swapfile_size();
2929}
2930
2931static unsigned long read_swap_header(struct swap_info_struct *p,
2932					union swap_header *swap_header,
2933					struct inode *inode)
2934{
2935	int i;
2936	unsigned long maxpages;
2937	unsigned long swapfilepages;
2938	unsigned long last_page;
2939
2940	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2941		pr_err("Unable to find swap-space signature\n");
2942		return 0;
2943	}
2944
2945	/* swap partition endianess hack... */
2946	if (swab32(swap_header->info.version) == 1) {
2947		swab32s(&swap_header->info.version);
2948		swab32s(&swap_header->info.last_page);
2949		swab32s(&swap_header->info.nr_badpages);
2950		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2951			return 0;
2952		for (i = 0; i < swap_header->info.nr_badpages; i++)
2953			swab32s(&swap_header->info.badpages[i]);
2954	}
2955	/* Check the swap header's sub-version */
2956	if (swap_header->info.version != 1) {
2957		pr_warn("Unable to handle swap header version %d\n",
2958			swap_header->info.version);
2959		return 0;
2960	}
2961
2962	p->lowest_bit  = 1;
2963	p->cluster_next = 1;
2964	p->cluster_nr = 0;
2965
2966	maxpages = max_swapfile_size();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2967	last_page = swap_header->info.last_page;
2968	if (!last_page) {
2969		pr_warn("Empty swap-file\n");
2970		return 0;
2971	}
2972	if (last_page > maxpages) {
2973		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2974			maxpages << (PAGE_SHIFT - 10),
2975			last_page << (PAGE_SHIFT - 10));
2976	}
2977	if (maxpages > last_page) {
2978		maxpages = last_page + 1;
2979		/* p->max is an unsigned int: don't overflow it */
2980		if ((unsigned int)maxpages == 0)
2981			maxpages = UINT_MAX;
2982	}
2983	p->highest_bit = maxpages - 1;
2984
2985	if (!maxpages)
2986		return 0;
2987	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2988	if (swapfilepages && maxpages > swapfilepages) {
2989		pr_warn("Swap area shorter than signature indicates\n");
2990		return 0;
2991	}
2992	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2993		return 0;
2994	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2995		return 0;
2996
2997	return maxpages;
2998}
2999
3000#define SWAP_CLUSTER_INFO_COLS						\
3001	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3002#define SWAP_CLUSTER_SPACE_COLS						\
3003	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3004#define SWAP_CLUSTER_COLS						\
3005	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3006
3007static int setup_swap_map_and_extents(struct swap_info_struct *p,
3008					union swap_header *swap_header,
3009					unsigned char *swap_map,
3010					struct swap_cluster_info *cluster_info,
3011					unsigned long maxpages,
3012					sector_t *span)
3013{
3014	unsigned int j, k;
3015	unsigned int nr_good_pages;
3016	int nr_extents;
3017	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3018	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3019	unsigned long i, idx;
3020
3021	nr_good_pages = maxpages - 1;	/* omit header page */
3022
3023	cluster_list_init(&p->free_clusters);
3024	cluster_list_init(&p->discard_clusters);
 
 
3025
3026	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3027		unsigned int page_nr = swap_header->info.badpages[i];
3028		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3029			return -EINVAL;
3030		if (page_nr < maxpages) {
3031			swap_map[page_nr] = SWAP_MAP_BAD;
3032			nr_good_pages--;
3033			/*
3034			 * Haven't marked the cluster free yet, no list
3035			 * operation involved
3036			 */
3037			inc_cluster_info_page(p, cluster_info, page_nr);
3038		}
3039	}
3040
3041	/* Haven't marked the cluster free yet, no list operation involved */
3042	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3043		inc_cluster_info_page(p, cluster_info, i);
3044
3045	if (nr_good_pages) {
3046		swap_map[0] = SWAP_MAP_BAD;
3047		/*
3048		 * Not mark the cluster free yet, no list
3049		 * operation involved
3050		 */
3051		inc_cluster_info_page(p, cluster_info, 0);
3052		p->max = maxpages;
3053		p->pages = nr_good_pages;
3054		nr_extents = setup_swap_extents(p, span);
3055		if (nr_extents < 0)
3056			return nr_extents;
3057		nr_good_pages = p->pages;
3058	}
3059	if (!nr_good_pages) {
3060		pr_warn("Empty swap-file\n");
3061		return -EINVAL;
3062	}
3063
3064	if (!cluster_info)
3065		return nr_extents;
3066
3067
3068	/*
3069	 * Reduce false cache line sharing between cluster_info and
3070	 * sharing same address space.
3071	 */
3072	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3073		j = (k + col) % SWAP_CLUSTER_COLS;
3074		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3075			idx = i * SWAP_CLUSTER_COLS + j;
3076			if (idx >= nr_clusters)
3077				continue;
3078			if (cluster_count(&cluster_info[idx]))
3079				continue;
3080			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3081			cluster_list_add_tail(&p->free_clusters, cluster_info,
3082					      idx);
 
 
 
 
 
 
 
 
 
 
 
3083		}
 
 
 
3084	}
3085	return nr_extents;
3086}
3087
3088/*
3089 * Helper to sys_swapon determining if a given swap
3090 * backing device queue supports DISCARD operations.
3091 */
3092static bool swap_discardable(struct swap_info_struct *si)
3093{
3094	struct request_queue *q = bdev_get_queue(si->bdev);
3095
3096	if (!q || !blk_queue_discard(q))
3097		return false;
3098
3099	return true;
3100}
3101
3102SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3103{
3104	struct swap_info_struct *p;
3105	struct filename *name;
3106	struct file *swap_file = NULL;
3107	struct address_space *mapping;
 
3108	int prio;
3109	int error;
3110	union swap_header *swap_header;
3111	int nr_extents;
3112	sector_t span;
3113	unsigned long maxpages;
3114	unsigned char *swap_map = NULL;
3115	struct swap_cluster_info *cluster_info = NULL;
3116	unsigned long *frontswap_map = NULL;
3117	struct page *page = NULL;
3118	struct inode *inode = NULL;
3119	bool inced_nr_rotate_swap = false;
3120
3121	if (swap_flags & ~SWAP_FLAGS_VALID)
3122		return -EINVAL;
3123
3124	if (!capable(CAP_SYS_ADMIN))
3125		return -EPERM;
3126
3127	if (!swap_avail_heads)
3128		return -ENOMEM;
3129
3130	p = alloc_swap_info();
3131	if (IS_ERR(p))
3132		return PTR_ERR(p);
3133
3134	INIT_WORK(&p->discard_work, swap_discard_work);
3135
3136	name = getname(specialfile);
3137	if (IS_ERR(name)) {
3138		error = PTR_ERR(name);
3139		name = NULL;
3140		goto bad_swap;
3141	}
3142	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3143	if (IS_ERR(swap_file)) {
3144		error = PTR_ERR(swap_file);
3145		swap_file = NULL;
3146		goto bad_swap;
3147	}
3148
3149	p->swap_file = swap_file;
3150	mapping = swap_file->f_mapping;
3151	inode = mapping->host;
3152
3153	/* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
 
 
 
 
 
 
 
 
 
 
 
 
3154	error = claim_swapfile(p, inode);
3155	if (unlikely(error))
3156		goto bad_swap;
3157
3158	/*
3159	 * Read the swap header.
3160	 */
3161	if (!mapping->a_ops->readpage) {
3162		error = -EINVAL;
3163		goto bad_swap;
3164	}
3165	page = read_mapping_page(mapping, 0, swap_file);
3166	if (IS_ERR(page)) {
3167		error = PTR_ERR(page);
3168		goto bad_swap;
3169	}
3170	swap_header = kmap(page);
3171
3172	maxpages = read_swap_header(p, swap_header, inode);
3173	if (unlikely(!maxpages)) {
3174		error = -EINVAL;
3175		goto bad_swap;
3176	}
3177
3178	/* OK, set up the swap map and apply the bad block list */
3179	swap_map = vzalloc(maxpages);
3180	if (!swap_map) {
3181		error = -ENOMEM;
3182		goto bad_swap;
3183	}
3184
3185	if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3186		p->flags |= SWP_STABLE_WRITES;
3187
3188	if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3189		p->flags |= SWP_SYNCHRONOUS_IO;
3190
3191	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3192		int cpu;
3193		unsigned long ci, nr_cluster;
3194
3195		p->flags |= SWP_SOLIDSTATE;
3196		/*
3197		 * select a random position to start with to help wear leveling
3198		 * SSD
3199		 */
3200		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3201		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3202
3203		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3204					GFP_KERNEL);
3205		if (!cluster_info) {
3206			error = -ENOMEM;
3207			goto bad_swap;
3208		}
3209
3210		for (ci = 0; ci < nr_cluster; ci++)
3211			spin_lock_init(&((cluster_info + ci)->lock));
3212
3213		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3214		if (!p->percpu_cluster) {
3215			error = -ENOMEM;
3216			goto bad_swap;
3217		}
3218		for_each_possible_cpu(cpu) {
3219			struct percpu_cluster *cluster;
3220			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3221			cluster_set_null(&cluster->index);
3222		}
3223	} else {
3224		atomic_inc(&nr_rotate_swap);
3225		inced_nr_rotate_swap = true;
3226	}
3227
3228	error = swap_cgroup_swapon(p->type, maxpages);
3229	if (error)
3230		goto bad_swap;
3231
3232	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3233		cluster_info, maxpages, &span);
3234	if (unlikely(nr_extents < 0)) {
3235		error = nr_extents;
3236		goto bad_swap;
3237	}
3238	/* frontswap enabled? set up bit-per-page map for frontswap */
3239	if (IS_ENABLED(CONFIG_FRONTSWAP))
3240		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3241					 sizeof(long),
3242					 GFP_KERNEL);
3243
3244	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3245		/*
3246		 * When discard is enabled for swap with no particular
3247		 * policy flagged, we set all swap discard flags here in
3248		 * order to sustain backward compatibility with older
3249		 * swapon(8) releases.
3250		 */
3251		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3252			     SWP_PAGE_DISCARD);
3253
3254		/*
3255		 * By flagging sys_swapon, a sysadmin can tell us to
3256		 * either do single-time area discards only, or to just
3257		 * perform discards for released swap page-clusters.
3258		 * Now it's time to adjust the p->flags accordingly.
3259		 */
3260		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3261			p->flags &= ~SWP_PAGE_DISCARD;
3262		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3263			p->flags &= ~SWP_AREA_DISCARD;
3264
3265		/* issue a swapon-time discard if it's still required */
3266		if (p->flags & SWP_AREA_DISCARD) {
3267			int err = discard_swap(p);
3268			if (unlikely(err))
3269				pr_err("swapon: discard_swap(%p): %d\n",
3270					p, err);
3271		}
3272	}
3273
3274	error = init_swap_address_space(p->type, maxpages);
3275	if (error)
3276		goto bad_swap;
3277
3278	/*
3279	 * Flush any pending IO and dirty mappings before we start using this
3280	 * swap device.
3281	 */
3282	inode->i_flags |= S_SWAPFILE;
3283	error = inode_drain_writes(inode);
3284	if (error) {
3285		inode->i_flags &= ~S_SWAPFILE;
3286		goto bad_swap;
3287	}
3288
3289	mutex_lock(&swapon_mutex);
3290	prio = -1;
3291	if (swap_flags & SWAP_FLAG_PREFER)
3292		prio =
3293		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3294	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3295
3296	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
 
3297		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3298		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3299		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3300		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3301		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3302		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3303		(frontswap_map) ? "FS" : "");
3304
3305	mutex_unlock(&swapon_mutex);
3306	atomic_inc(&proc_poll_event);
3307	wake_up_interruptible(&proc_poll_wait);
3308
 
 
3309	error = 0;
3310	goto out;
3311bad_swap:
3312	free_percpu(p->percpu_cluster);
3313	p->percpu_cluster = NULL;
3314	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3315		set_blocksize(p->bdev, p->old_block_size);
3316		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3317	}
3318	destroy_swap_extents(p);
3319	swap_cgroup_swapoff(p->type);
3320	spin_lock(&swap_lock);
3321	p->swap_file = NULL;
3322	p->flags = 0;
3323	spin_unlock(&swap_lock);
3324	vfree(swap_map);
3325	kvfree(cluster_info);
3326	kvfree(frontswap_map);
3327	if (inced_nr_rotate_swap)
3328		atomic_dec(&nr_rotate_swap);
3329	if (swap_file) {
3330		if (inode) {
3331			inode_unlock(inode);
3332			inode = NULL;
3333		}
3334		filp_close(swap_file, NULL);
3335	}
3336out:
3337	if (page && !IS_ERR(page)) {
3338		kunmap(page);
3339		put_page(page);
3340	}
3341	if (name)
3342		putname(name);
3343	if (inode)
3344		inode_unlock(inode);
3345	if (!error)
3346		enable_swap_slots_cache();
3347	return error;
3348}
3349
3350void si_swapinfo(struct sysinfo *val)
3351{
3352	unsigned int type;
3353	unsigned long nr_to_be_unused = 0;
3354
3355	spin_lock(&swap_lock);
3356	for (type = 0; type < nr_swapfiles; type++) {
3357		struct swap_info_struct *si = swap_info[type];
3358
3359		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3360			nr_to_be_unused += si->inuse_pages;
3361	}
3362	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3363	val->totalswap = total_swap_pages + nr_to_be_unused;
3364	spin_unlock(&swap_lock);
3365}
3366
3367/*
3368 * Verify that a swap entry is valid and increment its swap map count.
3369 *
3370 * Returns error code in following case.
3371 * - success -> 0
3372 * - swp_entry is invalid -> EINVAL
3373 * - swp_entry is migration entry -> EINVAL
3374 * - swap-cache reference is requested but there is already one. -> EEXIST
3375 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3376 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3377 */
3378static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3379{
3380	struct swap_info_struct *p;
3381	struct swap_cluster_info *ci;
3382	unsigned long offset;
3383	unsigned char count;
3384	unsigned char has_cache;
3385	int err = -EINVAL;
3386
3387	p = get_swap_device(entry);
3388	if (!p)
3389		goto out;
3390
 
 
 
 
3391	offset = swp_offset(entry);
3392	ci = lock_cluster_or_swap_info(p, offset);
 
 
 
3393
3394	count = p->swap_map[offset];
3395
3396	/*
3397	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3398	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3399	 */
3400	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3401		err = -ENOENT;
3402		goto unlock_out;
3403	}
3404
3405	has_cache = count & SWAP_HAS_CACHE;
3406	count &= ~SWAP_HAS_CACHE;
3407	err = 0;
3408
3409	if (usage == SWAP_HAS_CACHE) {
3410
3411		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3412		if (!has_cache && count)
3413			has_cache = SWAP_HAS_CACHE;
3414		else if (has_cache)		/* someone else added cache */
3415			err = -EEXIST;
3416		else				/* no users remaining */
3417			err = -ENOENT;
3418
3419	} else if (count || has_cache) {
3420
3421		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3422			count += usage;
3423		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3424			err = -EINVAL;
3425		else if (swap_count_continued(p, offset, count))
3426			count = COUNT_CONTINUED;
3427		else
3428			err = -ENOMEM;
3429	} else
3430		err = -ENOENT;			/* unused swap entry */
3431
3432	p->swap_map[offset] = count | has_cache;
3433
3434unlock_out:
3435	unlock_cluster_or_swap_info(p, ci);
3436out:
3437	if (p)
3438		put_swap_device(p);
3439	return err;
 
 
 
 
3440}
3441
3442/*
3443 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3444 * (in which case its reference count is never incremented).
3445 */
3446void swap_shmem_alloc(swp_entry_t entry)
3447{
3448	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3449}
3450
3451/*
3452 * Increase reference count of swap entry by 1.
3453 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3454 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3455 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3456 * might occur if a page table entry has got corrupted.
3457 */
3458int swap_duplicate(swp_entry_t entry)
3459{
3460	int err = 0;
3461
3462	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3463		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3464	return err;
3465}
3466
3467/*
3468 * @entry: swap entry for which we allocate swap cache.
3469 *
3470 * Called when allocating swap cache for existing swap entry,
3471 * This can return error codes. Returns 0 at success.
3472 * -EBUSY means there is a swap cache.
3473 * Note: return code is different from swap_duplicate().
3474 */
3475int swapcache_prepare(swp_entry_t entry)
3476{
3477	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3478}
3479
3480struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3481{
3482	return swap_type_to_swap_info(swp_type(entry));
3483}
3484
3485struct swap_info_struct *page_swap_info(struct page *page)
3486{
3487	swp_entry_t entry = { .val = page_private(page) };
3488	return swp_swap_info(entry);
 
3489}
3490
3491/*
3492 * out-of-line __page_file_ methods to avoid include hell.
3493 */
3494struct address_space *__page_file_mapping(struct page *page)
3495{
 
3496	return page_swap_info(page)->swap_file->f_mapping;
3497}
3498EXPORT_SYMBOL_GPL(__page_file_mapping);
3499
3500pgoff_t __page_file_index(struct page *page)
3501{
3502	swp_entry_t swap = { .val = page_private(page) };
 
3503	return swp_offset(swap);
3504}
3505EXPORT_SYMBOL_GPL(__page_file_index);
3506
3507/*
3508 * add_swap_count_continuation - called when a swap count is duplicated
3509 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3510 * page of the original vmalloc'ed swap_map, to hold the continuation count
3511 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3512 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3513 *
3514 * These continuation pages are seldom referenced: the common paths all work
3515 * on the original swap_map, only referring to a continuation page when the
3516 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3517 *
3518 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3519 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3520 * can be called after dropping locks.
3521 */
3522int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3523{
3524	struct swap_info_struct *si;
3525	struct swap_cluster_info *ci;
3526	struct page *head;
3527	struct page *page;
3528	struct page *list_page;
3529	pgoff_t offset;
3530	unsigned char count;
3531	int ret = 0;
3532
3533	/*
3534	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3535	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3536	 */
3537	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3538
3539	si = get_swap_device(entry);
3540	if (!si) {
3541		/*
3542		 * An acceptable race has occurred since the failing
3543		 * __swap_duplicate(): the swap device may be swapoff
 
3544		 */
3545		goto outer;
3546	}
3547	spin_lock(&si->lock);
3548
3549	offset = swp_offset(entry);
3550
3551	ci = lock_cluster(si, offset);
3552
3553	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3554
3555	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3556		/*
3557		 * The higher the swap count, the more likely it is that tasks
3558		 * will race to add swap count continuation: we need to avoid
3559		 * over-provisioning.
3560		 */
3561		goto out;
3562	}
3563
3564	if (!page) {
3565		ret = -ENOMEM;
3566		goto out;
3567	}
3568
3569	/*
3570	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3571	 * no architecture is using highmem pages for kernel page tables: so it
3572	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3573	 */
3574	head = vmalloc_to_page(si->swap_map + offset);
3575	offset &= ~PAGE_MASK;
3576
3577	spin_lock(&si->cont_lock);
3578	/*
3579	 * Page allocation does not initialize the page's lru field,
3580	 * but it does always reset its private field.
3581	 */
3582	if (!page_private(head)) {
3583		BUG_ON(count & COUNT_CONTINUED);
3584		INIT_LIST_HEAD(&head->lru);
3585		set_page_private(head, SWP_CONTINUED);
3586		si->flags |= SWP_CONTINUED;
3587	}
3588
3589	list_for_each_entry(list_page, &head->lru, lru) {
3590		unsigned char *map;
3591
3592		/*
3593		 * If the previous map said no continuation, but we've found
3594		 * a continuation page, free our allocation and use this one.
3595		 */
3596		if (!(count & COUNT_CONTINUED))
3597			goto out_unlock_cont;
3598
3599		map = kmap_atomic(list_page) + offset;
3600		count = *map;
3601		kunmap_atomic(map);
3602
3603		/*
3604		 * If this continuation count now has some space in it,
3605		 * free our allocation and use this one.
3606		 */
3607		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3608			goto out_unlock_cont;
3609	}
3610
3611	list_add_tail(&page->lru, &head->lru);
3612	page = NULL;			/* now it's attached, don't free it */
3613out_unlock_cont:
3614	spin_unlock(&si->cont_lock);
3615out:
3616	unlock_cluster(ci);
3617	spin_unlock(&si->lock);
3618	put_swap_device(si);
3619outer:
3620	if (page)
3621		__free_page(page);
3622	return ret;
3623}
3624
3625/*
3626 * swap_count_continued - when the original swap_map count is incremented
3627 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3628 * into, carry if so, or else fail until a new continuation page is allocated;
3629 * when the original swap_map count is decremented from 0 with continuation,
3630 * borrow from the continuation and report whether it still holds more.
3631 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3632 * lock.
3633 */
3634static bool swap_count_continued(struct swap_info_struct *si,
3635				 pgoff_t offset, unsigned char count)
3636{
3637	struct page *head;
3638	struct page *page;
3639	unsigned char *map;
3640	bool ret;
3641
3642	head = vmalloc_to_page(si->swap_map + offset);
3643	if (page_private(head) != SWP_CONTINUED) {
3644		BUG_ON(count & COUNT_CONTINUED);
3645		return false;		/* need to add count continuation */
3646	}
3647
3648	spin_lock(&si->cont_lock);
3649	offset &= ~PAGE_MASK;
3650	page = list_entry(head->lru.next, struct page, lru);
3651	map = kmap_atomic(page) + offset;
3652
3653	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3654		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3655
3656	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3657		/*
3658		 * Think of how you add 1 to 999
3659		 */
3660		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3661			kunmap_atomic(map);
3662			page = list_entry(page->lru.next, struct page, lru);
3663			BUG_ON(page == head);
3664			map = kmap_atomic(page) + offset;
3665		}
3666		if (*map == SWAP_CONT_MAX) {
3667			kunmap_atomic(map);
3668			page = list_entry(page->lru.next, struct page, lru);
3669			if (page == head) {
3670				ret = false;	/* add count continuation */
3671				goto out;
3672			}
3673			map = kmap_atomic(page) + offset;
3674init_map:		*map = 0;		/* we didn't zero the page */
3675		}
3676		*map += 1;
3677		kunmap_atomic(map);
3678		page = list_entry(page->lru.prev, struct page, lru);
3679		while (page != head) {
3680			map = kmap_atomic(page) + offset;
3681			*map = COUNT_CONTINUED;
3682			kunmap_atomic(map);
3683			page = list_entry(page->lru.prev, struct page, lru);
3684		}
3685		ret = true;			/* incremented */
3686
3687	} else {				/* decrementing */
3688		/*
3689		 * Think of how you subtract 1 from 1000
3690		 */
3691		BUG_ON(count != COUNT_CONTINUED);
3692		while (*map == COUNT_CONTINUED) {
3693			kunmap_atomic(map);
3694			page = list_entry(page->lru.next, struct page, lru);
3695			BUG_ON(page == head);
3696			map = kmap_atomic(page) + offset;
3697		}
3698		BUG_ON(*map == 0);
3699		*map -= 1;
3700		if (*map == 0)
3701			count = 0;
3702		kunmap_atomic(map);
3703		page = list_entry(page->lru.prev, struct page, lru);
3704		while (page != head) {
3705			map = kmap_atomic(page) + offset;
3706			*map = SWAP_CONT_MAX | count;
3707			count = COUNT_CONTINUED;
3708			kunmap_atomic(map);
3709			page = list_entry(page->lru.prev, struct page, lru);
3710		}
3711		ret = count == COUNT_CONTINUED;
3712	}
3713out:
3714	spin_unlock(&si->cont_lock);
3715	return ret;
3716}
3717
3718/*
3719 * free_swap_count_continuations - swapoff free all the continuation pages
3720 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3721 */
3722static void free_swap_count_continuations(struct swap_info_struct *si)
3723{
3724	pgoff_t offset;
3725
3726	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3727		struct page *head;
3728		head = vmalloc_to_page(si->swap_map + offset);
3729		if (page_private(head)) {
3730			struct page *page, *next;
3731
3732			list_for_each_entry_safe(page, next, &head->lru, lru) {
3733				list_del(&page->lru);
 
3734				__free_page(page);
3735			}
3736		}
3737	}
3738}
3739
3740#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3741void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3742				  gfp_t gfp_mask)
3743{
3744	struct swap_info_struct *si, *next;
3745	if (!(gfp_mask & __GFP_IO) || !memcg)
3746		return;
3747
3748	if (!blk_cgroup_congested())
3749		return;
3750
3751	/*
3752	 * We've already scheduled a throttle, avoid taking the global swap
3753	 * lock.
3754	 */
3755	if (current->throttle_queue)
3756		return;
3757
3758	spin_lock(&swap_avail_lock);
3759	plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3760				  avail_lists[node]) {
3761		if (si->bdev) {
3762			blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3763						true);
3764			break;
3765		}
3766	}
3767	spin_unlock(&swap_avail_lock);
3768}
3769#endif
3770
3771static int __init swapfile_init(void)
3772{
3773	int nid;
3774
3775	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3776					 GFP_KERNEL);
3777	if (!swap_avail_heads) {
3778		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3779		return -ENOMEM;
3780	}
3781
3782	for_each_node(nid)
3783		plist_head_init(&swap_avail_heads[nid]);
3784
3785	return 0;
3786}
3787subsys_initcall(swapfile_init);
v3.15
 
   1/*
   2 *  linux/mm/swapfile.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *  Swap reorganised 29.12.95, Stephen Tweedie
   6 */
   7
   8#include <linux/mm.h>
 
 
   9#include <linux/hugetlb.h>
  10#include <linux/mman.h>
  11#include <linux/slab.h>
  12#include <linux/kernel_stat.h>
  13#include <linux/swap.h>
  14#include <linux/vmalloc.h>
  15#include <linux/pagemap.h>
  16#include <linux/namei.h>
  17#include <linux/shmem_fs.h>
  18#include <linux/blkdev.h>
  19#include <linux/random.h>
  20#include <linux/writeback.h>
  21#include <linux/proc_fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/init.h>
  24#include <linux/ksm.h>
  25#include <linux/rmap.h>
  26#include <linux/security.h>
  27#include <linux/backing-dev.h>
  28#include <linux/mutex.h>
  29#include <linux/capability.h>
  30#include <linux/syscalls.h>
  31#include <linux/memcontrol.h>
  32#include <linux/poll.h>
  33#include <linux/oom.h>
  34#include <linux/frontswap.h>
  35#include <linux/swapfile.h>
  36#include <linux/export.h>
 
 
  37
  38#include <asm/pgtable.h>
  39#include <asm/tlbflush.h>
  40#include <linux/swapops.h>
  41#include <linux/page_cgroup.h>
  42
  43static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  44				 unsigned char);
  45static void free_swap_count_continuations(struct swap_info_struct *);
  46static sector_t map_swap_entry(swp_entry_t, struct block_device**);
  47
  48DEFINE_SPINLOCK(swap_lock);
  49static unsigned int nr_swapfiles;
  50atomic_long_t nr_swap_pages;
 
 
 
 
 
 
  51/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
  52long total_swap_pages;
  53static int least_priority;
  54static atomic_t highest_priority_index = ATOMIC_INIT(-1);
  55
  56static const char Bad_file[] = "Bad swap file entry ";
  57static const char Unused_file[] = "Unused swap file entry ";
  58static const char Bad_offset[] = "Bad swap offset entry ";
  59static const char Unused_offset[] = "Unused swap offset entry ";
  60
  61struct swap_list_t swap_list = {-1, -1};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62
  63struct swap_info_struct *swap_info[MAX_SWAPFILES];
  64
  65static DEFINE_MUTEX(swapon_mutex);
  66
  67static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
  68/* Activity counter to indicate that a swapon or swapoff has occurred */
  69static atomic_t proc_poll_event = ATOMIC_INIT(0);
  70
 
 
 
 
 
 
 
 
 
 
 
  71static inline unsigned char swap_count(unsigned char ent)
  72{
  73	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
  74}
  75
 
 
 
 
 
 
 
 
 
 
  76/* returns 1 if swap entry is freed */
  77static int
  78__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
  79{
  80	swp_entry_t entry = swp_entry(si->type, offset);
  81	struct page *page;
  82	int ret = 0;
  83
  84	page = find_get_page(swap_address_space(entry), entry.val);
  85	if (!page)
  86		return 0;
  87	/*
  88	 * This function is called from scan_swap_map() and it's called
  89	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
  90	 * We have to use trylock for avoiding deadlock. This is a special
  91	 * case and you should use try_to_free_swap() with explicit lock_page()
  92	 * in usual operations.
  93	 */
  94	if (trylock_page(page)) {
  95		ret = try_to_free_swap(page);
 
 
 
  96		unlock_page(page);
  97	}
  98	page_cache_release(page);
  99	return ret;
 100}
 101
 
 
 
 
 
 
 
 
 
 
 
 
 102/*
 103 * swapon tell device that all the old swap contents can be discarded,
 104 * to allow the swap device to optimize its wear-levelling.
 105 */
 106static int discard_swap(struct swap_info_struct *si)
 107{
 108	struct swap_extent *se;
 109	sector_t start_block;
 110	sector_t nr_blocks;
 111	int err = 0;
 112
 113	/* Do not discard the swap header page! */
 114	se = &si->first_swap_extent;
 115	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 116	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 117	if (nr_blocks) {
 118		err = blkdev_issue_discard(si->bdev, start_block,
 119				nr_blocks, GFP_KERNEL, 0);
 120		if (err)
 121			return err;
 122		cond_resched();
 123	}
 124
 125	list_for_each_entry(se, &si->first_swap_extent.list, list) {
 126		start_block = se->start_block << (PAGE_SHIFT - 9);
 127		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 128
 129		err = blkdev_issue_discard(si->bdev, start_block,
 130				nr_blocks, GFP_KERNEL, 0);
 131		if (err)
 132			break;
 133
 134		cond_resched();
 135	}
 136	return err;		/* That will often be -EOPNOTSUPP */
 137}
 138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 139/*
 140 * swap allocation tell device that a cluster of swap can now be discarded,
 141 * to allow the swap device to optimize its wear-levelling.
 142 */
 143static void discard_swap_cluster(struct swap_info_struct *si,
 144				 pgoff_t start_page, pgoff_t nr_pages)
 145{
 146	struct swap_extent *se = si->curr_swap_extent;
 147	int found_extent = 0;
 148
 149	while (nr_pages) {
 150		struct list_head *lh;
 
 
 
 
 
 
 
 
 
 
 
 
 
 151
 152		if (se->start_page <= start_page &&
 153		    start_page < se->start_page + se->nr_pages) {
 154			pgoff_t offset = start_page - se->start_page;
 155			sector_t start_block = se->start_block + offset;
 156			sector_t nr_blocks = se->nr_pages - offset;
 157
 158			if (nr_blocks > nr_pages)
 159				nr_blocks = nr_pages;
 160			start_page += nr_blocks;
 161			nr_pages -= nr_blocks;
 162
 163			if (!found_extent++)
 164				si->curr_swap_extent = se;
 165
 166			start_block <<= PAGE_SHIFT - 9;
 167			nr_blocks <<= PAGE_SHIFT - 9;
 168			if (blkdev_issue_discard(si->bdev, start_block,
 169				    nr_blocks, GFP_NOIO, 0))
 170				break;
 171		}
 172
 173		lh = se->list.next;
 174		se = list_entry(lh, struct swap_extent, list);
 175	}
 176}
 177
 
 
 
 
 
 178#define SWAPFILE_CLUSTER	256
 
 
 
 
 
 
 
 179#define LATENCY_LIMIT		256
 180
 181static inline void cluster_set_flag(struct swap_cluster_info *info,
 182	unsigned int flag)
 183{
 184	info->flags = flag;
 185}
 186
 187static inline unsigned int cluster_count(struct swap_cluster_info *info)
 188{
 189	return info->data;
 190}
 191
 192static inline void cluster_set_count(struct swap_cluster_info *info,
 193				     unsigned int c)
 194{
 195	info->data = c;
 196}
 197
 198static inline void cluster_set_count_flag(struct swap_cluster_info *info,
 199					 unsigned int c, unsigned int f)
 200{
 201	info->flags = f;
 202	info->data = c;
 203}
 204
 205static inline unsigned int cluster_next(struct swap_cluster_info *info)
 206{
 207	return info->data;
 208}
 209
 210static inline void cluster_set_next(struct swap_cluster_info *info,
 211				    unsigned int n)
 212{
 213	info->data = n;
 214}
 215
 216static inline void cluster_set_next_flag(struct swap_cluster_info *info,
 217					 unsigned int n, unsigned int f)
 218{
 219	info->flags = f;
 220	info->data = n;
 221}
 222
 223static inline bool cluster_is_free(struct swap_cluster_info *info)
 224{
 225	return info->flags & CLUSTER_FLAG_FREE;
 226}
 227
 228static inline bool cluster_is_null(struct swap_cluster_info *info)
 229{
 230	return info->flags & CLUSTER_FLAG_NEXT_NULL;
 231}
 232
 233static inline void cluster_set_null(struct swap_cluster_info *info)
 234{
 235	info->flags = CLUSTER_FLAG_NEXT_NULL;
 236	info->data = 0;
 237}
 238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 239/* Add a cluster to discard list and schedule it to do discard */
 240static void swap_cluster_schedule_discard(struct swap_info_struct *si,
 241		unsigned int idx)
 242{
 243	/*
 244	 * If scan_swap_map() can't find a free cluster, it will check
 245	 * si->swap_map directly. To make sure the discarding cluster isn't
 246	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
 247	 * will be cleared after discard
 248	 */
 249	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 250			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
 251
 252	if (cluster_is_null(&si->discard_cluster_head)) {
 253		cluster_set_next_flag(&si->discard_cluster_head,
 254						idx, 0);
 255		cluster_set_next_flag(&si->discard_cluster_tail,
 256						idx, 0);
 257	} else {
 258		unsigned int tail = cluster_next(&si->discard_cluster_tail);
 259		cluster_set_next(&si->cluster_info[tail], idx);
 260		cluster_set_next_flag(&si->discard_cluster_tail,
 261						idx, 0);
 262	}
 263
 264	schedule_work(&si->discard_work);
 265}
 266
 
 
 
 
 
 
 
 
 267/*
 268 * Doing discard actually. After a cluster discard is finished, the cluster
 269 * will be added to free cluster list. caller should hold si->lock.
 270*/
 271static void swap_do_scheduled_discard(struct swap_info_struct *si)
 272{
 273	struct swap_cluster_info *info;
 274	unsigned int idx;
 275
 276	info = si->cluster_info;
 277
 278	while (!cluster_is_null(&si->discard_cluster_head)) {
 279		idx = cluster_next(&si->discard_cluster_head);
 280
 281		cluster_set_next_flag(&si->discard_cluster_head,
 282						cluster_next(&info[idx]), 0);
 283		if (cluster_next(&si->discard_cluster_tail) == idx) {
 284			cluster_set_null(&si->discard_cluster_head);
 285			cluster_set_null(&si->discard_cluster_tail);
 286		}
 287		spin_unlock(&si->lock);
 288
 289		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
 290				SWAPFILE_CLUSTER);
 291
 292		spin_lock(&si->lock);
 293		cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
 294		if (cluster_is_null(&si->free_cluster_head)) {
 295			cluster_set_next_flag(&si->free_cluster_head,
 296						idx, 0);
 297			cluster_set_next_flag(&si->free_cluster_tail,
 298						idx, 0);
 299		} else {
 300			unsigned int tail;
 301
 302			tail = cluster_next(&si->free_cluster_tail);
 303			cluster_set_next(&info[tail], idx);
 304			cluster_set_next_flag(&si->free_cluster_tail,
 305						idx, 0);
 306		}
 307		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 308				0, SWAPFILE_CLUSTER);
 
 309	}
 310}
 311
 312static void swap_discard_work(struct work_struct *work)
 313{
 314	struct swap_info_struct *si;
 315
 316	si = container_of(work, struct swap_info_struct, discard_work);
 317
 318	spin_lock(&si->lock);
 319	swap_do_scheduled_discard(si);
 320	spin_unlock(&si->lock);
 321}
 322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 323/*
 324 * The cluster corresponding to page_nr will be used. The cluster will be
 325 * removed from free cluster list and its usage counter will be increased.
 326 */
 327static void inc_cluster_info_page(struct swap_info_struct *p,
 328	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 329{
 330	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 331
 332	if (!cluster_info)
 333		return;
 334	if (cluster_is_free(&cluster_info[idx])) {
 335		VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
 336		cluster_set_next_flag(&p->free_cluster_head,
 337			cluster_next(&cluster_info[idx]), 0);
 338		if (cluster_next(&p->free_cluster_tail) == idx) {
 339			cluster_set_null(&p->free_cluster_tail);
 340			cluster_set_null(&p->free_cluster_head);
 341		}
 342		cluster_set_count_flag(&cluster_info[idx], 0, 0);
 343	}
 344
 345	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
 346	cluster_set_count(&cluster_info[idx],
 347		cluster_count(&cluster_info[idx]) + 1);
 348}
 349
 350/*
 351 * The cluster corresponding to page_nr decreases one usage. If the usage
 352 * counter becomes 0, which means no page in the cluster is in using, we can
 353 * optionally discard the cluster and add it to free cluster list.
 354 */
 355static void dec_cluster_info_page(struct swap_info_struct *p,
 356	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 357{
 358	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 359
 360	if (!cluster_info)
 361		return;
 362
 363	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
 364	cluster_set_count(&cluster_info[idx],
 365		cluster_count(&cluster_info[idx]) - 1);
 366
 367	if (cluster_count(&cluster_info[idx]) == 0) {
 368		/*
 369		 * If the swap is discardable, prepare discard the cluster
 370		 * instead of free it immediately. The cluster will be freed
 371		 * after discard.
 372		 */
 373		if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
 374				 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
 375			swap_cluster_schedule_discard(p, idx);
 376			return;
 377		}
 378
 379		cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
 380		if (cluster_is_null(&p->free_cluster_head)) {
 381			cluster_set_next_flag(&p->free_cluster_head, idx, 0);
 382			cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
 383		} else {
 384			unsigned int tail = cluster_next(&p->free_cluster_tail);
 385			cluster_set_next(&cluster_info[tail], idx);
 386			cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
 387		}
 388	}
 389}
 390
 391/*
 392 * It's possible scan_swap_map() uses a free cluster in the middle of free
 393 * cluster list. Avoiding such abuse to avoid list corruption.
 394 */
 395static bool
 396scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
 397	unsigned long offset)
 398{
 399	struct percpu_cluster *percpu_cluster;
 400	bool conflict;
 401
 402	offset /= SWAPFILE_CLUSTER;
 403	conflict = !cluster_is_null(&si->free_cluster_head) &&
 404		offset != cluster_next(&si->free_cluster_head) &&
 405		cluster_is_free(&si->cluster_info[offset]);
 406
 407	if (!conflict)
 408		return false;
 409
 410	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
 411	cluster_set_null(&percpu_cluster->index);
 412	return true;
 413}
 414
 415/*
 416 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
 417 * might involve allocating a new cluster for current CPU too.
 418 */
 419static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
 420	unsigned long *offset, unsigned long *scan_base)
 421{
 422	struct percpu_cluster *cluster;
 
 423	bool found_free;
 424	unsigned long tmp;
 425
 426new_cluster:
 427	cluster = this_cpu_ptr(si->percpu_cluster);
 428	if (cluster_is_null(&cluster->index)) {
 429		if (!cluster_is_null(&si->free_cluster_head)) {
 430			cluster->index = si->free_cluster_head;
 431			cluster->next = cluster_next(&cluster->index) *
 432					SWAPFILE_CLUSTER;
 433		} else if (!cluster_is_null(&si->discard_cluster_head)) {
 434			/*
 435			 * we don't have free cluster but have some clusters in
 436			 * discarding, do discard now and reclaim them
 437			 */
 438			swap_do_scheduled_discard(si);
 439			*scan_base = *offset = si->cluster_next;
 440			goto new_cluster;
 441		} else
 442			return;
 443	}
 444
 445	found_free = false;
 446
 447	/*
 448	 * Other CPUs can use our cluster if they can't find a free cluster,
 449	 * check if there is still free entry in the cluster
 450	 */
 451	tmp = cluster->next;
 452	while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
 453	       SWAPFILE_CLUSTER) {
 
 
 
 
 
 
 454		if (!si->swap_map[tmp]) {
 455			found_free = true;
 456			break;
 457		}
 458		tmp++;
 459	}
 
 460	if (!found_free) {
 461		cluster_set_null(&cluster->index);
 462		goto new_cluster;
 463	}
 464	cluster->next = tmp + 1;
 465	*offset = tmp;
 466	*scan_base = tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 467}
 468
 469static unsigned long scan_swap_map(struct swap_info_struct *si,
 470				   unsigned char usage)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 471{
 
 472	unsigned long offset;
 473	unsigned long scan_base;
 474	unsigned long last_in_cluster = 0;
 475	int latency_ration = LATENCY_LIMIT;
 
 
 
 
 476
 477	/*
 478	 * We try to cluster swap pages by allocating them sequentially
 479	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 480	 * way, however, we resort to first-free allocation, starting
 481	 * a new cluster.  This prevents us from scattering swap pages
 482	 * all over the entire swap partition, so that we reduce
 483	 * overall disk seek times between swap pages.  -- sct
 484	 * But we do now try to find an empty cluster.  -Andrea
 485	 * And we let swap pages go all over an SSD partition.  Hugh
 486	 */
 487
 488	si->flags += SWP_SCANNING;
 489	scan_base = offset = si->cluster_next;
 490
 491	/* SSD algorithm */
 492	if (si->cluster_info) {
 493		scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
 494		goto checks;
 
 
 495	}
 496
 497	if (unlikely(!si->cluster_nr--)) {
 498		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 499			si->cluster_nr = SWAPFILE_CLUSTER - 1;
 500			goto checks;
 501		}
 502
 503		spin_unlock(&si->lock);
 504
 505		/*
 506		 * If seek is expensive, start searching for new cluster from
 507		 * start of partition, to minimize the span of allocated swap.
 508		 * But if seek is cheap, search from our current position, so
 509		 * that swap is allocated from all over the partition: if the
 510		 * Flash Translation Layer only remaps within limited zones,
 511		 * we don't want to wear out the first zone too quickly.
 512		 */
 513		if (!(si->flags & SWP_SOLIDSTATE))
 514			scan_base = offset = si->lowest_bit;
 515		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 516
 517		/* Locate the first empty (unaligned) cluster */
 518		for (; last_in_cluster <= si->highest_bit; offset++) {
 519			if (si->swap_map[offset])
 520				last_in_cluster = offset + SWAPFILE_CLUSTER;
 521			else if (offset == last_in_cluster) {
 522				spin_lock(&si->lock);
 523				offset -= SWAPFILE_CLUSTER - 1;
 524				si->cluster_next = offset;
 525				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 526				goto checks;
 527			}
 528			if (unlikely(--latency_ration < 0)) {
 529				cond_resched();
 530				latency_ration = LATENCY_LIMIT;
 531			}
 532		}
 533
 534		offset = si->lowest_bit;
 535		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 536
 537		/* Locate the first empty (unaligned) cluster */
 538		for (; last_in_cluster < scan_base; offset++) {
 539			if (si->swap_map[offset])
 540				last_in_cluster = offset + SWAPFILE_CLUSTER;
 541			else if (offset == last_in_cluster) {
 542				spin_lock(&si->lock);
 543				offset -= SWAPFILE_CLUSTER - 1;
 544				si->cluster_next = offset;
 545				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 546				goto checks;
 547			}
 548			if (unlikely(--latency_ration < 0)) {
 549				cond_resched();
 550				latency_ration = LATENCY_LIMIT;
 551			}
 552		}
 553
 554		offset = scan_base;
 555		spin_lock(&si->lock);
 556		si->cluster_nr = SWAPFILE_CLUSTER - 1;
 557	}
 558
 559checks:
 560	if (si->cluster_info) {
 561		while (scan_swap_map_ssd_cluster_conflict(si, offset))
 562			scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
 
 
 
 
 
 
 563	}
 564	if (!(si->flags & SWP_WRITEOK))
 565		goto no_page;
 566	if (!si->highest_bit)
 567		goto no_page;
 568	if (offset > si->highest_bit)
 569		scan_base = offset = si->lowest_bit;
 570
 
 571	/* reuse swap entry of cache-only swap if not busy. */
 572	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 573		int swap_was_freed;
 
 574		spin_unlock(&si->lock);
 575		swap_was_freed = __try_to_reclaim_swap(si, offset);
 576		spin_lock(&si->lock);
 577		/* entry was freed successfully, try to use this again */
 578		if (swap_was_freed)
 579			goto checks;
 580		goto scan; /* check next one */
 581	}
 582
 583	if (si->swap_map[offset])
 584		goto scan;
 585
 586	if (offset == si->lowest_bit)
 587		si->lowest_bit++;
 588	if (offset == si->highest_bit)
 589		si->highest_bit--;
 590	si->inuse_pages++;
 591	if (si->inuse_pages == si->pages) {
 592		si->lowest_bit = si->max;
 593		si->highest_bit = 0;
 594	}
 595	si->swap_map[offset] = usage;
 596	inc_cluster_info_page(si, si->cluster_info, offset);
 
 
 
 597	si->cluster_next = offset + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 598	si->flags -= SWP_SCANNING;
 599
 600	return offset;
 601
 602scan:
 603	spin_unlock(&si->lock);
 604	while (++offset <= si->highest_bit) {
 605		if (!si->swap_map[offset]) {
 606			spin_lock(&si->lock);
 607			goto checks;
 608		}
 609		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 610			spin_lock(&si->lock);
 611			goto checks;
 612		}
 613		if (unlikely(--latency_ration < 0)) {
 614			cond_resched();
 615			latency_ration = LATENCY_LIMIT;
 616		}
 617	}
 618	offset = si->lowest_bit;
 619	while (offset < scan_base) {
 620		if (!si->swap_map[offset]) {
 621			spin_lock(&si->lock);
 622			goto checks;
 623		}
 624		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 625			spin_lock(&si->lock);
 626			goto checks;
 627		}
 628		if (unlikely(--latency_ration < 0)) {
 629			cond_resched();
 630			latency_ration = LATENCY_LIMIT;
 631		}
 632		offset++;
 633	}
 634	spin_lock(&si->lock);
 635
 636no_page:
 637	si->flags -= SWP_SCANNING;
 638	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 639}
 640
 641swp_entry_t get_swap_page(void)
 642{
 643	struct swap_info_struct *si;
 644	pgoff_t offset;
 645	int type, next;
 646	int wrapped = 0;
 647	int hp_index;
 
 
 
 648
 649	spin_lock(&swap_lock);
 650	if (atomic_long_read(&nr_swap_pages) <= 0)
 651		goto noswap;
 652	atomic_long_dec(&nr_swap_pages);
 653
 654	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
 655		hp_index = atomic_xchg(&highest_priority_index, -1);
 656		/*
 657		 * highest_priority_index records current highest priority swap
 658		 * type which just frees swap entries. If its priority is
 659		 * higher than that of swap_list.next swap type, we use it.  It
 660		 * isn't protected by swap_lock, so it can be an invalid value
 661		 * if the corresponding swap type is swapoff. We double check
 662		 * the flags here. It's even possible the swap type is swapoff
 663		 * and swapon again and its priority is changed. In such rare
 664		 * case, low prority swap type might be used, but eventually
 665		 * high priority swap will be used after several rounds of
 666		 * swap.
 667		 */
 668		if (hp_index != -1 && hp_index != type &&
 669		    swap_info[type]->prio < swap_info[hp_index]->prio &&
 670		    (swap_info[hp_index]->flags & SWP_WRITEOK)) {
 671			type = hp_index;
 672			swap_list.next = type;
 673		}
 674
 675		si = swap_info[type];
 676		next = si->next;
 677		if (next < 0 ||
 678		    (!wrapped && si->prio != swap_info[next]->prio)) {
 679			next = swap_list.head;
 680			wrapped++;
 681		}
 682
 
 
 
 
 
 
 
 
 683		spin_lock(&si->lock);
 684		if (!si->highest_bit) {
 
 
 
 
 
 
 
 
 
 
 
 
 685			spin_unlock(&si->lock);
 686			continue;
 687		}
 688		if (!(si->flags & SWP_WRITEOK)) {
 689			spin_unlock(&si->lock);
 690			continue;
 691		}
 692
 693		swap_list.next = next;
 694
 695		spin_unlock(&swap_lock);
 696		/* This is called for allocating swap entry for cache */
 697		offset = scan_swap_map(si, SWAP_HAS_CACHE);
 698		spin_unlock(&si->lock);
 699		if (offset)
 700			return swp_entry(type, offset);
 701		spin_lock(&swap_lock);
 702		next = swap_list.next;
 703	}
 704
 705	atomic_long_inc(&nr_swap_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 706noswap:
 707	spin_unlock(&swap_lock);
 708	return (swp_entry_t) {0};
 709}
 710
 711/* The only caller of this function is now suspend routine */
 712swp_entry_t get_swap_page_of_type(int type)
 713{
 714	struct swap_info_struct *si;
 715	pgoff_t offset;
 716
 717	si = swap_info[type];
 
 
 718	spin_lock(&si->lock);
 719	if (si && (si->flags & SWP_WRITEOK)) {
 720		atomic_long_dec(&nr_swap_pages);
 721		/* This is called for allocating swap entry, not cache */
 722		offset = scan_swap_map(si, 1);
 723		if (offset) {
 724			spin_unlock(&si->lock);
 725			return swp_entry(type, offset);
 726		}
 727		atomic_long_inc(&nr_swap_pages);
 728	}
 729	spin_unlock(&si->lock);
 
 730	return (swp_entry_t) {0};
 731}
 732
 733static struct swap_info_struct *swap_info_get(swp_entry_t entry)
 734{
 735	struct swap_info_struct *p;
 736	unsigned long offset, type;
 737
 738	if (!entry.val)
 739		goto out;
 740	type = swp_type(entry);
 741	if (type >= nr_swapfiles)
 742		goto bad_nofile;
 743	p = swap_info[type];
 744	if (!(p->flags & SWP_USED))
 745		goto bad_device;
 746	offset = swp_offset(entry);
 747	if (offset >= p->max)
 748		goto bad_offset;
 749	if (!p->swap_map[offset])
 750		goto bad_free;
 751	spin_lock(&p->lock);
 752	return p;
 753
 754bad_free:
 755	pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
 756	goto out;
 757bad_offset:
 758	pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
 759	goto out;
 760bad_device:
 761	pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
 762	goto out;
 763bad_nofile:
 764	pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 765out:
 766	return NULL;
 767}
 768
 769/*
 770 * This swap type frees swap entry, check if it is the highest priority swap
 771 * type which just frees swap entry. get_swap_page() uses
 772 * highest_priority_index to search highest priority swap type. The
 773 * swap_info_struct.lock can't protect us if there are multiple swap types
 774 * active, so we use atomic_cmpxchg.
 775 */
 776static void set_highest_priority_index(int type)
 
 
 
 
 777{
 778	int old_hp_index, new_hp_index;
 779
 780	do {
 781		old_hp_index = atomic_read(&highest_priority_index);
 782		if (old_hp_index != -1 &&
 783			swap_info[old_hp_index]->prio >= swap_info[type]->prio)
 784			break;
 785		new_hp_index = type;
 786	} while (atomic_cmpxchg(&highest_priority_index,
 787		old_hp_index, new_hp_index) != old_hp_index);
 
 788}
 789
 790static unsigned char swap_entry_free(struct swap_info_struct *p,
 791				     swp_entry_t entry, unsigned char usage)
 
 792{
 793	unsigned long offset = swp_offset(entry);
 794	unsigned char count;
 795	unsigned char has_cache;
 796
 797	count = p->swap_map[offset];
 
 798	has_cache = count & SWAP_HAS_CACHE;
 799	count &= ~SWAP_HAS_CACHE;
 800
 801	if (usage == SWAP_HAS_CACHE) {
 802		VM_BUG_ON(!has_cache);
 803		has_cache = 0;
 804	} else if (count == SWAP_MAP_SHMEM) {
 805		/*
 806		 * Or we could insist on shmem.c using a special
 807		 * swap_shmem_free() and free_shmem_swap_and_cache()...
 808		 */
 809		count = 0;
 810	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
 811		if (count == COUNT_CONTINUED) {
 812			if (swap_count_continued(p, offset, count))
 813				count = SWAP_MAP_MAX | COUNT_CONTINUED;
 814			else
 815				count = SWAP_MAP_MAX;
 816		} else
 817			count--;
 818	}
 819
 820	if (!count)
 821		mem_cgroup_uncharge_swap(entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 822
 823	usage = count | has_cache;
 824	p->swap_map[offset] = usage;
 
 
 
 825
 826	/* free if no reference */
 827	if (!usage) {
 828		dec_cluster_info_page(p, p->cluster_info, offset);
 829		if (offset < p->lowest_bit)
 830			p->lowest_bit = offset;
 831		if (offset > p->highest_bit)
 832			p->highest_bit = offset;
 833		set_highest_priority_index(p->type);
 834		atomic_long_inc(&nr_swap_pages);
 835		p->inuse_pages--;
 836		frontswap_invalidate_page(p->type, offset);
 837		if (p->flags & SWP_BLKDEV) {
 838			struct gendisk *disk = p->bdev->bd_disk;
 839			if (disk->fops->swap_slot_free_notify)
 840				disk->fops->swap_slot_free_notify(p->bdev,
 841								  offset);
 842		}
 843	}
 844
 845	return usage;
 846}
 847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 848/*
 849 * Caller has made sure that the swap device corresponding to entry
 850 * is still around or has not been recycled.
 851 */
 852void swap_free(swp_entry_t entry)
 853{
 854	struct swap_info_struct *p;
 855
 856	p = swap_info_get(entry);
 857	if (p) {
 858		swap_entry_free(p, entry, 1);
 859		spin_unlock(&p->lock);
 860	}
 861}
 862
 863/*
 864 * Called after dropping swapcache to decrease refcnt to swap entries.
 865 */
 866void swapcache_free(swp_entry_t entry, struct page *page)
 867{
 868	struct swap_info_struct *p;
 869	unsigned char count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 870
 871	p = swap_info_get(entry);
 872	if (p) {
 873		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
 874		if (page)
 875			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
 
 
 
 
 
 
 
 
 
 876		spin_unlock(&p->lock);
 877	}
 878}
 879
 880/*
 881 * How many references to page are currently swapped out?
 882 * This does not give an exact answer when swap count is continued,
 883 * but does include the high COUNT_CONTINUED flag to allow for that.
 884 */
 885int page_swapcount(struct page *page)
 886{
 887	int count = 0;
 888	struct swap_info_struct *p;
 
 889	swp_entry_t entry;
 
 890
 891	entry.val = page_private(page);
 892	p = swap_info_get(entry);
 893	if (p) {
 894		count = swap_count(p->swap_map[swp_offset(entry)]);
 895		spin_unlock(&p->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 896	}
 897	return count;
 898}
 899
 900/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 901 * We can write to an anon page without COW if there are no other references
 902 * to it.  And as a side-effect, free up its swap: because the old content
 903 * on disk will never be read, and seeking back there to write new content
 904 * later would only waste time away from clustering.
 
 
 
 
 905 */
 906int reuse_swap_page(struct page *page)
 907{
 908	int count;
 909
 910	VM_BUG_ON_PAGE(!PageLocked(page), page);
 911	if (unlikely(PageKsm(page)))
 912		return 0;
 913	count = page_mapcount(page);
 914	if (count <= 1 && PageSwapCache(page)) {
 915		count += page_swapcount(page);
 916		if (count == 1 && !PageWriteback(page)) {
 
 
 
 
 
 
 917			delete_from_swap_cache(page);
 918			SetPageDirty(page);
 
 
 
 
 
 
 
 
 
 
 
 919		}
 920	}
 
 921	return count <= 1;
 922}
 923
 924/*
 925 * If swap is getting full, or if there are no more mappings of this page,
 926 * then try_to_free_swap is called to free its swap space.
 927 */
 928int try_to_free_swap(struct page *page)
 929{
 930	VM_BUG_ON_PAGE(!PageLocked(page), page);
 931
 932	if (!PageSwapCache(page))
 933		return 0;
 934	if (PageWriteback(page))
 935		return 0;
 936	if (page_swapcount(page))
 937		return 0;
 938
 939	/*
 940	 * Once hibernation has begun to create its image of memory,
 941	 * there's a danger that one of the calls to try_to_free_swap()
 942	 * - most probably a call from __try_to_reclaim_swap() while
 943	 * hibernation is allocating its own swap pages for the image,
 944	 * but conceivably even a call from memory reclaim - will free
 945	 * the swap from a page which has already been recorded in the
 946	 * image as a clean swapcache page, and then reuse its swap for
 947	 * another page of the image.  On waking from hibernation, the
 948	 * original page might be freed under memory pressure, then
 949	 * later read back in from swap, now with the wrong data.
 950	 *
 951	 * Hibernation suspends storage while it is writing the image
 952	 * to disk so check that here.
 953	 */
 954	if (pm_suspended_storage())
 955		return 0;
 956
 
 957	delete_from_swap_cache(page);
 958	SetPageDirty(page);
 959	return 1;
 960}
 961
 962/*
 963 * Free the swap entry like above, but also try to
 964 * free the page cache entry if it is the last user.
 965 */
 966int free_swap_and_cache(swp_entry_t entry)
 967{
 968	struct swap_info_struct *p;
 969	struct page *page = NULL;
 970
 971	if (non_swap_entry(entry))
 972		return 1;
 973
 974	p = swap_info_get(entry);
 975	if (p) {
 976		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
 977			page = find_get_page(swap_address_space(entry),
 978						entry.val);
 979			if (page && !trylock_page(page)) {
 980				page_cache_release(page);
 981				page = NULL;
 982			}
 983		}
 984		spin_unlock(&p->lock);
 985	}
 986	if (page) {
 987		/*
 988		 * Not mapped elsewhere, or swap space full? Free it!
 989		 * Also recheck PageSwapCache now page is locked (above).
 990		 */
 991		if (PageSwapCache(page) && !PageWriteback(page) &&
 992				(!page_mapped(page) || vm_swap_full())) {
 993			delete_from_swap_cache(page);
 994			SetPageDirty(page);
 995		}
 996		unlock_page(page);
 997		page_cache_release(page);
 998	}
 999	return p != NULL;
1000}
1001
1002#ifdef CONFIG_HIBERNATION
1003/*
1004 * Find the swap type that corresponds to given device (if any).
1005 *
1006 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1007 * from 0, in which the swap header is expected to be located.
1008 *
1009 * This is needed for the suspend to disk (aka swsusp).
1010 */
1011int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1012{
1013	struct block_device *bdev = NULL;
1014	int type;
1015
1016	if (device)
1017		bdev = bdget(device);
1018
1019	spin_lock(&swap_lock);
1020	for (type = 0; type < nr_swapfiles; type++) {
1021		struct swap_info_struct *sis = swap_info[type];
1022
1023		if (!(sis->flags & SWP_WRITEOK))
1024			continue;
1025
1026		if (!bdev) {
1027			if (bdev_p)
1028				*bdev_p = bdgrab(sis->bdev);
1029
1030			spin_unlock(&swap_lock);
1031			return type;
1032		}
1033		if (bdev == sis->bdev) {
1034			struct swap_extent *se = &sis->first_swap_extent;
1035
1036			if (se->start_block == offset) {
1037				if (bdev_p)
1038					*bdev_p = bdgrab(sis->bdev);
1039
1040				spin_unlock(&swap_lock);
1041				bdput(bdev);
1042				return type;
1043			}
1044		}
1045	}
1046	spin_unlock(&swap_lock);
1047	if (bdev)
1048		bdput(bdev);
1049
1050	return -ENODEV;
1051}
1052
1053/*
1054 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1055 * corresponding to given index in swap_info (swap type).
1056 */
1057sector_t swapdev_block(int type, pgoff_t offset)
1058{
1059	struct block_device *bdev;
 
1060
1061	if ((unsigned int)type >= nr_swapfiles)
1062		return 0;
1063	if (!(swap_info[type]->flags & SWP_WRITEOK))
1064		return 0;
1065	return map_swap_entry(swp_entry(type, offset), &bdev);
1066}
1067
1068/*
1069 * Return either the total number of swap pages of given type, or the number
1070 * of free pages of that type (depending on @free)
1071 *
1072 * This is needed for software suspend
1073 */
1074unsigned int count_swap_pages(int type, int free)
1075{
1076	unsigned int n = 0;
1077
1078	spin_lock(&swap_lock);
1079	if ((unsigned int)type < nr_swapfiles) {
1080		struct swap_info_struct *sis = swap_info[type];
1081
1082		spin_lock(&sis->lock);
1083		if (sis->flags & SWP_WRITEOK) {
1084			n = sis->pages;
1085			if (free)
1086				n -= sis->inuse_pages;
1087		}
1088		spin_unlock(&sis->lock);
1089	}
1090	spin_unlock(&swap_lock);
1091	return n;
1092}
1093#endif /* CONFIG_HIBERNATION */
1094
1095static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1096{
1097#ifdef CONFIG_MEM_SOFT_DIRTY
1098	/*
1099	 * When pte keeps soft dirty bit the pte generated
1100	 * from swap entry does not has it, still it's same
1101	 * pte from logical point of view.
1102	 */
1103	pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1104	return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1105#else
1106	return pte_same(pte, swp_pte);
1107#endif
1108}
1109
1110/*
1111 * No need to decide whether this PTE shares the swap entry with others,
1112 * just let do_wp_page work it out if a write is requested later - to
1113 * force COW, vm_page_prot omits write permission from any private vma.
1114 */
1115static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1116		unsigned long addr, swp_entry_t entry, struct page *page)
1117{
1118	struct page *swapcache;
1119	struct mem_cgroup *memcg;
1120	spinlock_t *ptl;
1121	pte_t *pte;
1122	int ret = 1;
1123
1124	swapcache = page;
1125	page = ksm_might_need_to_copy(page, vma, addr);
1126	if (unlikely(!page))
1127		return -ENOMEM;
1128
1129	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
1130					 GFP_KERNEL, &memcg)) {
1131		ret = -ENOMEM;
1132		goto out_nolock;
1133	}
1134
1135	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1136	if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
1137		mem_cgroup_cancel_charge_swapin(memcg);
1138		ret = 0;
1139		goto out;
1140	}
1141
1142	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1143	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1144	get_page(page);
1145	set_pte_at(vma->vm_mm, addr, pte,
1146		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1147	if (page == swapcache)
1148		page_add_anon_rmap(page, vma, addr);
1149	else /* ksm created a completely new copy */
1150		page_add_new_anon_rmap(page, vma, addr);
1151	mem_cgroup_commit_charge_swapin(page, memcg);
 
 
 
1152	swap_free(entry);
1153	/*
1154	 * Move the page to the active list so it is not
1155	 * immediately swapped out again after swapon.
1156	 */
1157	activate_page(page);
1158out:
1159	pte_unmap_unlock(pte, ptl);
1160out_nolock:
1161	if (page != swapcache) {
1162		unlock_page(page);
1163		put_page(page);
1164	}
1165	return ret;
1166}
1167
1168static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1169				unsigned long addr, unsigned long end,
1170				swp_entry_t entry, struct page *page)
 
1171{
1172	pte_t swp_pte = swp_entry_to_pte(entry);
 
1173	pte_t *pte;
 
 
1174	int ret = 0;
 
1175
1176	/*
1177	 * We don't actually need pte lock while scanning for swp_pte: since
1178	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1179	 * page table while we're scanning; though it could get zapped, and on
1180	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1181	 * of unmatched parts which look like swp_pte, so unuse_pte must
1182	 * recheck under pte lock.  Scanning without pte lock lets it be
1183	 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1184	 */
1185	pte = pte_offset_map(pmd, addr);
1186	do {
1187		/*
1188		 * swapoff spends a _lot_ of time in this loop!
1189		 * Test inline before going to call unuse_pte.
1190		 */
1191		if (unlikely(maybe_same_pte(*pte, swp_pte))) {
1192			pte_unmap(pte);
1193			ret = unuse_pte(vma, pmd, addr, entry, page);
1194			if (ret)
1195				goto out;
1196			pte = pte_offset_map(pmd, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1197		}
 
 
1198	} while (pte++, addr += PAGE_SIZE, addr != end);
1199	pte_unmap(pte - 1);
 
 
1200out:
1201	return ret;
1202}
1203
1204static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1205				unsigned long addr, unsigned long end,
1206				swp_entry_t entry, struct page *page)
 
1207{
1208	pmd_t *pmd;
1209	unsigned long next;
1210	int ret;
1211
1212	pmd = pmd_offset(pud, addr);
1213	do {
 
1214		next = pmd_addr_end(addr, end);
1215		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1216			continue;
1217		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
 
1218		if (ret)
1219			return ret;
1220	} while (pmd++, addr = next, addr != end);
1221	return 0;
1222}
1223
1224static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1225				unsigned long addr, unsigned long end,
1226				swp_entry_t entry, struct page *page)
 
1227{
1228	pud_t *pud;
1229	unsigned long next;
1230	int ret;
1231
1232	pud = pud_offset(pgd, addr);
1233	do {
1234		next = pud_addr_end(addr, end);
1235		if (pud_none_or_clear_bad(pud))
1236			continue;
1237		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
 
1238		if (ret)
1239			return ret;
1240	} while (pud++, addr = next, addr != end);
1241	return 0;
1242}
1243
1244static int unuse_vma(struct vm_area_struct *vma,
1245				swp_entry_t entry, struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1246{
1247	pgd_t *pgd;
1248	unsigned long addr, end, next;
1249	int ret;
1250
1251	if (page_anon_vma(page)) {
1252		addr = page_address_in_vma(page, vma);
1253		if (addr == -EFAULT)
1254			return 0;
1255		else
1256			end = addr + PAGE_SIZE;
1257	} else {
1258		addr = vma->vm_start;
1259		end = vma->vm_end;
1260	}
1261
1262	pgd = pgd_offset(vma->vm_mm, addr);
1263	do {
1264		next = pgd_addr_end(addr, end);
1265		if (pgd_none_or_clear_bad(pgd))
1266			continue;
1267		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
 
1268		if (ret)
1269			return ret;
1270	} while (pgd++, addr = next, addr != end);
1271	return 0;
1272}
1273
1274static int unuse_mm(struct mm_struct *mm,
1275				swp_entry_t entry, struct page *page)
1276{
1277	struct vm_area_struct *vma;
1278	int ret = 0;
1279
1280	if (!down_read_trylock(&mm->mmap_sem)) {
1281		/*
1282		 * Activate page so shrink_inactive_list is unlikely to unmap
1283		 * its ptes while lock is dropped, so swapoff can make progress.
1284		 */
1285		activate_page(page);
1286		unlock_page(page);
1287		down_read(&mm->mmap_sem);
1288		lock_page(page);
1289	}
1290	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1291		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1292			break;
 
 
 
 
 
1293	}
1294	up_read(&mm->mmap_sem);
1295	return (ret < 0)? ret: 0;
1296}
1297
1298/*
1299 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1300 * from current position to next entry still in use.
1301 * Recycle to start on reaching the end, returning 0 when empty.
1302 */
1303static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1304					unsigned int prev, bool frontswap)
1305{
1306	unsigned int max = si->max;
1307	unsigned int i = prev;
1308	unsigned char count;
1309
1310	/*
1311	 * No need for swap_lock here: we're just looking
1312	 * for whether an entry is in use, not modifying it; false
1313	 * hits are okay, and sys_swapoff() has already prevented new
1314	 * allocations from this area (while holding swap_lock).
1315	 */
1316	for (;;) {
1317		if (++i >= max) {
1318			if (!prev) {
1319				i = 0;
1320				break;
1321			}
1322			/*
1323			 * No entries in use at top of swap_map,
1324			 * loop back to start and recheck there.
1325			 */
1326			max = prev + 1;
1327			prev = 0;
1328			i = 1;
1329		}
1330		if (frontswap) {
1331			if (frontswap_test(si, i))
1332				break;
1333			else
1334				continue;
1335		}
1336		count = ACCESS_ONCE(si->swap_map[i]);
1337		if (count && swap_count(count) != SWAP_MAP_BAD)
1338			break;
1339	}
 
 
 
 
1340	return i;
1341}
1342
1343/*
1344 * We completely avoid races by reading each swap page in advance,
1345 * and then search for the process using it.  All the necessary
1346 * page table adjustments can then be made atomically.
1347 *
1348 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1349 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1350 */
1351int try_to_unuse(unsigned int type, bool frontswap,
1352		 unsigned long pages_to_unuse)
1353{
 
 
 
 
1354	struct swap_info_struct *si = swap_info[type];
1355	struct mm_struct *start_mm;
1356	volatile unsigned char *swap_map; /* swap_map is accessed without
1357					   * locking. Mark it as volatile
1358					   * to prevent compiler doing
1359					   * something odd.
1360					   */
1361	unsigned char swcount;
1362	struct page *page;
1363	swp_entry_t entry;
1364	unsigned int i = 0;
1365	int retval = 0;
 
 
1366
1367	/*
1368	 * When searching mms for an entry, a good strategy is to
1369	 * start at the first mm we freed the previous entry from
1370	 * (though actually we don't notice whether we or coincidence
1371	 * freed the entry).  Initialize this start_mm with a hold.
1372	 *
1373	 * A simpler strategy would be to start at the last mm we
1374	 * freed the previous entry from; but that would take less
1375	 * advantage of mmlist ordering, which clusters forked mms
1376	 * together, child after parent.  If we race with dup_mmap(), we
1377	 * prefer to resolve parent before child, lest we miss entries
1378	 * duplicated after we scanned child: using last mm would invert
1379	 * that.
1380	 */
1381	start_mm = &init_mm;
1382	atomic_inc(&init_mm.mm_users);
1383
1384	/*
1385	 * Keep on scanning until all entries have gone.  Usually,
1386	 * one pass through swap_map is enough, but not necessarily:
1387	 * there are races when an instance of an entry might be missed.
1388	 */
1389	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1390		if (signal_pending(current)) {
1391			retval = -EINTR;
1392			break;
1393		}
1394
1395		/*
1396		 * Get a page for the entry, using the existing swap
1397		 * cache page if there is one.  Otherwise, get a clean
1398		 * page and read the swap into it.
1399		 */
1400		swap_map = &si->swap_map[i];
1401		entry = swp_entry(type, i);
1402		page = read_swap_cache_async(entry,
1403					GFP_HIGHUSER_MOVABLE, NULL, 0);
1404		if (!page) {
1405			/*
1406			 * Either swap_duplicate() failed because entry
1407			 * has been freed independently, and will not be
1408			 * reused since sys_swapoff() already disabled
1409			 * allocation from here, or alloc_page() failed.
1410			 */
1411			swcount = *swap_map;
1412			/*
1413			 * We don't hold lock here, so the swap entry could be
1414			 * SWAP_MAP_BAD (when the cluster is discarding).
1415			 * Instead of fail out, We can just skip the swap
1416			 * entry because swapoff will wait for discarding
1417			 * finish anyway.
1418			 */
1419			if (!swcount || swcount == SWAP_MAP_BAD)
1420				continue;
1421			retval = -ENOMEM;
1422			break;
1423		}
1424
1425		/*
1426		 * Don't hold on to start_mm if it looks like exiting.
1427		 */
1428		if (atomic_read(&start_mm->mm_users) == 1) {
1429			mmput(start_mm);
1430			start_mm = &init_mm;
1431			atomic_inc(&init_mm.mm_users);
1432		}
1433
1434		/*
1435		 * Wait for and lock page.  When do_swap_page races with
1436		 * try_to_unuse, do_swap_page can handle the fault much
1437		 * faster than try_to_unuse can locate the entry.  This
1438		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1439		 * defer to do_swap_page in such a case - in some tests,
1440		 * do_swap_page and try_to_unuse repeatedly compete.
1441		 */
1442		wait_on_page_locked(page);
1443		wait_on_page_writeback(page);
1444		lock_page(page);
1445		wait_on_page_writeback(page);
1446
1447		/*
1448		 * Remove all references to entry.
1449		 */
1450		swcount = *swap_map;
1451		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1452			retval = shmem_unuse(entry, page);
1453			/* page has already been unlocked and released */
1454			if (retval < 0)
1455				break;
1456			continue;
1457		}
1458		if (swap_count(swcount) && start_mm != &init_mm)
1459			retval = unuse_mm(start_mm, entry, page);
 
1460
1461		if (swap_count(*swap_map)) {
1462			int set_start_mm = (*swap_map >= swcount);
1463			struct list_head *p = &start_mm->mmlist;
1464			struct mm_struct *new_start_mm = start_mm;
1465			struct mm_struct *prev_mm = start_mm;
1466			struct mm_struct *mm;
1467
1468			atomic_inc(&new_start_mm->mm_users);
1469			atomic_inc(&prev_mm->mm_users);
1470			spin_lock(&mmlist_lock);
1471			while (swap_count(*swap_map) && !retval &&
1472					(p = p->next) != &start_mm->mmlist) {
1473				mm = list_entry(p, struct mm_struct, mmlist);
1474				if (!atomic_inc_not_zero(&mm->mm_users))
1475					continue;
1476				spin_unlock(&mmlist_lock);
1477				mmput(prev_mm);
1478				prev_mm = mm;
1479
1480				cond_resched();
1481
1482				swcount = *swap_map;
1483				if (!swap_count(swcount)) /* any usage ? */
1484					;
1485				else if (mm == &init_mm)
1486					set_start_mm = 1;
1487				else
1488					retval = unuse_mm(mm, entry, page);
1489
1490				if (set_start_mm && *swap_map < swcount) {
1491					mmput(new_start_mm);
1492					atomic_inc(&mm->mm_users);
1493					new_start_mm = mm;
1494					set_start_mm = 0;
1495				}
1496				spin_lock(&mmlist_lock);
1497			}
1498			spin_unlock(&mmlist_lock);
1499			mmput(prev_mm);
1500			mmput(start_mm);
1501			start_mm = new_start_mm;
1502		}
1503		if (retval) {
1504			unlock_page(page);
1505			page_cache_release(page);
1506			break;
1507		}
1508
1509		/*
1510		 * If a reference remains (rare), we would like to leave
1511		 * the page in the swap cache; but try_to_unmap could
1512		 * then re-duplicate the entry once we drop page lock,
1513		 * so we might loop indefinitely; also, that page could
1514		 * not be swapped out to other storage meanwhile.  So:
1515		 * delete from cache even if there's another reference,
1516		 * after ensuring that the data has been saved to disk -
1517		 * since if the reference remains (rarer), it will be
1518		 * read from disk into another page.  Splitting into two
1519		 * pages would be incorrect if swap supported "shared
1520		 * private" pages, but they are handled by tmpfs files.
1521		 *
1522		 * Given how unuse_vma() targets one particular offset
1523		 * in an anon_vma, once the anon_vma has been determined,
1524		 * this splitting happens to be just what is needed to
1525		 * handle where KSM pages have been swapped out: re-reading
1526		 * is unnecessarily slow, but we can fix that later on.
1527		 */
1528		if (swap_count(*swap_map) &&
1529		     PageDirty(page) && PageSwapCache(page)) {
1530			struct writeback_control wbc = {
1531				.sync_mode = WB_SYNC_NONE,
1532			};
1533
1534			swap_writepage(page, &wbc);
1535			lock_page(page);
1536			wait_on_page_writeback(page);
1537		}
 
 
 
 
 
 
1538
1539		/*
1540		 * It is conceivable that a racing task removed this page from
1541		 * swap cache just before we acquired the page lock at the top,
1542		 * or while we dropped it in unuse_mm().  The page might even
1543		 * be back in swap cache on another swap area: that we must not
1544		 * delete, since it may not have been written out to swap yet.
1545		 */
1546		if (PageSwapCache(page) &&
1547		    likely(page_private(page) == entry.val))
1548			delete_from_swap_cache(page);
1549
1550		/*
1551		 * So we could skip searching mms once swap count went
1552		 * to 1, we did not mark any present ptes as dirty: must
1553		 * mark page dirty so shrink_page_list will preserve it.
1554		 */
1555		SetPageDirty(page);
1556		unlock_page(page);
1557		page_cache_release(page);
1558
1559		/*
1560		 * Make sure that we aren't completely killing
1561		 * interactive performance.
 
1562		 */
1563		cond_resched();
1564		if (frontswap && pages_to_unuse > 0) {
1565			if (!--pages_to_unuse)
1566				break;
1567		}
1568	}
1569
1570	mmput(start_mm);
1571	return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1572}
1573
1574/*
1575 * After a successful try_to_unuse, if no swap is now in use, we know
1576 * we can empty the mmlist.  swap_lock must be held on entry and exit.
1577 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1578 * added to the mmlist just after page_duplicate - before would be racy.
1579 */
1580static void drain_mmlist(void)
1581{
1582	struct list_head *p, *next;
1583	unsigned int type;
1584
1585	for (type = 0; type < nr_swapfiles; type++)
1586		if (swap_info[type]->inuse_pages)
1587			return;
1588	spin_lock(&mmlist_lock);
1589	list_for_each_safe(p, next, &init_mm.mmlist)
1590		list_del_init(p);
1591	spin_unlock(&mmlist_lock);
1592}
1593
1594/*
1595 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1596 * corresponds to page offset for the specified swap entry.
1597 * Note that the type of this function is sector_t, but it returns page offset
1598 * into the bdev, not sector offset.
1599 */
1600static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1601{
1602	struct swap_info_struct *sis;
1603	struct swap_extent *start_se;
1604	struct swap_extent *se;
1605	pgoff_t offset;
1606
1607	sis = swap_info[swp_type(entry)];
1608	*bdev = sis->bdev;
1609
1610	offset = swp_offset(entry);
1611	start_se = sis->curr_swap_extent;
1612	se = start_se;
1613
1614	for ( ; ; ) {
1615		struct list_head *lh;
1616
1617		if (se->start_page <= offset &&
1618				offset < (se->start_page + se->nr_pages)) {
1619			return se->start_block + (offset - se->start_page);
1620		}
1621		lh = se->list.next;
1622		se = list_entry(lh, struct swap_extent, list);
1623		sis->curr_swap_extent = se;
1624		BUG_ON(se == start_se);		/* It *must* be present */
1625	}
1626}
1627
1628/*
1629 * Returns the page offset into bdev for the specified page's swap entry.
1630 */
1631sector_t map_swap_page(struct page *page, struct block_device **bdev)
1632{
1633	swp_entry_t entry;
1634	entry.val = page_private(page);
1635	return map_swap_entry(entry, bdev);
1636}
1637
1638/*
1639 * Free all of a swapdev's extent information
1640 */
1641static void destroy_swap_extents(struct swap_info_struct *sis)
1642{
1643	while (!list_empty(&sis->first_swap_extent.list)) {
1644		struct swap_extent *se;
 
1645
1646		se = list_entry(sis->first_swap_extent.list.next,
1647				struct swap_extent, list);
1648		list_del(&se->list);
1649		kfree(se);
1650	}
1651
1652	if (sis->flags & SWP_FILE) {
1653		struct file *swap_file = sis->swap_file;
1654		struct address_space *mapping = swap_file->f_mapping;
1655
1656		sis->flags &= ~SWP_FILE;
1657		mapping->a_ops->swap_deactivate(swap_file);
 
1658	}
1659}
1660
1661/*
1662 * Add a block range (and the corresponding page range) into this swapdev's
1663 * extent list.  The extent list is kept sorted in page order.
1664 *
1665 * This function rather assumes that it is called in ascending page order.
1666 */
1667int
1668add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1669		unsigned long nr_pages, sector_t start_block)
1670{
 
1671	struct swap_extent *se;
1672	struct swap_extent *new_se;
1673	struct list_head *lh;
1674
1675	if (start_page == 0) {
1676		se = &sis->first_swap_extent;
1677		sis->curr_swap_extent = se;
1678		se->start_page = 0;
1679		se->nr_pages = nr_pages;
1680		se->start_block = start_block;
1681		return 1;
1682	} else {
1683		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1684		se = list_entry(lh, struct swap_extent, list);
 
1685		BUG_ON(se->start_page + se->nr_pages != start_page);
1686		if (se->start_block + se->nr_pages == start_block) {
1687			/* Merge it */
1688			se->nr_pages += nr_pages;
1689			return 0;
1690		}
1691	}
1692
1693	/*
1694	 * No merge.  Insert a new extent, preserving ordering.
1695	 */
1696	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1697	if (new_se == NULL)
1698		return -ENOMEM;
1699	new_se->start_page = start_page;
1700	new_se->nr_pages = nr_pages;
1701	new_se->start_block = start_block;
1702
1703	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
 
1704	return 1;
1705}
 
1706
1707/*
1708 * A `swap extent' is a simple thing which maps a contiguous range of pages
1709 * onto a contiguous range of disk blocks.  An ordered list of swap extents
1710 * is built at swapon time and is then used at swap_writepage/swap_readpage
1711 * time for locating where on disk a page belongs.
1712 *
1713 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1714 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1715 * swap files identically.
1716 *
1717 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1718 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1719 * swapfiles are handled *identically* after swapon time.
1720 *
1721 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1722 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1723 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1724 * requirements, they are simply tossed out - we will never use those blocks
1725 * for swapping.
1726 *
1727 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1728 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1729 * which will scribble on the fs.
1730 *
1731 * The amount of disk space which a single swap extent represents varies.
1732 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1733 * extents in the list.  To avoid much list walking, we cache the previous
1734 * search location in `curr_swap_extent', and start new searches from there.
1735 * This is extremely effective.  The average number of iterations in
1736 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1737 */
1738static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1739{
1740	struct file *swap_file = sis->swap_file;
1741	struct address_space *mapping = swap_file->f_mapping;
1742	struct inode *inode = mapping->host;
1743	int ret;
1744
1745	if (S_ISBLK(inode->i_mode)) {
1746		ret = add_swap_extent(sis, 0, sis->max, 0);
1747		*span = sis->pages;
1748		return ret;
1749	}
1750
1751	if (mapping->a_ops->swap_activate) {
1752		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
 
 
1753		if (!ret) {
1754			sis->flags |= SWP_FILE;
1755			ret = add_swap_extent(sis, 0, sis->max, 0);
1756			*span = sis->pages;
1757		}
1758		return ret;
1759	}
1760
1761	return generic_swapfile_activate(sis, swap_file, span);
1762}
1763
1764static void _enable_swap_info(struct swap_info_struct *p, int prio,
1765				unsigned char *swap_map,
1766				struct swap_cluster_info *cluster_info)
 
 
 
 
 
 
 
 
 
 
 
 
1767{
1768	int i, prev;
1769
1770	if (prio >= 0)
1771		p->prio = prio;
1772	else
1773		p->prio = --least_priority;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1774	p->swap_map = swap_map;
1775	p->cluster_info = cluster_info;
1776	p->flags |= SWP_WRITEOK;
 
 
 
 
1777	atomic_long_add(p->pages, &nr_swap_pages);
1778	total_swap_pages += p->pages;
1779
1780	/* insert swap space into swap_list: */
1781	prev = -1;
1782	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1783		if (p->prio >= swap_info[i]->prio)
1784			break;
1785		prev = i;
1786	}
1787	p->next = i;
1788	if (prev < 0)
1789		swap_list.head = swap_list.next = p->type;
1790	else
1791		swap_info[prev]->next = p->type;
 
1792}
1793
1794static void enable_swap_info(struct swap_info_struct *p, int prio,
1795				unsigned char *swap_map,
1796				struct swap_cluster_info *cluster_info,
1797				unsigned long *frontswap_map)
1798{
1799	frontswap_init(p->type, frontswap_map);
1800	spin_lock(&swap_lock);
1801	spin_lock(&p->lock);
1802	 _enable_swap_info(p, prio, swap_map, cluster_info);
 
 
 
 
 
 
 
 
 
 
1803	spin_unlock(&p->lock);
1804	spin_unlock(&swap_lock);
1805}
1806
1807static void reinsert_swap_info(struct swap_info_struct *p)
1808{
1809	spin_lock(&swap_lock);
1810	spin_lock(&p->lock);
1811	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
 
1812	spin_unlock(&p->lock);
1813	spin_unlock(&swap_lock);
1814}
1815
 
 
 
 
 
 
 
 
 
 
 
1816SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1817{
1818	struct swap_info_struct *p = NULL;
1819	unsigned char *swap_map;
1820	struct swap_cluster_info *cluster_info;
1821	unsigned long *frontswap_map;
1822	struct file *swap_file, *victim;
1823	struct address_space *mapping;
1824	struct inode *inode;
1825	struct filename *pathname;
1826	int i, type, prev;
1827	int err;
1828	unsigned int old_block_size;
1829
1830	if (!capable(CAP_SYS_ADMIN))
1831		return -EPERM;
1832
1833	BUG_ON(!current->mm);
1834
1835	pathname = getname(specialfile);
1836	if (IS_ERR(pathname))
1837		return PTR_ERR(pathname);
1838
1839	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1840	err = PTR_ERR(victim);
1841	if (IS_ERR(victim))
1842		goto out;
1843
1844	mapping = victim->f_mapping;
1845	prev = -1;
1846	spin_lock(&swap_lock);
1847	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1848		p = swap_info[type];
1849		if (p->flags & SWP_WRITEOK) {
1850			if (p->swap_file->f_mapping == mapping)
 
1851				break;
 
1852		}
1853		prev = type;
1854	}
1855	if (type < 0) {
1856		err = -EINVAL;
1857		spin_unlock(&swap_lock);
1858		goto out_dput;
1859	}
1860	if (!security_vm_enough_memory_mm(current->mm, p->pages))
1861		vm_unacct_memory(p->pages);
1862	else {
1863		err = -ENOMEM;
1864		spin_unlock(&swap_lock);
1865		goto out_dput;
1866	}
1867	if (prev < 0)
1868		swap_list.head = p->next;
1869	else
1870		swap_info[prev]->next = p->next;
1871	if (type == swap_list.next) {
1872		/* just pick something that's safe... */
1873		swap_list.next = swap_list.head;
1874	}
1875	spin_lock(&p->lock);
1876	if (p->prio < 0) {
1877		for (i = p->next; i >= 0; i = swap_info[i]->next)
1878			swap_info[i]->prio = p->prio--;
 
 
 
 
 
 
 
 
 
1879		least_priority++;
1880	}
 
1881	atomic_long_sub(p->pages, &nr_swap_pages);
1882	total_swap_pages -= p->pages;
1883	p->flags &= ~SWP_WRITEOK;
1884	spin_unlock(&p->lock);
1885	spin_unlock(&swap_lock);
1886
 
 
1887	set_current_oom_origin();
1888	err = try_to_unuse(type, false, 0); /* force all pages to be unused */
1889	clear_current_oom_origin();
1890
1891	if (err) {
1892		/* re-insert swap space back into swap_list */
1893		reinsert_swap_info(p);
 
1894		goto out_dput;
1895	}
1896
 
 
 
 
 
 
 
 
 
 
 
 
 
1897	flush_work(&p->discard_work);
1898
1899	destroy_swap_extents(p);
1900	if (p->flags & SWP_CONTINUED)
1901		free_swap_count_continuations(p);
1902
 
 
 
1903	mutex_lock(&swapon_mutex);
1904	spin_lock(&swap_lock);
1905	spin_lock(&p->lock);
1906	drain_mmlist();
1907
1908	/* wait for anyone still in scan_swap_map */
1909	p->highest_bit = 0;		/* cuts scans short */
1910	while (p->flags >= SWP_SCANNING) {
1911		spin_unlock(&p->lock);
1912		spin_unlock(&swap_lock);
1913		schedule_timeout_uninterruptible(1);
1914		spin_lock(&swap_lock);
1915		spin_lock(&p->lock);
1916	}
1917
1918	swap_file = p->swap_file;
1919	old_block_size = p->old_block_size;
1920	p->swap_file = NULL;
1921	p->max = 0;
1922	swap_map = p->swap_map;
1923	p->swap_map = NULL;
1924	cluster_info = p->cluster_info;
1925	p->cluster_info = NULL;
1926	frontswap_map = frontswap_map_get(p);
1927	spin_unlock(&p->lock);
1928	spin_unlock(&swap_lock);
1929	frontswap_invalidate_area(type);
1930	frontswap_map_set(p, NULL);
1931	mutex_unlock(&swapon_mutex);
1932	free_percpu(p->percpu_cluster);
1933	p->percpu_cluster = NULL;
1934	vfree(swap_map);
1935	vfree(cluster_info);
1936	vfree(frontswap_map);
1937	/* Destroy swap account information */
1938	swap_cgroup_swapoff(type);
 
1939
1940	inode = mapping->host;
1941	if (S_ISBLK(inode->i_mode)) {
1942		struct block_device *bdev = I_BDEV(inode);
 
1943		set_blocksize(bdev, old_block_size);
1944		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1945	} else {
1946		mutex_lock(&inode->i_mutex);
1947		inode->i_flags &= ~S_SWAPFILE;
1948		mutex_unlock(&inode->i_mutex);
1949	}
 
 
 
 
1950	filp_close(swap_file, NULL);
1951
1952	/*
1953	 * Clear the SWP_USED flag after all resources are freed so that swapon
1954	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
1955	 * not hold p->lock after we cleared its SWP_WRITEOK.
1956	 */
1957	spin_lock(&swap_lock);
1958	p->flags = 0;
1959	spin_unlock(&swap_lock);
1960
1961	err = 0;
1962	atomic_inc(&proc_poll_event);
1963	wake_up_interruptible(&proc_poll_wait);
1964
1965out_dput:
1966	filp_close(victim, NULL);
1967out:
1968	putname(pathname);
1969	return err;
1970}
1971
1972#ifdef CONFIG_PROC_FS
1973static unsigned swaps_poll(struct file *file, poll_table *wait)
1974{
1975	struct seq_file *seq = file->private_data;
1976
1977	poll_wait(file, &proc_poll_wait, wait);
1978
1979	if (seq->poll_event != atomic_read(&proc_poll_event)) {
1980		seq->poll_event = atomic_read(&proc_poll_event);
1981		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1982	}
1983
1984	return POLLIN | POLLRDNORM;
1985}
1986
1987/* iterator */
1988static void *swap_start(struct seq_file *swap, loff_t *pos)
1989{
1990	struct swap_info_struct *si;
1991	int type;
1992	loff_t l = *pos;
1993
1994	mutex_lock(&swapon_mutex);
1995
1996	if (!l)
1997		return SEQ_START_TOKEN;
1998
1999	for (type = 0; type < nr_swapfiles; type++) {
2000		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2001		si = swap_info[type];
2002		if (!(si->flags & SWP_USED) || !si->swap_map)
2003			continue;
2004		if (!--l)
2005			return si;
2006	}
2007
2008	return NULL;
2009}
2010
2011static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2012{
2013	struct swap_info_struct *si = v;
2014	int type;
2015
2016	if (v == SEQ_START_TOKEN)
2017		type = 0;
2018	else
2019		type = si->type + 1;
2020
2021	for (; type < nr_swapfiles; type++) {
2022		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2023		si = swap_info[type];
2024		if (!(si->flags & SWP_USED) || !si->swap_map)
2025			continue;
2026		++*pos;
2027		return si;
2028	}
2029
2030	return NULL;
2031}
2032
2033static void swap_stop(struct seq_file *swap, void *v)
2034{
2035	mutex_unlock(&swapon_mutex);
2036}
2037
2038static int swap_show(struct seq_file *swap, void *v)
2039{
2040	struct swap_info_struct *si = v;
2041	struct file *file;
2042	int len;
2043
2044	if (si == SEQ_START_TOKEN) {
2045		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2046		return 0;
2047	}
2048
2049	file = si->swap_file;
2050	len = seq_path(swap, &file->f_path, " \t\n\\");
2051	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2052			len < 40 ? 40 - len : 1, " ",
2053			S_ISBLK(file_inode(file)->i_mode) ?
2054				"partition" : "file\t",
2055			si->pages << (PAGE_SHIFT - 10),
2056			si->inuse_pages << (PAGE_SHIFT - 10),
2057			si->prio);
2058	return 0;
2059}
2060
2061static const struct seq_operations swaps_op = {
2062	.start =	swap_start,
2063	.next =		swap_next,
2064	.stop =		swap_stop,
2065	.show =		swap_show
2066};
2067
2068static int swaps_open(struct inode *inode, struct file *file)
2069{
2070	struct seq_file *seq;
2071	int ret;
2072
2073	ret = seq_open(file, &swaps_op);
2074	if (ret)
2075		return ret;
2076
2077	seq = file->private_data;
2078	seq->poll_event = atomic_read(&proc_poll_event);
2079	return 0;
2080}
2081
2082static const struct file_operations proc_swaps_operations = {
2083	.open		= swaps_open,
2084	.read		= seq_read,
2085	.llseek		= seq_lseek,
2086	.release	= seq_release,
2087	.poll		= swaps_poll,
2088};
2089
2090static int __init procswaps_init(void)
2091{
2092	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2093	return 0;
2094}
2095__initcall(procswaps_init);
2096#endif /* CONFIG_PROC_FS */
2097
2098#ifdef MAX_SWAPFILES_CHECK
2099static int __init max_swapfiles_check(void)
2100{
2101	MAX_SWAPFILES_CHECK();
2102	return 0;
2103}
2104late_initcall(max_swapfiles_check);
2105#endif
2106
2107static struct swap_info_struct *alloc_swap_info(void)
2108{
2109	struct swap_info_struct *p;
2110	unsigned int type;
 
2111
2112	p = kzalloc(sizeof(*p), GFP_KERNEL);
2113	if (!p)
2114		return ERR_PTR(-ENOMEM);
2115
2116	spin_lock(&swap_lock);
2117	for (type = 0; type < nr_swapfiles; type++) {
2118		if (!(swap_info[type]->flags & SWP_USED))
2119			break;
2120	}
2121	if (type >= MAX_SWAPFILES) {
2122		spin_unlock(&swap_lock);
2123		kfree(p);
2124		return ERR_PTR(-EPERM);
2125	}
2126	if (type >= nr_swapfiles) {
2127		p->type = type;
2128		swap_info[type] = p;
2129		/*
2130		 * Write swap_info[type] before nr_swapfiles, in case a
2131		 * racing procfs swap_start() or swap_next() is reading them.
2132		 * (We never shrink nr_swapfiles, we never free this entry.)
2133		 */
2134		smp_wmb();
2135		nr_swapfiles++;
2136	} else {
2137		kfree(p);
2138		p = swap_info[type];
2139		/*
2140		 * Do not memset this entry: a racing procfs swap_next()
2141		 * would be relying on p->type to remain valid.
2142		 */
2143	}
2144	INIT_LIST_HEAD(&p->first_swap_extent.list);
 
 
 
2145	p->flags = SWP_USED;
2146	p->next = -1;
2147	spin_unlock(&swap_lock);
2148	spin_lock_init(&p->lock);
 
2149
2150	return p;
2151}
2152
2153static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2154{
2155	int error;
2156
2157	if (S_ISBLK(inode->i_mode)) {
2158		p->bdev = bdgrab(I_BDEV(inode));
2159		error = blkdev_get(p->bdev,
2160				   FMODE_READ | FMODE_WRITE | FMODE_EXCL,
2161				   sys_swapon);
2162		if (error < 0) {
2163			p->bdev = NULL;
2164			return -EINVAL;
2165		}
2166		p->old_block_size = block_size(p->bdev);
2167		error = set_blocksize(p->bdev, PAGE_SIZE);
2168		if (error < 0)
2169			return error;
2170		p->flags |= SWP_BLKDEV;
2171	} else if (S_ISREG(inode->i_mode)) {
2172		p->bdev = inode->i_sb->s_bdev;
2173		mutex_lock(&inode->i_mutex);
2174		if (IS_SWAPFILE(inode))
2175			return -EBUSY;
2176	} else
2177		return -EINVAL;
2178
2179	return 0;
2180}
2181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2182static unsigned long read_swap_header(struct swap_info_struct *p,
2183					union swap_header *swap_header,
2184					struct inode *inode)
2185{
2186	int i;
2187	unsigned long maxpages;
2188	unsigned long swapfilepages;
2189	unsigned long last_page;
2190
2191	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2192		pr_err("Unable to find swap-space signature\n");
2193		return 0;
2194	}
2195
2196	/* swap partition endianess hack... */
2197	if (swab32(swap_header->info.version) == 1) {
2198		swab32s(&swap_header->info.version);
2199		swab32s(&swap_header->info.last_page);
2200		swab32s(&swap_header->info.nr_badpages);
 
 
2201		for (i = 0; i < swap_header->info.nr_badpages; i++)
2202			swab32s(&swap_header->info.badpages[i]);
2203	}
2204	/* Check the swap header's sub-version */
2205	if (swap_header->info.version != 1) {
2206		pr_warn("Unable to handle swap header version %d\n",
2207			swap_header->info.version);
2208		return 0;
2209	}
2210
2211	p->lowest_bit  = 1;
2212	p->cluster_next = 1;
2213	p->cluster_nr = 0;
2214
2215	/*
2216	 * Find out how many pages are allowed for a single swap
2217	 * device. There are two limiting factors: 1) the number
2218	 * of bits for the swap offset in the swp_entry_t type, and
2219	 * 2) the number of bits in the swap pte as defined by the
2220	 * different architectures. In order to find the
2221	 * largest possible bit mask, a swap entry with swap type 0
2222	 * and swap offset ~0UL is created, encoded to a swap pte,
2223	 * decoded to a swp_entry_t again, and finally the swap
2224	 * offset is extracted. This will mask all the bits from
2225	 * the initial ~0UL mask that can't be encoded in either
2226	 * the swp_entry_t or the architecture definition of a
2227	 * swap pte.
2228	 */
2229	maxpages = swp_offset(pte_to_swp_entry(
2230			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2231	last_page = swap_header->info.last_page;
 
 
 
 
2232	if (last_page > maxpages) {
2233		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2234			maxpages << (PAGE_SHIFT - 10),
2235			last_page << (PAGE_SHIFT - 10));
2236	}
2237	if (maxpages > last_page) {
2238		maxpages = last_page + 1;
2239		/* p->max is an unsigned int: don't overflow it */
2240		if ((unsigned int)maxpages == 0)
2241			maxpages = UINT_MAX;
2242	}
2243	p->highest_bit = maxpages - 1;
2244
2245	if (!maxpages)
2246		return 0;
2247	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2248	if (swapfilepages && maxpages > swapfilepages) {
2249		pr_warn("Swap area shorter than signature indicates\n");
2250		return 0;
2251	}
2252	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2253		return 0;
2254	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2255		return 0;
2256
2257	return maxpages;
2258}
2259
 
 
 
 
 
 
 
2260static int setup_swap_map_and_extents(struct swap_info_struct *p,
2261					union swap_header *swap_header,
2262					unsigned char *swap_map,
2263					struct swap_cluster_info *cluster_info,
2264					unsigned long maxpages,
2265					sector_t *span)
2266{
2267	int i;
2268	unsigned int nr_good_pages;
2269	int nr_extents;
2270	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2271	unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
 
2272
2273	nr_good_pages = maxpages - 1;	/* omit header page */
2274
2275	cluster_set_null(&p->free_cluster_head);
2276	cluster_set_null(&p->free_cluster_tail);
2277	cluster_set_null(&p->discard_cluster_head);
2278	cluster_set_null(&p->discard_cluster_tail);
2279
2280	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2281		unsigned int page_nr = swap_header->info.badpages[i];
2282		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2283			return -EINVAL;
2284		if (page_nr < maxpages) {
2285			swap_map[page_nr] = SWAP_MAP_BAD;
2286			nr_good_pages--;
2287			/*
2288			 * Haven't marked the cluster free yet, no list
2289			 * operation involved
2290			 */
2291			inc_cluster_info_page(p, cluster_info, page_nr);
2292		}
2293	}
2294
2295	/* Haven't marked the cluster free yet, no list operation involved */
2296	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2297		inc_cluster_info_page(p, cluster_info, i);
2298
2299	if (nr_good_pages) {
2300		swap_map[0] = SWAP_MAP_BAD;
2301		/*
2302		 * Not mark the cluster free yet, no list
2303		 * operation involved
2304		 */
2305		inc_cluster_info_page(p, cluster_info, 0);
2306		p->max = maxpages;
2307		p->pages = nr_good_pages;
2308		nr_extents = setup_swap_extents(p, span);
2309		if (nr_extents < 0)
2310			return nr_extents;
2311		nr_good_pages = p->pages;
2312	}
2313	if (!nr_good_pages) {
2314		pr_warn("Empty swap-file\n");
2315		return -EINVAL;
2316	}
2317
2318	if (!cluster_info)
2319		return nr_extents;
2320
2321	for (i = 0; i < nr_clusters; i++) {
2322		if (!cluster_count(&cluster_info[idx])) {
 
 
 
 
 
 
 
 
 
 
 
2323			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2324			if (cluster_is_null(&p->free_cluster_head)) {
2325				cluster_set_next_flag(&p->free_cluster_head,
2326								idx, 0);
2327				cluster_set_next_flag(&p->free_cluster_tail,
2328								idx, 0);
2329			} else {
2330				unsigned int tail;
2331
2332				tail = cluster_next(&p->free_cluster_tail);
2333				cluster_set_next(&cluster_info[tail], idx);
2334				cluster_set_next_flag(&p->free_cluster_tail,
2335								idx, 0);
2336			}
2337		}
2338		idx++;
2339		if (idx == nr_clusters)
2340			idx = 0;
2341	}
2342	return nr_extents;
2343}
2344
2345/*
2346 * Helper to sys_swapon determining if a given swap
2347 * backing device queue supports DISCARD operations.
2348 */
2349static bool swap_discardable(struct swap_info_struct *si)
2350{
2351	struct request_queue *q = bdev_get_queue(si->bdev);
2352
2353	if (!q || !blk_queue_discard(q))
2354		return false;
2355
2356	return true;
2357}
2358
2359SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2360{
2361	struct swap_info_struct *p;
2362	struct filename *name;
2363	struct file *swap_file = NULL;
2364	struct address_space *mapping;
2365	int i;
2366	int prio;
2367	int error;
2368	union swap_header *swap_header;
2369	int nr_extents;
2370	sector_t span;
2371	unsigned long maxpages;
2372	unsigned char *swap_map = NULL;
2373	struct swap_cluster_info *cluster_info = NULL;
2374	unsigned long *frontswap_map = NULL;
2375	struct page *page = NULL;
2376	struct inode *inode = NULL;
 
2377
2378	if (swap_flags & ~SWAP_FLAGS_VALID)
2379		return -EINVAL;
2380
2381	if (!capable(CAP_SYS_ADMIN))
2382		return -EPERM;
2383
 
 
 
2384	p = alloc_swap_info();
2385	if (IS_ERR(p))
2386		return PTR_ERR(p);
2387
2388	INIT_WORK(&p->discard_work, swap_discard_work);
2389
2390	name = getname(specialfile);
2391	if (IS_ERR(name)) {
2392		error = PTR_ERR(name);
2393		name = NULL;
2394		goto bad_swap;
2395	}
2396	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2397	if (IS_ERR(swap_file)) {
2398		error = PTR_ERR(swap_file);
2399		swap_file = NULL;
2400		goto bad_swap;
2401	}
2402
2403	p->swap_file = swap_file;
2404	mapping = swap_file->f_mapping;
 
2405
2406	for (i = 0; i < nr_swapfiles; i++) {
2407		struct swap_info_struct *q = swap_info[i];
2408
2409		if (q == p || !q->swap_file)
2410			continue;
2411		if (mapping == q->swap_file->f_mapping) {
2412			error = -EBUSY;
2413			goto bad_swap;
2414		}
2415	}
2416
2417	inode = mapping->host;
2418	/* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2419	error = claim_swapfile(p, inode);
2420	if (unlikely(error))
2421		goto bad_swap;
2422
2423	/*
2424	 * Read the swap header.
2425	 */
2426	if (!mapping->a_ops->readpage) {
2427		error = -EINVAL;
2428		goto bad_swap;
2429	}
2430	page = read_mapping_page(mapping, 0, swap_file);
2431	if (IS_ERR(page)) {
2432		error = PTR_ERR(page);
2433		goto bad_swap;
2434	}
2435	swap_header = kmap(page);
2436
2437	maxpages = read_swap_header(p, swap_header, inode);
2438	if (unlikely(!maxpages)) {
2439		error = -EINVAL;
2440		goto bad_swap;
2441	}
2442
2443	/* OK, set up the swap map and apply the bad block list */
2444	swap_map = vzalloc(maxpages);
2445	if (!swap_map) {
2446		error = -ENOMEM;
2447		goto bad_swap;
2448	}
 
 
 
 
 
 
 
2449	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
 
 
 
2450		p->flags |= SWP_SOLIDSTATE;
2451		/*
2452		 * select a random position to start with to help wear leveling
2453		 * SSD
2454		 */
2455		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
 
2456
2457		cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2458			SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2459		if (!cluster_info) {
2460			error = -ENOMEM;
2461			goto bad_swap;
2462		}
 
 
 
 
2463		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2464		if (!p->percpu_cluster) {
2465			error = -ENOMEM;
2466			goto bad_swap;
2467		}
2468		for_each_possible_cpu(i) {
2469			struct percpu_cluster *cluster;
2470			cluster = per_cpu_ptr(p->percpu_cluster, i);
2471			cluster_set_null(&cluster->index);
2472		}
 
 
 
2473	}
2474
2475	error = swap_cgroup_swapon(p->type, maxpages);
2476	if (error)
2477		goto bad_swap;
2478
2479	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2480		cluster_info, maxpages, &span);
2481	if (unlikely(nr_extents < 0)) {
2482		error = nr_extents;
2483		goto bad_swap;
2484	}
2485	/* frontswap enabled? set up bit-per-page map for frontswap */
2486	if (frontswap_enabled)
2487		frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
 
 
2488
2489	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2490		/*
2491		 * When discard is enabled for swap with no particular
2492		 * policy flagged, we set all swap discard flags here in
2493		 * order to sustain backward compatibility with older
2494		 * swapon(8) releases.
2495		 */
2496		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2497			     SWP_PAGE_DISCARD);
2498
2499		/*
2500		 * By flagging sys_swapon, a sysadmin can tell us to
2501		 * either do single-time area discards only, or to just
2502		 * perform discards for released swap page-clusters.
2503		 * Now it's time to adjust the p->flags accordingly.
2504		 */
2505		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2506			p->flags &= ~SWP_PAGE_DISCARD;
2507		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2508			p->flags &= ~SWP_AREA_DISCARD;
2509
2510		/* issue a swapon-time discard if it's still required */
2511		if (p->flags & SWP_AREA_DISCARD) {
2512			int err = discard_swap(p);
2513			if (unlikely(err))
2514				pr_err("swapon: discard_swap(%p): %d\n",
2515					p, err);
2516		}
2517	}
2518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2519	mutex_lock(&swapon_mutex);
2520	prio = -1;
2521	if (swap_flags & SWAP_FLAG_PREFER)
2522		prio =
2523		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2524	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2525
2526	pr_info("Adding %uk swap on %s.  "
2527			"Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2528		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2529		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2530		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2531		(p->flags & SWP_DISCARDABLE) ? "D" : "",
2532		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
2533		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2534		(frontswap_map) ? "FS" : "");
2535
2536	mutex_unlock(&swapon_mutex);
2537	atomic_inc(&proc_poll_event);
2538	wake_up_interruptible(&proc_poll_wait);
2539
2540	if (S_ISREG(inode->i_mode))
2541		inode->i_flags |= S_SWAPFILE;
2542	error = 0;
2543	goto out;
2544bad_swap:
2545	free_percpu(p->percpu_cluster);
2546	p->percpu_cluster = NULL;
2547	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2548		set_blocksize(p->bdev, p->old_block_size);
2549		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2550	}
2551	destroy_swap_extents(p);
2552	swap_cgroup_swapoff(p->type);
2553	spin_lock(&swap_lock);
2554	p->swap_file = NULL;
2555	p->flags = 0;
2556	spin_unlock(&swap_lock);
2557	vfree(swap_map);
2558	vfree(cluster_info);
 
 
 
2559	if (swap_file) {
2560		if (inode && S_ISREG(inode->i_mode)) {
2561			mutex_unlock(&inode->i_mutex);
2562			inode = NULL;
2563		}
2564		filp_close(swap_file, NULL);
2565	}
2566out:
2567	if (page && !IS_ERR(page)) {
2568		kunmap(page);
2569		page_cache_release(page);
2570	}
2571	if (name)
2572		putname(name);
2573	if (inode && S_ISREG(inode->i_mode))
2574		mutex_unlock(&inode->i_mutex);
 
 
2575	return error;
2576}
2577
2578void si_swapinfo(struct sysinfo *val)
2579{
2580	unsigned int type;
2581	unsigned long nr_to_be_unused = 0;
2582
2583	spin_lock(&swap_lock);
2584	for (type = 0; type < nr_swapfiles; type++) {
2585		struct swap_info_struct *si = swap_info[type];
2586
2587		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2588			nr_to_be_unused += si->inuse_pages;
2589	}
2590	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2591	val->totalswap = total_swap_pages + nr_to_be_unused;
2592	spin_unlock(&swap_lock);
2593}
2594
2595/*
2596 * Verify that a swap entry is valid and increment its swap map count.
2597 *
2598 * Returns error code in following case.
2599 * - success -> 0
2600 * - swp_entry is invalid -> EINVAL
2601 * - swp_entry is migration entry -> EINVAL
2602 * - swap-cache reference is requested but there is already one. -> EEXIST
2603 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2604 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2605 */
2606static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2607{
2608	struct swap_info_struct *p;
2609	unsigned long offset, type;
 
2610	unsigned char count;
2611	unsigned char has_cache;
2612	int err = -EINVAL;
2613
2614	if (non_swap_entry(entry))
 
2615		goto out;
2616
2617	type = swp_type(entry);
2618	if (type >= nr_swapfiles)
2619		goto bad_file;
2620	p = swap_info[type];
2621	offset = swp_offset(entry);
2622
2623	spin_lock(&p->lock);
2624	if (unlikely(offset >= p->max))
2625		goto unlock_out;
2626
2627	count = p->swap_map[offset];
2628
2629	/*
2630	 * swapin_readahead() doesn't check if a swap entry is valid, so the
2631	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2632	 */
2633	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2634		err = -ENOENT;
2635		goto unlock_out;
2636	}
2637
2638	has_cache = count & SWAP_HAS_CACHE;
2639	count &= ~SWAP_HAS_CACHE;
2640	err = 0;
2641
2642	if (usage == SWAP_HAS_CACHE) {
2643
2644		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2645		if (!has_cache && count)
2646			has_cache = SWAP_HAS_CACHE;
2647		else if (has_cache)		/* someone else added cache */
2648			err = -EEXIST;
2649		else				/* no users remaining */
2650			err = -ENOENT;
2651
2652	} else if (count || has_cache) {
2653
2654		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2655			count += usage;
2656		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2657			err = -EINVAL;
2658		else if (swap_count_continued(p, offset, count))
2659			count = COUNT_CONTINUED;
2660		else
2661			err = -ENOMEM;
2662	} else
2663		err = -ENOENT;			/* unused swap entry */
2664
2665	p->swap_map[offset] = count | has_cache;
2666
2667unlock_out:
2668	spin_unlock(&p->lock);
2669out:
 
 
2670	return err;
2671
2672bad_file:
2673	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2674	goto out;
2675}
2676
2677/*
2678 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2679 * (in which case its reference count is never incremented).
2680 */
2681void swap_shmem_alloc(swp_entry_t entry)
2682{
2683	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2684}
2685
2686/*
2687 * Increase reference count of swap entry by 1.
2688 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2689 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2690 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2691 * might occur if a page table entry has got corrupted.
2692 */
2693int swap_duplicate(swp_entry_t entry)
2694{
2695	int err = 0;
2696
2697	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2698		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2699	return err;
2700}
2701
2702/*
2703 * @entry: swap entry for which we allocate swap cache.
2704 *
2705 * Called when allocating swap cache for existing swap entry,
2706 * This can return error codes. Returns 0 at success.
2707 * -EBUSY means there is a swap cache.
2708 * Note: return code is different from swap_duplicate().
2709 */
2710int swapcache_prepare(swp_entry_t entry)
2711{
2712	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2713}
2714
 
 
 
 
 
2715struct swap_info_struct *page_swap_info(struct page *page)
2716{
2717	swp_entry_t swap = { .val = page_private(page) };
2718	BUG_ON(!PageSwapCache(page));
2719	return swap_info[swp_type(swap)];
2720}
2721
2722/*
2723 * out-of-line __page_file_ methods to avoid include hell.
2724 */
2725struct address_space *__page_file_mapping(struct page *page)
2726{
2727	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2728	return page_swap_info(page)->swap_file->f_mapping;
2729}
2730EXPORT_SYMBOL_GPL(__page_file_mapping);
2731
2732pgoff_t __page_file_index(struct page *page)
2733{
2734	swp_entry_t swap = { .val = page_private(page) };
2735	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2736	return swp_offset(swap);
2737}
2738EXPORT_SYMBOL_GPL(__page_file_index);
2739
2740/*
2741 * add_swap_count_continuation - called when a swap count is duplicated
2742 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2743 * page of the original vmalloc'ed swap_map, to hold the continuation count
2744 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2745 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2746 *
2747 * These continuation pages are seldom referenced: the common paths all work
2748 * on the original swap_map, only referring to a continuation page when the
2749 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2750 *
2751 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2752 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2753 * can be called after dropping locks.
2754 */
2755int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2756{
2757	struct swap_info_struct *si;
 
2758	struct page *head;
2759	struct page *page;
2760	struct page *list_page;
2761	pgoff_t offset;
2762	unsigned char count;
 
2763
2764	/*
2765	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2766	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2767	 */
2768	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2769
2770	si = swap_info_get(entry);
2771	if (!si) {
2772		/*
2773		 * An acceptable race has occurred since the failing
2774		 * __swap_duplicate(): the swap entry has been freed,
2775		 * perhaps even the whole swap_map cleared for swapoff.
2776		 */
2777		goto outer;
2778	}
 
2779
2780	offset = swp_offset(entry);
 
 
 
2781	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2782
2783	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2784		/*
2785		 * The higher the swap count, the more likely it is that tasks
2786		 * will race to add swap count continuation: we need to avoid
2787		 * over-provisioning.
2788		 */
2789		goto out;
2790	}
2791
2792	if (!page) {
2793		spin_unlock(&si->lock);
2794		return -ENOMEM;
2795	}
2796
2797	/*
2798	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2799	 * no architecture is using highmem pages for kernel page tables: so it
2800	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2801	 */
2802	head = vmalloc_to_page(si->swap_map + offset);
2803	offset &= ~PAGE_MASK;
2804
 
2805	/*
2806	 * Page allocation does not initialize the page's lru field,
2807	 * but it does always reset its private field.
2808	 */
2809	if (!page_private(head)) {
2810		BUG_ON(count & COUNT_CONTINUED);
2811		INIT_LIST_HEAD(&head->lru);
2812		set_page_private(head, SWP_CONTINUED);
2813		si->flags |= SWP_CONTINUED;
2814	}
2815
2816	list_for_each_entry(list_page, &head->lru, lru) {
2817		unsigned char *map;
2818
2819		/*
2820		 * If the previous map said no continuation, but we've found
2821		 * a continuation page, free our allocation and use this one.
2822		 */
2823		if (!(count & COUNT_CONTINUED))
2824			goto out;
2825
2826		map = kmap_atomic(list_page) + offset;
2827		count = *map;
2828		kunmap_atomic(map);
2829
2830		/*
2831		 * If this continuation count now has some space in it,
2832		 * free our allocation and use this one.
2833		 */
2834		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2835			goto out;
2836	}
2837
2838	list_add_tail(&page->lru, &head->lru);
2839	page = NULL;			/* now it's attached, don't free it */
 
 
2840out:
 
2841	spin_unlock(&si->lock);
 
2842outer:
2843	if (page)
2844		__free_page(page);
2845	return 0;
2846}
2847
2848/*
2849 * swap_count_continued - when the original swap_map count is incremented
2850 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2851 * into, carry if so, or else fail until a new continuation page is allocated;
2852 * when the original swap_map count is decremented from 0 with continuation,
2853 * borrow from the continuation and report whether it still holds more.
2854 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
 
2855 */
2856static bool swap_count_continued(struct swap_info_struct *si,
2857				 pgoff_t offset, unsigned char count)
2858{
2859	struct page *head;
2860	struct page *page;
2861	unsigned char *map;
 
2862
2863	head = vmalloc_to_page(si->swap_map + offset);
2864	if (page_private(head) != SWP_CONTINUED) {
2865		BUG_ON(count & COUNT_CONTINUED);
2866		return false;		/* need to add count continuation */
2867	}
2868
 
2869	offset &= ~PAGE_MASK;
2870	page = list_entry(head->lru.next, struct page, lru);
2871	map = kmap_atomic(page) + offset;
2872
2873	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2874		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2875
2876	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2877		/*
2878		 * Think of how you add 1 to 999
2879		 */
2880		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2881			kunmap_atomic(map);
2882			page = list_entry(page->lru.next, struct page, lru);
2883			BUG_ON(page == head);
2884			map = kmap_atomic(page) + offset;
2885		}
2886		if (*map == SWAP_CONT_MAX) {
2887			kunmap_atomic(map);
2888			page = list_entry(page->lru.next, struct page, lru);
2889			if (page == head)
2890				return false;	/* add count continuation */
 
 
2891			map = kmap_atomic(page) + offset;
2892init_map:		*map = 0;		/* we didn't zero the page */
2893		}
2894		*map += 1;
2895		kunmap_atomic(map);
2896		page = list_entry(page->lru.prev, struct page, lru);
2897		while (page != head) {
2898			map = kmap_atomic(page) + offset;
2899			*map = COUNT_CONTINUED;
2900			kunmap_atomic(map);
2901			page = list_entry(page->lru.prev, struct page, lru);
2902		}
2903		return true;			/* incremented */
2904
2905	} else {				/* decrementing */
2906		/*
2907		 * Think of how you subtract 1 from 1000
2908		 */
2909		BUG_ON(count != COUNT_CONTINUED);
2910		while (*map == COUNT_CONTINUED) {
2911			kunmap_atomic(map);
2912			page = list_entry(page->lru.next, struct page, lru);
2913			BUG_ON(page == head);
2914			map = kmap_atomic(page) + offset;
2915		}
2916		BUG_ON(*map == 0);
2917		*map -= 1;
2918		if (*map == 0)
2919			count = 0;
2920		kunmap_atomic(map);
2921		page = list_entry(page->lru.prev, struct page, lru);
2922		while (page != head) {
2923			map = kmap_atomic(page) + offset;
2924			*map = SWAP_CONT_MAX | count;
2925			count = COUNT_CONTINUED;
2926			kunmap_atomic(map);
2927			page = list_entry(page->lru.prev, struct page, lru);
2928		}
2929		return count == COUNT_CONTINUED;
2930	}
 
 
 
2931}
2932
2933/*
2934 * free_swap_count_continuations - swapoff free all the continuation pages
2935 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2936 */
2937static void free_swap_count_continuations(struct swap_info_struct *si)
2938{
2939	pgoff_t offset;
2940
2941	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2942		struct page *head;
2943		head = vmalloc_to_page(si->swap_map + offset);
2944		if (page_private(head)) {
2945			struct list_head *this, *next;
2946			list_for_each_safe(this, next, &head->lru) {
2947				struct page *page;
2948				page = list_entry(this, struct page, lru);
2949				list_del(this);
2950				__free_page(page);
2951			}
2952		}
2953	}
2954}