Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swapfile.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *  Swap reorganised 29.12.95, Stephen Tweedie
   7 */
   8
 
   9#include <linux/mm.h>
  10#include <linux/sched/mm.h>
  11#include <linux/sched/task.h>
  12#include <linux/hugetlb.h>
  13#include <linux/mman.h>
  14#include <linux/slab.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/swap.h>
  17#include <linux/vmalloc.h>
  18#include <linux/pagemap.h>
  19#include <linux/namei.h>
  20#include <linux/shmem_fs.h>
  21#include <linux/blkdev.h>
  22#include <linux/random.h>
  23#include <linux/writeback.h>
  24#include <linux/proc_fs.h>
  25#include <linux/seq_file.h>
  26#include <linux/init.h>
  27#include <linux/ksm.h>
  28#include <linux/rmap.h>
  29#include <linux/security.h>
  30#include <linux/backing-dev.h>
  31#include <linux/mutex.h>
  32#include <linux/capability.h>
  33#include <linux/syscalls.h>
  34#include <linux/memcontrol.h>
  35#include <linux/poll.h>
  36#include <linux/oom.h>
  37#include <linux/frontswap.h>
  38#include <linux/swapfile.h>
  39#include <linux/export.h>
  40#include <linux/swap_slots.h>
  41#include <linux/sort.h>
 
 
 
 
  42
  43#include <asm/pgtable.h>
  44#include <asm/tlbflush.h>
  45#include <linux/swapops.h>
  46#include <linux/swap_cgroup.h>
 
 
  47
  48static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  49				 unsigned char);
  50static void free_swap_count_continuations(struct swap_info_struct *);
  51static sector_t map_swap_entry(swp_entry_t, struct block_device**);
 
 
 
 
 
 
 
 
  52
  53DEFINE_SPINLOCK(swap_lock);
  54static unsigned int nr_swapfiles;
  55atomic_long_t nr_swap_pages;
  56/*
  57 * Some modules use swappable objects and may try to swap them out under
  58 * memory pressure (via the shrinker). Before doing so, they may wish to
  59 * check to see if any swap space is available.
  60 */
  61EXPORT_SYMBOL_GPL(nr_swap_pages);
  62/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
  63long total_swap_pages;
  64static int least_priority = -1;
 
 
 
 
  65
  66static const char Bad_file[] = "Bad swap file entry ";
  67static const char Unused_file[] = "Unused swap file entry ";
  68static const char Bad_offset[] = "Bad swap offset entry ";
  69static const char Unused_offset[] = "Unused swap offset entry ";
  70
  71/*
  72 * all active swap_info_structs
  73 * protected with swap_lock, and ordered by priority.
  74 */
  75PLIST_HEAD(swap_active_head);
  76
  77/*
  78 * all available (active, not full) swap_info_structs
  79 * protected with swap_avail_lock, ordered by priority.
  80 * This is used by get_swap_page() instead of swap_active_head
  81 * because swap_active_head includes all swap_info_structs,
  82 * but get_swap_page() doesn't need to look at full ones.
  83 * This uses its own lock instead of swap_lock because when a
  84 * swap_info_struct changes between not-full/full, it needs to
  85 * add/remove itself to/from this list, but the swap_info_struct->lock
  86 * is held and the locking order requires swap_lock to be taken
  87 * before any swap_info_struct->lock.
  88 */
  89static struct plist_head *swap_avail_heads;
  90static DEFINE_SPINLOCK(swap_avail_lock);
  91
  92struct swap_info_struct *swap_info[MAX_SWAPFILES];
  93
  94static DEFINE_MUTEX(swapon_mutex);
  95
  96static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
  97/* Activity counter to indicate that a swapon or swapoff has occurred */
  98static atomic_t proc_poll_event = ATOMIC_INIT(0);
  99
 100atomic_t nr_rotate_swap = ATOMIC_INIT(0);
 101
 102static struct swap_info_struct *swap_type_to_swap_info(int type)
 103{
 104	if (type >= READ_ONCE(nr_swapfiles))
 105		return NULL;
 106
 107	smp_rmb();	/* Pairs with smp_wmb in alloc_swap_info. */
 108	return READ_ONCE(swap_info[type]);
 109}
 110
 111static inline unsigned char swap_count(unsigned char ent)
 112{
 113	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
 114}
 115
 116/* Reclaim the swap entry anyway if possible */
 117#define TTRS_ANYWAY		0x1
 118/*
 119 * Reclaim the swap entry if there are no more mappings of the
 120 * corresponding page
 121 */
 122#define TTRS_UNMAPPED		0x2
 123/* Reclaim the swap entry if swap is getting full*/
 124#define TTRS_FULL		0x4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 125
 126/* returns 1 if swap entry is freed */
 
 
 
 
 
 
 
 
 
 
 
 
 
 127static int __try_to_reclaim_swap(struct swap_info_struct *si,
 128				 unsigned long offset, unsigned long flags)
 129{
 130	swp_entry_t entry = swp_entry(si->type, offset);
 131	struct page *page;
 132	int ret = 0;
 
 
 
 133
 134	page = find_get_page(swap_address_space(entry), offset);
 135	if (!page)
 136		return 0;
 
 
 
 
 137	/*
 138	 * When this function is called from scan_swap_map_slots() and it's
 139	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
 140	 * here. We have to use trylock for avoiding deadlock. This is a special
 141	 * case and you should use try_to_free_swap() with explicit lock_page()
 142	 * in usual operations.
 143	 */
 144	if (trylock_page(page)) {
 145		if ((flags & TTRS_ANYWAY) ||
 146		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
 147		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
 148			ret = try_to_free_swap(page);
 149		unlock_page(page);
 150	}
 151	put_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152	return ret;
 153}
 154
 155static inline struct swap_extent *first_se(struct swap_info_struct *sis)
 156{
 157	struct rb_node *rb = rb_first(&sis->swap_extent_root);
 158	return rb_entry(rb, struct swap_extent, rb_node);
 159}
 160
 161static inline struct swap_extent *next_se(struct swap_extent *se)
 162{
 163	struct rb_node *rb = rb_next(&se->rb_node);
 164	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
 165}
 166
 167/*
 168 * swapon tell device that all the old swap contents can be discarded,
 169 * to allow the swap device to optimize its wear-levelling.
 170 */
 171static int discard_swap(struct swap_info_struct *si)
 172{
 173	struct swap_extent *se;
 174	sector_t start_block;
 175	sector_t nr_blocks;
 176	int err = 0;
 177
 178	/* Do not discard the swap header page! */
 179	se = first_se(si);
 180	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 181	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 182	if (nr_blocks) {
 183		err = blkdev_issue_discard(si->bdev, start_block,
 184				nr_blocks, GFP_KERNEL, 0);
 185		if (err)
 186			return err;
 187		cond_resched();
 188	}
 189
 190	for (se = next_se(se); se; se = next_se(se)) {
 191		start_block = se->start_block << (PAGE_SHIFT - 9);
 192		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 193
 194		err = blkdev_issue_discard(si->bdev, start_block,
 195				nr_blocks, GFP_KERNEL, 0);
 196		if (err)
 197			break;
 198
 199		cond_resched();
 200	}
 201	return err;		/* That will often be -EOPNOTSUPP */
 202}
 203
 204static struct swap_extent *
 205offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
 206{
 207	struct swap_extent *se;
 208	struct rb_node *rb;
 209
 210	rb = sis->swap_extent_root.rb_node;
 211	while (rb) {
 212		se = rb_entry(rb, struct swap_extent, rb_node);
 213		if (offset < se->start_page)
 214			rb = rb->rb_left;
 215		else if (offset >= se->start_page + se->nr_pages)
 216			rb = rb->rb_right;
 217		else
 218			return se;
 219	}
 220	/* It *must* be present */
 221	BUG();
 222}
 223
 
 
 
 
 
 
 
 
 
 
 
 
 
 224/*
 225 * swap allocation tell device that a cluster of swap can now be discarded,
 226 * to allow the swap device to optimize its wear-levelling.
 227 */
 228static void discard_swap_cluster(struct swap_info_struct *si,
 229				 pgoff_t start_page, pgoff_t nr_pages)
 230{
 231	struct swap_extent *se = offset_to_swap_extent(si, start_page);
 232
 233	while (nr_pages) {
 234		pgoff_t offset = start_page - se->start_page;
 235		sector_t start_block = se->start_block + offset;
 236		sector_t nr_blocks = se->nr_pages - offset;
 237
 238		if (nr_blocks > nr_pages)
 239			nr_blocks = nr_pages;
 240		start_page += nr_blocks;
 241		nr_pages -= nr_blocks;
 242
 243		start_block <<= PAGE_SHIFT - 9;
 244		nr_blocks <<= PAGE_SHIFT - 9;
 245		if (blkdev_issue_discard(si->bdev, start_block,
 246					nr_blocks, GFP_NOIO, 0))
 247			break;
 248
 249		se = next_se(se);
 250	}
 251}
 252
 253#ifdef CONFIG_THP_SWAP
 254#define SWAPFILE_CLUSTER	HPAGE_PMD_NR
 255
 256#define swap_entry_size(size)	(size)
 257#else
 258#define SWAPFILE_CLUSTER	256
 259
 260/*
 261 * Define swap_entry_size() as constant to let compiler to optimize
 262 * out some code if !CONFIG_THP_SWAP
 263 */
 264#define swap_entry_size(size)	1
 265#endif
 266#define LATENCY_LIMIT		256
 267
 268static inline void cluster_set_flag(struct swap_cluster_info *info,
 269	unsigned int flag)
 270{
 271	info->flags = flag;
 272}
 273
 274static inline unsigned int cluster_count(struct swap_cluster_info *info)
 275{
 276	return info->data;
 277}
 278
 279static inline void cluster_set_count(struct swap_cluster_info *info,
 280				     unsigned int c)
 281{
 282	info->data = c;
 283}
 284
 285static inline void cluster_set_count_flag(struct swap_cluster_info *info,
 286					 unsigned int c, unsigned int f)
 287{
 288	info->flags = f;
 289	info->data = c;
 290}
 291
 292static inline unsigned int cluster_next(struct swap_cluster_info *info)
 293{
 294	return info->data;
 295}
 296
 297static inline void cluster_set_next(struct swap_cluster_info *info,
 298				    unsigned int n)
 299{
 300	info->data = n;
 301}
 302
 303static inline void cluster_set_next_flag(struct swap_cluster_info *info,
 304					 unsigned int n, unsigned int f)
 305{
 306	info->flags = f;
 307	info->data = n;
 308}
 309
 310static inline bool cluster_is_free(struct swap_cluster_info *info)
 311{
 312	return info->flags & CLUSTER_FLAG_FREE;
 313}
 314
 315static inline bool cluster_is_null(struct swap_cluster_info *info)
 
 316{
 317	return info->flags & CLUSTER_FLAG_NEXT_NULL;
 318}
 319
 320static inline void cluster_set_null(struct swap_cluster_info *info)
 
 321{
 322	info->flags = CLUSTER_FLAG_NEXT_NULL;
 323	info->data = 0;
 324}
 325
 326static inline bool cluster_is_huge(struct swap_cluster_info *info)
 327{
 328	if (IS_ENABLED(CONFIG_THP_SWAP))
 329		return info->flags & CLUSTER_FLAG_HUGE;
 330	return false;
 331}
 332
 333static inline void cluster_clear_huge(struct swap_cluster_info *info)
 334{
 335	info->flags &= ~CLUSTER_FLAG_HUGE;
 336}
 337
 338static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
 339						     unsigned long offset)
 340{
 341	struct swap_cluster_info *ci;
 342
 343	ci = si->cluster_info;
 344	if (ci) {
 345		ci += offset / SWAPFILE_CLUSTER;
 346		spin_lock(&ci->lock);
 347	}
 348	return ci;
 349}
 350
 351static inline void unlock_cluster(struct swap_cluster_info *ci)
 352{
 353	if (ci)
 354		spin_unlock(&ci->lock);
 355}
 356
 357/*
 358 * Determine the locking method in use for this device.  Return
 359 * swap_cluster_info if SSD-style cluster-based locking is in place.
 360 */
 361static inline struct swap_cluster_info *lock_cluster_or_swap_info(
 362		struct swap_info_struct *si, unsigned long offset)
 363{
 364	struct swap_cluster_info *ci;
 365
 366	/* Try to use fine-grained SSD-style locking if available: */
 367	ci = lock_cluster(si, offset);
 368	/* Otherwise, fall back to traditional, coarse locking: */
 369	if (!ci)
 370		spin_lock(&si->lock);
 371
 372	return ci;
 373}
 374
 375static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
 376					       struct swap_cluster_info *ci)
 377{
 378	if (ci)
 379		unlock_cluster(ci);
 380	else
 381		spin_unlock(&si->lock);
 382}
 383
 384static inline bool cluster_list_empty(struct swap_cluster_list *list)
 385{
 386	return cluster_is_null(&list->head);
 387}
 388
 389static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
 390{
 391	return cluster_next(&list->head);
 392}
 393
 394static void cluster_list_init(struct swap_cluster_list *list)
 395{
 396	cluster_set_null(&list->head);
 397	cluster_set_null(&list->tail);
 398}
 399
 400static void cluster_list_add_tail(struct swap_cluster_list *list,
 401				  struct swap_cluster_info *ci,
 402				  unsigned int idx)
 403{
 404	if (cluster_list_empty(list)) {
 405		cluster_set_next_flag(&list->head, idx, 0);
 406		cluster_set_next_flag(&list->tail, idx, 0);
 407	} else {
 408		struct swap_cluster_info *ci_tail;
 409		unsigned int tail = cluster_next(&list->tail);
 410
 411		/*
 412		 * Nested cluster lock, but both cluster locks are
 413		 * only acquired when we held swap_info_struct->lock
 414		 */
 415		ci_tail = ci + tail;
 416		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
 417		cluster_set_next(ci_tail, idx);
 418		spin_unlock(&ci_tail->lock);
 419		cluster_set_next_flag(&list->tail, idx, 0);
 420	}
 421}
 422
 423static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
 424					   struct swap_cluster_info *ci)
 425{
 426	unsigned int idx;
 427
 428	idx = cluster_next(&list->head);
 429	if (cluster_next(&list->tail) == idx) {
 430		cluster_set_null(&list->head);
 431		cluster_set_null(&list->tail);
 432	} else
 433		cluster_set_next_flag(&list->head,
 434				      cluster_next(&ci[idx]), 0);
 435
 436	return idx;
 437}
 438
 439/* Add a cluster to discard list and schedule it to do discard */
 440static void swap_cluster_schedule_discard(struct swap_info_struct *si,
 441		unsigned int idx)
 442{
 
 443	/*
 444	 * If scan_swap_map() can't find a free cluster, it will check
 445	 * si->swap_map directly. To make sure the discarding cluster isn't
 446	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
 447	 * will be cleared after discard
 448	 */
 449	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 450			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
 451
 452	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
 453
 
 454	schedule_work(&si->discard_work);
 455}
 456
 457static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
 458{
 459	struct swap_cluster_info *ci = si->cluster_info;
 
 460
 461	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
 462	cluster_list_add_tail(&si->free_clusters, ci, idx);
 
 
 
 
 463}
 464
 465/*
 466 * Doing discard actually. After a cluster discard is finished, the cluster
 467 * will be added to free cluster list. caller should hold si->lock.
 468*/
 469static void swap_do_scheduled_discard(struct swap_info_struct *si)
 470{
 471	struct swap_cluster_info *info, *ci;
 472	unsigned int idx;
 473
 474	info = si->cluster_info;
 475
 476	while (!cluster_list_empty(&si->discard_clusters)) {
 477		idx = cluster_list_del_first(&si->discard_clusters, info);
 478		spin_unlock(&si->lock);
 479
 480		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
 481				SWAPFILE_CLUSTER);
 482
 483		spin_lock(&si->lock);
 484		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
 485		__free_cluster(si, idx);
 486		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 487				0, SWAPFILE_CLUSTER);
 488		unlock_cluster(ci);
 489	}
 490}
 491
 492static void swap_discard_work(struct work_struct *work)
 493{
 494	struct swap_info_struct *si;
 495
 496	si = container_of(work, struct swap_info_struct, discard_work);
 497
 498	spin_lock(&si->lock);
 499	swap_do_scheduled_discard(si);
 500	spin_unlock(&si->lock);
 501}
 502
 503static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
 504{
 505	struct swap_cluster_info *ci = si->cluster_info;
 506
 507	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
 508	cluster_list_del_first(&si->free_clusters, ci);
 509	cluster_set_count_flag(ci + idx, 0, 0);
 510}
 511
 512static void free_cluster(struct swap_info_struct *si, unsigned long idx)
 513{
 514	struct swap_cluster_info *ci = si->cluster_info + idx;
 
 
 
 
 
 515
 516	VM_BUG_ON(cluster_count(ci) != 0);
 517	/*
 518	 * If the swap is discardable, prepare discard the cluster
 519	 * instead of free it immediately. The cluster will be freed
 520	 * after discard.
 521	 */
 522	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
 523	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
 524		swap_cluster_schedule_discard(si, idx);
 525		return;
 526	}
 527
 528	__free_cluster(si, idx);
 529}
 530
 531/*
 532 * The cluster corresponding to page_nr will be used. The cluster will be
 533 * removed from free cluster list and its usage counter will be increased.
 
 534 */
 535static void inc_cluster_info_page(struct swap_info_struct *p,
 536	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 537{
 538	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 
 539
 540	if (!cluster_info)
 541		return;
 542	if (cluster_is_free(&cluster_info[idx]))
 543		alloc_cluster(p, idx);
 544
 545	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
 546	cluster_set_count(&cluster_info[idx],
 547		cluster_count(&cluster_info[idx]) + 1);
 
 
 548}
 549
 550/*
 551 * The cluster corresponding to page_nr decreases one usage. If the usage
 552 * counter becomes 0, which means no page in the cluster is in using, we can
 553 * optionally discard the cluster and add it to free cluster list.
 554 */
 555static void dec_cluster_info_page(struct swap_info_struct *p,
 556	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 557{
 558	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 
 559
 560	if (!cluster_info)
 
 
 
 
 
 
 
 561		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 562
 563	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
 564	cluster_set_count(&cluster_info[idx],
 565		cluster_count(&cluster_info[idx]) - 1);
 
 
 
 
 566
 567	if (cluster_count(&cluster_info[idx]) == 0)
 568		free_cluster(p, idx);
 569}
 570
 571/*
 572 * It's possible scan_swap_map() uses a free cluster in the middle of free
 573 * cluster list. Avoiding such abuse to avoid list corruption.
 574 */
 575static bool
 576scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
 577	unsigned long offset)
 578{
 579	struct percpu_cluster *percpu_cluster;
 580	bool conflict;
 
 581
 582	offset /= SWAPFILE_CLUSTER;
 583	conflict = !cluster_list_empty(&si->free_clusters) &&
 584		offset != cluster_list_first(&si->free_clusters) &&
 585		cluster_is_free(&si->cluster_info[offset]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 586
 587	if (!conflict)
 
 
 
 
 
 
 588		return false;
 589
 590	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
 591	cluster_set_null(&percpu_cluster->index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 592	return true;
 593}
 594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 595/*
 596 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
 597 * might involve allocating a new cluster for current CPU too.
 
 598 */
 599static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
 600	unsigned long *offset, unsigned long *scan_base)
 601{
 602	struct percpu_cluster *cluster;
 603	struct swap_cluster_info *ci;
 604	bool found_free;
 605	unsigned long tmp, max;
 606
 607new_cluster:
 
 608	cluster = this_cpu_ptr(si->percpu_cluster);
 609	if (cluster_is_null(&cluster->index)) {
 610		if (!cluster_list_empty(&si->free_clusters)) {
 611			cluster->index = si->free_clusters.head;
 612			cluster->next = cluster_next(&cluster->index) *
 613					SWAPFILE_CLUSTER;
 614		} else if (!cluster_list_empty(&si->discard_clusters)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 615			/*
 616			 * we don't have free cluster but have some clusters in
 617			 * discarding, do discard now and reclaim them
 618			 */
 619			swap_do_scheduled_discard(si);
 620			*scan_base = *offset = si->cluster_next;
 621			goto new_cluster;
 622		} else
 623			return false;
 
 
 
 
 
 
 
 
 
 
 
 624	}
 625
 626	found_free = false;
 
 627
 628	/*
 629	 * Other CPUs can use our cluster if they can't find a free cluster,
 630	 * check if there is still free entry in the cluster
 631	 */
 632	tmp = cluster->next;
 633	max = min_t(unsigned long, si->max,
 634		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
 635	if (tmp >= max) {
 636		cluster_set_null(&cluster->index);
 637		goto new_cluster;
 638	}
 639	ci = lock_cluster(si, tmp);
 640	while (tmp < max) {
 641		if (!si->swap_map[tmp]) {
 642			found_free = true;
 643			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 644		}
 645		tmp++;
 646	}
 647	unlock_cluster(ci);
 648	if (!found_free) {
 649		cluster_set_null(&cluster->index);
 650		goto new_cluster;
 651	}
 652	cluster->next = tmp + 1;
 653	*offset = tmp;
 654	*scan_base = tmp;
 655	return found_free;
 656}
 657
 658static void __del_from_avail_list(struct swap_info_struct *p)
 659{
 660	int nid;
 661
 
 662	for_each_node(nid)
 663		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
 664}
 665
 666static void del_from_avail_list(struct swap_info_struct *p)
 667{
 668	spin_lock(&swap_avail_lock);
 669	__del_from_avail_list(p);
 670	spin_unlock(&swap_avail_lock);
 671}
 672
 673static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
 674			     unsigned int nr_entries)
 675{
 676	unsigned int end = offset + nr_entries - 1;
 677
 678	if (offset == si->lowest_bit)
 679		si->lowest_bit += nr_entries;
 680	if (end == si->highest_bit)
 681		si->highest_bit -= nr_entries;
 682	si->inuse_pages += nr_entries;
 683	if (si->inuse_pages == si->pages) {
 684		si->lowest_bit = si->max;
 685		si->highest_bit = 0;
 686		del_from_avail_list(si);
 
 
 
 687	}
 688}
 689
 690static void add_to_avail_list(struct swap_info_struct *p)
 691{
 692	int nid;
 693
 694	spin_lock(&swap_avail_lock);
 695	for_each_node(nid) {
 696		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
 697		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
 698	}
 699	spin_unlock(&swap_avail_lock);
 700}
 701
 702static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
 703			    unsigned int nr_entries)
 704{
 
 705	unsigned long end = offset + nr_entries - 1;
 706	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
 
 
 
 
 
 
 
 
 707
 708	if (offset < si->lowest_bit)
 709		si->lowest_bit = offset;
 710	if (end > si->highest_bit) {
 711		bool was_full = !si->highest_bit;
 712
 713		si->highest_bit = end;
 714		if (was_full && (si->flags & SWP_WRITEOK))
 715			add_to_avail_list(si);
 716	}
 717	atomic_long_add(nr_entries, &nr_swap_pages);
 718	si->inuse_pages -= nr_entries;
 719	if (si->flags & SWP_BLKDEV)
 720		swap_slot_free_notify =
 721			si->bdev->bd_disk->fops->swap_slot_free_notify;
 722	else
 723		swap_slot_free_notify = NULL;
 724	while (offset <= end) {
 725		frontswap_invalidate_page(si->type, offset);
 726		if (swap_slot_free_notify)
 727			swap_slot_free_notify(si->bdev, offset);
 728		offset++;
 729	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 730}
 731
 732static int scan_swap_map_slots(struct swap_info_struct *si,
 733			       unsigned char usage, int nr,
 734			       swp_entry_t slots[])
 735{
 736	struct swap_cluster_info *ci;
 737	unsigned long offset;
 738	unsigned long scan_base;
 739	unsigned long last_in_cluster = 0;
 740	int latency_ration = LATENCY_LIMIT;
 
 741	int n_ret = 0;
 742
 743	if (nr > SWAP_BATCH)
 744		nr = SWAP_BATCH;
 745
 746	/*
 747	 * We try to cluster swap pages by allocating them sequentially
 748	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 749	 * way, however, we resort to first-free allocation, starting
 750	 * a new cluster.  This prevents us from scattering swap pages
 751	 * all over the entire swap partition, so that we reduce
 752	 * overall disk seek times between swap pages.  -- sct
 753	 * But we do now try to find an empty cluster.  -Andrea
 754	 * And we let swap pages go all over an SSD partition.  Hugh
 755	 */
 756
 757	si->flags += SWP_SCANNING;
 758	scan_base = offset = si->cluster_next;
 
 
 
 
 
 
 
 
 759
 760	/* SSD algorithm */
 761	if (si->cluster_info) {
 762		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 763			goto checks;
 764		else
 765			goto scan;
 766	}
 767
 
 
 
 
 
 
 
 
 
 768	if (unlikely(!si->cluster_nr--)) {
 769		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 770			si->cluster_nr = SWAPFILE_CLUSTER - 1;
 771			goto checks;
 772		}
 773
 774		spin_unlock(&si->lock);
 775
 776		/*
 777		 * If seek is expensive, start searching for new cluster from
 778		 * start of partition, to minimize the span of allocated swap.
 779		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
 780		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
 781		 */
 782		scan_base = offset = si->lowest_bit;
 783		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 784
 785		/* Locate the first empty (unaligned) cluster */
 786		for (; last_in_cluster <= si->highest_bit; offset++) {
 787			if (si->swap_map[offset])
 788				last_in_cluster = offset + SWAPFILE_CLUSTER;
 789			else if (offset == last_in_cluster) {
 790				spin_lock(&si->lock);
 791				offset -= SWAPFILE_CLUSTER - 1;
 792				si->cluster_next = offset;
 793				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 794				goto checks;
 795			}
 796			if (unlikely(--latency_ration < 0)) {
 797				cond_resched();
 798				latency_ration = LATENCY_LIMIT;
 799			}
 800		}
 801
 802		offset = scan_base;
 803		spin_lock(&si->lock);
 804		si->cluster_nr = SWAPFILE_CLUSTER - 1;
 805	}
 806
 807checks:
 808	if (si->cluster_info) {
 809		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
 810		/* take a break if we already got some slots */
 811			if (n_ret)
 812				goto done;
 813			if (!scan_swap_map_try_ssd_cluster(si, &offset,
 814							&scan_base))
 815				goto scan;
 816		}
 817	}
 818	if (!(si->flags & SWP_WRITEOK))
 819		goto no_page;
 820	if (!si->highest_bit)
 821		goto no_page;
 822	if (offset > si->highest_bit)
 823		scan_base = offset = si->lowest_bit;
 824
 825	ci = lock_cluster(si, offset);
 826	/* reuse swap entry of cache-only swap if not busy. */
 827	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 828		int swap_was_freed;
 829		unlock_cluster(ci);
 830		spin_unlock(&si->lock);
 831		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
 832		spin_lock(&si->lock);
 833		/* entry was freed successfully, try to use this again */
 834		if (swap_was_freed)
 835			goto checks;
 836		goto scan; /* check next one */
 837	}
 838
 839	if (si->swap_map[offset]) {
 840		unlock_cluster(ci);
 841		if (!n_ret)
 842			goto scan;
 843		else
 844			goto done;
 845	}
 846	si->swap_map[offset] = usage;
 847	inc_cluster_info_page(si, si->cluster_info, offset);
 848	unlock_cluster(ci);
 849
 850	swap_range_alloc(si, offset, 1);
 851	si->cluster_next = offset + 1;
 852	slots[n_ret++] = swp_entry(si->type, offset);
 853
 854	/* got enough slots or reach max slots? */
 855	if ((n_ret == nr) || (offset >= si->highest_bit))
 856		goto done;
 857
 858	/* search for next available slot */
 859
 860	/* time to take a break? */
 861	if (unlikely(--latency_ration < 0)) {
 862		if (n_ret)
 863			goto done;
 864		spin_unlock(&si->lock);
 865		cond_resched();
 866		spin_lock(&si->lock);
 867		latency_ration = LATENCY_LIMIT;
 868	}
 869
 870	/* try to get more slots in cluster */
 871	if (si->cluster_info) {
 872		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 873			goto checks;
 874		else
 875			goto done;
 876	}
 877	/* non-ssd case */
 878	++offset;
 879
 880	/* non-ssd case, still more slots in cluster? */
 881	if (si->cluster_nr && !si->swap_map[offset]) {
 882		--si->cluster_nr;
 883		goto checks;
 884	}
 885
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 886done:
 
 
 887	si->flags -= SWP_SCANNING;
 888	return n_ret;
 889
 890scan:
 
 891	spin_unlock(&si->lock);
 892	while (++offset <= si->highest_bit) {
 893		if (!si->swap_map[offset]) {
 894			spin_lock(&si->lock);
 895			goto checks;
 896		}
 897		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 898			spin_lock(&si->lock);
 899			goto checks;
 900		}
 901		if (unlikely(--latency_ration < 0)) {
 902			cond_resched();
 903			latency_ration = LATENCY_LIMIT;
 
 904		}
 
 
 905	}
 906	offset = si->lowest_bit;
 907	while (offset < scan_base) {
 908		if (!si->swap_map[offset]) {
 909			spin_lock(&si->lock);
 910			goto checks;
 911		}
 912		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 913			spin_lock(&si->lock);
 914			goto checks;
 915		}
 916		if (unlikely(--latency_ration < 0)) {
 917			cond_resched();
 918			latency_ration = LATENCY_LIMIT;
 
 919		}
 
 
 920		offset++;
 921	}
 922	spin_lock(&si->lock);
 923
 924no_page:
 925	si->flags -= SWP_SCANNING;
 926	return n_ret;
 927}
 928
 929static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
 930{
 931	unsigned long idx;
 932	struct swap_cluster_info *ci;
 933	unsigned long offset, i;
 934	unsigned char *map;
 935
 936	/*
 937	 * Should not even be attempting cluster allocations when huge
 938	 * page swap is disabled.  Warn and fail the allocation.
 939	 */
 940	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
 941		VM_WARN_ON_ONCE(1);
 942		return 0;
 943	}
 944
 945	if (cluster_list_empty(&si->free_clusters))
 946		return 0;
 947
 948	idx = cluster_list_first(&si->free_clusters);
 949	offset = idx * SWAPFILE_CLUSTER;
 950	ci = lock_cluster(si, offset);
 951	alloc_cluster(si, idx);
 952	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
 953
 954	map = si->swap_map + offset;
 955	for (i = 0; i < SWAPFILE_CLUSTER; i++)
 956		map[i] = SWAP_HAS_CACHE;
 957	unlock_cluster(ci);
 958	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
 959	*slot = swp_entry(si->type, offset);
 960
 961	return 1;
 962}
 963
 964static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
 965{
 966	unsigned long offset = idx * SWAPFILE_CLUSTER;
 967	struct swap_cluster_info *ci;
 968
 969	ci = lock_cluster(si, offset);
 970	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
 971	cluster_set_count_flag(ci, 0, 0);
 972	free_cluster(si, idx);
 973	unlock_cluster(ci);
 974	swap_range_free(si, offset, SWAPFILE_CLUSTER);
 975}
 976
 977static unsigned long scan_swap_map(struct swap_info_struct *si,
 978				   unsigned char usage)
 979{
 980	swp_entry_t entry;
 981	int n_ret;
 982
 983	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
 984
 985	if (n_ret)
 986		return swp_offset(entry);
 987	else
 988		return 0;
 989
 990}
 991
 992int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
 993{
 994	unsigned long size = swap_entry_size(entry_size);
 
 995	struct swap_info_struct *si, *next;
 996	long avail_pgs;
 997	int n_ret = 0;
 998	int node;
 999
1000	/* Only single cluster request supported */
1001	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1002
1003	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1004	if (avail_pgs <= 0)
 
1005		goto noswap;
 
1006
1007	if (n_goal > SWAP_BATCH)
1008		n_goal = SWAP_BATCH;
1009
1010	if (n_goal > avail_pgs)
1011		n_goal = avail_pgs;
1012
1013	atomic_long_sub(n_goal * size, &nr_swap_pages);
1014
1015	spin_lock(&swap_avail_lock);
1016
1017start_over:
1018	node = numa_node_id();
1019	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1020		/* requeue si to after same-priority siblings */
1021		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1022		spin_unlock(&swap_avail_lock);
1023		spin_lock(&si->lock);
1024		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1025			spin_lock(&swap_avail_lock);
1026			if (plist_node_empty(&si->avail_lists[node])) {
1027				spin_unlock(&si->lock);
1028				goto nextsi;
1029			}
1030			WARN(!si->highest_bit,
1031			     "swap_info %d in list but !highest_bit\n",
1032			     si->type);
1033			WARN(!(si->flags & SWP_WRITEOK),
1034			     "swap_info %d in list but !SWP_WRITEOK\n",
1035			     si->type);
1036			__del_from_avail_list(si);
1037			spin_unlock(&si->lock);
1038			goto nextsi;
1039		}
1040		if (size == SWAPFILE_CLUSTER) {
1041			if (!(si->flags & SWP_FS))
1042				n_ret = swap_alloc_cluster(si, swp_entries);
1043		} else
1044			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1045						    n_goal, swp_entries);
1046		spin_unlock(&si->lock);
1047		if (n_ret || size == SWAPFILE_CLUSTER)
1048			goto check_out;
1049		pr_debug("scan_swap_map of si %d failed to find offset\n",
1050			si->type);
1051
1052		spin_lock(&swap_avail_lock);
1053nextsi:
1054		/*
1055		 * if we got here, it's likely that si was almost full before,
1056		 * and since scan_swap_map() can drop the si->lock, multiple
1057		 * callers probably all tried to get a page from the same si
1058		 * and it filled up before we could get one; or, the si filled
1059		 * up between us dropping swap_avail_lock and taking si->lock.
1060		 * Since we dropped the swap_avail_lock, the swap_avail_head
1061		 * list may have been modified; so if next is still in the
1062		 * swap_avail_head list then try it, otherwise start over
1063		 * if we have not gotten any slots.
1064		 */
1065		if (plist_node_empty(&next->avail_lists[node]))
1066			goto start_over;
1067	}
1068
1069	spin_unlock(&swap_avail_lock);
1070
1071check_out:
1072	if (n_ret < n_goal)
1073		atomic_long_add((long)(n_goal - n_ret) * size,
1074				&nr_swap_pages);
1075noswap:
1076	return n_ret;
1077}
1078
1079/* The only caller of this function is now suspend routine */
1080swp_entry_t get_swap_page_of_type(int type)
1081{
1082	struct swap_info_struct *si = swap_type_to_swap_info(type);
1083	pgoff_t offset;
1084
1085	if (!si)
1086		goto fail;
1087
1088	spin_lock(&si->lock);
1089	if (si->flags & SWP_WRITEOK) {
1090		atomic_long_dec(&nr_swap_pages);
1091		/* This is called for allocating swap entry, not cache */
1092		offset = scan_swap_map(si, 1);
1093		if (offset) {
1094			spin_unlock(&si->lock);
1095			return swp_entry(type, offset);
1096		}
1097		atomic_long_inc(&nr_swap_pages);
1098	}
1099	spin_unlock(&si->lock);
1100fail:
1101	return (swp_entry_t) {0};
1102}
1103
1104static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1105{
1106	struct swap_info_struct *p;
1107	unsigned long offset;
1108
1109	if (!entry.val)
1110		goto out;
1111	p = swp_swap_info(entry);
1112	if (!p)
1113		goto bad_nofile;
1114	if (!(p->flags & SWP_USED))
1115		goto bad_device;
1116	offset = swp_offset(entry);
1117	if (offset >= p->max)
1118		goto bad_offset;
1119	return p;
 
 
1120
 
 
 
1121bad_offset:
1122	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1123	goto out;
1124bad_device:
1125	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1126	goto out;
1127bad_nofile:
1128	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1129out:
1130	return NULL;
1131}
1132
1133static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1134{
1135	struct swap_info_struct *p;
1136
1137	p = __swap_info_get(entry);
1138	if (!p)
1139		goto out;
1140	if (!p->swap_map[swp_offset(entry)])
1141		goto bad_free;
1142	return p;
1143
1144bad_free:
1145	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1146	goto out;
1147out:
1148	return NULL;
1149}
1150
1151static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1152{
1153	struct swap_info_struct *p;
1154
1155	p = _swap_info_get(entry);
1156	if (p)
1157		spin_lock(&p->lock);
1158	return p;
1159}
1160
1161static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1162					struct swap_info_struct *q)
1163{
1164	struct swap_info_struct *p;
1165
1166	p = _swap_info_get(entry);
1167
1168	if (p != q) {
1169		if (q != NULL)
1170			spin_unlock(&q->lock);
1171		if (p != NULL)
1172			spin_lock(&p->lock);
1173	}
1174	return p;
1175}
1176
1177static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1178					      unsigned long offset,
1179					      unsigned char usage)
1180{
1181	unsigned char count;
1182	unsigned char has_cache;
1183
1184	count = p->swap_map[offset];
1185
1186	has_cache = count & SWAP_HAS_CACHE;
1187	count &= ~SWAP_HAS_CACHE;
1188
1189	if (usage == SWAP_HAS_CACHE) {
1190		VM_BUG_ON(!has_cache);
1191		has_cache = 0;
1192	} else if (count == SWAP_MAP_SHMEM) {
1193		/*
1194		 * Or we could insist on shmem.c using a special
1195		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1196		 */
1197		count = 0;
1198	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1199		if (count == COUNT_CONTINUED) {
1200			if (swap_count_continued(p, offset, count))
1201				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1202			else
1203				count = SWAP_MAP_MAX;
1204		} else
1205			count--;
1206	}
1207
1208	usage = count | has_cache;
1209	p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
 
 
 
1210
1211	return usage;
1212}
1213
1214/*
 
 
 
 
 
 
 
 
 
 
 
1215 * Check whether swap entry is valid in the swap device.  If so,
1216 * return pointer to swap_info_struct, and keep the swap entry valid
1217 * via preventing the swap device from being swapoff, until
1218 * put_swap_device() is called.  Otherwise return NULL.
1219 *
1220 * The entirety of the RCU read critical section must come before the
1221 * return from or after the call to synchronize_rcu() in
1222 * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1223 * true, the si->map, si->cluster_info, etc. must be valid in the
1224 * critical section.
1225 *
1226 * Notice that swapoff or swapoff+swapon can still happen before the
1227 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1228 * in put_swap_device() if there isn't any other way to prevent
1229 * swapoff, such as page lock, page table lock, etc.  The caller must
1230 * be prepared for that.  For example, the following situation is
1231 * possible.
1232 *
1233 *   CPU1				CPU2
1234 *   do_swap_page()
1235 *     ...				swapoff+swapon
1236 *     __read_swap_cache_async()
1237 *       swapcache_prepare()
1238 *         __swap_duplicate()
1239 *           // check swap_map
1240 *     // verify PTE not changed
1241 *
1242 * In __swap_duplicate(), the swap_map need to be checked before
1243 * changing partly because the specified swap entry may be for another
1244 * swap device which has been swapoff.  And in do_swap_page(), after
1245 * the page is read from the swap device, the PTE is verified not
1246 * changed with the page table locked to check whether the swap device
1247 * has been swapoff or swapoff+swapon.
1248 */
1249struct swap_info_struct *get_swap_device(swp_entry_t entry)
1250{
1251	struct swap_info_struct *si;
1252	unsigned long offset;
1253
1254	if (!entry.val)
1255		goto out;
1256	si = swp_swap_info(entry);
1257	if (!si)
1258		goto bad_nofile;
1259
1260	rcu_read_lock();
1261	if (!(si->flags & SWP_VALID))
1262		goto unlock_out;
 
 
 
 
 
 
1263	offset = swp_offset(entry);
1264	if (offset >= si->max)
1265		goto unlock_out;
1266
1267	return si;
1268bad_nofile:
1269	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1270out:
1271	return NULL;
1272unlock_out:
1273	rcu_read_unlock();
 
1274	return NULL;
1275}
1276
1277static unsigned char __swap_entry_free(struct swap_info_struct *p,
1278				       swp_entry_t entry, unsigned char usage)
1279{
1280	struct swap_cluster_info *ci;
1281	unsigned long offset = swp_offset(entry);
 
1282
1283	ci = lock_cluster_or_swap_info(p, offset);
1284	usage = __swap_entry_free_locked(p, offset, usage);
1285	unlock_cluster_or_swap_info(p, ci);
1286	if (!usage)
1287		free_swap_slot(entry);
1288
1289	return usage;
1290}
1291
1292static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
 
1293{
1294	struct swap_cluster_info *ci;
1295	unsigned long offset = swp_offset(entry);
 
 
 
1296	unsigned char count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1297
1298	ci = lock_cluster(p, offset);
1299	count = p->swap_map[offset];
1300	VM_BUG_ON(count != SWAP_HAS_CACHE);
1301	p->swap_map[offset] = 0;
1302	dec_cluster_info_page(p, p->cluster_info, offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1303	unlock_cluster(ci);
1304
1305	mem_cgroup_uncharge_swap(entry, 1);
1306	swap_range_free(p, offset, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1307}
1308
1309/*
1310 * Caller has made sure that the swap device corresponding to entry
1311 * is still around or has not been recycled.
1312 */
1313void swap_free(swp_entry_t entry)
1314{
1315	struct swap_info_struct *p;
 
 
1316
1317	p = _swap_info_get(entry);
1318	if (p)
1319		__swap_entry_free(p, entry, 1);
 
 
 
 
 
 
 
1320}
1321
1322/*
1323 * Called after dropping swapcache to decrease refcnt to swap entries.
1324 */
1325void put_swap_page(struct page *page, swp_entry_t entry)
1326{
1327	unsigned long offset = swp_offset(entry);
1328	unsigned long idx = offset / SWAPFILE_CLUSTER;
1329	struct swap_cluster_info *ci;
1330	struct swap_info_struct *si;
1331	unsigned char *map;
1332	unsigned int i, free_entries = 0;
1333	unsigned char val;
1334	int size = swap_entry_size(hpage_nr_pages(page));
1335
1336	si = _swap_info_get(entry);
1337	if (!si)
1338		return;
1339
1340	ci = lock_cluster_or_swap_info(si, offset);
1341	if (size == SWAPFILE_CLUSTER) {
1342		VM_BUG_ON(!cluster_is_huge(ci));
1343		map = si->swap_map + offset;
1344		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1345			val = map[i];
1346			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1347			if (val == SWAP_HAS_CACHE)
1348				free_entries++;
1349		}
1350		cluster_clear_huge(ci);
1351		if (free_entries == SWAPFILE_CLUSTER) {
1352			unlock_cluster_or_swap_info(si, ci);
1353			spin_lock(&si->lock);
1354			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1355			swap_free_cluster(si, idx);
1356			spin_unlock(&si->lock);
1357			return;
1358		}
1359	}
1360	for (i = 0; i < size; i++, entry.val++) {
1361		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1362			unlock_cluster_or_swap_info(si, ci);
1363			free_swap_slot(entry);
1364			if (i == size - 1)
1365				return;
1366			lock_cluster_or_swap_info(si, offset);
1367		}
1368	}
1369	unlock_cluster_or_swap_info(si, ci);
1370}
1371
1372#ifdef CONFIG_THP_SWAP
1373int split_swap_cluster(swp_entry_t entry)
1374{
1375	struct swap_info_struct *si;
1376	struct swap_cluster_info *ci;
1377	unsigned long offset = swp_offset(entry);
1378
1379	si = _swap_info_get(entry);
1380	if (!si)
1381		return -EBUSY;
1382	ci = lock_cluster(si, offset);
1383	cluster_clear_huge(ci);
1384	unlock_cluster(ci);
1385	return 0;
1386}
1387#endif
1388
1389static int swp_entry_cmp(const void *ent1, const void *ent2)
1390{
1391	const swp_entry_t *e1 = ent1, *e2 = ent2;
1392
1393	return (int)swp_type(*e1) - (int)swp_type(*e2);
1394}
1395
1396void swapcache_free_entries(swp_entry_t *entries, int n)
1397{
1398	struct swap_info_struct *p, *prev;
1399	int i;
1400
1401	if (n <= 0)
1402		return;
1403
1404	prev = NULL;
1405	p = NULL;
1406
1407	/*
1408	 * Sort swap entries by swap device, so each lock is only taken once.
1409	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1410	 * so low that it isn't necessary to optimize further.
1411	 */
1412	if (nr_swapfiles > 1)
1413		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1414	for (i = 0; i < n; ++i) {
1415		p = swap_info_get_cont(entries[i], prev);
1416		if (p)
1417			swap_entry_free(p, entries[i]);
1418		prev = p;
1419	}
1420	if (p)
1421		spin_unlock(&p->lock);
1422}
1423
1424/*
1425 * How many references to page are currently swapped out?
1426 * This does not give an exact answer when swap count is continued,
1427 * but does include the high COUNT_CONTINUED flag to allow for that.
1428 */
1429int page_swapcount(struct page *page)
1430{
1431	int count = 0;
1432	struct swap_info_struct *p;
1433	struct swap_cluster_info *ci;
1434	swp_entry_t entry;
1435	unsigned long offset;
1436
1437	entry.val = page_private(page);
1438	p = _swap_info_get(entry);
1439	if (p) {
1440		offset = swp_offset(entry);
1441		ci = lock_cluster_or_swap_info(p, offset);
1442		count = swap_count(p->swap_map[offset]);
1443		unlock_cluster_or_swap_info(p, ci);
1444	}
1445	return count;
1446}
1447
1448int __swap_count(swp_entry_t entry)
1449{
1450	struct swap_info_struct *si;
1451	pgoff_t offset = swp_offset(entry);
1452	int count = 0;
1453
1454	si = get_swap_device(entry);
1455	if (si) {
1456		count = swap_count(si->swap_map[offset]);
1457		put_swap_device(si);
1458	}
1459	return count;
1460}
1461
1462static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1463{
1464	int count = 0;
1465	pgoff_t offset = swp_offset(entry);
1466	struct swap_cluster_info *ci;
1467
1468	ci = lock_cluster_or_swap_info(si, offset);
1469	count = swap_count(si->swap_map[offset]);
1470	unlock_cluster_or_swap_info(si, ci);
1471	return count;
1472}
1473
1474/*
1475 * How many references to @entry are currently swapped out?
1476 * This does not give an exact answer when swap count is continued,
1477 * but does include the high COUNT_CONTINUED flag to allow for that.
1478 */
1479int __swp_swapcount(swp_entry_t entry)
1480{
1481	int count = 0;
1482	struct swap_info_struct *si;
 
1483
1484	si = get_swap_device(entry);
1485	if (si) {
1486		count = swap_swapcount(si, entry);
1487		put_swap_device(si);
1488	}
1489	return count;
1490}
1491
1492/*
1493 * How many references to @entry are currently swapped out?
1494 * This considers COUNT_CONTINUED so it returns exact answer.
1495 */
1496int swp_swapcount(swp_entry_t entry)
1497{
1498	int count, tmp_count, n;
1499	struct swap_info_struct *p;
1500	struct swap_cluster_info *ci;
1501	struct page *page;
1502	pgoff_t offset;
1503	unsigned char *map;
1504
1505	p = _swap_info_get(entry);
1506	if (!p)
1507		return 0;
1508
1509	offset = swp_offset(entry);
1510
1511	ci = lock_cluster_or_swap_info(p, offset);
1512
1513	count = swap_count(p->swap_map[offset]);
1514	if (!(count & COUNT_CONTINUED))
1515		goto out;
1516
1517	count &= ~COUNT_CONTINUED;
1518	n = SWAP_MAP_MAX + 1;
1519
1520	page = vmalloc_to_page(p->swap_map + offset);
1521	offset &= ~PAGE_MASK;
1522	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1523
1524	do {
1525		page = list_next_entry(page, lru);
1526		map = kmap_atomic(page);
1527		tmp_count = map[offset];
1528		kunmap_atomic(map);
1529
1530		count += (tmp_count & ~COUNT_CONTINUED) * n;
1531		n *= (SWAP_CONT_MAX + 1);
1532	} while (tmp_count & COUNT_CONTINUED);
1533out:
1534	unlock_cluster_or_swap_info(p, ci);
1535	return count;
1536}
1537
1538static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1539					 swp_entry_t entry)
1540{
1541	struct swap_cluster_info *ci;
1542	unsigned char *map = si->swap_map;
 
1543	unsigned long roffset = swp_offset(entry);
1544	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1545	int i;
1546	bool ret = false;
1547
1548	ci = lock_cluster_or_swap_info(si, offset);
1549	if (!ci || !cluster_is_huge(ci)) {
1550		if (swap_count(map[roffset]))
1551			ret = true;
1552		goto unlock_out;
1553	}
1554	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1555		if (swap_count(map[offset + i])) {
1556			ret = true;
1557			break;
1558		}
1559	}
1560unlock_out:
1561	unlock_cluster_or_swap_info(si, ci);
1562	return ret;
1563}
1564
1565static bool page_swapped(struct page *page)
1566{
1567	swp_entry_t entry;
1568	struct swap_info_struct *si;
1569
1570	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1571		return page_swapcount(page) != 0;
1572
1573	page = compound_head(page);
1574	entry.val = page_private(page);
1575	si = _swap_info_get(entry);
1576	if (si)
1577		return swap_page_trans_huge_swapped(si, entry);
1578	return false;
1579}
1580
1581static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1582					 int *total_swapcount)
1583{
1584	int i, map_swapcount, _total_mapcount, _total_swapcount;
1585	unsigned long offset = 0;
1586	struct swap_info_struct *si;
1587	struct swap_cluster_info *ci = NULL;
1588	unsigned char *map = NULL;
1589	int mapcount, swapcount = 0;
1590
1591	/* hugetlbfs shouldn't call it */
1592	VM_BUG_ON_PAGE(PageHuge(page), page);
1593
1594	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1595		mapcount = page_trans_huge_mapcount(page, total_mapcount);
1596		if (PageSwapCache(page))
1597			swapcount = page_swapcount(page);
1598		if (total_swapcount)
1599			*total_swapcount = swapcount;
1600		return mapcount + swapcount;
1601	}
1602
1603	page = compound_head(page);
1604
1605	_total_mapcount = _total_swapcount = map_swapcount = 0;
1606	if (PageSwapCache(page)) {
1607		swp_entry_t entry;
1608
1609		entry.val = page_private(page);
1610		si = _swap_info_get(entry);
1611		if (si) {
1612			map = si->swap_map;
1613			offset = swp_offset(entry);
1614		}
1615	}
1616	if (map)
1617		ci = lock_cluster(si, offset);
1618	for (i = 0; i < HPAGE_PMD_NR; i++) {
1619		mapcount = atomic_read(&page[i]._mapcount) + 1;
1620		_total_mapcount += mapcount;
1621		if (map) {
1622			swapcount = swap_count(map[offset + i]);
1623			_total_swapcount += swapcount;
1624		}
1625		map_swapcount = max(map_swapcount, mapcount + swapcount);
1626	}
1627	unlock_cluster(ci);
1628	if (PageDoubleMap(page)) {
1629		map_swapcount -= 1;
1630		_total_mapcount -= HPAGE_PMD_NR;
1631	}
1632	mapcount = compound_mapcount(page);
1633	map_swapcount += mapcount;
1634	_total_mapcount += mapcount;
1635	if (total_mapcount)
1636		*total_mapcount = _total_mapcount;
1637	if (total_swapcount)
1638		*total_swapcount = _total_swapcount;
1639
1640	return map_swapcount;
1641}
1642
1643/*
1644 * We can write to an anon page without COW if there are no other references
1645 * to it.  And as a side-effect, free up its swap: because the old content
1646 * on disk will never be read, and seeking back there to write new content
1647 * later would only waste time away from clustering.
1648 *
1649 * NOTE: total_map_swapcount should not be relied upon by the caller if
1650 * reuse_swap_page() returns false, but it may be always overwritten
1651 * (see the other implementation for CONFIG_SWAP=n).
1652 */
1653bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1654{
1655	int count, total_mapcount, total_swapcount;
 
1656
1657	VM_BUG_ON_PAGE(!PageLocked(page), page);
1658	if (unlikely(PageKsm(page)))
1659		return false;
1660	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1661					      &total_swapcount);
1662	if (total_map_swapcount)
1663		*total_map_swapcount = total_mapcount + total_swapcount;
1664	if (count == 1 && PageSwapCache(page) &&
1665	    (likely(!PageTransCompound(page)) ||
1666	     /* The remaining swap count will be freed soon */
1667	     total_swapcount == page_swapcount(page))) {
1668		if (!PageWriteback(page)) {
1669			page = compound_head(page);
1670			delete_from_swap_cache(page);
1671			SetPageDirty(page);
1672		} else {
1673			swp_entry_t entry;
1674			struct swap_info_struct *p;
1675
1676			entry.val = page_private(page);
1677			p = swap_info_get(entry);
1678			if (p->flags & SWP_STABLE_WRITES) {
1679				spin_unlock(&p->lock);
1680				return false;
1681			}
1682			spin_unlock(&p->lock);
1683		}
1684	}
1685
1686	return count <= 1;
1687}
1688
1689/*
1690 * If swap is getting full, or if there are no more mappings of this page,
1691 * then try_to_free_swap is called to free its swap space.
1692 */
1693int try_to_free_swap(struct page *page)
1694{
1695	VM_BUG_ON_PAGE(!PageLocked(page), page);
1696
1697	if (!PageSwapCache(page))
1698		return 0;
1699	if (PageWriteback(page))
1700		return 0;
1701	if (page_swapped(page))
1702		return 0;
1703
1704	/*
1705	 * Once hibernation has begun to create its image of memory,
1706	 * there's a danger that one of the calls to try_to_free_swap()
1707	 * - most probably a call from __try_to_reclaim_swap() while
1708	 * hibernation is allocating its own swap pages for the image,
1709	 * but conceivably even a call from memory reclaim - will free
1710	 * the swap from a page which has already been recorded in the
1711	 * image as a clean swapcache page, and then reuse its swap for
1712	 * another page of the image.  On waking from hibernation, the
1713	 * original page might be freed under memory pressure, then
1714	 * later read back in from swap, now with the wrong data.
1715	 *
1716	 * Hibernation suspends storage while it is writing the image
1717	 * to disk so check that here.
1718	 */
1719	if (pm_suspended_storage())
1720		return 0;
1721
1722	page = compound_head(page);
1723	delete_from_swap_cache(page);
1724	SetPageDirty(page);
1725	return 1;
1726}
1727
1728/*
1729 * Free the swap entry like above, but also try to
1730 * free the page cache entry if it is the last user.
 
 
 
 
 
1731 */
1732int free_swap_and_cache(swp_entry_t entry)
1733{
1734	struct swap_info_struct *p;
1735	unsigned char count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1736
1737	if (non_swap_entry(entry))
1738		return 1;
1739
1740	p = _swap_info_get(entry);
1741	if (p) {
1742		count = __swap_entry_free(p, entry, 1);
1743		if (count == SWAP_HAS_CACHE &&
1744		    !swap_page_trans_huge_swapped(p, entry))
1745			__try_to_reclaim_swap(p, swp_offset(entry),
1746					      TTRS_UNMAPPED | TTRS_FULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1747	}
1748	return p != NULL;
 
 
1749}
1750
1751#ifdef CONFIG_HIBERNATION
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1752/*
1753 * Find the swap type that corresponds to given device (if any).
1754 *
1755 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1756 * from 0, in which the swap header is expected to be located.
1757 *
1758 * This is needed for the suspend to disk (aka swsusp).
1759 */
1760int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1761{
1762	struct block_device *bdev = NULL;
1763	int type;
1764
1765	if (device)
1766		bdev = bdget(device);
1767
1768	spin_lock(&swap_lock);
1769	for (type = 0; type < nr_swapfiles; type++) {
1770		struct swap_info_struct *sis = swap_info[type];
1771
1772		if (!(sis->flags & SWP_WRITEOK))
1773			continue;
1774
1775		if (!bdev) {
1776			if (bdev_p)
1777				*bdev_p = bdgrab(sis->bdev);
1778
1779			spin_unlock(&swap_lock);
1780			return type;
1781		}
1782		if (bdev == sis->bdev) {
1783			struct swap_extent *se = first_se(sis);
1784
1785			if (se->start_block == offset) {
1786				if (bdev_p)
1787					*bdev_p = bdgrab(sis->bdev);
1788
1789				spin_unlock(&swap_lock);
1790				bdput(bdev);
1791				return type;
1792			}
1793		}
1794	}
1795	spin_unlock(&swap_lock);
1796	if (bdev)
1797		bdput(bdev);
1798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1799	return -ENODEV;
1800}
1801
1802/*
1803 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1804 * corresponding to given index in swap_info (swap type).
1805 */
1806sector_t swapdev_block(int type, pgoff_t offset)
1807{
1808	struct block_device *bdev;
1809	struct swap_info_struct *si = swap_type_to_swap_info(type);
 
1810
1811	if (!si || !(si->flags & SWP_WRITEOK))
1812		return 0;
1813	return map_swap_entry(swp_entry(type, offset), &bdev);
 
1814}
1815
1816/*
1817 * Return either the total number of swap pages of given type, or the number
1818 * of free pages of that type (depending on @free)
1819 *
1820 * This is needed for software suspend
1821 */
1822unsigned int count_swap_pages(int type, int free)
1823{
1824	unsigned int n = 0;
1825
1826	spin_lock(&swap_lock);
1827	if ((unsigned int)type < nr_swapfiles) {
1828		struct swap_info_struct *sis = swap_info[type];
1829
1830		spin_lock(&sis->lock);
1831		if (sis->flags & SWP_WRITEOK) {
1832			n = sis->pages;
1833			if (free)
1834				n -= sis->inuse_pages;
1835		}
1836		spin_unlock(&sis->lock);
1837	}
1838	spin_unlock(&swap_lock);
1839	return n;
1840}
1841#endif /* CONFIG_HIBERNATION */
1842
1843static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1844{
1845	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1846}
1847
1848/*
1849 * No need to decide whether this PTE shares the swap entry with others,
1850 * just let do_wp_page work it out if a write is requested later - to
1851 * force COW, vm_page_prot omits write permission from any private vma.
1852 */
1853static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1854		unsigned long addr, swp_entry_t entry, struct page *page)
1855{
1856	struct page *swapcache;
1857	struct mem_cgroup *memcg;
1858	spinlock_t *ptl;
1859	pte_t *pte;
 
1860	int ret = 1;
1861
1862	swapcache = page;
1863	page = ksm_might_need_to_copy(page, vma, addr);
1864	if (unlikely(!page))
1865		return -ENOMEM;
1866
1867	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1868				&memcg, false)) {
1869		ret = -ENOMEM;
1870		goto out_nolock;
1871	}
1872
 
 
 
 
1873	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1874	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1875		mem_cgroup_cancel_charge(page, memcg, false);
1876		ret = 0;
1877		goto out;
1878	}
1879
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1880	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1881	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1882	get_page(page);
1883	set_pte_at(vma->vm_mm, addr, pte,
1884		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1885	if (page == swapcache) {
1886		page_add_anon_rmap(page, vma, addr, false);
1887		mem_cgroup_commit_charge(page, memcg, true, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1888	} else { /* ksm created a completely new copy */
1889		page_add_new_anon_rmap(page, vma, addr, false);
1890		mem_cgroup_commit_charge(page, memcg, false, false);
1891		lru_cache_add_active_or_unevictable(page, vma);
1892	}
 
 
 
 
 
 
 
1893	swap_free(entry);
1894	/*
1895	 * Move the page to the active list so it is not
1896	 * immediately swapped out again after swapon.
1897	 */
1898	activate_page(page);
1899out:
1900	pte_unmap_unlock(pte, ptl);
1901out_nolock:
1902	if (page != swapcache) {
1903		unlock_page(page);
1904		put_page(page);
1905	}
1906	return ret;
1907}
1908
1909static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1910			unsigned long addr, unsigned long end,
1911			unsigned int type, bool frontswap,
1912			unsigned long *fs_pages_to_unuse)
1913{
1914	struct page *page;
1915	swp_entry_t entry;
1916	pte_t *pte;
1917	struct swap_info_struct *si;
1918	unsigned long offset;
1919	int ret = 0;
1920	volatile unsigned char *swap_map;
1921
1922	si = swap_info[type];
1923	pte = pte_offset_map(pmd, addr);
1924	do {
1925		struct vm_fault vmf;
 
 
 
 
 
1926
1927		if (!is_swap_pte(*pte))
 
 
 
 
 
 
 
 
1928			continue;
1929
1930		entry = pte_to_swp_entry(*pte);
1931		if (swp_type(entry) != type)
1932			continue;
1933
1934		offset = swp_offset(entry);
1935		if (frontswap && !frontswap_test(si, offset))
1936			continue;
1937
1938		pte_unmap(pte);
1939		swap_map = &si->swap_map[offset];
1940		vmf.vma = vma;
1941		vmf.address = addr;
1942		vmf.pmd = pmd;
1943		page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, &vmf);
1944		if (!page) {
1945			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1946				goto try_next;
 
 
 
 
 
 
 
 
 
 
1947			return -ENOMEM;
1948		}
1949
1950		lock_page(page);
1951		wait_on_page_writeback(page);
1952		ret = unuse_pte(vma, pmd, addr, entry, page);
1953		if (ret < 0) {
1954			unlock_page(page);
1955			put_page(page);
1956			goto out;
1957		}
1958
1959		try_to_free_swap(page);
1960		unlock_page(page);
1961		put_page(page);
 
1962
1963		if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1964			ret = FRONTSWAP_PAGES_UNUSED;
1965			goto out;
1966		}
1967try_next:
1968		pte = pte_offset_map(pmd, addr);
1969	} while (pte++, addr += PAGE_SIZE, addr != end);
1970	pte_unmap(pte - 1);
1971
1972	ret = 0;
1973out:
1974	return ret;
1975}
1976
1977static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1978				unsigned long addr, unsigned long end,
1979				unsigned int type, bool frontswap,
1980				unsigned long *fs_pages_to_unuse)
1981{
1982	pmd_t *pmd;
1983	unsigned long next;
1984	int ret;
1985
1986	pmd = pmd_offset(pud, addr);
1987	do {
1988		cond_resched();
1989		next = pmd_addr_end(addr, end);
1990		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1991			continue;
1992		ret = unuse_pte_range(vma, pmd, addr, next, type,
1993				      frontswap, fs_pages_to_unuse);
1994		if (ret)
1995			return ret;
1996	} while (pmd++, addr = next, addr != end);
1997	return 0;
1998}
1999
2000static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2001				unsigned long addr, unsigned long end,
2002				unsigned int type, bool frontswap,
2003				unsigned long *fs_pages_to_unuse)
2004{
2005	pud_t *pud;
2006	unsigned long next;
2007	int ret;
2008
2009	pud = pud_offset(p4d, addr);
2010	do {
2011		next = pud_addr_end(addr, end);
2012		if (pud_none_or_clear_bad(pud))
2013			continue;
2014		ret = unuse_pmd_range(vma, pud, addr, next, type,
2015				      frontswap, fs_pages_to_unuse);
2016		if (ret)
2017			return ret;
2018	} while (pud++, addr = next, addr != end);
2019	return 0;
2020}
2021
2022static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2023				unsigned long addr, unsigned long end,
2024				unsigned int type, bool frontswap,
2025				unsigned long *fs_pages_to_unuse)
2026{
2027	p4d_t *p4d;
2028	unsigned long next;
2029	int ret;
2030
2031	p4d = p4d_offset(pgd, addr);
2032	do {
2033		next = p4d_addr_end(addr, end);
2034		if (p4d_none_or_clear_bad(p4d))
2035			continue;
2036		ret = unuse_pud_range(vma, p4d, addr, next, type,
2037				      frontswap, fs_pages_to_unuse);
2038		if (ret)
2039			return ret;
2040	} while (p4d++, addr = next, addr != end);
2041	return 0;
2042}
2043
2044static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2045		     bool frontswap, unsigned long *fs_pages_to_unuse)
2046{
2047	pgd_t *pgd;
2048	unsigned long addr, end, next;
2049	int ret;
2050
2051	addr = vma->vm_start;
2052	end = vma->vm_end;
2053
2054	pgd = pgd_offset(vma->vm_mm, addr);
2055	do {
2056		next = pgd_addr_end(addr, end);
2057		if (pgd_none_or_clear_bad(pgd))
2058			continue;
2059		ret = unuse_p4d_range(vma, pgd, addr, next, type,
2060				      frontswap, fs_pages_to_unuse);
2061		if (ret)
2062			return ret;
2063	} while (pgd++, addr = next, addr != end);
2064	return 0;
2065}
2066
2067static int unuse_mm(struct mm_struct *mm, unsigned int type,
2068		    bool frontswap, unsigned long *fs_pages_to_unuse)
2069{
2070	struct vm_area_struct *vma;
2071	int ret = 0;
 
2072
2073	down_read(&mm->mmap_sem);
2074	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2075		if (vma->anon_vma) {
2076			ret = unuse_vma(vma, type, frontswap,
2077					fs_pages_to_unuse);
2078			if (ret)
2079				break;
2080		}
 
2081		cond_resched();
2082	}
2083	up_read(&mm->mmap_sem);
2084	return ret;
2085}
2086
2087/*
2088 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2089 * from current position to next entry still in use. Return 0
2090 * if there are no inuse entries after prev till end of the map.
2091 */
2092static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2093					unsigned int prev, bool frontswap)
2094{
2095	unsigned int i;
2096	unsigned char count;
2097
2098	/*
2099	 * No need for swap_lock here: we're just looking
2100	 * for whether an entry is in use, not modifying it; false
2101	 * hits are okay, and sys_swapoff() has already prevented new
2102	 * allocations from this area (while holding swap_lock).
2103	 */
2104	for (i = prev + 1; i < si->max; i++) {
2105		count = READ_ONCE(si->swap_map[i]);
2106		if (count && swap_count(count) != SWAP_MAP_BAD)
2107			if (!frontswap || frontswap_test(si, i))
2108				break;
2109		if ((i % LATENCY_LIMIT) == 0)
2110			cond_resched();
2111	}
2112
2113	if (i == si->max)
2114		i = 0;
2115
2116	return i;
2117}
2118
2119/*
2120 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2121 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2122 */
2123int try_to_unuse(unsigned int type, bool frontswap,
2124		 unsigned long pages_to_unuse)
2125{
2126	struct mm_struct *prev_mm;
2127	struct mm_struct *mm;
2128	struct list_head *p;
2129	int retval = 0;
2130	struct swap_info_struct *si = swap_info[type];
2131	struct page *page;
2132	swp_entry_t entry;
2133	unsigned int i;
2134
2135	if (!si->inuse_pages)
2136		return 0;
2137
2138	if (!frontswap)
2139		pages_to_unuse = 0;
2140
2141retry:
2142	retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2143	if (retval)
2144		goto out;
2145
2146	prev_mm = &init_mm;
2147	mmget(prev_mm);
2148
2149	spin_lock(&mmlist_lock);
2150	p = &init_mm.mmlist;
2151	while (si->inuse_pages &&
2152	       !signal_pending(current) &&
2153	       (p = p->next) != &init_mm.mmlist) {
2154
2155		mm = list_entry(p, struct mm_struct, mmlist);
2156		if (!mmget_not_zero(mm))
2157			continue;
2158		spin_unlock(&mmlist_lock);
2159		mmput(prev_mm);
2160		prev_mm = mm;
2161		retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2162
2163		if (retval) {
2164			mmput(prev_mm);
2165			goto out;
2166		}
2167
2168		/*
2169		 * Make sure that we aren't completely killing
2170		 * interactive performance.
2171		 */
2172		cond_resched();
2173		spin_lock(&mmlist_lock);
2174	}
2175	spin_unlock(&mmlist_lock);
2176
2177	mmput(prev_mm);
2178
2179	i = 0;
2180	while (si->inuse_pages &&
2181	       !signal_pending(current) &&
2182	       (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2183
2184		entry = swp_entry(type, i);
2185		page = find_get_page(swap_address_space(entry), i);
2186		if (!page)
2187			continue;
2188
2189		/*
2190		 * It is conceivable that a racing task removed this page from
2191		 * swap cache just before we acquired the page lock. The page
2192		 * might even be back in swap cache on another swap area. But
2193		 * that is okay, try_to_free_swap() only removes stale pages.
2194		 */
2195		lock_page(page);
2196		wait_on_page_writeback(page);
2197		try_to_free_swap(page);
2198		unlock_page(page);
2199		put_page(page);
2200
2201		/*
2202		 * For frontswap, we just need to unuse pages_to_unuse, if
2203		 * it was specified. Need not check frontswap again here as
2204		 * we already zeroed out pages_to_unuse if not frontswap.
2205		 */
2206		if (pages_to_unuse && --pages_to_unuse == 0)
2207			goto out;
2208	}
2209
2210	/*
2211	 * Lets check again to see if there are still swap entries in the map.
2212	 * If yes, we would need to do retry the unuse logic again.
2213	 * Under global memory pressure, swap entries can be reinserted back
2214	 * into process space after the mmlist loop above passes over them.
2215	 *
2216	 * Limit the number of retries? No: when mmget_not_zero() above fails,
2217	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2218	 * at its own independent pace; and even shmem_writepage() could have
2219	 * been preempted after get_swap_page(), temporarily hiding that swap.
2220	 * It's easy and robust (though cpu-intensive) just to keep retrying.
 
2221	 */
2222	if (si->inuse_pages) {
2223		if (!signal_pending(current))
2224			goto retry;
2225		retval = -EINTR;
2226	}
2227out:
2228	return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
 
 
 
 
 
 
2229}
2230
2231/*
2232 * After a successful try_to_unuse, if no swap is now in use, we know
2233 * we can empty the mmlist.  swap_lock must be held on entry and exit.
2234 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2235 * added to the mmlist just after page_duplicate - before would be racy.
2236 */
2237static void drain_mmlist(void)
2238{
2239	struct list_head *p, *next;
2240	unsigned int type;
2241
2242	for (type = 0; type < nr_swapfiles; type++)
2243		if (swap_info[type]->inuse_pages)
2244			return;
2245	spin_lock(&mmlist_lock);
2246	list_for_each_safe(p, next, &init_mm.mmlist)
2247		list_del_init(p);
2248	spin_unlock(&mmlist_lock);
2249}
2250
2251/*
2252 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2253 * corresponds to page offset for the specified swap entry.
2254 * Note that the type of this function is sector_t, but it returns page offset
2255 * into the bdev, not sector offset.
2256 */
2257static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2258{
2259	struct swap_info_struct *sis;
2260	struct swap_extent *se;
2261	pgoff_t offset;
2262
2263	sis = swp_swap_info(entry);
2264	*bdev = sis->bdev;
2265
2266	offset = swp_offset(entry);
2267	se = offset_to_swap_extent(sis, offset);
2268	return se->start_block + (offset - se->start_page);
2269}
2270
2271/*
2272 * Returns the page offset into bdev for the specified page's swap entry.
2273 */
2274sector_t map_swap_page(struct page *page, struct block_device **bdev)
2275{
2276	swp_entry_t entry;
2277	entry.val = page_private(page);
2278	return map_swap_entry(entry, bdev);
2279}
2280
2281/*
2282 * Free all of a swapdev's extent information
2283 */
2284static void destroy_swap_extents(struct swap_info_struct *sis)
2285{
2286	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2287		struct rb_node *rb = sis->swap_extent_root.rb_node;
2288		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2289
2290		rb_erase(rb, &sis->swap_extent_root);
2291		kfree(se);
2292	}
2293
2294	if (sis->flags & SWP_ACTIVATED) {
2295		struct file *swap_file = sis->swap_file;
2296		struct address_space *mapping = swap_file->f_mapping;
2297
2298		sis->flags &= ~SWP_ACTIVATED;
2299		if (mapping->a_ops->swap_deactivate)
2300			mapping->a_ops->swap_deactivate(swap_file);
2301	}
2302}
2303
2304/*
2305 * Add a block range (and the corresponding page range) into this swapdev's
2306 * extent tree.
2307 *
2308 * This function rather assumes that it is called in ascending page order.
2309 */
2310int
2311add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2312		unsigned long nr_pages, sector_t start_block)
2313{
2314	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2315	struct swap_extent *se;
2316	struct swap_extent *new_se;
2317
2318	/*
2319	 * place the new node at the right most since the
2320	 * function is called in ascending page order.
2321	 */
2322	while (*link) {
2323		parent = *link;
2324		link = &parent->rb_right;
2325	}
2326
2327	if (parent) {
2328		se = rb_entry(parent, struct swap_extent, rb_node);
2329		BUG_ON(se->start_page + se->nr_pages != start_page);
2330		if (se->start_block + se->nr_pages == start_block) {
2331			/* Merge it */
2332			se->nr_pages += nr_pages;
2333			return 0;
2334		}
2335	}
2336
2337	/* No merge, insert a new extent. */
2338	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2339	if (new_se == NULL)
2340		return -ENOMEM;
2341	new_se->start_page = start_page;
2342	new_se->nr_pages = nr_pages;
2343	new_se->start_block = start_block;
2344
2345	rb_link_node(&new_se->rb_node, parent, link);
2346	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2347	return 1;
2348}
2349EXPORT_SYMBOL_GPL(add_swap_extent);
2350
2351/*
2352 * A `swap extent' is a simple thing which maps a contiguous range of pages
2353 * onto a contiguous range of disk blocks.  An ordered list of swap extents
2354 * is built at swapon time and is then used at swap_writepage/swap_readpage
2355 * time for locating where on disk a page belongs.
2356 *
2357 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2358 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2359 * swap files identically.
2360 *
2361 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2362 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2363 * swapfiles are handled *identically* after swapon time.
2364 *
2365 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2366 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2367 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2368 * requirements, they are simply tossed out - we will never use those blocks
2369 * for swapping.
2370 *
2371 * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2372 * prevents users from writing to the swap device, which will corrupt memory.
2373 *
2374 * The amount of disk space which a single swap extent represents varies.
2375 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2376 * extents in the list.  To avoid much list walking, we cache the previous
2377 * search location in `curr_swap_extent', and start new searches from there.
2378 * This is extremely effective.  The average number of iterations in
2379 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2380 */
2381static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2382{
2383	struct file *swap_file = sis->swap_file;
2384	struct address_space *mapping = swap_file->f_mapping;
2385	struct inode *inode = mapping->host;
2386	int ret;
2387
2388	if (S_ISBLK(inode->i_mode)) {
2389		ret = add_swap_extent(sis, 0, sis->max, 0);
2390		*span = sis->pages;
2391		return ret;
2392	}
2393
2394	if (mapping->a_ops->swap_activate) {
2395		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2396		if (ret >= 0)
2397			sis->flags |= SWP_ACTIVATED;
2398		if (!ret) {
2399			sis->flags |= SWP_FS;
2400			ret = add_swap_extent(sis, 0, sis->max, 0);
2401			*span = sis->pages;
 
2402		}
2403		return ret;
2404	}
2405
2406	return generic_swapfile_activate(sis, swap_file, span);
2407}
2408
2409static int swap_node(struct swap_info_struct *p)
2410{
2411	struct block_device *bdev;
2412
2413	if (p->bdev)
2414		bdev = p->bdev;
2415	else
2416		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2417
2418	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2419}
2420
2421static void setup_swap_info(struct swap_info_struct *p, int prio,
2422			    unsigned char *swap_map,
2423			    struct swap_cluster_info *cluster_info)
 
2424{
2425	int i;
2426
2427	if (prio >= 0)
2428		p->prio = prio;
2429	else
2430		p->prio = --least_priority;
2431	/*
2432	 * the plist prio is negated because plist ordering is
2433	 * low-to-high, while swap ordering is high-to-low
2434	 */
2435	p->list.prio = -p->prio;
2436	for_each_node(i) {
2437		if (p->prio >= 0)
2438			p->avail_lists[i].prio = -p->prio;
2439		else {
2440			if (swap_node(p) == i)
2441				p->avail_lists[i].prio = 1;
2442			else
2443				p->avail_lists[i].prio = -p->prio;
2444		}
2445	}
2446	p->swap_map = swap_map;
2447	p->cluster_info = cluster_info;
 
2448}
2449
2450static void _enable_swap_info(struct swap_info_struct *p)
2451{
2452	p->flags |= SWP_WRITEOK | SWP_VALID;
2453	atomic_long_add(p->pages, &nr_swap_pages);
2454	total_swap_pages += p->pages;
2455
2456	assert_spin_locked(&swap_lock);
2457	/*
2458	 * both lists are plists, and thus priority ordered.
2459	 * swap_active_head needs to be priority ordered for swapoff(),
2460	 * which on removal of any swap_info_struct with an auto-assigned
2461	 * (i.e. negative) priority increments the auto-assigned priority
2462	 * of any lower-priority swap_info_structs.
2463	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2464	 * which allocates swap pages from the highest available priority
2465	 * swap_info_struct.
2466	 */
2467	plist_add(&p->list, &swap_active_head);
2468	add_to_avail_list(p);
 
 
 
2469}
2470
2471static void enable_swap_info(struct swap_info_struct *p, int prio,
2472				unsigned char *swap_map,
2473				struct swap_cluster_info *cluster_info,
2474				unsigned long *frontswap_map)
2475{
2476	frontswap_init(p->type, frontswap_map);
2477	spin_lock(&swap_lock);
2478	spin_lock(&p->lock);
2479	setup_swap_info(p, prio, swap_map, cluster_info);
2480	spin_unlock(&p->lock);
2481	spin_unlock(&swap_lock);
2482	/*
2483	 * Guarantee swap_map, cluster_info, etc. fields are valid
2484	 * between get/put_swap_device() if SWP_VALID bit is set
2485	 */
2486	synchronize_rcu();
2487	spin_lock(&swap_lock);
2488	spin_lock(&p->lock);
2489	_enable_swap_info(p);
2490	spin_unlock(&p->lock);
2491	spin_unlock(&swap_lock);
2492}
2493
2494static void reinsert_swap_info(struct swap_info_struct *p)
2495{
2496	spin_lock(&swap_lock);
2497	spin_lock(&p->lock);
2498	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2499	_enable_swap_info(p);
2500	spin_unlock(&p->lock);
2501	spin_unlock(&swap_lock);
2502}
2503
 
 
 
 
 
2504bool has_usable_swap(void)
2505{
2506	bool ret = true;
2507
2508	spin_lock(&swap_lock);
2509	if (plist_head_empty(&swap_active_head))
2510		ret = false;
2511	spin_unlock(&swap_lock);
2512	return ret;
2513}
2514
2515SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2516{
2517	struct swap_info_struct *p = NULL;
2518	unsigned char *swap_map;
 
2519	struct swap_cluster_info *cluster_info;
2520	unsigned long *frontswap_map;
2521	struct file *swap_file, *victim;
2522	struct address_space *mapping;
2523	struct inode *inode;
2524	struct filename *pathname;
2525	int err, found = 0;
2526	unsigned int old_block_size;
2527
2528	if (!capable(CAP_SYS_ADMIN))
2529		return -EPERM;
2530
2531	BUG_ON(!current->mm);
2532
2533	pathname = getname(specialfile);
2534	if (IS_ERR(pathname))
2535		return PTR_ERR(pathname);
2536
2537	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2538	err = PTR_ERR(victim);
2539	if (IS_ERR(victim))
2540		goto out;
2541
2542	mapping = victim->f_mapping;
2543	spin_lock(&swap_lock);
2544	plist_for_each_entry(p, &swap_active_head, list) {
2545		if (p->flags & SWP_WRITEOK) {
2546			if (p->swap_file->f_mapping == mapping) {
2547				found = 1;
2548				break;
2549			}
2550		}
2551	}
2552	if (!found) {
2553		err = -EINVAL;
2554		spin_unlock(&swap_lock);
2555		goto out_dput;
2556	}
2557	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2558		vm_unacct_memory(p->pages);
2559	else {
2560		err = -ENOMEM;
2561		spin_unlock(&swap_lock);
2562		goto out_dput;
2563	}
2564	del_from_avail_list(p);
2565	spin_lock(&p->lock);
 
2566	if (p->prio < 0) {
2567		struct swap_info_struct *si = p;
2568		int nid;
2569
2570		plist_for_each_entry_continue(si, &swap_active_head, list) {
2571			si->prio++;
2572			si->list.prio--;
2573			for_each_node(nid) {
2574				if (si->avail_lists[nid].prio != 1)
2575					si->avail_lists[nid].prio--;
2576			}
2577		}
2578		least_priority++;
2579	}
2580	plist_del(&p->list, &swap_active_head);
2581	atomic_long_sub(p->pages, &nr_swap_pages);
2582	total_swap_pages -= p->pages;
2583	p->flags &= ~SWP_WRITEOK;
2584	spin_unlock(&p->lock);
2585	spin_unlock(&swap_lock);
2586
2587	disable_swap_slots_cache_lock();
2588
2589	set_current_oom_origin();
2590	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2591	clear_current_oom_origin();
2592
2593	if (err) {
2594		/* re-insert swap space back into swap_list */
2595		reinsert_swap_info(p);
2596		reenable_swap_slots_cache_unlock();
2597		goto out_dput;
2598	}
2599
2600	reenable_swap_slots_cache_unlock();
2601
2602	spin_lock(&swap_lock);
2603	spin_lock(&p->lock);
2604	p->flags &= ~SWP_VALID;		/* mark swap device as invalid */
2605	spin_unlock(&p->lock);
2606	spin_unlock(&swap_lock);
2607	/*
2608	 * wait for swap operations protected by get/put_swap_device()
2609	 * to complete
 
 
 
 
2610	 */
 
2611	synchronize_rcu();
 
2612
2613	flush_work(&p->discard_work);
 
2614
2615	destroy_swap_extents(p);
2616	if (p->flags & SWP_CONTINUED)
2617		free_swap_count_continuations(p);
2618
2619	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2620		atomic_dec(&nr_rotate_swap);
2621
2622	mutex_lock(&swapon_mutex);
2623	spin_lock(&swap_lock);
2624	spin_lock(&p->lock);
2625	drain_mmlist();
2626
2627	/* wait for anyone still in scan_swap_map */
2628	p->highest_bit = 0;		/* cuts scans short */
2629	while (p->flags >= SWP_SCANNING) {
2630		spin_unlock(&p->lock);
2631		spin_unlock(&swap_lock);
2632		schedule_timeout_uninterruptible(1);
2633		spin_lock(&swap_lock);
2634		spin_lock(&p->lock);
2635	}
2636
2637	swap_file = p->swap_file;
2638	old_block_size = p->old_block_size;
2639	p->swap_file = NULL;
2640	p->max = 0;
2641	swap_map = p->swap_map;
2642	p->swap_map = NULL;
 
 
2643	cluster_info = p->cluster_info;
2644	p->cluster_info = NULL;
2645	frontswap_map = frontswap_map_get(p);
2646	spin_unlock(&p->lock);
2647	spin_unlock(&swap_lock);
2648	frontswap_invalidate_area(p->type);
2649	frontswap_map_set(p, NULL);
2650	mutex_unlock(&swapon_mutex);
2651	free_percpu(p->percpu_cluster);
2652	p->percpu_cluster = NULL;
 
 
2653	vfree(swap_map);
 
2654	kvfree(cluster_info);
2655	kvfree(frontswap_map);
2656	/* Destroy swap account information */
2657	swap_cgroup_swapoff(p->type);
2658	exit_swap_address_space(p->type);
2659
2660	inode = mapping->host;
2661	if (S_ISBLK(inode->i_mode)) {
2662		struct block_device *bdev = I_BDEV(inode);
2663
2664		set_blocksize(bdev, old_block_size);
2665		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2666	}
2667
2668	inode_lock(inode);
2669	inode->i_flags &= ~S_SWAPFILE;
2670	inode_unlock(inode);
2671	filp_close(swap_file, NULL);
2672
2673	/*
2674	 * Clear the SWP_USED flag after all resources are freed so that swapon
2675	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2676	 * not hold p->lock after we cleared its SWP_WRITEOK.
2677	 */
2678	spin_lock(&swap_lock);
2679	p->flags = 0;
2680	spin_unlock(&swap_lock);
2681
2682	err = 0;
2683	atomic_inc(&proc_poll_event);
2684	wake_up_interruptible(&proc_poll_wait);
2685
2686out_dput:
2687	filp_close(victim, NULL);
2688out:
2689	putname(pathname);
2690	return err;
2691}
2692
2693#ifdef CONFIG_PROC_FS
2694static __poll_t swaps_poll(struct file *file, poll_table *wait)
2695{
2696	struct seq_file *seq = file->private_data;
2697
2698	poll_wait(file, &proc_poll_wait, wait);
2699
2700	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2701		seq->poll_event = atomic_read(&proc_poll_event);
2702		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2703	}
2704
2705	return EPOLLIN | EPOLLRDNORM;
2706}
2707
2708/* iterator */
2709static void *swap_start(struct seq_file *swap, loff_t *pos)
2710{
2711	struct swap_info_struct *si;
2712	int type;
2713	loff_t l = *pos;
2714
2715	mutex_lock(&swapon_mutex);
2716
2717	if (!l)
2718		return SEQ_START_TOKEN;
2719
2720	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2721		if (!(si->flags & SWP_USED) || !si->swap_map)
2722			continue;
2723		if (!--l)
2724			return si;
2725	}
2726
2727	return NULL;
2728}
2729
2730static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2731{
2732	struct swap_info_struct *si = v;
2733	int type;
2734
2735	if (v == SEQ_START_TOKEN)
2736		type = 0;
2737	else
2738		type = si->type + 1;
2739
 
2740	for (; (si = swap_type_to_swap_info(type)); type++) {
2741		if (!(si->flags & SWP_USED) || !si->swap_map)
2742			continue;
2743		++*pos;
2744		return si;
2745	}
2746
2747	return NULL;
2748}
2749
2750static void swap_stop(struct seq_file *swap, void *v)
2751{
2752	mutex_unlock(&swapon_mutex);
2753}
2754
2755static int swap_show(struct seq_file *swap, void *v)
2756{
2757	struct swap_info_struct *si = v;
2758	struct file *file;
2759	int len;
 
2760
2761	if (si == SEQ_START_TOKEN) {
2762		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2763		return 0;
2764	}
2765
 
 
 
2766	file = si->swap_file;
2767	len = seq_file_path(swap, file, " \t\n\\");
2768	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2769			len < 40 ? 40 - len : 1, " ",
2770			S_ISBLK(file_inode(file)->i_mode) ?
2771				"partition" : "file\t",
2772			si->pages << (PAGE_SHIFT - 10),
2773			si->inuse_pages << (PAGE_SHIFT - 10),
2774			si->prio);
2775	return 0;
2776}
2777
2778static const struct seq_operations swaps_op = {
2779	.start =	swap_start,
2780	.next =		swap_next,
2781	.stop =		swap_stop,
2782	.show =		swap_show
2783};
2784
2785static int swaps_open(struct inode *inode, struct file *file)
2786{
2787	struct seq_file *seq;
2788	int ret;
2789
2790	ret = seq_open(file, &swaps_op);
2791	if (ret)
2792		return ret;
2793
2794	seq = file->private_data;
2795	seq->poll_event = atomic_read(&proc_poll_event);
2796	return 0;
2797}
2798
2799static const struct file_operations proc_swaps_operations = {
2800	.open		= swaps_open,
2801	.read		= seq_read,
2802	.llseek		= seq_lseek,
2803	.release	= seq_release,
2804	.poll		= swaps_poll,
 
2805};
2806
2807static int __init procswaps_init(void)
2808{
2809	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2810	return 0;
2811}
2812__initcall(procswaps_init);
2813#endif /* CONFIG_PROC_FS */
2814
2815#ifdef MAX_SWAPFILES_CHECK
2816static int __init max_swapfiles_check(void)
2817{
2818	MAX_SWAPFILES_CHECK();
2819	return 0;
2820}
2821late_initcall(max_swapfiles_check);
2822#endif
2823
2824static struct swap_info_struct *alloc_swap_info(void)
2825{
2826	struct swap_info_struct *p;
 
2827	unsigned int type;
2828	int i;
2829
2830	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2831	if (!p)
2832		return ERR_PTR(-ENOMEM);
2833
 
 
 
 
 
 
2834	spin_lock(&swap_lock);
2835	for (type = 0; type < nr_swapfiles; type++) {
2836		if (!(swap_info[type]->flags & SWP_USED))
2837			break;
2838	}
2839	if (type >= MAX_SWAPFILES) {
2840		spin_unlock(&swap_lock);
 
2841		kvfree(p);
2842		return ERR_PTR(-EPERM);
2843	}
2844	if (type >= nr_swapfiles) {
2845		p->type = type;
2846		WRITE_ONCE(swap_info[type], p);
2847		/*
2848		 * Write swap_info[type] before nr_swapfiles, in case a
2849		 * racing procfs swap_start() or swap_next() is reading them.
2850		 * (We never shrink nr_swapfiles, we never free this entry.)
2851		 */
2852		smp_wmb();
2853		WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2854	} else {
2855		kvfree(p);
2856		p = swap_info[type];
2857		/*
2858		 * Do not memset this entry: a racing procfs swap_next()
2859		 * would be relying on p->type to remain valid.
2860		 */
2861	}
2862	p->swap_extent_root = RB_ROOT;
2863	plist_node_init(&p->list, 0);
2864	for_each_node(i)
2865		plist_node_init(&p->avail_lists[i], 0);
2866	p->flags = SWP_USED;
2867	spin_unlock(&swap_lock);
 
 
 
 
2868	spin_lock_init(&p->lock);
2869	spin_lock_init(&p->cont_lock);
 
2870
2871	return p;
2872}
2873
2874static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2875{
2876	int error;
2877
2878	if (S_ISBLK(inode->i_mode)) {
2879		p->bdev = bdgrab(I_BDEV(inode));
2880		error = blkdev_get(p->bdev,
2881				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2882		if (error < 0) {
2883			p->bdev = NULL;
2884			return error;
2885		}
2886		p->old_block_size = block_size(p->bdev);
2887		error = set_blocksize(p->bdev, PAGE_SIZE);
2888		if (error < 0)
2889			return error;
2890		p->flags |= SWP_BLKDEV;
2891	} else if (S_ISREG(inode->i_mode)) {
2892		p->bdev = inode->i_sb->s_bdev;
2893	}
2894
2895	inode_lock(inode);
2896	if (IS_SWAPFILE(inode))
2897		return -EBUSY;
2898
2899	return 0;
2900}
2901
2902
2903/*
2904 * Find out how many pages are allowed for a single swap device. There
2905 * are two limiting factors:
2906 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2907 * 2) the number of bits in the swap pte, as defined by the different
2908 * architectures.
2909 *
2910 * In order to find the largest possible bit mask, a swap entry with
2911 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2912 * decoded to a swp_entry_t again, and finally the swap offset is
2913 * extracted.
2914 *
2915 * This will mask all the bits from the initial ~0UL mask that can't
2916 * be encoded in either the swp_entry_t or the architecture definition
2917 * of a swap pte.
2918 */
2919unsigned long generic_max_swapfile_size(void)
2920{
2921	return swp_offset(pte_to_swp_entry(
2922			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2923}
2924
2925/* Can be overridden by an architecture for additional checks. */
2926__weak unsigned long max_swapfile_size(void)
2927{
2928	return generic_max_swapfile_size();
2929}
2930
2931static unsigned long read_swap_header(struct swap_info_struct *p,
2932					union swap_header *swap_header,
2933					struct inode *inode)
2934{
2935	int i;
2936	unsigned long maxpages;
2937	unsigned long swapfilepages;
2938	unsigned long last_page;
2939
2940	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2941		pr_err("Unable to find swap-space signature\n");
2942		return 0;
2943	}
2944
2945	/* swap partition endianess hack... */
2946	if (swab32(swap_header->info.version) == 1) {
2947		swab32s(&swap_header->info.version);
2948		swab32s(&swap_header->info.last_page);
2949		swab32s(&swap_header->info.nr_badpages);
2950		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2951			return 0;
2952		for (i = 0; i < swap_header->info.nr_badpages; i++)
2953			swab32s(&swap_header->info.badpages[i]);
2954	}
2955	/* Check the swap header's sub-version */
2956	if (swap_header->info.version != 1) {
2957		pr_warn("Unable to handle swap header version %d\n",
2958			swap_header->info.version);
2959		return 0;
2960	}
2961
2962	p->lowest_bit  = 1;
2963	p->cluster_next = 1;
2964	p->cluster_nr = 0;
2965
2966	maxpages = max_swapfile_size();
2967	last_page = swap_header->info.last_page;
2968	if (!last_page) {
2969		pr_warn("Empty swap-file\n");
2970		return 0;
2971	}
2972	if (last_page > maxpages) {
2973		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2974			maxpages << (PAGE_SHIFT - 10),
2975			last_page << (PAGE_SHIFT - 10));
2976	}
2977	if (maxpages > last_page) {
2978		maxpages = last_page + 1;
2979		/* p->max is an unsigned int: don't overflow it */
2980		if ((unsigned int)maxpages == 0)
2981			maxpages = UINT_MAX;
2982	}
2983	p->highest_bit = maxpages - 1;
2984
2985	if (!maxpages)
2986		return 0;
2987	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2988	if (swapfilepages && maxpages > swapfilepages) {
2989		pr_warn("Swap area shorter than signature indicates\n");
2990		return 0;
2991	}
2992	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2993		return 0;
2994	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2995		return 0;
2996
2997	return maxpages;
2998}
2999
3000#define SWAP_CLUSTER_INFO_COLS						\
3001	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3002#define SWAP_CLUSTER_SPACE_COLS						\
3003	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3004#define SWAP_CLUSTER_COLS						\
3005	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3006
3007static int setup_swap_map_and_extents(struct swap_info_struct *p,
3008					union swap_header *swap_header,
3009					unsigned char *swap_map,
3010					struct swap_cluster_info *cluster_info,
3011					unsigned long maxpages,
3012					sector_t *span)
3013{
3014	unsigned int j, k;
3015	unsigned int nr_good_pages;
 
3016	int nr_extents;
3017	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3018	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3019	unsigned long i, idx;
3020
3021	nr_good_pages = maxpages - 1;	/* omit header page */
3022
3023	cluster_list_init(&p->free_clusters);
3024	cluster_list_init(&p->discard_clusters);
3025
3026	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3027		unsigned int page_nr = swap_header->info.badpages[i];
3028		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3029			return -EINVAL;
3030		if (page_nr < maxpages) {
3031			swap_map[page_nr] = SWAP_MAP_BAD;
3032			nr_good_pages--;
3033			/*
3034			 * Haven't marked the cluster free yet, no list
3035			 * operation involved
3036			 */
3037			inc_cluster_info_page(p, cluster_info, page_nr);
3038		}
3039	}
3040
3041	/* Haven't marked the cluster free yet, no list operation involved */
3042	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3043		inc_cluster_info_page(p, cluster_info, i);
3044
3045	if (nr_good_pages) {
3046		swap_map[0] = SWAP_MAP_BAD;
3047		/*
3048		 * Not mark the cluster free yet, no list
3049		 * operation involved
3050		 */
3051		inc_cluster_info_page(p, cluster_info, 0);
3052		p->max = maxpages;
3053		p->pages = nr_good_pages;
3054		nr_extents = setup_swap_extents(p, span);
3055		if (nr_extents < 0)
3056			return nr_extents;
3057		nr_good_pages = p->pages;
3058	}
3059	if (!nr_good_pages) {
3060		pr_warn("Empty swap-file\n");
3061		return -EINVAL;
3062	}
3063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3064	if (!cluster_info)
3065		return nr_extents;
 
 
 
 
 
 
 
3066
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3067
3068	/*
3069	 * Reduce false cache line sharing between cluster_info and
3070	 * sharing same address space.
3071	 */
3072	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3073		j = (k + col) % SWAP_CLUSTER_COLS;
3074		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
 
3075			idx = i * SWAP_CLUSTER_COLS + j;
 
3076			if (idx >= nr_clusters)
3077				continue;
3078			if (cluster_count(&cluster_info[idx]))
 
 
3079				continue;
3080			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3081			cluster_list_add_tail(&p->free_clusters, cluster_info,
3082					      idx);
3083		}
3084	}
3085	return nr_extents;
3086}
3087
3088/*
3089 * Helper to sys_swapon determining if a given swap
3090 * backing device queue supports DISCARD operations.
3091 */
3092static bool swap_discardable(struct swap_info_struct *si)
3093{
3094	struct request_queue *q = bdev_get_queue(si->bdev);
3095
3096	if (!q || !blk_queue_discard(q))
3097		return false;
3098
3099	return true;
 
 
 
3100}
3101
3102SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3103{
3104	struct swap_info_struct *p;
3105	struct filename *name;
3106	struct file *swap_file = NULL;
3107	struct address_space *mapping;
 
3108	int prio;
3109	int error;
3110	union swap_header *swap_header;
3111	int nr_extents;
3112	sector_t span;
3113	unsigned long maxpages;
3114	unsigned char *swap_map = NULL;
 
3115	struct swap_cluster_info *cluster_info = NULL;
3116	unsigned long *frontswap_map = NULL;
3117	struct page *page = NULL;
3118	struct inode *inode = NULL;
3119	bool inced_nr_rotate_swap = false;
3120
3121	if (swap_flags & ~SWAP_FLAGS_VALID)
3122		return -EINVAL;
3123
3124	if (!capable(CAP_SYS_ADMIN))
3125		return -EPERM;
3126
3127	if (!swap_avail_heads)
3128		return -ENOMEM;
3129
3130	p = alloc_swap_info();
3131	if (IS_ERR(p))
3132		return PTR_ERR(p);
3133
3134	INIT_WORK(&p->discard_work, swap_discard_work);
 
3135
3136	name = getname(specialfile);
3137	if (IS_ERR(name)) {
3138		error = PTR_ERR(name);
3139		name = NULL;
3140		goto bad_swap;
3141	}
3142	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3143	if (IS_ERR(swap_file)) {
3144		error = PTR_ERR(swap_file);
3145		swap_file = NULL;
3146		goto bad_swap;
3147	}
3148
3149	p->swap_file = swap_file;
3150	mapping = swap_file->f_mapping;
 
3151	inode = mapping->host;
3152
3153	/* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3154	error = claim_swapfile(p, inode);
3155	if (unlikely(error))
3156		goto bad_swap;
3157
 
 
 
 
 
 
 
 
 
 
3158	/*
3159	 * Read the swap header.
3160	 */
3161	if (!mapping->a_ops->readpage) {
3162		error = -EINVAL;
3163		goto bad_swap;
3164	}
3165	page = read_mapping_page(mapping, 0, swap_file);
3166	if (IS_ERR(page)) {
3167		error = PTR_ERR(page);
3168		goto bad_swap;
3169	}
3170	swap_header = kmap(page);
3171
3172	maxpages = read_swap_header(p, swap_header, inode);
3173	if (unlikely(!maxpages)) {
3174		error = -EINVAL;
3175		goto bad_swap;
3176	}
3177
3178	/* OK, set up the swap map and apply the bad block list */
3179	swap_map = vzalloc(maxpages);
3180	if (!swap_map) {
3181		error = -ENOMEM;
3182		goto bad_swap;
3183	}
3184
3185	if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3186		p->flags |= SWP_STABLE_WRITES;
 
3187
3188	if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3189		p->flags |= SWP_SYNCHRONOUS_IO;
 
 
 
 
3190
3191	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3192		int cpu;
3193		unsigned long ci, nr_cluster;
 
 
 
 
 
 
 
3194
3195		p->flags |= SWP_SOLIDSTATE;
3196		/*
3197		 * select a random position to start with to help wear leveling
3198		 * SSD
3199		 */
3200		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3201		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3202
3203		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3204					GFP_KERNEL);
3205		if (!cluster_info) {
3206			error = -ENOMEM;
3207			goto bad_swap;
3208		}
3209
3210		for (ci = 0; ci < nr_cluster; ci++)
3211			spin_lock_init(&((cluster_info + ci)->lock));
3212
3213		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3214		if (!p->percpu_cluster) {
3215			error = -ENOMEM;
3216			goto bad_swap;
3217		}
3218		for_each_possible_cpu(cpu) {
3219			struct percpu_cluster *cluster;
3220			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3221			cluster_set_null(&cluster->index);
3222		}
3223	} else {
3224		atomic_inc(&nr_rotate_swap);
3225		inced_nr_rotate_swap = true;
3226	}
3227
3228	error = swap_cgroup_swapon(p->type, maxpages);
3229	if (error)
3230		goto bad_swap;
3231
3232	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3233		cluster_info, maxpages, &span);
3234	if (unlikely(nr_extents < 0)) {
3235		error = nr_extents;
3236		goto bad_swap;
3237	}
3238	/* frontswap enabled? set up bit-per-page map for frontswap */
3239	if (IS_ENABLED(CONFIG_FRONTSWAP))
3240		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3241					 sizeof(long),
3242					 GFP_KERNEL);
3243
3244	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3245		/*
3246		 * When discard is enabled for swap with no particular
3247		 * policy flagged, we set all swap discard flags here in
3248		 * order to sustain backward compatibility with older
3249		 * swapon(8) releases.
3250		 */
3251		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3252			     SWP_PAGE_DISCARD);
3253
3254		/*
3255		 * By flagging sys_swapon, a sysadmin can tell us to
3256		 * either do single-time area discards only, or to just
3257		 * perform discards for released swap page-clusters.
3258		 * Now it's time to adjust the p->flags accordingly.
3259		 */
3260		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3261			p->flags &= ~SWP_PAGE_DISCARD;
3262		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3263			p->flags &= ~SWP_AREA_DISCARD;
3264
3265		/* issue a swapon-time discard if it's still required */
3266		if (p->flags & SWP_AREA_DISCARD) {
3267			int err = discard_swap(p);
3268			if (unlikely(err))
3269				pr_err("swapon: discard_swap(%p): %d\n",
3270					p, err);
3271		}
3272	}
3273
3274	error = init_swap_address_space(p->type, maxpages);
3275	if (error)
3276		goto bad_swap;
 
 
 
 
3277
3278	/*
3279	 * Flush any pending IO and dirty mappings before we start using this
3280	 * swap device.
3281	 */
3282	inode->i_flags |= S_SWAPFILE;
3283	error = inode_drain_writes(inode);
3284	if (error) {
3285		inode->i_flags &= ~S_SWAPFILE;
3286		goto bad_swap;
3287	}
3288
3289	mutex_lock(&swapon_mutex);
3290	prio = -1;
3291	if (swap_flags & SWAP_FLAG_PREFER)
3292		prio =
3293		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3294	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3295
3296	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3297		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3298		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3299		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3300		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3301		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3302		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3303		(frontswap_map) ? "FS" : "");
3304
3305	mutex_unlock(&swapon_mutex);
3306	atomic_inc(&proc_poll_event);
3307	wake_up_interruptible(&proc_poll_wait);
3308
3309	error = 0;
3310	goto out;
 
 
 
 
 
 
3311bad_swap:
3312	free_percpu(p->percpu_cluster);
3313	p->percpu_cluster = NULL;
3314	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3315		set_blocksize(p->bdev, p->old_block_size);
3316		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3317	}
3318	destroy_swap_extents(p);
3319	swap_cgroup_swapoff(p->type);
3320	spin_lock(&swap_lock);
3321	p->swap_file = NULL;
3322	p->flags = 0;
3323	spin_unlock(&swap_lock);
3324	vfree(swap_map);
 
3325	kvfree(cluster_info);
3326	kvfree(frontswap_map);
3327	if (inced_nr_rotate_swap)
3328		atomic_dec(&nr_rotate_swap);
3329	if (swap_file) {
3330		if (inode) {
3331			inode_unlock(inode);
3332			inode = NULL;
3333		}
3334		filp_close(swap_file, NULL);
3335	}
3336out:
3337	if (page && !IS_ERR(page)) {
3338		kunmap(page);
3339		put_page(page);
3340	}
3341	if (name)
3342		putname(name);
3343	if (inode)
3344		inode_unlock(inode);
3345	if (!error)
3346		enable_swap_slots_cache();
3347	return error;
3348}
3349
3350void si_swapinfo(struct sysinfo *val)
3351{
3352	unsigned int type;
3353	unsigned long nr_to_be_unused = 0;
3354
3355	spin_lock(&swap_lock);
3356	for (type = 0; type < nr_swapfiles; type++) {
3357		struct swap_info_struct *si = swap_info[type];
3358
3359		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3360			nr_to_be_unused += si->inuse_pages;
3361	}
3362	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3363	val->totalswap = total_swap_pages + nr_to_be_unused;
3364	spin_unlock(&swap_lock);
3365}
3366
3367/*
3368 * Verify that a swap entry is valid and increment its swap map count.
3369 *
3370 * Returns error code in following case.
3371 * - success -> 0
3372 * - swp_entry is invalid -> EINVAL
3373 * - swp_entry is migration entry -> EINVAL
3374 * - swap-cache reference is requested but there is already one. -> EEXIST
3375 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3376 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3377 */
3378static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3379{
3380	struct swap_info_struct *p;
3381	struct swap_cluster_info *ci;
3382	unsigned long offset;
3383	unsigned char count;
3384	unsigned char has_cache;
3385	int err = -EINVAL;
3386
3387	p = get_swap_device(entry);
3388	if (!p)
3389		goto out;
3390
3391	offset = swp_offset(entry);
3392	ci = lock_cluster_or_swap_info(p, offset);
3393
3394	count = p->swap_map[offset];
3395
3396	/*
3397	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3398	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3399	 */
3400	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3401		err = -ENOENT;
3402		goto unlock_out;
3403	}
3404
3405	has_cache = count & SWAP_HAS_CACHE;
3406	count &= ~SWAP_HAS_CACHE;
3407	err = 0;
 
 
3408
3409	if (usage == SWAP_HAS_CACHE) {
 
 
 
 
 
 
 
3410
3411		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3412		if (!has_cache && count)
3413			has_cache = SWAP_HAS_CACHE;
3414		else if (has_cache)		/* someone else added cache */
3415			err = -EEXIST;
3416		else				/* no users remaining */
3417			err = -ENOENT;
 
 
 
 
 
 
 
 
 
 
3418
3419	} else if (count || has_cache) {
 
 
 
3420
3421		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
 
 
3422			count += usage;
3423		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3424			err = -EINVAL;
3425		else if (swap_count_continued(p, offset, count))
3426			count = COUNT_CONTINUED;
3427		else
 
 
 
 
3428			err = -ENOMEM;
3429	} else
3430		err = -ENOENT;			/* unused swap entry */
3431
3432	p->swap_map[offset] = count | has_cache;
 
3433
3434unlock_out:
3435	unlock_cluster_or_swap_info(p, ci);
3436out:
3437	if (p)
3438		put_swap_device(p);
3439	return err;
3440}
3441
3442/*
3443 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3444 * (in which case its reference count is never incremented).
3445 */
3446void swap_shmem_alloc(swp_entry_t entry)
3447{
3448	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3449}
3450
3451/*
3452 * Increase reference count of swap entry by 1.
3453 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3454 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3455 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3456 * might occur if a page table entry has got corrupted.
3457 */
3458int swap_duplicate(swp_entry_t entry)
3459{
3460	int err = 0;
3461
3462	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3463		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3464	return err;
3465}
3466
3467/*
3468 * @entry: swap entry for which we allocate swap cache.
3469 *
3470 * Called when allocating swap cache for existing swap entry,
3471 * This can return error codes. Returns 0 at success.
3472 * -EBUSY means there is a swap cache.
3473 * Note: return code is different from swap_duplicate().
3474 */
3475int swapcache_prepare(swp_entry_t entry)
3476{
3477	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3478}
3479
3480struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3481{
3482	return swap_type_to_swap_info(swp_type(entry));
 
 
3483}
3484
3485struct swap_info_struct *page_swap_info(struct page *page)
3486{
3487	swp_entry_t entry = { .val = page_private(page) };
3488	return swp_swap_info(entry);
3489}
3490
3491/*
3492 * out-of-line __page_file_ methods to avoid include hell.
3493 */
3494struct address_space *__page_file_mapping(struct page *page)
3495{
3496	return page_swap_info(page)->swap_file->f_mapping;
3497}
3498EXPORT_SYMBOL_GPL(__page_file_mapping);
3499
3500pgoff_t __page_file_index(struct page *page)
3501{
3502	swp_entry_t swap = { .val = page_private(page) };
3503	return swp_offset(swap);
3504}
3505EXPORT_SYMBOL_GPL(__page_file_index);
3506
3507/*
3508 * add_swap_count_continuation - called when a swap count is duplicated
3509 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3510 * page of the original vmalloc'ed swap_map, to hold the continuation count
3511 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3512 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3513 *
3514 * These continuation pages are seldom referenced: the common paths all work
3515 * on the original swap_map, only referring to a continuation page when the
3516 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3517 *
3518 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3519 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3520 * can be called after dropping locks.
3521 */
3522int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3523{
3524	struct swap_info_struct *si;
3525	struct swap_cluster_info *ci;
3526	struct page *head;
3527	struct page *page;
3528	struct page *list_page;
3529	pgoff_t offset;
3530	unsigned char count;
3531	int ret = 0;
3532
3533	/*
3534	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3535	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3536	 */
3537	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3538
3539	si = get_swap_device(entry);
3540	if (!si) {
3541		/*
3542		 * An acceptable race has occurred since the failing
3543		 * __swap_duplicate(): the swap device may be swapoff
3544		 */
3545		goto outer;
3546	}
3547	spin_lock(&si->lock);
3548
3549	offset = swp_offset(entry);
3550
3551	ci = lock_cluster(si, offset);
3552
3553	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3554
3555	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3556		/*
3557		 * The higher the swap count, the more likely it is that tasks
3558		 * will race to add swap count continuation: we need to avoid
3559		 * over-provisioning.
3560		 */
3561		goto out;
3562	}
3563
3564	if (!page) {
3565		ret = -ENOMEM;
3566		goto out;
3567	}
3568
3569	/*
3570	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3571	 * no architecture is using highmem pages for kernel page tables: so it
3572	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3573	 */
3574	head = vmalloc_to_page(si->swap_map + offset);
3575	offset &= ~PAGE_MASK;
3576
3577	spin_lock(&si->cont_lock);
3578	/*
3579	 * Page allocation does not initialize the page's lru field,
3580	 * but it does always reset its private field.
3581	 */
3582	if (!page_private(head)) {
3583		BUG_ON(count & COUNT_CONTINUED);
3584		INIT_LIST_HEAD(&head->lru);
3585		set_page_private(head, SWP_CONTINUED);
3586		si->flags |= SWP_CONTINUED;
3587	}
3588
3589	list_for_each_entry(list_page, &head->lru, lru) {
3590		unsigned char *map;
3591
3592		/*
3593		 * If the previous map said no continuation, but we've found
3594		 * a continuation page, free our allocation and use this one.
3595		 */
3596		if (!(count & COUNT_CONTINUED))
3597			goto out_unlock_cont;
3598
3599		map = kmap_atomic(list_page) + offset;
3600		count = *map;
3601		kunmap_atomic(map);
3602
3603		/*
3604		 * If this continuation count now has some space in it,
3605		 * free our allocation and use this one.
3606		 */
3607		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3608			goto out_unlock_cont;
3609	}
3610
3611	list_add_tail(&page->lru, &head->lru);
3612	page = NULL;			/* now it's attached, don't free it */
3613out_unlock_cont:
3614	spin_unlock(&si->cont_lock);
3615out:
3616	unlock_cluster(ci);
3617	spin_unlock(&si->lock);
3618	put_swap_device(si);
3619outer:
3620	if (page)
3621		__free_page(page);
3622	return ret;
3623}
3624
3625/*
3626 * swap_count_continued - when the original swap_map count is incremented
3627 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3628 * into, carry if so, or else fail until a new continuation page is allocated;
3629 * when the original swap_map count is decremented from 0 with continuation,
3630 * borrow from the continuation and report whether it still holds more.
3631 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3632 * lock.
3633 */
3634static bool swap_count_continued(struct swap_info_struct *si,
3635				 pgoff_t offset, unsigned char count)
3636{
3637	struct page *head;
3638	struct page *page;
3639	unsigned char *map;
3640	bool ret;
3641
3642	head = vmalloc_to_page(si->swap_map + offset);
3643	if (page_private(head) != SWP_CONTINUED) {
3644		BUG_ON(count & COUNT_CONTINUED);
3645		return false;		/* need to add count continuation */
3646	}
3647
3648	spin_lock(&si->cont_lock);
3649	offset &= ~PAGE_MASK;
3650	page = list_entry(head->lru.next, struct page, lru);
3651	map = kmap_atomic(page) + offset;
3652
3653	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3654		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3655
3656	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3657		/*
3658		 * Think of how you add 1 to 999
3659		 */
3660		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3661			kunmap_atomic(map);
3662			page = list_entry(page->lru.next, struct page, lru);
3663			BUG_ON(page == head);
3664			map = kmap_atomic(page) + offset;
3665		}
3666		if (*map == SWAP_CONT_MAX) {
3667			kunmap_atomic(map);
3668			page = list_entry(page->lru.next, struct page, lru);
3669			if (page == head) {
3670				ret = false;	/* add count continuation */
3671				goto out;
3672			}
3673			map = kmap_atomic(page) + offset;
3674init_map:		*map = 0;		/* we didn't zero the page */
3675		}
3676		*map += 1;
3677		kunmap_atomic(map);
3678		page = list_entry(page->lru.prev, struct page, lru);
3679		while (page != head) {
3680			map = kmap_atomic(page) + offset;
3681			*map = COUNT_CONTINUED;
3682			kunmap_atomic(map);
3683			page = list_entry(page->lru.prev, struct page, lru);
3684		}
3685		ret = true;			/* incremented */
3686
3687	} else {				/* decrementing */
3688		/*
3689		 * Think of how you subtract 1 from 1000
3690		 */
3691		BUG_ON(count != COUNT_CONTINUED);
3692		while (*map == COUNT_CONTINUED) {
3693			kunmap_atomic(map);
3694			page = list_entry(page->lru.next, struct page, lru);
3695			BUG_ON(page == head);
3696			map = kmap_atomic(page) + offset;
3697		}
3698		BUG_ON(*map == 0);
3699		*map -= 1;
3700		if (*map == 0)
3701			count = 0;
3702		kunmap_atomic(map);
3703		page = list_entry(page->lru.prev, struct page, lru);
3704		while (page != head) {
3705			map = kmap_atomic(page) + offset;
3706			*map = SWAP_CONT_MAX | count;
3707			count = COUNT_CONTINUED;
3708			kunmap_atomic(map);
3709			page = list_entry(page->lru.prev, struct page, lru);
3710		}
3711		ret = count == COUNT_CONTINUED;
3712	}
3713out:
3714	spin_unlock(&si->cont_lock);
3715	return ret;
3716}
3717
3718/*
3719 * free_swap_count_continuations - swapoff free all the continuation pages
3720 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3721 */
3722static void free_swap_count_continuations(struct swap_info_struct *si)
3723{
3724	pgoff_t offset;
3725
3726	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3727		struct page *head;
3728		head = vmalloc_to_page(si->swap_map + offset);
3729		if (page_private(head)) {
3730			struct page *page, *next;
3731
3732			list_for_each_entry_safe(page, next, &head->lru, lru) {
3733				list_del(&page->lru);
3734				__free_page(page);
3735			}
3736		}
3737	}
3738}
3739
3740#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3741void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3742				  gfp_t gfp_mask)
3743{
3744	struct swap_info_struct *si, *next;
3745	if (!(gfp_mask & __GFP_IO) || !memcg)
 
 
 
 
 
3746		return;
3747
3748	if (!blk_cgroup_congested())
3749		return;
3750
3751	/*
3752	 * We've already scheduled a throttle, avoid taking the global swap
3753	 * lock.
3754	 */
3755	if (current->throttle_queue)
3756		return;
3757
3758	spin_lock(&swap_avail_lock);
3759	plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3760				  avail_lists[node]) {
3761		if (si->bdev) {
3762			blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3763						true);
3764			break;
3765		}
3766	}
3767	spin_unlock(&swap_avail_lock);
3768}
3769#endif
3770
3771static int __init swapfile_init(void)
3772{
3773	int nid;
3774
3775	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3776					 GFP_KERNEL);
3777	if (!swap_avail_heads) {
3778		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3779		return -ENOMEM;
3780	}
3781
3782	for_each_node(nid)
3783		plist_head_init(&swap_avail_heads[nid]);
 
 
 
 
 
 
 
3784
3785	return 0;
3786}
3787subsys_initcall(swapfile_init);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swapfile.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *  Swap reorganised 29.12.95, Stephen Tweedie
   7 */
   8
   9#include <linux/blkdev.h>
  10#include <linux/mm.h>
  11#include <linux/sched/mm.h>
  12#include <linux/sched/task.h>
  13#include <linux/hugetlb.h>
  14#include <linux/mman.h>
  15#include <linux/slab.h>
  16#include <linux/kernel_stat.h>
  17#include <linux/swap.h>
  18#include <linux/vmalloc.h>
  19#include <linux/pagemap.h>
  20#include <linux/namei.h>
  21#include <linux/shmem_fs.h>
  22#include <linux/blk-cgroup.h>
  23#include <linux/random.h>
  24#include <linux/writeback.h>
  25#include <linux/proc_fs.h>
  26#include <linux/seq_file.h>
  27#include <linux/init.h>
  28#include <linux/ksm.h>
  29#include <linux/rmap.h>
  30#include <linux/security.h>
  31#include <linux/backing-dev.h>
  32#include <linux/mutex.h>
  33#include <linux/capability.h>
  34#include <linux/syscalls.h>
  35#include <linux/memcontrol.h>
  36#include <linux/poll.h>
  37#include <linux/oom.h>
 
  38#include <linux/swapfile.h>
  39#include <linux/export.h>
  40#include <linux/swap_slots.h>
  41#include <linux/sort.h>
  42#include <linux/completion.h>
  43#include <linux/suspend.h>
  44#include <linux/zswap.h>
  45#include <linux/plist.h>
  46
 
  47#include <asm/tlbflush.h>
  48#include <linux/swapops.h>
  49#include <linux/swap_cgroup.h>
  50#include "internal.h"
  51#include "swap.h"
  52
  53static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  54				 unsigned char);
  55static void free_swap_count_continuations(struct swap_info_struct *);
  56static void swap_entry_range_free(struct swap_info_struct *si, swp_entry_t entry,
  57				  unsigned int nr_pages);
  58static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
  59			     unsigned int nr_entries);
  60static bool folio_swapcache_freeable(struct folio *folio);
  61static struct swap_cluster_info *lock_cluster_or_swap_info(
  62		struct swap_info_struct *si, unsigned long offset);
  63static void unlock_cluster_or_swap_info(struct swap_info_struct *si,
  64					struct swap_cluster_info *ci);
  65
  66static DEFINE_SPINLOCK(swap_lock);
  67static unsigned int nr_swapfiles;
  68atomic_long_t nr_swap_pages;
  69/*
  70 * Some modules use swappable objects and may try to swap them out under
  71 * memory pressure (via the shrinker). Before doing so, they may wish to
  72 * check to see if any swap space is available.
  73 */
  74EXPORT_SYMBOL_GPL(nr_swap_pages);
  75/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
  76long total_swap_pages;
  77static int least_priority = -1;
  78unsigned long swapfile_maximum_size;
  79#ifdef CONFIG_MIGRATION
  80bool swap_migration_ad_supported;
  81#endif	/* CONFIG_MIGRATION */
  82
  83static const char Bad_file[] = "Bad swap file entry ";
  84static const char Unused_file[] = "Unused swap file entry ";
  85static const char Bad_offset[] = "Bad swap offset entry ";
  86static const char Unused_offset[] = "Unused swap offset entry ";
  87
  88/*
  89 * all active swap_info_structs
  90 * protected with swap_lock, and ordered by priority.
  91 */
  92static PLIST_HEAD(swap_active_head);
  93
  94/*
  95 * all available (active, not full) swap_info_structs
  96 * protected with swap_avail_lock, ordered by priority.
  97 * This is used by folio_alloc_swap() instead of swap_active_head
  98 * because swap_active_head includes all swap_info_structs,
  99 * but folio_alloc_swap() doesn't need to look at full ones.
 100 * This uses its own lock instead of swap_lock because when a
 101 * swap_info_struct changes between not-full/full, it needs to
 102 * add/remove itself to/from this list, but the swap_info_struct->lock
 103 * is held and the locking order requires swap_lock to be taken
 104 * before any swap_info_struct->lock.
 105 */
 106static struct plist_head *swap_avail_heads;
 107static DEFINE_SPINLOCK(swap_avail_lock);
 108
 109static struct swap_info_struct *swap_info[MAX_SWAPFILES];
 110
 111static DEFINE_MUTEX(swapon_mutex);
 112
 113static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
 114/* Activity counter to indicate that a swapon or swapoff has occurred */
 115static atomic_t proc_poll_event = ATOMIC_INIT(0);
 116
 117atomic_t nr_rotate_swap = ATOMIC_INIT(0);
 118
 119static struct swap_info_struct *swap_type_to_swap_info(int type)
 120{
 121	if (type >= MAX_SWAPFILES)
 122		return NULL;
 123
 124	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
 
 125}
 126
 127static inline unsigned char swap_count(unsigned char ent)
 128{
 129	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
 130}
 131
 132/* Reclaim the swap entry anyway if possible */
 133#define TTRS_ANYWAY		0x1
 134/*
 135 * Reclaim the swap entry if there are no more mappings of the
 136 * corresponding page
 137 */
 138#define TTRS_UNMAPPED		0x2
 139/* Reclaim the swap entry if swap is getting full */
 140#define TTRS_FULL		0x4
 141/* Reclaim directly, bypass the slot cache and don't touch device lock */
 142#define TTRS_DIRECT		0x8
 143
 144static bool swap_is_has_cache(struct swap_info_struct *si,
 145			      unsigned long offset, int nr_pages)
 146{
 147	unsigned char *map = si->swap_map + offset;
 148	unsigned char *map_end = map + nr_pages;
 149
 150	do {
 151		VM_BUG_ON(!(*map & SWAP_HAS_CACHE));
 152		if (*map != SWAP_HAS_CACHE)
 153			return false;
 154	} while (++map < map_end);
 155
 156	return true;
 157}
 158
 159static bool swap_is_last_map(struct swap_info_struct *si,
 160		unsigned long offset, int nr_pages, bool *has_cache)
 161{
 162	unsigned char *map = si->swap_map + offset;
 163	unsigned char *map_end = map + nr_pages;
 164	unsigned char count = *map;
 165
 166	if (swap_count(count) != 1)
 167		return false;
 168
 169	while (++map < map_end) {
 170		if (*map != count)
 171			return false;
 172	}
 173
 174	*has_cache = !!(count & SWAP_HAS_CACHE);
 175	return true;
 176}
 177
 178/*
 179 * returns number of pages in the folio that backs the swap entry. If positive,
 180 * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
 181 * folio was associated with the swap entry.
 182 */
 183static int __try_to_reclaim_swap(struct swap_info_struct *si,
 184				 unsigned long offset, unsigned long flags)
 185{
 186	swp_entry_t entry = swp_entry(si->type, offset);
 187	struct address_space *address_space = swap_address_space(entry);
 188	struct swap_cluster_info *ci;
 189	struct folio *folio;
 190	int ret, nr_pages;
 191	bool need_reclaim;
 192
 193	folio = filemap_get_folio(address_space, swap_cache_index(entry));
 194	if (IS_ERR(folio))
 195		return 0;
 196
 197	nr_pages = folio_nr_pages(folio);
 198	ret = -nr_pages;
 199
 200	/*
 201	 * When this function is called from scan_swap_map_slots() and it's
 202	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
 203	 * here. We have to use trylock for avoiding deadlock. This is a special
 204	 * case and you should use folio_free_swap() with explicit folio_lock()
 205	 * in usual operations.
 206	 */
 207	if (!folio_trylock(folio))
 208		goto out;
 209
 210	/* offset could point to the middle of a large folio */
 211	entry = folio->swap;
 212	offset = swp_offset(entry);
 213
 214	need_reclaim = ((flags & TTRS_ANYWAY) ||
 215			((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
 216			((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)));
 217	if (!need_reclaim || !folio_swapcache_freeable(folio))
 218		goto out_unlock;
 219
 220	/*
 221	 * It's safe to delete the folio from swap cache only if the folio's
 222	 * swap_map is HAS_CACHE only, which means the slots have no page table
 223	 * reference or pending writeback, and can't be allocated to others.
 224	 */
 225	ci = lock_cluster_or_swap_info(si, offset);
 226	need_reclaim = swap_is_has_cache(si, offset, nr_pages);
 227	unlock_cluster_or_swap_info(si, ci);
 228	if (!need_reclaim)
 229		goto out_unlock;
 230
 231	if (!(flags & TTRS_DIRECT)) {
 232		/* Free through slot cache */
 233		delete_from_swap_cache(folio);
 234		folio_set_dirty(folio);
 235		ret = nr_pages;
 236		goto out_unlock;
 237	}
 238
 239	xa_lock_irq(&address_space->i_pages);
 240	__delete_from_swap_cache(folio, entry, NULL);
 241	xa_unlock_irq(&address_space->i_pages);
 242	folio_ref_sub(folio, nr_pages);
 243	folio_set_dirty(folio);
 244
 245	spin_lock(&si->lock);
 246	/* Only sinple page folio can be backed by zswap */
 247	if (nr_pages == 1)
 248		zswap_invalidate(entry);
 249	swap_entry_range_free(si, entry, nr_pages);
 250	spin_unlock(&si->lock);
 251	ret = nr_pages;
 252out_unlock:
 253	folio_unlock(folio);
 254out:
 255	folio_put(folio);
 256	return ret;
 257}
 258
 259static inline struct swap_extent *first_se(struct swap_info_struct *sis)
 260{
 261	struct rb_node *rb = rb_first(&sis->swap_extent_root);
 262	return rb_entry(rb, struct swap_extent, rb_node);
 263}
 264
 265static inline struct swap_extent *next_se(struct swap_extent *se)
 266{
 267	struct rb_node *rb = rb_next(&se->rb_node);
 268	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
 269}
 270
 271/*
 272 * swapon tell device that all the old swap contents can be discarded,
 273 * to allow the swap device to optimize its wear-levelling.
 274 */
 275static int discard_swap(struct swap_info_struct *si)
 276{
 277	struct swap_extent *se;
 278	sector_t start_block;
 279	sector_t nr_blocks;
 280	int err = 0;
 281
 282	/* Do not discard the swap header page! */
 283	se = first_se(si);
 284	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 285	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 286	if (nr_blocks) {
 287		err = blkdev_issue_discard(si->bdev, start_block,
 288				nr_blocks, GFP_KERNEL);
 289		if (err)
 290			return err;
 291		cond_resched();
 292	}
 293
 294	for (se = next_se(se); se; se = next_se(se)) {
 295		start_block = se->start_block << (PAGE_SHIFT - 9);
 296		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 297
 298		err = blkdev_issue_discard(si->bdev, start_block,
 299				nr_blocks, GFP_KERNEL);
 300		if (err)
 301			break;
 302
 303		cond_resched();
 304	}
 305	return err;		/* That will often be -EOPNOTSUPP */
 306}
 307
 308static struct swap_extent *
 309offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
 310{
 311	struct swap_extent *se;
 312	struct rb_node *rb;
 313
 314	rb = sis->swap_extent_root.rb_node;
 315	while (rb) {
 316		se = rb_entry(rb, struct swap_extent, rb_node);
 317		if (offset < se->start_page)
 318			rb = rb->rb_left;
 319		else if (offset >= se->start_page + se->nr_pages)
 320			rb = rb->rb_right;
 321		else
 322			return se;
 323	}
 324	/* It *must* be present */
 325	BUG();
 326}
 327
 328sector_t swap_folio_sector(struct folio *folio)
 329{
 330	struct swap_info_struct *sis = swp_swap_info(folio->swap);
 331	struct swap_extent *se;
 332	sector_t sector;
 333	pgoff_t offset;
 334
 335	offset = swp_offset(folio->swap);
 336	se = offset_to_swap_extent(sis, offset);
 337	sector = se->start_block + (offset - se->start_page);
 338	return sector << (PAGE_SHIFT - 9);
 339}
 340
 341/*
 342 * swap allocation tell device that a cluster of swap can now be discarded,
 343 * to allow the swap device to optimize its wear-levelling.
 344 */
 345static void discard_swap_cluster(struct swap_info_struct *si,
 346				 pgoff_t start_page, pgoff_t nr_pages)
 347{
 348	struct swap_extent *se = offset_to_swap_extent(si, start_page);
 349
 350	while (nr_pages) {
 351		pgoff_t offset = start_page - se->start_page;
 352		sector_t start_block = se->start_block + offset;
 353		sector_t nr_blocks = se->nr_pages - offset;
 354
 355		if (nr_blocks > nr_pages)
 356			nr_blocks = nr_pages;
 357		start_page += nr_blocks;
 358		nr_pages -= nr_blocks;
 359
 360		start_block <<= PAGE_SHIFT - 9;
 361		nr_blocks <<= PAGE_SHIFT - 9;
 362		if (blkdev_issue_discard(si->bdev, start_block,
 363					nr_blocks, GFP_NOIO))
 364			break;
 365
 366		se = next_se(se);
 367	}
 368}
 369
 370#ifdef CONFIG_THP_SWAP
 371#define SWAPFILE_CLUSTER	HPAGE_PMD_NR
 372
 373#define swap_entry_order(order)	(order)
 374#else
 375#define SWAPFILE_CLUSTER	256
 376
 377/*
 378 * Define swap_entry_order() as constant to let compiler to optimize
 379 * out some code if !CONFIG_THP_SWAP
 380 */
 381#define swap_entry_order(order)	0
 382#endif
 383#define LATENCY_LIMIT		256
 384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 385static inline bool cluster_is_free(struct swap_cluster_info *info)
 386{
 387	return info->flags & CLUSTER_FLAG_FREE;
 388}
 389
 390static inline unsigned int cluster_index(struct swap_info_struct *si,
 391					 struct swap_cluster_info *ci)
 392{
 393	return ci - si->cluster_info;
 394}
 395
 396static inline unsigned int cluster_offset(struct swap_info_struct *si,
 397					  struct swap_cluster_info *ci)
 398{
 399	return cluster_index(si, ci) * SWAPFILE_CLUSTER;
 
 
 
 
 
 
 
 
 
 
 
 
 
 400}
 401
 402static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
 403						     unsigned long offset)
 404{
 405	struct swap_cluster_info *ci;
 406
 407	ci = si->cluster_info;
 408	if (ci) {
 409		ci += offset / SWAPFILE_CLUSTER;
 410		spin_lock(&ci->lock);
 411	}
 412	return ci;
 413}
 414
 415static inline void unlock_cluster(struct swap_cluster_info *ci)
 416{
 417	if (ci)
 418		spin_unlock(&ci->lock);
 419}
 420
 421/*
 422 * Determine the locking method in use for this device.  Return
 423 * swap_cluster_info if SSD-style cluster-based locking is in place.
 424 */
 425static inline struct swap_cluster_info *lock_cluster_or_swap_info(
 426		struct swap_info_struct *si, unsigned long offset)
 427{
 428	struct swap_cluster_info *ci;
 429
 430	/* Try to use fine-grained SSD-style locking if available: */
 431	ci = lock_cluster(si, offset);
 432	/* Otherwise, fall back to traditional, coarse locking: */
 433	if (!ci)
 434		spin_lock(&si->lock);
 435
 436	return ci;
 437}
 438
 439static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
 440					       struct swap_cluster_info *ci)
 441{
 442	if (ci)
 443		unlock_cluster(ci);
 444	else
 445		spin_unlock(&si->lock);
 446}
 447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 448/* Add a cluster to discard list and schedule it to do discard */
 449static void swap_cluster_schedule_discard(struct swap_info_struct *si,
 450		struct swap_cluster_info *ci)
 451{
 452	unsigned int idx = cluster_index(si, ci);
 453	/*
 454	 * If scan_swap_map_slots() can't find a free cluster, it will check
 455	 * si->swap_map directly. To make sure the discarding cluster isn't
 456	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
 457	 * It will be cleared after discard
 458	 */
 459	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 460			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
 461
 462	VM_BUG_ON(ci->flags & CLUSTER_FLAG_FREE);
 463	list_move_tail(&ci->list, &si->discard_clusters);
 464	ci->flags = 0;
 465	schedule_work(&si->discard_work);
 466}
 467
 468static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
 469{
 470	lockdep_assert_held(&si->lock);
 471	lockdep_assert_held(&ci->lock);
 472
 473	if (ci->flags)
 474		list_move_tail(&ci->list, &si->free_clusters);
 475	else
 476		list_add_tail(&ci->list, &si->free_clusters);
 477	ci->flags = CLUSTER_FLAG_FREE;
 478	ci->order = 0;
 479}
 480
 481/*
 482 * Doing discard actually. After a cluster discard is finished, the cluster
 483 * will be added to free cluster list. caller should hold si->lock.
 484*/
 485static void swap_do_scheduled_discard(struct swap_info_struct *si)
 486{
 487	struct swap_cluster_info *ci;
 488	unsigned int idx;
 489
 490	while (!list_empty(&si->discard_clusters)) {
 491		ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list);
 492		list_del(&ci->list);
 493		idx = cluster_index(si, ci);
 494		spin_unlock(&si->lock);
 495
 496		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
 497				SWAPFILE_CLUSTER);
 498
 499		spin_lock(&si->lock);
 500		spin_lock(&ci->lock);
 501		__free_cluster(si, ci);
 502		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 503				0, SWAPFILE_CLUSTER);
 504		spin_unlock(&ci->lock);
 505	}
 506}
 507
 508static void swap_discard_work(struct work_struct *work)
 509{
 510	struct swap_info_struct *si;
 511
 512	si = container_of(work, struct swap_info_struct, discard_work);
 513
 514	spin_lock(&si->lock);
 515	swap_do_scheduled_discard(si);
 516	spin_unlock(&si->lock);
 517}
 518
 519static void swap_users_ref_free(struct percpu_ref *ref)
 520{
 521	struct swap_info_struct *si;
 522
 523	si = container_of(ref, struct swap_info_struct, users);
 524	complete(&si->comp);
 
 525}
 526
 527static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
 528{
 529	VM_BUG_ON(ci->count != 0);
 530	lockdep_assert_held(&si->lock);
 531	lockdep_assert_held(&ci->lock);
 532
 533	if (ci->flags & CLUSTER_FLAG_FRAG)
 534		si->frag_cluster_nr[ci->order]--;
 535
 
 536	/*
 537	 * If the swap is discardable, prepare discard the cluster
 538	 * instead of free it immediately. The cluster will be freed
 539	 * after discard.
 540	 */
 541	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
 542	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
 543		swap_cluster_schedule_discard(si, ci);
 544		return;
 545	}
 546
 547	__free_cluster(si, ci);
 548}
 549
 550/*
 551 * The cluster corresponding to page_nr will be used. The cluster will not be
 552 * added to free cluster list and its usage counter will be increased by 1.
 553 * Only used for initialization.
 554 */
 555static void inc_cluster_info_page(struct swap_info_struct *si,
 556	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 557{
 558	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 559	struct swap_cluster_info *ci;
 560
 561	if (!cluster_info)
 562		return;
 
 
 563
 564	ci = cluster_info + idx;
 565	ci->count++;
 566
 567	VM_BUG_ON(ci->count > SWAPFILE_CLUSTER);
 568	VM_BUG_ON(ci->flags);
 569}
 570
 571/*
 572 * The cluster ci decreases @nr_pages usage. If the usage counter becomes 0,
 573 * which means no page in the cluster is in use, we can optionally discard
 574 * the cluster and add it to free cluster list.
 575 */
 576static void dec_cluster_info_page(struct swap_info_struct *si,
 577				  struct swap_cluster_info *ci, int nr_pages)
 578{
 579	if (!si->cluster_info)
 580		return;
 581
 582	VM_BUG_ON(ci->count < nr_pages);
 583	VM_BUG_ON(cluster_is_free(ci));
 584	lockdep_assert_held(&si->lock);
 585	lockdep_assert_held(&ci->lock);
 586	ci->count -= nr_pages;
 587
 588	if (!ci->count) {
 589		free_cluster(si, ci);
 590		return;
 591	}
 592
 593	if (!(ci->flags & CLUSTER_FLAG_NONFULL)) {
 594		VM_BUG_ON(ci->flags & CLUSTER_FLAG_FREE);
 595		if (ci->flags & CLUSTER_FLAG_FRAG)
 596			si->frag_cluster_nr[ci->order]--;
 597		list_move_tail(&ci->list, &si->nonfull_clusters[ci->order]);
 598		ci->flags = CLUSTER_FLAG_NONFULL;
 599	}
 600}
 601
 602static bool cluster_reclaim_range(struct swap_info_struct *si,
 603				  struct swap_cluster_info *ci,
 604				  unsigned long start, unsigned long end)
 605{
 606	unsigned char *map = si->swap_map;
 607	unsigned long offset;
 608
 609	spin_unlock(&ci->lock);
 610	spin_unlock(&si->lock);
 611
 612	for (offset = start; offset < end; offset++) {
 613		switch (READ_ONCE(map[offset])) {
 614		case 0:
 615			continue;
 616		case SWAP_HAS_CACHE:
 617			if (__try_to_reclaim_swap(si, offset, TTRS_ANYWAY | TTRS_DIRECT) > 0)
 618				continue;
 619			goto out;
 620		default:
 621			goto out;
 622		}
 623	}
 624out:
 625	spin_lock(&si->lock);
 626	spin_lock(&ci->lock);
 627
 628	/*
 629	 * Recheck the range no matter reclaim succeeded or not, the slot
 630	 * could have been be freed while we are not holding the lock.
 631	 */
 632	for (offset = start; offset < end; offset++)
 633		if (READ_ONCE(map[offset]))
 634			return false;
 635
 636	return true;
 
 637}
 638
 639static bool cluster_scan_range(struct swap_info_struct *si,
 640			       struct swap_cluster_info *ci,
 641			       unsigned long start, unsigned int nr_pages)
 
 
 
 
 642{
 643	unsigned long offset, end = start + nr_pages;
 644	unsigned char *map = si->swap_map;
 645	bool need_reclaim = false;
 646
 647	for (offset = start; offset < end; offset++) {
 648		switch (READ_ONCE(map[offset])) {
 649		case 0:
 650			continue;
 651		case SWAP_HAS_CACHE:
 652			if (!vm_swap_full())
 653				return false;
 654			need_reclaim = true;
 655			continue;
 656		default:
 657			return false;
 658		}
 659	}
 660
 661	if (need_reclaim)
 662		return cluster_reclaim_range(si, ci, start, end);
 663
 664	return true;
 665}
 666
 667static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci,
 668				unsigned int start, unsigned char usage,
 669				unsigned int order)
 670{
 671	unsigned int nr_pages = 1 << order;
 672
 673	if (!(si->flags & SWP_WRITEOK))
 674		return false;
 675
 676	if (cluster_is_free(ci)) {
 677		if (nr_pages < SWAPFILE_CLUSTER) {
 678			list_move_tail(&ci->list, &si->nonfull_clusters[order]);
 679			ci->flags = CLUSTER_FLAG_NONFULL;
 680		}
 681		ci->order = order;
 682	}
 683
 684	memset(si->swap_map + start, usage, nr_pages);
 685	swap_range_alloc(si, start, nr_pages);
 686	ci->count += nr_pages;
 687
 688	if (ci->count == SWAPFILE_CLUSTER) {
 689		VM_BUG_ON(!(ci->flags &
 690			  (CLUSTER_FLAG_FREE | CLUSTER_FLAG_NONFULL | CLUSTER_FLAG_FRAG)));
 691		if (ci->flags & CLUSTER_FLAG_FRAG)
 692			si->frag_cluster_nr[ci->order]--;
 693		list_move_tail(&ci->list, &si->full_clusters);
 694		ci->flags = CLUSTER_FLAG_FULL;
 695	}
 696
 697	return true;
 698}
 699
 700static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si, unsigned long offset,
 701					    unsigned int *foundp, unsigned int order,
 702					    unsigned char usage)
 703{
 704	unsigned long start = offset & ~(SWAPFILE_CLUSTER - 1);
 705	unsigned long end = min(start + SWAPFILE_CLUSTER, si->max);
 706	unsigned int nr_pages = 1 << order;
 707	struct swap_cluster_info *ci;
 708
 709	if (end < nr_pages)
 710		return SWAP_NEXT_INVALID;
 711	end -= nr_pages;
 712
 713	ci = lock_cluster(si, offset);
 714	if (ci->count + nr_pages > SWAPFILE_CLUSTER) {
 715		offset = SWAP_NEXT_INVALID;
 716		goto done;
 717	}
 718
 719	while (offset <= end) {
 720		if (cluster_scan_range(si, ci, offset, nr_pages)) {
 721			if (!cluster_alloc_range(si, ci, offset, usage, order)) {
 722				offset = SWAP_NEXT_INVALID;
 723				goto done;
 724			}
 725			*foundp = offset;
 726			if (ci->count == SWAPFILE_CLUSTER) {
 727				offset = SWAP_NEXT_INVALID;
 728				goto done;
 729			}
 730			offset += nr_pages;
 731			break;
 732		}
 733		offset += nr_pages;
 734	}
 735	if (offset > end)
 736		offset = SWAP_NEXT_INVALID;
 737done:
 738	unlock_cluster(ci);
 739	return offset;
 740}
 741
 742/* Return true if reclaimed a whole cluster */
 743static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force)
 744{
 745	long to_scan = 1;
 746	unsigned long offset, end;
 747	struct swap_cluster_info *ci;
 748	unsigned char *map = si->swap_map;
 749	int nr_reclaim;
 750
 751	if (force)
 752		to_scan = si->inuse_pages / SWAPFILE_CLUSTER;
 753
 754	while (!list_empty(&si->full_clusters)) {
 755		ci = list_first_entry(&si->full_clusters, struct swap_cluster_info, list);
 756		list_move_tail(&ci->list, &si->full_clusters);
 757		offset = cluster_offset(si, ci);
 758		end = min(si->max, offset + SWAPFILE_CLUSTER);
 759		to_scan--;
 760
 761		spin_unlock(&si->lock);
 762		while (offset < end) {
 763			if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) {
 764				nr_reclaim = __try_to_reclaim_swap(si, offset,
 765								   TTRS_ANYWAY | TTRS_DIRECT);
 766				if (nr_reclaim) {
 767					offset += abs(nr_reclaim);
 768					continue;
 769				}
 770			}
 771			offset++;
 772		}
 773		spin_lock(&si->lock);
 774
 775		if (to_scan <= 0)
 776			break;
 777	}
 778}
 779
 780static void swap_reclaim_work(struct work_struct *work)
 781{
 782	struct swap_info_struct *si;
 783
 784	si = container_of(work, struct swap_info_struct, reclaim_work);
 785
 786	spin_lock(&si->lock);
 787	swap_reclaim_full_clusters(si, true);
 788	spin_unlock(&si->lock);
 789}
 790
 791/*
 792 * Try to get swap entries with specified order from current cpu's swap entry
 793 * pool (a cluster). This might involve allocating a new cluster for current CPU
 794 * too.
 795 */
 796static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order,
 797					      unsigned char usage)
 798{
 799	struct percpu_cluster *cluster;
 800	struct swap_cluster_info *ci;
 801	unsigned int offset, found = 0;
 
 802
 803new_cluster:
 804	lockdep_assert_held(&si->lock);
 805	cluster = this_cpu_ptr(si->percpu_cluster);
 806	offset = cluster->next[order];
 807	if (offset) {
 808		offset = alloc_swap_scan_cluster(si, offset, &found, order, usage);
 809		if (found)
 810			goto done;
 811	}
 812
 813	if (!list_empty(&si->free_clusters)) {
 814		ci = list_first_entry(&si->free_clusters, struct swap_cluster_info, list);
 815		offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci), &found, order, usage);
 816		/*
 817		 * Either we didn't touch the cluster due to swapoff,
 818		 * or the allocation must success.
 819		 */
 820		VM_BUG_ON((si->flags & SWP_WRITEOK) && !found);
 821		goto done;
 822	}
 823
 824	/* Try reclaim from full clusters if free clusters list is drained */
 825	if (vm_swap_full())
 826		swap_reclaim_full_clusters(si, false);
 827
 828	if (order < PMD_ORDER) {
 829		unsigned int frags = 0;
 830
 831		while (!list_empty(&si->nonfull_clusters[order])) {
 832			ci = list_first_entry(&si->nonfull_clusters[order],
 833					      struct swap_cluster_info, list);
 834			list_move_tail(&ci->list, &si->frag_clusters[order]);
 835			ci->flags = CLUSTER_FLAG_FRAG;
 836			si->frag_cluster_nr[order]++;
 837			offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
 838							 &found, order, usage);
 839			frags++;
 840			if (found)
 841				break;
 842		}
 843
 844		if (!found) {
 845			/*
 846			 * Nonfull clusters are moved to frag tail if we reached
 847			 * here, count them too, don't over scan the frag list.
 848			 */
 849			while (frags < si->frag_cluster_nr[order]) {
 850				ci = list_first_entry(&si->frag_clusters[order],
 851						      struct swap_cluster_info, list);
 852				/*
 853				 * Rotate the frag list to iterate, they were all failing
 854				 * high order allocation or moved here due to per-CPU usage,
 855				 * this help keeping usable cluster ahead.
 856				 */
 857				list_move_tail(&ci->list, &si->frag_clusters[order]);
 858				offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
 859								 &found, order, usage);
 860				frags++;
 861				if (found)
 862					break;
 863			}
 864		}
 865	}
 866
 867	if (found)
 868		goto done;
 869
 870	if (!list_empty(&si->discard_clusters)) {
 871		/*
 872		 * we don't have free cluster but have some clusters in
 873		 * discarding, do discard now and reclaim them, then
 874		 * reread cluster_next_cpu since we dropped si->lock
 875		 */
 876		swap_do_scheduled_discard(si);
 
 
 877		goto new_cluster;
 878	}
 879
 880	if (order)
 881		goto done;
 882
 883	/* Order 0 stealing from higher order */
 884	for (int o = 1; o < SWAP_NR_ORDERS; o++) {
 885		/*
 886		 * Clusters here have at least one usable slots and can't fail order 0
 887		 * allocation, but reclaim may drop si->lock and race with another user.
 888		 */
 889		while (!list_empty(&si->frag_clusters[o])) {
 890			ci = list_first_entry(&si->frag_clusters[o],
 891					      struct swap_cluster_info, list);
 892			offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
 893							 &found, 0, usage);
 894			if (found)
 895				goto done;
 896		}
 897
 898		while (!list_empty(&si->nonfull_clusters[o])) {
 899			ci = list_first_entry(&si->nonfull_clusters[o],
 900					      struct swap_cluster_info, list);
 901			offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
 902							 &found, 0, usage);
 903			if (found)
 904				goto done;
 905		}
 
 
 
 
 
 
 906	}
 907
 908done:
 909	cluster->next[order] = offset;
 910	return found;
 911}
 912
 913static void __del_from_avail_list(struct swap_info_struct *si)
 914{
 915	int nid;
 916
 917	assert_spin_locked(&si->lock);
 918	for_each_node(nid)
 919		plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]);
 920}
 921
 922static void del_from_avail_list(struct swap_info_struct *si)
 923{
 924	spin_lock(&swap_avail_lock);
 925	__del_from_avail_list(si);
 926	spin_unlock(&swap_avail_lock);
 927}
 928
 929static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
 930			     unsigned int nr_entries)
 931{
 932	unsigned int end = offset + nr_entries - 1;
 933
 934	if (offset == si->lowest_bit)
 935		si->lowest_bit += nr_entries;
 936	if (end == si->highest_bit)
 937		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
 938	WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
 939	if (si->inuse_pages == si->pages) {
 940		si->lowest_bit = si->max;
 941		si->highest_bit = 0;
 942		del_from_avail_list(si);
 943
 944		if (si->cluster_info && vm_swap_full())
 945			schedule_work(&si->reclaim_work);
 946	}
 947}
 948
 949static void add_to_avail_list(struct swap_info_struct *si)
 950{
 951	int nid;
 952
 953	spin_lock(&swap_avail_lock);
 954	for_each_node(nid)
 955		plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]);
 
 
 956	spin_unlock(&swap_avail_lock);
 957}
 958
 959static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
 960			    unsigned int nr_entries)
 961{
 962	unsigned long begin = offset;
 963	unsigned long end = offset + nr_entries - 1;
 964	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
 965	unsigned int i;
 966
 967	/*
 968	 * Use atomic clear_bit operations only on zeromap instead of non-atomic
 969	 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes.
 970	 */
 971	for (i = 0; i < nr_entries; i++)
 972		clear_bit(offset + i, si->zeromap);
 973
 974	if (offset < si->lowest_bit)
 975		si->lowest_bit = offset;
 976	if (end > si->highest_bit) {
 977		bool was_full = !si->highest_bit;
 978
 979		WRITE_ONCE(si->highest_bit, end);
 980		if (was_full && (si->flags & SWP_WRITEOK))
 981			add_to_avail_list(si);
 982	}
 
 
 983	if (si->flags & SWP_BLKDEV)
 984		swap_slot_free_notify =
 985			si->bdev->bd_disk->fops->swap_slot_free_notify;
 986	else
 987		swap_slot_free_notify = NULL;
 988	while (offset <= end) {
 989		arch_swap_invalidate_page(si->type, offset);
 990		if (swap_slot_free_notify)
 991			swap_slot_free_notify(si->bdev, offset);
 992		offset++;
 993	}
 994	clear_shadow_from_swap_cache(si->type, begin, end);
 995
 996	/*
 997	 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
 998	 * only after the above cleanups are done.
 999	 */
1000	smp_wmb();
1001	atomic_long_add(nr_entries, &nr_swap_pages);
1002	WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
1003}
1004
1005static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
1006{
1007	unsigned long prev;
1008
1009	if (!(si->flags & SWP_SOLIDSTATE)) {
1010		si->cluster_next = next;
1011		return;
1012	}
1013
1014	prev = this_cpu_read(*si->cluster_next_cpu);
1015	/*
1016	 * Cross the swap address space size aligned trunk, choose
1017	 * another trunk randomly to avoid lock contention on swap
1018	 * address space if possible.
1019	 */
1020	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
1021	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
1022		/* No free swap slots available */
1023		if (si->highest_bit <= si->lowest_bit)
1024			return;
1025		next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
1026		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
1027		next = max_t(unsigned int, next, si->lowest_bit);
1028	}
1029	this_cpu_write(*si->cluster_next_cpu, next);
1030}
1031
1032static bool swap_offset_available_and_locked(struct swap_info_struct *si,
1033					     unsigned long offset)
1034{
1035	if (data_race(!si->swap_map[offset])) {
1036		spin_lock(&si->lock);
1037		return true;
1038	}
1039
1040	if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1041		spin_lock(&si->lock);
1042		return true;
1043	}
1044
1045	return false;
1046}
1047
1048static int cluster_alloc_swap(struct swap_info_struct *si,
1049			     unsigned char usage, int nr,
1050			     swp_entry_t slots[], int order)
1051{
1052	int n_ret = 0;
1053
1054	VM_BUG_ON(!si->cluster_info);
1055
1056	si->flags += SWP_SCANNING;
1057
1058	while (n_ret < nr) {
1059		unsigned long offset = cluster_alloc_swap_entry(si, order, usage);
1060
1061		if (!offset)
1062			break;
1063		slots[n_ret++] = swp_entry(si->type, offset);
1064	}
1065
1066	si->flags -= SWP_SCANNING;
1067
1068	return n_ret;
1069}
1070
1071static int scan_swap_map_slots(struct swap_info_struct *si,
1072			       unsigned char usage, int nr,
1073			       swp_entry_t slots[], int order)
1074{
 
1075	unsigned long offset;
1076	unsigned long scan_base;
1077	unsigned long last_in_cluster = 0;
1078	int latency_ration = LATENCY_LIMIT;
1079	unsigned int nr_pages = 1 << order;
1080	int n_ret = 0;
1081	bool scanned_many = false;
 
 
1082
1083	/*
1084	 * We try to cluster swap pages by allocating them sequentially
1085	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
1086	 * way, however, we resort to first-free allocation, starting
1087	 * a new cluster.  This prevents us from scattering swap pages
1088	 * all over the entire swap partition, so that we reduce
1089	 * overall disk seek times between swap pages.  -- sct
1090	 * But we do now try to find an empty cluster.  -Andrea
1091	 * And we let swap pages go all over an SSD partition.  Hugh
1092	 */
1093
1094	if (order > 0) {
1095		/*
1096		 * Should not even be attempting large allocations when huge
1097		 * page swap is disabled.  Warn and fail the allocation.
1098		 */
1099		if (!IS_ENABLED(CONFIG_THP_SWAP) ||
1100		    nr_pages > SWAPFILE_CLUSTER) {
1101			VM_WARN_ON_ONCE(1);
1102			return 0;
1103		}
1104
1105		/*
1106		 * Swapfile is not block device or not using clusters so unable
1107		 * to allocate large entries.
1108		 */
1109		if (!(si->flags & SWP_BLKDEV) || !si->cluster_info)
1110			return 0;
1111	}
1112
1113	if (si->cluster_info)
1114		return cluster_alloc_swap(si, usage, nr, slots, order);
1115
1116	si->flags += SWP_SCANNING;
1117
1118	/* For HDD, sequential access is more important. */
1119	scan_base = si->cluster_next;
1120	offset = scan_base;
1121
1122	if (unlikely(!si->cluster_nr--)) {
1123		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
1124			si->cluster_nr = SWAPFILE_CLUSTER - 1;
1125			goto checks;
1126		}
1127
1128		spin_unlock(&si->lock);
1129
1130		/*
1131		 * If seek is expensive, start searching for new cluster from
1132		 * start of partition, to minimize the span of allocated swap.
 
 
1133		 */
1134		scan_base = offset = si->lowest_bit;
1135		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
1136
1137		/* Locate the first empty (unaligned) cluster */
1138		for (; last_in_cluster <= READ_ONCE(si->highest_bit); offset++) {
1139			if (si->swap_map[offset])
1140				last_in_cluster = offset + SWAPFILE_CLUSTER;
1141			else if (offset == last_in_cluster) {
1142				spin_lock(&si->lock);
1143				offset -= SWAPFILE_CLUSTER - 1;
1144				si->cluster_next = offset;
1145				si->cluster_nr = SWAPFILE_CLUSTER - 1;
1146				goto checks;
1147			}
1148			if (unlikely(--latency_ration < 0)) {
1149				cond_resched();
1150				latency_ration = LATENCY_LIMIT;
1151			}
1152		}
1153
1154		offset = scan_base;
1155		spin_lock(&si->lock);
1156		si->cluster_nr = SWAPFILE_CLUSTER - 1;
1157	}
1158
1159checks:
 
 
 
 
 
 
 
 
 
 
1160	if (!(si->flags & SWP_WRITEOK))
1161		goto no_page;
1162	if (!si->highest_bit)
1163		goto no_page;
1164	if (offset > si->highest_bit)
1165		scan_base = offset = si->lowest_bit;
1166
 
1167	/* reuse swap entry of cache-only swap if not busy. */
1168	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
1169		int swap_was_freed;
 
1170		spin_unlock(&si->lock);
1171		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY | TTRS_DIRECT);
1172		spin_lock(&si->lock);
1173		/* entry was freed successfully, try to use this again */
1174		if (swap_was_freed > 0)
1175			goto checks;
1176		goto scan; /* check next one */
1177	}
1178
1179	if (si->swap_map[offset]) {
 
1180		if (!n_ret)
1181			goto scan;
1182		else
1183			goto done;
1184	}
1185	memset(si->swap_map + offset, usage, nr_pages);
 
 
1186
1187	swap_range_alloc(si, offset, nr_pages);
 
1188	slots[n_ret++] = swp_entry(si->type, offset);
1189
1190	/* got enough slots or reach max slots? */
1191	if ((n_ret == nr) || (offset >= si->highest_bit))
1192		goto done;
1193
1194	/* search for next available slot */
1195
1196	/* time to take a break? */
1197	if (unlikely(--latency_ration < 0)) {
1198		if (n_ret)
1199			goto done;
1200		spin_unlock(&si->lock);
1201		cond_resched();
1202		spin_lock(&si->lock);
1203		latency_ration = LATENCY_LIMIT;
1204	}
1205
1206	if (si->cluster_nr && !si->swap_map[++offset]) {
1207		/* non-ssd case, still more slots in cluster? */
 
 
 
 
 
 
 
 
 
 
1208		--si->cluster_nr;
1209		goto checks;
1210	}
1211
1212	/*
1213	 * Even if there's no free clusters available (fragmented),
1214	 * try to scan a little more quickly with lock held unless we
1215	 * have scanned too many slots already.
1216	 */
1217	if (!scanned_many) {
1218		unsigned long scan_limit;
1219
1220		if (offset < scan_base)
1221			scan_limit = scan_base;
1222		else
1223			scan_limit = si->highest_bit;
1224		for (; offset <= scan_limit && --latency_ration > 0;
1225		     offset++) {
1226			if (!si->swap_map[offset])
1227				goto checks;
1228		}
1229	}
1230
1231done:
1232	if (order == 0)
1233		set_cluster_next(si, offset + 1);
1234	si->flags -= SWP_SCANNING;
1235	return n_ret;
1236
1237scan:
1238	VM_WARN_ON(order > 0);
1239	spin_unlock(&si->lock);
1240	while (++offset <= READ_ONCE(si->highest_bit)) {
 
 
 
 
 
 
 
 
1241		if (unlikely(--latency_ration < 0)) {
1242			cond_resched();
1243			latency_ration = LATENCY_LIMIT;
1244			scanned_many = true;
1245		}
1246		if (swap_offset_available_and_locked(si, offset))
1247			goto checks;
1248	}
1249	offset = si->lowest_bit;
1250	while (offset < scan_base) {
 
 
 
 
 
 
 
 
1251		if (unlikely(--latency_ration < 0)) {
1252			cond_resched();
1253			latency_ration = LATENCY_LIMIT;
1254			scanned_many = true;
1255		}
1256		if (swap_offset_available_and_locked(si, offset))
1257			goto checks;
1258		offset++;
1259	}
1260	spin_lock(&si->lock);
1261
1262no_page:
1263	si->flags -= SWP_SCANNING;
1264	return n_ret;
1265}
1266
1267int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_order)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1268{
1269	int order = swap_entry_order(entry_order);
1270	unsigned long size = 1 << order;
1271	struct swap_info_struct *si, *next;
1272	long avail_pgs;
1273	int n_ret = 0;
1274	int node;
1275
1276	spin_lock(&swap_avail_lock);
 
1277
1278	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1279	if (avail_pgs <= 0) {
1280		spin_unlock(&swap_avail_lock);
1281		goto noswap;
1282	}
1283
1284	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
 
 
 
 
1285
1286	atomic_long_sub(n_goal * size, &nr_swap_pages);
1287
 
 
1288start_over:
1289	node = numa_node_id();
1290	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1291		/* requeue si to after same-priority siblings */
1292		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1293		spin_unlock(&swap_avail_lock);
1294		spin_lock(&si->lock);
1295		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1296			spin_lock(&swap_avail_lock);
1297			if (plist_node_empty(&si->avail_lists[node])) {
1298				spin_unlock(&si->lock);
1299				goto nextsi;
1300			}
1301			WARN(!si->highest_bit,
1302			     "swap_info %d in list but !highest_bit\n",
1303			     si->type);
1304			WARN(!(si->flags & SWP_WRITEOK),
1305			     "swap_info %d in list but !SWP_WRITEOK\n",
1306			     si->type);
1307			__del_from_avail_list(si);
1308			spin_unlock(&si->lock);
1309			goto nextsi;
1310		}
1311		n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1312					    n_goal, swp_entries, order);
 
 
 
 
1313		spin_unlock(&si->lock);
1314		if (n_ret || size > 1)
1315			goto check_out;
1316		cond_resched();
 
1317
1318		spin_lock(&swap_avail_lock);
1319nextsi:
1320		/*
1321		 * if we got here, it's likely that si was almost full before,
1322		 * and since scan_swap_map_slots() can drop the si->lock,
1323		 * multiple callers probably all tried to get a page from the
1324		 * same si and it filled up before we could get one; or, the si
1325		 * filled up between us dropping swap_avail_lock and taking
1326		 * si->lock. Since we dropped the swap_avail_lock, the
1327		 * swap_avail_head list may have been modified; so if next is
1328		 * still in the swap_avail_head list then try it, otherwise
1329		 * start over if we have not gotten any slots.
1330		 */
1331		if (plist_node_empty(&next->avail_lists[node]))
1332			goto start_over;
1333	}
1334
1335	spin_unlock(&swap_avail_lock);
1336
1337check_out:
1338	if (n_ret < n_goal)
1339		atomic_long_add((long)(n_goal - n_ret) * size,
1340				&nr_swap_pages);
1341noswap:
1342	return n_ret;
1343}
1344
1345static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1346{
1347	struct swap_info_struct *si;
1348	unsigned long offset;
1349
1350	if (!entry.val)
1351		goto out;
1352	si = swp_swap_info(entry);
1353	if (!si)
1354		goto bad_nofile;
1355	if (data_race(!(si->flags & SWP_USED)))
1356		goto bad_device;
1357	offset = swp_offset(entry);
1358	if (offset >= si->max)
1359		goto bad_offset;
1360	if (data_race(!si->swap_map[swp_offset(entry)]))
1361		goto bad_free;
1362	return si;
1363
1364bad_free:
1365	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1366	goto out;
1367bad_offset:
1368	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1369	goto out;
1370bad_device:
1371	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1372	goto out;
1373bad_nofile:
1374	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1375out:
1376	return NULL;
1377}
1378
 
 
 
 
 
 
 
 
 
 
1379static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1380					struct swap_info_struct *q)
1381{
1382	struct swap_info_struct *p;
1383
1384	p = _swap_info_get(entry);
1385
1386	if (p != q) {
1387		if (q != NULL)
1388			spin_unlock(&q->lock);
1389		if (p != NULL)
1390			spin_lock(&p->lock);
1391	}
1392	return p;
1393}
1394
1395static unsigned char __swap_entry_free_locked(struct swap_info_struct *si,
1396					      unsigned long offset,
1397					      unsigned char usage)
1398{
1399	unsigned char count;
1400	unsigned char has_cache;
1401
1402	count = si->swap_map[offset];
1403
1404	has_cache = count & SWAP_HAS_CACHE;
1405	count &= ~SWAP_HAS_CACHE;
1406
1407	if (usage == SWAP_HAS_CACHE) {
1408		VM_BUG_ON(!has_cache);
1409		has_cache = 0;
1410	} else if (count == SWAP_MAP_SHMEM) {
1411		/*
1412		 * Or we could insist on shmem.c using a special
1413		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1414		 */
1415		count = 0;
1416	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1417		if (count == COUNT_CONTINUED) {
1418			if (swap_count_continued(si, offset, count))
1419				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1420			else
1421				count = SWAP_MAP_MAX;
1422		} else
1423			count--;
1424	}
1425
1426	usage = count | has_cache;
1427	if (usage)
1428		WRITE_ONCE(si->swap_map[offset], usage);
1429	else
1430		WRITE_ONCE(si->swap_map[offset], SWAP_HAS_CACHE);
1431
1432	return usage;
1433}
1434
1435/*
1436 * When we get a swap entry, if there aren't some other ways to
1437 * prevent swapoff, such as the folio in swap cache is locked, RCU
1438 * reader side is locked, etc., the swap entry may become invalid
1439 * because of swapoff.  Then, we need to enclose all swap related
1440 * functions with get_swap_device() and put_swap_device(), unless the
1441 * swap functions call get/put_swap_device() by themselves.
1442 *
1443 * RCU reader side lock (including any spinlock) is sufficient to
1444 * prevent swapoff, because synchronize_rcu() is called in swapoff()
1445 * before freeing data structures.
1446 *
1447 * Check whether swap entry is valid in the swap device.  If so,
1448 * return pointer to swap_info_struct, and keep the swap entry valid
1449 * via preventing the swap device from being swapoff, until
1450 * put_swap_device() is called.  Otherwise return NULL.
1451 *
 
 
 
 
 
 
1452 * Notice that swapoff or swapoff+swapon can still happen before the
1453 * percpu_ref_tryget_live() in get_swap_device() or after the
1454 * percpu_ref_put() in put_swap_device() if there isn't any other way
1455 * to prevent swapoff.  The caller must be prepared for that.  For
1456 * example, the following situation is possible.
 
1457 *
1458 *   CPU1				CPU2
1459 *   do_swap_page()
1460 *     ...				swapoff+swapon
1461 *     __read_swap_cache_async()
1462 *       swapcache_prepare()
1463 *         __swap_duplicate()
1464 *           // check swap_map
1465 *     // verify PTE not changed
1466 *
1467 * In __swap_duplicate(), the swap_map need to be checked before
1468 * changing partly because the specified swap entry may be for another
1469 * swap device which has been swapoff.  And in do_swap_page(), after
1470 * the page is read from the swap device, the PTE is verified not
1471 * changed with the page table locked to check whether the swap device
1472 * has been swapoff or swapoff+swapon.
1473 */
1474struct swap_info_struct *get_swap_device(swp_entry_t entry)
1475{
1476	struct swap_info_struct *si;
1477	unsigned long offset;
1478
1479	if (!entry.val)
1480		goto out;
1481	si = swp_swap_info(entry);
1482	if (!si)
1483		goto bad_nofile;
1484	if (!percpu_ref_tryget_live(&si->users))
1485		goto out;
1486	/*
1487	 * Guarantee the si->users are checked before accessing other
1488	 * fields of swap_info_struct.
1489	 *
1490	 * Paired with the spin_unlock() after setup_swap_info() in
1491	 * enable_swap_info().
1492	 */
1493	smp_rmb();
1494	offset = swp_offset(entry);
1495	if (offset >= si->max)
1496		goto put_out;
1497
1498	return si;
1499bad_nofile:
1500	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1501out:
1502	return NULL;
1503put_out:
1504	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1505	percpu_ref_put(&si->users);
1506	return NULL;
1507}
1508
1509static unsigned char __swap_entry_free(struct swap_info_struct *si,
1510				       swp_entry_t entry)
1511{
1512	struct swap_cluster_info *ci;
1513	unsigned long offset = swp_offset(entry);
1514	unsigned char usage;
1515
1516	ci = lock_cluster_or_swap_info(si, offset);
1517	usage = __swap_entry_free_locked(si, offset, 1);
1518	unlock_cluster_or_swap_info(si, ci);
1519	if (!usage)
1520		free_swap_slot(entry);
1521
1522	return usage;
1523}
1524
1525static bool __swap_entries_free(struct swap_info_struct *si,
1526		swp_entry_t entry, int nr)
1527{
 
1528	unsigned long offset = swp_offset(entry);
1529	unsigned int type = swp_type(entry);
1530	struct swap_cluster_info *ci;
1531	bool has_cache = false;
1532	unsigned char count;
1533	int i;
1534
1535	if (nr <= 1 || swap_count(data_race(si->swap_map[offset])) != 1)
1536		goto fallback;
1537	/* cross into another cluster */
1538	if (nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER)
1539		goto fallback;
1540
1541	ci = lock_cluster_or_swap_info(si, offset);
1542	if (!swap_is_last_map(si, offset, nr, &has_cache)) {
1543		unlock_cluster_or_swap_info(si, ci);
1544		goto fallback;
1545	}
1546	for (i = 0; i < nr; i++)
1547		WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE);
1548	unlock_cluster_or_swap_info(si, ci);
1549
1550	if (!has_cache) {
1551		for (i = 0; i < nr; i++)
1552			zswap_invalidate(swp_entry(si->type, offset + i));
1553		spin_lock(&si->lock);
1554		swap_entry_range_free(si, entry, nr);
1555		spin_unlock(&si->lock);
1556	}
1557	return has_cache;
1558
1559fallback:
1560	for (i = 0; i < nr; i++) {
1561		if (data_race(si->swap_map[offset + i])) {
1562			count = __swap_entry_free(si, swp_entry(type, offset + i));
1563			if (count == SWAP_HAS_CACHE)
1564				has_cache = true;
1565		} else {
1566			WARN_ON_ONCE(1);
1567		}
1568	}
1569	return has_cache;
1570}
1571
1572/*
1573 * Drop the last HAS_CACHE flag of swap entries, caller have to
1574 * ensure all entries belong to the same cgroup.
1575 */
1576static void swap_entry_range_free(struct swap_info_struct *si, swp_entry_t entry,
1577				  unsigned int nr_pages)
1578{
1579	unsigned long offset = swp_offset(entry);
1580	unsigned char *map = si->swap_map + offset;
1581	unsigned char *map_end = map + nr_pages;
1582	struct swap_cluster_info *ci;
1583
1584	ci = lock_cluster(si, offset);
1585	do {
1586		VM_BUG_ON(*map != SWAP_HAS_CACHE);
1587		*map = 0;
1588	} while (++map < map_end);
1589	dec_cluster_info_page(si, ci, nr_pages);
1590	unlock_cluster(ci);
1591
1592	mem_cgroup_uncharge_swap(entry, nr_pages);
1593	swap_range_free(si, offset, nr_pages);
1594}
1595
1596static void cluster_swap_free_nr(struct swap_info_struct *si,
1597		unsigned long offset, int nr_pages,
1598		unsigned char usage)
1599{
1600	struct swap_cluster_info *ci;
1601	DECLARE_BITMAP(to_free, BITS_PER_LONG) = { 0 };
1602	int i, nr;
1603
1604	ci = lock_cluster_or_swap_info(si, offset);
1605	while (nr_pages) {
1606		nr = min(BITS_PER_LONG, nr_pages);
1607		for (i = 0; i < nr; i++) {
1608			if (!__swap_entry_free_locked(si, offset + i, usage))
1609				bitmap_set(to_free, i, 1);
1610		}
1611		if (!bitmap_empty(to_free, BITS_PER_LONG)) {
1612			unlock_cluster_or_swap_info(si, ci);
1613			for_each_set_bit(i, to_free, BITS_PER_LONG)
1614				free_swap_slot(swp_entry(si->type, offset + i));
1615			if (nr == nr_pages)
1616				return;
1617			bitmap_clear(to_free, 0, BITS_PER_LONG);
1618			ci = lock_cluster_or_swap_info(si, offset);
1619		}
1620		offset += nr;
1621		nr_pages -= nr;
1622	}
1623	unlock_cluster_or_swap_info(si, ci);
1624}
1625
1626/*
1627 * Caller has made sure that the swap device corresponding to entry
1628 * is still around or has not been recycled.
1629 */
1630void swap_free_nr(swp_entry_t entry, int nr_pages)
1631{
1632	int nr;
1633	struct swap_info_struct *sis;
1634	unsigned long offset = swp_offset(entry);
1635
1636	sis = _swap_info_get(entry);
1637	if (!sis)
1638		return;
1639
1640	while (nr_pages) {
1641		nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
1642		cluster_swap_free_nr(sis, offset, nr, 1);
1643		offset += nr;
1644		nr_pages -= nr;
1645	}
1646}
1647
1648/*
1649 * Called after dropping swapcache to decrease refcnt to swap entries.
1650 */
1651void put_swap_folio(struct folio *folio, swp_entry_t entry)
1652{
1653	unsigned long offset = swp_offset(entry);
 
1654	struct swap_cluster_info *ci;
1655	struct swap_info_struct *si;
1656	int size = 1 << swap_entry_order(folio_order(folio));
 
 
 
1657
1658	si = _swap_info_get(entry);
1659	if (!si)
1660		return;
1661
1662	ci = lock_cluster_or_swap_info(si, offset);
1663	if (size > 1 && swap_is_has_cache(si, offset, size)) {
1664		unlock_cluster_or_swap_info(si, ci);
1665		spin_lock(&si->lock);
1666		swap_entry_range_free(si, entry, size);
1667		spin_unlock(&si->lock);
1668		return;
 
 
 
 
 
 
 
 
 
 
 
 
1669	}
1670	for (int i = 0; i < size; i++, entry.val++) {
1671		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1672			unlock_cluster_or_swap_info(si, ci);
1673			free_swap_slot(entry);
1674			if (i == size - 1)
1675				return;
1676			lock_cluster_or_swap_info(si, offset);
1677		}
1678	}
1679	unlock_cluster_or_swap_info(si, ci);
1680}
1681
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1682static int swp_entry_cmp(const void *ent1, const void *ent2)
1683{
1684	const swp_entry_t *e1 = ent1, *e2 = ent2;
1685
1686	return (int)swp_type(*e1) - (int)swp_type(*e2);
1687}
1688
1689void swapcache_free_entries(swp_entry_t *entries, int n)
1690{
1691	struct swap_info_struct *p, *prev;
1692	int i;
1693
1694	if (n <= 0)
1695		return;
1696
1697	prev = NULL;
1698	p = NULL;
1699
1700	/*
1701	 * Sort swap entries by swap device, so each lock is only taken once.
1702	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1703	 * so low that it isn't necessary to optimize further.
1704	 */
1705	if (nr_swapfiles > 1)
1706		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1707	for (i = 0; i < n; ++i) {
1708		p = swap_info_get_cont(entries[i], prev);
1709		if (p)
1710			swap_entry_range_free(p, entries[i], 1);
1711		prev = p;
1712	}
1713	if (p)
1714		spin_unlock(&p->lock);
1715}
1716
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1717int __swap_count(swp_entry_t entry)
1718{
1719	struct swap_info_struct *si = swp_swap_info(entry);
1720	pgoff_t offset = swp_offset(entry);
 
 
 
 
 
 
 
 
 
1721
1722	return swap_count(si->swap_map[offset]);
 
 
 
 
 
 
 
 
 
1723}
1724
1725/*
1726 * How many references to @entry are currently swapped out?
1727 * This does not give an exact answer when swap count is continued,
1728 * but does include the high COUNT_CONTINUED flag to allow for that.
1729 */
1730int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1731{
1732	pgoff_t offset = swp_offset(entry);
1733	struct swap_cluster_info *ci;
1734	int count;
1735
1736	ci = lock_cluster_or_swap_info(si, offset);
1737	count = swap_count(si->swap_map[offset]);
1738	unlock_cluster_or_swap_info(si, ci);
 
 
1739	return count;
1740}
1741
1742/*
1743 * How many references to @entry are currently swapped out?
1744 * This considers COUNT_CONTINUED so it returns exact answer.
1745 */
1746int swp_swapcount(swp_entry_t entry)
1747{
1748	int count, tmp_count, n;
1749	struct swap_info_struct *si;
1750	struct swap_cluster_info *ci;
1751	struct page *page;
1752	pgoff_t offset;
1753	unsigned char *map;
1754
1755	si = _swap_info_get(entry);
1756	if (!si)
1757		return 0;
1758
1759	offset = swp_offset(entry);
1760
1761	ci = lock_cluster_or_swap_info(si, offset);
1762
1763	count = swap_count(si->swap_map[offset]);
1764	if (!(count & COUNT_CONTINUED))
1765		goto out;
1766
1767	count &= ~COUNT_CONTINUED;
1768	n = SWAP_MAP_MAX + 1;
1769
1770	page = vmalloc_to_page(si->swap_map + offset);
1771	offset &= ~PAGE_MASK;
1772	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1773
1774	do {
1775		page = list_next_entry(page, lru);
1776		map = kmap_local_page(page);
1777		tmp_count = map[offset];
1778		kunmap_local(map);
1779
1780		count += (tmp_count & ~COUNT_CONTINUED) * n;
1781		n *= (SWAP_CONT_MAX + 1);
1782	} while (tmp_count & COUNT_CONTINUED);
1783out:
1784	unlock_cluster_or_swap_info(si, ci);
1785	return count;
1786}
1787
1788static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1789					 swp_entry_t entry, int order)
1790{
1791	struct swap_cluster_info *ci;
1792	unsigned char *map = si->swap_map;
1793	unsigned int nr_pages = 1 << order;
1794	unsigned long roffset = swp_offset(entry);
1795	unsigned long offset = round_down(roffset, nr_pages);
1796	int i;
1797	bool ret = false;
1798
1799	ci = lock_cluster_or_swap_info(si, offset);
1800	if (!ci || nr_pages == 1) {
1801		if (swap_count(map[roffset]))
1802			ret = true;
1803		goto unlock_out;
1804	}
1805	for (i = 0; i < nr_pages; i++) {
1806		if (swap_count(map[offset + i])) {
1807			ret = true;
1808			break;
1809		}
1810	}
1811unlock_out:
1812	unlock_cluster_or_swap_info(si, ci);
1813	return ret;
1814}
1815
1816static bool folio_swapped(struct folio *folio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1817{
1818	swp_entry_t entry = folio->swap;
1819	struct swap_info_struct *si = _swap_info_get(entry);
1820
1821	if (!si)
 
1822		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1823
1824	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1825		return swap_swapcount(si, entry) != 0;
 
 
 
 
 
 
 
1826
1827	return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
1828}
1829
1830static bool folio_swapcache_freeable(struct folio *folio)
 
 
 
 
1831{
1832	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1833
1834	if (!folio_test_swapcache(folio))
1835		return false;
1836	if (folio_test_writeback(folio))
1837		return false;
 
 
1838
1839	/*
1840	 * Once hibernation has begun to create its image of memory,
1841	 * there's a danger that one of the calls to folio_free_swap()
1842	 * - most probably a call from __try_to_reclaim_swap() while
1843	 * hibernation is allocating its own swap pages for the image,
1844	 * but conceivably even a call from memory reclaim - will free
1845	 * the swap from a folio which has already been recorded in the
1846	 * image as a clean swapcache folio, and then reuse its swap for
1847	 * another page of the image.  On waking from hibernation, the
1848	 * original folio might be freed under memory pressure, then
1849	 * later read back in from swap, now with the wrong data.
1850	 *
1851	 * Hibernation suspends storage while it is writing the image
1852	 * to disk so check that here.
1853	 */
1854	if (pm_suspended_storage())
1855		return false;
1856
1857	return true;
 
 
 
1858}
1859
1860/**
1861 * folio_free_swap() - Free the swap space used for this folio.
1862 * @folio: The folio to remove.
1863 *
1864 * If swap is getting full, or if there are no more mappings of this folio,
1865 * then call folio_free_swap to free its swap space.
1866 *
1867 * Return: true if we were able to release the swap space.
1868 */
1869bool folio_free_swap(struct folio *folio)
1870{
1871	if (!folio_swapcache_freeable(folio))
1872		return false;
1873	if (folio_swapped(folio))
1874		return false;
1875
1876	delete_from_swap_cache(folio);
1877	folio_set_dirty(folio);
1878	return true;
1879}
1880
1881/**
1882 * free_swap_and_cache_nr() - Release reference on range of swap entries and
1883 *                            reclaim their cache if no more references remain.
1884 * @entry: First entry of range.
1885 * @nr: Number of entries in range.
1886 *
1887 * For each swap entry in the contiguous range, release a reference. If any swap
1888 * entries become free, try to reclaim their underlying folios, if present. The
1889 * offset range is defined by [entry.offset, entry.offset + nr).
1890 */
1891void free_swap_and_cache_nr(swp_entry_t entry, int nr)
1892{
1893	const unsigned long start_offset = swp_offset(entry);
1894	const unsigned long end_offset = start_offset + nr;
1895	struct swap_info_struct *si;
1896	bool any_only_cache = false;
1897	unsigned long offset;
1898
1899	if (non_swap_entry(entry))
1900		return;
1901
1902	si = get_swap_device(entry);
1903	if (!si)
1904		return;
1905
1906	if (WARN_ON(end_offset > si->max))
1907		goto out;
1908
1909	/*
1910	 * First free all entries in the range.
1911	 */
1912	any_only_cache = __swap_entries_free(si, entry, nr);
1913
1914	/*
1915	 * Short-circuit the below loop if none of the entries had their
1916	 * reference drop to zero.
1917	 */
1918	if (!any_only_cache)
1919		goto out;
1920
1921	/*
1922	 * Now go back over the range trying to reclaim the swap cache. This is
1923	 * more efficient for large folios because we will only try to reclaim
1924	 * the swap once per folio in the common case. If we do
1925	 * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the
1926	 * latter will get a reference and lock the folio for every individual
1927	 * page but will only succeed once the swap slot for every subpage is
1928	 * zero.
1929	 */
1930	for (offset = start_offset; offset < end_offset; offset += nr) {
1931		nr = 1;
1932		if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1933			/*
1934			 * Folios are always naturally aligned in swap so
1935			 * advance forward to the next boundary. Zero means no
1936			 * folio was found for the swap entry, so advance by 1
1937			 * in this case. Negative value means folio was found
1938			 * but could not be reclaimed. Here we can still advance
1939			 * to the next boundary.
1940			 */
1941			nr = __try_to_reclaim_swap(si, offset,
1942						   TTRS_UNMAPPED | TTRS_FULL);
1943			if (nr == 0)
1944				nr = 1;
1945			else if (nr < 0)
1946				nr = -nr;
1947			nr = ALIGN(offset + 1, nr) - offset;
1948		}
1949	}
1950
1951out:
1952	put_swap_device(si);
1953}
1954
1955#ifdef CONFIG_HIBERNATION
1956
1957swp_entry_t get_swap_page_of_type(int type)
1958{
1959	struct swap_info_struct *si = swap_type_to_swap_info(type);
1960	swp_entry_t entry = {0};
1961
1962	if (!si)
1963		goto fail;
1964
1965	/* This is called for allocating swap entry, not cache */
1966	spin_lock(&si->lock);
1967	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry, 0))
1968		atomic_long_dec(&nr_swap_pages);
1969	spin_unlock(&si->lock);
1970fail:
1971	return entry;
1972}
1973
1974/*
1975 * Find the swap type that corresponds to given device (if any).
1976 *
1977 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1978 * from 0, in which the swap header is expected to be located.
1979 *
1980 * This is needed for the suspend to disk (aka swsusp).
1981 */
1982int swap_type_of(dev_t device, sector_t offset)
1983{
 
1984	int type;
1985
1986	if (!device)
1987		return -1;
1988
1989	spin_lock(&swap_lock);
1990	for (type = 0; type < nr_swapfiles; type++) {
1991		struct swap_info_struct *sis = swap_info[type];
1992
1993		if (!(sis->flags & SWP_WRITEOK))
1994			continue;
1995
1996		if (device == sis->bdev->bd_dev) {
 
 
 
 
 
 
 
1997			struct swap_extent *se = first_se(sis);
1998
1999			if (se->start_block == offset) {
 
 
 
2000				spin_unlock(&swap_lock);
 
2001				return type;
2002			}
2003		}
2004	}
2005	spin_unlock(&swap_lock);
2006	return -ENODEV;
2007}
2008
2009int find_first_swap(dev_t *device)
2010{
2011	int type;
2012
2013	spin_lock(&swap_lock);
2014	for (type = 0; type < nr_swapfiles; type++) {
2015		struct swap_info_struct *sis = swap_info[type];
2016
2017		if (!(sis->flags & SWP_WRITEOK))
2018			continue;
2019		*device = sis->bdev->bd_dev;
2020		spin_unlock(&swap_lock);
2021		return type;
2022	}
2023	spin_unlock(&swap_lock);
2024	return -ENODEV;
2025}
2026
2027/*
2028 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
2029 * corresponding to given index in swap_info (swap type).
2030 */
2031sector_t swapdev_block(int type, pgoff_t offset)
2032{
 
2033	struct swap_info_struct *si = swap_type_to_swap_info(type);
2034	struct swap_extent *se;
2035
2036	if (!si || !(si->flags & SWP_WRITEOK))
2037		return 0;
2038	se = offset_to_swap_extent(si, offset);
2039	return se->start_block + (offset - se->start_page);
2040}
2041
2042/*
2043 * Return either the total number of swap pages of given type, or the number
2044 * of free pages of that type (depending on @free)
2045 *
2046 * This is needed for software suspend
2047 */
2048unsigned int count_swap_pages(int type, int free)
2049{
2050	unsigned int n = 0;
2051
2052	spin_lock(&swap_lock);
2053	if ((unsigned int)type < nr_swapfiles) {
2054		struct swap_info_struct *sis = swap_info[type];
2055
2056		spin_lock(&sis->lock);
2057		if (sis->flags & SWP_WRITEOK) {
2058			n = sis->pages;
2059			if (free)
2060				n -= sis->inuse_pages;
2061		}
2062		spin_unlock(&sis->lock);
2063	}
2064	spin_unlock(&swap_lock);
2065	return n;
2066}
2067#endif /* CONFIG_HIBERNATION */
2068
2069static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
2070{
2071	return pte_same(pte_swp_clear_flags(pte), swp_pte);
2072}
2073
2074/*
2075 * No need to decide whether this PTE shares the swap entry with others,
2076 * just let do_wp_page work it out if a write is requested later - to
2077 * force COW, vm_page_prot omits write permission from any private vma.
2078 */
2079static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
2080		unsigned long addr, swp_entry_t entry, struct folio *folio)
2081{
2082	struct page *page;
2083	struct folio *swapcache;
2084	spinlock_t *ptl;
2085	pte_t *pte, new_pte, old_pte;
2086	bool hwpoisoned = false;
2087	int ret = 1;
2088
2089	swapcache = folio;
2090	folio = ksm_might_need_to_copy(folio, vma, addr);
2091	if (unlikely(!folio))
2092		return -ENOMEM;
2093	else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
2094		hwpoisoned = true;
2095		folio = swapcache;
 
 
2096	}
2097
2098	page = folio_file_page(folio, swp_offset(entry));
2099	if (PageHWPoison(page))
2100		hwpoisoned = true;
2101
2102	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
2103	if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
2104						swp_entry_to_pte(entry)))) {
2105		ret = 0;
2106		goto out;
2107	}
2108
2109	old_pte = ptep_get(pte);
2110
2111	if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
2112		swp_entry_t swp_entry;
2113
2114		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2115		if (hwpoisoned) {
2116			swp_entry = make_hwpoison_entry(page);
2117		} else {
2118			swp_entry = make_poisoned_swp_entry();
2119		}
2120		new_pte = swp_entry_to_pte(swp_entry);
2121		ret = 0;
2122		goto setpte;
2123	}
2124
2125	/*
2126	 * Some architectures may have to restore extra metadata to the page
2127	 * when reading from swap. This metadata may be indexed by swap entry
2128	 * so this must be called before swap_free().
2129	 */
2130	arch_swap_restore(folio_swap(entry, folio), folio);
2131
2132	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2133	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
2134	folio_get(folio);
2135	if (folio == swapcache) {
2136		rmap_t rmap_flags = RMAP_NONE;
2137
2138		/*
2139		 * See do_swap_page(): writeback would be problematic.
2140		 * However, we do a folio_wait_writeback() just before this
2141		 * call and have the folio locked.
2142		 */
2143		VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
2144		if (pte_swp_exclusive(old_pte))
2145			rmap_flags |= RMAP_EXCLUSIVE;
2146		/*
2147		 * We currently only expect small !anon folios, which are either
2148		 * fully exclusive or fully shared. If we ever get large folios
2149		 * here, we have to be careful.
2150		 */
2151		if (!folio_test_anon(folio)) {
2152			VM_WARN_ON_ONCE(folio_test_large(folio));
2153			VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
2154			folio_add_new_anon_rmap(folio, vma, addr, rmap_flags);
2155		} else {
2156			folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
2157		}
2158	} else { /* ksm created a completely new copy */
2159		folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
2160		folio_add_lru_vma(folio, vma);
 
2161	}
2162	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
2163	if (pte_swp_soft_dirty(old_pte))
2164		new_pte = pte_mksoft_dirty(new_pte);
2165	if (pte_swp_uffd_wp(old_pte))
2166		new_pte = pte_mkuffd_wp(new_pte);
2167setpte:
2168	set_pte_at(vma->vm_mm, addr, pte, new_pte);
2169	swap_free(entry);
 
 
 
 
 
2170out:
2171	if (pte)
2172		pte_unmap_unlock(pte, ptl);
2173	if (folio != swapcache) {
2174		folio_unlock(folio);
2175		folio_put(folio);
2176	}
2177	return ret;
2178}
2179
2180static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
2181			unsigned long addr, unsigned long end,
2182			unsigned int type)
 
2183{
2184	pte_t *pte = NULL;
 
 
2185	struct swap_info_struct *si;
 
 
 
2186
2187	si = swap_info[type];
 
2188	do {
2189		struct folio *folio;
2190		unsigned long offset;
2191		unsigned char swp_count;
2192		swp_entry_t entry;
2193		int ret;
2194		pte_t ptent;
2195
2196		if (!pte++) {
2197			pte = pte_offset_map(pmd, addr);
2198			if (!pte)
2199				break;
2200		}
2201
2202		ptent = ptep_get_lockless(pte);
2203
2204		if (!is_swap_pte(ptent))
2205			continue;
2206
2207		entry = pte_to_swp_entry(ptent);
2208		if (swp_type(entry) != type)
2209			continue;
2210
2211		offset = swp_offset(entry);
 
 
 
2212		pte_unmap(pte);
2213		pte = NULL;
2214
2215		folio = swap_cache_get_folio(entry, vma, addr);
2216		if (!folio) {
2217			struct vm_fault vmf = {
2218				.vma = vma,
2219				.address = addr,
2220				.real_address = addr,
2221				.pmd = pmd,
2222			};
2223
2224			folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2225						&vmf);
2226		}
2227		if (!folio) {
2228			swp_count = READ_ONCE(si->swap_map[offset]);
2229			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
2230				continue;
2231			return -ENOMEM;
2232		}
2233
2234		folio_lock(folio);
2235		folio_wait_writeback(folio);
2236		ret = unuse_pte(vma, pmd, addr, entry, folio);
2237		if (ret < 0) {
2238			folio_unlock(folio);
2239			folio_put(folio);
2240			return ret;
2241		}
2242
2243		folio_free_swap(folio);
2244		folio_unlock(folio);
2245		folio_put(folio);
2246	} while (addr += PAGE_SIZE, addr != end);
2247
2248	if (pte)
2249		pte_unmap(pte);
2250	return 0;
 
 
 
 
 
 
 
 
 
2251}
2252
2253static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2254				unsigned long addr, unsigned long end,
2255				unsigned int type)
 
2256{
2257	pmd_t *pmd;
2258	unsigned long next;
2259	int ret;
2260
2261	pmd = pmd_offset(pud, addr);
2262	do {
2263		cond_resched();
2264		next = pmd_addr_end(addr, end);
2265		ret = unuse_pte_range(vma, pmd, addr, next, type);
 
 
 
2266		if (ret)
2267			return ret;
2268	} while (pmd++, addr = next, addr != end);
2269	return 0;
2270}
2271
2272static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2273				unsigned long addr, unsigned long end,
2274				unsigned int type)
 
2275{
2276	pud_t *pud;
2277	unsigned long next;
2278	int ret;
2279
2280	pud = pud_offset(p4d, addr);
2281	do {
2282		next = pud_addr_end(addr, end);
2283		if (pud_none_or_clear_bad(pud))
2284			continue;
2285		ret = unuse_pmd_range(vma, pud, addr, next, type);
 
2286		if (ret)
2287			return ret;
2288	} while (pud++, addr = next, addr != end);
2289	return 0;
2290}
2291
2292static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2293				unsigned long addr, unsigned long end,
2294				unsigned int type)
 
2295{
2296	p4d_t *p4d;
2297	unsigned long next;
2298	int ret;
2299
2300	p4d = p4d_offset(pgd, addr);
2301	do {
2302		next = p4d_addr_end(addr, end);
2303		if (p4d_none_or_clear_bad(p4d))
2304			continue;
2305		ret = unuse_pud_range(vma, p4d, addr, next, type);
 
2306		if (ret)
2307			return ret;
2308	} while (p4d++, addr = next, addr != end);
2309	return 0;
2310}
2311
2312static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
 
2313{
2314	pgd_t *pgd;
2315	unsigned long addr, end, next;
2316	int ret;
2317
2318	addr = vma->vm_start;
2319	end = vma->vm_end;
2320
2321	pgd = pgd_offset(vma->vm_mm, addr);
2322	do {
2323		next = pgd_addr_end(addr, end);
2324		if (pgd_none_or_clear_bad(pgd))
2325			continue;
2326		ret = unuse_p4d_range(vma, pgd, addr, next, type);
 
2327		if (ret)
2328			return ret;
2329	} while (pgd++, addr = next, addr != end);
2330	return 0;
2331}
2332
2333static int unuse_mm(struct mm_struct *mm, unsigned int type)
 
2334{
2335	struct vm_area_struct *vma;
2336	int ret = 0;
2337	VMA_ITERATOR(vmi, mm, 0);
2338
2339	mmap_read_lock(mm);
2340	for_each_vma(vmi, vma) {
2341		if (vma->anon_vma && !is_vm_hugetlb_page(vma)) {
2342			ret = unuse_vma(vma, type);
 
2343			if (ret)
2344				break;
2345		}
2346
2347		cond_resched();
2348	}
2349	mmap_read_unlock(mm);
2350	return ret;
2351}
2352
2353/*
2354 * Scan swap_map from current position to next entry still in use.
2355 * Return 0 if there are no inuse entries after prev till end of
2356 * the map.
2357 */
2358static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2359					unsigned int prev)
2360{
2361	unsigned int i;
2362	unsigned char count;
2363
2364	/*
2365	 * No need for swap_lock here: we're just looking
2366	 * for whether an entry is in use, not modifying it; false
2367	 * hits are okay, and sys_swapoff() has already prevented new
2368	 * allocations from this area (while holding swap_lock).
2369	 */
2370	for (i = prev + 1; i < si->max; i++) {
2371		count = READ_ONCE(si->swap_map[i]);
2372		if (count && swap_count(count) != SWAP_MAP_BAD)
2373			break;
 
2374		if ((i % LATENCY_LIMIT) == 0)
2375			cond_resched();
2376	}
2377
2378	if (i == si->max)
2379		i = 0;
2380
2381	return i;
2382}
2383
2384static int try_to_unuse(unsigned int type)
 
 
 
 
 
2385{
2386	struct mm_struct *prev_mm;
2387	struct mm_struct *mm;
2388	struct list_head *p;
2389	int retval = 0;
2390	struct swap_info_struct *si = swap_info[type];
2391	struct folio *folio;
2392	swp_entry_t entry;
2393	unsigned int i;
2394
2395	if (!READ_ONCE(si->inuse_pages))
2396		goto success;
 
 
 
2397
2398retry:
2399	retval = shmem_unuse(type);
2400	if (retval)
2401		return retval;
2402
2403	prev_mm = &init_mm;
2404	mmget(prev_mm);
2405
2406	spin_lock(&mmlist_lock);
2407	p = &init_mm.mmlist;
2408	while (READ_ONCE(si->inuse_pages) &&
2409	       !signal_pending(current) &&
2410	       (p = p->next) != &init_mm.mmlist) {
2411
2412		mm = list_entry(p, struct mm_struct, mmlist);
2413		if (!mmget_not_zero(mm))
2414			continue;
2415		spin_unlock(&mmlist_lock);
2416		mmput(prev_mm);
2417		prev_mm = mm;
2418		retval = unuse_mm(mm, type);
 
2419		if (retval) {
2420			mmput(prev_mm);
2421			return retval;
2422		}
2423
2424		/*
2425		 * Make sure that we aren't completely killing
2426		 * interactive performance.
2427		 */
2428		cond_resched();
2429		spin_lock(&mmlist_lock);
2430	}
2431	spin_unlock(&mmlist_lock);
2432
2433	mmput(prev_mm);
2434
2435	i = 0;
2436	while (READ_ONCE(si->inuse_pages) &&
2437	       !signal_pending(current) &&
2438	       (i = find_next_to_unuse(si, i)) != 0) {
2439
2440		entry = swp_entry(type, i);
2441		folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
2442		if (IS_ERR(folio))
2443			continue;
2444
2445		/*
2446		 * It is conceivable that a racing task removed this folio from
2447		 * swap cache just before we acquired the page lock. The folio
2448		 * might even be back in swap cache on another swap area. But
2449		 * that is okay, folio_free_swap() only removes stale folios.
2450		 */
2451		folio_lock(folio);
2452		folio_wait_writeback(folio);
2453		folio_free_swap(folio);
2454		folio_unlock(folio);
2455		folio_put(folio);
 
 
 
 
 
 
 
 
2456	}
2457
2458	/*
2459	 * Lets check again to see if there are still swap entries in the map.
2460	 * If yes, we would need to do retry the unuse logic again.
2461	 * Under global memory pressure, swap entries can be reinserted back
2462	 * into process space after the mmlist loop above passes over them.
2463	 *
2464	 * Limit the number of retries? No: when mmget_not_zero()
2465	 * above fails, that mm is likely to be freeing swap from
2466	 * exit_mmap(), which proceeds at its own independent pace;
2467	 * and even shmem_writepage() could have been preempted after
2468	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2469	 * and robust (though cpu-intensive) just to keep retrying.
2470	 */
2471	if (READ_ONCE(si->inuse_pages)) {
2472		if (!signal_pending(current))
2473			goto retry;
2474		return -EINTR;
2475	}
2476
2477success:
2478	/*
2479	 * Make sure that further cleanups after try_to_unuse() returns happen
2480	 * after swap_range_free() reduces si->inuse_pages to 0.
2481	 */
2482	smp_mb();
2483	return 0;
2484}
2485
2486/*
2487 * After a successful try_to_unuse, if no swap is now in use, we know
2488 * we can empty the mmlist.  swap_lock must be held on entry and exit.
2489 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2490 * added to the mmlist just after page_duplicate - before would be racy.
2491 */
2492static void drain_mmlist(void)
2493{
2494	struct list_head *p, *next;
2495	unsigned int type;
2496
2497	for (type = 0; type < nr_swapfiles; type++)
2498		if (swap_info[type]->inuse_pages)
2499			return;
2500	spin_lock(&mmlist_lock);
2501	list_for_each_safe(p, next, &init_mm.mmlist)
2502		list_del_init(p);
2503	spin_unlock(&mmlist_lock);
2504}
2505
2506/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2507 * Free all of a swapdev's extent information
2508 */
2509static void destroy_swap_extents(struct swap_info_struct *sis)
2510{
2511	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2512		struct rb_node *rb = sis->swap_extent_root.rb_node;
2513		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2514
2515		rb_erase(rb, &sis->swap_extent_root);
2516		kfree(se);
2517	}
2518
2519	if (sis->flags & SWP_ACTIVATED) {
2520		struct file *swap_file = sis->swap_file;
2521		struct address_space *mapping = swap_file->f_mapping;
2522
2523		sis->flags &= ~SWP_ACTIVATED;
2524		if (mapping->a_ops->swap_deactivate)
2525			mapping->a_ops->swap_deactivate(swap_file);
2526	}
2527}
2528
2529/*
2530 * Add a block range (and the corresponding page range) into this swapdev's
2531 * extent tree.
2532 *
2533 * This function rather assumes that it is called in ascending page order.
2534 */
2535int
2536add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2537		unsigned long nr_pages, sector_t start_block)
2538{
2539	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2540	struct swap_extent *se;
2541	struct swap_extent *new_se;
2542
2543	/*
2544	 * place the new node at the right most since the
2545	 * function is called in ascending page order.
2546	 */
2547	while (*link) {
2548		parent = *link;
2549		link = &parent->rb_right;
2550	}
2551
2552	if (parent) {
2553		se = rb_entry(parent, struct swap_extent, rb_node);
2554		BUG_ON(se->start_page + se->nr_pages != start_page);
2555		if (se->start_block + se->nr_pages == start_block) {
2556			/* Merge it */
2557			se->nr_pages += nr_pages;
2558			return 0;
2559		}
2560	}
2561
2562	/* No merge, insert a new extent. */
2563	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2564	if (new_se == NULL)
2565		return -ENOMEM;
2566	new_se->start_page = start_page;
2567	new_se->nr_pages = nr_pages;
2568	new_se->start_block = start_block;
2569
2570	rb_link_node(&new_se->rb_node, parent, link);
2571	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2572	return 1;
2573}
2574EXPORT_SYMBOL_GPL(add_swap_extent);
2575
2576/*
2577 * A `swap extent' is a simple thing which maps a contiguous range of pages
2578 * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2579 * built at swapon time and is then used at swap_writepage/swap_read_folio
2580 * time for locating where on disk a page belongs.
2581 *
2582 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2583 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2584 * swap files identically.
2585 *
2586 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2587 * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2588 * swapfiles are handled *identically* after swapon time.
2589 *
2590 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2591 * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2592 * blocks are found which do not fall within the PAGE_SIZE alignment
2593 * requirements, they are simply tossed out - we will never use those blocks
2594 * for swapping.
2595 *
2596 * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2597 * prevents users from writing to the swap device, which will corrupt memory.
2598 *
2599 * The amount of disk space which a single swap extent represents varies.
2600 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2601 * extents in the rbtree. - akpm.
 
 
 
2602 */
2603static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2604{
2605	struct file *swap_file = sis->swap_file;
2606	struct address_space *mapping = swap_file->f_mapping;
2607	struct inode *inode = mapping->host;
2608	int ret;
2609
2610	if (S_ISBLK(inode->i_mode)) {
2611		ret = add_swap_extent(sis, 0, sis->max, 0);
2612		*span = sis->pages;
2613		return ret;
2614	}
2615
2616	if (mapping->a_ops->swap_activate) {
2617		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2618		if (ret < 0)
2619			return ret;
2620		sis->flags |= SWP_ACTIVATED;
2621		if ((sis->flags & SWP_FS_OPS) &&
2622		    sio_pool_init() != 0) {
2623			destroy_swap_extents(sis);
2624			return -ENOMEM;
2625		}
2626		return ret;
2627	}
2628
2629	return generic_swapfile_activate(sis, swap_file, span);
2630}
2631
2632static int swap_node(struct swap_info_struct *si)
2633{
2634	struct block_device *bdev;
2635
2636	if (si->bdev)
2637		bdev = si->bdev;
2638	else
2639		bdev = si->swap_file->f_inode->i_sb->s_bdev;
2640
2641	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2642}
2643
2644static void setup_swap_info(struct swap_info_struct *si, int prio,
2645			    unsigned char *swap_map,
2646			    struct swap_cluster_info *cluster_info,
2647			    unsigned long *zeromap)
2648{
2649	int i;
2650
2651	if (prio >= 0)
2652		si->prio = prio;
2653	else
2654		si->prio = --least_priority;
2655	/*
2656	 * the plist prio is negated because plist ordering is
2657	 * low-to-high, while swap ordering is high-to-low
2658	 */
2659	si->list.prio = -si->prio;
2660	for_each_node(i) {
2661		if (si->prio >= 0)
2662			si->avail_lists[i].prio = -si->prio;
2663		else {
2664			if (swap_node(si) == i)
2665				si->avail_lists[i].prio = 1;
2666			else
2667				si->avail_lists[i].prio = -si->prio;
2668		}
2669	}
2670	si->swap_map = swap_map;
2671	si->cluster_info = cluster_info;
2672	si->zeromap = zeromap;
2673}
2674
2675static void _enable_swap_info(struct swap_info_struct *si)
2676{
2677	si->flags |= SWP_WRITEOK;
2678	atomic_long_add(si->pages, &nr_swap_pages);
2679	total_swap_pages += si->pages;
2680
2681	assert_spin_locked(&swap_lock);
2682	/*
2683	 * both lists are plists, and thus priority ordered.
2684	 * swap_active_head needs to be priority ordered for swapoff(),
2685	 * which on removal of any swap_info_struct with an auto-assigned
2686	 * (i.e. negative) priority increments the auto-assigned priority
2687	 * of any lower-priority swap_info_structs.
2688	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2689	 * which allocates swap pages from the highest available priority
2690	 * swap_info_struct.
2691	 */
2692	plist_add(&si->list, &swap_active_head);
2693
2694	/* add to available list iff swap device is not full */
2695	if (si->highest_bit)
2696		add_to_avail_list(si);
2697}
2698
2699static void enable_swap_info(struct swap_info_struct *si, int prio,
2700				unsigned char *swap_map,
2701				struct swap_cluster_info *cluster_info,
2702				unsigned long *zeromap)
2703{
 
2704	spin_lock(&swap_lock);
2705	spin_lock(&si->lock);
2706	setup_swap_info(si, prio, swap_map, cluster_info, zeromap);
2707	spin_unlock(&si->lock);
2708	spin_unlock(&swap_lock);
2709	/*
2710	 * Finished initializing swap device, now it's safe to reference it.
 
2711	 */
2712	percpu_ref_resurrect(&si->users);
2713	spin_lock(&swap_lock);
2714	spin_lock(&si->lock);
2715	_enable_swap_info(si);
2716	spin_unlock(&si->lock);
2717	spin_unlock(&swap_lock);
2718}
2719
2720static void reinsert_swap_info(struct swap_info_struct *si)
2721{
2722	spin_lock(&swap_lock);
2723	spin_lock(&si->lock);
2724	setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap);
2725	_enable_swap_info(si);
2726	spin_unlock(&si->lock);
2727	spin_unlock(&swap_lock);
2728}
2729
2730static bool __has_usable_swap(void)
2731{
2732	return !plist_head_empty(&swap_active_head);
2733}
2734
2735bool has_usable_swap(void)
2736{
2737	bool ret;
2738
2739	spin_lock(&swap_lock);
2740	ret = __has_usable_swap();
 
2741	spin_unlock(&swap_lock);
2742	return ret;
2743}
2744
2745SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2746{
2747	struct swap_info_struct *p = NULL;
2748	unsigned char *swap_map;
2749	unsigned long *zeromap;
2750	struct swap_cluster_info *cluster_info;
 
2751	struct file *swap_file, *victim;
2752	struct address_space *mapping;
2753	struct inode *inode;
2754	struct filename *pathname;
2755	int err, found = 0;
 
2756
2757	if (!capable(CAP_SYS_ADMIN))
2758		return -EPERM;
2759
2760	BUG_ON(!current->mm);
2761
2762	pathname = getname(specialfile);
2763	if (IS_ERR(pathname))
2764		return PTR_ERR(pathname);
2765
2766	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2767	err = PTR_ERR(victim);
2768	if (IS_ERR(victim))
2769		goto out;
2770
2771	mapping = victim->f_mapping;
2772	spin_lock(&swap_lock);
2773	plist_for_each_entry(p, &swap_active_head, list) {
2774		if (p->flags & SWP_WRITEOK) {
2775			if (p->swap_file->f_mapping == mapping) {
2776				found = 1;
2777				break;
2778			}
2779		}
2780	}
2781	if (!found) {
2782		err = -EINVAL;
2783		spin_unlock(&swap_lock);
2784		goto out_dput;
2785	}
2786	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2787		vm_unacct_memory(p->pages);
2788	else {
2789		err = -ENOMEM;
2790		spin_unlock(&swap_lock);
2791		goto out_dput;
2792	}
 
2793	spin_lock(&p->lock);
2794	del_from_avail_list(p);
2795	if (p->prio < 0) {
2796		struct swap_info_struct *si = p;
2797		int nid;
2798
2799		plist_for_each_entry_continue(si, &swap_active_head, list) {
2800			si->prio++;
2801			si->list.prio--;
2802			for_each_node(nid) {
2803				if (si->avail_lists[nid].prio != 1)
2804					si->avail_lists[nid].prio--;
2805			}
2806		}
2807		least_priority++;
2808	}
2809	plist_del(&p->list, &swap_active_head);
2810	atomic_long_sub(p->pages, &nr_swap_pages);
2811	total_swap_pages -= p->pages;
2812	p->flags &= ~SWP_WRITEOK;
2813	spin_unlock(&p->lock);
2814	spin_unlock(&swap_lock);
2815
2816	disable_swap_slots_cache_lock();
2817
2818	set_current_oom_origin();
2819	err = try_to_unuse(p->type);
2820	clear_current_oom_origin();
2821
2822	if (err) {
2823		/* re-insert swap space back into swap_list */
2824		reinsert_swap_info(p);
2825		reenable_swap_slots_cache_unlock();
2826		goto out_dput;
2827	}
2828
2829	reenable_swap_slots_cache_unlock();
2830
 
 
 
 
 
2831	/*
2832	 * Wait for swap operations protected by get/put_swap_device()
2833	 * to complete.  Because of synchronize_rcu() here, all swap
2834	 * operations protected by RCU reader side lock (including any
2835	 * spinlock) will be waited too.  This makes it easy to
2836	 * prevent folio_test_swapcache() and the following swap cache
2837	 * operations from racing with swapoff.
2838	 */
2839	percpu_ref_kill(&p->users);
2840	synchronize_rcu();
2841	wait_for_completion(&p->comp);
2842
2843	flush_work(&p->discard_work);
2844	flush_work(&p->reclaim_work);
2845
2846	destroy_swap_extents(p);
2847	if (p->flags & SWP_CONTINUED)
2848		free_swap_count_continuations(p);
2849
2850	if (!p->bdev || !bdev_nonrot(p->bdev))
2851		atomic_dec(&nr_rotate_swap);
2852
2853	mutex_lock(&swapon_mutex);
2854	spin_lock(&swap_lock);
2855	spin_lock(&p->lock);
2856	drain_mmlist();
2857
2858	/* wait for anyone still in scan_swap_map_slots */
2859	p->highest_bit = 0;		/* cuts scans short */
2860	while (p->flags >= SWP_SCANNING) {
2861		spin_unlock(&p->lock);
2862		spin_unlock(&swap_lock);
2863		schedule_timeout_uninterruptible(1);
2864		spin_lock(&swap_lock);
2865		spin_lock(&p->lock);
2866	}
2867
2868	swap_file = p->swap_file;
 
2869	p->swap_file = NULL;
2870	p->max = 0;
2871	swap_map = p->swap_map;
2872	p->swap_map = NULL;
2873	zeromap = p->zeromap;
2874	p->zeromap = NULL;
2875	cluster_info = p->cluster_info;
2876	p->cluster_info = NULL;
 
2877	spin_unlock(&p->lock);
2878	spin_unlock(&swap_lock);
2879	arch_swap_invalidate_area(p->type);
2880	zswap_swapoff(p->type);
2881	mutex_unlock(&swapon_mutex);
2882	free_percpu(p->percpu_cluster);
2883	p->percpu_cluster = NULL;
2884	free_percpu(p->cluster_next_cpu);
2885	p->cluster_next_cpu = NULL;
2886	vfree(swap_map);
2887	kvfree(zeromap);
2888	kvfree(cluster_info);
 
2889	/* Destroy swap account information */
2890	swap_cgroup_swapoff(p->type);
2891	exit_swap_address_space(p->type);
2892
2893	inode = mapping->host;
 
 
 
 
 
 
2894
2895	inode_lock(inode);
2896	inode->i_flags &= ~S_SWAPFILE;
2897	inode_unlock(inode);
2898	filp_close(swap_file, NULL);
2899
2900	/*
2901	 * Clear the SWP_USED flag after all resources are freed so that swapon
2902	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2903	 * not hold p->lock after we cleared its SWP_WRITEOK.
2904	 */
2905	spin_lock(&swap_lock);
2906	p->flags = 0;
2907	spin_unlock(&swap_lock);
2908
2909	err = 0;
2910	atomic_inc(&proc_poll_event);
2911	wake_up_interruptible(&proc_poll_wait);
2912
2913out_dput:
2914	filp_close(victim, NULL);
2915out:
2916	putname(pathname);
2917	return err;
2918}
2919
2920#ifdef CONFIG_PROC_FS
2921static __poll_t swaps_poll(struct file *file, poll_table *wait)
2922{
2923	struct seq_file *seq = file->private_data;
2924
2925	poll_wait(file, &proc_poll_wait, wait);
2926
2927	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2928		seq->poll_event = atomic_read(&proc_poll_event);
2929		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2930	}
2931
2932	return EPOLLIN | EPOLLRDNORM;
2933}
2934
2935/* iterator */
2936static void *swap_start(struct seq_file *swap, loff_t *pos)
2937{
2938	struct swap_info_struct *si;
2939	int type;
2940	loff_t l = *pos;
2941
2942	mutex_lock(&swapon_mutex);
2943
2944	if (!l)
2945		return SEQ_START_TOKEN;
2946
2947	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2948		if (!(si->flags & SWP_USED) || !si->swap_map)
2949			continue;
2950		if (!--l)
2951			return si;
2952	}
2953
2954	return NULL;
2955}
2956
2957static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2958{
2959	struct swap_info_struct *si = v;
2960	int type;
2961
2962	if (v == SEQ_START_TOKEN)
2963		type = 0;
2964	else
2965		type = si->type + 1;
2966
2967	++(*pos);
2968	for (; (si = swap_type_to_swap_info(type)); type++) {
2969		if (!(si->flags & SWP_USED) || !si->swap_map)
2970			continue;
 
2971		return si;
2972	}
2973
2974	return NULL;
2975}
2976
2977static void swap_stop(struct seq_file *swap, void *v)
2978{
2979	mutex_unlock(&swapon_mutex);
2980}
2981
2982static int swap_show(struct seq_file *swap, void *v)
2983{
2984	struct swap_info_struct *si = v;
2985	struct file *file;
2986	int len;
2987	unsigned long bytes, inuse;
2988
2989	if (si == SEQ_START_TOKEN) {
2990		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2991		return 0;
2992	}
2993
2994	bytes = K(si->pages);
2995	inuse = K(READ_ONCE(si->inuse_pages));
2996
2997	file = si->swap_file;
2998	len = seq_file_path(swap, file, " \t\n\\");
2999	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
3000			len < 40 ? 40 - len : 1, " ",
3001			S_ISBLK(file_inode(file)->i_mode) ?
3002				"partition" : "file\t",
3003			bytes, bytes < 10000000 ? "\t" : "",
3004			inuse, inuse < 10000000 ? "\t" : "",
3005			si->prio);
3006	return 0;
3007}
3008
3009static const struct seq_operations swaps_op = {
3010	.start =	swap_start,
3011	.next =		swap_next,
3012	.stop =		swap_stop,
3013	.show =		swap_show
3014};
3015
3016static int swaps_open(struct inode *inode, struct file *file)
3017{
3018	struct seq_file *seq;
3019	int ret;
3020
3021	ret = seq_open(file, &swaps_op);
3022	if (ret)
3023		return ret;
3024
3025	seq = file->private_data;
3026	seq->poll_event = atomic_read(&proc_poll_event);
3027	return 0;
3028}
3029
3030static const struct proc_ops swaps_proc_ops = {
3031	.proc_flags	= PROC_ENTRY_PERMANENT,
3032	.proc_open	= swaps_open,
3033	.proc_read	= seq_read,
3034	.proc_lseek	= seq_lseek,
3035	.proc_release	= seq_release,
3036	.proc_poll	= swaps_poll,
3037};
3038
3039static int __init procswaps_init(void)
3040{
3041	proc_create("swaps", 0, NULL, &swaps_proc_ops);
3042	return 0;
3043}
3044__initcall(procswaps_init);
3045#endif /* CONFIG_PROC_FS */
3046
3047#ifdef MAX_SWAPFILES_CHECK
3048static int __init max_swapfiles_check(void)
3049{
3050	MAX_SWAPFILES_CHECK();
3051	return 0;
3052}
3053late_initcall(max_swapfiles_check);
3054#endif
3055
3056static struct swap_info_struct *alloc_swap_info(void)
3057{
3058	struct swap_info_struct *p;
3059	struct swap_info_struct *defer = NULL;
3060	unsigned int type;
3061	int i;
3062
3063	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
3064	if (!p)
3065		return ERR_PTR(-ENOMEM);
3066
3067	if (percpu_ref_init(&p->users, swap_users_ref_free,
3068			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
3069		kvfree(p);
3070		return ERR_PTR(-ENOMEM);
3071	}
3072
3073	spin_lock(&swap_lock);
3074	for (type = 0; type < nr_swapfiles; type++) {
3075		if (!(swap_info[type]->flags & SWP_USED))
3076			break;
3077	}
3078	if (type >= MAX_SWAPFILES) {
3079		spin_unlock(&swap_lock);
3080		percpu_ref_exit(&p->users);
3081		kvfree(p);
3082		return ERR_PTR(-EPERM);
3083	}
3084	if (type >= nr_swapfiles) {
3085		p->type = type;
 
3086		/*
3087		 * Publish the swap_info_struct after initializing it.
3088		 * Note that kvzalloc() above zeroes all its fields.
 
3089		 */
3090		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
3091		nr_swapfiles++;
3092	} else {
3093		defer = p;
3094		p = swap_info[type];
3095		/*
3096		 * Do not memset this entry: a racing procfs swap_next()
3097		 * would be relying on p->type to remain valid.
3098		 */
3099	}
3100	p->swap_extent_root = RB_ROOT;
3101	plist_node_init(&p->list, 0);
3102	for_each_node(i)
3103		plist_node_init(&p->avail_lists[i], 0);
3104	p->flags = SWP_USED;
3105	spin_unlock(&swap_lock);
3106	if (defer) {
3107		percpu_ref_exit(&defer->users);
3108		kvfree(defer);
3109	}
3110	spin_lock_init(&p->lock);
3111	spin_lock_init(&p->cont_lock);
3112	init_completion(&p->comp);
3113
3114	return p;
3115}
3116
3117static int claim_swapfile(struct swap_info_struct *si, struct inode *inode)
3118{
 
 
3119	if (S_ISBLK(inode->i_mode)) {
3120		si->bdev = I_BDEV(inode);
3121		/*
3122		 * Zoned block devices contain zones that have a sequential
3123		 * write only restriction.  Hence zoned block devices are not
3124		 * suitable for swapping.  Disallow them here.
3125		 */
3126		if (bdev_is_zoned(si->bdev))
3127			return -EINVAL;
3128		si->flags |= SWP_BLKDEV;
 
 
 
3129	} else if (S_ISREG(inode->i_mode)) {
3130		si->bdev = inode->i_sb->s_bdev;
3131	}
3132
 
 
 
 
3133	return 0;
3134}
3135
3136
3137/*
3138 * Find out how many pages are allowed for a single swap device. There
3139 * are two limiting factors:
3140 * 1) the number of bits for the swap offset in the swp_entry_t type, and
3141 * 2) the number of bits in the swap pte, as defined by the different
3142 * architectures.
3143 *
3144 * In order to find the largest possible bit mask, a swap entry with
3145 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
3146 * decoded to a swp_entry_t again, and finally the swap offset is
3147 * extracted.
3148 *
3149 * This will mask all the bits from the initial ~0UL mask that can't
3150 * be encoded in either the swp_entry_t or the architecture definition
3151 * of a swap pte.
3152 */
3153unsigned long generic_max_swapfile_size(void)
3154{
3155	return swp_offset(pte_to_swp_entry(
3156			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
3157}
3158
3159/* Can be overridden by an architecture for additional checks. */
3160__weak unsigned long arch_max_swapfile_size(void)
3161{
3162	return generic_max_swapfile_size();
3163}
3164
3165static unsigned long read_swap_header(struct swap_info_struct *si,
3166					union swap_header *swap_header,
3167					struct inode *inode)
3168{
3169	int i;
3170	unsigned long maxpages;
3171	unsigned long swapfilepages;
3172	unsigned long last_page;
3173
3174	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3175		pr_err("Unable to find swap-space signature\n");
3176		return 0;
3177	}
3178
3179	/* swap partition endianness hack... */
3180	if (swab32(swap_header->info.version) == 1) {
3181		swab32s(&swap_header->info.version);
3182		swab32s(&swap_header->info.last_page);
3183		swab32s(&swap_header->info.nr_badpages);
3184		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3185			return 0;
3186		for (i = 0; i < swap_header->info.nr_badpages; i++)
3187			swab32s(&swap_header->info.badpages[i]);
3188	}
3189	/* Check the swap header's sub-version */
3190	if (swap_header->info.version != 1) {
3191		pr_warn("Unable to handle swap header version %d\n",
3192			swap_header->info.version);
3193		return 0;
3194	}
3195
3196	si->lowest_bit  = 1;
3197	si->cluster_next = 1;
3198	si->cluster_nr = 0;
3199
3200	maxpages = swapfile_maximum_size;
3201	last_page = swap_header->info.last_page;
3202	if (!last_page) {
3203		pr_warn("Empty swap-file\n");
3204		return 0;
3205	}
3206	if (last_page > maxpages) {
3207		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3208			K(maxpages), K(last_page));
 
3209	}
3210	if (maxpages > last_page) {
3211		maxpages = last_page + 1;
3212		/* p->max is an unsigned int: don't overflow it */
3213		if ((unsigned int)maxpages == 0)
3214			maxpages = UINT_MAX;
3215	}
3216	si->highest_bit = maxpages - 1;
3217
3218	if (!maxpages)
3219		return 0;
3220	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3221	if (swapfilepages && maxpages > swapfilepages) {
3222		pr_warn("Swap area shorter than signature indicates\n");
3223		return 0;
3224	}
3225	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3226		return 0;
3227	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3228		return 0;
3229
3230	return maxpages;
3231}
3232
3233#define SWAP_CLUSTER_INFO_COLS						\
3234	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3235#define SWAP_CLUSTER_SPACE_COLS						\
3236	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3237#define SWAP_CLUSTER_COLS						\
3238	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3239
3240static int setup_swap_map_and_extents(struct swap_info_struct *si,
3241					union swap_header *swap_header,
3242					unsigned char *swap_map,
 
3243					unsigned long maxpages,
3244					sector_t *span)
3245{
 
3246	unsigned int nr_good_pages;
3247	unsigned long i;
3248	int nr_extents;
 
 
 
3249
3250	nr_good_pages = maxpages - 1;	/* omit header page */
3251
 
 
 
3252	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3253		unsigned int page_nr = swap_header->info.badpages[i];
3254		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3255			return -EINVAL;
3256		if (page_nr < maxpages) {
3257			swap_map[page_nr] = SWAP_MAP_BAD;
3258			nr_good_pages--;
 
 
 
 
 
3259		}
3260	}
3261
 
 
 
 
3262	if (nr_good_pages) {
3263		swap_map[0] = SWAP_MAP_BAD;
3264		si->max = maxpages;
3265		si->pages = nr_good_pages;
3266		nr_extents = setup_swap_extents(si, span);
 
 
 
 
 
3267		if (nr_extents < 0)
3268			return nr_extents;
3269		nr_good_pages = si->pages;
3270	}
3271	if (!nr_good_pages) {
3272		pr_warn("Empty swap-file\n");
3273		return -EINVAL;
3274	}
3275
3276	return nr_extents;
3277}
3278
3279static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si,
3280						union swap_header *swap_header,
3281						unsigned long maxpages)
3282{
3283	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3284	unsigned long col = si->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3285	struct swap_cluster_info *cluster_info;
3286	unsigned long i, j, k, idx;
3287	int cpu, err = -ENOMEM;
3288
3289	cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL);
3290	if (!cluster_info)
3291		goto err;
3292
3293	for (i = 0; i < nr_clusters; i++)
3294		spin_lock_init(&cluster_info[i].lock);
3295
3296	si->cluster_next_cpu = alloc_percpu(unsigned int);
3297	if (!si->cluster_next_cpu)
3298		goto err_free;
3299
3300	/* Random start position to help with wear leveling */
3301	for_each_possible_cpu(cpu)
3302		per_cpu(*si->cluster_next_cpu, cpu) =
3303		get_random_u32_inclusive(1, si->highest_bit);
3304
3305	si->percpu_cluster = alloc_percpu(struct percpu_cluster);
3306	if (!si->percpu_cluster)
3307		goto err_free;
3308
3309	for_each_possible_cpu(cpu) {
3310		struct percpu_cluster *cluster;
3311
3312		cluster = per_cpu_ptr(si->percpu_cluster, cpu);
3313		for (i = 0; i < SWAP_NR_ORDERS; i++)
3314			cluster->next[i] = SWAP_NEXT_INVALID;
3315	}
3316
3317	/*
3318	 * Mark unusable pages as unavailable. The clusters aren't
3319	 * marked free yet, so no list operations are involved yet.
3320	 *
3321	 * See setup_swap_map_and_extents(): header page, bad pages,
3322	 * and the EOF part of the last cluster.
3323	 */
3324	inc_cluster_info_page(si, cluster_info, 0);
3325	for (i = 0; i < swap_header->info.nr_badpages; i++)
3326		inc_cluster_info_page(si, cluster_info,
3327				      swap_header->info.badpages[i]);
3328	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3329		inc_cluster_info_page(si, cluster_info, i);
3330
3331	INIT_LIST_HEAD(&si->free_clusters);
3332	INIT_LIST_HEAD(&si->full_clusters);
3333	INIT_LIST_HEAD(&si->discard_clusters);
3334
3335	for (i = 0; i < SWAP_NR_ORDERS; i++) {
3336		INIT_LIST_HEAD(&si->nonfull_clusters[i]);
3337		INIT_LIST_HEAD(&si->frag_clusters[i]);
3338		si->frag_cluster_nr[i] = 0;
3339	}
3340
3341	/*
3342	 * Reduce false cache line sharing between cluster_info and
3343	 * sharing same address space.
3344	 */
3345	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3346		j = (k + col) % SWAP_CLUSTER_COLS;
3347		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3348			struct swap_cluster_info *ci;
3349			idx = i * SWAP_CLUSTER_COLS + j;
3350			ci = cluster_info + idx;
3351			if (idx >= nr_clusters)
3352				continue;
3353			if (ci->count) {
3354				ci->flags = CLUSTER_FLAG_NONFULL;
3355				list_add_tail(&ci->list, &si->nonfull_clusters[0]);
3356				continue;
3357			}
3358			ci->flags = CLUSTER_FLAG_FREE;
3359			list_add_tail(&ci->list, &si->free_clusters);
3360		}
3361	}
 
 
 
 
 
 
 
 
 
 
3362
3363	return cluster_info;
 
3364
3365err_free:
3366	kvfree(cluster_info);
3367err:
3368	return ERR_PTR(err);
3369}
3370
3371SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3372{
3373	struct swap_info_struct *si;
3374	struct filename *name;
3375	struct file *swap_file = NULL;
3376	struct address_space *mapping;
3377	struct dentry *dentry;
3378	int prio;
3379	int error;
3380	union swap_header *swap_header;
3381	int nr_extents;
3382	sector_t span;
3383	unsigned long maxpages;
3384	unsigned char *swap_map = NULL;
3385	unsigned long *zeromap = NULL;
3386	struct swap_cluster_info *cluster_info = NULL;
3387	struct folio *folio = NULL;
 
3388	struct inode *inode = NULL;
3389	bool inced_nr_rotate_swap = false;
3390
3391	if (swap_flags & ~SWAP_FLAGS_VALID)
3392		return -EINVAL;
3393
3394	if (!capable(CAP_SYS_ADMIN))
3395		return -EPERM;
3396
3397	if (!swap_avail_heads)
3398		return -ENOMEM;
3399
3400	si = alloc_swap_info();
3401	if (IS_ERR(si))
3402		return PTR_ERR(si);
3403
3404	INIT_WORK(&si->discard_work, swap_discard_work);
3405	INIT_WORK(&si->reclaim_work, swap_reclaim_work);
3406
3407	name = getname(specialfile);
3408	if (IS_ERR(name)) {
3409		error = PTR_ERR(name);
3410		name = NULL;
3411		goto bad_swap;
3412	}
3413	swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
3414	if (IS_ERR(swap_file)) {
3415		error = PTR_ERR(swap_file);
3416		swap_file = NULL;
3417		goto bad_swap;
3418	}
3419
3420	si->swap_file = swap_file;
3421	mapping = swap_file->f_mapping;
3422	dentry = swap_file->f_path.dentry;
3423	inode = mapping->host;
3424
3425	error = claim_swapfile(si, inode);
 
3426	if (unlikely(error))
3427		goto bad_swap;
3428
3429	inode_lock(inode);
3430	if (d_unlinked(dentry) || cant_mount(dentry)) {
3431		error = -ENOENT;
3432		goto bad_swap_unlock_inode;
3433	}
3434	if (IS_SWAPFILE(inode)) {
3435		error = -EBUSY;
3436		goto bad_swap_unlock_inode;
3437	}
3438
3439	/*
3440	 * Read the swap header.
3441	 */
3442	if (!mapping->a_ops->read_folio) {
3443		error = -EINVAL;
3444		goto bad_swap_unlock_inode;
3445	}
3446	folio = read_mapping_folio(mapping, 0, swap_file);
3447	if (IS_ERR(folio)) {
3448		error = PTR_ERR(folio);
3449		goto bad_swap_unlock_inode;
3450	}
3451	swap_header = kmap_local_folio(folio, 0);
3452
3453	maxpages = read_swap_header(si, swap_header, inode);
3454	if (unlikely(!maxpages)) {
3455		error = -EINVAL;
3456		goto bad_swap_unlock_inode;
3457	}
3458
3459	/* OK, set up the swap map and apply the bad block list */
3460	swap_map = vzalloc(maxpages);
3461	if (!swap_map) {
3462		error = -ENOMEM;
3463		goto bad_swap_unlock_inode;
3464	}
3465
3466	error = swap_cgroup_swapon(si->type, maxpages);
3467	if (error)
3468		goto bad_swap_unlock_inode;
3469
3470	nr_extents = setup_swap_map_and_extents(si, swap_header, swap_map,
3471						maxpages, &span);
3472	if (unlikely(nr_extents < 0)) {
3473		error = nr_extents;
3474		goto bad_swap_unlock_inode;
3475	}
3476
3477	/*
3478	 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might
3479	 * be above MAX_PAGE_ORDER incase of a large swap file.
3480	 */
3481	zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long),
3482				    GFP_KERNEL | __GFP_ZERO);
3483	if (!zeromap) {
3484		error = -ENOMEM;
3485		goto bad_swap_unlock_inode;
3486	}
3487
3488	if (si->bdev && bdev_stable_writes(si->bdev))
3489		si->flags |= SWP_STABLE_WRITES;
 
 
 
 
 
3490
3491	if (si->bdev && bdev_synchronous(si->bdev))
3492		si->flags |= SWP_SYNCHRONOUS_IO;
 
 
 
 
3493
3494	if (si->bdev && bdev_nonrot(si->bdev)) {
3495		si->flags |= SWP_SOLIDSTATE;
3496
3497		cluster_info = setup_clusters(si, swap_header, maxpages);
3498		if (IS_ERR(cluster_info)) {
3499			error = PTR_ERR(cluster_info);
3500			cluster_info = NULL;
3501			goto bad_swap_unlock_inode;
 
 
 
 
3502		}
3503	} else {
3504		atomic_inc(&nr_rotate_swap);
3505		inced_nr_rotate_swap = true;
3506	}
3507
3508	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3509	    si->bdev && bdev_max_discard_sectors(si->bdev)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3510		/*
3511		 * When discard is enabled for swap with no particular
3512		 * policy flagged, we set all swap discard flags here in
3513		 * order to sustain backward compatibility with older
3514		 * swapon(8) releases.
3515		 */
3516		si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3517			     SWP_PAGE_DISCARD);
3518
3519		/*
3520		 * By flagging sys_swapon, a sysadmin can tell us to
3521		 * either do single-time area discards only, or to just
3522		 * perform discards for released swap page-clusters.
3523		 * Now it's time to adjust the p->flags accordingly.
3524		 */
3525		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3526			si->flags &= ~SWP_PAGE_DISCARD;
3527		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3528			si->flags &= ~SWP_AREA_DISCARD;
3529
3530		/* issue a swapon-time discard if it's still required */
3531		if (si->flags & SWP_AREA_DISCARD) {
3532			int err = discard_swap(si);
3533			if (unlikely(err))
3534				pr_err("swapon: discard_swap(%p): %d\n",
3535					si, err);
3536		}
3537	}
3538
3539	error = init_swap_address_space(si->type, maxpages);
3540	if (error)
3541		goto bad_swap_unlock_inode;
3542
3543	error = zswap_swapon(si->type, maxpages);
3544	if (error)
3545		goto free_swap_address_space;
3546
3547	/*
3548	 * Flush any pending IO and dirty mappings before we start using this
3549	 * swap device.
3550	 */
3551	inode->i_flags |= S_SWAPFILE;
3552	error = inode_drain_writes(inode);
3553	if (error) {
3554		inode->i_flags &= ~S_SWAPFILE;
3555		goto free_swap_zswap;
3556	}
3557
3558	mutex_lock(&swapon_mutex);
3559	prio = -1;
3560	if (swap_flags & SWAP_FLAG_PREFER)
3561		prio =
3562		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3563	enable_swap_info(si, prio, swap_map, cluster_info, zeromap);
3564
3565	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3566		K(si->pages), name->name, si->prio, nr_extents,
3567		K((unsigned long long)span),
3568		(si->flags & SWP_SOLIDSTATE) ? "SS" : "",
3569		(si->flags & SWP_DISCARDABLE) ? "D" : "",
3570		(si->flags & SWP_AREA_DISCARD) ? "s" : "",
3571		(si->flags & SWP_PAGE_DISCARD) ? "c" : "");
 
3572
3573	mutex_unlock(&swapon_mutex);
3574	atomic_inc(&proc_poll_event);
3575	wake_up_interruptible(&proc_poll_wait);
3576
3577	error = 0;
3578	goto out;
3579free_swap_zswap:
3580	zswap_swapoff(si->type);
3581free_swap_address_space:
3582	exit_swap_address_space(si->type);
3583bad_swap_unlock_inode:
3584	inode_unlock(inode);
3585bad_swap:
3586	free_percpu(si->percpu_cluster);
3587	si->percpu_cluster = NULL;
3588	free_percpu(si->cluster_next_cpu);
3589	si->cluster_next_cpu = NULL;
3590	inode = NULL;
3591	destroy_swap_extents(si);
3592	swap_cgroup_swapoff(si->type);
 
3593	spin_lock(&swap_lock);
3594	si->swap_file = NULL;
3595	si->flags = 0;
3596	spin_unlock(&swap_lock);
3597	vfree(swap_map);
3598	kvfree(zeromap);
3599	kvfree(cluster_info);
 
3600	if (inced_nr_rotate_swap)
3601		atomic_dec(&nr_rotate_swap);
3602	if (swap_file)
 
 
 
 
3603		filp_close(swap_file, NULL);
 
3604out:
3605	if (!IS_ERR_OR_NULL(folio))
3606		folio_release_kmap(folio, swap_header);
 
 
3607	if (name)
3608		putname(name);
3609	if (inode)
3610		inode_unlock(inode);
3611	if (!error)
3612		enable_swap_slots_cache();
3613	return error;
3614}
3615
3616void si_swapinfo(struct sysinfo *val)
3617{
3618	unsigned int type;
3619	unsigned long nr_to_be_unused = 0;
3620
3621	spin_lock(&swap_lock);
3622	for (type = 0; type < nr_swapfiles; type++) {
3623		struct swap_info_struct *si = swap_info[type];
3624
3625		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3626			nr_to_be_unused += READ_ONCE(si->inuse_pages);
3627	}
3628	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3629	val->totalswap = total_swap_pages + nr_to_be_unused;
3630	spin_unlock(&swap_lock);
3631}
3632
3633/*
3634 * Verify that nr swap entries are valid and increment their swap map counts.
3635 *
3636 * Returns error code in following case.
3637 * - success -> 0
3638 * - swp_entry is invalid -> EINVAL
3639 * - swp_entry is migration entry -> EINVAL
3640 * - swap-cache reference is requested but there is already one. -> EEXIST
3641 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3642 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3643 */
3644static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr)
3645{
3646	struct swap_info_struct *si;
3647	struct swap_cluster_info *ci;
3648	unsigned long offset;
3649	unsigned char count;
3650	unsigned char has_cache;
3651	int err, i;
3652
3653	si = swp_swap_info(entry);
 
 
3654
3655	offset = swp_offset(entry);
3656	VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
3657	VM_WARN_ON(usage == 1 && nr > 1);
3658	ci = lock_cluster_or_swap_info(si, offset);
 
 
 
 
 
 
 
 
 
3659
 
 
3660	err = 0;
3661	for (i = 0; i < nr; i++) {
3662		count = si->swap_map[offset + i];
3663
3664		/*
3665		 * swapin_readahead() doesn't check if a swap entry is valid, so the
3666		 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3667		 */
3668		if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3669			err = -ENOENT;
3670			goto unlock_out;
3671		}
3672
3673		has_cache = count & SWAP_HAS_CACHE;
3674		count &= ~SWAP_HAS_CACHE;
3675
3676		if (!count && !has_cache) {
 
 
3677			err = -ENOENT;
3678		} else if (usage == SWAP_HAS_CACHE) {
3679			if (has_cache)
3680				err = -EEXIST;
3681		} else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) {
3682			err = -EINVAL;
3683		}
3684
3685		if (err)
3686			goto unlock_out;
3687	}
3688
3689	for (i = 0; i < nr; i++) {
3690		count = si->swap_map[offset + i];
3691		has_cache = count & SWAP_HAS_CACHE;
3692		count &= ~SWAP_HAS_CACHE;
3693
3694		if (usage == SWAP_HAS_CACHE)
3695			has_cache = SWAP_HAS_CACHE;
3696		else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3697			count += usage;
3698		else if (swap_count_continued(si, offset + i, count))
 
 
3699			count = COUNT_CONTINUED;
3700		else {
3701			/*
3702			 * Don't need to rollback changes, because if
3703			 * usage == 1, there must be nr == 1.
3704			 */
3705			err = -ENOMEM;
3706			goto unlock_out;
3707		}
3708
3709		WRITE_ONCE(si->swap_map[offset + i], count | has_cache);
3710	}
3711
3712unlock_out:
3713	unlock_cluster_or_swap_info(si, ci);
 
 
 
3714	return err;
3715}
3716
3717/*
3718 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3719 * (in which case its reference count is never incremented).
3720 */
3721void swap_shmem_alloc(swp_entry_t entry, int nr)
3722{
3723	__swap_duplicate(entry, SWAP_MAP_SHMEM, nr);
3724}
3725
3726/*
3727 * Increase reference count of swap entry by 1.
3728 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3729 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3730 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3731 * might occur if a page table entry has got corrupted.
3732 */
3733int swap_duplicate(swp_entry_t entry)
3734{
3735	int err = 0;
3736
3737	while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM)
3738		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3739	return err;
3740}
3741
3742/*
3743 * @entry: first swap entry from which we allocate nr swap cache.
3744 *
3745 * Called when allocating swap cache for existing swap entries,
3746 * This can return error codes. Returns 0 at success.
3747 * -EEXIST means there is a swap cache.
3748 * Note: return code is different from swap_duplicate().
3749 */
3750int swapcache_prepare(swp_entry_t entry, int nr)
3751{
3752	return __swap_duplicate(entry, SWAP_HAS_CACHE, nr);
3753}
3754
3755void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr)
3756{
3757	unsigned long offset = swp_offset(entry);
3758
3759	cluster_swap_free_nr(si, offset, nr, SWAP_HAS_CACHE);
3760}
3761
3762struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3763{
3764	return swap_type_to_swap_info(swp_type(entry));
 
3765}
3766
3767/*
3768 * out-of-line methods to avoid include hell.
3769 */
3770struct address_space *swapcache_mapping(struct folio *folio)
3771{
3772	return swp_swap_info(folio->swap)->swap_file->f_mapping;
3773}
3774EXPORT_SYMBOL_GPL(swapcache_mapping);
3775
3776pgoff_t __folio_swap_cache_index(struct folio *folio)
3777{
3778	return swap_cache_index(folio->swap);
 
3779}
3780EXPORT_SYMBOL_GPL(__folio_swap_cache_index);
3781
3782/*
3783 * add_swap_count_continuation - called when a swap count is duplicated
3784 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3785 * page of the original vmalloc'ed swap_map, to hold the continuation count
3786 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3787 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3788 *
3789 * These continuation pages are seldom referenced: the common paths all work
3790 * on the original swap_map, only referring to a continuation page when the
3791 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3792 *
3793 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3794 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3795 * can be called after dropping locks.
3796 */
3797int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3798{
3799	struct swap_info_struct *si;
3800	struct swap_cluster_info *ci;
3801	struct page *head;
3802	struct page *page;
3803	struct page *list_page;
3804	pgoff_t offset;
3805	unsigned char count;
3806	int ret = 0;
3807
3808	/*
3809	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3810	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3811	 */
3812	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3813
3814	si = get_swap_device(entry);
3815	if (!si) {
3816		/*
3817		 * An acceptable race has occurred since the failing
3818		 * __swap_duplicate(): the swap device may be swapoff
3819		 */
3820		goto outer;
3821	}
3822	spin_lock(&si->lock);
3823
3824	offset = swp_offset(entry);
3825
3826	ci = lock_cluster(si, offset);
3827
3828	count = swap_count(si->swap_map[offset]);
3829
3830	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3831		/*
3832		 * The higher the swap count, the more likely it is that tasks
3833		 * will race to add swap count continuation: we need to avoid
3834		 * over-provisioning.
3835		 */
3836		goto out;
3837	}
3838
3839	if (!page) {
3840		ret = -ENOMEM;
3841		goto out;
3842	}
3843
 
 
 
 
 
3844	head = vmalloc_to_page(si->swap_map + offset);
3845	offset &= ~PAGE_MASK;
3846
3847	spin_lock(&si->cont_lock);
3848	/*
3849	 * Page allocation does not initialize the page's lru field,
3850	 * but it does always reset its private field.
3851	 */
3852	if (!page_private(head)) {
3853		BUG_ON(count & COUNT_CONTINUED);
3854		INIT_LIST_HEAD(&head->lru);
3855		set_page_private(head, SWP_CONTINUED);
3856		si->flags |= SWP_CONTINUED;
3857	}
3858
3859	list_for_each_entry(list_page, &head->lru, lru) {
3860		unsigned char *map;
3861
3862		/*
3863		 * If the previous map said no continuation, but we've found
3864		 * a continuation page, free our allocation and use this one.
3865		 */
3866		if (!(count & COUNT_CONTINUED))
3867			goto out_unlock_cont;
3868
3869		map = kmap_local_page(list_page) + offset;
3870		count = *map;
3871		kunmap_local(map);
3872
3873		/*
3874		 * If this continuation count now has some space in it,
3875		 * free our allocation and use this one.
3876		 */
3877		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3878			goto out_unlock_cont;
3879	}
3880
3881	list_add_tail(&page->lru, &head->lru);
3882	page = NULL;			/* now it's attached, don't free it */
3883out_unlock_cont:
3884	spin_unlock(&si->cont_lock);
3885out:
3886	unlock_cluster(ci);
3887	spin_unlock(&si->lock);
3888	put_swap_device(si);
3889outer:
3890	if (page)
3891		__free_page(page);
3892	return ret;
3893}
3894
3895/*
3896 * swap_count_continued - when the original swap_map count is incremented
3897 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3898 * into, carry if so, or else fail until a new continuation page is allocated;
3899 * when the original swap_map count is decremented from 0 with continuation,
3900 * borrow from the continuation and report whether it still holds more.
3901 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3902 * lock.
3903 */
3904static bool swap_count_continued(struct swap_info_struct *si,
3905				 pgoff_t offset, unsigned char count)
3906{
3907	struct page *head;
3908	struct page *page;
3909	unsigned char *map;
3910	bool ret;
3911
3912	head = vmalloc_to_page(si->swap_map + offset);
3913	if (page_private(head) != SWP_CONTINUED) {
3914		BUG_ON(count & COUNT_CONTINUED);
3915		return false;		/* need to add count continuation */
3916	}
3917
3918	spin_lock(&si->cont_lock);
3919	offset &= ~PAGE_MASK;
3920	page = list_next_entry(head, lru);
3921	map = kmap_local_page(page) + offset;
3922
3923	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3924		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3925
3926	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3927		/*
3928		 * Think of how you add 1 to 999
3929		 */
3930		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3931			kunmap_local(map);
3932			page = list_next_entry(page, lru);
3933			BUG_ON(page == head);
3934			map = kmap_local_page(page) + offset;
3935		}
3936		if (*map == SWAP_CONT_MAX) {
3937			kunmap_local(map);
3938			page = list_next_entry(page, lru);
3939			if (page == head) {
3940				ret = false;	/* add count continuation */
3941				goto out;
3942			}
3943			map = kmap_local_page(page) + offset;
3944init_map:		*map = 0;		/* we didn't zero the page */
3945		}
3946		*map += 1;
3947		kunmap_local(map);
3948		while ((page = list_prev_entry(page, lru)) != head) {
3949			map = kmap_local_page(page) + offset;
 
3950			*map = COUNT_CONTINUED;
3951			kunmap_local(map);
 
3952		}
3953		ret = true;			/* incremented */
3954
3955	} else {				/* decrementing */
3956		/*
3957		 * Think of how you subtract 1 from 1000
3958		 */
3959		BUG_ON(count != COUNT_CONTINUED);
3960		while (*map == COUNT_CONTINUED) {
3961			kunmap_local(map);
3962			page = list_next_entry(page, lru);
3963			BUG_ON(page == head);
3964			map = kmap_local_page(page) + offset;
3965		}
3966		BUG_ON(*map == 0);
3967		*map -= 1;
3968		if (*map == 0)
3969			count = 0;
3970		kunmap_local(map);
3971		while ((page = list_prev_entry(page, lru)) != head) {
3972			map = kmap_local_page(page) + offset;
 
3973			*map = SWAP_CONT_MAX | count;
3974			count = COUNT_CONTINUED;
3975			kunmap_local(map);
 
3976		}
3977		ret = count == COUNT_CONTINUED;
3978	}
3979out:
3980	spin_unlock(&si->cont_lock);
3981	return ret;
3982}
3983
3984/*
3985 * free_swap_count_continuations - swapoff free all the continuation pages
3986 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3987 */
3988static void free_swap_count_continuations(struct swap_info_struct *si)
3989{
3990	pgoff_t offset;
3991
3992	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3993		struct page *head;
3994		head = vmalloc_to_page(si->swap_map + offset);
3995		if (page_private(head)) {
3996			struct page *page, *next;
3997
3998			list_for_each_entry_safe(page, next, &head->lru, lru) {
3999				list_del(&page->lru);
4000				__free_page(page);
4001			}
4002		}
4003	}
4004}
4005
4006#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
4007void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
 
4008{
4009	struct swap_info_struct *si, *next;
4010	int nid = folio_nid(folio);
4011
4012	if (!(gfp & __GFP_IO))
4013		return;
4014
4015	if (!__has_usable_swap())
4016		return;
4017
4018	if (!blk_cgroup_congested())
4019		return;
4020
4021	/*
4022	 * We've already scheduled a throttle, avoid taking the global swap
4023	 * lock.
4024	 */
4025	if (current->throttle_disk)
4026		return;
4027
4028	spin_lock(&swap_avail_lock);
4029	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
4030				  avail_lists[nid]) {
4031		if (si->bdev) {
4032			blkcg_schedule_throttle(si->bdev->bd_disk, true);
 
4033			break;
4034		}
4035	}
4036	spin_unlock(&swap_avail_lock);
4037}
4038#endif
4039
4040static int __init swapfile_init(void)
4041{
4042	int nid;
4043
4044	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
4045					 GFP_KERNEL);
4046	if (!swap_avail_heads) {
4047		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
4048		return -ENOMEM;
4049	}
4050
4051	for_each_node(nid)
4052		plist_head_init(&swap_avail_heads[nid]);
4053
4054	swapfile_maximum_size = arch_max_swapfile_size();
4055
4056#ifdef CONFIG_MIGRATION
4057	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
4058		swap_migration_ad_supported = true;
4059#endif	/* CONFIG_MIGRATION */
4060
4061	return 0;
4062}
4063subsys_initcall(swapfile_init);