Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#ifndef BTRFS_VOLUMES_H
7#define BTRFS_VOLUMES_H
8
9#include <linux/bio.h>
10#include <linux/sort.h>
11#include <linux/btrfs.h>
12#include "async-thread.h"
13
14#define BTRFS_MAX_DATA_CHUNK_SIZE (10ULL * SZ_1G)
15
16extern struct mutex uuid_mutex;
17
18#define BTRFS_STRIPE_LEN SZ_64K
19
20struct buffer_head;
21struct btrfs_pending_bios {
22 struct bio *head;
23 struct bio *tail;
24};
25
26struct btrfs_io_geometry {
27 /* remaining bytes before crossing a stripe */
28 u64 len;
29 /* offset of logical address in chunk */
30 u64 offset;
31 /* length of single IO stripe */
32 u64 stripe_len;
33 /* number of stripe where address falls */
34 u64 stripe_nr;
35 /* offset of address in stripe */
36 u64 stripe_offset;
37 /* offset of raid56 stripe into the chunk */
38 u64 raid56_stripe_offset;
39};
40
41/*
42 * Use sequence counter to get consistent device stat data on
43 * 32-bit processors.
44 */
45#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
46#include <linux/seqlock.h>
47#define __BTRFS_NEED_DEVICE_DATA_ORDERED
48#define btrfs_device_data_ordered_init(device) \
49 seqcount_init(&device->data_seqcount)
50#else
51#define btrfs_device_data_ordered_init(device) do { } while (0)
52#endif
53
54#define BTRFS_DEV_STATE_WRITEABLE (0)
55#define BTRFS_DEV_STATE_IN_FS_METADATA (1)
56#define BTRFS_DEV_STATE_MISSING (2)
57#define BTRFS_DEV_STATE_REPLACE_TGT (3)
58#define BTRFS_DEV_STATE_FLUSH_SENT (4)
59
60struct btrfs_device {
61 struct list_head dev_list; /* device_list_mutex */
62 struct list_head dev_alloc_list; /* chunk mutex */
63 struct list_head post_commit_list; /* chunk mutex */
64 struct btrfs_fs_devices *fs_devices;
65 struct btrfs_fs_info *fs_info;
66
67 struct rcu_string *name;
68
69 u64 generation;
70
71 spinlock_t io_lock ____cacheline_aligned;
72 int running_pending;
73 /* regular prio bios */
74 struct btrfs_pending_bios pending_bios;
75 /* sync bios */
76 struct btrfs_pending_bios pending_sync_bios;
77
78 struct block_device *bdev;
79
80 /* the mode sent to blkdev_get */
81 fmode_t mode;
82
83 unsigned long dev_state;
84 blk_status_t last_flush_error;
85
86#ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED
87 seqcount_t data_seqcount;
88#endif
89
90 /* the internal btrfs device id */
91 u64 devid;
92
93 /* size of the device in memory */
94 u64 total_bytes;
95
96 /* size of the device on disk */
97 u64 disk_total_bytes;
98
99 /* bytes used */
100 u64 bytes_used;
101
102 /* optimal io alignment for this device */
103 u32 io_align;
104
105 /* optimal io width for this device */
106 u32 io_width;
107 /* type and info about this device */
108 u64 type;
109
110 /* minimal io size for this device */
111 u32 sector_size;
112
113 /* physical drive uuid (or lvm uuid) */
114 u8 uuid[BTRFS_UUID_SIZE];
115
116 /*
117 * size of the device on the current transaction
118 *
119 * This variant is update when committing the transaction,
120 * and protected by chunk mutex
121 */
122 u64 commit_total_bytes;
123
124 /* bytes used on the current transaction */
125 u64 commit_bytes_used;
126
127 /* for sending down flush barriers */
128 struct bio *flush_bio;
129 struct completion flush_wait;
130
131 /* per-device scrub information */
132 struct scrub_ctx *scrub_ctx;
133
134 struct btrfs_work work;
135
136 /* readahead state */
137 atomic_t reada_in_flight;
138 u64 reada_next;
139 struct reada_zone *reada_curr_zone;
140 struct radix_tree_root reada_zones;
141 struct radix_tree_root reada_extents;
142
143 /* disk I/O failure stats. For detailed description refer to
144 * enum btrfs_dev_stat_values in ioctl.h */
145 int dev_stats_valid;
146
147 /* Counter to record the change of device stats */
148 atomic_t dev_stats_ccnt;
149 atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX];
150
151 struct extent_io_tree alloc_state;
152};
153
154/*
155 * If we read those variants at the context of their own lock, we needn't
156 * use the following helpers, reading them directly is safe.
157 */
158#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
159#define BTRFS_DEVICE_GETSET_FUNCS(name) \
160static inline u64 \
161btrfs_device_get_##name(const struct btrfs_device *dev) \
162{ \
163 u64 size; \
164 unsigned int seq; \
165 \
166 do { \
167 seq = read_seqcount_begin(&dev->data_seqcount); \
168 size = dev->name; \
169 } while (read_seqcount_retry(&dev->data_seqcount, seq)); \
170 return size; \
171} \
172 \
173static inline void \
174btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
175{ \
176 preempt_disable(); \
177 write_seqcount_begin(&dev->data_seqcount); \
178 dev->name = size; \
179 write_seqcount_end(&dev->data_seqcount); \
180 preempt_enable(); \
181}
182#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPT)
183#define BTRFS_DEVICE_GETSET_FUNCS(name) \
184static inline u64 \
185btrfs_device_get_##name(const struct btrfs_device *dev) \
186{ \
187 u64 size; \
188 \
189 preempt_disable(); \
190 size = dev->name; \
191 preempt_enable(); \
192 return size; \
193} \
194 \
195static inline void \
196btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
197{ \
198 preempt_disable(); \
199 dev->name = size; \
200 preempt_enable(); \
201}
202#else
203#define BTRFS_DEVICE_GETSET_FUNCS(name) \
204static inline u64 \
205btrfs_device_get_##name(const struct btrfs_device *dev) \
206{ \
207 return dev->name; \
208} \
209 \
210static inline void \
211btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
212{ \
213 dev->name = size; \
214}
215#endif
216
217BTRFS_DEVICE_GETSET_FUNCS(total_bytes);
218BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes);
219BTRFS_DEVICE_GETSET_FUNCS(bytes_used);
220
221struct btrfs_fs_devices {
222 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
223 u8 metadata_uuid[BTRFS_FSID_SIZE];
224 bool fsid_change;
225 struct list_head fs_list;
226
227 u64 num_devices;
228 u64 open_devices;
229 u64 rw_devices;
230 u64 missing_devices;
231 u64 total_rw_bytes;
232 u64 total_devices;
233
234 /* Highest generation number of seen devices */
235 u64 latest_generation;
236
237 struct block_device *latest_bdev;
238
239 /* all of the devices in the FS, protected by a mutex
240 * so we can safely walk it to write out the supers without
241 * worrying about add/remove by the multi-device code.
242 * Scrubbing super can kick off supers writing by holding
243 * this mutex lock.
244 */
245 struct mutex device_list_mutex;
246
247 /* List of all devices, protected by device_list_mutex */
248 struct list_head devices;
249
250 /*
251 * Devices which can satisfy space allocation. Protected by
252 * chunk_mutex
253 */
254 struct list_head alloc_list;
255
256 struct btrfs_fs_devices *seed;
257 int seeding;
258
259 int opened;
260
261 /* set when we find or add a device that doesn't have the
262 * nonrot flag set
263 */
264 int rotating;
265
266 struct btrfs_fs_info *fs_info;
267 /* sysfs kobjects */
268 struct kobject fsid_kobj;
269 struct kobject *device_dir_kobj;
270 struct completion kobj_unregister;
271};
272
273#define BTRFS_BIO_INLINE_CSUM_SIZE 64
274
275#define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \
276 - sizeof(struct btrfs_chunk)) \
277 / sizeof(struct btrfs_stripe) + 1)
278
279#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
280 - 2 * sizeof(struct btrfs_disk_key) \
281 - 2 * sizeof(struct btrfs_chunk)) \
282 / sizeof(struct btrfs_stripe) + 1)
283
284/*
285 * we need the mirror number and stripe index to be passed around
286 * the call chain while we are processing end_io (especially errors).
287 * Really, what we need is a btrfs_bio structure that has this info
288 * and is properly sized with its stripe array, but we're not there
289 * quite yet. We have our own btrfs bioset, and all of the bios
290 * we allocate are actually btrfs_io_bios. We'll cram as much of
291 * struct btrfs_bio as we can into this over time.
292 */
293struct btrfs_io_bio {
294 unsigned int mirror_num;
295 unsigned int stripe_index;
296 u64 logical;
297 u8 *csum;
298 u8 csum_inline[BTRFS_BIO_INLINE_CSUM_SIZE];
299 struct bvec_iter iter;
300 /*
301 * This member must come last, bio_alloc_bioset will allocate enough
302 * bytes for entire btrfs_io_bio but relies on bio being last.
303 */
304 struct bio bio;
305};
306
307static inline struct btrfs_io_bio *btrfs_io_bio(struct bio *bio)
308{
309 return container_of(bio, struct btrfs_io_bio, bio);
310}
311
312static inline void btrfs_io_bio_free_csum(struct btrfs_io_bio *io_bio)
313{
314 if (io_bio->csum != io_bio->csum_inline) {
315 kfree(io_bio->csum);
316 io_bio->csum = NULL;
317 }
318}
319
320struct btrfs_bio_stripe {
321 struct btrfs_device *dev;
322 u64 physical;
323 u64 length; /* only used for discard mappings */
324};
325
326struct btrfs_bio {
327 refcount_t refs;
328 atomic_t stripes_pending;
329 struct btrfs_fs_info *fs_info;
330 u64 map_type; /* get from map_lookup->type */
331 bio_end_io_t *end_io;
332 struct bio *orig_bio;
333 unsigned long flags;
334 void *private;
335 atomic_t error;
336 int max_errors;
337 int num_stripes;
338 int mirror_num;
339 int num_tgtdevs;
340 int *tgtdev_map;
341 /*
342 * logical block numbers for the start of each stripe
343 * The last one or two are p/q. These are sorted,
344 * so raid_map[0] is the start of our full stripe
345 */
346 u64 *raid_map;
347 struct btrfs_bio_stripe stripes[];
348};
349
350struct btrfs_device_info {
351 struct btrfs_device *dev;
352 u64 dev_offset;
353 u64 max_avail;
354 u64 total_avail;
355};
356
357struct btrfs_raid_attr {
358 u8 sub_stripes; /* sub_stripes info for map */
359 u8 dev_stripes; /* stripes per dev */
360 u8 devs_max; /* max devs to use */
361 u8 devs_min; /* min devs needed */
362 u8 tolerated_failures; /* max tolerated fail devs */
363 u8 devs_increment; /* ndevs has to be a multiple of this */
364 u8 ncopies; /* how many copies to data has */
365 u8 nparity; /* number of stripes worth of bytes to store
366 * parity information */
367 u8 mindev_error; /* error code if min devs requisite is unmet */
368 const char raid_name[8]; /* name of the raid */
369 u64 bg_flag; /* block group flag of the raid */
370};
371
372extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES];
373
374struct map_lookup {
375 u64 type;
376 int io_align;
377 int io_width;
378 u64 stripe_len;
379 int num_stripes;
380 int sub_stripes;
381 int verified_stripes; /* For mount time dev extent verification */
382 struct btrfs_bio_stripe stripes[];
383};
384
385#define map_lookup_size(n) (sizeof(struct map_lookup) + \
386 (sizeof(struct btrfs_bio_stripe) * (n)))
387
388struct btrfs_balance_args;
389struct btrfs_balance_progress;
390struct btrfs_balance_control {
391 struct btrfs_balance_args data;
392 struct btrfs_balance_args meta;
393 struct btrfs_balance_args sys;
394
395 u64 flags;
396
397 struct btrfs_balance_progress stat;
398};
399
400enum btrfs_map_op {
401 BTRFS_MAP_READ,
402 BTRFS_MAP_WRITE,
403 BTRFS_MAP_DISCARD,
404 BTRFS_MAP_GET_READ_MIRRORS,
405};
406
407static inline enum btrfs_map_op btrfs_op(struct bio *bio)
408{
409 switch (bio_op(bio)) {
410 case REQ_OP_DISCARD:
411 return BTRFS_MAP_DISCARD;
412 case REQ_OP_WRITE:
413 return BTRFS_MAP_WRITE;
414 default:
415 WARN_ON_ONCE(1);
416 /* fall through */
417 case REQ_OP_READ:
418 return BTRFS_MAP_READ;
419 }
420}
421
422void btrfs_get_bbio(struct btrfs_bio *bbio);
423void btrfs_put_bbio(struct btrfs_bio *bbio);
424int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
425 u64 logical, u64 *length,
426 struct btrfs_bio **bbio_ret, int mirror_num);
427int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
428 u64 logical, u64 *length,
429 struct btrfs_bio **bbio_ret);
430int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
431 u64 logical, u64 len, struct btrfs_io_geometry *io_geom);
432int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
433 u64 physical, u64 **logical, int *naddrs, int *stripe_len);
434int btrfs_read_sys_array(struct btrfs_fs_info *fs_info);
435int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info);
436int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type);
437void btrfs_mapping_tree_free(struct extent_map_tree *tree);
438blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
439 int mirror_num, int async_submit);
440int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
441 fmode_t flags, void *holder);
442struct btrfs_device *btrfs_scan_one_device(const char *path,
443 fmode_t flags, void *holder);
444int btrfs_forget_devices(const char *path);
445int btrfs_close_devices(struct btrfs_fs_devices *fs_devices);
446void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step);
447void btrfs_assign_next_active_device(struct btrfs_device *device,
448 struct btrfs_device *this_dev);
449struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info,
450 u64 devid,
451 const char *devpath);
452struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
453 const u64 *devid,
454 const u8 *uuid);
455void btrfs_free_device(struct btrfs_device *device);
456int btrfs_rm_device(struct btrfs_fs_info *fs_info,
457 const char *device_path, u64 devid);
458void __exit btrfs_cleanup_fs_uuids(void);
459int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len);
460int btrfs_grow_device(struct btrfs_trans_handle *trans,
461 struct btrfs_device *device, u64 new_size);
462struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
463 u64 devid, u8 *uuid, u8 *fsid, bool seed);
464int btrfs_shrink_device(struct btrfs_device *device, u64 new_size);
465int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path);
466int btrfs_balance(struct btrfs_fs_info *fs_info,
467 struct btrfs_balance_control *bctl,
468 struct btrfs_ioctl_balance_args *bargs);
469void btrfs_describe_block_groups(u64 flags, char *buf, u32 size_buf);
470int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info);
471int btrfs_recover_balance(struct btrfs_fs_info *fs_info);
472int btrfs_pause_balance(struct btrfs_fs_info *fs_info);
473int btrfs_cancel_balance(struct btrfs_fs_info *fs_info);
474int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info);
475int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info);
476int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset);
477int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
478 u64 *start, u64 *max_avail);
479void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index);
480int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
481 struct btrfs_ioctl_get_dev_stats *stats);
482void btrfs_init_devices_late(struct btrfs_fs_info *fs_info);
483int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info);
484int btrfs_run_dev_stats(struct btrfs_trans_handle *trans);
485void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev);
486void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev);
487void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev);
488void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path);
489int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
490 u64 logical, u64 len);
491unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
492 u64 logical);
493int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
494 u64 chunk_offset, u64 chunk_size);
495int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset);
496struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
497 u64 logical, u64 length);
498
499static inline void btrfs_dev_stat_inc(struct btrfs_device *dev,
500 int index)
501{
502 atomic_inc(dev->dev_stat_values + index);
503 /*
504 * This memory barrier orders stores updating statistics before stores
505 * updating dev_stats_ccnt.
506 *
507 * It pairs with smp_rmb() in btrfs_run_dev_stats().
508 */
509 smp_mb__before_atomic();
510 atomic_inc(&dev->dev_stats_ccnt);
511}
512
513static inline int btrfs_dev_stat_read(struct btrfs_device *dev,
514 int index)
515{
516 return atomic_read(dev->dev_stat_values + index);
517}
518
519static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev,
520 int index)
521{
522 int ret;
523
524 ret = atomic_xchg(dev->dev_stat_values + index, 0);
525 /*
526 * atomic_xchg implies a full memory barriers as per atomic_t.txt:
527 * - RMW operations that have a return value are fully ordered;
528 *
529 * This implicit memory barriers is paired with the smp_rmb in
530 * btrfs_run_dev_stats
531 */
532 atomic_inc(&dev->dev_stats_ccnt);
533 return ret;
534}
535
536static inline void btrfs_dev_stat_set(struct btrfs_device *dev,
537 int index, unsigned long val)
538{
539 atomic_set(dev->dev_stat_values + index, val);
540 /*
541 * This memory barrier orders stores updating statistics before stores
542 * updating dev_stats_ccnt.
543 *
544 * It pairs with smp_rmb() in btrfs_run_dev_stats().
545 */
546 smp_mb__before_atomic();
547 atomic_inc(&dev->dev_stats_ccnt);
548}
549
550/*
551 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
552 * can be used as index to access btrfs_raid_array[].
553 */
554static inline enum btrfs_raid_types btrfs_bg_flags_to_raid_index(u64 flags)
555{
556 if (flags & BTRFS_BLOCK_GROUP_RAID10)
557 return BTRFS_RAID_RAID10;
558 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
559 return BTRFS_RAID_RAID1;
560 else if (flags & BTRFS_BLOCK_GROUP_DUP)
561 return BTRFS_RAID_DUP;
562 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
563 return BTRFS_RAID_RAID0;
564 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
565 return BTRFS_RAID_RAID5;
566 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
567 return BTRFS_RAID_RAID6;
568
569 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
570}
571
572void btrfs_commit_device_sizes(struct btrfs_transaction *trans);
573
574struct list_head *btrfs_get_fs_uuids(void);
575void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info);
576void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info);
577bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
578 struct btrfs_device *failing_dev);
579
580int btrfs_bg_type_to_factor(u64 flags);
581const char *btrfs_bg_type_to_raid_name(u64 flags);
582int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info);
583
584#endif
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#ifndef __BTRFS_VOLUMES_
20#define __BTRFS_VOLUMES_
21
22#include <linux/bio.h>
23#include <linux/sort.h>
24#include "async-thread.h"
25#include "ioctl.h"
26
27#define BTRFS_STRIPE_LEN (64 * 1024)
28
29struct buffer_head;
30struct btrfs_pending_bios {
31 struct bio *head;
32 struct bio *tail;
33};
34
35struct btrfs_device {
36 struct list_head dev_list;
37 struct list_head dev_alloc_list;
38 struct btrfs_fs_devices *fs_devices;
39 struct btrfs_root *dev_root;
40
41 /* regular prio bios */
42 struct btrfs_pending_bios pending_bios;
43 /* WRITE_SYNC bios */
44 struct btrfs_pending_bios pending_sync_bios;
45
46 int running_pending;
47 u64 generation;
48
49 int writeable;
50 int in_fs_metadata;
51 int missing;
52 int can_discard;
53
54 spinlock_t io_lock;
55
56 struct block_device *bdev;
57
58 /* the mode sent to blkdev_get */
59 fmode_t mode;
60
61 struct rcu_string *name;
62
63 /* the internal btrfs device id */
64 u64 devid;
65
66 /* size of the device */
67 u64 total_bytes;
68
69 /* size of the disk */
70 u64 disk_total_bytes;
71
72 /* bytes used */
73 u64 bytes_used;
74
75 /* optimal io alignment for this device */
76 u32 io_align;
77
78 /* optimal io width for this device */
79 u32 io_width;
80
81 /* minimal io size for this device */
82 u32 sector_size;
83
84 /* type and info about this device */
85 u64 type;
86
87 /* physical drive uuid (or lvm uuid) */
88 u8 uuid[BTRFS_UUID_SIZE];
89
90 /* per-device scrub information */
91 struct scrub_dev *scrub_device;
92
93 struct btrfs_work work;
94 struct rcu_head rcu;
95 struct work_struct rcu_work;
96
97 /* readahead state */
98 spinlock_t reada_lock;
99 atomic_t reada_in_flight;
100 u64 reada_next;
101 struct reada_zone *reada_curr_zone;
102 struct radix_tree_root reada_zones;
103 struct radix_tree_root reada_extents;
104
105 /* for sending down flush barriers */
106 struct bio *flush_bio;
107 struct completion flush_wait;
108 int nobarriers;
109
110 /* disk I/O failure stats. For detailed description refer to
111 * enum btrfs_dev_stat_values in ioctl.h */
112 int dev_stats_valid;
113 int dev_stats_dirty; /* counters need to be written to disk */
114 atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX];
115};
116
117struct btrfs_fs_devices {
118 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
119
120 /* the device with this id has the most recent copy of the super */
121 u64 latest_devid;
122 u64 latest_trans;
123 u64 num_devices;
124 u64 open_devices;
125 u64 rw_devices;
126 u64 missing_devices;
127 u64 total_rw_bytes;
128 u64 num_can_discard;
129 struct block_device *latest_bdev;
130
131 /* all of the devices in the FS, protected by a mutex
132 * so we can safely walk it to write out the supers without
133 * worrying about add/remove by the multi-device code
134 */
135 struct mutex device_list_mutex;
136 struct list_head devices;
137
138 /* devices not currently being allocated */
139 struct list_head alloc_list;
140 struct list_head list;
141
142 struct btrfs_fs_devices *seed;
143 int seeding;
144
145 int opened;
146
147 /* set when we find or add a device that doesn't have the
148 * nonrot flag set
149 */
150 int rotating;
151};
152
153struct btrfs_bio_stripe {
154 struct btrfs_device *dev;
155 u64 physical;
156 u64 length; /* only used for discard mappings */
157};
158
159struct btrfs_bio;
160typedef void (btrfs_bio_end_io_t) (struct btrfs_bio *bio, int err);
161
162struct btrfs_bio {
163 atomic_t stripes_pending;
164 bio_end_io_t *end_io;
165 struct bio *orig_bio;
166 void *private;
167 atomic_t error;
168 int max_errors;
169 int num_stripes;
170 int mirror_num;
171 struct btrfs_bio_stripe stripes[];
172};
173
174struct btrfs_device_info {
175 struct btrfs_device *dev;
176 u64 dev_offset;
177 u64 max_avail;
178 u64 total_avail;
179};
180
181struct map_lookup {
182 u64 type;
183 int io_align;
184 int io_width;
185 int stripe_len;
186 int sector_size;
187 int num_stripes;
188 int sub_stripes;
189 struct btrfs_bio_stripe stripes[];
190};
191
192#define map_lookup_size(n) (sizeof(struct map_lookup) + \
193 (sizeof(struct btrfs_bio_stripe) * (n)))
194
195/*
196 * Restriper's general type filter
197 */
198#define BTRFS_BALANCE_DATA (1ULL << 0)
199#define BTRFS_BALANCE_SYSTEM (1ULL << 1)
200#define BTRFS_BALANCE_METADATA (1ULL << 2)
201
202#define BTRFS_BALANCE_TYPE_MASK (BTRFS_BALANCE_DATA | \
203 BTRFS_BALANCE_SYSTEM | \
204 BTRFS_BALANCE_METADATA)
205
206#define BTRFS_BALANCE_FORCE (1ULL << 3)
207#define BTRFS_BALANCE_RESUME (1ULL << 4)
208
209/*
210 * Balance filters
211 */
212#define BTRFS_BALANCE_ARGS_PROFILES (1ULL << 0)
213#define BTRFS_BALANCE_ARGS_USAGE (1ULL << 1)
214#define BTRFS_BALANCE_ARGS_DEVID (1ULL << 2)
215#define BTRFS_BALANCE_ARGS_DRANGE (1ULL << 3)
216#define BTRFS_BALANCE_ARGS_VRANGE (1ULL << 4)
217
218/*
219 * Profile changing flags. When SOFT is set we won't relocate chunk if
220 * it already has the target profile (even though it may be
221 * half-filled).
222 */
223#define BTRFS_BALANCE_ARGS_CONVERT (1ULL << 8)
224#define BTRFS_BALANCE_ARGS_SOFT (1ULL << 9)
225
226struct btrfs_balance_args;
227struct btrfs_balance_progress;
228struct btrfs_balance_control {
229 struct btrfs_fs_info *fs_info;
230
231 struct btrfs_balance_args data;
232 struct btrfs_balance_args meta;
233 struct btrfs_balance_args sys;
234
235 u64 flags;
236
237 struct btrfs_balance_progress stat;
238};
239
240int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
241 u64 end, u64 *length);
242
243#define btrfs_bio_size(n) (sizeof(struct btrfs_bio) + \
244 (sizeof(struct btrfs_bio_stripe) * (n)))
245
246int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
247 struct btrfs_device *device,
248 u64 chunk_tree, u64 chunk_objectid,
249 u64 chunk_offset, u64 start, u64 num_bytes);
250int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
251 u64 logical, u64 *length,
252 struct btrfs_bio **bbio_ret, int mirror_num);
253int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
254 u64 chunk_start, u64 physical, u64 devid,
255 u64 **logical, int *naddrs, int *stripe_len);
256int btrfs_read_sys_array(struct btrfs_root *root);
257int btrfs_read_chunk_tree(struct btrfs_root *root);
258int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
259 struct btrfs_root *extent_root, u64 type);
260void btrfs_mapping_init(struct btrfs_mapping_tree *tree);
261void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree);
262int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
263 int mirror_num, int async_submit);
264int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
265 fmode_t flags, void *holder);
266int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
267 struct btrfs_fs_devices **fs_devices_ret);
268int btrfs_close_devices(struct btrfs_fs_devices *fs_devices);
269void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices);
270int btrfs_add_device(struct btrfs_trans_handle *trans,
271 struct btrfs_root *root,
272 struct btrfs_device *device);
273int btrfs_rm_device(struct btrfs_root *root, char *device_path);
274void btrfs_cleanup_fs_uuids(void);
275int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len);
276int btrfs_grow_device(struct btrfs_trans_handle *trans,
277 struct btrfs_device *device, u64 new_size);
278struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
279 u8 *uuid, u8 *fsid);
280int btrfs_shrink_device(struct btrfs_device *device, u64 new_size);
281int btrfs_init_new_device(struct btrfs_root *root, char *path);
282int btrfs_balance(struct btrfs_balance_control *bctl,
283 struct btrfs_ioctl_balance_args *bargs);
284int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info);
285int btrfs_recover_balance(struct btrfs_fs_info *fs_info);
286int btrfs_pause_balance(struct btrfs_fs_info *fs_info);
287int btrfs_cancel_balance(struct btrfs_fs_info *fs_info);
288int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset);
289int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
290 u64 *start, u64 *max_avail);
291void btrfs_dev_stat_print_on_error(struct btrfs_device *device);
292void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index);
293int btrfs_get_dev_stats(struct btrfs_root *root,
294 struct btrfs_ioctl_get_dev_stats *stats,
295 int reset_after_read);
296int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info);
297int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
298 struct btrfs_fs_info *fs_info);
299
300static inline void btrfs_dev_stat_inc(struct btrfs_device *dev,
301 int index)
302{
303 atomic_inc(dev->dev_stat_values + index);
304 dev->dev_stats_dirty = 1;
305}
306
307static inline int btrfs_dev_stat_read(struct btrfs_device *dev,
308 int index)
309{
310 return atomic_read(dev->dev_stat_values + index);
311}
312
313static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev,
314 int index)
315{
316 int ret;
317
318 ret = atomic_xchg(dev->dev_stat_values + index, 0);
319 dev->dev_stats_dirty = 1;
320 return ret;
321}
322
323static inline void btrfs_dev_stat_set(struct btrfs_device *dev,
324 int index, unsigned long val)
325{
326 atomic_set(dev->dev_stat_values + index, val);
327 dev->dev_stats_dirty = 1;
328}
329
330static inline void btrfs_dev_stat_reset(struct btrfs_device *dev,
331 int index)
332{
333 btrfs_dev_stat_set(dev, index, 0);
334}
335#endif