Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * arch-independent dma-mapping routines
  4 *
  5 * Copyright (c) 2006  SUSE Linux Products GmbH
  6 * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
  7 */
  8#include <linux/memblock.h> /* for max_pfn */
  9#include <linux/acpi.h>
 10#include <linux/dma-direct.h>
 11#include <linux/dma-noncoherent.h>
 12#include <linux/export.h>
 13#include <linux/gfp.h>
 
 14#include <linux/of_device.h>
 15#include <linux/slab.h>
 16#include <linux/vmalloc.h>
 
 
 
 
 17
 18/*
 19 * Managed DMA API
 20 */
 21struct dma_devres {
 22	size_t		size;
 23	void		*vaddr;
 24	dma_addr_t	dma_handle;
 25	unsigned long	attrs;
 26};
 27
 28static void dmam_release(struct device *dev, void *res)
 29{
 30	struct dma_devres *this = res;
 31
 32	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
 33			this->attrs);
 34}
 35
 36static int dmam_match(struct device *dev, void *res, void *match_data)
 37{
 38	struct dma_devres *this = res, *match = match_data;
 39
 40	if (this->vaddr == match->vaddr) {
 41		WARN_ON(this->size != match->size ||
 42			this->dma_handle != match->dma_handle);
 43		return 1;
 44	}
 45	return 0;
 46}
 47
 48/**
 49 * dmam_free_coherent - Managed dma_free_coherent()
 50 * @dev: Device to free coherent memory for
 51 * @size: Size of allocation
 52 * @vaddr: Virtual address of the memory to free
 53 * @dma_handle: DMA handle of the memory to free
 54 *
 55 * Managed dma_free_coherent().
 56 */
 57void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
 58			dma_addr_t dma_handle)
 59{
 60	struct dma_devres match_data = { size, vaddr, dma_handle };
 61
 62	dma_free_coherent(dev, size, vaddr, dma_handle);
 63	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
 64}
 65EXPORT_SYMBOL(dmam_free_coherent);
 66
 67/**
 68 * dmam_alloc_attrs - Managed dma_alloc_attrs()
 69 * @dev: Device to allocate non_coherent memory for
 70 * @size: Size of allocation
 71 * @dma_handle: Out argument for allocated DMA handle
 72 * @gfp: Allocation flags
 73 * @attrs: Flags in the DMA_ATTR_* namespace.
 74 *
 75 * Managed dma_alloc_attrs().  Memory allocated using this function will be
 76 * automatically released on driver detach.
 77 *
 78 * RETURNS:
 79 * Pointer to allocated memory on success, NULL on failure.
 80 */
 81void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
 82		gfp_t gfp, unsigned long attrs)
 83{
 84	struct dma_devres *dr;
 85	void *vaddr;
 86
 87	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
 88	if (!dr)
 89		return NULL;
 90
 91	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
 92	if (!vaddr) {
 93		devres_free(dr);
 94		return NULL;
 95	}
 96
 97	dr->vaddr = vaddr;
 98	dr->dma_handle = *dma_handle;
 99	dr->size = size;
100	dr->attrs = attrs;
101
102	devres_add(dev, dr);
103
104	return vaddr;
105}
106EXPORT_SYMBOL(dmam_alloc_attrs);
107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108/*
109 * Create scatter-list for the already allocated DMA buffer.
 
 
110 */
111int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
112		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
113		 unsigned long attrs)
114{
115	struct page *page;
116	int ret;
117
118	if (!dev_is_dma_coherent(dev)) {
119		unsigned long pfn;
 
 
 
120
121		if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
122			return -ENXIO;
 
 
 
 
123
124		/* If the PFN is not valid, we do not have a struct page */
125		pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
126		if (!pfn_valid(pfn))
127			return -ENXIO;
128		page = pfn_to_page(pfn);
129	} else {
130		page = virt_to_page(cpu_addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131	}
132
133	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
134	if (!ret)
135		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136	return ret;
137}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138
139/*
140 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
141 * that the intention is to allow exporting memory allocated via the
142 * coherent DMA APIs through the dma_buf API, which only accepts a
143 * scattertable.  This presents a couple of problems:
144 * 1. Not all memory allocated via the coherent DMA APIs is backed by
145 *    a struct page
146 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
147 *    as we will try to flush the memory through a different alias to that
148 *    actually being used (and the flushes are redundant.)
149 */
150int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
151		void *cpu_addr, dma_addr_t dma_addr, size_t size,
152		unsigned long attrs)
153{
154	const struct dma_map_ops *ops = get_dma_ops(dev);
155
156	if (dma_is_direct(ops))
157		return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr,
158				size, attrs);
159	if (!ops->get_sgtable)
160		return -ENXIO;
161	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
162}
163EXPORT_SYMBOL(dma_get_sgtable_attrs);
164
165#ifdef CONFIG_MMU
166/*
167 * Return the page attributes used for mapping dma_alloc_* memory, either in
168 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
169 */
170pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
171{
172	if (dev_is_dma_coherent(dev) ||
173	    (IS_ENABLED(CONFIG_DMA_NONCOHERENT_CACHE_SYNC) &&
174             (attrs & DMA_ATTR_NON_CONSISTENT)))
175		return prot;
176#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
177	if (attrs & DMA_ATTR_WRITE_COMBINE)
178		return pgprot_writecombine(prot);
179#endif
180	return pgprot_dmacoherent(prot);
181}
182#endif /* CONFIG_MMU */
183
184/*
185 * Create userspace mapping for the DMA-coherent memory.
186 */
187int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
188		void *cpu_addr, dma_addr_t dma_addr, size_t size,
189		unsigned long attrs)
190{
191#ifdef CONFIG_MMU
192	unsigned long user_count = vma_pages(vma);
193	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
194	unsigned long off = vma->vm_pgoff;
195	unsigned long pfn;
196	int ret = -ENXIO;
197
198	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
199
200	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
201		return ret;
202
203	if (off >= count || user_count > count - off)
204		return -ENXIO;
205
206	if (!dev_is_dma_coherent(dev)) {
207		if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
208			return -ENXIO;
209
210		/* If the PFN is not valid, we do not have a struct page */
211		pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
212		if (!pfn_valid(pfn))
213			return -ENXIO;
214	} else {
215		pfn = page_to_pfn(virt_to_page(cpu_addr));
216	}
217
218	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
219			user_count << PAGE_SHIFT, vma->vm_page_prot);
220#else
221	return -ENXIO;
222#endif /* CONFIG_MMU */
223}
224
225/**
226 * dma_can_mmap - check if a given device supports dma_mmap_*
227 * @dev: device to check
228 *
229 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
230 * map DMA allocations to userspace.
231 */
232bool dma_can_mmap(struct device *dev)
233{
234	const struct dma_map_ops *ops = get_dma_ops(dev);
235
236	if (dma_is_direct(ops)) {
237		return IS_ENABLED(CONFIG_MMU) &&
238		       (dev_is_dma_coherent(dev) ||
239			IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN));
240	}
241
242	return ops->mmap != NULL;
243}
244EXPORT_SYMBOL_GPL(dma_can_mmap);
245
246/**
247 * dma_mmap_attrs - map a coherent DMA allocation into user space
248 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
249 * @vma: vm_area_struct describing requested user mapping
250 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
251 * @dma_addr: device-view address returned from dma_alloc_attrs
252 * @size: size of memory originally requested in dma_alloc_attrs
253 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
254 *
255 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
256 * space.  The coherent DMA buffer must not be freed by the driver until the
257 * user space mapping has been released.
258 */
259int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
260		void *cpu_addr, dma_addr_t dma_addr, size_t size,
261		unsigned long attrs)
262{
263	const struct dma_map_ops *ops = get_dma_ops(dev);
264
265	if (dma_is_direct(ops))
266		return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size,
267				attrs);
268	if (!ops->mmap)
269		return -ENXIO;
270	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
271}
272EXPORT_SYMBOL(dma_mmap_attrs);
273
274u64 dma_get_required_mask(struct device *dev)
275{
276	const struct dma_map_ops *ops = get_dma_ops(dev);
277
278	if (dma_is_direct(ops))
279		return dma_direct_get_required_mask(dev);
280	if (ops->get_required_mask)
281		return ops->get_required_mask(dev);
282
283	/*
284	 * We require every DMA ops implementation to at least support a 32-bit
285	 * DMA mask (and use bounce buffering if that isn't supported in
286	 * hardware).  As the direct mapping code has its own routine to
287	 * actually report an optimal mask we default to 32-bit here as that
288	 * is the right thing for most IOMMUs, and at least not actively
289	 * harmful in general.
290	 */
291	return DMA_BIT_MASK(32);
292}
293EXPORT_SYMBOL_GPL(dma_get_required_mask);
294
295void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
296		gfp_t flag, unsigned long attrs)
297{
298	const struct dma_map_ops *ops = get_dma_ops(dev);
299	void *cpu_addr;
300
301	WARN_ON_ONCE(!dev->coherent_dma_mask);
302
 
 
 
 
 
 
 
 
303	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
304		return cpu_addr;
305
306	/* let the implementation decide on the zone to allocate from: */
307	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
308
309	if (dma_is_direct(ops))
310		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
311	else if (ops->alloc)
312		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
313	else
314		return NULL;
315
316	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
317	return cpu_addr;
318}
319EXPORT_SYMBOL(dma_alloc_attrs);
320
321void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
322		dma_addr_t dma_handle, unsigned long attrs)
323{
324	const struct dma_map_ops *ops = get_dma_ops(dev);
325
326	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
327		return;
328	/*
329	 * On non-coherent platforms which implement DMA-coherent buffers via
330	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
331	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
332	 * sleep on some machines, and b) an indication that the driver is
333	 * probably misusing the coherent API anyway.
334	 */
335	WARN_ON(irqs_disabled());
336
337	if (!cpu_addr)
338		return;
339
340	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
341	if (dma_is_direct(ops))
342		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
343	else if (ops->free)
344		ops->free(dev, size, cpu_addr, dma_handle, attrs);
345}
346EXPORT_SYMBOL(dma_free_attrs);
347
348int dma_supported(struct device *dev, u64 mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
349{
350	const struct dma_map_ops *ops = get_dma_ops(dev);
351
352	if (dma_is_direct(ops))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
353		return dma_direct_supported(dev, mask);
354	if (!ops->dma_supported)
355		return 1;
356	return ops->dma_supported(dev, mask);
357}
358EXPORT_SYMBOL(dma_supported);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
359
360#ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
361void arch_dma_set_mask(struct device *dev, u64 mask);
362#else
363#define arch_dma_set_mask(dev, mask)	do { } while (0)
364#endif
365
366int dma_set_mask(struct device *dev, u64 mask)
367{
368	/*
369	 * Truncate the mask to the actually supported dma_addr_t width to
370	 * avoid generating unsupportable addresses.
371	 */
372	mask = (dma_addr_t)mask;
373
374	if (!dev->dma_mask || !dma_supported(dev, mask))
375		return -EIO;
376
377	arch_dma_set_mask(dev, mask);
378	*dev->dma_mask = mask;
379	return 0;
380}
381EXPORT_SYMBOL(dma_set_mask);
382
383#ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
384int dma_set_coherent_mask(struct device *dev, u64 mask)
385{
386	/*
387	 * Truncate the mask to the actually supported dma_addr_t width to
388	 * avoid generating unsupportable addresses.
389	 */
390	mask = (dma_addr_t)mask;
391
392	if (!dma_supported(dev, mask))
393		return -EIO;
394
395	dev->coherent_dma_mask = mask;
396	return 0;
397}
398EXPORT_SYMBOL(dma_set_coherent_mask);
399#endif
400
401void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
402		enum dma_data_direction dir)
403{
404	const struct dma_map_ops *ops = get_dma_ops(dev);
405
406	BUG_ON(!valid_dma_direction(dir));
407
408	if (dma_is_direct(ops))
409		arch_dma_cache_sync(dev, vaddr, size, dir);
410	else if (ops->cache_sync)
411		ops->cache_sync(dev, vaddr, size, dir);
412}
413EXPORT_SYMBOL(dma_cache_sync);
414
415size_t dma_max_mapping_size(struct device *dev)
416{
417	const struct dma_map_ops *ops = get_dma_ops(dev);
418	size_t size = SIZE_MAX;
419
420	if (dma_is_direct(ops))
421		size = dma_direct_max_mapping_size(dev);
422	else if (ops && ops->max_mapping_size)
423		size = ops->max_mapping_size(dev);
424
425	return size;
426}
427EXPORT_SYMBOL_GPL(dma_max_mapping_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
428
429unsigned long dma_get_merge_boundary(struct device *dev)
430{
431	const struct dma_map_ops *ops = get_dma_ops(dev);
432
433	if (!ops || !ops->get_merge_boundary)
434		return 0;	/* can't merge */
435
436	return ops->get_merge_boundary(dev);
437}
438EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * arch-independent dma-mapping routines
  4 *
  5 * Copyright (c) 2006  SUSE Linux Products GmbH
  6 * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
  7 */
  8#include <linux/memblock.h> /* for max_pfn */
  9#include <linux/acpi.h>
 10#include <linux/dma-map-ops.h>
 
 11#include <linux/export.h>
 12#include <linux/gfp.h>
 13#include <linux/kmsan.h>
 14#include <linux/of_device.h>
 15#include <linux/slab.h>
 16#include <linux/vmalloc.h>
 17#include "debug.h"
 18#include "direct.h"
 19
 20bool dma_default_coherent;
 21
 22/*
 23 * Managed DMA API
 24 */
 25struct dma_devres {
 26	size_t		size;
 27	void		*vaddr;
 28	dma_addr_t	dma_handle;
 29	unsigned long	attrs;
 30};
 31
 32static void dmam_release(struct device *dev, void *res)
 33{
 34	struct dma_devres *this = res;
 35
 36	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
 37			this->attrs);
 38}
 39
 40static int dmam_match(struct device *dev, void *res, void *match_data)
 41{
 42	struct dma_devres *this = res, *match = match_data;
 43
 44	if (this->vaddr == match->vaddr) {
 45		WARN_ON(this->size != match->size ||
 46			this->dma_handle != match->dma_handle);
 47		return 1;
 48	}
 49	return 0;
 50}
 51
 52/**
 53 * dmam_free_coherent - Managed dma_free_coherent()
 54 * @dev: Device to free coherent memory for
 55 * @size: Size of allocation
 56 * @vaddr: Virtual address of the memory to free
 57 * @dma_handle: DMA handle of the memory to free
 58 *
 59 * Managed dma_free_coherent().
 60 */
 61void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
 62			dma_addr_t dma_handle)
 63{
 64	struct dma_devres match_data = { size, vaddr, dma_handle };
 65
 66	dma_free_coherent(dev, size, vaddr, dma_handle);
 67	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
 68}
 69EXPORT_SYMBOL(dmam_free_coherent);
 70
 71/**
 72 * dmam_alloc_attrs - Managed dma_alloc_attrs()
 73 * @dev: Device to allocate non_coherent memory for
 74 * @size: Size of allocation
 75 * @dma_handle: Out argument for allocated DMA handle
 76 * @gfp: Allocation flags
 77 * @attrs: Flags in the DMA_ATTR_* namespace.
 78 *
 79 * Managed dma_alloc_attrs().  Memory allocated using this function will be
 80 * automatically released on driver detach.
 81 *
 82 * RETURNS:
 83 * Pointer to allocated memory on success, NULL on failure.
 84 */
 85void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
 86		gfp_t gfp, unsigned long attrs)
 87{
 88	struct dma_devres *dr;
 89	void *vaddr;
 90
 91	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
 92	if (!dr)
 93		return NULL;
 94
 95	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
 96	if (!vaddr) {
 97		devres_free(dr);
 98		return NULL;
 99	}
100
101	dr->vaddr = vaddr;
102	dr->dma_handle = *dma_handle;
103	dr->size = size;
104	dr->attrs = attrs;
105
106	devres_add(dev, dr);
107
108	return vaddr;
109}
110EXPORT_SYMBOL(dmam_alloc_attrs);
111
112static bool dma_go_direct(struct device *dev, dma_addr_t mask,
113		const struct dma_map_ops *ops)
114{
115	if (likely(!ops))
116		return true;
117#ifdef CONFIG_DMA_OPS_BYPASS
118	if (dev->dma_ops_bypass)
119		return min_not_zero(mask, dev->bus_dma_limit) >=
120			    dma_direct_get_required_mask(dev);
121#endif
122	return false;
123}
124
125
126/*
127 * Check if the devices uses a direct mapping for streaming DMA operations.
128 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
129 * enough.
130 */
131static inline bool dma_alloc_direct(struct device *dev,
132		const struct dma_map_ops *ops)
 
133{
134	return dma_go_direct(dev, dev->coherent_dma_mask, ops);
135}
136
137static inline bool dma_map_direct(struct device *dev,
138		const struct dma_map_ops *ops)
139{
140	return dma_go_direct(dev, *dev->dma_mask, ops);
141}
142
143dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
144		size_t offset, size_t size, enum dma_data_direction dir,
145		unsigned long attrs)
146{
147	const struct dma_map_ops *ops = get_dma_ops(dev);
148	dma_addr_t addr;
149
150	BUG_ON(!valid_dma_direction(dir));
151
152	if (WARN_ON_ONCE(!dev->dma_mask))
153		return DMA_MAPPING_ERROR;
154
155	if (dma_map_direct(dev, ops) ||
156	    arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
157		addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
158	else
159		addr = ops->map_page(dev, page, offset, size, dir, attrs);
160	kmsan_handle_dma(page, offset, size, dir);
161	debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
162
163	return addr;
164}
165EXPORT_SYMBOL(dma_map_page_attrs);
166
167void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
168		enum dma_data_direction dir, unsigned long attrs)
169{
170	const struct dma_map_ops *ops = get_dma_ops(dev);
171
172	BUG_ON(!valid_dma_direction(dir));
173	if (dma_map_direct(dev, ops) ||
174	    arch_dma_unmap_page_direct(dev, addr + size))
175		dma_direct_unmap_page(dev, addr, size, dir, attrs);
176	else if (ops->unmap_page)
177		ops->unmap_page(dev, addr, size, dir, attrs);
178	debug_dma_unmap_page(dev, addr, size, dir);
179}
180EXPORT_SYMBOL(dma_unmap_page_attrs);
181
182static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
183	 int nents, enum dma_data_direction dir, unsigned long attrs)
184{
185	const struct dma_map_ops *ops = get_dma_ops(dev);
186	int ents;
187
188	BUG_ON(!valid_dma_direction(dir));
189
190	if (WARN_ON_ONCE(!dev->dma_mask))
191		return 0;
192
193	if (dma_map_direct(dev, ops) ||
194	    arch_dma_map_sg_direct(dev, sg, nents))
195		ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
196	else
197		ents = ops->map_sg(dev, sg, nents, dir, attrs);
198
199	if (ents > 0) {
200		kmsan_handle_dma_sg(sg, nents, dir);
201		debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
202	} else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
203				ents != -EIO && ents != -EREMOTEIO)) {
204		return -EIO;
205	}
206
207	return ents;
208}
209
210/**
211 * dma_map_sg_attrs - Map the given buffer for DMA
212 * @dev:	The device for which to perform the DMA operation
213 * @sg:		The sg_table object describing the buffer
214 * @nents:	Number of entries to map
215 * @dir:	DMA direction
216 * @attrs:	Optional DMA attributes for the map operation
217 *
218 * Maps a buffer described by a scatterlist passed in the sg argument with
219 * nents segments for the @dir DMA operation by the @dev device.
220 *
221 * Returns the number of mapped entries (which can be less than nents)
222 * on success. Zero is returned for any error.
223 *
224 * dma_unmap_sg_attrs() should be used to unmap the buffer with the
225 * original sg and original nents (not the value returned by this funciton).
226 */
227unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
228		    int nents, enum dma_data_direction dir, unsigned long attrs)
229{
230	int ret;
231
232	ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
233	if (ret < 0)
234		return 0;
235	return ret;
236}
237EXPORT_SYMBOL(dma_map_sg_attrs);
238
239/**
240 * dma_map_sgtable - Map the given buffer for DMA
241 * @dev:	The device for which to perform the DMA operation
242 * @sgt:	The sg_table object describing the buffer
243 * @dir:	DMA direction
244 * @attrs:	Optional DMA attributes for the map operation
245 *
246 * Maps a buffer described by a scatterlist stored in the given sg_table
247 * object for the @dir DMA operation by the @dev device. After success, the
248 * ownership for the buffer is transferred to the DMA domain.  One has to
249 * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
250 * ownership of the buffer back to the CPU domain before touching the
251 * buffer by the CPU.
252 *
253 * Returns 0 on success or a negative error code on error. The following
254 * error codes are supported with the given meaning:
255 *
256 *   -EINVAL		An invalid argument, unaligned access or other error
257 *			in usage. Will not succeed if retried.
258 *   -ENOMEM		Insufficient resources (like memory or IOVA space) to
259 *			complete the mapping. Should succeed if retried later.
260 *   -EIO		Legacy error code with an unknown meaning. eg. this is
261 *			returned if a lower level call returned
262 *			DMA_MAPPING_ERROR.
263 *   -EREMOTEIO		The DMA device cannot access P2PDMA memory specified
264 *			in the sg_table. This will not succeed if retried.
265 */
266int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
267		    enum dma_data_direction dir, unsigned long attrs)
268{
269	int nents;
270
271	nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
272	if (nents < 0)
273		return nents;
274	sgt->nents = nents;
275	return 0;
276}
277EXPORT_SYMBOL_GPL(dma_map_sgtable);
278
279void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
280				      int nents, enum dma_data_direction dir,
281				      unsigned long attrs)
282{
283	const struct dma_map_ops *ops = get_dma_ops(dev);
284
285	BUG_ON(!valid_dma_direction(dir));
286	debug_dma_unmap_sg(dev, sg, nents, dir);
287	if (dma_map_direct(dev, ops) ||
288	    arch_dma_unmap_sg_direct(dev, sg, nents))
289		dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
290	else if (ops->unmap_sg)
291		ops->unmap_sg(dev, sg, nents, dir, attrs);
292}
293EXPORT_SYMBOL(dma_unmap_sg_attrs);
294
295dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
296		size_t size, enum dma_data_direction dir, unsigned long attrs)
297{
298	const struct dma_map_ops *ops = get_dma_ops(dev);
299	dma_addr_t addr = DMA_MAPPING_ERROR;
300
301	BUG_ON(!valid_dma_direction(dir));
302
303	if (WARN_ON_ONCE(!dev->dma_mask))
304		return DMA_MAPPING_ERROR;
305
306	if (dma_map_direct(dev, ops))
307		addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
308	else if (ops->map_resource)
309		addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
310
311	debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
312	return addr;
313}
314EXPORT_SYMBOL(dma_map_resource);
315
316void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
317		enum dma_data_direction dir, unsigned long attrs)
318{
319	const struct dma_map_ops *ops = get_dma_ops(dev);
320
321	BUG_ON(!valid_dma_direction(dir));
322	if (!dma_map_direct(dev, ops) && ops->unmap_resource)
323		ops->unmap_resource(dev, addr, size, dir, attrs);
324	debug_dma_unmap_resource(dev, addr, size, dir);
325}
326EXPORT_SYMBOL(dma_unmap_resource);
327
328void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
329		enum dma_data_direction dir)
330{
331	const struct dma_map_ops *ops = get_dma_ops(dev);
332
333	BUG_ON(!valid_dma_direction(dir));
334	if (dma_map_direct(dev, ops))
335		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
336	else if (ops->sync_single_for_cpu)
337		ops->sync_single_for_cpu(dev, addr, size, dir);
338	debug_dma_sync_single_for_cpu(dev, addr, size, dir);
339}
340EXPORT_SYMBOL(dma_sync_single_for_cpu);
341
342void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
343		size_t size, enum dma_data_direction dir)
344{
345	const struct dma_map_ops *ops = get_dma_ops(dev);
346
347	BUG_ON(!valid_dma_direction(dir));
348	if (dma_map_direct(dev, ops))
349		dma_direct_sync_single_for_device(dev, addr, size, dir);
350	else if (ops->sync_single_for_device)
351		ops->sync_single_for_device(dev, addr, size, dir);
352	debug_dma_sync_single_for_device(dev, addr, size, dir);
353}
354EXPORT_SYMBOL(dma_sync_single_for_device);
355
356void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
357		    int nelems, enum dma_data_direction dir)
358{
359	const struct dma_map_ops *ops = get_dma_ops(dev);
360
361	BUG_ON(!valid_dma_direction(dir));
362	if (dma_map_direct(dev, ops))
363		dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
364	else if (ops->sync_sg_for_cpu)
365		ops->sync_sg_for_cpu(dev, sg, nelems, dir);
366	debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
367}
368EXPORT_SYMBOL(dma_sync_sg_for_cpu);
369
370void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
371		       int nelems, enum dma_data_direction dir)
372{
373	const struct dma_map_ops *ops = get_dma_ops(dev);
374
375	BUG_ON(!valid_dma_direction(dir));
376	if (dma_map_direct(dev, ops))
377		dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
378	else if (ops->sync_sg_for_device)
379		ops->sync_sg_for_device(dev, sg, nelems, dir);
380	debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
381}
382EXPORT_SYMBOL(dma_sync_sg_for_device);
383
384/*
385 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
386 * that the intention is to allow exporting memory allocated via the
387 * coherent DMA APIs through the dma_buf API, which only accepts a
388 * scattertable.  This presents a couple of problems:
389 * 1. Not all memory allocated via the coherent DMA APIs is backed by
390 *    a struct page
391 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
392 *    as we will try to flush the memory through a different alias to that
393 *    actually being used (and the flushes are redundant.)
394 */
395int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
396		void *cpu_addr, dma_addr_t dma_addr, size_t size,
397		unsigned long attrs)
398{
399	const struct dma_map_ops *ops = get_dma_ops(dev);
400
401	if (dma_alloc_direct(dev, ops))
402		return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
403				size, attrs);
404	if (!ops->get_sgtable)
405		return -ENXIO;
406	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
407}
408EXPORT_SYMBOL(dma_get_sgtable_attrs);
409
410#ifdef CONFIG_MMU
411/*
412 * Return the page attributes used for mapping dma_alloc_* memory, either in
413 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
414 */
415pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
416{
417	if (dev_is_dma_coherent(dev))
 
 
418		return prot;
419#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
420	if (attrs & DMA_ATTR_WRITE_COMBINE)
421		return pgprot_writecombine(prot);
422#endif
423	return pgprot_dmacoherent(prot);
424}
425#endif /* CONFIG_MMU */
426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
427/**
428 * dma_can_mmap - check if a given device supports dma_mmap_*
429 * @dev: device to check
430 *
431 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
432 * map DMA allocations to userspace.
433 */
434bool dma_can_mmap(struct device *dev)
435{
436	const struct dma_map_ops *ops = get_dma_ops(dev);
437
438	if (dma_alloc_direct(dev, ops))
439		return dma_direct_can_mmap(dev);
 
 
 
 
440	return ops->mmap != NULL;
441}
442EXPORT_SYMBOL_GPL(dma_can_mmap);
443
444/**
445 * dma_mmap_attrs - map a coherent DMA allocation into user space
446 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
447 * @vma: vm_area_struct describing requested user mapping
448 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
449 * @dma_addr: device-view address returned from dma_alloc_attrs
450 * @size: size of memory originally requested in dma_alloc_attrs
451 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
452 *
453 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
454 * space.  The coherent DMA buffer must not be freed by the driver until the
455 * user space mapping has been released.
456 */
457int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
458		void *cpu_addr, dma_addr_t dma_addr, size_t size,
459		unsigned long attrs)
460{
461	const struct dma_map_ops *ops = get_dma_ops(dev);
462
463	if (dma_alloc_direct(dev, ops))
464		return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
465				attrs);
466	if (!ops->mmap)
467		return -ENXIO;
468	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
469}
470EXPORT_SYMBOL(dma_mmap_attrs);
471
472u64 dma_get_required_mask(struct device *dev)
473{
474	const struct dma_map_ops *ops = get_dma_ops(dev);
475
476	if (dma_alloc_direct(dev, ops))
477		return dma_direct_get_required_mask(dev);
478	if (ops->get_required_mask)
479		return ops->get_required_mask(dev);
480
481	/*
482	 * We require every DMA ops implementation to at least support a 32-bit
483	 * DMA mask (and use bounce buffering if that isn't supported in
484	 * hardware).  As the direct mapping code has its own routine to
485	 * actually report an optimal mask we default to 32-bit here as that
486	 * is the right thing for most IOMMUs, and at least not actively
487	 * harmful in general.
488	 */
489	return DMA_BIT_MASK(32);
490}
491EXPORT_SYMBOL_GPL(dma_get_required_mask);
492
493void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
494		gfp_t flag, unsigned long attrs)
495{
496	const struct dma_map_ops *ops = get_dma_ops(dev);
497	void *cpu_addr;
498
499	WARN_ON_ONCE(!dev->coherent_dma_mask);
500
501	/*
502	 * DMA allocations can never be turned back into a page pointer, so
503	 * requesting compound pages doesn't make sense (and can't even be
504	 * supported at all by various backends).
505	 */
506	if (WARN_ON_ONCE(flag & __GFP_COMP))
507		return NULL;
508
509	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
510		return cpu_addr;
511
512	/* let the implementation decide on the zone to allocate from: */
513	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
514
515	if (dma_alloc_direct(dev, ops))
516		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
517	else if (ops->alloc)
518		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
519	else
520		return NULL;
521
522	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
523	return cpu_addr;
524}
525EXPORT_SYMBOL(dma_alloc_attrs);
526
527void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
528		dma_addr_t dma_handle, unsigned long attrs)
529{
530	const struct dma_map_ops *ops = get_dma_ops(dev);
531
532	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
533		return;
534	/*
535	 * On non-coherent platforms which implement DMA-coherent buffers via
536	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
537	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
538	 * sleep on some machines, and b) an indication that the driver is
539	 * probably misusing the coherent API anyway.
540	 */
541	WARN_ON(irqs_disabled());
542
543	if (!cpu_addr)
544		return;
545
546	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
547	if (dma_alloc_direct(dev, ops))
548		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
549	else if (ops->free)
550		ops->free(dev, size, cpu_addr, dma_handle, attrs);
551}
552EXPORT_SYMBOL(dma_free_attrs);
553
554static struct page *__dma_alloc_pages(struct device *dev, size_t size,
555		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
556{
557	const struct dma_map_ops *ops = get_dma_ops(dev);
558
559	if (WARN_ON_ONCE(!dev->coherent_dma_mask))
560		return NULL;
561	if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
562		return NULL;
563	if (WARN_ON_ONCE(gfp & __GFP_COMP))
564		return NULL;
565
566	size = PAGE_ALIGN(size);
567	if (dma_alloc_direct(dev, ops))
568		return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
569	if (!ops->alloc_pages)
570		return NULL;
571	return ops->alloc_pages(dev, size, dma_handle, dir, gfp);
572}
573
574struct page *dma_alloc_pages(struct device *dev, size_t size,
575		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
576{
577	struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
578
579	if (page)
580		debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
581	return page;
582}
583EXPORT_SYMBOL_GPL(dma_alloc_pages);
584
585static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
586		dma_addr_t dma_handle, enum dma_data_direction dir)
587{
588	const struct dma_map_ops *ops = get_dma_ops(dev);
589
590	size = PAGE_ALIGN(size);
591	if (dma_alloc_direct(dev, ops))
592		dma_direct_free_pages(dev, size, page, dma_handle, dir);
593	else if (ops->free_pages)
594		ops->free_pages(dev, size, page, dma_handle, dir);
595}
596
597void dma_free_pages(struct device *dev, size_t size, struct page *page,
598		dma_addr_t dma_handle, enum dma_data_direction dir)
599{
600	debug_dma_unmap_page(dev, dma_handle, size, dir);
601	__dma_free_pages(dev, size, page, dma_handle, dir);
602}
603EXPORT_SYMBOL_GPL(dma_free_pages);
604
605int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
606		size_t size, struct page *page)
607{
608	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
609
610	if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
611		return -ENXIO;
612	return remap_pfn_range(vma, vma->vm_start,
613			       page_to_pfn(page) + vma->vm_pgoff,
614			       vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
615}
616EXPORT_SYMBOL_GPL(dma_mmap_pages);
617
618static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
619		enum dma_data_direction dir, gfp_t gfp)
620{
621	struct sg_table *sgt;
622	struct page *page;
623
624	sgt = kmalloc(sizeof(*sgt), gfp);
625	if (!sgt)
626		return NULL;
627	if (sg_alloc_table(sgt, 1, gfp))
628		goto out_free_sgt;
629	page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
630	if (!page)
631		goto out_free_table;
632	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
633	sg_dma_len(sgt->sgl) = sgt->sgl->length;
634	return sgt;
635out_free_table:
636	sg_free_table(sgt);
637out_free_sgt:
638	kfree(sgt);
639	return NULL;
640}
641
642struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
643		enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
644{
645	const struct dma_map_ops *ops = get_dma_ops(dev);
646	struct sg_table *sgt;
647
648	if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
649		return NULL;
650	if (WARN_ON_ONCE(gfp & __GFP_COMP))
651		return NULL;
652
653	if (ops && ops->alloc_noncontiguous)
654		sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs);
655	else
656		sgt = alloc_single_sgt(dev, size, dir, gfp);
657
658	if (sgt) {
659		sgt->nents = 1;
660		debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
661	}
662	return sgt;
663}
664EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
665
666static void free_single_sgt(struct device *dev, size_t size,
667		struct sg_table *sgt, enum dma_data_direction dir)
668{
669	__dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
670			 dir);
671	sg_free_table(sgt);
672	kfree(sgt);
673}
674
675void dma_free_noncontiguous(struct device *dev, size_t size,
676		struct sg_table *sgt, enum dma_data_direction dir)
677{
678	const struct dma_map_ops *ops = get_dma_ops(dev);
679
680	debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
681	if (ops && ops->free_noncontiguous)
682		ops->free_noncontiguous(dev, size, sgt, dir);
683	else
684		free_single_sgt(dev, size, sgt, dir);
685}
686EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
687
688void *dma_vmap_noncontiguous(struct device *dev, size_t size,
689		struct sg_table *sgt)
690{
691	const struct dma_map_ops *ops = get_dma_ops(dev);
692	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
693
694	if (ops && ops->alloc_noncontiguous)
695		return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
696	return page_address(sg_page(sgt->sgl));
697}
698EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
699
700void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
701{
702	const struct dma_map_ops *ops = get_dma_ops(dev);
703
704	if (ops && ops->alloc_noncontiguous)
705		vunmap(vaddr);
706}
707EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
708
709int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
710		size_t size, struct sg_table *sgt)
711{
712	const struct dma_map_ops *ops = get_dma_ops(dev);
713
714	if (ops && ops->alloc_noncontiguous) {
715		unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
716
717		if (vma->vm_pgoff >= count ||
718		    vma_pages(vma) > count - vma->vm_pgoff)
719			return -ENXIO;
720		return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
721	}
722	return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
723}
724EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
725
726static int dma_supported(struct device *dev, u64 mask)
727{
728	const struct dma_map_ops *ops = get_dma_ops(dev);
729
730	/*
731	 * ->dma_supported sets the bypass flag, so we must always call
732	 * into the method here unless the device is truly direct mapped.
733	 */
734	if (!ops)
735		return dma_direct_supported(dev, mask);
736	if (!ops->dma_supported)
737		return 1;
738	return ops->dma_supported(dev, mask);
739}
740
741bool dma_pci_p2pdma_supported(struct device *dev)
742{
743	const struct dma_map_ops *ops = get_dma_ops(dev);
744
745	/* if ops is not set, dma direct will be used which supports P2PDMA */
746	if (!ops)
747		return true;
748
749	/*
750	 * Note: dma_ops_bypass is not checked here because P2PDMA should
751	 * not be used with dma mapping ops that do not have support even
752	 * if the specific device is bypassing them.
753	 */
754
755	return ops->flags & DMA_F_PCI_P2PDMA_SUPPORTED;
756}
757EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
758
759#ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
760void arch_dma_set_mask(struct device *dev, u64 mask);
761#else
762#define arch_dma_set_mask(dev, mask)	do { } while (0)
763#endif
764
765int dma_set_mask(struct device *dev, u64 mask)
766{
767	/*
768	 * Truncate the mask to the actually supported dma_addr_t width to
769	 * avoid generating unsupportable addresses.
770	 */
771	mask = (dma_addr_t)mask;
772
773	if (!dev->dma_mask || !dma_supported(dev, mask))
774		return -EIO;
775
776	arch_dma_set_mask(dev, mask);
777	*dev->dma_mask = mask;
778	return 0;
779}
780EXPORT_SYMBOL(dma_set_mask);
781
 
782int dma_set_coherent_mask(struct device *dev, u64 mask)
783{
784	/*
785	 * Truncate the mask to the actually supported dma_addr_t width to
786	 * avoid generating unsupportable addresses.
787	 */
788	mask = (dma_addr_t)mask;
789
790	if (!dma_supported(dev, mask))
791		return -EIO;
792
793	dev->coherent_dma_mask = mask;
794	return 0;
795}
796EXPORT_SYMBOL(dma_set_coherent_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
797
798size_t dma_max_mapping_size(struct device *dev)
799{
800	const struct dma_map_ops *ops = get_dma_ops(dev);
801	size_t size = SIZE_MAX;
802
803	if (dma_map_direct(dev, ops))
804		size = dma_direct_max_mapping_size(dev);
805	else if (ops && ops->max_mapping_size)
806		size = ops->max_mapping_size(dev);
807
808	return size;
809}
810EXPORT_SYMBOL_GPL(dma_max_mapping_size);
811
812size_t dma_opt_mapping_size(struct device *dev)
813{
814	const struct dma_map_ops *ops = get_dma_ops(dev);
815	size_t size = SIZE_MAX;
816
817	if (ops && ops->opt_mapping_size)
818		size = ops->opt_mapping_size();
819
820	return min(dma_max_mapping_size(dev), size);
821}
822EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
823
824bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
825{
826	const struct dma_map_ops *ops = get_dma_ops(dev);
827
828	if (dma_map_direct(dev, ops))
829		return dma_direct_need_sync(dev, dma_addr);
830	return ops->sync_single_for_cpu || ops->sync_single_for_device;
831}
832EXPORT_SYMBOL_GPL(dma_need_sync);
833
834unsigned long dma_get_merge_boundary(struct device *dev)
835{
836	const struct dma_map_ops *ops = get_dma_ops(dev);
837
838	if (!ops || !ops->get_merge_boundary)
839		return 0;	/* can't merge */
840
841	return ops->get_merge_boundary(dev);
842}
843EXPORT_SYMBOL_GPL(dma_get_merge_boundary);