Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#ifndef BTRFS_VOLUMES_H
7#define BTRFS_VOLUMES_H
8
9#include <linux/bio.h>
10#include <linux/sort.h>
11#include <linux/btrfs.h>
12#include "async-thread.h"
13
14#define BTRFS_MAX_DATA_CHUNK_SIZE (10ULL * SZ_1G)
15
16extern struct mutex uuid_mutex;
17
18#define BTRFS_STRIPE_LEN SZ_64K
19
20struct buffer_head;
21struct btrfs_pending_bios {
22 struct bio *head;
23 struct bio *tail;
24};
25
26struct btrfs_io_geometry {
27 /* remaining bytes before crossing a stripe */
28 u64 len;
29 /* offset of logical address in chunk */
30 u64 offset;
31 /* length of single IO stripe */
32 u64 stripe_len;
33 /* number of stripe where address falls */
34 u64 stripe_nr;
35 /* offset of address in stripe */
36 u64 stripe_offset;
37 /* offset of raid56 stripe into the chunk */
38 u64 raid56_stripe_offset;
39};
40
41/*
42 * Use sequence counter to get consistent device stat data on
43 * 32-bit processors.
44 */
45#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
46#include <linux/seqlock.h>
47#define __BTRFS_NEED_DEVICE_DATA_ORDERED
48#define btrfs_device_data_ordered_init(device) \
49 seqcount_init(&device->data_seqcount)
50#else
51#define btrfs_device_data_ordered_init(device) do { } while (0)
52#endif
53
54#define BTRFS_DEV_STATE_WRITEABLE (0)
55#define BTRFS_DEV_STATE_IN_FS_METADATA (1)
56#define BTRFS_DEV_STATE_MISSING (2)
57#define BTRFS_DEV_STATE_REPLACE_TGT (3)
58#define BTRFS_DEV_STATE_FLUSH_SENT (4)
59
60struct btrfs_device {
61 struct list_head dev_list; /* device_list_mutex */
62 struct list_head dev_alloc_list; /* chunk mutex */
63 struct list_head post_commit_list; /* chunk mutex */
64 struct btrfs_fs_devices *fs_devices;
65 struct btrfs_fs_info *fs_info;
66
67 struct rcu_string *name;
68
69 u64 generation;
70
71 spinlock_t io_lock ____cacheline_aligned;
72 int running_pending;
73 /* regular prio bios */
74 struct btrfs_pending_bios pending_bios;
75 /* sync bios */
76 struct btrfs_pending_bios pending_sync_bios;
77
78 struct block_device *bdev;
79
80 /* the mode sent to blkdev_get */
81 fmode_t mode;
82
83 unsigned long dev_state;
84 blk_status_t last_flush_error;
85
86#ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED
87 seqcount_t data_seqcount;
88#endif
89
90 /* the internal btrfs device id */
91 u64 devid;
92
93 /* size of the device in memory */
94 u64 total_bytes;
95
96 /* size of the device on disk */
97 u64 disk_total_bytes;
98
99 /* bytes used */
100 u64 bytes_used;
101
102 /* optimal io alignment for this device */
103 u32 io_align;
104
105 /* optimal io width for this device */
106 u32 io_width;
107 /* type and info about this device */
108 u64 type;
109
110 /* minimal io size for this device */
111 u32 sector_size;
112
113 /* physical drive uuid (or lvm uuid) */
114 u8 uuid[BTRFS_UUID_SIZE];
115
116 /*
117 * size of the device on the current transaction
118 *
119 * This variant is update when committing the transaction,
120 * and protected by chunk mutex
121 */
122 u64 commit_total_bytes;
123
124 /* bytes used on the current transaction */
125 u64 commit_bytes_used;
126
127 /* for sending down flush barriers */
128 struct bio *flush_bio;
129 struct completion flush_wait;
130
131 /* per-device scrub information */
132 struct scrub_ctx *scrub_ctx;
133
134 struct btrfs_work work;
135
136 /* readahead state */
137 atomic_t reada_in_flight;
138 u64 reada_next;
139 struct reada_zone *reada_curr_zone;
140 struct radix_tree_root reada_zones;
141 struct radix_tree_root reada_extents;
142
143 /* disk I/O failure stats. For detailed description refer to
144 * enum btrfs_dev_stat_values in ioctl.h */
145 int dev_stats_valid;
146
147 /* Counter to record the change of device stats */
148 atomic_t dev_stats_ccnt;
149 atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX];
150
151 struct extent_io_tree alloc_state;
152};
153
154/*
155 * If we read those variants at the context of their own lock, we needn't
156 * use the following helpers, reading them directly is safe.
157 */
158#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
159#define BTRFS_DEVICE_GETSET_FUNCS(name) \
160static inline u64 \
161btrfs_device_get_##name(const struct btrfs_device *dev) \
162{ \
163 u64 size; \
164 unsigned int seq; \
165 \
166 do { \
167 seq = read_seqcount_begin(&dev->data_seqcount); \
168 size = dev->name; \
169 } while (read_seqcount_retry(&dev->data_seqcount, seq)); \
170 return size; \
171} \
172 \
173static inline void \
174btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
175{ \
176 preempt_disable(); \
177 write_seqcount_begin(&dev->data_seqcount); \
178 dev->name = size; \
179 write_seqcount_end(&dev->data_seqcount); \
180 preempt_enable(); \
181}
182#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPT)
183#define BTRFS_DEVICE_GETSET_FUNCS(name) \
184static inline u64 \
185btrfs_device_get_##name(const struct btrfs_device *dev) \
186{ \
187 u64 size; \
188 \
189 preempt_disable(); \
190 size = dev->name; \
191 preempt_enable(); \
192 return size; \
193} \
194 \
195static inline void \
196btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
197{ \
198 preempt_disable(); \
199 dev->name = size; \
200 preempt_enable(); \
201}
202#else
203#define BTRFS_DEVICE_GETSET_FUNCS(name) \
204static inline u64 \
205btrfs_device_get_##name(const struct btrfs_device *dev) \
206{ \
207 return dev->name; \
208} \
209 \
210static inline void \
211btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
212{ \
213 dev->name = size; \
214}
215#endif
216
217BTRFS_DEVICE_GETSET_FUNCS(total_bytes);
218BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes);
219BTRFS_DEVICE_GETSET_FUNCS(bytes_used);
220
221struct btrfs_fs_devices {
222 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
223 u8 metadata_uuid[BTRFS_FSID_SIZE];
224 bool fsid_change;
225 struct list_head fs_list;
226
227 u64 num_devices;
228 u64 open_devices;
229 u64 rw_devices;
230 u64 missing_devices;
231 u64 total_rw_bytes;
232 u64 total_devices;
233
234 /* Highest generation number of seen devices */
235 u64 latest_generation;
236
237 struct block_device *latest_bdev;
238
239 /* all of the devices in the FS, protected by a mutex
240 * so we can safely walk it to write out the supers without
241 * worrying about add/remove by the multi-device code.
242 * Scrubbing super can kick off supers writing by holding
243 * this mutex lock.
244 */
245 struct mutex device_list_mutex;
246
247 /* List of all devices, protected by device_list_mutex */
248 struct list_head devices;
249
250 /*
251 * Devices which can satisfy space allocation. Protected by
252 * chunk_mutex
253 */
254 struct list_head alloc_list;
255
256 struct btrfs_fs_devices *seed;
257 int seeding;
258
259 int opened;
260
261 /* set when we find or add a device that doesn't have the
262 * nonrot flag set
263 */
264 int rotating;
265
266 struct btrfs_fs_info *fs_info;
267 /* sysfs kobjects */
268 struct kobject fsid_kobj;
269 struct kobject *device_dir_kobj;
270 struct completion kobj_unregister;
271};
272
273#define BTRFS_BIO_INLINE_CSUM_SIZE 64
274
275#define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \
276 - sizeof(struct btrfs_chunk)) \
277 / sizeof(struct btrfs_stripe) + 1)
278
279#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
280 - 2 * sizeof(struct btrfs_disk_key) \
281 - 2 * sizeof(struct btrfs_chunk)) \
282 / sizeof(struct btrfs_stripe) + 1)
283
284/*
285 * we need the mirror number and stripe index to be passed around
286 * the call chain while we are processing end_io (especially errors).
287 * Really, what we need is a btrfs_bio structure that has this info
288 * and is properly sized with its stripe array, but we're not there
289 * quite yet. We have our own btrfs bioset, and all of the bios
290 * we allocate are actually btrfs_io_bios. We'll cram as much of
291 * struct btrfs_bio as we can into this over time.
292 */
293struct btrfs_io_bio {
294 unsigned int mirror_num;
295 unsigned int stripe_index;
296 u64 logical;
297 u8 *csum;
298 u8 csum_inline[BTRFS_BIO_INLINE_CSUM_SIZE];
299 struct bvec_iter iter;
300 /*
301 * This member must come last, bio_alloc_bioset will allocate enough
302 * bytes for entire btrfs_io_bio but relies on bio being last.
303 */
304 struct bio bio;
305};
306
307static inline struct btrfs_io_bio *btrfs_io_bio(struct bio *bio)
308{
309 return container_of(bio, struct btrfs_io_bio, bio);
310}
311
312static inline void btrfs_io_bio_free_csum(struct btrfs_io_bio *io_bio)
313{
314 if (io_bio->csum != io_bio->csum_inline) {
315 kfree(io_bio->csum);
316 io_bio->csum = NULL;
317 }
318}
319
320struct btrfs_bio_stripe {
321 struct btrfs_device *dev;
322 u64 physical;
323 u64 length; /* only used for discard mappings */
324};
325
326struct btrfs_bio {
327 refcount_t refs;
328 atomic_t stripes_pending;
329 struct btrfs_fs_info *fs_info;
330 u64 map_type; /* get from map_lookup->type */
331 bio_end_io_t *end_io;
332 struct bio *orig_bio;
333 unsigned long flags;
334 void *private;
335 atomic_t error;
336 int max_errors;
337 int num_stripes;
338 int mirror_num;
339 int num_tgtdevs;
340 int *tgtdev_map;
341 /*
342 * logical block numbers for the start of each stripe
343 * The last one or two are p/q. These are sorted,
344 * so raid_map[0] is the start of our full stripe
345 */
346 u64 *raid_map;
347 struct btrfs_bio_stripe stripes[];
348};
349
350struct btrfs_device_info {
351 struct btrfs_device *dev;
352 u64 dev_offset;
353 u64 max_avail;
354 u64 total_avail;
355};
356
357struct btrfs_raid_attr {
358 u8 sub_stripes; /* sub_stripes info for map */
359 u8 dev_stripes; /* stripes per dev */
360 u8 devs_max; /* max devs to use */
361 u8 devs_min; /* min devs needed */
362 u8 tolerated_failures; /* max tolerated fail devs */
363 u8 devs_increment; /* ndevs has to be a multiple of this */
364 u8 ncopies; /* how many copies to data has */
365 u8 nparity; /* number of stripes worth of bytes to store
366 * parity information */
367 u8 mindev_error; /* error code if min devs requisite is unmet */
368 const char raid_name[8]; /* name of the raid */
369 u64 bg_flag; /* block group flag of the raid */
370};
371
372extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES];
373
374struct map_lookup {
375 u64 type;
376 int io_align;
377 int io_width;
378 u64 stripe_len;
379 int num_stripes;
380 int sub_stripes;
381 int verified_stripes; /* For mount time dev extent verification */
382 struct btrfs_bio_stripe stripes[];
383};
384
385#define map_lookup_size(n) (sizeof(struct map_lookup) + \
386 (sizeof(struct btrfs_bio_stripe) * (n)))
387
388struct btrfs_balance_args;
389struct btrfs_balance_progress;
390struct btrfs_balance_control {
391 struct btrfs_balance_args data;
392 struct btrfs_balance_args meta;
393 struct btrfs_balance_args sys;
394
395 u64 flags;
396
397 struct btrfs_balance_progress stat;
398};
399
400enum btrfs_map_op {
401 BTRFS_MAP_READ,
402 BTRFS_MAP_WRITE,
403 BTRFS_MAP_DISCARD,
404 BTRFS_MAP_GET_READ_MIRRORS,
405};
406
407static inline enum btrfs_map_op btrfs_op(struct bio *bio)
408{
409 switch (bio_op(bio)) {
410 case REQ_OP_DISCARD:
411 return BTRFS_MAP_DISCARD;
412 case REQ_OP_WRITE:
413 return BTRFS_MAP_WRITE;
414 default:
415 WARN_ON_ONCE(1);
416 /* fall through */
417 case REQ_OP_READ:
418 return BTRFS_MAP_READ;
419 }
420}
421
422void btrfs_get_bbio(struct btrfs_bio *bbio);
423void btrfs_put_bbio(struct btrfs_bio *bbio);
424int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
425 u64 logical, u64 *length,
426 struct btrfs_bio **bbio_ret, int mirror_num);
427int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
428 u64 logical, u64 *length,
429 struct btrfs_bio **bbio_ret);
430int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
431 u64 logical, u64 len, struct btrfs_io_geometry *io_geom);
432int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
433 u64 physical, u64 **logical, int *naddrs, int *stripe_len);
434int btrfs_read_sys_array(struct btrfs_fs_info *fs_info);
435int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info);
436int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type);
437void btrfs_mapping_tree_free(struct extent_map_tree *tree);
438blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
439 int mirror_num, int async_submit);
440int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
441 fmode_t flags, void *holder);
442struct btrfs_device *btrfs_scan_one_device(const char *path,
443 fmode_t flags, void *holder);
444int btrfs_forget_devices(const char *path);
445int btrfs_close_devices(struct btrfs_fs_devices *fs_devices);
446void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step);
447void btrfs_assign_next_active_device(struct btrfs_device *device,
448 struct btrfs_device *this_dev);
449struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info,
450 u64 devid,
451 const char *devpath);
452struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
453 const u64 *devid,
454 const u8 *uuid);
455void btrfs_free_device(struct btrfs_device *device);
456int btrfs_rm_device(struct btrfs_fs_info *fs_info,
457 const char *device_path, u64 devid);
458void __exit btrfs_cleanup_fs_uuids(void);
459int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len);
460int btrfs_grow_device(struct btrfs_trans_handle *trans,
461 struct btrfs_device *device, u64 new_size);
462struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
463 u64 devid, u8 *uuid, u8 *fsid, bool seed);
464int btrfs_shrink_device(struct btrfs_device *device, u64 new_size);
465int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path);
466int btrfs_balance(struct btrfs_fs_info *fs_info,
467 struct btrfs_balance_control *bctl,
468 struct btrfs_ioctl_balance_args *bargs);
469void btrfs_describe_block_groups(u64 flags, char *buf, u32 size_buf);
470int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info);
471int btrfs_recover_balance(struct btrfs_fs_info *fs_info);
472int btrfs_pause_balance(struct btrfs_fs_info *fs_info);
473int btrfs_cancel_balance(struct btrfs_fs_info *fs_info);
474int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info);
475int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info);
476int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset);
477int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
478 u64 *start, u64 *max_avail);
479void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index);
480int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
481 struct btrfs_ioctl_get_dev_stats *stats);
482void btrfs_init_devices_late(struct btrfs_fs_info *fs_info);
483int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info);
484int btrfs_run_dev_stats(struct btrfs_trans_handle *trans);
485void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev);
486void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev);
487void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev);
488void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path);
489int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
490 u64 logical, u64 len);
491unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
492 u64 logical);
493int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
494 u64 chunk_offset, u64 chunk_size);
495int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset);
496struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
497 u64 logical, u64 length);
498
499static inline void btrfs_dev_stat_inc(struct btrfs_device *dev,
500 int index)
501{
502 atomic_inc(dev->dev_stat_values + index);
503 /*
504 * This memory barrier orders stores updating statistics before stores
505 * updating dev_stats_ccnt.
506 *
507 * It pairs with smp_rmb() in btrfs_run_dev_stats().
508 */
509 smp_mb__before_atomic();
510 atomic_inc(&dev->dev_stats_ccnt);
511}
512
513static inline int btrfs_dev_stat_read(struct btrfs_device *dev,
514 int index)
515{
516 return atomic_read(dev->dev_stat_values + index);
517}
518
519static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev,
520 int index)
521{
522 int ret;
523
524 ret = atomic_xchg(dev->dev_stat_values + index, 0);
525 /*
526 * atomic_xchg implies a full memory barriers as per atomic_t.txt:
527 * - RMW operations that have a return value are fully ordered;
528 *
529 * This implicit memory barriers is paired with the smp_rmb in
530 * btrfs_run_dev_stats
531 */
532 atomic_inc(&dev->dev_stats_ccnt);
533 return ret;
534}
535
536static inline void btrfs_dev_stat_set(struct btrfs_device *dev,
537 int index, unsigned long val)
538{
539 atomic_set(dev->dev_stat_values + index, val);
540 /*
541 * This memory barrier orders stores updating statistics before stores
542 * updating dev_stats_ccnt.
543 *
544 * It pairs with smp_rmb() in btrfs_run_dev_stats().
545 */
546 smp_mb__before_atomic();
547 atomic_inc(&dev->dev_stats_ccnt);
548}
549
550/*
551 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
552 * can be used as index to access btrfs_raid_array[].
553 */
554static inline enum btrfs_raid_types btrfs_bg_flags_to_raid_index(u64 flags)
555{
556 if (flags & BTRFS_BLOCK_GROUP_RAID10)
557 return BTRFS_RAID_RAID10;
558 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
559 return BTRFS_RAID_RAID1;
560 else if (flags & BTRFS_BLOCK_GROUP_DUP)
561 return BTRFS_RAID_DUP;
562 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
563 return BTRFS_RAID_RAID0;
564 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
565 return BTRFS_RAID_RAID5;
566 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
567 return BTRFS_RAID_RAID6;
568
569 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
570}
571
572void btrfs_commit_device_sizes(struct btrfs_transaction *trans);
573
574struct list_head *btrfs_get_fs_uuids(void);
575void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info);
576void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info);
577bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
578 struct btrfs_device *failing_dev);
579
580int btrfs_bg_type_to_factor(u64 flags);
581const char *btrfs_bg_type_to_raid_name(u64 flags);
582int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info);
583
584#endif
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#ifndef BTRFS_VOLUMES_H
7#define BTRFS_VOLUMES_H
8
9#include <linux/sort.h>
10#include <linux/btrfs.h>
11#include "async-thread.h"
12#include "messages.h"
13#include "tree-checker.h"
14#include "rcu-string.h"
15
16#define BTRFS_MAX_DATA_CHUNK_SIZE (10ULL * SZ_1G)
17
18extern struct mutex uuid_mutex;
19
20#define BTRFS_STRIPE_LEN SZ_64K
21#define BTRFS_STRIPE_LEN_SHIFT (16)
22#define BTRFS_STRIPE_LEN_MASK (BTRFS_STRIPE_LEN - 1)
23
24static_assert(const_ilog2(BTRFS_STRIPE_LEN) == BTRFS_STRIPE_LEN_SHIFT);
25
26/* Used by sanity check for btrfs_raid_types. */
27#define const_ffs(n) (__builtin_ctzll(n) + 1)
28
29/*
30 * The conversion from BTRFS_BLOCK_GROUP_* bits to btrfs_raid_type requires
31 * RAID0 always to be the lowest profile bit.
32 * Although it's part of on-disk format and should never change, do extra
33 * compile-time sanity checks.
34 */
35static_assert(const_ffs(BTRFS_BLOCK_GROUP_RAID0) <
36 const_ffs(BTRFS_BLOCK_GROUP_PROFILE_MASK & ~BTRFS_BLOCK_GROUP_RAID0));
37static_assert(const_ilog2(BTRFS_BLOCK_GROUP_RAID0) >
38 ilog2(BTRFS_BLOCK_GROUP_TYPE_MASK));
39
40/* ilog2() can handle both constants and variables */
41#define BTRFS_BG_FLAG_TO_INDEX(profile) \
42 ilog2((profile) >> (ilog2(BTRFS_BLOCK_GROUP_RAID0) - 1))
43
44enum btrfs_raid_types {
45 /* SINGLE is the special one as it doesn't have on-disk bit. */
46 BTRFS_RAID_SINGLE = 0,
47
48 BTRFS_RAID_RAID0 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID0),
49 BTRFS_RAID_RAID1 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1),
50 BTRFS_RAID_DUP = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_DUP),
51 BTRFS_RAID_RAID10 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID10),
52 BTRFS_RAID_RAID5 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID5),
53 BTRFS_RAID_RAID6 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID6),
54 BTRFS_RAID_RAID1C3 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1C3),
55 BTRFS_RAID_RAID1C4 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1C4),
56
57 BTRFS_NR_RAID_TYPES
58};
59
60/*
61 * Use sequence counter to get consistent device stat data on
62 * 32-bit processors.
63 */
64#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
65#include <linux/seqlock.h>
66#define __BTRFS_NEED_DEVICE_DATA_ORDERED
67#define btrfs_device_data_ordered_init(device) \
68 seqcount_init(&device->data_seqcount)
69#else
70#define btrfs_device_data_ordered_init(device) do { } while (0)
71#endif
72
73#define BTRFS_DEV_STATE_WRITEABLE (0)
74#define BTRFS_DEV_STATE_IN_FS_METADATA (1)
75#define BTRFS_DEV_STATE_MISSING (2)
76#define BTRFS_DEV_STATE_REPLACE_TGT (3)
77#define BTRFS_DEV_STATE_FLUSH_SENT (4)
78#define BTRFS_DEV_STATE_NO_READA (5)
79
80struct btrfs_zoned_device_info;
81
82struct btrfs_device {
83 struct list_head dev_list; /* device_list_mutex */
84 struct list_head dev_alloc_list; /* chunk mutex */
85 struct list_head post_commit_list; /* chunk mutex */
86 struct btrfs_fs_devices *fs_devices;
87 struct btrfs_fs_info *fs_info;
88
89 struct rcu_string __rcu *name;
90
91 u64 generation;
92
93 struct bdev_handle *bdev_handle;
94 struct block_device *bdev;
95
96 struct btrfs_zoned_device_info *zone_info;
97
98 /*
99 * Device's major-minor number. Must be set even if the device is not
100 * opened (bdev == NULL), unless the device is missing.
101 */
102 dev_t devt;
103 unsigned long dev_state;
104 blk_status_t last_flush_error;
105
106#ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED
107 seqcount_t data_seqcount;
108#endif
109
110 /* the internal btrfs device id */
111 u64 devid;
112
113 /* size of the device in memory */
114 u64 total_bytes;
115
116 /* size of the device on disk */
117 u64 disk_total_bytes;
118
119 /* bytes used */
120 u64 bytes_used;
121
122 /* optimal io alignment for this device */
123 u32 io_align;
124
125 /* optimal io width for this device */
126 u32 io_width;
127 /* type and info about this device */
128 u64 type;
129
130 /* minimal io size for this device */
131 u32 sector_size;
132
133 /* physical drive uuid (or lvm uuid) */
134 u8 uuid[BTRFS_UUID_SIZE];
135
136 /*
137 * size of the device on the current transaction
138 *
139 * This variant is update when committing the transaction,
140 * and protected by chunk mutex
141 */
142 u64 commit_total_bytes;
143
144 /* bytes used on the current transaction */
145 u64 commit_bytes_used;
146
147 /* Bio used for flushing device barriers */
148 struct bio flush_bio;
149 struct completion flush_wait;
150
151 /* per-device scrub information */
152 struct scrub_ctx *scrub_ctx;
153
154 /* disk I/O failure stats. For detailed description refer to
155 * enum btrfs_dev_stat_values in ioctl.h */
156 int dev_stats_valid;
157
158 /* Counter to record the change of device stats */
159 atomic_t dev_stats_ccnt;
160 atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX];
161
162 struct extent_io_tree alloc_state;
163
164 struct completion kobj_unregister;
165 /* For sysfs/FSID/devinfo/devid/ */
166 struct kobject devid_kobj;
167
168 /* Bandwidth limit for scrub, in bytes */
169 u64 scrub_speed_max;
170};
171
172/*
173 * Block group or device which contains an active swapfile. Used for preventing
174 * unsafe operations while a swapfile is active.
175 *
176 * These are sorted on (ptr, inode) (note that a block group or device can
177 * contain more than one swapfile). We compare the pointer values because we
178 * don't actually care what the object is, we just need a quick check whether
179 * the object exists in the rbtree.
180 */
181struct btrfs_swapfile_pin {
182 struct rb_node node;
183 void *ptr;
184 struct inode *inode;
185 /*
186 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr
187 * points to a struct btrfs_device.
188 */
189 bool is_block_group;
190 /*
191 * Only used when 'is_block_group' is true and it is the number of
192 * extents used by a swapfile for this block group ('ptr' field).
193 */
194 int bg_extent_count;
195};
196
197/*
198 * If we read those variants at the context of their own lock, we needn't
199 * use the following helpers, reading them directly is safe.
200 */
201#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
202#define BTRFS_DEVICE_GETSET_FUNCS(name) \
203static inline u64 \
204btrfs_device_get_##name(const struct btrfs_device *dev) \
205{ \
206 u64 size; \
207 unsigned int seq; \
208 \
209 do { \
210 seq = read_seqcount_begin(&dev->data_seqcount); \
211 size = dev->name; \
212 } while (read_seqcount_retry(&dev->data_seqcount, seq)); \
213 return size; \
214} \
215 \
216static inline void \
217btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
218{ \
219 preempt_disable(); \
220 write_seqcount_begin(&dev->data_seqcount); \
221 dev->name = size; \
222 write_seqcount_end(&dev->data_seqcount); \
223 preempt_enable(); \
224}
225#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
226#define BTRFS_DEVICE_GETSET_FUNCS(name) \
227static inline u64 \
228btrfs_device_get_##name(const struct btrfs_device *dev) \
229{ \
230 u64 size; \
231 \
232 preempt_disable(); \
233 size = dev->name; \
234 preempt_enable(); \
235 return size; \
236} \
237 \
238static inline void \
239btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
240{ \
241 preempt_disable(); \
242 dev->name = size; \
243 preempt_enable(); \
244}
245#else
246#define BTRFS_DEVICE_GETSET_FUNCS(name) \
247static inline u64 \
248btrfs_device_get_##name(const struct btrfs_device *dev) \
249{ \
250 return dev->name; \
251} \
252 \
253static inline void \
254btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
255{ \
256 dev->name = size; \
257}
258#endif
259
260BTRFS_DEVICE_GETSET_FUNCS(total_bytes);
261BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes);
262BTRFS_DEVICE_GETSET_FUNCS(bytes_used);
263
264enum btrfs_chunk_allocation_policy {
265 BTRFS_CHUNK_ALLOC_REGULAR,
266 BTRFS_CHUNK_ALLOC_ZONED,
267};
268
269/*
270 * Read policies for mirrored block group profiles, read picks the stripe based
271 * on these policies.
272 */
273enum btrfs_read_policy {
274 /* Use process PID to choose the stripe */
275 BTRFS_READ_POLICY_PID,
276 BTRFS_NR_READ_POLICY,
277};
278
279struct btrfs_fs_devices {
280 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
281
282 /*
283 * UUID written into the btree blocks:
284 *
285 * - If metadata_uuid != fsid then super block must have
286 * BTRFS_FEATURE_INCOMPAT_METADATA_UUID flag set.
287 *
288 * - Following shall be true at all times:
289 * - metadata_uuid == btrfs_header::fsid
290 * - metadata_uuid == btrfs_dev_item::fsid
291 *
292 * - Relations between fsid and metadata_uuid in sb and fs_devices:
293 * - Normal:
294 * fs_devices->fsid == fs_devices->metadata_uuid == sb->fsid
295 * sb->metadata_uuid == 0
296 *
297 * - When the BTRFS_FEATURE_INCOMPAT_METADATA_UUID flag is set:
298 * fs_devices->fsid == sb->fsid
299 * fs_devices->metadata_uuid == sb->metadata_uuid
300 *
301 * - When in-memory fs_devices->temp_fsid is true
302 * fs_devices->fsid = random
303 * fs_devices->metadata_uuid == sb->fsid
304 */
305 u8 metadata_uuid[BTRFS_FSID_SIZE];
306
307 struct list_head fs_list;
308
309 /*
310 * Number of devices under this fsid including missing and
311 * replace-target device and excludes seed devices.
312 */
313 u64 num_devices;
314
315 /*
316 * The number of devices that successfully opened, including
317 * replace-target, excludes seed devices.
318 */
319 u64 open_devices;
320
321 /* The number of devices that are under the chunk allocation list. */
322 u64 rw_devices;
323
324 /* Count of missing devices under this fsid excluding seed device. */
325 u64 missing_devices;
326 u64 total_rw_bytes;
327
328 /*
329 * Count of devices from btrfs_super_block::num_devices for this fsid,
330 * which includes the seed device, excludes the transient replace-target
331 * device.
332 */
333 u64 total_devices;
334
335 /* Highest generation number of seen devices */
336 u64 latest_generation;
337
338 /*
339 * The mount device or a device with highest generation after removal
340 * or replace.
341 */
342 struct btrfs_device *latest_dev;
343
344 /*
345 * All of the devices in the filesystem, protected by a mutex so we can
346 * safely walk it to write out the super blocks without worrying about
347 * adding/removing by the multi-device code. Scrubbing super block can
348 * kick off supers writing by holding this mutex lock.
349 */
350 struct mutex device_list_mutex;
351
352 /* List of all devices, protected by device_list_mutex */
353 struct list_head devices;
354
355 /* Devices which can satisfy space allocation. Protected by * chunk_mutex. */
356 struct list_head alloc_list;
357
358 struct list_head seed_list;
359
360 /* Count fs-devices opened. */
361 int opened;
362
363 /* Set when we find or add a device that doesn't have the nonrot flag set. */
364 bool rotating;
365 /* Devices support TRIM/discard commands. */
366 bool discardable;
367 /* The filesystem is a seed filesystem. */
368 bool seeding;
369 /* The mount needs to use a randomly generated fsid. */
370 bool temp_fsid;
371
372 struct btrfs_fs_info *fs_info;
373 /* sysfs kobjects */
374 struct kobject fsid_kobj;
375 struct kobject *devices_kobj;
376 struct kobject *devinfo_kobj;
377 struct completion kobj_unregister;
378
379 enum btrfs_chunk_allocation_policy chunk_alloc_policy;
380
381 /* Policy used to read the mirrored stripes. */
382 enum btrfs_read_policy read_policy;
383};
384
385#define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \
386 - sizeof(struct btrfs_chunk)) \
387 / sizeof(struct btrfs_stripe) + 1)
388
389#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
390 - 2 * sizeof(struct btrfs_disk_key) \
391 - 2 * sizeof(struct btrfs_chunk)) \
392 / sizeof(struct btrfs_stripe) + 1)
393
394struct btrfs_io_stripe {
395 struct btrfs_device *dev;
396 /* Block mapping. */
397 u64 physical;
398 u64 length;
399 bool is_scrub;
400 /* For the endio handler. */
401 struct btrfs_io_context *bioc;
402};
403
404struct btrfs_discard_stripe {
405 struct btrfs_device *dev;
406 u64 physical;
407 u64 length;
408};
409
410/*
411 * Context for IO subsmission for device stripe.
412 *
413 * - Track the unfinished mirrors for mirror based profiles
414 * Mirror based profiles are SINGLE/DUP/RAID1/RAID10.
415 *
416 * - Contain the logical -> physical mapping info
417 * Used by submit_stripe_bio() for mapping logical bio
418 * into physical device address.
419 *
420 * - Contain device replace info
421 * Used by handle_ops_on_dev_replace() to copy logical bios
422 * into the new device.
423 *
424 * - Contain RAID56 full stripe logical bytenrs
425 */
426struct btrfs_io_context {
427 refcount_t refs;
428 struct btrfs_fs_info *fs_info;
429 /* Taken from struct btrfs_chunk_map::type. */
430 u64 map_type;
431 struct bio *orig_bio;
432 atomic_t error;
433 u16 max_errors;
434
435 u64 logical;
436 u64 size;
437 /* Raid stripe tree ordered entry. */
438 struct list_head rst_ordered_entry;
439
440 /*
441 * The total number of stripes, including the extra duplicated
442 * stripe for replace.
443 */
444 u16 num_stripes;
445
446 /*
447 * The mirror_num of this bioc.
448 *
449 * This is for reads which use 0 as mirror_num, thus we should return a
450 * valid mirror_num (>0) for the reader.
451 */
452 u16 mirror_num;
453
454 /*
455 * The following two members are for dev-replace case only.
456 *
457 * @replace_nr_stripes: Number of duplicated stripes which need to be
458 * written to replace target.
459 * Should be <= 2 (2 for DUP, otherwise <= 1).
460 * @replace_stripe_src: The array indicates where the duplicated stripes
461 * are from.
462 *
463 * The @replace_stripe_src[] array is mostly for RAID56 cases.
464 * As non-RAID56 stripes share the same contents of the mapped range,
465 * thus no need to bother where the duplicated ones are from.
466 *
467 * But for RAID56 case, all stripes contain different contents, thus
468 * we need a way to know the mapping.
469 *
470 * There is an example for the two members, using a RAID5 write:
471 *
472 * num_stripes: 4 (3 + 1 duplicated write)
473 * stripes[0]: dev = devid 1, physical = X
474 * stripes[1]: dev = devid 2, physical = Y
475 * stripes[2]: dev = devid 3, physical = Z
476 * stripes[3]: dev = devid 0, physical = Y
477 *
478 * replace_nr_stripes = 1
479 * replace_stripe_src = 1 <- Means stripes[1] is involved in replace.
480 * The duplicated stripe index would be
481 * (@num_stripes - 1).
482 *
483 * Note, that we can still have cases replace_nr_stripes = 2 for DUP.
484 * In that case, all stripes share the same content, thus we don't
485 * need to bother @replace_stripe_src value at all.
486 */
487 u16 replace_nr_stripes;
488 s16 replace_stripe_src;
489 /*
490 * Logical bytenr of the full stripe start, only for RAID56 cases.
491 *
492 * When this value is set to other than (u64)-1, the stripes[] should
493 * follow this pattern:
494 *
495 * (real_stripes = num_stripes - replace_nr_stripes)
496 * (data_stripes = (is_raid6) ? (real_stripes - 2) : (real_stripes - 1))
497 *
498 * stripes[0]: The first data stripe
499 * stripes[1]: The second data stripe
500 * ...
501 * stripes[data_stripes - 1]: The last data stripe
502 * stripes[data_stripes]: The P stripe
503 * stripes[data_stripes + 1]: The Q stripe (only for RAID6).
504 */
505 u64 full_stripe_logical;
506 struct btrfs_io_stripe stripes[];
507};
508
509struct btrfs_device_info {
510 struct btrfs_device *dev;
511 u64 dev_offset;
512 u64 max_avail;
513 u64 total_avail;
514};
515
516struct btrfs_raid_attr {
517 u8 sub_stripes; /* sub_stripes info for map */
518 u8 dev_stripes; /* stripes per dev */
519 u8 devs_max; /* max devs to use */
520 u8 devs_min; /* min devs needed */
521 u8 tolerated_failures; /* max tolerated fail devs */
522 u8 devs_increment; /* ndevs has to be a multiple of this */
523 u8 ncopies; /* how many copies to data has */
524 u8 nparity; /* number of stripes worth of bytes to store
525 * parity information */
526 u8 mindev_error; /* error code if min devs requisite is unmet */
527 const char raid_name[8]; /* name of the raid */
528 u64 bg_flag; /* block group flag of the raid */
529};
530
531extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES];
532
533struct btrfs_chunk_map {
534 struct rb_node rb_node;
535 /* For mount time dev extent verification. */
536 int verified_stripes;
537 refcount_t refs;
538 u64 start;
539 u64 chunk_len;
540 u64 stripe_size;
541 u64 type;
542 int io_align;
543 int io_width;
544 int num_stripes;
545 int sub_stripes;
546 struct btrfs_io_stripe stripes[];
547};
548
549#define btrfs_chunk_map_size(n) (sizeof(struct btrfs_chunk_map) + \
550 (sizeof(struct btrfs_io_stripe) * (n)))
551
552static inline void btrfs_free_chunk_map(struct btrfs_chunk_map *map)
553{
554 if (map && refcount_dec_and_test(&map->refs)) {
555 ASSERT(RB_EMPTY_NODE(&map->rb_node));
556 kfree(map);
557 }
558}
559
560struct btrfs_balance_args;
561struct btrfs_balance_progress;
562struct btrfs_balance_control {
563 struct btrfs_balance_args data;
564 struct btrfs_balance_args meta;
565 struct btrfs_balance_args sys;
566
567 u64 flags;
568
569 struct btrfs_balance_progress stat;
570};
571
572/*
573 * Search for a given device by the set parameters
574 */
575struct btrfs_dev_lookup_args {
576 u64 devid;
577 u8 *uuid;
578 u8 *fsid;
579 bool missing;
580};
581
582/* We have to initialize to -1 because BTRFS_DEV_REPLACE_DEVID is 0 */
583#define BTRFS_DEV_LOOKUP_ARGS_INIT { .devid = (u64)-1 }
584
585#define BTRFS_DEV_LOOKUP_ARGS(name) \
586 struct btrfs_dev_lookup_args name = BTRFS_DEV_LOOKUP_ARGS_INIT
587
588enum btrfs_map_op {
589 BTRFS_MAP_READ,
590 BTRFS_MAP_WRITE,
591 BTRFS_MAP_GET_READ_MIRRORS,
592};
593
594static inline enum btrfs_map_op btrfs_op(struct bio *bio)
595{
596 switch (bio_op(bio)) {
597 case REQ_OP_WRITE:
598 case REQ_OP_ZONE_APPEND:
599 return BTRFS_MAP_WRITE;
600 default:
601 WARN_ON_ONCE(1);
602 fallthrough;
603 case REQ_OP_READ:
604 return BTRFS_MAP_READ;
605 }
606}
607
608static inline unsigned long btrfs_chunk_item_size(int num_stripes)
609{
610 ASSERT(num_stripes);
611 return sizeof(struct btrfs_chunk) +
612 sizeof(struct btrfs_stripe) * (num_stripes - 1);
613}
614
615/*
616 * Do the type safe conversion from stripe_nr to offset inside the chunk.
617 *
618 * @stripe_nr is u32, with left shift it can overflow u32 for chunks larger
619 * than 4G. This does the proper type cast to avoid overflow.
620 */
621static inline u64 btrfs_stripe_nr_to_offset(u32 stripe_nr)
622{
623 return (u64)stripe_nr << BTRFS_STRIPE_LEN_SHIFT;
624}
625
626void btrfs_get_bioc(struct btrfs_io_context *bioc);
627void btrfs_put_bioc(struct btrfs_io_context *bioc);
628int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
629 u64 logical, u64 *length,
630 struct btrfs_io_context **bioc_ret,
631 struct btrfs_io_stripe *smap, int *mirror_num_ret);
632int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
633 struct btrfs_io_stripe *smap, u64 logical,
634 u32 length, int mirror_num);
635struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
636 u64 logical, u64 *length_ret,
637 u32 *num_stripes);
638int btrfs_read_sys_array(struct btrfs_fs_info *fs_info);
639int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info);
640struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
641 u64 type);
642void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info);
643int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
644 blk_mode_t flags, void *holder);
645struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
646 bool mount_arg_dev);
647int btrfs_forget_devices(dev_t devt);
648void btrfs_close_devices(struct btrfs_fs_devices *fs_devices);
649void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices);
650void btrfs_assign_next_active_device(struct btrfs_device *device,
651 struct btrfs_device *this_dev);
652struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info,
653 u64 devid,
654 const char *devpath);
655int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
656 struct btrfs_dev_lookup_args *args,
657 const char *path);
658struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
659 const u64 *devid, const u8 *uuid,
660 const char *path);
661void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args);
662int btrfs_rm_device(struct btrfs_fs_info *fs_info,
663 struct btrfs_dev_lookup_args *args,
664 struct bdev_handle **bdev_handle);
665void __exit btrfs_cleanup_fs_uuids(void);
666int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len);
667int btrfs_grow_device(struct btrfs_trans_handle *trans,
668 struct btrfs_device *device, u64 new_size);
669struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
670 const struct btrfs_dev_lookup_args *args);
671int btrfs_shrink_device(struct btrfs_device *device, u64 new_size);
672int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path);
673int btrfs_balance(struct btrfs_fs_info *fs_info,
674 struct btrfs_balance_control *bctl,
675 struct btrfs_ioctl_balance_args *bargs);
676void btrfs_describe_block_groups(u64 flags, char *buf, u32 size_buf);
677int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info);
678int btrfs_recover_balance(struct btrfs_fs_info *fs_info);
679int btrfs_pause_balance(struct btrfs_fs_info *fs_info);
680int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset);
681int btrfs_cancel_balance(struct btrfs_fs_info *fs_info);
682int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info);
683int btrfs_uuid_scan_kthread(void *data);
684bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset);
685void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index);
686int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
687 struct btrfs_ioctl_get_dev_stats *stats);
688int btrfs_init_devices_late(struct btrfs_fs_info *fs_info);
689int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info);
690int btrfs_run_dev_stats(struct btrfs_trans_handle *trans);
691void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev);
692void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev);
693void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev);
694int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
695 u64 logical, u64 len);
696unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
697 u64 logical);
698u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map);
699int btrfs_nr_parity_stripes(u64 type);
700int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
701 struct btrfs_block_group *bg);
702int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset);
703
704#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
705struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp);
706int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map);
707#endif
708
709struct btrfs_chunk_map *btrfs_clone_chunk_map(struct btrfs_chunk_map *map, gfp_t gfp);
710struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
711 u64 logical, u64 length);
712struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
713 u64 logical, u64 length);
714struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
715 u64 logical, u64 length);
716void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map);
717void btrfs_release_disk_super(struct btrfs_super_block *super);
718
719static inline void btrfs_dev_stat_inc(struct btrfs_device *dev,
720 int index)
721{
722 atomic_inc(dev->dev_stat_values + index);
723 /*
724 * This memory barrier orders stores updating statistics before stores
725 * updating dev_stats_ccnt.
726 *
727 * It pairs with smp_rmb() in btrfs_run_dev_stats().
728 */
729 smp_mb__before_atomic();
730 atomic_inc(&dev->dev_stats_ccnt);
731}
732
733static inline int btrfs_dev_stat_read(struct btrfs_device *dev,
734 int index)
735{
736 return atomic_read(dev->dev_stat_values + index);
737}
738
739static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev,
740 int index)
741{
742 int ret;
743
744 ret = atomic_xchg(dev->dev_stat_values + index, 0);
745 /*
746 * atomic_xchg implies a full memory barriers as per atomic_t.txt:
747 * - RMW operations that have a return value are fully ordered;
748 *
749 * This implicit memory barriers is paired with the smp_rmb in
750 * btrfs_run_dev_stats
751 */
752 atomic_inc(&dev->dev_stats_ccnt);
753 return ret;
754}
755
756static inline void btrfs_dev_stat_set(struct btrfs_device *dev,
757 int index, unsigned long val)
758{
759 atomic_set(dev->dev_stat_values + index, val);
760 /*
761 * This memory barrier orders stores updating statistics before stores
762 * updating dev_stats_ccnt.
763 *
764 * It pairs with smp_rmb() in btrfs_run_dev_stats().
765 */
766 smp_mb__before_atomic();
767 atomic_inc(&dev->dev_stats_ccnt);
768}
769
770static inline const char *btrfs_dev_name(const struct btrfs_device *device)
771{
772 if (!device || test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
773 return "<missing disk>";
774 else
775 return rcu_str_deref(device->name);
776}
777
778void btrfs_commit_device_sizes(struct btrfs_transaction *trans);
779
780struct list_head * __attribute_const__ btrfs_get_fs_uuids(void);
781bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
782 struct btrfs_device *failing_dev);
783void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
784 struct block_device *bdev,
785 const char *device_path);
786
787enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags);
788int btrfs_bg_type_to_factor(u64 flags);
789const char *btrfs_bg_type_to_raid_name(u64 flags);
790int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info);
791bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical);
792
793bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr);
794u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb);
795
796#endif