Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion
   4 *
   5 * Copyright IBM Corporation, 2008
   6 *
   7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
   8 *	    Manfred Spraul <manfred@colorfullife.com>
   9 *	    Paul E. McKenney <paulmck@linux.ibm.com> Hierarchical version
  10 *
  11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
  12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  13 *
  14 * For detailed explanation of Read-Copy Update mechanism see -
  15 *	Documentation/RCU
  16 */
  17
  18#define pr_fmt(fmt) "rcu: " fmt
  19
  20#include <linux/types.h>
  21#include <linux/kernel.h>
  22#include <linux/init.h>
  23#include <linux/spinlock.h>
  24#include <linux/smp.h>
  25#include <linux/rcupdate_wait.h>
  26#include <linux/interrupt.h>
  27#include <linux/sched.h>
  28#include <linux/sched/debug.h>
  29#include <linux/nmi.h>
  30#include <linux/atomic.h>
  31#include <linux/bitops.h>
  32#include <linux/export.h>
  33#include <linux/completion.h>
 
  34#include <linux/moduleparam.h>
 
 
  35#include <linux/percpu.h>
  36#include <linux/notifier.h>
  37#include <linux/cpu.h>
  38#include <linux/mutex.h>
  39#include <linux/time.h>
  40#include <linux/kernel_stat.h>
  41#include <linux/wait.h>
  42#include <linux/kthread.h>
  43#include <uapi/linux/sched/types.h>
  44#include <linux/prefetch.h>
  45#include <linux/delay.h>
  46#include <linux/stop_machine.h>
  47#include <linux/random.h>
  48#include <linux/trace_events.h>
  49#include <linux/suspend.h>
  50#include <linux/ftrace.h>
  51#include <linux/tick.h>
  52#include <linux/sysrq.h>
  53#include <linux/kprobes.h>
  54#include <linux/gfp.h>
  55#include <linux/oom.h>
  56#include <linux/smpboot.h>
  57#include <linux/jiffies.h>
 
  58#include <linux/sched/isolation.h>
  59#include <linux/sched/clock.h>
 
 
 
 
  60#include "../time/tick-internal.h"
  61
  62#include "tree.h"
  63#include "rcu.h"
  64
  65#ifdef MODULE_PARAM_PREFIX
  66#undef MODULE_PARAM_PREFIX
  67#endif
  68#define MODULE_PARAM_PREFIX "rcutree."
  69
  70/* Data structures. */
  71
  72/*
  73 * Steal a bit from the bottom of ->dynticks for idle entry/exit
  74 * control.  Initially this is for TLB flushing.
  75 */
  76#define RCU_DYNTICK_CTRL_MASK 0x1
  77#define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
  78#ifndef rcu_eqs_special_exit
  79#define rcu_eqs_special_exit() do { } while (0)
  80#endif
  81
  82static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
  83	.dynticks_nesting = 1,
  84	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
  85	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
  86};
  87struct rcu_state rcu_state = {
  88	.level = { &rcu_state.node[0] },
  89	.gp_state = RCU_GP_IDLE,
  90	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
  91	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
 
  92	.name = RCU_NAME,
  93	.abbr = RCU_ABBR,
  94	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
  95	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
  96	.ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
 
 
 
 
 
 
  97};
  98
  99/* Dump rcu_node combining tree at boot to verify correct setup. */
 100static bool dump_tree;
 101module_param(dump_tree, bool, 0444);
 102/* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
 103static bool use_softirq = 1;
 
 104module_param(use_softirq, bool, 0444);
 
 105/* Control rcu_node-tree auto-balancing at boot time. */
 106static bool rcu_fanout_exact;
 107module_param(rcu_fanout_exact, bool, 0444);
 108/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 109static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 110module_param(rcu_fanout_leaf, int, 0444);
 111int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 112/* Number of rcu_nodes at specified level. */
 113int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 114int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 115
 116/*
 117 * The rcu_scheduler_active variable is initialized to the value
 118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 119 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 120 * RCU can assume that there is but one task, allowing RCU to (for example)
 121 * optimize synchronize_rcu() to a simple barrier().  When this variable
 122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 123 * to detect real grace periods.  This variable is also used to suppress
 124 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 126 * is fully initialized, including all of its kthreads having been spawned.
 127 */
 128int rcu_scheduler_active __read_mostly;
 129EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 130
 131/*
 132 * The rcu_scheduler_fully_active variable transitions from zero to one
 133 * during the early_initcall() processing, which is after the scheduler
 134 * is capable of creating new tasks.  So RCU processing (for example,
 135 * creating tasks for RCU priority boosting) must be delayed until after
 136 * rcu_scheduler_fully_active transitions from zero to one.  We also
 137 * currently delay invocation of any RCU callbacks until after this point.
 138 *
 139 * It might later prove better for people registering RCU callbacks during
 140 * early boot to take responsibility for these callbacks, but one step at
 141 * a time.
 142 */
 143static int rcu_scheduler_fully_active __read_mostly;
 144
 145static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
 146			      unsigned long gps, unsigned long flags);
 147static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 148static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 149static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 150static void invoke_rcu_core(void);
 151static void rcu_report_exp_rdp(struct rcu_data *rdp);
 152static void sync_sched_exp_online_cleanup(int cpu);
 
 
 
 
 
 
 153
 154/* rcuc/rcub kthread realtime priority */
 
 
 
 
 155static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 156module_param(kthread_prio, int, 0444);
 157
 158/* Delay in jiffies for grace-period initialization delays, debug only. */
 159
 160static int gp_preinit_delay;
 161module_param(gp_preinit_delay, int, 0444);
 162static int gp_init_delay;
 163module_param(gp_init_delay, int, 0444);
 164static int gp_cleanup_delay;
 165module_param(gp_cleanup_delay, int, 0444);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 166
 167/* Retrieve RCU kthreads priority for rcutorture */
 168int rcu_get_gp_kthreads_prio(void)
 169{
 170	return kthread_prio;
 171}
 172EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
 173
 174/*
 175 * Number of grace periods between delays, normalized by the duration of
 176 * the delay.  The longer the delay, the more the grace periods between
 177 * each delay.  The reason for this normalization is that it means that,
 178 * for non-zero delays, the overall slowdown of grace periods is constant
 179 * regardless of the duration of the delay.  This arrangement balances
 180 * the need for long delays to increase some race probabilities with the
 181 * need for fast grace periods to increase other race probabilities.
 182 */
 183#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
 184
 185/*
 186 * Compute the mask of online CPUs for the specified rcu_node structure.
 187 * This will not be stable unless the rcu_node structure's ->lock is
 188 * held, but the bit corresponding to the current CPU will be stable
 189 * in most contexts.
 190 */
 191unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
 192{
 193	return READ_ONCE(rnp->qsmaskinitnext);
 194}
 195
 196/*
 197 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 198 * permit this function to be invoked without holding the root rcu_node
 199 * structure's ->lock, but of course results can be subject to change.
 200 */
 201static int rcu_gp_in_progress(void)
 202{
 203	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
 204}
 205
 206/*
 207 * Return the number of callbacks queued on the specified CPU.
 208 * Handles both the nocbs and normal cases.
 209 */
 210static long rcu_get_n_cbs_cpu(int cpu)
 211{
 212	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 213
 214	if (rcu_segcblist_is_enabled(&rdp->cblist))
 215		return rcu_segcblist_n_cbs(&rdp->cblist);
 216	return 0;
 217}
 218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 219void rcu_softirq_qs(void)
 220{
 
 
 
 
 221	rcu_qs();
 222	rcu_preempt_deferred_qs(current);
 
 223}
 224
 225/*
 226 * Record entry into an extended quiescent state.  This is only to be
 227 * called when not already in an extended quiescent state.
 228 */
 229static void rcu_dynticks_eqs_enter(void)
 230{
 231	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 232	int seq;
 233
 234	/*
 235	 * CPUs seeing atomic_add_return() must see prior RCU read-side
 236	 * critical sections, and we also must force ordering with the
 237	 * next idle sojourn.
 238	 */
 239	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
 240	/* Better be in an extended quiescent state! */
 241	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 242		     (seq & RCU_DYNTICK_CTRL_CTR));
 243	/* Better not have special action (TLB flush) pending! */
 244	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 245		     (seq & RCU_DYNTICK_CTRL_MASK));
 246}
 247
 248/*
 249 * Record exit from an extended quiescent state.  This is only to be
 250 * called from an extended quiescent state.
 251 */
 252static void rcu_dynticks_eqs_exit(void)
 253{
 254	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 255	int seq;
 256
 257	/*
 258	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
 259	 * and we also must force ordering with the next RCU read-side
 260	 * critical section.
 261	 */
 262	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
 263	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 264		     !(seq & RCU_DYNTICK_CTRL_CTR));
 265	if (seq & RCU_DYNTICK_CTRL_MASK) {
 266		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
 267		smp_mb__after_atomic(); /* _exit after clearing mask. */
 268		/* Prefer duplicate flushes to losing a flush. */
 269		rcu_eqs_special_exit();
 270	}
 271}
 272
 273/*
 274 * Reset the current CPU's ->dynticks counter to indicate that the
 275 * newly onlined CPU is no longer in an extended quiescent state.
 276 * This will either leave the counter unchanged, or increment it
 277 * to the next non-quiescent value.
 278 *
 279 * The non-atomic test/increment sequence works because the upper bits
 280 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 281 * or when the corresponding CPU is offline.
 282 */
 283static void rcu_dynticks_eqs_online(void)
 284{
 285	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 286
 287	if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
 288		return;
 289	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
 290}
 291
 292/*
 293 * Is the current CPU in an extended quiescent state?
 294 *
 295 * No ordering, as we are sampling CPU-local information.
 296 */
 297bool rcu_dynticks_curr_cpu_in_eqs(void)
 298{
 299	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 300
 301	return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
 302}
 303
 304/*
 305 * Snapshot the ->dynticks counter with full ordering so as to allow
 306 * stable comparison of this counter with past and future snapshots.
 
 
 
 
 
 
 
 
 
 307 */
 308int rcu_dynticks_snap(struct rcu_data *rdp)
 309{
 310	int snap = atomic_add_return(0, &rdp->dynticks);
 311
 312	return snap & ~RCU_DYNTICK_CTRL_MASK;
 313}
 
 
 
 
 
 
 314
 315/*
 316 * Return true if the snapshot returned from rcu_dynticks_snap()
 317 * indicates that RCU is in an extended quiescent state.
 318 */
 319static bool rcu_dynticks_in_eqs(int snap)
 320{
 321	return !(snap & RCU_DYNTICK_CTRL_CTR);
 322}
 323
 324/*
 325 * Return true if the CPU corresponding to the specified rcu_data
 326 * structure has spent some time in an extended quiescent state since
 327 * rcu_dynticks_snap() returned the specified snapshot.
 328 */
 329static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
 330{
 331	return snap != rcu_dynticks_snap(rdp);
 332}
 333
 334/*
 335 * Set the special (bottom) bit of the specified CPU so that it
 336 * will take special action (such as flushing its TLB) on the
 337 * next exit from an extended quiescent state.  Returns true if
 338 * the bit was successfully set, or false if the CPU was not in
 339 * an extended quiescent state.
 340 */
 341bool rcu_eqs_special_set(int cpu)
 342{
 343	int old;
 344	int new;
 345	struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
 346
 347	do {
 348		old = atomic_read(&rdp->dynticks);
 349		if (old & RCU_DYNTICK_CTRL_CTR)
 350			return false;
 351		new = old | RCU_DYNTICK_CTRL_MASK;
 352	} while (atomic_cmpxchg(&rdp->dynticks, old, new) != old);
 353	return true;
 354}
 355
 356/*
 357 * Let the RCU core know that this CPU has gone through the scheduler,
 358 * which is a quiescent state.  This is called when the need for a
 359 * quiescent state is urgent, so we burn an atomic operation and full
 360 * memory barriers to let the RCU core know about it, regardless of what
 361 * this CPU might (or might not) do in the near future.
 362 *
 363 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 364 *
 365 * The caller must have disabled interrupts and must not be idle.
 366 */
 367static void __maybe_unused rcu_momentary_dyntick_idle(void)
 368{
 369	int special;
 370
 371	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
 372	special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
 373				    &this_cpu_ptr(&rcu_data)->dynticks);
 374	/* It is illegal to call this from idle state. */
 375	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
 376	rcu_preempt_deferred_qs(current);
 377}
 
 378
 379/**
 380 * rcu_is_cpu_rrupt_from_idle - see if interrupted from idle
 381 *
 382 * If the current CPU is idle and running at a first-level (not nested)
 383 * interrupt from idle, return true.  The caller must have at least
 384 * disabled preemption.
 
 385 */
 386static int rcu_is_cpu_rrupt_from_idle(void)
 387{
 388	/* Called only from within the scheduling-clock interrupt */
 389	lockdep_assert_in_irq();
 
 
 
 
 
 
 390
 391	/* Check for counter underflows */
 392	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
 393			 "RCU dynticks_nesting counter underflow!");
 394	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
 395			 "RCU dynticks_nmi_nesting counter underflow/zero!");
 396
 397	/* Are we at first interrupt nesting level? */
 398	if (__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 1)
 
 399		return false;
 400
 
 
 
 
 
 401	/* Does CPU appear to be idle from an RCU standpoint? */
 402	return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
 403}
 404
 405#define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch ... */
 406#define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */
 
 407static long blimit = DEFAULT_RCU_BLIMIT;
 408#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
 409static long qhimark = DEFAULT_RCU_QHIMARK;
 410#define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
 411static long qlowmark = DEFAULT_RCU_QLOMARK;
 
 
 
 
 412
 413module_param(blimit, long, 0444);
 414module_param(qhimark, long, 0444);
 415module_param(qlowmark, long, 0444);
 
 416
 417static ulong jiffies_till_first_fqs = ULONG_MAX;
 418static ulong jiffies_till_next_fqs = ULONG_MAX;
 419static bool rcu_kick_kthreads;
 420static int rcu_divisor = 7;
 421module_param(rcu_divisor, int, 0644);
 422
 423/* Force an exit from rcu_do_batch() after 3 milliseconds. */
 424static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
 425module_param(rcu_resched_ns, long, 0644);
 426
 427/*
 428 * How long the grace period must be before we start recruiting
 429 * quiescent-state help from rcu_note_context_switch().
 430 */
 431static ulong jiffies_till_sched_qs = ULONG_MAX;
 432module_param(jiffies_till_sched_qs, ulong, 0444);
 433static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
 434module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
 435
 436/*
 437 * Make sure that we give the grace-period kthread time to detect any
 438 * idle CPUs before taking active measures to force quiescent states.
 439 * However, don't go below 100 milliseconds, adjusted upwards for really
 440 * large systems.
 441 */
 442static void adjust_jiffies_till_sched_qs(void)
 443{
 444	unsigned long j;
 445
 446	/* If jiffies_till_sched_qs was specified, respect the request. */
 447	if (jiffies_till_sched_qs != ULONG_MAX) {
 448		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
 449		return;
 450	}
 451	/* Otherwise, set to third fqs scan, but bound below on large system. */
 452	j = READ_ONCE(jiffies_till_first_fqs) +
 453		      2 * READ_ONCE(jiffies_till_next_fqs);
 454	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
 455		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
 456	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
 457	WRITE_ONCE(jiffies_to_sched_qs, j);
 458}
 459
 460static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
 461{
 462	ulong j;
 463	int ret = kstrtoul(val, 0, &j);
 464
 465	if (!ret) {
 466		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
 467		adjust_jiffies_till_sched_qs();
 468	}
 469	return ret;
 470}
 471
 472static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
 473{
 474	ulong j;
 475	int ret = kstrtoul(val, 0, &j);
 476
 477	if (!ret) {
 478		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
 479		adjust_jiffies_till_sched_qs();
 480	}
 481	return ret;
 482}
 483
 484static struct kernel_param_ops first_fqs_jiffies_ops = {
 485	.set = param_set_first_fqs_jiffies,
 486	.get = param_get_ulong,
 487};
 488
 489static struct kernel_param_ops next_fqs_jiffies_ops = {
 490	.set = param_set_next_fqs_jiffies,
 491	.get = param_get_ulong,
 492};
 493
 494module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
 495module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
 496module_param(rcu_kick_kthreads, bool, 0644);
 497
 498static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
 499static int rcu_pending(void);
 500
 501/*
 502 * Return the number of RCU GPs completed thus far for debug & stats.
 503 */
 504unsigned long rcu_get_gp_seq(void)
 505{
 506	return READ_ONCE(rcu_state.gp_seq);
 507}
 508EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
 509
 510/*
 511 * Return the number of RCU expedited batches completed thus far for
 512 * debug & stats.  Odd numbers mean that a batch is in progress, even
 513 * numbers mean idle.  The value returned will thus be roughly double
 514 * the cumulative batches since boot.
 515 */
 516unsigned long rcu_exp_batches_completed(void)
 517{
 518	return rcu_state.expedited_sequence;
 519}
 520EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 521
 522/*
 523 * Return the root node of the rcu_state structure.
 524 */
 525static struct rcu_node *rcu_get_root(void)
 526{
 527	return &rcu_state.node[0];
 528}
 529
 530/*
 531 * Convert a ->gp_state value to a character string.
 532 */
 533static const char *gp_state_getname(short gs)
 534{
 535	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
 536		return "???";
 537	return gp_state_names[gs];
 538}
 539
 540/*
 541 * Send along grace-period-related data for rcutorture diagnostics.
 542 */
 543void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 544			    unsigned long *gp_seq)
 545{
 546	switch (test_type) {
 547	case RCU_FLAVOR:
 548		*flags = READ_ONCE(rcu_state.gp_flags);
 549		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
 550		break;
 551	default:
 552		break;
 553	}
 554}
 555EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 556
 
 557/*
 558 * Enter an RCU extended quiescent state, which can be either the
 559 * idle loop or adaptive-tickless usermode execution.
 560 *
 561 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
 562 * the possibility of usermode upcalls having messed up our count
 563 * of interrupt nesting level during the prior busy period.
 564 */
 565static void rcu_eqs_enter(bool user)
 566{
 567	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 568
 569	WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
 570	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
 571	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 572		     rdp->dynticks_nesting == 0);
 573	if (rdp->dynticks_nesting != 1) {
 574		rdp->dynticks_nesting--;
 575		return;
 576	}
 577
 578	lockdep_assert_irqs_disabled();
 579	trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks);
 580	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
 581	rdp = this_cpu_ptr(&rcu_data);
 582	do_nocb_deferred_wakeup(rdp);
 583	rcu_prepare_for_idle();
 584	rcu_preempt_deferred_qs(current);
 585	WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
 586	rcu_dynticks_eqs_enter();
 587	rcu_dynticks_task_enter();
 588}
 589
 590/**
 591 * rcu_idle_enter - inform RCU that current CPU is entering idle
 592 *
 593 * Enter idle mode, in other words, -leave- the mode in which RCU
 594 * read-side critical sections can occur.  (Though RCU read-side
 595 * critical sections can occur in irq handlers in idle, a possibility
 596 * handled by irq_enter() and irq_exit().)
 597 *
 598 * If you add or remove a call to rcu_idle_enter(), be sure to test with
 599 * CONFIG_RCU_EQS_DEBUG=y.
 600 */
 601void rcu_idle_enter(void)
 602{
 603	lockdep_assert_irqs_disabled();
 604	rcu_eqs_enter(false);
 605}
 606
 607#ifdef CONFIG_NO_HZ_FULL
 608/**
 609 * rcu_user_enter - inform RCU that we are resuming userspace.
 610 *
 611 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 612 * is permitted between this call and rcu_user_exit(). This way the
 613 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 614 * when the CPU runs in userspace.
 615 *
 616 * If you add or remove a call to rcu_user_enter(), be sure to test with
 617 * CONFIG_RCU_EQS_DEBUG=y.
 618 */
 619void rcu_user_enter(void)
 620{
 621	lockdep_assert_irqs_disabled();
 622	rcu_eqs_enter(true);
 623}
 624#endif /* CONFIG_NO_HZ_FULL */
 625
 626/*
 627 * If we are returning from the outermost NMI handler that interrupted an
 628 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
 629 * to let the RCU grace-period handling know that the CPU is back to
 630 * being RCU-idle.
 631 *
 632 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
 633 * with CONFIG_RCU_EQS_DEBUG=y.
 
 
 
 
 634 */
 635static __always_inline void rcu_nmi_exit_common(bool irq)
 636{
 637	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 638
 639	/*
 640	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
 641	 * (We are exiting an NMI handler, so RCU better be paying attention
 642	 * to us!)
 643	 */
 644	WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
 645	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
 646
 647	/*
 648	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
 649	 * leave it in non-RCU-idle state.
 650	 */
 651	if (rdp->dynticks_nmi_nesting != 1) {
 652		trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks);
 653		WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
 654			   rdp->dynticks_nmi_nesting - 2);
 655		return;
 656	}
 657
 658	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
 659	trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks);
 660	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
 661
 662	if (irq)
 663		rcu_prepare_for_idle();
 664
 665	rcu_dynticks_eqs_enter();
 666
 667	if (irq)
 668		rcu_dynticks_task_enter();
 669}
 670
 671/**
 672 * rcu_nmi_exit - inform RCU of exit from NMI context
 673 *
 674 * If you add or remove a call to rcu_nmi_exit(), be sure to test
 675 * with CONFIG_RCU_EQS_DEBUG=y.
 676 */
 677void rcu_nmi_exit(void)
 678{
 679	rcu_nmi_exit_common(false);
 680}
 681
 682/**
 683 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 684 *
 685 * Exit from an interrupt handler, which might possibly result in entering
 686 * idle mode, in other words, leaving the mode in which read-side critical
 687 * sections can occur.  The caller must have disabled interrupts.
 688 *
 689 * This code assumes that the idle loop never does anything that might
 690 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 691 * architecture's idle loop violates this assumption, RCU will give you what
 692 * you deserve, good and hard.  But very infrequently and irreproducibly.
 693 *
 694 * Use things like work queues to work around this limitation.
 695 *
 696 * You have been warned.
 697 *
 698 * If you add or remove a call to rcu_irq_exit(), be sure to test with
 699 * CONFIG_RCU_EQS_DEBUG=y.
 700 */
 701void rcu_irq_exit(void)
 702{
 703	lockdep_assert_irqs_disabled();
 704	rcu_nmi_exit_common(true);
 705}
 706
 707/*
 708 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 709 *
 710 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
 711 * with CONFIG_RCU_EQS_DEBUG=y.
 712 */
 713void rcu_irq_exit_irqson(void)
 714{
 715	unsigned long flags;
 716
 717	local_irq_save(flags);
 718	rcu_irq_exit();
 719	local_irq_restore(flags);
 720}
 721
 722/*
 723 * Exit an RCU extended quiescent state, which can be either the
 724 * idle loop or adaptive-tickless usermode execution.
 725 *
 726 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
 727 * allow for the possibility of usermode upcalls messing up our count of
 728 * interrupt nesting level during the busy period that is just now starting.
 729 */
 730static void rcu_eqs_exit(bool user)
 731{
 732	struct rcu_data *rdp;
 733	long oldval;
 734
 735	lockdep_assert_irqs_disabled();
 736	rdp = this_cpu_ptr(&rcu_data);
 737	oldval = rdp->dynticks_nesting;
 738	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
 739	if (oldval) {
 740		rdp->dynticks_nesting++;
 741		return;
 
 
 
 
 742	}
 743	rcu_dynticks_task_exit();
 744	rcu_dynticks_eqs_exit();
 745	rcu_cleanup_after_idle();
 746	trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks);
 747	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
 748	WRITE_ONCE(rdp->dynticks_nesting, 1);
 749	WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
 750	WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
 751}
 
 752
 
 753/**
 754 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 755 *
 756 * Exit idle mode, in other words, -enter- the mode in which RCU
 757 * read-side critical sections can occur.
 758 *
 759 * If you add or remove a call to rcu_idle_exit(), be sure to test with
 760 * CONFIG_RCU_EQS_DEBUG=y.
 761 */
 762void rcu_idle_exit(void)
 763{
 764	unsigned long flags;
 765
 766	local_irq_save(flags);
 767	rcu_eqs_exit(false);
 768	local_irq_restore(flags);
 
 
 
 
 769}
 
 770
 771#ifdef CONFIG_NO_HZ_FULL
 772/**
 773 * rcu_user_exit - inform RCU that we are exiting userspace.
 774 *
 775 * Exit RCU idle mode while entering the kernel because it can
 776 * run a RCU read side critical section anytime.
 777 *
 778 * If you add or remove a call to rcu_user_exit(), be sure to test with
 779 * CONFIG_RCU_EQS_DEBUG=y.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 780 */
 781void rcu_user_exit(void)
 782{
 783	rcu_eqs_exit(1);
 784}
 785#endif /* CONFIG_NO_HZ_FULL */
 786
 787/**
 788 * rcu_nmi_enter_common - inform RCU of entry to NMI context
 789 * @irq: Is this call from rcu_irq_enter?
 790 *
 791 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
 792 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
 793 * that the CPU is active.  This implementation permits nested NMIs, as
 794 * long as the nesting level does not overflow an int.  (You will probably
 795 * run out of stack space first.)
 796 *
 797 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
 798 * with CONFIG_RCU_EQS_DEBUG=y.
 799 */
 800static __always_inline void rcu_nmi_enter_common(bool irq)
 801{
 802	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 803	long incby = 2;
 804
 805	/* Complain about underflow. */
 806	WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
 807
 808	/*
 809	 * If idle from RCU viewpoint, atomically increment ->dynticks
 810	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
 811	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
 812	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
 813	 * to be in the outermost NMI handler that interrupted an RCU-idle
 814	 * period (observation due to Andy Lutomirski).
 815	 */
 816	if (rcu_dynticks_curr_cpu_in_eqs()) {
 817
 818		if (irq)
 819			rcu_dynticks_task_exit();
 820
 821		rcu_dynticks_eqs_exit();
 
 
 822
 823		if (irq)
 824			rcu_cleanup_after_idle();
 825
 826		incby = 1;
 
 
 
 
 
 827	}
 828	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
 829			  rdp->dynticks_nmi_nesting,
 830			  rdp->dynticks_nmi_nesting + incby, rdp->dynticks);
 831	WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
 832		   rdp->dynticks_nmi_nesting + incby);
 833	barrier();
 834}
 835
 836/**
 837 * rcu_nmi_enter - inform RCU of entry to NMI context
 838 */
 839void rcu_nmi_enter(void)
 840{
 841	rcu_nmi_enter_common(false);
 
 
 
 
 
 
 
 
 842}
 843NOKPROBE_SYMBOL(rcu_nmi_enter);
 
 844
 845/**
 846 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 847 *
 848 * Enter an interrupt handler, which might possibly result in exiting
 849 * idle mode, in other words, entering the mode in which read-side critical
 850 * sections can occur.  The caller must have disabled interrupts.
 851 *
 852 * Note that the Linux kernel is fully capable of entering an interrupt
 853 * handler that it never exits, for example when doing upcalls to user mode!
 854 * This code assumes that the idle loop never does upcalls to user mode.
 855 * If your architecture's idle loop does do upcalls to user mode (or does
 856 * anything else that results in unbalanced calls to the irq_enter() and
 857 * irq_exit() functions), RCU will give you what you deserve, good and hard.
 858 * But very infrequently and irreproducibly.
 859 *
 860 * Use things like work queues to work around this limitation.
 861 *
 862 * You have been warned.
 863 *
 864 * If you add or remove a call to rcu_irq_enter(), be sure to test with
 865 * CONFIG_RCU_EQS_DEBUG=y.
 866 */
 867void rcu_irq_enter(void)
 868{
 869	lockdep_assert_irqs_disabled();
 870	rcu_nmi_enter_common(true);
 871}
 872
 873/*
 874 * Wrapper for rcu_irq_enter() where interrupts are enabled.
 875 *
 876 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
 877 * with CONFIG_RCU_EQS_DEBUG=y.
 878 */
 879void rcu_irq_enter_irqson(void)
 880{
 881	unsigned long flags;
 882
 883	local_irq_save(flags);
 884	rcu_irq_enter();
 885	local_irq_restore(flags);
 
 
 886}
 887
 888/**
 889 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
 
 
 
 
 890 *
 891 * Return true if RCU is watching the running CPU, which means that this
 892 * CPU can safely enter RCU read-side critical sections.  In other words,
 893 * if the current CPU is not in its idle loop or is in an interrupt or
 894 * NMI handler, return true.
 
 
 
 895 */
 896bool notrace rcu_is_watching(void)
 897{
 898	bool ret;
 899
 900	preempt_disable_notrace();
 901	ret = !rcu_dynticks_curr_cpu_in_eqs();
 902	preempt_enable_notrace();
 903	return ret;
 904}
 905EXPORT_SYMBOL_GPL(rcu_is_watching);
 906
 907/*
 908 * If a holdout task is actually running, request an urgent quiescent
 909 * state from its CPU.  This is unsynchronized, so migrations can cause
 910 * the request to go to the wrong CPU.  Which is OK, all that will happen
 911 * is that the CPU's next context switch will be a bit slower and next
 912 * time around this task will generate another request.
 913 */
 914void rcu_request_urgent_qs_task(struct task_struct *t)
 915{
 916	int cpu;
 917
 918	barrier();
 919	cpu = task_cpu(t);
 920	if (!task_curr(t))
 921		return; /* This task is not running on that CPU. */
 922	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
 923}
 924
 925#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
 926
 927/*
 928 * Is the current CPU online as far as RCU is concerned?
 929 *
 930 * Disable preemption to avoid false positives that could otherwise
 931 * happen due to the current CPU number being sampled, this task being
 932 * preempted, its old CPU being taken offline, resuming on some other CPU,
 933 * then determining that its old CPU is now offline.
 934 *
 935 * Disable checking if in an NMI handler because we cannot safely
 936 * report errors from NMI handlers anyway.  In addition, it is OK to use
 937 * RCU on an offline processor during initial boot, hence the check for
 938 * rcu_scheduler_fully_active.
 939 */
 940bool rcu_lockdep_current_cpu_online(void)
 941{
 942	struct rcu_data *rdp;
 943	struct rcu_node *rnp;
 944	bool ret = false;
 945
 946	if (in_nmi() || !rcu_scheduler_fully_active)
 947		return true;
 948	preempt_disable();
 949	rdp = this_cpu_ptr(&rcu_data);
 950	rnp = rdp->mynode;
 951	if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
 952		ret = true;
 953	preempt_enable();
 954	return ret;
 955}
 956EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
 957
 958#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
 959
 960/*
 961 * We are reporting a quiescent state on behalf of some other CPU, so
 962 * it is our responsibility to check for and handle potential overflow
 963 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
 964 * After all, the CPU might be in deep idle state, and thus executing no
 965 * code whatsoever.
 966 */
 967static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
 968{
 969	raw_lockdep_assert_held_rcu_node(rnp);
 970	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
 971			 rnp->gp_seq))
 972		WRITE_ONCE(rdp->gpwrap, true);
 973	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
 974		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
 975}
 976
 977/*
 978 * Snapshot the specified CPU's dynticks counter so that we can later
 979 * credit them with an implicit quiescent state.  Return 1 if this CPU
 980 * is in dynticks idle mode, which is an extended quiescent state.
 981 */
 982static int dyntick_save_progress_counter(struct rcu_data *rdp)
 983{
 984	rdp->dynticks_snap = rcu_dynticks_snap(rdp);
 985	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
 
 
 
 
 
 
 
 
 
 
 
 986		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
 987		rcu_gpnum_ovf(rdp->mynode, rdp);
 988		return 1;
 989	}
 990	return 0;
 991}
 992
 993/*
 994 * Return true if the specified CPU has passed through a quiescent
 995 * state by virtue of being in or having passed through an dynticks
 996 * idle state since the last call to dyntick_save_progress_counter()
 997 * for this same CPU, or by virtue of having been offline.
 
 
 
 
 998 */
 999static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1000{
1001	unsigned long jtsq;
1002	bool *rnhqp;
1003	bool *ruqp;
1004	struct rcu_node *rnp = rdp->mynode;
1005
1006	/*
1007	 * If the CPU passed through or entered a dynticks idle phase with
1008	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1009	 * already acknowledged the request to pass through a quiescent
1010	 * state.  Either way, that CPU cannot possibly be in an RCU
1011	 * read-side critical section that started before the beginning
1012	 * of the current RCU grace period.
1013	 */
1014	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1015		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1016		rcu_gpnum_ovf(rnp, rdp);
1017		return 1;
1018	}
1019
1020	/* If waiting too long on an offline CPU, complain. */
1021	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1022	    time_after(jiffies, rcu_state.gp_start + HZ)) {
1023		bool onl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1024		struct rcu_node *rnp1;
1025
1026		WARN_ON(1);  /* Offline CPUs are supposed to report QS! */
1027		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1028			__func__, rnp->grplo, rnp->grphi, rnp->level,
1029			(long)rnp->gp_seq, (long)rnp->completedqs);
1030		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1031			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1032				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1033		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1034		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1035			__func__, rdp->cpu, ".o"[onl],
1036			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1037			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1038		return 1; /* Break things loose after complaining. */
1039	}
1040
1041	/*
1042	 * A CPU running for an extended time within the kernel can
1043	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1044	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1045	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1046	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1047	 * variable are safe because the assignments are repeated if this
1048	 * CPU failed to pass through a quiescent state.  This code
1049	 * also checks .jiffies_resched in case jiffies_to_sched_qs
1050	 * is set way high.
1051	 */
1052	jtsq = READ_ONCE(jiffies_to_sched_qs);
1053	ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1054	rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1055	if (!READ_ONCE(*rnhqp) &&
1056	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1057	     time_after(jiffies, rcu_state.jiffies_resched))) {
1058		WRITE_ONCE(*rnhqp, true);
 
1059		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1060		smp_store_release(ruqp, true);
1061	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1062		WRITE_ONCE(*ruqp, true);
1063	}
1064
1065	/*
1066	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1067	 * The above code handles this, but only for straight cond_resched().
1068	 * And some in-kernel loops check need_resched() before calling
1069	 * cond_resched(), which defeats the above code for CPUs that are
1070	 * running in-kernel with scheduling-clock interrupts disabled.
1071	 * So hit them over the head with the resched_cpu() hammer!
1072	 */
1073	if (tick_nohz_full_cpu(rdp->cpu) &&
1074		   time_after(jiffies,
1075			      READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
1076		resched_cpu(rdp->cpu);
1077		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
 
1078	}
1079
1080	/*
1081	 * If more than halfway to RCU CPU stall-warning time, invoke
1082	 * resched_cpu() more frequently to try to loosen things up a bit.
1083	 * Also check to see if the CPU is getting hammered with interrupts,
1084	 * but only once per grace period, just to keep the IPIs down to
1085	 * a dull roar.
1086	 */
1087	if (time_after(jiffies, rcu_state.jiffies_resched)) {
1088		if (time_after(jiffies,
1089			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1090			resched_cpu(rdp->cpu);
1091			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
 
1092		}
1093		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1094		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1095		    (rnp->ffmask & rdp->grpmask)) {
1096			init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1097			rdp->rcu_iw_pending = true;
1098			rdp->rcu_iw_gp_seq = rnp->gp_seq;
1099			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1100		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1101	}
1102
1103	return 0;
1104}
1105
1106/* Trace-event wrapper function for trace_rcu_future_grace_period.  */
1107static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1108			      unsigned long gp_seq_req, const char *s)
1109{
1110	trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
1111				      rnp->level, rnp->grplo, rnp->grphi, s);
 
1112}
1113
1114/*
1115 * rcu_start_this_gp - Request the start of a particular grace period
1116 * @rnp_start: The leaf node of the CPU from which to start.
1117 * @rdp: The rcu_data corresponding to the CPU from which to start.
1118 * @gp_seq_req: The gp_seq of the grace period to start.
1119 *
1120 * Start the specified grace period, as needed to handle newly arrived
1121 * callbacks.  The required future grace periods are recorded in each
1122 * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1123 * is reason to awaken the grace-period kthread.
1124 *
1125 * The caller must hold the specified rcu_node structure's ->lock, which
1126 * is why the caller is responsible for waking the grace-period kthread.
1127 *
1128 * Returns true if the GP thread needs to be awakened else false.
1129 */
1130static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1131			      unsigned long gp_seq_req)
1132{
1133	bool ret = false;
1134	struct rcu_node *rnp;
1135
1136	/*
1137	 * Use funnel locking to either acquire the root rcu_node
1138	 * structure's lock or bail out if the need for this grace period
1139	 * has already been recorded -- or if that grace period has in
1140	 * fact already started.  If there is already a grace period in
1141	 * progress in a non-leaf node, no recording is needed because the
1142	 * end of the grace period will scan the leaf rcu_node structures.
1143	 * Note that rnp_start->lock must not be released.
1144	 */
1145	raw_lockdep_assert_held_rcu_node(rnp_start);
1146	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1147	for (rnp = rnp_start; 1; rnp = rnp->parent) {
1148		if (rnp != rnp_start)
1149			raw_spin_lock_rcu_node(rnp);
1150		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1151		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1152		    (rnp != rnp_start &&
1153		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1154			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1155					  TPS("Prestarted"));
1156			goto unlock_out;
1157		}
1158		rnp->gp_seq_needed = gp_seq_req;
1159		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1160			/*
1161			 * We just marked the leaf or internal node, and a
1162			 * grace period is in progress, which means that
1163			 * rcu_gp_cleanup() will see the marking.  Bail to
1164			 * reduce contention.
1165			 */
1166			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1167					  TPS("Startedleaf"));
1168			goto unlock_out;
1169		}
1170		if (rnp != rnp_start && rnp->parent != NULL)
1171			raw_spin_unlock_rcu_node(rnp);
1172		if (!rnp->parent)
1173			break;  /* At root, and perhaps also leaf. */
1174	}
1175
1176	/* If GP already in progress, just leave, otherwise start one. */
1177	if (rcu_gp_in_progress()) {
1178		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1179		goto unlock_out;
1180	}
1181	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1182	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1183	rcu_state.gp_req_activity = jiffies;
1184	if (!rcu_state.gp_kthread) {
1185		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1186		goto unlock_out;
1187	}
1188	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
1189	ret = true;  /* Caller must wake GP kthread. */
1190unlock_out:
1191	/* Push furthest requested GP to leaf node and rcu_data structure. */
1192	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1193		rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1194		rdp->gp_seq_needed = rnp->gp_seq_needed;
1195	}
1196	if (rnp != rnp_start)
1197		raw_spin_unlock_rcu_node(rnp);
1198	return ret;
1199}
1200
1201/*
1202 * Clean up any old requests for the just-ended grace period.  Also return
1203 * whether any additional grace periods have been requested.
1204 */
1205static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1206{
1207	bool needmore;
1208	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1209
1210	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1211	if (!needmore)
1212		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1213	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1214			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1215	return needmore;
1216}
1217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1218/*
1219 * Awaken the grace-period kthread.  Don't do a self-awaken (unless in
1220 * an interrupt or softirq handler), and don't bother awakening when there
1221 * is nothing for the grace-period kthread to do (as in several CPUs raced
1222 * to awaken, and we lost), and finally don't try to awaken a kthread that
1223 * has not yet been created.  If all those checks are passed, track some
1224 * debug information and awaken.
 
1225 *
1226 * So why do the self-wakeup when in an interrupt or softirq handler
1227 * in the grace-period kthread's context?  Because the kthread might have
1228 * been interrupted just as it was going to sleep, and just after the final
1229 * pre-sleep check of the awaken condition.  In this case, a wakeup really
1230 * is required, and is therefore supplied.
1231 */
1232static void rcu_gp_kthread_wake(void)
1233{
1234	if ((current == rcu_state.gp_kthread &&
1235	     !in_irq() && !in_serving_softirq()) ||
1236	    !READ_ONCE(rcu_state.gp_flags) ||
1237	    !rcu_state.gp_kthread)
1238		return;
1239	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1240	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1241	swake_up_one(&rcu_state.gp_wq);
1242}
1243
1244/*
1245 * If there is room, assign a ->gp_seq number to any callbacks on this
1246 * CPU that have not already been assigned.  Also accelerate any callbacks
1247 * that were previously assigned a ->gp_seq number that has since proven
1248 * to be too conservative, which can happen if callbacks get assigned a
1249 * ->gp_seq number while RCU is idle, but with reference to a non-root
1250 * rcu_node structure.  This function is idempotent, so it does not hurt
1251 * to call it repeatedly.  Returns an flag saying that we should awaken
1252 * the RCU grace-period kthread.
1253 *
1254 * The caller must hold rnp->lock with interrupts disabled.
1255 */
1256static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1257{
1258	unsigned long gp_seq_req;
1259	bool ret = false;
1260
1261	rcu_lockdep_assert_cblist_protected(rdp);
1262	raw_lockdep_assert_held_rcu_node(rnp);
1263
1264	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1265	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1266		return false;
1267
 
 
1268	/*
1269	 * Callbacks are often registered with incomplete grace-period
1270	 * information.  Something about the fact that getting exact
1271	 * information requires acquiring a global lock...  RCU therefore
1272	 * makes a conservative estimate of the grace period number at which
1273	 * a given callback will become ready to invoke.	The following
1274	 * code checks this estimate and improves it when possible, thus
1275	 * accelerating callback invocation to an earlier grace-period
1276	 * number.
1277	 */
1278	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1279	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1280		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1281
1282	/* Trace depending on how much we were able to accelerate. */
1283	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1284		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1285	else
1286		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
 
 
 
1287	return ret;
1288}
1289
1290/*
1291 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1292 * rcu_node structure's ->lock be held.  It consults the cached value
1293 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1294 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1295 * while holding the leaf rcu_node structure's ->lock.
1296 */
1297static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1298					struct rcu_data *rdp)
1299{
1300	unsigned long c;
1301	bool needwake;
1302
1303	rcu_lockdep_assert_cblist_protected(rdp);
1304	c = rcu_seq_snap(&rcu_state.gp_seq);
1305	if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1306		/* Old request still live, so mark recent callbacks. */
1307		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1308		return;
1309	}
1310	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1311	needwake = rcu_accelerate_cbs(rnp, rdp);
1312	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1313	if (needwake)
1314		rcu_gp_kthread_wake();
1315}
1316
1317/*
1318 * Move any callbacks whose grace period has completed to the
1319 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1320 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1321 * sublist.  This function is idempotent, so it does not hurt to
1322 * invoke it repeatedly.  As long as it is not invoked -too- often...
1323 * Returns true if the RCU grace-period kthread needs to be awakened.
1324 *
1325 * The caller must hold rnp->lock with interrupts disabled.
1326 */
1327static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1328{
1329	rcu_lockdep_assert_cblist_protected(rdp);
1330	raw_lockdep_assert_held_rcu_node(rnp);
1331
1332	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1333	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1334		return false;
1335
1336	/*
1337	 * Find all callbacks whose ->gp_seq numbers indicate that they
1338	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1339	 */
1340	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1341
1342	/* Classify any remaining callbacks. */
1343	return rcu_accelerate_cbs(rnp, rdp);
1344}
1345
1346/*
1347 * Move and classify callbacks, but only if doing so won't require
1348 * that the RCU grace-period kthread be awakened.
1349 */
1350static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1351						  struct rcu_data *rdp)
1352{
1353	rcu_lockdep_assert_cblist_protected(rdp);
1354	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) ||
1355	    !raw_spin_trylock_rcu_node(rnp))
1356		return;
1357	WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
 
 
1358	raw_spin_unlock_rcu_node(rnp);
1359}
1360
1361/*
 
 
 
 
 
 
 
 
 
 
 
 
 
1362 * Update CPU-local rcu_data state to record the beginnings and ends of
1363 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1364 * structure corresponding to the current CPU, and must have irqs disabled.
1365 * Returns true if the grace-period kthread needs to be awakened.
1366 */
1367static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1368{
1369	bool ret = false;
1370	bool need_gp;
1371	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1372			       rcu_segcblist_is_offloaded(&rdp->cblist);
1373
1374	raw_lockdep_assert_held_rcu_node(rnp);
1375
1376	if (rdp->gp_seq == rnp->gp_seq)
1377		return false; /* Nothing to do. */
1378
1379	/* Handle the ends of any preceding grace periods first. */
1380	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1381	    unlikely(READ_ONCE(rdp->gpwrap))) {
1382		if (!offloaded)
1383			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
 
1384		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1385	} else {
1386		if (!offloaded)
1387			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
 
 
1388	}
1389
1390	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1391	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1392	    unlikely(READ_ONCE(rdp->gpwrap))) {
1393		/*
1394		 * If the current grace period is waiting for this CPU,
1395		 * set up to detect a quiescent state, otherwise don't
1396		 * go looking for one.
1397		 */
1398		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1399		need_gp = !!(rnp->qsmask & rdp->grpmask);
1400		rdp->cpu_no_qs.b.norm = need_gp;
1401		rdp->core_needs_qs = need_gp;
1402		zero_cpu_stall_ticks(rdp);
1403	}
1404	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1405	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1406		rdp->gp_seq_needed = rnp->gp_seq_needed;
 
 
1407	WRITE_ONCE(rdp->gpwrap, false);
1408	rcu_gpnum_ovf(rnp, rdp);
1409	return ret;
1410}
1411
1412static void note_gp_changes(struct rcu_data *rdp)
1413{
1414	unsigned long flags;
1415	bool needwake;
1416	struct rcu_node *rnp;
1417
1418	local_irq_save(flags);
1419	rnp = rdp->mynode;
1420	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1421	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1422	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1423		local_irq_restore(flags);
1424		return;
1425	}
1426	needwake = __note_gp_changes(rnp, rdp);
1427	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 
1428	if (needwake)
1429		rcu_gp_kthread_wake();
1430}
1431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1432static void rcu_gp_slow(int delay)
1433{
1434	if (delay > 0 &&
1435	    !(rcu_seq_ctr(rcu_state.gp_seq) %
1436	      (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1437		schedule_timeout_uninterruptible(delay);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1438}
1439
1440/*
1441 * Initialize a new grace period.  Return false if no grace period required.
1442 */
1443static bool rcu_gp_init(void)
1444{
1445	unsigned long flags;
1446	unsigned long oldmask;
1447	unsigned long mask;
1448	struct rcu_data *rdp;
1449	struct rcu_node *rnp = rcu_get_root();
 
1450
1451	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1452	raw_spin_lock_irq_rcu_node(rnp);
1453	if (!READ_ONCE(rcu_state.gp_flags)) {
1454		/* Spurious wakeup, tell caller to go back to sleep.  */
1455		raw_spin_unlock_irq_rcu_node(rnp);
1456		return false;
1457	}
1458	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1459
1460	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1461		/*
1462		 * Grace period already in progress, don't start another.
1463		 * Not supposed to be able to happen.
1464		 */
1465		raw_spin_unlock_irq_rcu_node(rnp);
1466		return false;
1467	}
1468
1469	/* Advance to a new grace period and initialize state. */
1470	record_gp_stall_check_time();
1471	/* Record GP times before starting GP, hence rcu_seq_start(). */
1472	rcu_seq_start(&rcu_state.gp_seq);
 
 
1473	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
 
1474	raw_spin_unlock_irq_rcu_node(rnp);
1475
1476	/*
1477	 * Apply per-leaf buffered online and offline operations to the
1478	 * rcu_node tree.  Note that this new grace period need not wait
1479	 * for subsequent online CPUs, and that quiescent-state forcing
1480	 * will handle subsequent offline CPUs.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1481	 */
1482	rcu_state.gp_state = RCU_GP_ONOFF;
 
1483	rcu_for_each_leaf_node(rnp) {
1484		raw_spin_lock(&rcu_state.ofl_lock);
1485		raw_spin_lock_irq_rcu_node(rnp);
 
1486		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1487		    !rnp->wait_blkd_tasks) {
1488			/* Nothing to do on this leaf rcu_node structure. */
1489			raw_spin_unlock_irq_rcu_node(rnp);
1490			raw_spin_unlock(&rcu_state.ofl_lock);
 
1491			continue;
1492		}
1493
1494		/* Record old state, apply changes to ->qsmaskinit field. */
1495		oldmask = rnp->qsmaskinit;
1496		rnp->qsmaskinit = rnp->qsmaskinitnext;
1497
1498		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1499		if (!oldmask != !rnp->qsmaskinit) {
1500			if (!oldmask) { /* First online CPU for rcu_node. */
1501				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1502					rcu_init_new_rnp(rnp);
1503			} else if (rcu_preempt_has_tasks(rnp)) {
1504				rnp->wait_blkd_tasks = true; /* blocked tasks */
1505			} else { /* Last offline CPU and can propagate. */
1506				rcu_cleanup_dead_rnp(rnp);
1507			}
1508		}
1509
1510		/*
1511		 * If all waited-on tasks from prior grace period are
1512		 * done, and if all this rcu_node structure's CPUs are
1513		 * still offline, propagate up the rcu_node tree and
1514		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1515		 * rcu_node structure's CPUs has since come back online,
1516		 * simply clear ->wait_blkd_tasks.
1517		 */
1518		if (rnp->wait_blkd_tasks &&
1519		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1520			rnp->wait_blkd_tasks = false;
1521			if (!rnp->qsmaskinit)
1522				rcu_cleanup_dead_rnp(rnp);
1523		}
1524
1525		raw_spin_unlock_irq_rcu_node(rnp);
1526		raw_spin_unlock(&rcu_state.ofl_lock);
 
1527	}
1528	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1529
1530	/*
1531	 * Set the quiescent-state-needed bits in all the rcu_node
1532	 * structures for all currently online CPUs in breadth-first
1533	 * order, starting from the root rcu_node structure, relying on the
1534	 * layout of the tree within the rcu_state.node[] array.  Note that
1535	 * other CPUs will access only the leaves of the hierarchy, thus
1536	 * seeing that no grace period is in progress, at least until the
1537	 * corresponding leaf node has been initialized.
1538	 *
1539	 * The grace period cannot complete until the initialization
1540	 * process finishes, because this kthread handles both.
1541	 */
1542	rcu_state.gp_state = RCU_GP_INIT;
1543	rcu_for_each_node_breadth_first(rnp) {
1544		rcu_gp_slow(gp_init_delay);
1545		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1546		rdp = this_cpu_ptr(&rcu_data);
1547		rcu_preempt_check_blocked_tasks(rnp);
1548		rnp->qsmask = rnp->qsmaskinit;
1549		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1550		if (rnp == rdp->mynode)
1551			(void)__note_gp_changes(rnp, rdp);
1552		rcu_preempt_boost_start_gp(rnp);
1553		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1554					    rnp->level, rnp->grplo,
1555					    rnp->grphi, rnp->qsmask);
1556		/* Quiescent states for tasks on any now-offline CPUs. */
1557		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1558		rnp->rcu_gp_init_mask = mask;
1559		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1560			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1561		else
1562			raw_spin_unlock_irq_rcu_node(rnp);
1563		cond_resched_tasks_rcu_qs();
1564		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1565	}
1566
 
 
 
 
1567	return true;
1568}
1569
1570/*
1571 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1572 * time.
1573 */
1574static bool rcu_gp_fqs_check_wake(int *gfp)
1575{
1576	struct rcu_node *rnp = rcu_get_root();
1577
1578	/* Someone like call_rcu() requested a force-quiescent-state scan. */
 
 
 
 
1579	*gfp = READ_ONCE(rcu_state.gp_flags);
1580	if (*gfp & RCU_GP_FLAG_FQS)
1581		return true;
1582
1583	/* The current grace period has completed. */
1584	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1585		return true;
1586
1587	return false;
1588}
1589
1590/*
1591 * Do one round of quiescent-state forcing.
1592 */
1593static void rcu_gp_fqs(bool first_time)
1594{
 
1595	struct rcu_node *rnp = rcu_get_root();
1596
1597	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1598	rcu_state.n_force_qs++;
 
 
 
 
 
 
 
 
 
 
 
1599	if (first_time) {
1600		/* Collect dyntick-idle snapshots. */
1601		force_qs_rnp(dyntick_save_progress_counter);
1602	} else {
1603		/* Handle dyntick-idle and offline CPUs. */
1604		force_qs_rnp(rcu_implicit_dynticks_qs);
1605	}
1606	/* Clear flag to prevent immediate re-entry. */
1607	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1608		raw_spin_lock_irq_rcu_node(rnp);
1609		WRITE_ONCE(rcu_state.gp_flags,
1610			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1611		raw_spin_unlock_irq_rcu_node(rnp);
1612	}
1613}
1614
1615/*
1616 * Loop doing repeated quiescent-state forcing until the grace period ends.
1617 */
1618static void rcu_gp_fqs_loop(void)
1619{
1620	bool first_gp_fqs;
1621	int gf;
1622	unsigned long j;
1623	int ret;
1624	struct rcu_node *rnp = rcu_get_root();
1625
1626	first_gp_fqs = true;
1627	j = READ_ONCE(jiffies_till_first_fqs);
 
 
1628	ret = 0;
1629	for (;;) {
1630		if (!ret) {
1631			rcu_state.jiffies_force_qs = jiffies + j;
 
 
 
 
 
 
 
 
 
 
1632			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1633				   jiffies + (j ? 3 * j : 2));
1634		}
1635		trace_rcu_grace_period(rcu_state.name,
1636				       READ_ONCE(rcu_state.gp_seq),
1637				       TPS("fqswait"));
1638		rcu_state.gp_state = RCU_GP_WAIT_FQS;
1639		ret = swait_event_idle_timeout_exclusive(
1640				rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1641		rcu_state.gp_state = RCU_GP_DOING_FQS;
 
1642		/* Locking provides needed memory barriers. */
1643		/* If grace period done, leave loop. */
 
 
 
 
 
 
 
 
1644		if (!READ_ONCE(rnp->qsmask) &&
1645		    !rcu_preempt_blocked_readers_cgp(rnp))
1646			break;
1647		/* If time for quiescent-state forcing, do it. */
1648		if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
1649		    (gf & RCU_GP_FLAG_FQS)) {
1650			trace_rcu_grace_period(rcu_state.name,
1651					       READ_ONCE(rcu_state.gp_seq),
1652					       TPS("fqsstart"));
1653			rcu_gp_fqs(first_gp_fqs);
1654			first_gp_fqs = false;
1655			trace_rcu_grace_period(rcu_state.name,
1656					       READ_ONCE(rcu_state.gp_seq),
 
 
 
1657					       TPS("fqsend"));
1658			cond_resched_tasks_rcu_qs();
1659			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1660			ret = 0; /* Force full wait till next FQS. */
1661			j = READ_ONCE(jiffies_till_next_fqs);
1662		} else {
1663			/* Deal with stray signal. */
1664			cond_resched_tasks_rcu_qs();
1665			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1666			WARN_ON(signal_pending(current));
1667			trace_rcu_grace_period(rcu_state.name,
1668					       READ_ONCE(rcu_state.gp_seq),
1669					       TPS("fqswaitsig"));
1670			ret = 1; /* Keep old FQS timing. */
1671			j = jiffies;
1672			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1673				j = 1;
1674			else
1675				j = rcu_state.jiffies_force_qs - j;
 
1676		}
1677	}
1678}
1679
1680/*
1681 * Clean up after the old grace period.
1682 */
1683static void rcu_gp_cleanup(void)
1684{
1685	unsigned long gp_duration;
1686	bool needgp = false;
 
1687	unsigned long new_gp_seq;
1688	bool offloaded;
1689	struct rcu_data *rdp;
1690	struct rcu_node *rnp = rcu_get_root();
1691	struct swait_queue_head *sq;
1692
1693	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1694	raw_spin_lock_irq_rcu_node(rnp);
1695	rcu_state.gp_end = jiffies;
1696	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1697	if (gp_duration > rcu_state.gp_max)
1698		rcu_state.gp_max = gp_duration;
1699
1700	/*
1701	 * We know the grace period is complete, but to everyone else
1702	 * it appears to still be ongoing.  But it is also the case
1703	 * that to everyone else it looks like there is nothing that
1704	 * they can do to advance the grace period.  It is therefore
1705	 * safe for us to drop the lock in order to mark the grace
1706	 * period as completed in all of the rcu_node structures.
1707	 */
 
1708	raw_spin_unlock_irq_rcu_node(rnp);
1709
1710	/*
1711	 * Propagate new ->gp_seq value to rcu_node structures so that
1712	 * other CPUs don't have to wait until the start of the next grace
1713	 * period to process their callbacks.  This also avoids some nasty
1714	 * RCU grace-period initialization races by forcing the end of
1715	 * the current grace period to be completely recorded in all of
1716	 * the rcu_node structures before the beginning of the next grace
1717	 * period is recorded in any of the rcu_node structures.
1718	 */
1719	new_gp_seq = rcu_state.gp_seq;
1720	rcu_seq_end(&new_gp_seq);
1721	rcu_for_each_node_breadth_first(rnp) {
1722		raw_spin_lock_irq_rcu_node(rnp);
1723		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1724			dump_blkd_tasks(rnp, 10);
1725		WARN_ON_ONCE(rnp->qsmask);
1726		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
 
 
1727		rdp = this_cpu_ptr(&rcu_data);
1728		if (rnp == rdp->mynode)
1729			needgp = __note_gp_changes(rnp, rdp) || needgp;
1730		/* smp_mb() provided by prior unlock-lock pair. */
1731		needgp = rcu_future_gp_cleanup(rnp) || needgp;
 
 
 
 
 
 
1732		sq = rcu_nocb_gp_get(rnp);
1733		raw_spin_unlock_irq_rcu_node(rnp);
1734		rcu_nocb_gp_cleanup(sq);
1735		cond_resched_tasks_rcu_qs();
1736		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1737		rcu_gp_slow(gp_cleanup_delay);
1738	}
1739	rnp = rcu_get_root();
1740	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1741
1742	/* Declare grace period done, trace first to use old GP number. */
1743	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1744	rcu_seq_end(&rcu_state.gp_seq);
1745	rcu_state.gp_state = RCU_GP_IDLE;
 
1746	/* Check for GP requests since above loop. */
1747	rdp = this_cpu_ptr(&rcu_data);
1748	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1749		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1750				  TPS("CleanupMore"));
1751		needgp = true;
1752	}
1753	/* Advance CBs to reduce false positives below. */
1754	offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1755		    rcu_segcblist_is_offloaded(&rdp->cblist);
1756	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
 
 
 
 
 
 
 
 
 
 
 
1757		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1758		rcu_state.gp_req_activity = jiffies;
1759		trace_rcu_grace_period(rcu_state.name,
1760				       READ_ONCE(rcu_state.gp_seq),
1761				       TPS("newreq"));
1762	} else {
1763		WRITE_ONCE(rcu_state.gp_flags,
1764			   rcu_state.gp_flags & RCU_GP_FLAG_INIT);
 
 
 
 
 
 
1765	}
1766	raw_spin_unlock_irq_rcu_node(rnp);
 
 
 
 
 
 
 
1767}
1768
1769/*
1770 * Body of kthread that handles grace periods.
1771 */
1772static int __noreturn rcu_gp_kthread(void *unused)
1773{
1774	rcu_bind_gp_kthread();
1775	for (;;) {
1776
1777		/* Handle grace-period start. */
1778		for (;;) {
1779			trace_rcu_grace_period(rcu_state.name,
1780					       READ_ONCE(rcu_state.gp_seq),
1781					       TPS("reqwait"));
1782			rcu_state.gp_state = RCU_GP_WAIT_GPS;
1783			swait_event_idle_exclusive(rcu_state.gp_wq,
1784					 READ_ONCE(rcu_state.gp_flags) &
1785					 RCU_GP_FLAG_INIT);
1786			rcu_state.gp_state = RCU_GP_DONE_GPS;
 
1787			/* Locking provides needed memory barrier. */
1788			if (rcu_gp_init())
1789				break;
1790			cond_resched_tasks_rcu_qs();
1791			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1792			WARN_ON(signal_pending(current));
1793			trace_rcu_grace_period(rcu_state.name,
1794					       READ_ONCE(rcu_state.gp_seq),
1795					       TPS("reqwaitsig"));
1796		}
1797
1798		/* Handle quiescent-state forcing. */
1799		rcu_gp_fqs_loop();
1800
1801		/* Handle grace-period end. */
1802		rcu_state.gp_state = RCU_GP_CLEANUP;
1803		rcu_gp_cleanup();
1804		rcu_state.gp_state = RCU_GP_CLEANED;
1805	}
1806}
1807
1808/*
1809 * Report a full set of quiescent states to the rcu_state data structure.
1810 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1811 * another grace period is required.  Whether we wake the grace-period
1812 * kthread or it awakens itself for the next round of quiescent-state
1813 * forcing, that kthread will clean up after the just-completed grace
1814 * period.  Note that the caller must hold rnp->lock, which is released
1815 * before return.
1816 */
1817static void rcu_report_qs_rsp(unsigned long flags)
1818	__releases(rcu_get_root()->lock)
1819{
1820	raw_lockdep_assert_held_rcu_node(rcu_get_root());
1821	WARN_ON_ONCE(!rcu_gp_in_progress());
1822	WRITE_ONCE(rcu_state.gp_flags,
1823		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1824	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1825	rcu_gp_kthread_wake();
1826}
1827
1828/*
1829 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1830 * Allows quiescent states for a group of CPUs to be reported at one go
1831 * to the specified rcu_node structure, though all the CPUs in the group
1832 * must be represented by the same rcu_node structure (which need not be a
1833 * leaf rcu_node structure, though it often will be).  The gps parameter
1834 * is the grace-period snapshot, which means that the quiescent states
1835 * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
1836 * must be held upon entry, and it is released before return.
1837 *
1838 * As a special case, if mask is zero, the bit-already-cleared check is
1839 * disabled.  This allows propagating quiescent state due to resumed tasks
1840 * during grace-period initialization.
1841 */
1842static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1843			      unsigned long gps, unsigned long flags)
1844	__releases(rnp->lock)
1845{
1846	unsigned long oldmask = 0;
1847	struct rcu_node *rnp_c;
1848
1849	raw_lockdep_assert_held_rcu_node(rnp);
1850
1851	/* Walk up the rcu_node hierarchy. */
1852	for (;;) {
1853		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1854
1855			/*
1856			 * Our bit has already been cleared, or the
1857			 * relevant grace period is already over, so done.
1858			 */
1859			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1860			return;
1861		}
1862		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1863		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1864			     rcu_preempt_blocked_readers_cgp(rnp));
1865		rnp->qsmask &= ~mask;
1866		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1867						 mask, rnp->qsmask, rnp->level,
1868						 rnp->grplo, rnp->grphi,
1869						 !!rnp->gp_tasks);
1870		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1871
1872			/* Other bits still set at this level, so done. */
1873			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1874			return;
1875		}
1876		rnp->completedqs = rnp->gp_seq;
1877		mask = rnp->grpmask;
1878		if (rnp->parent == NULL) {
1879
1880			/* No more levels.  Exit loop holding root lock. */
1881
1882			break;
1883		}
1884		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1885		rnp_c = rnp;
1886		rnp = rnp->parent;
1887		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1888		oldmask = rnp_c->qsmask;
1889	}
1890
1891	/*
1892	 * Get here if we are the last CPU to pass through a quiescent
1893	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1894	 * to clean up and start the next grace period if one is needed.
1895	 */
1896	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1897}
1898
1899/*
1900 * Record a quiescent state for all tasks that were previously queued
1901 * on the specified rcu_node structure and that were blocking the current
1902 * RCU grace period.  The caller must hold the corresponding rnp->lock with
1903 * irqs disabled, and this lock is released upon return, but irqs remain
1904 * disabled.
1905 */
1906static void __maybe_unused
1907rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1908	__releases(rnp->lock)
1909{
1910	unsigned long gps;
1911	unsigned long mask;
1912	struct rcu_node *rnp_p;
1913
1914	raw_lockdep_assert_held_rcu_node(rnp);
1915	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPTION)) ||
1916	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1917	    rnp->qsmask != 0) {
1918		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1919		return;  /* Still need more quiescent states! */
1920	}
1921
1922	rnp->completedqs = rnp->gp_seq;
1923	rnp_p = rnp->parent;
1924	if (rnp_p == NULL) {
1925		/*
1926		 * Only one rcu_node structure in the tree, so don't
1927		 * try to report up to its nonexistent parent!
1928		 */
1929		rcu_report_qs_rsp(flags);
1930		return;
1931	}
1932
1933	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1934	gps = rnp->gp_seq;
1935	mask = rnp->grpmask;
1936	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
1937	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
1938	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1939}
1940
1941/*
1942 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1943 * structure.  This must be called from the specified CPU.
1944 */
1945static void
1946rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
1947{
1948	unsigned long flags;
1949	unsigned long mask;
1950	bool needwake = false;
1951	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1952			       rcu_segcblist_is_offloaded(&rdp->cblist);
1953	struct rcu_node *rnp;
1954
 
1955	rnp = rdp->mynode;
1956	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1957	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
1958	    rdp->gpwrap) {
1959
1960		/*
1961		 * The grace period in which this quiescent state was
1962		 * recorded has ended, so don't report it upwards.
1963		 * We will instead need a new quiescent state that lies
1964		 * within the current grace period.
1965		 */
1966		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
1967		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1968		return;
1969	}
1970	mask = rdp->grpmask;
1971	rdp->core_needs_qs = false;
1972	if ((rnp->qsmask & mask) == 0) {
1973		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1974	} else {
1975		/*
1976		 * This GP can't end until cpu checks in, so all of our
1977		 * callbacks can be processed during the next GP.
 
 
1978		 */
1979		if (!offloaded)
1980			needwake = rcu_accelerate_cbs(rnp, rdp);
 
 
 
 
 
 
1981
 
1982		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1983		/* ^^^ Released rnp->lock */
1984		if (needwake)
1985			rcu_gp_kthread_wake();
1986	}
1987}
1988
1989/*
1990 * Check to see if there is a new grace period of which this CPU
1991 * is not yet aware, and if so, set up local rcu_data state for it.
1992 * Otherwise, see if this CPU has just passed through its first
1993 * quiescent state for this grace period, and record that fact if so.
1994 */
1995static void
1996rcu_check_quiescent_state(struct rcu_data *rdp)
1997{
1998	/* Check for grace-period ends and beginnings. */
1999	note_gp_changes(rdp);
2000
2001	/*
2002	 * Does this CPU still need to do its part for current grace period?
2003	 * If no, return and let the other CPUs do their part as well.
2004	 */
2005	if (!rdp->core_needs_qs)
2006		return;
2007
2008	/*
2009	 * Was there a quiescent state since the beginning of the grace
2010	 * period? If no, then exit and wait for the next call.
2011	 */
2012	if (rdp->cpu_no_qs.b.norm)
2013		return;
2014
2015	/*
2016	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2017	 * judge of that).
2018	 */
2019	rcu_report_qs_rdp(rdp->cpu, rdp);
2020}
2021
2022/*
2023 * Near the end of the offline process.  Trace the fact that this CPU
2024 * is going offline.
2025 */
2026int rcutree_dying_cpu(unsigned int cpu)
2027{
2028	bool blkd;
2029	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2030	struct rcu_node *rnp = rdp->mynode;
2031
2032	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2033		return 0;
2034
2035	blkd = !!(rnp->qsmask & rdp->grpmask);
2036	trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
2037			       blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2038	return 0;
2039}
2040
2041/*
2042 * All CPUs for the specified rcu_node structure have gone offline,
2043 * and all tasks that were preempted within an RCU read-side critical
2044 * section while running on one of those CPUs have since exited their RCU
2045 * read-side critical section.  Some other CPU is reporting this fact with
2046 * the specified rcu_node structure's ->lock held and interrupts disabled.
2047 * This function therefore goes up the tree of rcu_node structures,
2048 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2049 * the leaf rcu_node structure's ->qsmaskinit field has already been
2050 * updated.
2051 *
2052 * This function does check that the specified rcu_node structure has
2053 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2054 * prematurely.  That said, invoking it after the fact will cost you
2055 * a needless lock acquisition.  So once it has done its work, don't
2056 * invoke it again.
2057 */
2058static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2059{
2060	long mask;
2061	struct rcu_node *rnp = rnp_leaf;
2062
2063	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2064	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2065	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2066	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2067		return;
2068	for (;;) {
2069		mask = rnp->grpmask;
2070		rnp = rnp->parent;
2071		if (!rnp)
2072			break;
2073		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2074		rnp->qsmaskinit &= ~mask;
2075		/* Between grace periods, so better already be zero! */
2076		WARN_ON_ONCE(rnp->qsmask);
2077		if (rnp->qsmaskinit) {
2078			raw_spin_unlock_rcu_node(rnp);
2079			/* irqs remain disabled. */
2080			return;
2081		}
2082		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2083	}
2084}
2085
2086/*
2087 * The CPU has been completely removed, and some other CPU is reporting
2088 * this fact from process context.  Do the remainder of the cleanup.
2089 * There can only be one CPU hotplug operation at a time, so no need for
2090 * explicit locking.
2091 */
2092int rcutree_dead_cpu(unsigned int cpu)
2093{
2094	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2095	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2096
2097	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2098		return 0;
2099
2100	/* Adjust any no-longer-needed kthreads. */
2101	rcu_boost_kthread_setaffinity(rnp, -1);
2102	/* Do any needed no-CB deferred wakeups from this CPU. */
2103	do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2104	return 0;
2105}
2106
2107/*
2108 * Invoke any RCU callbacks that have made it to the end of their grace
2109 * period.  Thottle as specified by rdp->blimit.
2110 */
2111static void rcu_do_batch(struct rcu_data *rdp)
2112{
 
 
 
 
2113	unsigned long flags;
2114	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2115			       rcu_segcblist_is_offloaded(&rdp->cblist);
2116	struct rcu_head *rhp;
2117	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2118	long bl, count;
2119	long pending, tlimit = 0;
2120
2121	/* If no callbacks are ready, just return. */
2122	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2123		trace_rcu_batch_start(rcu_state.name,
2124				      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2125				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2126		trace_rcu_batch_end(rcu_state.name, 0,
2127				    !rcu_segcblist_empty(&rdp->cblist),
2128				    need_resched(), is_idle_task(current),
2129				    rcu_is_callbacks_kthread());
2130		return;
2131	}
2132
2133	/*
2134	 * Extract the list of ready callbacks, disabling to prevent
2135	 * races with call_rcu() from interrupt handlers.  Leave the
2136	 * callback counts, as rcu_barrier() needs to be conservative.
 
 
 
 
 
 
2137	 */
2138	local_irq_save(flags);
2139	rcu_nocb_lock(rdp);
2140	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2141	pending = rcu_segcblist_n_cbs(&rdp->cblist);
2142	bl = max(rdp->blimit, pending >> rcu_divisor);
2143	if (unlikely(bl > 100))
2144		tlimit = local_clock() + rcu_resched_ns;
 
 
 
 
 
 
 
 
 
 
2145	trace_rcu_batch_start(rcu_state.name,
2146			      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2147			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2148	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2149	if (offloaded)
2150		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
 
 
2151	rcu_nocb_unlock_irqrestore(rdp, flags);
2152
2153	/* Invoke callbacks. */
 
2154	rhp = rcu_cblist_dequeue(&rcl);
 
2155	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
 
 
 
2156		debug_rcu_head_unqueue(rhp);
2157		if (__rcu_reclaim(rcu_state.name, rhp))
2158			rcu_cblist_dequeued_lazy(&rcl);
 
 
 
 
 
 
 
 
 
2159		/*
2160		 * Stop only if limit reached and CPU has something to do.
2161		 * Note: The rcl structure counts down from zero.
2162		 */
2163		if (-rcl.len >= bl && !offloaded &&
2164		    (need_resched() ||
2165		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2166			break;
2167		if (unlikely(tlimit)) {
2168			/* only call local_clock() every 32 callbacks */
2169			if (likely((-rcl.len & 31) || local_clock() < tlimit))
2170				continue;
2171			/* Exceeded the time limit, so leave. */
2172			break;
2173		}
2174		if (offloaded) {
2175			WARN_ON_ONCE(in_serving_softirq());
2176			local_bh_enable();
2177			lockdep_assert_irqs_enabled();
2178			cond_resched_tasks_rcu_qs();
2179			lockdep_assert_irqs_enabled();
2180			local_bh_disable();
 
 
 
 
 
 
 
2181		}
2182	}
2183
2184	local_irq_save(flags);
2185	rcu_nocb_lock(rdp);
2186	count = -rcl.len;
2187	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2188			    is_idle_task(current), rcu_is_callbacks_kthread());
2189
2190	/* Update counts and requeue any remaining callbacks. */
2191	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2192	smp_mb(); /* List handling before counting for rcu_barrier(). */
2193	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2194
2195	/* Reinstate batch limit if we have worked down the excess. */
2196	count = rcu_segcblist_n_cbs(&rdp->cblist);
2197	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2198		rdp->blimit = blimit;
2199
2200	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2201	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2202		rdp->qlen_last_fqs_check = 0;
2203		rdp->n_force_qs_snap = rcu_state.n_force_qs;
2204	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2205		rdp->qlen_last_fqs_check = count;
2206
2207	/*
2208	 * The following usually indicates a double call_rcu().  To track
2209	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2210	 */
2211	WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist));
 
2212	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2213		     count != 0 && rcu_segcblist_empty(&rdp->cblist));
 
 
2214
2215	rcu_nocb_unlock_irqrestore(rdp, flags);
2216
2217	/* Re-invoke RCU core processing if there are callbacks remaining. */
2218	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2219		invoke_rcu_core();
2220}
2221
2222/*
2223 * This function is invoked from each scheduling-clock interrupt,
2224 * and checks to see if this CPU is in a non-context-switch quiescent
2225 * state, for example, user mode or idle loop.  It also schedules RCU
2226 * core processing.  If the current grace period has gone on too long,
2227 * it will ask the scheduler to manufacture a context switch for the sole
2228 * purpose of providing a providing the needed quiescent state.
2229 */
2230void rcu_sched_clock_irq(int user)
2231{
 
 
 
 
 
 
 
2232	trace_rcu_utilization(TPS("Start scheduler-tick"));
 
2233	raw_cpu_inc(rcu_data.ticks_this_gp);
2234	/* The load-acquire pairs with the store-release setting to true. */
2235	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2236		/* Idle and userspace execution already are quiescent states. */
2237		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2238			set_tsk_need_resched(current);
2239			set_preempt_need_resched();
2240		}
2241		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2242	}
2243	rcu_flavor_sched_clock_irq(user);
2244	if (rcu_pending())
2245		invoke_rcu_core();
 
 
 
2246
2247	trace_rcu_utilization(TPS("End scheduler-tick"));
2248}
2249
2250/*
2251 * Scan the leaf rcu_node structures.  For each structure on which all
2252 * CPUs have reported a quiescent state and on which there are tasks
2253 * blocking the current grace period, initiate RCU priority boosting.
2254 * Otherwise, invoke the specified function to check dyntick state for
2255 * each CPU that has not yet reported a quiescent state.
2256 */
2257static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2258{
2259	int cpu;
2260	unsigned long flags;
2261	unsigned long mask;
2262	struct rcu_node *rnp;
2263
 
 
2264	rcu_for_each_leaf_node(rnp) {
 
 
 
2265		cond_resched_tasks_rcu_qs();
2266		mask = 0;
2267		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 
2268		if (rnp->qsmask == 0) {
2269			if (!IS_ENABLED(CONFIG_PREEMPTION) ||
2270			    rcu_preempt_blocked_readers_cgp(rnp)) {
2271				/*
2272				 * No point in scanning bits because they
2273				 * are all zero.  But we might need to
2274				 * priority-boost blocked readers.
2275				 */
2276				rcu_initiate_boost(rnp, flags);
2277				/* rcu_initiate_boost() releases rnp->lock */
2278				continue;
2279			}
2280			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2281			continue;
2282		}
2283		for_each_leaf_node_possible_cpu(rnp, cpu) {
2284			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2285			if ((rnp->qsmask & bit) != 0) {
2286				if (f(per_cpu_ptr(&rcu_data, cpu)))
2287					mask |= bit;
 
 
 
 
2288			}
 
 
2289		}
2290		if (mask != 0) {
2291			/* Idle/offline CPUs, report (releases rnp->lock). */
2292			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2293		} else {
2294			/* Nothing to do here, so just drop the lock. */
2295			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2296		}
 
 
 
2297	}
2298}
2299
2300/*
2301 * Force quiescent states on reluctant CPUs, and also detect which
2302 * CPUs are in dyntick-idle mode.
2303 */
2304void rcu_force_quiescent_state(void)
2305{
2306	unsigned long flags;
2307	bool ret;
2308	struct rcu_node *rnp;
2309	struct rcu_node *rnp_old = NULL;
2310
 
 
2311	/* Funnel through hierarchy to reduce memory contention. */
2312	rnp = __this_cpu_read(rcu_data.mynode);
2313	for (; rnp != NULL; rnp = rnp->parent) {
2314		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2315		      !raw_spin_trylock(&rnp->fqslock);
2316		if (rnp_old != NULL)
2317			raw_spin_unlock(&rnp_old->fqslock);
2318		if (ret)
2319			return;
2320		rnp_old = rnp;
2321	}
2322	/* rnp_old == rcu_get_root(), rnp == NULL. */
2323
2324	/* Reached the root of the rcu_node tree, acquire lock. */
2325	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2326	raw_spin_unlock(&rnp_old->fqslock);
2327	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2328		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2329		return;  /* Someone beat us to it. */
2330	}
2331	WRITE_ONCE(rcu_state.gp_flags,
2332		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2333	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2334	rcu_gp_kthread_wake();
2335}
2336EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2337
 
 
 
 
 
 
 
 
2338/* Perform RCU core processing work for the current CPU.  */
2339static __latent_entropy void rcu_core(void)
2340{
2341	unsigned long flags;
2342	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2343	struct rcu_node *rnp = rdp->mynode;
2344	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2345			       rcu_segcblist_is_offloaded(&rdp->cblist);
2346
2347	if (cpu_is_offline(smp_processor_id()))
2348		return;
2349	trace_rcu_utilization(TPS("Start RCU core"));
2350	WARN_ON_ONCE(!rdp->beenonline);
2351
2352	/* Report any deferred quiescent states if preemption enabled. */
2353	if (!(preempt_count() & PREEMPT_MASK)) {
2354		rcu_preempt_deferred_qs(current);
2355	} else if (rcu_preempt_need_deferred_qs(current)) {
2356		set_tsk_need_resched(current);
2357		set_preempt_need_resched();
2358	}
2359
2360	/* Update RCU state based on any recent quiescent states. */
2361	rcu_check_quiescent_state(rdp);
2362
2363	/* No grace period and unregistered callbacks? */
2364	if (!rcu_gp_in_progress() &&
2365	    rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) {
2366		local_irq_save(flags);
2367		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2368			rcu_accelerate_cbs_unlocked(rnp, rdp);
2369		local_irq_restore(flags);
2370	}
2371
2372	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2373
2374	/* If there are callbacks ready, invoke them. */
2375	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2376	    likely(READ_ONCE(rcu_scheduler_fully_active)))
2377		rcu_do_batch(rdp);
 
 
 
 
2378
2379	/* Do any needed deferred wakeups of rcuo kthreads. */
2380	do_nocb_deferred_wakeup(rdp);
2381	trace_rcu_utilization(TPS("End RCU core"));
 
 
 
 
2382}
2383
2384static void rcu_core_si(struct softirq_action *h)
2385{
2386	rcu_core();
2387}
2388
2389static void rcu_wake_cond(struct task_struct *t, int status)
2390{
2391	/*
2392	 * If the thread is yielding, only wake it when this
2393	 * is invoked from idle
2394	 */
2395	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2396		wake_up_process(t);
2397}
2398
2399static void invoke_rcu_core_kthread(void)
2400{
2401	struct task_struct *t;
2402	unsigned long flags;
2403
2404	local_irq_save(flags);
2405	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2406	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2407	if (t != NULL && t != current)
2408		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2409	local_irq_restore(flags);
2410}
2411
2412/*
2413 * Wake up this CPU's rcuc kthread to do RCU core processing.
2414 */
2415static void invoke_rcu_core(void)
2416{
2417	if (!cpu_online(smp_processor_id()))
2418		return;
2419	if (use_softirq)
2420		raise_softirq(RCU_SOFTIRQ);
2421	else
2422		invoke_rcu_core_kthread();
2423}
2424
2425static void rcu_cpu_kthread_park(unsigned int cpu)
2426{
2427	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2428}
2429
2430static int rcu_cpu_kthread_should_run(unsigned int cpu)
2431{
2432	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2433}
2434
2435/*
2436 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2437 * the RCU softirq used in configurations of RCU that do not support RCU
2438 * priority boosting.
2439 */
2440static void rcu_cpu_kthread(unsigned int cpu)
2441{
2442	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2443	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
 
2444	int spincnt;
2445
 
2446	for (spincnt = 0; spincnt < 10; spincnt++) {
2447		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
2448		local_bh_disable();
2449		*statusp = RCU_KTHREAD_RUNNING;
2450		local_irq_disable();
2451		work = *workp;
2452		*workp = 0;
2453		local_irq_enable();
2454		if (work)
2455			rcu_core();
2456		local_bh_enable();
2457		if (*workp == 0) {
2458			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2459			*statusp = RCU_KTHREAD_WAITING;
2460			return;
2461		}
2462	}
2463	*statusp = RCU_KTHREAD_YIELDING;
2464	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2465	schedule_timeout_interruptible(2);
2466	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2467	*statusp = RCU_KTHREAD_WAITING;
 
2468}
2469
2470static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2471	.store			= &rcu_data.rcu_cpu_kthread_task,
2472	.thread_should_run	= rcu_cpu_kthread_should_run,
2473	.thread_fn		= rcu_cpu_kthread,
2474	.thread_comm		= "rcuc/%u",
2475	.setup			= rcu_cpu_kthread_setup,
2476	.park			= rcu_cpu_kthread_park,
2477};
2478
2479/*
2480 * Spawn per-CPU RCU core processing kthreads.
2481 */
2482static int __init rcu_spawn_core_kthreads(void)
2483{
2484	int cpu;
2485
2486	for_each_possible_cpu(cpu)
2487		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2488	if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2489		return 0;
2490	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2491		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2492	return 0;
2493}
2494early_initcall(rcu_spawn_core_kthreads);
 
 
 
 
 
 
 
 
 
 
 
 
2495
2496/*
2497 * Handle any core-RCU processing required by a call_rcu() invocation.
2498 */
2499static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2500			    unsigned long flags)
2501{
 
2502	/*
2503	 * If called from an extended quiescent state, invoke the RCU
2504	 * core in order to force a re-evaluation of RCU's idleness.
2505	 */
2506	if (!rcu_is_watching())
2507		invoke_rcu_core();
2508
2509	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2510	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2511		return;
2512
2513	/*
2514	 * Force the grace period if too many callbacks or too long waiting.
2515	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2516	 * if some other CPU has recently done so.  Also, don't bother
2517	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2518	 * is the only one waiting for a grace period to complete.
2519	 */
2520	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2521		     rdp->qlen_last_fqs_check + qhimark)) {
2522
2523		/* Are we ignoring a completed grace period? */
2524		note_gp_changes(rdp);
2525
2526		/* Start a new grace period if one not already started. */
2527		if (!rcu_gp_in_progress()) {
2528			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2529		} else {
2530			/* Give the grace period a kick. */
2531			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2532			if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2533			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2534				rcu_force_quiescent_state();
2535			rdp->n_force_qs_snap = rcu_state.n_force_qs;
2536			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2537		}
2538	}
2539}
2540
2541/*
2542 * RCU callback function to leak a callback.
2543 */
2544static void rcu_leak_callback(struct rcu_head *rhp)
2545{
2546}
2547
2548/*
2549 * Helper function for call_rcu() and friends.  The cpu argument will
2550 * normally be -1, indicating "currently running CPU".  It may specify
2551 * a CPU only if that CPU is a no-CBs CPU.  Currently, only rcu_barrier()
2552 * is expected to specify a CPU.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2553 */
 
 
 
 
 
 
 
 
 
 
 
 
 
2554static void
2555__call_rcu(struct rcu_head *head, rcu_callback_t func, bool lazy)
2556{
 
2557	unsigned long flags;
 
2558	struct rcu_data *rdp;
2559	bool was_alldone;
2560
2561	/* Misaligned rcu_head! */
2562	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2563
2564	if (debug_rcu_head_queue(head)) {
2565		/*
2566		 * Probable double call_rcu(), so leak the callback.
2567		 * Use rcu:rcu_callback trace event to find the previous
2568		 * time callback was passed to __call_rcu().
2569		 */
2570		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2571			  head, head->func);
 
 
2572		WRITE_ONCE(head->func, rcu_leak_callback);
2573		return;
2574	}
2575	head->func = func;
2576	head->next = NULL;
 
2577	local_irq_save(flags);
2578	rdp = this_cpu_ptr(&rcu_data);
 
2579
2580	/* Add the callback to our list. */
2581	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2582		// This can trigger due to call_rcu() from offline CPU:
2583		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2584		WARN_ON_ONCE(!rcu_is_watching());
2585		// Very early boot, before rcu_init().  Initialize if needed
2586		// and then drop through to queue the callback.
2587		if (rcu_segcblist_empty(&rdp->cblist))
2588			rcu_segcblist_init(&rdp->cblist);
2589	}
2590	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2591		return; // Enqueued onto ->nocb_bypass, so just leave.
2592	/* If we get here, rcu_nocb_try_bypass() acquired ->nocb_lock. */
2593	rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
2594	if (__is_kfree_rcu_offset((unsigned long)func))
2595		trace_rcu_kfree_callback(rcu_state.name, head,
2596					 (unsigned long)func,
2597					 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2598					 rcu_segcblist_n_cbs(&rdp->cblist));
2599	else
2600		trace_rcu_callback(rcu_state.name, head,
2601				   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2602				   rcu_segcblist_n_cbs(&rdp->cblist));
2603
2604	/* Go handle any RCU core processing required. */
2605	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2606	    unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) {
2607		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2608	} else {
2609		__call_rcu_core(rdp, head, flags);
2610		local_irq_restore(flags);
2611	}
2612}
2613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2614/**
2615 * call_rcu() - Queue an RCU callback for invocation after a grace period.
 
 
 
 
2616 * @head: structure to be used for queueing the RCU updates.
2617 * @func: actual callback function to be invoked after the grace period
2618 *
2619 * The callback function will be invoked some time after a full grace
2620 * period elapses, in other words after all pre-existing RCU read-side
2621 * critical sections have completed.  However, the callback function
2622 * might well execute concurrently with RCU read-side critical sections
2623 * that started after call_rcu() was invoked.  RCU read-side critical
2624 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2625 * may be nested.  In addition, regions of code across which interrupts,
2626 * preemption, or softirqs have been disabled also serve as RCU read-side
2627 * critical sections.  This includes hardware interrupt handlers, softirq
2628 * handlers, and NMI handlers.
 
 
2629 *
2630 * Note that all CPUs must agree that the grace period extended beyond
2631 * all pre-existing RCU read-side critical section.  On systems with more
2632 * than one CPU, this means that when "func()" is invoked, each CPU is
2633 * guaranteed to have executed a full memory barrier since the end of its
2634 * last RCU read-side critical section whose beginning preceded the call
2635 * to call_rcu().  It also means that each CPU executing an RCU read-side
2636 * critical section that continues beyond the start of "func()" must have
2637 * executed a memory barrier after the call_rcu() but before the beginning
2638 * of that RCU read-side critical section.  Note that these guarantees
2639 * include CPUs that are offline, idle, or executing in user mode, as
2640 * well as CPUs that are executing in the kernel.
2641 *
2642 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2643 * resulting RCU callback function "func()", then both CPU A and CPU B are
2644 * guaranteed to execute a full memory barrier during the time interval
2645 * between the call to call_rcu() and the invocation of "func()" -- even
2646 * if CPU A and CPU B are the same CPU (but again only if the system has
2647 * more than one CPU).
 
 
 
2648 */
2649void call_rcu(struct rcu_head *head, rcu_callback_t func)
2650{
2651	__call_rcu(head, func, 0);
2652}
2653EXPORT_SYMBOL_GPL(call_rcu);
2654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2655/*
2656 * Queue an RCU callback for lazy invocation after a grace period.
2657 * This will likely be later named something like "call_rcu_lazy()",
2658 * but this change will require some way of tagging the lazy RCU
2659 * callbacks in the list of pending callbacks. Until then, this
2660 * function may only be called from __kfree_rcu().
2661 */
2662void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2663{
2664	__call_rcu(head, func, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2665}
2666EXPORT_SYMBOL_GPL(kfree_call_rcu);
2667
2668/*
2669 * During early boot, any blocking grace-period wait automatically
2670 * implies a grace period.  Later on, this is never the case for PREEMPT.
2671 *
2672 * Howevr, because a context switch is a grace period for !PREEMPT, any
2673 * blocking grace-period wait automatically implies a grace period if
2674 * there is only one CPU online at any point time during execution of
2675 * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
2676 * occasionally incorrectly indicate that there are multiple CPUs online
2677 * when there was in fact only one the whole time, as this just adds some
2678 * overhead: RCU still operates correctly.
2679 */
2680static int rcu_blocking_is_gp(void)
2681{
2682	int ret;
 
 
 
 
 
2683
2684	if (IS_ENABLED(CONFIG_PREEMPTION))
2685		return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
2686	might_sleep();  /* Check for RCU read-side critical section. */
2687	preempt_disable();
2688	ret = num_online_cpus() <= 1;
2689	preempt_enable();
2690	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2691}
2692
2693/**
2694 * synchronize_rcu - wait until a grace period has elapsed.
2695 *
2696 * Control will return to the caller some time after a full grace
2697 * period has elapsed, in other words after all currently executing RCU
2698 * read-side critical sections have completed.  Note, however, that
2699 * upon return from synchronize_rcu(), the caller might well be executing
2700 * concurrently with new RCU read-side critical sections that began while
2701 * synchronize_rcu() was waiting.  RCU read-side critical sections are
2702 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
2703 * In addition, regions of code across which interrupts, preemption, or
2704 * softirqs have been disabled also serve as RCU read-side critical
 
 
2705 * sections.  This includes hardware interrupt handlers, softirq handlers,
2706 * and NMI handlers.
2707 *
2708 * Note that this guarantee implies further memory-ordering guarantees.
2709 * On systems with more than one CPU, when synchronize_rcu() returns,
2710 * each CPU is guaranteed to have executed a full memory barrier since
2711 * the end of its last RCU read-side critical section whose beginning
2712 * preceded the call to synchronize_rcu().  In addition, each CPU having
2713 * an RCU read-side critical section that extends beyond the return from
2714 * synchronize_rcu() is guaranteed to have executed a full memory barrier
2715 * after the beginning of synchronize_rcu() and before the beginning of
2716 * that RCU read-side critical section.  Note that these guarantees include
2717 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2718 * that are executing in the kernel.
2719 *
2720 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
2721 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2722 * to have executed a full memory barrier during the execution of
2723 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
2724 * again only if the system has more than one CPU).
 
 
 
2725 */
2726void synchronize_rcu(void)
2727{
 
 
 
2728	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
2729			 lock_is_held(&rcu_lock_map) ||
2730			 lock_is_held(&rcu_sched_lock_map),
2731			 "Illegal synchronize_rcu() in RCU read-side critical section");
2732	if (rcu_blocking_is_gp())
 
 
 
 
2733		return;
2734	if (rcu_gp_is_expedited())
2735		synchronize_rcu_expedited();
2736	else
2737		wait_rcu_gp(call_rcu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2738}
2739EXPORT_SYMBOL_GPL(synchronize_rcu);
2740
2741/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2742 * get_state_synchronize_rcu - Snapshot current RCU state
2743 *
2744 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2745 * to determine whether or not a full grace period has elapsed in the
2746 * meantime.
2747 */
2748unsigned long get_state_synchronize_rcu(void)
2749{
2750	/*
2751	 * Any prior manipulation of RCU-protected data must happen
2752	 * before the load from ->gp_seq.
2753	 */
2754	smp_mb();  /* ^^^ */
2755	return rcu_seq_snap(&rcu_state.gp_seq);
2756}
2757EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2758
2759/**
2760 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2761 *
2762 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2763 *
2764 * If a full RCU grace period has elapsed since the earlier call to
2765 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
2766 * synchronize_rcu() to wait for a full grace period.
2767 *
2768 * Yes, this function does not take counter wrap into account.  But
2769 * counter wrap is harmless.  If the counter wraps, we have waited for
2770 * more than 2 billion grace periods (and way more on a 64-bit system!),
2771 * so waiting for one additional grace period should be just fine.
 
 
 
 
 
2772 */
2773void cond_synchronize_rcu(unsigned long oldstate)
2774{
2775	if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
2776		synchronize_rcu();
2777	else
2778		smp_mb(); /* Ensure GP ends before subsequent accesses. */
2779}
2780EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2782/*
2783 * Check to see if there is any immediate RCU-related work to be done by
2784 * the current CPU, returning 1 if so and zero otherwise.  The checks are
2785 * in order of increasing expense: checks that can be carried out against
2786 * CPU-local state are performed first.  However, we must check for CPU
2787 * stalls first, else we might not get a chance.
2788 */
2789static int rcu_pending(void)
2790{
 
2791	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2792	struct rcu_node *rnp = rdp->mynode;
2793
 
 
2794	/* Check for CPU stalls, if enabled. */
2795	check_cpu_stall(rdp);
2796
2797	/* Does this CPU need a deferred NOCB wakeup? */
2798	if (rcu_nocb_need_deferred_wakeup(rdp))
2799		return 1;
2800
2801	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
2802	if (rcu_nohz_full_cpu())
 
 
 
 
 
2803		return 0;
2804
2805	/* Is the RCU core waiting for a quiescent state from this CPU? */
2806	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
2807		return 1;
2808
2809	/* Does this CPU have callbacks ready to invoke? */
2810	if (rcu_segcblist_ready_cbs(&rdp->cblist))
 
2811		return 1;
2812
2813	/* Has RCU gone idle with this CPU needing another grace period? */
2814	if (!rcu_gp_in_progress() &&
2815	    rcu_segcblist_is_enabled(&rdp->cblist) &&
2816	    (!IS_ENABLED(CONFIG_RCU_NOCB_CPU) ||
2817	     !rcu_segcblist_is_offloaded(&rdp->cblist)) &&
2818	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2819		return 1;
2820
2821	/* Have RCU grace period completed or started?  */
2822	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
2823	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
2824		return 1;
2825
2826	/* nothing to do */
2827	return 0;
2828}
2829
2830/*
2831 * Helper function for rcu_barrier() tracing.  If tracing is disabled,
2832 * the compiler is expected to optimize this away.
2833 */
2834static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
2835{
2836	trace_rcu_barrier(rcu_state.name, s, cpu,
2837			  atomic_read(&rcu_state.barrier_cpu_count), done);
2838}
2839
2840/*
2841 * RCU callback function for rcu_barrier().  If we are last, wake
2842 * up the task executing rcu_barrier().
 
 
 
 
 
 
2843 */
2844static void rcu_barrier_callback(struct rcu_head *rhp)
2845{
 
 
 
2846	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
2847		rcu_barrier_trace(TPS("LastCB"), -1,
2848				   rcu_state.barrier_sequence);
2849		complete(&rcu_state.barrier_completion);
2850	} else {
2851		rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
2852	}
2853}
2854
2855/*
2856 * Called with preemption disabled, and from cross-cpu IRQ context.
2857 */
2858static void rcu_barrier_func(void *unused)
2859{
2860	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
 
 
 
2861
 
 
 
2862	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
2863	rdp->barrier_head.func = rcu_barrier_callback;
2864	debug_rcu_head_queue(&rdp->barrier_head);
2865	rcu_nocb_lock(rdp);
2866	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
2867	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
 
 
 
 
 
 
 
2868		atomic_inc(&rcu_state.barrier_cpu_count);
2869	} else {
2870		debug_rcu_head_unqueue(&rdp->barrier_head);
2871		rcu_barrier_trace(TPS("IRQNQ"), -1,
2872				   rcu_state.barrier_sequence);
2873	}
2874	rcu_nocb_unlock(rdp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2875}
2876
2877/**
2878 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
2879 *
2880 * Note that this primitive does not necessarily wait for an RCU grace period
2881 * to complete.  For example, if there are no RCU callbacks queued anywhere
2882 * in the system, then rcu_barrier() is within its rights to return
2883 * immediately, without waiting for anything, much less an RCU grace period.
2884 */
2885void rcu_barrier(void)
2886{
2887	int cpu;
 
 
2888	struct rcu_data *rdp;
2889	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
2890
2891	rcu_barrier_trace(TPS("Begin"), -1, s);
2892
2893	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2894	mutex_lock(&rcu_state.barrier_mutex);
2895
2896	/* Did someone else do our work for us? */
2897	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
2898		rcu_barrier_trace(TPS("EarlyExit"), -1,
2899				   rcu_state.barrier_sequence);
2900		smp_mb(); /* caller's subsequent code after above check. */
2901		mutex_unlock(&rcu_state.barrier_mutex);
2902		return;
2903	}
2904
2905	/* Mark the start of the barrier operation. */
 
2906	rcu_seq_start(&rcu_state.barrier_sequence);
 
2907	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
2908
2909	/*
2910	 * Initialize the count to one rather than to zero in order to
2911	 * avoid a too-soon return to zero in case of a short grace period
2912	 * (or preemption of this task).  Exclude CPU-hotplug operations
2913	 * to ensure that no offline CPU has callbacks queued.
 
2914	 */
2915	init_completion(&rcu_state.barrier_completion);
2916	atomic_set(&rcu_state.barrier_cpu_count, 1);
2917	get_online_cpus();
2918
2919	/*
2920	 * Force each CPU with callbacks to register a new callback.
2921	 * When that callback is invoked, we will know that all of the
2922	 * corresponding CPU's preceding callbacks have been invoked.
2923	 */
2924	for_each_possible_cpu(cpu) {
2925		rdp = per_cpu_ptr(&rcu_data, cpu);
2926		if (!cpu_online(cpu) &&
2927		    !rcu_segcblist_is_offloaded(&rdp->cblist))
 
 
 
 
 
 
 
 
 
 
 
 
 
2928			continue;
2929		if (rcu_segcblist_n_cbs(&rdp->cblist)) {
2930			rcu_barrier_trace(TPS("OnlineQ"), cpu,
2931					   rcu_state.barrier_sequence);
2932			smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
2933		} else {
2934			rcu_barrier_trace(TPS("OnlineNQ"), cpu,
2935					   rcu_state.barrier_sequence);
2936		}
 
 
 
 
 
 
 
2937	}
2938	put_online_cpus();
2939
2940	/*
2941	 * Now that we have an rcu_barrier_callback() callback on each
2942	 * CPU, and thus each counted, remove the initial count.
2943	 */
2944	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
2945		complete(&rcu_state.barrier_completion);
2946
2947	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2948	wait_for_completion(&rcu_state.barrier_completion);
2949
2950	/* Mark the end of the barrier operation. */
2951	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
2952	rcu_seq_end(&rcu_state.barrier_sequence);
 
 
 
 
 
 
2953
2954	/* Other rcu_barrier() invocations can now safely proceed. */
2955	mutex_unlock(&rcu_state.barrier_mutex);
2956}
2957EXPORT_SYMBOL_GPL(rcu_barrier);
2958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2959/*
2960 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
2961 * first CPU in a given leaf rcu_node structure coming online.  The caller
2962 * must hold the corresponding leaf rcu_node ->lock with interrrupts
2963 * disabled.
2964 */
2965static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
2966{
2967	long mask;
2968	long oldmask;
2969	struct rcu_node *rnp = rnp_leaf;
2970
2971	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2972	WARN_ON_ONCE(rnp->wait_blkd_tasks);
2973	for (;;) {
2974		mask = rnp->grpmask;
2975		rnp = rnp->parent;
2976		if (rnp == NULL)
2977			return;
2978		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
2979		oldmask = rnp->qsmaskinit;
2980		rnp->qsmaskinit |= mask;
2981		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
2982		if (oldmask)
2983			return;
2984	}
2985}
2986
2987/*
2988 * Do boot-time initialization of a CPU's per-CPU RCU data.
2989 */
2990static void __init
2991rcu_boot_init_percpu_data(int cpu)
2992{
 
2993	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2994
2995	/* Set up local state, ensuring consistent view of global state. */
2996	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
2997	WARN_ON_ONCE(rdp->dynticks_nesting != 1);
2998	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
 
 
2999	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3000	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3001	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3002	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
 
3003	rdp->cpu = cpu;
3004	rcu_boot_init_nocb_percpu_data(rdp);
3005}
3006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3007/*
3008 * Invoked early in the CPU-online process, when pretty much all services
3009 * are available.  The incoming CPU is not present.
3010 *
3011 * Initializes a CPU's per-CPU RCU data.  Note that only one online or
3012 * offline event can be happening at a given time.  Note also that we can
3013 * accept some slop in the rsp->gp_seq access due to the fact that this
3014 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
3015 * And any offloaded callbacks are being numbered elsewhere.
3016 */
3017int rcutree_prepare_cpu(unsigned int cpu)
3018{
3019	unsigned long flags;
 
3020	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3021	struct rcu_node *rnp = rcu_get_root();
3022
3023	/* Set up local state, ensuring consistent view of global state. */
3024	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3025	rdp->qlen_last_fqs_check = 0;
3026	rdp->n_force_qs_snap = rcu_state.n_force_qs;
3027	rdp->blimit = blimit;
3028	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3029	    !rcu_segcblist_is_offloaded(&rdp->cblist))
3030		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3031	rdp->dynticks_nesting = 1;	/* CPU not up, no tearing. */
3032	rcu_dynticks_eqs_online();
3033	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3034
3035	/*
 
 
 
 
 
 
 
3036	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3037	 * propagation up the rcu_node tree will happen at the beginning
3038	 * of the next grace period.
3039	 */
3040	rnp = rdp->mynode;
3041	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3042	rdp->beenonline = true;	 /* We have now been online. */
3043	rdp->gp_seq = rnp->gp_seq;
3044	rdp->gp_seq_needed = rnp->gp_seq;
3045	rdp->cpu_no_qs.b.norm = true;
3046	rdp->core_needs_qs = false;
3047	rdp->rcu_iw_pending = false;
3048	rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
 
3049	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
3050	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3051	rcu_prepare_kthreads(cpu);
3052	rcu_spawn_cpu_nocb_kthread(cpu);
 
 
3053
3054	return 0;
3055}
3056
3057/*
3058 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3059 */
3060static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3061{
3062	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3063
3064	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3065}
3066
3067/*
3068 * Near the end of the CPU-online process.  Pretty much all services
3069 * enabled, and the CPU is now very much alive.
3070 */
3071int rcutree_online_cpu(unsigned int cpu)
3072{
3073	unsigned long flags;
3074	struct rcu_data *rdp;
3075	struct rcu_node *rnp;
3076
3077	rdp = per_cpu_ptr(&rcu_data, cpu);
3078	rnp = rdp->mynode;
3079	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3080	rnp->ffmask |= rdp->grpmask;
3081	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3082	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3083		return 0; /* Too early in boot for scheduler work. */
3084	sync_sched_exp_online_cleanup(cpu);
3085	rcutree_affinity_setting(cpu, -1);
3086	return 0;
3087}
3088
3089/*
3090 * Near the beginning of the process.  The CPU is still very much alive
3091 * with pretty much all services enabled.
3092 */
3093int rcutree_offline_cpu(unsigned int cpu)
3094{
3095	unsigned long flags;
3096	struct rcu_data *rdp;
3097	struct rcu_node *rnp;
3098
3099	rdp = per_cpu_ptr(&rcu_data, cpu);
3100	rnp = rdp->mynode;
3101	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3102	rnp->ffmask &= ~rdp->grpmask;
3103	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3104
3105	rcutree_affinity_setting(cpu, cpu);
 
3106	return 0;
3107}
3108
3109static DEFINE_PER_CPU(int, rcu_cpu_started);
3110
3111/*
3112 * Mark the specified CPU as being online so that subsequent grace periods
3113 * (both expedited and normal) will wait on it.  Note that this means that
3114 * incoming CPUs are not allowed to use RCU read-side critical sections
3115 * until this function is called.  Failing to observe this restriction
3116 * will result in lockdep splats.
3117 *
3118 * Note that this function is special in that it is invoked directly
3119 * from the incoming CPU rather than from the cpuhp_step mechanism.
3120 * This is because this function must be invoked at a precise location.
 
 
 
3121 */
3122void rcu_cpu_starting(unsigned int cpu)
3123{
3124	unsigned long flags;
3125	unsigned long mask;
3126	int nbits;
3127	unsigned long oldmask;
3128	struct rcu_data *rdp;
3129	struct rcu_node *rnp;
 
3130
3131	if (per_cpu(rcu_cpu_started, cpu))
 
 
3132		return;
 
3133
3134	per_cpu(rcu_cpu_started, cpu) = 1;
3135
3136	rdp = per_cpu_ptr(&rcu_data, cpu);
3137	rnp = rdp->mynode;
3138	mask = rdp->grpmask;
3139	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3140	rnp->qsmaskinitnext |= mask;
3141	oldmask = rnp->expmaskinitnext;
 
 
 
 
3142	rnp->expmaskinitnext |= mask;
3143	oldmask ^= rnp->expmaskinitnext;
3144	nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3145	/* Allow lockless access for expedited grace periods. */
3146	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
 
3147	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
3148	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3149	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3150	if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
 
 
 
 
 
 
 
3151		/* Report QS -after- changing ->qsmaskinitnext! */
3152		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3153	} else {
3154		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3155	}
 
 
3156	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3157}
3158
3159#ifdef CONFIG_HOTPLUG_CPU
3160/*
3161 * The outgoing function has no further need of RCU, so remove it from
3162 * the rcu_node tree's ->qsmaskinitnext bit masks.
3163 *
3164 * Note that this function is special in that it is invoked directly
3165 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3166 * This is because this function must be invoked at a precise location.
 
 
3167 */
3168void rcu_report_dead(unsigned int cpu)
3169{
3170	unsigned long flags;
3171	unsigned long mask;
3172	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3173	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3174
3175	/* QS for any half-done expedited grace period. */
3176	preempt_disable();
3177	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
3178	preempt_enable();
 
 
 
 
3179	rcu_preempt_deferred_qs(current);
3180
3181	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3182	mask = rdp->grpmask;
3183	raw_spin_lock(&rcu_state.ofl_lock);
3184	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3185	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3186	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3187	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3188		/* Report quiescent state -before- changing ->qsmaskinitnext! */
 
3189		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3190		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3191	}
3192	rnp->qsmaskinitnext &= ~mask;
3193	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3194	raw_spin_unlock(&rcu_state.ofl_lock);
3195
3196	per_cpu(rcu_cpu_started, cpu) = 0;
3197}
3198
 
3199/*
3200 * The outgoing CPU has just passed through the dying-idle state, and we
3201 * are being invoked from the CPU that was IPIed to continue the offline
3202 * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
3203 */
3204void rcutree_migrate_callbacks(int cpu)
3205{
3206	unsigned long flags;
3207	struct rcu_data *my_rdp;
3208	struct rcu_node *my_rnp;
3209	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3210	bool needwake;
3211
3212	if (rcu_segcblist_is_offloaded(&rdp->cblist) ||
3213	    rcu_segcblist_empty(&rdp->cblist))
 
 
 
 
3214		return;  /* No callbacks to migrate. */
 
3215
3216	local_irq_save(flags);
 
3217	my_rdp = this_cpu_ptr(&rcu_data);
3218	my_rnp = my_rdp->mynode;
3219	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
3220	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
3221	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
3222	/* Leverage recent GPs and set GP for new callbacks. */
3223	needwake = rcu_advance_cbs(my_rnp, rdp) ||
3224		   rcu_advance_cbs(my_rnp, my_rdp);
3225	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
 
3226	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
3227	rcu_segcblist_disable(&rdp->cblist);
3228	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3229		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
3230	if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) {
3231		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
3232		__call_rcu_nocb_wake(my_rdp, true, flags);
3233	} else {
3234		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
3235		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
3236	}
 
3237	if (needwake)
3238		rcu_gp_kthread_wake();
3239	lockdep_assert_irqs_enabled();
3240	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3241		  !rcu_segcblist_empty(&rdp->cblist),
3242		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3243		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3244		  rcu_segcblist_first_cb(&rdp->cblist));
3245}
3246#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3247
3248/*
3249 * On non-huge systems, use expedited RCU grace periods to make suspend
3250 * and hibernation run faster.
3251 */
3252static int rcu_pm_notify(struct notifier_block *self,
3253			 unsigned long action, void *hcpu)
3254{
3255	switch (action) {
3256	case PM_HIBERNATION_PREPARE:
3257	case PM_SUSPEND_PREPARE:
 
3258		rcu_expedite_gp();
3259		break;
3260	case PM_POST_HIBERNATION:
3261	case PM_POST_SUSPEND:
3262		rcu_unexpedite_gp();
 
3263		break;
3264	default:
3265		break;
3266	}
3267	return NOTIFY_OK;
3268}
3269
3270/*
3271 * Spawn the kthreads that handle RCU's grace periods.
3272 */
3273static int __init rcu_spawn_gp_kthread(void)
3274{
3275	unsigned long flags;
3276	int kthread_prio_in = kthread_prio;
3277	struct rcu_node *rnp;
3278	struct sched_param sp;
3279	struct task_struct *t;
3280
3281	/* Force priority into range. */
3282	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3283	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3284		kthread_prio = 2;
3285	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3286		kthread_prio = 1;
3287	else if (kthread_prio < 0)
3288		kthread_prio = 0;
3289	else if (kthread_prio > 99)
3290		kthread_prio = 99;
3291
3292	if (kthread_prio != kthread_prio_in)
3293		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3294			 kthread_prio, kthread_prio_in);
3295
3296	rcu_scheduler_fully_active = 1;
3297	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
3298	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
3299		return 0;
3300	if (kthread_prio) {
3301		sp.sched_priority = kthread_prio;
3302		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3303	}
3304	rnp = rcu_get_root();
3305	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3306	rcu_state.gp_kthread = t;
 
 
 
3307	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3308	wake_up_process(t);
3309	rcu_spawn_nocb_kthreads();
3310	rcu_spawn_boost_kthreads();
 
 
 
 
 
 
 
 
 
3311	return 0;
3312}
3313early_initcall(rcu_spawn_gp_kthread);
3314
3315/*
3316 * This function is invoked towards the end of the scheduler's
3317 * initialization process.  Before this is called, the idle task might
3318 * contain synchronous grace-period primitives (during which time, this idle
3319 * task is booting the system, and such primitives are no-ops).  After this
3320 * function is called, any synchronous grace-period primitives are run as
3321 * expedited, with the requesting task driving the grace period forward.
3322 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3323 * runtime RCU functionality.
3324 */
3325void rcu_scheduler_starting(void)
3326{
 
 
 
3327	WARN_ON(num_online_cpus() != 1);
3328	WARN_ON(nr_context_switches() > 0);
3329	rcu_test_sync_prims();
 
 
 
 
 
 
 
 
3330	rcu_scheduler_active = RCU_SCHEDULER_INIT;
3331	rcu_test_sync_prims();
3332}
3333
3334/*
3335 * Helper function for rcu_init() that initializes the rcu_state structure.
3336 */
3337static void __init rcu_init_one(void)
3338{
3339	static const char * const buf[] = RCU_NODE_NAME_INIT;
3340	static const char * const fqs[] = RCU_FQS_NAME_INIT;
3341	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3342	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3343
3344	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
3345	int cpustride = 1;
3346	int i;
3347	int j;
3348	struct rcu_node *rnp;
3349
3350	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
3351
3352	/* Silence gcc 4.8 false positive about array index out of range. */
3353	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3354		panic("rcu_init_one: rcu_num_lvls out of range");
3355
3356	/* Initialize the level-tracking arrays. */
3357
3358	for (i = 1; i < rcu_num_lvls; i++)
3359		rcu_state.level[i] =
3360			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
3361	rcu_init_levelspread(levelspread, num_rcu_lvl);
3362
3363	/* Initialize the elements themselves, starting from the leaves. */
3364
3365	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3366		cpustride *= levelspread[i];
3367		rnp = rcu_state.level[i];
3368		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
3369			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3370			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
3371						   &rcu_node_class[i], buf[i]);
3372			raw_spin_lock_init(&rnp->fqslock);
3373			lockdep_set_class_and_name(&rnp->fqslock,
3374						   &rcu_fqs_class[i], fqs[i]);
3375			rnp->gp_seq = rcu_state.gp_seq;
3376			rnp->gp_seq_needed = rcu_state.gp_seq;
3377			rnp->completedqs = rcu_state.gp_seq;
3378			rnp->qsmask = 0;
3379			rnp->qsmaskinit = 0;
3380			rnp->grplo = j * cpustride;
3381			rnp->grphi = (j + 1) * cpustride - 1;
3382			if (rnp->grphi >= nr_cpu_ids)
3383				rnp->grphi = nr_cpu_ids - 1;
3384			if (i == 0) {
3385				rnp->grpnum = 0;
3386				rnp->grpmask = 0;
3387				rnp->parent = NULL;
3388			} else {
3389				rnp->grpnum = j % levelspread[i - 1];
3390				rnp->grpmask = BIT(rnp->grpnum);
3391				rnp->parent = rcu_state.level[i - 1] +
3392					      j / levelspread[i - 1];
3393			}
3394			rnp->level = i;
3395			INIT_LIST_HEAD(&rnp->blkd_tasks);
3396			rcu_init_one_nocb(rnp);
3397			init_waitqueue_head(&rnp->exp_wq[0]);
3398			init_waitqueue_head(&rnp->exp_wq[1]);
3399			init_waitqueue_head(&rnp->exp_wq[2]);
3400			init_waitqueue_head(&rnp->exp_wq[3]);
3401			spin_lock_init(&rnp->exp_lock);
 
 
 
 
3402		}
3403	}
3404
3405	init_swait_queue_head(&rcu_state.gp_wq);
3406	init_swait_queue_head(&rcu_state.expedited_wq);
3407	rnp = rcu_first_leaf_node();
3408	for_each_possible_cpu(i) {
3409		while (i > rnp->grphi)
3410			rnp++;
3411		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
 
 
3412		rcu_boot_init_percpu_data(i);
3413	}
3414}
3415
3416/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3417 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3418 * replace the definitions in tree.h because those are needed to size
3419 * the ->node array in the rcu_state structure.
3420 */
3421static void __init rcu_init_geometry(void)
3422{
3423	ulong d;
3424	int i;
 
3425	int rcu_capacity[RCU_NUM_LVLS];
 
 
 
 
 
 
 
 
 
 
 
 
 
3426
3427	/*
3428	 * Initialize any unspecified boot parameters.
3429	 * The default values of jiffies_till_first_fqs and
3430	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3431	 * value, which is a function of HZ, then adding one for each
3432	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3433	 */
3434	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3435	if (jiffies_till_first_fqs == ULONG_MAX)
3436		jiffies_till_first_fqs = d;
3437	if (jiffies_till_next_fqs == ULONG_MAX)
3438		jiffies_till_next_fqs = d;
3439	adjust_jiffies_till_sched_qs();
3440
3441	/* If the compile-time values are accurate, just leave. */
3442	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
3443	    nr_cpu_ids == NR_CPUS)
3444		return;
3445	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
3446		rcu_fanout_leaf, nr_cpu_ids);
3447
3448	/*
3449	 * The boot-time rcu_fanout_leaf parameter must be at least two
3450	 * and cannot exceed the number of bits in the rcu_node masks.
3451	 * Complain and fall back to the compile-time values if this
3452	 * limit is exceeded.
3453	 */
3454	if (rcu_fanout_leaf < 2 ||
3455	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
3456		rcu_fanout_leaf = RCU_FANOUT_LEAF;
3457		WARN_ON(1);
3458		return;
3459	}
3460
3461	/*
3462	 * Compute number of nodes that can be handled an rcu_node tree
3463	 * with the given number of levels.
3464	 */
3465	rcu_capacity[0] = rcu_fanout_leaf;
3466	for (i = 1; i < RCU_NUM_LVLS; i++)
3467		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
3468
3469	/*
3470	 * The tree must be able to accommodate the configured number of CPUs.
3471	 * If this limit is exceeded, fall back to the compile-time values.
3472	 */
3473	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
3474		rcu_fanout_leaf = RCU_FANOUT_LEAF;
3475		WARN_ON(1);
3476		return;
3477	}
3478
3479	/* Calculate the number of levels in the tree. */
3480	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
3481	}
3482	rcu_num_lvls = i + 1;
3483
3484	/* Calculate the number of rcu_nodes at each level of the tree. */
3485	for (i = 0; i < rcu_num_lvls; i++) {
3486		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
3487		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
3488	}
3489
3490	/* Calculate the total number of rcu_node structures. */
3491	rcu_num_nodes = 0;
3492	for (i = 0; i < rcu_num_lvls; i++)
3493		rcu_num_nodes += num_rcu_lvl[i];
3494}
3495
3496/*
3497 * Dump out the structure of the rcu_node combining tree associated
3498 * with the rcu_state structure.
3499 */
3500static void __init rcu_dump_rcu_node_tree(void)
3501{
3502	int level = 0;
3503	struct rcu_node *rnp;
3504
3505	pr_info("rcu_node tree layout dump\n");
3506	pr_info(" ");
3507	rcu_for_each_node_breadth_first(rnp) {
3508		if (rnp->level != level) {
3509			pr_cont("\n");
3510			pr_info(" ");
3511			level = rnp->level;
3512		}
3513		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
3514	}
3515	pr_cont("\n");
3516}
3517
3518struct workqueue_struct *rcu_gp_wq;
3519struct workqueue_struct *rcu_par_gp_wq;
3520
3521void __init rcu_init(void)
3522{
3523	int cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3524
3525	rcu_early_boot_tests();
3526
 
3527	rcu_bootup_announce();
 
3528	rcu_init_geometry();
3529	rcu_init_one();
3530	if (dump_tree)
3531		rcu_dump_rcu_node_tree();
3532	if (use_softirq)
3533		open_softirq(RCU_SOFTIRQ, rcu_core_si);
3534
3535	/*
3536	 * We don't need protection against CPU-hotplug here because
3537	 * this is called early in boot, before either interrupts
3538	 * or the scheduler are operational.
3539	 */
3540	pm_notifier(rcu_pm_notify, 0);
3541	for_each_online_cpu(cpu) {
3542		rcutree_prepare_cpu(cpu);
3543		rcu_cpu_starting(cpu);
3544		rcutree_online_cpu(cpu);
3545	}
3546
3547	/* Create workqueue for expedited GPs and for Tree SRCU. */
3548	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
3549	WARN_ON(!rcu_gp_wq);
3550	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
3551	WARN_ON(!rcu_par_gp_wq);
3552	srcu_init();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3553}
3554
3555#include "tree_stall.h"
3556#include "tree_exp.h"
 
3557#include "tree_plugin.h"
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
   4 *
   5 * Copyright IBM Corporation, 2008
   6 *
   7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
   8 *	    Manfred Spraul <manfred@colorfullife.com>
   9 *	    Paul E. McKenney <paulmck@linux.ibm.com>
  10 *
  11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
  12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  13 *
  14 * For detailed explanation of Read-Copy Update mechanism see -
  15 *	Documentation/RCU
  16 */
  17
  18#define pr_fmt(fmt) "rcu: " fmt
  19
  20#include <linux/types.h>
  21#include <linux/kernel.h>
  22#include <linux/init.h>
  23#include <linux/spinlock.h>
  24#include <linux/smp.h>
  25#include <linux/rcupdate_wait.h>
  26#include <linux/interrupt.h>
  27#include <linux/sched.h>
  28#include <linux/sched/debug.h>
  29#include <linux/nmi.h>
  30#include <linux/atomic.h>
  31#include <linux/bitops.h>
  32#include <linux/export.h>
  33#include <linux/completion.h>
  34#include <linux/kmemleak.h>
  35#include <linux/moduleparam.h>
  36#include <linux/panic.h>
  37#include <linux/panic_notifier.h>
  38#include <linux/percpu.h>
  39#include <linux/notifier.h>
  40#include <linux/cpu.h>
  41#include <linux/mutex.h>
  42#include <linux/time.h>
  43#include <linux/kernel_stat.h>
  44#include <linux/wait.h>
  45#include <linux/kthread.h>
  46#include <uapi/linux/sched/types.h>
  47#include <linux/prefetch.h>
  48#include <linux/delay.h>
 
  49#include <linux/random.h>
  50#include <linux/trace_events.h>
  51#include <linux/suspend.h>
  52#include <linux/ftrace.h>
  53#include <linux/tick.h>
  54#include <linux/sysrq.h>
  55#include <linux/kprobes.h>
  56#include <linux/gfp.h>
  57#include <linux/oom.h>
  58#include <linux/smpboot.h>
  59#include <linux/jiffies.h>
  60#include <linux/slab.h>
  61#include <linux/sched/isolation.h>
  62#include <linux/sched/clock.h>
  63#include <linux/vmalloc.h>
  64#include <linux/mm.h>
  65#include <linux/kasan.h>
  66#include <linux/context_tracking.h>
  67#include "../time/tick-internal.h"
  68
  69#include "tree.h"
  70#include "rcu.h"
  71
  72#ifdef MODULE_PARAM_PREFIX
  73#undef MODULE_PARAM_PREFIX
  74#endif
  75#define MODULE_PARAM_PREFIX "rcutree."
  76
  77/* Data structures. */
  78static void rcu_sr_normal_gp_cleanup_work(struct work_struct *);
 
 
 
 
 
 
 
 
 
  79
  80static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
  81	.gpwrap = true,
 
 
  82};
  83static struct rcu_state rcu_state = {
  84	.level = { &rcu_state.node[0] },
  85	.gp_state = RCU_GP_IDLE,
  86	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
  87	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
  88	.barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
  89	.name = RCU_NAME,
  90	.abbr = RCU_ABBR,
  91	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
  92	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
  93	.ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
  94	.srs_cleanup_work = __WORK_INITIALIZER(rcu_state.srs_cleanup_work,
  95		rcu_sr_normal_gp_cleanup_work),
  96	.srs_cleanups_pending = ATOMIC_INIT(0),
  97#ifdef CONFIG_RCU_NOCB_CPU
  98	.nocb_mutex = __MUTEX_INITIALIZER(rcu_state.nocb_mutex),
  99#endif
 100};
 101
 102/* Dump rcu_node combining tree at boot to verify correct setup. */
 103static bool dump_tree;
 104module_param(dump_tree, bool, 0444);
 105/* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
 106static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
 107#ifndef CONFIG_PREEMPT_RT
 108module_param(use_softirq, bool, 0444);
 109#endif
 110/* Control rcu_node-tree auto-balancing at boot time. */
 111static bool rcu_fanout_exact;
 112module_param(rcu_fanout_exact, bool, 0444);
 113/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 114static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 115module_param(rcu_fanout_leaf, int, 0444);
 116int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 117/* Number of rcu_nodes at specified level. */
 118int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 119int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 120
 121/*
 122 * The rcu_scheduler_active variable is initialized to the value
 123 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 124 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 125 * RCU can assume that there is but one task, allowing RCU to (for example)
 126 * optimize synchronize_rcu() to a simple barrier().  When this variable
 127 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 128 * to detect real grace periods.  This variable is also used to suppress
 129 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 130 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 131 * is fully initialized, including all of its kthreads having been spawned.
 132 */
 133int rcu_scheduler_active __read_mostly;
 134EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 135
 136/*
 137 * The rcu_scheduler_fully_active variable transitions from zero to one
 138 * during the early_initcall() processing, which is after the scheduler
 139 * is capable of creating new tasks.  So RCU processing (for example,
 140 * creating tasks for RCU priority boosting) must be delayed until after
 141 * rcu_scheduler_fully_active transitions from zero to one.  We also
 142 * currently delay invocation of any RCU callbacks until after this point.
 143 *
 144 * It might later prove better for people registering RCU callbacks during
 145 * early boot to take responsibility for these callbacks, but one step at
 146 * a time.
 147 */
 148static int rcu_scheduler_fully_active __read_mostly;
 149
 150static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
 151			      unsigned long gps, unsigned long flags);
 152static struct task_struct *rcu_boost_task(struct rcu_node *rnp);
 
 
 153static void invoke_rcu_core(void);
 154static void rcu_report_exp_rdp(struct rcu_data *rdp);
 155static void sync_sched_exp_online_cleanup(int cpu);
 156static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
 157static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
 158static bool rcu_rdp_cpu_online(struct rcu_data *rdp);
 159static bool rcu_init_invoked(void);
 160static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 161static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 162
 163/*
 164 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
 165 * real-time priority(enabling/disabling) is controlled by
 166 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
 167 */
 168static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 169module_param(kthread_prio, int, 0444);
 170
 171/* Delay in jiffies for grace-period initialization delays, debug only. */
 172
 173static int gp_preinit_delay;
 174module_param(gp_preinit_delay, int, 0444);
 175static int gp_init_delay;
 176module_param(gp_init_delay, int, 0444);
 177static int gp_cleanup_delay;
 178module_param(gp_cleanup_delay, int, 0444);
 179static int nohz_full_patience_delay;
 180module_param(nohz_full_patience_delay, int, 0444);
 181static int nohz_full_patience_delay_jiffies;
 182
 183// Add delay to rcu_read_unlock() for strict grace periods.
 184static int rcu_unlock_delay;
 185#ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
 186module_param(rcu_unlock_delay, int, 0444);
 187#endif
 188
 189/*
 190 * This rcu parameter is runtime-read-only. It reflects
 191 * a minimum allowed number of objects which can be cached
 192 * per-CPU. Object size is equal to one page. This value
 193 * can be changed at boot time.
 194 */
 195static int rcu_min_cached_objs = 5;
 196module_param(rcu_min_cached_objs, int, 0444);
 197
 198// A page shrinker can ask for pages to be freed to make them
 199// available for other parts of the system. This usually happens
 200// under low memory conditions, and in that case we should also
 201// defer page-cache filling for a short time period.
 202//
 203// The default value is 5 seconds, which is long enough to reduce
 204// interference with the shrinker while it asks other systems to
 205// drain their caches.
 206static int rcu_delay_page_cache_fill_msec = 5000;
 207module_param(rcu_delay_page_cache_fill_msec, int, 0444);
 208
 209/* Retrieve RCU kthreads priority for rcutorture */
 210int rcu_get_gp_kthreads_prio(void)
 211{
 212	return kthread_prio;
 213}
 214EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
 215
 216/*
 217 * Number of grace periods between delays, normalized by the duration of
 218 * the delay.  The longer the delay, the more the grace periods between
 219 * each delay.  The reason for this normalization is that it means that,
 220 * for non-zero delays, the overall slowdown of grace periods is constant
 221 * regardless of the duration of the delay.  This arrangement balances
 222 * the need for long delays to increase some race probabilities with the
 223 * need for fast grace periods to increase other race probabilities.
 224 */
 225#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */
 
 
 
 
 
 
 
 
 
 
 
 226
 227/*
 228 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 229 * permit this function to be invoked without holding the root rcu_node
 230 * structure's ->lock, but of course results can be subject to change.
 231 */
 232static int rcu_gp_in_progress(void)
 233{
 234	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
 235}
 236
 237/*
 238 * Return the number of callbacks queued on the specified CPU.
 239 * Handles both the nocbs and normal cases.
 240 */
 241static long rcu_get_n_cbs_cpu(int cpu)
 242{
 243	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 244
 245	if (rcu_segcblist_is_enabled(&rdp->cblist))
 246		return rcu_segcblist_n_cbs(&rdp->cblist);
 247	return 0;
 248}
 249
 250/**
 251 * rcu_softirq_qs - Provide a set of RCU quiescent states in softirq processing
 252 *
 253 * Mark a quiescent state for RCU, Tasks RCU, and Tasks Trace RCU.
 254 * This is a special-purpose function to be used in the softirq
 255 * infrastructure and perhaps the occasional long-running softirq
 256 * handler.
 257 *
 258 * Note that from RCU's viewpoint, a call to rcu_softirq_qs() is
 259 * equivalent to momentarily completely enabling preemption.  For
 260 * example, given this code::
 261 *
 262 *	local_bh_disable();
 263 *	do_something();
 264 *	rcu_softirq_qs();  // A
 265 *	do_something_else();
 266 *	local_bh_enable();  // B
 267 *
 268 * A call to synchronize_rcu() that began concurrently with the
 269 * call to do_something() would be guaranteed to wait only until
 270 * execution reached statement A.  Without that rcu_softirq_qs(),
 271 * that same synchronize_rcu() would instead be guaranteed to wait
 272 * until execution reached statement B.
 273 */
 274void rcu_softirq_qs(void)
 275{
 276	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
 277			 lock_is_held(&rcu_lock_map) ||
 278			 lock_is_held(&rcu_sched_lock_map),
 279			 "Illegal rcu_softirq_qs() in RCU read-side critical section");
 280	rcu_qs();
 281	rcu_preempt_deferred_qs(current);
 282	rcu_tasks_qs(current, false);
 283}
 284
 285/*
 286 * Reset the current CPU's RCU_WATCHING counter to indicate that the
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 287 * newly onlined CPU is no longer in an extended quiescent state.
 288 * This will either leave the counter unchanged, or increment it
 289 * to the next non-quiescent value.
 290 *
 291 * The non-atomic test/increment sequence works because the upper bits
 292 * of the ->state variable are manipulated only by the corresponding CPU,
 293 * or when the corresponding CPU is offline.
 294 */
 295static void rcu_watching_online(void)
 296{
 297	if (ct_rcu_watching() & CT_RCU_WATCHING)
 
 
 298		return;
 299	ct_state_inc(CT_RCU_WATCHING);
 300}
 301
 302/*
 303 * Return true if the snapshot returned from ct_rcu_watching()
 304 * indicates that RCU is in an extended quiescent state.
 
 305 */
 306static bool rcu_watching_snap_in_eqs(int snap)
 307{
 308	return !(snap & CT_RCU_WATCHING);
 
 
 309}
 310
 311/**
 312 * rcu_watching_snap_stopped_since() - Has RCU stopped watching a given CPU
 313 * since the specified @snap?
 314 *
 315 * @rdp: The rcu_data corresponding to the CPU for which to check EQS.
 316 * @snap: rcu_watching snapshot taken when the CPU wasn't in an EQS.
 317 *
 318 * Returns true if the CPU corresponding to @rdp has spent some time in an
 319 * extended quiescent state since @snap. Note that this doesn't check if it
 320 * /still/ is in an EQS, just that it went through one since @snap.
 321 *
 322 * This is meant to be used in a loop waiting for a CPU to go through an EQS.
 323 */
 324static bool rcu_watching_snap_stopped_since(struct rcu_data *rdp, int snap)
 325{
 326	/*
 327	 * The first failing snapshot is already ordered against the accesses
 328	 * performed by the remote CPU after it exits idle.
 329	 *
 330	 * The second snapshot therefore only needs to order against accesses
 331	 * performed by the remote CPU prior to entering idle and therefore can
 332	 * rely solely on acquire semantics.
 333	 */
 334	if (WARN_ON_ONCE(rcu_watching_snap_in_eqs(snap)))
 335		return true;
 336
 337	return snap != ct_rcu_watching_cpu_acquire(rdp->cpu);
 
 
 
 
 
 
 338}
 339
 340/*
 341 * Return true if the referenced integer is zero while the specified
 342 * CPU remains within a single extended quiescent state.
 
 343 */
 344bool rcu_watching_zero_in_eqs(int cpu, int *vp)
 345{
 346	int snap;
 
 347
 348	// If not quiescent, force back to earlier extended quiescent state.
 349	snap = ct_rcu_watching_cpu(cpu) & ~CT_RCU_WATCHING;
 350	smp_rmb(); // Order CT state and *vp reads.
 351	if (READ_ONCE(*vp))
 352		return false;  // Non-zero, so report failure;
 353	smp_rmb(); // Order *vp read and CT state re-read.
 
 
 
 
 
 
 354
 355	// If still in the same extended quiescent state, we are good!
 356	return snap == ct_rcu_watching_cpu(cpu);
 
 
 
 
 
 357}
 358
 359/*
 360 * Let the RCU core know that this CPU has gone through the scheduler,
 361 * which is a quiescent state.  This is called when the need for a
 362 * quiescent state is urgent, so we burn an atomic operation and full
 363 * memory barriers to let the RCU core know about it, regardless of what
 364 * this CPU might (or might not) do in the near future.
 365 *
 366 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 367 *
 368 * The caller must have disabled interrupts and must not be idle.
 369 */
 370notrace void rcu_momentary_eqs(void)
 371{
 372	int seq;
 373
 374	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
 375	seq = ct_state_inc(2 * CT_RCU_WATCHING);
 
 376	/* It is illegal to call this from idle state. */
 377	WARN_ON_ONCE(!(seq & CT_RCU_WATCHING));
 378	rcu_preempt_deferred_qs(current);
 379}
 380EXPORT_SYMBOL_GPL(rcu_momentary_eqs);
 381
 382/**
 383 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
 384 *
 385 * If the current CPU is idle and running at a first-level (not nested)
 386 * interrupt, or directly, from idle, return true.
 387 *
 388 * The caller must have at least disabled IRQs.
 389 */
 390static int rcu_is_cpu_rrupt_from_idle(void)
 391{
 392	long nesting;
 393
 394	/*
 395	 * Usually called from the tick; but also used from smp_function_call()
 396	 * for expedited grace periods. This latter can result in running from
 397	 * the idle task, instead of an actual IPI.
 398	 */
 399	lockdep_assert_irqs_disabled();
 400
 401	/* Check for counter underflows */
 402	RCU_LOCKDEP_WARN(ct_nesting() < 0,
 403			 "RCU nesting counter underflow!");
 404	RCU_LOCKDEP_WARN(ct_nmi_nesting() <= 0,
 405			 "RCU nmi_nesting counter underflow/zero!");
 406
 407	/* Are we at first interrupt nesting level? */
 408	nesting = ct_nmi_nesting();
 409	if (nesting > 1)
 410		return false;
 411
 412	/*
 413	 * If we're not in an interrupt, we must be in the idle task!
 414	 */
 415	WARN_ON_ONCE(!nesting && !is_idle_task(current));
 416
 417	/* Does CPU appear to be idle from an RCU standpoint? */
 418	return ct_nesting() == 0;
 419}
 420
 421#define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
 422				// Maximum callbacks per rcu_do_batch ...
 423#define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
 424static long blimit = DEFAULT_RCU_BLIMIT;
 425#define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
 426static long qhimark = DEFAULT_RCU_QHIMARK;
 427#define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
 428static long qlowmark = DEFAULT_RCU_QLOMARK;
 429#define DEFAULT_RCU_QOVLD_MULT 2
 430#define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
 431static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
 432static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
 433
 434module_param(blimit, long, 0444);
 435module_param(qhimark, long, 0444);
 436module_param(qlowmark, long, 0444);
 437module_param(qovld, long, 0444);
 438
 439static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
 440static ulong jiffies_till_next_fqs = ULONG_MAX;
 441static bool rcu_kick_kthreads;
 442static int rcu_divisor = 7;
 443module_param(rcu_divisor, int, 0644);
 444
 445/* Force an exit from rcu_do_batch() after 3 milliseconds. */
 446static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
 447module_param(rcu_resched_ns, long, 0644);
 448
 449/*
 450 * How long the grace period must be before we start recruiting
 451 * quiescent-state help from rcu_note_context_switch().
 452 */
 453static ulong jiffies_till_sched_qs = ULONG_MAX;
 454module_param(jiffies_till_sched_qs, ulong, 0444);
 455static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
 456module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
 457
 458/*
 459 * Make sure that we give the grace-period kthread time to detect any
 460 * idle CPUs before taking active measures to force quiescent states.
 461 * However, don't go below 100 milliseconds, adjusted upwards for really
 462 * large systems.
 463 */
 464static void adjust_jiffies_till_sched_qs(void)
 465{
 466	unsigned long j;
 467
 468	/* If jiffies_till_sched_qs was specified, respect the request. */
 469	if (jiffies_till_sched_qs != ULONG_MAX) {
 470		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
 471		return;
 472	}
 473	/* Otherwise, set to third fqs scan, but bound below on large system. */
 474	j = READ_ONCE(jiffies_till_first_fqs) +
 475		      2 * READ_ONCE(jiffies_till_next_fqs);
 476	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
 477		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
 478	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
 479	WRITE_ONCE(jiffies_to_sched_qs, j);
 480}
 481
 482static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
 483{
 484	ulong j;
 485	int ret = kstrtoul(val, 0, &j);
 486
 487	if (!ret) {
 488		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
 489		adjust_jiffies_till_sched_qs();
 490	}
 491	return ret;
 492}
 493
 494static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
 495{
 496	ulong j;
 497	int ret = kstrtoul(val, 0, &j);
 498
 499	if (!ret) {
 500		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
 501		adjust_jiffies_till_sched_qs();
 502	}
 503	return ret;
 504}
 505
 506static const struct kernel_param_ops first_fqs_jiffies_ops = {
 507	.set = param_set_first_fqs_jiffies,
 508	.get = param_get_ulong,
 509};
 510
 511static const struct kernel_param_ops next_fqs_jiffies_ops = {
 512	.set = param_set_next_fqs_jiffies,
 513	.get = param_get_ulong,
 514};
 515
 516module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
 517module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
 518module_param(rcu_kick_kthreads, bool, 0644);
 519
 520static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
 521static int rcu_pending(int user);
 522
 523/*
 524 * Return the number of RCU GPs completed thus far for debug & stats.
 525 */
 526unsigned long rcu_get_gp_seq(void)
 527{
 528	return READ_ONCE(rcu_state.gp_seq);
 529}
 530EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
 531
 532/*
 533 * Return the number of RCU expedited batches completed thus far for
 534 * debug & stats.  Odd numbers mean that a batch is in progress, even
 535 * numbers mean idle.  The value returned will thus be roughly double
 536 * the cumulative batches since boot.
 537 */
 538unsigned long rcu_exp_batches_completed(void)
 539{
 540	return rcu_state.expedited_sequence;
 541}
 542EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 543
 544/*
 545 * Return the root node of the rcu_state structure.
 546 */
 547static struct rcu_node *rcu_get_root(void)
 548{
 549	return &rcu_state.node[0];
 550}
 551
 552/*
 
 
 
 
 
 
 
 
 
 
 553 * Send along grace-period-related data for rcutorture diagnostics.
 554 */
 555void rcutorture_get_gp_data(int *flags, unsigned long *gp_seq)
 
 556{
 557	*flags = READ_ONCE(rcu_state.gp_flags);
 558	*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
 
 
 
 
 
 
 559}
 560EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 561
 562#if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
 563/*
 564 * An empty function that will trigger a reschedule on
 565 * IRQ tail once IRQs get re-enabled on userspace/guest resume.
 
 
 
 
 566 */
 567static void late_wakeup_func(struct irq_work *work)
 568{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 569}
 570
 571static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
 572	IRQ_WORK_INIT(late_wakeup_func);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 573
 574/*
 575 * If either:
 
 
 
 576 *
 577 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
 578 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
 579 *
 580 * In these cases the late RCU wake ups aren't supported in the resched loops and our
 581 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
 582 * get re-enabled again.
 583 */
 584noinstr void rcu_irq_work_resched(void)
 585{
 586	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 587
 588	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 589		return;
 
 
 
 
 
 
 
 
 590
 591	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 592		return;
 593
 594	instrumentation_begin();
 595	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
 596		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
 597	}
 598	instrumentation_end();
 
 
 
 
 
 
 
 599}
 600#endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
 601
 602#ifdef CONFIG_PROVE_RCU
 603/**
 604 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
 
 
 
 
 
 
 605 */
 606void rcu_irq_exit_check_preempt(void)
 607{
 608	lockdep_assert_irqs_disabled();
 609
 610	RCU_LOCKDEP_WARN(ct_nesting() <= 0,
 611			 "RCU nesting counter underflow/zero!");
 612	RCU_LOCKDEP_WARN(ct_nmi_nesting() !=
 613			 CT_NESTING_IRQ_NONIDLE,
 614			 "Bad RCU  nmi_nesting counter\n");
 615	RCU_LOCKDEP_WARN(!rcu_is_watching_curr_cpu(),
 616			 "RCU in extended quiescent state!");
 617}
 618#endif /* #ifdef CONFIG_PROVE_RCU */
 619
 620#ifdef CONFIG_NO_HZ_FULL
 621/**
 622 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
 623 *
 624 * The scheduler tick is not normally enabled when CPUs enter the kernel
 625 * from nohz_full userspace execution.  After all, nohz_full userspace
 626 * execution is an RCU quiescent state and the time executing in the kernel
 627 * is quite short.  Except of course when it isn't.  And it is not hard to
 628 * cause a large system to spend tens of seconds or even minutes looping
 629 * in the kernel, which can cause a number of problems, include RCU CPU
 630 * stall warnings.
 631 *
 632 * Therefore, if a nohz_full CPU fails to report a quiescent state
 633 * in a timely manner, the RCU grace-period kthread sets that CPU's
 634 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
 635 * exception will invoke this function, which will turn on the scheduler
 636 * tick, which will enable RCU to detect that CPU's quiescent states,
 637 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
 638 * The tick will be disabled once a quiescent state is reported for
 639 * this CPU.
 640 *
 641 * Of course, in carefully tuned systems, there might never be an
 642 * interrupt or exception.  In that case, the RCU grace-period kthread
 643 * will eventually cause one to happen.  However, in less carefully
 644 * controlled environments, this function allows RCU to get what it
 645 * needs without creating otherwise useless interruptions.
 646 */
 647void __rcu_irq_enter_check_tick(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648{
 649	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 650
 651	// If we're here from NMI there's nothing to do.
 652	if (in_nmi())
 653		return;
 654
 655	RCU_LOCKDEP_WARN(!rcu_is_watching_curr_cpu(),
 656			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
 657
 658	if (!tick_nohz_full_cpu(rdp->cpu) ||
 659	    !READ_ONCE(rdp->rcu_urgent_qs) ||
 660	    READ_ONCE(rdp->rcu_forced_tick)) {
 661		// RCU doesn't need nohz_full help from this CPU, or it is
 662		// already getting that help.
 663		return;
 664	}
 
 
 
 
 
 
 
 665
 666	// We get here only when not in an extended quiescent state and
 667	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
 668	// already watching and (2) The fact that we are in an interrupt
 669	// handler and that the rcu_node lock is an irq-disabled lock
 670	// prevents self-deadlock.  So we can safely recheck under the lock.
 671	// Note that the nohz_full state currently cannot change.
 672	raw_spin_lock_rcu_node(rdp->mynode);
 673	if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) {
 674		// A nohz_full CPU is in the kernel and RCU needs a
 675		// quiescent state.  Turn on the tick!
 676		WRITE_ONCE(rdp->rcu_forced_tick, true);
 677		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
 678	}
 679	raw_spin_unlock_rcu_node(rdp->mynode);
 680}
 681NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick);
 682#endif /* CONFIG_NO_HZ_FULL */
 683
 684/*
 685 * Check to see if any future non-offloaded RCU-related work will need
 686 * to be done by the current CPU, even if none need be done immediately,
 687 * returning 1 if so.  This function is part of the RCU implementation;
 688 * it is -not- an exported member of the RCU API.  This is used by
 689 * the idle-entry code to figure out whether it is safe to disable the
 690 * scheduler-clock interrupt.
 
 
 
 
 
 
 
 
 
 
 
 691 *
 692 * Just check whether or not this CPU has non-offloaded RCU callbacks
 693 * queued.
 694 */
 695int rcu_needs_cpu(void)
 696{
 697	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
 698		!rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
 699}
 700
 701/*
 702 * If any sort of urgency was applied to the current CPU (for example,
 703 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
 704 * to get to a quiescent state, disable it.
 
 705 */
 706static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
 707{
 708	raw_lockdep_assert_held_rcu_node(rdp->mynode);
 709	WRITE_ONCE(rdp->rcu_urgent_qs, false);
 710	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
 711	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
 712		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
 713		WRITE_ONCE(rdp->rcu_forced_tick, false);
 714	}
 715}
 716
 717/**
 718 * rcu_is_watching - RCU read-side critical sections permitted on current CPU?
 719 *
 720 * Return @true if RCU is watching the running CPU and @false otherwise.
 721 * An @true return means that this CPU can safely enter RCU read-side
 722 * critical sections.
 723 *
 724 * Although calls to rcu_is_watching() from most parts of the kernel
 725 * will return @true, there are important exceptions.  For example, if the
 726 * current CPU is deep within its idle loop, in kernel entry/exit code,
 727 * or offline, rcu_is_watching() will return @false.
 728 *
 729 * Make notrace because it can be called by the internal functions of
 730 * ftrace, and making this notrace removes unnecessary recursion calls.
 731 */
 732notrace bool rcu_is_watching(void)
 733{
 734	bool ret;
 735
 736	preempt_disable_notrace();
 737	ret = rcu_is_watching_curr_cpu();
 738	preempt_enable_notrace();
 739	return ret;
 740}
 741EXPORT_SYMBOL_GPL(rcu_is_watching);
 742
 743/*
 744 * If a holdout task is actually running, request an urgent quiescent
 745 * state from its CPU.  This is unsynchronized, so migrations can cause
 746 * the request to go to the wrong CPU.  Which is OK, all that will happen
 747 * is that the CPU's next context switch will be a bit slower and next
 748 * time around this task will generate another request.
 749 */
 750void rcu_request_urgent_qs_task(struct task_struct *t)
 751{
 752	int cpu;
 753
 754	barrier();
 755	cpu = task_cpu(t);
 756	if (!task_curr(t))
 757		return; /* This task is not running on that CPU. */
 758	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
 759}
 760
 
 
 761/*
 762 * When trying to report a quiescent state on behalf of some other CPU,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 763 * it is our responsibility to check for and handle potential overflow
 764 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
 765 * After all, the CPU might be in deep idle state, and thus executing no
 766 * code whatsoever.
 767 */
 768static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
 769{
 770	raw_lockdep_assert_held_rcu_node(rnp);
 771	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
 772			 rnp->gp_seq))
 773		WRITE_ONCE(rdp->gpwrap, true);
 774	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
 775		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
 776}
 777
 778/*
 779 * Snapshot the specified CPU's RCU_WATCHING counter so that we can later
 780 * credit them with an implicit quiescent state.  Return 1 if this CPU
 781 * is in dynticks idle mode, which is an extended quiescent state.
 782 */
 783static int rcu_watching_snap_save(struct rcu_data *rdp)
 784{
 785	/*
 786	 * Full ordering between remote CPU's post idle accesses and updater's
 787	 * accesses prior to current GP (and also the started GP sequence number)
 788	 * is enforced by rcu_seq_start() implicit barrier and even further by
 789	 * smp_mb__after_unlock_lock() barriers chained all the way throughout the
 790	 * rnp locking tree since rcu_gp_init() and up to the current leaf rnp
 791	 * locking.
 792	 *
 793	 * Ordering between remote CPU's pre idle accesses and post grace period
 794	 * updater's accesses is enforced by the below acquire semantic.
 795	 */
 796	rdp->watching_snap = ct_rcu_watching_cpu_acquire(rdp->cpu);
 797	if (rcu_watching_snap_in_eqs(rdp->watching_snap)) {
 798		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
 799		rcu_gpnum_ovf(rdp->mynode, rdp);
 800		return 1;
 801	}
 802	return 0;
 803}
 804
 805/*
 806 * Returns positive if the specified CPU has passed through a quiescent state
 807 * by virtue of being in or having passed through an dynticks idle state since
 808 * the last call to rcu_watching_snap_save() for this same CPU, or by
 809 * virtue of having been offline.
 810 *
 811 * Returns negative if the specified CPU needs a force resched.
 812 *
 813 * Returns zero otherwise.
 814 */
 815static int rcu_watching_snap_recheck(struct rcu_data *rdp)
 816{
 817	unsigned long jtsq;
 818	int ret = 0;
 
 819	struct rcu_node *rnp = rdp->mynode;
 820
 821	/*
 822	 * If the CPU passed through or entered a dynticks idle phase with
 823	 * no active irq/NMI handlers, then we can safely pretend that the CPU
 824	 * already acknowledged the request to pass through a quiescent
 825	 * state.  Either way, that CPU cannot possibly be in an RCU
 826	 * read-side critical section that started before the beginning
 827	 * of the current RCU grace period.
 828	 */
 829	if (rcu_watching_snap_stopped_since(rdp, rdp->watching_snap)) {
 830		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
 831		rcu_gpnum_ovf(rnp, rdp);
 832		return 1;
 833	}
 834
 835	/*
 836	 * Complain if a CPU that is considered to be offline from RCU's
 837	 * perspective has not yet reported a quiescent state.  After all,
 838	 * the offline CPU should have reported a quiescent state during
 839	 * the CPU-offline process, or, failing that, by rcu_gp_init()
 840	 * if it ran concurrently with either the CPU going offline or the
 841	 * last task on a leaf rcu_node structure exiting its RCU read-side
 842	 * critical section while all CPUs corresponding to that structure
 843	 * are offline.  This added warning detects bugs in any of these
 844	 * code paths.
 845	 *
 846	 * The rcu_node structure's ->lock is held here, which excludes
 847	 * the relevant portions the CPU-hotplug code, the grace-period
 848	 * initialization code, and the rcu_read_unlock() code paths.
 849	 *
 850	 * For more detail, please refer to the "Hotplug CPU" section
 851	 * of RCU's Requirements documentation.
 852	 */
 853	if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
 854		struct rcu_node *rnp1;
 855
 
 856		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
 857			__func__, rnp->grplo, rnp->grphi, rnp->level,
 858			(long)rnp->gp_seq, (long)rnp->completedqs);
 859		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
 860			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
 861				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
 
 862		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
 863			__func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
 864			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_state,
 865			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_state);
 866		return 1; /* Break things loose after complaining. */
 867	}
 868
 869	/*
 870	 * A CPU running for an extended time within the kernel can
 871	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
 872	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
 873	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
 874	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
 875	 * variable are safe because the assignments are repeated if this
 876	 * CPU failed to pass through a quiescent state.  This code
 877	 * also checks .jiffies_resched in case jiffies_to_sched_qs
 878	 * is set way high.
 879	 */
 880	jtsq = READ_ONCE(jiffies_to_sched_qs);
 881	if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
 
 
 882	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
 883	     time_after(jiffies, rcu_state.jiffies_resched) ||
 884	     rcu_state.cbovld)) {
 885		WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
 886		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
 887		smp_store_release(&rdp->rcu_urgent_qs, true);
 888	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
 889		WRITE_ONCE(rdp->rcu_urgent_qs, true);
 890	}
 891
 892	/*
 893	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
 894	 * The above code handles this, but only for straight cond_resched().
 895	 * And some in-kernel loops check need_resched() before calling
 896	 * cond_resched(), which defeats the above code for CPUs that are
 897	 * running in-kernel with scheduling-clock interrupts disabled.
 898	 * So hit them over the head with the resched_cpu() hammer!
 899	 */
 900	if (tick_nohz_full_cpu(rdp->cpu) &&
 901	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
 902	     rcu_state.cbovld)) {
 903		WRITE_ONCE(rdp->rcu_urgent_qs, true);
 904		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
 905		ret = -1;
 906	}
 907
 908	/*
 909	 * If more than halfway to RCU CPU stall-warning time, invoke
 910	 * resched_cpu() more frequently to try to loosen things up a bit.
 911	 * Also check to see if the CPU is getting hammered with interrupts,
 912	 * but only once per grace period, just to keep the IPIs down to
 913	 * a dull roar.
 914	 */
 915	if (time_after(jiffies, rcu_state.jiffies_resched)) {
 916		if (time_after(jiffies,
 917			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
 
 918			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
 919			ret = -1;
 920		}
 921		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
 922		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
 923		    (rnp->ffmask & rdp->grpmask)) {
 
 924			rdp->rcu_iw_pending = true;
 925			rdp->rcu_iw_gp_seq = rnp->gp_seq;
 926			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
 927		}
 928
 929		if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) {
 930			int cpu = rdp->cpu;
 931			struct rcu_snap_record *rsrp;
 932			struct kernel_cpustat *kcsp;
 933
 934			kcsp = &kcpustat_cpu(cpu);
 935
 936			rsrp = &rdp->snap_record;
 937			rsrp->cputime_irq     = kcpustat_field(kcsp, CPUTIME_IRQ, cpu);
 938			rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu);
 939			rsrp->cputime_system  = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu);
 940			rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu);
 941			rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu);
 942			rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu);
 943			rsrp->jiffies = jiffies;
 944			rsrp->gp_seq = rdp->gp_seq;
 945		}
 946	}
 947
 948	return ret;
 949}
 950
 951/* Trace-event wrapper function for trace_rcu_future_grace_period.  */
 952static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
 953			      unsigned long gp_seq_req, const char *s)
 954{
 955	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
 956				      gp_seq_req, rnp->level,
 957				      rnp->grplo, rnp->grphi, s);
 958}
 959
 960/*
 961 * rcu_start_this_gp - Request the start of a particular grace period
 962 * @rnp_start: The leaf node of the CPU from which to start.
 963 * @rdp: The rcu_data corresponding to the CPU from which to start.
 964 * @gp_seq_req: The gp_seq of the grace period to start.
 965 *
 966 * Start the specified grace period, as needed to handle newly arrived
 967 * callbacks.  The required future grace periods are recorded in each
 968 * rcu_node structure's ->gp_seq_needed field.  Returns true if there
 969 * is reason to awaken the grace-period kthread.
 970 *
 971 * The caller must hold the specified rcu_node structure's ->lock, which
 972 * is why the caller is responsible for waking the grace-period kthread.
 973 *
 974 * Returns true if the GP thread needs to be awakened else false.
 975 */
 976static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
 977			      unsigned long gp_seq_req)
 978{
 979	bool ret = false;
 980	struct rcu_node *rnp;
 981
 982	/*
 983	 * Use funnel locking to either acquire the root rcu_node
 984	 * structure's lock or bail out if the need for this grace period
 985	 * has already been recorded -- or if that grace period has in
 986	 * fact already started.  If there is already a grace period in
 987	 * progress in a non-leaf node, no recording is needed because the
 988	 * end of the grace period will scan the leaf rcu_node structures.
 989	 * Note that rnp_start->lock must not be released.
 990	 */
 991	raw_lockdep_assert_held_rcu_node(rnp_start);
 992	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
 993	for (rnp = rnp_start; 1; rnp = rnp->parent) {
 994		if (rnp != rnp_start)
 995			raw_spin_lock_rcu_node(rnp);
 996		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
 997		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
 998		    (rnp != rnp_start &&
 999		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1000			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1001					  TPS("Prestarted"));
1002			goto unlock_out;
1003		}
1004		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1005		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1006			/*
1007			 * We just marked the leaf or internal node, and a
1008			 * grace period is in progress, which means that
1009			 * rcu_gp_cleanup() will see the marking.  Bail to
1010			 * reduce contention.
1011			 */
1012			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1013					  TPS("Startedleaf"));
1014			goto unlock_out;
1015		}
1016		if (rnp != rnp_start && rnp->parent != NULL)
1017			raw_spin_unlock_rcu_node(rnp);
1018		if (!rnp->parent)
1019			break;  /* At root, and perhaps also leaf. */
1020	}
1021
1022	/* If GP already in progress, just leave, otherwise start one. */
1023	if (rcu_gp_in_progress()) {
1024		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1025		goto unlock_out;
1026	}
1027	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1028	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1029	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1030	if (!READ_ONCE(rcu_state.gp_kthread)) {
1031		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1032		goto unlock_out;
1033	}
1034	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1035	ret = true;  /* Caller must wake GP kthread. */
1036unlock_out:
1037	/* Push furthest requested GP to leaf node and rcu_data structure. */
1038	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1039		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1040		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1041	}
1042	if (rnp != rnp_start)
1043		raw_spin_unlock_rcu_node(rnp);
1044	return ret;
1045}
1046
1047/*
1048 * Clean up any old requests for the just-ended grace period.  Also return
1049 * whether any additional grace periods have been requested.
1050 */
1051static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1052{
1053	bool needmore;
1054	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1055
1056	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1057	if (!needmore)
1058		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1059	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1060			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1061	return needmore;
1062}
1063
1064static void swake_up_one_online_ipi(void *arg)
1065{
1066	struct swait_queue_head *wqh = arg;
1067
1068	swake_up_one(wqh);
1069}
1070
1071static void swake_up_one_online(struct swait_queue_head *wqh)
1072{
1073	int cpu = get_cpu();
1074
1075	/*
1076	 * If called from rcutree_report_cpu_starting(), wake up
1077	 * is dangerous that late in the CPU-down hotplug process. The
1078	 * scheduler might queue an ignored hrtimer. Defer the wake up
1079	 * to an online CPU instead.
1080	 */
1081	if (unlikely(cpu_is_offline(cpu))) {
1082		int target;
1083
1084		target = cpumask_any_and(housekeeping_cpumask(HK_TYPE_RCU),
1085					 cpu_online_mask);
1086
1087		smp_call_function_single(target, swake_up_one_online_ipi,
1088					 wqh, 0);
1089		put_cpu();
1090	} else {
1091		put_cpu();
1092		swake_up_one(wqh);
1093	}
1094}
1095
1096/*
1097 * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1098 * interrupt or softirq handler, in which case we just might immediately
1099 * sleep upon return, resulting in a grace-period hang), and don't bother
1100 * awakening when there is nothing for the grace-period kthread to do
1101 * (as in several CPUs raced to awaken, we lost), and finally don't try
1102 * to awaken a kthread that has not yet been created.  If all those checks
1103 * are passed, track some debug information and awaken.
1104 *
1105 * So why do the self-wakeup when in an interrupt or softirq handler
1106 * in the grace-period kthread's context?  Because the kthread might have
1107 * been interrupted just as it was going to sleep, and just after the final
1108 * pre-sleep check of the awaken condition.  In this case, a wakeup really
1109 * is required, and is therefore supplied.
1110 */
1111static void rcu_gp_kthread_wake(void)
1112{
1113	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1114
1115	if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1116	    !READ_ONCE(rcu_state.gp_flags) || !t)
1117		return;
1118	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1119	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1120	swake_up_one_online(&rcu_state.gp_wq);
1121}
1122
1123/*
1124 * If there is room, assign a ->gp_seq number to any callbacks on this
1125 * CPU that have not already been assigned.  Also accelerate any callbacks
1126 * that were previously assigned a ->gp_seq number that has since proven
1127 * to be too conservative, which can happen if callbacks get assigned a
1128 * ->gp_seq number while RCU is idle, but with reference to a non-root
1129 * rcu_node structure.  This function is idempotent, so it does not hurt
1130 * to call it repeatedly.  Returns an flag saying that we should awaken
1131 * the RCU grace-period kthread.
1132 *
1133 * The caller must hold rnp->lock with interrupts disabled.
1134 */
1135static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1136{
1137	unsigned long gp_seq_req;
1138	bool ret = false;
1139
1140	rcu_lockdep_assert_cblist_protected(rdp);
1141	raw_lockdep_assert_held_rcu_node(rnp);
1142
1143	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1144	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1145		return false;
1146
1147	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1148
1149	/*
1150	 * Callbacks are often registered with incomplete grace-period
1151	 * information.  Something about the fact that getting exact
1152	 * information requires acquiring a global lock...  RCU therefore
1153	 * makes a conservative estimate of the grace period number at which
1154	 * a given callback will become ready to invoke.	The following
1155	 * code checks this estimate and improves it when possible, thus
1156	 * accelerating callback invocation to an earlier grace-period
1157	 * number.
1158	 */
1159	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1160	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1161		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1162
1163	/* Trace depending on how much we were able to accelerate. */
1164	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1165		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1166	else
1167		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1168
1169	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1170
1171	return ret;
1172}
1173
1174/*
1175 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1176 * rcu_node structure's ->lock be held.  It consults the cached value
1177 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1178 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1179 * while holding the leaf rcu_node structure's ->lock.
1180 */
1181static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1182					struct rcu_data *rdp)
1183{
1184	unsigned long c;
1185	bool needwake;
1186
1187	rcu_lockdep_assert_cblist_protected(rdp);
1188	c = rcu_seq_snap(&rcu_state.gp_seq);
1189	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1190		/* Old request still live, so mark recent callbacks. */
1191		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1192		return;
1193	}
1194	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1195	needwake = rcu_accelerate_cbs(rnp, rdp);
1196	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1197	if (needwake)
1198		rcu_gp_kthread_wake();
1199}
1200
1201/*
1202 * Move any callbacks whose grace period has completed to the
1203 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1204 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1205 * sublist.  This function is idempotent, so it does not hurt to
1206 * invoke it repeatedly.  As long as it is not invoked -too- often...
1207 * Returns true if the RCU grace-period kthread needs to be awakened.
1208 *
1209 * The caller must hold rnp->lock with interrupts disabled.
1210 */
1211static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1212{
1213	rcu_lockdep_assert_cblist_protected(rdp);
1214	raw_lockdep_assert_held_rcu_node(rnp);
1215
1216	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1217	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1218		return false;
1219
1220	/*
1221	 * Find all callbacks whose ->gp_seq numbers indicate that they
1222	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1223	 */
1224	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1225
1226	/* Classify any remaining callbacks. */
1227	return rcu_accelerate_cbs(rnp, rdp);
1228}
1229
1230/*
1231 * Move and classify callbacks, but only if doing so won't require
1232 * that the RCU grace-period kthread be awakened.
1233 */
1234static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1235						  struct rcu_data *rdp)
1236{
1237	rcu_lockdep_assert_cblist_protected(rdp);
1238	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
 
1239		return;
1240	// The grace period cannot end while we hold the rcu_node lock.
1241	if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1242		WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1243	raw_spin_unlock_rcu_node(rnp);
1244}
1245
1246/*
1247 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1248 * quiescent state.  This is intended to be invoked when the CPU notices
1249 * a new grace period.
1250 */
1251static void rcu_strict_gp_check_qs(void)
1252{
1253	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1254		rcu_read_lock();
1255		rcu_read_unlock();
1256	}
1257}
1258
1259/*
1260 * Update CPU-local rcu_data state to record the beginnings and ends of
1261 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1262 * structure corresponding to the current CPU, and must have irqs disabled.
1263 * Returns true if the grace-period kthread needs to be awakened.
1264 */
1265static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1266{
1267	bool ret = false;
1268	bool need_qs;
1269	const bool offloaded = rcu_rdp_is_offloaded(rdp);
 
1270
1271	raw_lockdep_assert_held_rcu_node(rnp);
1272
1273	if (rdp->gp_seq == rnp->gp_seq)
1274		return false; /* Nothing to do. */
1275
1276	/* Handle the ends of any preceding grace periods first. */
1277	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1278	    unlikely(READ_ONCE(rdp->gpwrap))) {
1279		if (!offloaded)
1280			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1281		rdp->core_needs_qs = false;
1282		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1283	} else {
1284		if (!offloaded)
1285			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1286		if (rdp->core_needs_qs)
1287			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1288	}
1289
1290	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1291	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1292	    unlikely(READ_ONCE(rdp->gpwrap))) {
1293		/*
1294		 * If the current grace period is waiting for this CPU,
1295		 * set up to detect a quiescent state, otherwise don't
1296		 * go looking for one.
1297		 */
1298		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1299		need_qs = !!(rnp->qsmask & rdp->grpmask);
1300		rdp->cpu_no_qs.b.norm = need_qs;
1301		rdp->core_needs_qs = need_qs;
1302		zero_cpu_stall_ticks(rdp);
1303	}
1304	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1305	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1306		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1307	if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1308		WRITE_ONCE(rdp->last_sched_clock, jiffies);
1309	WRITE_ONCE(rdp->gpwrap, false);
1310	rcu_gpnum_ovf(rnp, rdp);
1311	return ret;
1312}
1313
1314static void note_gp_changes(struct rcu_data *rdp)
1315{
1316	unsigned long flags;
1317	bool needwake;
1318	struct rcu_node *rnp;
1319
1320	local_irq_save(flags);
1321	rnp = rdp->mynode;
1322	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1323	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1324	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1325		local_irq_restore(flags);
1326		return;
1327	}
1328	needwake = __note_gp_changes(rnp, rdp);
1329	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1330	rcu_strict_gp_check_qs();
1331	if (needwake)
1332		rcu_gp_kthread_wake();
1333}
1334
1335static atomic_t *rcu_gp_slow_suppress;
1336
1337/* Register a counter to suppress debugging grace-period delays. */
1338void rcu_gp_slow_register(atomic_t *rgssp)
1339{
1340	WARN_ON_ONCE(rcu_gp_slow_suppress);
1341
1342	WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1343}
1344EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1345
1346/* Unregister a counter, with NULL for not caring which. */
1347void rcu_gp_slow_unregister(atomic_t *rgssp)
1348{
1349	WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL);
1350
1351	WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1352}
1353EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1354
1355static bool rcu_gp_slow_is_suppressed(void)
1356{
1357	atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1358
1359	return rgssp && atomic_read(rgssp);
1360}
1361
1362static void rcu_gp_slow(int delay)
1363{
1364	if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1365	    !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1366		schedule_timeout_idle(delay);
1367}
1368
1369static unsigned long sleep_duration;
1370
1371/* Allow rcutorture to stall the grace-period kthread. */
1372void rcu_gp_set_torture_wait(int duration)
1373{
1374	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1375		WRITE_ONCE(sleep_duration, duration);
1376}
1377EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1378
1379/* Actually implement the aforementioned wait. */
1380static void rcu_gp_torture_wait(void)
1381{
1382	unsigned long duration;
1383
1384	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1385		return;
1386	duration = xchg(&sleep_duration, 0UL);
1387	if (duration > 0) {
1388		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1389		schedule_timeout_idle(duration);
1390		pr_alert("%s: Wait complete\n", __func__);
1391	}
1392}
1393
1394/*
1395 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1396 * processing.
1397 */
1398static void rcu_strict_gp_boundary(void *unused)
1399{
1400	invoke_rcu_core();
1401}
1402
1403// Make the polled API aware of the beginning of a grace period.
1404static void rcu_poll_gp_seq_start(unsigned long *snap)
1405{
1406	struct rcu_node *rnp = rcu_get_root();
1407
1408	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1409		raw_lockdep_assert_held_rcu_node(rnp);
1410
1411	// If RCU was idle, note beginning of GP.
1412	if (!rcu_seq_state(rcu_state.gp_seq_polled))
1413		rcu_seq_start(&rcu_state.gp_seq_polled);
1414
1415	// Either way, record current state.
1416	*snap = rcu_state.gp_seq_polled;
1417}
1418
1419// Make the polled API aware of the end of a grace period.
1420static void rcu_poll_gp_seq_end(unsigned long *snap)
1421{
1422	struct rcu_node *rnp = rcu_get_root();
1423
1424	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1425		raw_lockdep_assert_held_rcu_node(rnp);
1426
1427	// If the previously noted GP is still in effect, record the
1428	// end of that GP.  Either way, zero counter to avoid counter-wrap
1429	// problems.
1430	if (*snap && *snap == rcu_state.gp_seq_polled) {
1431		rcu_seq_end(&rcu_state.gp_seq_polled);
1432		rcu_state.gp_seq_polled_snap = 0;
1433		rcu_state.gp_seq_polled_exp_snap = 0;
1434	} else {
1435		*snap = 0;
1436	}
1437}
1438
1439// Make the polled API aware of the beginning of a grace period, but
1440// where caller does not hold the root rcu_node structure's lock.
1441static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1442{
1443	unsigned long flags;
1444	struct rcu_node *rnp = rcu_get_root();
1445
1446	if (rcu_init_invoked()) {
1447		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1448			lockdep_assert_irqs_enabled();
1449		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1450	}
1451	rcu_poll_gp_seq_start(snap);
1452	if (rcu_init_invoked())
1453		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1454}
1455
1456// Make the polled API aware of the end of a grace period, but where
1457// caller does not hold the root rcu_node structure's lock.
1458static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1459{
1460	unsigned long flags;
1461	struct rcu_node *rnp = rcu_get_root();
1462
1463	if (rcu_init_invoked()) {
1464		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1465			lockdep_assert_irqs_enabled();
1466		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1467	}
1468	rcu_poll_gp_seq_end(snap);
1469	if (rcu_init_invoked())
1470		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1471}
1472
1473/*
1474 * There is a single llist, which is used for handling
1475 * synchronize_rcu() users' enqueued rcu_synchronize nodes.
1476 * Within this llist, there are two tail pointers:
1477 *
1478 * wait tail: Tracks the set of nodes, which need to
1479 *            wait for the current GP to complete.
1480 * done tail: Tracks the set of nodes, for which grace
1481 *            period has elapsed. These nodes processing
1482 *            will be done as part of the cleanup work
1483 *            execution by a kworker.
1484 *
1485 * At every grace period init, a new wait node is added
1486 * to the llist. This wait node is used as wait tail
1487 * for this new grace period. Given that there are a fixed
1488 * number of wait nodes, if all wait nodes are in use
1489 * (which can happen when kworker callback processing
1490 * is delayed) and additional grace period is requested.
1491 * This means, a system is slow in processing callbacks.
1492 *
1493 * TODO: If a slow processing is detected, a first node
1494 * in the llist should be used as a wait-tail for this
1495 * grace period, therefore users which should wait due
1496 * to a slow process are handled by _this_ grace period
1497 * and not next.
1498 *
1499 * Below is an illustration of how the done and wait
1500 * tail pointers move from one set of rcu_synchronize nodes
1501 * to the other, as grace periods start and finish and
1502 * nodes are processed by kworker.
1503 *
1504 *
1505 * a. Initial llist callbacks list:
1506 *
1507 * +----------+           +--------+          +-------+
1508 * |          |           |        |          |       |
1509 * |   head   |---------> |   cb2  |--------->| cb1   |
1510 * |          |           |        |          |       |
1511 * +----------+           +--------+          +-------+
1512 *
1513 *
1514 *
1515 * b. New GP1 Start:
1516 *
1517 *                    WAIT TAIL
1518 *                      |
1519 *                      |
1520 *                      v
1521 * +----------+     +--------+      +--------+        +-------+
1522 * |          |     |        |      |        |        |       |
1523 * |   head   ------> wait   |------>   cb2  |------> |  cb1  |
1524 * |          |     | head1  |      |        |        |       |
1525 * +----------+     +--------+      +--------+        +-------+
1526 *
1527 *
1528 *
1529 * c. GP completion:
1530 *
1531 * WAIT_TAIL == DONE_TAIL
1532 *
1533 *                   DONE TAIL
1534 *                     |
1535 *                     |
1536 *                     v
1537 * +----------+     +--------+      +--------+        +-------+
1538 * |          |     |        |      |        |        |       |
1539 * |   head   ------> wait   |------>   cb2  |------> |  cb1  |
1540 * |          |     | head1  |      |        |        |       |
1541 * +----------+     +--------+      +--------+        +-------+
1542 *
1543 *
1544 *
1545 * d. New callbacks and GP2 start:
1546 *
1547 *                    WAIT TAIL                          DONE TAIL
1548 *                      |                                 |
1549 *                      |                                 |
1550 *                      v                                 v
1551 * +----------+     +------+    +------+    +------+    +-----+    +-----+    +-----+
1552 * |          |     |      |    |      |    |      |    |     |    |     |    |     |
1553 * |   head   ------> wait |--->|  cb4 |--->| cb3  |--->|wait |--->| cb2 |--->| cb1 |
1554 * |          |     | head2|    |      |    |      |    |head1|    |     |    |     |
1555 * +----------+     +------+    +------+    +------+    +-----+    +-----+    +-----+
1556 *
1557 *
1558 *
1559 * e. GP2 completion:
1560 *
1561 * WAIT_TAIL == DONE_TAIL
1562 *                   DONE TAIL
1563 *                      |
1564 *                      |
1565 *                      v
1566 * +----------+     +------+    +------+    +------+    +-----+    +-----+    +-----+
1567 * |          |     |      |    |      |    |      |    |     |    |     |    |     |
1568 * |   head   ------> wait |--->|  cb4 |--->| cb3  |--->|wait |--->| cb2 |--->| cb1 |
1569 * |          |     | head2|    |      |    |      |    |head1|    |     |    |     |
1570 * +----------+     +------+    +------+    +------+    +-----+    +-----+    +-----+
1571 *
1572 *
1573 * While the llist state transitions from d to e, a kworker
1574 * can start executing rcu_sr_normal_gp_cleanup_work() and
1575 * can observe either the old done tail (@c) or the new
1576 * done tail (@e). So, done tail updates and reads need
1577 * to use the rel-acq semantics. If the concurrent kworker
1578 * observes the old done tail, the newly queued work
1579 * execution will process the updated done tail. If the
1580 * concurrent kworker observes the new done tail, then
1581 * the newly queued work will skip processing the done
1582 * tail, as workqueue semantics guarantees that the new
1583 * work is executed only after the previous one completes.
1584 *
1585 * f. kworker callbacks processing complete:
1586 *
1587 *
1588 *                   DONE TAIL
1589 *                     |
1590 *                     |
1591 *                     v
1592 * +----------+     +--------+
1593 * |          |     |        |
1594 * |   head   ------> wait   |
1595 * |          |     | head2  |
1596 * +----------+     +--------+
1597 *
1598 */
1599static bool rcu_sr_is_wait_head(struct llist_node *node)
1600{
1601	return &(rcu_state.srs_wait_nodes)[0].node <= node &&
1602		node <= &(rcu_state.srs_wait_nodes)[SR_NORMAL_GP_WAIT_HEAD_MAX - 1].node;
1603}
1604
1605static struct llist_node *rcu_sr_get_wait_head(void)
1606{
1607	struct sr_wait_node *sr_wn;
1608	int i;
1609
1610	for (i = 0; i < SR_NORMAL_GP_WAIT_HEAD_MAX; i++) {
1611		sr_wn = &(rcu_state.srs_wait_nodes)[i];
1612
1613		if (!atomic_cmpxchg_acquire(&sr_wn->inuse, 0, 1))
1614			return &sr_wn->node;
1615	}
1616
1617	return NULL;
1618}
1619
1620static void rcu_sr_put_wait_head(struct llist_node *node)
1621{
1622	struct sr_wait_node *sr_wn = container_of(node, struct sr_wait_node, node);
1623
1624	atomic_set_release(&sr_wn->inuse, 0);
1625}
1626
1627/* Disabled by default. */
1628static int rcu_normal_wake_from_gp;
1629module_param(rcu_normal_wake_from_gp, int, 0644);
1630static struct workqueue_struct *sync_wq;
1631
1632static void rcu_sr_normal_complete(struct llist_node *node)
1633{
1634	struct rcu_synchronize *rs = container_of(
1635		(struct rcu_head *) node, struct rcu_synchronize, head);
1636	unsigned long oldstate = (unsigned long) rs->head.func;
1637
1638	WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) &&
1639		!poll_state_synchronize_rcu(oldstate),
1640		"A full grace period is not passed yet: %lu",
1641		rcu_seq_diff(get_state_synchronize_rcu(), oldstate));
1642
1643	/* Finally. */
1644	complete(&rs->completion);
1645}
1646
1647static void rcu_sr_normal_gp_cleanup_work(struct work_struct *work)
1648{
1649	struct llist_node *done, *rcu, *next, *head;
1650
1651	/*
1652	 * This work execution can potentially execute
1653	 * while a new done tail is being updated by
1654	 * grace period kthread in rcu_sr_normal_gp_cleanup().
1655	 * So, read and updates of done tail need to
1656	 * follow acq-rel semantics.
1657	 *
1658	 * Given that wq semantics guarantees that a single work
1659	 * cannot execute concurrently by multiple kworkers,
1660	 * the done tail list manipulations are protected here.
1661	 */
1662	done = smp_load_acquire(&rcu_state.srs_done_tail);
1663	if (WARN_ON_ONCE(!done))
1664		return;
1665
1666	WARN_ON_ONCE(!rcu_sr_is_wait_head(done));
1667	head = done->next;
1668	done->next = NULL;
1669
1670	/*
1671	 * The dummy node, which is pointed to by the
1672	 * done tail which is acq-read above is not removed
1673	 * here.  This allows lockless additions of new
1674	 * rcu_synchronize nodes in rcu_sr_normal_add_req(),
1675	 * while the cleanup work executes. The dummy
1676	 * nodes is removed, in next round of cleanup
1677	 * work execution.
1678	 */
1679	llist_for_each_safe(rcu, next, head) {
1680		if (!rcu_sr_is_wait_head(rcu)) {
1681			rcu_sr_normal_complete(rcu);
1682			continue;
1683		}
1684
1685		rcu_sr_put_wait_head(rcu);
1686	}
1687
1688	/* Order list manipulations with atomic access. */
1689	atomic_dec_return_release(&rcu_state.srs_cleanups_pending);
1690}
1691
1692/*
1693 * Helper function for rcu_gp_cleanup().
1694 */
1695static void rcu_sr_normal_gp_cleanup(void)
1696{
1697	struct llist_node *wait_tail, *next = NULL, *rcu = NULL;
1698	int done = 0;
1699
1700	wait_tail = rcu_state.srs_wait_tail;
1701	if (wait_tail == NULL)
1702		return;
1703
1704	rcu_state.srs_wait_tail = NULL;
1705	ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail);
1706	WARN_ON_ONCE(!rcu_sr_is_wait_head(wait_tail));
1707
1708	/*
1709	 * Process (a) and (d) cases. See an illustration.
1710	 */
1711	llist_for_each_safe(rcu, next, wait_tail->next) {
1712		if (rcu_sr_is_wait_head(rcu))
1713			break;
1714
1715		rcu_sr_normal_complete(rcu);
1716		// It can be last, update a next on this step.
1717		wait_tail->next = next;
1718
1719		if (++done == SR_MAX_USERS_WAKE_FROM_GP)
1720			break;
1721	}
1722
1723	/*
1724	 * Fast path, no more users to process except putting the second last
1725	 * wait head if no inflight-workers. If there are in-flight workers,
1726	 * they will remove the last wait head.
1727	 *
1728	 * Note that the ACQUIRE orders atomic access with list manipulation.
1729	 */
1730	if (wait_tail->next && wait_tail->next->next == NULL &&
1731	    rcu_sr_is_wait_head(wait_tail->next) &&
1732	    !atomic_read_acquire(&rcu_state.srs_cleanups_pending)) {
1733		rcu_sr_put_wait_head(wait_tail->next);
1734		wait_tail->next = NULL;
1735	}
1736
1737	/* Concurrent sr_normal_gp_cleanup work might observe this update. */
1738	ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_done_tail);
1739	smp_store_release(&rcu_state.srs_done_tail, wait_tail);
1740
1741	/*
1742	 * We schedule a work in order to perform a final processing
1743	 * of outstanding users(if still left) and releasing wait-heads
1744	 * added by rcu_sr_normal_gp_init() call.
1745	 */
1746	if (wait_tail->next) {
1747		atomic_inc(&rcu_state.srs_cleanups_pending);
1748		if (!queue_work(sync_wq, &rcu_state.srs_cleanup_work))
1749			atomic_dec(&rcu_state.srs_cleanups_pending);
1750	}
1751}
1752
1753/*
1754 * Helper function for rcu_gp_init().
1755 */
1756static bool rcu_sr_normal_gp_init(void)
1757{
1758	struct llist_node *first;
1759	struct llist_node *wait_head;
1760	bool start_new_poll = false;
1761
1762	first = READ_ONCE(rcu_state.srs_next.first);
1763	if (!first || rcu_sr_is_wait_head(first))
1764		return start_new_poll;
1765
1766	wait_head = rcu_sr_get_wait_head();
1767	if (!wait_head) {
1768		// Kick another GP to retry.
1769		start_new_poll = true;
1770		return start_new_poll;
1771	}
1772
1773	/* Inject a wait-dummy-node. */
1774	llist_add(wait_head, &rcu_state.srs_next);
1775
1776	/*
1777	 * A waiting list of rcu_synchronize nodes should be empty on
1778	 * this step, since a GP-kthread, rcu_gp_init() -> gp_cleanup(),
1779	 * rolls it over. If not, it is a BUG, warn a user.
1780	 */
1781	WARN_ON_ONCE(rcu_state.srs_wait_tail != NULL);
1782	rcu_state.srs_wait_tail = wait_head;
1783	ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail);
1784
1785	return start_new_poll;
1786}
1787
1788static void rcu_sr_normal_add_req(struct rcu_synchronize *rs)
1789{
1790	llist_add((struct llist_node *) &rs->head, &rcu_state.srs_next);
1791}
1792
1793/*
1794 * Initialize a new grace period.  Return false if no grace period required.
1795 */
1796static noinline_for_stack bool rcu_gp_init(void)
1797{
1798	unsigned long flags;
1799	unsigned long oldmask;
1800	unsigned long mask;
1801	struct rcu_data *rdp;
1802	struct rcu_node *rnp = rcu_get_root();
1803	bool start_new_poll;
1804
1805	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1806	raw_spin_lock_irq_rcu_node(rnp);
1807	if (!rcu_state.gp_flags) {
1808		/* Spurious wakeup, tell caller to go back to sleep.  */
1809		raw_spin_unlock_irq_rcu_node(rnp);
1810		return false;
1811	}
1812	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1813
1814	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1815		/*
1816		 * Grace period already in progress, don't start another.
1817		 * Not supposed to be able to happen.
1818		 */
1819		raw_spin_unlock_irq_rcu_node(rnp);
1820		return false;
1821	}
1822
1823	/* Advance to a new grace period and initialize state. */
1824	record_gp_stall_check_time();
1825	/* Record GP times before starting GP, hence rcu_seq_start(). */
1826	rcu_seq_start(&rcu_state.gp_seq);
1827	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1828	start_new_poll = rcu_sr_normal_gp_init();
1829	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1830	rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
1831	raw_spin_unlock_irq_rcu_node(rnp);
1832
1833	/*
1834	 * The "start_new_poll" is set to true, only when this GP is not able
1835	 * to handle anything and there are outstanding users. It happens when
1836	 * the rcu_sr_normal_gp_init() function was not able to insert a dummy
1837	 * separator to the llist, because there were no left any dummy-nodes.
1838	 *
1839	 * Number of dummy-nodes is fixed, it could be that we are run out of
1840	 * them, if so we start a new pool request to repeat a try. It is rare
1841	 * and it means that a system is doing a slow processing of callbacks.
1842	 */
1843	if (start_new_poll)
1844		(void) start_poll_synchronize_rcu();
1845
1846	/*
1847	 * Apply per-leaf buffered online and offline operations to
1848	 * the rcu_node tree. Note that this new grace period need not
1849	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1850	 * offlining path, when combined with checks in this function,
1851	 * will handle CPUs that are currently going offline or that will
1852	 * go offline later.  Please also refer to "Hotplug CPU" section
1853	 * of RCU's Requirements documentation.
1854	 */
1855	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1856	/* Exclude CPU hotplug operations. */
1857	rcu_for_each_leaf_node(rnp) {
1858		local_irq_disable();
1859		arch_spin_lock(&rcu_state.ofl_lock);
1860		raw_spin_lock_rcu_node(rnp);
1861		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1862		    !rnp->wait_blkd_tasks) {
1863			/* Nothing to do on this leaf rcu_node structure. */
1864			raw_spin_unlock_rcu_node(rnp);
1865			arch_spin_unlock(&rcu_state.ofl_lock);
1866			local_irq_enable();
1867			continue;
1868		}
1869
1870		/* Record old state, apply changes to ->qsmaskinit field. */
1871		oldmask = rnp->qsmaskinit;
1872		rnp->qsmaskinit = rnp->qsmaskinitnext;
1873
1874		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1875		if (!oldmask != !rnp->qsmaskinit) {
1876			if (!oldmask) { /* First online CPU for rcu_node. */
1877				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1878					rcu_init_new_rnp(rnp);
1879			} else if (rcu_preempt_has_tasks(rnp)) {
1880				rnp->wait_blkd_tasks = true; /* blocked tasks */
1881			} else { /* Last offline CPU and can propagate. */
1882				rcu_cleanup_dead_rnp(rnp);
1883			}
1884		}
1885
1886		/*
1887		 * If all waited-on tasks from prior grace period are
1888		 * done, and if all this rcu_node structure's CPUs are
1889		 * still offline, propagate up the rcu_node tree and
1890		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1891		 * rcu_node structure's CPUs has since come back online,
1892		 * simply clear ->wait_blkd_tasks.
1893		 */
1894		if (rnp->wait_blkd_tasks &&
1895		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1896			rnp->wait_blkd_tasks = false;
1897			if (!rnp->qsmaskinit)
1898				rcu_cleanup_dead_rnp(rnp);
1899		}
1900
1901		raw_spin_unlock_rcu_node(rnp);
1902		arch_spin_unlock(&rcu_state.ofl_lock);
1903		local_irq_enable();
1904	}
1905	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1906
1907	/*
1908	 * Set the quiescent-state-needed bits in all the rcu_node
1909	 * structures for all currently online CPUs in breadth-first
1910	 * order, starting from the root rcu_node structure, relying on the
1911	 * layout of the tree within the rcu_state.node[] array.  Note that
1912	 * other CPUs will access only the leaves of the hierarchy, thus
1913	 * seeing that no grace period is in progress, at least until the
1914	 * corresponding leaf node has been initialized.
1915	 *
1916	 * The grace period cannot complete until the initialization
1917	 * process finishes, because this kthread handles both.
1918	 */
1919	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1920	rcu_for_each_node_breadth_first(rnp) {
1921		rcu_gp_slow(gp_init_delay);
1922		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1923		rdp = this_cpu_ptr(&rcu_data);
1924		rcu_preempt_check_blocked_tasks(rnp);
1925		rnp->qsmask = rnp->qsmaskinit;
1926		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1927		if (rnp == rdp->mynode)
1928			(void)__note_gp_changes(rnp, rdp);
1929		rcu_preempt_boost_start_gp(rnp);
1930		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1931					    rnp->level, rnp->grplo,
1932					    rnp->grphi, rnp->qsmask);
1933		/* Quiescent states for tasks on any now-offline CPUs. */
1934		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1935		rnp->rcu_gp_init_mask = mask;
1936		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1937			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1938		else
1939			raw_spin_unlock_irq_rcu_node(rnp);
1940		cond_resched_tasks_rcu_qs();
1941		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1942	}
1943
1944	// If strict, make all CPUs aware of new grace period.
1945	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1946		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1947
1948	return true;
1949}
1950
1951/*
1952 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1953 * time.
1954 */
1955static bool rcu_gp_fqs_check_wake(int *gfp)
1956{
1957	struct rcu_node *rnp = rcu_get_root();
1958
1959	// If under overload conditions, force an immediate FQS scan.
1960	if (*gfp & RCU_GP_FLAG_OVLD)
1961		return true;
1962
1963	// Someone like call_rcu() requested a force-quiescent-state scan.
1964	*gfp = READ_ONCE(rcu_state.gp_flags);
1965	if (*gfp & RCU_GP_FLAG_FQS)
1966		return true;
1967
1968	// The current grace period has completed.
1969	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1970		return true;
1971
1972	return false;
1973}
1974
1975/*
1976 * Do one round of quiescent-state forcing.
1977 */
1978static void rcu_gp_fqs(bool first_time)
1979{
1980	int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall);
1981	struct rcu_node *rnp = rcu_get_root();
1982
1983	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1984	WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1985
1986	WARN_ON_ONCE(nr_fqs > 3);
1987	/* Only countdown nr_fqs for stall purposes if jiffies moves. */
1988	if (nr_fqs) {
1989		if (nr_fqs == 1) {
1990			WRITE_ONCE(rcu_state.jiffies_stall,
1991				   jiffies + rcu_jiffies_till_stall_check());
1992		}
1993		WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs);
1994	}
1995
1996	if (first_time) {
1997		/* Collect dyntick-idle snapshots. */
1998		force_qs_rnp(rcu_watching_snap_save);
1999	} else {
2000		/* Handle dyntick-idle and offline CPUs. */
2001		force_qs_rnp(rcu_watching_snap_recheck);
2002	}
2003	/* Clear flag to prevent immediate re-entry. */
2004	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2005		raw_spin_lock_irq_rcu_node(rnp);
2006		WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & ~RCU_GP_FLAG_FQS);
 
2007		raw_spin_unlock_irq_rcu_node(rnp);
2008	}
2009}
2010
2011/*
2012 * Loop doing repeated quiescent-state forcing until the grace period ends.
2013 */
2014static noinline_for_stack void rcu_gp_fqs_loop(void)
2015{
2016	bool first_gp_fqs = true;
2017	int gf = 0;
2018	unsigned long j;
2019	int ret;
2020	struct rcu_node *rnp = rcu_get_root();
2021
 
2022	j = READ_ONCE(jiffies_till_first_fqs);
2023	if (rcu_state.cbovld)
2024		gf = RCU_GP_FLAG_OVLD;
2025	ret = 0;
2026	for (;;) {
2027		if (rcu_state.cbovld) {
2028			j = (j + 2) / 3;
2029			if (j <= 0)
2030				j = 1;
2031		}
2032		if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
2033			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
2034			/*
2035			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
2036			 * update; required for stall checks.
2037			 */
2038			smp_wmb();
2039			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
2040				   jiffies + (j ? 3 * j : 2));
2041		}
2042		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 
2043				       TPS("fqswait"));
2044		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
2045		(void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
2046				 rcu_gp_fqs_check_wake(&gf), j);
2047		rcu_gp_torture_wait();
2048		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
2049		/* Locking provides needed memory barriers. */
2050		/*
2051		 * Exit the loop if the root rcu_node structure indicates that the grace period
2052		 * has ended, leave the loop.  The rcu_preempt_blocked_readers_cgp(rnp) check
2053		 * is required only for single-node rcu_node trees because readers blocking
2054		 * the current grace period are queued only on leaf rcu_node structures.
2055		 * For multi-node trees, checking the root node's ->qsmask suffices, because a
2056		 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
2057		 * the corresponding leaf nodes have passed through their quiescent state.
2058		 */
2059		if (!READ_ONCE(rnp->qsmask) &&
2060		    !rcu_preempt_blocked_readers_cgp(rnp))
2061			break;
2062		/* If time for quiescent-state forcing, do it. */
2063		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
2064		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
2065			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 
2066					       TPS("fqsstart"));
2067			rcu_gp_fqs(first_gp_fqs);
2068			gf = 0;
2069			if (first_gp_fqs) {
2070				first_gp_fqs = false;
2071				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
2072			}
2073			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2074					       TPS("fqsend"));
2075			cond_resched_tasks_rcu_qs();
2076			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2077			ret = 0; /* Force full wait till next FQS. */
2078			j = READ_ONCE(jiffies_till_next_fqs);
2079		} else {
2080			/* Deal with stray signal. */
2081			cond_resched_tasks_rcu_qs();
2082			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2083			WARN_ON(signal_pending(current));
2084			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 
2085					       TPS("fqswaitsig"));
2086			ret = 1; /* Keep old FQS timing. */
2087			j = jiffies;
2088			if (time_after(jiffies, rcu_state.jiffies_force_qs))
2089				j = 1;
2090			else
2091				j = rcu_state.jiffies_force_qs - j;
2092			gf = 0;
2093		}
2094	}
2095}
2096
2097/*
2098 * Clean up after the old grace period.
2099 */
2100static noinline void rcu_gp_cleanup(void)
2101{
2102	int cpu;
2103	bool needgp = false;
2104	unsigned long gp_duration;
2105	unsigned long new_gp_seq;
2106	bool offloaded;
2107	struct rcu_data *rdp;
2108	struct rcu_node *rnp = rcu_get_root();
2109	struct swait_queue_head *sq;
2110
2111	WRITE_ONCE(rcu_state.gp_activity, jiffies);
2112	raw_spin_lock_irq_rcu_node(rnp);
2113	rcu_state.gp_end = jiffies;
2114	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2115	if (gp_duration > rcu_state.gp_max)
2116		rcu_state.gp_max = gp_duration;
2117
2118	/*
2119	 * We know the grace period is complete, but to everyone else
2120	 * it appears to still be ongoing.  But it is also the case
2121	 * that to everyone else it looks like there is nothing that
2122	 * they can do to advance the grace period.  It is therefore
2123	 * safe for us to drop the lock in order to mark the grace
2124	 * period as completed in all of the rcu_node structures.
2125	 */
2126	rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
2127	raw_spin_unlock_irq_rcu_node(rnp);
2128
2129	/*
2130	 * Propagate new ->gp_seq value to rcu_node structures so that
2131	 * other CPUs don't have to wait until the start of the next grace
2132	 * period to process their callbacks.  This also avoids some nasty
2133	 * RCU grace-period initialization races by forcing the end of
2134	 * the current grace period to be completely recorded in all of
2135	 * the rcu_node structures before the beginning of the next grace
2136	 * period is recorded in any of the rcu_node structures.
2137	 */
2138	new_gp_seq = rcu_state.gp_seq;
2139	rcu_seq_end(&new_gp_seq);
2140	rcu_for_each_node_breadth_first(rnp) {
2141		raw_spin_lock_irq_rcu_node(rnp);
2142		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2143			dump_blkd_tasks(rnp, 10);
2144		WARN_ON_ONCE(rnp->qsmask);
2145		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2146		if (!rnp->parent)
2147			smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
2148		rdp = this_cpu_ptr(&rcu_data);
2149		if (rnp == rdp->mynode)
2150			needgp = __note_gp_changes(rnp, rdp) || needgp;
2151		/* smp_mb() provided by prior unlock-lock pair. */
2152		needgp = rcu_future_gp_cleanup(rnp) || needgp;
2153		// Reset overload indication for CPUs no longer overloaded
2154		if (rcu_is_leaf_node(rnp))
2155			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
2156				rdp = per_cpu_ptr(&rcu_data, cpu);
2157				check_cb_ovld_locked(rdp, rnp);
2158			}
2159		sq = rcu_nocb_gp_get(rnp);
2160		raw_spin_unlock_irq_rcu_node(rnp);
2161		rcu_nocb_gp_cleanup(sq);
2162		cond_resched_tasks_rcu_qs();
2163		WRITE_ONCE(rcu_state.gp_activity, jiffies);
2164		rcu_gp_slow(gp_cleanup_delay);
2165	}
2166	rnp = rcu_get_root();
2167	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2168
2169	/* Declare grace period done, trace first to use old GP number. */
2170	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2171	rcu_seq_end(&rcu_state.gp_seq);
2172	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2173	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
2174	/* Check for GP requests since above loop. */
2175	rdp = this_cpu_ptr(&rcu_data);
2176	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2177		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2178				  TPS("CleanupMore"));
2179		needgp = true;
2180	}
2181	/* Advance CBs to reduce false positives below. */
2182	offloaded = rcu_rdp_is_offloaded(rdp);
 
2183	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2184
2185		// We get here if a grace period was needed (“needgp”)
2186		// and the above call to rcu_accelerate_cbs() did not set
2187		// the RCU_GP_FLAG_INIT bit in ->gp_state (which records
2188		// the need for another grace period).  The purpose
2189		// of the “offloaded” check is to avoid invoking
2190		// rcu_accelerate_cbs() on an offloaded CPU because we do not
2191		// hold the ->nocb_lock needed to safely access an offloaded
2192		// ->cblist.  We do not want to acquire that lock because
2193		// it can be heavily contended during callback floods.
2194
2195		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2196		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2197		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
 
 
2198	} else {
2199
2200		// We get here either if there is no need for an
2201		// additional grace period or if rcu_accelerate_cbs() has
2202		// already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 
2203		// So all we need to do is to clear all of the other
2204		// ->gp_flags bits.
2205
2206		WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2207	}
2208	raw_spin_unlock_irq_rcu_node(rnp);
2209
2210	// Make synchronize_rcu() users aware of the end of old grace period.
2211	rcu_sr_normal_gp_cleanup();
2212
2213	// If strict, make all CPUs aware of the end of the old grace period.
2214	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2215		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
2216}
2217
2218/*
2219 * Body of kthread that handles grace periods.
2220 */
2221static int __noreturn rcu_gp_kthread(void *unused)
2222{
2223	rcu_bind_gp_kthread();
2224	for (;;) {
2225
2226		/* Handle grace-period start. */
2227		for (;;) {
2228			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 
2229					       TPS("reqwait"));
2230			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
2231			swait_event_idle_exclusive(rcu_state.gp_wq,
2232					 READ_ONCE(rcu_state.gp_flags) &
2233					 RCU_GP_FLAG_INIT);
2234			rcu_gp_torture_wait();
2235			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
2236			/* Locking provides needed memory barrier. */
2237			if (rcu_gp_init())
2238				break;
2239			cond_resched_tasks_rcu_qs();
2240			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2241			WARN_ON(signal_pending(current));
2242			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 
2243					       TPS("reqwaitsig"));
2244		}
2245
2246		/* Handle quiescent-state forcing. */
2247		rcu_gp_fqs_loop();
2248
2249		/* Handle grace-period end. */
2250		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
2251		rcu_gp_cleanup();
2252		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
2253	}
2254}
2255
2256/*
2257 * Report a full set of quiescent states to the rcu_state data structure.
2258 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2259 * another grace period is required.  Whether we wake the grace-period
2260 * kthread or it awakens itself for the next round of quiescent-state
2261 * forcing, that kthread will clean up after the just-completed grace
2262 * period.  Note that the caller must hold rnp->lock, which is released
2263 * before return.
2264 */
2265static void rcu_report_qs_rsp(unsigned long flags)
2266	__releases(rcu_get_root()->lock)
2267{
2268	raw_lockdep_assert_held_rcu_node(rcu_get_root());
2269	WARN_ON_ONCE(!rcu_gp_in_progress());
2270	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS);
 
2271	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2272	rcu_gp_kthread_wake();
2273}
2274
2275/*
2276 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2277 * Allows quiescent states for a group of CPUs to be reported at one go
2278 * to the specified rcu_node structure, though all the CPUs in the group
2279 * must be represented by the same rcu_node structure (which need not be a
2280 * leaf rcu_node structure, though it often will be).  The gps parameter
2281 * is the grace-period snapshot, which means that the quiescent states
2282 * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
2283 * must be held upon entry, and it is released before return.
2284 *
2285 * As a special case, if mask is zero, the bit-already-cleared check is
2286 * disabled.  This allows propagating quiescent state due to resumed tasks
2287 * during grace-period initialization.
2288 */
2289static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2290			      unsigned long gps, unsigned long flags)
2291	__releases(rnp->lock)
2292{
2293	unsigned long oldmask = 0;
2294	struct rcu_node *rnp_c;
2295
2296	raw_lockdep_assert_held_rcu_node(rnp);
2297
2298	/* Walk up the rcu_node hierarchy. */
2299	for (;;) {
2300		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2301
2302			/*
2303			 * Our bit has already been cleared, or the
2304			 * relevant grace period is already over, so done.
2305			 */
2306			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2307			return;
2308		}
2309		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2310		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2311			     rcu_preempt_blocked_readers_cgp(rnp));
2312		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2313		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2314						 mask, rnp->qsmask, rnp->level,
2315						 rnp->grplo, rnp->grphi,
2316						 !!rnp->gp_tasks);
2317		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2318
2319			/* Other bits still set at this level, so done. */
2320			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2321			return;
2322		}
2323		rnp->completedqs = rnp->gp_seq;
2324		mask = rnp->grpmask;
2325		if (rnp->parent == NULL) {
2326
2327			/* No more levels.  Exit loop holding root lock. */
2328
2329			break;
2330		}
2331		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2332		rnp_c = rnp;
2333		rnp = rnp->parent;
2334		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2335		oldmask = READ_ONCE(rnp_c->qsmask);
2336	}
2337
2338	/*
2339	 * Get here if we are the last CPU to pass through a quiescent
2340	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2341	 * to clean up and start the next grace period if one is needed.
2342	 */
2343	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2344}
2345
2346/*
2347 * Record a quiescent state for all tasks that were previously queued
2348 * on the specified rcu_node structure and that were blocking the current
2349 * RCU grace period.  The caller must hold the corresponding rnp->lock with
2350 * irqs disabled, and this lock is released upon return, but irqs remain
2351 * disabled.
2352 */
2353static void __maybe_unused
2354rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2355	__releases(rnp->lock)
2356{
2357	unsigned long gps;
2358	unsigned long mask;
2359	struct rcu_node *rnp_p;
2360
2361	raw_lockdep_assert_held_rcu_node(rnp);
2362	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2363	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2364	    rnp->qsmask != 0) {
2365		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2366		return;  /* Still need more quiescent states! */
2367	}
2368
2369	rnp->completedqs = rnp->gp_seq;
2370	rnp_p = rnp->parent;
2371	if (rnp_p == NULL) {
2372		/*
2373		 * Only one rcu_node structure in the tree, so don't
2374		 * try to report up to its nonexistent parent!
2375		 */
2376		rcu_report_qs_rsp(flags);
2377		return;
2378	}
2379
2380	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2381	gps = rnp->gp_seq;
2382	mask = rnp->grpmask;
2383	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2384	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2385	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2386}
2387
2388/*
2389 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2390 * structure.  This must be called from the specified CPU.
2391 */
2392static void
2393rcu_report_qs_rdp(struct rcu_data *rdp)
2394{
2395	unsigned long flags;
2396	unsigned long mask;
 
 
 
2397	struct rcu_node *rnp;
2398
2399	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2400	rnp = rdp->mynode;
2401	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2402	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2403	    rdp->gpwrap) {
2404
2405		/*
2406		 * The grace period in which this quiescent state was
2407		 * recorded has ended, so don't report it upwards.
2408		 * We will instead need a new quiescent state that lies
2409		 * within the current grace period.
2410		 */
2411		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2412		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2413		return;
2414	}
2415	mask = rdp->grpmask;
2416	rdp->core_needs_qs = false;
2417	if ((rnp->qsmask & mask) == 0) {
2418		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2419	} else {
2420		/*
2421		 * This GP can't end until cpu checks in, so all of our
2422		 * callbacks can be processed during the next GP.
2423		 *
2424		 * NOCB kthreads have their own way to deal with that...
2425		 */
2426		if (!rcu_rdp_is_offloaded(rdp)) {
2427			/*
2428			 * The current GP has not yet ended, so it
2429			 * should not be possible for rcu_accelerate_cbs()
2430			 * to return true.  So complain, but don't awaken.
2431			 */
2432			WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp));
2433		}
2434
2435		rcu_disable_urgency_upon_qs(rdp);
2436		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2437		/* ^^^ Released rnp->lock */
 
 
2438	}
2439}
2440
2441/*
2442 * Check to see if there is a new grace period of which this CPU
2443 * is not yet aware, and if so, set up local rcu_data state for it.
2444 * Otherwise, see if this CPU has just passed through its first
2445 * quiescent state for this grace period, and record that fact if so.
2446 */
2447static void
2448rcu_check_quiescent_state(struct rcu_data *rdp)
2449{
2450	/* Check for grace-period ends and beginnings. */
2451	note_gp_changes(rdp);
2452
2453	/*
2454	 * Does this CPU still need to do its part for current grace period?
2455	 * If no, return and let the other CPUs do their part as well.
2456	 */
2457	if (!rdp->core_needs_qs)
2458		return;
2459
2460	/*
2461	 * Was there a quiescent state since the beginning of the grace
2462	 * period? If no, then exit and wait for the next call.
2463	 */
2464	if (rdp->cpu_no_qs.b.norm)
2465		return;
2466
2467	/*
2468	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2469	 * judge of that).
2470	 */
2471	rcu_report_qs_rdp(rdp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2472}
2473
2474/* Return true if callback-invocation time limit exceeded. */
2475static bool rcu_do_batch_check_time(long count, long tlimit,
2476				    bool jlimit_check, unsigned long jlimit)
2477{
2478	// Invoke local_clock() only once per 32 consecutive callbacks.
2479	return unlikely(tlimit) &&
2480	       (!likely(count & 31) ||
2481		(IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) &&
2482		 jlimit_check && time_after(jiffies, jlimit))) &&
2483	       local_clock() >= tlimit;
 
 
 
 
 
 
 
 
 
2484}
2485
2486/*
2487 * Invoke any RCU callbacks that have made it to the end of their grace
2488 * period.  Throttle as specified by rdp->blimit.
2489 */
2490static void rcu_do_batch(struct rcu_data *rdp)
2491{
2492	long bl;
2493	long count = 0;
2494	int div;
2495	bool __maybe_unused empty;
2496	unsigned long flags;
2497	unsigned long jlimit;
2498	bool jlimit_check = false;
2499	long pending;
2500	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2501	struct rcu_head *rhp;
2502	long tlimit = 0;
2503
2504	/* If no callbacks are ready, just return. */
2505	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2506		trace_rcu_batch_start(rcu_state.name,
 
2507				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2508		trace_rcu_batch_end(rcu_state.name, 0,
2509				    !rcu_segcblist_empty(&rdp->cblist),
2510				    need_resched(), is_idle_task(current),
2511				    rcu_is_callbacks_kthread(rdp));
2512		return;
2513	}
2514
2515	/*
2516	 * Extract the list of ready callbacks, disabling IRQs to prevent
2517	 * races with call_rcu() from interrupt handlers.  Leave the
2518	 * callback counts, as rcu_barrier() needs to be conservative.
2519	 *
2520	 * Callbacks execution is fully ordered against preceding grace period
2521	 * completion (materialized by rnp->gp_seq update) thanks to the
2522	 * smp_mb__after_unlock_lock() upon node locking required for callbacks
2523	 * advancing. In NOCB mode this ordering is then further relayed through
2524	 * the nocb locking that protects both callbacks advancing and extraction.
2525	 */
2526	rcu_nocb_lock_irqsave(rdp, flags);
 
2527	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2528	pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL);
2529	div = READ_ONCE(rcu_divisor);
2530	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2531	bl = max(rdp->blimit, pending >> div);
2532	if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) &&
2533	    (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) {
2534		const long npj = NSEC_PER_SEC / HZ;
2535		long rrn = READ_ONCE(rcu_resched_ns);
2536
2537		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2538		tlimit = local_clock() + rrn;
2539		jlimit = jiffies + (rrn + npj + 1) / npj;
2540		jlimit_check = true;
2541	}
2542	trace_rcu_batch_start(rcu_state.name,
 
2543			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2544	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2545	if (rcu_rdp_is_offloaded(rdp))
2546		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2547
2548	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2549	rcu_nocb_unlock_irqrestore(rdp, flags);
2550
2551	/* Invoke callbacks. */
2552	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2553	rhp = rcu_cblist_dequeue(&rcl);
2554
2555	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2556		rcu_callback_t f;
2557
2558		count++;
2559		debug_rcu_head_unqueue(rhp);
2560
2561		rcu_lock_acquire(&rcu_callback_map);
2562		trace_rcu_invoke_callback(rcu_state.name, rhp);
2563
2564		f = rhp->func;
2565		debug_rcu_head_callback(rhp);
2566		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2567		f(rhp);
2568
2569		rcu_lock_release(&rcu_callback_map);
2570
2571		/*
2572		 * Stop only if limit reached and CPU has something to do.
 
2573		 */
2574		if (in_serving_softirq()) {
2575			if (count >= bl && (need_resched() || !is_idle_task(current)))
2576				break;
2577			/*
2578			 * Make sure we don't spend too much time here and deprive other
2579			 * softirq vectors of CPU cycles.
2580			 */
2581			if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit))
2582				break;
2583		} else {
2584			// In rcuc/rcuoc context, so no worries about
2585			// depriving other softirq vectors of CPU cycles.
 
2586			local_bh_enable();
2587			lockdep_assert_irqs_enabled();
2588			cond_resched_tasks_rcu_qs();
2589			lockdep_assert_irqs_enabled();
2590			local_bh_disable();
2591			// But rcuc kthreads can delay quiescent-state
2592			// reporting, so check time limits for them.
2593			if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING &&
2594			    rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) {
2595				rdp->rcu_cpu_has_work = 1;
2596				break;
2597			}
2598		}
2599	}
2600
2601	rcu_nocb_lock_irqsave(rdp, flags);
2602	rdp->n_cbs_invoked += count;
 
2603	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2604			    is_idle_task(current), rcu_is_callbacks_kthread(rdp));
2605
2606	/* Update counts and requeue any remaining callbacks. */
2607	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2608	rcu_segcblist_add_len(&rdp->cblist, -count);
 
2609
2610	/* Reinstate batch limit if we have worked down the excess. */
2611	count = rcu_segcblist_n_cbs(&rdp->cblist);
2612	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2613		rdp->blimit = blimit;
2614
2615	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2616	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2617		rdp->qlen_last_fqs_check = 0;
2618		rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2619	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2620		rdp->qlen_last_fqs_check = count;
2621
2622	/*
2623	 * The following usually indicates a double call_rcu().  To track
2624	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2625	 */
2626	empty = rcu_segcblist_empty(&rdp->cblist);
2627	WARN_ON_ONCE(count == 0 && !empty);
2628	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2629		     count != 0 && empty);
2630	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2631	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2632
2633	rcu_nocb_unlock_irqrestore(rdp, flags);
2634
2635	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
 
 
2636}
2637
2638/*
2639 * This function is invoked from each scheduling-clock interrupt,
2640 * and checks to see if this CPU is in a non-context-switch quiescent
2641 * state, for example, user mode or idle loop.  It also schedules RCU
2642 * core processing.  If the current grace period has gone on too long,
2643 * it will ask the scheduler to manufacture a context switch for the sole
2644 * purpose of providing the needed quiescent state.
2645 */
2646void rcu_sched_clock_irq(int user)
2647{
2648	unsigned long j;
2649
2650	if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2651		j = jiffies;
2652		WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2653		__this_cpu_write(rcu_data.last_sched_clock, j);
2654	}
2655	trace_rcu_utilization(TPS("Start scheduler-tick"));
2656	lockdep_assert_irqs_disabled();
2657	raw_cpu_inc(rcu_data.ticks_this_gp);
2658	/* The load-acquire pairs with the store-release setting to true. */
2659	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2660		/* Idle and userspace execution already are quiescent states. */
2661		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2662			set_tsk_need_resched(current);
2663			set_preempt_need_resched();
2664		}
2665		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2666	}
2667	rcu_flavor_sched_clock_irq(user);
2668	if (rcu_pending(user))
2669		invoke_rcu_core();
2670	if (user || rcu_is_cpu_rrupt_from_idle())
2671		rcu_note_voluntary_context_switch(current);
2672	lockdep_assert_irqs_disabled();
2673
2674	trace_rcu_utilization(TPS("End scheduler-tick"));
2675}
2676
2677/*
2678 * Scan the leaf rcu_node structures.  For each structure on which all
2679 * CPUs have reported a quiescent state and on which there are tasks
2680 * blocking the current grace period, initiate RCU priority boosting.
2681 * Otherwise, invoke the specified function to check dyntick state for
2682 * each CPU that has not yet reported a quiescent state.
2683 */
2684static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2685{
2686	int cpu;
2687	unsigned long flags;
 
2688	struct rcu_node *rnp;
2689
2690	rcu_state.cbovld = rcu_state.cbovldnext;
2691	rcu_state.cbovldnext = false;
2692	rcu_for_each_leaf_node(rnp) {
2693		unsigned long mask = 0;
2694		unsigned long rsmask = 0;
2695
2696		cond_resched_tasks_rcu_qs();
 
2697		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2698		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2699		if (rnp->qsmask == 0) {
2700			if (rcu_preempt_blocked_readers_cgp(rnp)) {
 
2701				/*
2702				 * No point in scanning bits because they
2703				 * are all zero.  But we might need to
2704				 * priority-boost blocked readers.
2705				 */
2706				rcu_initiate_boost(rnp, flags);
2707				/* rcu_initiate_boost() releases rnp->lock */
2708				continue;
2709			}
2710			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2711			continue;
2712		}
2713		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2714			struct rcu_data *rdp;
2715			int ret;
2716
2717			rdp = per_cpu_ptr(&rcu_data, cpu);
2718			ret = f(rdp);
2719			if (ret > 0) {
2720				mask |= rdp->grpmask;
2721				rcu_disable_urgency_upon_qs(rdp);
2722			}
2723			if (ret < 0)
2724				rsmask |= rdp->grpmask;
2725		}
2726		if (mask != 0) {
2727			/* Idle/offline CPUs, report (releases rnp->lock). */
2728			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2729		} else {
2730			/* Nothing to do here, so just drop the lock. */
2731			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2732		}
2733
2734		for_each_leaf_node_cpu_mask(rnp, cpu, rsmask)
2735			resched_cpu(cpu);
2736	}
2737}
2738
2739/*
2740 * Force quiescent states on reluctant CPUs, and also detect which
2741 * CPUs are in dyntick-idle mode.
2742 */
2743void rcu_force_quiescent_state(void)
2744{
2745	unsigned long flags;
2746	bool ret;
2747	struct rcu_node *rnp;
2748	struct rcu_node *rnp_old = NULL;
2749
2750	if (!rcu_gp_in_progress())
2751		return;
2752	/* Funnel through hierarchy to reduce memory contention. */
2753	rnp = raw_cpu_read(rcu_data.mynode);
2754	for (; rnp != NULL; rnp = rnp->parent) {
2755		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2756		       !raw_spin_trylock(&rnp->fqslock);
2757		if (rnp_old != NULL)
2758			raw_spin_unlock(&rnp_old->fqslock);
2759		if (ret)
2760			return;
2761		rnp_old = rnp;
2762	}
2763	/* rnp_old == rcu_get_root(), rnp == NULL. */
2764
2765	/* Reached the root of the rcu_node tree, acquire lock. */
2766	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2767	raw_spin_unlock(&rnp_old->fqslock);
2768	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2769		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2770		return;  /* Someone beat us to it. */
2771	}
2772	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS);
 
2773	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2774	rcu_gp_kthread_wake();
2775}
2776EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2777
2778// Workqueue handler for an RCU reader for kernels enforcing struct RCU
2779// grace periods.
2780static void strict_work_handler(struct work_struct *work)
2781{
2782	rcu_read_lock();
2783	rcu_read_unlock();
2784}
2785
2786/* Perform RCU core processing work for the current CPU.  */
2787static __latent_entropy void rcu_core(void)
2788{
2789	unsigned long flags;
2790	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2791	struct rcu_node *rnp = rdp->mynode;
 
 
2792
2793	if (cpu_is_offline(smp_processor_id()))
2794		return;
2795	trace_rcu_utilization(TPS("Start RCU core"));
2796	WARN_ON_ONCE(!rdp->beenonline);
2797
2798	/* Report any deferred quiescent states if preemption enabled. */
2799	if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2800		rcu_preempt_deferred_qs(current);
2801	} else if (rcu_preempt_need_deferred_qs(current)) {
2802		set_tsk_need_resched(current);
2803		set_preempt_need_resched();
2804	}
2805
2806	/* Update RCU state based on any recent quiescent states. */
2807	rcu_check_quiescent_state(rdp);
2808
2809	/* No grace period and unregistered callbacks? */
2810	if (!rcu_gp_in_progress() &&
2811	    rcu_segcblist_is_enabled(&rdp->cblist) && !rcu_rdp_is_offloaded(rdp)) {
2812		local_irq_save(flags);
2813		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2814			rcu_accelerate_cbs_unlocked(rnp, rdp);
2815		local_irq_restore(flags);
2816	}
2817
2818	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2819
2820	/* If there are callbacks ready, invoke them. */
2821	if (!rcu_rdp_is_offloaded(rdp) && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2822	    likely(READ_ONCE(rcu_scheduler_fully_active))) {
2823		rcu_do_batch(rdp);
2824		/* Re-invoke RCU core processing if there are callbacks remaining. */
2825		if (rcu_segcblist_ready_cbs(&rdp->cblist))
2826			invoke_rcu_core();
2827	}
2828
2829	/* Do any needed deferred wakeups of rcuo kthreads. */
2830	do_nocb_deferred_wakeup(rdp);
2831	trace_rcu_utilization(TPS("End RCU core"));
2832
2833	// If strict GPs, schedule an RCU reader in a clean environment.
2834	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2835		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2836}
2837
2838static void rcu_core_si(void)
2839{
2840	rcu_core();
2841}
2842
2843static void rcu_wake_cond(struct task_struct *t, int status)
2844{
2845	/*
2846	 * If the thread is yielding, only wake it when this
2847	 * is invoked from idle
2848	 */
2849	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2850		wake_up_process(t);
2851}
2852
2853static void invoke_rcu_core_kthread(void)
2854{
2855	struct task_struct *t;
2856	unsigned long flags;
2857
2858	local_irq_save(flags);
2859	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2860	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2861	if (t != NULL && t != current)
2862		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2863	local_irq_restore(flags);
2864}
2865
2866/*
2867 * Wake up this CPU's rcuc kthread to do RCU core processing.
2868 */
2869static void invoke_rcu_core(void)
2870{
2871	if (!cpu_online(smp_processor_id()))
2872		return;
2873	if (use_softirq)
2874		raise_softirq(RCU_SOFTIRQ);
2875	else
2876		invoke_rcu_core_kthread();
2877}
2878
2879static void rcu_cpu_kthread_park(unsigned int cpu)
2880{
2881	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2882}
2883
2884static int rcu_cpu_kthread_should_run(unsigned int cpu)
2885{
2886	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2887}
2888
2889/*
2890 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2891 * the RCU softirq used in configurations of RCU that do not support RCU
2892 * priority boosting.
2893 */
2894static void rcu_cpu_kthread(unsigned int cpu)
2895{
2896	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2897	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2898	unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2899	int spincnt;
2900
2901	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2902	for (spincnt = 0; spincnt < 10; spincnt++) {
2903		WRITE_ONCE(*j, jiffies);
2904		local_bh_disable();
2905		*statusp = RCU_KTHREAD_RUNNING;
2906		local_irq_disable();
2907		work = *workp;
2908		WRITE_ONCE(*workp, 0);
2909		local_irq_enable();
2910		if (work)
2911			rcu_core();
2912		local_bh_enable();
2913		if (!READ_ONCE(*workp)) {
2914			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2915			*statusp = RCU_KTHREAD_WAITING;
2916			return;
2917		}
2918	}
2919	*statusp = RCU_KTHREAD_YIELDING;
2920	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2921	schedule_timeout_idle(2);
2922	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2923	*statusp = RCU_KTHREAD_WAITING;
2924	WRITE_ONCE(*j, jiffies);
2925}
2926
2927static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2928	.store			= &rcu_data.rcu_cpu_kthread_task,
2929	.thread_should_run	= rcu_cpu_kthread_should_run,
2930	.thread_fn		= rcu_cpu_kthread,
2931	.thread_comm		= "rcuc/%u",
2932	.setup			= rcu_cpu_kthread_setup,
2933	.park			= rcu_cpu_kthread_park,
2934};
2935
2936/*
2937 * Spawn per-CPU RCU core processing kthreads.
2938 */
2939static int __init rcu_spawn_core_kthreads(void)
2940{
2941	int cpu;
2942
2943	for_each_possible_cpu(cpu)
2944		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2945	if (use_softirq)
2946		return 0;
2947	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2948		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2949	return 0;
2950}
2951
2952static void rcutree_enqueue(struct rcu_data *rdp, struct rcu_head *head, rcu_callback_t func)
2953{
2954	rcu_segcblist_enqueue(&rdp->cblist, head);
2955	if (__is_kvfree_rcu_offset((unsigned long)func))
2956		trace_rcu_kvfree_callback(rcu_state.name, head,
2957					 (unsigned long)func,
2958					 rcu_segcblist_n_cbs(&rdp->cblist));
2959	else
2960		trace_rcu_callback(rcu_state.name, head,
2961				   rcu_segcblist_n_cbs(&rdp->cblist));
2962	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2963}
2964
2965/*
2966 * Handle any core-RCU processing required by a call_rcu() invocation.
2967 */
2968static void call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2969			  rcu_callback_t func, unsigned long flags)
2970{
2971	rcutree_enqueue(rdp, head, func);
2972	/*
2973	 * If called from an extended quiescent state, invoke the RCU
2974	 * core in order to force a re-evaluation of RCU's idleness.
2975	 */
2976	if (!rcu_is_watching())
2977		invoke_rcu_core();
2978
2979	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2980	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2981		return;
2982
2983	/*
2984	 * Force the grace period if too many callbacks or too long waiting.
2985	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2986	 * if some other CPU has recently done so.  Also, don't bother
2987	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2988	 * is the only one waiting for a grace period to complete.
2989	 */
2990	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2991		     rdp->qlen_last_fqs_check + qhimark)) {
2992
2993		/* Are we ignoring a completed grace period? */
2994		note_gp_changes(rdp);
2995
2996		/* Start a new grace period if one not already started. */
2997		if (!rcu_gp_in_progress()) {
2998			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2999		} else {
3000			/* Give the grace period a kick. */
3001			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
3002			if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
3003			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
3004				rcu_force_quiescent_state();
3005			rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
3006			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
3007		}
3008	}
3009}
3010
3011/*
3012 * RCU callback function to leak a callback.
3013 */
3014static void rcu_leak_callback(struct rcu_head *rhp)
3015{
3016}
3017
3018/*
3019 * Check and if necessary update the leaf rcu_node structure's
3020 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
3021 * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
3022 * structure's ->lock.
3023 */
3024static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
3025{
3026	raw_lockdep_assert_held_rcu_node(rnp);
3027	if (qovld_calc <= 0)
3028		return; // Early boot and wildcard value set.
3029	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
3030		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
3031	else
3032		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
3033}
3034
3035/*
3036 * Check and if necessary update the leaf rcu_node structure's
3037 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
3038 * number of queued RCU callbacks.  No locks need be held, but the
3039 * caller must have disabled interrupts.
3040 *
3041 * Note that this function ignores the possibility that there are a lot
3042 * of callbacks all of which have already seen the end of their respective
3043 * grace periods.  This omission is due to the need for no-CBs CPUs to
3044 * be holding ->nocb_lock to do this check, which is too heavy for a
3045 * common-case operation.
3046 */
3047static void check_cb_ovld(struct rcu_data *rdp)
3048{
3049	struct rcu_node *const rnp = rdp->mynode;
3050
3051	if (qovld_calc <= 0 ||
3052	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
3053	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
3054		return; // Early boot wildcard value or already set correctly.
3055	raw_spin_lock_rcu_node(rnp);
3056	check_cb_ovld_locked(rdp, rnp);
3057	raw_spin_unlock_rcu_node(rnp);
3058}
3059
3060static void
3061__call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in)
3062{
3063	static atomic_t doublefrees;
3064	unsigned long flags;
3065	bool lazy;
3066	struct rcu_data *rdp;
 
3067
3068	/* Misaligned rcu_head! */
3069	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3070
3071	if (debug_rcu_head_queue(head)) {
3072		/*
3073		 * Probable double call_rcu(), so leak the callback.
3074		 * Use rcu:rcu_callback trace event to find the previous
3075		 * time callback was passed to call_rcu().
3076		 */
3077		if (atomic_inc_return(&doublefrees) < 4) {
3078			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
3079			mem_dump_obj(head);
3080		}
3081		WRITE_ONCE(head->func, rcu_leak_callback);
3082		return;
3083	}
3084	head->func = func;
3085	head->next = NULL;
3086	kasan_record_aux_stack_noalloc(head);
3087	local_irq_save(flags);
3088	rdp = this_cpu_ptr(&rcu_data);
3089	lazy = lazy_in && !rcu_async_should_hurry();
3090
3091	/* Add the callback to our list. */
3092	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
3093		// This can trigger due to call_rcu() from offline CPU:
3094		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
3095		WARN_ON_ONCE(!rcu_is_watching());
3096		// Very early boot, before rcu_init().  Initialize if needed
3097		// and then drop through to queue the callback.
3098		if (rcu_segcblist_empty(&rdp->cblist))
3099			rcu_segcblist_init(&rdp->cblist);
3100	}
 
 
 
 
 
 
 
 
 
 
 
 
 
3101
3102	check_cb_ovld(rdp);
3103
3104	if (unlikely(rcu_rdp_is_offloaded(rdp)))
3105		call_rcu_nocb(rdp, head, func, flags, lazy);
3106	else
3107		call_rcu_core(rdp, head, func, flags);
3108	local_irq_restore(flags);
 
3109}
3110
3111#ifdef CONFIG_RCU_LAZY
3112static bool enable_rcu_lazy __read_mostly = !IS_ENABLED(CONFIG_RCU_LAZY_DEFAULT_OFF);
3113module_param(enable_rcu_lazy, bool, 0444);
3114
3115/**
3116 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
3117 * flush all lazy callbacks (including the new one) to the main ->cblist while
3118 * doing so.
3119 *
3120 * @head: structure to be used for queueing the RCU updates.
3121 * @func: actual callback function to be invoked after the grace period
3122 *
3123 * The callback function will be invoked some time after a full grace
3124 * period elapses, in other words after all pre-existing RCU read-side
3125 * critical sections have completed.
3126 *
3127 * Use this API instead of call_rcu() if you don't want the callback to be
3128 * invoked after very long periods of time, which can happen on systems without
3129 * memory pressure and on systems which are lightly loaded or mostly idle.
3130 * This function will cause callbacks to be invoked sooner than later at the
3131 * expense of extra power. Other than that, this function is identical to, and
3132 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
3133 * ordering and other functionality.
3134 */
3135void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
3136{
3137	__call_rcu_common(head, func, false);
3138}
3139EXPORT_SYMBOL_GPL(call_rcu_hurry);
3140#else
3141#define enable_rcu_lazy		false
3142#endif
3143
3144/**
3145 * call_rcu() - Queue an RCU callback for invocation after a grace period.
3146 * By default the callbacks are 'lazy' and are kept hidden from the main
3147 * ->cblist to prevent starting of grace periods too soon.
3148 * If you desire grace periods to start very soon, use call_rcu_hurry().
3149 *
3150 * @head: structure to be used for queueing the RCU updates.
3151 * @func: actual callback function to be invoked after the grace period
3152 *
3153 * The callback function will be invoked some time after a full grace
3154 * period elapses, in other words after all pre-existing RCU read-side
3155 * critical sections have completed.  However, the callback function
3156 * might well execute concurrently with RCU read-side critical sections
3157 * that started after call_rcu() was invoked.
3158 *
3159 * RCU read-side critical sections are delimited by rcu_read_lock()
3160 * and rcu_read_unlock(), and may be nested.  In addition, but only in
3161 * v5.0 and later, regions of code across which interrupts, preemption,
3162 * or softirqs have been disabled also serve as RCU read-side critical
3163 * sections.  This includes hardware interrupt handlers, softirq handlers,
3164 * and NMI handlers.
3165 *
3166 * Note that all CPUs must agree that the grace period extended beyond
3167 * all pre-existing RCU read-side critical section.  On systems with more
3168 * than one CPU, this means that when "func()" is invoked, each CPU is
3169 * guaranteed to have executed a full memory barrier since the end of its
3170 * last RCU read-side critical section whose beginning preceded the call
3171 * to call_rcu().  It also means that each CPU executing an RCU read-side
3172 * critical section that continues beyond the start of "func()" must have
3173 * executed a memory barrier after the call_rcu() but before the beginning
3174 * of that RCU read-side critical section.  Note that these guarantees
3175 * include CPUs that are offline, idle, or executing in user mode, as
3176 * well as CPUs that are executing in the kernel.
3177 *
3178 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
3179 * resulting RCU callback function "func()", then both CPU A and CPU B are
3180 * guaranteed to execute a full memory barrier during the time interval
3181 * between the call to call_rcu() and the invocation of "func()" -- even
3182 * if CPU A and CPU B are the same CPU (but again only if the system has
3183 * more than one CPU).
3184 *
3185 * Implementation of these memory-ordering guarantees is described here:
3186 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3187 */
3188void call_rcu(struct rcu_head *head, rcu_callback_t func)
3189{
3190	__call_rcu_common(head, func, enable_rcu_lazy);
3191}
3192EXPORT_SYMBOL_GPL(call_rcu);
3193
3194/* Maximum number of jiffies to wait before draining a batch. */
3195#define KFREE_DRAIN_JIFFIES (5 * HZ)
3196#define KFREE_N_BATCHES 2
3197#define FREE_N_CHANNELS 2
3198
3199/**
3200 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
3201 * @list: List node. All blocks are linked between each other
3202 * @gp_snap: Snapshot of RCU state for objects placed to this bulk
3203 * @nr_records: Number of active pointers in the array
3204 * @records: Array of the kvfree_rcu() pointers
3205 */
3206struct kvfree_rcu_bulk_data {
3207	struct list_head list;
3208	struct rcu_gp_oldstate gp_snap;
3209	unsigned long nr_records;
3210	void *records[] __counted_by(nr_records);
3211};
3212
3213/*
3214 * This macro defines how many entries the "records" array
3215 * will contain. It is based on the fact that the size of
3216 * kvfree_rcu_bulk_data structure becomes exactly one page.
 
 
3217 */
3218#define KVFREE_BULK_MAX_ENTR \
3219	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
3220
3221/**
3222 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
3223 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
3224 * @head_free: List of kfree_rcu() objects waiting for a grace period
3225 * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees.
3226 * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
3227 * @krcp: Pointer to @kfree_rcu_cpu structure
3228 */
3229
3230struct kfree_rcu_cpu_work {
3231	struct rcu_work rcu_work;
3232	struct rcu_head *head_free;
3233	struct rcu_gp_oldstate head_free_gp_snap;
3234	struct list_head bulk_head_free[FREE_N_CHANNELS];
3235	struct kfree_rcu_cpu *krcp;
3236};
3237
3238/**
3239 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
3240 * @head: List of kfree_rcu() objects not yet waiting for a grace period
3241 * @head_gp_snap: Snapshot of RCU state for objects placed to "@head"
3242 * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
3243 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
3244 * @lock: Synchronize access to this structure
3245 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
3246 * @initialized: The @rcu_work fields have been initialized
3247 * @head_count: Number of objects in rcu_head singular list
3248 * @bulk_count: Number of objects in bulk-list
3249 * @bkvcache:
3250 *	A simple cache list that contains objects for reuse purpose.
3251 *	In order to save some per-cpu space the list is singular.
3252 *	Even though it is lockless an access has to be protected by the
3253 *	per-cpu lock.
3254 * @page_cache_work: A work to refill the cache when it is empty
3255 * @backoff_page_cache_fill: Delay cache refills
3256 * @work_in_progress: Indicates that page_cache_work is running
3257 * @hrtimer: A hrtimer for scheduling a page_cache_work
3258 * @nr_bkv_objs: number of allocated objects at @bkvcache.
3259 *
3260 * This is a per-CPU structure.  The reason that it is not included in
3261 * the rcu_data structure is to permit this code to be extracted from
3262 * the RCU files.  Such extraction could allow further optimization of
3263 * the interactions with the slab allocators.
3264 */
3265struct kfree_rcu_cpu {
3266	// Objects queued on a linked list
3267	// through their rcu_head structures.
3268	struct rcu_head *head;
3269	unsigned long head_gp_snap;
3270	atomic_t head_count;
3271
3272	// Objects queued on a bulk-list.
3273	struct list_head bulk_head[FREE_N_CHANNELS];
3274	atomic_t bulk_count[FREE_N_CHANNELS];
3275
3276	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3277	raw_spinlock_t lock;
3278	struct delayed_work monitor_work;
3279	bool initialized;
3280
3281	struct delayed_work page_cache_work;
3282	atomic_t backoff_page_cache_fill;
3283	atomic_t work_in_progress;
3284	struct hrtimer hrtimer;
3285
3286	struct llist_head bkvcache;
3287	int nr_bkv_objs;
3288};
3289
3290static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
3291	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
3292};
3293
3294static __always_inline void
3295debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
3296{
3297#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3298	int i;
3299
3300	for (i = 0; i < bhead->nr_records; i++)
3301		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
3302#endif
3303}
3304
3305static inline struct kfree_rcu_cpu *
3306krc_this_cpu_lock(unsigned long *flags)
3307{
3308	struct kfree_rcu_cpu *krcp;
3309
3310	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
3311	krcp = this_cpu_ptr(&krc);
3312	raw_spin_lock(&krcp->lock);
3313
3314	return krcp;
3315}
3316
3317static inline void
3318krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
3319{
3320	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3321}
3322
3323static inline struct kvfree_rcu_bulk_data *
3324get_cached_bnode(struct kfree_rcu_cpu *krcp)
3325{
3326	if (!krcp->nr_bkv_objs)
3327		return NULL;
3328
3329	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
3330	return (struct kvfree_rcu_bulk_data *)
3331		llist_del_first(&krcp->bkvcache);
3332}
3333
3334static inline bool
3335put_cached_bnode(struct kfree_rcu_cpu *krcp,
3336	struct kvfree_rcu_bulk_data *bnode)
3337{
3338	// Check the limit.
3339	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3340		return false;
3341
3342	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3343	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
3344	return true;
3345}
3346
3347static int
3348drain_page_cache(struct kfree_rcu_cpu *krcp)
3349{
3350	unsigned long flags;
3351	struct llist_node *page_list, *pos, *n;
3352	int freed = 0;
3353
3354	if (!rcu_min_cached_objs)
3355		return 0;
3356
3357	raw_spin_lock_irqsave(&krcp->lock, flags);
3358	page_list = llist_del_all(&krcp->bkvcache);
3359	WRITE_ONCE(krcp->nr_bkv_objs, 0);
3360	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3361
3362	llist_for_each_safe(pos, n, page_list) {
3363		free_page((unsigned long)pos);
3364		freed++;
3365	}
3366
3367	return freed;
3368}
3369
3370static void
3371kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp,
3372	struct kvfree_rcu_bulk_data *bnode, int idx)
3373{
3374	unsigned long flags;
3375	int i;
3376
3377	if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) {
3378		debug_rcu_bhead_unqueue(bnode);
3379		rcu_lock_acquire(&rcu_callback_map);
3380		if (idx == 0) { // kmalloc() / kfree().
3381			trace_rcu_invoke_kfree_bulk_callback(
3382				rcu_state.name, bnode->nr_records,
3383				bnode->records);
3384
3385			kfree_bulk(bnode->nr_records, bnode->records);
3386		} else { // vmalloc() / vfree().
3387			for (i = 0; i < bnode->nr_records; i++) {
3388				trace_rcu_invoke_kvfree_callback(
3389					rcu_state.name, bnode->records[i], 0);
3390
3391				vfree(bnode->records[i]);
3392			}
3393		}
3394		rcu_lock_release(&rcu_callback_map);
3395	}
3396
3397	raw_spin_lock_irqsave(&krcp->lock, flags);
3398	if (put_cached_bnode(krcp, bnode))
3399		bnode = NULL;
3400	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3401
3402	if (bnode)
3403		free_page((unsigned long) bnode);
3404
3405	cond_resched_tasks_rcu_qs();
3406}
3407
3408static void
3409kvfree_rcu_list(struct rcu_head *head)
3410{
3411	struct rcu_head *next;
3412
3413	for (; head; head = next) {
3414		void *ptr = (void *) head->func;
3415		unsigned long offset = (void *) head - ptr;
3416
3417		next = head->next;
3418		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3419		rcu_lock_acquire(&rcu_callback_map);
3420		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3421
3422		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3423			kvfree(ptr);
3424
3425		rcu_lock_release(&rcu_callback_map);
3426		cond_resched_tasks_rcu_qs();
3427	}
3428}
3429
3430/*
3431 * This function is invoked in workqueue context after a grace period.
3432 * It frees all the objects queued on ->bulk_head_free or ->head_free.
3433 */
3434static void kfree_rcu_work(struct work_struct *work)
3435{
3436	unsigned long flags;
3437	struct kvfree_rcu_bulk_data *bnode, *n;
3438	struct list_head bulk_head[FREE_N_CHANNELS];
3439	struct rcu_head *head;
3440	struct kfree_rcu_cpu *krcp;
3441	struct kfree_rcu_cpu_work *krwp;
3442	struct rcu_gp_oldstate head_gp_snap;
3443	int i;
3444
3445	krwp = container_of(to_rcu_work(work),
3446		struct kfree_rcu_cpu_work, rcu_work);
3447	krcp = krwp->krcp;
3448
3449	raw_spin_lock_irqsave(&krcp->lock, flags);
3450	// Channels 1 and 2.
3451	for (i = 0; i < FREE_N_CHANNELS; i++)
3452		list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]);
3453
3454	// Channel 3.
3455	head = krwp->head_free;
3456	krwp->head_free = NULL;
3457	head_gp_snap = krwp->head_free_gp_snap;
3458	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3459
3460	// Handle the first two channels.
3461	for (i = 0; i < FREE_N_CHANNELS; i++) {
3462		// Start from the tail page, so a GP is likely passed for it.
3463		list_for_each_entry_safe(bnode, n, &bulk_head[i], list)
3464			kvfree_rcu_bulk(krcp, bnode, i);
3465	}
3466
3467	/*
3468	 * This is used when the "bulk" path can not be used for the
3469	 * double-argument of kvfree_rcu().  This happens when the
3470	 * page-cache is empty, which means that objects are instead
3471	 * queued on a linked list through their rcu_head structures.
3472	 * This list is named "Channel 3".
3473	 */
3474	if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap)))
3475		kvfree_rcu_list(head);
3476}
3477
3478static bool
3479need_offload_krc(struct kfree_rcu_cpu *krcp)
3480{
3481	int i;
3482
3483	for (i = 0; i < FREE_N_CHANNELS; i++)
3484		if (!list_empty(&krcp->bulk_head[i]))
3485			return true;
3486
3487	return !!READ_ONCE(krcp->head);
3488}
3489
3490static bool
3491need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp)
3492{
3493	int i;
3494
3495	for (i = 0; i < FREE_N_CHANNELS; i++)
3496		if (!list_empty(&krwp->bulk_head_free[i]))
3497			return true;
3498
3499	return !!krwp->head_free;
3500}
3501
3502static int krc_count(struct kfree_rcu_cpu *krcp)
3503{
3504	int sum = atomic_read(&krcp->head_count);
3505	int i;
3506
3507	for (i = 0; i < FREE_N_CHANNELS; i++)
3508		sum += atomic_read(&krcp->bulk_count[i]);
3509
3510	return sum;
3511}
3512
3513static void
3514__schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3515{
3516	long delay, delay_left;
3517
3518	delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
3519	if (delayed_work_pending(&krcp->monitor_work)) {
3520		delay_left = krcp->monitor_work.timer.expires - jiffies;
3521		if (delay < delay_left)
3522			mod_delayed_work(system_unbound_wq, &krcp->monitor_work, delay);
3523		return;
3524	}
3525	queue_delayed_work(system_unbound_wq, &krcp->monitor_work, delay);
3526}
3527
3528static void
3529schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3530{
3531	unsigned long flags;
3532
3533	raw_spin_lock_irqsave(&krcp->lock, flags);
3534	__schedule_delayed_monitor_work(krcp);
3535	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3536}
3537
3538static void
3539kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp)
3540{
3541	struct list_head bulk_ready[FREE_N_CHANNELS];
3542	struct kvfree_rcu_bulk_data *bnode, *n;
3543	struct rcu_head *head_ready = NULL;
3544	unsigned long flags;
3545	int i;
3546
3547	raw_spin_lock_irqsave(&krcp->lock, flags);
3548	for (i = 0; i < FREE_N_CHANNELS; i++) {
3549		INIT_LIST_HEAD(&bulk_ready[i]);
3550
3551		list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) {
3552			if (!poll_state_synchronize_rcu_full(&bnode->gp_snap))
3553				break;
3554
3555			atomic_sub(bnode->nr_records, &krcp->bulk_count[i]);
3556			list_move(&bnode->list, &bulk_ready[i]);
3557		}
3558	}
3559
3560	if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) {
3561		head_ready = krcp->head;
3562		atomic_set(&krcp->head_count, 0);
3563		WRITE_ONCE(krcp->head, NULL);
3564	}
3565	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3566
3567	for (i = 0; i < FREE_N_CHANNELS; i++) {
3568		list_for_each_entry_safe(bnode, n, &bulk_ready[i], list)
3569			kvfree_rcu_bulk(krcp, bnode, i);
3570	}
3571
3572	if (head_ready)
3573		kvfree_rcu_list(head_ready);
3574}
3575
3576/*
3577 * Return: %true if a work is queued, %false otherwise.
3578 */
3579static bool
3580kvfree_rcu_queue_batch(struct kfree_rcu_cpu *krcp)
3581{
3582	unsigned long flags;
3583	bool queued = false;
3584	int i, j;
3585
3586	raw_spin_lock_irqsave(&krcp->lock, flags);
3587
3588	// Attempt to start a new batch.
3589	for (i = 0; i < KFREE_N_BATCHES; i++) {
3590		struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3591
3592		// Try to detach bulk_head or head and attach it, only when
3593		// all channels are free.  Any channel is not free means at krwp
3594		// there is on-going rcu work to handle krwp's free business.
3595		if (need_wait_for_krwp_work(krwp))
3596			continue;
3597
3598		// kvfree_rcu_drain_ready() might handle this krcp, if so give up.
3599		if (need_offload_krc(krcp)) {
3600			// Channel 1 corresponds to the SLAB-pointer bulk path.
3601			// Channel 2 corresponds to vmalloc-pointer bulk path.
3602			for (j = 0; j < FREE_N_CHANNELS; j++) {
3603				if (list_empty(&krwp->bulk_head_free[j])) {
3604					atomic_set(&krcp->bulk_count[j], 0);
3605					list_replace_init(&krcp->bulk_head[j],
3606						&krwp->bulk_head_free[j]);
3607				}
3608			}
3609
3610			// Channel 3 corresponds to both SLAB and vmalloc
3611			// objects queued on the linked list.
3612			if (!krwp->head_free) {
3613				krwp->head_free = krcp->head;
3614				get_state_synchronize_rcu_full(&krwp->head_free_gp_snap);
3615				atomic_set(&krcp->head_count, 0);
3616				WRITE_ONCE(krcp->head, NULL);
3617			}
3618
3619			// One work is per one batch, so there are three
3620			// "free channels", the batch can handle. Break
3621			// the loop since it is done with this CPU thus
3622			// queuing an RCU work is _always_ success here.
3623			queued = queue_rcu_work(system_unbound_wq, &krwp->rcu_work);
3624			WARN_ON_ONCE(!queued);
3625			break;
3626		}
3627	}
3628
3629	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3630	return queued;
3631}
3632
3633/*
3634 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3635 */
3636static void kfree_rcu_monitor(struct work_struct *work)
3637{
3638	struct kfree_rcu_cpu *krcp = container_of(work,
3639		struct kfree_rcu_cpu, monitor_work.work);
3640
3641	// Drain ready for reclaim.
3642	kvfree_rcu_drain_ready(krcp);
3643
3644	// Queue a batch for a rest.
3645	kvfree_rcu_queue_batch(krcp);
3646
3647	// If there is nothing to detach, it means that our job is
3648	// successfully done here. In case of having at least one
3649	// of the channels that is still busy we should rearm the
3650	// work to repeat an attempt. Because previous batches are
3651	// still in progress.
3652	if (need_offload_krc(krcp))
3653		schedule_delayed_monitor_work(krcp);
3654}
3655
3656static enum hrtimer_restart
3657schedule_page_work_fn(struct hrtimer *t)
3658{
3659	struct kfree_rcu_cpu *krcp =
3660		container_of(t, struct kfree_rcu_cpu, hrtimer);
3661
3662	queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3663	return HRTIMER_NORESTART;
3664}
3665
3666static void fill_page_cache_func(struct work_struct *work)
3667{
3668	struct kvfree_rcu_bulk_data *bnode;
3669	struct kfree_rcu_cpu *krcp =
3670		container_of(work, struct kfree_rcu_cpu,
3671			page_cache_work.work);
3672	unsigned long flags;
3673	int nr_pages;
3674	bool pushed;
3675	int i;
3676
3677	nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3678		1 : rcu_min_cached_objs;
3679
3680	for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) {
3681		bnode = (struct kvfree_rcu_bulk_data *)
3682			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3683
3684		if (!bnode)
3685			break;
3686
3687		raw_spin_lock_irqsave(&krcp->lock, flags);
3688		pushed = put_cached_bnode(krcp, bnode);
3689		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3690
3691		if (!pushed) {
3692			free_page((unsigned long) bnode);
3693			break;
3694		}
3695	}
3696
3697	atomic_set(&krcp->work_in_progress, 0);
3698	atomic_set(&krcp->backoff_page_cache_fill, 0);
3699}
3700
3701static void
3702run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3703{
3704	// If cache disabled, bail out.
3705	if (!rcu_min_cached_objs)
3706		return;
3707
3708	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3709			!atomic_xchg(&krcp->work_in_progress, 1)) {
3710		if (atomic_read(&krcp->backoff_page_cache_fill)) {
3711			queue_delayed_work(system_unbound_wq,
3712				&krcp->page_cache_work,
3713					msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3714		} else {
3715			hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3716			krcp->hrtimer.function = schedule_page_work_fn;
3717			hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3718		}
3719	}
3720}
3721
3722// Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3723// state specified by flags.  If can_alloc is true, the caller must
3724// be schedulable and not be holding any locks or mutexes that might be
3725// acquired by the memory allocator or anything that it might invoke.
3726// Returns true if ptr was successfully recorded, else the caller must
3727// use a fallback.
3728static inline bool
3729add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3730	unsigned long *flags, void *ptr, bool can_alloc)
3731{
3732	struct kvfree_rcu_bulk_data *bnode;
3733	int idx;
3734
3735	*krcp = krc_this_cpu_lock(flags);
3736	if (unlikely(!(*krcp)->initialized))
3737		return false;
3738
3739	idx = !!is_vmalloc_addr(ptr);
3740	bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx],
3741		struct kvfree_rcu_bulk_data, list);
3742
3743	/* Check if a new block is required. */
3744	if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) {
3745		bnode = get_cached_bnode(*krcp);
3746		if (!bnode && can_alloc) {
3747			krc_this_cpu_unlock(*krcp, *flags);
3748
3749			// __GFP_NORETRY - allows a light-weight direct reclaim
3750			// what is OK from minimizing of fallback hitting point of
3751			// view. Apart of that it forbids any OOM invoking what is
3752			// also beneficial since we are about to release memory soon.
3753			//
3754			// __GFP_NOMEMALLOC - prevents from consuming of all the
3755			// memory reserves. Please note we have a fallback path.
3756			//
3757			// __GFP_NOWARN - it is supposed that an allocation can
3758			// be failed under low memory or high memory pressure
3759			// scenarios.
3760			bnode = (struct kvfree_rcu_bulk_data *)
3761				__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3762			raw_spin_lock_irqsave(&(*krcp)->lock, *flags);
3763		}
3764
3765		if (!bnode)
3766			return false;
3767
3768		// Initialize the new block and attach it.
3769		bnode->nr_records = 0;
3770		list_add(&bnode->list, &(*krcp)->bulk_head[idx]);
3771	}
3772
3773	// Finally insert and update the GP for this page.
3774	bnode->nr_records++;
3775	bnode->records[bnode->nr_records - 1] = ptr;
3776	get_state_synchronize_rcu_full(&bnode->gp_snap);
3777	atomic_inc(&(*krcp)->bulk_count[idx]);
3778
3779	return true;
3780}
3781
3782/*
3783 * Queue a request for lazy invocation of the appropriate free routine
3784 * after a grace period.  Please note that three paths are maintained,
3785 * two for the common case using arrays of pointers and a third one that
3786 * is used only when the main paths cannot be used, for example, due to
3787 * memory pressure.
3788 *
3789 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3790 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3791 * be free'd in workqueue context. This allows us to: batch requests together to
3792 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3793 */
3794void kvfree_call_rcu(struct rcu_head *head, void *ptr)
3795{
3796	unsigned long flags;
3797	struct kfree_rcu_cpu *krcp;
3798	bool success;
3799
3800	/*
3801	 * Please note there is a limitation for the head-less
3802	 * variant, that is why there is a clear rule for such
3803	 * objects: it can be used from might_sleep() context
3804	 * only. For other places please embed an rcu_head to
3805	 * your data.
3806	 */
3807	if (!head)
3808		might_sleep();
3809
3810	// Queue the object but don't yet schedule the batch.
3811	if (debug_rcu_head_queue(ptr)) {
3812		// Probable double kfree_rcu(), just leak.
3813		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3814			  __func__, head);
3815
3816		// Mark as success and leave.
3817		return;
3818	}
3819
3820	kasan_record_aux_stack_noalloc(ptr);
3821	success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3822	if (!success) {
3823		run_page_cache_worker(krcp);
3824
3825		if (head == NULL)
3826			// Inline if kvfree_rcu(one_arg) call.
3827			goto unlock_return;
3828
3829		head->func = ptr;
3830		head->next = krcp->head;
3831		WRITE_ONCE(krcp->head, head);
3832		atomic_inc(&krcp->head_count);
3833
3834		// Take a snapshot for this krcp.
3835		krcp->head_gp_snap = get_state_synchronize_rcu();
3836		success = true;
3837	}
3838
3839	/*
3840	 * The kvfree_rcu() caller considers the pointer freed at this point
3841	 * and likely removes any references to it. Since the actual slab
3842	 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore
3843	 * this object (no scanning or false positives reporting).
3844	 */
3845	kmemleak_ignore(ptr);
3846
3847	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3848	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
3849		__schedule_delayed_monitor_work(krcp);
3850
3851unlock_return:
3852	krc_this_cpu_unlock(krcp, flags);
3853
3854	/*
3855	 * Inline kvfree() after synchronize_rcu(). We can do
3856	 * it from might_sleep() context only, so the current
3857	 * CPU can pass the QS state.
3858	 */
3859	if (!success) {
3860		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3861		synchronize_rcu();
3862		kvfree(ptr);
3863	}
3864}
3865EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3866
3867/**
3868 * kvfree_rcu_barrier - Wait until all in-flight kvfree_rcu() complete.
3869 *
3870 * Note that a single argument of kvfree_rcu() call has a slow path that
3871 * triggers synchronize_rcu() following by freeing a pointer. It is done
3872 * before the return from the function. Therefore for any single-argument
3873 * call that will result in a kfree() to a cache that is to be destroyed
3874 * during module exit, it is developer's responsibility to ensure that all
3875 * such calls have returned before the call to kmem_cache_destroy().
3876 */
3877void kvfree_rcu_barrier(void)
3878{
3879	struct kfree_rcu_cpu_work *krwp;
3880	struct kfree_rcu_cpu *krcp;
3881	bool queued;
3882	int i, cpu;
3883
3884	/*
3885	 * Firstly we detach objects and queue them over an RCU-batch
3886	 * for all CPUs. Finally queued works are flushed for each CPU.
3887	 *
3888	 * Please note. If there are outstanding batches for a particular
3889	 * CPU, those have to be finished first following by queuing a new.
3890	 */
3891	for_each_possible_cpu(cpu) {
3892		krcp = per_cpu_ptr(&krc, cpu);
3893
3894		/*
3895		 * Check if this CPU has any objects which have been queued for a
3896		 * new GP completion. If not(means nothing to detach), we are done
3897		 * with it. If any batch is pending/running for this "krcp", below
3898		 * per-cpu flush_rcu_work() waits its completion(see last step).
3899		 */
3900		if (!need_offload_krc(krcp))
3901			continue;
3902
3903		while (1) {
3904			/*
3905			 * If we are not able to queue a new RCU work it means:
3906			 * - batches for this CPU are still in flight which should
3907			 *   be flushed first and then repeat;
3908			 * - no objects to detach, because of concurrency.
3909			 */
3910			queued = kvfree_rcu_queue_batch(krcp);
3911
3912			/*
3913			 * Bail out, if there is no need to offload this "krcp"
3914			 * anymore. As noted earlier it can run concurrently.
3915			 */
3916			if (queued || !need_offload_krc(krcp))
3917				break;
3918
3919			/* There are ongoing batches. */
3920			for (i = 0; i < KFREE_N_BATCHES; i++) {
3921				krwp = &(krcp->krw_arr[i]);
3922				flush_rcu_work(&krwp->rcu_work);
3923			}
3924		}
3925	}
3926
3927	/*
3928	 * Now we guarantee that all objects are flushed.
3929	 */
3930	for_each_possible_cpu(cpu) {
3931		krcp = per_cpu_ptr(&krc, cpu);
3932
3933		/*
3934		 * A monitor work can drain ready to reclaim objects
3935		 * directly. Wait its completion if running or pending.
3936		 */
3937		cancel_delayed_work_sync(&krcp->monitor_work);
3938
3939		for (i = 0; i < KFREE_N_BATCHES; i++) {
3940			krwp = &(krcp->krw_arr[i]);
3941			flush_rcu_work(&krwp->rcu_work);
3942		}
3943	}
3944}
3945EXPORT_SYMBOL_GPL(kvfree_rcu_barrier);
3946
3947static unsigned long
3948kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3949{
3950	int cpu;
3951	unsigned long count = 0;
3952
3953	/* Snapshot count of all CPUs */
3954	for_each_possible_cpu(cpu) {
3955		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3956
3957		count += krc_count(krcp);
3958		count += READ_ONCE(krcp->nr_bkv_objs);
3959		atomic_set(&krcp->backoff_page_cache_fill, 1);
3960	}
3961
3962	return count == 0 ? SHRINK_EMPTY : count;
3963}
3964
3965static unsigned long
3966kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3967{
3968	int cpu, freed = 0;
3969
3970	for_each_possible_cpu(cpu) {
3971		int count;
3972		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3973
3974		count = krc_count(krcp);
3975		count += drain_page_cache(krcp);
3976		kfree_rcu_monitor(&krcp->monitor_work.work);
3977
3978		sc->nr_to_scan -= count;
3979		freed += count;
3980
3981		if (sc->nr_to_scan <= 0)
3982			break;
3983	}
3984
3985	return freed == 0 ? SHRINK_STOP : freed;
3986}
3987
3988void __init kfree_rcu_scheduler_running(void)
3989{
3990	int cpu;
3991
3992	for_each_possible_cpu(cpu) {
3993		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3994
3995		if (need_offload_krc(krcp))
3996			schedule_delayed_monitor_work(krcp);
3997	}
3998}
 
3999
4000/*
4001 * During early boot, any blocking grace-period wait automatically
4002 * implies a grace period.
4003 *
4004 * Later on, this could in theory be the case for kernels built with
4005 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
4006 * is not a common case.  Furthermore, this optimization would cause
4007 * the rcu_gp_oldstate structure to expand by 50%, so this potential
4008 * grace-period optimization is ignored once the scheduler is running.
 
 
4009 */
4010static int rcu_blocking_is_gp(void)
4011{
4012	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) {
4013		might_sleep();
4014		return false;
4015	}
4016	return true;
4017}
4018
4019/*
4020 * Helper function for the synchronize_rcu() API.
4021 */
4022static void synchronize_rcu_normal(void)
4023{
4024	struct rcu_synchronize rs;
4025
4026	trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("request"));
4027
4028	if (!READ_ONCE(rcu_normal_wake_from_gp)) {
4029		wait_rcu_gp(call_rcu_hurry);
4030		goto trace_complete_out;
4031	}
4032
4033	init_rcu_head_on_stack(&rs.head);
4034	init_completion(&rs.completion);
4035
4036	/*
4037	 * This code might be preempted, therefore take a GP
4038	 * snapshot before adding a request.
4039	 */
4040	if (IS_ENABLED(CONFIG_PROVE_RCU))
4041		rs.head.func = (void *) get_state_synchronize_rcu();
4042
4043	rcu_sr_normal_add_req(&rs);
4044
4045	/* Kick a GP and start waiting. */
4046	(void) start_poll_synchronize_rcu();
4047
4048	/* Now we can wait. */
4049	wait_for_completion(&rs.completion);
4050	destroy_rcu_head_on_stack(&rs.head);
4051
4052trace_complete_out:
4053	trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("complete"));
4054}
4055
4056/**
4057 * synchronize_rcu - wait until a grace period has elapsed.
4058 *
4059 * Control will return to the caller some time after a full grace
4060 * period has elapsed, in other words after all currently executing RCU
4061 * read-side critical sections have completed.  Note, however, that
4062 * upon return from synchronize_rcu(), the caller might well be executing
4063 * concurrently with new RCU read-side critical sections that began while
4064 * synchronize_rcu() was waiting.
4065 *
4066 * RCU read-side critical sections are delimited by rcu_read_lock()
4067 * and rcu_read_unlock(), and may be nested.  In addition, but only in
4068 * v5.0 and later, regions of code across which interrupts, preemption,
4069 * or softirqs have been disabled also serve as RCU read-side critical
4070 * sections.  This includes hardware interrupt handlers, softirq handlers,
4071 * and NMI handlers.
4072 *
4073 * Note that this guarantee implies further memory-ordering guarantees.
4074 * On systems with more than one CPU, when synchronize_rcu() returns,
4075 * each CPU is guaranteed to have executed a full memory barrier since
4076 * the end of its last RCU read-side critical section whose beginning
4077 * preceded the call to synchronize_rcu().  In addition, each CPU having
4078 * an RCU read-side critical section that extends beyond the return from
4079 * synchronize_rcu() is guaranteed to have executed a full memory barrier
4080 * after the beginning of synchronize_rcu() and before the beginning of
4081 * that RCU read-side critical section.  Note that these guarantees include
4082 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
4083 * that are executing in the kernel.
4084 *
4085 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
4086 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
4087 * to have executed a full memory barrier during the execution of
4088 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
4089 * again only if the system has more than one CPU).
4090 *
4091 * Implementation of these memory-ordering guarantees is described here:
4092 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
4093 */
4094void synchronize_rcu(void)
4095{
4096	unsigned long flags;
4097	struct rcu_node *rnp;
4098
4099	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
4100			 lock_is_held(&rcu_lock_map) ||
4101			 lock_is_held(&rcu_sched_lock_map),
4102			 "Illegal synchronize_rcu() in RCU read-side critical section");
4103	if (!rcu_blocking_is_gp()) {
4104		if (rcu_gp_is_expedited())
4105			synchronize_rcu_expedited();
4106		else
4107			synchronize_rcu_normal();
4108		return;
4109	}
4110
4111	// Context allows vacuous grace periods.
4112	// Note well that this code runs with !PREEMPT && !SMP.
4113	// In addition, all code that advances grace periods runs at
4114	// process level.  Therefore, this normal GP overlaps with other
4115	// normal GPs only by being fully nested within them, which allows
4116	// reuse of ->gp_seq_polled_snap.
4117	rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
4118	rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
4119
4120	// Update the normal grace-period counters to record
4121	// this grace period, but only those used by the boot CPU.
4122	// The rcu_scheduler_starting() will take care of the rest of
4123	// these counters.
4124	local_irq_save(flags);
4125	WARN_ON_ONCE(num_online_cpus() > 1);
4126	rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
4127	for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
4128		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4129	local_irq_restore(flags);
4130}
4131EXPORT_SYMBOL_GPL(synchronize_rcu);
4132
4133/**
4134 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
4135 * @rgosp: Place to put state cookie
4136 *
4137 * Stores into @rgosp a value that will always be treated by functions
4138 * like poll_state_synchronize_rcu_full() as a cookie whose grace period
4139 * has already completed.
4140 */
4141void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
4142{
4143	rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
4144	rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
4145}
4146EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
4147
4148/**
4149 * get_state_synchronize_rcu - Snapshot current RCU state
4150 *
4151 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
4152 * or poll_state_synchronize_rcu() to determine whether or not a full
4153 * grace period has elapsed in the meantime.
4154 */
4155unsigned long get_state_synchronize_rcu(void)
4156{
4157	/*
4158	 * Any prior manipulation of RCU-protected data must happen
4159	 * before the load from ->gp_seq.
4160	 */
4161	smp_mb();  /* ^^^ */
4162	return rcu_seq_snap(&rcu_state.gp_seq_polled);
4163}
4164EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
4165
4166/**
4167 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
4168 * @rgosp: location to place combined normal/expedited grace-period state
4169 *
4170 * Places the normal and expedited grace-period states in @rgosp.  This
4171 * state value can be passed to a later call to cond_synchronize_rcu_full()
4172 * or poll_state_synchronize_rcu_full() to determine whether or not a
4173 * grace period (whether normal or expedited) has elapsed in the meantime.
4174 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
4175 * long, but is guaranteed to see all grace periods.  In contrast, the
4176 * combined state occupies less memory, but can sometimes fail to take
4177 * grace periods into account.
4178 *
4179 * This does not guarantee that the needed grace period will actually
4180 * start.
4181 */
4182void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
4183{
4184	struct rcu_node *rnp = rcu_get_root();
4185
4186	/*
4187	 * Any prior manipulation of RCU-protected data must happen
4188	 * before the loads from ->gp_seq and ->expedited_sequence.
4189	 */
4190	smp_mb();  /* ^^^ */
4191	rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq);
4192	rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
4193}
4194EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
4195
4196/*
4197 * Helper function for start_poll_synchronize_rcu() and
4198 * start_poll_synchronize_rcu_full().
4199 */
4200static void start_poll_synchronize_rcu_common(void)
4201{
4202	unsigned long flags;
4203	bool needwake;
4204	struct rcu_data *rdp;
4205	struct rcu_node *rnp;
4206
4207	local_irq_save(flags);
4208	rdp = this_cpu_ptr(&rcu_data);
4209	rnp = rdp->mynode;
4210	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
4211	// Note it is possible for a grace period to have elapsed between
4212	// the above call to get_state_synchronize_rcu() and the below call
4213	// to rcu_seq_snap.  This is OK, the worst that happens is that we
4214	// get a grace period that no one needed.  These accesses are ordered
4215	// by smp_mb(), and we are accessing them in the opposite order
4216	// from which they are updated at grace-period start, as required.
4217	needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
4218	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4219	if (needwake)
4220		rcu_gp_kthread_wake();
4221}
4222
4223/**
4224 * start_poll_synchronize_rcu - Snapshot and start RCU grace period
4225 *
4226 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
4227 * or poll_state_synchronize_rcu() to determine whether or not a full
4228 * grace period has elapsed in the meantime.  If the needed grace period
4229 * is not already slated to start, notifies RCU core of the need for that
4230 * grace period.
4231 */
4232unsigned long start_poll_synchronize_rcu(void)
4233{
4234	unsigned long gp_seq = get_state_synchronize_rcu();
4235
4236	start_poll_synchronize_rcu_common();
4237	return gp_seq;
4238}
4239EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
4240
4241/**
4242 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
4243 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
4244 *
4245 * Places the normal and expedited grace-period states in *@rgos.  This
4246 * state value can be passed to a later call to cond_synchronize_rcu_full()
4247 * or poll_state_synchronize_rcu_full() to determine whether or not a
4248 * grace period (whether normal or expedited) has elapsed in the meantime.
4249 * If the needed grace period is not already slated to start, notifies
4250 * RCU core of the need for that grace period.
4251 */
4252void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
4253{
4254	get_state_synchronize_rcu_full(rgosp);
4255
4256	start_poll_synchronize_rcu_common();
4257}
4258EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
4259
4260/**
4261 * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
4262 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
4263 *
4264 * If a full RCU grace period has elapsed since the earlier call from
4265 * which @oldstate was obtained, return @true, otherwise return @false.
4266 * If @false is returned, it is the caller's responsibility to invoke this
4267 * function later on until it does return @true.  Alternatively, the caller
4268 * can explicitly wait for a grace period, for example, by passing @oldstate
4269 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited()
4270 * on the one hand or by directly invoking either synchronize_rcu() or
4271 * synchronize_rcu_expedited() on the other.
4272 *
4273 * Yes, this function does not take counter wrap into account.
4274 * But counter wrap is harmless.  If the counter wraps, we have waited for
4275 * more than a billion grace periods (and way more on a 64-bit system!).
4276 * Those needing to keep old state values for very long time periods
4277 * (many hours even on 32-bit systems) should check them occasionally and
4278 * either refresh them or set a flag indicating that the grace period has
4279 * completed.  Alternatively, they can use get_completed_synchronize_rcu()
4280 * to get a guaranteed-completed grace-period state.
4281 *
4282 * In addition, because oldstate compresses the grace-period state for
4283 * both normal and expedited grace periods into a single unsigned long,
4284 * it can miss a grace period when synchronize_rcu() runs concurrently
4285 * with synchronize_rcu_expedited().  If this is unacceptable, please
4286 * instead use the _full() variant of these polling APIs.
4287 *
4288 * This function provides the same memory-ordering guarantees that
4289 * would be provided by a synchronize_rcu() that was invoked at the call
4290 * to the function that provided @oldstate, and that returned at the end
4291 * of this function.
4292 */
4293bool poll_state_synchronize_rcu(unsigned long oldstate)
4294{
4295	if (oldstate == RCU_GET_STATE_COMPLETED ||
4296	    rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
4297		smp_mb(); /* Ensure GP ends before subsequent accesses. */
4298		return true;
4299	}
4300	return false;
4301}
4302EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
4303
4304/**
4305 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
4306 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
4307 *
4308 * If a full RCU grace period has elapsed since the earlier call from
4309 * which *rgosp was obtained, return @true, otherwise return @false.
4310 * If @false is returned, it is the caller's responsibility to invoke this
4311 * function later on until it does return @true.  Alternatively, the caller
4312 * can explicitly wait for a grace period, for example, by passing @rgosp
4313 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
4314 *
4315 * Yes, this function does not take counter wrap into account.
4316 * But counter wrap is harmless.  If the counter wraps, we have waited
4317 * for more than a billion grace periods (and way more on a 64-bit
4318 * system!).  Those needing to keep rcu_gp_oldstate values for very
4319 * long time periods (many hours even on 32-bit systems) should check
4320 * them occasionally and either refresh them or set a flag indicating
4321 * that the grace period has completed.  Alternatively, they can use
4322 * get_completed_synchronize_rcu_full() to get a guaranteed-completed
4323 * grace-period state.
4324 *
4325 * This function provides the same memory-ordering guarantees that would
4326 * be provided by a synchronize_rcu() that was invoked at the call to
4327 * the function that provided @rgosp, and that returned at the end of this
4328 * function.  And this guarantee requires that the root rcu_node structure's
4329 * ->gp_seq field be checked instead of that of the rcu_state structure.
4330 * The problem is that the just-ending grace-period's callbacks can be
4331 * invoked between the time that the root rcu_node structure's ->gp_seq
4332 * field is updated and the time that the rcu_state structure's ->gp_seq
4333 * field is updated.  Therefore, if a single synchronize_rcu() is to
4334 * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
4335 * then the root rcu_node structure is the one that needs to be polled.
4336 */
4337bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
4338{
4339	struct rcu_node *rnp = rcu_get_root();
4340
4341	smp_mb(); // Order against root rcu_node structure grace-period cleanup.
4342	if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
4343	    rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
4344	    rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
4345	    rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
4346		smp_mb(); /* Ensure GP ends before subsequent accesses. */
4347		return true;
4348	}
4349	return false;
4350}
4351EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
4352
4353/**
4354 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
4355 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
4356 *
4357 * If a full RCU grace period has elapsed since the earlier call to
4358 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
4359 * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
4360 *
4361 * Yes, this function does not take counter wrap into account.
4362 * But counter wrap is harmless.  If the counter wraps, we have waited for
4363 * more than 2 billion grace periods (and way more on a 64-bit system!),
4364 * so waiting for a couple of additional grace periods should be just fine.
4365 *
4366 * This function provides the same memory-ordering guarantees that
4367 * would be provided by a synchronize_rcu() that was invoked at the call
4368 * to the function that provided @oldstate and that returned at the end
4369 * of this function.
4370 */
4371void cond_synchronize_rcu(unsigned long oldstate)
4372{
4373	if (!poll_state_synchronize_rcu(oldstate))
4374		synchronize_rcu();
 
 
4375}
4376EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
4377
4378/**
4379 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
4380 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
4381 *
4382 * If a full RCU grace period has elapsed since the call to
4383 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
4384 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
4385 * obtained, just return.  Otherwise, invoke synchronize_rcu() to wait
4386 * for a full grace period.
4387 *
4388 * Yes, this function does not take counter wrap into account.
4389 * But counter wrap is harmless.  If the counter wraps, we have waited for
4390 * more than 2 billion grace periods (and way more on a 64-bit system!),
4391 * so waiting for a couple of additional grace periods should be just fine.
4392 *
4393 * This function provides the same memory-ordering guarantees that
4394 * would be provided by a synchronize_rcu() that was invoked at the call
4395 * to the function that provided @rgosp and that returned at the end of
4396 * this function.
4397 */
4398void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
4399{
4400	if (!poll_state_synchronize_rcu_full(rgosp))
4401		synchronize_rcu();
4402}
4403EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
4404
4405/*
4406 * Check to see if there is any immediate RCU-related work to be done by
4407 * the current CPU, returning 1 if so and zero otherwise.  The checks are
4408 * in order of increasing expense: checks that can be carried out against
4409 * CPU-local state are performed first.  However, we must check for CPU
4410 * stalls first, else we might not get a chance.
4411 */
4412static int rcu_pending(int user)
4413{
4414	bool gp_in_progress;
4415	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4416	struct rcu_node *rnp = rdp->mynode;
4417
4418	lockdep_assert_irqs_disabled();
4419
4420	/* Check for CPU stalls, if enabled. */
4421	check_cpu_stall(rdp);
4422
4423	/* Does this CPU need a deferred NOCB wakeup? */
4424	if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
4425		return 1;
4426
4427	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
4428	gp_in_progress = rcu_gp_in_progress();
4429	if ((user || rcu_is_cpu_rrupt_from_idle() ||
4430	     (gp_in_progress &&
4431	      time_before(jiffies, READ_ONCE(rcu_state.gp_start) +
4432			  nohz_full_patience_delay_jiffies))) &&
4433	    rcu_nohz_full_cpu())
4434		return 0;
4435
4436	/* Is the RCU core waiting for a quiescent state from this CPU? */
4437	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
4438		return 1;
4439
4440	/* Does this CPU have callbacks ready to invoke? */
4441	if (!rcu_rdp_is_offloaded(rdp) &&
4442	    rcu_segcblist_ready_cbs(&rdp->cblist))
4443		return 1;
4444
4445	/* Has RCU gone idle with this CPU needing another grace period? */
4446	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
4447	    !rcu_rdp_is_offloaded(rdp) &&
 
 
4448	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
4449		return 1;
4450
4451	/* Have RCU grace period completed or started?  */
4452	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
4453	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
4454		return 1;
4455
4456	/* nothing to do */
4457	return 0;
4458}
4459
4460/*
4461 * Helper function for rcu_barrier() tracing.  If tracing is disabled,
4462 * the compiler is expected to optimize this away.
4463 */
4464static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
4465{
4466	trace_rcu_barrier(rcu_state.name, s, cpu,
4467			  atomic_read(&rcu_state.barrier_cpu_count), done);
4468}
4469
4470/*
4471 * RCU callback function for rcu_barrier().  If we are last, wake
4472 * up the task executing rcu_barrier().
4473 *
4474 * Note that the value of rcu_state.barrier_sequence must be captured
4475 * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
4476 * other CPUs might count the value down to zero before this CPU gets
4477 * around to invoking rcu_barrier_trace(), which might result in bogus
4478 * data from the next instance of rcu_barrier().
4479 */
4480static void rcu_barrier_callback(struct rcu_head *rhp)
4481{
4482	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
4483
4484	rhp->next = rhp; // Mark the callback as having been invoked.
4485	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
4486		rcu_barrier_trace(TPS("LastCB"), -1, s);
 
4487		complete(&rcu_state.barrier_completion);
4488	} else {
4489		rcu_barrier_trace(TPS("CB"), -1, s);
4490	}
4491}
4492
4493/*
4494 * If needed, entrain an rcu_barrier() callback on rdp->cblist.
4495 */
4496static void rcu_barrier_entrain(struct rcu_data *rdp)
4497{
4498	unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
4499	unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
4500	bool wake_nocb = false;
4501	bool was_alldone = false;
4502
4503	lockdep_assert_held(&rcu_state.barrier_lock);
4504	if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
4505		return;
4506	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
4507	rdp->barrier_head.func = rcu_barrier_callback;
4508	debug_rcu_head_queue(&rdp->barrier_head);
4509	rcu_nocb_lock(rdp);
4510	/*
4511	 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular
4512	 * queue. This way we don't wait for bypass timer that can reach seconds
4513	 * if it's fully lazy.
4514	 */
4515	was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist);
4516	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
4517	wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist);
4518	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
4519		atomic_inc(&rcu_state.barrier_cpu_count);
4520	} else {
4521		debug_rcu_head_unqueue(&rdp->barrier_head);
4522		rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
 
4523	}
4524	rcu_nocb_unlock(rdp);
4525	if (wake_nocb)
4526		wake_nocb_gp(rdp, false);
4527	smp_store_release(&rdp->barrier_seq_snap, gseq);
4528}
4529
4530/*
4531 * Called with preemption disabled, and from cross-cpu IRQ context.
4532 */
4533static void rcu_barrier_handler(void *cpu_in)
4534{
4535	uintptr_t cpu = (uintptr_t)cpu_in;
4536	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4537
4538	lockdep_assert_irqs_disabled();
4539	WARN_ON_ONCE(cpu != rdp->cpu);
4540	WARN_ON_ONCE(cpu != smp_processor_id());
4541	raw_spin_lock(&rcu_state.barrier_lock);
4542	rcu_barrier_entrain(rdp);
4543	raw_spin_unlock(&rcu_state.barrier_lock);
4544}
4545
4546/**
4547 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
4548 *
4549 * Note that this primitive does not necessarily wait for an RCU grace period
4550 * to complete.  For example, if there are no RCU callbacks queued anywhere
4551 * in the system, then rcu_barrier() is within its rights to return
4552 * immediately, without waiting for anything, much less an RCU grace period.
4553 */
4554void rcu_barrier(void)
4555{
4556	uintptr_t cpu;
4557	unsigned long flags;
4558	unsigned long gseq;
4559	struct rcu_data *rdp;
4560	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4561
4562	rcu_barrier_trace(TPS("Begin"), -1, s);
4563
4564	/* Take mutex to serialize concurrent rcu_barrier() requests. */
4565	mutex_lock(&rcu_state.barrier_mutex);
4566
4567	/* Did someone else do our work for us? */
4568	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4569		rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
 
4570		smp_mb(); /* caller's subsequent code after above check. */
4571		mutex_unlock(&rcu_state.barrier_mutex);
4572		return;
4573	}
4574
4575	/* Mark the start of the barrier operation. */
4576	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4577	rcu_seq_start(&rcu_state.barrier_sequence);
4578	gseq = rcu_state.barrier_sequence;
4579	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4580
4581	/*
4582	 * Initialize the count to two rather than to zero in order
4583	 * to avoid a too-soon return to zero in case of an immediate
4584	 * invocation of the just-enqueued callback (or preemption of
4585	 * this task).  Exclude CPU-hotplug operations to ensure that no
4586	 * offline non-offloaded CPU has callbacks queued.
4587	 */
4588	init_completion(&rcu_state.barrier_completion);
4589	atomic_set(&rcu_state.barrier_cpu_count, 2);
4590	raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4591
4592	/*
4593	 * Force each CPU with callbacks to register a new callback.
4594	 * When that callback is invoked, we will know that all of the
4595	 * corresponding CPU's preceding callbacks have been invoked.
4596	 */
4597	for_each_possible_cpu(cpu) {
4598		rdp = per_cpu_ptr(&rcu_data, cpu);
4599retry:
4600		if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
4601			continue;
4602		raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4603		if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
4604			WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4605			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4606			rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
4607			continue;
4608		}
4609		if (!rcu_rdp_cpu_online(rdp)) {
4610			rcu_barrier_entrain(rdp);
4611			WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4612			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4613			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
4614			continue;
 
 
 
 
 
 
 
4615		}
4616		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4617		if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
4618			schedule_timeout_uninterruptible(1);
4619			goto retry;
4620		}
4621		WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4622		rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
4623	}
 
4624
4625	/*
4626	 * Now that we have an rcu_barrier_callback() callback on each
4627	 * CPU, and thus each counted, remove the initial count.
4628	 */
4629	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4630		complete(&rcu_state.barrier_completion);
4631
4632	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4633	wait_for_completion(&rcu_state.barrier_completion);
4634
4635	/* Mark the end of the barrier operation. */
4636	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4637	rcu_seq_end(&rcu_state.barrier_sequence);
4638	gseq = rcu_state.barrier_sequence;
4639	for_each_possible_cpu(cpu) {
4640		rdp = per_cpu_ptr(&rcu_data, cpu);
4641
4642		WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4643	}
4644
4645	/* Other rcu_barrier() invocations can now safely proceed. */
4646	mutex_unlock(&rcu_state.barrier_mutex);
4647}
4648EXPORT_SYMBOL_GPL(rcu_barrier);
4649
4650static unsigned long rcu_barrier_last_throttle;
4651
4652/**
4653 * rcu_barrier_throttled - Do rcu_barrier(), but limit to one per second
4654 *
4655 * This can be thought of as guard rails around rcu_barrier() that
4656 * permits unrestricted userspace use, at least assuming the hardware's
4657 * try_cmpxchg() is robust.  There will be at most one call per second to
4658 * rcu_barrier() system-wide from use of this function, which means that
4659 * callers might needlessly wait a second or three.
4660 *
4661 * This is intended for use by test suites to avoid OOM by flushing RCU
4662 * callbacks from the previous test before starting the next.  See the
4663 * rcutree.do_rcu_barrier module parameter for more information.
4664 *
4665 * Why not simply make rcu_barrier() more scalable?  That might be
4666 * the eventual endpoint, but let's keep it simple for the time being.
4667 * Note that the module parameter infrastructure serializes calls to a
4668 * given .set() function, but should concurrent .set() invocation ever be
4669 * possible, we are ready!
4670 */
4671static void rcu_barrier_throttled(void)
4672{
4673	unsigned long j = jiffies;
4674	unsigned long old = READ_ONCE(rcu_barrier_last_throttle);
4675	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4676
4677	while (time_in_range(j, old, old + HZ / 16) ||
4678	       !try_cmpxchg(&rcu_barrier_last_throttle, &old, j)) {
4679		schedule_timeout_idle(HZ / 16);
4680		if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4681			smp_mb(); /* caller's subsequent code after above check. */
4682			return;
4683		}
4684		j = jiffies;
4685		old = READ_ONCE(rcu_barrier_last_throttle);
4686	}
4687	rcu_barrier();
4688}
4689
4690/*
4691 * Invoke rcu_barrier_throttled() when a rcutree.do_rcu_barrier
4692 * request arrives.  We insist on a true value to allow for possible
4693 * future expansion.
4694 */
4695static int param_set_do_rcu_barrier(const char *val, const struct kernel_param *kp)
4696{
4697	bool b;
4698	int ret;
4699
4700	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING)
4701		return -EAGAIN;
4702	ret = kstrtobool(val, &b);
4703	if (!ret && b) {
4704		atomic_inc((atomic_t *)kp->arg);
4705		rcu_barrier_throttled();
4706		atomic_dec((atomic_t *)kp->arg);
4707	}
4708	return ret;
4709}
4710
4711/*
4712 * Output the number of outstanding rcutree.do_rcu_barrier requests.
4713 */
4714static int param_get_do_rcu_barrier(char *buffer, const struct kernel_param *kp)
4715{
4716	return sprintf(buffer, "%d\n", atomic_read((atomic_t *)kp->arg));
4717}
4718
4719static const struct kernel_param_ops do_rcu_barrier_ops = {
4720	.set = param_set_do_rcu_barrier,
4721	.get = param_get_do_rcu_barrier,
4722};
4723static atomic_t do_rcu_barrier;
4724module_param_cb(do_rcu_barrier, &do_rcu_barrier_ops, &do_rcu_barrier, 0644);
4725
4726/*
4727 * Compute the mask of online CPUs for the specified rcu_node structure.
4728 * This will not be stable unless the rcu_node structure's ->lock is
4729 * held, but the bit corresponding to the current CPU will be stable
4730 * in most contexts.
4731 */
4732static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
4733{
4734	return READ_ONCE(rnp->qsmaskinitnext);
4735}
4736
4737/*
4738 * Is the CPU corresponding to the specified rcu_data structure online
4739 * from RCU's perspective?  This perspective is given by that structure's
4740 * ->qsmaskinitnext field rather than by the global cpu_online_mask.
4741 */
4742static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
4743{
4744	return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
4745}
4746
4747bool rcu_cpu_online(int cpu)
4748{
4749	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4750
4751	return rcu_rdp_cpu_online(rdp);
4752}
4753
4754#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
4755
4756/*
4757 * Is the current CPU online as far as RCU is concerned?
4758 *
4759 * Disable preemption to avoid false positives that could otherwise
4760 * happen due to the current CPU number being sampled, this task being
4761 * preempted, its old CPU being taken offline, resuming on some other CPU,
4762 * then determining that its old CPU is now offline.
4763 *
4764 * Disable checking if in an NMI handler because we cannot safely
4765 * report errors from NMI handlers anyway.  In addition, it is OK to use
4766 * RCU on an offline processor during initial boot, hence the check for
4767 * rcu_scheduler_fully_active.
4768 */
4769bool rcu_lockdep_current_cpu_online(void)
4770{
4771	struct rcu_data *rdp;
4772	bool ret = false;
4773
4774	if (in_nmi() || !rcu_scheduler_fully_active)
4775		return true;
4776	preempt_disable_notrace();
4777	rdp = this_cpu_ptr(&rcu_data);
4778	/*
4779	 * Strictly, we care here about the case where the current CPU is
4780	 * in rcutree_report_cpu_starting() and thus has an excuse for rdp->grpmask
4781	 * not being up to date. So arch_spin_is_locked() might have a
4782	 * false positive if it's held by some *other* CPU, but that's
4783	 * OK because that just means a false *negative* on the warning.
4784	 */
4785	if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
4786		ret = true;
4787	preempt_enable_notrace();
4788	return ret;
4789}
4790EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
4791
4792#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
4793
4794// Has rcu_init() been invoked?  This is used (for example) to determine
4795// whether spinlocks may be acquired safely.
4796static bool rcu_init_invoked(void)
4797{
4798	return !!READ_ONCE(rcu_state.n_online_cpus);
4799}
4800
4801/*
4802 * All CPUs for the specified rcu_node structure have gone offline,
4803 * and all tasks that were preempted within an RCU read-side critical
4804 * section while running on one of those CPUs have since exited their RCU
4805 * read-side critical section.  Some other CPU is reporting this fact with
4806 * the specified rcu_node structure's ->lock held and interrupts disabled.
4807 * This function therefore goes up the tree of rcu_node structures,
4808 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
4809 * the leaf rcu_node structure's ->qsmaskinit field has already been
4810 * updated.
4811 *
4812 * This function does check that the specified rcu_node structure has
4813 * all CPUs offline and no blocked tasks, so it is OK to invoke it
4814 * prematurely.  That said, invoking it after the fact will cost you
4815 * a needless lock acquisition.  So once it has done its work, don't
4816 * invoke it again.
4817 */
4818static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
4819{
4820	long mask;
4821	struct rcu_node *rnp = rnp_leaf;
4822
4823	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4824	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
4825	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
4826	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
4827		return;
4828	for (;;) {
4829		mask = rnp->grpmask;
4830		rnp = rnp->parent;
4831		if (!rnp)
4832			break;
4833		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4834		rnp->qsmaskinit &= ~mask;
4835		/* Between grace periods, so better already be zero! */
4836		WARN_ON_ONCE(rnp->qsmask);
4837		if (rnp->qsmaskinit) {
4838			raw_spin_unlock_rcu_node(rnp);
4839			/* irqs remain disabled. */
4840			return;
4841		}
4842		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4843	}
4844}
4845
4846/*
4847 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4848 * first CPU in a given leaf rcu_node structure coming online.  The caller
4849 * must hold the corresponding leaf rcu_node ->lock with interrupts
4850 * disabled.
4851 */
4852static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4853{
4854	long mask;
4855	long oldmask;
4856	struct rcu_node *rnp = rnp_leaf;
4857
4858	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4859	WARN_ON_ONCE(rnp->wait_blkd_tasks);
4860	for (;;) {
4861		mask = rnp->grpmask;
4862		rnp = rnp->parent;
4863		if (rnp == NULL)
4864			return;
4865		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4866		oldmask = rnp->qsmaskinit;
4867		rnp->qsmaskinit |= mask;
4868		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4869		if (oldmask)
4870			return;
4871	}
4872}
4873
4874/*
4875 * Do boot-time initialization of a CPU's per-CPU RCU data.
4876 */
4877static void __init
4878rcu_boot_init_percpu_data(int cpu)
4879{
4880	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4881	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4882
4883	/* Set up local state, ensuring consistent view of global state. */
4884	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4885	INIT_WORK(&rdp->strict_work, strict_work_handler);
4886	WARN_ON_ONCE(ct->nesting != 1);
4887	WARN_ON_ONCE(rcu_watching_snap_in_eqs(ct_rcu_watching_cpu(cpu)));
4888	rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4889	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4890	rdp->rcu_ofl_gp_state = RCU_GP_CLEANED;
4891	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4892	rdp->rcu_onl_gp_state = RCU_GP_CLEANED;
4893	rdp->last_sched_clock = jiffies;
4894	rdp->cpu = cpu;
4895	rcu_boot_init_nocb_percpu_data(rdp);
4896}
4897
4898struct kthread_worker *rcu_exp_gp_kworker;
4899
4900static void rcu_spawn_exp_par_gp_kworker(struct rcu_node *rnp)
4901{
4902	struct kthread_worker *kworker;
4903	const char *name = "rcu_exp_par_gp_kthread_worker/%d";
4904	struct sched_param param = { .sched_priority = kthread_prio };
4905	int rnp_index = rnp - rcu_get_root();
4906
4907	if (rnp->exp_kworker)
4908		return;
4909
4910	kworker = kthread_create_worker(0, name, rnp_index);
4911	if (IS_ERR_OR_NULL(kworker)) {
4912		pr_err("Failed to create par gp kworker on %d/%d\n",
4913		       rnp->grplo, rnp->grphi);
4914		return;
4915	}
4916	WRITE_ONCE(rnp->exp_kworker, kworker);
4917
4918	if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD))
4919		sched_setscheduler_nocheck(kworker->task, SCHED_FIFO, &param);
4920}
4921
4922static struct task_struct *rcu_exp_par_gp_task(struct rcu_node *rnp)
4923{
4924	struct kthread_worker *kworker = READ_ONCE(rnp->exp_kworker);
4925
4926	if (!kworker)
4927		return NULL;
4928
4929	return kworker->task;
4930}
4931
4932static void __init rcu_start_exp_gp_kworker(void)
4933{
4934	const char *name = "rcu_exp_gp_kthread_worker";
4935	struct sched_param param = { .sched_priority = kthread_prio };
4936
4937	rcu_exp_gp_kworker = kthread_create_worker(0, name);
4938	if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4939		pr_err("Failed to create %s!\n", name);
4940		rcu_exp_gp_kworker = NULL;
4941		return;
4942	}
4943
4944	if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD))
4945		sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
4946}
4947
4948static void rcu_spawn_rnp_kthreads(struct rcu_node *rnp)
4949{
4950	if (rcu_scheduler_fully_active) {
4951		mutex_lock(&rnp->kthread_mutex);
4952		rcu_spawn_one_boost_kthread(rnp);
4953		rcu_spawn_exp_par_gp_kworker(rnp);
4954		mutex_unlock(&rnp->kthread_mutex);
4955	}
4956}
4957
4958/*
4959 * Invoked early in the CPU-online process, when pretty much all services
4960 * are available.  The incoming CPU is not present.
4961 *
4962 * Initializes a CPU's per-CPU RCU data.  Note that only one online or
4963 * offline event can be happening at a given time.  Note also that we can
4964 * accept some slop in the rsp->gp_seq access due to the fact that this
4965 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4966 * And any offloaded callbacks are being numbered elsewhere.
4967 */
4968int rcutree_prepare_cpu(unsigned int cpu)
4969{
4970	unsigned long flags;
4971	struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4972	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4973	struct rcu_node *rnp = rcu_get_root();
4974
4975	/* Set up local state, ensuring consistent view of global state. */
4976	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4977	rdp->qlen_last_fqs_check = 0;
4978	rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4979	rdp->blimit = blimit;
4980	ct->nesting = 1;	/* CPU not up, no tearing. */
 
 
 
 
4981	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4982
4983	/*
4984	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4985	 * (re-)initialized.
4986	 */
4987	if (!rcu_segcblist_is_enabled(&rdp->cblist))
4988		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
4989
4990	/*
4991	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4992	 * propagation up the rcu_node tree will happen at the beginning
4993	 * of the next grace period.
4994	 */
4995	rnp = rdp->mynode;
4996	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4997	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4998	rdp->gp_seq_needed = rdp->gp_seq;
 
4999	rdp->cpu_no_qs.b.norm = true;
5000	rdp->core_needs_qs = false;
5001	rdp->rcu_iw_pending = false;
5002	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
5003	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
5004	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
5005	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
5006	rcu_spawn_rnp_kthreads(rnp);
5007	rcu_spawn_cpu_nocb_kthread(cpu);
5008	ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus);
5009	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
5010
5011	return 0;
5012}
5013
5014/*
5015 * Update kthreads affinity during CPU-hotplug changes.
5016 *
5017 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
5018 * served by the rcu_node in question.  The CPU hotplug lock is still
5019 * held, so the value of rnp->qsmaskinit will be stable.
5020 *
5021 * We don't include outgoingcpu in the affinity set, use -1 if there is
5022 * no outgoing CPU.  If there are no CPUs left in the affinity set,
5023 * this function allows the kthread to execute on any CPU.
5024 *
5025 * Any future concurrent calls are serialized via ->kthread_mutex.
5026 */
5027static void rcutree_affinity_setting(unsigned int cpu, int outgoingcpu)
5028{
5029	cpumask_var_t cm;
5030	unsigned long mask;
5031	struct rcu_data *rdp;
5032	struct rcu_node *rnp;
5033	struct task_struct *task_boost, *task_exp;
5034
5035	rdp = per_cpu_ptr(&rcu_data, cpu);
5036	rnp = rdp->mynode;
5037
5038	task_boost = rcu_boost_task(rnp);
5039	task_exp = rcu_exp_par_gp_task(rnp);
5040
5041	/*
5042	 * If CPU is the boot one, those tasks are created later from early
5043	 * initcall since kthreadd must be created first.
5044	 */
5045	if (!task_boost && !task_exp)
5046		return;
5047
5048	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
5049		return;
5050
5051	mutex_lock(&rnp->kthread_mutex);
5052	mask = rcu_rnp_online_cpus(rnp);
5053	for_each_leaf_node_possible_cpu(rnp, cpu)
5054		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
5055		    cpu != outgoingcpu)
5056			cpumask_set_cpu(cpu, cm);
5057	cpumask_and(cm, cm, housekeeping_cpumask(HK_TYPE_RCU));
5058	if (cpumask_empty(cm)) {
5059		cpumask_copy(cm, housekeeping_cpumask(HK_TYPE_RCU));
5060		if (outgoingcpu >= 0)
5061			cpumask_clear_cpu(outgoingcpu, cm);
5062	}
5063
5064	if (task_exp)
5065		set_cpus_allowed_ptr(task_exp, cm);
5066
5067	if (task_boost)
5068		set_cpus_allowed_ptr(task_boost, cm);
5069
5070	mutex_unlock(&rnp->kthread_mutex);
5071
5072	free_cpumask_var(cm);
5073}
5074
5075/*
5076 * Has the specified (known valid) CPU ever been fully online?
5077 */
5078bool rcu_cpu_beenfullyonline(int cpu)
5079{
5080	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
5081
5082	return smp_load_acquire(&rdp->beenonline);
5083}
5084
5085/*
5086 * Near the end of the CPU-online process.  Pretty much all services
5087 * enabled, and the CPU is now very much alive.
5088 */
5089int rcutree_online_cpu(unsigned int cpu)
5090{
5091	unsigned long flags;
5092	struct rcu_data *rdp;
5093	struct rcu_node *rnp;
5094
5095	rdp = per_cpu_ptr(&rcu_data, cpu);
5096	rnp = rdp->mynode;
5097	raw_spin_lock_irqsave_rcu_node(rnp, flags);
5098	rnp->ffmask |= rdp->grpmask;
5099	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
5100	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
5101		return 0; /* Too early in boot for scheduler work. */
5102	sync_sched_exp_online_cleanup(cpu);
5103	rcutree_affinity_setting(cpu, -1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5104
5105	// Stop-machine done, so allow nohz_full to disable tick.
5106	tick_dep_clear(TICK_DEP_BIT_RCU);
5107	return 0;
5108}
5109
 
 
5110/*
5111 * Mark the specified CPU as being online so that subsequent grace periods
5112 * (both expedited and normal) will wait on it.  Note that this means that
5113 * incoming CPUs are not allowed to use RCU read-side critical sections
5114 * until this function is called.  Failing to observe this restriction
5115 * will result in lockdep splats.
5116 *
5117 * Note that this function is special in that it is invoked directly
5118 * from the incoming CPU rather than from the cpuhp_step mechanism.
5119 * This is because this function must be invoked at a precise location.
5120 * This incoming CPU must not have enabled interrupts yet.
5121 *
5122 * This mirrors the effects of rcutree_report_cpu_dead().
5123 */
5124void rcutree_report_cpu_starting(unsigned int cpu)
5125{
 
5126	unsigned long mask;
 
 
5127	struct rcu_data *rdp;
5128	struct rcu_node *rnp;
5129	bool newcpu;
5130
5131	lockdep_assert_irqs_disabled();
5132	rdp = per_cpu_ptr(&rcu_data, cpu);
5133	if (rdp->cpu_started)
5134		return;
5135	rdp->cpu_started = true;
5136
 
 
 
5137	rnp = rdp->mynode;
5138	mask = rdp->grpmask;
5139	arch_spin_lock(&rcu_state.ofl_lock);
5140	rcu_watching_online();
5141	raw_spin_lock(&rcu_state.barrier_lock);
5142	raw_spin_lock_rcu_node(rnp);
5143	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
5144	raw_spin_unlock(&rcu_state.barrier_lock);
5145	newcpu = !(rnp->expmaskinitnext & mask);
5146	rnp->expmaskinitnext |= mask;
 
 
5147	/* Allow lockless access for expedited grace periods. */
5148	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
5149	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
5150	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
5151	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
5152	rdp->rcu_onl_gp_state = READ_ONCE(rcu_state.gp_state);
5153
5154	/* An incoming CPU should never be blocking a grace period. */
5155	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
5156		/* rcu_report_qs_rnp() *really* wants some flags to restore */
5157		unsigned long flags;
5158
5159		local_irq_save(flags);
5160		rcu_disable_urgency_upon_qs(rdp);
5161		/* Report QS -after- changing ->qsmaskinitnext! */
5162		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
5163	} else {
5164		raw_spin_unlock_rcu_node(rnp);
5165	}
5166	arch_spin_unlock(&rcu_state.ofl_lock);
5167	smp_store_release(&rdp->beenonline, true);
5168	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
5169}
5170
 
5171/*
5172 * The outgoing function has no further need of RCU, so remove it from
5173 * the rcu_node tree's ->qsmaskinitnext bit masks.
5174 *
5175 * Note that this function is special in that it is invoked directly
5176 * from the outgoing CPU rather than from the cpuhp_step mechanism.
5177 * This is because this function must be invoked at a precise location.
5178 *
5179 * This mirrors the effect of rcutree_report_cpu_starting().
5180 */
5181void rcutree_report_cpu_dead(void)
5182{
5183	unsigned long flags;
5184	unsigned long mask;
5185	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
5186	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
5187
5188	/*
5189	 * IRQS must be disabled from now on and until the CPU dies, or an interrupt
5190	 * may introduce a new READ-side while it is actually off the QS masks.
5191	 */
5192	lockdep_assert_irqs_disabled();
5193	// Do any dangling deferred wakeups.
5194	do_nocb_deferred_wakeup(rdp);
5195
5196	rcu_preempt_deferred_qs(current);
5197
5198	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
5199	mask = rdp->grpmask;
5200	arch_spin_lock(&rcu_state.ofl_lock);
5201	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
5202	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
5203	rdp->rcu_ofl_gp_state = READ_ONCE(rcu_state.gp_state);
5204	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
5205		/* Report quiescent state -before- changing ->qsmaskinitnext! */
5206		rcu_disable_urgency_upon_qs(rdp);
5207		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
5208		raw_spin_lock_irqsave_rcu_node(rnp, flags);
5209	}
5210	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
5211	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
5212	arch_spin_unlock(&rcu_state.ofl_lock);
5213	rdp->cpu_started = false;
 
5214}
5215
5216#ifdef CONFIG_HOTPLUG_CPU
5217/*
5218 * The outgoing CPU has just passed through the dying-idle state, and we
5219 * are being invoked from the CPU that was IPIed to continue the offline
5220 * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
5221 */
5222void rcutree_migrate_callbacks(int cpu)
5223{
5224	unsigned long flags;
5225	struct rcu_data *my_rdp;
5226	struct rcu_node *my_rnp;
5227	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
5228	bool needwake;
5229
5230	if (rcu_rdp_is_offloaded(rdp))
5231		return;
5232
5233	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
5234	if (rcu_segcblist_empty(&rdp->cblist)) {
5235		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
5236		return;  /* No callbacks to migrate. */
5237	}
5238
5239	WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
5240	rcu_barrier_entrain(rdp);
5241	my_rdp = this_cpu_ptr(&rcu_data);
5242	my_rnp = my_rdp->mynode;
5243	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
5244	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
5245	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
5246	/* Leverage recent GPs and set GP for new callbacks. */
5247	needwake = rcu_advance_cbs(my_rnp, rdp) ||
5248		   rcu_advance_cbs(my_rnp, my_rdp);
5249	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
5250	raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
5251	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
5252	rcu_segcblist_disable(&rdp->cblist);
5253	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
5254	check_cb_ovld_locked(my_rdp, my_rnp);
5255	if (rcu_rdp_is_offloaded(my_rdp)) {
5256		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
5257		__call_rcu_nocb_wake(my_rdp, true, flags);
5258	} else {
5259		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
5260		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
5261	}
5262	local_irq_restore(flags);
5263	if (needwake)
5264		rcu_gp_kthread_wake();
5265	lockdep_assert_irqs_enabled();
5266	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
5267		  !rcu_segcblist_empty(&rdp->cblist),
5268		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
5269		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
5270		  rcu_segcblist_first_cb(&rdp->cblist));
5271}
5272
5273/*
5274 * The CPU has been completely removed, and some other CPU is reporting
5275 * this fact from process context.  Do the remainder of the cleanup.
5276 * There can only be one CPU hotplug operation at a time, so no need for
5277 * explicit locking.
5278 */
5279int rcutree_dead_cpu(unsigned int cpu)
5280{
5281	ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus);
5282	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
5283	// Stop-machine done, so allow nohz_full to disable tick.
5284	tick_dep_clear(TICK_DEP_BIT_RCU);
5285	return 0;
5286}
5287
5288/*
5289 * Near the end of the offline process.  Trace the fact that this CPU
5290 * is going offline.
5291 */
5292int rcutree_dying_cpu(unsigned int cpu)
5293{
5294	bool blkd;
5295	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
5296	struct rcu_node *rnp = rdp->mynode;
5297
5298	blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
5299	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
5300			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
5301	return 0;
5302}
5303
5304/*
5305 * Near the beginning of the process.  The CPU is still very much alive
5306 * with pretty much all services enabled.
5307 */
5308int rcutree_offline_cpu(unsigned int cpu)
5309{
5310	unsigned long flags;
5311	struct rcu_data *rdp;
5312	struct rcu_node *rnp;
5313
5314	rdp = per_cpu_ptr(&rcu_data, cpu);
5315	rnp = rdp->mynode;
5316	raw_spin_lock_irqsave_rcu_node(rnp, flags);
5317	rnp->ffmask &= ~rdp->grpmask;
5318	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
5319
5320	rcutree_affinity_setting(cpu, cpu);
5321
5322	// nohz_full CPUs need the tick for stop-machine to work quickly
5323	tick_dep_set(TICK_DEP_BIT_RCU);
5324	return 0;
5325}
5326#endif /* #ifdef CONFIG_HOTPLUG_CPU */
5327
5328/*
5329 * On non-huge systems, use expedited RCU grace periods to make suspend
5330 * and hibernation run faster.
5331 */
5332static int rcu_pm_notify(struct notifier_block *self,
5333			 unsigned long action, void *hcpu)
5334{
5335	switch (action) {
5336	case PM_HIBERNATION_PREPARE:
5337	case PM_SUSPEND_PREPARE:
5338		rcu_async_hurry();
5339		rcu_expedite_gp();
5340		break;
5341	case PM_POST_HIBERNATION:
5342	case PM_POST_SUSPEND:
5343		rcu_unexpedite_gp();
5344		rcu_async_relax();
5345		break;
5346	default:
5347		break;
5348	}
5349	return NOTIFY_OK;
5350}
5351
5352/*
5353 * Spawn the kthreads that handle RCU's grace periods.
5354 */
5355static int __init rcu_spawn_gp_kthread(void)
5356{
5357	unsigned long flags;
 
5358	struct rcu_node *rnp;
5359	struct sched_param sp;
5360	struct task_struct *t;
5361	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5362
5363	rcu_scheduler_fully_active = 1;
5364	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
5365	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
5366		return 0;
5367	if (kthread_prio) {
5368		sp.sched_priority = kthread_prio;
5369		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
5370	}
5371	rnp = rcu_get_root();
5372	raw_spin_lock_irqsave_rcu_node(rnp, flags);
5373	WRITE_ONCE(rcu_state.gp_activity, jiffies);
5374	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
5375	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
5376	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
5377	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
5378	wake_up_process(t);
5379	/* This is a pre-SMP initcall, we expect a single CPU */
5380	WARN_ON(num_online_cpus() > 1);
5381	/*
5382	 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
5383	 * due to rcu_scheduler_fully_active.
5384	 */
5385	rcu_spawn_cpu_nocb_kthread(smp_processor_id());
5386	rcu_spawn_rnp_kthreads(rdp->mynode);
5387	rcu_spawn_core_kthreads();
5388	/* Create kthread worker for expedited GPs */
5389	rcu_start_exp_gp_kworker();
5390	return 0;
5391}
5392early_initcall(rcu_spawn_gp_kthread);
5393
5394/*
5395 * This function is invoked towards the end of the scheduler's
5396 * initialization process.  Before this is called, the idle task might
5397 * contain synchronous grace-period primitives (during which time, this idle
5398 * task is booting the system, and such primitives are no-ops).  After this
5399 * function is called, any synchronous grace-period primitives are run as
5400 * expedited, with the requesting task driving the grace period forward.
5401 * A later core_initcall() rcu_set_runtime_mode() will switch to full
5402 * runtime RCU functionality.
5403 */
5404void rcu_scheduler_starting(void)
5405{
5406	unsigned long flags;
5407	struct rcu_node *rnp;
5408
5409	WARN_ON(num_online_cpus() != 1);
5410	WARN_ON(nr_context_switches() > 0);
5411	rcu_test_sync_prims();
5412
5413	// Fix up the ->gp_seq counters.
5414	local_irq_save(flags);
5415	rcu_for_each_node_breadth_first(rnp)
5416		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
5417	local_irq_restore(flags);
5418
5419	// Switch out of early boot mode.
5420	rcu_scheduler_active = RCU_SCHEDULER_INIT;
5421	rcu_test_sync_prims();
5422}
5423
5424/*
5425 * Helper function for rcu_init() that initializes the rcu_state structure.
5426 */
5427static void __init rcu_init_one(void)
5428{
5429	static const char * const buf[] = RCU_NODE_NAME_INIT;
5430	static const char * const fqs[] = RCU_FQS_NAME_INIT;
5431	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
5432	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
5433
5434	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
5435	int cpustride = 1;
5436	int i;
5437	int j;
5438	struct rcu_node *rnp;
5439
5440	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
5441
5442	/* Silence gcc 4.8 false positive about array index out of range. */
5443	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
5444		panic("rcu_init_one: rcu_num_lvls out of range");
5445
5446	/* Initialize the level-tracking arrays. */
5447
5448	for (i = 1; i < rcu_num_lvls; i++)
5449		rcu_state.level[i] =
5450			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
5451	rcu_init_levelspread(levelspread, num_rcu_lvl);
5452
5453	/* Initialize the elements themselves, starting from the leaves. */
5454
5455	for (i = rcu_num_lvls - 1; i >= 0; i--) {
5456		cpustride *= levelspread[i];
5457		rnp = rcu_state.level[i];
5458		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
5459			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
5460			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
5461						   &rcu_node_class[i], buf[i]);
5462			raw_spin_lock_init(&rnp->fqslock);
5463			lockdep_set_class_and_name(&rnp->fqslock,
5464						   &rcu_fqs_class[i], fqs[i]);
5465			rnp->gp_seq = rcu_state.gp_seq;
5466			rnp->gp_seq_needed = rcu_state.gp_seq;
5467			rnp->completedqs = rcu_state.gp_seq;
5468			rnp->qsmask = 0;
5469			rnp->qsmaskinit = 0;
5470			rnp->grplo = j * cpustride;
5471			rnp->grphi = (j + 1) * cpustride - 1;
5472			if (rnp->grphi >= nr_cpu_ids)
5473				rnp->grphi = nr_cpu_ids - 1;
5474			if (i == 0) {
5475				rnp->grpnum = 0;
5476				rnp->grpmask = 0;
5477				rnp->parent = NULL;
5478			} else {
5479				rnp->grpnum = j % levelspread[i - 1];
5480				rnp->grpmask = BIT(rnp->grpnum);
5481				rnp->parent = rcu_state.level[i - 1] +
5482					      j / levelspread[i - 1];
5483			}
5484			rnp->level = i;
5485			INIT_LIST_HEAD(&rnp->blkd_tasks);
5486			rcu_init_one_nocb(rnp);
5487			init_waitqueue_head(&rnp->exp_wq[0]);
5488			init_waitqueue_head(&rnp->exp_wq[1]);
5489			init_waitqueue_head(&rnp->exp_wq[2]);
5490			init_waitqueue_head(&rnp->exp_wq[3]);
5491			spin_lock_init(&rnp->exp_lock);
5492			mutex_init(&rnp->kthread_mutex);
5493			raw_spin_lock_init(&rnp->exp_poll_lock);
5494			rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
5495			INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
5496		}
5497	}
5498
5499	init_swait_queue_head(&rcu_state.gp_wq);
5500	init_swait_queue_head(&rcu_state.expedited_wq);
5501	rnp = rcu_first_leaf_node();
5502	for_each_possible_cpu(i) {
5503		while (i > rnp->grphi)
5504			rnp++;
5505		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
5506		per_cpu_ptr(&rcu_data, i)->barrier_head.next =
5507			&per_cpu_ptr(&rcu_data, i)->barrier_head;
5508		rcu_boot_init_percpu_data(i);
5509	}
5510}
5511
5512/*
5513 * Force priority from the kernel command-line into range.
5514 */
5515static void __init sanitize_kthread_prio(void)
5516{
5517	int kthread_prio_in = kthread_prio;
5518
5519	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
5520	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
5521		kthread_prio = 2;
5522	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
5523		kthread_prio = 1;
5524	else if (kthread_prio < 0)
5525		kthread_prio = 0;
5526	else if (kthread_prio > 99)
5527		kthread_prio = 99;
5528
5529	if (kthread_prio != kthread_prio_in)
5530		pr_alert("%s: Limited prio to %d from %d\n",
5531			 __func__, kthread_prio, kthread_prio_in);
5532}
5533
5534/*
5535 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
5536 * replace the definitions in tree.h because those are needed to size
5537 * the ->node array in the rcu_state structure.
5538 */
5539void rcu_init_geometry(void)
5540{
5541	ulong d;
5542	int i;
5543	static unsigned long old_nr_cpu_ids;
5544	int rcu_capacity[RCU_NUM_LVLS];
5545	static bool initialized;
5546
5547	if (initialized) {
5548		/*
5549		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
5550		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
5551		 */
5552		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
5553		return;
5554	}
5555
5556	old_nr_cpu_ids = nr_cpu_ids;
5557	initialized = true;
5558
5559	/*
5560	 * Initialize any unspecified boot parameters.
5561	 * The default values of jiffies_till_first_fqs and
5562	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
5563	 * value, which is a function of HZ, then adding one for each
5564	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
5565	 */
5566	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
5567	if (jiffies_till_first_fqs == ULONG_MAX)
5568		jiffies_till_first_fqs = d;
5569	if (jiffies_till_next_fqs == ULONG_MAX)
5570		jiffies_till_next_fqs = d;
5571	adjust_jiffies_till_sched_qs();
5572
5573	/* If the compile-time values are accurate, just leave. */
5574	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
5575	    nr_cpu_ids == NR_CPUS)
5576		return;
5577	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
5578		rcu_fanout_leaf, nr_cpu_ids);
5579
5580	/*
5581	 * The boot-time rcu_fanout_leaf parameter must be at least two
5582	 * and cannot exceed the number of bits in the rcu_node masks.
5583	 * Complain and fall back to the compile-time values if this
5584	 * limit is exceeded.
5585	 */
5586	if (rcu_fanout_leaf < 2 || rcu_fanout_leaf > BITS_PER_LONG) {
 
5587		rcu_fanout_leaf = RCU_FANOUT_LEAF;
5588		WARN_ON(1);
5589		return;
5590	}
5591
5592	/*
5593	 * Compute number of nodes that can be handled an rcu_node tree
5594	 * with the given number of levels.
5595	 */
5596	rcu_capacity[0] = rcu_fanout_leaf;
5597	for (i = 1; i < RCU_NUM_LVLS; i++)
5598		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
5599
5600	/*
5601	 * The tree must be able to accommodate the configured number of CPUs.
5602	 * If this limit is exceeded, fall back to the compile-time values.
5603	 */
5604	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
5605		rcu_fanout_leaf = RCU_FANOUT_LEAF;
5606		WARN_ON(1);
5607		return;
5608	}
5609
5610	/* Calculate the number of levels in the tree. */
5611	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
5612	}
5613	rcu_num_lvls = i + 1;
5614
5615	/* Calculate the number of rcu_nodes at each level of the tree. */
5616	for (i = 0; i < rcu_num_lvls; i++) {
5617		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
5618		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
5619	}
5620
5621	/* Calculate the total number of rcu_node structures. */
5622	rcu_num_nodes = 0;
5623	for (i = 0; i < rcu_num_lvls; i++)
5624		rcu_num_nodes += num_rcu_lvl[i];
5625}
5626
5627/*
5628 * Dump out the structure of the rcu_node combining tree associated
5629 * with the rcu_state structure.
5630 */
5631static void __init rcu_dump_rcu_node_tree(void)
5632{
5633	int level = 0;
5634	struct rcu_node *rnp;
5635
5636	pr_info("rcu_node tree layout dump\n");
5637	pr_info(" ");
5638	rcu_for_each_node_breadth_first(rnp) {
5639		if (rnp->level != level) {
5640			pr_cont("\n");
5641			pr_info(" ");
5642			level = rnp->level;
5643		}
5644		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
5645	}
5646	pr_cont("\n");
5647}
5648
5649struct workqueue_struct *rcu_gp_wq;
 
5650
5651static void __init kfree_rcu_batch_init(void)
5652{
5653	int cpu;
5654	int i, j;
5655	struct shrinker *kfree_rcu_shrinker;
5656
5657	/* Clamp it to [0:100] seconds interval. */
5658	if (rcu_delay_page_cache_fill_msec < 0 ||
5659		rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
5660
5661		rcu_delay_page_cache_fill_msec =
5662			clamp(rcu_delay_page_cache_fill_msec, 0,
5663				(int) (100 * MSEC_PER_SEC));
5664
5665		pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
5666			rcu_delay_page_cache_fill_msec);
5667	}
5668
5669	for_each_possible_cpu(cpu) {
5670		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
5671
5672		for (i = 0; i < KFREE_N_BATCHES; i++) {
5673			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
5674			krcp->krw_arr[i].krcp = krcp;
5675
5676			for (j = 0; j < FREE_N_CHANNELS; j++)
5677				INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]);
5678		}
5679
5680		for (i = 0; i < FREE_N_CHANNELS; i++)
5681			INIT_LIST_HEAD(&krcp->bulk_head[i]);
5682
5683		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
5684		INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
5685		krcp->initialized = true;
5686	}
5687
5688	kfree_rcu_shrinker = shrinker_alloc(0, "rcu-kfree");
5689	if (!kfree_rcu_shrinker) {
5690		pr_err("Failed to allocate kfree_rcu() shrinker!\n");
5691		return;
5692	}
5693
5694	kfree_rcu_shrinker->count_objects = kfree_rcu_shrink_count;
5695	kfree_rcu_shrinker->scan_objects = kfree_rcu_shrink_scan;
5696
5697	shrinker_register(kfree_rcu_shrinker);
5698}
5699
5700void __init rcu_init(void)
5701{
5702	int cpu = smp_processor_id();
5703
5704	rcu_early_boot_tests();
5705
5706	kfree_rcu_batch_init();
5707	rcu_bootup_announce();
5708	sanitize_kthread_prio();
5709	rcu_init_geometry();
5710	rcu_init_one();
5711	if (dump_tree)
5712		rcu_dump_rcu_node_tree();
5713	if (use_softirq)
5714		open_softirq(RCU_SOFTIRQ, rcu_core_si);
5715
5716	/*
5717	 * We don't need protection against CPU-hotplug here because
5718	 * this is called early in boot, before either interrupts
5719	 * or the scheduler are operational.
5720	 */
5721	pm_notifier(rcu_pm_notify, 0);
5722	WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
5723	rcutree_prepare_cpu(cpu);
5724	rcutree_report_cpu_starting(cpu);
5725	rcutree_online_cpu(cpu);
 
5726
5727	/* Create workqueue for Tree SRCU and for expedited GPs. */
5728	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
5729	WARN_ON(!rcu_gp_wq);
5730
5731	sync_wq = alloc_workqueue("sync_wq", WQ_MEM_RECLAIM, 0);
5732	WARN_ON(!sync_wq);
5733
5734	/* Fill in default value for rcutree.qovld boot parameter. */
5735	/* -After- the rcu_node ->lock fields are initialized! */
5736	if (qovld < 0)
5737		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
5738	else
5739		qovld_calc = qovld;
5740
5741	// Kick-start in case any polled grace periods started early.
5742	(void)start_poll_synchronize_rcu_expedited();
5743
5744	rcu_test_sync_prims();
5745
5746	tasks_cblist_init_generic();
5747}
5748
5749#include "tree_stall.h"
5750#include "tree_exp.h"
5751#include "tree_nocb.h"
5752#include "tree_plugin.h"