Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion
   4 *
   5 * Copyright IBM Corporation, 2008
   6 *
   7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
   8 *	    Manfred Spraul <manfred@colorfullife.com>
   9 *	    Paul E. McKenney <paulmck@linux.ibm.com> Hierarchical version
  10 *
  11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
  12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  13 *
  14 * For detailed explanation of Read-Copy Update mechanism see -
  15 *	Documentation/RCU
  16 */
  17
  18#define pr_fmt(fmt) "rcu: " fmt
  19
  20#include <linux/types.h>
  21#include <linux/kernel.h>
  22#include <linux/init.h>
  23#include <linux/spinlock.h>
  24#include <linux/smp.h>
  25#include <linux/rcupdate_wait.h>
  26#include <linux/interrupt.h>
  27#include <linux/sched.h>
  28#include <linux/sched/debug.h>
  29#include <linux/nmi.h>
  30#include <linux/atomic.h>
  31#include <linux/bitops.h>
  32#include <linux/export.h>
  33#include <linux/completion.h>
  34#include <linux/moduleparam.h>
 
 
  35#include <linux/percpu.h>
  36#include <linux/notifier.h>
  37#include <linux/cpu.h>
  38#include <linux/mutex.h>
  39#include <linux/time.h>
  40#include <linux/kernel_stat.h>
  41#include <linux/wait.h>
  42#include <linux/kthread.h>
  43#include <uapi/linux/sched/types.h>
  44#include <linux/prefetch.h>
  45#include <linux/delay.h>
  46#include <linux/stop_machine.h>
  47#include <linux/random.h>
  48#include <linux/trace_events.h>
  49#include <linux/suspend.h>
  50#include <linux/ftrace.h>
  51#include <linux/tick.h>
  52#include <linux/sysrq.h>
  53#include <linux/kprobes.h>
  54#include <linux/gfp.h>
  55#include <linux/oom.h>
  56#include <linux/smpboot.h>
  57#include <linux/jiffies.h>
 
  58#include <linux/sched/isolation.h>
  59#include <linux/sched/clock.h>
 
 
 
 
  60#include "../time/tick-internal.h"
  61
  62#include "tree.h"
  63#include "rcu.h"
  64
  65#ifdef MODULE_PARAM_PREFIX
  66#undef MODULE_PARAM_PREFIX
  67#endif
  68#define MODULE_PARAM_PREFIX "rcutree."
  69
  70/* Data structures. */
  71
  72/*
  73 * Steal a bit from the bottom of ->dynticks for idle entry/exit
  74 * control.  Initially this is for TLB flushing.
  75 */
  76#define RCU_DYNTICK_CTRL_MASK 0x1
  77#define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
  78#ifndef rcu_eqs_special_exit
  79#define rcu_eqs_special_exit() do { } while (0)
  80#endif
  81
  82static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
  83	.dynticks_nesting = 1,
  84	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
  85	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
 
  86};
  87struct rcu_state rcu_state = {
  88	.level = { &rcu_state.node[0] },
  89	.gp_state = RCU_GP_IDLE,
  90	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
  91	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
 
  92	.name = RCU_NAME,
  93	.abbr = RCU_ABBR,
  94	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
  95	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
  96	.ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
  97};
  98
  99/* Dump rcu_node combining tree at boot to verify correct setup. */
 100static bool dump_tree;
 101module_param(dump_tree, bool, 0444);
 102/* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
 103static bool use_softirq = 1;
 
 104module_param(use_softirq, bool, 0444);
 
 105/* Control rcu_node-tree auto-balancing at boot time. */
 106static bool rcu_fanout_exact;
 107module_param(rcu_fanout_exact, bool, 0444);
 108/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 109static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 110module_param(rcu_fanout_leaf, int, 0444);
 111int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 112/* Number of rcu_nodes at specified level. */
 113int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 114int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 115
 116/*
 117 * The rcu_scheduler_active variable is initialized to the value
 118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 119 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 120 * RCU can assume that there is but one task, allowing RCU to (for example)
 121 * optimize synchronize_rcu() to a simple barrier().  When this variable
 122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 123 * to detect real grace periods.  This variable is also used to suppress
 124 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 126 * is fully initialized, including all of its kthreads having been spawned.
 127 */
 128int rcu_scheduler_active __read_mostly;
 129EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 130
 131/*
 132 * The rcu_scheduler_fully_active variable transitions from zero to one
 133 * during the early_initcall() processing, which is after the scheduler
 134 * is capable of creating new tasks.  So RCU processing (for example,
 135 * creating tasks for RCU priority boosting) must be delayed until after
 136 * rcu_scheduler_fully_active transitions from zero to one.  We also
 137 * currently delay invocation of any RCU callbacks until after this point.
 138 *
 139 * It might later prove better for people registering RCU callbacks during
 140 * early boot to take responsibility for these callbacks, but one step at
 141 * a time.
 142 */
 143static int rcu_scheduler_fully_active __read_mostly;
 144
 145static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
 146			      unsigned long gps, unsigned long flags);
 147static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 148static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 149static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 150static void invoke_rcu_core(void);
 151static void rcu_report_exp_rdp(struct rcu_data *rdp);
 152static void sync_sched_exp_online_cleanup(int cpu);
 
 
 153
 154/* rcuc/rcub kthread realtime priority */
 
 
 
 
 155static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 156module_param(kthread_prio, int, 0444);
 157
 158/* Delay in jiffies for grace-period initialization delays, debug only. */
 159
 160static int gp_preinit_delay;
 161module_param(gp_preinit_delay, int, 0444);
 162static int gp_init_delay;
 163module_param(gp_init_delay, int, 0444);
 164static int gp_cleanup_delay;
 165module_param(gp_cleanup_delay, int, 0444);
 166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 167/* Retrieve RCU kthreads priority for rcutorture */
 168int rcu_get_gp_kthreads_prio(void)
 169{
 170	return kthread_prio;
 171}
 172EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
 173
 174/*
 175 * Number of grace periods between delays, normalized by the duration of
 176 * the delay.  The longer the delay, the more the grace periods between
 177 * each delay.  The reason for this normalization is that it means that,
 178 * for non-zero delays, the overall slowdown of grace periods is constant
 179 * regardless of the duration of the delay.  This arrangement balances
 180 * the need for long delays to increase some race probabilities with the
 181 * need for fast grace periods to increase other race probabilities.
 182 */
 183#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
 184
 185/*
 186 * Compute the mask of online CPUs for the specified rcu_node structure.
 187 * This will not be stable unless the rcu_node structure's ->lock is
 188 * held, but the bit corresponding to the current CPU will be stable
 189 * in most contexts.
 190 */
 191unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
 192{
 193	return READ_ONCE(rnp->qsmaskinitnext);
 194}
 195
 196/*
 
 
 
 
 
 
 
 
 
 
 197 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 198 * permit this function to be invoked without holding the root rcu_node
 199 * structure's ->lock, but of course results can be subject to change.
 200 */
 201static int rcu_gp_in_progress(void)
 202{
 203	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
 204}
 205
 206/*
 207 * Return the number of callbacks queued on the specified CPU.
 208 * Handles both the nocbs and normal cases.
 209 */
 210static long rcu_get_n_cbs_cpu(int cpu)
 211{
 212	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 213
 214	if (rcu_segcblist_is_enabled(&rdp->cblist))
 215		return rcu_segcblist_n_cbs(&rdp->cblist);
 216	return 0;
 217}
 218
 219void rcu_softirq_qs(void)
 220{
 221	rcu_qs();
 222	rcu_preempt_deferred_qs(current);
 223}
 224
 225/*
 226 * Record entry into an extended quiescent state.  This is only to be
 227 * called when not already in an extended quiescent state.
 228 */
 229static void rcu_dynticks_eqs_enter(void)
 230{
 231	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 232	int seq;
 233
 234	/*
 235	 * CPUs seeing atomic_add_return() must see prior RCU read-side
 236	 * critical sections, and we also must force ordering with the
 237	 * next idle sojourn.
 238	 */
 239	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
 240	/* Better be in an extended quiescent state! */
 241	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 242		     (seq & RCU_DYNTICK_CTRL_CTR));
 243	/* Better not have special action (TLB flush) pending! */
 244	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 245		     (seq & RCU_DYNTICK_CTRL_MASK));
 246}
 247
 248/*
 249 * Record exit from an extended quiescent state.  This is only to be
 250 * called from an extended quiescent state.
 251 */
 252static void rcu_dynticks_eqs_exit(void)
 253{
 254	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 255	int seq;
 256
 257	/*
 258	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
 259	 * and we also must force ordering with the next RCU read-side
 260	 * critical section.
 261	 */
 262	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
 263	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 264		     !(seq & RCU_DYNTICK_CTRL_CTR));
 265	if (seq & RCU_DYNTICK_CTRL_MASK) {
 266		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
 267		smp_mb__after_atomic(); /* _exit after clearing mask. */
 268		/* Prefer duplicate flushes to losing a flush. */
 269		rcu_eqs_special_exit();
 270	}
 271}
 272
 273/*
 274 * Reset the current CPU's ->dynticks counter to indicate that the
 275 * newly onlined CPU is no longer in an extended quiescent state.
 276 * This will either leave the counter unchanged, or increment it
 277 * to the next non-quiescent value.
 278 *
 279 * The non-atomic test/increment sequence works because the upper bits
 280 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 281 * or when the corresponding CPU is offline.
 282 */
 283static void rcu_dynticks_eqs_online(void)
 284{
 285	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 286
 287	if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
 288		return;
 289	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
 290}
 291
 292/*
 293 * Is the current CPU in an extended quiescent state?
 294 *
 295 * No ordering, as we are sampling CPU-local information.
 296 */
 297bool rcu_dynticks_curr_cpu_in_eqs(void)
 298{
 299	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 300
 301	return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
 302}
 303
 304/*
 305 * Snapshot the ->dynticks counter with full ordering so as to allow
 306 * stable comparison of this counter with past and future snapshots.
 307 */
 308int rcu_dynticks_snap(struct rcu_data *rdp)
 309{
 310	int snap = atomic_add_return(0, &rdp->dynticks);
 311
 312	return snap & ~RCU_DYNTICK_CTRL_MASK;
 313}
 314
 315/*
 316 * Return true if the snapshot returned from rcu_dynticks_snap()
 317 * indicates that RCU is in an extended quiescent state.
 318 */
 319static bool rcu_dynticks_in_eqs(int snap)
 320{
 321	return !(snap & RCU_DYNTICK_CTRL_CTR);
 322}
 323
 324/*
 325 * Return true if the CPU corresponding to the specified rcu_data
 326 * structure has spent some time in an extended quiescent state since
 327 * rcu_dynticks_snap() returned the specified snapshot.
 328 */
 329static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
 330{
 331	return snap != rcu_dynticks_snap(rdp);
 332}
 333
 334/*
 335 * Set the special (bottom) bit of the specified CPU so that it
 336 * will take special action (such as flushing its TLB) on the
 337 * next exit from an extended quiescent state.  Returns true if
 338 * the bit was successfully set, or false if the CPU was not in
 339 * an extended quiescent state.
 340 */
 341bool rcu_eqs_special_set(int cpu)
 342{
 343	int old;
 344	int new;
 345	struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
 346
 347	do {
 348		old = atomic_read(&rdp->dynticks);
 349		if (old & RCU_DYNTICK_CTRL_CTR)
 350			return false;
 351		new = old | RCU_DYNTICK_CTRL_MASK;
 352	} while (atomic_cmpxchg(&rdp->dynticks, old, new) != old);
 353	return true;
 
 
 354}
 355
 356/*
 357 * Let the RCU core know that this CPU has gone through the scheduler,
 358 * which is a quiescent state.  This is called when the need for a
 359 * quiescent state is urgent, so we burn an atomic operation and full
 360 * memory barriers to let the RCU core know about it, regardless of what
 361 * this CPU might (or might not) do in the near future.
 362 *
 363 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 364 *
 365 * The caller must have disabled interrupts and must not be idle.
 366 */
 367static void __maybe_unused rcu_momentary_dyntick_idle(void)
 368{
 369	int special;
 370
 371	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
 372	special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
 373				    &this_cpu_ptr(&rcu_data)->dynticks);
 374	/* It is illegal to call this from idle state. */
 375	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
 376	rcu_preempt_deferred_qs(current);
 377}
 
 378
 379/**
 380 * rcu_is_cpu_rrupt_from_idle - see if interrupted from idle
 381 *
 382 * If the current CPU is idle and running at a first-level (not nested)
 383 * interrupt from idle, return true.  The caller must have at least
 384 * disabled preemption.
 
 385 */
 386static int rcu_is_cpu_rrupt_from_idle(void)
 387{
 388	/* Called only from within the scheduling-clock interrupt */
 389	lockdep_assert_in_irq();
 
 
 
 
 
 
 390
 391	/* Check for counter underflows */
 392	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
 393			 "RCU dynticks_nesting counter underflow!");
 394	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
 395			 "RCU dynticks_nmi_nesting counter underflow/zero!");
 396
 397	/* Are we at first interrupt nesting level? */
 398	if (__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 1)
 
 399		return false;
 400
 
 
 
 
 
 401	/* Does CPU appear to be idle from an RCU standpoint? */
 402	return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
 403}
 404
 405#define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch ... */
 406#define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */
 
 407static long blimit = DEFAULT_RCU_BLIMIT;
 408#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
 409static long qhimark = DEFAULT_RCU_QHIMARK;
 410#define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
 411static long qlowmark = DEFAULT_RCU_QLOMARK;
 
 
 
 
 412
 413module_param(blimit, long, 0444);
 414module_param(qhimark, long, 0444);
 415module_param(qlowmark, long, 0444);
 
 416
 417static ulong jiffies_till_first_fqs = ULONG_MAX;
 418static ulong jiffies_till_next_fqs = ULONG_MAX;
 419static bool rcu_kick_kthreads;
 420static int rcu_divisor = 7;
 421module_param(rcu_divisor, int, 0644);
 422
 423/* Force an exit from rcu_do_batch() after 3 milliseconds. */
 424static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
 425module_param(rcu_resched_ns, long, 0644);
 426
 427/*
 428 * How long the grace period must be before we start recruiting
 429 * quiescent-state help from rcu_note_context_switch().
 430 */
 431static ulong jiffies_till_sched_qs = ULONG_MAX;
 432module_param(jiffies_till_sched_qs, ulong, 0444);
 433static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
 434module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
 435
 436/*
 437 * Make sure that we give the grace-period kthread time to detect any
 438 * idle CPUs before taking active measures to force quiescent states.
 439 * However, don't go below 100 milliseconds, adjusted upwards for really
 440 * large systems.
 441 */
 442static void adjust_jiffies_till_sched_qs(void)
 443{
 444	unsigned long j;
 445
 446	/* If jiffies_till_sched_qs was specified, respect the request. */
 447	if (jiffies_till_sched_qs != ULONG_MAX) {
 448		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
 449		return;
 450	}
 451	/* Otherwise, set to third fqs scan, but bound below on large system. */
 452	j = READ_ONCE(jiffies_till_first_fqs) +
 453		      2 * READ_ONCE(jiffies_till_next_fqs);
 454	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
 455		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
 456	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
 457	WRITE_ONCE(jiffies_to_sched_qs, j);
 458}
 459
 460static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
 461{
 462	ulong j;
 463	int ret = kstrtoul(val, 0, &j);
 464
 465	if (!ret) {
 466		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
 467		adjust_jiffies_till_sched_qs();
 468	}
 469	return ret;
 470}
 471
 472static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
 473{
 474	ulong j;
 475	int ret = kstrtoul(val, 0, &j);
 476
 477	if (!ret) {
 478		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
 479		adjust_jiffies_till_sched_qs();
 480	}
 481	return ret;
 482}
 483
 484static struct kernel_param_ops first_fqs_jiffies_ops = {
 485	.set = param_set_first_fqs_jiffies,
 486	.get = param_get_ulong,
 487};
 488
 489static struct kernel_param_ops next_fqs_jiffies_ops = {
 490	.set = param_set_next_fqs_jiffies,
 491	.get = param_get_ulong,
 492};
 493
 494module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
 495module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
 496module_param(rcu_kick_kthreads, bool, 0644);
 497
 498static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
 499static int rcu_pending(void);
 500
 501/*
 502 * Return the number of RCU GPs completed thus far for debug & stats.
 503 */
 504unsigned long rcu_get_gp_seq(void)
 505{
 506	return READ_ONCE(rcu_state.gp_seq);
 507}
 508EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
 509
 510/*
 511 * Return the number of RCU expedited batches completed thus far for
 512 * debug & stats.  Odd numbers mean that a batch is in progress, even
 513 * numbers mean idle.  The value returned will thus be roughly double
 514 * the cumulative batches since boot.
 515 */
 516unsigned long rcu_exp_batches_completed(void)
 517{
 518	return rcu_state.expedited_sequence;
 519}
 520EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 521
 522/*
 523 * Return the root node of the rcu_state structure.
 524 */
 525static struct rcu_node *rcu_get_root(void)
 526{
 527	return &rcu_state.node[0];
 528}
 529
 530/*
 531 * Convert a ->gp_state value to a character string.
 532 */
 533static const char *gp_state_getname(short gs)
 534{
 535	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
 536		return "???";
 537	return gp_state_names[gs];
 538}
 539
 540/*
 541 * Send along grace-period-related data for rcutorture diagnostics.
 542 */
 543void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 544			    unsigned long *gp_seq)
 545{
 546	switch (test_type) {
 547	case RCU_FLAVOR:
 548		*flags = READ_ONCE(rcu_state.gp_flags);
 549		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
 550		break;
 551	default:
 552		break;
 553	}
 554}
 555EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 556
 
 557/*
 558 * Enter an RCU extended quiescent state, which can be either the
 559 * idle loop or adaptive-tickless usermode execution.
 560 *
 561 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
 562 * the possibility of usermode upcalls having messed up our count
 563 * of interrupt nesting level during the prior busy period.
 564 */
 565static void rcu_eqs_enter(bool user)
 566{
 567	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 568
 569	WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
 570	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
 571	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 572		     rdp->dynticks_nesting == 0);
 573	if (rdp->dynticks_nesting != 1) {
 574		rdp->dynticks_nesting--;
 575		return;
 576	}
 577
 578	lockdep_assert_irqs_disabled();
 579	trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks);
 580	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
 581	rdp = this_cpu_ptr(&rcu_data);
 582	do_nocb_deferred_wakeup(rdp);
 583	rcu_prepare_for_idle();
 584	rcu_preempt_deferred_qs(current);
 585	WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
 586	rcu_dynticks_eqs_enter();
 587	rcu_dynticks_task_enter();
 588}
 589
 590/**
 591 * rcu_idle_enter - inform RCU that current CPU is entering idle
 592 *
 593 * Enter idle mode, in other words, -leave- the mode in which RCU
 594 * read-side critical sections can occur.  (Though RCU read-side
 595 * critical sections can occur in irq handlers in idle, a possibility
 596 * handled by irq_enter() and irq_exit().)
 597 *
 598 * If you add or remove a call to rcu_idle_enter(), be sure to test with
 599 * CONFIG_RCU_EQS_DEBUG=y.
 600 */
 601void rcu_idle_enter(void)
 602{
 603	lockdep_assert_irqs_disabled();
 604	rcu_eqs_enter(false);
 605}
 606
 607#ifdef CONFIG_NO_HZ_FULL
 608/**
 609 * rcu_user_enter - inform RCU that we are resuming userspace.
 610 *
 611 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 612 * is permitted between this call and rcu_user_exit(). This way the
 613 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 614 * when the CPU runs in userspace.
 615 *
 616 * If you add or remove a call to rcu_user_enter(), be sure to test with
 617 * CONFIG_RCU_EQS_DEBUG=y.
 618 */
 619void rcu_user_enter(void)
 620{
 621	lockdep_assert_irqs_disabled();
 622	rcu_eqs_enter(true);
 623}
 624#endif /* CONFIG_NO_HZ_FULL */
 625
 626/*
 627 * If we are returning from the outermost NMI handler that interrupted an
 628 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
 629 * to let the RCU grace-period handling know that the CPU is back to
 630 * being RCU-idle.
 631 *
 632 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
 633 * with CONFIG_RCU_EQS_DEBUG=y.
 
 634 */
 635static __always_inline void rcu_nmi_exit_common(bool irq)
 636{
 637	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 638
 639	/*
 640	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
 641	 * (We are exiting an NMI handler, so RCU better be paying attention
 642	 * to us!)
 643	 */
 644	WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
 645	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
 646
 647	/*
 648	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
 649	 * leave it in non-RCU-idle state.
 650	 */
 651	if (rdp->dynticks_nmi_nesting != 1) {
 652		trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks);
 653		WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
 654			   rdp->dynticks_nmi_nesting - 2);
 655		return;
 656	}
 657
 658	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
 659	trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks);
 660	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
 661
 662	if (irq)
 663		rcu_prepare_for_idle();
 664
 665	rcu_dynticks_eqs_enter();
 666
 667	if (irq)
 668		rcu_dynticks_task_enter();
 669}
 670
 671/**
 672 * rcu_nmi_exit - inform RCU of exit from NMI context
 673 *
 674 * If you add or remove a call to rcu_nmi_exit(), be sure to test
 675 * with CONFIG_RCU_EQS_DEBUG=y.
 676 */
 677void rcu_nmi_exit(void)
 678{
 679	rcu_nmi_exit_common(false);
 680}
 681
 682/**
 683 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 684 *
 685 * Exit from an interrupt handler, which might possibly result in entering
 686 * idle mode, in other words, leaving the mode in which read-side critical
 687 * sections can occur.  The caller must have disabled interrupts.
 688 *
 689 * This code assumes that the idle loop never does anything that might
 690 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 691 * architecture's idle loop violates this assumption, RCU will give you what
 692 * you deserve, good and hard.  But very infrequently and irreproducibly.
 693 *
 694 * Use things like work queues to work around this limitation.
 695 *
 696 * You have been warned.
 697 *
 698 * If you add or remove a call to rcu_irq_exit(), be sure to test with
 699 * CONFIG_RCU_EQS_DEBUG=y.
 700 */
 701void rcu_irq_exit(void)
 702{
 703	lockdep_assert_irqs_disabled();
 704	rcu_nmi_exit_common(true);
 705}
 706
 707/*
 708 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 709 *
 710 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
 711 * with CONFIG_RCU_EQS_DEBUG=y.
 712 */
 713void rcu_irq_exit_irqson(void)
 714{
 715	unsigned long flags;
 716
 717	local_irq_save(flags);
 718	rcu_irq_exit();
 719	local_irq_restore(flags);
 720}
 721
 722/*
 723 * Exit an RCU extended quiescent state, which can be either the
 724 * idle loop or adaptive-tickless usermode execution.
 725 *
 726 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
 727 * allow for the possibility of usermode upcalls messing up our count of
 728 * interrupt nesting level during the busy period that is just now starting.
 729 */
 730static void rcu_eqs_exit(bool user)
 731{
 732	struct rcu_data *rdp;
 733	long oldval;
 734
 735	lockdep_assert_irqs_disabled();
 736	rdp = this_cpu_ptr(&rcu_data);
 737	oldval = rdp->dynticks_nesting;
 738	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
 739	if (oldval) {
 740		rdp->dynticks_nesting++;
 741		return;
 
 
 
 
 742	}
 743	rcu_dynticks_task_exit();
 744	rcu_dynticks_eqs_exit();
 745	rcu_cleanup_after_idle();
 746	trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks);
 747	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
 748	WRITE_ONCE(rdp->dynticks_nesting, 1);
 749	WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
 750	WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
 751}
 
 752
 
 753/**
 754 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 755 *
 756 * Exit idle mode, in other words, -enter- the mode in which RCU
 757 * read-side critical sections can occur.
 758 *
 759 * If you add or remove a call to rcu_idle_exit(), be sure to test with
 760 * CONFIG_RCU_EQS_DEBUG=y.
 761 */
 762void rcu_idle_exit(void)
 763{
 764	unsigned long flags;
 765
 766	local_irq_save(flags);
 767	rcu_eqs_exit(false);
 768	local_irq_restore(flags);
 
 
 
 
 769}
 
 770
 771#ifdef CONFIG_NO_HZ_FULL
 772/**
 773 * rcu_user_exit - inform RCU that we are exiting userspace.
 774 *
 775 * Exit RCU idle mode while entering the kernel because it can
 776 * run a RCU read side critical section anytime.
 777 *
 778 * If you add or remove a call to rcu_user_exit(), be sure to test with
 779 * CONFIG_RCU_EQS_DEBUG=y.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 780 */
 781void rcu_user_exit(void)
 782{
 783	rcu_eqs_exit(1);
 784}
 785#endif /* CONFIG_NO_HZ_FULL */
 786
 787/**
 788 * rcu_nmi_enter_common - inform RCU of entry to NMI context
 789 * @irq: Is this call from rcu_irq_enter?
 790 *
 791 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
 792 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
 793 * that the CPU is active.  This implementation permits nested NMIs, as
 794 * long as the nesting level does not overflow an int.  (You will probably
 795 * run out of stack space first.)
 796 *
 797 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
 798 * with CONFIG_RCU_EQS_DEBUG=y.
 799 */
 800static __always_inline void rcu_nmi_enter_common(bool irq)
 801{
 802	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 803	long incby = 2;
 804
 805	/* Complain about underflow. */
 806	WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
 807
 808	/*
 809	 * If idle from RCU viewpoint, atomically increment ->dynticks
 810	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
 811	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
 812	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
 813	 * to be in the outermost NMI handler that interrupted an RCU-idle
 814	 * period (observation due to Andy Lutomirski).
 815	 */
 816	if (rcu_dynticks_curr_cpu_in_eqs()) {
 817
 818		if (irq)
 819			rcu_dynticks_task_exit();
 820
 821		rcu_dynticks_eqs_exit();
 822
 823		if (irq)
 824			rcu_cleanup_after_idle();
 825
 826		incby = 1;
 
 
 
 
 
 827	}
 828	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
 829			  rdp->dynticks_nmi_nesting,
 830			  rdp->dynticks_nmi_nesting + incby, rdp->dynticks);
 831	WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
 832		   rdp->dynticks_nmi_nesting + incby);
 833	barrier();
 834}
 835
 836/**
 837 * rcu_nmi_enter - inform RCU of entry to NMI context
 838 */
 839void rcu_nmi_enter(void)
 840{
 841	rcu_nmi_enter_common(false);
 
 
 
 
 
 
 
 
 842}
 843NOKPROBE_SYMBOL(rcu_nmi_enter);
 844
 845/**
 846 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 847 *
 848 * Enter an interrupt handler, which might possibly result in exiting
 849 * idle mode, in other words, entering the mode in which read-side critical
 850 * sections can occur.  The caller must have disabled interrupts.
 851 *
 852 * Note that the Linux kernel is fully capable of entering an interrupt
 853 * handler that it never exits, for example when doing upcalls to user mode!
 854 * This code assumes that the idle loop never does upcalls to user mode.
 855 * If your architecture's idle loop does do upcalls to user mode (or does
 856 * anything else that results in unbalanced calls to the irq_enter() and
 857 * irq_exit() functions), RCU will give you what you deserve, good and hard.
 858 * But very infrequently and irreproducibly.
 859 *
 860 * Use things like work queues to work around this limitation.
 861 *
 862 * You have been warned.
 863 *
 864 * If you add or remove a call to rcu_irq_enter(), be sure to test with
 865 * CONFIG_RCU_EQS_DEBUG=y.
 866 */
 867void rcu_irq_enter(void)
 868{
 869	lockdep_assert_irqs_disabled();
 870	rcu_nmi_enter_common(true);
 871}
 872
 873/*
 874 * Wrapper for rcu_irq_enter() where interrupts are enabled.
 875 *
 876 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
 877 * with CONFIG_RCU_EQS_DEBUG=y.
 878 */
 879void rcu_irq_enter_irqson(void)
 880{
 881	unsigned long flags;
 882
 883	local_irq_save(flags);
 884	rcu_irq_enter();
 885	local_irq_restore(flags);
 
 
 886}
 887
 888/**
 889 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
 890 *
 891 * Return true if RCU is watching the running CPU, which means that this
 892 * CPU can safely enter RCU read-side critical sections.  In other words,
 893 * if the current CPU is not in its idle loop or is in an interrupt or
 894 * NMI handler, return true.
 
 
 
 895 */
 896bool notrace rcu_is_watching(void)
 897{
 898	bool ret;
 899
 900	preempt_disable_notrace();
 901	ret = !rcu_dynticks_curr_cpu_in_eqs();
 902	preempt_enable_notrace();
 903	return ret;
 904}
 905EXPORT_SYMBOL_GPL(rcu_is_watching);
 906
 907/*
 908 * If a holdout task is actually running, request an urgent quiescent
 909 * state from its CPU.  This is unsynchronized, so migrations can cause
 910 * the request to go to the wrong CPU.  Which is OK, all that will happen
 911 * is that the CPU's next context switch will be a bit slower and next
 912 * time around this task will generate another request.
 913 */
 914void rcu_request_urgent_qs_task(struct task_struct *t)
 915{
 916	int cpu;
 917
 918	barrier();
 919	cpu = task_cpu(t);
 920	if (!task_curr(t))
 921		return; /* This task is not running on that CPU. */
 922	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
 923}
 924
 925#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
 926
 927/*
 928 * Is the current CPU online as far as RCU is concerned?
 929 *
 930 * Disable preemption to avoid false positives that could otherwise
 931 * happen due to the current CPU number being sampled, this task being
 932 * preempted, its old CPU being taken offline, resuming on some other CPU,
 933 * then determining that its old CPU is now offline.
 934 *
 935 * Disable checking if in an NMI handler because we cannot safely
 936 * report errors from NMI handlers anyway.  In addition, it is OK to use
 937 * RCU on an offline processor during initial boot, hence the check for
 938 * rcu_scheduler_fully_active.
 939 */
 940bool rcu_lockdep_current_cpu_online(void)
 941{
 942	struct rcu_data *rdp;
 943	struct rcu_node *rnp;
 944	bool ret = false;
 945
 946	if (in_nmi() || !rcu_scheduler_fully_active)
 947		return true;
 948	preempt_disable();
 949	rdp = this_cpu_ptr(&rcu_data);
 950	rnp = rdp->mynode;
 951	if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
 
 
 
 
 
 
 952		ret = true;
 953	preempt_enable();
 954	return ret;
 955}
 956EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
 957
 958#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
 959
 960/*
 961 * We are reporting a quiescent state on behalf of some other CPU, so
 962 * it is our responsibility to check for and handle potential overflow
 963 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
 964 * After all, the CPU might be in deep idle state, and thus executing no
 965 * code whatsoever.
 966 */
 967static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
 968{
 969	raw_lockdep_assert_held_rcu_node(rnp);
 970	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
 971			 rnp->gp_seq))
 972		WRITE_ONCE(rdp->gpwrap, true);
 973	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
 974		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
 975}
 976
 977/*
 978 * Snapshot the specified CPU's dynticks counter so that we can later
 979 * credit them with an implicit quiescent state.  Return 1 if this CPU
 980 * is in dynticks idle mode, which is an extended quiescent state.
 981 */
 982static int dyntick_save_progress_counter(struct rcu_data *rdp)
 983{
 984	rdp->dynticks_snap = rcu_dynticks_snap(rdp);
 985	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
 986		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
 987		rcu_gpnum_ovf(rdp->mynode, rdp);
 988		return 1;
 989	}
 990	return 0;
 991}
 992
 993/*
 994 * Return true if the specified CPU has passed through a quiescent
 995 * state by virtue of being in or having passed through an dynticks
 996 * idle state since the last call to dyntick_save_progress_counter()
 997 * for this same CPU, or by virtue of having been offline.
 998 */
 999static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1000{
1001	unsigned long jtsq;
1002	bool *rnhqp;
1003	bool *ruqp;
1004	struct rcu_node *rnp = rdp->mynode;
1005
1006	/*
1007	 * If the CPU passed through or entered a dynticks idle phase with
1008	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1009	 * already acknowledged the request to pass through a quiescent
1010	 * state.  Either way, that CPU cannot possibly be in an RCU
1011	 * read-side critical section that started before the beginning
1012	 * of the current RCU grace period.
1013	 */
1014	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1015		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1016		rcu_gpnum_ovf(rnp, rdp);
1017		return 1;
1018	}
1019
1020	/* If waiting too long on an offline CPU, complain. */
1021	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1022	    time_after(jiffies, rcu_state.gp_start + HZ)) {
1023		bool onl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1024		struct rcu_node *rnp1;
1025
1026		WARN_ON(1);  /* Offline CPUs are supposed to report QS! */
1027		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1028			__func__, rnp->grplo, rnp->grphi, rnp->level,
1029			(long)rnp->gp_seq, (long)rnp->completedqs);
1030		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1031			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1032				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1033		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1034		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1035			__func__, rdp->cpu, ".o"[onl],
1036			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1037			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1038		return 1; /* Break things loose after complaining. */
1039	}
1040
1041	/*
1042	 * A CPU running for an extended time within the kernel can
1043	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1044	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1045	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1046	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1047	 * variable are safe because the assignments are repeated if this
1048	 * CPU failed to pass through a quiescent state.  This code
1049	 * also checks .jiffies_resched in case jiffies_to_sched_qs
1050	 * is set way high.
1051	 */
1052	jtsq = READ_ONCE(jiffies_to_sched_qs);
1053	ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1054	rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1055	if (!READ_ONCE(*rnhqp) &&
1056	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1057	     time_after(jiffies, rcu_state.jiffies_resched))) {
1058		WRITE_ONCE(*rnhqp, true);
 
1059		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1060		smp_store_release(ruqp, true);
1061	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1062		WRITE_ONCE(*ruqp, true);
1063	}
1064
1065	/*
1066	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1067	 * The above code handles this, but only for straight cond_resched().
1068	 * And some in-kernel loops check need_resched() before calling
1069	 * cond_resched(), which defeats the above code for CPUs that are
1070	 * running in-kernel with scheduling-clock interrupts disabled.
1071	 * So hit them over the head with the resched_cpu() hammer!
1072	 */
1073	if (tick_nohz_full_cpu(rdp->cpu) &&
1074		   time_after(jiffies,
1075			      READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
 
1076		resched_cpu(rdp->cpu);
1077		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1078	}
1079
1080	/*
1081	 * If more than halfway to RCU CPU stall-warning time, invoke
1082	 * resched_cpu() more frequently to try to loosen things up a bit.
1083	 * Also check to see if the CPU is getting hammered with interrupts,
1084	 * but only once per grace period, just to keep the IPIs down to
1085	 * a dull roar.
1086	 */
1087	if (time_after(jiffies, rcu_state.jiffies_resched)) {
1088		if (time_after(jiffies,
1089			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1090			resched_cpu(rdp->cpu);
1091			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1092		}
1093		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1094		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1095		    (rnp->ffmask & rdp->grpmask)) {
1096			init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1097			rdp->rcu_iw_pending = true;
1098			rdp->rcu_iw_gp_seq = rnp->gp_seq;
1099			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1100		}
1101	}
1102
1103	return 0;
1104}
1105
1106/* Trace-event wrapper function for trace_rcu_future_grace_period.  */
1107static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1108			      unsigned long gp_seq_req, const char *s)
1109{
1110	trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
1111				      rnp->level, rnp->grplo, rnp->grphi, s);
 
1112}
1113
1114/*
1115 * rcu_start_this_gp - Request the start of a particular grace period
1116 * @rnp_start: The leaf node of the CPU from which to start.
1117 * @rdp: The rcu_data corresponding to the CPU from which to start.
1118 * @gp_seq_req: The gp_seq of the grace period to start.
1119 *
1120 * Start the specified grace period, as needed to handle newly arrived
1121 * callbacks.  The required future grace periods are recorded in each
1122 * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1123 * is reason to awaken the grace-period kthread.
1124 *
1125 * The caller must hold the specified rcu_node structure's ->lock, which
1126 * is why the caller is responsible for waking the grace-period kthread.
1127 *
1128 * Returns true if the GP thread needs to be awakened else false.
1129 */
1130static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1131			      unsigned long gp_seq_req)
1132{
1133	bool ret = false;
1134	struct rcu_node *rnp;
1135
1136	/*
1137	 * Use funnel locking to either acquire the root rcu_node
1138	 * structure's lock or bail out if the need for this grace period
1139	 * has already been recorded -- or if that grace period has in
1140	 * fact already started.  If there is already a grace period in
1141	 * progress in a non-leaf node, no recording is needed because the
1142	 * end of the grace period will scan the leaf rcu_node structures.
1143	 * Note that rnp_start->lock must not be released.
1144	 */
1145	raw_lockdep_assert_held_rcu_node(rnp_start);
1146	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1147	for (rnp = rnp_start; 1; rnp = rnp->parent) {
1148		if (rnp != rnp_start)
1149			raw_spin_lock_rcu_node(rnp);
1150		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1151		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1152		    (rnp != rnp_start &&
1153		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1154			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1155					  TPS("Prestarted"));
1156			goto unlock_out;
1157		}
1158		rnp->gp_seq_needed = gp_seq_req;
1159		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1160			/*
1161			 * We just marked the leaf or internal node, and a
1162			 * grace period is in progress, which means that
1163			 * rcu_gp_cleanup() will see the marking.  Bail to
1164			 * reduce contention.
1165			 */
1166			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1167					  TPS("Startedleaf"));
1168			goto unlock_out;
1169		}
1170		if (rnp != rnp_start && rnp->parent != NULL)
1171			raw_spin_unlock_rcu_node(rnp);
1172		if (!rnp->parent)
1173			break;  /* At root, and perhaps also leaf. */
1174	}
1175
1176	/* If GP already in progress, just leave, otherwise start one. */
1177	if (rcu_gp_in_progress()) {
1178		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1179		goto unlock_out;
1180	}
1181	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1182	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1183	rcu_state.gp_req_activity = jiffies;
1184	if (!rcu_state.gp_kthread) {
1185		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1186		goto unlock_out;
1187	}
1188	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
1189	ret = true;  /* Caller must wake GP kthread. */
1190unlock_out:
1191	/* Push furthest requested GP to leaf node and rcu_data structure. */
1192	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1193		rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1194		rdp->gp_seq_needed = rnp->gp_seq_needed;
1195	}
1196	if (rnp != rnp_start)
1197		raw_spin_unlock_rcu_node(rnp);
1198	return ret;
1199}
1200
1201/*
1202 * Clean up any old requests for the just-ended grace period.  Also return
1203 * whether any additional grace periods have been requested.
1204 */
1205static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1206{
1207	bool needmore;
1208	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1209
1210	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1211	if (!needmore)
1212		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1213	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1214			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1215	return needmore;
1216}
1217
1218/*
1219 * Awaken the grace-period kthread.  Don't do a self-awaken (unless in
1220 * an interrupt or softirq handler), and don't bother awakening when there
1221 * is nothing for the grace-period kthread to do (as in several CPUs raced
1222 * to awaken, and we lost), and finally don't try to awaken a kthread that
1223 * has not yet been created.  If all those checks are passed, track some
1224 * debug information and awaken.
 
1225 *
1226 * So why do the self-wakeup when in an interrupt or softirq handler
1227 * in the grace-period kthread's context?  Because the kthread might have
1228 * been interrupted just as it was going to sleep, and just after the final
1229 * pre-sleep check of the awaken condition.  In this case, a wakeup really
1230 * is required, and is therefore supplied.
1231 */
1232static void rcu_gp_kthread_wake(void)
1233{
1234	if ((current == rcu_state.gp_kthread &&
1235	     !in_irq() && !in_serving_softirq()) ||
1236	    !READ_ONCE(rcu_state.gp_flags) ||
1237	    !rcu_state.gp_kthread)
1238		return;
1239	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1240	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1241	swake_up_one(&rcu_state.gp_wq);
1242}
1243
1244/*
1245 * If there is room, assign a ->gp_seq number to any callbacks on this
1246 * CPU that have not already been assigned.  Also accelerate any callbacks
1247 * that were previously assigned a ->gp_seq number that has since proven
1248 * to be too conservative, which can happen if callbacks get assigned a
1249 * ->gp_seq number while RCU is idle, but with reference to a non-root
1250 * rcu_node structure.  This function is idempotent, so it does not hurt
1251 * to call it repeatedly.  Returns an flag saying that we should awaken
1252 * the RCU grace-period kthread.
1253 *
1254 * The caller must hold rnp->lock with interrupts disabled.
1255 */
1256static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1257{
1258	unsigned long gp_seq_req;
1259	bool ret = false;
1260
1261	rcu_lockdep_assert_cblist_protected(rdp);
1262	raw_lockdep_assert_held_rcu_node(rnp);
1263
1264	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1265	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1266		return false;
1267
 
 
1268	/*
1269	 * Callbacks are often registered with incomplete grace-period
1270	 * information.  Something about the fact that getting exact
1271	 * information requires acquiring a global lock...  RCU therefore
1272	 * makes a conservative estimate of the grace period number at which
1273	 * a given callback will become ready to invoke.	The following
1274	 * code checks this estimate and improves it when possible, thus
1275	 * accelerating callback invocation to an earlier grace-period
1276	 * number.
1277	 */
1278	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1279	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1280		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1281
1282	/* Trace depending on how much we were able to accelerate. */
1283	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1284		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1285	else
1286		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
 
 
 
1287	return ret;
1288}
1289
1290/*
1291 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1292 * rcu_node structure's ->lock be held.  It consults the cached value
1293 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1294 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1295 * while holding the leaf rcu_node structure's ->lock.
1296 */
1297static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1298					struct rcu_data *rdp)
1299{
1300	unsigned long c;
1301	bool needwake;
1302
1303	rcu_lockdep_assert_cblist_protected(rdp);
1304	c = rcu_seq_snap(&rcu_state.gp_seq);
1305	if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1306		/* Old request still live, so mark recent callbacks. */
1307		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1308		return;
1309	}
1310	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1311	needwake = rcu_accelerate_cbs(rnp, rdp);
1312	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1313	if (needwake)
1314		rcu_gp_kthread_wake();
1315}
1316
1317/*
1318 * Move any callbacks whose grace period has completed to the
1319 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1320 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1321 * sublist.  This function is idempotent, so it does not hurt to
1322 * invoke it repeatedly.  As long as it is not invoked -too- often...
1323 * Returns true if the RCU grace-period kthread needs to be awakened.
1324 *
1325 * The caller must hold rnp->lock with interrupts disabled.
1326 */
1327static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1328{
1329	rcu_lockdep_assert_cblist_protected(rdp);
1330	raw_lockdep_assert_held_rcu_node(rnp);
1331
1332	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1333	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1334		return false;
1335
1336	/*
1337	 * Find all callbacks whose ->gp_seq numbers indicate that they
1338	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1339	 */
1340	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1341
1342	/* Classify any remaining callbacks. */
1343	return rcu_accelerate_cbs(rnp, rdp);
1344}
1345
1346/*
1347 * Move and classify callbacks, but only if doing so won't require
1348 * that the RCU grace-period kthread be awakened.
1349 */
1350static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1351						  struct rcu_data *rdp)
1352{
1353	rcu_lockdep_assert_cblist_protected(rdp);
1354	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) ||
1355	    !raw_spin_trylock_rcu_node(rnp))
1356		return;
1357	WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
 
 
1358	raw_spin_unlock_rcu_node(rnp);
1359}
1360
1361/*
 
 
 
 
 
 
 
 
 
 
 
 
 
1362 * Update CPU-local rcu_data state to record the beginnings and ends of
1363 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1364 * structure corresponding to the current CPU, and must have irqs disabled.
1365 * Returns true if the grace-period kthread needs to be awakened.
1366 */
1367static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1368{
1369	bool ret = false;
1370	bool need_gp;
1371	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1372			       rcu_segcblist_is_offloaded(&rdp->cblist);
1373
1374	raw_lockdep_assert_held_rcu_node(rnp);
1375
1376	if (rdp->gp_seq == rnp->gp_seq)
1377		return false; /* Nothing to do. */
1378
1379	/* Handle the ends of any preceding grace periods first. */
1380	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1381	    unlikely(READ_ONCE(rdp->gpwrap))) {
1382		if (!offloaded)
1383			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
 
1384		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1385	} else {
1386		if (!offloaded)
1387			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
 
 
1388	}
1389
1390	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1391	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1392	    unlikely(READ_ONCE(rdp->gpwrap))) {
1393		/*
1394		 * If the current grace period is waiting for this CPU,
1395		 * set up to detect a quiescent state, otherwise don't
1396		 * go looking for one.
1397		 */
1398		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1399		need_gp = !!(rnp->qsmask & rdp->grpmask);
1400		rdp->cpu_no_qs.b.norm = need_gp;
1401		rdp->core_needs_qs = need_gp;
1402		zero_cpu_stall_ticks(rdp);
1403	}
1404	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1405	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1406		rdp->gp_seq_needed = rnp->gp_seq_needed;
 
 
1407	WRITE_ONCE(rdp->gpwrap, false);
1408	rcu_gpnum_ovf(rnp, rdp);
1409	return ret;
1410}
1411
1412static void note_gp_changes(struct rcu_data *rdp)
1413{
1414	unsigned long flags;
1415	bool needwake;
1416	struct rcu_node *rnp;
1417
1418	local_irq_save(flags);
1419	rnp = rdp->mynode;
1420	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1421	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1422	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1423		local_irq_restore(flags);
1424		return;
1425	}
1426	needwake = __note_gp_changes(rnp, rdp);
1427	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 
1428	if (needwake)
1429		rcu_gp_kthread_wake();
1430}
1431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1432static void rcu_gp_slow(int delay)
1433{
1434	if (delay > 0 &&
1435	    !(rcu_seq_ctr(rcu_state.gp_seq) %
1436	      (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1437		schedule_timeout_uninterruptible(delay);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1438}
1439
1440/*
1441 * Initialize a new grace period.  Return false if no grace period required.
1442 */
1443static bool rcu_gp_init(void)
1444{
1445	unsigned long flags;
1446	unsigned long oldmask;
1447	unsigned long mask;
1448	struct rcu_data *rdp;
1449	struct rcu_node *rnp = rcu_get_root();
1450
1451	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1452	raw_spin_lock_irq_rcu_node(rnp);
1453	if (!READ_ONCE(rcu_state.gp_flags)) {
1454		/* Spurious wakeup, tell caller to go back to sleep.  */
1455		raw_spin_unlock_irq_rcu_node(rnp);
1456		return false;
1457	}
1458	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1459
1460	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1461		/*
1462		 * Grace period already in progress, don't start another.
1463		 * Not supposed to be able to happen.
1464		 */
1465		raw_spin_unlock_irq_rcu_node(rnp);
1466		return false;
1467	}
1468
1469	/* Advance to a new grace period and initialize state. */
1470	record_gp_stall_check_time();
1471	/* Record GP times before starting GP, hence rcu_seq_start(). */
1472	rcu_seq_start(&rcu_state.gp_seq);
 
1473	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
 
1474	raw_spin_unlock_irq_rcu_node(rnp);
1475
1476	/*
1477	 * Apply per-leaf buffered online and offline operations to the
1478	 * rcu_node tree.  Note that this new grace period need not wait
1479	 * for subsequent online CPUs, and that quiescent-state forcing
1480	 * will handle subsequent offline CPUs.
 
 
 
1481	 */
1482	rcu_state.gp_state = RCU_GP_ONOFF;
 
1483	rcu_for_each_leaf_node(rnp) {
1484		raw_spin_lock(&rcu_state.ofl_lock);
1485		raw_spin_lock_irq_rcu_node(rnp);
 
1486		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1487		    !rnp->wait_blkd_tasks) {
1488			/* Nothing to do on this leaf rcu_node structure. */
1489			raw_spin_unlock_irq_rcu_node(rnp);
1490			raw_spin_unlock(&rcu_state.ofl_lock);
 
1491			continue;
1492		}
1493
1494		/* Record old state, apply changes to ->qsmaskinit field. */
1495		oldmask = rnp->qsmaskinit;
1496		rnp->qsmaskinit = rnp->qsmaskinitnext;
1497
1498		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1499		if (!oldmask != !rnp->qsmaskinit) {
1500			if (!oldmask) { /* First online CPU for rcu_node. */
1501				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1502					rcu_init_new_rnp(rnp);
1503			} else if (rcu_preempt_has_tasks(rnp)) {
1504				rnp->wait_blkd_tasks = true; /* blocked tasks */
1505			} else { /* Last offline CPU and can propagate. */
1506				rcu_cleanup_dead_rnp(rnp);
1507			}
1508		}
1509
1510		/*
1511		 * If all waited-on tasks from prior grace period are
1512		 * done, and if all this rcu_node structure's CPUs are
1513		 * still offline, propagate up the rcu_node tree and
1514		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1515		 * rcu_node structure's CPUs has since come back online,
1516		 * simply clear ->wait_blkd_tasks.
1517		 */
1518		if (rnp->wait_blkd_tasks &&
1519		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1520			rnp->wait_blkd_tasks = false;
1521			if (!rnp->qsmaskinit)
1522				rcu_cleanup_dead_rnp(rnp);
1523		}
1524
1525		raw_spin_unlock_irq_rcu_node(rnp);
1526		raw_spin_unlock(&rcu_state.ofl_lock);
 
1527	}
1528	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1529
1530	/*
1531	 * Set the quiescent-state-needed bits in all the rcu_node
1532	 * structures for all currently online CPUs in breadth-first
1533	 * order, starting from the root rcu_node structure, relying on the
1534	 * layout of the tree within the rcu_state.node[] array.  Note that
1535	 * other CPUs will access only the leaves of the hierarchy, thus
1536	 * seeing that no grace period is in progress, at least until the
1537	 * corresponding leaf node has been initialized.
1538	 *
1539	 * The grace period cannot complete until the initialization
1540	 * process finishes, because this kthread handles both.
1541	 */
1542	rcu_state.gp_state = RCU_GP_INIT;
1543	rcu_for_each_node_breadth_first(rnp) {
1544		rcu_gp_slow(gp_init_delay);
1545		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1546		rdp = this_cpu_ptr(&rcu_data);
1547		rcu_preempt_check_blocked_tasks(rnp);
1548		rnp->qsmask = rnp->qsmaskinit;
1549		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1550		if (rnp == rdp->mynode)
1551			(void)__note_gp_changes(rnp, rdp);
1552		rcu_preempt_boost_start_gp(rnp);
1553		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1554					    rnp->level, rnp->grplo,
1555					    rnp->grphi, rnp->qsmask);
1556		/* Quiescent states for tasks on any now-offline CPUs. */
1557		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1558		rnp->rcu_gp_init_mask = mask;
1559		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1560			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1561		else
1562			raw_spin_unlock_irq_rcu_node(rnp);
1563		cond_resched_tasks_rcu_qs();
1564		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1565	}
1566
 
 
 
 
1567	return true;
1568}
1569
1570/*
1571 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1572 * time.
1573 */
1574static bool rcu_gp_fqs_check_wake(int *gfp)
1575{
1576	struct rcu_node *rnp = rcu_get_root();
1577
1578	/* Someone like call_rcu() requested a force-quiescent-state scan. */
 
 
 
 
1579	*gfp = READ_ONCE(rcu_state.gp_flags);
1580	if (*gfp & RCU_GP_FLAG_FQS)
1581		return true;
1582
1583	/* The current grace period has completed. */
1584	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1585		return true;
1586
1587	return false;
1588}
1589
1590/*
1591 * Do one round of quiescent-state forcing.
1592 */
1593static void rcu_gp_fqs(bool first_time)
1594{
1595	struct rcu_node *rnp = rcu_get_root();
1596
1597	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1598	rcu_state.n_force_qs++;
1599	if (first_time) {
1600		/* Collect dyntick-idle snapshots. */
1601		force_qs_rnp(dyntick_save_progress_counter);
1602	} else {
1603		/* Handle dyntick-idle and offline CPUs. */
1604		force_qs_rnp(rcu_implicit_dynticks_qs);
1605	}
1606	/* Clear flag to prevent immediate re-entry. */
1607	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1608		raw_spin_lock_irq_rcu_node(rnp);
1609		WRITE_ONCE(rcu_state.gp_flags,
1610			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1611		raw_spin_unlock_irq_rcu_node(rnp);
1612	}
1613}
1614
1615/*
1616 * Loop doing repeated quiescent-state forcing until the grace period ends.
1617 */
1618static void rcu_gp_fqs_loop(void)
1619{
1620	bool first_gp_fqs;
1621	int gf;
1622	unsigned long j;
1623	int ret;
1624	struct rcu_node *rnp = rcu_get_root();
1625
1626	first_gp_fqs = true;
1627	j = READ_ONCE(jiffies_till_first_fqs);
 
 
1628	ret = 0;
1629	for (;;) {
1630		if (!ret) {
1631			rcu_state.jiffies_force_qs = jiffies + j;
 
 
 
 
 
 
 
 
 
 
1632			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1633				   jiffies + (j ? 3 * j : 2));
1634		}
1635		trace_rcu_grace_period(rcu_state.name,
1636				       READ_ONCE(rcu_state.gp_seq),
1637				       TPS("fqswait"));
1638		rcu_state.gp_state = RCU_GP_WAIT_FQS;
1639		ret = swait_event_idle_timeout_exclusive(
1640				rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1641		rcu_state.gp_state = RCU_GP_DOING_FQS;
 
1642		/* Locking provides needed memory barriers. */
1643		/* If grace period done, leave loop. */
 
 
 
 
 
 
 
 
1644		if (!READ_ONCE(rnp->qsmask) &&
1645		    !rcu_preempt_blocked_readers_cgp(rnp))
1646			break;
1647		/* If time for quiescent-state forcing, do it. */
1648		if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
1649		    (gf & RCU_GP_FLAG_FQS)) {
1650			trace_rcu_grace_period(rcu_state.name,
1651					       READ_ONCE(rcu_state.gp_seq),
1652					       TPS("fqsstart"));
1653			rcu_gp_fqs(first_gp_fqs);
1654			first_gp_fqs = false;
1655			trace_rcu_grace_period(rcu_state.name,
1656					       READ_ONCE(rcu_state.gp_seq),
 
 
 
1657					       TPS("fqsend"));
1658			cond_resched_tasks_rcu_qs();
1659			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1660			ret = 0; /* Force full wait till next FQS. */
1661			j = READ_ONCE(jiffies_till_next_fqs);
1662		} else {
1663			/* Deal with stray signal. */
1664			cond_resched_tasks_rcu_qs();
1665			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1666			WARN_ON(signal_pending(current));
1667			trace_rcu_grace_period(rcu_state.name,
1668					       READ_ONCE(rcu_state.gp_seq),
1669					       TPS("fqswaitsig"));
1670			ret = 1; /* Keep old FQS timing. */
1671			j = jiffies;
1672			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1673				j = 1;
1674			else
1675				j = rcu_state.jiffies_force_qs - j;
 
1676		}
1677	}
1678}
1679
1680/*
1681 * Clean up after the old grace period.
1682 */
1683static void rcu_gp_cleanup(void)
1684{
1685	unsigned long gp_duration;
1686	bool needgp = false;
 
1687	unsigned long new_gp_seq;
1688	bool offloaded;
1689	struct rcu_data *rdp;
1690	struct rcu_node *rnp = rcu_get_root();
1691	struct swait_queue_head *sq;
1692
1693	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1694	raw_spin_lock_irq_rcu_node(rnp);
1695	rcu_state.gp_end = jiffies;
1696	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1697	if (gp_duration > rcu_state.gp_max)
1698		rcu_state.gp_max = gp_duration;
1699
1700	/*
1701	 * We know the grace period is complete, but to everyone else
1702	 * it appears to still be ongoing.  But it is also the case
1703	 * that to everyone else it looks like there is nothing that
1704	 * they can do to advance the grace period.  It is therefore
1705	 * safe for us to drop the lock in order to mark the grace
1706	 * period as completed in all of the rcu_node structures.
1707	 */
 
1708	raw_spin_unlock_irq_rcu_node(rnp);
1709
1710	/*
1711	 * Propagate new ->gp_seq value to rcu_node structures so that
1712	 * other CPUs don't have to wait until the start of the next grace
1713	 * period to process their callbacks.  This also avoids some nasty
1714	 * RCU grace-period initialization races by forcing the end of
1715	 * the current grace period to be completely recorded in all of
1716	 * the rcu_node structures before the beginning of the next grace
1717	 * period is recorded in any of the rcu_node structures.
1718	 */
1719	new_gp_seq = rcu_state.gp_seq;
1720	rcu_seq_end(&new_gp_seq);
1721	rcu_for_each_node_breadth_first(rnp) {
1722		raw_spin_lock_irq_rcu_node(rnp);
1723		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1724			dump_blkd_tasks(rnp, 10);
1725		WARN_ON_ONCE(rnp->qsmask);
1726		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
 
 
1727		rdp = this_cpu_ptr(&rcu_data);
1728		if (rnp == rdp->mynode)
1729			needgp = __note_gp_changes(rnp, rdp) || needgp;
1730		/* smp_mb() provided by prior unlock-lock pair. */
1731		needgp = rcu_future_gp_cleanup(rnp) || needgp;
 
 
 
 
 
 
1732		sq = rcu_nocb_gp_get(rnp);
1733		raw_spin_unlock_irq_rcu_node(rnp);
1734		rcu_nocb_gp_cleanup(sq);
1735		cond_resched_tasks_rcu_qs();
1736		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1737		rcu_gp_slow(gp_cleanup_delay);
1738	}
1739	rnp = rcu_get_root();
1740	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1741
1742	/* Declare grace period done, trace first to use old GP number. */
1743	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1744	rcu_seq_end(&rcu_state.gp_seq);
1745	rcu_state.gp_state = RCU_GP_IDLE;
 
1746	/* Check for GP requests since above loop. */
1747	rdp = this_cpu_ptr(&rcu_data);
1748	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1749		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1750				  TPS("CleanupMore"));
1751		needgp = true;
1752	}
1753	/* Advance CBs to reduce false positives below. */
1754	offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1755		    rcu_segcblist_is_offloaded(&rdp->cblist);
1756	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
 
 
 
 
 
 
 
 
 
 
 
1757		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1758		rcu_state.gp_req_activity = jiffies;
1759		trace_rcu_grace_period(rcu_state.name,
1760				       READ_ONCE(rcu_state.gp_seq),
1761				       TPS("newreq"));
1762	} else {
1763		WRITE_ONCE(rcu_state.gp_flags,
1764			   rcu_state.gp_flags & RCU_GP_FLAG_INIT);
 
 
 
 
 
 
1765	}
1766	raw_spin_unlock_irq_rcu_node(rnp);
 
 
 
 
1767}
1768
1769/*
1770 * Body of kthread that handles grace periods.
1771 */
1772static int __noreturn rcu_gp_kthread(void *unused)
1773{
1774	rcu_bind_gp_kthread();
1775	for (;;) {
1776
1777		/* Handle grace-period start. */
1778		for (;;) {
1779			trace_rcu_grace_period(rcu_state.name,
1780					       READ_ONCE(rcu_state.gp_seq),
1781					       TPS("reqwait"));
1782			rcu_state.gp_state = RCU_GP_WAIT_GPS;
1783			swait_event_idle_exclusive(rcu_state.gp_wq,
1784					 READ_ONCE(rcu_state.gp_flags) &
1785					 RCU_GP_FLAG_INIT);
1786			rcu_state.gp_state = RCU_GP_DONE_GPS;
 
1787			/* Locking provides needed memory barrier. */
1788			if (rcu_gp_init())
1789				break;
1790			cond_resched_tasks_rcu_qs();
1791			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1792			WARN_ON(signal_pending(current));
1793			trace_rcu_grace_period(rcu_state.name,
1794					       READ_ONCE(rcu_state.gp_seq),
1795					       TPS("reqwaitsig"));
1796		}
1797
1798		/* Handle quiescent-state forcing. */
1799		rcu_gp_fqs_loop();
1800
1801		/* Handle grace-period end. */
1802		rcu_state.gp_state = RCU_GP_CLEANUP;
1803		rcu_gp_cleanup();
1804		rcu_state.gp_state = RCU_GP_CLEANED;
1805	}
1806}
1807
1808/*
1809 * Report a full set of quiescent states to the rcu_state data structure.
1810 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1811 * another grace period is required.  Whether we wake the grace-period
1812 * kthread or it awakens itself for the next round of quiescent-state
1813 * forcing, that kthread will clean up after the just-completed grace
1814 * period.  Note that the caller must hold rnp->lock, which is released
1815 * before return.
1816 */
1817static void rcu_report_qs_rsp(unsigned long flags)
1818	__releases(rcu_get_root()->lock)
1819{
1820	raw_lockdep_assert_held_rcu_node(rcu_get_root());
1821	WARN_ON_ONCE(!rcu_gp_in_progress());
1822	WRITE_ONCE(rcu_state.gp_flags,
1823		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1824	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1825	rcu_gp_kthread_wake();
1826}
1827
1828/*
1829 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1830 * Allows quiescent states for a group of CPUs to be reported at one go
1831 * to the specified rcu_node structure, though all the CPUs in the group
1832 * must be represented by the same rcu_node structure (which need not be a
1833 * leaf rcu_node structure, though it often will be).  The gps parameter
1834 * is the grace-period snapshot, which means that the quiescent states
1835 * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
1836 * must be held upon entry, and it is released before return.
1837 *
1838 * As a special case, if mask is zero, the bit-already-cleared check is
1839 * disabled.  This allows propagating quiescent state due to resumed tasks
1840 * during grace-period initialization.
1841 */
1842static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1843			      unsigned long gps, unsigned long flags)
1844	__releases(rnp->lock)
1845{
1846	unsigned long oldmask = 0;
1847	struct rcu_node *rnp_c;
1848
1849	raw_lockdep_assert_held_rcu_node(rnp);
1850
1851	/* Walk up the rcu_node hierarchy. */
1852	for (;;) {
1853		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1854
1855			/*
1856			 * Our bit has already been cleared, or the
1857			 * relevant grace period is already over, so done.
1858			 */
1859			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1860			return;
1861		}
1862		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1863		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1864			     rcu_preempt_blocked_readers_cgp(rnp));
1865		rnp->qsmask &= ~mask;
1866		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1867						 mask, rnp->qsmask, rnp->level,
1868						 rnp->grplo, rnp->grphi,
1869						 !!rnp->gp_tasks);
1870		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1871
1872			/* Other bits still set at this level, so done. */
1873			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1874			return;
1875		}
1876		rnp->completedqs = rnp->gp_seq;
1877		mask = rnp->grpmask;
1878		if (rnp->parent == NULL) {
1879
1880			/* No more levels.  Exit loop holding root lock. */
1881
1882			break;
1883		}
1884		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1885		rnp_c = rnp;
1886		rnp = rnp->parent;
1887		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1888		oldmask = rnp_c->qsmask;
1889	}
1890
1891	/*
1892	 * Get here if we are the last CPU to pass through a quiescent
1893	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1894	 * to clean up and start the next grace period if one is needed.
1895	 */
1896	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1897}
1898
1899/*
1900 * Record a quiescent state for all tasks that were previously queued
1901 * on the specified rcu_node structure and that were blocking the current
1902 * RCU grace period.  The caller must hold the corresponding rnp->lock with
1903 * irqs disabled, and this lock is released upon return, but irqs remain
1904 * disabled.
1905 */
1906static void __maybe_unused
1907rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1908	__releases(rnp->lock)
1909{
1910	unsigned long gps;
1911	unsigned long mask;
1912	struct rcu_node *rnp_p;
1913
1914	raw_lockdep_assert_held_rcu_node(rnp);
1915	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPTION)) ||
1916	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1917	    rnp->qsmask != 0) {
1918		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1919		return;  /* Still need more quiescent states! */
1920	}
1921
1922	rnp->completedqs = rnp->gp_seq;
1923	rnp_p = rnp->parent;
1924	if (rnp_p == NULL) {
1925		/*
1926		 * Only one rcu_node structure in the tree, so don't
1927		 * try to report up to its nonexistent parent!
1928		 */
1929		rcu_report_qs_rsp(flags);
1930		return;
1931	}
1932
1933	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1934	gps = rnp->gp_seq;
1935	mask = rnp->grpmask;
1936	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
1937	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
1938	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1939}
1940
1941/*
1942 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1943 * structure.  This must be called from the specified CPU.
1944 */
1945static void
1946rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
1947{
1948	unsigned long flags;
1949	unsigned long mask;
1950	bool needwake = false;
1951	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1952			       rcu_segcblist_is_offloaded(&rdp->cblist);
1953	struct rcu_node *rnp;
1954
 
1955	rnp = rdp->mynode;
1956	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1957	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
1958	    rdp->gpwrap) {
1959
1960		/*
1961		 * The grace period in which this quiescent state was
1962		 * recorded has ended, so don't report it upwards.
1963		 * We will instead need a new quiescent state that lies
1964		 * within the current grace period.
1965		 */
1966		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
1967		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1968		return;
1969	}
1970	mask = rdp->grpmask;
1971	rdp->core_needs_qs = false;
1972	if ((rnp->qsmask & mask) == 0) {
1973		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1974	} else {
1975		/*
1976		 * This GP can't end until cpu checks in, so all of our
1977		 * callbacks can be processed during the next GP.
 
 
1978		 */
1979		if (!offloaded)
1980			needwake = rcu_accelerate_cbs(rnp, rdp);
 
 
 
 
 
 
 
1981
 
1982		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1983		/* ^^^ Released rnp->lock */
1984		if (needwake)
1985			rcu_gp_kthread_wake();
 
 
 
 
 
 
1986	}
1987}
1988
1989/*
1990 * Check to see if there is a new grace period of which this CPU
1991 * is not yet aware, and if so, set up local rcu_data state for it.
1992 * Otherwise, see if this CPU has just passed through its first
1993 * quiescent state for this grace period, and record that fact if so.
1994 */
1995static void
1996rcu_check_quiescent_state(struct rcu_data *rdp)
1997{
1998	/* Check for grace-period ends and beginnings. */
1999	note_gp_changes(rdp);
2000
2001	/*
2002	 * Does this CPU still need to do its part for current grace period?
2003	 * If no, return and let the other CPUs do their part as well.
2004	 */
2005	if (!rdp->core_needs_qs)
2006		return;
2007
2008	/*
2009	 * Was there a quiescent state since the beginning of the grace
2010	 * period? If no, then exit and wait for the next call.
2011	 */
2012	if (rdp->cpu_no_qs.b.norm)
2013		return;
2014
2015	/*
2016	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2017	 * judge of that).
2018	 */
2019	rcu_report_qs_rdp(rdp->cpu, rdp);
2020}
2021
2022/*
2023 * Near the end of the offline process.  Trace the fact that this CPU
2024 * is going offline.
2025 */
2026int rcutree_dying_cpu(unsigned int cpu)
2027{
2028	bool blkd;
2029	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2030	struct rcu_node *rnp = rdp->mynode;
2031
2032	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2033		return 0;
2034
2035	blkd = !!(rnp->qsmask & rdp->grpmask);
2036	trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
2037			       blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2038	return 0;
2039}
2040
2041/*
2042 * All CPUs for the specified rcu_node structure have gone offline,
2043 * and all tasks that were preempted within an RCU read-side critical
2044 * section while running on one of those CPUs have since exited their RCU
2045 * read-side critical section.  Some other CPU is reporting this fact with
2046 * the specified rcu_node structure's ->lock held and interrupts disabled.
2047 * This function therefore goes up the tree of rcu_node structures,
2048 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2049 * the leaf rcu_node structure's ->qsmaskinit field has already been
2050 * updated.
2051 *
2052 * This function does check that the specified rcu_node structure has
2053 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2054 * prematurely.  That said, invoking it after the fact will cost you
2055 * a needless lock acquisition.  So once it has done its work, don't
2056 * invoke it again.
2057 */
2058static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2059{
2060	long mask;
2061	struct rcu_node *rnp = rnp_leaf;
2062
2063	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2064	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2065	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2066	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2067		return;
2068	for (;;) {
2069		mask = rnp->grpmask;
2070		rnp = rnp->parent;
2071		if (!rnp)
2072			break;
2073		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2074		rnp->qsmaskinit &= ~mask;
2075		/* Between grace periods, so better already be zero! */
2076		WARN_ON_ONCE(rnp->qsmask);
2077		if (rnp->qsmaskinit) {
2078			raw_spin_unlock_rcu_node(rnp);
2079			/* irqs remain disabled. */
2080			return;
2081		}
2082		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2083	}
2084}
2085
2086/*
2087 * The CPU has been completely removed, and some other CPU is reporting
2088 * this fact from process context.  Do the remainder of the cleanup.
2089 * There can only be one CPU hotplug operation at a time, so no need for
2090 * explicit locking.
2091 */
2092int rcutree_dead_cpu(unsigned int cpu)
2093{
2094	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2095	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2096
2097	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2098		return 0;
2099
 
2100	/* Adjust any no-longer-needed kthreads. */
2101	rcu_boost_kthread_setaffinity(rnp, -1);
2102	/* Do any needed no-CB deferred wakeups from this CPU. */
2103	do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2104	return 0;
2105}
2106
2107/*
2108 * Invoke any RCU callbacks that have made it to the end of their grace
2109 * period.  Thottle as specified by rdp->blimit.
2110 */
2111static void rcu_do_batch(struct rcu_data *rdp)
2112{
 
 
2113	unsigned long flags;
2114	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2115			       rcu_segcblist_is_offloaded(&rdp->cblist);
2116	struct rcu_head *rhp;
2117	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2118	long bl, count;
2119	long pending, tlimit = 0;
2120
2121	/* If no callbacks are ready, just return. */
2122	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2123		trace_rcu_batch_start(rcu_state.name,
2124				      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2125				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2126		trace_rcu_batch_end(rcu_state.name, 0,
2127				    !rcu_segcblist_empty(&rdp->cblist),
2128				    need_resched(), is_idle_task(current),
2129				    rcu_is_callbacks_kthread());
2130		return;
2131	}
2132
2133	/*
2134	 * Extract the list of ready callbacks, disabling to prevent
2135	 * races with call_rcu() from interrupt handlers.  Leave the
2136	 * callback counts, as rcu_barrier() needs to be conservative.
2137	 */
2138	local_irq_save(flags);
2139	rcu_nocb_lock(rdp);
2140	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2141	pending = rcu_segcblist_n_cbs(&rdp->cblist);
2142	bl = max(rdp->blimit, pending >> rcu_divisor);
2143	if (unlikely(bl > 100))
2144		tlimit = local_clock() + rcu_resched_ns;
 
 
 
 
 
 
2145	trace_rcu_batch_start(rcu_state.name,
2146			      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2147			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2148	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2149	if (offloaded)
2150		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
 
 
2151	rcu_nocb_unlock_irqrestore(rdp, flags);
2152
2153	/* Invoke callbacks. */
 
2154	rhp = rcu_cblist_dequeue(&rcl);
 
2155	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
 
 
 
2156		debug_rcu_head_unqueue(rhp);
2157		if (__rcu_reclaim(rcu_state.name, rhp))
2158			rcu_cblist_dequeued_lazy(&rcl);
 
 
 
 
 
 
 
 
2159		/*
2160		 * Stop only if limit reached and CPU has something to do.
2161		 * Note: The rcl structure counts down from zero.
2162		 */
2163		if (-rcl.len >= bl && !offloaded &&
2164		    (need_resched() ||
2165		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2166			break;
2167		if (unlikely(tlimit)) {
2168			/* only call local_clock() every 32 callbacks */
2169			if (likely((-rcl.len & 31) || local_clock() < tlimit))
2170				continue;
2171			/* Exceeded the time limit, so leave. */
2172			break;
2173		}
2174		if (offloaded) {
2175			WARN_ON_ONCE(in_serving_softirq());
 
 
2176			local_bh_enable();
2177			lockdep_assert_irqs_enabled();
2178			cond_resched_tasks_rcu_qs();
2179			lockdep_assert_irqs_enabled();
2180			local_bh_disable();
2181		}
2182	}
2183
2184	local_irq_save(flags);
2185	rcu_nocb_lock(rdp);
2186	count = -rcl.len;
2187	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2188			    is_idle_task(current), rcu_is_callbacks_kthread());
2189
2190	/* Update counts and requeue any remaining callbacks. */
2191	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2192	smp_mb(); /* List handling before counting for rcu_barrier(). */
2193	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2194
2195	/* Reinstate batch limit if we have worked down the excess. */
2196	count = rcu_segcblist_n_cbs(&rdp->cblist);
2197	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2198		rdp->blimit = blimit;
2199
2200	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2201	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2202		rdp->qlen_last_fqs_check = 0;
2203		rdp->n_force_qs_snap = rcu_state.n_force_qs;
2204	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2205		rdp->qlen_last_fqs_check = count;
2206
2207	/*
2208	 * The following usually indicates a double call_rcu().  To track
2209	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2210	 */
2211	WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist));
 
2212	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2213		     count != 0 && rcu_segcblist_empty(&rdp->cblist));
 
 
2214
2215	rcu_nocb_unlock_irqrestore(rdp, flags);
2216
2217	/* Re-invoke RCU core processing if there are callbacks remaining. */
2218	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2219		invoke_rcu_core();
2220}
2221
2222/*
2223 * This function is invoked from each scheduling-clock interrupt,
2224 * and checks to see if this CPU is in a non-context-switch quiescent
2225 * state, for example, user mode or idle loop.  It also schedules RCU
2226 * core processing.  If the current grace period has gone on too long,
2227 * it will ask the scheduler to manufacture a context switch for the sole
2228 * purpose of providing a providing the needed quiescent state.
2229 */
2230void rcu_sched_clock_irq(int user)
2231{
 
 
 
 
 
 
 
2232	trace_rcu_utilization(TPS("Start scheduler-tick"));
 
2233	raw_cpu_inc(rcu_data.ticks_this_gp);
2234	/* The load-acquire pairs with the store-release setting to true. */
2235	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2236		/* Idle and userspace execution already are quiescent states. */
2237		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2238			set_tsk_need_resched(current);
2239			set_preempt_need_resched();
2240		}
2241		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2242	}
2243	rcu_flavor_sched_clock_irq(user);
2244	if (rcu_pending())
2245		invoke_rcu_core();
 
 
 
2246
2247	trace_rcu_utilization(TPS("End scheduler-tick"));
2248}
2249
2250/*
2251 * Scan the leaf rcu_node structures.  For each structure on which all
2252 * CPUs have reported a quiescent state and on which there are tasks
2253 * blocking the current grace period, initiate RCU priority boosting.
2254 * Otherwise, invoke the specified function to check dyntick state for
2255 * each CPU that has not yet reported a quiescent state.
2256 */
2257static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2258{
2259	int cpu;
2260	unsigned long flags;
2261	unsigned long mask;
 
2262	struct rcu_node *rnp;
2263
 
 
2264	rcu_for_each_leaf_node(rnp) {
2265		cond_resched_tasks_rcu_qs();
2266		mask = 0;
2267		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 
2268		if (rnp->qsmask == 0) {
2269			if (!IS_ENABLED(CONFIG_PREEMPTION) ||
2270			    rcu_preempt_blocked_readers_cgp(rnp)) {
2271				/*
2272				 * No point in scanning bits because they
2273				 * are all zero.  But we might need to
2274				 * priority-boost blocked readers.
2275				 */
2276				rcu_initiate_boost(rnp, flags);
2277				/* rcu_initiate_boost() releases rnp->lock */
2278				continue;
2279			}
2280			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2281			continue;
2282		}
2283		for_each_leaf_node_possible_cpu(rnp, cpu) {
2284			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2285			if ((rnp->qsmask & bit) != 0) {
2286				if (f(per_cpu_ptr(&rcu_data, cpu)))
2287					mask |= bit;
2288			}
2289		}
2290		if (mask != 0) {
2291			/* Idle/offline CPUs, report (releases rnp->lock). */
2292			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2293		} else {
2294			/* Nothing to do here, so just drop the lock. */
2295			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2296		}
2297	}
2298}
2299
2300/*
2301 * Force quiescent states on reluctant CPUs, and also detect which
2302 * CPUs are in dyntick-idle mode.
2303 */
2304void rcu_force_quiescent_state(void)
2305{
2306	unsigned long flags;
2307	bool ret;
2308	struct rcu_node *rnp;
2309	struct rcu_node *rnp_old = NULL;
2310
2311	/* Funnel through hierarchy to reduce memory contention. */
2312	rnp = __this_cpu_read(rcu_data.mynode);
2313	for (; rnp != NULL; rnp = rnp->parent) {
2314		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2315		      !raw_spin_trylock(&rnp->fqslock);
2316		if (rnp_old != NULL)
2317			raw_spin_unlock(&rnp_old->fqslock);
2318		if (ret)
2319			return;
2320		rnp_old = rnp;
2321	}
2322	/* rnp_old == rcu_get_root(), rnp == NULL. */
2323
2324	/* Reached the root of the rcu_node tree, acquire lock. */
2325	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2326	raw_spin_unlock(&rnp_old->fqslock);
2327	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2328		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2329		return;  /* Someone beat us to it. */
2330	}
2331	WRITE_ONCE(rcu_state.gp_flags,
2332		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2333	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2334	rcu_gp_kthread_wake();
2335}
2336EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2337
 
 
 
 
 
 
 
 
2338/* Perform RCU core processing work for the current CPU.  */
2339static __latent_entropy void rcu_core(void)
2340{
2341	unsigned long flags;
2342	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2343	struct rcu_node *rnp = rdp->mynode;
2344	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2345			       rcu_segcblist_is_offloaded(&rdp->cblist);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2346
2347	if (cpu_is_offline(smp_processor_id()))
2348		return;
2349	trace_rcu_utilization(TPS("Start RCU core"));
2350	WARN_ON_ONCE(!rdp->beenonline);
2351
2352	/* Report any deferred quiescent states if preemption enabled. */
2353	if (!(preempt_count() & PREEMPT_MASK)) {
2354		rcu_preempt_deferred_qs(current);
2355	} else if (rcu_preempt_need_deferred_qs(current)) {
2356		set_tsk_need_resched(current);
2357		set_preempt_need_resched();
2358	}
2359
2360	/* Update RCU state based on any recent quiescent states. */
2361	rcu_check_quiescent_state(rdp);
2362
2363	/* No grace period and unregistered callbacks? */
2364	if (!rcu_gp_in_progress() &&
2365	    rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) {
2366		local_irq_save(flags);
2367		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2368			rcu_accelerate_cbs_unlocked(rnp, rdp);
2369		local_irq_restore(flags);
2370	}
2371
2372	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2373
2374	/* If there are callbacks ready, invoke them. */
2375	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2376	    likely(READ_ONCE(rcu_scheduler_fully_active)))
2377		rcu_do_batch(rdp);
 
 
 
 
2378
2379	/* Do any needed deferred wakeups of rcuo kthreads. */
2380	do_nocb_deferred_wakeup(rdp);
2381	trace_rcu_utilization(TPS("End RCU core"));
 
 
 
 
2382}
2383
2384static void rcu_core_si(struct softirq_action *h)
2385{
2386	rcu_core();
2387}
2388
2389static void rcu_wake_cond(struct task_struct *t, int status)
2390{
2391	/*
2392	 * If the thread is yielding, only wake it when this
2393	 * is invoked from idle
2394	 */
2395	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2396		wake_up_process(t);
2397}
2398
2399static void invoke_rcu_core_kthread(void)
2400{
2401	struct task_struct *t;
2402	unsigned long flags;
2403
2404	local_irq_save(flags);
2405	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2406	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2407	if (t != NULL && t != current)
2408		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2409	local_irq_restore(flags);
2410}
2411
2412/*
2413 * Wake up this CPU's rcuc kthread to do RCU core processing.
2414 */
2415static void invoke_rcu_core(void)
2416{
2417	if (!cpu_online(smp_processor_id()))
2418		return;
2419	if (use_softirq)
2420		raise_softirq(RCU_SOFTIRQ);
2421	else
2422		invoke_rcu_core_kthread();
2423}
2424
2425static void rcu_cpu_kthread_park(unsigned int cpu)
2426{
2427	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2428}
2429
2430static int rcu_cpu_kthread_should_run(unsigned int cpu)
2431{
2432	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2433}
2434
2435/*
2436 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2437 * the RCU softirq used in configurations of RCU that do not support RCU
2438 * priority boosting.
2439 */
2440static void rcu_cpu_kthread(unsigned int cpu)
2441{
2442	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2443	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
 
2444	int spincnt;
2445
 
2446	for (spincnt = 0; spincnt < 10; spincnt++) {
2447		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
2448		local_bh_disable();
2449		*statusp = RCU_KTHREAD_RUNNING;
2450		local_irq_disable();
2451		work = *workp;
2452		*workp = 0;
2453		local_irq_enable();
2454		if (work)
2455			rcu_core();
2456		local_bh_enable();
2457		if (*workp == 0) {
2458			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2459			*statusp = RCU_KTHREAD_WAITING;
2460			return;
2461		}
2462	}
2463	*statusp = RCU_KTHREAD_YIELDING;
2464	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2465	schedule_timeout_interruptible(2);
2466	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2467	*statusp = RCU_KTHREAD_WAITING;
 
2468}
2469
2470static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2471	.store			= &rcu_data.rcu_cpu_kthread_task,
2472	.thread_should_run	= rcu_cpu_kthread_should_run,
2473	.thread_fn		= rcu_cpu_kthread,
2474	.thread_comm		= "rcuc/%u",
2475	.setup			= rcu_cpu_kthread_setup,
2476	.park			= rcu_cpu_kthread_park,
2477};
2478
2479/*
2480 * Spawn per-CPU RCU core processing kthreads.
2481 */
2482static int __init rcu_spawn_core_kthreads(void)
2483{
2484	int cpu;
2485
2486	for_each_possible_cpu(cpu)
2487		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2488	if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2489		return 0;
2490	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2491		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2492	return 0;
2493}
2494early_initcall(rcu_spawn_core_kthreads);
2495
2496/*
2497 * Handle any core-RCU processing required by a call_rcu() invocation.
2498 */
2499static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2500			    unsigned long flags)
2501{
2502	/*
2503	 * If called from an extended quiescent state, invoke the RCU
2504	 * core in order to force a re-evaluation of RCU's idleness.
2505	 */
2506	if (!rcu_is_watching())
2507		invoke_rcu_core();
2508
2509	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2510	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2511		return;
2512
2513	/*
2514	 * Force the grace period if too many callbacks or too long waiting.
2515	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2516	 * if some other CPU has recently done so.  Also, don't bother
2517	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2518	 * is the only one waiting for a grace period to complete.
2519	 */
2520	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2521		     rdp->qlen_last_fqs_check + qhimark)) {
2522
2523		/* Are we ignoring a completed grace period? */
2524		note_gp_changes(rdp);
2525
2526		/* Start a new grace period if one not already started. */
2527		if (!rcu_gp_in_progress()) {
2528			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2529		} else {
2530			/* Give the grace period a kick. */
2531			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2532			if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2533			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2534				rcu_force_quiescent_state();
2535			rdp->n_force_qs_snap = rcu_state.n_force_qs;
2536			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2537		}
2538	}
2539}
2540
2541/*
2542 * RCU callback function to leak a callback.
2543 */
2544static void rcu_leak_callback(struct rcu_head *rhp)
2545{
2546}
2547
2548/*
2549 * Helper function for call_rcu() and friends.  The cpu argument will
2550 * normally be -1, indicating "currently running CPU".  It may specify
2551 * a CPU only if that CPU is a no-CBs CPU.  Currently, only rcu_barrier()
2552 * is expected to specify a CPU.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2553 */
 
 
 
 
 
 
 
 
 
 
 
 
 
2554static void
2555__call_rcu(struct rcu_head *head, rcu_callback_t func, bool lazy)
2556{
 
2557	unsigned long flags;
2558	struct rcu_data *rdp;
2559	bool was_alldone;
2560
2561	/* Misaligned rcu_head! */
2562	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2563
2564	if (debug_rcu_head_queue(head)) {
2565		/*
2566		 * Probable double call_rcu(), so leak the callback.
2567		 * Use rcu:rcu_callback trace event to find the previous
2568		 * time callback was passed to __call_rcu().
2569		 */
2570		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2571			  head, head->func);
 
 
2572		WRITE_ONCE(head->func, rcu_leak_callback);
2573		return;
2574	}
2575	head->func = func;
2576	head->next = NULL;
 
2577	local_irq_save(flags);
2578	rdp = this_cpu_ptr(&rcu_data);
2579
2580	/* Add the callback to our list. */
2581	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2582		// This can trigger due to call_rcu() from offline CPU:
2583		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2584		WARN_ON_ONCE(!rcu_is_watching());
2585		// Very early boot, before rcu_init().  Initialize if needed
2586		// and then drop through to queue the callback.
2587		if (rcu_segcblist_empty(&rdp->cblist))
2588			rcu_segcblist_init(&rdp->cblist);
2589	}
2590	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
 
 
2591		return; // Enqueued onto ->nocb_bypass, so just leave.
2592	/* If we get here, rcu_nocb_try_bypass() acquired ->nocb_lock. */
2593	rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
2594	if (__is_kfree_rcu_offset((unsigned long)func))
2595		trace_rcu_kfree_callback(rcu_state.name, head,
2596					 (unsigned long)func,
2597					 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2598					 rcu_segcblist_n_cbs(&rdp->cblist));
2599	else
2600		trace_rcu_callback(rcu_state.name, head,
2601				   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2602				   rcu_segcblist_n_cbs(&rdp->cblist));
2603
 
 
2604	/* Go handle any RCU core processing required. */
2605	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2606	    unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) {
2607		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2608	} else {
2609		__call_rcu_core(rdp, head, flags);
2610		local_irq_restore(flags);
2611	}
2612}
2613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2614/**
2615 * call_rcu() - Queue an RCU callback for invocation after a grace period.
 
 
 
 
2616 * @head: structure to be used for queueing the RCU updates.
2617 * @func: actual callback function to be invoked after the grace period
2618 *
2619 * The callback function will be invoked some time after a full grace
2620 * period elapses, in other words after all pre-existing RCU read-side
2621 * critical sections have completed.  However, the callback function
2622 * might well execute concurrently with RCU read-side critical sections
2623 * that started after call_rcu() was invoked.  RCU read-side critical
2624 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2625 * may be nested.  In addition, regions of code across which interrupts,
2626 * preemption, or softirqs have been disabled also serve as RCU read-side
2627 * critical sections.  This includes hardware interrupt handlers, softirq
2628 * handlers, and NMI handlers.
 
 
2629 *
2630 * Note that all CPUs must agree that the grace period extended beyond
2631 * all pre-existing RCU read-side critical section.  On systems with more
2632 * than one CPU, this means that when "func()" is invoked, each CPU is
2633 * guaranteed to have executed a full memory barrier since the end of its
2634 * last RCU read-side critical section whose beginning preceded the call
2635 * to call_rcu().  It also means that each CPU executing an RCU read-side
2636 * critical section that continues beyond the start of "func()" must have
2637 * executed a memory barrier after the call_rcu() but before the beginning
2638 * of that RCU read-side critical section.  Note that these guarantees
2639 * include CPUs that are offline, idle, or executing in user mode, as
2640 * well as CPUs that are executing in the kernel.
2641 *
2642 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2643 * resulting RCU callback function "func()", then both CPU A and CPU B are
2644 * guaranteed to execute a full memory barrier during the time interval
2645 * between the call to call_rcu() and the invocation of "func()" -- even
2646 * if CPU A and CPU B are the same CPU (but again only if the system has
2647 * more than one CPU).
 
 
 
2648 */
2649void call_rcu(struct rcu_head *head, rcu_callback_t func)
2650{
2651	__call_rcu(head, func, 0);
2652}
2653EXPORT_SYMBOL_GPL(call_rcu);
2654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2655/*
2656 * Queue an RCU callback for lazy invocation after a grace period.
2657 * This will likely be later named something like "call_rcu_lazy()",
2658 * but this change will require some way of tagging the lazy RCU
2659 * callbacks in the list of pending callbacks. Until then, this
2660 * function may only be called from __kfree_rcu().
2661 */
2662void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2663{
2664	__call_rcu(head, func, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2665}
2666EXPORT_SYMBOL_GPL(kfree_call_rcu);
2667
2668/*
2669 * During early boot, any blocking grace-period wait automatically
2670 * implies a grace period.  Later on, this is never the case for PREEMPT.
2671 *
2672 * Howevr, because a context switch is a grace period for !PREEMPT, any
2673 * blocking grace-period wait automatically implies a grace period if
2674 * there is only one CPU online at any point time during execution of
2675 * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
2676 * occasionally incorrectly indicate that there are multiple CPUs online
2677 * when there was in fact only one the whole time, as this just adds some
2678 * overhead: RCU still operates correctly.
2679 */
2680static int rcu_blocking_is_gp(void)
2681{
2682	int ret;
2683
2684	if (IS_ENABLED(CONFIG_PREEMPTION))
2685		return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
2686	might_sleep();  /* Check for RCU read-side critical section. */
2687	preempt_disable();
2688	ret = num_online_cpus() <= 1;
2689	preempt_enable();
2690	return ret;
2691}
2692
2693/**
2694 * synchronize_rcu - wait until a grace period has elapsed.
2695 *
2696 * Control will return to the caller some time after a full grace
2697 * period has elapsed, in other words after all currently executing RCU
2698 * read-side critical sections have completed.  Note, however, that
2699 * upon return from synchronize_rcu(), the caller might well be executing
2700 * concurrently with new RCU read-side critical sections that began while
2701 * synchronize_rcu() was waiting.  RCU read-side critical sections are
2702 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
2703 * In addition, regions of code across which interrupts, preemption, or
2704 * softirqs have been disabled also serve as RCU read-side critical
 
 
2705 * sections.  This includes hardware interrupt handlers, softirq handlers,
2706 * and NMI handlers.
2707 *
2708 * Note that this guarantee implies further memory-ordering guarantees.
2709 * On systems with more than one CPU, when synchronize_rcu() returns,
2710 * each CPU is guaranteed to have executed a full memory barrier since
2711 * the end of its last RCU read-side critical section whose beginning
2712 * preceded the call to synchronize_rcu().  In addition, each CPU having
2713 * an RCU read-side critical section that extends beyond the return from
2714 * synchronize_rcu() is guaranteed to have executed a full memory barrier
2715 * after the beginning of synchronize_rcu() and before the beginning of
2716 * that RCU read-side critical section.  Note that these guarantees include
2717 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2718 * that are executing in the kernel.
2719 *
2720 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
2721 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2722 * to have executed a full memory barrier during the execution of
2723 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
2724 * again only if the system has more than one CPU).
 
 
 
2725 */
2726void synchronize_rcu(void)
2727{
 
 
 
2728	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
2729			 lock_is_held(&rcu_lock_map) ||
2730			 lock_is_held(&rcu_sched_lock_map),
2731			 "Illegal synchronize_rcu() in RCU read-side critical section");
2732	if (rcu_blocking_is_gp())
 
 
 
 
2733		return;
2734	if (rcu_gp_is_expedited())
2735		synchronize_rcu_expedited();
2736	else
2737		wait_rcu_gp(call_rcu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2738}
2739EXPORT_SYMBOL_GPL(synchronize_rcu);
2740
2741/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2742 * get_state_synchronize_rcu - Snapshot current RCU state
2743 *
2744 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2745 * to determine whether or not a full grace period has elapsed in the
2746 * meantime.
2747 */
2748unsigned long get_state_synchronize_rcu(void)
2749{
2750	/*
2751	 * Any prior manipulation of RCU-protected data must happen
2752	 * before the load from ->gp_seq.
2753	 */
2754	smp_mb();  /* ^^^ */
2755	return rcu_seq_snap(&rcu_state.gp_seq);
2756}
2757EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2758
2759/**
2760 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2761 *
2762 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2763 *
2764 * If a full RCU grace period has elapsed since the earlier call to
2765 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
2766 * synchronize_rcu() to wait for a full grace period.
2767 *
2768 * Yes, this function does not take counter wrap into account.  But
2769 * counter wrap is harmless.  If the counter wraps, we have waited for
2770 * more than 2 billion grace periods (and way more on a 64-bit system!),
2771 * so waiting for one additional grace period should be just fine.
 
 
 
 
 
2772 */
2773void cond_synchronize_rcu(unsigned long oldstate)
2774{
2775	if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
2776		synchronize_rcu();
2777	else
2778		smp_mb(); /* Ensure GP ends before subsequent accesses. */
2779}
2780EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2782/*
2783 * Check to see if there is any immediate RCU-related work to be done by
2784 * the current CPU, returning 1 if so and zero otherwise.  The checks are
2785 * in order of increasing expense: checks that can be carried out against
2786 * CPU-local state are performed first.  However, we must check for CPU
2787 * stalls first, else we might not get a chance.
2788 */
2789static int rcu_pending(void)
2790{
 
2791	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2792	struct rcu_node *rnp = rdp->mynode;
2793
 
 
2794	/* Check for CPU stalls, if enabled. */
2795	check_cpu_stall(rdp);
2796
2797	/* Does this CPU need a deferred NOCB wakeup? */
2798	if (rcu_nocb_need_deferred_wakeup(rdp))
2799		return 1;
2800
2801	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
2802	if (rcu_nohz_full_cpu())
2803		return 0;
2804
2805	/* Is the RCU core waiting for a quiescent state from this CPU? */
2806	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
 
2807		return 1;
2808
2809	/* Does this CPU have callbacks ready to invoke? */
2810	if (rcu_segcblist_ready_cbs(&rdp->cblist))
 
2811		return 1;
2812
2813	/* Has RCU gone idle with this CPU needing another grace period? */
2814	if (!rcu_gp_in_progress() &&
2815	    rcu_segcblist_is_enabled(&rdp->cblist) &&
2816	    (!IS_ENABLED(CONFIG_RCU_NOCB_CPU) ||
2817	     !rcu_segcblist_is_offloaded(&rdp->cblist)) &&
2818	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2819		return 1;
2820
2821	/* Have RCU grace period completed or started?  */
2822	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
2823	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
2824		return 1;
2825
2826	/* nothing to do */
2827	return 0;
2828}
2829
2830/*
2831 * Helper function for rcu_barrier() tracing.  If tracing is disabled,
2832 * the compiler is expected to optimize this away.
2833 */
2834static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
2835{
2836	trace_rcu_barrier(rcu_state.name, s, cpu,
2837			  atomic_read(&rcu_state.barrier_cpu_count), done);
2838}
2839
2840/*
2841 * RCU callback function for rcu_barrier().  If we are last, wake
2842 * up the task executing rcu_barrier().
 
 
 
 
 
 
2843 */
2844static void rcu_barrier_callback(struct rcu_head *rhp)
2845{
 
 
2846	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
2847		rcu_barrier_trace(TPS("LastCB"), -1,
2848				   rcu_state.barrier_sequence);
2849		complete(&rcu_state.barrier_completion);
2850	} else {
2851		rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
2852	}
2853}
2854
2855/*
2856 * Called with preemption disabled, and from cross-cpu IRQ context.
2857 */
2858static void rcu_barrier_func(void *unused)
2859{
2860	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
 
 
 
2861
 
 
 
2862	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
2863	rdp->barrier_head.func = rcu_barrier_callback;
2864	debug_rcu_head_queue(&rdp->barrier_head);
2865	rcu_nocb_lock(rdp);
2866	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
2867	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
 
 
 
 
 
 
 
2868		atomic_inc(&rcu_state.barrier_cpu_count);
2869	} else {
2870		debug_rcu_head_unqueue(&rdp->barrier_head);
2871		rcu_barrier_trace(TPS("IRQNQ"), -1,
2872				   rcu_state.barrier_sequence);
2873	}
2874	rcu_nocb_unlock(rdp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2875}
2876
2877/**
2878 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
2879 *
2880 * Note that this primitive does not necessarily wait for an RCU grace period
2881 * to complete.  For example, if there are no RCU callbacks queued anywhere
2882 * in the system, then rcu_barrier() is within its rights to return
2883 * immediately, without waiting for anything, much less an RCU grace period.
2884 */
2885void rcu_barrier(void)
2886{
2887	int cpu;
 
 
2888	struct rcu_data *rdp;
2889	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
2890
2891	rcu_barrier_trace(TPS("Begin"), -1, s);
2892
2893	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2894	mutex_lock(&rcu_state.barrier_mutex);
2895
2896	/* Did someone else do our work for us? */
2897	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
2898		rcu_barrier_trace(TPS("EarlyExit"), -1,
2899				   rcu_state.barrier_sequence);
2900		smp_mb(); /* caller's subsequent code after above check. */
2901		mutex_unlock(&rcu_state.barrier_mutex);
2902		return;
2903	}
2904
2905	/* Mark the start of the barrier operation. */
 
2906	rcu_seq_start(&rcu_state.barrier_sequence);
 
2907	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
2908
2909	/*
2910	 * Initialize the count to one rather than to zero in order to
2911	 * avoid a too-soon return to zero in case of a short grace period
2912	 * (or preemption of this task).  Exclude CPU-hotplug operations
2913	 * to ensure that no offline CPU has callbacks queued.
 
2914	 */
2915	init_completion(&rcu_state.barrier_completion);
2916	atomic_set(&rcu_state.barrier_cpu_count, 1);
2917	get_online_cpus();
2918
2919	/*
2920	 * Force each CPU with callbacks to register a new callback.
2921	 * When that callback is invoked, we will know that all of the
2922	 * corresponding CPU's preceding callbacks have been invoked.
2923	 */
2924	for_each_possible_cpu(cpu) {
2925		rdp = per_cpu_ptr(&rcu_data, cpu);
2926		if (!cpu_online(cpu) &&
2927		    !rcu_segcblist_is_offloaded(&rdp->cblist))
2928			continue;
2929		if (rcu_segcblist_n_cbs(&rdp->cblist)) {
2930			rcu_barrier_trace(TPS("OnlineQ"), cpu,
2931					   rcu_state.barrier_sequence);
2932			smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
2933		} else {
2934			rcu_barrier_trace(TPS("OnlineNQ"), cpu,
2935					   rcu_state.barrier_sequence);
 
 
 
 
 
 
 
 
 
 
 
2936		}
 
 
2937	}
2938	put_online_cpus();
2939
2940	/*
2941	 * Now that we have an rcu_barrier_callback() callback on each
2942	 * CPU, and thus each counted, remove the initial count.
2943	 */
2944	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
2945		complete(&rcu_state.barrier_completion);
2946
2947	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2948	wait_for_completion(&rcu_state.barrier_completion);
2949
2950	/* Mark the end of the barrier operation. */
2951	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
2952	rcu_seq_end(&rcu_state.barrier_sequence);
 
 
 
 
 
 
2953
2954	/* Other rcu_barrier() invocations can now safely proceed. */
2955	mutex_unlock(&rcu_state.barrier_mutex);
2956}
2957EXPORT_SYMBOL_GPL(rcu_barrier);
2958
2959/*
2960 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
2961 * first CPU in a given leaf rcu_node structure coming online.  The caller
2962 * must hold the corresponding leaf rcu_node ->lock with interrrupts
2963 * disabled.
2964 */
2965static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
2966{
2967	long mask;
2968	long oldmask;
2969	struct rcu_node *rnp = rnp_leaf;
2970
2971	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2972	WARN_ON_ONCE(rnp->wait_blkd_tasks);
2973	for (;;) {
2974		mask = rnp->grpmask;
2975		rnp = rnp->parent;
2976		if (rnp == NULL)
2977			return;
2978		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
2979		oldmask = rnp->qsmaskinit;
2980		rnp->qsmaskinit |= mask;
2981		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
2982		if (oldmask)
2983			return;
2984	}
2985}
2986
2987/*
2988 * Do boot-time initialization of a CPU's per-CPU RCU data.
2989 */
2990static void __init
2991rcu_boot_init_percpu_data(int cpu)
2992{
 
2993	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2994
2995	/* Set up local state, ensuring consistent view of global state. */
2996	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
2997	WARN_ON_ONCE(rdp->dynticks_nesting != 1);
2998	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
 
 
2999	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3000	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3001	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3002	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
 
3003	rdp->cpu = cpu;
3004	rcu_boot_init_nocb_percpu_data(rdp);
3005}
3006
3007/*
3008 * Invoked early in the CPU-online process, when pretty much all services
3009 * are available.  The incoming CPU is not present.
3010 *
3011 * Initializes a CPU's per-CPU RCU data.  Note that only one online or
3012 * offline event can be happening at a given time.  Note also that we can
3013 * accept some slop in the rsp->gp_seq access due to the fact that this
3014 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
3015 * And any offloaded callbacks are being numbered elsewhere.
3016 */
3017int rcutree_prepare_cpu(unsigned int cpu)
3018{
3019	unsigned long flags;
 
3020	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3021	struct rcu_node *rnp = rcu_get_root();
3022
3023	/* Set up local state, ensuring consistent view of global state. */
3024	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3025	rdp->qlen_last_fqs_check = 0;
3026	rdp->n_force_qs_snap = rcu_state.n_force_qs;
3027	rdp->blimit = blimit;
3028	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3029	    !rcu_segcblist_is_offloaded(&rdp->cblist))
3030		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3031	rdp->dynticks_nesting = 1;	/* CPU not up, no tearing. */
3032	rcu_dynticks_eqs_online();
3033	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3034
3035	/*
 
 
 
 
 
 
 
3036	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3037	 * propagation up the rcu_node tree will happen at the beginning
3038	 * of the next grace period.
3039	 */
3040	rnp = rdp->mynode;
3041	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3042	rdp->beenonline = true;	 /* We have now been online. */
3043	rdp->gp_seq = rnp->gp_seq;
3044	rdp->gp_seq_needed = rnp->gp_seq;
3045	rdp->cpu_no_qs.b.norm = true;
3046	rdp->core_needs_qs = false;
3047	rdp->rcu_iw_pending = false;
3048	rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
 
3049	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
3050	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3051	rcu_prepare_kthreads(cpu);
3052	rcu_spawn_cpu_nocb_kthread(cpu);
 
3053
3054	return 0;
3055}
3056
3057/*
3058 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3059 */
3060static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3061{
3062	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3063
3064	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3065}
3066
3067/*
3068 * Near the end of the CPU-online process.  Pretty much all services
3069 * enabled, and the CPU is now very much alive.
3070 */
3071int rcutree_online_cpu(unsigned int cpu)
3072{
3073	unsigned long flags;
3074	struct rcu_data *rdp;
3075	struct rcu_node *rnp;
3076
3077	rdp = per_cpu_ptr(&rcu_data, cpu);
3078	rnp = rdp->mynode;
3079	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3080	rnp->ffmask |= rdp->grpmask;
3081	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3082	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3083		return 0; /* Too early in boot for scheduler work. */
3084	sync_sched_exp_online_cleanup(cpu);
3085	rcutree_affinity_setting(cpu, -1);
 
 
 
3086	return 0;
3087}
3088
3089/*
3090 * Near the beginning of the process.  The CPU is still very much alive
3091 * with pretty much all services enabled.
3092 */
3093int rcutree_offline_cpu(unsigned int cpu)
3094{
3095	unsigned long flags;
3096	struct rcu_data *rdp;
3097	struct rcu_node *rnp;
3098
3099	rdp = per_cpu_ptr(&rcu_data, cpu);
3100	rnp = rdp->mynode;
3101	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3102	rnp->ffmask &= ~rdp->grpmask;
3103	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3104
3105	rcutree_affinity_setting(cpu, cpu);
 
 
 
3106	return 0;
3107}
3108
3109static DEFINE_PER_CPU(int, rcu_cpu_started);
3110
3111/*
3112 * Mark the specified CPU as being online so that subsequent grace periods
3113 * (both expedited and normal) will wait on it.  Note that this means that
3114 * incoming CPUs are not allowed to use RCU read-side critical sections
3115 * until this function is called.  Failing to observe this restriction
3116 * will result in lockdep splats.
3117 *
3118 * Note that this function is special in that it is invoked directly
3119 * from the incoming CPU rather than from the cpuhp_step mechanism.
3120 * This is because this function must be invoked at a precise location.
3121 */
3122void rcu_cpu_starting(unsigned int cpu)
3123{
3124	unsigned long flags;
3125	unsigned long mask;
3126	int nbits;
3127	unsigned long oldmask;
3128	struct rcu_data *rdp;
3129	struct rcu_node *rnp;
 
3130
3131	if (per_cpu(rcu_cpu_started, cpu))
 
3132		return;
 
3133
3134	per_cpu(rcu_cpu_started, cpu) = 1;
3135
3136	rdp = per_cpu_ptr(&rcu_data, cpu);
3137	rnp = rdp->mynode;
3138	mask = rdp->grpmask;
3139	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3140	rnp->qsmaskinitnext |= mask;
3141	oldmask = rnp->expmaskinitnext;
 
 
 
 
 
3142	rnp->expmaskinitnext |= mask;
3143	oldmask ^= rnp->expmaskinitnext;
3144	nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3145	/* Allow lockless access for expedited grace periods. */
3146	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
 
3147	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
3148	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3149	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3150	if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
 
 
 
 
 
 
 
3151		/* Report QS -after- changing ->qsmaskinitnext! */
3152		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3153	} else {
3154		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3155	}
 
 
3156	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3157}
3158
3159#ifdef CONFIG_HOTPLUG_CPU
3160/*
3161 * The outgoing function has no further need of RCU, so remove it from
3162 * the rcu_node tree's ->qsmaskinitnext bit masks.
3163 *
3164 * Note that this function is special in that it is invoked directly
3165 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3166 * This is because this function must be invoked at a precise location.
3167 */
3168void rcu_report_dead(unsigned int cpu)
3169{
3170	unsigned long flags;
3171	unsigned long mask;
3172	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3173	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3174
3175	/* QS for any half-done expedited grace period. */
3176	preempt_disable();
3177	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
3178	preempt_enable();
3179	rcu_preempt_deferred_qs(current);
3180
3181	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3182	mask = rdp->grpmask;
3183	raw_spin_lock(&rcu_state.ofl_lock);
 
3184	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3185	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3186	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3187	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3188		/* Report quiescent state -before- changing ->qsmaskinitnext! */
 
3189		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3190		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3191	}
3192	rnp->qsmaskinitnext &= ~mask;
3193	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3194	raw_spin_unlock(&rcu_state.ofl_lock);
 
3195
3196	per_cpu(rcu_cpu_started, cpu) = 0;
3197}
3198
 
3199/*
3200 * The outgoing CPU has just passed through the dying-idle state, and we
3201 * are being invoked from the CPU that was IPIed to continue the offline
3202 * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
3203 */
3204void rcutree_migrate_callbacks(int cpu)
3205{
3206	unsigned long flags;
3207	struct rcu_data *my_rdp;
3208	struct rcu_node *my_rnp;
3209	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3210	bool needwake;
3211
3212	if (rcu_segcblist_is_offloaded(&rdp->cblist) ||
3213	    rcu_segcblist_empty(&rdp->cblist))
3214		return;  /* No callbacks to migrate. */
3215
3216	local_irq_save(flags);
 
 
3217	my_rdp = this_cpu_ptr(&rcu_data);
3218	my_rnp = my_rdp->mynode;
3219	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
3220	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
3221	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
3222	/* Leverage recent GPs and set GP for new callbacks. */
3223	needwake = rcu_advance_cbs(my_rnp, rdp) ||
3224		   rcu_advance_cbs(my_rnp, my_rdp);
3225	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
 
3226	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
3227	rcu_segcblist_disable(&rdp->cblist);
3228	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3229		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
3230	if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) {
3231		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
3232		__call_rcu_nocb_wake(my_rdp, true, flags);
3233	} else {
3234		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
3235		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
3236	}
3237	if (needwake)
3238		rcu_gp_kthread_wake();
3239	lockdep_assert_irqs_enabled();
3240	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3241		  !rcu_segcblist_empty(&rdp->cblist),
3242		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3243		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3244		  rcu_segcblist_first_cb(&rdp->cblist));
3245}
3246#endif
3247
3248/*
3249 * On non-huge systems, use expedited RCU grace periods to make suspend
3250 * and hibernation run faster.
3251 */
3252static int rcu_pm_notify(struct notifier_block *self,
3253			 unsigned long action, void *hcpu)
3254{
3255	switch (action) {
3256	case PM_HIBERNATION_PREPARE:
3257	case PM_SUSPEND_PREPARE:
3258		rcu_expedite_gp();
3259		break;
3260	case PM_POST_HIBERNATION:
3261	case PM_POST_SUSPEND:
3262		rcu_unexpedite_gp();
3263		break;
3264	default:
3265		break;
3266	}
3267	return NOTIFY_OK;
3268}
3269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3270/*
3271 * Spawn the kthreads that handle RCU's grace periods.
3272 */
3273static int __init rcu_spawn_gp_kthread(void)
3274{
3275	unsigned long flags;
3276	int kthread_prio_in = kthread_prio;
3277	struct rcu_node *rnp;
3278	struct sched_param sp;
3279	struct task_struct *t;
3280
3281	/* Force priority into range. */
3282	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3283	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3284		kthread_prio = 2;
3285	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3286		kthread_prio = 1;
3287	else if (kthread_prio < 0)
3288		kthread_prio = 0;
3289	else if (kthread_prio > 99)
3290		kthread_prio = 99;
3291
3292	if (kthread_prio != kthread_prio_in)
3293		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3294			 kthread_prio, kthread_prio_in);
3295
3296	rcu_scheduler_fully_active = 1;
3297	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
3298	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
3299		return 0;
3300	if (kthread_prio) {
3301		sp.sched_priority = kthread_prio;
3302		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3303	}
3304	rnp = rcu_get_root();
3305	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3306	rcu_state.gp_kthread = t;
 
 
 
3307	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3308	wake_up_process(t);
3309	rcu_spawn_nocb_kthreads();
3310	rcu_spawn_boost_kthreads();
 
 
 
 
 
 
 
 
 
3311	return 0;
3312}
3313early_initcall(rcu_spawn_gp_kthread);
3314
3315/*
3316 * This function is invoked towards the end of the scheduler's
3317 * initialization process.  Before this is called, the idle task might
3318 * contain synchronous grace-period primitives (during which time, this idle
3319 * task is booting the system, and such primitives are no-ops).  After this
3320 * function is called, any synchronous grace-period primitives are run as
3321 * expedited, with the requesting task driving the grace period forward.
3322 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3323 * runtime RCU functionality.
3324 */
3325void rcu_scheduler_starting(void)
3326{
 
 
 
3327	WARN_ON(num_online_cpus() != 1);
3328	WARN_ON(nr_context_switches() > 0);
3329	rcu_test_sync_prims();
 
 
 
 
 
 
 
 
3330	rcu_scheduler_active = RCU_SCHEDULER_INIT;
3331	rcu_test_sync_prims();
3332}
3333
3334/*
3335 * Helper function for rcu_init() that initializes the rcu_state structure.
3336 */
3337static void __init rcu_init_one(void)
3338{
3339	static const char * const buf[] = RCU_NODE_NAME_INIT;
3340	static const char * const fqs[] = RCU_FQS_NAME_INIT;
3341	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3342	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3343
3344	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
3345	int cpustride = 1;
3346	int i;
3347	int j;
3348	struct rcu_node *rnp;
3349
3350	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
3351
3352	/* Silence gcc 4.8 false positive about array index out of range. */
3353	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3354		panic("rcu_init_one: rcu_num_lvls out of range");
3355
3356	/* Initialize the level-tracking arrays. */
3357
3358	for (i = 1; i < rcu_num_lvls; i++)
3359		rcu_state.level[i] =
3360			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
3361	rcu_init_levelspread(levelspread, num_rcu_lvl);
3362
3363	/* Initialize the elements themselves, starting from the leaves. */
3364
3365	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3366		cpustride *= levelspread[i];
3367		rnp = rcu_state.level[i];
3368		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
3369			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3370			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
3371						   &rcu_node_class[i], buf[i]);
3372			raw_spin_lock_init(&rnp->fqslock);
3373			lockdep_set_class_and_name(&rnp->fqslock,
3374						   &rcu_fqs_class[i], fqs[i]);
3375			rnp->gp_seq = rcu_state.gp_seq;
3376			rnp->gp_seq_needed = rcu_state.gp_seq;
3377			rnp->completedqs = rcu_state.gp_seq;
3378			rnp->qsmask = 0;
3379			rnp->qsmaskinit = 0;
3380			rnp->grplo = j * cpustride;
3381			rnp->grphi = (j + 1) * cpustride - 1;
3382			if (rnp->grphi >= nr_cpu_ids)
3383				rnp->grphi = nr_cpu_ids - 1;
3384			if (i == 0) {
3385				rnp->grpnum = 0;
3386				rnp->grpmask = 0;
3387				rnp->parent = NULL;
3388			} else {
3389				rnp->grpnum = j % levelspread[i - 1];
3390				rnp->grpmask = BIT(rnp->grpnum);
3391				rnp->parent = rcu_state.level[i - 1] +
3392					      j / levelspread[i - 1];
3393			}
3394			rnp->level = i;
3395			INIT_LIST_HEAD(&rnp->blkd_tasks);
3396			rcu_init_one_nocb(rnp);
3397			init_waitqueue_head(&rnp->exp_wq[0]);
3398			init_waitqueue_head(&rnp->exp_wq[1]);
3399			init_waitqueue_head(&rnp->exp_wq[2]);
3400			init_waitqueue_head(&rnp->exp_wq[3]);
3401			spin_lock_init(&rnp->exp_lock);
 
 
 
 
3402		}
3403	}
3404
3405	init_swait_queue_head(&rcu_state.gp_wq);
3406	init_swait_queue_head(&rcu_state.expedited_wq);
3407	rnp = rcu_first_leaf_node();
3408	for_each_possible_cpu(i) {
3409		while (i > rnp->grphi)
3410			rnp++;
3411		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
3412		rcu_boot_init_percpu_data(i);
3413	}
3414}
3415
3416/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3417 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3418 * replace the definitions in tree.h because those are needed to size
3419 * the ->node array in the rcu_state structure.
3420 */
3421static void __init rcu_init_geometry(void)
3422{
3423	ulong d;
3424	int i;
 
3425	int rcu_capacity[RCU_NUM_LVLS];
 
 
 
 
 
 
 
 
 
 
 
 
 
3426
3427	/*
3428	 * Initialize any unspecified boot parameters.
3429	 * The default values of jiffies_till_first_fqs and
3430	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3431	 * value, which is a function of HZ, then adding one for each
3432	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3433	 */
3434	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3435	if (jiffies_till_first_fqs == ULONG_MAX)
3436		jiffies_till_first_fqs = d;
3437	if (jiffies_till_next_fqs == ULONG_MAX)
3438		jiffies_till_next_fqs = d;
3439	adjust_jiffies_till_sched_qs();
3440
3441	/* If the compile-time values are accurate, just leave. */
3442	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
3443	    nr_cpu_ids == NR_CPUS)
3444		return;
3445	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
3446		rcu_fanout_leaf, nr_cpu_ids);
3447
3448	/*
3449	 * The boot-time rcu_fanout_leaf parameter must be at least two
3450	 * and cannot exceed the number of bits in the rcu_node masks.
3451	 * Complain and fall back to the compile-time values if this
3452	 * limit is exceeded.
3453	 */
3454	if (rcu_fanout_leaf < 2 ||
3455	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
3456		rcu_fanout_leaf = RCU_FANOUT_LEAF;
3457		WARN_ON(1);
3458		return;
3459	}
3460
3461	/*
3462	 * Compute number of nodes that can be handled an rcu_node tree
3463	 * with the given number of levels.
3464	 */
3465	rcu_capacity[0] = rcu_fanout_leaf;
3466	for (i = 1; i < RCU_NUM_LVLS; i++)
3467		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
3468
3469	/*
3470	 * The tree must be able to accommodate the configured number of CPUs.
3471	 * If this limit is exceeded, fall back to the compile-time values.
3472	 */
3473	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
3474		rcu_fanout_leaf = RCU_FANOUT_LEAF;
3475		WARN_ON(1);
3476		return;
3477	}
3478
3479	/* Calculate the number of levels in the tree. */
3480	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
3481	}
3482	rcu_num_lvls = i + 1;
3483
3484	/* Calculate the number of rcu_nodes at each level of the tree. */
3485	for (i = 0; i < rcu_num_lvls; i++) {
3486		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
3487		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
3488	}
3489
3490	/* Calculate the total number of rcu_node structures. */
3491	rcu_num_nodes = 0;
3492	for (i = 0; i < rcu_num_lvls; i++)
3493		rcu_num_nodes += num_rcu_lvl[i];
3494}
3495
3496/*
3497 * Dump out the structure of the rcu_node combining tree associated
3498 * with the rcu_state structure.
3499 */
3500static void __init rcu_dump_rcu_node_tree(void)
3501{
3502	int level = 0;
3503	struct rcu_node *rnp;
3504
3505	pr_info("rcu_node tree layout dump\n");
3506	pr_info(" ");
3507	rcu_for_each_node_breadth_first(rnp) {
3508		if (rnp->level != level) {
3509			pr_cont("\n");
3510			pr_info(" ");
3511			level = rnp->level;
3512		}
3513		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
3514	}
3515	pr_cont("\n");
3516}
3517
3518struct workqueue_struct *rcu_gp_wq;
3519struct workqueue_struct *rcu_par_gp_wq;
3520
3521void __init rcu_init(void)
3522{
3523	int cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3524
3525	rcu_early_boot_tests();
3526
 
3527	rcu_bootup_announce();
 
3528	rcu_init_geometry();
3529	rcu_init_one();
3530	if (dump_tree)
3531		rcu_dump_rcu_node_tree();
3532	if (use_softirq)
3533		open_softirq(RCU_SOFTIRQ, rcu_core_si);
3534
3535	/*
3536	 * We don't need protection against CPU-hotplug here because
3537	 * this is called early in boot, before either interrupts
3538	 * or the scheduler are operational.
3539	 */
3540	pm_notifier(rcu_pm_notify, 0);
3541	for_each_online_cpu(cpu) {
3542		rcutree_prepare_cpu(cpu);
3543		rcu_cpu_starting(cpu);
3544		rcutree_online_cpu(cpu);
3545	}
3546
3547	/* Create workqueue for expedited GPs and for Tree SRCU. */
3548	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
3549	WARN_ON(!rcu_gp_wq);
3550	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
3551	WARN_ON(!rcu_par_gp_wq);
3552	srcu_init();
 
 
 
 
 
 
 
 
 
3553}
3554
3555#include "tree_stall.h"
3556#include "tree_exp.h"
 
3557#include "tree_plugin.h"
v6.2
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
   4 *
   5 * Copyright IBM Corporation, 2008
   6 *
   7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
   8 *	    Manfred Spraul <manfred@colorfullife.com>
   9 *	    Paul E. McKenney <paulmck@linux.ibm.com>
  10 *
  11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
  12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  13 *
  14 * For detailed explanation of Read-Copy Update mechanism see -
  15 *	Documentation/RCU
  16 */
  17
  18#define pr_fmt(fmt) "rcu: " fmt
  19
  20#include <linux/types.h>
  21#include <linux/kernel.h>
  22#include <linux/init.h>
  23#include <linux/spinlock.h>
  24#include <linux/smp.h>
  25#include <linux/rcupdate_wait.h>
  26#include <linux/interrupt.h>
  27#include <linux/sched.h>
  28#include <linux/sched/debug.h>
  29#include <linux/nmi.h>
  30#include <linux/atomic.h>
  31#include <linux/bitops.h>
  32#include <linux/export.h>
  33#include <linux/completion.h>
  34#include <linux/moduleparam.h>
  35#include <linux/panic.h>
  36#include <linux/panic_notifier.h>
  37#include <linux/percpu.h>
  38#include <linux/notifier.h>
  39#include <linux/cpu.h>
  40#include <linux/mutex.h>
  41#include <linux/time.h>
  42#include <linux/kernel_stat.h>
  43#include <linux/wait.h>
  44#include <linux/kthread.h>
  45#include <uapi/linux/sched/types.h>
  46#include <linux/prefetch.h>
  47#include <linux/delay.h>
 
  48#include <linux/random.h>
  49#include <linux/trace_events.h>
  50#include <linux/suspend.h>
  51#include <linux/ftrace.h>
  52#include <linux/tick.h>
  53#include <linux/sysrq.h>
  54#include <linux/kprobes.h>
  55#include <linux/gfp.h>
  56#include <linux/oom.h>
  57#include <linux/smpboot.h>
  58#include <linux/jiffies.h>
  59#include <linux/slab.h>
  60#include <linux/sched/isolation.h>
  61#include <linux/sched/clock.h>
  62#include <linux/vmalloc.h>
  63#include <linux/mm.h>
  64#include <linux/kasan.h>
  65#include <linux/context_tracking.h>
  66#include "../time/tick-internal.h"
  67
  68#include "tree.h"
  69#include "rcu.h"
  70
  71#ifdef MODULE_PARAM_PREFIX
  72#undef MODULE_PARAM_PREFIX
  73#endif
  74#define MODULE_PARAM_PREFIX "rcutree."
  75
  76/* Data structures. */
  77
 
 
 
 
 
 
 
 
 
 
  78static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
  79	.gpwrap = true,
  80#ifdef CONFIG_RCU_NOCB_CPU
  81	.cblist.flags = SEGCBLIST_RCU_CORE,
  82#endif
  83};
  84static struct rcu_state rcu_state = {
  85	.level = { &rcu_state.node[0] },
  86	.gp_state = RCU_GP_IDLE,
  87	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
  88	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
  89	.barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
  90	.name = RCU_NAME,
  91	.abbr = RCU_ABBR,
  92	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
  93	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
  94	.ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
  95};
  96
  97/* Dump rcu_node combining tree at boot to verify correct setup. */
  98static bool dump_tree;
  99module_param(dump_tree, bool, 0444);
 100/* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
 101static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
 102#ifndef CONFIG_PREEMPT_RT
 103module_param(use_softirq, bool, 0444);
 104#endif
 105/* Control rcu_node-tree auto-balancing at boot time. */
 106static bool rcu_fanout_exact;
 107module_param(rcu_fanout_exact, bool, 0444);
 108/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 109static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 110module_param(rcu_fanout_leaf, int, 0444);
 111int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 112/* Number of rcu_nodes at specified level. */
 113int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 114int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 115
 116/*
 117 * The rcu_scheduler_active variable is initialized to the value
 118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 119 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 120 * RCU can assume that there is but one task, allowing RCU to (for example)
 121 * optimize synchronize_rcu() to a simple barrier().  When this variable
 122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 123 * to detect real grace periods.  This variable is also used to suppress
 124 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 126 * is fully initialized, including all of its kthreads having been spawned.
 127 */
 128int rcu_scheduler_active __read_mostly;
 129EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 130
 131/*
 132 * The rcu_scheduler_fully_active variable transitions from zero to one
 133 * during the early_initcall() processing, which is after the scheduler
 134 * is capable of creating new tasks.  So RCU processing (for example,
 135 * creating tasks for RCU priority boosting) must be delayed until after
 136 * rcu_scheduler_fully_active transitions from zero to one.  We also
 137 * currently delay invocation of any RCU callbacks until after this point.
 138 *
 139 * It might later prove better for people registering RCU callbacks during
 140 * early boot to take responsibility for these callbacks, but one step at
 141 * a time.
 142 */
 143static int rcu_scheduler_fully_active __read_mostly;
 144
 145static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
 146			      unsigned long gps, unsigned long flags);
 147static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 148static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 149static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 150static void invoke_rcu_core(void);
 151static void rcu_report_exp_rdp(struct rcu_data *rdp);
 152static void sync_sched_exp_online_cleanup(int cpu);
 153static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
 154static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
 155
 156/*
 157 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
 158 * real-time priority(enabling/disabling) is controlled by
 159 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
 160 */
 161static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 162module_param(kthread_prio, int, 0444);
 163
 164/* Delay in jiffies for grace-period initialization delays, debug only. */
 165
 166static int gp_preinit_delay;
 167module_param(gp_preinit_delay, int, 0444);
 168static int gp_init_delay;
 169module_param(gp_init_delay, int, 0444);
 170static int gp_cleanup_delay;
 171module_param(gp_cleanup_delay, int, 0444);
 172
 173// Add delay to rcu_read_unlock() for strict grace periods.
 174static int rcu_unlock_delay;
 175#ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
 176module_param(rcu_unlock_delay, int, 0444);
 177#endif
 178
 179/*
 180 * This rcu parameter is runtime-read-only. It reflects
 181 * a minimum allowed number of objects which can be cached
 182 * per-CPU. Object size is equal to one page. This value
 183 * can be changed at boot time.
 184 */
 185static int rcu_min_cached_objs = 5;
 186module_param(rcu_min_cached_objs, int, 0444);
 187
 188// A page shrinker can ask for pages to be freed to make them
 189// available for other parts of the system. This usually happens
 190// under low memory conditions, and in that case we should also
 191// defer page-cache filling for a short time period.
 192//
 193// The default value is 5 seconds, which is long enough to reduce
 194// interference with the shrinker while it asks other systems to
 195// drain their caches.
 196static int rcu_delay_page_cache_fill_msec = 5000;
 197module_param(rcu_delay_page_cache_fill_msec, int, 0444);
 198
 199/* Retrieve RCU kthreads priority for rcutorture */
 200int rcu_get_gp_kthreads_prio(void)
 201{
 202	return kthread_prio;
 203}
 204EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
 205
 206/*
 207 * Number of grace periods between delays, normalized by the duration of
 208 * the delay.  The longer the delay, the more the grace periods between
 209 * each delay.  The reason for this normalization is that it means that,
 210 * for non-zero delays, the overall slowdown of grace periods is constant
 211 * regardless of the duration of the delay.  This arrangement balances
 212 * the need for long delays to increase some race probabilities with the
 213 * need for fast grace periods to increase other race probabilities.
 214 */
 215#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */
 216
 217/*
 218 * Compute the mask of online CPUs for the specified rcu_node structure.
 219 * This will not be stable unless the rcu_node structure's ->lock is
 220 * held, but the bit corresponding to the current CPU will be stable
 221 * in most contexts.
 222 */
 223static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
 224{
 225	return READ_ONCE(rnp->qsmaskinitnext);
 226}
 227
 228/*
 229 * Is the CPU corresponding to the specified rcu_data structure online
 230 * from RCU's perspective?  This perspective is given by that structure's
 231 * ->qsmaskinitnext field rather than by the global cpu_online_mask.
 232 */
 233static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
 234{
 235	return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
 236}
 237
 238/*
 239 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 240 * permit this function to be invoked without holding the root rcu_node
 241 * structure's ->lock, but of course results can be subject to change.
 242 */
 243static int rcu_gp_in_progress(void)
 244{
 245	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
 246}
 247
 248/*
 249 * Return the number of callbacks queued on the specified CPU.
 250 * Handles both the nocbs and normal cases.
 251 */
 252static long rcu_get_n_cbs_cpu(int cpu)
 253{
 254	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 255
 256	if (rcu_segcblist_is_enabled(&rdp->cblist))
 257		return rcu_segcblist_n_cbs(&rdp->cblist);
 258	return 0;
 259}
 260
 261void rcu_softirq_qs(void)
 262{
 263	rcu_qs();
 264	rcu_preempt_deferred_qs(current);
 265	rcu_tasks_qs(current, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 266}
 267
 268/*
 269 * Reset the current CPU's ->dynticks counter to indicate that the
 270 * newly onlined CPU is no longer in an extended quiescent state.
 271 * This will either leave the counter unchanged, or increment it
 272 * to the next non-quiescent value.
 273 *
 274 * The non-atomic test/increment sequence works because the upper bits
 275 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 276 * or when the corresponding CPU is offline.
 277 */
 278static void rcu_dynticks_eqs_online(void)
 279{
 280	if (ct_dynticks() & RCU_DYNTICKS_IDX)
 
 
 281		return;
 282	ct_state_inc(RCU_DYNTICKS_IDX);
 
 
 
 
 
 
 
 
 
 
 
 
 283}
 284
 285/*
 286 * Snapshot the ->dynticks counter with full ordering so as to allow
 287 * stable comparison of this counter with past and future snapshots.
 288 */
 289static int rcu_dynticks_snap(int cpu)
 290{
 291	smp_mb();  // Fundamental RCU ordering guarantee.
 292	return ct_dynticks_cpu_acquire(cpu);
 
 293}
 294
 295/*
 296 * Return true if the snapshot returned from rcu_dynticks_snap()
 297 * indicates that RCU is in an extended quiescent state.
 298 */
 299static bool rcu_dynticks_in_eqs(int snap)
 300{
 301	return !(snap & RCU_DYNTICKS_IDX);
 302}
 303
 304/*
 305 * Return true if the CPU corresponding to the specified rcu_data
 306 * structure has spent some time in an extended quiescent state since
 307 * rcu_dynticks_snap() returned the specified snapshot.
 308 */
 309static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
 310{
 311	return snap != rcu_dynticks_snap(rdp->cpu);
 312}
 313
 314/*
 315 * Return true if the referenced integer is zero while the specified
 316 * CPU remains within a single extended quiescent state.
 
 
 
 317 */
 318bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
 319{
 320	int snap;
 
 
 321
 322	// If not quiescent, force back to earlier extended quiescent state.
 323	snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX;
 324	smp_rmb(); // Order ->dynticks and *vp reads.
 325	if (READ_ONCE(*vp))
 326		return false;  // Non-zero, so report failure;
 327	smp_rmb(); // Order *vp read and ->dynticks re-read.
 328
 329	// If still in the same extended quiescent state, we are good!
 330	return snap == ct_dynticks_cpu(cpu);
 331}
 332
 333/*
 334 * Let the RCU core know that this CPU has gone through the scheduler,
 335 * which is a quiescent state.  This is called when the need for a
 336 * quiescent state is urgent, so we burn an atomic operation and full
 337 * memory barriers to let the RCU core know about it, regardless of what
 338 * this CPU might (or might not) do in the near future.
 339 *
 340 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 341 *
 342 * The caller must have disabled interrupts and must not be idle.
 343 */
 344notrace void rcu_momentary_dyntick_idle(void)
 345{
 346	int seq;
 347
 348	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
 349	seq = ct_state_inc(2 * RCU_DYNTICKS_IDX);
 
 350	/* It is illegal to call this from idle state. */
 351	WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX));
 352	rcu_preempt_deferred_qs(current);
 353}
 354EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
 355
 356/**
 357 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
 358 *
 359 * If the current CPU is idle and running at a first-level (not nested)
 360 * interrupt, or directly, from idle, return true.
 361 *
 362 * The caller must have at least disabled IRQs.
 363 */
 364static int rcu_is_cpu_rrupt_from_idle(void)
 365{
 366	long nesting;
 367
 368	/*
 369	 * Usually called from the tick; but also used from smp_function_call()
 370	 * for expedited grace periods. This latter can result in running from
 371	 * the idle task, instead of an actual IPI.
 372	 */
 373	lockdep_assert_irqs_disabled();
 374
 375	/* Check for counter underflows */
 376	RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0,
 377			 "RCU dynticks_nesting counter underflow!");
 378	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0,
 379			 "RCU dynticks_nmi_nesting counter underflow/zero!");
 380
 381	/* Are we at first interrupt nesting level? */
 382	nesting = ct_dynticks_nmi_nesting();
 383	if (nesting > 1)
 384		return false;
 385
 386	/*
 387	 * If we're not in an interrupt, we must be in the idle task!
 388	 */
 389	WARN_ON_ONCE(!nesting && !is_idle_task(current));
 390
 391	/* Does CPU appear to be idle from an RCU standpoint? */
 392	return ct_dynticks_nesting() == 0;
 393}
 394
 395#define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
 396				// Maximum callbacks per rcu_do_batch ...
 397#define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
 398static long blimit = DEFAULT_RCU_BLIMIT;
 399#define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
 400static long qhimark = DEFAULT_RCU_QHIMARK;
 401#define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
 402static long qlowmark = DEFAULT_RCU_QLOMARK;
 403#define DEFAULT_RCU_QOVLD_MULT 2
 404#define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
 405static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
 406static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
 407
 408module_param(blimit, long, 0444);
 409module_param(qhimark, long, 0444);
 410module_param(qlowmark, long, 0444);
 411module_param(qovld, long, 0444);
 412
 413static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
 414static ulong jiffies_till_next_fqs = ULONG_MAX;
 415static bool rcu_kick_kthreads;
 416static int rcu_divisor = 7;
 417module_param(rcu_divisor, int, 0644);
 418
 419/* Force an exit from rcu_do_batch() after 3 milliseconds. */
 420static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
 421module_param(rcu_resched_ns, long, 0644);
 422
 423/*
 424 * How long the grace period must be before we start recruiting
 425 * quiescent-state help from rcu_note_context_switch().
 426 */
 427static ulong jiffies_till_sched_qs = ULONG_MAX;
 428module_param(jiffies_till_sched_qs, ulong, 0444);
 429static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
 430module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
 431
 432/*
 433 * Make sure that we give the grace-period kthread time to detect any
 434 * idle CPUs before taking active measures to force quiescent states.
 435 * However, don't go below 100 milliseconds, adjusted upwards for really
 436 * large systems.
 437 */
 438static void adjust_jiffies_till_sched_qs(void)
 439{
 440	unsigned long j;
 441
 442	/* If jiffies_till_sched_qs was specified, respect the request. */
 443	if (jiffies_till_sched_qs != ULONG_MAX) {
 444		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
 445		return;
 446	}
 447	/* Otherwise, set to third fqs scan, but bound below on large system. */
 448	j = READ_ONCE(jiffies_till_first_fqs) +
 449		      2 * READ_ONCE(jiffies_till_next_fqs);
 450	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
 451		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
 452	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
 453	WRITE_ONCE(jiffies_to_sched_qs, j);
 454}
 455
 456static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
 457{
 458	ulong j;
 459	int ret = kstrtoul(val, 0, &j);
 460
 461	if (!ret) {
 462		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
 463		adjust_jiffies_till_sched_qs();
 464	}
 465	return ret;
 466}
 467
 468static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
 469{
 470	ulong j;
 471	int ret = kstrtoul(val, 0, &j);
 472
 473	if (!ret) {
 474		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
 475		adjust_jiffies_till_sched_qs();
 476	}
 477	return ret;
 478}
 479
 480static const struct kernel_param_ops first_fqs_jiffies_ops = {
 481	.set = param_set_first_fqs_jiffies,
 482	.get = param_get_ulong,
 483};
 484
 485static const struct kernel_param_ops next_fqs_jiffies_ops = {
 486	.set = param_set_next_fqs_jiffies,
 487	.get = param_get_ulong,
 488};
 489
 490module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
 491module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
 492module_param(rcu_kick_kthreads, bool, 0644);
 493
 494static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
 495static int rcu_pending(int user);
 496
 497/*
 498 * Return the number of RCU GPs completed thus far for debug & stats.
 499 */
 500unsigned long rcu_get_gp_seq(void)
 501{
 502	return READ_ONCE(rcu_state.gp_seq);
 503}
 504EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
 505
 506/*
 507 * Return the number of RCU expedited batches completed thus far for
 508 * debug & stats.  Odd numbers mean that a batch is in progress, even
 509 * numbers mean idle.  The value returned will thus be roughly double
 510 * the cumulative batches since boot.
 511 */
 512unsigned long rcu_exp_batches_completed(void)
 513{
 514	return rcu_state.expedited_sequence;
 515}
 516EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 517
 518/*
 519 * Return the root node of the rcu_state structure.
 520 */
 521static struct rcu_node *rcu_get_root(void)
 522{
 523	return &rcu_state.node[0];
 524}
 525
 526/*
 
 
 
 
 
 
 
 
 
 
 527 * Send along grace-period-related data for rcutorture diagnostics.
 528 */
 529void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 530			    unsigned long *gp_seq)
 531{
 532	switch (test_type) {
 533	case RCU_FLAVOR:
 534		*flags = READ_ONCE(rcu_state.gp_flags);
 535		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
 536		break;
 537	default:
 538		break;
 539	}
 540}
 541EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 542
 543#if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
 544/*
 545 * An empty function that will trigger a reschedule on
 546 * IRQ tail once IRQs get re-enabled on userspace/guest resume.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 547 */
 548static void late_wakeup_func(struct irq_work *work)
 549{
 
 
 550}
 551
 552static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
 553	IRQ_WORK_INIT(late_wakeup_func);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 554
 555/*
 556 * If either:
 557 *
 558 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
 559 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
 560 *
 561 * In these cases the late RCU wake ups aren't supported in the resched loops and our
 562 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
 563 * get re-enabled again.
 564 */
 565noinstr void rcu_irq_work_resched(void)
 566{
 567	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 568
 569	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 570		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 571
 572	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 573		return;
 574
 575	instrumentation_begin();
 576	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
 577		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
 578	}
 579	instrumentation_end();
 
 
 
 
 
 
 
 580}
 581#endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
 582
 583#ifdef CONFIG_PROVE_RCU
 584/**
 585 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
 
 
 
 
 
 
 586 */
 587void rcu_irq_exit_check_preempt(void)
 588{
 589	lockdep_assert_irqs_disabled();
 590
 591	RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0,
 592			 "RCU dynticks_nesting counter underflow/zero!");
 593	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() !=
 594			 DYNTICK_IRQ_NONIDLE,
 595			 "Bad RCU  dynticks_nmi_nesting counter\n");
 596	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
 597			 "RCU in extended quiescent state!");
 598}
 599#endif /* #ifdef CONFIG_PROVE_RCU */
 600
 601#ifdef CONFIG_NO_HZ_FULL
 602/**
 603 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
 
 
 
 604 *
 605 * The scheduler tick is not normally enabled when CPUs enter the kernel
 606 * from nohz_full userspace execution.  After all, nohz_full userspace
 607 * execution is an RCU quiescent state and the time executing in the kernel
 608 * is quite short.  Except of course when it isn't.  And it is not hard to
 609 * cause a large system to spend tens of seconds or even minutes looping
 610 * in the kernel, which can cause a number of problems, include RCU CPU
 611 * stall warnings.
 612 *
 613 * Therefore, if a nohz_full CPU fails to report a quiescent state
 614 * in a timely manner, the RCU grace-period kthread sets that CPU's
 615 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
 616 * exception will invoke this function, which will turn on the scheduler
 617 * tick, which will enable RCU to detect that CPU's quiescent states,
 618 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
 619 * The tick will be disabled once a quiescent state is reported for
 620 * this CPU.
 621 *
 622 * Of course, in carefully tuned systems, there might never be an
 623 * interrupt or exception.  In that case, the RCU grace-period kthread
 624 * will eventually cause one to happen.  However, in less carefully
 625 * controlled environments, this function allows RCU to get what it
 626 * needs without creating otherwise useless interruptions.
 627 */
 628void __rcu_irq_enter_check_tick(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 629{
 630	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 
 
 
 
 631
 632	// If we're here from NMI there's nothing to do.
 633	if (in_nmi())
 634		return;
 
 
 
 
 
 
 
 
 
 
 
 635
 636	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
 637			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
 638
 639	if (!tick_nohz_full_cpu(rdp->cpu) ||
 640	    !READ_ONCE(rdp->rcu_urgent_qs) ||
 641	    READ_ONCE(rdp->rcu_forced_tick)) {
 642		// RCU doesn't need nohz_full help from this CPU, or it is
 643		// already getting that help.
 644		return;
 645	}
 
 
 
 
 
 
 
 646
 647	// We get here only when not in an extended quiescent state and
 648	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
 649	// already watching and (2) The fact that we are in an interrupt
 650	// handler and that the rcu_node lock is an irq-disabled lock
 651	// prevents self-deadlock.  So we can safely recheck under the lock.
 652	// Note that the nohz_full state currently cannot change.
 653	raw_spin_lock_rcu_node(rdp->mynode);
 654	if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
 655		// A nohz_full CPU is in the kernel and RCU needs a
 656		// quiescent state.  Turn on the tick!
 657		WRITE_ONCE(rdp->rcu_forced_tick, true);
 658		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
 659	}
 660	raw_spin_unlock_rcu_node(rdp->mynode);
 661}
 662#endif /* CONFIG_NO_HZ_FULL */
 663
 664/*
 665 * Check to see if any future non-offloaded RCU-related work will need
 666 * to be done by the current CPU, even if none need be done immediately,
 667 * returning 1 if so.  This function is part of the RCU implementation;
 668 * it is -not- an exported member of the RCU API.  This is used by
 669 * the idle-entry code to figure out whether it is safe to disable the
 670 * scheduler-clock interrupt.
 
 
 
 
 
 
 
 
 
 
 
 671 *
 672 * Just check whether or not this CPU has non-offloaded RCU callbacks
 673 * queued.
 674 */
 675int rcu_needs_cpu(void)
 676{
 677	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
 678		!rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
 679}
 680
 681/*
 682 * If any sort of urgency was applied to the current CPU (for example,
 683 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
 684 * to get to a quiescent state, disable it.
 
 685 */
 686static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
 687{
 688	raw_lockdep_assert_held_rcu_node(rdp->mynode);
 689	WRITE_ONCE(rdp->rcu_urgent_qs, false);
 690	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
 691	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
 692		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
 693		WRITE_ONCE(rdp->rcu_forced_tick, false);
 694	}
 695}
 696
 697/**
 698 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
 699 *
 700 * Return true if RCU is watching the running CPU, which means that this
 701 * CPU can safely enter RCU read-side critical sections.  In other words,
 702 * if the current CPU is not in its idle loop or is in an interrupt or
 703 * NMI handler, return true.
 704 *
 705 * Make notrace because it can be called by the internal functions of
 706 * ftrace, and making this notrace removes unnecessary recursion calls.
 707 */
 708notrace bool rcu_is_watching(void)
 709{
 710	bool ret;
 711
 712	preempt_disable_notrace();
 713	ret = !rcu_dynticks_curr_cpu_in_eqs();
 714	preempt_enable_notrace();
 715	return ret;
 716}
 717EXPORT_SYMBOL_GPL(rcu_is_watching);
 718
 719/*
 720 * If a holdout task is actually running, request an urgent quiescent
 721 * state from its CPU.  This is unsynchronized, so migrations can cause
 722 * the request to go to the wrong CPU.  Which is OK, all that will happen
 723 * is that the CPU's next context switch will be a bit slower and next
 724 * time around this task will generate another request.
 725 */
 726void rcu_request_urgent_qs_task(struct task_struct *t)
 727{
 728	int cpu;
 729
 730	barrier();
 731	cpu = task_cpu(t);
 732	if (!task_curr(t))
 733		return; /* This task is not running on that CPU. */
 734	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
 735}
 736
 737#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
 738
 739/*
 740 * Is the current CPU online as far as RCU is concerned?
 741 *
 742 * Disable preemption to avoid false positives that could otherwise
 743 * happen due to the current CPU number being sampled, this task being
 744 * preempted, its old CPU being taken offline, resuming on some other CPU,
 745 * then determining that its old CPU is now offline.
 746 *
 747 * Disable checking if in an NMI handler because we cannot safely
 748 * report errors from NMI handlers anyway.  In addition, it is OK to use
 749 * RCU on an offline processor during initial boot, hence the check for
 750 * rcu_scheduler_fully_active.
 751 */
 752bool rcu_lockdep_current_cpu_online(void)
 753{
 754	struct rcu_data *rdp;
 
 755	bool ret = false;
 756
 757	if (in_nmi() || !rcu_scheduler_fully_active)
 758		return true;
 759	preempt_disable_notrace();
 760	rdp = this_cpu_ptr(&rcu_data);
 761	/*
 762	 * Strictly, we care here about the case where the current CPU is
 763	 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask
 764	 * not being up to date. So arch_spin_is_locked() might have a
 765	 * false positive if it's held by some *other* CPU, but that's
 766	 * OK because that just means a false *negative* on the warning.
 767	 */
 768	if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
 769		ret = true;
 770	preempt_enable_notrace();
 771	return ret;
 772}
 773EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
 774
 775#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
 776
 777/*
 778 * When trying to report a quiescent state on behalf of some other CPU,
 779 * it is our responsibility to check for and handle potential overflow
 780 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
 781 * After all, the CPU might be in deep idle state, and thus executing no
 782 * code whatsoever.
 783 */
 784static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
 785{
 786	raw_lockdep_assert_held_rcu_node(rnp);
 787	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
 788			 rnp->gp_seq))
 789		WRITE_ONCE(rdp->gpwrap, true);
 790	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
 791		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
 792}
 793
 794/*
 795 * Snapshot the specified CPU's dynticks counter so that we can later
 796 * credit them with an implicit quiescent state.  Return 1 if this CPU
 797 * is in dynticks idle mode, which is an extended quiescent state.
 798 */
 799static int dyntick_save_progress_counter(struct rcu_data *rdp)
 800{
 801	rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu);
 802	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
 803		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
 804		rcu_gpnum_ovf(rdp->mynode, rdp);
 805		return 1;
 806	}
 807	return 0;
 808}
 809
 810/*
 811 * Return true if the specified CPU has passed through a quiescent
 812 * state by virtue of being in or having passed through an dynticks
 813 * idle state since the last call to dyntick_save_progress_counter()
 814 * for this same CPU, or by virtue of having been offline.
 815 */
 816static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
 817{
 818	unsigned long jtsq;
 
 
 819	struct rcu_node *rnp = rdp->mynode;
 820
 821	/*
 822	 * If the CPU passed through or entered a dynticks idle phase with
 823	 * no active irq/NMI handlers, then we can safely pretend that the CPU
 824	 * already acknowledged the request to pass through a quiescent
 825	 * state.  Either way, that CPU cannot possibly be in an RCU
 826	 * read-side critical section that started before the beginning
 827	 * of the current RCU grace period.
 828	 */
 829	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
 830		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
 831		rcu_gpnum_ovf(rnp, rdp);
 832		return 1;
 833	}
 834
 835	/*
 836	 * Complain if a CPU that is considered to be offline from RCU's
 837	 * perspective has not yet reported a quiescent state.  After all,
 838	 * the offline CPU should have reported a quiescent state during
 839	 * the CPU-offline process, or, failing that, by rcu_gp_init()
 840	 * if it ran concurrently with either the CPU going offline or the
 841	 * last task on a leaf rcu_node structure exiting its RCU read-side
 842	 * critical section while all CPUs corresponding to that structure
 843	 * are offline.  This added warning detects bugs in any of these
 844	 * code paths.
 845	 *
 846	 * The rcu_node structure's ->lock is held here, which excludes
 847	 * the relevant portions the CPU-hotplug code, the grace-period
 848	 * initialization code, and the rcu_read_unlock() code paths.
 849	 *
 850	 * For more detail, please refer to the "Hotplug CPU" section
 851	 * of RCU's Requirements documentation.
 852	 */
 853	if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
 854		struct rcu_node *rnp1;
 855
 
 856		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
 857			__func__, rnp->grplo, rnp->grphi, rnp->level,
 858			(long)rnp->gp_seq, (long)rnp->completedqs);
 859		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
 860			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
 861				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
 
 862		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
 863			__func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
 864			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
 865			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
 866		return 1; /* Break things loose after complaining. */
 867	}
 868
 869	/*
 870	 * A CPU running for an extended time within the kernel can
 871	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
 872	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
 873	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
 874	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
 875	 * variable are safe because the assignments are repeated if this
 876	 * CPU failed to pass through a quiescent state.  This code
 877	 * also checks .jiffies_resched in case jiffies_to_sched_qs
 878	 * is set way high.
 879	 */
 880	jtsq = READ_ONCE(jiffies_to_sched_qs);
 881	if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
 
 
 882	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
 883	     time_after(jiffies, rcu_state.jiffies_resched) ||
 884	     rcu_state.cbovld)) {
 885		WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
 886		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
 887		smp_store_release(&rdp->rcu_urgent_qs, true);
 888	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
 889		WRITE_ONCE(rdp->rcu_urgent_qs, true);
 890	}
 891
 892	/*
 893	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
 894	 * The above code handles this, but only for straight cond_resched().
 895	 * And some in-kernel loops check need_resched() before calling
 896	 * cond_resched(), which defeats the above code for CPUs that are
 897	 * running in-kernel with scheduling-clock interrupts disabled.
 898	 * So hit them over the head with the resched_cpu() hammer!
 899	 */
 900	if (tick_nohz_full_cpu(rdp->cpu) &&
 901	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
 902	     rcu_state.cbovld)) {
 903		WRITE_ONCE(rdp->rcu_urgent_qs, true);
 904		resched_cpu(rdp->cpu);
 905		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
 906	}
 907
 908	/*
 909	 * If more than halfway to RCU CPU stall-warning time, invoke
 910	 * resched_cpu() more frequently to try to loosen things up a bit.
 911	 * Also check to see if the CPU is getting hammered with interrupts,
 912	 * but only once per grace period, just to keep the IPIs down to
 913	 * a dull roar.
 914	 */
 915	if (time_after(jiffies, rcu_state.jiffies_resched)) {
 916		if (time_after(jiffies,
 917			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
 918			resched_cpu(rdp->cpu);
 919			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
 920		}
 921		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
 922		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
 923		    (rnp->ffmask & rdp->grpmask)) {
 
 924			rdp->rcu_iw_pending = true;
 925			rdp->rcu_iw_gp_seq = rnp->gp_seq;
 926			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
 927		}
 928	}
 929
 930	return 0;
 931}
 932
 933/* Trace-event wrapper function for trace_rcu_future_grace_period.  */
 934static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
 935			      unsigned long gp_seq_req, const char *s)
 936{
 937	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
 938				      gp_seq_req, rnp->level,
 939				      rnp->grplo, rnp->grphi, s);
 940}
 941
 942/*
 943 * rcu_start_this_gp - Request the start of a particular grace period
 944 * @rnp_start: The leaf node of the CPU from which to start.
 945 * @rdp: The rcu_data corresponding to the CPU from which to start.
 946 * @gp_seq_req: The gp_seq of the grace period to start.
 947 *
 948 * Start the specified grace period, as needed to handle newly arrived
 949 * callbacks.  The required future grace periods are recorded in each
 950 * rcu_node structure's ->gp_seq_needed field.  Returns true if there
 951 * is reason to awaken the grace-period kthread.
 952 *
 953 * The caller must hold the specified rcu_node structure's ->lock, which
 954 * is why the caller is responsible for waking the grace-period kthread.
 955 *
 956 * Returns true if the GP thread needs to be awakened else false.
 957 */
 958static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
 959			      unsigned long gp_seq_req)
 960{
 961	bool ret = false;
 962	struct rcu_node *rnp;
 963
 964	/*
 965	 * Use funnel locking to either acquire the root rcu_node
 966	 * structure's lock or bail out if the need for this grace period
 967	 * has already been recorded -- or if that grace period has in
 968	 * fact already started.  If there is already a grace period in
 969	 * progress in a non-leaf node, no recording is needed because the
 970	 * end of the grace period will scan the leaf rcu_node structures.
 971	 * Note that rnp_start->lock must not be released.
 972	 */
 973	raw_lockdep_assert_held_rcu_node(rnp_start);
 974	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
 975	for (rnp = rnp_start; 1; rnp = rnp->parent) {
 976		if (rnp != rnp_start)
 977			raw_spin_lock_rcu_node(rnp);
 978		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
 979		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
 980		    (rnp != rnp_start &&
 981		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
 982			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
 983					  TPS("Prestarted"));
 984			goto unlock_out;
 985		}
 986		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
 987		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
 988			/*
 989			 * We just marked the leaf or internal node, and a
 990			 * grace period is in progress, which means that
 991			 * rcu_gp_cleanup() will see the marking.  Bail to
 992			 * reduce contention.
 993			 */
 994			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
 995					  TPS("Startedleaf"));
 996			goto unlock_out;
 997		}
 998		if (rnp != rnp_start && rnp->parent != NULL)
 999			raw_spin_unlock_rcu_node(rnp);
1000		if (!rnp->parent)
1001			break;  /* At root, and perhaps also leaf. */
1002	}
1003
1004	/* If GP already in progress, just leave, otherwise start one. */
1005	if (rcu_gp_in_progress()) {
1006		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1007		goto unlock_out;
1008	}
1009	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1010	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1011	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1012	if (!READ_ONCE(rcu_state.gp_kthread)) {
1013		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1014		goto unlock_out;
1015	}
1016	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1017	ret = true;  /* Caller must wake GP kthread. */
1018unlock_out:
1019	/* Push furthest requested GP to leaf node and rcu_data structure. */
1020	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1021		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1022		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1023	}
1024	if (rnp != rnp_start)
1025		raw_spin_unlock_rcu_node(rnp);
1026	return ret;
1027}
1028
1029/*
1030 * Clean up any old requests for the just-ended grace period.  Also return
1031 * whether any additional grace periods have been requested.
1032 */
1033static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1034{
1035	bool needmore;
1036	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1037
1038	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1039	if (!needmore)
1040		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1041	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1042			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1043	return needmore;
1044}
1045
1046/*
1047 * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1048 * interrupt or softirq handler, in which case we just might immediately
1049 * sleep upon return, resulting in a grace-period hang), and don't bother
1050 * awakening when there is nothing for the grace-period kthread to do
1051 * (as in several CPUs raced to awaken, we lost), and finally don't try
1052 * to awaken a kthread that has not yet been created.  If all those checks
1053 * are passed, track some debug information and awaken.
1054 *
1055 * So why do the self-wakeup when in an interrupt or softirq handler
1056 * in the grace-period kthread's context?  Because the kthread might have
1057 * been interrupted just as it was going to sleep, and just after the final
1058 * pre-sleep check of the awaken condition.  In this case, a wakeup really
1059 * is required, and is therefore supplied.
1060 */
1061static void rcu_gp_kthread_wake(void)
1062{
1063	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1064
1065	if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1066	    !READ_ONCE(rcu_state.gp_flags) || !t)
1067		return;
1068	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1069	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1070	swake_up_one(&rcu_state.gp_wq);
1071}
1072
1073/*
1074 * If there is room, assign a ->gp_seq number to any callbacks on this
1075 * CPU that have not already been assigned.  Also accelerate any callbacks
1076 * that were previously assigned a ->gp_seq number that has since proven
1077 * to be too conservative, which can happen if callbacks get assigned a
1078 * ->gp_seq number while RCU is idle, but with reference to a non-root
1079 * rcu_node structure.  This function is idempotent, so it does not hurt
1080 * to call it repeatedly.  Returns an flag saying that we should awaken
1081 * the RCU grace-period kthread.
1082 *
1083 * The caller must hold rnp->lock with interrupts disabled.
1084 */
1085static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1086{
1087	unsigned long gp_seq_req;
1088	bool ret = false;
1089
1090	rcu_lockdep_assert_cblist_protected(rdp);
1091	raw_lockdep_assert_held_rcu_node(rnp);
1092
1093	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1094	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1095		return false;
1096
1097	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1098
1099	/*
1100	 * Callbacks are often registered with incomplete grace-period
1101	 * information.  Something about the fact that getting exact
1102	 * information requires acquiring a global lock...  RCU therefore
1103	 * makes a conservative estimate of the grace period number at which
1104	 * a given callback will become ready to invoke.	The following
1105	 * code checks this estimate and improves it when possible, thus
1106	 * accelerating callback invocation to an earlier grace-period
1107	 * number.
1108	 */
1109	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1110	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1111		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1112
1113	/* Trace depending on how much we were able to accelerate. */
1114	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1115		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1116	else
1117		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1118
1119	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1120
1121	return ret;
1122}
1123
1124/*
1125 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1126 * rcu_node structure's ->lock be held.  It consults the cached value
1127 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1128 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1129 * while holding the leaf rcu_node structure's ->lock.
1130 */
1131static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1132					struct rcu_data *rdp)
1133{
1134	unsigned long c;
1135	bool needwake;
1136
1137	rcu_lockdep_assert_cblist_protected(rdp);
1138	c = rcu_seq_snap(&rcu_state.gp_seq);
1139	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1140		/* Old request still live, so mark recent callbacks. */
1141		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1142		return;
1143	}
1144	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1145	needwake = rcu_accelerate_cbs(rnp, rdp);
1146	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1147	if (needwake)
1148		rcu_gp_kthread_wake();
1149}
1150
1151/*
1152 * Move any callbacks whose grace period has completed to the
1153 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1154 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1155 * sublist.  This function is idempotent, so it does not hurt to
1156 * invoke it repeatedly.  As long as it is not invoked -too- often...
1157 * Returns true if the RCU grace-period kthread needs to be awakened.
1158 *
1159 * The caller must hold rnp->lock with interrupts disabled.
1160 */
1161static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1162{
1163	rcu_lockdep_assert_cblist_protected(rdp);
1164	raw_lockdep_assert_held_rcu_node(rnp);
1165
1166	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1167	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1168		return false;
1169
1170	/*
1171	 * Find all callbacks whose ->gp_seq numbers indicate that they
1172	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1173	 */
1174	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1175
1176	/* Classify any remaining callbacks. */
1177	return rcu_accelerate_cbs(rnp, rdp);
1178}
1179
1180/*
1181 * Move and classify callbacks, but only if doing so won't require
1182 * that the RCU grace-period kthread be awakened.
1183 */
1184static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1185						  struct rcu_data *rdp)
1186{
1187	rcu_lockdep_assert_cblist_protected(rdp);
1188	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
 
1189		return;
1190	// The grace period cannot end while we hold the rcu_node lock.
1191	if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1192		WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1193	raw_spin_unlock_rcu_node(rnp);
1194}
1195
1196/*
1197 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1198 * quiescent state.  This is intended to be invoked when the CPU notices
1199 * a new grace period.
1200 */
1201static void rcu_strict_gp_check_qs(void)
1202{
1203	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1204		rcu_read_lock();
1205		rcu_read_unlock();
1206	}
1207}
1208
1209/*
1210 * Update CPU-local rcu_data state to record the beginnings and ends of
1211 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1212 * structure corresponding to the current CPU, and must have irqs disabled.
1213 * Returns true if the grace-period kthread needs to be awakened.
1214 */
1215static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1216{
1217	bool ret = false;
1218	bool need_qs;
1219	const bool offloaded = rcu_rdp_is_offloaded(rdp);
 
1220
1221	raw_lockdep_assert_held_rcu_node(rnp);
1222
1223	if (rdp->gp_seq == rnp->gp_seq)
1224		return false; /* Nothing to do. */
1225
1226	/* Handle the ends of any preceding grace periods first. */
1227	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1228	    unlikely(READ_ONCE(rdp->gpwrap))) {
1229		if (!offloaded)
1230			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1231		rdp->core_needs_qs = false;
1232		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1233	} else {
1234		if (!offloaded)
1235			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1236		if (rdp->core_needs_qs)
1237			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1238	}
1239
1240	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1241	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1242	    unlikely(READ_ONCE(rdp->gpwrap))) {
1243		/*
1244		 * If the current grace period is waiting for this CPU,
1245		 * set up to detect a quiescent state, otherwise don't
1246		 * go looking for one.
1247		 */
1248		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1249		need_qs = !!(rnp->qsmask & rdp->grpmask);
1250		rdp->cpu_no_qs.b.norm = need_qs;
1251		rdp->core_needs_qs = need_qs;
1252		zero_cpu_stall_ticks(rdp);
1253	}
1254	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1255	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1256		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1257	if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1258		WRITE_ONCE(rdp->last_sched_clock, jiffies);
1259	WRITE_ONCE(rdp->gpwrap, false);
1260	rcu_gpnum_ovf(rnp, rdp);
1261	return ret;
1262}
1263
1264static void note_gp_changes(struct rcu_data *rdp)
1265{
1266	unsigned long flags;
1267	bool needwake;
1268	struct rcu_node *rnp;
1269
1270	local_irq_save(flags);
1271	rnp = rdp->mynode;
1272	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1273	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1274	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1275		local_irq_restore(flags);
1276		return;
1277	}
1278	needwake = __note_gp_changes(rnp, rdp);
1279	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1280	rcu_strict_gp_check_qs();
1281	if (needwake)
1282		rcu_gp_kthread_wake();
1283}
1284
1285static atomic_t *rcu_gp_slow_suppress;
1286
1287/* Register a counter to suppress debugging grace-period delays. */
1288void rcu_gp_slow_register(atomic_t *rgssp)
1289{
1290	WARN_ON_ONCE(rcu_gp_slow_suppress);
1291
1292	WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1293}
1294EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1295
1296/* Unregister a counter, with NULL for not caring which. */
1297void rcu_gp_slow_unregister(atomic_t *rgssp)
1298{
1299	WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress);
1300
1301	WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1302}
1303EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1304
1305static bool rcu_gp_slow_is_suppressed(void)
1306{
1307	atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1308
1309	return rgssp && atomic_read(rgssp);
1310}
1311
1312static void rcu_gp_slow(int delay)
1313{
1314	if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1315	    !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1316		schedule_timeout_idle(delay);
1317}
1318
1319static unsigned long sleep_duration;
1320
1321/* Allow rcutorture to stall the grace-period kthread. */
1322void rcu_gp_set_torture_wait(int duration)
1323{
1324	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1325		WRITE_ONCE(sleep_duration, duration);
1326}
1327EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1328
1329/* Actually implement the aforementioned wait. */
1330static void rcu_gp_torture_wait(void)
1331{
1332	unsigned long duration;
1333
1334	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1335		return;
1336	duration = xchg(&sleep_duration, 0UL);
1337	if (duration > 0) {
1338		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1339		schedule_timeout_idle(duration);
1340		pr_alert("%s: Wait complete\n", __func__);
1341	}
1342}
1343
1344/*
1345 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1346 * processing.
1347 */
1348static void rcu_strict_gp_boundary(void *unused)
1349{
1350	invoke_rcu_core();
1351}
1352
1353// Has rcu_init() been invoked?  This is used (for example) to determine
1354// whether spinlocks may be acquired safely.
1355static bool rcu_init_invoked(void)
1356{
1357	return !!rcu_state.n_online_cpus;
1358}
1359
1360// Make the polled API aware of the beginning of a grace period.
1361static void rcu_poll_gp_seq_start(unsigned long *snap)
1362{
1363	struct rcu_node *rnp = rcu_get_root();
1364
1365	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1366		raw_lockdep_assert_held_rcu_node(rnp);
1367
1368	// If RCU was idle, note beginning of GP.
1369	if (!rcu_seq_state(rcu_state.gp_seq_polled))
1370		rcu_seq_start(&rcu_state.gp_seq_polled);
1371
1372	// Either way, record current state.
1373	*snap = rcu_state.gp_seq_polled;
1374}
1375
1376// Make the polled API aware of the end of a grace period.
1377static void rcu_poll_gp_seq_end(unsigned long *snap)
1378{
1379	struct rcu_node *rnp = rcu_get_root();
1380
1381	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1382		raw_lockdep_assert_held_rcu_node(rnp);
1383
1384	// If the previously noted GP is still in effect, record the
1385	// end of that GP.  Either way, zero counter to avoid counter-wrap
1386	// problems.
1387	if (*snap && *snap == rcu_state.gp_seq_polled) {
1388		rcu_seq_end(&rcu_state.gp_seq_polled);
1389		rcu_state.gp_seq_polled_snap = 0;
1390		rcu_state.gp_seq_polled_exp_snap = 0;
1391	} else {
1392		*snap = 0;
1393	}
1394}
1395
1396// Make the polled API aware of the beginning of a grace period, but
1397// where caller does not hold the root rcu_node structure's lock.
1398static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1399{
1400	unsigned long flags;
1401	struct rcu_node *rnp = rcu_get_root();
1402
1403	if (rcu_init_invoked()) {
1404		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1405			lockdep_assert_irqs_enabled();
1406		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1407	}
1408	rcu_poll_gp_seq_start(snap);
1409	if (rcu_init_invoked())
1410		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1411}
1412
1413// Make the polled API aware of the end of a grace period, but where
1414// caller does not hold the root rcu_node structure's lock.
1415static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1416{
1417	unsigned long flags;
1418	struct rcu_node *rnp = rcu_get_root();
1419
1420	if (rcu_init_invoked()) {
1421		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1422			lockdep_assert_irqs_enabled();
1423		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1424	}
1425	rcu_poll_gp_seq_end(snap);
1426	if (rcu_init_invoked())
1427		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1428}
1429
1430/*
1431 * Initialize a new grace period.  Return false if no grace period required.
1432 */
1433static noinline_for_stack bool rcu_gp_init(void)
1434{
1435	unsigned long flags;
1436	unsigned long oldmask;
1437	unsigned long mask;
1438	struct rcu_data *rdp;
1439	struct rcu_node *rnp = rcu_get_root();
1440
1441	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1442	raw_spin_lock_irq_rcu_node(rnp);
1443	if (!READ_ONCE(rcu_state.gp_flags)) {
1444		/* Spurious wakeup, tell caller to go back to sleep.  */
1445		raw_spin_unlock_irq_rcu_node(rnp);
1446		return false;
1447	}
1448	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1449
1450	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1451		/*
1452		 * Grace period already in progress, don't start another.
1453		 * Not supposed to be able to happen.
1454		 */
1455		raw_spin_unlock_irq_rcu_node(rnp);
1456		return false;
1457	}
1458
1459	/* Advance to a new grace period and initialize state. */
1460	record_gp_stall_check_time();
1461	/* Record GP times before starting GP, hence rcu_seq_start(). */
1462	rcu_seq_start(&rcu_state.gp_seq);
1463	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1464	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1465	rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
1466	raw_spin_unlock_irq_rcu_node(rnp);
1467
1468	/*
1469	 * Apply per-leaf buffered online and offline operations to
1470	 * the rcu_node tree. Note that this new grace period need not
1471	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1472	 * offlining path, when combined with checks in this function,
1473	 * will handle CPUs that are currently going offline or that will
1474	 * go offline later.  Please also refer to "Hotplug CPU" section
1475	 * of RCU's Requirements documentation.
1476	 */
1477	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1478	/* Exclude CPU hotplug operations. */
1479	rcu_for_each_leaf_node(rnp) {
1480		local_irq_save(flags);
1481		arch_spin_lock(&rcu_state.ofl_lock);
1482		raw_spin_lock_rcu_node(rnp);
1483		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1484		    !rnp->wait_blkd_tasks) {
1485			/* Nothing to do on this leaf rcu_node structure. */
1486			raw_spin_unlock_rcu_node(rnp);
1487			arch_spin_unlock(&rcu_state.ofl_lock);
1488			local_irq_restore(flags);
1489			continue;
1490		}
1491
1492		/* Record old state, apply changes to ->qsmaskinit field. */
1493		oldmask = rnp->qsmaskinit;
1494		rnp->qsmaskinit = rnp->qsmaskinitnext;
1495
1496		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1497		if (!oldmask != !rnp->qsmaskinit) {
1498			if (!oldmask) { /* First online CPU for rcu_node. */
1499				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1500					rcu_init_new_rnp(rnp);
1501			} else if (rcu_preempt_has_tasks(rnp)) {
1502				rnp->wait_blkd_tasks = true; /* blocked tasks */
1503			} else { /* Last offline CPU and can propagate. */
1504				rcu_cleanup_dead_rnp(rnp);
1505			}
1506		}
1507
1508		/*
1509		 * If all waited-on tasks from prior grace period are
1510		 * done, and if all this rcu_node structure's CPUs are
1511		 * still offline, propagate up the rcu_node tree and
1512		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1513		 * rcu_node structure's CPUs has since come back online,
1514		 * simply clear ->wait_blkd_tasks.
1515		 */
1516		if (rnp->wait_blkd_tasks &&
1517		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1518			rnp->wait_blkd_tasks = false;
1519			if (!rnp->qsmaskinit)
1520				rcu_cleanup_dead_rnp(rnp);
1521		}
1522
1523		raw_spin_unlock_rcu_node(rnp);
1524		arch_spin_unlock(&rcu_state.ofl_lock);
1525		local_irq_restore(flags);
1526	}
1527	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1528
1529	/*
1530	 * Set the quiescent-state-needed bits in all the rcu_node
1531	 * structures for all currently online CPUs in breadth-first
1532	 * order, starting from the root rcu_node structure, relying on the
1533	 * layout of the tree within the rcu_state.node[] array.  Note that
1534	 * other CPUs will access only the leaves of the hierarchy, thus
1535	 * seeing that no grace period is in progress, at least until the
1536	 * corresponding leaf node has been initialized.
1537	 *
1538	 * The grace period cannot complete until the initialization
1539	 * process finishes, because this kthread handles both.
1540	 */
1541	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1542	rcu_for_each_node_breadth_first(rnp) {
1543		rcu_gp_slow(gp_init_delay);
1544		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1545		rdp = this_cpu_ptr(&rcu_data);
1546		rcu_preempt_check_blocked_tasks(rnp);
1547		rnp->qsmask = rnp->qsmaskinit;
1548		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1549		if (rnp == rdp->mynode)
1550			(void)__note_gp_changes(rnp, rdp);
1551		rcu_preempt_boost_start_gp(rnp);
1552		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1553					    rnp->level, rnp->grplo,
1554					    rnp->grphi, rnp->qsmask);
1555		/* Quiescent states for tasks on any now-offline CPUs. */
1556		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1557		rnp->rcu_gp_init_mask = mask;
1558		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1559			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1560		else
1561			raw_spin_unlock_irq_rcu_node(rnp);
1562		cond_resched_tasks_rcu_qs();
1563		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1564	}
1565
1566	// If strict, make all CPUs aware of new grace period.
1567	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1568		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1569
1570	return true;
1571}
1572
1573/*
1574 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1575 * time.
1576 */
1577static bool rcu_gp_fqs_check_wake(int *gfp)
1578{
1579	struct rcu_node *rnp = rcu_get_root();
1580
1581	// If under overload conditions, force an immediate FQS scan.
1582	if (*gfp & RCU_GP_FLAG_OVLD)
1583		return true;
1584
1585	// Someone like call_rcu() requested a force-quiescent-state scan.
1586	*gfp = READ_ONCE(rcu_state.gp_flags);
1587	if (*gfp & RCU_GP_FLAG_FQS)
1588		return true;
1589
1590	// The current grace period has completed.
1591	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1592		return true;
1593
1594	return false;
1595}
1596
1597/*
1598 * Do one round of quiescent-state forcing.
1599 */
1600static void rcu_gp_fqs(bool first_time)
1601{
1602	struct rcu_node *rnp = rcu_get_root();
1603
1604	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1605	WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1606	if (first_time) {
1607		/* Collect dyntick-idle snapshots. */
1608		force_qs_rnp(dyntick_save_progress_counter);
1609	} else {
1610		/* Handle dyntick-idle and offline CPUs. */
1611		force_qs_rnp(rcu_implicit_dynticks_qs);
1612	}
1613	/* Clear flag to prevent immediate re-entry. */
1614	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1615		raw_spin_lock_irq_rcu_node(rnp);
1616		WRITE_ONCE(rcu_state.gp_flags,
1617			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1618		raw_spin_unlock_irq_rcu_node(rnp);
1619	}
1620}
1621
1622/*
1623 * Loop doing repeated quiescent-state forcing until the grace period ends.
1624 */
1625static noinline_for_stack void rcu_gp_fqs_loop(void)
1626{
1627	bool first_gp_fqs = true;
1628	int gf = 0;
1629	unsigned long j;
1630	int ret;
1631	struct rcu_node *rnp = rcu_get_root();
1632
 
1633	j = READ_ONCE(jiffies_till_first_fqs);
1634	if (rcu_state.cbovld)
1635		gf = RCU_GP_FLAG_OVLD;
1636	ret = 0;
1637	for (;;) {
1638		if (rcu_state.cbovld) {
1639			j = (j + 2) / 3;
1640			if (j <= 0)
1641				j = 1;
1642		}
1643		if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
1644			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1645			/*
1646			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1647			 * update; required for stall checks.
1648			 */
1649			smp_wmb();
1650			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1651				   jiffies + (j ? 3 * j : 2));
1652		}
1653		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 
1654				       TPS("fqswait"));
1655		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1656		(void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1657				 rcu_gp_fqs_check_wake(&gf), j);
1658		rcu_gp_torture_wait();
1659		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
1660		/* Locking provides needed memory barriers. */
1661		/*
1662		 * Exit the loop if the root rcu_node structure indicates that the grace period
1663		 * has ended, leave the loop.  The rcu_preempt_blocked_readers_cgp(rnp) check
1664		 * is required only for single-node rcu_node trees because readers blocking
1665		 * the current grace period are queued only on leaf rcu_node structures.
1666		 * For multi-node trees, checking the root node's ->qsmask suffices, because a
1667		 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
1668		 * the corresponding leaf nodes have passed through their quiescent state.
1669		 */
1670		if (!READ_ONCE(rnp->qsmask) &&
1671		    !rcu_preempt_blocked_readers_cgp(rnp))
1672			break;
1673		/* If time for quiescent-state forcing, do it. */
1674		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1675		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1676			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 
1677					       TPS("fqsstart"));
1678			rcu_gp_fqs(first_gp_fqs);
1679			gf = 0;
1680			if (first_gp_fqs) {
1681				first_gp_fqs = false;
1682				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1683			}
1684			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1685					       TPS("fqsend"));
1686			cond_resched_tasks_rcu_qs();
1687			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1688			ret = 0; /* Force full wait till next FQS. */
1689			j = READ_ONCE(jiffies_till_next_fqs);
1690		} else {
1691			/* Deal with stray signal. */
1692			cond_resched_tasks_rcu_qs();
1693			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1694			WARN_ON(signal_pending(current));
1695			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 
1696					       TPS("fqswaitsig"));
1697			ret = 1; /* Keep old FQS timing. */
1698			j = jiffies;
1699			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1700				j = 1;
1701			else
1702				j = rcu_state.jiffies_force_qs - j;
1703			gf = 0;
1704		}
1705	}
1706}
1707
1708/*
1709 * Clean up after the old grace period.
1710 */
1711static noinline void rcu_gp_cleanup(void)
1712{
1713	int cpu;
1714	bool needgp = false;
1715	unsigned long gp_duration;
1716	unsigned long new_gp_seq;
1717	bool offloaded;
1718	struct rcu_data *rdp;
1719	struct rcu_node *rnp = rcu_get_root();
1720	struct swait_queue_head *sq;
1721
1722	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1723	raw_spin_lock_irq_rcu_node(rnp);
1724	rcu_state.gp_end = jiffies;
1725	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1726	if (gp_duration > rcu_state.gp_max)
1727		rcu_state.gp_max = gp_duration;
1728
1729	/*
1730	 * We know the grace period is complete, but to everyone else
1731	 * it appears to still be ongoing.  But it is also the case
1732	 * that to everyone else it looks like there is nothing that
1733	 * they can do to advance the grace period.  It is therefore
1734	 * safe for us to drop the lock in order to mark the grace
1735	 * period as completed in all of the rcu_node structures.
1736	 */
1737	rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
1738	raw_spin_unlock_irq_rcu_node(rnp);
1739
1740	/*
1741	 * Propagate new ->gp_seq value to rcu_node structures so that
1742	 * other CPUs don't have to wait until the start of the next grace
1743	 * period to process their callbacks.  This also avoids some nasty
1744	 * RCU grace-period initialization races by forcing the end of
1745	 * the current grace period to be completely recorded in all of
1746	 * the rcu_node structures before the beginning of the next grace
1747	 * period is recorded in any of the rcu_node structures.
1748	 */
1749	new_gp_seq = rcu_state.gp_seq;
1750	rcu_seq_end(&new_gp_seq);
1751	rcu_for_each_node_breadth_first(rnp) {
1752		raw_spin_lock_irq_rcu_node(rnp);
1753		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1754			dump_blkd_tasks(rnp, 10);
1755		WARN_ON_ONCE(rnp->qsmask);
1756		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1757		if (!rnp->parent)
1758			smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
1759		rdp = this_cpu_ptr(&rcu_data);
1760		if (rnp == rdp->mynode)
1761			needgp = __note_gp_changes(rnp, rdp) || needgp;
1762		/* smp_mb() provided by prior unlock-lock pair. */
1763		needgp = rcu_future_gp_cleanup(rnp) || needgp;
1764		// Reset overload indication for CPUs no longer overloaded
1765		if (rcu_is_leaf_node(rnp))
1766			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1767				rdp = per_cpu_ptr(&rcu_data, cpu);
1768				check_cb_ovld_locked(rdp, rnp);
1769			}
1770		sq = rcu_nocb_gp_get(rnp);
1771		raw_spin_unlock_irq_rcu_node(rnp);
1772		rcu_nocb_gp_cleanup(sq);
1773		cond_resched_tasks_rcu_qs();
1774		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1775		rcu_gp_slow(gp_cleanup_delay);
1776	}
1777	rnp = rcu_get_root();
1778	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1779
1780	/* Declare grace period done, trace first to use old GP number. */
1781	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1782	rcu_seq_end(&rcu_state.gp_seq);
1783	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1784	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
1785	/* Check for GP requests since above loop. */
1786	rdp = this_cpu_ptr(&rcu_data);
1787	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1788		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1789				  TPS("CleanupMore"));
1790		needgp = true;
1791	}
1792	/* Advance CBs to reduce false positives below. */
1793	offloaded = rcu_rdp_is_offloaded(rdp);
 
1794	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1795
1796		// We get here if a grace period was needed (“needgp”)
1797		// and the above call to rcu_accelerate_cbs() did not set
1798		// the RCU_GP_FLAG_INIT bit in ->gp_state (which records
1799		// the need for another grace period).  The purpose
1800		// of the “offloaded” check is to avoid invoking
1801		// rcu_accelerate_cbs() on an offloaded CPU because we do not
1802		// hold the ->nocb_lock needed to safely access an offloaded
1803		// ->cblist.  We do not want to acquire that lock because
1804		// it can be heavily contended during callback floods.
1805
1806		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1807		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1808		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
 
 
1809	} else {
1810
1811		// We get here either if there is no need for an
1812		// additional grace period or if rcu_accelerate_cbs() has
1813		// already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 
1814		// So all we need to do is to clear all of the other
1815		// ->gp_flags bits.
1816
1817		WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1818	}
1819	raw_spin_unlock_irq_rcu_node(rnp);
1820
1821	// If strict, make all CPUs aware of the end of the old grace period.
1822	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1823		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1824}
1825
1826/*
1827 * Body of kthread that handles grace periods.
1828 */
1829static int __noreturn rcu_gp_kthread(void *unused)
1830{
1831	rcu_bind_gp_kthread();
1832	for (;;) {
1833
1834		/* Handle grace-period start. */
1835		for (;;) {
1836			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 
1837					       TPS("reqwait"));
1838			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
1839			swait_event_idle_exclusive(rcu_state.gp_wq,
1840					 READ_ONCE(rcu_state.gp_flags) &
1841					 RCU_GP_FLAG_INIT);
1842			rcu_gp_torture_wait();
1843			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
1844			/* Locking provides needed memory barrier. */
1845			if (rcu_gp_init())
1846				break;
1847			cond_resched_tasks_rcu_qs();
1848			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1849			WARN_ON(signal_pending(current));
1850			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 
1851					       TPS("reqwaitsig"));
1852		}
1853
1854		/* Handle quiescent-state forcing. */
1855		rcu_gp_fqs_loop();
1856
1857		/* Handle grace-period end. */
1858		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
1859		rcu_gp_cleanup();
1860		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
1861	}
1862}
1863
1864/*
1865 * Report a full set of quiescent states to the rcu_state data structure.
1866 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1867 * another grace period is required.  Whether we wake the grace-period
1868 * kthread or it awakens itself for the next round of quiescent-state
1869 * forcing, that kthread will clean up after the just-completed grace
1870 * period.  Note that the caller must hold rnp->lock, which is released
1871 * before return.
1872 */
1873static void rcu_report_qs_rsp(unsigned long flags)
1874	__releases(rcu_get_root()->lock)
1875{
1876	raw_lockdep_assert_held_rcu_node(rcu_get_root());
1877	WARN_ON_ONCE(!rcu_gp_in_progress());
1878	WRITE_ONCE(rcu_state.gp_flags,
1879		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1880	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1881	rcu_gp_kthread_wake();
1882}
1883
1884/*
1885 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1886 * Allows quiescent states for a group of CPUs to be reported at one go
1887 * to the specified rcu_node structure, though all the CPUs in the group
1888 * must be represented by the same rcu_node structure (which need not be a
1889 * leaf rcu_node structure, though it often will be).  The gps parameter
1890 * is the grace-period snapshot, which means that the quiescent states
1891 * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
1892 * must be held upon entry, and it is released before return.
1893 *
1894 * As a special case, if mask is zero, the bit-already-cleared check is
1895 * disabled.  This allows propagating quiescent state due to resumed tasks
1896 * during grace-period initialization.
1897 */
1898static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1899			      unsigned long gps, unsigned long flags)
1900	__releases(rnp->lock)
1901{
1902	unsigned long oldmask = 0;
1903	struct rcu_node *rnp_c;
1904
1905	raw_lockdep_assert_held_rcu_node(rnp);
1906
1907	/* Walk up the rcu_node hierarchy. */
1908	for (;;) {
1909		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1910
1911			/*
1912			 * Our bit has already been cleared, or the
1913			 * relevant grace period is already over, so done.
1914			 */
1915			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1916			return;
1917		}
1918		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1919		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1920			     rcu_preempt_blocked_readers_cgp(rnp));
1921		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
1922		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1923						 mask, rnp->qsmask, rnp->level,
1924						 rnp->grplo, rnp->grphi,
1925						 !!rnp->gp_tasks);
1926		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1927
1928			/* Other bits still set at this level, so done. */
1929			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1930			return;
1931		}
1932		rnp->completedqs = rnp->gp_seq;
1933		mask = rnp->grpmask;
1934		if (rnp->parent == NULL) {
1935
1936			/* No more levels.  Exit loop holding root lock. */
1937
1938			break;
1939		}
1940		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1941		rnp_c = rnp;
1942		rnp = rnp->parent;
1943		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1944		oldmask = READ_ONCE(rnp_c->qsmask);
1945	}
1946
1947	/*
1948	 * Get here if we are the last CPU to pass through a quiescent
1949	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1950	 * to clean up and start the next grace period if one is needed.
1951	 */
1952	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1953}
1954
1955/*
1956 * Record a quiescent state for all tasks that were previously queued
1957 * on the specified rcu_node structure and that were blocking the current
1958 * RCU grace period.  The caller must hold the corresponding rnp->lock with
1959 * irqs disabled, and this lock is released upon return, but irqs remain
1960 * disabled.
1961 */
1962static void __maybe_unused
1963rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1964	__releases(rnp->lock)
1965{
1966	unsigned long gps;
1967	unsigned long mask;
1968	struct rcu_node *rnp_p;
1969
1970	raw_lockdep_assert_held_rcu_node(rnp);
1971	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
1972	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1973	    rnp->qsmask != 0) {
1974		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1975		return;  /* Still need more quiescent states! */
1976	}
1977
1978	rnp->completedqs = rnp->gp_seq;
1979	rnp_p = rnp->parent;
1980	if (rnp_p == NULL) {
1981		/*
1982		 * Only one rcu_node structure in the tree, so don't
1983		 * try to report up to its nonexistent parent!
1984		 */
1985		rcu_report_qs_rsp(flags);
1986		return;
1987	}
1988
1989	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1990	gps = rnp->gp_seq;
1991	mask = rnp->grpmask;
1992	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
1993	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
1994	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1995}
1996
1997/*
1998 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1999 * structure.  This must be called from the specified CPU.
2000 */
2001static void
2002rcu_report_qs_rdp(struct rcu_data *rdp)
2003{
2004	unsigned long flags;
2005	unsigned long mask;
2006	bool needwake = false;
2007	bool needacc = false;
 
2008	struct rcu_node *rnp;
2009
2010	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2011	rnp = rdp->mynode;
2012	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2013	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2014	    rdp->gpwrap) {
2015
2016		/*
2017		 * The grace period in which this quiescent state was
2018		 * recorded has ended, so don't report it upwards.
2019		 * We will instead need a new quiescent state that lies
2020		 * within the current grace period.
2021		 */
2022		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2023		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2024		return;
2025	}
2026	mask = rdp->grpmask;
2027	rdp->core_needs_qs = false;
2028	if ((rnp->qsmask & mask) == 0) {
2029		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2030	} else {
2031		/*
2032		 * This GP can't end until cpu checks in, so all of our
2033		 * callbacks can be processed during the next GP.
2034		 *
2035		 * NOCB kthreads have their own way to deal with that...
2036		 */
2037		if (!rcu_rdp_is_offloaded(rdp)) {
2038			needwake = rcu_accelerate_cbs(rnp, rdp);
2039		} else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
2040			/*
2041			 * ...but NOCB kthreads may miss or delay callbacks acceleration
2042			 * if in the middle of a (de-)offloading process.
2043			 */
2044			needacc = true;
2045		}
2046
2047		rcu_disable_urgency_upon_qs(rdp);
2048		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2049		/* ^^^ Released rnp->lock */
2050		if (needwake)
2051			rcu_gp_kthread_wake();
2052
2053		if (needacc) {
2054			rcu_nocb_lock_irqsave(rdp, flags);
2055			rcu_accelerate_cbs_unlocked(rnp, rdp);
2056			rcu_nocb_unlock_irqrestore(rdp, flags);
2057		}
2058	}
2059}
2060
2061/*
2062 * Check to see if there is a new grace period of which this CPU
2063 * is not yet aware, and if so, set up local rcu_data state for it.
2064 * Otherwise, see if this CPU has just passed through its first
2065 * quiescent state for this grace period, and record that fact if so.
2066 */
2067static void
2068rcu_check_quiescent_state(struct rcu_data *rdp)
2069{
2070	/* Check for grace-period ends and beginnings. */
2071	note_gp_changes(rdp);
2072
2073	/*
2074	 * Does this CPU still need to do its part for current grace period?
2075	 * If no, return and let the other CPUs do their part as well.
2076	 */
2077	if (!rdp->core_needs_qs)
2078		return;
2079
2080	/*
2081	 * Was there a quiescent state since the beginning of the grace
2082	 * period? If no, then exit and wait for the next call.
2083	 */
2084	if (rdp->cpu_no_qs.b.norm)
2085		return;
2086
2087	/*
2088	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2089	 * judge of that).
2090	 */
2091	rcu_report_qs_rdp(rdp);
2092}
2093
2094/*
2095 * Near the end of the offline process.  Trace the fact that this CPU
2096 * is going offline.
2097 */
2098int rcutree_dying_cpu(unsigned int cpu)
2099{
2100	bool blkd;
2101	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2102	struct rcu_node *rnp = rdp->mynode;
2103
2104	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2105		return 0;
2106
2107	blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
2108	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2109			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
2110	return 0;
2111}
2112
2113/*
2114 * All CPUs for the specified rcu_node structure have gone offline,
2115 * and all tasks that were preempted within an RCU read-side critical
2116 * section while running on one of those CPUs have since exited their RCU
2117 * read-side critical section.  Some other CPU is reporting this fact with
2118 * the specified rcu_node structure's ->lock held and interrupts disabled.
2119 * This function therefore goes up the tree of rcu_node structures,
2120 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2121 * the leaf rcu_node structure's ->qsmaskinit field has already been
2122 * updated.
2123 *
2124 * This function does check that the specified rcu_node structure has
2125 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2126 * prematurely.  That said, invoking it after the fact will cost you
2127 * a needless lock acquisition.  So once it has done its work, don't
2128 * invoke it again.
2129 */
2130static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2131{
2132	long mask;
2133	struct rcu_node *rnp = rnp_leaf;
2134
2135	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2136	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2137	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2138	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2139		return;
2140	for (;;) {
2141		mask = rnp->grpmask;
2142		rnp = rnp->parent;
2143		if (!rnp)
2144			break;
2145		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2146		rnp->qsmaskinit &= ~mask;
2147		/* Between grace periods, so better already be zero! */
2148		WARN_ON_ONCE(rnp->qsmask);
2149		if (rnp->qsmaskinit) {
2150			raw_spin_unlock_rcu_node(rnp);
2151			/* irqs remain disabled. */
2152			return;
2153		}
2154		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2155	}
2156}
2157
2158/*
2159 * The CPU has been completely removed, and some other CPU is reporting
2160 * this fact from process context.  Do the remainder of the cleanup.
2161 * There can only be one CPU hotplug operation at a time, so no need for
2162 * explicit locking.
2163 */
2164int rcutree_dead_cpu(unsigned int cpu)
2165{
2166	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2167	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2168
2169	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2170		return 0;
2171
2172	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
2173	/* Adjust any no-longer-needed kthreads. */
2174	rcu_boost_kthread_setaffinity(rnp, -1);
2175	// Stop-machine done, so allow nohz_full to disable tick.
2176	tick_dep_clear(TICK_DEP_BIT_RCU);
2177	return 0;
2178}
2179
2180/*
2181 * Invoke any RCU callbacks that have made it to the end of their grace
2182 * period.  Throttle as specified by rdp->blimit.
2183 */
2184static void rcu_do_batch(struct rcu_data *rdp)
2185{
2186	int div;
2187	bool __maybe_unused empty;
2188	unsigned long flags;
 
 
2189	struct rcu_head *rhp;
2190	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2191	long bl, count = 0;
2192	long pending, tlimit = 0;
2193
2194	/* If no callbacks are ready, just return. */
2195	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2196		trace_rcu_batch_start(rcu_state.name,
 
2197				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2198		trace_rcu_batch_end(rcu_state.name, 0,
2199				    !rcu_segcblist_empty(&rdp->cblist),
2200				    need_resched(), is_idle_task(current),
2201				    rcu_is_callbacks_kthread(rdp));
2202		return;
2203	}
2204
2205	/*
2206	 * Extract the list of ready callbacks, disabling IRQs to prevent
2207	 * races with call_rcu() from interrupt handlers.  Leave the
2208	 * callback counts, as rcu_barrier() needs to be conservative.
2209	 */
2210	rcu_nocb_lock_irqsave(rdp, flags);
 
2211	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2212	pending = rcu_segcblist_n_cbs(&rdp->cblist);
2213	div = READ_ONCE(rcu_divisor);
2214	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2215	bl = max(rdp->blimit, pending >> div);
2216	if (in_serving_softirq() && unlikely(bl > 100)) {
2217		long rrn = READ_ONCE(rcu_resched_ns);
2218
2219		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2220		tlimit = local_clock() + rrn;
2221	}
2222	trace_rcu_batch_start(rcu_state.name,
 
2223			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2224	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2225	if (rcu_rdp_is_offloaded(rdp))
2226		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2227
2228	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2229	rcu_nocb_unlock_irqrestore(rdp, flags);
2230
2231	/* Invoke callbacks. */
2232	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2233	rhp = rcu_cblist_dequeue(&rcl);
2234
2235	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2236		rcu_callback_t f;
2237
2238		count++;
2239		debug_rcu_head_unqueue(rhp);
2240
2241		rcu_lock_acquire(&rcu_callback_map);
2242		trace_rcu_invoke_callback(rcu_state.name, rhp);
2243
2244		f = rhp->func;
2245		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2246		f(rhp);
2247
2248		rcu_lock_release(&rcu_callback_map);
2249
2250		/*
2251		 * Stop only if limit reached and CPU has something to do.
 
2252		 */
2253		if (in_serving_softirq()) {
2254			if (count >= bl && (need_resched() || !is_idle_task(current)))
2255				break;
2256			/*
2257			 * Make sure we don't spend too much time here and deprive other
2258			 * softirq vectors of CPU cycles.
2259			 */
2260			if (unlikely(tlimit)) {
2261				/* only call local_clock() every 32 callbacks */
2262				if (likely((count & 31) || local_clock() < tlimit))
2263					continue;
2264				/* Exceeded the time limit, so leave. */
2265				break;
2266			}
2267		} else {
2268			local_bh_enable();
2269			lockdep_assert_irqs_enabled();
2270			cond_resched_tasks_rcu_qs();
2271			lockdep_assert_irqs_enabled();
2272			local_bh_disable();
2273		}
2274	}
2275
2276	rcu_nocb_lock_irqsave(rdp, flags);
2277	rdp->n_cbs_invoked += count;
 
2278	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2279			    is_idle_task(current), rcu_is_callbacks_kthread(rdp));
2280
2281	/* Update counts and requeue any remaining callbacks. */
2282	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2283	rcu_segcblist_add_len(&rdp->cblist, -count);
 
2284
2285	/* Reinstate batch limit if we have worked down the excess. */
2286	count = rcu_segcblist_n_cbs(&rdp->cblist);
2287	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2288		rdp->blimit = blimit;
2289
2290	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2291	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2292		rdp->qlen_last_fqs_check = 0;
2293		rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2294	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2295		rdp->qlen_last_fqs_check = count;
2296
2297	/*
2298	 * The following usually indicates a double call_rcu().  To track
2299	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2300	 */
2301	empty = rcu_segcblist_empty(&rdp->cblist);
2302	WARN_ON_ONCE(count == 0 && !empty);
2303	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2304		     count != 0 && empty);
2305	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2306	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2307
2308	rcu_nocb_unlock_irqrestore(rdp, flags);
2309
2310	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
 
 
2311}
2312
2313/*
2314 * This function is invoked from each scheduling-clock interrupt,
2315 * and checks to see if this CPU is in a non-context-switch quiescent
2316 * state, for example, user mode or idle loop.  It also schedules RCU
2317 * core processing.  If the current grace period has gone on too long,
2318 * it will ask the scheduler to manufacture a context switch for the sole
2319 * purpose of providing the needed quiescent state.
2320 */
2321void rcu_sched_clock_irq(int user)
2322{
2323	unsigned long j;
2324
2325	if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2326		j = jiffies;
2327		WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2328		__this_cpu_write(rcu_data.last_sched_clock, j);
2329	}
2330	trace_rcu_utilization(TPS("Start scheduler-tick"));
2331	lockdep_assert_irqs_disabled();
2332	raw_cpu_inc(rcu_data.ticks_this_gp);
2333	/* The load-acquire pairs with the store-release setting to true. */
2334	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2335		/* Idle and userspace execution already are quiescent states. */
2336		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2337			set_tsk_need_resched(current);
2338			set_preempt_need_resched();
2339		}
2340		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2341	}
2342	rcu_flavor_sched_clock_irq(user);
2343	if (rcu_pending(user))
2344		invoke_rcu_core();
2345	if (user || rcu_is_cpu_rrupt_from_idle())
2346		rcu_note_voluntary_context_switch(current);
2347	lockdep_assert_irqs_disabled();
2348
2349	trace_rcu_utilization(TPS("End scheduler-tick"));
2350}
2351
2352/*
2353 * Scan the leaf rcu_node structures.  For each structure on which all
2354 * CPUs have reported a quiescent state and on which there are tasks
2355 * blocking the current grace period, initiate RCU priority boosting.
2356 * Otherwise, invoke the specified function to check dyntick state for
2357 * each CPU that has not yet reported a quiescent state.
2358 */
2359static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2360{
2361	int cpu;
2362	unsigned long flags;
2363	unsigned long mask;
2364	struct rcu_data *rdp;
2365	struct rcu_node *rnp;
2366
2367	rcu_state.cbovld = rcu_state.cbovldnext;
2368	rcu_state.cbovldnext = false;
2369	rcu_for_each_leaf_node(rnp) {
2370		cond_resched_tasks_rcu_qs();
2371		mask = 0;
2372		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2373		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2374		if (rnp->qsmask == 0) {
2375			if (rcu_preempt_blocked_readers_cgp(rnp)) {
 
2376				/*
2377				 * No point in scanning bits because they
2378				 * are all zero.  But we might need to
2379				 * priority-boost blocked readers.
2380				 */
2381				rcu_initiate_boost(rnp, flags);
2382				/* rcu_initiate_boost() releases rnp->lock */
2383				continue;
2384			}
2385			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2386			continue;
2387		}
2388		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2389			rdp = per_cpu_ptr(&rcu_data, cpu);
2390			if (f(rdp)) {
2391				mask |= rdp->grpmask;
2392				rcu_disable_urgency_upon_qs(rdp);
2393			}
2394		}
2395		if (mask != 0) {
2396			/* Idle/offline CPUs, report (releases rnp->lock). */
2397			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2398		} else {
2399			/* Nothing to do here, so just drop the lock. */
2400			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2401		}
2402	}
2403}
2404
2405/*
2406 * Force quiescent states on reluctant CPUs, and also detect which
2407 * CPUs are in dyntick-idle mode.
2408 */
2409void rcu_force_quiescent_state(void)
2410{
2411	unsigned long flags;
2412	bool ret;
2413	struct rcu_node *rnp;
2414	struct rcu_node *rnp_old = NULL;
2415
2416	/* Funnel through hierarchy to reduce memory contention. */
2417	rnp = raw_cpu_read(rcu_data.mynode);
2418	for (; rnp != NULL; rnp = rnp->parent) {
2419		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2420		       !raw_spin_trylock(&rnp->fqslock);
2421		if (rnp_old != NULL)
2422			raw_spin_unlock(&rnp_old->fqslock);
2423		if (ret)
2424			return;
2425		rnp_old = rnp;
2426	}
2427	/* rnp_old == rcu_get_root(), rnp == NULL. */
2428
2429	/* Reached the root of the rcu_node tree, acquire lock. */
2430	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2431	raw_spin_unlock(&rnp_old->fqslock);
2432	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2433		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2434		return;  /* Someone beat us to it. */
2435	}
2436	WRITE_ONCE(rcu_state.gp_flags,
2437		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2438	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2439	rcu_gp_kthread_wake();
2440}
2441EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2442
2443// Workqueue handler for an RCU reader for kernels enforcing struct RCU
2444// grace periods.
2445static void strict_work_handler(struct work_struct *work)
2446{
2447	rcu_read_lock();
2448	rcu_read_unlock();
2449}
2450
2451/* Perform RCU core processing work for the current CPU.  */
2452static __latent_entropy void rcu_core(void)
2453{
2454	unsigned long flags;
2455	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2456	struct rcu_node *rnp = rdp->mynode;
2457	/*
2458	 * On RT rcu_core() can be preempted when IRQs aren't disabled.
2459	 * Therefore this function can race with concurrent NOCB (de-)offloading
2460	 * on this CPU and the below condition must be considered volatile.
2461	 * However if we race with:
2462	 *
2463	 * _ Offloading:   In the worst case we accelerate or process callbacks
2464	 *                 concurrently with NOCB kthreads. We are guaranteed to
2465	 *                 call rcu_nocb_lock() if that happens.
2466	 *
2467	 * _ Deoffloading: In the worst case we miss callbacks acceleration or
2468	 *                 processing. This is fine because the early stage
2469	 *                 of deoffloading invokes rcu_core() after setting
2470	 *                 SEGCBLIST_RCU_CORE. So we guarantee that we'll process
2471	 *                 what could have been dismissed without the need to wait
2472	 *                 for the next rcu_pending() check in the next jiffy.
2473	 */
2474	const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2475
2476	if (cpu_is_offline(smp_processor_id()))
2477		return;
2478	trace_rcu_utilization(TPS("Start RCU core"));
2479	WARN_ON_ONCE(!rdp->beenonline);
2480
2481	/* Report any deferred quiescent states if preemption enabled. */
2482	if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2483		rcu_preempt_deferred_qs(current);
2484	} else if (rcu_preempt_need_deferred_qs(current)) {
2485		set_tsk_need_resched(current);
2486		set_preempt_need_resched();
2487	}
2488
2489	/* Update RCU state based on any recent quiescent states. */
2490	rcu_check_quiescent_state(rdp);
2491
2492	/* No grace period and unregistered callbacks? */
2493	if (!rcu_gp_in_progress() &&
2494	    rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2495		rcu_nocb_lock_irqsave(rdp, flags);
2496		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2497			rcu_accelerate_cbs_unlocked(rnp, rdp);
2498		rcu_nocb_unlock_irqrestore(rdp, flags);
2499	}
2500
2501	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2502
2503	/* If there are callbacks ready, invoke them. */
2504	if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2505	    likely(READ_ONCE(rcu_scheduler_fully_active))) {
2506		rcu_do_batch(rdp);
2507		/* Re-invoke RCU core processing if there are callbacks remaining. */
2508		if (rcu_segcblist_ready_cbs(&rdp->cblist))
2509			invoke_rcu_core();
2510	}
2511
2512	/* Do any needed deferred wakeups of rcuo kthreads. */
2513	do_nocb_deferred_wakeup(rdp);
2514	trace_rcu_utilization(TPS("End RCU core"));
2515
2516	// If strict GPs, schedule an RCU reader in a clean environment.
2517	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2518		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2519}
2520
2521static void rcu_core_si(struct softirq_action *h)
2522{
2523	rcu_core();
2524}
2525
2526static void rcu_wake_cond(struct task_struct *t, int status)
2527{
2528	/*
2529	 * If the thread is yielding, only wake it when this
2530	 * is invoked from idle
2531	 */
2532	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2533		wake_up_process(t);
2534}
2535
2536static void invoke_rcu_core_kthread(void)
2537{
2538	struct task_struct *t;
2539	unsigned long flags;
2540
2541	local_irq_save(flags);
2542	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2543	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2544	if (t != NULL && t != current)
2545		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2546	local_irq_restore(flags);
2547}
2548
2549/*
2550 * Wake up this CPU's rcuc kthread to do RCU core processing.
2551 */
2552static void invoke_rcu_core(void)
2553{
2554	if (!cpu_online(smp_processor_id()))
2555		return;
2556	if (use_softirq)
2557		raise_softirq(RCU_SOFTIRQ);
2558	else
2559		invoke_rcu_core_kthread();
2560}
2561
2562static void rcu_cpu_kthread_park(unsigned int cpu)
2563{
2564	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2565}
2566
2567static int rcu_cpu_kthread_should_run(unsigned int cpu)
2568{
2569	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2570}
2571
2572/*
2573 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2574 * the RCU softirq used in configurations of RCU that do not support RCU
2575 * priority boosting.
2576 */
2577static void rcu_cpu_kthread(unsigned int cpu)
2578{
2579	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2580	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2581	unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2582	int spincnt;
2583
2584	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2585	for (spincnt = 0; spincnt < 10; spincnt++) {
2586		WRITE_ONCE(*j, jiffies);
2587		local_bh_disable();
2588		*statusp = RCU_KTHREAD_RUNNING;
2589		local_irq_disable();
2590		work = *workp;
2591		*workp = 0;
2592		local_irq_enable();
2593		if (work)
2594			rcu_core();
2595		local_bh_enable();
2596		if (*workp == 0) {
2597			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2598			*statusp = RCU_KTHREAD_WAITING;
2599			return;
2600		}
2601	}
2602	*statusp = RCU_KTHREAD_YIELDING;
2603	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2604	schedule_timeout_idle(2);
2605	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2606	*statusp = RCU_KTHREAD_WAITING;
2607	WRITE_ONCE(*j, jiffies);
2608}
2609
2610static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2611	.store			= &rcu_data.rcu_cpu_kthread_task,
2612	.thread_should_run	= rcu_cpu_kthread_should_run,
2613	.thread_fn		= rcu_cpu_kthread,
2614	.thread_comm		= "rcuc/%u",
2615	.setup			= rcu_cpu_kthread_setup,
2616	.park			= rcu_cpu_kthread_park,
2617};
2618
2619/*
2620 * Spawn per-CPU RCU core processing kthreads.
2621 */
2622static int __init rcu_spawn_core_kthreads(void)
2623{
2624	int cpu;
2625
2626	for_each_possible_cpu(cpu)
2627		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2628	if (use_softirq)
2629		return 0;
2630	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2631		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2632	return 0;
2633}
 
2634
2635/*
2636 * Handle any core-RCU processing required by a call_rcu() invocation.
2637 */
2638static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2639			    unsigned long flags)
2640{
2641	/*
2642	 * If called from an extended quiescent state, invoke the RCU
2643	 * core in order to force a re-evaluation of RCU's idleness.
2644	 */
2645	if (!rcu_is_watching())
2646		invoke_rcu_core();
2647
2648	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2649	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2650		return;
2651
2652	/*
2653	 * Force the grace period if too many callbacks or too long waiting.
2654	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2655	 * if some other CPU has recently done so.  Also, don't bother
2656	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2657	 * is the only one waiting for a grace period to complete.
2658	 */
2659	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2660		     rdp->qlen_last_fqs_check + qhimark)) {
2661
2662		/* Are we ignoring a completed grace period? */
2663		note_gp_changes(rdp);
2664
2665		/* Start a new grace period if one not already started. */
2666		if (!rcu_gp_in_progress()) {
2667			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2668		} else {
2669			/* Give the grace period a kick. */
2670			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2671			if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2672			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2673				rcu_force_quiescent_state();
2674			rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2675			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2676		}
2677	}
2678}
2679
2680/*
2681 * RCU callback function to leak a callback.
2682 */
2683static void rcu_leak_callback(struct rcu_head *rhp)
2684{
2685}
2686
2687/*
2688 * Check and if necessary update the leaf rcu_node structure's
2689 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2690 * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2691 * structure's ->lock.
2692 */
2693static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2694{
2695	raw_lockdep_assert_held_rcu_node(rnp);
2696	if (qovld_calc <= 0)
2697		return; // Early boot and wildcard value set.
2698	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2699		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2700	else
2701		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2702}
2703
2704/*
2705 * Check and if necessary update the leaf rcu_node structure's
2706 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2707 * number of queued RCU callbacks.  No locks need be held, but the
2708 * caller must have disabled interrupts.
2709 *
2710 * Note that this function ignores the possibility that there are a lot
2711 * of callbacks all of which have already seen the end of their respective
2712 * grace periods.  This omission is due to the need for no-CBs CPUs to
2713 * be holding ->nocb_lock to do this check, which is too heavy for a
2714 * common-case operation.
2715 */
2716static void check_cb_ovld(struct rcu_data *rdp)
2717{
2718	struct rcu_node *const rnp = rdp->mynode;
2719
2720	if (qovld_calc <= 0 ||
2721	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2722	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2723		return; // Early boot wildcard value or already set correctly.
2724	raw_spin_lock_rcu_node(rnp);
2725	check_cb_ovld_locked(rdp, rnp);
2726	raw_spin_unlock_rcu_node(rnp);
2727}
2728
2729static void
2730__call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy)
2731{
2732	static atomic_t doublefrees;
2733	unsigned long flags;
2734	struct rcu_data *rdp;
2735	bool was_alldone;
2736
2737	/* Misaligned rcu_head! */
2738	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2739
2740	if (debug_rcu_head_queue(head)) {
2741		/*
2742		 * Probable double call_rcu(), so leak the callback.
2743		 * Use rcu:rcu_callback trace event to find the previous
2744		 * time callback was passed to call_rcu().
2745		 */
2746		if (atomic_inc_return(&doublefrees) < 4) {
2747			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
2748			mem_dump_obj(head);
2749		}
2750		WRITE_ONCE(head->func, rcu_leak_callback);
2751		return;
2752	}
2753	head->func = func;
2754	head->next = NULL;
2755	kasan_record_aux_stack_noalloc(head);
2756	local_irq_save(flags);
2757	rdp = this_cpu_ptr(&rcu_data);
2758
2759	/* Add the callback to our list. */
2760	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2761		// This can trigger due to call_rcu() from offline CPU:
2762		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2763		WARN_ON_ONCE(!rcu_is_watching());
2764		// Very early boot, before rcu_init().  Initialize if needed
2765		// and then drop through to queue the callback.
2766		if (rcu_segcblist_empty(&rdp->cblist))
2767			rcu_segcblist_init(&rdp->cblist);
2768	}
2769
2770	check_cb_ovld(rdp);
2771	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy))
2772		return; // Enqueued onto ->nocb_bypass, so just leave.
2773	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2774	rcu_segcblist_enqueue(&rdp->cblist, head);
2775	if (__is_kvfree_rcu_offset((unsigned long)func))
2776		trace_rcu_kvfree_callback(rcu_state.name, head,
2777					 (unsigned long)func,
 
2778					 rcu_segcblist_n_cbs(&rdp->cblist));
2779	else
2780		trace_rcu_callback(rcu_state.name, head,
 
2781				   rcu_segcblist_n_cbs(&rdp->cblist));
2782
2783	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2784
2785	/* Go handle any RCU core processing required. */
2786	if (unlikely(rcu_rdp_is_offloaded(rdp))) {
 
2787		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2788	} else {
2789		__call_rcu_core(rdp, head, flags);
2790		local_irq_restore(flags);
2791	}
2792}
2793
2794#ifdef CONFIG_RCU_LAZY
2795/**
2796 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
2797 * flush all lazy callbacks (including the new one) to the main ->cblist while
2798 * doing so.
2799 *
2800 * @head: structure to be used for queueing the RCU updates.
2801 * @func: actual callback function to be invoked after the grace period
2802 *
2803 * The callback function will be invoked some time after a full grace
2804 * period elapses, in other words after all pre-existing RCU read-side
2805 * critical sections have completed.
2806 *
2807 * Use this API instead of call_rcu() if you don't want the callback to be
2808 * invoked after very long periods of time, which can happen on systems without
2809 * memory pressure and on systems which are lightly loaded or mostly idle.
2810 * This function will cause callbacks to be invoked sooner than later at the
2811 * expense of extra power. Other than that, this function is identical to, and
2812 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
2813 * ordering and other functionality.
2814 */
2815void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
2816{
2817	return __call_rcu_common(head, func, false);
2818}
2819EXPORT_SYMBOL_GPL(call_rcu_hurry);
2820#endif
2821
2822/**
2823 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2824 * By default the callbacks are 'lazy' and are kept hidden from the main
2825 * ->cblist to prevent starting of grace periods too soon.
2826 * If you desire grace periods to start very soon, use call_rcu_hurry().
2827 *
2828 * @head: structure to be used for queueing the RCU updates.
2829 * @func: actual callback function to be invoked after the grace period
2830 *
2831 * The callback function will be invoked some time after a full grace
2832 * period elapses, in other words after all pre-existing RCU read-side
2833 * critical sections have completed.  However, the callback function
2834 * might well execute concurrently with RCU read-side critical sections
2835 * that started after call_rcu() was invoked.
2836 *
2837 * RCU read-side critical sections are delimited by rcu_read_lock()
2838 * and rcu_read_unlock(), and may be nested.  In addition, but only in
2839 * v5.0 and later, regions of code across which interrupts, preemption,
2840 * or softirqs have been disabled also serve as RCU read-side critical
2841 * sections.  This includes hardware interrupt handlers, softirq handlers,
2842 * and NMI handlers.
2843 *
2844 * Note that all CPUs must agree that the grace period extended beyond
2845 * all pre-existing RCU read-side critical section.  On systems with more
2846 * than one CPU, this means that when "func()" is invoked, each CPU is
2847 * guaranteed to have executed a full memory barrier since the end of its
2848 * last RCU read-side critical section whose beginning preceded the call
2849 * to call_rcu().  It also means that each CPU executing an RCU read-side
2850 * critical section that continues beyond the start of "func()" must have
2851 * executed a memory barrier after the call_rcu() but before the beginning
2852 * of that RCU read-side critical section.  Note that these guarantees
2853 * include CPUs that are offline, idle, or executing in user mode, as
2854 * well as CPUs that are executing in the kernel.
2855 *
2856 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2857 * resulting RCU callback function "func()", then both CPU A and CPU B are
2858 * guaranteed to execute a full memory barrier during the time interval
2859 * between the call to call_rcu() and the invocation of "func()" -- even
2860 * if CPU A and CPU B are the same CPU (but again only if the system has
2861 * more than one CPU).
2862 *
2863 * Implementation of these memory-ordering guarantees is described here:
2864 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
2865 */
2866void call_rcu(struct rcu_head *head, rcu_callback_t func)
2867{
2868	return __call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY));
2869}
2870EXPORT_SYMBOL_GPL(call_rcu);
2871
2872/* Maximum number of jiffies to wait before draining a batch. */
2873#define KFREE_DRAIN_JIFFIES (5 * HZ)
2874#define KFREE_N_BATCHES 2
2875#define FREE_N_CHANNELS 2
2876
2877/**
2878 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
2879 * @nr_records: Number of active pointers in the array
2880 * @next: Next bulk object in the block chain
2881 * @records: Array of the kvfree_rcu() pointers
2882 */
2883struct kvfree_rcu_bulk_data {
2884	unsigned long nr_records;
2885	struct kvfree_rcu_bulk_data *next;
2886	void *records[];
2887};
2888
2889/*
2890 * This macro defines how many entries the "records" array
2891 * will contain. It is based on the fact that the size of
2892 * kvfree_rcu_bulk_data structure becomes exactly one page.
 
 
2893 */
2894#define KVFREE_BULK_MAX_ENTR \
2895	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
2896
2897/**
2898 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
2899 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
2900 * @head_free: List of kfree_rcu() objects waiting for a grace period
2901 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
2902 * @krcp: Pointer to @kfree_rcu_cpu structure
2903 */
2904
2905struct kfree_rcu_cpu_work {
2906	struct rcu_work rcu_work;
2907	struct rcu_head *head_free;
2908	struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
2909	struct kfree_rcu_cpu *krcp;
2910};
2911
2912/**
2913 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
2914 * @head: List of kfree_rcu() objects not yet waiting for a grace period
2915 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
2916 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
2917 * @lock: Synchronize access to this structure
2918 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2919 * @initialized: The @rcu_work fields have been initialized
2920 * @count: Number of objects for which GP not started
2921 * @bkvcache:
2922 *	A simple cache list that contains objects for reuse purpose.
2923 *	In order to save some per-cpu space the list is singular.
2924 *	Even though it is lockless an access has to be protected by the
2925 *	per-cpu lock.
2926 * @page_cache_work: A work to refill the cache when it is empty
2927 * @backoff_page_cache_fill: Delay cache refills
2928 * @work_in_progress: Indicates that page_cache_work is running
2929 * @hrtimer: A hrtimer for scheduling a page_cache_work
2930 * @nr_bkv_objs: number of allocated objects at @bkvcache.
2931 *
2932 * This is a per-CPU structure.  The reason that it is not included in
2933 * the rcu_data structure is to permit this code to be extracted from
2934 * the RCU files.  Such extraction could allow further optimization of
2935 * the interactions with the slab allocators.
2936 */
2937struct kfree_rcu_cpu {
2938	struct rcu_head *head;
2939	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
2940	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
2941	raw_spinlock_t lock;
2942	struct delayed_work monitor_work;
2943	bool initialized;
2944	int count;
2945
2946	struct delayed_work page_cache_work;
2947	atomic_t backoff_page_cache_fill;
2948	atomic_t work_in_progress;
2949	struct hrtimer hrtimer;
2950
2951	struct llist_head bkvcache;
2952	int nr_bkv_objs;
2953};
2954
2955static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
2956	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
2957};
2958
2959static __always_inline void
2960debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
2961{
2962#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
2963	int i;
2964
2965	for (i = 0; i < bhead->nr_records; i++)
2966		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
2967#endif
2968}
2969
2970static inline struct kfree_rcu_cpu *
2971krc_this_cpu_lock(unsigned long *flags)
2972{
2973	struct kfree_rcu_cpu *krcp;
2974
2975	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
2976	krcp = this_cpu_ptr(&krc);
2977	raw_spin_lock(&krcp->lock);
2978
2979	return krcp;
2980}
2981
2982static inline void
2983krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
2984{
2985	raw_spin_unlock_irqrestore(&krcp->lock, flags);
2986}
2987
2988static inline struct kvfree_rcu_bulk_data *
2989get_cached_bnode(struct kfree_rcu_cpu *krcp)
2990{
2991	if (!krcp->nr_bkv_objs)
2992		return NULL;
2993
2994	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
2995	return (struct kvfree_rcu_bulk_data *)
2996		llist_del_first(&krcp->bkvcache);
2997}
2998
2999static inline bool
3000put_cached_bnode(struct kfree_rcu_cpu *krcp,
3001	struct kvfree_rcu_bulk_data *bnode)
3002{
3003	// Check the limit.
3004	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3005		return false;
3006
3007	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3008	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
3009	return true;
3010}
3011
3012static int
3013drain_page_cache(struct kfree_rcu_cpu *krcp)
3014{
3015	unsigned long flags;
3016	struct llist_node *page_list, *pos, *n;
3017	int freed = 0;
3018
3019	raw_spin_lock_irqsave(&krcp->lock, flags);
3020	page_list = llist_del_all(&krcp->bkvcache);
3021	WRITE_ONCE(krcp->nr_bkv_objs, 0);
3022	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3023
3024	llist_for_each_safe(pos, n, page_list) {
3025		free_page((unsigned long)pos);
3026		freed++;
3027	}
3028
3029	return freed;
3030}
3031
3032/*
3033 * This function is invoked in workqueue context after a grace period.
3034 * It frees all the objects queued on ->bkvhead_free or ->head_free.
3035 */
3036static void kfree_rcu_work(struct work_struct *work)
3037{
3038	unsigned long flags;
3039	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3040	struct rcu_head *head, *next;
3041	struct kfree_rcu_cpu *krcp;
3042	struct kfree_rcu_cpu_work *krwp;
3043	int i, j;
3044
3045	krwp = container_of(to_rcu_work(work),
3046			    struct kfree_rcu_cpu_work, rcu_work);
3047	krcp = krwp->krcp;
3048
3049	raw_spin_lock_irqsave(&krcp->lock, flags);
3050	// Channels 1 and 2.
3051	for (i = 0; i < FREE_N_CHANNELS; i++) {
3052		bkvhead[i] = krwp->bkvhead_free[i];
3053		krwp->bkvhead_free[i] = NULL;
3054	}
3055
3056	// Channel 3.
3057	head = krwp->head_free;
3058	krwp->head_free = NULL;
3059	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3060
3061	// Handle the first two channels.
3062	for (i = 0; i < FREE_N_CHANNELS; i++) {
3063		for (; bkvhead[i]; bkvhead[i] = bnext) {
3064			bnext = bkvhead[i]->next;
3065			debug_rcu_bhead_unqueue(bkvhead[i]);
3066
3067			rcu_lock_acquire(&rcu_callback_map);
3068			if (i == 0) { // kmalloc() / kfree().
3069				trace_rcu_invoke_kfree_bulk_callback(
3070					rcu_state.name, bkvhead[i]->nr_records,
3071					bkvhead[i]->records);
3072
3073				kfree_bulk(bkvhead[i]->nr_records,
3074					bkvhead[i]->records);
3075			} else { // vmalloc() / vfree().
3076				for (j = 0; j < bkvhead[i]->nr_records; j++) {
3077					trace_rcu_invoke_kvfree_callback(
3078						rcu_state.name,
3079						bkvhead[i]->records[j], 0);
3080
3081					vfree(bkvhead[i]->records[j]);
3082				}
3083			}
3084			rcu_lock_release(&rcu_callback_map);
3085
3086			raw_spin_lock_irqsave(&krcp->lock, flags);
3087			if (put_cached_bnode(krcp, bkvhead[i]))
3088				bkvhead[i] = NULL;
3089			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3090
3091			if (bkvhead[i])
3092				free_page((unsigned long) bkvhead[i]);
3093
3094			cond_resched_tasks_rcu_qs();
3095		}
3096	}
3097
3098	/*
3099	 * This is used when the "bulk" path can not be used for the
3100	 * double-argument of kvfree_rcu().  This happens when the
3101	 * page-cache is empty, which means that objects are instead
3102	 * queued on a linked list through their rcu_head structures.
3103	 * This list is named "Channel 3".
3104	 */
3105	for (; head; head = next) {
3106		unsigned long offset = (unsigned long)head->func;
3107		void *ptr = (void *)head - offset;
3108
3109		next = head->next;
3110		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3111		rcu_lock_acquire(&rcu_callback_map);
3112		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3113
3114		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3115			kvfree(ptr);
3116
3117		rcu_lock_release(&rcu_callback_map);
3118		cond_resched_tasks_rcu_qs();
3119	}
3120}
3121
3122static bool
3123need_offload_krc(struct kfree_rcu_cpu *krcp)
3124{
3125	int i;
3126
3127	for (i = 0; i < FREE_N_CHANNELS; i++)
3128		if (krcp->bkvhead[i])
3129			return true;
3130
3131	return !!krcp->head;
3132}
3133
3134static void
3135schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3136{
3137	long delay, delay_left;
3138
3139	delay = READ_ONCE(krcp->count) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
3140	if (delayed_work_pending(&krcp->monitor_work)) {
3141		delay_left = krcp->monitor_work.timer.expires - jiffies;
3142		if (delay < delay_left)
3143			mod_delayed_work(system_wq, &krcp->monitor_work, delay);
3144		return;
3145	}
3146	queue_delayed_work(system_wq, &krcp->monitor_work, delay);
3147}
3148
3149/*
3150 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3151 */
3152static void kfree_rcu_monitor(struct work_struct *work)
3153{
3154	struct kfree_rcu_cpu *krcp = container_of(work,
3155		struct kfree_rcu_cpu, monitor_work.work);
3156	unsigned long flags;
3157	int i, j;
3158
3159	raw_spin_lock_irqsave(&krcp->lock, flags);
3160
3161	// Attempt to start a new batch.
3162	for (i = 0; i < KFREE_N_BATCHES; i++) {
3163		struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3164
3165		// Try to detach bkvhead or head and attach it over any
3166		// available corresponding free channel. It can be that
3167		// a previous RCU batch is in progress, it means that
3168		// immediately to queue another one is not possible so
3169		// in that case the monitor work is rearmed.
3170		if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3171			(krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
3172				(krcp->head && !krwp->head_free)) {
3173			// Channel 1 corresponds to the SLAB-pointer bulk path.
3174			// Channel 2 corresponds to vmalloc-pointer bulk path.
3175			for (j = 0; j < FREE_N_CHANNELS; j++) {
3176				if (!krwp->bkvhead_free[j]) {
3177					krwp->bkvhead_free[j] = krcp->bkvhead[j];
3178					krcp->bkvhead[j] = NULL;
3179				}
3180			}
3181
3182			// Channel 3 corresponds to both SLAB and vmalloc
3183			// objects queued on the linked list.
3184			if (!krwp->head_free) {
3185				krwp->head_free = krcp->head;
3186				krcp->head = NULL;
3187			}
3188
3189			WRITE_ONCE(krcp->count, 0);
3190
3191			// One work is per one batch, so there are three
3192			// "free channels", the batch can handle. It can
3193			// be that the work is in the pending state when
3194			// channels have been detached following by each
3195			// other.
3196			queue_rcu_work(system_wq, &krwp->rcu_work);
3197		}
3198	}
3199
3200	// If there is nothing to detach, it means that our job is
3201	// successfully done here. In case of having at least one
3202	// of the channels that is still busy we should rearm the
3203	// work to repeat an attempt. Because previous batches are
3204	// still in progress.
3205	if (need_offload_krc(krcp))
3206		schedule_delayed_monitor_work(krcp);
3207
3208	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3209}
3210
3211static enum hrtimer_restart
3212schedule_page_work_fn(struct hrtimer *t)
3213{
3214	struct kfree_rcu_cpu *krcp =
3215		container_of(t, struct kfree_rcu_cpu, hrtimer);
3216
3217	queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3218	return HRTIMER_NORESTART;
3219}
3220
3221static void fill_page_cache_func(struct work_struct *work)
3222{
3223	struct kvfree_rcu_bulk_data *bnode;
3224	struct kfree_rcu_cpu *krcp =
3225		container_of(work, struct kfree_rcu_cpu,
3226			page_cache_work.work);
3227	unsigned long flags;
3228	int nr_pages;
3229	bool pushed;
3230	int i;
3231
3232	nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3233		1 : rcu_min_cached_objs;
3234
3235	for (i = 0; i < nr_pages; i++) {
3236		bnode = (struct kvfree_rcu_bulk_data *)
3237			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3238
3239		if (!bnode)
3240			break;
3241
3242		raw_spin_lock_irqsave(&krcp->lock, flags);
3243		pushed = put_cached_bnode(krcp, bnode);
3244		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3245
3246		if (!pushed) {
3247			free_page((unsigned long) bnode);
3248			break;
3249		}
3250	}
3251
3252	atomic_set(&krcp->work_in_progress, 0);
3253	atomic_set(&krcp->backoff_page_cache_fill, 0);
3254}
3255
3256static void
3257run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3258{
3259	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3260			!atomic_xchg(&krcp->work_in_progress, 1)) {
3261		if (atomic_read(&krcp->backoff_page_cache_fill)) {
3262			queue_delayed_work(system_wq,
3263				&krcp->page_cache_work,
3264					msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3265		} else {
3266			hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3267			krcp->hrtimer.function = schedule_page_work_fn;
3268			hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3269		}
3270	}
3271}
3272
3273// Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3274// state specified by flags.  If can_alloc is true, the caller must
3275// be schedulable and not be holding any locks or mutexes that might be
3276// acquired by the memory allocator or anything that it might invoke.
3277// Returns true if ptr was successfully recorded, else the caller must
3278// use a fallback.
3279static inline bool
3280add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3281	unsigned long *flags, void *ptr, bool can_alloc)
3282{
3283	struct kvfree_rcu_bulk_data *bnode;
3284	int idx;
3285
3286	*krcp = krc_this_cpu_lock(flags);
3287	if (unlikely(!(*krcp)->initialized))
3288		return false;
3289
3290	idx = !!is_vmalloc_addr(ptr);
3291
3292	/* Check if a new block is required. */
3293	if (!(*krcp)->bkvhead[idx] ||
3294			(*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3295		bnode = get_cached_bnode(*krcp);
3296		if (!bnode && can_alloc) {
3297			krc_this_cpu_unlock(*krcp, *flags);
3298
3299			// __GFP_NORETRY - allows a light-weight direct reclaim
3300			// what is OK from minimizing of fallback hitting point of
3301			// view. Apart of that it forbids any OOM invoking what is
3302			// also beneficial since we are about to release memory soon.
3303			//
3304			// __GFP_NOMEMALLOC - prevents from consuming of all the
3305			// memory reserves. Please note we have a fallback path.
3306			//
3307			// __GFP_NOWARN - it is supposed that an allocation can
3308			// be failed under low memory or high memory pressure
3309			// scenarios.
3310			bnode = (struct kvfree_rcu_bulk_data *)
3311				__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3312			*krcp = krc_this_cpu_lock(flags);
3313		}
3314
3315		if (!bnode)
3316			return false;
3317
3318		/* Initialize the new block. */
3319		bnode->nr_records = 0;
3320		bnode->next = (*krcp)->bkvhead[idx];
3321
3322		/* Attach it to the head. */
3323		(*krcp)->bkvhead[idx] = bnode;
3324	}
3325
3326	/* Finally insert. */
3327	(*krcp)->bkvhead[idx]->records
3328		[(*krcp)->bkvhead[idx]->nr_records++] = ptr;
3329
3330	return true;
3331}
3332
3333/*
3334 * Queue a request for lazy invocation of the appropriate free routine
3335 * after a grace period.  Please note that three paths are maintained,
3336 * two for the common case using arrays of pointers and a third one that
3337 * is used only when the main paths cannot be used, for example, due to
3338 * memory pressure.
3339 *
3340 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3341 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3342 * be free'd in workqueue context. This allows us to: batch requests together to
3343 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3344 */
3345void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3346{
3347	unsigned long flags;
3348	struct kfree_rcu_cpu *krcp;
3349	bool success;
3350	void *ptr;
3351
3352	if (head) {
3353		ptr = (void *) head - (unsigned long) func;
3354	} else {
3355		/*
3356		 * Please note there is a limitation for the head-less
3357		 * variant, that is why there is a clear rule for such
3358		 * objects: it can be used from might_sleep() context
3359		 * only. For other places please embed an rcu_head to
3360		 * your data.
3361		 */
3362		might_sleep();
3363		ptr = (unsigned long *) func;
3364	}
3365
3366	// Queue the object but don't yet schedule the batch.
3367	if (debug_rcu_head_queue(ptr)) {
3368		// Probable double kfree_rcu(), just leak.
3369		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3370			  __func__, head);
3371
3372		// Mark as success and leave.
3373		return;
3374	}
3375
3376	kasan_record_aux_stack_noalloc(ptr);
3377	success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3378	if (!success) {
3379		run_page_cache_worker(krcp);
3380
3381		if (head == NULL)
3382			// Inline if kvfree_rcu(one_arg) call.
3383			goto unlock_return;
3384
3385		head->func = func;
3386		head->next = krcp->head;
3387		krcp->head = head;
3388		success = true;
3389	}
3390
3391	WRITE_ONCE(krcp->count, krcp->count + 1);
3392
3393	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3394	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
3395		schedule_delayed_monitor_work(krcp);
3396
3397unlock_return:
3398	krc_this_cpu_unlock(krcp, flags);
3399
3400	/*
3401	 * Inline kvfree() after synchronize_rcu(). We can do
3402	 * it from might_sleep() context only, so the current
3403	 * CPU can pass the QS state.
3404	 */
3405	if (!success) {
3406		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3407		synchronize_rcu();
3408		kvfree(ptr);
3409	}
3410}
3411EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3412
3413static unsigned long
3414kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3415{
3416	int cpu;
3417	unsigned long count = 0;
3418
3419	/* Snapshot count of all CPUs */
3420	for_each_possible_cpu(cpu) {
3421		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3422
3423		count += READ_ONCE(krcp->count);
3424		count += READ_ONCE(krcp->nr_bkv_objs);
3425		atomic_set(&krcp->backoff_page_cache_fill, 1);
3426	}
3427
3428	return count == 0 ? SHRINK_EMPTY : count;
3429}
3430
3431static unsigned long
3432kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3433{
3434	int cpu, freed = 0;
3435
3436	for_each_possible_cpu(cpu) {
3437		int count;
3438		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3439
3440		count = krcp->count;
3441		count += drain_page_cache(krcp);
3442		kfree_rcu_monitor(&krcp->monitor_work.work);
3443
3444		sc->nr_to_scan -= count;
3445		freed += count;
3446
3447		if (sc->nr_to_scan <= 0)
3448			break;
3449	}
3450
3451	return freed == 0 ? SHRINK_STOP : freed;
3452}
3453
3454static struct shrinker kfree_rcu_shrinker = {
3455	.count_objects = kfree_rcu_shrink_count,
3456	.scan_objects = kfree_rcu_shrink_scan,
3457	.batch = 0,
3458	.seeks = DEFAULT_SEEKS,
3459};
3460
3461void __init kfree_rcu_scheduler_running(void)
3462{
3463	int cpu;
3464	unsigned long flags;
3465
3466	for_each_possible_cpu(cpu) {
3467		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3468
3469		raw_spin_lock_irqsave(&krcp->lock, flags);
3470		if (need_offload_krc(krcp))
3471			schedule_delayed_monitor_work(krcp);
3472		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3473	}
3474}
 
3475
3476/*
3477 * During early boot, any blocking grace-period wait automatically
3478 * implies a grace period.
3479 *
3480 * Later on, this could in theory be the case for kernels built with
3481 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
3482 * is not a common case.  Furthermore, this optimization would cause
3483 * the rcu_gp_oldstate structure to expand by 50%, so this potential
3484 * grace-period optimization is ignored once the scheduler is running.
 
 
3485 */
3486static int rcu_blocking_is_gp(void)
3487{
3488	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
3489		return false;
 
 
3490	might_sleep();  /* Check for RCU read-side critical section. */
3491	return true;
 
 
 
3492}
3493
3494/**
3495 * synchronize_rcu - wait until a grace period has elapsed.
3496 *
3497 * Control will return to the caller some time after a full grace
3498 * period has elapsed, in other words after all currently executing RCU
3499 * read-side critical sections have completed.  Note, however, that
3500 * upon return from synchronize_rcu(), the caller might well be executing
3501 * concurrently with new RCU read-side critical sections that began while
3502 * synchronize_rcu() was waiting.
3503 *
3504 * RCU read-side critical sections are delimited by rcu_read_lock()
3505 * and rcu_read_unlock(), and may be nested.  In addition, but only in
3506 * v5.0 and later, regions of code across which interrupts, preemption,
3507 * or softirqs have been disabled also serve as RCU read-side critical
3508 * sections.  This includes hardware interrupt handlers, softirq handlers,
3509 * and NMI handlers.
3510 *
3511 * Note that this guarantee implies further memory-ordering guarantees.
3512 * On systems with more than one CPU, when synchronize_rcu() returns,
3513 * each CPU is guaranteed to have executed a full memory barrier since
3514 * the end of its last RCU read-side critical section whose beginning
3515 * preceded the call to synchronize_rcu().  In addition, each CPU having
3516 * an RCU read-side critical section that extends beyond the return from
3517 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3518 * after the beginning of synchronize_rcu() and before the beginning of
3519 * that RCU read-side critical section.  Note that these guarantees include
3520 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3521 * that are executing in the kernel.
3522 *
3523 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3524 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3525 * to have executed a full memory barrier during the execution of
3526 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3527 * again only if the system has more than one CPU).
3528 *
3529 * Implementation of these memory-ordering guarantees is described here:
3530 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3531 */
3532void synchronize_rcu(void)
3533{
3534	unsigned long flags;
3535	struct rcu_node *rnp;
3536
3537	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3538			 lock_is_held(&rcu_lock_map) ||
3539			 lock_is_held(&rcu_sched_lock_map),
3540			 "Illegal synchronize_rcu() in RCU read-side critical section");
3541	if (!rcu_blocking_is_gp()) {
3542		if (rcu_gp_is_expedited())
3543			synchronize_rcu_expedited();
3544		else
3545			wait_rcu_gp(call_rcu_hurry);
3546		return;
3547	}
3548
3549	// Context allows vacuous grace periods.
3550	// Note well that this code runs with !PREEMPT && !SMP.
3551	// In addition, all code that advances grace periods runs at
3552	// process level.  Therefore, this normal GP overlaps with other
3553	// normal GPs only by being fully nested within them, which allows
3554	// reuse of ->gp_seq_polled_snap.
3555	rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
3556	rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
3557
3558	// Update the normal grace-period counters to record
3559	// this grace period, but only those used by the boot CPU.
3560	// The rcu_scheduler_starting() will take care of the rest of
3561	// these counters.
3562	local_irq_save(flags);
3563	WARN_ON_ONCE(num_online_cpus() > 1);
3564	rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
3565	for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
3566		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
3567	local_irq_restore(flags);
3568}
3569EXPORT_SYMBOL_GPL(synchronize_rcu);
3570
3571/**
3572 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
3573 * @rgosp: Place to put state cookie
3574 *
3575 * Stores into @rgosp a value that will always be treated by functions
3576 * like poll_state_synchronize_rcu_full() as a cookie whose grace period
3577 * has already completed.
3578 */
3579void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3580{
3581	rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
3582	rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
3583}
3584EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
3585
3586/**
3587 * get_state_synchronize_rcu - Snapshot current RCU state
3588 *
3589 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3590 * or poll_state_synchronize_rcu() to determine whether or not a full
3591 * grace period has elapsed in the meantime.
3592 */
3593unsigned long get_state_synchronize_rcu(void)
3594{
3595	/*
3596	 * Any prior manipulation of RCU-protected data must happen
3597	 * before the load from ->gp_seq.
3598	 */
3599	smp_mb();  /* ^^^ */
3600	return rcu_seq_snap(&rcu_state.gp_seq_polled);
3601}
3602EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3603
3604/**
3605 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
3606 * @rgosp: location to place combined normal/expedited grace-period state
3607 *
3608 * Places the normal and expedited grace-period states in @rgosp.  This
3609 * state value can be passed to a later call to cond_synchronize_rcu_full()
3610 * or poll_state_synchronize_rcu_full() to determine whether or not a
3611 * grace period (whether normal or expedited) has elapsed in the meantime.
3612 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
3613 * long, but is guaranteed to see all grace periods.  In contrast, the
3614 * combined state occupies less memory, but can sometimes fail to take
3615 * grace periods into account.
3616 *
3617 * This does not guarantee that the needed grace period will actually
3618 * start.
3619 */
3620void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3621{
3622	struct rcu_node *rnp = rcu_get_root();
3623
3624	/*
3625	 * Any prior manipulation of RCU-protected data must happen
3626	 * before the loads from ->gp_seq and ->expedited_sequence.
3627	 */
3628	smp_mb();  /* ^^^ */
3629	rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq);
3630	rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
3631}
3632EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
3633
3634/*
3635 * Helper function for start_poll_synchronize_rcu() and
3636 * start_poll_synchronize_rcu_full().
3637 */
3638static void start_poll_synchronize_rcu_common(void)
3639{
3640	unsigned long flags;
3641	bool needwake;
3642	struct rcu_data *rdp;
3643	struct rcu_node *rnp;
3644
3645	lockdep_assert_irqs_enabled();
3646	local_irq_save(flags);
3647	rdp = this_cpu_ptr(&rcu_data);
3648	rnp = rdp->mynode;
3649	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3650	// Note it is possible for a grace period to have elapsed between
3651	// the above call to get_state_synchronize_rcu() and the below call
3652	// to rcu_seq_snap.  This is OK, the worst that happens is that we
3653	// get a grace period that no one needed.  These accesses are ordered
3654	// by smp_mb(), and we are accessing them in the opposite order
3655	// from which they are updated at grace-period start, as required.
3656	needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
3657	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3658	if (needwake)
3659		rcu_gp_kthread_wake();
3660}
3661
3662/**
3663 * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3664 *
3665 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3666 * or poll_state_synchronize_rcu() to determine whether or not a full
3667 * grace period has elapsed in the meantime.  If the needed grace period
3668 * is not already slated to start, notifies RCU core of the need for that
3669 * grace period.
3670 *
3671 * Interrupts must be enabled for the case where it is necessary to awaken
3672 * the grace-period kthread.
3673 */
3674unsigned long start_poll_synchronize_rcu(void)
3675{
3676	unsigned long gp_seq = get_state_synchronize_rcu();
3677
3678	start_poll_synchronize_rcu_common();
3679	return gp_seq;
3680}
3681EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3682
3683/**
3684 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
3685 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3686 *
3687 * Places the normal and expedited grace-period states in *@rgos.  This
3688 * state value can be passed to a later call to cond_synchronize_rcu_full()
3689 * or poll_state_synchronize_rcu_full() to determine whether or not a
3690 * grace period (whether normal or expedited) has elapsed in the meantime.
3691 * If the needed grace period is not already slated to start, notifies
3692 * RCU core of the need for that grace period.
3693 *
3694 * Interrupts must be enabled for the case where it is necessary to awaken
3695 * the grace-period kthread.
3696 */
3697void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3698{
3699	get_state_synchronize_rcu_full(rgosp);
3700
3701	start_poll_synchronize_rcu_common();
3702}
3703EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
3704
3705/**
3706 * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
3707 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3708 *
3709 * If a full RCU grace period has elapsed since the earlier call from
3710 * which @oldstate was obtained, return @true, otherwise return @false.
3711 * If @false is returned, it is the caller's responsibility to invoke this
3712 * function later on until it does return @true.  Alternatively, the caller
3713 * can explicitly wait for a grace period, for example, by passing @oldstate
3714 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3715 *
3716 * Yes, this function does not take counter wrap into account.
3717 * But counter wrap is harmless.  If the counter wraps, we have waited for
3718 * more than a billion grace periods (and way more on a 64-bit system!).
3719 * Those needing to keep old state values for very long time periods
3720 * (many hours even on 32-bit systems) should check them occasionally and
3721 * either refresh them or set a flag indicating that the grace period has
3722 * completed.  Alternatively, they can use get_completed_synchronize_rcu()
3723 * to get a guaranteed-completed grace-period state.
3724 *
3725 * This function provides the same memory-ordering guarantees that
3726 * would be provided by a synchronize_rcu() that was invoked at the call
3727 * to the function that provided @oldstate, and that returned at the end
3728 * of this function.
3729 */
3730bool poll_state_synchronize_rcu(unsigned long oldstate)
3731{
3732	if (oldstate == RCU_GET_STATE_COMPLETED ||
3733	    rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
3734		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3735		return true;
3736	}
3737	return false;
3738}
3739EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3740
3741/**
3742 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
3743 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3744 *
3745 * If a full RCU grace period has elapsed since the earlier call from
3746 * which *rgosp was obtained, return @true, otherwise return @false.
3747 * If @false is returned, it is the caller's responsibility to invoke this
3748 * function later on until it does return @true.  Alternatively, the caller
3749 * can explicitly wait for a grace period, for example, by passing @rgosp
3750 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3751 *
3752 * Yes, this function does not take counter wrap into account.
3753 * But counter wrap is harmless.  If the counter wraps, we have waited
3754 * for more than a billion grace periods (and way more on a 64-bit
3755 * system!).  Those needing to keep rcu_gp_oldstate values for very
3756 * long time periods (many hours even on 32-bit systems) should check
3757 * them occasionally and either refresh them or set a flag indicating
3758 * that the grace period has completed.  Alternatively, they can use
3759 * get_completed_synchronize_rcu_full() to get a guaranteed-completed
3760 * grace-period state.
3761 *
3762 * This function provides the same memory-ordering guarantees that would
3763 * be provided by a synchronize_rcu() that was invoked at the call to
3764 * the function that provided @rgosp, and that returned at the end of this
3765 * function.  And this guarantee requires that the root rcu_node structure's
3766 * ->gp_seq field be checked instead of that of the rcu_state structure.
3767 * The problem is that the just-ending grace-period's callbacks can be
3768 * invoked between the time that the root rcu_node structure's ->gp_seq
3769 * field is updated and the time that the rcu_state structure's ->gp_seq
3770 * field is updated.  Therefore, if a single synchronize_rcu() is to
3771 * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
3772 * then the root rcu_node structure is the one that needs to be polled.
3773 */
3774bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3775{
3776	struct rcu_node *rnp = rcu_get_root();
3777
3778	smp_mb(); // Order against root rcu_node structure grace-period cleanup.
3779	if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
3780	    rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
3781	    rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
3782	    rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
3783		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3784		return true;
3785	}
3786	return false;
3787}
3788EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
3789
3790/**
3791 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3792 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
3793 *
3794 * If a full RCU grace period has elapsed since the earlier call to
3795 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3796 * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3797 *
3798 * Yes, this function does not take counter wrap into account.
3799 * But counter wrap is harmless.  If the counter wraps, we have waited for
3800 * more than 2 billion grace periods (and way more on a 64-bit system!),
3801 * so waiting for a couple of additional grace periods should be just fine.
3802 *
3803 * This function provides the same memory-ordering guarantees that
3804 * would be provided by a synchronize_rcu() that was invoked at the call
3805 * to the function that provided @oldstate and that returned at the end
3806 * of this function.
3807 */
3808void cond_synchronize_rcu(unsigned long oldstate)
3809{
3810	if (!poll_state_synchronize_rcu(oldstate))
3811		synchronize_rcu();
 
 
3812}
3813EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3814
3815/**
3816 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
3817 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
3818 *
3819 * If a full RCU grace period has elapsed since the call to
3820 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
3821 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
3822 * obtained, just return.  Otherwise, invoke synchronize_rcu() to wait
3823 * for a full grace period.
3824 *
3825 * Yes, this function does not take counter wrap into account.
3826 * But counter wrap is harmless.  If the counter wraps, we have waited for
3827 * more than 2 billion grace periods (and way more on a 64-bit system!),
3828 * so waiting for a couple of additional grace periods should be just fine.
3829 *
3830 * This function provides the same memory-ordering guarantees that
3831 * would be provided by a synchronize_rcu() that was invoked at the call
3832 * to the function that provided @rgosp and that returned at the end of
3833 * this function.
3834 */
3835void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3836{
3837	if (!poll_state_synchronize_rcu_full(rgosp))
3838		synchronize_rcu();
3839}
3840EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
3841
3842/*
3843 * Check to see if there is any immediate RCU-related work to be done by
3844 * the current CPU, returning 1 if so and zero otherwise.  The checks are
3845 * in order of increasing expense: checks that can be carried out against
3846 * CPU-local state are performed first.  However, we must check for CPU
3847 * stalls first, else we might not get a chance.
3848 */
3849static int rcu_pending(int user)
3850{
3851	bool gp_in_progress;
3852	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3853	struct rcu_node *rnp = rdp->mynode;
3854
3855	lockdep_assert_irqs_disabled();
3856
3857	/* Check for CPU stalls, if enabled. */
3858	check_cpu_stall(rdp);
3859
3860	/* Does this CPU need a deferred NOCB wakeup? */
3861	if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3862		return 1;
3863
3864	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3865	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3866		return 0;
3867
3868	/* Is the RCU core waiting for a quiescent state from this CPU? */
3869	gp_in_progress = rcu_gp_in_progress();
3870	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3871		return 1;
3872
3873	/* Does this CPU have callbacks ready to invoke? */
3874	if (!rcu_rdp_is_offloaded(rdp) &&
3875	    rcu_segcblist_ready_cbs(&rdp->cblist))
3876		return 1;
3877
3878	/* Has RCU gone idle with this CPU needing another grace period? */
3879	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3880	    !rcu_rdp_is_offloaded(rdp) &&
 
 
3881	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3882		return 1;
3883
3884	/* Have RCU grace period completed or started?  */
3885	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3886	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3887		return 1;
3888
3889	/* nothing to do */
3890	return 0;
3891}
3892
3893/*
3894 * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3895 * the compiler is expected to optimize this away.
3896 */
3897static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3898{
3899	trace_rcu_barrier(rcu_state.name, s, cpu,
3900			  atomic_read(&rcu_state.barrier_cpu_count), done);
3901}
3902
3903/*
3904 * RCU callback function for rcu_barrier().  If we are last, wake
3905 * up the task executing rcu_barrier().
3906 *
3907 * Note that the value of rcu_state.barrier_sequence must be captured
3908 * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3909 * other CPUs might count the value down to zero before this CPU gets
3910 * around to invoking rcu_barrier_trace(), which might result in bogus
3911 * data from the next instance of rcu_barrier().
3912 */
3913static void rcu_barrier_callback(struct rcu_head *rhp)
3914{
3915	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3916
3917	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3918		rcu_barrier_trace(TPS("LastCB"), -1, s);
 
3919		complete(&rcu_state.barrier_completion);
3920	} else {
3921		rcu_barrier_trace(TPS("CB"), -1, s);
3922	}
3923}
3924
3925/*
3926 * If needed, entrain an rcu_barrier() callback on rdp->cblist.
3927 */
3928static void rcu_barrier_entrain(struct rcu_data *rdp)
3929{
3930	unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
3931	unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
3932	bool wake_nocb = false;
3933	bool was_alldone = false;
3934
3935	lockdep_assert_held(&rcu_state.barrier_lock);
3936	if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
3937		return;
3938	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3939	rdp->barrier_head.func = rcu_barrier_callback;
3940	debug_rcu_head_queue(&rdp->barrier_head);
3941	rcu_nocb_lock(rdp);
3942	/*
3943	 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular
3944	 * queue. This way we don't wait for bypass timer that can reach seconds
3945	 * if it's fully lazy.
3946	 */
3947	was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist);
3948	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
3949	wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist);
3950	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3951		atomic_inc(&rcu_state.barrier_cpu_count);
3952	} else {
3953		debug_rcu_head_unqueue(&rdp->barrier_head);
3954		rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
 
3955	}
3956	rcu_nocb_unlock(rdp);
3957	if (wake_nocb)
3958		wake_nocb_gp(rdp, false);
3959	smp_store_release(&rdp->barrier_seq_snap, gseq);
3960}
3961
3962/*
3963 * Called with preemption disabled, and from cross-cpu IRQ context.
3964 */
3965static void rcu_barrier_handler(void *cpu_in)
3966{
3967	uintptr_t cpu = (uintptr_t)cpu_in;
3968	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3969
3970	lockdep_assert_irqs_disabled();
3971	WARN_ON_ONCE(cpu != rdp->cpu);
3972	WARN_ON_ONCE(cpu != smp_processor_id());
3973	raw_spin_lock(&rcu_state.barrier_lock);
3974	rcu_barrier_entrain(rdp);
3975	raw_spin_unlock(&rcu_state.barrier_lock);
3976}
3977
3978/**
3979 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3980 *
3981 * Note that this primitive does not necessarily wait for an RCU grace period
3982 * to complete.  For example, if there are no RCU callbacks queued anywhere
3983 * in the system, then rcu_barrier() is within its rights to return
3984 * immediately, without waiting for anything, much less an RCU grace period.
3985 */
3986void rcu_barrier(void)
3987{
3988	uintptr_t cpu;
3989	unsigned long flags;
3990	unsigned long gseq;
3991	struct rcu_data *rdp;
3992	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3993
3994	rcu_barrier_trace(TPS("Begin"), -1, s);
3995
3996	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3997	mutex_lock(&rcu_state.barrier_mutex);
3998
3999	/* Did someone else do our work for us? */
4000	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4001		rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
 
4002		smp_mb(); /* caller's subsequent code after above check. */
4003		mutex_unlock(&rcu_state.barrier_mutex);
4004		return;
4005	}
4006
4007	/* Mark the start of the barrier operation. */
4008	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4009	rcu_seq_start(&rcu_state.barrier_sequence);
4010	gseq = rcu_state.barrier_sequence;
4011	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4012
4013	/*
4014	 * Initialize the count to two rather than to zero in order
4015	 * to avoid a too-soon return to zero in case of an immediate
4016	 * invocation of the just-enqueued callback (or preemption of
4017	 * this task).  Exclude CPU-hotplug operations to ensure that no
4018	 * offline non-offloaded CPU has callbacks queued.
4019	 */
4020	init_completion(&rcu_state.barrier_completion);
4021	atomic_set(&rcu_state.barrier_cpu_count, 2);
4022	raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4023
4024	/*
4025	 * Force each CPU with callbacks to register a new callback.
4026	 * When that callback is invoked, we will know that all of the
4027	 * corresponding CPU's preceding callbacks have been invoked.
4028	 */
4029	for_each_possible_cpu(cpu) {
4030		rdp = per_cpu_ptr(&rcu_data, cpu);
4031retry:
4032		if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
4033			continue;
4034		raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4035		if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
4036			WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4037			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4038			rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
4039			continue;
4040		}
4041		if (!rcu_rdp_cpu_online(rdp)) {
4042			rcu_barrier_entrain(rdp);
4043			WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4044			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4045			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
4046			continue;
4047		}
4048		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4049		if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
4050			schedule_timeout_uninterruptible(1);
4051			goto retry;
4052		}
4053		WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4054		rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
4055	}
 
4056
4057	/*
4058	 * Now that we have an rcu_barrier_callback() callback on each
4059	 * CPU, and thus each counted, remove the initial count.
4060	 */
4061	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4062		complete(&rcu_state.barrier_completion);
4063
4064	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4065	wait_for_completion(&rcu_state.barrier_completion);
4066
4067	/* Mark the end of the barrier operation. */
4068	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4069	rcu_seq_end(&rcu_state.barrier_sequence);
4070	gseq = rcu_state.barrier_sequence;
4071	for_each_possible_cpu(cpu) {
4072		rdp = per_cpu_ptr(&rcu_data, cpu);
4073
4074		WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4075	}
4076
4077	/* Other rcu_barrier() invocations can now safely proceed. */
4078	mutex_unlock(&rcu_state.barrier_mutex);
4079}
4080EXPORT_SYMBOL_GPL(rcu_barrier);
4081
4082/*
4083 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4084 * first CPU in a given leaf rcu_node structure coming online.  The caller
4085 * must hold the corresponding leaf rcu_node ->lock with interrupts
4086 * disabled.
4087 */
4088static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4089{
4090	long mask;
4091	long oldmask;
4092	struct rcu_node *rnp = rnp_leaf;
4093
4094	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4095	WARN_ON_ONCE(rnp->wait_blkd_tasks);
4096	for (;;) {
4097		mask = rnp->grpmask;
4098		rnp = rnp->parent;
4099		if (rnp == NULL)
4100			return;
4101		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4102		oldmask = rnp->qsmaskinit;
4103		rnp->qsmaskinit |= mask;
4104		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4105		if (oldmask)
4106			return;
4107	}
4108}
4109
4110/*
4111 * Do boot-time initialization of a CPU's per-CPU RCU data.
4112 */
4113static void __init
4114rcu_boot_init_percpu_data(int cpu)
4115{
4116	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4117	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4118
4119	/* Set up local state, ensuring consistent view of global state. */
4120	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4121	INIT_WORK(&rdp->strict_work, strict_work_handler);
4122	WARN_ON_ONCE(ct->dynticks_nesting != 1);
4123	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)));
4124	rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4125	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4126	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4127	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4128	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4129	rdp->last_sched_clock = jiffies;
4130	rdp->cpu = cpu;
4131	rcu_boot_init_nocb_percpu_data(rdp);
4132}
4133
4134/*
4135 * Invoked early in the CPU-online process, when pretty much all services
4136 * are available.  The incoming CPU is not present.
4137 *
4138 * Initializes a CPU's per-CPU RCU data.  Note that only one online or
4139 * offline event can be happening at a given time.  Note also that we can
4140 * accept some slop in the rsp->gp_seq access due to the fact that this
4141 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4142 * And any offloaded callbacks are being numbered elsewhere.
4143 */
4144int rcutree_prepare_cpu(unsigned int cpu)
4145{
4146	unsigned long flags;
4147	struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4148	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4149	struct rcu_node *rnp = rcu_get_root();
4150
4151	/* Set up local state, ensuring consistent view of global state. */
4152	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4153	rdp->qlen_last_fqs_check = 0;
4154	rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4155	rdp->blimit = blimit;
4156	ct->dynticks_nesting = 1;	/* CPU not up, no tearing. */
 
 
 
 
4157	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4158
4159	/*
4160	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4161	 * (re-)initialized.
4162	 */
4163	if (!rcu_segcblist_is_enabled(&rdp->cblist))
4164		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
4165
4166	/*
4167	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4168	 * propagation up the rcu_node tree will happen at the beginning
4169	 * of the next grace period.
4170	 */
4171	rnp = rdp->mynode;
4172	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4173	rdp->beenonline = true;	 /* We have now been online. */
4174	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4175	rdp->gp_seq_needed = rdp->gp_seq;
4176	rdp->cpu_no_qs.b.norm = true;
4177	rdp->core_needs_qs = false;
4178	rdp->rcu_iw_pending = false;
4179	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4180	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4181	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4182	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4183	rcu_spawn_one_boost_kthread(rnp);
4184	rcu_spawn_cpu_nocb_kthread(cpu);
4185	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4186
4187	return 0;
4188}
4189
4190/*
4191 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4192 */
4193static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4194{
4195	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4196
4197	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4198}
4199
4200/*
4201 * Near the end of the CPU-online process.  Pretty much all services
4202 * enabled, and the CPU is now very much alive.
4203 */
4204int rcutree_online_cpu(unsigned int cpu)
4205{
4206	unsigned long flags;
4207	struct rcu_data *rdp;
4208	struct rcu_node *rnp;
4209
4210	rdp = per_cpu_ptr(&rcu_data, cpu);
4211	rnp = rdp->mynode;
4212	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4213	rnp->ffmask |= rdp->grpmask;
4214	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4215	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4216		return 0; /* Too early in boot for scheduler work. */
4217	sync_sched_exp_online_cleanup(cpu);
4218	rcutree_affinity_setting(cpu, -1);
4219
4220	// Stop-machine done, so allow nohz_full to disable tick.
4221	tick_dep_clear(TICK_DEP_BIT_RCU);
4222	return 0;
4223}
4224
4225/*
4226 * Near the beginning of the process.  The CPU is still very much alive
4227 * with pretty much all services enabled.
4228 */
4229int rcutree_offline_cpu(unsigned int cpu)
4230{
4231	unsigned long flags;
4232	struct rcu_data *rdp;
4233	struct rcu_node *rnp;
4234
4235	rdp = per_cpu_ptr(&rcu_data, cpu);
4236	rnp = rdp->mynode;
4237	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4238	rnp->ffmask &= ~rdp->grpmask;
4239	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4240
4241	rcutree_affinity_setting(cpu, cpu);
4242
4243	// nohz_full CPUs need the tick for stop-machine to work quickly
4244	tick_dep_set(TICK_DEP_BIT_RCU);
4245	return 0;
4246}
4247
 
 
4248/*
4249 * Mark the specified CPU as being online so that subsequent grace periods
4250 * (both expedited and normal) will wait on it.  Note that this means that
4251 * incoming CPUs are not allowed to use RCU read-side critical sections
4252 * until this function is called.  Failing to observe this restriction
4253 * will result in lockdep splats.
4254 *
4255 * Note that this function is special in that it is invoked directly
4256 * from the incoming CPU rather than from the cpuhp_step mechanism.
4257 * This is because this function must be invoked at a precise location.
4258 */
4259void rcu_cpu_starting(unsigned int cpu)
4260{
4261	unsigned long flags;
4262	unsigned long mask;
 
 
4263	struct rcu_data *rdp;
4264	struct rcu_node *rnp;
4265	bool newcpu;
4266
4267	rdp = per_cpu_ptr(&rcu_data, cpu);
4268	if (rdp->cpu_started)
4269		return;
4270	rdp->cpu_started = true;
4271
 
 
 
4272	rnp = rdp->mynode;
4273	mask = rdp->grpmask;
4274	local_irq_save(flags);
4275	arch_spin_lock(&rcu_state.ofl_lock);
4276	rcu_dynticks_eqs_online();
4277	raw_spin_lock(&rcu_state.barrier_lock);
4278	raw_spin_lock_rcu_node(rnp);
4279	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4280	raw_spin_unlock(&rcu_state.barrier_lock);
4281	newcpu = !(rnp->expmaskinitnext & mask);
4282	rnp->expmaskinitnext |= mask;
 
 
4283	/* Allow lockless access for expedited grace periods. */
4284	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4285	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4286	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4287	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4288	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4289
4290	/* An incoming CPU should never be blocking a grace period. */
4291	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4292		/* rcu_report_qs_rnp() *really* wants some flags to restore */
4293		unsigned long flags2;
4294
4295		local_irq_save(flags2);
4296		rcu_disable_urgency_upon_qs(rdp);
4297		/* Report QS -after- changing ->qsmaskinitnext! */
4298		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags2);
4299	} else {
4300		raw_spin_unlock_rcu_node(rnp);
4301	}
4302	arch_spin_unlock(&rcu_state.ofl_lock);
4303	local_irq_restore(flags);
4304	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4305}
4306
 
4307/*
4308 * The outgoing function has no further need of RCU, so remove it from
4309 * the rcu_node tree's ->qsmaskinitnext bit masks.
4310 *
4311 * Note that this function is special in that it is invoked directly
4312 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4313 * This is because this function must be invoked at a precise location.
4314 */
4315void rcu_report_dead(unsigned int cpu)
4316{
4317	unsigned long flags, seq_flags;
4318	unsigned long mask;
4319	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4320	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4321
4322	// Do any dangling deferred wakeups.
4323	do_nocb_deferred_wakeup(rdp);
4324
 
4325	rcu_preempt_deferred_qs(current);
4326
4327	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4328	mask = rdp->grpmask;
4329	local_irq_save(seq_flags);
4330	arch_spin_lock(&rcu_state.ofl_lock);
4331	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4332	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4333	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4334	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4335		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4336		rcu_disable_urgency_upon_qs(rdp);
4337		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4338		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4339	}
4340	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4341	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4342	arch_spin_unlock(&rcu_state.ofl_lock);
4343	local_irq_restore(seq_flags);
4344
4345	rdp->cpu_started = false;
4346}
4347
4348#ifdef CONFIG_HOTPLUG_CPU
4349/*
4350 * The outgoing CPU has just passed through the dying-idle state, and we
4351 * are being invoked from the CPU that was IPIed to continue the offline
4352 * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
4353 */
4354void rcutree_migrate_callbacks(int cpu)
4355{
4356	unsigned long flags;
4357	struct rcu_data *my_rdp;
4358	struct rcu_node *my_rnp;
4359	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4360	bool needwake;
4361
4362	if (rcu_rdp_is_offloaded(rdp) ||
4363	    rcu_segcblist_empty(&rdp->cblist))
4364		return;  /* No callbacks to migrate. */
4365
4366	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4367	WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4368	rcu_barrier_entrain(rdp);
4369	my_rdp = this_cpu_ptr(&rcu_data);
4370	my_rnp = my_rdp->mynode;
4371	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4372	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
4373	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4374	/* Leverage recent GPs and set GP for new callbacks. */
4375	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4376		   rcu_advance_cbs(my_rnp, my_rdp);
4377	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4378	raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
4379	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4380	rcu_segcblist_disable(&rdp->cblist);
4381	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
4382	check_cb_ovld_locked(my_rdp, my_rnp);
4383	if (rcu_rdp_is_offloaded(my_rdp)) {
4384		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4385		__call_rcu_nocb_wake(my_rdp, true, flags);
4386	} else {
4387		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4388		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4389	}
4390	if (needwake)
4391		rcu_gp_kthread_wake();
4392	lockdep_assert_irqs_enabled();
4393	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4394		  !rcu_segcblist_empty(&rdp->cblist),
4395		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4396		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4397		  rcu_segcblist_first_cb(&rdp->cblist));
4398}
4399#endif
4400
4401/*
4402 * On non-huge systems, use expedited RCU grace periods to make suspend
4403 * and hibernation run faster.
4404 */
4405static int rcu_pm_notify(struct notifier_block *self,
4406			 unsigned long action, void *hcpu)
4407{
4408	switch (action) {
4409	case PM_HIBERNATION_PREPARE:
4410	case PM_SUSPEND_PREPARE:
4411		rcu_expedite_gp();
4412		break;
4413	case PM_POST_HIBERNATION:
4414	case PM_POST_SUSPEND:
4415		rcu_unexpedite_gp();
4416		break;
4417	default:
4418		break;
4419	}
4420	return NOTIFY_OK;
4421}
4422
4423#ifdef CONFIG_RCU_EXP_KTHREAD
4424struct kthread_worker *rcu_exp_gp_kworker;
4425struct kthread_worker *rcu_exp_par_gp_kworker;
4426
4427static void __init rcu_start_exp_gp_kworkers(void)
4428{
4429	const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker";
4430	const char *gp_kworker_name = "rcu_exp_gp_kthread_worker";
4431	struct sched_param param = { .sched_priority = kthread_prio };
4432
4433	rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name);
4434	if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4435		pr_err("Failed to create %s!\n", gp_kworker_name);
4436		return;
4437	}
4438
4439	rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name);
4440	if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) {
4441		pr_err("Failed to create %s!\n", par_gp_kworker_name);
4442		kthread_destroy_worker(rcu_exp_gp_kworker);
4443		return;
4444	}
4445
4446	sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
4447	sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO,
4448				   &param);
4449}
4450
4451static inline void rcu_alloc_par_gp_wq(void)
4452{
4453}
4454#else /* !CONFIG_RCU_EXP_KTHREAD */
4455struct workqueue_struct *rcu_par_gp_wq;
4456
4457static void __init rcu_start_exp_gp_kworkers(void)
4458{
4459}
4460
4461static inline void rcu_alloc_par_gp_wq(void)
4462{
4463	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4464	WARN_ON(!rcu_par_gp_wq);
4465}
4466#endif /* CONFIG_RCU_EXP_KTHREAD */
4467
4468/*
4469 * Spawn the kthreads that handle RCU's grace periods.
4470 */
4471static int __init rcu_spawn_gp_kthread(void)
4472{
4473	unsigned long flags;
 
4474	struct rcu_node *rnp;
4475	struct sched_param sp;
4476	struct task_struct *t;
4477	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4478
4479	rcu_scheduler_fully_active = 1;
4480	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4481	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4482		return 0;
4483	if (kthread_prio) {
4484		sp.sched_priority = kthread_prio;
4485		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4486	}
4487	rnp = rcu_get_root();
4488	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4489	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4490	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4491	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4492	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4493	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4494	wake_up_process(t);
4495	/* This is a pre-SMP initcall, we expect a single CPU */
4496	WARN_ON(num_online_cpus() > 1);
4497	/*
4498	 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
4499	 * due to rcu_scheduler_fully_active.
4500	 */
4501	rcu_spawn_cpu_nocb_kthread(smp_processor_id());
4502	rcu_spawn_one_boost_kthread(rdp->mynode);
4503	rcu_spawn_core_kthreads();
4504	/* Create kthread worker for expedited GPs */
4505	rcu_start_exp_gp_kworkers();
4506	return 0;
4507}
4508early_initcall(rcu_spawn_gp_kthread);
4509
4510/*
4511 * This function is invoked towards the end of the scheduler's
4512 * initialization process.  Before this is called, the idle task might
4513 * contain synchronous grace-period primitives (during which time, this idle
4514 * task is booting the system, and such primitives are no-ops).  After this
4515 * function is called, any synchronous grace-period primitives are run as
4516 * expedited, with the requesting task driving the grace period forward.
4517 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4518 * runtime RCU functionality.
4519 */
4520void rcu_scheduler_starting(void)
4521{
4522	unsigned long flags;
4523	struct rcu_node *rnp;
4524
4525	WARN_ON(num_online_cpus() != 1);
4526	WARN_ON(nr_context_switches() > 0);
4527	rcu_test_sync_prims();
4528
4529	// Fix up the ->gp_seq counters.
4530	local_irq_save(flags);
4531	rcu_for_each_node_breadth_first(rnp)
4532		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4533	local_irq_restore(flags);
4534
4535	// Switch out of early boot mode.
4536	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4537	rcu_test_sync_prims();
4538}
4539
4540/*
4541 * Helper function for rcu_init() that initializes the rcu_state structure.
4542 */
4543static void __init rcu_init_one(void)
4544{
4545	static const char * const buf[] = RCU_NODE_NAME_INIT;
4546	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4547	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4548	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4549
4550	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4551	int cpustride = 1;
4552	int i;
4553	int j;
4554	struct rcu_node *rnp;
4555
4556	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4557
4558	/* Silence gcc 4.8 false positive about array index out of range. */
4559	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4560		panic("rcu_init_one: rcu_num_lvls out of range");
4561
4562	/* Initialize the level-tracking arrays. */
4563
4564	for (i = 1; i < rcu_num_lvls; i++)
4565		rcu_state.level[i] =
4566			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4567	rcu_init_levelspread(levelspread, num_rcu_lvl);
4568
4569	/* Initialize the elements themselves, starting from the leaves. */
4570
4571	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4572		cpustride *= levelspread[i];
4573		rnp = rcu_state.level[i];
4574		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4575			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4576			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4577						   &rcu_node_class[i], buf[i]);
4578			raw_spin_lock_init(&rnp->fqslock);
4579			lockdep_set_class_and_name(&rnp->fqslock,
4580						   &rcu_fqs_class[i], fqs[i]);
4581			rnp->gp_seq = rcu_state.gp_seq;
4582			rnp->gp_seq_needed = rcu_state.gp_seq;
4583			rnp->completedqs = rcu_state.gp_seq;
4584			rnp->qsmask = 0;
4585			rnp->qsmaskinit = 0;
4586			rnp->grplo = j * cpustride;
4587			rnp->grphi = (j + 1) * cpustride - 1;
4588			if (rnp->grphi >= nr_cpu_ids)
4589				rnp->grphi = nr_cpu_ids - 1;
4590			if (i == 0) {
4591				rnp->grpnum = 0;
4592				rnp->grpmask = 0;
4593				rnp->parent = NULL;
4594			} else {
4595				rnp->grpnum = j % levelspread[i - 1];
4596				rnp->grpmask = BIT(rnp->grpnum);
4597				rnp->parent = rcu_state.level[i - 1] +
4598					      j / levelspread[i - 1];
4599			}
4600			rnp->level = i;
4601			INIT_LIST_HEAD(&rnp->blkd_tasks);
4602			rcu_init_one_nocb(rnp);
4603			init_waitqueue_head(&rnp->exp_wq[0]);
4604			init_waitqueue_head(&rnp->exp_wq[1]);
4605			init_waitqueue_head(&rnp->exp_wq[2]);
4606			init_waitqueue_head(&rnp->exp_wq[3]);
4607			spin_lock_init(&rnp->exp_lock);
4608			mutex_init(&rnp->boost_kthread_mutex);
4609			raw_spin_lock_init(&rnp->exp_poll_lock);
4610			rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
4611			INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
4612		}
4613	}
4614
4615	init_swait_queue_head(&rcu_state.gp_wq);
4616	init_swait_queue_head(&rcu_state.expedited_wq);
4617	rnp = rcu_first_leaf_node();
4618	for_each_possible_cpu(i) {
4619		while (i > rnp->grphi)
4620			rnp++;
4621		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4622		rcu_boot_init_percpu_data(i);
4623	}
4624}
4625
4626/*
4627 * Force priority from the kernel command-line into range.
4628 */
4629static void __init sanitize_kthread_prio(void)
4630{
4631	int kthread_prio_in = kthread_prio;
4632
4633	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4634	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4635		kthread_prio = 2;
4636	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4637		kthread_prio = 1;
4638	else if (kthread_prio < 0)
4639		kthread_prio = 0;
4640	else if (kthread_prio > 99)
4641		kthread_prio = 99;
4642
4643	if (kthread_prio != kthread_prio_in)
4644		pr_alert("%s: Limited prio to %d from %d\n",
4645			 __func__, kthread_prio, kthread_prio_in);
4646}
4647
4648/*
4649 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4650 * replace the definitions in tree.h because those are needed to size
4651 * the ->node array in the rcu_state structure.
4652 */
4653void rcu_init_geometry(void)
4654{
4655	ulong d;
4656	int i;
4657	static unsigned long old_nr_cpu_ids;
4658	int rcu_capacity[RCU_NUM_LVLS];
4659	static bool initialized;
4660
4661	if (initialized) {
4662		/*
4663		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4664		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4665		 */
4666		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4667		return;
4668	}
4669
4670	old_nr_cpu_ids = nr_cpu_ids;
4671	initialized = true;
4672
4673	/*
4674	 * Initialize any unspecified boot parameters.
4675	 * The default values of jiffies_till_first_fqs and
4676	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4677	 * value, which is a function of HZ, then adding one for each
4678	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4679	 */
4680	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4681	if (jiffies_till_first_fqs == ULONG_MAX)
4682		jiffies_till_first_fqs = d;
4683	if (jiffies_till_next_fqs == ULONG_MAX)
4684		jiffies_till_next_fqs = d;
4685	adjust_jiffies_till_sched_qs();
4686
4687	/* If the compile-time values are accurate, just leave. */
4688	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4689	    nr_cpu_ids == NR_CPUS)
4690		return;
4691	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4692		rcu_fanout_leaf, nr_cpu_ids);
4693
4694	/*
4695	 * The boot-time rcu_fanout_leaf parameter must be at least two
4696	 * and cannot exceed the number of bits in the rcu_node masks.
4697	 * Complain and fall back to the compile-time values if this
4698	 * limit is exceeded.
4699	 */
4700	if (rcu_fanout_leaf < 2 ||
4701	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4702		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4703		WARN_ON(1);
4704		return;
4705	}
4706
4707	/*
4708	 * Compute number of nodes that can be handled an rcu_node tree
4709	 * with the given number of levels.
4710	 */
4711	rcu_capacity[0] = rcu_fanout_leaf;
4712	for (i = 1; i < RCU_NUM_LVLS; i++)
4713		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4714
4715	/*
4716	 * The tree must be able to accommodate the configured number of CPUs.
4717	 * If this limit is exceeded, fall back to the compile-time values.
4718	 */
4719	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4720		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4721		WARN_ON(1);
4722		return;
4723	}
4724
4725	/* Calculate the number of levels in the tree. */
4726	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4727	}
4728	rcu_num_lvls = i + 1;
4729
4730	/* Calculate the number of rcu_nodes at each level of the tree. */
4731	for (i = 0; i < rcu_num_lvls; i++) {
4732		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4733		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4734	}
4735
4736	/* Calculate the total number of rcu_node structures. */
4737	rcu_num_nodes = 0;
4738	for (i = 0; i < rcu_num_lvls; i++)
4739		rcu_num_nodes += num_rcu_lvl[i];
4740}
4741
4742/*
4743 * Dump out the structure of the rcu_node combining tree associated
4744 * with the rcu_state structure.
4745 */
4746static void __init rcu_dump_rcu_node_tree(void)
4747{
4748	int level = 0;
4749	struct rcu_node *rnp;
4750
4751	pr_info("rcu_node tree layout dump\n");
4752	pr_info(" ");
4753	rcu_for_each_node_breadth_first(rnp) {
4754		if (rnp->level != level) {
4755			pr_cont("\n");
4756			pr_info(" ");
4757			level = rnp->level;
4758		}
4759		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4760	}
4761	pr_cont("\n");
4762}
4763
4764struct workqueue_struct *rcu_gp_wq;
 
4765
4766static void __init kfree_rcu_batch_init(void)
4767{
4768	int cpu;
4769	int i;
4770
4771	/* Clamp it to [0:100] seconds interval. */
4772	if (rcu_delay_page_cache_fill_msec < 0 ||
4773		rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
4774
4775		rcu_delay_page_cache_fill_msec =
4776			clamp(rcu_delay_page_cache_fill_msec, 0,
4777				(int) (100 * MSEC_PER_SEC));
4778
4779		pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
4780			rcu_delay_page_cache_fill_msec);
4781	}
4782
4783	for_each_possible_cpu(cpu) {
4784		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4785
4786		for (i = 0; i < KFREE_N_BATCHES; i++) {
4787			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4788			krcp->krw_arr[i].krcp = krcp;
4789		}
4790
4791		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4792		INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
4793		krcp->initialized = true;
4794	}
4795	if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree"))
4796		pr_err("Failed to register kfree_rcu() shrinker!\n");
4797}
4798
4799void __init rcu_init(void)
4800{
4801	int cpu = smp_processor_id();
4802
4803	rcu_early_boot_tests();
4804
4805	kfree_rcu_batch_init();
4806	rcu_bootup_announce();
4807	sanitize_kthread_prio();
4808	rcu_init_geometry();
4809	rcu_init_one();
4810	if (dump_tree)
4811		rcu_dump_rcu_node_tree();
4812	if (use_softirq)
4813		open_softirq(RCU_SOFTIRQ, rcu_core_si);
4814
4815	/*
4816	 * We don't need protection against CPU-hotplug here because
4817	 * this is called early in boot, before either interrupts
4818	 * or the scheduler are operational.
4819	 */
4820	pm_notifier(rcu_pm_notify, 0);
4821	WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
4822	rcutree_prepare_cpu(cpu);
4823	rcu_cpu_starting(cpu);
4824	rcutree_online_cpu(cpu);
 
4825
4826	/* Create workqueue for Tree SRCU and for expedited GPs. */
4827	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4828	WARN_ON(!rcu_gp_wq);
4829	rcu_alloc_par_gp_wq();
4830
4831	/* Fill in default value for rcutree.qovld boot parameter. */
4832	/* -After- the rcu_node ->lock fields are initialized! */
4833	if (qovld < 0)
4834		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4835	else
4836		qovld_calc = qovld;
4837
4838	// Kick-start any polled grace periods that started early.
4839	if (!(per_cpu_ptr(&rcu_data, cpu)->mynode->exp_seq_poll_rq & 0x1))
4840		(void)start_poll_synchronize_rcu_expedited();
4841}
4842
4843#include "tree_stall.h"
4844#include "tree_exp.h"
4845#include "tree_nocb.h"
4846#include "tree_plugin.h"