Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * arch-independent dma-mapping routines
  4 *
  5 * Copyright (c) 2006  SUSE Linux Products GmbH
  6 * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
  7 */
  8#include <linux/memblock.h> /* for max_pfn */
  9#include <linux/acpi.h>
 10#include <linux/dma-direct.h>
 11#include <linux/dma-noncoherent.h>
 12#include <linux/export.h>
 13#include <linux/gfp.h>
 14#include <linux/of_device.h>
 15#include <linux/slab.h>
 16#include <linux/vmalloc.h>
 
 
 
 
 17
 18/*
 19 * Managed DMA API
 20 */
 21struct dma_devres {
 22	size_t		size;
 23	void		*vaddr;
 24	dma_addr_t	dma_handle;
 25	unsigned long	attrs;
 26};
 27
 28static void dmam_release(struct device *dev, void *res)
 29{
 30	struct dma_devres *this = res;
 31
 32	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
 33			this->attrs);
 34}
 35
 36static int dmam_match(struct device *dev, void *res, void *match_data)
 37{
 38	struct dma_devres *this = res, *match = match_data;
 39
 40	if (this->vaddr == match->vaddr) {
 41		WARN_ON(this->size != match->size ||
 42			this->dma_handle != match->dma_handle);
 43		return 1;
 44	}
 45	return 0;
 46}
 47
 48/**
 49 * dmam_free_coherent - Managed dma_free_coherent()
 50 * @dev: Device to free coherent memory for
 51 * @size: Size of allocation
 52 * @vaddr: Virtual address of the memory to free
 53 * @dma_handle: DMA handle of the memory to free
 54 *
 55 * Managed dma_free_coherent().
 56 */
 57void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
 58			dma_addr_t dma_handle)
 59{
 60	struct dma_devres match_data = { size, vaddr, dma_handle };
 61
 62	dma_free_coherent(dev, size, vaddr, dma_handle);
 63	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
 64}
 65EXPORT_SYMBOL(dmam_free_coherent);
 66
 67/**
 68 * dmam_alloc_attrs - Managed dma_alloc_attrs()
 69 * @dev: Device to allocate non_coherent memory for
 70 * @size: Size of allocation
 71 * @dma_handle: Out argument for allocated DMA handle
 72 * @gfp: Allocation flags
 73 * @attrs: Flags in the DMA_ATTR_* namespace.
 74 *
 75 * Managed dma_alloc_attrs().  Memory allocated using this function will be
 76 * automatically released on driver detach.
 77 *
 78 * RETURNS:
 79 * Pointer to allocated memory on success, NULL on failure.
 80 */
 81void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
 82		gfp_t gfp, unsigned long attrs)
 83{
 84	struct dma_devres *dr;
 85	void *vaddr;
 86
 87	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
 88	if (!dr)
 89		return NULL;
 90
 91	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
 92	if (!vaddr) {
 93		devres_free(dr);
 94		return NULL;
 95	}
 96
 97	dr->vaddr = vaddr;
 98	dr->dma_handle = *dma_handle;
 99	dr->size = size;
100	dr->attrs = attrs;
101
102	devres_add(dev, dr);
103
104	return vaddr;
105}
106EXPORT_SYMBOL(dmam_alloc_attrs);
107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108/*
109 * Create scatter-list for the already allocated DMA buffer.
 
 
110 */
111int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
112		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
113		 unsigned long attrs)
114{
115	struct page *page;
116	int ret;
117
118	if (!dev_is_dma_coherent(dev)) {
119		unsigned long pfn;
 
 
 
120
121		if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
122			return -ENXIO;
 
 
 
 
123
124		/* If the PFN is not valid, we do not have a struct page */
125		pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
126		if (!pfn_valid(pfn))
127			return -ENXIO;
128		page = pfn_to_page(pfn);
129	} else {
130		page = virt_to_page(cpu_addr);
131	}
 
 
 
132
133	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
134	if (!ret)
135		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
136	return ret;
137}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138
139/*
140 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
141 * that the intention is to allow exporting memory allocated via the
142 * coherent DMA APIs through the dma_buf API, which only accepts a
143 * scattertable.  This presents a couple of problems:
144 * 1. Not all memory allocated via the coherent DMA APIs is backed by
145 *    a struct page
146 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
147 *    as we will try to flush the memory through a different alias to that
148 *    actually being used (and the flushes are redundant.)
149 */
150int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
151		void *cpu_addr, dma_addr_t dma_addr, size_t size,
152		unsigned long attrs)
153{
154	const struct dma_map_ops *ops = get_dma_ops(dev);
155
156	if (dma_is_direct(ops))
157		return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr,
158				size, attrs);
159	if (!ops->get_sgtable)
160		return -ENXIO;
161	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
162}
163EXPORT_SYMBOL(dma_get_sgtable_attrs);
164
165#ifdef CONFIG_MMU
166/*
167 * Return the page attributes used for mapping dma_alloc_* memory, either in
168 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
169 */
170pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
171{
172	if (dev_is_dma_coherent(dev) ||
173	    (IS_ENABLED(CONFIG_DMA_NONCOHERENT_CACHE_SYNC) &&
174             (attrs & DMA_ATTR_NON_CONSISTENT)))
175		return prot;
176#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
177	if (attrs & DMA_ATTR_WRITE_COMBINE)
178		return pgprot_writecombine(prot);
179#endif
180	return pgprot_dmacoherent(prot);
181}
182#endif /* CONFIG_MMU */
183
184/*
185 * Create userspace mapping for the DMA-coherent memory.
186 */
187int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
188		void *cpu_addr, dma_addr_t dma_addr, size_t size,
189		unsigned long attrs)
190{
191#ifdef CONFIG_MMU
192	unsigned long user_count = vma_pages(vma);
193	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
194	unsigned long off = vma->vm_pgoff;
195	unsigned long pfn;
196	int ret = -ENXIO;
197
198	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
199
200	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
201		return ret;
202
203	if (off >= count || user_count > count - off)
204		return -ENXIO;
205
206	if (!dev_is_dma_coherent(dev)) {
207		if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
208			return -ENXIO;
209
210		/* If the PFN is not valid, we do not have a struct page */
211		pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
212		if (!pfn_valid(pfn))
213			return -ENXIO;
214	} else {
215		pfn = page_to_pfn(virt_to_page(cpu_addr));
216	}
217
218	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
219			user_count << PAGE_SHIFT, vma->vm_page_prot);
220#else
221	return -ENXIO;
222#endif /* CONFIG_MMU */
223}
224
225/**
226 * dma_can_mmap - check if a given device supports dma_mmap_*
227 * @dev: device to check
228 *
229 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
230 * map DMA allocations to userspace.
231 */
232bool dma_can_mmap(struct device *dev)
233{
234	const struct dma_map_ops *ops = get_dma_ops(dev);
235
236	if (dma_is_direct(ops)) {
237		return IS_ENABLED(CONFIG_MMU) &&
238		       (dev_is_dma_coherent(dev) ||
239			IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN));
240	}
241
242	return ops->mmap != NULL;
243}
244EXPORT_SYMBOL_GPL(dma_can_mmap);
245
246/**
247 * dma_mmap_attrs - map a coherent DMA allocation into user space
248 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
249 * @vma: vm_area_struct describing requested user mapping
250 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
251 * @dma_addr: device-view address returned from dma_alloc_attrs
252 * @size: size of memory originally requested in dma_alloc_attrs
253 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
254 *
255 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
256 * space.  The coherent DMA buffer must not be freed by the driver until the
257 * user space mapping has been released.
258 */
259int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
260		void *cpu_addr, dma_addr_t dma_addr, size_t size,
261		unsigned long attrs)
262{
263	const struct dma_map_ops *ops = get_dma_ops(dev);
264
265	if (dma_is_direct(ops))
266		return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size,
267				attrs);
268	if (!ops->mmap)
269		return -ENXIO;
270	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
271}
272EXPORT_SYMBOL(dma_mmap_attrs);
273
274u64 dma_get_required_mask(struct device *dev)
275{
276	const struct dma_map_ops *ops = get_dma_ops(dev);
277
278	if (dma_is_direct(ops))
279		return dma_direct_get_required_mask(dev);
280	if (ops->get_required_mask)
281		return ops->get_required_mask(dev);
282
283	/*
284	 * We require every DMA ops implementation to at least support a 32-bit
285	 * DMA mask (and use bounce buffering if that isn't supported in
286	 * hardware).  As the direct mapping code has its own routine to
287	 * actually report an optimal mask we default to 32-bit here as that
288	 * is the right thing for most IOMMUs, and at least not actively
289	 * harmful in general.
290	 */
291	return DMA_BIT_MASK(32);
292}
293EXPORT_SYMBOL_GPL(dma_get_required_mask);
294
295void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
296		gfp_t flag, unsigned long attrs)
297{
298	const struct dma_map_ops *ops = get_dma_ops(dev);
299	void *cpu_addr;
300
301	WARN_ON_ONCE(!dev->coherent_dma_mask);
302
303	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
304		return cpu_addr;
305
306	/* let the implementation decide on the zone to allocate from: */
307	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
308
309	if (dma_is_direct(ops))
310		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
311	else if (ops->alloc)
312		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
313	else
314		return NULL;
315
316	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
317	return cpu_addr;
318}
319EXPORT_SYMBOL(dma_alloc_attrs);
320
321void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
322		dma_addr_t dma_handle, unsigned long attrs)
323{
324	const struct dma_map_ops *ops = get_dma_ops(dev);
325
326	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
327		return;
328	/*
329	 * On non-coherent platforms which implement DMA-coherent buffers via
330	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
331	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
332	 * sleep on some machines, and b) an indication that the driver is
333	 * probably misusing the coherent API anyway.
334	 */
335	WARN_ON(irqs_disabled());
336
337	if (!cpu_addr)
338		return;
339
340	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
341	if (dma_is_direct(ops))
342		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
343	else if (ops->free)
344		ops->free(dev, size, cpu_addr, dma_handle, attrs);
345}
346EXPORT_SYMBOL(dma_free_attrs);
347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
348int dma_supported(struct device *dev, u64 mask)
349{
350	const struct dma_map_ops *ops = get_dma_ops(dev);
351
352	if (dma_is_direct(ops))
 
 
 
 
353		return dma_direct_supported(dev, mask);
354	if (!ops->dma_supported)
355		return 1;
356	return ops->dma_supported(dev, mask);
357}
358EXPORT_SYMBOL(dma_supported);
359
360#ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
361void arch_dma_set_mask(struct device *dev, u64 mask);
362#else
363#define arch_dma_set_mask(dev, mask)	do { } while (0)
364#endif
365
366int dma_set_mask(struct device *dev, u64 mask)
367{
368	/*
369	 * Truncate the mask to the actually supported dma_addr_t width to
370	 * avoid generating unsupportable addresses.
371	 */
372	mask = (dma_addr_t)mask;
373
374	if (!dev->dma_mask || !dma_supported(dev, mask))
375		return -EIO;
376
377	arch_dma_set_mask(dev, mask);
378	*dev->dma_mask = mask;
379	return 0;
380}
381EXPORT_SYMBOL(dma_set_mask);
382
383#ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
384int dma_set_coherent_mask(struct device *dev, u64 mask)
385{
386	/*
387	 * Truncate the mask to the actually supported dma_addr_t width to
388	 * avoid generating unsupportable addresses.
389	 */
390	mask = (dma_addr_t)mask;
391
392	if (!dma_supported(dev, mask))
393		return -EIO;
394
395	dev->coherent_dma_mask = mask;
396	return 0;
397}
398EXPORT_SYMBOL(dma_set_coherent_mask);
399#endif
400
401void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
402		enum dma_data_direction dir)
403{
404	const struct dma_map_ops *ops = get_dma_ops(dev);
405
406	BUG_ON(!valid_dma_direction(dir));
407
408	if (dma_is_direct(ops))
409		arch_dma_cache_sync(dev, vaddr, size, dir);
410	else if (ops->cache_sync)
411		ops->cache_sync(dev, vaddr, size, dir);
412}
413EXPORT_SYMBOL(dma_cache_sync);
414
415size_t dma_max_mapping_size(struct device *dev)
416{
417	const struct dma_map_ops *ops = get_dma_ops(dev);
418	size_t size = SIZE_MAX;
419
420	if (dma_is_direct(ops))
421		size = dma_direct_max_mapping_size(dev);
422	else if (ops && ops->max_mapping_size)
423		size = ops->max_mapping_size(dev);
424
425	return size;
426}
427EXPORT_SYMBOL_GPL(dma_max_mapping_size);
 
 
 
 
 
 
 
 
 
 
428
429unsigned long dma_get_merge_boundary(struct device *dev)
430{
431	const struct dma_map_ops *ops = get_dma_ops(dev);
432
433	if (!ops || !ops->get_merge_boundary)
434		return 0;	/* can't merge */
435
436	return ops->get_merge_boundary(dev);
437}
438EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * arch-independent dma-mapping routines
  4 *
  5 * Copyright (c) 2006  SUSE Linux Products GmbH
  6 * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
  7 */
  8#include <linux/memblock.h> /* for max_pfn */
  9#include <linux/acpi.h>
 10#include <linux/dma-map-ops.h>
 
 11#include <linux/export.h>
 12#include <linux/gfp.h>
 13#include <linux/of_device.h>
 14#include <linux/slab.h>
 15#include <linux/vmalloc.h>
 16#include "debug.h"
 17#include "direct.h"
 18
 19bool dma_default_coherent;
 20
 21/*
 22 * Managed DMA API
 23 */
 24struct dma_devres {
 25	size_t		size;
 26	void		*vaddr;
 27	dma_addr_t	dma_handle;
 28	unsigned long	attrs;
 29};
 30
 31static void dmam_release(struct device *dev, void *res)
 32{
 33	struct dma_devres *this = res;
 34
 35	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
 36			this->attrs);
 37}
 38
 39static int dmam_match(struct device *dev, void *res, void *match_data)
 40{
 41	struct dma_devres *this = res, *match = match_data;
 42
 43	if (this->vaddr == match->vaddr) {
 44		WARN_ON(this->size != match->size ||
 45			this->dma_handle != match->dma_handle);
 46		return 1;
 47	}
 48	return 0;
 49}
 50
 51/**
 52 * dmam_free_coherent - Managed dma_free_coherent()
 53 * @dev: Device to free coherent memory for
 54 * @size: Size of allocation
 55 * @vaddr: Virtual address of the memory to free
 56 * @dma_handle: DMA handle of the memory to free
 57 *
 58 * Managed dma_free_coherent().
 59 */
 60void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
 61			dma_addr_t dma_handle)
 62{
 63	struct dma_devres match_data = { size, vaddr, dma_handle };
 64
 65	dma_free_coherent(dev, size, vaddr, dma_handle);
 66	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
 67}
 68EXPORT_SYMBOL(dmam_free_coherent);
 69
 70/**
 71 * dmam_alloc_attrs - Managed dma_alloc_attrs()
 72 * @dev: Device to allocate non_coherent memory for
 73 * @size: Size of allocation
 74 * @dma_handle: Out argument for allocated DMA handle
 75 * @gfp: Allocation flags
 76 * @attrs: Flags in the DMA_ATTR_* namespace.
 77 *
 78 * Managed dma_alloc_attrs().  Memory allocated using this function will be
 79 * automatically released on driver detach.
 80 *
 81 * RETURNS:
 82 * Pointer to allocated memory on success, NULL on failure.
 83 */
 84void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
 85		gfp_t gfp, unsigned long attrs)
 86{
 87	struct dma_devres *dr;
 88	void *vaddr;
 89
 90	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
 91	if (!dr)
 92		return NULL;
 93
 94	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
 95	if (!vaddr) {
 96		devres_free(dr);
 97		return NULL;
 98	}
 99
100	dr->vaddr = vaddr;
101	dr->dma_handle = *dma_handle;
102	dr->size = size;
103	dr->attrs = attrs;
104
105	devres_add(dev, dr);
106
107	return vaddr;
108}
109EXPORT_SYMBOL(dmam_alloc_attrs);
110
111static bool dma_go_direct(struct device *dev, dma_addr_t mask,
112		const struct dma_map_ops *ops)
113{
114	if (likely(!ops))
115		return true;
116#ifdef CONFIG_DMA_OPS_BYPASS
117	if (dev->dma_ops_bypass)
118		return min_not_zero(mask, dev->bus_dma_limit) >=
119			    dma_direct_get_required_mask(dev);
120#endif
121	return false;
122}
123
124
125/*
126 * Check if the devices uses a direct mapping for streaming DMA operations.
127 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
128 * enough.
129 */
130static inline bool dma_alloc_direct(struct device *dev,
131		const struct dma_map_ops *ops)
 
132{
133	return dma_go_direct(dev, dev->coherent_dma_mask, ops);
134}
135
136static inline bool dma_map_direct(struct device *dev,
137		const struct dma_map_ops *ops)
138{
139	return dma_go_direct(dev, *dev->dma_mask, ops);
140}
141
142dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
143		size_t offset, size_t size, enum dma_data_direction dir,
144		unsigned long attrs)
145{
146	const struct dma_map_ops *ops = get_dma_ops(dev);
147	dma_addr_t addr;
148
149	BUG_ON(!valid_dma_direction(dir));
150
151	if (WARN_ON_ONCE(!dev->dma_mask))
152		return DMA_MAPPING_ERROR;
153
154	if (dma_map_direct(dev, ops) ||
155	    arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
156		addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
157	else
158		addr = ops->map_page(dev, page, offset, size, dir, attrs);
159	debug_dma_map_page(dev, page, offset, size, dir, addr);
160
161	return addr;
 
 
 
162}
163EXPORT_SYMBOL(dma_map_page_attrs);
164
165void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
166		enum dma_data_direction dir, unsigned long attrs)
167{
168	const struct dma_map_ops *ops = get_dma_ops(dev);
169
170	BUG_ON(!valid_dma_direction(dir));
171	if (dma_map_direct(dev, ops) ||
172	    arch_dma_unmap_page_direct(dev, addr + size))
173		dma_direct_unmap_page(dev, addr, size, dir, attrs);
174	else if (ops->unmap_page)
175		ops->unmap_page(dev, addr, size, dir, attrs);
176	debug_dma_unmap_page(dev, addr, size, dir);
177}
178EXPORT_SYMBOL(dma_unmap_page_attrs);
179
180/*
181 * dma_maps_sg_attrs returns 0 on error and > 0 on success.
182 * It should never return a value < 0.
183 */
184int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, int nents,
185		enum dma_data_direction dir, unsigned long attrs)
186{
187	const struct dma_map_ops *ops = get_dma_ops(dev);
188	int ents;
189
190	BUG_ON(!valid_dma_direction(dir));
191
192	if (WARN_ON_ONCE(!dev->dma_mask))
193		return 0;
194
195	if (dma_map_direct(dev, ops) ||
196	    arch_dma_map_sg_direct(dev, sg, nents))
197		ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
198	else
199		ents = ops->map_sg(dev, sg, nents, dir, attrs);
200	BUG_ON(ents < 0);
201	debug_dma_map_sg(dev, sg, nents, ents, dir);
202
203	return ents;
204}
205EXPORT_SYMBOL(dma_map_sg_attrs);
206
207void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
208				      int nents, enum dma_data_direction dir,
209				      unsigned long attrs)
210{
211	const struct dma_map_ops *ops = get_dma_ops(dev);
212
213	BUG_ON(!valid_dma_direction(dir));
214	debug_dma_unmap_sg(dev, sg, nents, dir);
215	if (dma_map_direct(dev, ops) ||
216	    arch_dma_unmap_sg_direct(dev, sg, nents))
217		dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
218	else if (ops->unmap_sg)
219		ops->unmap_sg(dev, sg, nents, dir, attrs);
220}
221EXPORT_SYMBOL(dma_unmap_sg_attrs);
222
223dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
224		size_t size, enum dma_data_direction dir, unsigned long attrs)
225{
226	const struct dma_map_ops *ops = get_dma_ops(dev);
227	dma_addr_t addr = DMA_MAPPING_ERROR;
228
229	BUG_ON(!valid_dma_direction(dir));
230
231	if (WARN_ON_ONCE(!dev->dma_mask))
232		return DMA_MAPPING_ERROR;
233
234	/* Don't allow RAM to be mapped */
235	if (WARN_ON_ONCE(pfn_valid(PHYS_PFN(phys_addr))))
236		return DMA_MAPPING_ERROR;
237
238	if (dma_map_direct(dev, ops))
239		addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
240	else if (ops->map_resource)
241		addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
242
243	debug_dma_map_resource(dev, phys_addr, size, dir, addr);
244	return addr;
245}
246EXPORT_SYMBOL(dma_map_resource);
247
248void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
249		enum dma_data_direction dir, unsigned long attrs)
250{
251	const struct dma_map_ops *ops = get_dma_ops(dev);
252
253	BUG_ON(!valid_dma_direction(dir));
254	if (!dma_map_direct(dev, ops) && ops->unmap_resource)
255		ops->unmap_resource(dev, addr, size, dir, attrs);
256	debug_dma_unmap_resource(dev, addr, size, dir);
257}
258EXPORT_SYMBOL(dma_unmap_resource);
259
260void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
261		enum dma_data_direction dir)
262{
263	const struct dma_map_ops *ops = get_dma_ops(dev);
264
265	BUG_ON(!valid_dma_direction(dir));
266	if (dma_map_direct(dev, ops))
267		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
268	else if (ops->sync_single_for_cpu)
269		ops->sync_single_for_cpu(dev, addr, size, dir);
270	debug_dma_sync_single_for_cpu(dev, addr, size, dir);
271}
272EXPORT_SYMBOL(dma_sync_single_for_cpu);
273
274void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
275		size_t size, enum dma_data_direction dir)
276{
277	const struct dma_map_ops *ops = get_dma_ops(dev);
278
279	BUG_ON(!valid_dma_direction(dir));
280	if (dma_map_direct(dev, ops))
281		dma_direct_sync_single_for_device(dev, addr, size, dir);
282	else if (ops->sync_single_for_device)
283		ops->sync_single_for_device(dev, addr, size, dir);
284	debug_dma_sync_single_for_device(dev, addr, size, dir);
285}
286EXPORT_SYMBOL(dma_sync_single_for_device);
287
288void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
289		    int nelems, enum dma_data_direction dir)
290{
291	const struct dma_map_ops *ops = get_dma_ops(dev);
292
293	BUG_ON(!valid_dma_direction(dir));
294	if (dma_map_direct(dev, ops))
295		dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
296	else if (ops->sync_sg_for_cpu)
297		ops->sync_sg_for_cpu(dev, sg, nelems, dir);
298	debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
299}
300EXPORT_SYMBOL(dma_sync_sg_for_cpu);
301
302void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
303		       int nelems, enum dma_data_direction dir)
304{
305	const struct dma_map_ops *ops = get_dma_ops(dev);
306
307	BUG_ON(!valid_dma_direction(dir));
308	if (dma_map_direct(dev, ops))
309		dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
310	else if (ops->sync_sg_for_device)
311		ops->sync_sg_for_device(dev, sg, nelems, dir);
312	debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
313}
314EXPORT_SYMBOL(dma_sync_sg_for_device);
315
316/*
317 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
318 * that the intention is to allow exporting memory allocated via the
319 * coherent DMA APIs through the dma_buf API, which only accepts a
320 * scattertable.  This presents a couple of problems:
321 * 1. Not all memory allocated via the coherent DMA APIs is backed by
322 *    a struct page
323 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
324 *    as we will try to flush the memory through a different alias to that
325 *    actually being used (and the flushes are redundant.)
326 */
327int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
328		void *cpu_addr, dma_addr_t dma_addr, size_t size,
329		unsigned long attrs)
330{
331	const struct dma_map_ops *ops = get_dma_ops(dev);
332
333	if (dma_alloc_direct(dev, ops))
334		return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
335				size, attrs);
336	if (!ops->get_sgtable)
337		return -ENXIO;
338	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
339}
340EXPORT_SYMBOL(dma_get_sgtable_attrs);
341
342#ifdef CONFIG_MMU
343/*
344 * Return the page attributes used for mapping dma_alloc_* memory, either in
345 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
346 */
347pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
348{
349	if (force_dma_unencrypted(dev))
350		prot = pgprot_decrypted(prot);
351	if (dev_is_dma_coherent(dev))
352		return prot;
353#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
354	if (attrs & DMA_ATTR_WRITE_COMBINE)
355		return pgprot_writecombine(prot);
356#endif
357	return pgprot_dmacoherent(prot);
358}
359#endif /* CONFIG_MMU */
360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
361/**
362 * dma_can_mmap - check if a given device supports dma_mmap_*
363 * @dev: device to check
364 *
365 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
366 * map DMA allocations to userspace.
367 */
368bool dma_can_mmap(struct device *dev)
369{
370	const struct dma_map_ops *ops = get_dma_ops(dev);
371
372	if (dma_alloc_direct(dev, ops))
373		return dma_direct_can_mmap(dev);
 
 
 
 
374	return ops->mmap != NULL;
375}
376EXPORT_SYMBOL_GPL(dma_can_mmap);
377
378/**
379 * dma_mmap_attrs - map a coherent DMA allocation into user space
380 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
381 * @vma: vm_area_struct describing requested user mapping
382 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
383 * @dma_addr: device-view address returned from dma_alloc_attrs
384 * @size: size of memory originally requested in dma_alloc_attrs
385 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
386 *
387 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
388 * space.  The coherent DMA buffer must not be freed by the driver until the
389 * user space mapping has been released.
390 */
391int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
392		void *cpu_addr, dma_addr_t dma_addr, size_t size,
393		unsigned long attrs)
394{
395	const struct dma_map_ops *ops = get_dma_ops(dev);
396
397	if (dma_alloc_direct(dev, ops))
398		return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
399				attrs);
400	if (!ops->mmap)
401		return -ENXIO;
402	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
403}
404EXPORT_SYMBOL(dma_mmap_attrs);
405
406u64 dma_get_required_mask(struct device *dev)
407{
408	const struct dma_map_ops *ops = get_dma_ops(dev);
409
410	if (dma_alloc_direct(dev, ops))
411		return dma_direct_get_required_mask(dev);
412	if (ops->get_required_mask)
413		return ops->get_required_mask(dev);
414
415	/*
416	 * We require every DMA ops implementation to at least support a 32-bit
417	 * DMA mask (and use bounce buffering if that isn't supported in
418	 * hardware).  As the direct mapping code has its own routine to
419	 * actually report an optimal mask we default to 32-bit here as that
420	 * is the right thing for most IOMMUs, and at least not actively
421	 * harmful in general.
422	 */
423	return DMA_BIT_MASK(32);
424}
425EXPORT_SYMBOL_GPL(dma_get_required_mask);
426
427void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
428		gfp_t flag, unsigned long attrs)
429{
430	const struct dma_map_ops *ops = get_dma_ops(dev);
431	void *cpu_addr;
432
433	WARN_ON_ONCE(!dev->coherent_dma_mask);
434
435	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
436		return cpu_addr;
437
438	/* let the implementation decide on the zone to allocate from: */
439	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
440
441	if (dma_alloc_direct(dev, ops))
442		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
443	else if (ops->alloc)
444		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
445	else
446		return NULL;
447
448	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
449	return cpu_addr;
450}
451EXPORT_SYMBOL(dma_alloc_attrs);
452
453void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
454		dma_addr_t dma_handle, unsigned long attrs)
455{
456	const struct dma_map_ops *ops = get_dma_ops(dev);
457
458	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
459		return;
460	/*
461	 * On non-coherent platforms which implement DMA-coherent buffers via
462	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
463	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
464	 * sleep on some machines, and b) an indication that the driver is
465	 * probably misusing the coherent API anyway.
466	 */
467	WARN_ON(irqs_disabled());
468
469	if (!cpu_addr)
470		return;
471
472	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
473	if (dma_alloc_direct(dev, ops))
474		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
475	else if (ops->free)
476		ops->free(dev, size, cpu_addr, dma_handle, attrs);
477}
478EXPORT_SYMBOL(dma_free_attrs);
479
480static struct page *__dma_alloc_pages(struct device *dev, size_t size,
481		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
482{
483	const struct dma_map_ops *ops = get_dma_ops(dev);
484
485	if (WARN_ON_ONCE(!dev->coherent_dma_mask))
486		return NULL;
487	if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
488		return NULL;
489
490	size = PAGE_ALIGN(size);
491	if (dma_alloc_direct(dev, ops))
492		return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
493	if (!ops->alloc_pages)
494		return NULL;
495	return ops->alloc_pages(dev, size, dma_handle, dir, gfp);
496}
497
498struct page *dma_alloc_pages(struct device *dev, size_t size,
499		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
500{
501	struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
502
503	if (page)
504		debug_dma_map_page(dev, page, 0, size, dir, *dma_handle);
505	return page;
506}
507EXPORT_SYMBOL_GPL(dma_alloc_pages);
508
509static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
510		dma_addr_t dma_handle, enum dma_data_direction dir)
511{
512	const struct dma_map_ops *ops = get_dma_ops(dev);
513
514	size = PAGE_ALIGN(size);
515	if (dma_alloc_direct(dev, ops))
516		dma_direct_free_pages(dev, size, page, dma_handle, dir);
517	else if (ops->free_pages)
518		ops->free_pages(dev, size, page, dma_handle, dir);
519}
520
521void dma_free_pages(struct device *dev, size_t size, struct page *page,
522		dma_addr_t dma_handle, enum dma_data_direction dir)
523{
524	debug_dma_unmap_page(dev, dma_handle, size, dir);
525	__dma_free_pages(dev, size, page, dma_handle, dir);
526}
527EXPORT_SYMBOL_GPL(dma_free_pages);
528
529int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
530		size_t size, struct page *page)
531{
532	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
533
534	if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
535		return -ENXIO;
536	return remap_pfn_range(vma, vma->vm_start,
537			       page_to_pfn(page) + vma->vm_pgoff,
538			       vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
539}
540EXPORT_SYMBOL_GPL(dma_mmap_pages);
541
542static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
543		enum dma_data_direction dir, gfp_t gfp)
544{
545	struct sg_table *sgt;
546	struct page *page;
547
548	sgt = kmalloc(sizeof(*sgt), gfp);
549	if (!sgt)
550		return NULL;
551	if (sg_alloc_table(sgt, 1, gfp))
552		goto out_free_sgt;
553	page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
554	if (!page)
555		goto out_free_table;
556	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
557	sg_dma_len(sgt->sgl) = sgt->sgl->length;
558	return sgt;
559out_free_table:
560	sg_free_table(sgt);
561out_free_sgt:
562	kfree(sgt);
563	return NULL;
564}
565
566struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
567		enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
568{
569	const struct dma_map_ops *ops = get_dma_ops(dev);
570	struct sg_table *sgt;
571
572	if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
573		return NULL;
574
575	if (ops && ops->alloc_noncontiguous)
576		sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs);
577	else
578		sgt = alloc_single_sgt(dev, size, dir, gfp);
579
580	if (sgt) {
581		sgt->nents = 1;
582		debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir);
583	}
584	return sgt;
585}
586EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
587
588static void free_single_sgt(struct device *dev, size_t size,
589		struct sg_table *sgt, enum dma_data_direction dir)
590{
591	__dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
592			 dir);
593	sg_free_table(sgt);
594	kfree(sgt);
595}
596
597void dma_free_noncontiguous(struct device *dev, size_t size,
598		struct sg_table *sgt, enum dma_data_direction dir)
599{
600	const struct dma_map_ops *ops = get_dma_ops(dev);
601
602	debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
603	if (ops && ops->free_noncontiguous)
604		ops->free_noncontiguous(dev, size, sgt, dir);
605	else
606		free_single_sgt(dev, size, sgt, dir);
607}
608EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
609
610void *dma_vmap_noncontiguous(struct device *dev, size_t size,
611		struct sg_table *sgt)
612{
613	const struct dma_map_ops *ops = get_dma_ops(dev);
614	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
615
616	if (ops && ops->alloc_noncontiguous)
617		return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
618	return page_address(sg_page(sgt->sgl));
619}
620EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
621
622void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
623{
624	const struct dma_map_ops *ops = get_dma_ops(dev);
625
626	if (ops && ops->alloc_noncontiguous)
627		vunmap(vaddr);
628}
629EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
630
631int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
632		size_t size, struct sg_table *sgt)
633{
634	const struct dma_map_ops *ops = get_dma_ops(dev);
635
636	if (ops && ops->alloc_noncontiguous) {
637		unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
638
639		if (vma->vm_pgoff >= count ||
640		    vma_pages(vma) > count - vma->vm_pgoff)
641			return -ENXIO;
642		return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
643	}
644	return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
645}
646EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
647
648int dma_supported(struct device *dev, u64 mask)
649{
650	const struct dma_map_ops *ops = get_dma_ops(dev);
651
652	/*
653	 * ->dma_supported sets the bypass flag, so we must always call
654	 * into the method here unless the device is truly direct mapped.
655	 */
656	if (!ops)
657		return dma_direct_supported(dev, mask);
658	if (!ops->dma_supported)
659		return 1;
660	return ops->dma_supported(dev, mask);
661}
662EXPORT_SYMBOL(dma_supported);
663
664#ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
665void arch_dma_set_mask(struct device *dev, u64 mask);
666#else
667#define arch_dma_set_mask(dev, mask)	do { } while (0)
668#endif
669
670int dma_set_mask(struct device *dev, u64 mask)
671{
672	/*
673	 * Truncate the mask to the actually supported dma_addr_t width to
674	 * avoid generating unsupportable addresses.
675	 */
676	mask = (dma_addr_t)mask;
677
678	if (!dev->dma_mask || !dma_supported(dev, mask))
679		return -EIO;
680
681	arch_dma_set_mask(dev, mask);
682	*dev->dma_mask = mask;
683	return 0;
684}
685EXPORT_SYMBOL(dma_set_mask);
686
687#ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
688int dma_set_coherent_mask(struct device *dev, u64 mask)
689{
690	/*
691	 * Truncate the mask to the actually supported dma_addr_t width to
692	 * avoid generating unsupportable addresses.
693	 */
694	mask = (dma_addr_t)mask;
695
696	if (!dma_supported(dev, mask))
697		return -EIO;
698
699	dev->coherent_dma_mask = mask;
700	return 0;
701}
702EXPORT_SYMBOL(dma_set_coherent_mask);
703#endif
704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
705size_t dma_max_mapping_size(struct device *dev)
706{
707	const struct dma_map_ops *ops = get_dma_ops(dev);
708	size_t size = SIZE_MAX;
709
710	if (dma_map_direct(dev, ops))
711		size = dma_direct_max_mapping_size(dev);
712	else if (ops && ops->max_mapping_size)
713		size = ops->max_mapping_size(dev);
714
715	return size;
716}
717EXPORT_SYMBOL_GPL(dma_max_mapping_size);
718
719bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
720{
721	const struct dma_map_ops *ops = get_dma_ops(dev);
722
723	if (dma_map_direct(dev, ops))
724		return dma_direct_need_sync(dev, dma_addr);
725	return ops->sync_single_for_cpu || ops->sync_single_for_device;
726}
727EXPORT_SYMBOL_GPL(dma_need_sync);
728
729unsigned long dma_get_merge_boundary(struct device *dev)
730{
731	const struct dma_map_ops *ops = get_dma_ops(dev);
732
733	if (!ops || !ops->get_merge_boundary)
734		return 0;	/* can't merge */
735
736	return ops->get_merge_boundary(dev);
737}
738EXPORT_SYMBOL_GPL(dma_get_merge_boundary);