Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#ifndef BTRFS_VOLUMES_H
7#define BTRFS_VOLUMES_H
8
9#include <linux/bio.h>
10#include <linux/sort.h>
11#include <linux/btrfs.h>
12#include "async-thread.h"
13
14#define BTRFS_MAX_DATA_CHUNK_SIZE (10ULL * SZ_1G)
15
16extern struct mutex uuid_mutex;
17
18#define BTRFS_STRIPE_LEN SZ_64K
19
20struct buffer_head;
21struct btrfs_pending_bios {
22 struct bio *head;
23 struct bio *tail;
24};
25
26struct btrfs_io_geometry {
27 /* remaining bytes before crossing a stripe */
28 u64 len;
29 /* offset of logical address in chunk */
30 u64 offset;
31 /* length of single IO stripe */
32 u64 stripe_len;
33 /* number of stripe where address falls */
34 u64 stripe_nr;
35 /* offset of address in stripe */
36 u64 stripe_offset;
37 /* offset of raid56 stripe into the chunk */
38 u64 raid56_stripe_offset;
39};
40
41/*
42 * Use sequence counter to get consistent device stat data on
43 * 32-bit processors.
44 */
45#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
46#include <linux/seqlock.h>
47#define __BTRFS_NEED_DEVICE_DATA_ORDERED
48#define btrfs_device_data_ordered_init(device) \
49 seqcount_init(&device->data_seqcount)
50#else
51#define btrfs_device_data_ordered_init(device) do { } while (0)
52#endif
53
54#define BTRFS_DEV_STATE_WRITEABLE (0)
55#define BTRFS_DEV_STATE_IN_FS_METADATA (1)
56#define BTRFS_DEV_STATE_MISSING (2)
57#define BTRFS_DEV_STATE_REPLACE_TGT (3)
58#define BTRFS_DEV_STATE_FLUSH_SENT (4)
59
60struct btrfs_device {
61 struct list_head dev_list; /* device_list_mutex */
62 struct list_head dev_alloc_list; /* chunk mutex */
63 struct list_head post_commit_list; /* chunk mutex */
64 struct btrfs_fs_devices *fs_devices;
65 struct btrfs_fs_info *fs_info;
66
67 struct rcu_string *name;
68
69 u64 generation;
70
71 spinlock_t io_lock ____cacheline_aligned;
72 int running_pending;
73 /* regular prio bios */
74 struct btrfs_pending_bios pending_bios;
75 /* sync bios */
76 struct btrfs_pending_bios pending_sync_bios;
77
78 struct block_device *bdev;
79
80 /* the mode sent to blkdev_get */
81 fmode_t mode;
82
83 unsigned long dev_state;
84 blk_status_t last_flush_error;
85
86#ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED
87 seqcount_t data_seqcount;
88#endif
89
90 /* the internal btrfs device id */
91 u64 devid;
92
93 /* size of the device in memory */
94 u64 total_bytes;
95
96 /* size of the device on disk */
97 u64 disk_total_bytes;
98
99 /* bytes used */
100 u64 bytes_used;
101
102 /* optimal io alignment for this device */
103 u32 io_align;
104
105 /* optimal io width for this device */
106 u32 io_width;
107 /* type and info about this device */
108 u64 type;
109
110 /* minimal io size for this device */
111 u32 sector_size;
112
113 /* physical drive uuid (or lvm uuid) */
114 u8 uuid[BTRFS_UUID_SIZE];
115
116 /*
117 * size of the device on the current transaction
118 *
119 * This variant is update when committing the transaction,
120 * and protected by chunk mutex
121 */
122 u64 commit_total_bytes;
123
124 /* bytes used on the current transaction */
125 u64 commit_bytes_used;
126
127 /* for sending down flush barriers */
128 struct bio *flush_bio;
129 struct completion flush_wait;
130
131 /* per-device scrub information */
132 struct scrub_ctx *scrub_ctx;
133
134 struct btrfs_work work;
135
136 /* readahead state */
137 atomic_t reada_in_flight;
138 u64 reada_next;
139 struct reada_zone *reada_curr_zone;
140 struct radix_tree_root reada_zones;
141 struct radix_tree_root reada_extents;
142
143 /* disk I/O failure stats. For detailed description refer to
144 * enum btrfs_dev_stat_values in ioctl.h */
145 int dev_stats_valid;
146
147 /* Counter to record the change of device stats */
148 atomic_t dev_stats_ccnt;
149 atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX];
150
151 struct extent_io_tree alloc_state;
152};
153
154/*
155 * If we read those variants at the context of their own lock, we needn't
156 * use the following helpers, reading them directly is safe.
157 */
158#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
159#define BTRFS_DEVICE_GETSET_FUNCS(name) \
160static inline u64 \
161btrfs_device_get_##name(const struct btrfs_device *dev) \
162{ \
163 u64 size; \
164 unsigned int seq; \
165 \
166 do { \
167 seq = read_seqcount_begin(&dev->data_seqcount); \
168 size = dev->name; \
169 } while (read_seqcount_retry(&dev->data_seqcount, seq)); \
170 return size; \
171} \
172 \
173static inline void \
174btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
175{ \
176 preempt_disable(); \
177 write_seqcount_begin(&dev->data_seqcount); \
178 dev->name = size; \
179 write_seqcount_end(&dev->data_seqcount); \
180 preempt_enable(); \
181}
182#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPT)
183#define BTRFS_DEVICE_GETSET_FUNCS(name) \
184static inline u64 \
185btrfs_device_get_##name(const struct btrfs_device *dev) \
186{ \
187 u64 size; \
188 \
189 preempt_disable(); \
190 size = dev->name; \
191 preempt_enable(); \
192 return size; \
193} \
194 \
195static inline void \
196btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
197{ \
198 preempt_disable(); \
199 dev->name = size; \
200 preempt_enable(); \
201}
202#else
203#define BTRFS_DEVICE_GETSET_FUNCS(name) \
204static inline u64 \
205btrfs_device_get_##name(const struct btrfs_device *dev) \
206{ \
207 return dev->name; \
208} \
209 \
210static inline void \
211btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
212{ \
213 dev->name = size; \
214}
215#endif
216
217BTRFS_DEVICE_GETSET_FUNCS(total_bytes);
218BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes);
219BTRFS_DEVICE_GETSET_FUNCS(bytes_used);
220
221struct btrfs_fs_devices {
222 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
223 u8 metadata_uuid[BTRFS_FSID_SIZE];
224 bool fsid_change;
225 struct list_head fs_list;
226
227 u64 num_devices;
228 u64 open_devices;
229 u64 rw_devices;
230 u64 missing_devices;
231 u64 total_rw_bytes;
232 u64 total_devices;
233
234 /* Highest generation number of seen devices */
235 u64 latest_generation;
236
237 struct block_device *latest_bdev;
238
239 /* all of the devices in the FS, protected by a mutex
240 * so we can safely walk it to write out the supers without
241 * worrying about add/remove by the multi-device code.
242 * Scrubbing super can kick off supers writing by holding
243 * this mutex lock.
244 */
245 struct mutex device_list_mutex;
246
247 /* List of all devices, protected by device_list_mutex */
248 struct list_head devices;
249
250 /*
251 * Devices which can satisfy space allocation. Protected by
252 * chunk_mutex
253 */
254 struct list_head alloc_list;
255
256 struct btrfs_fs_devices *seed;
257 int seeding;
258
259 int opened;
260
261 /* set when we find or add a device that doesn't have the
262 * nonrot flag set
263 */
264 int rotating;
265
266 struct btrfs_fs_info *fs_info;
267 /* sysfs kobjects */
268 struct kobject fsid_kobj;
269 struct kobject *device_dir_kobj;
270 struct completion kobj_unregister;
271};
272
273#define BTRFS_BIO_INLINE_CSUM_SIZE 64
274
275#define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \
276 - sizeof(struct btrfs_chunk)) \
277 / sizeof(struct btrfs_stripe) + 1)
278
279#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
280 - 2 * sizeof(struct btrfs_disk_key) \
281 - 2 * sizeof(struct btrfs_chunk)) \
282 / sizeof(struct btrfs_stripe) + 1)
283
284/*
285 * we need the mirror number and stripe index to be passed around
286 * the call chain while we are processing end_io (especially errors).
287 * Really, what we need is a btrfs_bio structure that has this info
288 * and is properly sized with its stripe array, but we're not there
289 * quite yet. We have our own btrfs bioset, and all of the bios
290 * we allocate are actually btrfs_io_bios. We'll cram as much of
291 * struct btrfs_bio as we can into this over time.
292 */
293struct btrfs_io_bio {
294 unsigned int mirror_num;
295 unsigned int stripe_index;
296 u64 logical;
297 u8 *csum;
298 u8 csum_inline[BTRFS_BIO_INLINE_CSUM_SIZE];
299 struct bvec_iter iter;
300 /*
301 * This member must come last, bio_alloc_bioset will allocate enough
302 * bytes for entire btrfs_io_bio but relies on bio being last.
303 */
304 struct bio bio;
305};
306
307static inline struct btrfs_io_bio *btrfs_io_bio(struct bio *bio)
308{
309 return container_of(bio, struct btrfs_io_bio, bio);
310}
311
312static inline void btrfs_io_bio_free_csum(struct btrfs_io_bio *io_bio)
313{
314 if (io_bio->csum != io_bio->csum_inline) {
315 kfree(io_bio->csum);
316 io_bio->csum = NULL;
317 }
318}
319
320struct btrfs_bio_stripe {
321 struct btrfs_device *dev;
322 u64 physical;
323 u64 length; /* only used for discard mappings */
324};
325
326struct btrfs_bio {
327 refcount_t refs;
328 atomic_t stripes_pending;
329 struct btrfs_fs_info *fs_info;
330 u64 map_type; /* get from map_lookup->type */
331 bio_end_io_t *end_io;
332 struct bio *orig_bio;
333 unsigned long flags;
334 void *private;
335 atomic_t error;
336 int max_errors;
337 int num_stripes;
338 int mirror_num;
339 int num_tgtdevs;
340 int *tgtdev_map;
341 /*
342 * logical block numbers for the start of each stripe
343 * The last one or two are p/q. These are sorted,
344 * so raid_map[0] is the start of our full stripe
345 */
346 u64 *raid_map;
347 struct btrfs_bio_stripe stripes[];
348};
349
350struct btrfs_device_info {
351 struct btrfs_device *dev;
352 u64 dev_offset;
353 u64 max_avail;
354 u64 total_avail;
355};
356
357struct btrfs_raid_attr {
358 u8 sub_stripes; /* sub_stripes info for map */
359 u8 dev_stripes; /* stripes per dev */
360 u8 devs_max; /* max devs to use */
361 u8 devs_min; /* min devs needed */
362 u8 tolerated_failures; /* max tolerated fail devs */
363 u8 devs_increment; /* ndevs has to be a multiple of this */
364 u8 ncopies; /* how many copies to data has */
365 u8 nparity; /* number of stripes worth of bytes to store
366 * parity information */
367 u8 mindev_error; /* error code if min devs requisite is unmet */
368 const char raid_name[8]; /* name of the raid */
369 u64 bg_flag; /* block group flag of the raid */
370};
371
372extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES];
373
374struct map_lookup {
375 u64 type;
376 int io_align;
377 int io_width;
378 u64 stripe_len;
379 int num_stripes;
380 int sub_stripes;
381 int verified_stripes; /* For mount time dev extent verification */
382 struct btrfs_bio_stripe stripes[];
383};
384
385#define map_lookup_size(n) (sizeof(struct map_lookup) + \
386 (sizeof(struct btrfs_bio_stripe) * (n)))
387
388struct btrfs_balance_args;
389struct btrfs_balance_progress;
390struct btrfs_balance_control {
391 struct btrfs_balance_args data;
392 struct btrfs_balance_args meta;
393 struct btrfs_balance_args sys;
394
395 u64 flags;
396
397 struct btrfs_balance_progress stat;
398};
399
400enum btrfs_map_op {
401 BTRFS_MAP_READ,
402 BTRFS_MAP_WRITE,
403 BTRFS_MAP_DISCARD,
404 BTRFS_MAP_GET_READ_MIRRORS,
405};
406
407static inline enum btrfs_map_op btrfs_op(struct bio *bio)
408{
409 switch (bio_op(bio)) {
410 case REQ_OP_DISCARD:
411 return BTRFS_MAP_DISCARD;
412 case REQ_OP_WRITE:
413 return BTRFS_MAP_WRITE;
414 default:
415 WARN_ON_ONCE(1);
416 /* fall through */
417 case REQ_OP_READ:
418 return BTRFS_MAP_READ;
419 }
420}
421
422void btrfs_get_bbio(struct btrfs_bio *bbio);
423void btrfs_put_bbio(struct btrfs_bio *bbio);
424int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
425 u64 logical, u64 *length,
426 struct btrfs_bio **bbio_ret, int mirror_num);
427int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
428 u64 logical, u64 *length,
429 struct btrfs_bio **bbio_ret);
430int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
431 u64 logical, u64 len, struct btrfs_io_geometry *io_geom);
432int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
433 u64 physical, u64 **logical, int *naddrs, int *stripe_len);
434int btrfs_read_sys_array(struct btrfs_fs_info *fs_info);
435int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info);
436int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type);
437void btrfs_mapping_tree_free(struct extent_map_tree *tree);
438blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
439 int mirror_num, int async_submit);
440int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
441 fmode_t flags, void *holder);
442struct btrfs_device *btrfs_scan_one_device(const char *path,
443 fmode_t flags, void *holder);
444int btrfs_forget_devices(const char *path);
445int btrfs_close_devices(struct btrfs_fs_devices *fs_devices);
446void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step);
447void btrfs_assign_next_active_device(struct btrfs_device *device,
448 struct btrfs_device *this_dev);
449struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info,
450 u64 devid,
451 const char *devpath);
452struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
453 const u64 *devid,
454 const u8 *uuid);
455void btrfs_free_device(struct btrfs_device *device);
456int btrfs_rm_device(struct btrfs_fs_info *fs_info,
457 const char *device_path, u64 devid);
458void __exit btrfs_cleanup_fs_uuids(void);
459int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len);
460int btrfs_grow_device(struct btrfs_trans_handle *trans,
461 struct btrfs_device *device, u64 new_size);
462struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
463 u64 devid, u8 *uuid, u8 *fsid, bool seed);
464int btrfs_shrink_device(struct btrfs_device *device, u64 new_size);
465int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path);
466int btrfs_balance(struct btrfs_fs_info *fs_info,
467 struct btrfs_balance_control *bctl,
468 struct btrfs_ioctl_balance_args *bargs);
469void btrfs_describe_block_groups(u64 flags, char *buf, u32 size_buf);
470int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info);
471int btrfs_recover_balance(struct btrfs_fs_info *fs_info);
472int btrfs_pause_balance(struct btrfs_fs_info *fs_info);
473int btrfs_cancel_balance(struct btrfs_fs_info *fs_info);
474int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info);
475int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info);
476int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset);
477int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
478 u64 *start, u64 *max_avail);
479void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index);
480int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
481 struct btrfs_ioctl_get_dev_stats *stats);
482void btrfs_init_devices_late(struct btrfs_fs_info *fs_info);
483int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info);
484int btrfs_run_dev_stats(struct btrfs_trans_handle *trans);
485void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev);
486void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev);
487void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev);
488void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path);
489int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
490 u64 logical, u64 len);
491unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
492 u64 logical);
493int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
494 u64 chunk_offset, u64 chunk_size);
495int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset);
496struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
497 u64 logical, u64 length);
498
499static inline void btrfs_dev_stat_inc(struct btrfs_device *dev,
500 int index)
501{
502 atomic_inc(dev->dev_stat_values + index);
503 /*
504 * This memory barrier orders stores updating statistics before stores
505 * updating dev_stats_ccnt.
506 *
507 * It pairs with smp_rmb() in btrfs_run_dev_stats().
508 */
509 smp_mb__before_atomic();
510 atomic_inc(&dev->dev_stats_ccnt);
511}
512
513static inline int btrfs_dev_stat_read(struct btrfs_device *dev,
514 int index)
515{
516 return atomic_read(dev->dev_stat_values + index);
517}
518
519static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev,
520 int index)
521{
522 int ret;
523
524 ret = atomic_xchg(dev->dev_stat_values + index, 0);
525 /*
526 * atomic_xchg implies a full memory barriers as per atomic_t.txt:
527 * - RMW operations that have a return value are fully ordered;
528 *
529 * This implicit memory barriers is paired with the smp_rmb in
530 * btrfs_run_dev_stats
531 */
532 atomic_inc(&dev->dev_stats_ccnt);
533 return ret;
534}
535
536static inline void btrfs_dev_stat_set(struct btrfs_device *dev,
537 int index, unsigned long val)
538{
539 atomic_set(dev->dev_stat_values + index, val);
540 /*
541 * This memory barrier orders stores updating statistics before stores
542 * updating dev_stats_ccnt.
543 *
544 * It pairs with smp_rmb() in btrfs_run_dev_stats().
545 */
546 smp_mb__before_atomic();
547 atomic_inc(&dev->dev_stats_ccnt);
548}
549
550/*
551 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
552 * can be used as index to access btrfs_raid_array[].
553 */
554static inline enum btrfs_raid_types btrfs_bg_flags_to_raid_index(u64 flags)
555{
556 if (flags & BTRFS_BLOCK_GROUP_RAID10)
557 return BTRFS_RAID_RAID10;
558 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
559 return BTRFS_RAID_RAID1;
560 else if (flags & BTRFS_BLOCK_GROUP_DUP)
561 return BTRFS_RAID_DUP;
562 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
563 return BTRFS_RAID_RAID0;
564 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
565 return BTRFS_RAID_RAID5;
566 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
567 return BTRFS_RAID_RAID6;
568
569 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
570}
571
572void btrfs_commit_device_sizes(struct btrfs_transaction *trans);
573
574struct list_head *btrfs_get_fs_uuids(void);
575void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info);
576void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info);
577bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
578 struct btrfs_device *failing_dev);
579
580int btrfs_bg_type_to_factor(u64 flags);
581const char *btrfs_bg_type_to_raid_name(u64 flags);
582int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info);
583
584#endif
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#ifndef BTRFS_VOLUMES_H
7#define BTRFS_VOLUMES_H
8
9#include <linux/bio.h>
10#include <linux/sort.h>
11#include <linux/btrfs.h>
12#include "async-thread.h"
13
14#define BTRFS_MAX_DATA_CHUNK_SIZE (10ULL * SZ_1G)
15
16extern struct mutex uuid_mutex;
17
18#define BTRFS_STRIPE_LEN SZ_64K
19
20struct btrfs_io_geometry {
21 /* remaining bytes before crossing a stripe */
22 u64 len;
23 /* offset of logical address in chunk */
24 u64 offset;
25 /* length of single IO stripe */
26 u64 stripe_len;
27 /* number of stripe where address falls */
28 u64 stripe_nr;
29 /* offset of address in stripe */
30 u64 stripe_offset;
31 /* offset of raid56 stripe into the chunk */
32 u64 raid56_stripe_offset;
33};
34
35/*
36 * Use sequence counter to get consistent device stat data on
37 * 32-bit processors.
38 */
39#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
40#include <linux/seqlock.h>
41#define __BTRFS_NEED_DEVICE_DATA_ORDERED
42#define btrfs_device_data_ordered_init(device) \
43 seqcount_init(&device->data_seqcount)
44#else
45#define btrfs_device_data_ordered_init(device) do { } while (0)
46#endif
47
48#define BTRFS_DEV_STATE_WRITEABLE (0)
49#define BTRFS_DEV_STATE_IN_FS_METADATA (1)
50#define BTRFS_DEV_STATE_MISSING (2)
51#define BTRFS_DEV_STATE_REPLACE_TGT (3)
52#define BTRFS_DEV_STATE_FLUSH_SENT (4)
53
54struct btrfs_device {
55 struct list_head dev_list; /* device_list_mutex */
56 struct list_head dev_alloc_list; /* chunk mutex */
57 struct list_head post_commit_list; /* chunk mutex */
58 struct btrfs_fs_devices *fs_devices;
59 struct btrfs_fs_info *fs_info;
60
61 struct rcu_string *name;
62
63 u64 generation;
64
65 struct block_device *bdev;
66
67 /* the mode sent to blkdev_get */
68 fmode_t mode;
69
70 unsigned long dev_state;
71 blk_status_t last_flush_error;
72
73#ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED
74 seqcount_t data_seqcount;
75#endif
76
77 /* the internal btrfs device id */
78 u64 devid;
79
80 /* size of the device in memory */
81 u64 total_bytes;
82
83 /* size of the device on disk */
84 u64 disk_total_bytes;
85
86 /* bytes used */
87 u64 bytes_used;
88
89 /* optimal io alignment for this device */
90 u32 io_align;
91
92 /* optimal io width for this device */
93 u32 io_width;
94 /* type and info about this device */
95 u64 type;
96
97 /* minimal io size for this device */
98 u32 sector_size;
99
100 /* physical drive uuid (or lvm uuid) */
101 u8 uuid[BTRFS_UUID_SIZE];
102
103 /*
104 * size of the device on the current transaction
105 *
106 * This variant is update when committing the transaction,
107 * and protected by chunk mutex
108 */
109 u64 commit_total_bytes;
110
111 /* bytes used on the current transaction */
112 u64 commit_bytes_used;
113
114 /* for sending down flush barriers */
115 struct bio *flush_bio;
116 struct completion flush_wait;
117
118 /* per-device scrub information */
119 struct scrub_ctx *scrub_ctx;
120
121 /* readahead state */
122 atomic_t reada_in_flight;
123 u64 reada_next;
124 struct reada_zone *reada_curr_zone;
125 struct radix_tree_root reada_zones;
126 struct radix_tree_root reada_extents;
127
128 /* disk I/O failure stats. For detailed description refer to
129 * enum btrfs_dev_stat_values in ioctl.h */
130 int dev_stats_valid;
131
132 /* Counter to record the change of device stats */
133 atomic_t dev_stats_ccnt;
134 atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX];
135
136 struct extent_io_tree alloc_state;
137
138 struct completion kobj_unregister;
139 /* For sysfs/FSID/devinfo/devid/ */
140 struct kobject devid_kobj;
141};
142
143/*
144 * If we read those variants at the context of their own lock, we needn't
145 * use the following helpers, reading them directly is safe.
146 */
147#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
148#define BTRFS_DEVICE_GETSET_FUNCS(name) \
149static inline u64 \
150btrfs_device_get_##name(const struct btrfs_device *dev) \
151{ \
152 u64 size; \
153 unsigned int seq; \
154 \
155 do { \
156 seq = read_seqcount_begin(&dev->data_seqcount); \
157 size = dev->name; \
158 } while (read_seqcount_retry(&dev->data_seqcount, seq)); \
159 return size; \
160} \
161 \
162static inline void \
163btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
164{ \
165 preempt_disable(); \
166 write_seqcount_begin(&dev->data_seqcount); \
167 dev->name = size; \
168 write_seqcount_end(&dev->data_seqcount); \
169 preempt_enable(); \
170}
171#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
172#define BTRFS_DEVICE_GETSET_FUNCS(name) \
173static inline u64 \
174btrfs_device_get_##name(const struct btrfs_device *dev) \
175{ \
176 u64 size; \
177 \
178 preempt_disable(); \
179 size = dev->name; \
180 preempt_enable(); \
181 return size; \
182} \
183 \
184static inline void \
185btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
186{ \
187 preempt_disable(); \
188 dev->name = size; \
189 preempt_enable(); \
190}
191#else
192#define BTRFS_DEVICE_GETSET_FUNCS(name) \
193static inline u64 \
194btrfs_device_get_##name(const struct btrfs_device *dev) \
195{ \
196 return dev->name; \
197} \
198 \
199static inline void \
200btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
201{ \
202 dev->name = size; \
203}
204#endif
205
206BTRFS_DEVICE_GETSET_FUNCS(total_bytes);
207BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes);
208BTRFS_DEVICE_GETSET_FUNCS(bytes_used);
209
210enum btrfs_chunk_allocation_policy {
211 BTRFS_CHUNK_ALLOC_REGULAR,
212};
213
214struct btrfs_fs_devices {
215 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
216 u8 metadata_uuid[BTRFS_FSID_SIZE];
217 bool fsid_change;
218 struct list_head fs_list;
219
220 u64 num_devices;
221 u64 open_devices;
222 u64 rw_devices;
223 u64 missing_devices;
224 u64 total_rw_bytes;
225 u64 total_devices;
226
227 /* Highest generation number of seen devices */
228 u64 latest_generation;
229
230 struct block_device *latest_bdev;
231
232 /* all of the devices in the FS, protected by a mutex
233 * so we can safely walk it to write out the supers without
234 * worrying about add/remove by the multi-device code.
235 * Scrubbing super can kick off supers writing by holding
236 * this mutex lock.
237 */
238 struct mutex device_list_mutex;
239
240 /* List of all devices, protected by device_list_mutex */
241 struct list_head devices;
242
243 /*
244 * Devices which can satisfy space allocation. Protected by
245 * chunk_mutex
246 */
247 struct list_head alloc_list;
248
249 struct btrfs_fs_devices *seed;
250 bool seeding;
251
252 int opened;
253
254 /* set when we find or add a device that doesn't have the
255 * nonrot flag set
256 */
257 bool rotating;
258
259 struct btrfs_fs_info *fs_info;
260 /* sysfs kobjects */
261 struct kobject fsid_kobj;
262 struct kobject *devices_kobj;
263 struct kobject *devinfo_kobj;
264 struct completion kobj_unregister;
265
266 enum btrfs_chunk_allocation_policy chunk_alloc_policy;
267};
268
269#define BTRFS_BIO_INLINE_CSUM_SIZE 64
270
271#define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \
272 - sizeof(struct btrfs_chunk)) \
273 / sizeof(struct btrfs_stripe) + 1)
274
275#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
276 - 2 * sizeof(struct btrfs_disk_key) \
277 - 2 * sizeof(struct btrfs_chunk)) \
278 / sizeof(struct btrfs_stripe) + 1)
279
280/*
281 * we need the mirror number and stripe index to be passed around
282 * the call chain while we are processing end_io (especially errors).
283 * Really, what we need is a btrfs_bio structure that has this info
284 * and is properly sized with its stripe array, but we're not there
285 * quite yet. We have our own btrfs bioset, and all of the bios
286 * we allocate are actually btrfs_io_bios. We'll cram as much of
287 * struct btrfs_bio as we can into this over time.
288 */
289struct btrfs_io_bio {
290 unsigned int mirror_num;
291 struct btrfs_device *device;
292 u64 logical;
293 u8 *csum;
294 u8 csum_inline[BTRFS_BIO_INLINE_CSUM_SIZE];
295 struct bvec_iter iter;
296 /*
297 * This member must come last, bio_alloc_bioset will allocate enough
298 * bytes for entire btrfs_io_bio but relies on bio being last.
299 */
300 struct bio bio;
301};
302
303static inline struct btrfs_io_bio *btrfs_io_bio(struct bio *bio)
304{
305 return container_of(bio, struct btrfs_io_bio, bio);
306}
307
308static inline void btrfs_io_bio_free_csum(struct btrfs_io_bio *io_bio)
309{
310 if (io_bio->csum != io_bio->csum_inline) {
311 kfree(io_bio->csum);
312 io_bio->csum = NULL;
313 }
314}
315
316struct btrfs_bio_stripe {
317 struct btrfs_device *dev;
318 u64 physical;
319 u64 length; /* only used for discard mappings */
320};
321
322struct btrfs_bio {
323 refcount_t refs;
324 atomic_t stripes_pending;
325 struct btrfs_fs_info *fs_info;
326 u64 map_type; /* get from map_lookup->type */
327 bio_end_io_t *end_io;
328 struct bio *orig_bio;
329 void *private;
330 atomic_t error;
331 int max_errors;
332 int num_stripes;
333 int mirror_num;
334 int num_tgtdevs;
335 int *tgtdev_map;
336 /*
337 * logical block numbers for the start of each stripe
338 * The last one or two are p/q. These are sorted,
339 * so raid_map[0] is the start of our full stripe
340 */
341 u64 *raid_map;
342 struct btrfs_bio_stripe stripes[];
343};
344
345struct btrfs_device_info {
346 struct btrfs_device *dev;
347 u64 dev_offset;
348 u64 max_avail;
349 u64 total_avail;
350};
351
352struct btrfs_raid_attr {
353 u8 sub_stripes; /* sub_stripes info for map */
354 u8 dev_stripes; /* stripes per dev */
355 u8 devs_max; /* max devs to use */
356 u8 devs_min; /* min devs needed */
357 u8 tolerated_failures; /* max tolerated fail devs */
358 u8 devs_increment; /* ndevs has to be a multiple of this */
359 u8 ncopies; /* how many copies to data has */
360 u8 nparity; /* number of stripes worth of bytes to store
361 * parity information */
362 u8 mindev_error; /* error code if min devs requisite is unmet */
363 const char raid_name[8]; /* name of the raid */
364 u64 bg_flag; /* block group flag of the raid */
365};
366
367extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES];
368
369struct map_lookup {
370 u64 type;
371 int io_align;
372 int io_width;
373 u64 stripe_len;
374 int num_stripes;
375 int sub_stripes;
376 int verified_stripes; /* For mount time dev extent verification */
377 struct btrfs_bio_stripe stripes[];
378};
379
380#define map_lookup_size(n) (sizeof(struct map_lookup) + \
381 (sizeof(struct btrfs_bio_stripe) * (n)))
382
383struct btrfs_balance_args;
384struct btrfs_balance_progress;
385struct btrfs_balance_control {
386 struct btrfs_balance_args data;
387 struct btrfs_balance_args meta;
388 struct btrfs_balance_args sys;
389
390 u64 flags;
391
392 struct btrfs_balance_progress stat;
393};
394
395enum btrfs_map_op {
396 BTRFS_MAP_READ,
397 BTRFS_MAP_WRITE,
398 BTRFS_MAP_DISCARD,
399 BTRFS_MAP_GET_READ_MIRRORS,
400};
401
402static inline enum btrfs_map_op btrfs_op(struct bio *bio)
403{
404 switch (bio_op(bio)) {
405 case REQ_OP_DISCARD:
406 return BTRFS_MAP_DISCARD;
407 case REQ_OP_WRITE:
408 return BTRFS_MAP_WRITE;
409 default:
410 WARN_ON_ONCE(1);
411 fallthrough;
412 case REQ_OP_READ:
413 return BTRFS_MAP_READ;
414 }
415}
416
417void btrfs_get_bbio(struct btrfs_bio *bbio);
418void btrfs_put_bbio(struct btrfs_bio *bbio);
419int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
420 u64 logical, u64 *length,
421 struct btrfs_bio **bbio_ret, int mirror_num);
422int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
423 u64 logical, u64 *length,
424 struct btrfs_bio **bbio_ret);
425int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
426 u64 logical, u64 len, struct btrfs_io_geometry *io_geom);
427int btrfs_read_sys_array(struct btrfs_fs_info *fs_info);
428int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info);
429int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type);
430void btrfs_mapping_tree_free(struct extent_map_tree *tree);
431blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
432 int mirror_num);
433int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
434 fmode_t flags, void *holder);
435struct btrfs_device *btrfs_scan_one_device(const char *path,
436 fmode_t flags, void *holder);
437int btrfs_forget_devices(const char *path);
438int btrfs_close_devices(struct btrfs_fs_devices *fs_devices);
439void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step);
440void btrfs_assign_next_active_device(struct btrfs_device *device,
441 struct btrfs_device *this_dev);
442struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info,
443 u64 devid,
444 const char *devpath);
445struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
446 const u64 *devid,
447 const u8 *uuid);
448void btrfs_free_device(struct btrfs_device *device);
449int btrfs_rm_device(struct btrfs_fs_info *fs_info,
450 const char *device_path, u64 devid);
451void __exit btrfs_cleanup_fs_uuids(void);
452int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len);
453int btrfs_grow_device(struct btrfs_trans_handle *trans,
454 struct btrfs_device *device, u64 new_size);
455struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
456 u64 devid, u8 *uuid, u8 *fsid, bool seed);
457int btrfs_shrink_device(struct btrfs_device *device, u64 new_size);
458int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path);
459int btrfs_balance(struct btrfs_fs_info *fs_info,
460 struct btrfs_balance_control *bctl,
461 struct btrfs_ioctl_balance_args *bargs);
462void btrfs_describe_block_groups(u64 flags, char *buf, u32 size_buf);
463int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info);
464int btrfs_recover_balance(struct btrfs_fs_info *fs_info);
465int btrfs_pause_balance(struct btrfs_fs_info *fs_info);
466int btrfs_cancel_balance(struct btrfs_fs_info *fs_info);
467int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info);
468int btrfs_uuid_scan_kthread(void *data);
469int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset);
470int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
471 u64 *start, u64 *max_avail);
472void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index);
473int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
474 struct btrfs_ioctl_get_dev_stats *stats);
475void btrfs_init_devices_late(struct btrfs_fs_info *fs_info);
476int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info);
477int btrfs_run_dev_stats(struct btrfs_trans_handle *trans);
478void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev);
479void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev);
480void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev);
481int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
482 u64 logical, u64 len);
483unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
484 u64 logical);
485int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
486 u64 chunk_offset, u64 chunk_size);
487int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset);
488struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
489 u64 logical, u64 length);
490void btrfs_release_disk_super(struct btrfs_super_block *super);
491
492static inline void btrfs_dev_stat_inc(struct btrfs_device *dev,
493 int index)
494{
495 atomic_inc(dev->dev_stat_values + index);
496 /*
497 * This memory barrier orders stores updating statistics before stores
498 * updating dev_stats_ccnt.
499 *
500 * It pairs with smp_rmb() in btrfs_run_dev_stats().
501 */
502 smp_mb__before_atomic();
503 atomic_inc(&dev->dev_stats_ccnt);
504}
505
506static inline int btrfs_dev_stat_read(struct btrfs_device *dev,
507 int index)
508{
509 return atomic_read(dev->dev_stat_values + index);
510}
511
512static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev,
513 int index)
514{
515 int ret;
516
517 ret = atomic_xchg(dev->dev_stat_values + index, 0);
518 /*
519 * atomic_xchg implies a full memory barriers as per atomic_t.txt:
520 * - RMW operations that have a return value are fully ordered;
521 *
522 * This implicit memory barriers is paired with the smp_rmb in
523 * btrfs_run_dev_stats
524 */
525 atomic_inc(&dev->dev_stats_ccnt);
526 return ret;
527}
528
529static inline void btrfs_dev_stat_set(struct btrfs_device *dev,
530 int index, unsigned long val)
531{
532 atomic_set(dev->dev_stat_values + index, val);
533 /*
534 * This memory barrier orders stores updating statistics before stores
535 * updating dev_stats_ccnt.
536 *
537 * It pairs with smp_rmb() in btrfs_run_dev_stats().
538 */
539 smp_mb__before_atomic();
540 atomic_inc(&dev->dev_stats_ccnt);
541}
542
543/*
544 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
545 * can be used as index to access btrfs_raid_array[].
546 */
547static inline enum btrfs_raid_types btrfs_bg_flags_to_raid_index(u64 flags)
548{
549 if (flags & BTRFS_BLOCK_GROUP_RAID10)
550 return BTRFS_RAID_RAID10;
551 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
552 return BTRFS_RAID_RAID1;
553 else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
554 return BTRFS_RAID_RAID1C3;
555 else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
556 return BTRFS_RAID_RAID1C4;
557 else if (flags & BTRFS_BLOCK_GROUP_DUP)
558 return BTRFS_RAID_DUP;
559 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
560 return BTRFS_RAID_RAID0;
561 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
562 return BTRFS_RAID_RAID5;
563 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
564 return BTRFS_RAID_RAID6;
565
566 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
567}
568
569void btrfs_commit_device_sizes(struct btrfs_transaction *trans);
570
571struct list_head * __attribute_const__ btrfs_get_fs_uuids(void);
572void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info);
573void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info);
574bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
575 struct btrfs_device *failing_dev);
576void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
577 struct block_device *bdev,
578 const char *device_path);
579
580int btrfs_bg_type_to_factor(u64 flags);
581const char *btrfs_bg_type_to_raid_name(u64 flags);
582int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info);
583
584#endif