Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion
   4 *
   5 * Copyright IBM Corporation, 2008
   6 *
   7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
   8 *	    Manfred Spraul <manfred@colorfullife.com>
   9 *	    Paul E. McKenney <paulmck@linux.ibm.com> Hierarchical version
  10 *
  11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
  12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  13 *
  14 * For detailed explanation of Read-Copy Update mechanism see -
  15 *	Documentation/RCU
  16 */
  17
  18#define pr_fmt(fmt) "rcu: " fmt
  19
  20#include <linux/types.h>
  21#include <linux/kernel.h>
  22#include <linux/init.h>
  23#include <linux/spinlock.h>
  24#include <linux/smp.h>
  25#include <linux/rcupdate_wait.h>
  26#include <linux/interrupt.h>
  27#include <linux/sched.h>
  28#include <linux/sched/debug.h>
  29#include <linux/nmi.h>
  30#include <linux/atomic.h>
  31#include <linux/bitops.h>
  32#include <linux/export.h>
  33#include <linux/completion.h>
  34#include <linux/moduleparam.h>
 
 
  35#include <linux/percpu.h>
  36#include <linux/notifier.h>
  37#include <linux/cpu.h>
  38#include <linux/mutex.h>
  39#include <linux/time.h>
  40#include <linux/kernel_stat.h>
  41#include <linux/wait.h>
  42#include <linux/kthread.h>
  43#include <uapi/linux/sched/types.h>
  44#include <linux/prefetch.h>
  45#include <linux/delay.h>
  46#include <linux/stop_machine.h>
  47#include <linux/random.h>
  48#include <linux/trace_events.h>
  49#include <linux/suspend.h>
  50#include <linux/ftrace.h>
  51#include <linux/tick.h>
  52#include <linux/sysrq.h>
  53#include <linux/kprobes.h>
  54#include <linux/gfp.h>
  55#include <linux/oom.h>
  56#include <linux/smpboot.h>
  57#include <linux/jiffies.h>
 
  58#include <linux/sched/isolation.h>
  59#include <linux/sched/clock.h>
 
 
 
  60#include "../time/tick-internal.h"
  61
  62#include "tree.h"
  63#include "rcu.h"
  64
  65#ifdef MODULE_PARAM_PREFIX
  66#undef MODULE_PARAM_PREFIX
  67#endif
  68#define MODULE_PARAM_PREFIX "rcutree."
  69
  70/* Data structures. */
  71
  72/*
  73 * Steal a bit from the bottom of ->dynticks for idle entry/exit
  74 * control.  Initially this is for TLB flushing.
  75 */
  76#define RCU_DYNTICK_CTRL_MASK 0x1
  77#define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
  78#ifndef rcu_eqs_special_exit
  79#define rcu_eqs_special_exit() do { } while (0)
  80#endif
  81
  82static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
  83	.dynticks_nesting = 1,
  84	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
  85	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
 
 
 
  86};
  87struct rcu_state rcu_state = {
  88	.level = { &rcu_state.node[0] },
  89	.gp_state = RCU_GP_IDLE,
  90	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
  91	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
  92	.name = RCU_NAME,
  93	.abbr = RCU_ABBR,
  94	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
  95	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
  96	.ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
  97};
  98
  99/* Dump rcu_node combining tree at boot to verify correct setup. */
 100static bool dump_tree;
 101module_param(dump_tree, bool, 0444);
 102/* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
 103static bool use_softirq = 1;
 
 104module_param(use_softirq, bool, 0444);
 
 105/* Control rcu_node-tree auto-balancing at boot time. */
 106static bool rcu_fanout_exact;
 107module_param(rcu_fanout_exact, bool, 0444);
 108/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 109static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 110module_param(rcu_fanout_leaf, int, 0444);
 111int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 112/* Number of rcu_nodes at specified level. */
 113int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 114int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 115
 116/*
 117 * The rcu_scheduler_active variable is initialized to the value
 118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 119 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 120 * RCU can assume that there is but one task, allowing RCU to (for example)
 121 * optimize synchronize_rcu() to a simple barrier().  When this variable
 122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 123 * to detect real grace periods.  This variable is also used to suppress
 124 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 126 * is fully initialized, including all of its kthreads having been spawned.
 127 */
 128int rcu_scheduler_active __read_mostly;
 129EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 130
 131/*
 132 * The rcu_scheduler_fully_active variable transitions from zero to one
 133 * during the early_initcall() processing, which is after the scheduler
 134 * is capable of creating new tasks.  So RCU processing (for example,
 135 * creating tasks for RCU priority boosting) must be delayed until after
 136 * rcu_scheduler_fully_active transitions from zero to one.  We also
 137 * currently delay invocation of any RCU callbacks until after this point.
 138 *
 139 * It might later prove better for people registering RCU callbacks during
 140 * early boot to take responsibility for these callbacks, but one step at
 141 * a time.
 142 */
 143static int rcu_scheduler_fully_active __read_mostly;
 144
 145static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
 146			      unsigned long gps, unsigned long flags);
 147static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 148static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 149static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 150static void invoke_rcu_core(void);
 151static void rcu_report_exp_rdp(struct rcu_data *rdp);
 152static void sync_sched_exp_online_cleanup(int cpu);
 
 
 153
 154/* rcuc/rcub kthread realtime priority */
 155static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 156module_param(kthread_prio, int, 0444);
 157
 158/* Delay in jiffies for grace-period initialization delays, debug only. */
 159
 160static int gp_preinit_delay;
 161module_param(gp_preinit_delay, int, 0444);
 162static int gp_init_delay;
 163module_param(gp_init_delay, int, 0444);
 164static int gp_cleanup_delay;
 165module_param(gp_cleanup_delay, int, 0444);
 166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 167/* Retrieve RCU kthreads priority for rcutorture */
 168int rcu_get_gp_kthreads_prio(void)
 169{
 170	return kthread_prio;
 171}
 172EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
 173
 174/*
 175 * Number of grace periods between delays, normalized by the duration of
 176 * the delay.  The longer the delay, the more the grace periods between
 177 * each delay.  The reason for this normalization is that it means that,
 178 * for non-zero delays, the overall slowdown of grace periods is constant
 179 * regardless of the duration of the delay.  This arrangement balances
 180 * the need for long delays to increase some race probabilities with the
 181 * need for fast grace periods to increase other race probabilities.
 182 */
 183#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
 184
 185/*
 186 * Compute the mask of online CPUs for the specified rcu_node structure.
 187 * This will not be stable unless the rcu_node structure's ->lock is
 188 * held, but the bit corresponding to the current CPU will be stable
 189 * in most contexts.
 190 */
 191unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
 192{
 193	return READ_ONCE(rnp->qsmaskinitnext);
 194}
 195
 196/*
 197 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 198 * permit this function to be invoked without holding the root rcu_node
 199 * structure's ->lock, but of course results can be subject to change.
 200 */
 201static int rcu_gp_in_progress(void)
 202{
 203	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
 204}
 205
 206/*
 207 * Return the number of callbacks queued on the specified CPU.
 208 * Handles both the nocbs and normal cases.
 209 */
 210static long rcu_get_n_cbs_cpu(int cpu)
 211{
 212	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 213
 214	if (rcu_segcblist_is_enabled(&rdp->cblist))
 215		return rcu_segcblist_n_cbs(&rdp->cblist);
 216	return 0;
 217}
 218
 219void rcu_softirq_qs(void)
 220{
 221	rcu_qs();
 222	rcu_preempt_deferred_qs(current);
 
 223}
 224
 225/*
 226 * Record entry into an extended quiescent state.  This is only to be
 227 * called when not already in an extended quiescent state.
 
 
 228 */
 229static void rcu_dynticks_eqs_enter(void)
 230{
 231	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 232	int seq;
 233
 234	/*
 235	 * CPUs seeing atomic_add_return() must see prior RCU read-side
 236	 * critical sections, and we also must force ordering with the
 237	 * next idle sojourn.
 238	 */
 239	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
 240	/* Better be in an extended quiescent state! */
 
 241	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 242		     (seq & RCU_DYNTICK_CTRL_CTR));
 243	/* Better not have special action (TLB flush) pending! */
 244	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 245		     (seq & RCU_DYNTICK_CTRL_MASK));
 246}
 247
 248/*
 249 * Record exit from an extended quiescent state.  This is only to be
 250 * called from an extended quiescent state.
 
 251 */
 252static void rcu_dynticks_eqs_exit(void)
 253{
 254	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 255	int seq;
 256
 257	/*
 258	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
 259	 * and we also must force ordering with the next RCU read-side
 260	 * critical section.
 261	 */
 262	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
 
 
 263	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 264		     !(seq & RCU_DYNTICK_CTRL_CTR));
 265	if (seq & RCU_DYNTICK_CTRL_MASK) {
 266		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
 267		smp_mb__after_atomic(); /* _exit after clearing mask. */
 268		/* Prefer duplicate flushes to losing a flush. */
 269		rcu_eqs_special_exit();
 270	}
 271}
 272
 273/*
 274 * Reset the current CPU's ->dynticks counter to indicate that the
 275 * newly onlined CPU is no longer in an extended quiescent state.
 276 * This will either leave the counter unchanged, or increment it
 277 * to the next non-quiescent value.
 278 *
 279 * The non-atomic test/increment sequence works because the upper bits
 280 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 281 * or when the corresponding CPU is offline.
 282 */
 283static void rcu_dynticks_eqs_online(void)
 284{
 285	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 286
 287	if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
 288		return;
 289	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
 290}
 291
 292/*
 293 * Is the current CPU in an extended quiescent state?
 294 *
 295 * No ordering, as we are sampling CPU-local information.
 296 */
 297bool rcu_dynticks_curr_cpu_in_eqs(void)
 298{
 299	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 300
 301	return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
 302}
 303
 304/*
 305 * Snapshot the ->dynticks counter with full ordering so as to allow
 306 * stable comparison of this counter with past and future snapshots.
 307 */
 308int rcu_dynticks_snap(struct rcu_data *rdp)
 309{
 310	int snap = atomic_add_return(0, &rdp->dynticks);
 311
 312	return snap & ~RCU_DYNTICK_CTRL_MASK;
 313}
 314
 315/*
 316 * Return true if the snapshot returned from rcu_dynticks_snap()
 317 * indicates that RCU is in an extended quiescent state.
 318 */
 319static bool rcu_dynticks_in_eqs(int snap)
 320{
 321	return !(snap & RCU_DYNTICK_CTRL_CTR);
 322}
 323
 
 
 
 
 
 
 
 
 324/*
 325 * Return true if the CPU corresponding to the specified rcu_data
 326 * structure has spent some time in an extended quiescent state since
 327 * rcu_dynticks_snap() returned the specified snapshot.
 328 */
 329static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
 330{
 331	return snap != rcu_dynticks_snap(rdp);
 332}
 333
 334/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 335 * Set the special (bottom) bit of the specified CPU so that it
 336 * will take special action (such as flushing its TLB) on the
 337 * next exit from an extended quiescent state.  Returns true if
 338 * the bit was successfully set, or false if the CPU was not in
 339 * an extended quiescent state.
 340 */
 341bool rcu_eqs_special_set(int cpu)
 342{
 343	int old;
 344	int new;
 
 345	struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
 346
 
 347	do {
 348		old = atomic_read(&rdp->dynticks);
 349		if (old & RCU_DYNTICK_CTRL_CTR)
 350			return false;
 351		new = old | RCU_DYNTICK_CTRL_MASK;
 352	} while (atomic_cmpxchg(&rdp->dynticks, old, new) != old);
 
 353	return true;
 354}
 355
 356/*
 357 * Let the RCU core know that this CPU has gone through the scheduler,
 358 * which is a quiescent state.  This is called when the need for a
 359 * quiescent state is urgent, so we burn an atomic operation and full
 360 * memory barriers to let the RCU core know about it, regardless of what
 361 * this CPU might (or might not) do in the near future.
 362 *
 363 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 364 *
 365 * The caller must have disabled interrupts and must not be idle.
 366 */
 367static void __maybe_unused rcu_momentary_dyntick_idle(void)
 368{
 369	int special;
 370
 371	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
 372	special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
 373				    &this_cpu_ptr(&rcu_data)->dynticks);
 374	/* It is illegal to call this from idle state. */
 375	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
 376	rcu_preempt_deferred_qs(current);
 377}
 
 378
 379/**
 380 * rcu_is_cpu_rrupt_from_idle - see if interrupted from idle
 381 *
 382 * If the current CPU is idle and running at a first-level (not nested)
 383 * interrupt from idle, return true.  The caller must have at least
 384 * disabled preemption.
 
 385 */
 386static int rcu_is_cpu_rrupt_from_idle(void)
 387{
 388	/* Called only from within the scheduling-clock interrupt */
 389	lockdep_assert_in_irq();
 
 
 
 
 
 
 390
 391	/* Check for counter underflows */
 392	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
 393			 "RCU dynticks_nesting counter underflow!");
 394	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
 395			 "RCU dynticks_nmi_nesting counter underflow/zero!");
 396
 397	/* Are we at first interrupt nesting level? */
 398	if (__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 1)
 
 399		return false;
 400
 
 
 
 
 
 401	/* Does CPU appear to be idle from an RCU standpoint? */
 402	return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
 403}
 404
 405#define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch ... */
 406#define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */
 
 407static long blimit = DEFAULT_RCU_BLIMIT;
 408#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
 409static long qhimark = DEFAULT_RCU_QHIMARK;
 410#define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
 411static long qlowmark = DEFAULT_RCU_QLOMARK;
 
 
 
 
 412
 413module_param(blimit, long, 0444);
 414module_param(qhimark, long, 0444);
 415module_param(qlowmark, long, 0444);
 
 416
 417static ulong jiffies_till_first_fqs = ULONG_MAX;
 418static ulong jiffies_till_next_fqs = ULONG_MAX;
 419static bool rcu_kick_kthreads;
 420static int rcu_divisor = 7;
 421module_param(rcu_divisor, int, 0644);
 422
 423/* Force an exit from rcu_do_batch() after 3 milliseconds. */
 424static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
 425module_param(rcu_resched_ns, long, 0644);
 426
 427/*
 428 * How long the grace period must be before we start recruiting
 429 * quiescent-state help from rcu_note_context_switch().
 430 */
 431static ulong jiffies_till_sched_qs = ULONG_MAX;
 432module_param(jiffies_till_sched_qs, ulong, 0444);
 433static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
 434module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
 435
 436/*
 437 * Make sure that we give the grace-period kthread time to detect any
 438 * idle CPUs before taking active measures to force quiescent states.
 439 * However, don't go below 100 milliseconds, adjusted upwards for really
 440 * large systems.
 441 */
 442static void adjust_jiffies_till_sched_qs(void)
 443{
 444	unsigned long j;
 445
 446	/* If jiffies_till_sched_qs was specified, respect the request. */
 447	if (jiffies_till_sched_qs != ULONG_MAX) {
 448		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
 449		return;
 450	}
 451	/* Otherwise, set to third fqs scan, but bound below on large system. */
 452	j = READ_ONCE(jiffies_till_first_fqs) +
 453		      2 * READ_ONCE(jiffies_till_next_fqs);
 454	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
 455		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
 456	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
 457	WRITE_ONCE(jiffies_to_sched_qs, j);
 458}
 459
 460static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
 461{
 462	ulong j;
 463	int ret = kstrtoul(val, 0, &j);
 464
 465	if (!ret) {
 466		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
 467		adjust_jiffies_till_sched_qs();
 468	}
 469	return ret;
 470}
 471
 472static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
 473{
 474	ulong j;
 475	int ret = kstrtoul(val, 0, &j);
 476
 477	if (!ret) {
 478		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
 479		adjust_jiffies_till_sched_qs();
 480	}
 481	return ret;
 482}
 483
 484static struct kernel_param_ops first_fqs_jiffies_ops = {
 485	.set = param_set_first_fqs_jiffies,
 486	.get = param_get_ulong,
 487};
 488
 489static struct kernel_param_ops next_fqs_jiffies_ops = {
 490	.set = param_set_next_fqs_jiffies,
 491	.get = param_get_ulong,
 492};
 493
 494module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
 495module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
 496module_param(rcu_kick_kthreads, bool, 0644);
 497
 498static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
 499static int rcu_pending(void);
 500
 501/*
 502 * Return the number of RCU GPs completed thus far for debug & stats.
 503 */
 504unsigned long rcu_get_gp_seq(void)
 505{
 506	return READ_ONCE(rcu_state.gp_seq);
 507}
 508EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
 509
 510/*
 511 * Return the number of RCU expedited batches completed thus far for
 512 * debug & stats.  Odd numbers mean that a batch is in progress, even
 513 * numbers mean idle.  The value returned will thus be roughly double
 514 * the cumulative batches since boot.
 515 */
 516unsigned long rcu_exp_batches_completed(void)
 517{
 518	return rcu_state.expedited_sequence;
 519}
 520EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 521
 522/*
 523 * Return the root node of the rcu_state structure.
 524 */
 525static struct rcu_node *rcu_get_root(void)
 526{
 527	return &rcu_state.node[0];
 528}
 529
 530/*
 531 * Convert a ->gp_state value to a character string.
 532 */
 533static const char *gp_state_getname(short gs)
 534{
 535	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
 536		return "???";
 537	return gp_state_names[gs];
 538}
 539
 540/*
 541 * Send along grace-period-related data for rcutorture diagnostics.
 542 */
 543void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 544			    unsigned long *gp_seq)
 545{
 546	switch (test_type) {
 547	case RCU_FLAVOR:
 548		*flags = READ_ONCE(rcu_state.gp_flags);
 549		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
 550		break;
 551	default:
 552		break;
 553	}
 554}
 555EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 556
 557/*
 558 * Enter an RCU extended quiescent state, which can be either the
 559 * idle loop or adaptive-tickless usermode execution.
 560 *
 561 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
 562 * the possibility of usermode upcalls having messed up our count
 563 * of interrupt nesting level during the prior busy period.
 564 */
 565static void rcu_eqs_enter(bool user)
 566{
 567	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 568
 569	WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
 570	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
 571	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 572		     rdp->dynticks_nesting == 0);
 573	if (rdp->dynticks_nesting != 1) {
 
 574		rdp->dynticks_nesting--;
 575		return;
 576	}
 577
 578	lockdep_assert_irqs_disabled();
 579	trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks);
 
 580	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
 581	rdp = this_cpu_ptr(&rcu_data);
 582	do_nocb_deferred_wakeup(rdp);
 583	rcu_prepare_for_idle();
 584	rcu_preempt_deferred_qs(current);
 
 
 
 
 
 585	WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
 
 586	rcu_dynticks_eqs_enter();
 
 587	rcu_dynticks_task_enter();
 588}
 589
 590/**
 591 * rcu_idle_enter - inform RCU that current CPU is entering idle
 592 *
 593 * Enter idle mode, in other words, -leave- the mode in which RCU
 594 * read-side critical sections can occur.  (Though RCU read-side
 595 * critical sections can occur in irq handlers in idle, a possibility
 596 * handled by irq_enter() and irq_exit().)
 597 *
 598 * If you add or remove a call to rcu_idle_enter(), be sure to test with
 599 * CONFIG_RCU_EQS_DEBUG=y.
 600 */
 601void rcu_idle_enter(void)
 602{
 603	lockdep_assert_irqs_disabled();
 604	rcu_eqs_enter(false);
 605}
 
 606
 607#ifdef CONFIG_NO_HZ_FULL
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 608/**
 609 * rcu_user_enter - inform RCU that we are resuming userspace.
 610 *
 611 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 612 * is permitted between this call and rcu_user_exit(). This way the
 613 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 614 * when the CPU runs in userspace.
 615 *
 616 * If you add or remove a call to rcu_user_enter(), be sure to test with
 617 * CONFIG_RCU_EQS_DEBUG=y.
 618 */
 619void rcu_user_enter(void)
 620{
 621	lockdep_assert_irqs_disabled();
 
 
 
 
 
 
 
 622	rcu_eqs_enter(true);
 623}
 
 624#endif /* CONFIG_NO_HZ_FULL */
 625
 626/*
 
 
 627 * If we are returning from the outermost NMI handler that interrupted an
 628 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
 629 * to let the RCU grace-period handling know that the CPU is back to
 630 * being RCU-idle.
 631 *
 632 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
 633 * with CONFIG_RCU_EQS_DEBUG=y.
 634 */
 635static __always_inline void rcu_nmi_exit_common(bool irq)
 636{
 637	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 638
 
 639	/*
 640	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
 641	 * (We are exiting an NMI handler, so RCU better be paying attention
 642	 * to us!)
 643	 */
 644	WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
 645	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
 646
 647	/*
 648	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
 649	 * leave it in non-RCU-idle state.
 650	 */
 651	if (rdp->dynticks_nmi_nesting != 1) {
 652		trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks);
 
 653		WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
 654			   rdp->dynticks_nmi_nesting - 2);
 
 655		return;
 656	}
 657
 658	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
 659	trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks);
 660	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
 661
 662	if (irq)
 663		rcu_prepare_for_idle();
 664
 
 
 
 
 
 665	rcu_dynticks_eqs_enter();
 
 666
 667	if (irq)
 668		rcu_dynticks_task_enter();
 669}
 670
 671/**
 672 * rcu_nmi_exit - inform RCU of exit from NMI context
 673 *
 674 * If you add or remove a call to rcu_nmi_exit(), be sure to test
 675 * with CONFIG_RCU_EQS_DEBUG=y.
 676 */
 677void rcu_nmi_exit(void)
 678{
 679	rcu_nmi_exit_common(false);
 680}
 681
 682/**
 683 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 684 *
 685 * Exit from an interrupt handler, which might possibly result in entering
 686 * idle mode, in other words, leaving the mode in which read-side critical
 687 * sections can occur.  The caller must have disabled interrupts.
 688 *
 689 * This code assumes that the idle loop never does anything that might
 690 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 691 * architecture's idle loop violates this assumption, RCU will give you what
 692 * you deserve, good and hard.  But very infrequently and irreproducibly.
 693 *
 694 * Use things like work queues to work around this limitation.
 695 *
 696 * You have been warned.
 697 *
 698 * If you add or remove a call to rcu_irq_exit(), be sure to test with
 699 * CONFIG_RCU_EQS_DEBUG=y.
 700 */
 701void rcu_irq_exit(void)
 702{
 703	lockdep_assert_irqs_disabled();
 704	rcu_nmi_exit_common(true);
 705}
 706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 707/*
 708 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 709 *
 710 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
 711 * with CONFIG_RCU_EQS_DEBUG=y.
 712 */
 713void rcu_irq_exit_irqson(void)
 714{
 715	unsigned long flags;
 716
 717	local_irq_save(flags);
 718	rcu_irq_exit();
 719	local_irq_restore(flags);
 720}
 721
 722/*
 723 * Exit an RCU extended quiescent state, which can be either the
 724 * idle loop or adaptive-tickless usermode execution.
 725 *
 726 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
 727 * allow for the possibility of usermode upcalls messing up our count of
 728 * interrupt nesting level during the busy period that is just now starting.
 729 */
 730static void rcu_eqs_exit(bool user)
 731{
 732	struct rcu_data *rdp;
 733	long oldval;
 734
 735	lockdep_assert_irqs_disabled();
 736	rdp = this_cpu_ptr(&rcu_data);
 737	oldval = rdp->dynticks_nesting;
 738	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
 739	if (oldval) {
 
 740		rdp->dynticks_nesting++;
 741		return;
 742	}
 743	rcu_dynticks_task_exit();
 
 744	rcu_dynticks_eqs_exit();
 
 
 
 
 
 
 745	rcu_cleanup_after_idle();
 746	trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks);
 747	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
 748	WRITE_ONCE(rdp->dynticks_nesting, 1);
 749	WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
 750	WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
 
 751}
 752
 753/**
 754 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 755 *
 756 * Exit idle mode, in other words, -enter- the mode in which RCU
 757 * read-side critical sections can occur.
 758 *
 759 * If you add or remove a call to rcu_idle_exit(), be sure to test with
 760 * CONFIG_RCU_EQS_DEBUG=y.
 761 */
 762void rcu_idle_exit(void)
 763{
 764	unsigned long flags;
 765
 766	local_irq_save(flags);
 767	rcu_eqs_exit(false);
 768	local_irq_restore(flags);
 769}
 
 770
 771#ifdef CONFIG_NO_HZ_FULL
 772/**
 773 * rcu_user_exit - inform RCU that we are exiting userspace.
 774 *
 775 * Exit RCU idle mode while entering the kernel because it can
 776 * run a RCU read side critical section anytime.
 777 *
 778 * If you add or remove a call to rcu_user_exit(), be sure to test with
 779 * CONFIG_RCU_EQS_DEBUG=y.
 780 */
 781void rcu_user_exit(void)
 782{
 783	rcu_eqs_exit(1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784}
 785#endif /* CONFIG_NO_HZ_FULL */
 786
 787/**
 788 * rcu_nmi_enter_common - inform RCU of entry to NMI context
 789 * @irq: Is this call from rcu_irq_enter?
 790 *
 791 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
 792 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
 793 * that the CPU is active.  This implementation permits nested NMIs, as
 794 * long as the nesting level does not overflow an int.  (You will probably
 795 * run out of stack space first.)
 796 *
 797 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
 798 * with CONFIG_RCU_EQS_DEBUG=y.
 799 */
 800static __always_inline void rcu_nmi_enter_common(bool irq)
 801{
 802	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 803	long incby = 2;
 
 804
 805	/* Complain about underflow. */
 806	WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
 807
 808	/*
 809	 * If idle from RCU viewpoint, atomically increment ->dynticks
 810	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
 811	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
 812	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
 813	 * to be in the outermost NMI handler that interrupted an RCU-idle
 814	 * period (observation due to Andy Lutomirski).
 815	 */
 816	if (rcu_dynticks_curr_cpu_in_eqs()) {
 817
 818		if (irq)
 819			rcu_dynticks_task_exit();
 820
 
 821		rcu_dynticks_eqs_exit();
 
 822
 823		if (irq)
 
 824			rcu_cleanup_after_idle();
 
 
 
 
 
 
 
 
 825
 826		incby = 1;
 
 
 
 
 
 827	}
 
 828	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
 829			  rdp->dynticks_nmi_nesting,
 830			  rdp->dynticks_nmi_nesting + incby, rdp->dynticks);
 
 831	WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
 832		   rdp->dynticks_nmi_nesting + incby);
 833	barrier();
 834}
 835
 836/**
 837 * rcu_nmi_enter - inform RCU of entry to NMI context
 838 */
 839void rcu_nmi_enter(void)
 840{
 841	rcu_nmi_enter_common(false);
 842}
 843NOKPROBE_SYMBOL(rcu_nmi_enter);
 844
 845/**
 846 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 847 *
 848 * Enter an interrupt handler, which might possibly result in exiting
 849 * idle mode, in other words, entering the mode in which read-side critical
 850 * sections can occur.  The caller must have disabled interrupts.
 851 *
 852 * Note that the Linux kernel is fully capable of entering an interrupt
 853 * handler that it never exits, for example when doing upcalls to user mode!
 854 * This code assumes that the idle loop never does upcalls to user mode.
 855 * If your architecture's idle loop does do upcalls to user mode (or does
 856 * anything else that results in unbalanced calls to the irq_enter() and
 857 * irq_exit() functions), RCU will give you what you deserve, good and hard.
 858 * But very infrequently and irreproducibly.
 859 *
 860 * Use things like work queues to work around this limitation.
 861 *
 862 * You have been warned.
 863 *
 864 * If you add or remove a call to rcu_irq_enter(), be sure to test with
 865 * CONFIG_RCU_EQS_DEBUG=y.
 866 */
 867void rcu_irq_enter(void)
 868{
 869	lockdep_assert_irqs_disabled();
 870	rcu_nmi_enter_common(true);
 871}
 872
 873/*
 874 * Wrapper for rcu_irq_enter() where interrupts are enabled.
 875 *
 876 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
 877 * with CONFIG_RCU_EQS_DEBUG=y.
 878 */
 879void rcu_irq_enter_irqson(void)
 880{
 881	unsigned long flags;
 882
 883	local_irq_save(flags);
 884	rcu_irq_enter();
 885	local_irq_restore(flags);
 886}
 887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 888/**
 889 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
 890 *
 891 * Return true if RCU is watching the running CPU, which means that this
 892 * CPU can safely enter RCU read-side critical sections.  In other words,
 893 * if the current CPU is not in its idle loop or is in an interrupt or
 894 * NMI handler, return true.
 
 
 
 895 */
 896bool notrace rcu_is_watching(void)
 897{
 898	bool ret;
 899
 900	preempt_disable_notrace();
 901	ret = !rcu_dynticks_curr_cpu_in_eqs();
 902	preempt_enable_notrace();
 903	return ret;
 904}
 905EXPORT_SYMBOL_GPL(rcu_is_watching);
 906
 907/*
 908 * If a holdout task is actually running, request an urgent quiescent
 909 * state from its CPU.  This is unsynchronized, so migrations can cause
 910 * the request to go to the wrong CPU.  Which is OK, all that will happen
 911 * is that the CPU's next context switch will be a bit slower and next
 912 * time around this task will generate another request.
 913 */
 914void rcu_request_urgent_qs_task(struct task_struct *t)
 915{
 916	int cpu;
 917
 918	barrier();
 919	cpu = task_cpu(t);
 920	if (!task_curr(t))
 921		return; /* This task is not running on that CPU. */
 922	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
 923}
 924
 925#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
 926
 927/*
 928 * Is the current CPU online as far as RCU is concerned?
 929 *
 930 * Disable preemption to avoid false positives that could otherwise
 931 * happen due to the current CPU number being sampled, this task being
 932 * preempted, its old CPU being taken offline, resuming on some other CPU,
 933 * then determining that its old CPU is now offline.
 934 *
 935 * Disable checking if in an NMI handler because we cannot safely
 936 * report errors from NMI handlers anyway.  In addition, it is OK to use
 937 * RCU on an offline processor during initial boot, hence the check for
 938 * rcu_scheduler_fully_active.
 939 */
 940bool rcu_lockdep_current_cpu_online(void)
 941{
 942	struct rcu_data *rdp;
 943	struct rcu_node *rnp;
 944	bool ret = false;
 945
 946	if (in_nmi() || !rcu_scheduler_fully_active)
 947		return true;
 948	preempt_disable();
 949	rdp = this_cpu_ptr(&rcu_data);
 950	rnp = rdp->mynode;
 951	if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
 952		ret = true;
 953	preempt_enable();
 954	return ret;
 955}
 956EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
 957
 958#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
 959
 960/*
 961 * We are reporting a quiescent state on behalf of some other CPU, so
 962 * it is our responsibility to check for and handle potential overflow
 963 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
 964 * After all, the CPU might be in deep idle state, and thus executing no
 965 * code whatsoever.
 966 */
 967static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
 968{
 969	raw_lockdep_assert_held_rcu_node(rnp);
 970	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
 971			 rnp->gp_seq))
 972		WRITE_ONCE(rdp->gpwrap, true);
 973	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
 974		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
 975}
 976
 977/*
 978 * Snapshot the specified CPU's dynticks counter so that we can later
 979 * credit them with an implicit quiescent state.  Return 1 if this CPU
 980 * is in dynticks idle mode, which is an extended quiescent state.
 981 */
 982static int dyntick_save_progress_counter(struct rcu_data *rdp)
 983{
 984	rdp->dynticks_snap = rcu_dynticks_snap(rdp);
 985	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
 986		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
 987		rcu_gpnum_ovf(rdp->mynode, rdp);
 988		return 1;
 989	}
 990	return 0;
 991}
 992
 993/*
 994 * Return true if the specified CPU has passed through a quiescent
 995 * state by virtue of being in or having passed through an dynticks
 996 * idle state since the last call to dyntick_save_progress_counter()
 997 * for this same CPU, or by virtue of having been offline.
 998 */
 999static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1000{
1001	unsigned long jtsq;
1002	bool *rnhqp;
1003	bool *ruqp;
1004	struct rcu_node *rnp = rdp->mynode;
1005
1006	/*
1007	 * If the CPU passed through or entered a dynticks idle phase with
1008	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1009	 * already acknowledged the request to pass through a quiescent
1010	 * state.  Either way, that CPU cannot possibly be in an RCU
1011	 * read-side critical section that started before the beginning
1012	 * of the current RCU grace period.
1013	 */
1014	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1015		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1016		rcu_gpnum_ovf(rnp, rdp);
1017		return 1;
1018	}
1019
1020	/* If waiting too long on an offline CPU, complain. */
1021	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1022	    time_after(jiffies, rcu_state.gp_start + HZ)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023		bool onl;
1024		struct rcu_node *rnp1;
1025
1026		WARN_ON(1);  /* Offline CPUs are supposed to report QS! */
1027		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1028			__func__, rnp->grplo, rnp->grphi, rnp->level,
1029			(long)rnp->gp_seq, (long)rnp->completedqs);
1030		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1031			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1032				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1033		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1034		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1035			__func__, rdp->cpu, ".o"[onl],
1036			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1037			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1038		return 1; /* Break things loose after complaining. */
1039	}
1040
1041	/*
1042	 * A CPU running for an extended time within the kernel can
1043	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1044	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1045	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1046	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1047	 * variable are safe because the assignments are repeated if this
1048	 * CPU failed to pass through a quiescent state.  This code
1049	 * also checks .jiffies_resched in case jiffies_to_sched_qs
1050	 * is set way high.
1051	 */
1052	jtsq = READ_ONCE(jiffies_to_sched_qs);
1053	ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1054	rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1055	if (!READ_ONCE(*rnhqp) &&
1056	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1057	     time_after(jiffies, rcu_state.jiffies_resched))) {
 
1058		WRITE_ONCE(*rnhqp, true);
1059		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1060		smp_store_release(ruqp, true);
1061	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1062		WRITE_ONCE(*ruqp, true);
1063	}
1064
1065	/*
1066	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1067	 * The above code handles this, but only for straight cond_resched().
1068	 * And some in-kernel loops check need_resched() before calling
1069	 * cond_resched(), which defeats the above code for CPUs that are
1070	 * running in-kernel with scheduling-clock interrupts disabled.
1071	 * So hit them over the head with the resched_cpu() hammer!
1072	 */
1073	if (tick_nohz_full_cpu(rdp->cpu) &&
1074		   time_after(jiffies,
1075			      READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
 
1076		resched_cpu(rdp->cpu);
1077		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1078	}
1079
1080	/*
1081	 * If more than halfway to RCU CPU stall-warning time, invoke
1082	 * resched_cpu() more frequently to try to loosen things up a bit.
1083	 * Also check to see if the CPU is getting hammered with interrupts,
1084	 * but only once per grace period, just to keep the IPIs down to
1085	 * a dull roar.
1086	 */
1087	if (time_after(jiffies, rcu_state.jiffies_resched)) {
1088		if (time_after(jiffies,
1089			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1090			resched_cpu(rdp->cpu);
1091			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1092		}
1093		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1094		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1095		    (rnp->ffmask & rdp->grpmask)) {
1096			init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1097			rdp->rcu_iw_pending = true;
1098			rdp->rcu_iw_gp_seq = rnp->gp_seq;
1099			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1100		}
1101	}
1102
1103	return 0;
1104}
1105
1106/* Trace-event wrapper function for trace_rcu_future_grace_period.  */
1107static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1108			      unsigned long gp_seq_req, const char *s)
1109{
1110	trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
1111				      rnp->level, rnp->grplo, rnp->grphi, s);
 
1112}
1113
1114/*
1115 * rcu_start_this_gp - Request the start of a particular grace period
1116 * @rnp_start: The leaf node of the CPU from which to start.
1117 * @rdp: The rcu_data corresponding to the CPU from which to start.
1118 * @gp_seq_req: The gp_seq of the grace period to start.
1119 *
1120 * Start the specified grace period, as needed to handle newly arrived
1121 * callbacks.  The required future grace periods are recorded in each
1122 * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1123 * is reason to awaken the grace-period kthread.
1124 *
1125 * The caller must hold the specified rcu_node structure's ->lock, which
1126 * is why the caller is responsible for waking the grace-period kthread.
1127 *
1128 * Returns true if the GP thread needs to be awakened else false.
1129 */
1130static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1131			      unsigned long gp_seq_req)
1132{
1133	bool ret = false;
1134	struct rcu_node *rnp;
1135
1136	/*
1137	 * Use funnel locking to either acquire the root rcu_node
1138	 * structure's lock or bail out if the need for this grace period
1139	 * has already been recorded -- or if that grace period has in
1140	 * fact already started.  If there is already a grace period in
1141	 * progress in a non-leaf node, no recording is needed because the
1142	 * end of the grace period will scan the leaf rcu_node structures.
1143	 * Note that rnp_start->lock must not be released.
1144	 */
1145	raw_lockdep_assert_held_rcu_node(rnp_start);
1146	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1147	for (rnp = rnp_start; 1; rnp = rnp->parent) {
1148		if (rnp != rnp_start)
1149			raw_spin_lock_rcu_node(rnp);
1150		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1151		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1152		    (rnp != rnp_start &&
1153		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1154			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1155					  TPS("Prestarted"));
1156			goto unlock_out;
1157		}
1158		rnp->gp_seq_needed = gp_seq_req;
1159		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1160			/*
1161			 * We just marked the leaf or internal node, and a
1162			 * grace period is in progress, which means that
1163			 * rcu_gp_cleanup() will see the marking.  Bail to
1164			 * reduce contention.
1165			 */
1166			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1167					  TPS("Startedleaf"));
1168			goto unlock_out;
1169		}
1170		if (rnp != rnp_start && rnp->parent != NULL)
1171			raw_spin_unlock_rcu_node(rnp);
1172		if (!rnp->parent)
1173			break;  /* At root, and perhaps also leaf. */
1174	}
1175
1176	/* If GP already in progress, just leave, otherwise start one. */
1177	if (rcu_gp_in_progress()) {
1178		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1179		goto unlock_out;
1180	}
1181	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1182	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1183	rcu_state.gp_req_activity = jiffies;
1184	if (!rcu_state.gp_kthread) {
1185		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1186		goto unlock_out;
1187	}
1188	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
1189	ret = true;  /* Caller must wake GP kthread. */
1190unlock_out:
1191	/* Push furthest requested GP to leaf node and rcu_data structure. */
1192	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1193		rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1194		rdp->gp_seq_needed = rnp->gp_seq_needed;
1195	}
1196	if (rnp != rnp_start)
1197		raw_spin_unlock_rcu_node(rnp);
1198	return ret;
1199}
1200
1201/*
1202 * Clean up any old requests for the just-ended grace period.  Also return
1203 * whether any additional grace periods have been requested.
1204 */
1205static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1206{
1207	bool needmore;
1208	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1209
1210	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1211	if (!needmore)
1212		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1213	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1214			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1215	return needmore;
1216}
1217
1218/*
1219 * Awaken the grace-period kthread.  Don't do a self-awaken (unless in
1220 * an interrupt or softirq handler), and don't bother awakening when there
1221 * is nothing for the grace-period kthread to do (as in several CPUs raced
1222 * to awaken, and we lost), and finally don't try to awaken a kthread that
1223 * has not yet been created.  If all those checks are passed, track some
1224 * debug information and awaken.
 
1225 *
1226 * So why do the self-wakeup when in an interrupt or softirq handler
1227 * in the grace-period kthread's context?  Because the kthread might have
1228 * been interrupted just as it was going to sleep, and just after the final
1229 * pre-sleep check of the awaken condition.  In this case, a wakeup really
1230 * is required, and is therefore supplied.
1231 */
1232static void rcu_gp_kthread_wake(void)
1233{
1234	if ((current == rcu_state.gp_kthread &&
1235	     !in_irq() && !in_serving_softirq()) ||
1236	    !READ_ONCE(rcu_state.gp_flags) ||
1237	    !rcu_state.gp_kthread)
1238		return;
1239	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1240	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1241	swake_up_one(&rcu_state.gp_wq);
1242}
1243
1244/*
1245 * If there is room, assign a ->gp_seq number to any callbacks on this
1246 * CPU that have not already been assigned.  Also accelerate any callbacks
1247 * that were previously assigned a ->gp_seq number that has since proven
1248 * to be too conservative, which can happen if callbacks get assigned a
1249 * ->gp_seq number while RCU is idle, but with reference to a non-root
1250 * rcu_node structure.  This function is idempotent, so it does not hurt
1251 * to call it repeatedly.  Returns an flag saying that we should awaken
1252 * the RCU grace-period kthread.
1253 *
1254 * The caller must hold rnp->lock with interrupts disabled.
1255 */
1256static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1257{
1258	unsigned long gp_seq_req;
1259	bool ret = false;
1260
1261	rcu_lockdep_assert_cblist_protected(rdp);
1262	raw_lockdep_assert_held_rcu_node(rnp);
1263
1264	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1265	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1266		return false;
1267
 
 
1268	/*
1269	 * Callbacks are often registered with incomplete grace-period
1270	 * information.  Something about the fact that getting exact
1271	 * information requires acquiring a global lock...  RCU therefore
1272	 * makes a conservative estimate of the grace period number at which
1273	 * a given callback will become ready to invoke.	The following
1274	 * code checks this estimate and improves it when possible, thus
1275	 * accelerating callback invocation to an earlier grace-period
1276	 * number.
1277	 */
1278	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1279	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1280		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1281
1282	/* Trace depending on how much we were able to accelerate. */
1283	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1284		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1285	else
1286		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
 
 
 
1287	return ret;
1288}
1289
1290/*
1291 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1292 * rcu_node structure's ->lock be held.  It consults the cached value
1293 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1294 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1295 * while holding the leaf rcu_node structure's ->lock.
1296 */
1297static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1298					struct rcu_data *rdp)
1299{
1300	unsigned long c;
1301	bool needwake;
1302
1303	rcu_lockdep_assert_cblist_protected(rdp);
1304	c = rcu_seq_snap(&rcu_state.gp_seq);
1305	if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1306		/* Old request still live, so mark recent callbacks. */
1307		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1308		return;
1309	}
1310	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1311	needwake = rcu_accelerate_cbs(rnp, rdp);
1312	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1313	if (needwake)
1314		rcu_gp_kthread_wake();
1315}
1316
1317/*
1318 * Move any callbacks whose grace period has completed to the
1319 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1320 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1321 * sublist.  This function is idempotent, so it does not hurt to
1322 * invoke it repeatedly.  As long as it is not invoked -too- often...
1323 * Returns true if the RCU grace-period kthread needs to be awakened.
1324 *
1325 * The caller must hold rnp->lock with interrupts disabled.
1326 */
1327static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1328{
1329	rcu_lockdep_assert_cblist_protected(rdp);
1330	raw_lockdep_assert_held_rcu_node(rnp);
1331
1332	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1333	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1334		return false;
1335
1336	/*
1337	 * Find all callbacks whose ->gp_seq numbers indicate that they
1338	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1339	 */
1340	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1341
1342	/* Classify any remaining callbacks. */
1343	return rcu_accelerate_cbs(rnp, rdp);
1344}
1345
1346/*
1347 * Move and classify callbacks, but only if doing so won't require
1348 * that the RCU grace-period kthread be awakened.
1349 */
1350static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1351						  struct rcu_data *rdp)
1352{
1353	rcu_lockdep_assert_cblist_protected(rdp);
1354	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) ||
1355	    !raw_spin_trylock_rcu_node(rnp))
1356		return;
1357	WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1358	raw_spin_unlock_rcu_node(rnp);
1359}
1360
1361/*
 
 
 
 
 
 
 
 
 
 
 
 
 
1362 * Update CPU-local rcu_data state to record the beginnings and ends of
1363 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1364 * structure corresponding to the current CPU, and must have irqs disabled.
1365 * Returns true if the grace-period kthread needs to be awakened.
1366 */
1367static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1368{
1369	bool ret = false;
1370	bool need_gp;
1371	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1372			       rcu_segcblist_is_offloaded(&rdp->cblist);
1373
1374	raw_lockdep_assert_held_rcu_node(rnp);
1375
1376	if (rdp->gp_seq == rnp->gp_seq)
1377		return false; /* Nothing to do. */
1378
1379	/* Handle the ends of any preceding grace periods first. */
1380	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1381	    unlikely(READ_ONCE(rdp->gpwrap))) {
1382		if (!offloaded)
1383			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
 
1384		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1385	} else {
1386		if (!offloaded)
1387			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
 
 
1388	}
1389
1390	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1391	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1392	    unlikely(READ_ONCE(rdp->gpwrap))) {
1393		/*
1394		 * If the current grace period is waiting for this CPU,
1395		 * set up to detect a quiescent state, otherwise don't
1396		 * go looking for one.
1397		 */
1398		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1399		need_gp = !!(rnp->qsmask & rdp->grpmask);
1400		rdp->cpu_no_qs.b.norm = need_gp;
1401		rdp->core_needs_qs = need_gp;
1402		zero_cpu_stall_ticks(rdp);
1403	}
1404	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1405	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1406		rdp->gp_seq_needed = rnp->gp_seq_needed;
1407	WRITE_ONCE(rdp->gpwrap, false);
1408	rcu_gpnum_ovf(rnp, rdp);
1409	return ret;
1410}
1411
1412static void note_gp_changes(struct rcu_data *rdp)
1413{
1414	unsigned long flags;
1415	bool needwake;
1416	struct rcu_node *rnp;
1417
1418	local_irq_save(flags);
1419	rnp = rdp->mynode;
1420	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1421	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1422	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1423		local_irq_restore(flags);
1424		return;
1425	}
1426	needwake = __note_gp_changes(rnp, rdp);
1427	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 
1428	if (needwake)
1429		rcu_gp_kthread_wake();
1430}
1431
1432static void rcu_gp_slow(int delay)
1433{
1434	if (delay > 0 &&
1435	    !(rcu_seq_ctr(rcu_state.gp_seq) %
1436	      (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1437		schedule_timeout_uninterruptible(delay);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1438}
1439
1440/*
1441 * Initialize a new grace period.  Return false if no grace period required.
1442 */
1443static bool rcu_gp_init(void)
1444{
 
1445	unsigned long flags;
1446	unsigned long oldmask;
1447	unsigned long mask;
1448	struct rcu_data *rdp;
1449	struct rcu_node *rnp = rcu_get_root();
1450
1451	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1452	raw_spin_lock_irq_rcu_node(rnp);
1453	if (!READ_ONCE(rcu_state.gp_flags)) {
1454		/* Spurious wakeup, tell caller to go back to sleep.  */
1455		raw_spin_unlock_irq_rcu_node(rnp);
1456		return false;
1457	}
1458	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1459
1460	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1461		/*
1462		 * Grace period already in progress, don't start another.
1463		 * Not supposed to be able to happen.
1464		 */
1465		raw_spin_unlock_irq_rcu_node(rnp);
1466		return false;
1467	}
1468
1469	/* Advance to a new grace period and initialize state. */
1470	record_gp_stall_check_time();
1471	/* Record GP times before starting GP, hence rcu_seq_start(). */
1472	rcu_seq_start(&rcu_state.gp_seq);
 
1473	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1474	raw_spin_unlock_irq_rcu_node(rnp);
1475
1476	/*
1477	 * Apply per-leaf buffered online and offline operations to the
1478	 * rcu_node tree.  Note that this new grace period need not wait
1479	 * for subsequent online CPUs, and that quiescent-state forcing
1480	 * will handle subsequent offline CPUs.
 
 
 
1481	 */
1482	rcu_state.gp_state = RCU_GP_ONOFF;
1483	rcu_for_each_leaf_node(rnp) {
 
 
 
 
 
 
1484		raw_spin_lock(&rcu_state.ofl_lock);
1485		raw_spin_lock_irq_rcu_node(rnp);
1486		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1487		    !rnp->wait_blkd_tasks) {
1488			/* Nothing to do on this leaf rcu_node structure. */
1489			raw_spin_unlock_irq_rcu_node(rnp);
1490			raw_spin_unlock(&rcu_state.ofl_lock);
1491			continue;
1492		}
1493
1494		/* Record old state, apply changes to ->qsmaskinit field. */
1495		oldmask = rnp->qsmaskinit;
1496		rnp->qsmaskinit = rnp->qsmaskinitnext;
1497
1498		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1499		if (!oldmask != !rnp->qsmaskinit) {
1500			if (!oldmask) { /* First online CPU for rcu_node. */
1501				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1502					rcu_init_new_rnp(rnp);
1503			} else if (rcu_preempt_has_tasks(rnp)) {
1504				rnp->wait_blkd_tasks = true; /* blocked tasks */
1505			} else { /* Last offline CPU and can propagate. */
1506				rcu_cleanup_dead_rnp(rnp);
1507			}
1508		}
1509
1510		/*
1511		 * If all waited-on tasks from prior grace period are
1512		 * done, and if all this rcu_node structure's CPUs are
1513		 * still offline, propagate up the rcu_node tree and
1514		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1515		 * rcu_node structure's CPUs has since come back online,
1516		 * simply clear ->wait_blkd_tasks.
1517		 */
1518		if (rnp->wait_blkd_tasks &&
1519		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1520			rnp->wait_blkd_tasks = false;
1521			if (!rnp->qsmaskinit)
1522				rcu_cleanup_dead_rnp(rnp);
1523		}
1524
1525		raw_spin_unlock_irq_rcu_node(rnp);
1526		raw_spin_unlock(&rcu_state.ofl_lock);
1527	}
1528	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1529
1530	/*
1531	 * Set the quiescent-state-needed bits in all the rcu_node
1532	 * structures for all currently online CPUs in breadth-first
1533	 * order, starting from the root rcu_node structure, relying on the
1534	 * layout of the tree within the rcu_state.node[] array.  Note that
1535	 * other CPUs will access only the leaves of the hierarchy, thus
1536	 * seeing that no grace period is in progress, at least until the
1537	 * corresponding leaf node has been initialized.
1538	 *
1539	 * The grace period cannot complete until the initialization
1540	 * process finishes, because this kthread handles both.
1541	 */
1542	rcu_state.gp_state = RCU_GP_INIT;
1543	rcu_for_each_node_breadth_first(rnp) {
1544		rcu_gp_slow(gp_init_delay);
1545		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1546		rdp = this_cpu_ptr(&rcu_data);
1547		rcu_preempt_check_blocked_tasks(rnp);
1548		rnp->qsmask = rnp->qsmaskinit;
1549		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1550		if (rnp == rdp->mynode)
1551			(void)__note_gp_changes(rnp, rdp);
1552		rcu_preempt_boost_start_gp(rnp);
1553		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1554					    rnp->level, rnp->grplo,
1555					    rnp->grphi, rnp->qsmask);
1556		/* Quiescent states for tasks on any now-offline CPUs. */
1557		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1558		rnp->rcu_gp_init_mask = mask;
1559		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1560			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1561		else
1562			raw_spin_unlock_irq_rcu_node(rnp);
1563		cond_resched_tasks_rcu_qs();
1564		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1565	}
1566
 
 
 
 
1567	return true;
1568}
1569
1570/*
1571 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1572 * time.
1573 */
1574static bool rcu_gp_fqs_check_wake(int *gfp)
1575{
1576	struct rcu_node *rnp = rcu_get_root();
1577
1578	/* Someone like call_rcu() requested a force-quiescent-state scan. */
 
 
 
 
1579	*gfp = READ_ONCE(rcu_state.gp_flags);
1580	if (*gfp & RCU_GP_FLAG_FQS)
1581		return true;
1582
1583	/* The current grace period has completed. */
1584	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1585		return true;
1586
1587	return false;
1588}
1589
1590/*
1591 * Do one round of quiescent-state forcing.
1592 */
1593static void rcu_gp_fqs(bool first_time)
1594{
1595	struct rcu_node *rnp = rcu_get_root();
1596
1597	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1598	rcu_state.n_force_qs++;
1599	if (first_time) {
1600		/* Collect dyntick-idle snapshots. */
1601		force_qs_rnp(dyntick_save_progress_counter);
1602	} else {
1603		/* Handle dyntick-idle and offline CPUs. */
1604		force_qs_rnp(rcu_implicit_dynticks_qs);
1605	}
1606	/* Clear flag to prevent immediate re-entry. */
1607	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1608		raw_spin_lock_irq_rcu_node(rnp);
1609		WRITE_ONCE(rcu_state.gp_flags,
1610			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1611		raw_spin_unlock_irq_rcu_node(rnp);
1612	}
1613}
1614
1615/*
1616 * Loop doing repeated quiescent-state forcing until the grace period ends.
1617 */
1618static void rcu_gp_fqs_loop(void)
1619{
1620	bool first_gp_fqs;
1621	int gf;
1622	unsigned long j;
1623	int ret;
1624	struct rcu_node *rnp = rcu_get_root();
1625
1626	first_gp_fqs = true;
1627	j = READ_ONCE(jiffies_till_first_fqs);
 
 
1628	ret = 0;
1629	for (;;) {
1630		if (!ret) {
1631			rcu_state.jiffies_force_qs = jiffies + j;
 
 
 
 
 
1632			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1633				   jiffies + (j ? 3 * j : 2));
1634		}
1635		trace_rcu_grace_period(rcu_state.name,
1636				       READ_ONCE(rcu_state.gp_seq),
1637				       TPS("fqswait"));
1638		rcu_state.gp_state = RCU_GP_WAIT_FQS;
1639		ret = swait_event_idle_timeout_exclusive(
1640				rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1641		rcu_state.gp_state = RCU_GP_DOING_FQS;
 
1642		/* Locking provides needed memory barriers. */
1643		/* If grace period done, leave loop. */
1644		if (!READ_ONCE(rnp->qsmask) &&
1645		    !rcu_preempt_blocked_readers_cgp(rnp))
1646			break;
1647		/* If time for quiescent-state forcing, do it. */
1648		if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
1649		    (gf & RCU_GP_FLAG_FQS)) {
1650			trace_rcu_grace_period(rcu_state.name,
1651					       READ_ONCE(rcu_state.gp_seq),
1652					       TPS("fqsstart"));
1653			rcu_gp_fqs(first_gp_fqs);
1654			first_gp_fqs = false;
1655			trace_rcu_grace_period(rcu_state.name,
1656					       READ_ONCE(rcu_state.gp_seq),
 
 
 
1657					       TPS("fqsend"));
1658			cond_resched_tasks_rcu_qs();
1659			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1660			ret = 0; /* Force full wait till next FQS. */
1661			j = READ_ONCE(jiffies_till_next_fqs);
1662		} else {
1663			/* Deal with stray signal. */
1664			cond_resched_tasks_rcu_qs();
1665			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1666			WARN_ON(signal_pending(current));
1667			trace_rcu_grace_period(rcu_state.name,
1668					       READ_ONCE(rcu_state.gp_seq),
1669					       TPS("fqswaitsig"));
1670			ret = 1; /* Keep old FQS timing. */
1671			j = jiffies;
1672			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1673				j = 1;
1674			else
1675				j = rcu_state.jiffies_force_qs - j;
 
1676		}
1677	}
1678}
1679
1680/*
1681 * Clean up after the old grace period.
1682 */
1683static void rcu_gp_cleanup(void)
1684{
1685	unsigned long gp_duration;
1686	bool needgp = false;
 
1687	unsigned long new_gp_seq;
1688	bool offloaded;
1689	struct rcu_data *rdp;
1690	struct rcu_node *rnp = rcu_get_root();
1691	struct swait_queue_head *sq;
1692
1693	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1694	raw_spin_lock_irq_rcu_node(rnp);
1695	rcu_state.gp_end = jiffies;
1696	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1697	if (gp_duration > rcu_state.gp_max)
1698		rcu_state.gp_max = gp_duration;
1699
1700	/*
1701	 * We know the grace period is complete, but to everyone else
1702	 * it appears to still be ongoing.  But it is also the case
1703	 * that to everyone else it looks like there is nothing that
1704	 * they can do to advance the grace period.  It is therefore
1705	 * safe for us to drop the lock in order to mark the grace
1706	 * period as completed in all of the rcu_node structures.
1707	 */
1708	raw_spin_unlock_irq_rcu_node(rnp);
1709
1710	/*
1711	 * Propagate new ->gp_seq value to rcu_node structures so that
1712	 * other CPUs don't have to wait until the start of the next grace
1713	 * period to process their callbacks.  This also avoids some nasty
1714	 * RCU grace-period initialization races by forcing the end of
1715	 * the current grace period to be completely recorded in all of
1716	 * the rcu_node structures before the beginning of the next grace
1717	 * period is recorded in any of the rcu_node structures.
1718	 */
1719	new_gp_seq = rcu_state.gp_seq;
1720	rcu_seq_end(&new_gp_seq);
1721	rcu_for_each_node_breadth_first(rnp) {
1722		raw_spin_lock_irq_rcu_node(rnp);
1723		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1724			dump_blkd_tasks(rnp, 10);
1725		WARN_ON_ONCE(rnp->qsmask);
1726		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1727		rdp = this_cpu_ptr(&rcu_data);
1728		if (rnp == rdp->mynode)
1729			needgp = __note_gp_changes(rnp, rdp) || needgp;
1730		/* smp_mb() provided by prior unlock-lock pair. */
1731		needgp = rcu_future_gp_cleanup(rnp) || needgp;
 
 
 
 
 
 
1732		sq = rcu_nocb_gp_get(rnp);
1733		raw_spin_unlock_irq_rcu_node(rnp);
1734		rcu_nocb_gp_cleanup(sq);
1735		cond_resched_tasks_rcu_qs();
1736		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1737		rcu_gp_slow(gp_cleanup_delay);
1738	}
1739	rnp = rcu_get_root();
1740	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1741
1742	/* Declare grace period done, trace first to use old GP number. */
1743	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1744	rcu_seq_end(&rcu_state.gp_seq);
1745	rcu_state.gp_state = RCU_GP_IDLE;
 
1746	/* Check for GP requests since above loop. */
1747	rdp = this_cpu_ptr(&rcu_data);
1748	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1749		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1750				  TPS("CleanupMore"));
1751		needgp = true;
1752	}
1753	/* Advance CBs to reduce false positives below. */
1754	offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1755		    rcu_segcblist_is_offloaded(&rdp->cblist);
1756	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1757		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1758		rcu_state.gp_req_activity = jiffies;
1759		trace_rcu_grace_period(rcu_state.name,
1760				       READ_ONCE(rcu_state.gp_seq),
1761				       TPS("newreq"));
1762	} else {
1763		WRITE_ONCE(rcu_state.gp_flags,
1764			   rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1765	}
1766	raw_spin_unlock_irq_rcu_node(rnp);
 
 
 
 
1767}
1768
1769/*
1770 * Body of kthread that handles grace periods.
1771 */
1772static int __noreturn rcu_gp_kthread(void *unused)
1773{
1774	rcu_bind_gp_kthread();
1775	for (;;) {
1776
1777		/* Handle grace-period start. */
1778		for (;;) {
1779			trace_rcu_grace_period(rcu_state.name,
1780					       READ_ONCE(rcu_state.gp_seq),
1781					       TPS("reqwait"));
1782			rcu_state.gp_state = RCU_GP_WAIT_GPS;
1783			swait_event_idle_exclusive(rcu_state.gp_wq,
1784					 READ_ONCE(rcu_state.gp_flags) &
1785					 RCU_GP_FLAG_INIT);
1786			rcu_state.gp_state = RCU_GP_DONE_GPS;
 
1787			/* Locking provides needed memory barrier. */
1788			if (rcu_gp_init())
1789				break;
1790			cond_resched_tasks_rcu_qs();
1791			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1792			WARN_ON(signal_pending(current));
1793			trace_rcu_grace_period(rcu_state.name,
1794					       READ_ONCE(rcu_state.gp_seq),
1795					       TPS("reqwaitsig"));
1796		}
1797
1798		/* Handle quiescent-state forcing. */
1799		rcu_gp_fqs_loop();
1800
1801		/* Handle grace-period end. */
1802		rcu_state.gp_state = RCU_GP_CLEANUP;
1803		rcu_gp_cleanup();
1804		rcu_state.gp_state = RCU_GP_CLEANED;
1805	}
1806}
1807
1808/*
1809 * Report a full set of quiescent states to the rcu_state data structure.
1810 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1811 * another grace period is required.  Whether we wake the grace-period
1812 * kthread or it awakens itself for the next round of quiescent-state
1813 * forcing, that kthread will clean up after the just-completed grace
1814 * period.  Note that the caller must hold rnp->lock, which is released
1815 * before return.
1816 */
1817static void rcu_report_qs_rsp(unsigned long flags)
1818	__releases(rcu_get_root()->lock)
1819{
1820	raw_lockdep_assert_held_rcu_node(rcu_get_root());
1821	WARN_ON_ONCE(!rcu_gp_in_progress());
1822	WRITE_ONCE(rcu_state.gp_flags,
1823		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1824	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1825	rcu_gp_kthread_wake();
1826}
1827
1828/*
1829 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1830 * Allows quiescent states for a group of CPUs to be reported at one go
1831 * to the specified rcu_node structure, though all the CPUs in the group
1832 * must be represented by the same rcu_node structure (which need not be a
1833 * leaf rcu_node structure, though it often will be).  The gps parameter
1834 * is the grace-period snapshot, which means that the quiescent states
1835 * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
1836 * must be held upon entry, and it is released before return.
1837 *
1838 * As a special case, if mask is zero, the bit-already-cleared check is
1839 * disabled.  This allows propagating quiescent state due to resumed tasks
1840 * during grace-period initialization.
1841 */
1842static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1843			      unsigned long gps, unsigned long flags)
1844	__releases(rnp->lock)
1845{
1846	unsigned long oldmask = 0;
1847	struct rcu_node *rnp_c;
1848
1849	raw_lockdep_assert_held_rcu_node(rnp);
1850
1851	/* Walk up the rcu_node hierarchy. */
1852	for (;;) {
1853		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1854
1855			/*
1856			 * Our bit has already been cleared, or the
1857			 * relevant grace period is already over, so done.
1858			 */
1859			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1860			return;
1861		}
1862		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1863		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1864			     rcu_preempt_blocked_readers_cgp(rnp));
1865		rnp->qsmask &= ~mask;
1866		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1867						 mask, rnp->qsmask, rnp->level,
1868						 rnp->grplo, rnp->grphi,
1869						 !!rnp->gp_tasks);
1870		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1871
1872			/* Other bits still set at this level, so done. */
1873			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1874			return;
1875		}
1876		rnp->completedqs = rnp->gp_seq;
1877		mask = rnp->grpmask;
1878		if (rnp->parent == NULL) {
1879
1880			/* No more levels.  Exit loop holding root lock. */
1881
1882			break;
1883		}
1884		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1885		rnp_c = rnp;
1886		rnp = rnp->parent;
1887		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1888		oldmask = rnp_c->qsmask;
1889	}
1890
1891	/*
1892	 * Get here if we are the last CPU to pass through a quiescent
1893	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1894	 * to clean up and start the next grace period if one is needed.
1895	 */
1896	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1897}
1898
1899/*
1900 * Record a quiescent state for all tasks that were previously queued
1901 * on the specified rcu_node structure and that were blocking the current
1902 * RCU grace period.  The caller must hold the corresponding rnp->lock with
1903 * irqs disabled, and this lock is released upon return, but irqs remain
1904 * disabled.
1905 */
1906static void __maybe_unused
1907rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1908	__releases(rnp->lock)
1909{
1910	unsigned long gps;
1911	unsigned long mask;
1912	struct rcu_node *rnp_p;
1913
1914	raw_lockdep_assert_held_rcu_node(rnp);
1915	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPTION)) ||
1916	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1917	    rnp->qsmask != 0) {
1918		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1919		return;  /* Still need more quiescent states! */
1920	}
1921
1922	rnp->completedqs = rnp->gp_seq;
1923	rnp_p = rnp->parent;
1924	if (rnp_p == NULL) {
1925		/*
1926		 * Only one rcu_node structure in the tree, so don't
1927		 * try to report up to its nonexistent parent!
1928		 */
1929		rcu_report_qs_rsp(flags);
1930		return;
1931	}
1932
1933	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1934	gps = rnp->gp_seq;
1935	mask = rnp->grpmask;
1936	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
1937	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
1938	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1939}
1940
1941/*
1942 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1943 * structure.  This must be called from the specified CPU.
1944 */
1945static void
1946rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
1947{
1948	unsigned long flags;
1949	unsigned long mask;
1950	bool needwake = false;
1951	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1952			       rcu_segcblist_is_offloaded(&rdp->cblist);
1953	struct rcu_node *rnp;
1954
 
1955	rnp = rdp->mynode;
1956	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1957	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
1958	    rdp->gpwrap) {
1959
1960		/*
1961		 * The grace period in which this quiescent state was
1962		 * recorded has ended, so don't report it upwards.
1963		 * We will instead need a new quiescent state that lies
1964		 * within the current grace period.
1965		 */
1966		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
1967		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1968		return;
1969	}
1970	mask = rdp->grpmask;
1971	rdp->core_needs_qs = false;
1972	if ((rnp->qsmask & mask) == 0) {
1973		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1974	} else {
1975		/*
1976		 * This GP can't end until cpu checks in, so all of our
1977		 * callbacks can be processed during the next GP.
1978		 */
1979		if (!offloaded)
1980			needwake = rcu_accelerate_cbs(rnp, rdp);
1981
 
1982		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1983		/* ^^^ Released rnp->lock */
1984		if (needwake)
1985			rcu_gp_kthread_wake();
1986	}
1987}
1988
1989/*
1990 * Check to see if there is a new grace period of which this CPU
1991 * is not yet aware, and if so, set up local rcu_data state for it.
1992 * Otherwise, see if this CPU has just passed through its first
1993 * quiescent state for this grace period, and record that fact if so.
1994 */
1995static void
1996rcu_check_quiescent_state(struct rcu_data *rdp)
1997{
1998	/* Check for grace-period ends and beginnings. */
1999	note_gp_changes(rdp);
2000
2001	/*
2002	 * Does this CPU still need to do its part for current grace period?
2003	 * If no, return and let the other CPUs do their part as well.
2004	 */
2005	if (!rdp->core_needs_qs)
2006		return;
2007
2008	/*
2009	 * Was there a quiescent state since the beginning of the grace
2010	 * period? If no, then exit and wait for the next call.
2011	 */
2012	if (rdp->cpu_no_qs.b.norm)
2013		return;
2014
2015	/*
2016	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2017	 * judge of that).
2018	 */
2019	rcu_report_qs_rdp(rdp->cpu, rdp);
2020}
2021
2022/*
2023 * Near the end of the offline process.  Trace the fact that this CPU
2024 * is going offline.
2025 */
2026int rcutree_dying_cpu(unsigned int cpu)
2027{
2028	bool blkd;
2029	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2030	struct rcu_node *rnp = rdp->mynode;
2031
2032	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2033		return 0;
2034
2035	blkd = !!(rnp->qsmask & rdp->grpmask);
2036	trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
2037			       blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2038	return 0;
2039}
2040
2041/*
2042 * All CPUs for the specified rcu_node structure have gone offline,
2043 * and all tasks that were preempted within an RCU read-side critical
2044 * section while running on one of those CPUs have since exited their RCU
2045 * read-side critical section.  Some other CPU is reporting this fact with
2046 * the specified rcu_node structure's ->lock held and interrupts disabled.
2047 * This function therefore goes up the tree of rcu_node structures,
2048 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2049 * the leaf rcu_node structure's ->qsmaskinit field has already been
2050 * updated.
2051 *
2052 * This function does check that the specified rcu_node structure has
2053 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2054 * prematurely.  That said, invoking it after the fact will cost you
2055 * a needless lock acquisition.  So once it has done its work, don't
2056 * invoke it again.
2057 */
2058static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2059{
2060	long mask;
2061	struct rcu_node *rnp = rnp_leaf;
2062
2063	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2064	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2065	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2066	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2067		return;
2068	for (;;) {
2069		mask = rnp->grpmask;
2070		rnp = rnp->parent;
2071		if (!rnp)
2072			break;
2073		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2074		rnp->qsmaskinit &= ~mask;
2075		/* Between grace periods, so better already be zero! */
2076		WARN_ON_ONCE(rnp->qsmask);
2077		if (rnp->qsmaskinit) {
2078			raw_spin_unlock_rcu_node(rnp);
2079			/* irqs remain disabled. */
2080			return;
2081		}
2082		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2083	}
2084}
2085
2086/*
2087 * The CPU has been completely removed, and some other CPU is reporting
2088 * this fact from process context.  Do the remainder of the cleanup.
2089 * There can only be one CPU hotplug operation at a time, so no need for
2090 * explicit locking.
2091 */
2092int rcutree_dead_cpu(unsigned int cpu)
2093{
2094	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2095	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2096
2097	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2098		return 0;
2099
 
2100	/* Adjust any no-longer-needed kthreads. */
2101	rcu_boost_kthread_setaffinity(rnp, -1);
2102	/* Do any needed no-CB deferred wakeups from this CPU. */
2103	do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
 
 
 
2104	return 0;
2105}
2106
2107/*
2108 * Invoke any RCU callbacks that have made it to the end of their grace
2109 * period.  Thottle as specified by rdp->blimit.
2110 */
2111static void rcu_do_batch(struct rcu_data *rdp)
2112{
 
 
2113	unsigned long flags;
2114	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2115			       rcu_segcblist_is_offloaded(&rdp->cblist);
2116	struct rcu_head *rhp;
2117	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2118	long bl, count;
2119	long pending, tlimit = 0;
2120
2121	/* If no callbacks are ready, just return. */
2122	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2123		trace_rcu_batch_start(rcu_state.name,
2124				      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2125				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2126		trace_rcu_batch_end(rcu_state.name, 0,
2127				    !rcu_segcblist_empty(&rdp->cblist),
2128				    need_resched(), is_idle_task(current),
2129				    rcu_is_callbacks_kthread());
2130		return;
2131	}
2132
2133	/*
2134	 * Extract the list of ready callbacks, disabling to prevent
2135	 * races with call_rcu() from interrupt handlers.  Leave the
2136	 * callback counts, as rcu_barrier() needs to be conservative.
2137	 */
2138	local_irq_save(flags);
2139	rcu_nocb_lock(rdp);
2140	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2141	pending = rcu_segcblist_n_cbs(&rdp->cblist);
2142	bl = max(rdp->blimit, pending >> rcu_divisor);
2143	if (unlikely(bl > 100))
2144		tlimit = local_clock() + rcu_resched_ns;
 
 
 
 
 
 
2145	trace_rcu_batch_start(rcu_state.name,
2146			      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2147			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2148	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2149	if (offloaded)
2150		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
 
 
2151	rcu_nocb_unlock_irqrestore(rdp, flags);
2152
2153	/* Invoke callbacks. */
 
2154	rhp = rcu_cblist_dequeue(&rcl);
 
2155	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
 
 
 
2156		debug_rcu_head_unqueue(rhp);
2157		if (__rcu_reclaim(rcu_state.name, rhp))
2158			rcu_cblist_dequeued_lazy(&rcl);
 
 
 
 
 
 
 
 
2159		/*
2160		 * Stop only if limit reached and CPU has something to do.
2161		 * Note: The rcl structure counts down from zero.
2162		 */
2163		if (-rcl.len >= bl && !offloaded &&
2164		    (need_resched() ||
2165		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2166			break;
2167		if (unlikely(tlimit)) {
2168			/* only call local_clock() every 32 callbacks */
2169			if (likely((-rcl.len & 31) || local_clock() < tlimit))
2170				continue;
2171			/* Exceeded the time limit, so leave. */
2172			break;
2173		}
2174		if (offloaded) {
2175			WARN_ON_ONCE(in_serving_softirq());
2176			local_bh_enable();
2177			lockdep_assert_irqs_enabled();
2178			cond_resched_tasks_rcu_qs();
2179			lockdep_assert_irqs_enabled();
2180			local_bh_disable();
2181		}
2182	}
2183
2184	local_irq_save(flags);
2185	rcu_nocb_lock(rdp);
2186	count = -rcl.len;
2187	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2188			    is_idle_task(current), rcu_is_callbacks_kthread());
2189
2190	/* Update counts and requeue any remaining callbacks. */
2191	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2192	smp_mb(); /* List handling before counting for rcu_barrier(). */
2193	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2194
2195	/* Reinstate batch limit if we have worked down the excess. */
2196	count = rcu_segcblist_n_cbs(&rdp->cblist);
2197	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2198		rdp->blimit = blimit;
2199
2200	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2201	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2202		rdp->qlen_last_fqs_check = 0;
2203		rdp->n_force_qs_snap = rcu_state.n_force_qs;
2204	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2205		rdp->qlen_last_fqs_check = count;
2206
2207	/*
2208	 * The following usually indicates a double call_rcu().  To track
2209	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2210	 */
2211	WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist));
 
2212	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2213		     count != 0 && rcu_segcblist_empty(&rdp->cblist));
 
 
2214
2215	rcu_nocb_unlock_irqrestore(rdp, flags);
2216
2217	/* Re-invoke RCU core processing if there are callbacks remaining. */
2218	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2219		invoke_rcu_core();
 
2220}
2221
2222/*
2223 * This function is invoked from each scheduling-clock interrupt,
2224 * and checks to see if this CPU is in a non-context-switch quiescent
2225 * state, for example, user mode or idle loop.  It also schedules RCU
2226 * core processing.  If the current grace period has gone on too long,
2227 * it will ask the scheduler to manufacture a context switch for the sole
2228 * purpose of providing a providing the needed quiescent state.
2229 */
2230void rcu_sched_clock_irq(int user)
2231{
2232	trace_rcu_utilization(TPS("Start scheduler-tick"));
 
2233	raw_cpu_inc(rcu_data.ticks_this_gp);
2234	/* The load-acquire pairs with the store-release setting to true. */
2235	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2236		/* Idle and userspace execution already are quiescent states. */
2237		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2238			set_tsk_need_resched(current);
2239			set_preempt_need_resched();
2240		}
2241		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2242	}
2243	rcu_flavor_sched_clock_irq(user);
2244	if (rcu_pending())
2245		invoke_rcu_core();
 
2246
2247	trace_rcu_utilization(TPS("End scheduler-tick"));
2248}
2249
2250/*
2251 * Scan the leaf rcu_node structures.  For each structure on which all
2252 * CPUs have reported a quiescent state and on which there are tasks
2253 * blocking the current grace period, initiate RCU priority boosting.
2254 * Otherwise, invoke the specified function to check dyntick state for
2255 * each CPU that has not yet reported a quiescent state.
2256 */
2257static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2258{
2259	int cpu;
2260	unsigned long flags;
2261	unsigned long mask;
 
2262	struct rcu_node *rnp;
2263
 
 
2264	rcu_for_each_leaf_node(rnp) {
2265		cond_resched_tasks_rcu_qs();
2266		mask = 0;
2267		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 
2268		if (rnp->qsmask == 0) {
2269			if (!IS_ENABLED(CONFIG_PREEMPTION) ||
2270			    rcu_preempt_blocked_readers_cgp(rnp)) {
2271				/*
2272				 * No point in scanning bits because they
2273				 * are all zero.  But we might need to
2274				 * priority-boost blocked readers.
2275				 */
2276				rcu_initiate_boost(rnp, flags);
2277				/* rcu_initiate_boost() releases rnp->lock */
2278				continue;
2279			}
2280			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2281			continue;
2282		}
2283		for_each_leaf_node_possible_cpu(rnp, cpu) {
2284			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2285			if ((rnp->qsmask & bit) != 0) {
2286				if (f(per_cpu_ptr(&rcu_data, cpu)))
2287					mask |= bit;
2288			}
2289		}
2290		if (mask != 0) {
2291			/* Idle/offline CPUs, report (releases rnp->lock). */
2292			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2293		} else {
2294			/* Nothing to do here, so just drop the lock. */
2295			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2296		}
2297	}
2298}
2299
2300/*
2301 * Force quiescent states on reluctant CPUs, and also detect which
2302 * CPUs are in dyntick-idle mode.
2303 */
2304void rcu_force_quiescent_state(void)
2305{
2306	unsigned long flags;
2307	bool ret;
2308	struct rcu_node *rnp;
2309	struct rcu_node *rnp_old = NULL;
2310
2311	/* Funnel through hierarchy to reduce memory contention. */
2312	rnp = __this_cpu_read(rcu_data.mynode);
2313	for (; rnp != NULL; rnp = rnp->parent) {
2314		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2315		      !raw_spin_trylock(&rnp->fqslock);
2316		if (rnp_old != NULL)
2317			raw_spin_unlock(&rnp_old->fqslock);
2318		if (ret)
2319			return;
2320		rnp_old = rnp;
2321	}
2322	/* rnp_old == rcu_get_root(), rnp == NULL. */
2323
2324	/* Reached the root of the rcu_node tree, acquire lock. */
2325	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2326	raw_spin_unlock(&rnp_old->fqslock);
2327	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2328		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2329		return;  /* Someone beat us to it. */
2330	}
2331	WRITE_ONCE(rcu_state.gp_flags,
2332		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2333	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2334	rcu_gp_kthread_wake();
2335}
2336EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2337
 
 
 
 
 
 
 
 
2338/* Perform RCU core processing work for the current CPU.  */
2339static __latent_entropy void rcu_core(void)
2340{
2341	unsigned long flags;
2342	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2343	struct rcu_node *rnp = rdp->mynode;
2344	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2345			       rcu_segcblist_is_offloaded(&rdp->cblist);
2346
2347	if (cpu_is_offline(smp_processor_id()))
2348		return;
2349	trace_rcu_utilization(TPS("Start RCU core"));
2350	WARN_ON_ONCE(!rdp->beenonline);
2351
2352	/* Report any deferred quiescent states if preemption enabled. */
2353	if (!(preempt_count() & PREEMPT_MASK)) {
2354		rcu_preempt_deferred_qs(current);
2355	} else if (rcu_preempt_need_deferred_qs(current)) {
2356		set_tsk_need_resched(current);
2357		set_preempt_need_resched();
2358	}
2359
2360	/* Update RCU state based on any recent quiescent states. */
2361	rcu_check_quiescent_state(rdp);
2362
2363	/* No grace period and unregistered callbacks? */
2364	if (!rcu_gp_in_progress() &&
2365	    rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) {
2366		local_irq_save(flags);
2367		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2368			rcu_accelerate_cbs_unlocked(rnp, rdp);
2369		local_irq_restore(flags);
2370	}
2371
2372	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2373
2374	/* If there are callbacks ready, invoke them. */
2375	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2376	    likely(READ_ONCE(rcu_scheduler_fully_active)))
2377		rcu_do_batch(rdp);
2378
2379	/* Do any needed deferred wakeups of rcuo kthreads. */
2380	do_nocb_deferred_wakeup(rdp);
2381	trace_rcu_utilization(TPS("End RCU core"));
 
 
 
 
2382}
2383
2384static void rcu_core_si(struct softirq_action *h)
2385{
2386	rcu_core();
2387}
2388
2389static void rcu_wake_cond(struct task_struct *t, int status)
2390{
2391	/*
2392	 * If the thread is yielding, only wake it when this
2393	 * is invoked from idle
2394	 */
2395	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2396		wake_up_process(t);
2397}
2398
2399static void invoke_rcu_core_kthread(void)
2400{
2401	struct task_struct *t;
2402	unsigned long flags;
2403
2404	local_irq_save(flags);
2405	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2406	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2407	if (t != NULL && t != current)
2408		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2409	local_irq_restore(flags);
2410}
2411
2412/*
2413 * Wake up this CPU's rcuc kthread to do RCU core processing.
2414 */
2415static void invoke_rcu_core(void)
2416{
2417	if (!cpu_online(smp_processor_id()))
2418		return;
2419	if (use_softirq)
2420		raise_softirq(RCU_SOFTIRQ);
2421	else
2422		invoke_rcu_core_kthread();
2423}
2424
2425static void rcu_cpu_kthread_park(unsigned int cpu)
2426{
2427	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2428}
2429
2430static int rcu_cpu_kthread_should_run(unsigned int cpu)
2431{
2432	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2433}
2434
2435/*
2436 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2437 * the RCU softirq used in configurations of RCU that do not support RCU
2438 * priority boosting.
2439 */
2440static void rcu_cpu_kthread(unsigned int cpu)
2441{
2442	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2443	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2444	int spincnt;
2445
 
2446	for (spincnt = 0; spincnt < 10; spincnt++) {
2447		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
2448		local_bh_disable();
2449		*statusp = RCU_KTHREAD_RUNNING;
2450		local_irq_disable();
2451		work = *workp;
2452		*workp = 0;
2453		local_irq_enable();
2454		if (work)
2455			rcu_core();
2456		local_bh_enable();
2457		if (*workp == 0) {
2458			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2459			*statusp = RCU_KTHREAD_WAITING;
2460			return;
2461		}
2462	}
2463	*statusp = RCU_KTHREAD_YIELDING;
2464	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2465	schedule_timeout_interruptible(2);
2466	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2467	*statusp = RCU_KTHREAD_WAITING;
2468}
2469
2470static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2471	.store			= &rcu_data.rcu_cpu_kthread_task,
2472	.thread_should_run	= rcu_cpu_kthread_should_run,
2473	.thread_fn		= rcu_cpu_kthread,
2474	.thread_comm		= "rcuc/%u",
2475	.setup			= rcu_cpu_kthread_setup,
2476	.park			= rcu_cpu_kthread_park,
2477};
2478
2479/*
2480 * Spawn per-CPU RCU core processing kthreads.
2481 */
2482static int __init rcu_spawn_core_kthreads(void)
2483{
2484	int cpu;
2485
2486	for_each_possible_cpu(cpu)
2487		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2488	if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2489		return 0;
2490	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2491		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2492	return 0;
2493}
2494early_initcall(rcu_spawn_core_kthreads);
2495
2496/*
2497 * Handle any core-RCU processing required by a call_rcu() invocation.
2498 */
2499static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2500			    unsigned long flags)
2501{
2502	/*
2503	 * If called from an extended quiescent state, invoke the RCU
2504	 * core in order to force a re-evaluation of RCU's idleness.
2505	 */
2506	if (!rcu_is_watching())
2507		invoke_rcu_core();
2508
2509	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2510	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2511		return;
2512
2513	/*
2514	 * Force the grace period if too many callbacks or too long waiting.
2515	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2516	 * if some other CPU has recently done so.  Also, don't bother
2517	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2518	 * is the only one waiting for a grace period to complete.
2519	 */
2520	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2521		     rdp->qlen_last_fqs_check + qhimark)) {
2522
2523		/* Are we ignoring a completed grace period? */
2524		note_gp_changes(rdp);
2525
2526		/* Start a new grace period if one not already started. */
2527		if (!rcu_gp_in_progress()) {
2528			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2529		} else {
2530			/* Give the grace period a kick. */
2531			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2532			if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2533			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2534				rcu_force_quiescent_state();
2535			rdp->n_force_qs_snap = rcu_state.n_force_qs;
2536			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2537		}
2538	}
2539}
2540
2541/*
2542 * RCU callback function to leak a callback.
2543 */
2544static void rcu_leak_callback(struct rcu_head *rhp)
2545{
2546}
2547
2548/*
2549 * Helper function for call_rcu() and friends.  The cpu argument will
2550 * normally be -1, indicating "currently running CPU".  It may specify
2551 * a CPU only if that CPU is a no-CBs CPU.  Currently, only rcu_barrier()
2552 * is expected to specify a CPU.
2553 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2554static void
2555__call_rcu(struct rcu_head *head, rcu_callback_t func, bool lazy)
2556{
 
2557	unsigned long flags;
2558	struct rcu_data *rdp;
2559	bool was_alldone;
2560
2561	/* Misaligned rcu_head! */
2562	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2563
2564	if (debug_rcu_head_queue(head)) {
2565		/*
2566		 * Probable double call_rcu(), so leak the callback.
2567		 * Use rcu:rcu_callback trace event to find the previous
2568		 * time callback was passed to __call_rcu().
2569		 */
2570		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2571			  head, head->func);
 
 
2572		WRITE_ONCE(head->func, rcu_leak_callback);
2573		return;
2574	}
2575	head->func = func;
2576	head->next = NULL;
2577	local_irq_save(flags);
 
2578	rdp = this_cpu_ptr(&rcu_data);
2579
2580	/* Add the callback to our list. */
2581	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2582		// This can trigger due to call_rcu() from offline CPU:
2583		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2584		WARN_ON_ONCE(!rcu_is_watching());
2585		// Very early boot, before rcu_init().  Initialize if needed
2586		// and then drop through to queue the callback.
2587		if (rcu_segcblist_empty(&rdp->cblist))
2588			rcu_segcblist_init(&rdp->cblist);
2589	}
 
 
2590	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2591		return; // Enqueued onto ->nocb_bypass, so just leave.
2592	/* If we get here, rcu_nocb_try_bypass() acquired ->nocb_lock. */
2593	rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
2594	if (__is_kfree_rcu_offset((unsigned long)func))
2595		trace_rcu_kfree_callback(rcu_state.name, head,
2596					 (unsigned long)func,
2597					 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2598					 rcu_segcblist_n_cbs(&rdp->cblist));
2599	else
2600		trace_rcu_callback(rcu_state.name, head,
2601				   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2602				   rcu_segcblist_n_cbs(&rdp->cblist));
2603
 
 
2604	/* Go handle any RCU core processing required. */
2605	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2606	    unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) {
2607		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2608	} else {
2609		__call_rcu_core(rdp, head, flags);
2610		local_irq_restore(flags);
2611	}
2612}
2613
2614/**
2615 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2616 * @head: structure to be used for queueing the RCU updates.
2617 * @func: actual callback function to be invoked after the grace period
2618 *
2619 * The callback function will be invoked some time after a full grace
2620 * period elapses, in other words after all pre-existing RCU read-side
2621 * critical sections have completed.  However, the callback function
2622 * might well execute concurrently with RCU read-side critical sections
2623 * that started after call_rcu() was invoked.  RCU read-side critical
2624 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2625 * may be nested.  In addition, regions of code across which interrupts,
2626 * preemption, or softirqs have been disabled also serve as RCU read-side
2627 * critical sections.  This includes hardware interrupt handlers, softirq
2628 * handlers, and NMI handlers.
 
 
2629 *
2630 * Note that all CPUs must agree that the grace period extended beyond
2631 * all pre-existing RCU read-side critical section.  On systems with more
2632 * than one CPU, this means that when "func()" is invoked, each CPU is
2633 * guaranteed to have executed a full memory barrier since the end of its
2634 * last RCU read-side critical section whose beginning preceded the call
2635 * to call_rcu().  It also means that each CPU executing an RCU read-side
2636 * critical section that continues beyond the start of "func()" must have
2637 * executed a memory barrier after the call_rcu() but before the beginning
2638 * of that RCU read-side critical section.  Note that these guarantees
2639 * include CPUs that are offline, idle, or executing in user mode, as
2640 * well as CPUs that are executing in the kernel.
2641 *
2642 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2643 * resulting RCU callback function "func()", then both CPU A and CPU B are
2644 * guaranteed to execute a full memory barrier during the time interval
2645 * between the call to call_rcu() and the invocation of "func()" -- even
2646 * if CPU A and CPU B are the same CPU (but again only if the system has
2647 * more than one CPU).
 
 
 
2648 */
2649void call_rcu(struct rcu_head *head, rcu_callback_t func)
2650{
2651	__call_rcu(head, func, 0);
2652}
2653EXPORT_SYMBOL_GPL(call_rcu);
2654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2655/*
2656 * Queue an RCU callback for lazy invocation after a grace period.
2657 * This will likely be later named something like "call_rcu_lazy()",
2658 * but this change will require some way of tagging the lazy RCU
2659 * callbacks in the list of pending callbacks. Until then, this
2660 * function may only be called from __kfree_rcu().
2661 */
2662void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2663{
2664	__call_rcu(head, func, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2665}
2666EXPORT_SYMBOL_GPL(kfree_call_rcu);
2667
2668/*
2669 * During early boot, any blocking grace-period wait automatically
2670 * implies a grace period.  Later on, this is never the case for PREEMPT.
2671 *
2672 * Howevr, because a context switch is a grace period for !PREEMPT, any
2673 * blocking grace-period wait automatically implies a grace period if
2674 * there is only one CPU online at any point time during execution of
2675 * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
2676 * occasionally incorrectly indicate that there are multiple CPUs online
2677 * when there was in fact only one the whole time, as this just adds some
2678 * overhead: RCU still operates correctly.
2679 */
2680static int rcu_blocking_is_gp(void)
2681{
2682	int ret;
2683
2684	if (IS_ENABLED(CONFIG_PREEMPTION))
2685		return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
2686	might_sleep();  /* Check for RCU read-side critical section. */
2687	preempt_disable();
2688	ret = num_online_cpus() <= 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
2689	preempt_enable();
2690	return ret;
2691}
2692
2693/**
2694 * synchronize_rcu - wait until a grace period has elapsed.
2695 *
2696 * Control will return to the caller some time after a full grace
2697 * period has elapsed, in other words after all currently executing RCU
2698 * read-side critical sections have completed.  Note, however, that
2699 * upon return from synchronize_rcu(), the caller might well be executing
2700 * concurrently with new RCU read-side critical sections that began while
2701 * synchronize_rcu() was waiting.  RCU read-side critical sections are
2702 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
2703 * In addition, regions of code across which interrupts, preemption, or
2704 * softirqs have been disabled also serve as RCU read-side critical
 
 
2705 * sections.  This includes hardware interrupt handlers, softirq handlers,
2706 * and NMI handlers.
2707 *
2708 * Note that this guarantee implies further memory-ordering guarantees.
2709 * On systems with more than one CPU, when synchronize_rcu() returns,
2710 * each CPU is guaranteed to have executed a full memory barrier since
2711 * the end of its last RCU read-side critical section whose beginning
2712 * preceded the call to synchronize_rcu().  In addition, each CPU having
2713 * an RCU read-side critical section that extends beyond the return from
2714 * synchronize_rcu() is guaranteed to have executed a full memory barrier
2715 * after the beginning of synchronize_rcu() and before the beginning of
2716 * that RCU read-side critical section.  Note that these guarantees include
2717 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2718 * that are executing in the kernel.
2719 *
2720 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
2721 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2722 * to have executed a full memory barrier during the execution of
2723 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
2724 * again only if the system has more than one CPU).
 
 
 
2725 */
2726void synchronize_rcu(void)
2727{
2728	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
2729			 lock_is_held(&rcu_lock_map) ||
2730			 lock_is_held(&rcu_sched_lock_map),
2731			 "Illegal synchronize_rcu() in RCU read-side critical section");
2732	if (rcu_blocking_is_gp())
2733		return;
2734	if (rcu_gp_is_expedited())
2735		synchronize_rcu_expedited();
2736	else
2737		wait_rcu_gp(call_rcu);
2738}
2739EXPORT_SYMBOL_GPL(synchronize_rcu);
2740
2741/**
2742 * get_state_synchronize_rcu - Snapshot current RCU state
2743 *
2744 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2745 * to determine whether or not a full grace period has elapsed in the
2746 * meantime.
2747 */
2748unsigned long get_state_synchronize_rcu(void)
2749{
2750	/*
2751	 * Any prior manipulation of RCU-protected data must happen
2752	 * before the load from ->gp_seq.
2753	 */
2754	smp_mb();  /* ^^^ */
2755	return rcu_seq_snap(&rcu_state.gp_seq);
2756}
2757EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2758
2759/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2760 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2761 *
2762 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2763 *
2764 * If a full RCU grace period has elapsed since the earlier call to
2765 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
2766 * synchronize_rcu() to wait for a full grace period.
2767 *
2768 * Yes, this function does not take counter wrap into account.  But
2769 * counter wrap is harmless.  If the counter wraps, we have waited for
2770 * more than 2 billion grace periods (and way more on a 64-bit system!),
2771 * so waiting for one additional grace period should be just fine.
 
 
 
 
 
2772 */
2773void cond_synchronize_rcu(unsigned long oldstate)
2774{
2775	if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
2776		synchronize_rcu();
2777	else
2778		smp_mb(); /* Ensure GP ends before subsequent accesses. */
2779}
2780EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2781
2782/*
2783 * Check to see if there is any immediate RCU-related work to be done by
2784 * the current CPU, returning 1 if so and zero otherwise.  The checks are
2785 * in order of increasing expense: checks that can be carried out against
2786 * CPU-local state are performed first.  However, we must check for CPU
2787 * stalls first, else we might not get a chance.
2788 */
2789static int rcu_pending(void)
2790{
 
2791	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2792	struct rcu_node *rnp = rdp->mynode;
2793
 
 
2794	/* Check for CPU stalls, if enabled. */
2795	check_cpu_stall(rdp);
2796
2797	/* Does this CPU need a deferred NOCB wakeup? */
2798	if (rcu_nocb_need_deferred_wakeup(rdp))
2799		return 1;
2800
2801	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
2802	if (rcu_nohz_full_cpu())
2803		return 0;
2804
2805	/* Is the RCU core waiting for a quiescent state from this CPU? */
2806	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
 
2807		return 1;
2808
2809	/* Does this CPU have callbacks ready to invoke? */
2810	if (rcu_segcblist_ready_cbs(&rdp->cblist))
 
2811		return 1;
2812
2813	/* Has RCU gone idle with this CPU needing another grace period? */
2814	if (!rcu_gp_in_progress() &&
2815	    rcu_segcblist_is_enabled(&rdp->cblist) &&
2816	    (!IS_ENABLED(CONFIG_RCU_NOCB_CPU) ||
2817	     !rcu_segcblist_is_offloaded(&rdp->cblist)) &&
2818	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2819		return 1;
2820
2821	/* Have RCU grace period completed or started?  */
2822	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
2823	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
2824		return 1;
2825
2826	/* nothing to do */
2827	return 0;
2828}
2829
2830/*
2831 * Helper function for rcu_barrier() tracing.  If tracing is disabled,
2832 * the compiler is expected to optimize this away.
2833 */
2834static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
2835{
2836	trace_rcu_barrier(rcu_state.name, s, cpu,
2837			  atomic_read(&rcu_state.barrier_cpu_count), done);
2838}
2839
2840/*
2841 * RCU callback function for rcu_barrier().  If we are last, wake
2842 * up the task executing rcu_barrier().
 
 
 
 
 
 
2843 */
2844static void rcu_barrier_callback(struct rcu_head *rhp)
2845{
 
 
2846	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
2847		rcu_barrier_trace(TPS("LastCB"), -1,
2848				   rcu_state.barrier_sequence);
2849		complete(&rcu_state.barrier_completion);
2850	} else {
2851		rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
2852	}
2853}
2854
2855/*
2856 * Called with preemption disabled, and from cross-cpu IRQ context.
2857 */
2858static void rcu_barrier_func(void *unused)
2859{
2860	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
 
2861
2862	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
2863	rdp->barrier_head.func = rcu_barrier_callback;
2864	debug_rcu_head_queue(&rdp->barrier_head);
2865	rcu_nocb_lock(rdp);
2866	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
2867	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
2868		atomic_inc(&rcu_state.barrier_cpu_count);
2869	} else {
2870		debug_rcu_head_unqueue(&rdp->barrier_head);
2871		rcu_barrier_trace(TPS("IRQNQ"), -1,
2872				   rcu_state.barrier_sequence);
2873	}
2874	rcu_nocb_unlock(rdp);
2875}
2876
2877/**
2878 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
2879 *
2880 * Note that this primitive does not necessarily wait for an RCU grace period
2881 * to complete.  For example, if there are no RCU callbacks queued anywhere
2882 * in the system, then rcu_barrier() is within its rights to return
2883 * immediately, without waiting for anything, much less an RCU grace period.
2884 */
2885void rcu_barrier(void)
2886{
2887	int cpu;
2888	struct rcu_data *rdp;
2889	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
2890
2891	rcu_barrier_trace(TPS("Begin"), -1, s);
2892
2893	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2894	mutex_lock(&rcu_state.barrier_mutex);
2895
2896	/* Did someone else do our work for us? */
2897	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
2898		rcu_barrier_trace(TPS("EarlyExit"), -1,
2899				   rcu_state.barrier_sequence);
2900		smp_mb(); /* caller's subsequent code after above check. */
2901		mutex_unlock(&rcu_state.barrier_mutex);
2902		return;
2903	}
2904
2905	/* Mark the start of the barrier operation. */
2906	rcu_seq_start(&rcu_state.barrier_sequence);
2907	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
2908
2909	/*
2910	 * Initialize the count to one rather than to zero in order to
2911	 * avoid a too-soon return to zero in case of a short grace period
2912	 * (or preemption of this task).  Exclude CPU-hotplug operations
2913	 * to ensure that no offline CPU has callbacks queued.
 
2914	 */
2915	init_completion(&rcu_state.barrier_completion);
2916	atomic_set(&rcu_state.barrier_cpu_count, 1);
2917	get_online_cpus();
2918
2919	/*
2920	 * Force each CPU with callbacks to register a new callback.
2921	 * When that callback is invoked, we will know that all of the
2922	 * corresponding CPU's preceding callbacks have been invoked.
2923	 */
2924	for_each_possible_cpu(cpu) {
2925		rdp = per_cpu_ptr(&rcu_data, cpu);
2926		if (!cpu_online(cpu) &&
2927		    !rcu_segcblist_is_offloaded(&rdp->cblist))
2928			continue;
2929		if (rcu_segcblist_n_cbs(&rdp->cblist)) {
2930			rcu_barrier_trace(TPS("OnlineQ"), cpu,
2931					   rcu_state.barrier_sequence);
2932			smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
 
 
 
 
 
 
 
 
 
 
2933		} else {
2934			rcu_barrier_trace(TPS("OnlineNQ"), cpu,
2935					   rcu_state.barrier_sequence);
2936		}
2937	}
2938	put_online_cpus();
2939
2940	/*
2941	 * Now that we have an rcu_barrier_callback() callback on each
2942	 * CPU, and thus each counted, remove the initial count.
2943	 */
2944	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
2945		complete(&rcu_state.barrier_completion);
2946
2947	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2948	wait_for_completion(&rcu_state.barrier_completion);
2949
2950	/* Mark the end of the barrier operation. */
2951	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
2952	rcu_seq_end(&rcu_state.barrier_sequence);
2953
2954	/* Other rcu_barrier() invocations can now safely proceed. */
2955	mutex_unlock(&rcu_state.barrier_mutex);
2956}
2957EXPORT_SYMBOL_GPL(rcu_barrier);
2958
2959/*
2960 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
2961 * first CPU in a given leaf rcu_node structure coming online.  The caller
2962 * must hold the corresponding leaf rcu_node ->lock with interrrupts
2963 * disabled.
2964 */
2965static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
2966{
2967	long mask;
2968	long oldmask;
2969	struct rcu_node *rnp = rnp_leaf;
2970
2971	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2972	WARN_ON_ONCE(rnp->wait_blkd_tasks);
2973	for (;;) {
2974		mask = rnp->grpmask;
2975		rnp = rnp->parent;
2976		if (rnp == NULL)
2977			return;
2978		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
2979		oldmask = rnp->qsmaskinit;
2980		rnp->qsmaskinit |= mask;
2981		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
2982		if (oldmask)
2983			return;
2984	}
2985}
2986
2987/*
2988 * Do boot-time initialization of a CPU's per-CPU RCU data.
2989 */
2990static void __init
2991rcu_boot_init_percpu_data(int cpu)
2992{
2993	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2994
2995	/* Set up local state, ensuring consistent view of global state. */
2996	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
 
2997	WARN_ON_ONCE(rdp->dynticks_nesting != 1);
2998	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
2999	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3000	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3001	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3002	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3003	rdp->cpu = cpu;
3004	rcu_boot_init_nocb_percpu_data(rdp);
3005}
3006
3007/*
3008 * Invoked early in the CPU-online process, when pretty much all services
3009 * are available.  The incoming CPU is not present.
3010 *
3011 * Initializes a CPU's per-CPU RCU data.  Note that only one online or
3012 * offline event can be happening at a given time.  Note also that we can
3013 * accept some slop in the rsp->gp_seq access due to the fact that this
3014 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
3015 * And any offloaded callbacks are being numbered elsewhere.
3016 */
3017int rcutree_prepare_cpu(unsigned int cpu)
3018{
3019	unsigned long flags;
3020	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3021	struct rcu_node *rnp = rcu_get_root();
3022
3023	/* Set up local state, ensuring consistent view of global state. */
3024	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3025	rdp->qlen_last_fqs_check = 0;
3026	rdp->n_force_qs_snap = rcu_state.n_force_qs;
3027	rdp->blimit = blimit;
3028	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3029	    !rcu_segcblist_is_offloaded(&rdp->cblist))
3030		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3031	rdp->dynticks_nesting = 1;	/* CPU not up, no tearing. */
3032	rcu_dynticks_eqs_online();
3033	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3034
3035	/*
 
 
 
 
 
 
 
3036	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3037	 * propagation up the rcu_node tree will happen at the beginning
3038	 * of the next grace period.
3039	 */
3040	rnp = rdp->mynode;
3041	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3042	rdp->beenonline = true;	 /* We have now been online. */
3043	rdp->gp_seq = rnp->gp_seq;
3044	rdp->gp_seq_needed = rnp->gp_seq;
3045	rdp->cpu_no_qs.b.norm = true;
3046	rdp->core_needs_qs = false;
3047	rdp->rcu_iw_pending = false;
3048	rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
 
3049	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
3050	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3051	rcu_prepare_kthreads(cpu);
3052	rcu_spawn_cpu_nocb_kthread(cpu);
 
3053
3054	return 0;
3055}
3056
3057/*
3058 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3059 */
3060static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3061{
3062	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3063
3064	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3065}
3066
3067/*
3068 * Near the end of the CPU-online process.  Pretty much all services
3069 * enabled, and the CPU is now very much alive.
3070 */
3071int rcutree_online_cpu(unsigned int cpu)
3072{
3073	unsigned long flags;
3074	struct rcu_data *rdp;
3075	struct rcu_node *rnp;
3076
3077	rdp = per_cpu_ptr(&rcu_data, cpu);
3078	rnp = rdp->mynode;
3079	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3080	rnp->ffmask |= rdp->grpmask;
3081	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3082	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3083		return 0; /* Too early in boot for scheduler work. */
3084	sync_sched_exp_online_cleanup(cpu);
3085	rcutree_affinity_setting(cpu, -1);
 
 
 
3086	return 0;
3087}
3088
3089/*
3090 * Near the beginning of the process.  The CPU is still very much alive
3091 * with pretty much all services enabled.
3092 */
3093int rcutree_offline_cpu(unsigned int cpu)
3094{
3095	unsigned long flags;
3096	struct rcu_data *rdp;
3097	struct rcu_node *rnp;
3098
3099	rdp = per_cpu_ptr(&rcu_data, cpu);
3100	rnp = rdp->mynode;
3101	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3102	rnp->ffmask &= ~rdp->grpmask;
3103	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3104
3105	rcutree_affinity_setting(cpu, cpu);
 
 
 
3106	return 0;
3107}
3108
3109static DEFINE_PER_CPU(int, rcu_cpu_started);
3110
3111/*
3112 * Mark the specified CPU as being online so that subsequent grace periods
3113 * (both expedited and normal) will wait on it.  Note that this means that
3114 * incoming CPUs are not allowed to use RCU read-side critical sections
3115 * until this function is called.  Failing to observe this restriction
3116 * will result in lockdep splats.
3117 *
3118 * Note that this function is special in that it is invoked directly
3119 * from the incoming CPU rather than from the cpuhp_step mechanism.
3120 * This is because this function must be invoked at a precise location.
3121 */
3122void rcu_cpu_starting(unsigned int cpu)
3123{
3124	unsigned long flags;
3125	unsigned long mask;
3126	int nbits;
3127	unsigned long oldmask;
3128	struct rcu_data *rdp;
3129	struct rcu_node *rnp;
 
3130
3131	if (per_cpu(rcu_cpu_started, cpu))
 
3132		return;
 
3133
3134	per_cpu(rcu_cpu_started, cpu) = 1;
3135
3136	rdp = per_cpu_ptr(&rcu_data, cpu);
3137	rnp = rdp->mynode;
3138	mask = rdp->grpmask;
 
 
 
3139	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3140	rnp->qsmaskinitnext |= mask;
3141	oldmask = rnp->expmaskinitnext;
3142	rnp->expmaskinitnext |= mask;
3143	oldmask ^= rnp->expmaskinitnext;
3144	nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3145	/* Allow lockless access for expedited grace periods. */
3146	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
 
3147	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
3148	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3149	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3150	if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
 
 
 
3151		/* Report QS -after- changing ->qsmaskinitnext! */
3152		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3153	} else {
3154		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3155	}
 
 
 
3156	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3157}
3158
3159#ifdef CONFIG_HOTPLUG_CPU
3160/*
3161 * The outgoing function has no further need of RCU, so remove it from
3162 * the rcu_node tree's ->qsmaskinitnext bit masks.
3163 *
3164 * Note that this function is special in that it is invoked directly
3165 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3166 * This is because this function must be invoked at a precise location.
3167 */
3168void rcu_report_dead(unsigned int cpu)
3169{
3170	unsigned long flags;
3171	unsigned long mask;
3172	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3173	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3174
 
 
 
3175	/* QS for any half-done expedited grace period. */
3176	preempt_disable();
3177	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
3178	preempt_enable();
3179	rcu_preempt_deferred_qs(current);
3180
3181	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3182	mask = rdp->grpmask;
 
 
 
3183	raw_spin_lock(&rcu_state.ofl_lock);
3184	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3185	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3186	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3187	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3188		/* Report quiescent state -before- changing ->qsmaskinitnext! */
3189		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3190		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3191	}
3192	rnp->qsmaskinitnext &= ~mask;
3193	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3194	raw_spin_unlock(&rcu_state.ofl_lock);
 
 
 
3195
3196	per_cpu(rcu_cpu_started, cpu) = 0;
3197}
3198
 
3199/*
3200 * The outgoing CPU has just passed through the dying-idle state, and we
3201 * are being invoked from the CPU that was IPIed to continue the offline
3202 * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
3203 */
3204void rcutree_migrate_callbacks(int cpu)
3205{
3206	unsigned long flags;
3207	struct rcu_data *my_rdp;
3208	struct rcu_node *my_rnp;
3209	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3210	bool needwake;
3211
3212	if (rcu_segcblist_is_offloaded(&rdp->cblist) ||
3213	    rcu_segcblist_empty(&rdp->cblist))
3214		return;  /* No callbacks to migrate. */
3215
3216	local_irq_save(flags);
3217	my_rdp = this_cpu_ptr(&rcu_data);
3218	my_rnp = my_rdp->mynode;
3219	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
3220	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
3221	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
3222	/* Leverage recent GPs and set GP for new callbacks. */
3223	needwake = rcu_advance_cbs(my_rnp, rdp) ||
3224		   rcu_advance_cbs(my_rnp, my_rdp);
3225	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3226	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
3227	rcu_segcblist_disable(&rdp->cblist);
3228	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3229		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
3230	if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) {
3231		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
3232		__call_rcu_nocb_wake(my_rdp, true, flags);
3233	} else {
3234		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
3235		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
3236	}
3237	if (needwake)
3238		rcu_gp_kthread_wake();
3239	lockdep_assert_irqs_enabled();
3240	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3241		  !rcu_segcblist_empty(&rdp->cblist),
3242		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3243		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3244		  rcu_segcblist_first_cb(&rdp->cblist));
3245}
3246#endif
3247
3248/*
3249 * On non-huge systems, use expedited RCU grace periods to make suspend
3250 * and hibernation run faster.
3251 */
3252static int rcu_pm_notify(struct notifier_block *self,
3253			 unsigned long action, void *hcpu)
3254{
3255	switch (action) {
3256	case PM_HIBERNATION_PREPARE:
3257	case PM_SUSPEND_PREPARE:
3258		rcu_expedite_gp();
3259		break;
3260	case PM_POST_HIBERNATION:
3261	case PM_POST_SUSPEND:
3262		rcu_unexpedite_gp();
3263		break;
3264	default:
3265		break;
3266	}
3267	return NOTIFY_OK;
3268}
3269
3270/*
3271 * Spawn the kthreads that handle RCU's grace periods.
3272 */
3273static int __init rcu_spawn_gp_kthread(void)
3274{
3275	unsigned long flags;
3276	int kthread_prio_in = kthread_prio;
3277	struct rcu_node *rnp;
3278	struct sched_param sp;
3279	struct task_struct *t;
3280
3281	/* Force priority into range. */
3282	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3283	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3284		kthread_prio = 2;
3285	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3286		kthread_prio = 1;
3287	else if (kthread_prio < 0)
3288		kthread_prio = 0;
3289	else if (kthread_prio > 99)
3290		kthread_prio = 99;
3291
3292	if (kthread_prio != kthread_prio_in)
3293		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3294			 kthread_prio, kthread_prio_in);
3295
3296	rcu_scheduler_fully_active = 1;
3297	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
3298	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
3299		return 0;
3300	if (kthread_prio) {
3301		sp.sched_priority = kthread_prio;
3302		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3303	}
3304	rnp = rcu_get_root();
3305	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3306	rcu_state.gp_kthread = t;
 
 
 
3307	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3308	wake_up_process(t);
3309	rcu_spawn_nocb_kthreads();
3310	rcu_spawn_boost_kthreads();
 
3311	return 0;
3312}
3313early_initcall(rcu_spawn_gp_kthread);
3314
3315/*
3316 * This function is invoked towards the end of the scheduler's
3317 * initialization process.  Before this is called, the idle task might
3318 * contain synchronous grace-period primitives (during which time, this idle
3319 * task is booting the system, and such primitives are no-ops).  After this
3320 * function is called, any synchronous grace-period primitives are run as
3321 * expedited, with the requesting task driving the grace period forward.
3322 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3323 * runtime RCU functionality.
3324 */
3325void rcu_scheduler_starting(void)
3326{
3327	WARN_ON(num_online_cpus() != 1);
3328	WARN_ON(nr_context_switches() > 0);
3329	rcu_test_sync_prims();
3330	rcu_scheduler_active = RCU_SCHEDULER_INIT;
3331	rcu_test_sync_prims();
3332}
3333
3334/*
3335 * Helper function for rcu_init() that initializes the rcu_state structure.
3336 */
3337static void __init rcu_init_one(void)
3338{
3339	static const char * const buf[] = RCU_NODE_NAME_INIT;
3340	static const char * const fqs[] = RCU_FQS_NAME_INIT;
3341	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3342	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3343
3344	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
3345	int cpustride = 1;
3346	int i;
3347	int j;
3348	struct rcu_node *rnp;
3349
3350	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
3351
3352	/* Silence gcc 4.8 false positive about array index out of range. */
3353	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3354		panic("rcu_init_one: rcu_num_lvls out of range");
3355
3356	/* Initialize the level-tracking arrays. */
3357
3358	for (i = 1; i < rcu_num_lvls; i++)
3359		rcu_state.level[i] =
3360			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
3361	rcu_init_levelspread(levelspread, num_rcu_lvl);
3362
3363	/* Initialize the elements themselves, starting from the leaves. */
3364
3365	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3366		cpustride *= levelspread[i];
3367		rnp = rcu_state.level[i];
3368		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
3369			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3370			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
3371						   &rcu_node_class[i], buf[i]);
3372			raw_spin_lock_init(&rnp->fqslock);
3373			lockdep_set_class_and_name(&rnp->fqslock,
3374						   &rcu_fqs_class[i], fqs[i]);
3375			rnp->gp_seq = rcu_state.gp_seq;
3376			rnp->gp_seq_needed = rcu_state.gp_seq;
3377			rnp->completedqs = rcu_state.gp_seq;
3378			rnp->qsmask = 0;
3379			rnp->qsmaskinit = 0;
3380			rnp->grplo = j * cpustride;
3381			rnp->grphi = (j + 1) * cpustride - 1;
3382			if (rnp->grphi >= nr_cpu_ids)
3383				rnp->grphi = nr_cpu_ids - 1;
3384			if (i == 0) {
3385				rnp->grpnum = 0;
3386				rnp->grpmask = 0;
3387				rnp->parent = NULL;
3388			} else {
3389				rnp->grpnum = j % levelspread[i - 1];
3390				rnp->grpmask = BIT(rnp->grpnum);
3391				rnp->parent = rcu_state.level[i - 1] +
3392					      j / levelspread[i - 1];
3393			}
3394			rnp->level = i;
3395			INIT_LIST_HEAD(&rnp->blkd_tasks);
3396			rcu_init_one_nocb(rnp);
3397			init_waitqueue_head(&rnp->exp_wq[0]);
3398			init_waitqueue_head(&rnp->exp_wq[1]);
3399			init_waitqueue_head(&rnp->exp_wq[2]);
3400			init_waitqueue_head(&rnp->exp_wq[3]);
3401			spin_lock_init(&rnp->exp_lock);
3402		}
3403	}
3404
3405	init_swait_queue_head(&rcu_state.gp_wq);
3406	init_swait_queue_head(&rcu_state.expedited_wq);
3407	rnp = rcu_first_leaf_node();
3408	for_each_possible_cpu(i) {
3409		while (i > rnp->grphi)
3410			rnp++;
3411		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
3412		rcu_boot_init_percpu_data(i);
3413	}
3414}
3415
3416/*
3417 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3418 * replace the definitions in tree.h because those are needed to size
3419 * the ->node array in the rcu_state structure.
3420 */
3421static void __init rcu_init_geometry(void)
3422{
3423	ulong d;
3424	int i;
 
3425	int rcu_capacity[RCU_NUM_LVLS];
 
 
 
 
 
 
 
 
 
 
 
 
 
3426
3427	/*
3428	 * Initialize any unspecified boot parameters.
3429	 * The default values of jiffies_till_first_fqs and
3430	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3431	 * value, which is a function of HZ, then adding one for each
3432	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3433	 */
3434	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3435	if (jiffies_till_first_fqs == ULONG_MAX)
3436		jiffies_till_first_fqs = d;
3437	if (jiffies_till_next_fqs == ULONG_MAX)
3438		jiffies_till_next_fqs = d;
3439	adjust_jiffies_till_sched_qs();
3440
3441	/* If the compile-time values are accurate, just leave. */
3442	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
3443	    nr_cpu_ids == NR_CPUS)
3444		return;
3445	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
3446		rcu_fanout_leaf, nr_cpu_ids);
3447
3448	/*
3449	 * The boot-time rcu_fanout_leaf parameter must be at least two
3450	 * and cannot exceed the number of bits in the rcu_node masks.
3451	 * Complain and fall back to the compile-time values if this
3452	 * limit is exceeded.
3453	 */
3454	if (rcu_fanout_leaf < 2 ||
3455	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
3456		rcu_fanout_leaf = RCU_FANOUT_LEAF;
3457		WARN_ON(1);
3458		return;
3459	}
3460
3461	/*
3462	 * Compute number of nodes that can be handled an rcu_node tree
3463	 * with the given number of levels.
3464	 */
3465	rcu_capacity[0] = rcu_fanout_leaf;
3466	for (i = 1; i < RCU_NUM_LVLS; i++)
3467		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
3468
3469	/*
3470	 * The tree must be able to accommodate the configured number of CPUs.
3471	 * If this limit is exceeded, fall back to the compile-time values.
3472	 */
3473	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
3474		rcu_fanout_leaf = RCU_FANOUT_LEAF;
3475		WARN_ON(1);
3476		return;
3477	}
3478
3479	/* Calculate the number of levels in the tree. */
3480	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
3481	}
3482	rcu_num_lvls = i + 1;
3483
3484	/* Calculate the number of rcu_nodes at each level of the tree. */
3485	for (i = 0; i < rcu_num_lvls; i++) {
3486		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
3487		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
3488	}
3489
3490	/* Calculate the total number of rcu_node structures. */
3491	rcu_num_nodes = 0;
3492	for (i = 0; i < rcu_num_lvls; i++)
3493		rcu_num_nodes += num_rcu_lvl[i];
3494}
3495
3496/*
3497 * Dump out the structure of the rcu_node combining tree associated
3498 * with the rcu_state structure.
3499 */
3500static void __init rcu_dump_rcu_node_tree(void)
3501{
3502	int level = 0;
3503	struct rcu_node *rnp;
3504
3505	pr_info("rcu_node tree layout dump\n");
3506	pr_info(" ");
3507	rcu_for_each_node_breadth_first(rnp) {
3508		if (rnp->level != level) {
3509			pr_cont("\n");
3510			pr_info(" ");
3511			level = rnp->level;
3512		}
3513		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
3514	}
3515	pr_cont("\n");
3516}
3517
3518struct workqueue_struct *rcu_gp_wq;
3519struct workqueue_struct *rcu_par_gp_wq;
3520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3521void __init rcu_init(void)
3522{
3523	int cpu;
3524
3525	rcu_early_boot_tests();
3526
 
3527	rcu_bootup_announce();
3528	rcu_init_geometry();
3529	rcu_init_one();
3530	if (dump_tree)
3531		rcu_dump_rcu_node_tree();
3532	if (use_softirq)
3533		open_softirq(RCU_SOFTIRQ, rcu_core_si);
3534
3535	/*
3536	 * We don't need protection against CPU-hotplug here because
3537	 * this is called early in boot, before either interrupts
3538	 * or the scheduler are operational.
3539	 */
3540	pm_notifier(rcu_pm_notify, 0);
3541	for_each_online_cpu(cpu) {
3542		rcutree_prepare_cpu(cpu);
3543		rcu_cpu_starting(cpu);
3544		rcutree_online_cpu(cpu);
3545	}
3546
3547	/* Create workqueue for expedited GPs and for Tree SRCU. */
3548	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
3549	WARN_ON(!rcu_gp_wq);
3550	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
3551	WARN_ON(!rcu_par_gp_wq);
3552	srcu_init();
 
 
 
 
 
 
3553}
3554
3555#include "tree_stall.h"
3556#include "tree_exp.h"
3557#include "tree_plugin.h"
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
   4 *
   5 * Copyright IBM Corporation, 2008
   6 *
   7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
   8 *	    Manfred Spraul <manfred@colorfullife.com>
   9 *	    Paul E. McKenney <paulmck@linux.ibm.com>
  10 *
  11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
  12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  13 *
  14 * For detailed explanation of Read-Copy Update mechanism see -
  15 *	Documentation/RCU
  16 */
  17
  18#define pr_fmt(fmt) "rcu: " fmt
  19
  20#include <linux/types.h>
  21#include <linux/kernel.h>
  22#include <linux/init.h>
  23#include <linux/spinlock.h>
  24#include <linux/smp.h>
  25#include <linux/rcupdate_wait.h>
  26#include <linux/interrupt.h>
  27#include <linux/sched.h>
  28#include <linux/sched/debug.h>
  29#include <linux/nmi.h>
  30#include <linux/atomic.h>
  31#include <linux/bitops.h>
  32#include <linux/export.h>
  33#include <linux/completion.h>
  34#include <linux/moduleparam.h>
  35#include <linux/panic.h>
  36#include <linux/panic_notifier.h>
  37#include <linux/percpu.h>
  38#include <linux/notifier.h>
  39#include <linux/cpu.h>
  40#include <linux/mutex.h>
  41#include <linux/time.h>
  42#include <linux/kernel_stat.h>
  43#include <linux/wait.h>
  44#include <linux/kthread.h>
  45#include <uapi/linux/sched/types.h>
  46#include <linux/prefetch.h>
  47#include <linux/delay.h>
 
  48#include <linux/random.h>
  49#include <linux/trace_events.h>
  50#include <linux/suspend.h>
  51#include <linux/ftrace.h>
  52#include <linux/tick.h>
  53#include <linux/sysrq.h>
  54#include <linux/kprobes.h>
  55#include <linux/gfp.h>
  56#include <linux/oom.h>
  57#include <linux/smpboot.h>
  58#include <linux/jiffies.h>
  59#include <linux/slab.h>
  60#include <linux/sched/isolation.h>
  61#include <linux/sched/clock.h>
  62#include <linux/vmalloc.h>
  63#include <linux/mm.h>
  64#include <linux/kasan.h>
  65#include "../time/tick-internal.h"
  66
  67#include "tree.h"
  68#include "rcu.h"
  69
  70#ifdef MODULE_PARAM_PREFIX
  71#undef MODULE_PARAM_PREFIX
  72#endif
  73#define MODULE_PARAM_PREFIX "rcutree."
  74
  75/* Data structures. */
  76
  77/*
  78 * Steal a bit from the bottom of ->dynticks for idle entry/exit
  79 * control.  Initially this is for TLB flushing.
  80 */
  81#define RCU_DYNTICK_CTRL_MASK 0x1
  82#define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
 
 
 
  83
  84static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
  85	.dynticks_nesting = 1,
  86	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
  87	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
  88#ifdef CONFIG_RCU_NOCB_CPU
  89	.cblist.flags = SEGCBLIST_SOFTIRQ_ONLY,
  90#endif
  91};
  92static struct rcu_state rcu_state = {
  93	.level = { &rcu_state.node[0] },
  94	.gp_state = RCU_GP_IDLE,
  95	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
  96	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
  97	.name = RCU_NAME,
  98	.abbr = RCU_ABBR,
  99	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
 100	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
 101	.ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
 102};
 103
 104/* Dump rcu_node combining tree at boot to verify correct setup. */
 105static bool dump_tree;
 106module_param(dump_tree, bool, 0444);
 107/* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
 108static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
 109#ifndef CONFIG_PREEMPT_RT
 110module_param(use_softirq, bool, 0444);
 111#endif
 112/* Control rcu_node-tree auto-balancing at boot time. */
 113static bool rcu_fanout_exact;
 114module_param(rcu_fanout_exact, bool, 0444);
 115/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 116static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 117module_param(rcu_fanout_leaf, int, 0444);
 118int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 119/* Number of rcu_nodes at specified level. */
 120int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 121int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 122
 123/*
 124 * The rcu_scheduler_active variable is initialized to the value
 125 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 126 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 127 * RCU can assume that there is but one task, allowing RCU to (for example)
 128 * optimize synchronize_rcu() to a simple barrier().  When this variable
 129 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 130 * to detect real grace periods.  This variable is also used to suppress
 131 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 132 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 133 * is fully initialized, including all of its kthreads having been spawned.
 134 */
 135int rcu_scheduler_active __read_mostly;
 136EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 137
 138/*
 139 * The rcu_scheduler_fully_active variable transitions from zero to one
 140 * during the early_initcall() processing, which is after the scheduler
 141 * is capable of creating new tasks.  So RCU processing (for example,
 142 * creating tasks for RCU priority boosting) must be delayed until after
 143 * rcu_scheduler_fully_active transitions from zero to one.  We also
 144 * currently delay invocation of any RCU callbacks until after this point.
 145 *
 146 * It might later prove better for people registering RCU callbacks during
 147 * early boot to take responsibility for these callbacks, but one step at
 148 * a time.
 149 */
 150static int rcu_scheduler_fully_active __read_mostly;
 151
 152static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
 153			      unsigned long gps, unsigned long flags);
 154static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 155static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 156static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 157static void invoke_rcu_core(void);
 158static void rcu_report_exp_rdp(struct rcu_data *rdp);
 159static void sync_sched_exp_online_cleanup(int cpu);
 160static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
 161static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
 162
 163/* rcuc/rcub kthread realtime priority */
 164static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 165module_param(kthread_prio, int, 0444);
 166
 167/* Delay in jiffies for grace-period initialization delays, debug only. */
 168
 169static int gp_preinit_delay;
 170module_param(gp_preinit_delay, int, 0444);
 171static int gp_init_delay;
 172module_param(gp_init_delay, int, 0444);
 173static int gp_cleanup_delay;
 174module_param(gp_cleanup_delay, int, 0444);
 175
 176// Add delay to rcu_read_unlock() for strict grace periods.
 177static int rcu_unlock_delay;
 178#ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
 179module_param(rcu_unlock_delay, int, 0444);
 180#endif
 181
 182/*
 183 * This rcu parameter is runtime-read-only. It reflects
 184 * a minimum allowed number of objects which can be cached
 185 * per-CPU. Object size is equal to one page. This value
 186 * can be changed at boot time.
 187 */
 188static int rcu_min_cached_objs = 5;
 189module_param(rcu_min_cached_objs, int, 0444);
 190
 191// A page shrinker can ask for pages to be freed to make them
 192// available for other parts of the system. This usually happens
 193// under low memory conditions, and in that case we should also
 194// defer page-cache filling for a short time period.
 195//
 196// The default value is 5 seconds, which is long enough to reduce
 197// interference with the shrinker while it asks other systems to
 198// drain their caches.
 199static int rcu_delay_page_cache_fill_msec = 5000;
 200module_param(rcu_delay_page_cache_fill_msec, int, 0444);
 201
 202/* Retrieve RCU kthreads priority for rcutorture */
 203int rcu_get_gp_kthreads_prio(void)
 204{
 205	return kthread_prio;
 206}
 207EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
 208
 209/*
 210 * Number of grace periods between delays, normalized by the duration of
 211 * the delay.  The longer the delay, the more the grace periods between
 212 * each delay.  The reason for this normalization is that it means that,
 213 * for non-zero delays, the overall slowdown of grace periods is constant
 214 * regardless of the duration of the delay.  This arrangement balances
 215 * the need for long delays to increase some race probabilities with the
 216 * need for fast grace periods to increase other race probabilities.
 217 */
 218#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */
 219
 220/*
 221 * Compute the mask of online CPUs for the specified rcu_node structure.
 222 * This will not be stable unless the rcu_node structure's ->lock is
 223 * held, but the bit corresponding to the current CPU will be stable
 224 * in most contexts.
 225 */
 226static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
 227{
 228	return READ_ONCE(rnp->qsmaskinitnext);
 229}
 230
 231/*
 232 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 233 * permit this function to be invoked without holding the root rcu_node
 234 * structure's ->lock, but of course results can be subject to change.
 235 */
 236static int rcu_gp_in_progress(void)
 237{
 238	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
 239}
 240
 241/*
 242 * Return the number of callbacks queued on the specified CPU.
 243 * Handles both the nocbs and normal cases.
 244 */
 245static long rcu_get_n_cbs_cpu(int cpu)
 246{
 247	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 248
 249	if (rcu_segcblist_is_enabled(&rdp->cblist))
 250		return rcu_segcblist_n_cbs(&rdp->cblist);
 251	return 0;
 252}
 253
 254void rcu_softirq_qs(void)
 255{
 256	rcu_qs();
 257	rcu_preempt_deferred_qs(current);
 258	rcu_tasks_qs(current, false);
 259}
 260
 261/*
 262 * Record entry into an extended quiescent state.  This is only to be
 263 * called when not already in an extended quiescent state, that is,
 264 * RCU is watching prior to the call to this function and is no longer
 265 * watching upon return.
 266 */
 267static noinstr void rcu_dynticks_eqs_enter(void)
 268{
 269	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 270	int seq;
 271
 272	/*
 273	 * CPUs seeing atomic_add_return() must see prior RCU read-side
 274	 * critical sections, and we also must force ordering with the
 275	 * next idle sojourn.
 276	 */
 277	rcu_dynticks_task_trace_enter();  // Before ->dynticks update!
 278	seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
 279	// RCU is no longer watching.  Better be in extended quiescent state!
 280	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 281		     (seq & RCU_DYNTICK_CTRL_CTR));
 282	/* Better not have special action (TLB flush) pending! */
 283	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 284		     (seq & RCU_DYNTICK_CTRL_MASK));
 285}
 286
 287/*
 288 * Record exit from an extended quiescent state.  This is only to be
 289 * called from an extended quiescent state, that is, RCU is not watching
 290 * prior to the call to this function and is watching upon return.
 291 */
 292static noinstr void rcu_dynticks_eqs_exit(void)
 293{
 294	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 295	int seq;
 296
 297	/*
 298	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
 299	 * and we also must force ordering with the next RCU read-side
 300	 * critical section.
 301	 */
 302	seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
 303	// RCU is now watching.  Better not be in an extended quiescent state!
 304	rcu_dynticks_task_trace_exit();  // After ->dynticks update!
 305	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 306		     !(seq & RCU_DYNTICK_CTRL_CTR));
 307	if (seq & RCU_DYNTICK_CTRL_MASK) {
 308		arch_atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
 309		smp_mb__after_atomic(); /* _exit after clearing mask. */
 
 
 310	}
 311}
 312
 313/*
 314 * Reset the current CPU's ->dynticks counter to indicate that the
 315 * newly onlined CPU is no longer in an extended quiescent state.
 316 * This will either leave the counter unchanged, or increment it
 317 * to the next non-quiescent value.
 318 *
 319 * The non-atomic test/increment sequence works because the upper bits
 320 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 321 * or when the corresponding CPU is offline.
 322 */
 323static void rcu_dynticks_eqs_online(void)
 324{
 325	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 326
 327	if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
 328		return;
 329	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
 330}
 331
 332/*
 333 * Is the current CPU in an extended quiescent state?
 334 *
 335 * No ordering, as we are sampling CPU-local information.
 336 */
 337static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void)
 338{
 339	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 340
 341	return !(arch_atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
 342}
 343
 344/*
 345 * Snapshot the ->dynticks counter with full ordering so as to allow
 346 * stable comparison of this counter with past and future snapshots.
 347 */
 348static int rcu_dynticks_snap(struct rcu_data *rdp)
 349{
 350	int snap = atomic_add_return(0, &rdp->dynticks);
 351
 352	return snap & ~RCU_DYNTICK_CTRL_MASK;
 353}
 354
 355/*
 356 * Return true if the snapshot returned from rcu_dynticks_snap()
 357 * indicates that RCU is in an extended quiescent state.
 358 */
 359static bool rcu_dynticks_in_eqs(int snap)
 360{
 361	return !(snap & RCU_DYNTICK_CTRL_CTR);
 362}
 363
 364/* Return true if the specified CPU is currently idle from an RCU viewpoint.  */
 365bool rcu_is_idle_cpu(int cpu)
 366{
 367	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 368
 369	return rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp));
 370}
 371
 372/*
 373 * Return true if the CPU corresponding to the specified rcu_data
 374 * structure has spent some time in an extended quiescent state since
 375 * rcu_dynticks_snap() returned the specified snapshot.
 376 */
 377static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
 378{
 379	return snap != rcu_dynticks_snap(rdp);
 380}
 381
 382/*
 383 * Return true if the referenced integer is zero while the specified
 384 * CPU remains within a single extended quiescent state.
 385 */
 386bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
 387{
 388	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 389	int snap;
 390
 391	// If not quiescent, force back to earlier extended quiescent state.
 392	snap = atomic_read(&rdp->dynticks) & ~(RCU_DYNTICK_CTRL_MASK |
 393					       RCU_DYNTICK_CTRL_CTR);
 394
 395	smp_rmb(); // Order ->dynticks and *vp reads.
 396	if (READ_ONCE(*vp))
 397		return false;  // Non-zero, so report failure;
 398	smp_rmb(); // Order *vp read and ->dynticks re-read.
 399
 400	// If still in the same extended quiescent state, we are good!
 401	return snap == (atomic_read(&rdp->dynticks) & ~RCU_DYNTICK_CTRL_MASK);
 402}
 403
 404/*
 405 * Set the special (bottom) bit of the specified CPU so that it
 406 * will take special action (such as flushing its TLB) on the
 407 * next exit from an extended quiescent state.  Returns true if
 408 * the bit was successfully set, or false if the CPU was not in
 409 * an extended quiescent state.
 410 */
 411bool rcu_eqs_special_set(int cpu)
 412{
 413	int old;
 414	int new;
 415	int new_old;
 416	struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
 417
 418	new_old = atomic_read(&rdp->dynticks);
 419	do {
 420		old = new_old;
 421		if (old & RCU_DYNTICK_CTRL_CTR)
 422			return false;
 423		new = old | RCU_DYNTICK_CTRL_MASK;
 424		new_old = atomic_cmpxchg(&rdp->dynticks, old, new);
 425	} while (new_old != old);
 426	return true;
 427}
 428
 429/*
 430 * Let the RCU core know that this CPU has gone through the scheduler,
 431 * which is a quiescent state.  This is called when the need for a
 432 * quiescent state is urgent, so we burn an atomic operation and full
 433 * memory barriers to let the RCU core know about it, regardless of what
 434 * this CPU might (or might not) do in the near future.
 435 *
 436 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 437 *
 438 * The caller must have disabled interrupts and must not be idle.
 439 */
 440notrace void rcu_momentary_dyntick_idle(void)
 441{
 442	int special;
 443
 444	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
 445	special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
 446				    &this_cpu_ptr(&rcu_data)->dynticks);
 447	/* It is illegal to call this from idle state. */
 448	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
 449	rcu_preempt_deferred_qs(current);
 450}
 451EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
 452
 453/**
 454 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
 455 *
 456 * If the current CPU is idle and running at a first-level (not nested)
 457 * interrupt, or directly, from idle, return true.
 458 *
 459 * The caller must have at least disabled IRQs.
 460 */
 461static int rcu_is_cpu_rrupt_from_idle(void)
 462{
 463	long nesting;
 464
 465	/*
 466	 * Usually called from the tick; but also used from smp_function_call()
 467	 * for expedited grace periods. This latter can result in running from
 468	 * the idle task, instead of an actual IPI.
 469	 */
 470	lockdep_assert_irqs_disabled();
 471
 472	/* Check for counter underflows */
 473	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
 474			 "RCU dynticks_nesting counter underflow!");
 475	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
 476			 "RCU dynticks_nmi_nesting counter underflow/zero!");
 477
 478	/* Are we at first interrupt nesting level? */
 479	nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting);
 480	if (nesting > 1)
 481		return false;
 482
 483	/*
 484	 * If we're not in an interrupt, we must be in the idle task!
 485	 */
 486	WARN_ON_ONCE(!nesting && !is_idle_task(current));
 487
 488	/* Does CPU appear to be idle from an RCU standpoint? */
 489	return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
 490}
 491
 492#define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
 493				// Maximum callbacks per rcu_do_batch ...
 494#define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
 495static long blimit = DEFAULT_RCU_BLIMIT;
 496#define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
 497static long qhimark = DEFAULT_RCU_QHIMARK;
 498#define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
 499static long qlowmark = DEFAULT_RCU_QLOMARK;
 500#define DEFAULT_RCU_QOVLD_MULT 2
 501#define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
 502static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
 503static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
 504
 505module_param(blimit, long, 0444);
 506module_param(qhimark, long, 0444);
 507module_param(qlowmark, long, 0444);
 508module_param(qovld, long, 0444);
 509
 510static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
 511static ulong jiffies_till_next_fqs = ULONG_MAX;
 512static bool rcu_kick_kthreads;
 513static int rcu_divisor = 7;
 514module_param(rcu_divisor, int, 0644);
 515
 516/* Force an exit from rcu_do_batch() after 3 milliseconds. */
 517static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
 518module_param(rcu_resched_ns, long, 0644);
 519
 520/*
 521 * How long the grace period must be before we start recruiting
 522 * quiescent-state help from rcu_note_context_switch().
 523 */
 524static ulong jiffies_till_sched_qs = ULONG_MAX;
 525module_param(jiffies_till_sched_qs, ulong, 0444);
 526static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
 527module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
 528
 529/*
 530 * Make sure that we give the grace-period kthread time to detect any
 531 * idle CPUs before taking active measures to force quiescent states.
 532 * However, don't go below 100 milliseconds, adjusted upwards for really
 533 * large systems.
 534 */
 535static void adjust_jiffies_till_sched_qs(void)
 536{
 537	unsigned long j;
 538
 539	/* If jiffies_till_sched_qs was specified, respect the request. */
 540	if (jiffies_till_sched_qs != ULONG_MAX) {
 541		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
 542		return;
 543	}
 544	/* Otherwise, set to third fqs scan, but bound below on large system. */
 545	j = READ_ONCE(jiffies_till_first_fqs) +
 546		      2 * READ_ONCE(jiffies_till_next_fqs);
 547	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
 548		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
 549	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
 550	WRITE_ONCE(jiffies_to_sched_qs, j);
 551}
 552
 553static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
 554{
 555	ulong j;
 556	int ret = kstrtoul(val, 0, &j);
 557
 558	if (!ret) {
 559		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
 560		adjust_jiffies_till_sched_qs();
 561	}
 562	return ret;
 563}
 564
 565static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
 566{
 567	ulong j;
 568	int ret = kstrtoul(val, 0, &j);
 569
 570	if (!ret) {
 571		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
 572		adjust_jiffies_till_sched_qs();
 573	}
 574	return ret;
 575}
 576
 577static const struct kernel_param_ops first_fqs_jiffies_ops = {
 578	.set = param_set_first_fqs_jiffies,
 579	.get = param_get_ulong,
 580};
 581
 582static const struct kernel_param_ops next_fqs_jiffies_ops = {
 583	.set = param_set_next_fqs_jiffies,
 584	.get = param_get_ulong,
 585};
 586
 587module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
 588module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
 589module_param(rcu_kick_kthreads, bool, 0644);
 590
 591static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
 592static int rcu_pending(int user);
 593
 594/*
 595 * Return the number of RCU GPs completed thus far for debug & stats.
 596 */
 597unsigned long rcu_get_gp_seq(void)
 598{
 599	return READ_ONCE(rcu_state.gp_seq);
 600}
 601EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
 602
 603/*
 604 * Return the number of RCU expedited batches completed thus far for
 605 * debug & stats.  Odd numbers mean that a batch is in progress, even
 606 * numbers mean idle.  The value returned will thus be roughly double
 607 * the cumulative batches since boot.
 608 */
 609unsigned long rcu_exp_batches_completed(void)
 610{
 611	return rcu_state.expedited_sequence;
 612}
 613EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 614
 615/*
 616 * Return the root node of the rcu_state structure.
 617 */
 618static struct rcu_node *rcu_get_root(void)
 619{
 620	return &rcu_state.node[0];
 621}
 622
 623/*
 
 
 
 
 
 
 
 
 
 
 624 * Send along grace-period-related data for rcutorture diagnostics.
 625 */
 626void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 627			    unsigned long *gp_seq)
 628{
 629	switch (test_type) {
 630	case RCU_FLAVOR:
 631		*flags = READ_ONCE(rcu_state.gp_flags);
 632		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
 633		break;
 634	default:
 635		break;
 636	}
 637}
 638EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 639
 640/*
 641 * Enter an RCU extended quiescent state, which can be either the
 642 * idle loop or adaptive-tickless usermode execution.
 643 *
 644 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
 645 * the possibility of usermode upcalls having messed up our count
 646 * of interrupt nesting level during the prior busy period.
 647 */
 648static noinstr void rcu_eqs_enter(bool user)
 649{
 650	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 651
 652	WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
 653	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
 654	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 655		     rdp->dynticks_nesting == 0);
 656	if (rdp->dynticks_nesting != 1) {
 657		// RCU will still be watching, so just do accounting and leave.
 658		rdp->dynticks_nesting--;
 659		return;
 660	}
 661
 662	lockdep_assert_irqs_disabled();
 663	instrumentation_begin();
 664	trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
 665	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
 
 
 666	rcu_prepare_for_idle();
 667	rcu_preempt_deferred_qs(current);
 668
 669	// instrumentation for the noinstr rcu_dynticks_eqs_enter()
 670	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
 671
 672	instrumentation_end();
 673	WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
 674	// RCU is watching here ...
 675	rcu_dynticks_eqs_enter();
 676	// ... but is no longer watching here.
 677	rcu_dynticks_task_enter();
 678}
 679
 680/**
 681 * rcu_idle_enter - inform RCU that current CPU is entering idle
 682 *
 683 * Enter idle mode, in other words, -leave- the mode in which RCU
 684 * read-side critical sections can occur.  (Though RCU read-side
 685 * critical sections can occur in irq handlers in idle, a possibility
 686 * handled by irq_enter() and irq_exit().)
 687 *
 688 * If you add or remove a call to rcu_idle_enter(), be sure to test with
 689 * CONFIG_RCU_EQS_DEBUG=y.
 690 */
 691void rcu_idle_enter(void)
 692{
 693	lockdep_assert_irqs_disabled();
 694	rcu_eqs_enter(false);
 695}
 696EXPORT_SYMBOL_GPL(rcu_idle_enter);
 697
 698#ifdef CONFIG_NO_HZ_FULL
 699
 700#if !defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)
 701/*
 702 * An empty function that will trigger a reschedule on
 703 * IRQ tail once IRQs get re-enabled on userspace/guest resume.
 704 */
 705static void late_wakeup_func(struct irq_work *work)
 706{
 707}
 708
 709static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
 710	IRQ_WORK_INIT(late_wakeup_func);
 711
 712/*
 713 * If either:
 714 *
 715 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
 716 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
 717 *
 718 * In these cases the late RCU wake ups aren't supported in the resched loops and our
 719 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
 720 * get re-enabled again.
 721 */
 722noinstr static void rcu_irq_work_resched(void)
 723{
 724	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 725
 726	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
 727		return;
 728
 729	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
 730		return;
 731
 732	instrumentation_begin();
 733	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
 734		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
 735	}
 736	instrumentation_end();
 737}
 738
 739#else
 740static inline void rcu_irq_work_resched(void) { }
 741#endif
 742
 743/**
 744 * rcu_user_enter - inform RCU that we are resuming userspace.
 745 *
 746 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 747 * is permitted between this call and rcu_user_exit(). This way the
 748 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 749 * when the CPU runs in userspace.
 750 *
 751 * If you add or remove a call to rcu_user_enter(), be sure to test with
 752 * CONFIG_RCU_EQS_DEBUG=y.
 753 */
 754noinstr void rcu_user_enter(void)
 755{
 756	lockdep_assert_irqs_disabled();
 757
 758	/*
 759	 * Other than generic entry implementation, we may be past the last
 760	 * rescheduling opportunity in the entry code. Trigger a self IPI
 761	 * that will fire and reschedule once we resume in user/guest mode.
 762	 */
 763	rcu_irq_work_resched();
 764	rcu_eqs_enter(true);
 765}
 766
 767#endif /* CONFIG_NO_HZ_FULL */
 768
 769/**
 770 * rcu_nmi_exit - inform RCU of exit from NMI context
 771 *
 772 * If we are returning from the outermost NMI handler that interrupted an
 773 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
 774 * to let the RCU grace-period handling know that the CPU is back to
 775 * being RCU-idle.
 776 *
 777 * If you add or remove a call to rcu_nmi_exit(), be sure to test
 778 * with CONFIG_RCU_EQS_DEBUG=y.
 779 */
 780noinstr void rcu_nmi_exit(void)
 781{
 782	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 783
 784	instrumentation_begin();
 785	/*
 786	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
 787	 * (We are exiting an NMI handler, so RCU better be paying attention
 788	 * to us!)
 789	 */
 790	WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
 791	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
 792
 793	/*
 794	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
 795	 * leave it in non-RCU-idle state.
 796	 */
 797	if (rdp->dynticks_nmi_nesting != 1) {
 798		trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
 799				  atomic_read(&rdp->dynticks));
 800		WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
 801			   rdp->dynticks_nmi_nesting - 2);
 802		instrumentation_end();
 803		return;
 804	}
 805
 806	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
 807	trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
 808	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
 809
 810	if (!in_nmi())
 811		rcu_prepare_for_idle();
 812
 813	// instrumentation for the noinstr rcu_dynticks_eqs_enter()
 814	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
 815	instrumentation_end();
 816
 817	// RCU is watching here ...
 818	rcu_dynticks_eqs_enter();
 819	// ... but is no longer watching here.
 820
 821	if (!in_nmi())
 822		rcu_dynticks_task_enter();
 823}
 824
 825/**
 
 
 
 
 
 
 
 
 
 
 
 826 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 827 *
 828 * Exit from an interrupt handler, which might possibly result in entering
 829 * idle mode, in other words, leaving the mode in which read-side critical
 830 * sections can occur.  The caller must have disabled interrupts.
 831 *
 832 * This code assumes that the idle loop never does anything that might
 833 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 834 * architecture's idle loop violates this assumption, RCU will give you what
 835 * you deserve, good and hard.  But very infrequently and irreproducibly.
 836 *
 837 * Use things like work queues to work around this limitation.
 838 *
 839 * You have been warned.
 840 *
 841 * If you add or remove a call to rcu_irq_exit(), be sure to test with
 842 * CONFIG_RCU_EQS_DEBUG=y.
 843 */
 844void noinstr rcu_irq_exit(void)
 845{
 846	lockdep_assert_irqs_disabled();
 847	rcu_nmi_exit();
 848}
 849
 850#ifdef CONFIG_PROVE_RCU
 851/**
 852 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
 853 */
 854void rcu_irq_exit_check_preempt(void)
 855{
 856	lockdep_assert_irqs_disabled();
 857
 858	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
 859			 "RCU dynticks_nesting counter underflow/zero!");
 860	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
 861			 DYNTICK_IRQ_NONIDLE,
 862			 "Bad RCU  dynticks_nmi_nesting counter\n");
 863	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
 864			 "RCU in extended quiescent state!");
 865}
 866#endif /* #ifdef CONFIG_PROVE_RCU */
 867
 868/*
 869 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 870 *
 871 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
 872 * with CONFIG_RCU_EQS_DEBUG=y.
 873 */
 874void rcu_irq_exit_irqson(void)
 875{
 876	unsigned long flags;
 877
 878	local_irq_save(flags);
 879	rcu_irq_exit();
 880	local_irq_restore(flags);
 881}
 882
 883/*
 884 * Exit an RCU extended quiescent state, which can be either the
 885 * idle loop or adaptive-tickless usermode execution.
 886 *
 887 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
 888 * allow for the possibility of usermode upcalls messing up our count of
 889 * interrupt nesting level during the busy period that is just now starting.
 890 */
 891static void noinstr rcu_eqs_exit(bool user)
 892{
 893	struct rcu_data *rdp;
 894	long oldval;
 895
 896	lockdep_assert_irqs_disabled();
 897	rdp = this_cpu_ptr(&rcu_data);
 898	oldval = rdp->dynticks_nesting;
 899	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
 900	if (oldval) {
 901		// RCU was already watching, so just do accounting and leave.
 902		rdp->dynticks_nesting++;
 903		return;
 904	}
 905	rcu_dynticks_task_exit();
 906	// RCU is not watching here ...
 907	rcu_dynticks_eqs_exit();
 908	// ... but is watching here.
 909	instrumentation_begin();
 910
 911	// instrumentation for the noinstr rcu_dynticks_eqs_exit()
 912	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
 913
 914	rcu_cleanup_after_idle();
 915	trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
 916	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
 917	WRITE_ONCE(rdp->dynticks_nesting, 1);
 918	WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
 919	WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
 920	instrumentation_end();
 921}
 922
 923/**
 924 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 925 *
 926 * Exit idle mode, in other words, -enter- the mode in which RCU
 927 * read-side critical sections can occur.
 928 *
 929 * If you add or remove a call to rcu_idle_exit(), be sure to test with
 930 * CONFIG_RCU_EQS_DEBUG=y.
 931 */
 932void rcu_idle_exit(void)
 933{
 934	unsigned long flags;
 935
 936	local_irq_save(flags);
 937	rcu_eqs_exit(false);
 938	local_irq_restore(flags);
 939}
 940EXPORT_SYMBOL_GPL(rcu_idle_exit);
 941
 942#ifdef CONFIG_NO_HZ_FULL
 943/**
 944 * rcu_user_exit - inform RCU that we are exiting userspace.
 945 *
 946 * Exit RCU idle mode while entering the kernel because it can
 947 * run a RCU read side critical section anytime.
 948 *
 949 * If you add or remove a call to rcu_user_exit(), be sure to test with
 950 * CONFIG_RCU_EQS_DEBUG=y.
 951 */
 952void noinstr rcu_user_exit(void)
 953{
 954	rcu_eqs_exit(true);
 955}
 956
 957/**
 958 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
 959 *
 960 * The scheduler tick is not normally enabled when CPUs enter the kernel
 961 * from nohz_full userspace execution.  After all, nohz_full userspace
 962 * execution is an RCU quiescent state and the time executing in the kernel
 963 * is quite short.  Except of course when it isn't.  And it is not hard to
 964 * cause a large system to spend tens of seconds or even minutes looping
 965 * in the kernel, which can cause a number of problems, include RCU CPU
 966 * stall warnings.
 967 *
 968 * Therefore, if a nohz_full CPU fails to report a quiescent state
 969 * in a timely manner, the RCU grace-period kthread sets that CPU's
 970 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
 971 * exception will invoke this function, which will turn on the scheduler
 972 * tick, which will enable RCU to detect that CPU's quiescent states,
 973 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
 974 * The tick will be disabled once a quiescent state is reported for
 975 * this CPU.
 976 *
 977 * Of course, in carefully tuned systems, there might never be an
 978 * interrupt or exception.  In that case, the RCU grace-period kthread
 979 * will eventually cause one to happen.  However, in less carefully
 980 * controlled environments, this function allows RCU to get what it
 981 * needs without creating otherwise useless interruptions.
 982 */
 983void __rcu_irq_enter_check_tick(void)
 984{
 985	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 986
 987	// If we're here from NMI there's nothing to do.
 988	if (in_nmi())
 989		return;
 990
 991	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
 992			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
 993
 994	if (!tick_nohz_full_cpu(rdp->cpu) ||
 995	    !READ_ONCE(rdp->rcu_urgent_qs) ||
 996	    READ_ONCE(rdp->rcu_forced_tick)) {
 997		// RCU doesn't need nohz_full help from this CPU, or it is
 998		// already getting that help.
 999		return;
1000	}
1001
1002	// We get here only when not in an extended quiescent state and
1003	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
1004	// already watching and (2) The fact that we are in an interrupt
1005	// handler and that the rcu_node lock is an irq-disabled lock
1006	// prevents self-deadlock.  So we can safely recheck under the lock.
1007	// Note that the nohz_full state currently cannot change.
1008	raw_spin_lock_rcu_node(rdp->mynode);
1009	if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
1010		// A nohz_full CPU is in the kernel and RCU needs a
1011		// quiescent state.  Turn on the tick!
1012		WRITE_ONCE(rdp->rcu_forced_tick, true);
1013		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1014	}
1015	raw_spin_unlock_rcu_node(rdp->mynode);
1016}
1017#endif /* CONFIG_NO_HZ_FULL */
1018
1019/**
1020 * rcu_nmi_enter - inform RCU of entry to NMI context
 
1021 *
1022 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
1023 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
1024 * that the CPU is active.  This implementation permits nested NMIs, as
1025 * long as the nesting level does not overflow an int.  (You will probably
1026 * run out of stack space first.)
1027 *
1028 * If you add or remove a call to rcu_nmi_enter(), be sure to test
1029 * with CONFIG_RCU_EQS_DEBUG=y.
1030 */
1031noinstr void rcu_nmi_enter(void)
1032{
 
1033	long incby = 2;
1034	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1035
1036	/* Complain about underflow. */
1037	WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
1038
1039	/*
1040	 * If idle from RCU viewpoint, atomically increment ->dynticks
1041	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1042	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
1043	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1044	 * to be in the outermost NMI handler that interrupted an RCU-idle
1045	 * period (observation due to Andy Lutomirski).
1046	 */
1047	if (rcu_dynticks_curr_cpu_in_eqs()) {
1048
1049		if (!in_nmi())
1050			rcu_dynticks_task_exit();
1051
1052		// RCU is not watching here ...
1053		rcu_dynticks_eqs_exit();
1054		// ... but is watching here.
1055
1056		if (!in_nmi()) {
1057			instrumentation_begin();
1058			rcu_cleanup_after_idle();
1059			instrumentation_end();
1060		}
1061
1062		instrumentation_begin();
1063		// instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs()
1064		instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks));
1065		// instrumentation for the noinstr rcu_dynticks_eqs_exit()
1066		instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
1067
1068		incby = 1;
1069	} else if (!in_nmi()) {
1070		instrumentation_begin();
1071		rcu_irq_enter_check_tick();
1072	} else  {
1073		instrumentation_begin();
1074	}
1075
1076	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1077			  rdp->dynticks_nmi_nesting,
1078			  rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
1079	instrumentation_end();
1080	WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
1081		   rdp->dynticks_nmi_nesting + incby);
1082	barrier();
1083}
1084
1085/**
 
 
 
 
 
 
 
 
 
1086 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1087 *
1088 * Enter an interrupt handler, which might possibly result in exiting
1089 * idle mode, in other words, entering the mode in which read-side critical
1090 * sections can occur.  The caller must have disabled interrupts.
1091 *
1092 * Note that the Linux kernel is fully capable of entering an interrupt
1093 * handler that it never exits, for example when doing upcalls to user mode!
1094 * This code assumes that the idle loop never does upcalls to user mode.
1095 * If your architecture's idle loop does do upcalls to user mode (or does
1096 * anything else that results in unbalanced calls to the irq_enter() and
1097 * irq_exit() functions), RCU will give you what you deserve, good and hard.
1098 * But very infrequently and irreproducibly.
1099 *
1100 * Use things like work queues to work around this limitation.
1101 *
1102 * You have been warned.
1103 *
1104 * If you add or remove a call to rcu_irq_enter(), be sure to test with
1105 * CONFIG_RCU_EQS_DEBUG=y.
1106 */
1107noinstr void rcu_irq_enter(void)
1108{
1109	lockdep_assert_irqs_disabled();
1110	rcu_nmi_enter();
1111}
1112
1113/*
1114 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1115 *
1116 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1117 * with CONFIG_RCU_EQS_DEBUG=y.
1118 */
1119void rcu_irq_enter_irqson(void)
1120{
1121	unsigned long flags;
1122
1123	local_irq_save(flags);
1124	rcu_irq_enter();
1125	local_irq_restore(flags);
1126}
1127
1128/*
1129 * If any sort of urgency was applied to the current CPU (for example,
1130 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
1131 * to get to a quiescent state, disable it.
1132 */
1133static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
1134{
1135	raw_lockdep_assert_held_rcu_node(rdp->mynode);
1136	WRITE_ONCE(rdp->rcu_urgent_qs, false);
1137	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
1138	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
1139		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1140		WRITE_ONCE(rdp->rcu_forced_tick, false);
1141	}
1142}
1143
1144/**
1145 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
1146 *
1147 * Return true if RCU is watching the running CPU, which means that this
1148 * CPU can safely enter RCU read-side critical sections.  In other words,
1149 * if the current CPU is not in its idle loop or is in an interrupt or
1150 * NMI handler, return true.
1151 *
1152 * Make notrace because it can be called by the internal functions of
1153 * ftrace, and making this notrace removes unnecessary recursion calls.
1154 */
1155notrace bool rcu_is_watching(void)
1156{
1157	bool ret;
1158
1159	preempt_disable_notrace();
1160	ret = !rcu_dynticks_curr_cpu_in_eqs();
1161	preempt_enable_notrace();
1162	return ret;
1163}
1164EXPORT_SYMBOL_GPL(rcu_is_watching);
1165
1166/*
1167 * If a holdout task is actually running, request an urgent quiescent
1168 * state from its CPU.  This is unsynchronized, so migrations can cause
1169 * the request to go to the wrong CPU.  Which is OK, all that will happen
1170 * is that the CPU's next context switch will be a bit slower and next
1171 * time around this task will generate another request.
1172 */
1173void rcu_request_urgent_qs_task(struct task_struct *t)
1174{
1175	int cpu;
1176
1177	barrier();
1178	cpu = task_cpu(t);
1179	if (!task_curr(t))
1180		return; /* This task is not running on that CPU. */
1181	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
1182}
1183
1184#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1185
1186/*
1187 * Is the current CPU online as far as RCU is concerned?
1188 *
1189 * Disable preemption to avoid false positives that could otherwise
1190 * happen due to the current CPU number being sampled, this task being
1191 * preempted, its old CPU being taken offline, resuming on some other CPU,
1192 * then determining that its old CPU is now offline.
1193 *
1194 * Disable checking if in an NMI handler because we cannot safely
1195 * report errors from NMI handlers anyway.  In addition, it is OK to use
1196 * RCU on an offline processor during initial boot, hence the check for
1197 * rcu_scheduler_fully_active.
1198 */
1199bool rcu_lockdep_current_cpu_online(void)
1200{
1201	struct rcu_data *rdp;
1202	struct rcu_node *rnp;
1203	bool ret = false;
1204
1205	if (in_nmi() || !rcu_scheduler_fully_active)
1206		return true;
1207	preempt_disable_notrace();
1208	rdp = this_cpu_ptr(&rcu_data);
1209	rnp = rdp->mynode;
1210	if (rdp->grpmask & rcu_rnp_online_cpus(rnp) || READ_ONCE(rnp->ofl_seq) & 0x1)
1211		ret = true;
1212	preempt_enable_notrace();
1213	return ret;
1214}
1215EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1216
1217#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1218
1219/*
1220 * When trying to report a quiescent state on behalf of some other CPU,
1221 * it is our responsibility to check for and handle potential overflow
1222 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1223 * After all, the CPU might be in deep idle state, and thus executing no
1224 * code whatsoever.
1225 */
1226static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1227{
1228	raw_lockdep_assert_held_rcu_node(rnp);
1229	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1230			 rnp->gp_seq))
1231		WRITE_ONCE(rdp->gpwrap, true);
1232	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1233		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1234}
1235
1236/*
1237 * Snapshot the specified CPU's dynticks counter so that we can later
1238 * credit them with an implicit quiescent state.  Return 1 if this CPU
1239 * is in dynticks idle mode, which is an extended quiescent state.
1240 */
1241static int dyntick_save_progress_counter(struct rcu_data *rdp)
1242{
1243	rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1244	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1245		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1246		rcu_gpnum_ovf(rdp->mynode, rdp);
1247		return 1;
1248	}
1249	return 0;
1250}
1251
1252/*
1253 * Return true if the specified CPU has passed through a quiescent
1254 * state by virtue of being in or having passed through an dynticks
1255 * idle state since the last call to dyntick_save_progress_counter()
1256 * for this same CPU, or by virtue of having been offline.
1257 */
1258static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1259{
1260	unsigned long jtsq;
1261	bool *rnhqp;
1262	bool *ruqp;
1263	struct rcu_node *rnp = rdp->mynode;
1264
1265	/*
1266	 * If the CPU passed through or entered a dynticks idle phase with
1267	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1268	 * already acknowledged the request to pass through a quiescent
1269	 * state.  Either way, that CPU cannot possibly be in an RCU
1270	 * read-side critical section that started before the beginning
1271	 * of the current RCU grace period.
1272	 */
1273	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1274		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1275		rcu_gpnum_ovf(rnp, rdp);
1276		return 1;
1277	}
1278
1279	/*
1280	 * Complain if a CPU that is considered to be offline from RCU's
1281	 * perspective has not yet reported a quiescent state.  After all,
1282	 * the offline CPU should have reported a quiescent state during
1283	 * the CPU-offline process, or, failing that, by rcu_gp_init()
1284	 * if it ran concurrently with either the CPU going offline or the
1285	 * last task on a leaf rcu_node structure exiting its RCU read-side
1286	 * critical section while all CPUs corresponding to that structure
1287	 * are offline.  This added warning detects bugs in any of these
1288	 * code paths.
1289	 *
1290	 * The rcu_node structure's ->lock is held here, which excludes
1291	 * the relevant portions the CPU-hotplug code, the grace-period
1292	 * initialization code, and the rcu_read_unlock() code paths.
1293	 *
1294	 * For more detail, please refer to the "Hotplug CPU" section
1295	 * of RCU's Requirements documentation.
1296	 */
1297	if (WARN_ON_ONCE(!(rdp->grpmask & rcu_rnp_online_cpus(rnp)))) {
1298		bool onl;
1299		struct rcu_node *rnp1;
1300
 
1301		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1302			__func__, rnp->grplo, rnp->grphi, rnp->level,
1303			(long)rnp->gp_seq, (long)rnp->completedqs);
1304		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1305			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1306				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1307		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1308		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1309			__func__, rdp->cpu, ".o"[onl],
1310			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1311			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1312		return 1; /* Break things loose after complaining. */
1313	}
1314
1315	/*
1316	 * A CPU running for an extended time within the kernel can
1317	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1318	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1319	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1320	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1321	 * variable are safe because the assignments are repeated if this
1322	 * CPU failed to pass through a quiescent state.  This code
1323	 * also checks .jiffies_resched in case jiffies_to_sched_qs
1324	 * is set way high.
1325	 */
1326	jtsq = READ_ONCE(jiffies_to_sched_qs);
1327	ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1328	rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1329	if (!READ_ONCE(*rnhqp) &&
1330	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1331	     time_after(jiffies, rcu_state.jiffies_resched) ||
1332	     rcu_state.cbovld)) {
1333		WRITE_ONCE(*rnhqp, true);
1334		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1335		smp_store_release(ruqp, true);
1336	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1337		WRITE_ONCE(*ruqp, true);
1338	}
1339
1340	/*
1341	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1342	 * The above code handles this, but only for straight cond_resched().
1343	 * And some in-kernel loops check need_resched() before calling
1344	 * cond_resched(), which defeats the above code for CPUs that are
1345	 * running in-kernel with scheduling-clock interrupts disabled.
1346	 * So hit them over the head with the resched_cpu() hammer!
1347	 */
1348	if (tick_nohz_full_cpu(rdp->cpu) &&
1349	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
1350	     rcu_state.cbovld)) {
1351		WRITE_ONCE(*ruqp, true);
1352		resched_cpu(rdp->cpu);
1353		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1354	}
1355
1356	/*
1357	 * If more than halfway to RCU CPU stall-warning time, invoke
1358	 * resched_cpu() more frequently to try to loosen things up a bit.
1359	 * Also check to see if the CPU is getting hammered with interrupts,
1360	 * but only once per grace period, just to keep the IPIs down to
1361	 * a dull roar.
1362	 */
1363	if (time_after(jiffies, rcu_state.jiffies_resched)) {
1364		if (time_after(jiffies,
1365			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1366			resched_cpu(rdp->cpu);
1367			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1368		}
1369		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1370		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1371		    (rnp->ffmask & rdp->grpmask)) {
 
1372			rdp->rcu_iw_pending = true;
1373			rdp->rcu_iw_gp_seq = rnp->gp_seq;
1374			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1375		}
1376	}
1377
1378	return 0;
1379}
1380
1381/* Trace-event wrapper function for trace_rcu_future_grace_period.  */
1382static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1383			      unsigned long gp_seq_req, const char *s)
1384{
1385	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
1386				      gp_seq_req, rnp->level,
1387				      rnp->grplo, rnp->grphi, s);
1388}
1389
1390/*
1391 * rcu_start_this_gp - Request the start of a particular grace period
1392 * @rnp_start: The leaf node of the CPU from which to start.
1393 * @rdp: The rcu_data corresponding to the CPU from which to start.
1394 * @gp_seq_req: The gp_seq of the grace period to start.
1395 *
1396 * Start the specified grace period, as needed to handle newly arrived
1397 * callbacks.  The required future grace periods are recorded in each
1398 * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1399 * is reason to awaken the grace-period kthread.
1400 *
1401 * The caller must hold the specified rcu_node structure's ->lock, which
1402 * is why the caller is responsible for waking the grace-period kthread.
1403 *
1404 * Returns true if the GP thread needs to be awakened else false.
1405 */
1406static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1407			      unsigned long gp_seq_req)
1408{
1409	bool ret = false;
1410	struct rcu_node *rnp;
1411
1412	/*
1413	 * Use funnel locking to either acquire the root rcu_node
1414	 * structure's lock or bail out if the need for this grace period
1415	 * has already been recorded -- or if that grace period has in
1416	 * fact already started.  If there is already a grace period in
1417	 * progress in a non-leaf node, no recording is needed because the
1418	 * end of the grace period will scan the leaf rcu_node structures.
1419	 * Note that rnp_start->lock must not be released.
1420	 */
1421	raw_lockdep_assert_held_rcu_node(rnp_start);
1422	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1423	for (rnp = rnp_start; 1; rnp = rnp->parent) {
1424		if (rnp != rnp_start)
1425			raw_spin_lock_rcu_node(rnp);
1426		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1427		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1428		    (rnp != rnp_start &&
1429		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1430			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1431					  TPS("Prestarted"));
1432			goto unlock_out;
1433		}
1434		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1435		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1436			/*
1437			 * We just marked the leaf or internal node, and a
1438			 * grace period is in progress, which means that
1439			 * rcu_gp_cleanup() will see the marking.  Bail to
1440			 * reduce contention.
1441			 */
1442			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1443					  TPS("Startedleaf"));
1444			goto unlock_out;
1445		}
1446		if (rnp != rnp_start && rnp->parent != NULL)
1447			raw_spin_unlock_rcu_node(rnp);
1448		if (!rnp->parent)
1449			break;  /* At root, and perhaps also leaf. */
1450	}
1451
1452	/* If GP already in progress, just leave, otherwise start one. */
1453	if (rcu_gp_in_progress()) {
1454		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1455		goto unlock_out;
1456	}
1457	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1458	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1459	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1460	if (!READ_ONCE(rcu_state.gp_kthread)) {
1461		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1462		goto unlock_out;
1463	}
1464	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1465	ret = true;  /* Caller must wake GP kthread. */
1466unlock_out:
1467	/* Push furthest requested GP to leaf node and rcu_data structure. */
1468	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1469		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1470		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1471	}
1472	if (rnp != rnp_start)
1473		raw_spin_unlock_rcu_node(rnp);
1474	return ret;
1475}
1476
1477/*
1478 * Clean up any old requests for the just-ended grace period.  Also return
1479 * whether any additional grace periods have been requested.
1480 */
1481static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1482{
1483	bool needmore;
1484	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1485
1486	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1487	if (!needmore)
1488		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1489	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1490			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1491	return needmore;
1492}
1493
1494/*
1495 * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1496 * interrupt or softirq handler, in which case we just might immediately
1497 * sleep upon return, resulting in a grace-period hang), and don't bother
1498 * awakening when there is nothing for the grace-period kthread to do
1499 * (as in several CPUs raced to awaken, we lost), and finally don't try
1500 * to awaken a kthread that has not yet been created.  If all those checks
1501 * are passed, track some debug information and awaken.
1502 *
1503 * So why do the self-wakeup when in an interrupt or softirq handler
1504 * in the grace-period kthread's context?  Because the kthread might have
1505 * been interrupted just as it was going to sleep, and just after the final
1506 * pre-sleep check of the awaken condition.  In this case, a wakeup really
1507 * is required, and is therefore supplied.
1508 */
1509static void rcu_gp_kthread_wake(void)
1510{
1511	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1512
1513	if ((current == t && !in_irq() && !in_serving_softirq()) ||
1514	    !READ_ONCE(rcu_state.gp_flags) || !t)
1515		return;
1516	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1517	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1518	swake_up_one(&rcu_state.gp_wq);
1519}
1520
1521/*
1522 * If there is room, assign a ->gp_seq number to any callbacks on this
1523 * CPU that have not already been assigned.  Also accelerate any callbacks
1524 * that were previously assigned a ->gp_seq number that has since proven
1525 * to be too conservative, which can happen if callbacks get assigned a
1526 * ->gp_seq number while RCU is idle, but with reference to a non-root
1527 * rcu_node structure.  This function is idempotent, so it does not hurt
1528 * to call it repeatedly.  Returns an flag saying that we should awaken
1529 * the RCU grace-period kthread.
1530 *
1531 * The caller must hold rnp->lock with interrupts disabled.
1532 */
1533static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1534{
1535	unsigned long gp_seq_req;
1536	bool ret = false;
1537
1538	rcu_lockdep_assert_cblist_protected(rdp);
1539	raw_lockdep_assert_held_rcu_node(rnp);
1540
1541	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1542	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1543		return false;
1544
1545	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1546
1547	/*
1548	 * Callbacks are often registered with incomplete grace-period
1549	 * information.  Something about the fact that getting exact
1550	 * information requires acquiring a global lock...  RCU therefore
1551	 * makes a conservative estimate of the grace period number at which
1552	 * a given callback will become ready to invoke.	The following
1553	 * code checks this estimate and improves it when possible, thus
1554	 * accelerating callback invocation to an earlier grace-period
1555	 * number.
1556	 */
1557	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1558	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1559		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1560
1561	/* Trace depending on how much we were able to accelerate. */
1562	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1563		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1564	else
1565		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1566
1567	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1568
1569	return ret;
1570}
1571
1572/*
1573 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1574 * rcu_node structure's ->lock be held.  It consults the cached value
1575 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1576 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1577 * while holding the leaf rcu_node structure's ->lock.
1578 */
1579static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1580					struct rcu_data *rdp)
1581{
1582	unsigned long c;
1583	bool needwake;
1584
1585	rcu_lockdep_assert_cblist_protected(rdp);
1586	c = rcu_seq_snap(&rcu_state.gp_seq);
1587	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1588		/* Old request still live, so mark recent callbacks. */
1589		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1590		return;
1591	}
1592	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1593	needwake = rcu_accelerate_cbs(rnp, rdp);
1594	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1595	if (needwake)
1596		rcu_gp_kthread_wake();
1597}
1598
1599/*
1600 * Move any callbacks whose grace period has completed to the
1601 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1602 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1603 * sublist.  This function is idempotent, so it does not hurt to
1604 * invoke it repeatedly.  As long as it is not invoked -too- often...
1605 * Returns true if the RCU grace-period kthread needs to be awakened.
1606 *
1607 * The caller must hold rnp->lock with interrupts disabled.
1608 */
1609static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1610{
1611	rcu_lockdep_assert_cblist_protected(rdp);
1612	raw_lockdep_assert_held_rcu_node(rnp);
1613
1614	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1615	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1616		return false;
1617
1618	/*
1619	 * Find all callbacks whose ->gp_seq numbers indicate that they
1620	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1621	 */
1622	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1623
1624	/* Classify any remaining callbacks. */
1625	return rcu_accelerate_cbs(rnp, rdp);
1626}
1627
1628/*
1629 * Move and classify callbacks, but only if doing so won't require
1630 * that the RCU grace-period kthread be awakened.
1631 */
1632static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1633						  struct rcu_data *rdp)
1634{
1635	rcu_lockdep_assert_cblist_protected(rdp);
1636	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) ||
1637	    !raw_spin_trylock_rcu_node(rnp))
1638		return;
1639	WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1640	raw_spin_unlock_rcu_node(rnp);
1641}
1642
1643/*
1644 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1645 * quiescent state.  This is intended to be invoked when the CPU notices
1646 * a new grace period.
1647 */
1648static void rcu_strict_gp_check_qs(void)
1649{
1650	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1651		rcu_read_lock();
1652		rcu_read_unlock();
1653	}
1654}
1655
1656/*
1657 * Update CPU-local rcu_data state to record the beginnings and ends of
1658 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1659 * structure corresponding to the current CPU, and must have irqs disabled.
1660 * Returns true if the grace-period kthread needs to be awakened.
1661 */
1662static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1663{
1664	bool ret = false;
1665	bool need_qs;
1666	const bool offloaded = rcu_rdp_is_offloaded(rdp);
 
1667
1668	raw_lockdep_assert_held_rcu_node(rnp);
1669
1670	if (rdp->gp_seq == rnp->gp_seq)
1671		return false; /* Nothing to do. */
1672
1673	/* Handle the ends of any preceding grace periods first. */
1674	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1675	    unlikely(READ_ONCE(rdp->gpwrap))) {
1676		if (!offloaded)
1677			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1678		rdp->core_needs_qs = false;
1679		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1680	} else {
1681		if (!offloaded)
1682			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1683		if (rdp->core_needs_qs)
1684			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1685	}
1686
1687	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1688	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1689	    unlikely(READ_ONCE(rdp->gpwrap))) {
1690		/*
1691		 * If the current grace period is waiting for this CPU,
1692		 * set up to detect a quiescent state, otherwise don't
1693		 * go looking for one.
1694		 */
1695		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1696		need_qs = !!(rnp->qsmask & rdp->grpmask);
1697		rdp->cpu_no_qs.b.norm = need_qs;
1698		rdp->core_needs_qs = need_qs;
1699		zero_cpu_stall_ticks(rdp);
1700	}
1701	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1702	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1703		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1704	WRITE_ONCE(rdp->gpwrap, false);
1705	rcu_gpnum_ovf(rnp, rdp);
1706	return ret;
1707}
1708
1709static void note_gp_changes(struct rcu_data *rdp)
1710{
1711	unsigned long flags;
1712	bool needwake;
1713	struct rcu_node *rnp;
1714
1715	local_irq_save(flags);
1716	rnp = rdp->mynode;
1717	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1718	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1719	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1720		local_irq_restore(flags);
1721		return;
1722	}
1723	needwake = __note_gp_changes(rnp, rdp);
1724	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1725	rcu_strict_gp_check_qs();
1726	if (needwake)
1727		rcu_gp_kthread_wake();
1728}
1729
1730static void rcu_gp_slow(int delay)
1731{
1732	if (delay > 0 &&
1733	    !(rcu_seq_ctr(rcu_state.gp_seq) %
1734	      (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1735		schedule_timeout_idle(delay);
1736}
1737
1738static unsigned long sleep_duration;
1739
1740/* Allow rcutorture to stall the grace-period kthread. */
1741void rcu_gp_set_torture_wait(int duration)
1742{
1743	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1744		WRITE_ONCE(sleep_duration, duration);
1745}
1746EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1747
1748/* Actually implement the aforementioned wait. */
1749static void rcu_gp_torture_wait(void)
1750{
1751	unsigned long duration;
1752
1753	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1754		return;
1755	duration = xchg(&sleep_duration, 0UL);
1756	if (duration > 0) {
1757		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1758		schedule_timeout_idle(duration);
1759		pr_alert("%s: Wait complete\n", __func__);
1760	}
1761}
1762
1763/*
1764 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1765 * processing.
1766 */
1767static void rcu_strict_gp_boundary(void *unused)
1768{
1769	invoke_rcu_core();
1770}
1771
1772/*
1773 * Initialize a new grace period.  Return false if no grace period required.
1774 */
1775static bool rcu_gp_init(void)
1776{
1777	unsigned long firstseq;
1778	unsigned long flags;
1779	unsigned long oldmask;
1780	unsigned long mask;
1781	struct rcu_data *rdp;
1782	struct rcu_node *rnp = rcu_get_root();
1783
1784	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1785	raw_spin_lock_irq_rcu_node(rnp);
1786	if (!READ_ONCE(rcu_state.gp_flags)) {
1787		/* Spurious wakeup, tell caller to go back to sleep.  */
1788		raw_spin_unlock_irq_rcu_node(rnp);
1789		return false;
1790	}
1791	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1792
1793	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1794		/*
1795		 * Grace period already in progress, don't start another.
1796		 * Not supposed to be able to happen.
1797		 */
1798		raw_spin_unlock_irq_rcu_node(rnp);
1799		return false;
1800	}
1801
1802	/* Advance to a new grace period and initialize state. */
1803	record_gp_stall_check_time();
1804	/* Record GP times before starting GP, hence rcu_seq_start(). */
1805	rcu_seq_start(&rcu_state.gp_seq);
1806	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1807	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1808	raw_spin_unlock_irq_rcu_node(rnp);
1809
1810	/*
1811	 * Apply per-leaf buffered online and offline operations to
1812	 * the rcu_node tree. Note that this new grace period need not
1813	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1814	 * offlining path, when combined with checks in this function,
1815	 * will handle CPUs that are currently going offline or that will
1816	 * go offline later.  Please also refer to "Hotplug CPU" section
1817	 * of RCU's Requirements documentation.
1818	 */
1819	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1820	rcu_for_each_leaf_node(rnp) {
1821		smp_mb(); // Pair with barriers used when updating ->ofl_seq to odd values.
1822		firstseq = READ_ONCE(rnp->ofl_seq);
1823		if (firstseq & 0x1)
1824			while (firstseq == READ_ONCE(rnp->ofl_seq))
1825				schedule_timeout_idle(1);  // Can't wake unless RCU is watching.
1826		smp_mb(); // Pair with barriers used when updating ->ofl_seq to even values.
1827		raw_spin_lock(&rcu_state.ofl_lock);
1828		raw_spin_lock_irq_rcu_node(rnp);
1829		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1830		    !rnp->wait_blkd_tasks) {
1831			/* Nothing to do on this leaf rcu_node structure. */
1832			raw_spin_unlock_irq_rcu_node(rnp);
1833			raw_spin_unlock(&rcu_state.ofl_lock);
1834			continue;
1835		}
1836
1837		/* Record old state, apply changes to ->qsmaskinit field. */
1838		oldmask = rnp->qsmaskinit;
1839		rnp->qsmaskinit = rnp->qsmaskinitnext;
1840
1841		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1842		if (!oldmask != !rnp->qsmaskinit) {
1843			if (!oldmask) { /* First online CPU for rcu_node. */
1844				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1845					rcu_init_new_rnp(rnp);
1846			} else if (rcu_preempt_has_tasks(rnp)) {
1847				rnp->wait_blkd_tasks = true; /* blocked tasks */
1848			} else { /* Last offline CPU and can propagate. */
1849				rcu_cleanup_dead_rnp(rnp);
1850			}
1851		}
1852
1853		/*
1854		 * If all waited-on tasks from prior grace period are
1855		 * done, and if all this rcu_node structure's CPUs are
1856		 * still offline, propagate up the rcu_node tree and
1857		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1858		 * rcu_node structure's CPUs has since come back online,
1859		 * simply clear ->wait_blkd_tasks.
1860		 */
1861		if (rnp->wait_blkd_tasks &&
1862		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1863			rnp->wait_blkd_tasks = false;
1864			if (!rnp->qsmaskinit)
1865				rcu_cleanup_dead_rnp(rnp);
1866		}
1867
1868		raw_spin_unlock_irq_rcu_node(rnp);
1869		raw_spin_unlock(&rcu_state.ofl_lock);
1870	}
1871	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1872
1873	/*
1874	 * Set the quiescent-state-needed bits in all the rcu_node
1875	 * structures for all currently online CPUs in breadth-first
1876	 * order, starting from the root rcu_node structure, relying on the
1877	 * layout of the tree within the rcu_state.node[] array.  Note that
1878	 * other CPUs will access only the leaves of the hierarchy, thus
1879	 * seeing that no grace period is in progress, at least until the
1880	 * corresponding leaf node has been initialized.
1881	 *
1882	 * The grace period cannot complete until the initialization
1883	 * process finishes, because this kthread handles both.
1884	 */
1885	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1886	rcu_for_each_node_breadth_first(rnp) {
1887		rcu_gp_slow(gp_init_delay);
1888		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1889		rdp = this_cpu_ptr(&rcu_data);
1890		rcu_preempt_check_blocked_tasks(rnp);
1891		rnp->qsmask = rnp->qsmaskinit;
1892		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1893		if (rnp == rdp->mynode)
1894			(void)__note_gp_changes(rnp, rdp);
1895		rcu_preempt_boost_start_gp(rnp);
1896		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1897					    rnp->level, rnp->grplo,
1898					    rnp->grphi, rnp->qsmask);
1899		/* Quiescent states for tasks on any now-offline CPUs. */
1900		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1901		rnp->rcu_gp_init_mask = mask;
1902		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1903			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1904		else
1905			raw_spin_unlock_irq_rcu_node(rnp);
1906		cond_resched_tasks_rcu_qs();
1907		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1908	}
1909
1910	// If strict, make all CPUs aware of new grace period.
1911	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1912		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1913
1914	return true;
1915}
1916
1917/*
1918 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1919 * time.
1920 */
1921static bool rcu_gp_fqs_check_wake(int *gfp)
1922{
1923	struct rcu_node *rnp = rcu_get_root();
1924
1925	// If under overload conditions, force an immediate FQS scan.
1926	if (*gfp & RCU_GP_FLAG_OVLD)
1927		return true;
1928
1929	// Someone like call_rcu() requested a force-quiescent-state scan.
1930	*gfp = READ_ONCE(rcu_state.gp_flags);
1931	if (*gfp & RCU_GP_FLAG_FQS)
1932		return true;
1933
1934	// The current grace period has completed.
1935	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1936		return true;
1937
1938	return false;
1939}
1940
1941/*
1942 * Do one round of quiescent-state forcing.
1943 */
1944static void rcu_gp_fqs(bool first_time)
1945{
1946	struct rcu_node *rnp = rcu_get_root();
1947
1948	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1949	rcu_state.n_force_qs++;
1950	if (first_time) {
1951		/* Collect dyntick-idle snapshots. */
1952		force_qs_rnp(dyntick_save_progress_counter);
1953	} else {
1954		/* Handle dyntick-idle and offline CPUs. */
1955		force_qs_rnp(rcu_implicit_dynticks_qs);
1956	}
1957	/* Clear flag to prevent immediate re-entry. */
1958	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1959		raw_spin_lock_irq_rcu_node(rnp);
1960		WRITE_ONCE(rcu_state.gp_flags,
1961			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1962		raw_spin_unlock_irq_rcu_node(rnp);
1963	}
1964}
1965
1966/*
1967 * Loop doing repeated quiescent-state forcing until the grace period ends.
1968 */
1969static void rcu_gp_fqs_loop(void)
1970{
1971	bool first_gp_fqs;
1972	int gf = 0;
1973	unsigned long j;
1974	int ret;
1975	struct rcu_node *rnp = rcu_get_root();
1976
1977	first_gp_fqs = true;
1978	j = READ_ONCE(jiffies_till_first_fqs);
1979	if (rcu_state.cbovld)
1980		gf = RCU_GP_FLAG_OVLD;
1981	ret = 0;
1982	for (;;) {
1983		if (!ret) {
1984			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1985			/*
1986			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1987			 * update; required for stall checks.
1988			 */
1989			smp_wmb();
1990			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1991				   jiffies + (j ? 3 * j : 2));
1992		}
1993		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 
1994				       TPS("fqswait"));
1995		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1996		ret = swait_event_idle_timeout_exclusive(
1997				rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1998		rcu_gp_torture_wait();
1999		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
2000		/* Locking provides needed memory barriers. */
2001		/* If grace period done, leave loop. */
2002		if (!READ_ONCE(rnp->qsmask) &&
2003		    !rcu_preempt_blocked_readers_cgp(rnp))
2004			break;
2005		/* If time for quiescent-state forcing, do it. */
2006		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
2007		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
2008			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 
2009					       TPS("fqsstart"));
2010			rcu_gp_fqs(first_gp_fqs);
2011			gf = 0;
2012			if (first_gp_fqs) {
2013				first_gp_fqs = false;
2014				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
2015			}
2016			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2017					       TPS("fqsend"));
2018			cond_resched_tasks_rcu_qs();
2019			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2020			ret = 0; /* Force full wait till next FQS. */
2021			j = READ_ONCE(jiffies_till_next_fqs);
2022		} else {
2023			/* Deal with stray signal. */
2024			cond_resched_tasks_rcu_qs();
2025			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2026			WARN_ON(signal_pending(current));
2027			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 
2028					       TPS("fqswaitsig"));
2029			ret = 1; /* Keep old FQS timing. */
2030			j = jiffies;
2031			if (time_after(jiffies, rcu_state.jiffies_force_qs))
2032				j = 1;
2033			else
2034				j = rcu_state.jiffies_force_qs - j;
2035			gf = 0;
2036		}
2037	}
2038}
2039
2040/*
2041 * Clean up after the old grace period.
2042 */
2043static noinline void rcu_gp_cleanup(void)
2044{
2045	int cpu;
2046	bool needgp = false;
2047	unsigned long gp_duration;
2048	unsigned long new_gp_seq;
2049	bool offloaded;
2050	struct rcu_data *rdp;
2051	struct rcu_node *rnp = rcu_get_root();
2052	struct swait_queue_head *sq;
2053
2054	WRITE_ONCE(rcu_state.gp_activity, jiffies);
2055	raw_spin_lock_irq_rcu_node(rnp);
2056	rcu_state.gp_end = jiffies;
2057	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2058	if (gp_duration > rcu_state.gp_max)
2059		rcu_state.gp_max = gp_duration;
2060
2061	/*
2062	 * We know the grace period is complete, but to everyone else
2063	 * it appears to still be ongoing.  But it is also the case
2064	 * that to everyone else it looks like there is nothing that
2065	 * they can do to advance the grace period.  It is therefore
2066	 * safe for us to drop the lock in order to mark the grace
2067	 * period as completed in all of the rcu_node structures.
2068	 */
2069	raw_spin_unlock_irq_rcu_node(rnp);
2070
2071	/*
2072	 * Propagate new ->gp_seq value to rcu_node structures so that
2073	 * other CPUs don't have to wait until the start of the next grace
2074	 * period to process their callbacks.  This also avoids some nasty
2075	 * RCU grace-period initialization races by forcing the end of
2076	 * the current grace period to be completely recorded in all of
2077	 * the rcu_node structures before the beginning of the next grace
2078	 * period is recorded in any of the rcu_node structures.
2079	 */
2080	new_gp_seq = rcu_state.gp_seq;
2081	rcu_seq_end(&new_gp_seq);
2082	rcu_for_each_node_breadth_first(rnp) {
2083		raw_spin_lock_irq_rcu_node(rnp);
2084		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2085			dump_blkd_tasks(rnp, 10);
2086		WARN_ON_ONCE(rnp->qsmask);
2087		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2088		rdp = this_cpu_ptr(&rcu_data);
2089		if (rnp == rdp->mynode)
2090			needgp = __note_gp_changes(rnp, rdp) || needgp;
2091		/* smp_mb() provided by prior unlock-lock pair. */
2092		needgp = rcu_future_gp_cleanup(rnp) || needgp;
2093		// Reset overload indication for CPUs no longer overloaded
2094		if (rcu_is_leaf_node(rnp))
2095			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
2096				rdp = per_cpu_ptr(&rcu_data, cpu);
2097				check_cb_ovld_locked(rdp, rnp);
2098			}
2099		sq = rcu_nocb_gp_get(rnp);
2100		raw_spin_unlock_irq_rcu_node(rnp);
2101		rcu_nocb_gp_cleanup(sq);
2102		cond_resched_tasks_rcu_qs();
2103		WRITE_ONCE(rcu_state.gp_activity, jiffies);
2104		rcu_gp_slow(gp_cleanup_delay);
2105	}
2106	rnp = rcu_get_root();
2107	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2108
2109	/* Declare grace period done, trace first to use old GP number. */
2110	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2111	rcu_seq_end(&rcu_state.gp_seq);
2112	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2113	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
2114	/* Check for GP requests since above loop. */
2115	rdp = this_cpu_ptr(&rcu_data);
2116	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2117		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2118				  TPS("CleanupMore"));
2119		needgp = true;
2120	}
2121	/* Advance CBs to reduce false positives below. */
2122	offloaded = rcu_rdp_is_offloaded(rdp);
 
2123	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2124		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2125		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2126		trace_rcu_grace_period(rcu_state.name,
2127				       rcu_state.gp_seq,
2128				       TPS("newreq"));
2129	} else {
2130		WRITE_ONCE(rcu_state.gp_flags,
2131			   rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2132	}
2133	raw_spin_unlock_irq_rcu_node(rnp);
2134
2135	// If strict, make all CPUs aware of the end of the old grace period.
2136	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2137		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
2138}
2139
2140/*
2141 * Body of kthread that handles grace periods.
2142 */
2143static int __noreturn rcu_gp_kthread(void *unused)
2144{
2145	rcu_bind_gp_kthread();
2146	for (;;) {
2147
2148		/* Handle grace-period start. */
2149		for (;;) {
2150			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 
2151					       TPS("reqwait"));
2152			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
2153			swait_event_idle_exclusive(rcu_state.gp_wq,
2154					 READ_ONCE(rcu_state.gp_flags) &
2155					 RCU_GP_FLAG_INIT);
2156			rcu_gp_torture_wait();
2157			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
2158			/* Locking provides needed memory barrier. */
2159			if (rcu_gp_init())
2160				break;
2161			cond_resched_tasks_rcu_qs();
2162			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2163			WARN_ON(signal_pending(current));
2164			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 
2165					       TPS("reqwaitsig"));
2166		}
2167
2168		/* Handle quiescent-state forcing. */
2169		rcu_gp_fqs_loop();
2170
2171		/* Handle grace-period end. */
2172		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
2173		rcu_gp_cleanup();
2174		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
2175	}
2176}
2177
2178/*
2179 * Report a full set of quiescent states to the rcu_state data structure.
2180 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2181 * another grace period is required.  Whether we wake the grace-period
2182 * kthread or it awakens itself for the next round of quiescent-state
2183 * forcing, that kthread will clean up after the just-completed grace
2184 * period.  Note that the caller must hold rnp->lock, which is released
2185 * before return.
2186 */
2187static void rcu_report_qs_rsp(unsigned long flags)
2188	__releases(rcu_get_root()->lock)
2189{
2190	raw_lockdep_assert_held_rcu_node(rcu_get_root());
2191	WARN_ON_ONCE(!rcu_gp_in_progress());
2192	WRITE_ONCE(rcu_state.gp_flags,
2193		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2194	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2195	rcu_gp_kthread_wake();
2196}
2197
2198/*
2199 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2200 * Allows quiescent states for a group of CPUs to be reported at one go
2201 * to the specified rcu_node structure, though all the CPUs in the group
2202 * must be represented by the same rcu_node structure (which need not be a
2203 * leaf rcu_node structure, though it often will be).  The gps parameter
2204 * is the grace-period snapshot, which means that the quiescent states
2205 * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
2206 * must be held upon entry, and it is released before return.
2207 *
2208 * As a special case, if mask is zero, the bit-already-cleared check is
2209 * disabled.  This allows propagating quiescent state due to resumed tasks
2210 * during grace-period initialization.
2211 */
2212static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2213			      unsigned long gps, unsigned long flags)
2214	__releases(rnp->lock)
2215{
2216	unsigned long oldmask = 0;
2217	struct rcu_node *rnp_c;
2218
2219	raw_lockdep_assert_held_rcu_node(rnp);
2220
2221	/* Walk up the rcu_node hierarchy. */
2222	for (;;) {
2223		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2224
2225			/*
2226			 * Our bit has already been cleared, or the
2227			 * relevant grace period is already over, so done.
2228			 */
2229			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2230			return;
2231		}
2232		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2233		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2234			     rcu_preempt_blocked_readers_cgp(rnp));
2235		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2236		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2237						 mask, rnp->qsmask, rnp->level,
2238						 rnp->grplo, rnp->grphi,
2239						 !!rnp->gp_tasks);
2240		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2241
2242			/* Other bits still set at this level, so done. */
2243			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2244			return;
2245		}
2246		rnp->completedqs = rnp->gp_seq;
2247		mask = rnp->grpmask;
2248		if (rnp->parent == NULL) {
2249
2250			/* No more levels.  Exit loop holding root lock. */
2251
2252			break;
2253		}
2254		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2255		rnp_c = rnp;
2256		rnp = rnp->parent;
2257		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2258		oldmask = READ_ONCE(rnp_c->qsmask);
2259	}
2260
2261	/*
2262	 * Get here if we are the last CPU to pass through a quiescent
2263	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2264	 * to clean up and start the next grace period if one is needed.
2265	 */
2266	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2267}
2268
2269/*
2270 * Record a quiescent state for all tasks that were previously queued
2271 * on the specified rcu_node structure and that were blocking the current
2272 * RCU grace period.  The caller must hold the corresponding rnp->lock with
2273 * irqs disabled, and this lock is released upon return, but irqs remain
2274 * disabled.
2275 */
2276static void __maybe_unused
2277rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2278	__releases(rnp->lock)
2279{
2280	unsigned long gps;
2281	unsigned long mask;
2282	struct rcu_node *rnp_p;
2283
2284	raw_lockdep_assert_held_rcu_node(rnp);
2285	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2286	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2287	    rnp->qsmask != 0) {
2288		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2289		return;  /* Still need more quiescent states! */
2290	}
2291
2292	rnp->completedqs = rnp->gp_seq;
2293	rnp_p = rnp->parent;
2294	if (rnp_p == NULL) {
2295		/*
2296		 * Only one rcu_node structure in the tree, so don't
2297		 * try to report up to its nonexistent parent!
2298		 */
2299		rcu_report_qs_rsp(flags);
2300		return;
2301	}
2302
2303	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2304	gps = rnp->gp_seq;
2305	mask = rnp->grpmask;
2306	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2307	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2308	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2309}
2310
2311/*
2312 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2313 * structure.  This must be called from the specified CPU.
2314 */
2315static void
2316rcu_report_qs_rdp(struct rcu_data *rdp)
2317{
2318	unsigned long flags;
2319	unsigned long mask;
2320	bool needwake = false;
2321	const bool offloaded = rcu_rdp_is_offloaded(rdp);
 
2322	struct rcu_node *rnp;
2323
2324	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2325	rnp = rdp->mynode;
2326	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2327	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2328	    rdp->gpwrap) {
2329
2330		/*
2331		 * The grace period in which this quiescent state was
2332		 * recorded has ended, so don't report it upwards.
2333		 * We will instead need a new quiescent state that lies
2334		 * within the current grace period.
2335		 */
2336		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2337		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2338		return;
2339	}
2340	mask = rdp->grpmask;
2341	rdp->core_needs_qs = false;
2342	if ((rnp->qsmask & mask) == 0) {
2343		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2344	} else {
2345		/*
2346		 * This GP can't end until cpu checks in, so all of our
2347		 * callbacks can be processed during the next GP.
2348		 */
2349		if (!offloaded)
2350			needwake = rcu_accelerate_cbs(rnp, rdp);
2351
2352		rcu_disable_urgency_upon_qs(rdp);
2353		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2354		/* ^^^ Released rnp->lock */
2355		if (needwake)
2356			rcu_gp_kthread_wake();
2357	}
2358}
2359
2360/*
2361 * Check to see if there is a new grace period of which this CPU
2362 * is not yet aware, and if so, set up local rcu_data state for it.
2363 * Otherwise, see if this CPU has just passed through its first
2364 * quiescent state for this grace period, and record that fact if so.
2365 */
2366static void
2367rcu_check_quiescent_state(struct rcu_data *rdp)
2368{
2369	/* Check for grace-period ends and beginnings. */
2370	note_gp_changes(rdp);
2371
2372	/*
2373	 * Does this CPU still need to do its part for current grace period?
2374	 * If no, return and let the other CPUs do their part as well.
2375	 */
2376	if (!rdp->core_needs_qs)
2377		return;
2378
2379	/*
2380	 * Was there a quiescent state since the beginning of the grace
2381	 * period? If no, then exit and wait for the next call.
2382	 */
2383	if (rdp->cpu_no_qs.b.norm)
2384		return;
2385
2386	/*
2387	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2388	 * judge of that).
2389	 */
2390	rcu_report_qs_rdp(rdp);
2391}
2392
2393/*
2394 * Near the end of the offline process.  Trace the fact that this CPU
2395 * is going offline.
2396 */
2397int rcutree_dying_cpu(unsigned int cpu)
2398{
2399	bool blkd;
2400	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2401	struct rcu_node *rnp = rdp->mynode;
2402
2403	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2404		return 0;
2405
2406	blkd = !!(rnp->qsmask & rdp->grpmask);
2407	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2408			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
2409	return 0;
2410}
2411
2412/*
2413 * All CPUs for the specified rcu_node structure have gone offline,
2414 * and all tasks that were preempted within an RCU read-side critical
2415 * section while running on one of those CPUs have since exited their RCU
2416 * read-side critical section.  Some other CPU is reporting this fact with
2417 * the specified rcu_node structure's ->lock held and interrupts disabled.
2418 * This function therefore goes up the tree of rcu_node structures,
2419 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2420 * the leaf rcu_node structure's ->qsmaskinit field has already been
2421 * updated.
2422 *
2423 * This function does check that the specified rcu_node structure has
2424 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2425 * prematurely.  That said, invoking it after the fact will cost you
2426 * a needless lock acquisition.  So once it has done its work, don't
2427 * invoke it again.
2428 */
2429static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2430{
2431	long mask;
2432	struct rcu_node *rnp = rnp_leaf;
2433
2434	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2435	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2436	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2437	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2438		return;
2439	for (;;) {
2440		mask = rnp->grpmask;
2441		rnp = rnp->parent;
2442		if (!rnp)
2443			break;
2444		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2445		rnp->qsmaskinit &= ~mask;
2446		/* Between grace periods, so better already be zero! */
2447		WARN_ON_ONCE(rnp->qsmask);
2448		if (rnp->qsmaskinit) {
2449			raw_spin_unlock_rcu_node(rnp);
2450			/* irqs remain disabled. */
2451			return;
2452		}
2453		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2454	}
2455}
2456
2457/*
2458 * The CPU has been completely removed, and some other CPU is reporting
2459 * this fact from process context.  Do the remainder of the cleanup.
2460 * There can only be one CPU hotplug operation at a time, so no need for
2461 * explicit locking.
2462 */
2463int rcutree_dead_cpu(unsigned int cpu)
2464{
2465	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2466	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2467
2468	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2469		return 0;
2470
2471	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
2472	/* Adjust any no-longer-needed kthreads. */
2473	rcu_boost_kthread_setaffinity(rnp, -1);
2474	/* Do any needed no-CB deferred wakeups from this CPU. */
2475	do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2476
2477	// Stop-machine done, so allow nohz_full to disable tick.
2478	tick_dep_clear(TICK_DEP_BIT_RCU);
2479	return 0;
2480}
2481
2482/*
2483 * Invoke any RCU callbacks that have made it to the end of their grace
2484 * period.  Throttle as specified by rdp->blimit.
2485 */
2486static void rcu_do_batch(struct rcu_data *rdp)
2487{
2488	int div;
2489	bool __maybe_unused empty;
2490	unsigned long flags;
2491	const bool offloaded = rcu_rdp_is_offloaded(rdp);
 
2492	struct rcu_head *rhp;
2493	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2494	long bl, count = 0;
2495	long pending, tlimit = 0;
2496
2497	/* If no callbacks are ready, just return. */
2498	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2499		trace_rcu_batch_start(rcu_state.name,
 
2500				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2501		trace_rcu_batch_end(rcu_state.name, 0,
2502				    !rcu_segcblist_empty(&rdp->cblist),
2503				    need_resched(), is_idle_task(current),
2504				    rcu_is_callbacks_kthread());
2505		return;
2506	}
2507
2508	/*
2509	 * Extract the list of ready callbacks, disabling to prevent
2510	 * races with call_rcu() from interrupt handlers.  Leave the
2511	 * callback counts, as rcu_barrier() needs to be conservative.
2512	 */
2513	local_irq_save(flags);
2514	rcu_nocb_lock(rdp);
2515	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2516	pending = rcu_segcblist_n_cbs(&rdp->cblist);
2517	div = READ_ONCE(rcu_divisor);
2518	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2519	bl = max(rdp->blimit, pending >> div);
2520	if (unlikely(bl > 100)) {
2521		long rrn = READ_ONCE(rcu_resched_ns);
2522
2523		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2524		tlimit = local_clock() + rrn;
2525	}
2526	trace_rcu_batch_start(rcu_state.name,
 
2527			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2528	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2529	if (offloaded)
2530		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2531
2532	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2533	rcu_nocb_unlock_irqrestore(rdp, flags);
2534
2535	/* Invoke callbacks. */
2536	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2537	rhp = rcu_cblist_dequeue(&rcl);
2538
2539	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2540		rcu_callback_t f;
2541
2542		count++;
2543		debug_rcu_head_unqueue(rhp);
2544
2545		rcu_lock_acquire(&rcu_callback_map);
2546		trace_rcu_invoke_callback(rcu_state.name, rhp);
2547
2548		f = rhp->func;
2549		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2550		f(rhp);
2551
2552		rcu_lock_release(&rcu_callback_map);
2553
2554		/*
2555		 * Stop only if limit reached and CPU has something to do.
 
2556		 */
2557		if (count >= bl && !offloaded &&
2558		    (need_resched() ||
2559		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2560			break;
2561		if (unlikely(tlimit)) {
2562			/* only call local_clock() every 32 callbacks */
2563			if (likely((count & 31) || local_clock() < tlimit))
2564				continue;
2565			/* Exceeded the time limit, so leave. */
2566			break;
2567		}
2568		if (!in_serving_softirq()) {
 
2569			local_bh_enable();
2570			lockdep_assert_irqs_enabled();
2571			cond_resched_tasks_rcu_qs();
2572			lockdep_assert_irqs_enabled();
2573			local_bh_disable();
2574		}
2575	}
2576
2577	local_irq_save(flags);
2578	rcu_nocb_lock(rdp);
2579	rdp->n_cbs_invoked += count;
2580	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2581			    is_idle_task(current), rcu_is_callbacks_kthread());
2582
2583	/* Update counts and requeue any remaining callbacks. */
2584	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2585	rcu_segcblist_add_len(&rdp->cblist, -count);
 
2586
2587	/* Reinstate batch limit if we have worked down the excess. */
2588	count = rcu_segcblist_n_cbs(&rdp->cblist);
2589	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2590		rdp->blimit = blimit;
2591
2592	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2593	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2594		rdp->qlen_last_fqs_check = 0;
2595		rdp->n_force_qs_snap = rcu_state.n_force_qs;
2596	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2597		rdp->qlen_last_fqs_check = count;
2598
2599	/*
2600	 * The following usually indicates a double call_rcu().  To track
2601	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2602	 */
2603	empty = rcu_segcblist_empty(&rdp->cblist);
2604	WARN_ON_ONCE(count == 0 && !empty);
2605	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2606		     count != 0 && empty);
2607	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2608	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2609
2610	rcu_nocb_unlock_irqrestore(rdp, flags);
2611
2612	/* Re-invoke RCU core processing if there are callbacks remaining. */
2613	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2614		invoke_rcu_core();
2615	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2616}
2617
2618/*
2619 * This function is invoked from each scheduling-clock interrupt,
2620 * and checks to see if this CPU is in a non-context-switch quiescent
2621 * state, for example, user mode or idle loop.  It also schedules RCU
2622 * core processing.  If the current grace period has gone on too long,
2623 * it will ask the scheduler to manufacture a context switch for the sole
2624 * purpose of providing the needed quiescent state.
2625 */
2626void rcu_sched_clock_irq(int user)
2627{
2628	trace_rcu_utilization(TPS("Start scheduler-tick"));
2629	lockdep_assert_irqs_disabled();
2630	raw_cpu_inc(rcu_data.ticks_this_gp);
2631	/* The load-acquire pairs with the store-release setting to true. */
2632	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2633		/* Idle and userspace execution already are quiescent states. */
2634		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2635			set_tsk_need_resched(current);
2636			set_preempt_need_resched();
2637		}
2638		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2639	}
2640	rcu_flavor_sched_clock_irq(user);
2641	if (rcu_pending(user))
2642		invoke_rcu_core();
2643	lockdep_assert_irqs_disabled();
2644
2645	trace_rcu_utilization(TPS("End scheduler-tick"));
2646}
2647
2648/*
2649 * Scan the leaf rcu_node structures.  For each structure on which all
2650 * CPUs have reported a quiescent state and on which there are tasks
2651 * blocking the current grace period, initiate RCU priority boosting.
2652 * Otherwise, invoke the specified function to check dyntick state for
2653 * each CPU that has not yet reported a quiescent state.
2654 */
2655static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2656{
2657	int cpu;
2658	unsigned long flags;
2659	unsigned long mask;
2660	struct rcu_data *rdp;
2661	struct rcu_node *rnp;
2662
2663	rcu_state.cbovld = rcu_state.cbovldnext;
2664	rcu_state.cbovldnext = false;
2665	rcu_for_each_leaf_node(rnp) {
2666		cond_resched_tasks_rcu_qs();
2667		mask = 0;
2668		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2669		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2670		if (rnp->qsmask == 0) {
2671			if (rcu_preempt_blocked_readers_cgp(rnp)) {
 
2672				/*
2673				 * No point in scanning bits because they
2674				 * are all zero.  But we might need to
2675				 * priority-boost blocked readers.
2676				 */
2677				rcu_initiate_boost(rnp, flags);
2678				/* rcu_initiate_boost() releases rnp->lock */
2679				continue;
2680			}
2681			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2682			continue;
2683		}
2684		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2685			rdp = per_cpu_ptr(&rcu_data, cpu);
2686			if (f(rdp)) {
2687				mask |= rdp->grpmask;
2688				rcu_disable_urgency_upon_qs(rdp);
2689			}
2690		}
2691		if (mask != 0) {
2692			/* Idle/offline CPUs, report (releases rnp->lock). */
2693			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2694		} else {
2695			/* Nothing to do here, so just drop the lock. */
2696			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2697		}
2698	}
2699}
2700
2701/*
2702 * Force quiescent states on reluctant CPUs, and also detect which
2703 * CPUs are in dyntick-idle mode.
2704 */
2705void rcu_force_quiescent_state(void)
2706{
2707	unsigned long flags;
2708	bool ret;
2709	struct rcu_node *rnp;
2710	struct rcu_node *rnp_old = NULL;
2711
2712	/* Funnel through hierarchy to reduce memory contention. */
2713	rnp = __this_cpu_read(rcu_data.mynode);
2714	for (; rnp != NULL; rnp = rnp->parent) {
2715		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2716		       !raw_spin_trylock(&rnp->fqslock);
2717		if (rnp_old != NULL)
2718			raw_spin_unlock(&rnp_old->fqslock);
2719		if (ret)
2720			return;
2721		rnp_old = rnp;
2722	}
2723	/* rnp_old == rcu_get_root(), rnp == NULL. */
2724
2725	/* Reached the root of the rcu_node tree, acquire lock. */
2726	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2727	raw_spin_unlock(&rnp_old->fqslock);
2728	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2729		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2730		return;  /* Someone beat us to it. */
2731	}
2732	WRITE_ONCE(rcu_state.gp_flags,
2733		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2734	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2735	rcu_gp_kthread_wake();
2736}
2737EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2738
2739// Workqueue handler for an RCU reader for kernels enforcing struct RCU
2740// grace periods.
2741static void strict_work_handler(struct work_struct *work)
2742{
2743	rcu_read_lock();
2744	rcu_read_unlock();
2745}
2746
2747/* Perform RCU core processing work for the current CPU.  */
2748static __latent_entropy void rcu_core(void)
2749{
2750	unsigned long flags;
2751	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2752	struct rcu_node *rnp = rdp->mynode;
2753	const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
 
2754
2755	if (cpu_is_offline(smp_processor_id()))
2756		return;
2757	trace_rcu_utilization(TPS("Start RCU core"));
2758	WARN_ON_ONCE(!rdp->beenonline);
2759
2760	/* Report any deferred quiescent states if preemption enabled. */
2761	if (!(preempt_count() & PREEMPT_MASK)) {
2762		rcu_preempt_deferred_qs(current);
2763	} else if (rcu_preempt_need_deferred_qs(current)) {
2764		set_tsk_need_resched(current);
2765		set_preempt_need_resched();
2766	}
2767
2768	/* Update RCU state based on any recent quiescent states. */
2769	rcu_check_quiescent_state(rdp);
2770
2771	/* No grace period and unregistered callbacks? */
2772	if (!rcu_gp_in_progress() &&
2773	    rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2774		rcu_nocb_lock_irqsave(rdp, flags);
2775		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2776			rcu_accelerate_cbs_unlocked(rnp, rdp);
2777		rcu_nocb_unlock_irqrestore(rdp, flags);
2778	}
2779
2780	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2781
2782	/* If there are callbacks ready, invoke them. */
2783	if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2784	    likely(READ_ONCE(rcu_scheduler_fully_active)))
2785		rcu_do_batch(rdp);
2786
2787	/* Do any needed deferred wakeups of rcuo kthreads. */
2788	do_nocb_deferred_wakeup(rdp);
2789	trace_rcu_utilization(TPS("End RCU core"));
2790
2791	// If strict GPs, schedule an RCU reader in a clean environment.
2792	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2793		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2794}
2795
2796static void rcu_core_si(struct softirq_action *h)
2797{
2798	rcu_core();
2799}
2800
2801static void rcu_wake_cond(struct task_struct *t, int status)
2802{
2803	/*
2804	 * If the thread is yielding, only wake it when this
2805	 * is invoked from idle
2806	 */
2807	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2808		wake_up_process(t);
2809}
2810
2811static void invoke_rcu_core_kthread(void)
2812{
2813	struct task_struct *t;
2814	unsigned long flags;
2815
2816	local_irq_save(flags);
2817	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2818	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2819	if (t != NULL && t != current)
2820		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2821	local_irq_restore(flags);
2822}
2823
2824/*
2825 * Wake up this CPU's rcuc kthread to do RCU core processing.
2826 */
2827static void invoke_rcu_core(void)
2828{
2829	if (!cpu_online(smp_processor_id()))
2830		return;
2831	if (use_softirq)
2832		raise_softirq(RCU_SOFTIRQ);
2833	else
2834		invoke_rcu_core_kthread();
2835}
2836
2837static void rcu_cpu_kthread_park(unsigned int cpu)
2838{
2839	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2840}
2841
2842static int rcu_cpu_kthread_should_run(unsigned int cpu)
2843{
2844	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2845}
2846
2847/*
2848 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2849 * the RCU softirq used in configurations of RCU that do not support RCU
2850 * priority boosting.
2851 */
2852static void rcu_cpu_kthread(unsigned int cpu)
2853{
2854	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2855	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2856	int spincnt;
2857
2858	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2859	for (spincnt = 0; spincnt < 10; spincnt++) {
 
2860		local_bh_disable();
2861		*statusp = RCU_KTHREAD_RUNNING;
2862		local_irq_disable();
2863		work = *workp;
2864		*workp = 0;
2865		local_irq_enable();
2866		if (work)
2867			rcu_core();
2868		local_bh_enable();
2869		if (*workp == 0) {
2870			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2871			*statusp = RCU_KTHREAD_WAITING;
2872			return;
2873		}
2874	}
2875	*statusp = RCU_KTHREAD_YIELDING;
2876	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2877	schedule_timeout_idle(2);
2878	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2879	*statusp = RCU_KTHREAD_WAITING;
2880}
2881
2882static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2883	.store			= &rcu_data.rcu_cpu_kthread_task,
2884	.thread_should_run	= rcu_cpu_kthread_should_run,
2885	.thread_fn		= rcu_cpu_kthread,
2886	.thread_comm		= "rcuc/%u",
2887	.setup			= rcu_cpu_kthread_setup,
2888	.park			= rcu_cpu_kthread_park,
2889};
2890
2891/*
2892 * Spawn per-CPU RCU core processing kthreads.
2893 */
2894static int __init rcu_spawn_core_kthreads(void)
2895{
2896	int cpu;
2897
2898	for_each_possible_cpu(cpu)
2899		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2900	if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2901		return 0;
2902	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2903		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2904	return 0;
2905}
 
2906
2907/*
2908 * Handle any core-RCU processing required by a call_rcu() invocation.
2909 */
2910static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2911			    unsigned long flags)
2912{
2913	/*
2914	 * If called from an extended quiescent state, invoke the RCU
2915	 * core in order to force a re-evaluation of RCU's idleness.
2916	 */
2917	if (!rcu_is_watching())
2918		invoke_rcu_core();
2919
2920	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2921	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2922		return;
2923
2924	/*
2925	 * Force the grace period if too many callbacks or too long waiting.
2926	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2927	 * if some other CPU has recently done so.  Also, don't bother
2928	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2929	 * is the only one waiting for a grace period to complete.
2930	 */
2931	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2932		     rdp->qlen_last_fqs_check + qhimark)) {
2933
2934		/* Are we ignoring a completed grace period? */
2935		note_gp_changes(rdp);
2936
2937		/* Start a new grace period if one not already started. */
2938		if (!rcu_gp_in_progress()) {
2939			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2940		} else {
2941			/* Give the grace period a kick. */
2942			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2943			if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2944			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2945				rcu_force_quiescent_state();
2946			rdp->n_force_qs_snap = rcu_state.n_force_qs;
2947			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2948		}
2949	}
2950}
2951
2952/*
2953 * RCU callback function to leak a callback.
2954 */
2955static void rcu_leak_callback(struct rcu_head *rhp)
2956{
2957}
2958
2959/*
2960 * Check and if necessary update the leaf rcu_node structure's
2961 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2962 * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2963 * structure's ->lock.
2964 */
2965static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2966{
2967	raw_lockdep_assert_held_rcu_node(rnp);
2968	if (qovld_calc <= 0)
2969		return; // Early boot and wildcard value set.
2970	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2971		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2972	else
2973		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2974}
2975
2976/*
2977 * Check and if necessary update the leaf rcu_node structure's
2978 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2979 * number of queued RCU callbacks.  No locks need be held, but the
2980 * caller must have disabled interrupts.
2981 *
2982 * Note that this function ignores the possibility that there are a lot
2983 * of callbacks all of which have already seen the end of their respective
2984 * grace periods.  This omission is due to the need for no-CBs CPUs to
2985 * be holding ->nocb_lock to do this check, which is too heavy for a
2986 * common-case operation.
2987 */
2988static void check_cb_ovld(struct rcu_data *rdp)
2989{
2990	struct rcu_node *const rnp = rdp->mynode;
2991
2992	if (qovld_calc <= 0 ||
2993	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2994	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2995		return; // Early boot wildcard value or already set correctly.
2996	raw_spin_lock_rcu_node(rnp);
2997	check_cb_ovld_locked(rdp, rnp);
2998	raw_spin_unlock_rcu_node(rnp);
2999}
3000
3001/* Helper function for call_rcu() and friends.  */
3002static void
3003__call_rcu(struct rcu_head *head, rcu_callback_t func)
3004{
3005	static atomic_t doublefrees;
3006	unsigned long flags;
3007	struct rcu_data *rdp;
3008	bool was_alldone;
3009
3010	/* Misaligned rcu_head! */
3011	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3012
3013	if (debug_rcu_head_queue(head)) {
3014		/*
3015		 * Probable double call_rcu(), so leak the callback.
3016		 * Use rcu:rcu_callback trace event to find the previous
3017		 * time callback was passed to __call_rcu().
3018		 */
3019		if (atomic_inc_return(&doublefrees) < 4) {
3020			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
3021			mem_dump_obj(head);
3022		}
3023		WRITE_ONCE(head->func, rcu_leak_callback);
3024		return;
3025	}
3026	head->func = func;
3027	head->next = NULL;
3028	local_irq_save(flags);
3029	kasan_record_aux_stack(head);
3030	rdp = this_cpu_ptr(&rcu_data);
3031
3032	/* Add the callback to our list. */
3033	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
3034		// This can trigger due to call_rcu() from offline CPU:
3035		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
3036		WARN_ON_ONCE(!rcu_is_watching());
3037		// Very early boot, before rcu_init().  Initialize if needed
3038		// and then drop through to queue the callback.
3039		if (rcu_segcblist_empty(&rdp->cblist))
3040			rcu_segcblist_init(&rdp->cblist);
3041	}
3042
3043	check_cb_ovld(rdp);
3044	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
3045		return; // Enqueued onto ->nocb_bypass, so just leave.
3046	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
3047	rcu_segcblist_enqueue(&rdp->cblist, head);
3048	if (__is_kvfree_rcu_offset((unsigned long)func))
3049		trace_rcu_kvfree_callback(rcu_state.name, head,
3050					 (unsigned long)func,
 
3051					 rcu_segcblist_n_cbs(&rdp->cblist));
3052	else
3053		trace_rcu_callback(rcu_state.name, head,
 
3054				   rcu_segcblist_n_cbs(&rdp->cblist));
3055
3056	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
3057
3058	/* Go handle any RCU core processing required. */
3059	if (unlikely(rcu_rdp_is_offloaded(rdp))) {
 
3060		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
3061	} else {
3062		__call_rcu_core(rdp, head, flags);
3063		local_irq_restore(flags);
3064	}
3065}
3066
3067/**
3068 * call_rcu() - Queue an RCU callback for invocation after a grace period.
3069 * @head: structure to be used for queueing the RCU updates.
3070 * @func: actual callback function to be invoked after the grace period
3071 *
3072 * The callback function will be invoked some time after a full grace
3073 * period elapses, in other words after all pre-existing RCU read-side
3074 * critical sections have completed.  However, the callback function
3075 * might well execute concurrently with RCU read-side critical sections
3076 * that started after call_rcu() was invoked.
3077 *
3078 * RCU read-side critical sections are delimited by rcu_read_lock()
3079 * and rcu_read_unlock(), and may be nested.  In addition, but only in
3080 * v5.0 and later, regions of code across which interrupts, preemption,
3081 * or softirqs have been disabled also serve as RCU read-side critical
3082 * sections.  This includes hardware interrupt handlers, softirq handlers,
3083 * and NMI handlers.
3084 *
3085 * Note that all CPUs must agree that the grace period extended beyond
3086 * all pre-existing RCU read-side critical section.  On systems with more
3087 * than one CPU, this means that when "func()" is invoked, each CPU is
3088 * guaranteed to have executed a full memory barrier since the end of its
3089 * last RCU read-side critical section whose beginning preceded the call
3090 * to call_rcu().  It also means that each CPU executing an RCU read-side
3091 * critical section that continues beyond the start of "func()" must have
3092 * executed a memory barrier after the call_rcu() but before the beginning
3093 * of that RCU read-side critical section.  Note that these guarantees
3094 * include CPUs that are offline, idle, or executing in user mode, as
3095 * well as CPUs that are executing in the kernel.
3096 *
3097 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
3098 * resulting RCU callback function "func()", then both CPU A and CPU B are
3099 * guaranteed to execute a full memory barrier during the time interval
3100 * between the call to call_rcu() and the invocation of "func()" -- even
3101 * if CPU A and CPU B are the same CPU (but again only if the system has
3102 * more than one CPU).
3103 *
3104 * Implementation of these memory-ordering guarantees is described here:
3105 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3106 */
3107void call_rcu(struct rcu_head *head, rcu_callback_t func)
3108{
3109	__call_rcu(head, func);
3110}
3111EXPORT_SYMBOL_GPL(call_rcu);
3112
3113
3114/* Maximum number of jiffies to wait before draining a batch. */
3115#define KFREE_DRAIN_JIFFIES (HZ / 50)
3116#define KFREE_N_BATCHES 2
3117#define FREE_N_CHANNELS 2
3118
3119/**
3120 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
3121 * @nr_records: Number of active pointers in the array
3122 * @next: Next bulk object in the block chain
3123 * @records: Array of the kvfree_rcu() pointers
3124 */
3125struct kvfree_rcu_bulk_data {
3126	unsigned long nr_records;
3127	struct kvfree_rcu_bulk_data *next;
3128	void *records[];
3129};
3130
3131/*
3132 * This macro defines how many entries the "records" array
3133 * will contain. It is based on the fact that the size of
3134 * kvfree_rcu_bulk_data structure becomes exactly one page.
3135 */
3136#define KVFREE_BULK_MAX_ENTR \
3137	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
3138
3139/**
3140 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
3141 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
3142 * @head_free: List of kfree_rcu() objects waiting for a grace period
3143 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
3144 * @krcp: Pointer to @kfree_rcu_cpu structure
3145 */
3146
3147struct kfree_rcu_cpu_work {
3148	struct rcu_work rcu_work;
3149	struct rcu_head *head_free;
3150	struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
3151	struct kfree_rcu_cpu *krcp;
3152};
3153
3154/**
3155 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
3156 * @head: List of kfree_rcu() objects not yet waiting for a grace period
3157 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
3158 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
3159 * @lock: Synchronize access to this structure
3160 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
3161 * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
3162 * @initialized: The @rcu_work fields have been initialized
3163 * @count: Number of objects for which GP not started
3164 * @bkvcache:
3165 *	A simple cache list that contains objects for reuse purpose.
3166 *	In order to save some per-cpu space the list is singular.
3167 *	Even though it is lockless an access has to be protected by the
3168 *	per-cpu lock.
3169 * @page_cache_work: A work to refill the cache when it is empty
3170 * @backoff_page_cache_fill: Delay cache refills
3171 * @work_in_progress: Indicates that page_cache_work is running
3172 * @hrtimer: A hrtimer for scheduling a page_cache_work
3173 * @nr_bkv_objs: number of allocated objects at @bkvcache.
3174 *
3175 * This is a per-CPU structure.  The reason that it is not included in
3176 * the rcu_data structure is to permit this code to be extracted from
3177 * the RCU files.  Such extraction could allow further optimization of
3178 * the interactions with the slab allocators.
3179 */
3180struct kfree_rcu_cpu {
3181	struct rcu_head *head;
3182	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
3183	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3184	raw_spinlock_t lock;
3185	struct delayed_work monitor_work;
3186	bool monitor_todo;
3187	bool initialized;
3188	int count;
3189
3190	struct delayed_work page_cache_work;
3191	atomic_t backoff_page_cache_fill;
3192	atomic_t work_in_progress;
3193	struct hrtimer hrtimer;
3194
3195	struct llist_head bkvcache;
3196	int nr_bkv_objs;
3197};
3198
3199static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
3200	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
3201};
3202
3203static __always_inline void
3204debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
3205{
3206#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3207	int i;
3208
3209	for (i = 0; i < bhead->nr_records; i++)
3210		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
3211#endif
3212}
3213
3214static inline struct kfree_rcu_cpu *
3215krc_this_cpu_lock(unsigned long *flags)
3216{
3217	struct kfree_rcu_cpu *krcp;
3218
3219	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
3220	krcp = this_cpu_ptr(&krc);
3221	raw_spin_lock(&krcp->lock);
3222
3223	return krcp;
3224}
3225
3226static inline void
3227krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
3228{
3229	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3230}
3231
3232static inline struct kvfree_rcu_bulk_data *
3233get_cached_bnode(struct kfree_rcu_cpu *krcp)
3234{
3235	if (!krcp->nr_bkv_objs)
3236		return NULL;
3237
3238	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
3239	return (struct kvfree_rcu_bulk_data *)
3240		llist_del_first(&krcp->bkvcache);
3241}
3242
3243static inline bool
3244put_cached_bnode(struct kfree_rcu_cpu *krcp,
3245	struct kvfree_rcu_bulk_data *bnode)
3246{
3247	// Check the limit.
3248	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3249		return false;
3250
3251	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3252	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
3253	return true;
3254}
3255
3256static int
3257drain_page_cache(struct kfree_rcu_cpu *krcp)
3258{
3259	unsigned long flags;
3260	struct llist_node *page_list, *pos, *n;
3261	int freed = 0;
3262
3263	raw_spin_lock_irqsave(&krcp->lock, flags);
3264	page_list = llist_del_all(&krcp->bkvcache);
3265	WRITE_ONCE(krcp->nr_bkv_objs, 0);
3266	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3267
3268	llist_for_each_safe(pos, n, page_list) {
3269		free_page((unsigned long)pos);
3270		freed++;
3271	}
3272
3273	return freed;
3274}
3275
3276/*
3277 * This function is invoked in workqueue context after a grace period.
3278 * It frees all the objects queued on ->bkvhead_free or ->head_free.
3279 */
3280static void kfree_rcu_work(struct work_struct *work)
3281{
3282	unsigned long flags;
3283	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3284	struct rcu_head *head, *next;
3285	struct kfree_rcu_cpu *krcp;
3286	struct kfree_rcu_cpu_work *krwp;
3287	int i, j;
3288
3289	krwp = container_of(to_rcu_work(work),
3290			    struct kfree_rcu_cpu_work, rcu_work);
3291	krcp = krwp->krcp;
3292
3293	raw_spin_lock_irqsave(&krcp->lock, flags);
3294	// Channels 1 and 2.
3295	for (i = 0; i < FREE_N_CHANNELS; i++) {
3296		bkvhead[i] = krwp->bkvhead_free[i];
3297		krwp->bkvhead_free[i] = NULL;
3298	}
3299
3300	// Channel 3.
3301	head = krwp->head_free;
3302	krwp->head_free = NULL;
3303	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3304
3305	// Handle the first two channels.
3306	for (i = 0; i < FREE_N_CHANNELS; i++) {
3307		for (; bkvhead[i]; bkvhead[i] = bnext) {
3308			bnext = bkvhead[i]->next;
3309			debug_rcu_bhead_unqueue(bkvhead[i]);
3310
3311			rcu_lock_acquire(&rcu_callback_map);
3312			if (i == 0) { // kmalloc() / kfree().
3313				trace_rcu_invoke_kfree_bulk_callback(
3314					rcu_state.name, bkvhead[i]->nr_records,
3315					bkvhead[i]->records);
3316
3317				kfree_bulk(bkvhead[i]->nr_records,
3318					bkvhead[i]->records);
3319			} else { // vmalloc() / vfree().
3320				for (j = 0; j < bkvhead[i]->nr_records; j++) {
3321					trace_rcu_invoke_kvfree_callback(
3322						rcu_state.name,
3323						bkvhead[i]->records[j], 0);
3324
3325					vfree(bkvhead[i]->records[j]);
3326				}
3327			}
3328			rcu_lock_release(&rcu_callback_map);
3329
3330			raw_spin_lock_irqsave(&krcp->lock, flags);
3331			if (put_cached_bnode(krcp, bkvhead[i]))
3332				bkvhead[i] = NULL;
3333			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3334
3335			if (bkvhead[i])
3336				free_page((unsigned long) bkvhead[i]);
3337
3338			cond_resched_tasks_rcu_qs();
3339		}
3340	}
3341
3342	/*
3343	 * This is used when the "bulk" path can not be used for the
3344	 * double-argument of kvfree_rcu().  This happens when the
3345	 * page-cache is empty, which means that objects are instead
3346	 * queued on a linked list through their rcu_head structures.
3347	 * This list is named "Channel 3".
3348	 */
3349	for (; head; head = next) {
3350		unsigned long offset = (unsigned long)head->func;
3351		void *ptr = (void *)head - offset;
3352
3353		next = head->next;
3354		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3355		rcu_lock_acquire(&rcu_callback_map);
3356		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3357
3358		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3359			kvfree(ptr);
3360
3361		rcu_lock_release(&rcu_callback_map);
3362		cond_resched_tasks_rcu_qs();
3363	}
3364}
3365
3366/*
3367 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
 
 
 
 
3368 */
3369static void kfree_rcu_monitor(struct work_struct *work)
3370{
3371	struct kfree_rcu_cpu *krcp = container_of(work,
3372		struct kfree_rcu_cpu, monitor_work.work);
3373	unsigned long flags;
3374	int i, j;
3375
3376	raw_spin_lock_irqsave(&krcp->lock, flags);
3377
3378	// Attempt to start a new batch.
3379	for (i = 0; i < KFREE_N_BATCHES; i++) {
3380		struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3381
3382		// Try to detach bkvhead or head and attach it over any
3383		// available corresponding free channel. It can be that
3384		// a previous RCU batch is in progress, it means that
3385		// immediately to queue another one is not possible so
3386		// in that case the monitor work is rearmed.
3387		if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3388			(krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
3389				(krcp->head && !krwp->head_free)) {
3390			// Channel 1 corresponds to the SLAB-pointer bulk path.
3391			// Channel 2 corresponds to vmalloc-pointer bulk path.
3392			for (j = 0; j < FREE_N_CHANNELS; j++) {
3393				if (!krwp->bkvhead_free[j]) {
3394					krwp->bkvhead_free[j] = krcp->bkvhead[j];
3395					krcp->bkvhead[j] = NULL;
3396				}
3397			}
3398
3399			// Channel 3 corresponds to both SLAB and vmalloc
3400			// objects queued on the linked list.
3401			if (!krwp->head_free) {
3402				krwp->head_free = krcp->head;
3403				krcp->head = NULL;
3404			}
3405
3406			WRITE_ONCE(krcp->count, 0);
3407
3408			// One work is per one batch, so there are three
3409			// "free channels", the batch can handle. It can
3410			// be that the work is in the pending state when
3411			// channels have been detached following by each
3412			// other.
3413			queue_rcu_work(system_wq, &krwp->rcu_work);
3414		}
3415	}
3416
3417	// If there is nothing to detach, it means that our job is
3418	// successfully done here. In case of having at least one
3419	// of the channels that is still busy we should rearm the
3420	// work to repeat an attempt. Because previous batches are
3421	// still in progress.
3422	if (!krcp->bkvhead[0] && !krcp->bkvhead[1] && !krcp->head)
3423		krcp->monitor_todo = false;
3424	else
3425		schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3426
3427	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3428}
3429
3430static enum hrtimer_restart
3431schedule_page_work_fn(struct hrtimer *t)
3432{
3433	struct kfree_rcu_cpu *krcp =
3434		container_of(t, struct kfree_rcu_cpu, hrtimer);
3435
3436	queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3437	return HRTIMER_NORESTART;
3438}
3439
3440static void fill_page_cache_func(struct work_struct *work)
3441{
3442	struct kvfree_rcu_bulk_data *bnode;
3443	struct kfree_rcu_cpu *krcp =
3444		container_of(work, struct kfree_rcu_cpu,
3445			page_cache_work.work);
3446	unsigned long flags;
3447	int nr_pages;
3448	bool pushed;
3449	int i;
3450
3451	nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3452		1 : rcu_min_cached_objs;
3453
3454	for (i = 0; i < nr_pages; i++) {
3455		bnode = (struct kvfree_rcu_bulk_data *)
3456			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3457
3458		if (bnode) {
3459			raw_spin_lock_irqsave(&krcp->lock, flags);
3460			pushed = put_cached_bnode(krcp, bnode);
3461			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3462
3463			if (!pushed) {
3464				free_page((unsigned long) bnode);
3465				break;
3466			}
3467		}
3468	}
3469
3470	atomic_set(&krcp->work_in_progress, 0);
3471	atomic_set(&krcp->backoff_page_cache_fill, 0);
3472}
3473
3474static void
3475run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3476{
3477	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3478			!atomic_xchg(&krcp->work_in_progress, 1)) {
3479		if (atomic_read(&krcp->backoff_page_cache_fill)) {
3480			queue_delayed_work(system_wq,
3481				&krcp->page_cache_work,
3482					msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3483		} else {
3484			hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3485			krcp->hrtimer.function = schedule_page_work_fn;
3486			hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3487		}
3488	}
3489}
3490
3491// Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3492// state specified by flags.  If can_alloc is true, the caller must
3493// be schedulable and not be holding any locks or mutexes that might be
3494// acquired by the memory allocator or anything that it might invoke.
3495// Returns true if ptr was successfully recorded, else the caller must
3496// use a fallback.
3497static inline bool
3498add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3499	unsigned long *flags, void *ptr, bool can_alloc)
3500{
3501	struct kvfree_rcu_bulk_data *bnode;
3502	int idx;
3503
3504	*krcp = krc_this_cpu_lock(flags);
3505	if (unlikely(!(*krcp)->initialized))
3506		return false;
3507
3508	idx = !!is_vmalloc_addr(ptr);
3509
3510	/* Check if a new block is required. */
3511	if (!(*krcp)->bkvhead[idx] ||
3512			(*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3513		bnode = get_cached_bnode(*krcp);
3514		if (!bnode && can_alloc) {
3515			krc_this_cpu_unlock(*krcp, *flags);
3516
3517			// __GFP_NORETRY - allows a light-weight direct reclaim
3518			// what is OK from minimizing of fallback hitting point of
3519			// view. Apart of that it forbids any OOM invoking what is
3520			// also beneficial since we are about to release memory soon.
3521			//
3522			// __GFP_NOMEMALLOC - prevents from consuming of all the
3523			// memory reserves. Please note we have a fallback path.
3524			//
3525			// __GFP_NOWARN - it is supposed that an allocation can
3526			// be failed under low memory or high memory pressure
3527			// scenarios.
3528			bnode = (struct kvfree_rcu_bulk_data *)
3529				__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3530			*krcp = krc_this_cpu_lock(flags);
3531		}
3532
3533		if (!bnode)
3534			return false;
3535
3536		/* Initialize the new block. */
3537		bnode->nr_records = 0;
3538		bnode->next = (*krcp)->bkvhead[idx];
3539
3540		/* Attach it to the head. */
3541		(*krcp)->bkvhead[idx] = bnode;
3542	}
3543
3544	/* Finally insert. */
3545	(*krcp)->bkvhead[idx]->records
3546		[(*krcp)->bkvhead[idx]->nr_records++] = ptr;
3547
3548	return true;
3549}
3550
3551/*
3552 * Queue a request for lazy invocation of the appropriate free routine
3553 * after a grace period.  Please note that three paths are maintained,
3554 * two for the common case using arrays of pointers and a third one that
3555 * is used only when the main paths cannot be used, for example, due to
3556 * memory pressure.
3557 *
3558 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3559 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3560 * be free'd in workqueue context. This allows us to: batch requests together to
3561 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3562 */
3563void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3564{
3565	unsigned long flags;
3566	struct kfree_rcu_cpu *krcp;
3567	bool success;
3568	void *ptr;
3569
3570	if (head) {
3571		ptr = (void *) head - (unsigned long) func;
3572	} else {
3573		/*
3574		 * Please note there is a limitation for the head-less
3575		 * variant, that is why there is a clear rule for such
3576		 * objects: it can be used from might_sleep() context
3577		 * only. For other places please embed an rcu_head to
3578		 * your data.
3579		 */
3580		might_sleep();
3581		ptr = (unsigned long *) func;
3582	}
3583
3584	// Queue the object but don't yet schedule the batch.
3585	if (debug_rcu_head_queue(ptr)) {
3586		// Probable double kfree_rcu(), just leak.
3587		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3588			  __func__, head);
3589
3590		// Mark as success and leave.
3591		return;
3592	}
3593
3594	kasan_record_aux_stack(ptr);
3595	success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3596	if (!success) {
3597		run_page_cache_worker(krcp);
3598
3599		if (head == NULL)
3600			// Inline if kvfree_rcu(one_arg) call.
3601			goto unlock_return;
3602
3603		head->func = func;
3604		head->next = krcp->head;
3605		krcp->head = head;
3606		success = true;
3607	}
3608
3609	WRITE_ONCE(krcp->count, krcp->count + 1);
3610
3611	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3612	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3613	    !krcp->monitor_todo) {
3614		krcp->monitor_todo = true;
3615		schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3616	}
3617
3618unlock_return:
3619	krc_this_cpu_unlock(krcp, flags);
3620
3621	/*
3622	 * Inline kvfree() after synchronize_rcu(). We can do
3623	 * it from might_sleep() context only, so the current
3624	 * CPU can pass the QS state.
3625	 */
3626	if (!success) {
3627		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3628		synchronize_rcu();
3629		kvfree(ptr);
3630	}
3631}
3632EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3633
3634static unsigned long
3635kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3636{
3637	int cpu;
3638	unsigned long count = 0;
3639
3640	/* Snapshot count of all CPUs */
3641	for_each_possible_cpu(cpu) {
3642		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3643
3644		count += READ_ONCE(krcp->count);
3645		count += READ_ONCE(krcp->nr_bkv_objs);
3646		atomic_set(&krcp->backoff_page_cache_fill, 1);
3647	}
3648
3649	return count;
3650}
3651
3652static unsigned long
3653kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3654{
3655	int cpu, freed = 0;
3656
3657	for_each_possible_cpu(cpu) {
3658		int count;
3659		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3660
3661		count = krcp->count;
3662		count += drain_page_cache(krcp);
3663		kfree_rcu_monitor(&krcp->monitor_work.work);
3664
3665		sc->nr_to_scan -= count;
3666		freed += count;
3667
3668		if (sc->nr_to_scan <= 0)
3669			break;
3670	}
3671
3672	return freed == 0 ? SHRINK_STOP : freed;
3673}
3674
3675static struct shrinker kfree_rcu_shrinker = {
3676	.count_objects = kfree_rcu_shrink_count,
3677	.scan_objects = kfree_rcu_shrink_scan,
3678	.batch = 0,
3679	.seeks = DEFAULT_SEEKS,
3680};
3681
3682void __init kfree_rcu_scheduler_running(void)
3683{
3684	int cpu;
3685	unsigned long flags;
3686
3687	for_each_possible_cpu(cpu) {
3688		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3689
3690		raw_spin_lock_irqsave(&krcp->lock, flags);
3691		if ((!krcp->bkvhead[0] && !krcp->bkvhead[1] && !krcp->head) ||
3692				krcp->monitor_todo) {
3693			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3694			continue;
3695		}
3696		krcp->monitor_todo = true;
3697		schedule_delayed_work_on(cpu, &krcp->monitor_work,
3698					 KFREE_DRAIN_JIFFIES);
3699		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3700	}
3701}
 
3702
3703/*
3704 * During early boot, any blocking grace-period wait automatically
3705 * implies a grace period.  Later on, this is never the case for PREEMPTION.
3706 *
3707 * However, because a context switch is a grace period for !PREEMPTION, any
3708 * blocking grace-period wait automatically implies a grace period if
3709 * there is only one CPU online at any point time during execution of
3710 * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
3711 * occasionally incorrectly indicate that there are multiple CPUs online
3712 * when there was in fact only one the whole time, as this just adds some
3713 * overhead: RCU still operates correctly.
3714 */
3715static int rcu_blocking_is_gp(void)
3716{
3717	int ret;
3718
3719	if (IS_ENABLED(CONFIG_PREEMPTION))
3720		return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
3721	might_sleep();  /* Check for RCU read-side critical section. */
3722	preempt_disable();
3723	/*
3724	 * If the rcu_state.n_online_cpus counter is equal to one,
3725	 * there is only one CPU, and that CPU sees all prior accesses
3726	 * made by any CPU that was online at the time of its access.
3727	 * Furthermore, if this counter is equal to one, its value cannot
3728	 * change until after the preempt_enable() below.
3729	 *
3730	 * Furthermore, if rcu_state.n_online_cpus is equal to one here,
3731	 * all later CPUs (both this one and any that come online later
3732	 * on) are guaranteed to see all accesses prior to this point
3733	 * in the code, without the need for additional memory barriers.
3734	 * Those memory barriers are provided by CPU-hotplug code.
3735	 */
3736	ret = READ_ONCE(rcu_state.n_online_cpus) <= 1;
3737	preempt_enable();
3738	return ret;
3739}
3740
3741/**
3742 * synchronize_rcu - wait until a grace period has elapsed.
3743 *
3744 * Control will return to the caller some time after a full grace
3745 * period has elapsed, in other words after all currently executing RCU
3746 * read-side critical sections have completed.  Note, however, that
3747 * upon return from synchronize_rcu(), the caller might well be executing
3748 * concurrently with new RCU read-side critical sections that began while
3749 * synchronize_rcu() was waiting.
3750 *
3751 * RCU read-side critical sections are delimited by rcu_read_lock()
3752 * and rcu_read_unlock(), and may be nested.  In addition, but only in
3753 * v5.0 and later, regions of code across which interrupts, preemption,
3754 * or softirqs have been disabled also serve as RCU read-side critical
3755 * sections.  This includes hardware interrupt handlers, softirq handlers,
3756 * and NMI handlers.
3757 *
3758 * Note that this guarantee implies further memory-ordering guarantees.
3759 * On systems with more than one CPU, when synchronize_rcu() returns,
3760 * each CPU is guaranteed to have executed a full memory barrier since
3761 * the end of its last RCU read-side critical section whose beginning
3762 * preceded the call to synchronize_rcu().  In addition, each CPU having
3763 * an RCU read-side critical section that extends beyond the return from
3764 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3765 * after the beginning of synchronize_rcu() and before the beginning of
3766 * that RCU read-side critical section.  Note that these guarantees include
3767 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3768 * that are executing in the kernel.
3769 *
3770 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3771 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3772 * to have executed a full memory barrier during the execution of
3773 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3774 * again only if the system has more than one CPU).
3775 *
3776 * Implementation of these memory-ordering guarantees is described here:
3777 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3778 */
3779void synchronize_rcu(void)
3780{
3781	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3782			 lock_is_held(&rcu_lock_map) ||
3783			 lock_is_held(&rcu_sched_lock_map),
3784			 "Illegal synchronize_rcu() in RCU read-side critical section");
3785	if (rcu_blocking_is_gp())
3786		return;  // Context allows vacuous grace periods.
3787	if (rcu_gp_is_expedited())
3788		synchronize_rcu_expedited();
3789	else
3790		wait_rcu_gp(call_rcu);
3791}
3792EXPORT_SYMBOL_GPL(synchronize_rcu);
3793
3794/**
3795 * get_state_synchronize_rcu - Snapshot current RCU state
3796 *
3797 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3798 * or poll_state_synchronize_rcu() to determine whether or not a full
3799 * grace period has elapsed in the meantime.
3800 */
3801unsigned long get_state_synchronize_rcu(void)
3802{
3803	/*
3804	 * Any prior manipulation of RCU-protected data must happen
3805	 * before the load from ->gp_seq.
3806	 */
3807	smp_mb();  /* ^^^ */
3808	return rcu_seq_snap(&rcu_state.gp_seq);
3809}
3810EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3811
3812/**
3813 * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3814 *
3815 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3816 * or poll_state_synchronize_rcu() to determine whether or not a full
3817 * grace period has elapsed in the meantime.  If the needed grace period
3818 * is not already slated to start, notifies RCU core of the need for that
3819 * grace period.
3820 *
3821 * Interrupts must be enabled for the case where it is necessary to awaken
3822 * the grace-period kthread.
3823 */
3824unsigned long start_poll_synchronize_rcu(void)
3825{
3826	unsigned long flags;
3827	unsigned long gp_seq = get_state_synchronize_rcu();
3828	bool needwake;
3829	struct rcu_data *rdp;
3830	struct rcu_node *rnp;
3831
3832	lockdep_assert_irqs_enabled();
3833	local_irq_save(flags);
3834	rdp = this_cpu_ptr(&rcu_data);
3835	rnp = rdp->mynode;
3836	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3837	needwake = rcu_start_this_gp(rnp, rdp, gp_seq);
3838	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3839	if (needwake)
3840		rcu_gp_kthread_wake();
3841	return gp_seq;
3842}
3843EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3844
3845/**
3846 * poll_state_synchronize_rcu - Conditionally wait for an RCU grace period
3847 *
3848 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3849 *
3850 * If a full RCU grace period has elapsed since the earlier call from
3851 * which oldstate was obtained, return @true, otherwise return @false.
3852 * If @false is returned, it is the caller's responsibility to invoke this
3853 * function later on until it does return @true.  Alternatively, the caller
3854 * can explicitly wait for a grace period, for example, by passing @oldstate
3855 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3856 *
3857 * Yes, this function does not take counter wrap into account.
3858 * But counter wrap is harmless.  If the counter wraps, we have waited for
3859 * more than 2 billion grace periods (and way more on a 64-bit system!).
3860 * Those needing to keep oldstate values for very long time periods
3861 * (many hours even on 32-bit systems) should check them occasionally
3862 * and either refresh them or set a flag indicating that the grace period
3863 * has completed.
3864 *
3865 * This function provides the same memory-ordering guarantees that
3866 * would be provided by a synchronize_rcu() that was invoked at the call
3867 * to the function that provided @oldstate, and that returned at the end
3868 * of this function.
3869 */
3870bool poll_state_synchronize_rcu(unsigned long oldstate)
3871{
3872	if (rcu_seq_done(&rcu_state.gp_seq, oldstate)) {
3873		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3874		return true;
3875	}
3876	return false;
3877}
3878EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3879
3880/**
3881 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3882 *
3883 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3884 *
3885 * If a full RCU grace period has elapsed since the earlier call to
3886 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3887 * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3888 *
3889 * Yes, this function does not take counter wrap into account.  But
3890 * counter wrap is harmless.  If the counter wraps, we have waited for
3891 * more than 2 billion grace periods (and way more on a 64-bit system!),
3892 * so waiting for one additional grace period should be just fine.
3893 *
3894 * This function provides the same memory-ordering guarantees that
3895 * would be provided by a synchronize_rcu() that was invoked at the call
3896 * to the function that provided @oldstate, and that returned at the end
3897 * of this function.
3898 */
3899void cond_synchronize_rcu(unsigned long oldstate)
3900{
3901	if (!poll_state_synchronize_rcu(oldstate))
3902		synchronize_rcu();
 
 
3903}
3904EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3905
3906/*
3907 * Check to see if there is any immediate RCU-related work to be done by
3908 * the current CPU, returning 1 if so and zero otherwise.  The checks are
3909 * in order of increasing expense: checks that can be carried out against
3910 * CPU-local state are performed first.  However, we must check for CPU
3911 * stalls first, else we might not get a chance.
3912 */
3913static int rcu_pending(int user)
3914{
3915	bool gp_in_progress;
3916	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3917	struct rcu_node *rnp = rdp->mynode;
3918
3919	lockdep_assert_irqs_disabled();
3920
3921	/* Check for CPU stalls, if enabled. */
3922	check_cpu_stall(rdp);
3923
3924	/* Does this CPU need a deferred NOCB wakeup? */
3925	if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3926		return 1;
3927
3928	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3929	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3930		return 0;
3931
3932	/* Is the RCU core waiting for a quiescent state from this CPU? */
3933	gp_in_progress = rcu_gp_in_progress();
3934	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3935		return 1;
3936
3937	/* Does this CPU have callbacks ready to invoke? */
3938	if (!rcu_rdp_is_offloaded(rdp) &&
3939	    rcu_segcblist_ready_cbs(&rdp->cblist))
3940		return 1;
3941
3942	/* Has RCU gone idle with this CPU needing another grace period? */
3943	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3944	    !rcu_rdp_is_offloaded(rdp) &&
 
 
3945	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3946		return 1;
3947
3948	/* Have RCU grace period completed or started?  */
3949	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3950	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3951		return 1;
3952
3953	/* nothing to do */
3954	return 0;
3955}
3956
3957/*
3958 * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3959 * the compiler is expected to optimize this away.
3960 */
3961static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3962{
3963	trace_rcu_barrier(rcu_state.name, s, cpu,
3964			  atomic_read(&rcu_state.barrier_cpu_count), done);
3965}
3966
3967/*
3968 * RCU callback function for rcu_barrier().  If we are last, wake
3969 * up the task executing rcu_barrier().
3970 *
3971 * Note that the value of rcu_state.barrier_sequence must be captured
3972 * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3973 * other CPUs might count the value down to zero before this CPU gets
3974 * around to invoking rcu_barrier_trace(), which might result in bogus
3975 * data from the next instance of rcu_barrier().
3976 */
3977static void rcu_barrier_callback(struct rcu_head *rhp)
3978{
3979	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3980
3981	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3982		rcu_barrier_trace(TPS("LastCB"), -1, s);
 
3983		complete(&rcu_state.barrier_completion);
3984	} else {
3985		rcu_barrier_trace(TPS("CB"), -1, s);
3986	}
3987}
3988
3989/*
3990 * Called with preemption disabled, and from cross-cpu IRQ context.
3991 */
3992static void rcu_barrier_func(void *cpu_in)
3993{
3994	uintptr_t cpu = (uintptr_t)cpu_in;
3995	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3996
3997	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3998	rdp->barrier_head.func = rcu_barrier_callback;
3999	debug_rcu_head_queue(&rdp->barrier_head);
4000	rcu_nocb_lock(rdp);
4001	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
4002	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
4003		atomic_inc(&rcu_state.barrier_cpu_count);
4004	} else {
4005		debug_rcu_head_unqueue(&rdp->barrier_head);
4006		rcu_barrier_trace(TPS("IRQNQ"), -1,
4007				  rcu_state.barrier_sequence);
4008	}
4009	rcu_nocb_unlock(rdp);
4010}
4011
4012/**
4013 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
4014 *
4015 * Note that this primitive does not necessarily wait for an RCU grace period
4016 * to complete.  For example, if there are no RCU callbacks queued anywhere
4017 * in the system, then rcu_barrier() is within its rights to return
4018 * immediately, without waiting for anything, much less an RCU grace period.
4019 */
4020void rcu_barrier(void)
4021{
4022	uintptr_t cpu;
4023	struct rcu_data *rdp;
4024	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4025
4026	rcu_barrier_trace(TPS("Begin"), -1, s);
4027
4028	/* Take mutex to serialize concurrent rcu_barrier() requests. */
4029	mutex_lock(&rcu_state.barrier_mutex);
4030
4031	/* Did someone else do our work for us? */
4032	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4033		rcu_barrier_trace(TPS("EarlyExit"), -1,
4034				  rcu_state.barrier_sequence);
4035		smp_mb(); /* caller's subsequent code after above check. */
4036		mutex_unlock(&rcu_state.barrier_mutex);
4037		return;
4038	}
4039
4040	/* Mark the start of the barrier operation. */
4041	rcu_seq_start(&rcu_state.barrier_sequence);
4042	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4043
4044	/*
4045	 * Initialize the count to two rather than to zero in order
4046	 * to avoid a too-soon return to zero in case of an immediate
4047	 * invocation of the just-enqueued callback (or preemption of
4048	 * this task).  Exclude CPU-hotplug operations to ensure that no
4049	 * offline non-offloaded CPU has callbacks queued.
4050	 */
4051	init_completion(&rcu_state.barrier_completion);
4052	atomic_set(&rcu_state.barrier_cpu_count, 2);
4053	get_online_cpus();
4054
4055	/*
4056	 * Force each CPU with callbacks to register a new callback.
4057	 * When that callback is invoked, we will know that all of the
4058	 * corresponding CPU's preceding callbacks have been invoked.
4059	 */
4060	for_each_possible_cpu(cpu) {
4061		rdp = per_cpu_ptr(&rcu_data, cpu);
4062		if (cpu_is_offline(cpu) &&
4063		    !rcu_rdp_is_offloaded(rdp))
4064			continue;
4065		if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) {
4066			rcu_barrier_trace(TPS("OnlineQ"), cpu,
4067					  rcu_state.barrier_sequence);
4068			smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1);
4069		} else if (rcu_segcblist_n_cbs(&rdp->cblist) &&
4070			   cpu_is_offline(cpu)) {
4071			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu,
4072					  rcu_state.barrier_sequence);
4073			local_irq_disable();
4074			rcu_barrier_func((void *)cpu);
4075			local_irq_enable();
4076		} else if (cpu_is_offline(cpu)) {
4077			rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu,
4078					  rcu_state.barrier_sequence);
4079		} else {
4080			rcu_barrier_trace(TPS("OnlineNQ"), cpu,
4081					  rcu_state.barrier_sequence);
4082		}
4083	}
4084	put_online_cpus();
4085
4086	/*
4087	 * Now that we have an rcu_barrier_callback() callback on each
4088	 * CPU, and thus each counted, remove the initial count.
4089	 */
4090	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4091		complete(&rcu_state.barrier_completion);
4092
4093	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4094	wait_for_completion(&rcu_state.barrier_completion);
4095
4096	/* Mark the end of the barrier operation. */
4097	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4098	rcu_seq_end(&rcu_state.barrier_sequence);
4099
4100	/* Other rcu_barrier() invocations can now safely proceed. */
4101	mutex_unlock(&rcu_state.barrier_mutex);
4102}
4103EXPORT_SYMBOL_GPL(rcu_barrier);
4104
4105/*
4106 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4107 * first CPU in a given leaf rcu_node structure coming online.  The caller
4108 * must hold the corresponding leaf rcu_node ->lock with interrupts
4109 * disabled.
4110 */
4111static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4112{
4113	long mask;
4114	long oldmask;
4115	struct rcu_node *rnp = rnp_leaf;
4116
4117	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4118	WARN_ON_ONCE(rnp->wait_blkd_tasks);
4119	for (;;) {
4120		mask = rnp->grpmask;
4121		rnp = rnp->parent;
4122		if (rnp == NULL)
4123			return;
4124		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4125		oldmask = rnp->qsmaskinit;
4126		rnp->qsmaskinit |= mask;
4127		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4128		if (oldmask)
4129			return;
4130	}
4131}
4132
4133/*
4134 * Do boot-time initialization of a CPU's per-CPU RCU data.
4135 */
4136static void __init
4137rcu_boot_init_percpu_data(int cpu)
4138{
4139	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4140
4141	/* Set up local state, ensuring consistent view of global state. */
4142	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4143	INIT_WORK(&rdp->strict_work, strict_work_handler);
4144	WARN_ON_ONCE(rdp->dynticks_nesting != 1);
4145	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
4146	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4147	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4148	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4149	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4150	rdp->cpu = cpu;
4151	rcu_boot_init_nocb_percpu_data(rdp);
4152}
4153
4154/*
4155 * Invoked early in the CPU-online process, when pretty much all services
4156 * are available.  The incoming CPU is not present.
4157 *
4158 * Initializes a CPU's per-CPU RCU data.  Note that only one online or
4159 * offline event can be happening at a given time.  Note also that we can
4160 * accept some slop in the rsp->gp_seq access due to the fact that this
4161 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4162 * And any offloaded callbacks are being numbered elsewhere.
4163 */
4164int rcutree_prepare_cpu(unsigned int cpu)
4165{
4166	unsigned long flags;
4167	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4168	struct rcu_node *rnp = rcu_get_root();
4169
4170	/* Set up local state, ensuring consistent view of global state. */
4171	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4172	rdp->qlen_last_fqs_check = 0;
4173	rdp->n_force_qs_snap = rcu_state.n_force_qs;
4174	rdp->blimit = blimit;
 
 
 
4175	rdp->dynticks_nesting = 1;	/* CPU not up, no tearing. */
4176	rcu_dynticks_eqs_online();
4177	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4178
4179	/*
4180	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4181	 * (re-)initialized.
4182	 */
4183	if (!rcu_segcblist_is_enabled(&rdp->cblist))
4184		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
4185
4186	/*
4187	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4188	 * propagation up the rcu_node tree will happen at the beginning
4189	 * of the next grace period.
4190	 */
4191	rnp = rdp->mynode;
4192	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4193	rdp->beenonline = true;	 /* We have now been online. */
4194	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4195	rdp->gp_seq_needed = rdp->gp_seq;
4196	rdp->cpu_no_qs.b.norm = true;
4197	rdp->core_needs_qs = false;
4198	rdp->rcu_iw_pending = false;
4199	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4200	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4201	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4202	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4203	rcu_spawn_one_boost_kthread(rnp);
4204	rcu_spawn_cpu_nocb_kthread(cpu);
4205	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4206
4207	return 0;
4208}
4209
4210/*
4211 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4212 */
4213static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4214{
4215	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4216
4217	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4218}
4219
4220/*
4221 * Near the end of the CPU-online process.  Pretty much all services
4222 * enabled, and the CPU is now very much alive.
4223 */
4224int rcutree_online_cpu(unsigned int cpu)
4225{
4226	unsigned long flags;
4227	struct rcu_data *rdp;
4228	struct rcu_node *rnp;
4229
4230	rdp = per_cpu_ptr(&rcu_data, cpu);
4231	rnp = rdp->mynode;
4232	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4233	rnp->ffmask |= rdp->grpmask;
4234	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4235	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4236		return 0; /* Too early in boot for scheduler work. */
4237	sync_sched_exp_online_cleanup(cpu);
4238	rcutree_affinity_setting(cpu, -1);
4239
4240	// Stop-machine done, so allow nohz_full to disable tick.
4241	tick_dep_clear(TICK_DEP_BIT_RCU);
4242	return 0;
4243}
4244
4245/*
4246 * Near the beginning of the process.  The CPU is still very much alive
4247 * with pretty much all services enabled.
4248 */
4249int rcutree_offline_cpu(unsigned int cpu)
4250{
4251	unsigned long flags;
4252	struct rcu_data *rdp;
4253	struct rcu_node *rnp;
4254
4255	rdp = per_cpu_ptr(&rcu_data, cpu);
4256	rnp = rdp->mynode;
4257	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4258	rnp->ffmask &= ~rdp->grpmask;
4259	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4260
4261	rcutree_affinity_setting(cpu, cpu);
4262
4263	// nohz_full CPUs need the tick for stop-machine to work quickly
4264	tick_dep_set(TICK_DEP_BIT_RCU);
4265	return 0;
4266}
4267
 
 
4268/*
4269 * Mark the specified CPU as being online so that subsequent grace periods
4270 * (both expedited and normal) will wait on it.  Note that this means that
4271 * incoming CPUs are not allowed to use RCU read-side critical sections
4272 * until this function is called.  Failing to observe this restriction
4273 * will result in lockdep splats.
4274 *
4275 * Note that this function is special in that it is invoked directly
4276 * from the incoming CPU rather than from the cpuhp_step mechanism.
4277 * This is because this function must be invoked at a precise location.
4278 */
4279void rcu_cpu_starting(unsigned int cpu)
4280{
4281	unsigned long flags;
4282	unsigned long mask;
 
 
4283	struct rcu_data *rdp;
4284	struct rcu_node *rnp;
4285	bool newcpu;
4286
4287	rdp = per_cpu_ptr(&rcu_data, cpu);
4288	if (rdp->cpu_started)
4289		return;
4290	rdp->cpu_started = true;
4291
 
 
 
4292	rnp = rdp->mynode;
4293	mask = rdp->grpmask;
4294	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4295	WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4296	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4297	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4298	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4299	newcpu = !(rnp->expmaskinitnext & mask);
4300	rnp->expmaskinitnext |= mask;
 
 
4301	/* Allow lockless access for expedited grace periods. */
4302	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4303	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4304	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4305	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4306	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4307
4308	/* An incoming CPU should never be blocking a grace period. */
4309	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4310		rcu_disable_urgency_upon_qs(rdp);
4311		/* Report QS -after- changing ->qsmaskinitnext! */
4312		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4313	} else {
4314		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4315	}
4316	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4317	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4318	WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4319	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4320}
4321
 
4322/*
4323 * The outgoing function has no further need of RCU, so remove it from
4324 * the rcu_node tree's ->qsmaskinitnext bit masks.
4325 *
4326 * Note that this function is special in that it is invoked directly
4327 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4328 * This is because this function must be invoked at a precise location.
4329 */
4330void rcu_report_dead(unsigned int cpu)
4331{
4332	unsigned long flags;
4333	unsigned long mask;
4334	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4335	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4336
4337	// Do any dangling deferred wakeups.
4338	do_nocb_deferred_wakeup(rdp);
4339
4340	/* QS for any half-done expedited grace period. */
4341	preempt_disable();
4342	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
4343	preempt_enable();
4344	rcu_preempt_deferred_qs(current);
4345
4346	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4347	mask = rdp->grpmask;
4348	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4349	WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4350	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4351	raw_spin_lock(&rcu_state.ofl_lock);
4352	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4353	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4354	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4355	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4356		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4357		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4358		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4359	}
4360	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4361	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4362	raw_spin_unlock(&rcu_state.ofl_lock);
4363	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4364	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4365	WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4366
4367	rdp->cpu_started = false;
4368}
4369
4370#ifdef CONFIG_HOTPLUG_CPU
4371/*
4372 * The outgoing CPU has just passed through the dying-idle state, and we
4373 * are being invoked from the CPU that was IPIed to continue the offline
4374 * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
4375 */
4376void rcutree_migrate_callbacks(int cpu)
4377{
4378	unsigned long flags;
4379	struct rcu_data *my_rdp;
4380	struct rcu_node *my_rnp;
4381	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4382	bool needwake;
4383
4384	if (rcu_rdp_is_offloaded(rdp) ||
4385	    rcu_segcblist_empty(&rdp->cblist))
4386		return;  /* No callbacks to migrate. */
4387
4388	local_irq_save(flags);
4389	my_rdp = this_cpu_ptr(&rcu_data);
4390	my_rnp = my_rdp->mynode;
4391	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4392	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
4393	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4394	/* Leverage recent GPs and set GP for new callbacks. */
4395	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4396		   rcu_advance_cbs(my_rnp, my_rdp);
4397	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4398	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4399	rcu_segcblist_disable(&rdp->cblist);
4400	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
4401		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
4402	if (rcu_rdp_is_offloaded(my_rdp)) {
4403		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4404		__call_rcu_nocb_wake(my_rdp, true, flags);
4405	} else {
4406		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4407		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4408	}
4409	if (needwake)
4410		rcu_gp_kthread_wake();
4411	lockdep_assert_irqs_enabled();
4412	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4413		  !rcu_segcblist_empty(&rdp->cblist),
4414		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4415		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4416		  rcu_segcblist_first_cb(&rdp->cblist));
4417}
4418#endif
4419
4420/*
4421 * On non-huge systems, use expedited RCU grace periods to make suspend
4422 * and hibernation run faster.
4423 */
4424static int rcu_pm_notify(struct notifier_block *self,
4425			 unsigned long action, void *hcpu)
4426{
4427	switch (action) {
4428	case PM_HIBERNATION_PREPARE:
4429	case PM_SUSPEND_PREPARE:
4430		rcu_expedite_gp();
4431		break;
4432	case PM_POST_HIBERNATION:
4433	case PM_POST_SUSPEND:
4434		rcu_unexpedite_gp();
4435		break;
4436	default:
4437		break;
4438	}
4439	return NOTIFY_OK;
4440}
4441
4442/*
4443 * Spawn the kthreads that handle RCU's grace periods.
4444 */
4445static int __init rcu_spawn_gp_kthread(void)
4446{
4447	unsigned long flags;
4448	int kthread_prio_in = kthread_prio;
4449	struct rcu_node *rnp;
4450	struct sched_param sp;
4451	struct task_struct *t;
4452
4453	/* Force priority into range. */
4454	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4455	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4456		kthread_prio = 2;
4457	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4458		kthread_prio = 1;
4459	else if (kthread_prio < 0)
4460		kthread_prio = 0;
4461	else if (kthread_prio > 99)
4462		kthread_prio = 99;
4463
4464	if (kthread_prio != kthread_prio_in)
4465		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4466			 kthread_prio, kthread_prio_in);
4467
4468	rcu_scheduler_fully_active = 1;
4469	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4470	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4471		return 0;
4472	if (kthread_prio) {
4473		sp.sched_priority = kthread_prio;
4474		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4475	}
4476	rnp = rcu_get_root();
4477	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4478	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4479	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4480	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4481	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4482	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4483	wake_up_process(t);
4484	rcu_spawn_nocb_kthreads();
4485	rcu_spawn_boost_kthreads();
4486	rcu_spawn_core_kthreads();
4487	return 0;
4488}
4489early_initcall(rcu_spawn_gp_kthread);
4490
4491/*
4492 * This function is invoked towards the end of the scheduler's
4493 * initialization process.  Before this is called, the idle task might
4494 * contain synchronous grace-period primitives (during which time, this idle
4495 * task is booting the system, and such primitives are no-ops).  After this
4496 * function is called, any synchronous grace-period primitives are run as
4497 * expedited, with the requesting task driving the grace period forward.
4498 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4499 * runtime RCU functionality.
4500 */
4501void rcu_scheduler_starting(void)
4502{
4503	WARN_ON(num_online_cpus() != 1);
4504	WARN_ON(nr_context_switches() > 0);
4505	rcu_test_sync_prims();
4506	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4507	rcu_test_sync_prims();
4508}
4509
4510/*
4511 * Helper function for rcu_init() that initializes the rcu_state structure.
4512 */
4513static void __init rcu_init_one(void)
4514{
4515	static const char * const buf[] = RCU_NODE_NAME_INIT;
4516	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4517	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4518	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4519
4520	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4521	int cpustride = 1;
4522	int i;
4523	int j;
4524	struct rcu_node *rnp;
4525
4526	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4527
4528	/* Silence gcc 4.8 false positive about array index out of range. */
4529	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4530		panic("rcu_init_one: rcu_num_lvls out of range");
4531
4532	/* Initialize the level-tracking arrays. */
4533
4534	for (i = 1; i < rcu_num_lvls; i++)
4535		rcu_state.level[i] =
4536			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4537	rcu_init_levelspread(levelspread, num_rcu_lvl);
4538
4539	/* Initialize the elements themselves, starting from the leaves. */
4540
4541	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4542		cpustride *= levelspread[i];
4543		rnp = rcu_state.level[i];
4544		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4545			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4546			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4547						   &rcu_node_class[i], buf[i]);
4548			raw_spin_lock_init(&rnp->fqslock);
4549			lockdep_set_class_and_name(&rnp->fqslock,
4550						   &rcu_fqs_class[i], fqs[i]);
4551			rnp->gp_seq = rcu_state.gp_seq;
4552			rnp->gp_seq_needed = rcu_state.gp_seq;
4553			rnp->completedqs = rcu_state.gp_seq;
4554			rnp->qsmask = 0;
4555			rnp->qsmaskinit = 0;
4556			rnp->grplo = j * cpustride;
4557			rnp->grphi = (j + 1) * cpustride - 1;
4558			if (rnp->grphi >= nr_cpu_ids)
4559				rnp->grphi = nr_cpu_ids - 1;
4560			if (i == 0) {
4561				rnp->grpnum = 0;
4562				rnp->grpmask = 0;
4563				rnp->parent = NULL;
4564			} else {
4565				rnp->grpnum = j % levelspread[i - 1];
4566				rnp->grpmask = BIT(rnp->grpnum);
4567				rnp->parent = rcu_state.level[i - 1] +
4568					      j / levelspread[i - 1];
4569			}
4570			rnp->level = i;
4571			INIT_LIST_HEAD(&rnp->blkd_tasks);
4572			rcu_init_one_nocb(rnp);
4573			init_waitqueue_head(&rnp->exp_wq[0]);
4574			init_waitqueue_head(&rnp->exp_wq[1]);
4575			init_waitqueue_head(&rnp->exp_wq[2]);
4576			init_waitqueue_head(&rnp->exp_wq[3]);
4577			spin_lock_init(&rnp->exp_lock);
4578		}
4579	}
4580
4581	init_swait_queue_head(&rcu_state.gp_wq);
4582	init_swait_queue_head(&rcu_state.expedited_wq);
4583	rnp = rcu_first_leaf_node();
4584	for_each_possible_cpu(i) {
4585		while (i > rnp->grphi)
4586			rnp++;
4587		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4588		rcu_boot_init_percpu_data(i);
4589	}
4590}
4591
4592/*
4593 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4594 * replace the definitions in tree.h because those are needed to size
4595 * the ->node array in the rcu_state structure.
4596 */
4597void rcu_init_geometry(void)
4598{
4599	ulong d;
4600	int i;
4601	static unsigned long old_nr_cpu_ids;
4602	int rcu_capacity[RCU_NUM_LVLS];
4603	static bool initialized;
4604
4605	if (initialized) {
4606		/*
4607		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4608		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4609		 */
4610		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4611		return;
4612	}
4613
4614	old_nr_cpu_ids = nr_cpu_ids;
4615	initialized = true;
4616
4617	/*
4618	 * Initialize any unspecified boot parameters.
4619	 * The default values of jiffies_till_first_fqs and
4620	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4621	 * value, which is a function of HZ, then adding one for each
4622	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4623	 */
4624	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4625	if (jiffies_till_first_fqs == ULONG_MAX)
4626		jiffies_till_first_fqs = d;
4627	if (jiffies_till_next_fqs == ULONG_MAX)
4628		jiffies_till_next_fqs = d;
4629	adjust_jiffies_till_sched_qs();
4630
4631	/* If the compile-time values are accurate, just leave. */
4632	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4633	    nr_cpu_ids == NR_CPUS)
4634		return;
4635	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4636		rcu_fanout_leaf, nr_cpu_ids);
4637
4638	/*
4639	 * The boot-time rcu_fanout_leaf parameter must be at least two
4640	 * and cannot exceed the number of bits in the rcu_node masks.
4641	 * Complain and fall back to the compile-time values if this
4642	 * limit is exceeded.
4643	 */
4644	if (rcu_fanout_leaf < 2 ||
4645	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4646		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4647		WARN_ON(1);
4648		return;
4649	}
4650
4651	/*
4652	 * Compute number of nodes that can be handled an rcu_node tree
4653	 * with the given number of levels.
4654	 */
4655	rcu_capacity[0] = rcu_fanout_leaf;
4656	for (i = 1; i < RCU_NUM_LVLS; i++)
4657		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4658
4659	/*
4660	 * The tree must be able to accommodate the configured number of CPUs.
4661	 * If this limit is exceeded, fall back to the compile-time values.
4662	 */
4663	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4664		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4665		WARN_ON(1);
4666		return;
4667	}
4668
4669	/* Calculate the number of levels in the tree. */
4670	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4671	}
4672	rcu_num_lvls = i + 1;
4673
4674	/* Calculate the number of rcu_nodes at each level of the tree. */
4675	for (i = 0; i < rcu_num_lvls; i++) {
4676		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4677		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4678	}
4679
4680	/* Calculate the total number of rcu_node structures. */
4681	rcu_num_nodes = 0;
4682	for (i = 0; i < rcu_num_lvls; i++)
4683		rcu_num_nodes += num_rcu_lvl[i];
4684}
4685
4686/*
4687 * Dump out the structure of the rcu_node combining tree associated
4688 * with the rcu_state structure.
4689 */
4690static void __init rcu_dump_rcu_node_tree(void)
4691{
4692	int level = 0;
4693	struct rcu_node *rnp;
4694
4695	pr_info("rcu_node tree layout dump\n");
4696	pr_info(" ");
4697	rcu_for_each_node_breadth_first(rnp) {
4698		if (rnp->level != level) {
4699			pr_cont("\n");
4700			pr_info(" ");
4701			level = rnp->level;
4702		}
4703		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4704	}
4705	pr_cont("\n");
4706}
4707
4708struct workqueue_struct *rcu_gp_wq;
4709struct workqueue_struct *rcu_par_gp_wq;
4710
4711static void __init kfree_rcu_batch_init(void)
4712{
4713	int cpu;
4714	int i;
4715
4716	/* Clamp it to [0:100] seconds interval. */
4717	if (rcu_delay_page_cache_fill_msec < 0 ||
4718		rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
4719
4720		rcu_delay_page_cache_fill_msec =
4721			clamp(rcu_delay_page_cache_fill_msec, 0,
4722				(int) (100 * MSEC_PER_SEC));
4723
4724		pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
4725			rcu_delay_page_cache_fill_msec);
4726	}
4727
4728	for_each_possible_cpu(cpu) {
4729		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4730
4731		for (i = 0; i < KFREE_N_BATCHES; i++) {
4732			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4733			krcp->krw_arr[i].krcp = krcp;
4734		}
4735
4736		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4737		INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
4738		krcp->initialized = true;
4739	}
4740	if (register_shrinker(&kfree_rcu_shrinker))
4741		pr_err("Failed to register kfree_rcu() shrinker!\n");
4742}
4743
4744void __init rcu_init(void)
4745{
4746	int cpu;
4747
4748	rcu_early_boot_tests();
4749
4750	kfree_rcu_batch_init();
4751	rcu_bootup_announce();
4752	rcu_init_geometry();
4753	rcu_init_one();
4754	if (dump_tree)
4755		rcu_dump_rcu_node_tree();
4756	if (use_softirq)
4757		open_softirq(RCU_SOFTIRQ, rcu_core_si);
4758
4759	/*
4760	 * We don't need protection against CPU-hotplug here because
4761	 * this is called early in boot, before either interrupts
4762	 * or the scheduler are operational.
4763	 */
4764	pm_notifier(rcu_pm_notify, 0);
4765	for_each_online_cpu(cpu) {
4766		rcutree_prepare_cpu(cpu);
4767		rcu_cpu_starting(cpu);
4768		rcutree_online_cpu(cpu);
4769	}
4770
4771	/* Create workqueue for Tree SRCU and for expedited GPs. */
4772	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4773	WARN_ON(!rcu_gp_wq);
4774	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4775	WARN_ON(!rcu_par_gp_wq);
4776
4777	/* Fill in default value for rcutree.qovld boot parameter. */
4778	/* -After- the rcu_node ->lock fields are initialized! */
4779	if (qovld < 0)
4780		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4781	else
4782		qovld_calc = qovld;
4783}
4784
4785#include "tree_stall.h"
4786#include "tree_exp.h"
4787#include "tree_plugin.h"