Linux Audio

Check our new training course

Loading...
v5.4
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 */
  5
  6#ifndef BTRFS_VOLUMES_H
  7#define BTRFS_VOLUMES_H
  8
  9#include <linux/bio.h>
 10#include <linux/sort.h>
 11#include <linux/btrfs.h>
 12#include "async-thread.h"
 13
 14#define BTRFS_MAX_DATA_CHUNK_SIZE	(10ULL * SZ_1G)
 15
 16extern struct mutex uuid_mutex;
 17
 18#define BTRFS_STRIPE_LEN	SZ_64K
 19
 20struct buffer_head;
 21struct btrfs_pending_bios {
 22	struct bio *head;
 23	struct bio *tail;
 24};
 25
 26struct btrfs_io_geometry {
 27	/* remaining bytes before crossing a stripe */
 28	u64 len;
 29	/* offset of logical address in chunk */
 30	u64 offset;
 31	/* length of single IO stripe */
 32	u64 stripe_len;
 33	/* number of stripe where address falls */
 34	u64 stripe_nr;
 35	/* offset of address in stripe */
 36	u64 stripe_offset;
 37	/* offset of raid56 stripe into the chunk */
 38	u64 raid56_stripe_offset;
 39};
 40
 41/*
 42 * Use sequence counter to get consistent device stat data on
 43 * 32-bit processors.
 44 */
 45#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
 46#include <linux/seqlock.h>
 47#define __BTRFS_NEED_DEVICE_DATA_ORDERED
 48#define btrfs_device_data_ordered_init(device)	\
 49	seqcount_init(&device->data_seqcount)
 50#else
 51#define btrfs_device_data_ordered_init(device) do { } while (0)
 52#endif
 53
 54#define BTRFS_DEV_STATE_WRITEABLE	(0)
 55#define BTRFS_DEV_STATE_IN_FS_METADATA	(1)
 56#define BTRFS_DEV_STATE_MISSING		(2)
 57#define BTRFS_DEV_STATE_REPLACE_TGT	(3)
 58#define BTRFS_DEV_STATE_FLUSH_SENT	(4)
 59
 60struct btrfs_device {
 61	struct list_head dev_list; /* device_list_mutex */
 62	struct list_head dev_alloc_list; /* chunk mutex */
 63	struct list_head post_commit_list; /* chunk mutex */
 64	struct btrfs_fs_devices *fs_devices;
 65	struct btrfs_fs_info *fs_info;
 66
 67	struct rcu_string *name;
 68
 69	u64 generation;
 70
 71	spinlock_t io_lock ____cacheline_aligned;
 72	int running_pending;
 73	/* regular prio bios */
 74	struct btrfs_pending_bios pending_bios;
 75	/* sync bios */
 76	struct btrfs_pending_bios pending_sync_bios;
 77
 78	struct block_device *bdev;
 79
 80	/* the mode sent to blkdev_get */
 81	fmode_t mode;
 82
 83	unsigned long dev_state;
 84	blk_status_t last_flush_error;
 85
 86#ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED
 87	seqcount_t data_seqcount;
 88#endif
 89
 90	/* the internal btrfs device id */
 91	u64 devid;
 92
 93	/* size of the device in memory */
 94	u64 total_bytes;
 95
 96	/* size of the device on disk */
 97	u64 disk_total_bytes;
 98
 99	/* bytes used */
100	u64 bytes_used;
101
102	/* optimal io alignment for this device */
103	u32 io_align;
104
105	/* optimal io width for this device */
106	u32 io_width;
107	/* type and info about this device */
108	u64 type;
109
110	/* minimal io size for this device */
111	u32 sector_size;
112
113	/* physical drive uuid (or lvm uuid) */
114	u8 uuid[BTRFS_UUID_SIZE];
115
116	/*
117	 * size of the device on the current transaction
118	 *
119	 * This variant is update when committing the transaction,
120	 * and protected by chunk mutex
121	 */
122	u64 commit_total_bytes;
123
124	/* bytes used on the current transaction */
125	u64 commit_bytes_used;
126
127	/* for sending down flush barriers */
128	struct bio *flush_bio;
129	struct completion flush_wait;
130
131	/* per-device scrub information */
132	struct scrub_ctx *scrub_ctx;
133
134	struct btrfs_work work;
135
136	/* readahead state */
137	atomic_t reada_in_flight;
138	u64 reada_next;
139	struct reada_zone *reada_curr_zone;
140	struct radix_tree_root reada_zones;
141	struct radix_tree_root reada_extents;
142
143	/* disk I/O failure stats. For detailed description refer to
144	 * enum btrfs_dev_stat_values in ioctl.h */
145	int dev_stats_valid;
146
147	/* Counter to record the change of device stats */
148	atomic_t dev_stats_ccnt;
149	atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX];
150
151	struct extent_io_tree alloc_state;
 
 
 
 
152};
153
154/*
155 * If we read those variants at the context of their own lock, we needn't
156 * use the following helpers, reading them directly is safe.
157 */
158#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
159#define BTRFS_DEVICE_GETSET_FUNCS(name)					\
160static inline u64							\
161btrfs_device_get_##name(const struct btrfs_device *dev)			\
162{									\
163	u64 size;							\
164	unsigned int seq;						\
165									\
166	do {								\
167		seq = read_seqcount_begin(&dev->data_seqcount);		\
168		size = dev->name;					\
169	} while (read_seqcount_retry(&dev->data_seqcount, seq));	\
170	return size;							\
171}									\
172									\
173static inline void							\
174btrfs_device_set_##name(struct btrfs_device *dev, u64 size)		\
175{									\
176	preempt_disable();						\
177	write_seqcount_begin(&dev->data_seqcount);			\
178	dev->name = size;						\
179	write_seqcount_end(&dev->data_seqcount);			\
180	preempt_enable();						\
181}
182#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPT)
183#define BTRFS_DEVICE_GETSET_FUNCS(name)					\
184static inline u64							\
185btrfs_device_get_##name(const struct btrfs_device *dev)			\
186{									\
187	u64 size;							\
188									\
189	preempt_disable();						\
190	size = dev->name;						\
191	preempt_enable();						\
192	return size;							\
193}									\
194									\
195static inline void							\
196btrfs_device_set_##name(struct btrfs_device *dev, u64 size)		\
197{									\
198	preempt_disable();						\
199	dev->name = size;						\
200	preempt_enable();						\
201}
202#else
203#define BTRFS_DEVICE_GETSET_FUNCS(name)					\
204static inline u64							\
205btrfs_device_get_##name(const struct btrfs_device *dev)			\
206{									\
207	return dev->name;						\
208}									\
209									\
210static inline void							\
211btrfs_device_set_##name(struct btrfs_device *dev, u64 size)		\
212{									\
213	dev->name = size;						\
214}
215#endif
216
217BTRFS_DEVICE_GETSET_FUNCS(total_bytes);
218BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes);
219BTRFS_DEVICE_GETSET_FUNCS(bytes_used);
220
 
 
 
 
221struct btrfs_fs_devices {
222	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
223	u8 metadata_uuid[BTRFS_FSID_SIZE];
224	bool fsid_change;
225	struct list_head fs_list;
226
227	u64 num_devices;
228	u64 open_devices;
229	u64 rw_devices;
230	u64 missing_devices;
231	u64 total_rw_bytes;
232	u64 total_devices;
233
234	/* Highest generation number of seen devices */
235	u64 latest_generation;
236
237	struct block_device *latest_bdev;
238
239	/* all of the devices in the FS, protected by a mutex
240	 * so we can safely walk it to write out the supers without
241	 * worrying about add/remove by the multi-device code.
242	 * Scrubbing super can kick off supers writing by holding
243	 * this mutex lock.
244	 */
245	struct mutex device_list_mutex;
246
247	/* List of all devices, protected by device_list_mutex */
248	struct list_head devices;
249
250	/*
251	 * Devices which can satisfy space allocation. Protected by
252	 * chunk_mutex
253	 */
254	struct list_head alloc_list;
255
256	struct btrfs_fs_devices *seed;
257	int seeding;
258
259	int opened;
260
261	/* set when we find or add a device that doesn't have the
262	 * nonrot flag set
263	 */
264	int rotating;
265
266	struct btrfs_fs_info *fs_info;
267	/* sysfs kobjects */
268	struct kobject fsid_kobj;
269	struct kobject *device_dir_kobj;
 
270	struct completion kobj_unregister;
 
 
271};
272
273#define BTRFS_BIO_INLINE_CSUM_SIZE	64
274
275#define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info)	\
276			- sizeof(struct btrfs_chunk))		\
277			/ sizeof(struct btrfs_stripe) + 1)
278
279#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
280				- 2 * sizeof(struct btrfs_disk_key)	\
281				- 2 * sizeof(struct btrfs_chunk))	\
282				/ sizeof(struct btrfs_stripe) + 1)
283
284/*
285 * we need the mirror number and stripe index to be passed around
286 * the call chain while we are processing end_io (especially errors).
287 * Really, what we need is a btrfs_bio structure that has this info
288 * and is properly sized with its stripe array, but we're not there
289 * quite yet.  We have our own btrfs bioset, and all of the bios
290 * we allocate are actually btrfs_io_bios.  We'll cram as much of
291 * struct btrfs_bio as we can into this over time.
292 */
293struct btrfs_io_bio {
294	unsigned int mirror_num;
295	unsigned int stripe_index;
296	u64 logical;
297	u8 *csum;
298	u8 csum_inline[BTRFS_BIO_INLINE_CSUM_SIZE];
299	struct bvec_iter iter;
300	/*
301	 * This member must come last, bio_alloc_bioset will allocate enough
302	 * bytes for entire btrfs_io_bio but relies on bio being last.
303	 */
304	struct bio bio;
305};
306
307static inline struct btrfs_io_bio *btrfs_io_bio(struct bio *bio)
308{
309	return container_of(bio, struct btrfs_io_bio, bio);
310}
311
312static inline void btrfs_io_bio_free_csum(struct btrfs_io_bio *io_bio)
313{
314	if (io_bio->csum != io_bio->csum_inline) {
315		kfree(io_bio->csum);
316		io_bio->csum = NULL;
317	}
318}
319
320struct btrfs_bio_stripe {
321	struct btrfs_device *dev;
322	u64 physical;
323	u64 length; /* only used for discard mappings */
324};
325
326struct btrfs_bio {
327	refcount_t refs;
328	atomic_t stripes_pending;
329	struct btrfs_fs_info *fs_info;
330	u64 map_type; /* get from map_lookup->type */
331	bio_end_io_t *end_io;
332	struct bio *orig_bio;
333	unsigned long flags;
334	void *private;
335	atomic_t error;
336	int max_errors;
337	int num_stripes;
338	int mirror_num;
339	int num_tgtdevs;
340	int *tgtdev_map;
341	/*
342	 * logical block numbers for the start of each stripe
343	 * The last one or two are p/q.  These are sorted,
344	 * so raid_map[0] is the start of our full stripe
345	 */
346	u64 *raid_map;
347	struct btrfs_bio_stripe stripes[];
348};
349
350struct btrfs_device_info {
351	struct btrfs_device *dev;
352	u64 dev_offset;
353	u64 max_avail;
354	u64 total_avail;
355};
356
357struct btrfs_raid_attr {
358	u8 sub_stripes;		/* sub_stripes info for map */
359	u8 dev_stripes;		/* stripes per dev */
360	u8 devs_max;		/* max devs to use */
361	u8 devs_min;		/* min devs needed */
362	u8 tolerated_failures;	/* max tolerated fail devs */
363	u8 devs_increment;	/* ndevs has to be a multiple of this */
364	u8 ncopies;		/* how many copies to data has */
365	u8 nparity;		/* number of stripes worth of bytes to store
366				 * parity information */
367	u8 mindev_error;	/* error code if min devs requisite is unmet */
368	const char raid_name[8]; /* name of the raid */
369	u64 bg_flag;		/* block group flag of the raid */
370};
371
372extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES];
373
374struct map_lookup {
375	u64 type;
376	int io_align;
377	int io_width;
378	u64 stripe_len;
379	int num_stripes;
380	int sub_stripes;
381	int verified_stripes; /* For mount time dev extent verification */
382	struct btrfs_bio_stripe stripes[];
383};
384
385#define map_lookup_size(n) (sizeof(struct map_lookup) + \
386			    (sizeof(struct btrfs_bio_stripe) * (n)))
387
388struct btrfs_balance_args;
389struct btrfs_balance_progress;
390struct btrfs_balance_control {
391	struct btrfs_balance_args data;
392	struct btrfs_balance_args meta;
393	struct btrfs_balance_args sys;
394
395	u64 flags;
396
397	struct btrfs_balance_progress stat;
398};
399
400enum btrfs_map_op {
401	BTRFS_MAP_READ,
402	BTRFS_MAP_WRITE,
403	BTRFS_MAP_DISCARD,
404	BTRFS_MAP_GET_READ_MIRRORS,
405};
406
407static inline enum btrfs_map_op btrfs_op(struct bio *bio)
408{
409	switch (bio_op(bio)) {
410	case REQ_OP_DISCARD:
411		return BTRFS_MAP_DISCARD;
412	case REQ_OP_WRITE:
413		return BTRFS_MAP_WRITE;
414	default:
415		WARN_ON_ONCE(1);
416		/* fall through */
417	case REQ_OP_READ:
418		return BTRFS_MAP_READ;
419	}
420}
421
422void btrfs_get_bbio(struct btrfs_bio *bbio);
423void btrfs_put_bbio(struct btrfs_bio *bbio);
424int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
425		    u64 logical, u64 *length,
426		    struct btrfs_bio **bbio_ret, int mirror_num);
427int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
428		     u64 logical, u64 *length,
429		     struct btrfs_bio **bbio_ret);
430int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
431		u64 logical, u64 len, struct btrfs_io_geometry *io_geom);
432int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
433		     u64 physical, u64 **logical, int *naddrs, int *stripe_len);
434int btrfs_read_sys_array(struct btrfs_fs_info *fs_info);
435int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info);
436int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type);
437void btrfs_mapping_tree_free(struct extent_map_tree *tree);
438blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
439			   int mirror_num, int async_submit);
440int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
441		       fmode_t flags, void *holder);
442struct btrfs_device *btrfs_scan_one_device(const char *path,
443					   fmode_t flags, void *holder);
444int btrfs_forget_devices(const char *path);
445int btrfs_close_devices(struct btrfs_fs_devices *fs_devices);
446void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step);
447void btrfs_assign_next_active_device(struct btrfs_device *device,
448				     struct btrfs_device *this_dev);
449struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info,
450						  u64 devid,
451						  const char *devpath);
452struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
453					const u64 *devid,
454					const u8 *uuid);
455void btrfs_free_device(struct btrfs_device *device);
456int btrfs_rm_device(struct btrfs_fs_info *fs_info,
457		    const char *device_path, u64 devid);
458void __exit btrfs_cleanup_fs_uuids(void);
459int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len);
460int btrfs_grow_device(struct btrfs_trans_handle *trans,
461		      struct btrfs_device *device, u64 new_size);
462struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
463				       u64 devid, u8 *uuid, u8 *fsid, bool seed);
464int btrfs_shrink_device(struct btrfs_device *device, u64 new_size);
465int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path);
466int btrfs_balance(struct btrfs_fs_info *fs_info,
467		  struct btrfs_balance_control *bctl,
468		  struct btrfs_ioctl_balance_args *bargs);
469void btrfs_describe_block_groups(u64 flags, char *buf, u32 size_buf);
470int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info);
471int btrfs_recover_balance(struct btrfs_fs_info *fs_info);
472int btrfs_pause_balance(struct btrfs_fs_info *fs_info);
473int btrfs_cancel_balance(struct btrfs_fs_info *fs_info);
474int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info);
475int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info);
476int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset);
477int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
478			 u64 *start, u64 *max_avail);
479void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index);
480int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
481			struct btrfs_ioctl_get_dev_stats *stats);
482void btrfs_init_devices_late(struct btrfs_fs_info *fs_info);
483int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info);
484int btrfs_run_dev_stats(struct btrfs_trans_handle *trans);
485void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev);
486void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev);
487void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev);
488void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path);
489int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
490			   u64 logical, u64 len);
491unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
492				    u64 logical);
493int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
494			     u64 chunk_offset, u64 chunk_size);
495int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset);
496struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
497				       u64 logical, u64 length);
 
498
499static inline void btrfs_dev_stat_inc(struct btrfs_device *dev,
500				      int index)
501{
502	atomic_inc(dev->dev_stat_values + index);
503	/*
504	 * This memory barrier orders stores updating statistics before stores
505	 * updating dev_stats_ccnt.
506	 *
507	 * It pairs with smp_rmb() in btrfs_run_dev_stats().
508	 */
509	smp_mb__before_atomic();
510	atomic_inc(&dev->dev_stats_ccnt);
511}
512
513static inline int btrfs_dev_stat_read(struct btrfs_device *dev,
514				      int index)
515{
516	return atomic_read(dev->dev_stat_values + index);
517}
518
519static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev,
520						int index)
521{
522	int ret;
523
524	ret = atomic_xchg(dev->dev_stat_values + index, 0);
525	/*
526	 * atomic_xchg implies a full memory barriers as per atomic_t.txt:
527	 * - RMW operations that have a return value are fully ordered;
528	 *
529	 * This implicit memory barriers is paired with the smp_rmb in
530	 * btrfs_run_dev_stats
531	 */
532	atomic_inc(&dev->dev_stats_ccnt);
533	return ret;
534}
535
536static inline void btrfs_dev_stat_set(struct btrfs_device *dev,
537				      int index, unsigned long val)
538{
539	atomic_set(dev->dev_stat_values + index, val);
540	/*
541	 * This memory barrier orders stores updating statistics before stores
542	 * updating dev_stats_ccnt.
543	 *
544	 * It pairs with smp_rmb() in btrfs_run_dev_stats().
545	 */
546	smp_mb__before_atomic();
547	atomic_inc(&dev->dev_stats_ccnt);
548}
549
550/*
551 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
552 * can be used as index to access btrfs_raid_array[].
553 */
554static inline enum btrfs_raid_types btrfs_bg_flags_to_raid_index(u64 flags)
555{
556	if (flags & BTRFS_BLOCK_GROUP_RAID10)
557		return BTRFS_RAID_RAID10;
558	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
559		return BTRFS_RAID_RAID1;
 
 
 
 
560	else if (flags & BTRFS_BLOCK_GROUP_DUP)
561		return BTRFS_RAID_DUP;
562	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
563		return BTRFS_RAID_RAID0;
564	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
565		return BTRFS_RAID_RAID5;
566	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
567		return BTRFS_RAID_RAID6;
568
569	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
570}
571
572void btrfs_commit_device_sizes(struct btrfs_transaction *trans);
573
574struct list_head *btrfs_get_fs_uuids(void);
575void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info);
576void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info);
577bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
578					struct btrfs_device *failing_dev);
 
 
 
579
580int btrfs_bg_type_to_factor(u64 flags);
581const char *btrfs_bg_type_to_raid_name(u64 flags);
582int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info);
583
584#endif
v5.9
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 */
  5
  6#ifndef BTRFS_VOLUMES_H
  7#define BTRFS_VOLUMES_H
  8
  9#include <linux/bio.h>
 10#include <linux/sort.h>
 11#include <linux/btrfs.h>
 12#include "async-thread.h"
 13
 14#define BTRFS_MAX_DATA_CHUNK_SIZE	(10ULL * SZ_1G)
 15
 16extern struct mutex uuid_mutex;
 17
 18#define BTRFS_STRIPE_LEN	SZ_64K
 19
 
 
 
 
 
 
 20struct btrfs_io_geometry {
 21	/* remaining bytes before crossing a stripe */
 22	u64 len;
 23	/* offset of logical address in chunk */
 24	u64 offset;
 25	/* length of single IO stripe */
 26	u64 stripe_len;
 27	/* number of stripe where address falls */
 28	u64 stripe_nr;
 29	/* offset of address in stripe */
 30	u64 stripe_offset;
 31	/* offset of raid56 stripe into the chunk */
 32	u64 raid56_stripe_offset;
 33};
 34
 35/*
 36 * Use sequence counter to get consistent device stat data on
 37 * 32-bit processors.
 38 */
 39#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
 40#include <linux/seqlock.h>
 41#define __BTRFS_NEED_DEVICE_DATA_ORDERED
 42#define btrfs_device_data_ordered_init(device)	\
 43	seqcount_init(&device->data_seqcount)
 44#else
 45#define btrfs_device_data_ordered_init(device) do { } while (0)
 46#endif
 47
 48#define BTRFS_DEV_STATE_WRITEABLE	(0)
 49#define BTRFS_DEV_STATE_IN_FS_METADATA	(1)
 50#define BTRFS_DEV_STATE_MISSING		(2)
 51#define BTRFS_DEV_STATE_REPLACE_TGT	(3)
 52#define BTRFS_DEV_STATE_FLUSH_SENT	(4)
 53
 54struct btrfs_device {
 55	struct list_head dev_list; /* device_list_mutex */
 56	struct list_head dev_alloc_list; /* chunk mutex */
 57	struct list_head post_commit_list; /* chunk mutex */
 58	struct btrfs_fs_devices *fs_devices;
 59	struct btrfs_fs_info *fs_info;
 60
 61	struct rcu_string *name;
 62
 63	u64 generation;
 64
 
 
 
 
 
 
 
 65	struct block_device *bdev;
 66
 67	/* the mode sent to blkdev_get */
 68	fmode_t mode;
 69
 70	unsigned long dev_state;
 71	blk_status_t last_flush_error;
 72
 73#ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED
 74	seqcount_t data_seqcount;
 75#endif
 76
 77	/* the internal btrfs device id */
 78	u64 devid;
 79
 80	/* size of the device in memory */
 81	u64 total_bytes;
 82
 83	/* size of the device on disk */
 84	u64 disk_total_bytes;
 85
 86	/* bytes used */
 87	u64 bytes_used;
 88
 89	/* optimal io alignment for this device */
 90	u32 io_align;
 91
 92	/* optimal io width for this device */
 93	u32 io_width;
 94	/* type and info about this device */
 95	u64 type;
 96
 97	/* minimal io size for this device */
 98	u32 sector_size;
 99
100	/* physical drive uuid (or lvm uuid) */
101	u8 uuid[BTRFS_UUID_SIZE];
102
103	/*
104	 * size of the device on the current transaction
105	 *
106	 * This variant is update when committing the transaction,
107	 * and protected by chunk mutex
108	 */
109	u64 commit_total_bytes;
110
111	/* bytes used on the current transaction */
112	u64 commit_bytes_used;
113
114	/* for sending down flush barriers */
115	struct bio *flush_bio;
116	struct completion flush_wait;
117
118	/* per-device scrub information */
119	struct scrub_ctx *scrub_ctx;
120
 
 
121	/* readahead state */
122	atomic_t reada_in_flight;
123	u64 reada_next;
124	struct reada_zone *reada_curr_zone;
125	struct radix_tree_root reada_zones;
126	struct radix_tree_root reada_extents;
127
128	/* disk I/O failure stats. For detailed description refer to
129	 * enum btrfs_dev_stat_values in ioctl.h */
130	int dev_stats_valid;
131
132	/* Counter to record the change of device stats */
133	atomic_t dev_stats_ccnt;
134	atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX];
135
136	struct extent_io_tree alloc_state;
137
138	struct completion kobj_unregister;
139	/* For sysfs/FSID/devinfo/devid/ */
140	struct kobject devid_kobj;
141};
142
143/*
144 * If we read those variants at the context of their own lock, we needn't
145 * use the following helpers, reading them directly is safe.
146 */
147#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
148#define BTRFS_DEVICE_GETSET_FUNCS(name)					\
149static inline u64							\
150btrfs_device_get_##name(const struct btrfs_device *dev)			\
151{									\
152	u64 size;							\
153	unsigned int seq;						\
154									\
155	do {								\
156		seq = read_seqcount_begin(&dev->data_seqcount);		\
157		size = dev->name;					\
158	} while (read_seqcount_retry(&dev->data_seqcount, seq));	\
159	return size;							\
160}									\
161									\
162static inline void							\
163btrfs_device_set_##name(struct btrfs_device *dev, u64 size)		\
164{									\
165	preempt_disable();						\
166	write_seqcount_begin(&dev->data_seqcount);			\
167	dev->name = size;						\
168	write_seqcount_end(&dev->data_seqcount);			\
169	preempt_enable();						\
170}
171#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
172#define BTRFS_DEVICE_GETSET_FUNCS(name)					\
173static inline u64							\
174btrfs_device_get_##name(const struct btrfs_device *dev)			\
175{									\
176	u64 size;							\
177									\
178	preempt_disable();						\
179	size = dev->name;						\
180	preempt_enable();						\
181	return size;							\
182}									\
183									\
184static inline void							\
185btrfs_device_set_##name(struct btrfs_device *dev, u64 size)		\
186{									\
187	preempt_disable();						\
188	dev->name = size;						\
189	preempt_enable();						\
190}
191#else
192#define BTRFS_DEVICE_GETSET_FUNCS(name)					\
193static inline u64							\
194btrfs_device_get_##name(const struct btrfs_device *dev)			\
195{									\
196	return dev->name;						\
197}									\
198									\
199static inline void							\
200btrfs_device_set_##name(struct btrfs_device *dev, u64 size)		\
201{									\
202	dev->name = size;						\
203}
204#endif
205
206BTRFS_DEVICE_GETSET_FUNCS(total_bytes);
207BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes);
208BTRFS_DEVICE_GETSET_FUNCS(bytes_used);
209
210enum btrfs_chunk_allocation_policy {
211	BTRFS_CHUNK_ALLOC_REGULAR,
212};
213
214struct btrfs_fs_devices {
215	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
216	u8 metadata_uuid[BTRFS_FSID_SIZE];
217	bool fsid_change;
218	struct list_head fs_list;
219
220	u64 num_devices;
221	u64 open_devices;
222	u64 rw_devices;
223	u64 missing_devices;
224	u64 total_rw_bytes;
225	u64 total_devices;
226
227	/* Highest generation number of seen devices */
228	u64 latest_generation;
229
230	struct block_device *latest_bdev;
231
232	/* all of the devices in the FS, protected by a mutex
233	 * so we can safely walk it to write out the supers without
234	 * worrying about add/remove by the multi-device code.
235	 * Scrubbing super can kick off supers writing by holding
236	 * this mutex lock.
237	 */
238	struct mutex device_list_mutex;
239
240	/* List of all devices, protected by device_list_mutex */
241	struct list_head devices;
242
243	/*
244	 * Devices which can satisfy space allocation. Protected by
245	 * chunk_mutex
246	 */
247	struct list_head alloc_list;
248
249	struct btrfs_fs_devices *seed;
250	bool seeding;
251
252	int opened;
253
254	/* set when we find or add a device that doesn't have the
255	 * nonrot flag set
256	 */
257	bool rotating;
258
259	struct btrfs_fs_info *fs_info;
260	/* sysfs kobjects */
261	struct kobject fsid_kobj;
262	struct kobject *devices_kobj;
263	struct kobject *devinfo_kobj;
264	struct completion kobj_unregister;
265
266	enum btrfs_chunk_allocation_policy chunk_alloc_policy;
267};
268
269#define BTRFS_BIO_INLINE_CSUM_SIZE	64
270
271#define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info)	\
272			- sizeof(struct btrfs_chunk))		\
273			/ sizeof(struct btrfs_stripe) + 1)
274
275#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
276				- 2 * sizeof(struct btrfs_disk_key)	\
277				- 2 * sizeof(struct btrfs_chunk))	\
278				/ sizeof(struct btrfs_stripe) + 1)
279
280/*
281 * we need the mirror number and stripe index to be passed around
282 * the call chain while we are processing end_io (especially errors).
283 * Really, what we need is a btrfs_bio structure that has this info
284 * and is properly sized with its stripe array, but we're not there
285 * quite yet.  We have our own btrfs bioset, and all of the bios
286 * we allocate are actually btrfs_io_bios.  We'll cram as much of
287 * struct btrfs_bio as we can into this over time.
288 */
289struct btrfs_io_bio {
290	unsigned int mirror_num;
291	struct btrfs_device *device;
292	u64 logical;
293	u8 *csum;
294	u8 csum_inline[BTRFS_BIO_INLINE_CSUM_SIZE];
295	struct bvec_iter iter;
296	/*
297	 * This member must come last, bio_alloc_bioset will allocate enough
298	 * bytes for entire btrfs_io_bio but relies on bio being last.
299	 */
300	struct bio bio;
301};
302
303static inline struct btrfs_io_bio *btrfs_io_bio(struct bio *bio)
304{
305	return container_of(bio, struct btrfs_io_bio, bio);
306}
307
308static inline void btrfs_io_bio_free_csum(struct btrfs_io_bio *io_bio)
309{
310	if (io_bio->csum != io_bio->csum_inline) {
311		kfree(io_bio->csum);
312		io_bio->csum = NULL;
313	}
314}
315
316struct btrfs_bio_stripe {
317	struct btrfs_device *dev;
318	u64 physical;
319	u64 length; /* only used for discard mappings */
320};
321
322struct btrfs_bio {
323	refcount_t refs;
324	atomic_t stripes_pending;
325	struct btrfs_fs_info *fs_info;
326	u64 map_type; /* get from map_lookup->type */
327	bio_end_io_t *end_io;
328	struct bio *orig_bio;
 
329	void *private;
330	atomic_t error;
331	int max_errors;
332	int num_stripes;
333	int mirror_num;
334	int num_tgtdevs;
335	int *tgtdev_map;
336	/*
337	 * logical block numbers for the start of each stripe
338	 * The last one or two are p/q.  These are sorted,
339	 * so raid_map[0] is the start of our full stripe
340	 */
341	u64 *raid_map;
342	struct btrfs_bio_stripe stripes[];
343};
344
345struct btrfs_device_info {
346	struct btrfs_device *dev;
347	u64 dev_offset;
348	u64 max_avail;
349	u64 total_avail;
350};
351
352struct btrfs_raid_attr {
353	u8 sub_stripes;		/* sub_stripes info for map */
354	u8 dev_stripes;		/* stripes per dev */
355	u8 devs_max;		/* max devs to use */
356	u8 devs_min;		/* min devs needed */
357	u8 tolerated_failures;	/* max tolerated fail devs */
358	u8 devs_increment;	/* ndevs has to be a multiple of this */
359	u8 ncopies;		/* how many copies to data has */
360	u8 nparity;		/* number of stripes worth of bytes to store
361				 * parity information */
362	u8 mindev_error;	/* error code if min devs requisite is unmet */
363	const char raid_name[8]; /* name of the raid */
364	u64 bg_flag;		/* block group flag of the raid */
365};
366
367extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES];
368
369struct map_lookup {
370	u64 type;
371	int io_align;
372	int io_width;
373	u64 stripe_len;
374	int num_stripes;
375	int sub_stripes;
376	int verified_stripes; /* For mount time dev extent verification */
377	struct btrfs_bio_stripe stripes[];
378};
379
380#define map_lookup_size(n) (sizeof(struct map_lookup) + \
381			    (sizeof(struct btrfs_bio_stripe) * (n)))
382
383struct btrfs_balance_args;
384struct btrfs_balance_progress;
385struct btrfs_balance_control {
386	struct btrfs_balance_args data;
387	struct btrfs_balance_args meta;
388	struct btrfs_balance_args sys;
389
390	u64 flags;
391
392	struct btrfs_balance_progress stat;
393};
394
395enum btrfs_map_op {
396	BTRFS_MAP_READ,
397	BTRFS_MAP_WRITE,
398	BTRFS_MAP_DISCARD,
399	BTRFS_MAP_GET_READ_MIRRORS,
400};
401
402static inline enum btrfs_map_op btrfs_op(struct bio *bio)
403{
404	switch (bio_op(bio)) {
405	case REQ_OP_DISCARD:
406		return BTRFS_MAP_DISCARD;
407	case REQ_OP_WRITE:
408		return BTRFS_MAP_WRITE;
409	default:
410		WARN_ON_ONCE(1);
411		fallthrough;
412	case REQ_OP_READ:
413		return BTRFS_MAP_READ;
414	}
415}
416
417void btrfs_get_bbio(struct btrfs_bio *bbio);
418void btrfs_put_bbio(struct btrfs_bio *bbio);
419int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
420		    u64 logical, u64 *length,
421		    struct btrfs_bio **bbio_ret, int mirror_num);
422int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
423		     u64 logical, u64 *length,
424		     struct btrfs_bio **bbio_ret);
425int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
426		u64 logical, u64 len, struct btrfs_io_geometry *io_geom);
 
 
427int btrfs_read_sys_array(struct btrfs_fs_info *fs_info);
428int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info);
429int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type);
430void btrfs_mapping_tree_free(struct extent_map_tree *tree);
431blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
432			   int mirror_num);
433int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
434		       fmode_t flags, void *holder);
435struct btrfs_device *btrfs_scan_one_device(const char *path,
436					   fmode_t flags, void *holder);
437int btrfs_forget_devices(const char *path);
438int btrfs_close_devices(struct btrfs_fs_devices *fs_devices);
439void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step);
440void btrfs_assign_next_active_device(struct btrfs_device *device,
441				     struct btrfs_device *this_dev);
442struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info,
443						  u64 devid,
444						  const char *devpath);
445struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
446					const u64 *devid,
447					const u8 *uuid);
448void btrfs_free_device(struct btrfs_device *device);
449int btrfs_rm_device(struct btrfs_fs_info *fs_info,
450		    const char *device_path, u64 devid);
451void __exit btrfs_cleanup_fs_uuids(void);
452int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len);
453int btrfs_grow_device(struct btrfs_trans_handle *trans,
454		      struct btrfs_device *device, u64 new_size);
455struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
456				       u64 devid, u8 *uuid, u8 *fsid, bool seed);
457int btrfs_shrink_device(struct btrfs_device *device, u64 new_size);
458int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path);
459int btrfs_balance(struct btrfs_fs_info *fs_info,
460		  struct btrfs_balance_control *bctl,
461		  struct btrfs_ioctl_balance_args *bargs);
462void btrfs_describe_block_groups(u64 flags, char *buf, u32 size_buf);
463int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info);
464int btrfs_recover_balance(struct btrfs_fs_info *fs_info);
465int btrfs_pause_balance(struct btrfs_fs_info *fs_info);
466int btrfs_cancel_balance(struct btrfs_fs_info *fs_info);
467int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info);
468int btrfs_uuid_scan_kthread(void *data);
469int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset);
470int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
471			 u64 *start, u64 *max_avail);
472void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index);
473int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
474			struct btrfs_ioctl_get_dev_stats *stats);
475void btrfs_init_devices_late(struct btrfs_fs_info *fs_info);
476int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info);
477int btrfs_run_dev_stats(struct btrfs_trans_handle *trans);
478void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev);
479void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev);
480void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev);
 
481int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
482			   u64 logical, u64 len);
483unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
484				    u64 logical);
485int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
486			     u64 chunk_offset, u64 chunk_size);
487int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset);
488struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
489				       u64 logical, u64 length);
490void btrfs_release_disk_super(struct btrfs_super_block *super);
491
492static inline void btrfs_dev_stat_inc(struct btrfs_device *dev,
493				      int index)
494{
495	atomic_inc(dev->dev_stat_values + index);
496	/*
497	 * This memory barrier orders stores updating statistics before stores
498	 * updating dev_stats_ccnt.
499	 *
500	 * It pairs with smp_rmb() in btrfs_run_dev_stats().
501	 */
502	smp_mb__before_atomic();
503	atomic_inc(&dev->dev_stats_ccnt);
504}
505
506static inline int btrfs_dev_stat_read(struct btrfs_device *dev,
507				      int index)
508{
509	return atomic_read(dev->dev_stat_values + index);
510}
511
512static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev,
513						int index)
514{
515	int ret;
516
517	ret = atomic_xchg(dev->dev_stat_values + index, 0);
518	/*
519	 * atomic_xchg implies a full memory barriers as per atomic_t.txt:
520	 * - RMW operations that have a return value are fully ordered;
521	 *
522	 * This implicit memory barriers is paired with the smp_rmb in
523	 * btrfs_run_dev_stats
524	 */
525	atomic_inc(&dev->dev_stats_ccnt);
526	return ret;
527}
528
529static inline void btrfs_dev_stat_set(struct btrfs_device *dev,
530				      int index, unsigned long val)
531{
532	atomic_set(dev->dev_stat_values + index, val);
533	/*
534	 * This memory barrier orders stores updating statistics before stores
535	 * updating dev_stats_ccnt.
536	 *
537	 * It pairs with smp_rmb() in btrfs_run_dev_stats().
538	 */
539	smp_mb__before_atomic();
540	atomic_inc(&dev->dev_stats_ccnt);
541}
542
543/*
544 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
545 * can be used as index to access btrfs_raid_array[].
546 */
547static inline enum btrfs_raid_types btrfs_bg_flags_to_raid_index(u64 flags)
548{
549	if (flags & BTRFS_BLOCK_GROUP_RAID10)
550		return BTRFS_RAID_RAID10;
551	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
552		return BTRFS_RAID_RAID1;
553	else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
554		return BTRFS_RAID_RAID1C3;
555	else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
556		return BTRFS_RAID_RAID1C4;
557	else if (flags & BTRFS_BLOCK_GROUP_DUP)
558		return BTRFS_RAID_DUP;
559	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
560		return BTRFS_RAID_RAID0;
561	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
562		return BTRFS_RAID_RAID5;
563	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
564		return BTRFS_RAID_RAID6;
565
566	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
567}
568
569void btrfs_commit_device_sizes(struct btrfs_transaction *trans);
570
571struct list_head * __attribute_const__ btrfs_get_fs_uuids(void);
572void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info);
573void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info);
574bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
575					struct btrfs_device *failing_dev);
576void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
577			       struct block_device *bdev,
578			       const char *device_path);
579
580int btrfs_bg_type_to_factor(u64 flags);
581const char *btrfs_bg_type_to_raid_name(u64 flags);
582int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info);
583
584#endif