Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * arch-independent dma-mapping routines
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8#include <linux/memblock.h> /* for max_pfn */
9#include <linux/acpi.h>
10#include <linux/dma-direct.h>
11#include <linux/dma-noncoherent.h>
12#include <linux/export.h>
13#include <linux/gfp.h>
14#include <linux/of_device.h>
15#include <linux/slab.h>
16#include <linux/vmalloc.h>
17
18/*
19 * Managed DMA API
20 */
21struct dma_devres {
22 size_t size;
23 void *vaddr;
24 dma_addr_t dma_handle;
25 unsigned long attrs;
26};
27
28static void dmam_release(struct device *dev, void *res)
29{
30 struct dma_devres *this = res;
31
32 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
33 this->attrs);
34}
35
36static int dmam_match(struct device *dev, void *res, void *match_data)
37{
38 struct dma_devres *this = res, *match = match_data;
39
40 if (this->vaddr == match->vaddr) {
41 WARN_ON(this->size != match->size ||
42 this->dma_handle != match->dma_handle);
43 return 1;
44 }
45 return 0;
46}
47
48/**
49 * dmam_free_coherent - Managed dma_free_coherent()
50 * @dev: Device to free coherent memory for
51 * @size: Size of allocation
52 * @vaddr: Virtual address of the memory to free
53 * @dma_handle: DMA handle of the memory to free
54 *
55 * Managed dma_free_coherent().
56 */
57void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
58 dma_addr_t dma_handle)
59{
60 struct dma_devres match_data = { size, vaddr, dma_handle };
61
62 dma_free_coherent(dev, size, vaddr, dma_handle);
63 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
64}
65EXPORT_SYMBOL(dmam_free_coherent);
66
67/**
68 * dmam_alloc_attrs - Managed dma_alloc_attrs()
69 * @dev: Device to allocate non_coherent memory for
70 * @size: Size of allocation
71 * @dma_handle: Out argument for allocated DMA handle
72 * @gfp: Allocation flags
73 * @attrs: Flags in the DMA_ATTR_* namespace.
74 *
75 * Managed dma_alloc_attrs(). Memory allocated using this function will be
76 * automatically released on driver detach.
77 *
78 * RETURNS:
79 * Pointer to allocated memory on success, NULL on failure.
80 */
81void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
82 gfp_t gfp, unsigned long attrs)
83{
84 struct dma_devres *dr;
85 void *vaddr;
86
87 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
88 if (!dr)
89 return NULL;
90
91 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
92 if (!vaddr) {
93 devres_free(dr);
94 return NULL;
95 }
96
97 dr->vaddr = vaddr;
98 dr->dma_handle = *dma_handle;
99 dr->size = size;
100 dr->attrs = attrs;
101
102 devres_add(dev, dr);
103
104 return vaddr;
105}
106EXPORT_SYMBOL(dmam_alloc_attrs);
107
108/*
109 * Create scatter-list for the already allocated DMA buffer.
110 */
111int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
112 void *cpu_addr, dma_addr_t dma_addr, size_t size,
113 unsigned long attrs)
114{
115 struct page *page;
116 int ret;
117
118 if (!dev_is_dma_coherent(dev)) {
119 unsigned long pfn;
120
121 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
122 return -ENXIO;
123
124 /* If the PFN is not valid, we do not have a struct page */
125 pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
126 if (!pfn_valid(pfn))
127 return -ENXIO;
128 page = pfn_to_page(pfn);
129 } else {
130 page = virt_to_page(cpu_addr);
131 }
132
133 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
134 if (!ret)
135 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
136 return ret;
137}
138
139/*
140 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
141 * that the intention is to allow exporting memory allocated via the
142 * coherent DMA APIs through the dma_buf API, which only accepts a
143 * scattertable. This presents a couple of problems:
144 * 1. Not all memory allocated via the coherent DMA APIs is backed by
145 * a struct page
146 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
147 * as we will try to flush the memory through a different alias to that
148 * actually being used (and the flushes are redundant.)
149 */
150int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
151 void *cpu_addr, dma_addr_t dma_addr, size_t size,
152 unsigned long attrs)
153{
154 const struct dma_map_ops *ops = get_dma_ops(dev);
155
156 if (dma_is_direct(ops))
157 return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr,
158 size, attrs);
159 if (!ops->get_sgtable)
160 return -ENXIO;
161 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
162}
163EXPORT_SYMBOL(dma_get_sgtable_attrs);
164
165#ifdef CONFIG_MMU
166/*
167 * Return the page attributes used for mapping dma_alloc_* memory, either in
168 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
169 */
170pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
171{
172 if (dev_is_dma_coherent(dev) ||
173 (IS_ENABLED(CONFIG_DMA_NONCOHERENT_CACHE_SYNC) &&
174 (attrs & DMA_ATTR_NON_CONSISTENT)))
175 return prot;
176#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
177 if (attrs & DMA_ATTR_WRITE_COMBINE)
178 return pgprot_writecombine(prot);
179#endif
180 return pgprot_dmacoherent(prot);
181}
182#endif /* CONFIG_MMU */
183
184/*
185 * Create userspace mapping for the DMA-coherent memory.
186 */
187int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
188 void *cpu_addr, dma_addr_t dma_addr, size_t size,
189 unsigned long attrs)
190{
191#ifdef CONFIG_MMU
192 unsigned long user_count = vma_pages(vma);
193 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
194 unsigned long off = vma->vm_pgoff;
195 unsigned long pfn;
196 int ret = -ENXIO;
197
198 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
199
200 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
201 return ret;
202
203 if (off >= count || user_count > count - off)
204 return -ENXIO;
205
206 if (!dev_is_dma_coherent(dev)) {
207 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
208 return -ENXIO;
209
210 /* If the PFN is not valid, we do not have a struct page */
211 pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
212 if (!pfn_valid(pfn))
213 return -ENXIO;
214 } else {
215 pfn = page_to_pfn(virt_to_page(cpu_addr));
216 }
217
218 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
219 user_count << PAGE_SHIFT, vma->vm_page_prot);
220#else
221 return -ENXIO;
222#endif /* CONFIG_MMU */
223}
224
225/**
226 * dma_can_mmap - check if a given device supports dma_mmap_*
227 * @dev: device to check
228 *
229 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
230 * map DMA allocations to userspace.
231 */
232bool dma_can_mmap(struct device *dev)
233{
234 const struct dma_map_ops *ops = get_dma_ops(dev);
235
236 if (dma_is_direct(ops)) {
237 return IS_ENABLED(CONFIG_MMU) &&
238 (dev_is_dma_coherent(dev) ||
239 IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN));
240 }
241
242 return ops->mmap != NULL;
243}
244EXPORT_SYMBOL_GPL(dma_can_mmap);
245
246/**
247 * dma_mmap_attrs - map a coherent DMA allocation into user space
248 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
249 * @vma: vm_area_struct describing requested user mapping
250 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
251 * @dma_addr: device-view address returned from dma_alloc_attrs
252 * @size: size of memory originally requested in dma_alloc_attrs
253 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
254 *
255 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
256 * space. The coherent DMA buffer must not be freed by the driver until the
257 * user space mapping has been released.
258 */
259int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
260 void *cpu_addr, dma_addr_t dma_addr, size_t size,
261 unsigned long attrs)
262{
263 const struct dma_map_ops *ops = get_dma_ops(dev);
264
265 if (dma_is_direct(ops))
266 return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size,
267 attrs);
268 if (!ops->mmap)
269 return -ENXIO;
270 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
271}
272EXPORT_SYMBOL(dma_mmap_attrs);
273
274u64 dma_get_required_mask(struct device *dev)
275{
276 const struct dma_map_ops *ops = get_dma_ops(dev);
277
278 if (dma_is_direct(ops))
279 return dma_direct_get_required_mask(dev);
280 if (ops->get_required_mask)
281 return ops->get_required_mask(dev);
282
283 /*
284 * We require every DMA ops implementation to at least support a 32-bit
285 * DMA mask (and use bounce buffering if that isn't supported in
286 * hardware). As the direct mapping code has its own routine to
287 * actually report an optimal mask we default to 32-bit here as that
288 * is the right thing for most IOMMUs, and at least not actively
289 * harmful in general.
290 */
291 return DMA_BIT_MASK(32);
292}
293EXPORT_SYMBOL_GPL(dma_get_required_mask);
294
295void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
296 gfp_t flag, unsigned long attrs)
297{
298 const struct dma_map_ops *ops = get_dma_ops(dev);
299 void *cpu_addr;
300
301 WARN_ON_ONCE(!dev->coherent_dma_mask);
302
303 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
304 return cpu_addr;
305
306 /* let the implementation decide on the zone to allocate from: */
307 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
308
309 if (dma_is_direct(ops))
310 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
311 else if (ops->alloc)
312 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
313 else
314 return NULL;
315
316 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
317 return cpu_addr;
318}
319EXPORT_SYMBOL(dma_alloc_attrs);
320
321void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
322 dma_addr_t dma_handle, unsigned long attrs)
323{
324 const struct dma_map_ops *ops = get_dma_ops(dev);
325
326 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
327 return;
328 /*
329 * On non-coherent platforms which implement DMA-coherent buffers via
330 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
331 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
332 * sleep on some machines, and b) an indication that the driver is
333 * probably misusing the coherent API anyway.
334 */
335 WARN_ON(irqs_disabled());
336
337 if (!cpu_addr)
338 return;
339
340 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
341 if (dma_is_direct(ops))
342 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
343 else if (ops->free)
344 ops->free(dev, size, cpu_addr, dma_handle, attrs);
345}
346EXPORT_SYMBOL(dma_free_attrs);
347
348int dma_supported(struct device *dev, u64 mask)
349{
350 const struct dma_map_ops *ops = get_dma_ops(dev);
351
352 if (dma_is_direct(ops))
353 return dma_direct_supported(dev, mask);
354 if (!ops->dma_supported)
355 return 1;
356 return ops->dma_supported(dev, mask);
357}
358EXPORT_SYMBOL(dma_supported);
359
360#ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
361void arch_dma_set_mask(struct device *dev, u64 mask);
362#else
363#define arch_dma_set_mask(dev, mask) do { } while (0)
364#endif
365
366int dma_set_mask(struct device *dev, u64 mask)
367{
368 /*
369 * Truncate the mask to the actually supported dma_addr_t width to
370 * avoid generating unsupportable addresses.
371 */
372 mask = (dma_addr_t)mask;
373
374 if (!dev->dma_mask || !dma_supported(dev, mask))
375 return -EIO;
376
377 arch_dma_set_mask(dev, mask);
378 *dev->dma_mask = mask;
379 return 0;
380}
381EXPORT_SYMBOL(dma_set_mask);
382
383#ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
384int dma_set_coherent_mask(struct device *dev, u64 mask)
385{
386 /*
387 * Truncate the mask to the actually supported dma_addr_t width to
388 * avoid generating unsupportable addresses.
389 */
390 mask = (dma_addr_t)mask;
391
392 if (!dma_supported(dev, mask))
393 return -EIO;
394
395 dev->coherent_dma_mask = mask;
396 return 0;
397}
398EXPORT_SYMBOL(dma_set_coherent_mask);
399#endif
400
401void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
402 enum dma_data_direction dir)
403{
404 const struct dma_map_ops *ops = get_dma_ops(dev);
405
406 BUG_ON(!valid_dma_direction(dir));
407
408 if (dma_is_direct(ops))
409 arch_dma_cache_sync(dev, vaddr, size, dir);
410 else if (ops->cache_sync)
411 ops->cache_sync(dev, vaddr, size, dir);
412}
413EXPORT_SYMBOL(dma_cache_sync);
414
415size_t dma_max_mapping_size(struct device *dev)
416{
417 const struct dma_map_ops *ops = get_dma_ops(dev);
418 size_t size = SIZE_MAX;
419
420 if (dma_is_direct(ops))
421 size = dma_direct_max_mapping_size(dev);
422 else if (ops && ops->max_mapping_size)
423 size = ops->max_mapping_size(dev);
424
425 return size;
426}
427EXPORT_SYMBOL_GPL(dma_max_mapping_size);
428
429unsigned long dma_get_merge_boundary(struct device *dev)
430{
431 const struct dma_map_ops *ops = get_dma_ops(dev);
432
433 if (!ops || !ops->get_merge_boundary)
434 return 0; /* can't merge */
435
436 return ops->get_merge_boundary(dev);
437}
438EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * arch-independent dma-mapping routines
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8#include <linux/memblock.h> /* for max_pfn */
9#include <linux/acpi.h>
10#include <linux/dma-map-ops.h>
11#include <linux/export.h>
12#include <linux/gfp.h>
13#include <linux/kmsan.h>
14#include <linux/of_device.h>
15#include <linux/slab.h>
16#include <linux/vmalloc.h>
17#include "debug.h"
18#include "direct.h"
19
20#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
21 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
22 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
23bool dma_default_coherent = IS_ENABLED(CONFIG_ARCH_DMA_DEFAULT_COHERENT);
24#endif
25
26/*
27 * Managed DMA API
28 */
29struct dma_devres {
30 size_t size;
31 void *vaddr;
32 dma_addr_t dma_handle;
33 unsigned long attrs;
34};
35
36static void dmam_release(struct device *dev, void *res)
37{
38 struct dma_devres *this = res;
39
40 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
41 this->attrs);
42}
43
44static int dmam_match(struct device *dev, void *res, void *match_data)
45{
46 struct dma_devres *this = res, *match = match_data;
47
48 if (this->vaddr == match->vaddr) {
49 WARN_ON(this->size != match->size ||
50 this->dma_handle != match->dma_handle);
51 return 1;
52 }
53 return 0;
54}
55
56/**
57 * dmam_free_coherent - Managed dma_free_coherent()
58 * @dev: Device to free coherent memory for
59 * @size: Size of allocation
60 * @vaddr: Virtual address of the memory to free
61 * @dma_handle: DMA handle of the memory to free
62 *
63 * Managed dma_free_coherent().
64 */
65void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
66 dma_addr_t dma_handle)
67{
68 struct dma_devres match_data = { size, vaddr, dma_handle };
69
70 dma_free_coherent(dev, size, vaddr, dma_handle);
71 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
72}
73EXPORT_SYMBOL(dmam_free_coherent);
74
75/**
76 * dmam_alloc_attrs - Managed dma_alloc_attrs()
77 * @dev: Device to allocate non_coherent memory for
78 * @size: Size of allocation
79 * @dma_handle: Out argument for allocated DMA handle
80 * @gfp: Allocation flags
81 * @attrs: Flags in the DMA_ATTR_* namespace.
82 *
83 * Managed dma_alloc_attrs(). Memory allocated using this function will be
84 * automatically released on driver detach.
85 *
86 * RETURNS:
87 * Pointer to allocated memory on success, NULL on failure.
88 */
89void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
90 gfp_t gfp, unsigned long attrs)
91{
92 struct dma_devres *dr;
93 void *vaddr;
94
95 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
96 if (!dr)
97 return NULL;
98
99 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
100 if (!vaddr) {
101 devres_free(dr);
102 return NULL;
103 }
104
105 dr->vaddr = vaddr;
106 dr->dma_handle = *dma_handle;
107 dr->size = size;
108 dr->attrs = attrs;
109
110 devres_add(dev, dr);
111
112 return vaddr;
113}
114EXPORT_SYMBOL(dmam_alloc_attrs);
115
116static bool dma_go_direct(struct device *dev, dma_addr_t mask,
117 const struct dma_map_ops *ops)
118{
119 if (likely(!ops))
120 return true;
121#ifdef CONFIG_DMA_OPS_BYPASS
122 if (dev->dma_ops_bypass)
123 return min_not_zero(mask, dev->bus_dma_limit) >=
124 dma_direct_get_required_mask(dev);
125#endif
126 return false;
127}
128
129
130/*
131 * Check if the devices uses a direct mapping for streaming DMA operations.
132 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
133 * enough.
134 */
135static inline bool dma_alloc_direct(struct device *dev,
136 const struct dma_map_ops *ops)
137{
138 return dma_go_direct(dev, dev->coherent_dma_mask, ops);
139}
140
141static inline bool dma_map_direct(struct device *dev,
142 const struct dma_map_ops *ops)
143{
144 return dma_go_direct(dev, *dev->dma_mask, ops);
145}
146
147dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
148 size_t offset, size_t size, enum dma_data_direction dir,
149 unsigned long attrs)
150{
151 const struct dma_map_ops *ops = get_dma_ops(dev);
152 dma_addr_t addr;
153
154 BUG_ON(!valid_dma_direction(dir));
155
156 if (WARN_ON_ONCE(!dev->dma_mask))
157 return DMA_MAPPING_ERROR;
158
159 if (dma_map_direct(dev, ops) ||
160 arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
161 addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
162 else
163 addr = ops->map_page(dev, page, offset, size, dir, attrs);
164 kmsan_handle_dma(page, offset, size, dir);
165 debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
166
167 return addr;
168}
169EXPORT_SYMBOL(dma_map_page_attrs);
170
171void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
172 enum dma_data_direction dir, unsigned long attrs)
173{
174 const struct dma_map_ops *ops = get_dma_ops(dev);
175
176 BUG_ON(!valid_dma_direction(dir));
177 if (dma_map_direct(dev, ops) ||
178 arch_dma_unmap_page_direct(dev, addr + size))
179 dma_direct_unmap_page(dev, addr, size, dir, attrs);
180 else if (ops->unmap_page)
181 ops->unmap_page(dev, addr, size, dir, attrs);
182 debug_dma_unmap_page(dev, addr, size, dir);
183}
184EXPORT_SYMBOL(dma_unmap_page_attrs);
185
186static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
187 int nents, enum dma_data_direction dir, unsigned long attrs)
188{
189 const struct dma_map_ops *ops = get_dma_ops(dev);
190 int ents;
191
192 BUG_ON(!valid_dma_direction(dir));
193
194 if (WARN_ON_ONCE(!dev->dma_mask))
195 return 0;
196
197 if (dma_map_direct(dev, ops) ||
198 arch_dma_map_sg_direct(dev, sg, nents))
199 ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
200 else
201 ents = ops->map_sg(dev, sg, nents, dir, attrs);
202
203 if (ents > 0) {
204 kmsan_handle_dma_sg(sg, nents, dir);
205 debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
206 } else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
207 ents != -EIO && ents != -EREMOTEIO)) {
208 return -EIO;
209 }
210
211 return ents;
212}
213
214/**
215 * dma_map_sg_attrs - Map the given buffer for DMA
216 * @dev: The device for which to perform the DMA operation
217 * @sg: The sg_table object describing the buffer
218 * @nents: Number of entries to map
219 * @dir: DMA direction
220 * @attrs: Optional DMA attributes for the map operation
221 *
222 * Maps a buffer described by a scatterlist passed in the sg argument with
223 * nents segments for the @dir DMA operation by the @dev device.
224 *
225 * Returns the number of mapped entries (which can be less than nents)
226 * on success. Zero is returned for any error.
227 *
228 * dma_unmap_sg_attrs() should be used to unmap the buffer with the
229 * original sg and original nents (not the value returned by this funciton).
230 */
231unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
232 int nents, enum dma_data_direction dir, unsigned long attrs)
233{
234 int ret;
235
236 ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
237 if (ret < 0)
238 return 0;
239 return ret;
240}
241EXPORT_SYMBOL(dma_map_sg_attrs);
242
243/**
244 * dma_map_sgtable - Map the given buffer for DMA
245 * @dev: The device for which to perform the DMA operation
246 * @sgt: The sg_table object describing the buffer
247 * @dir: DMA direction
248 * @attrs: Optional DMA attributes for the map operation
249 *
250 * Maps a buffer described by a scatterlist stored in the given sg_table
251 * object for the @dir DMA operation by the @dev device. After success, the
252 * ownership for the buffer is transferred to the DMA domain. One has to
253 * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
254 * ownership of the buffer back to the CPU domain before touching the
255 * buffer by the CPU.
256 *
257 * Returns 0 on success or a negative error code on error. The following
258 * error codes are supported with the given meaning:
259 *
260 * -EINVAL An invalid argument, unaligned access or other error
261 * in usage. Will not succeed if retried.
262 * -ENOMEM Insufficient resources (like memory or IOVA space) to
263 * complete the mapping. Should succeed if retried later.
264 * -EIO Legacy error code with an unknown meaning. eg. this is
265 * returned if a lower level call returned
266 * DMA_MAPPING_ERROR.
267 * -EREMOTEIO The DMA device cannot access P2PDMA memory specified
268 * in the sg_table. This will not succeed if retried.
269 */
270int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
271 enum dma_data_direction dir, unsigned long attrs)
272{
273 int nents;
274
275 nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
276 if (nents < 0)
277 return nents;
278 sgt->nents = nents;
279 return 0;
280}
281EXPORT_SYMBOL_GPL(dma_map_sgtable);
282
283void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
284 int nents, enum dma_data_direction dir,
285 unsigned long attrs)
286{
287 const struct dma_map_ops *ops = get_dma_ops(dev);
288
289 BUG_ON(!valid_dma_direction(dir));
290 debug_dma_unmap_sg(dev, sg, nents, dir);
291 if (dma_map_direct(dev, ops) ||
292 arch_dma_unmap_sg_direct(dev, sg, nents))
293 dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
294 else if (ops->unmap_sg)
295 ops->unmap_sg(dev, sg, nents, dir, attrs);
296}
297EXPORT_SYMBOL(dma_unmap_sg_attrs);
298
299dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
300 size_t size, enum dma_data_direction dir, unsigned long attrs)
301{
302 const struct dma_map_ops *ops = get_dma_ops(dev);
303 dma_addr_t addr = DMA_MAPPING_ERROR;
304
305 BUG_ON(!valid_dma_direction(dir));
306
307 if (WARN_ON_ONCE(!dev->dma_mask))
308 return DMA_MAPPING_ERROR;
309
310 if (dma_map_direct(dev, ops))
311 addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
312 else if (ops->map_resource)
313 addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
314
315 debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
316 return addr;
317}
318EXPORT_SYMBOL(dma_map_resource);
319
320void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
321 enum dma_data_direction dir, unsigned long attrs)
322{
323 const struct dma_map_ops *ops = get_dma_ops(dev);
324
325 BUG_ON(!valid_dma_direction(dir));
326 if (!dma_map_direct(dev, ops) && ops->unmap_resource)
327 ops->unmap_resource(dev, addr, size, dir, attrs);
328 debug_dma_unmap_resource(dev, addr, size, dir);
329}
330EXPORT_SYMBOL(dma_unmap_resource);
331
332void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
333 enum dma_data_direction dir)
334{
335 const struct dma_map_ops *ops = get_dma_ops(dev);
336
337 BUG_ON(!valid_dma_direction(dir));
338 if (dma_map_direct(dev, ops))
339 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
340 else if (ops->sync_single_for_cpu)
341 ops->sync_single_for_cpu(dev, addr, size, dir);
342 debug_dma_sync_single_for_cpu(dev, addr, size, dir);
343}
344EXPORT_SYMBOL(dma_sync_single_for_cpu);
345
346void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
347 size_t size, enum dma_data_direction dir)
348{
349 const struct dma_map_ops *ops = get_dma_ops(dev);
350
351 BUG_ON(!valid_dma_direction(dir));
352 if (dma_map_direct(dev, ops))
353 dma_direct_sync_single_for_device(dev, addr, size, dir);
354 else if (ops->sync_single_for_device)
355 ops->sync_single_for_device(dev, addr, size, dir);
356 debug_dma_sync_single_for_device(dev, addr, size, dir);
357}
358EXPORT_SYMBOL(dma_sync_single_for_device);
359
360void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
361 int nelems, enum dma_data_direction dir)
362{
363 const struct dma_map_ops *ops = get_dma_ops(dev);
364
365 BUG_ON(!valid_dma_direction(dir));
366 if (dma_map_direct(dev, ops))
367 dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
368 else if (ops->sync_sg_for_cpu)
369 ops->sync_sg_for_cpu(dev, sg, nelems, dir);
370 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
371}
372EXPORT_SYMBOL(dma_sync_sg_for_cpu);
373
374void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
375 int nelems, enum dma_data_direction dir)
376{
377 const struct dma_map_ops *ops = get_dma_ops(dev);
378
379 BUG_ON(!valid_dma_direction(dir));
380 if (dma_map_direct(dev, ops))
381 dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
382 else if (ops->sync_sg_for_device)
383 ops->sync_sg_for_device(dev, sg, nelems, dir);
384 debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
385}
386EXPORT_SYMBOL(dma_sync_sg_for_device);
387
388/*
389 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
390 * that the intention is to allow exporting memory allocated via the
391 * coherent DMA APIs through the dma_buf API, which only accepts a
392 * scattertable. This presents a couple of problems:
393 * 1. Not all memory allocated via the coherent DMA APIs is backed by
394 * a struct page
395 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
396 * as we will try to flush the memory through a different alias to that
397 * actually being used (and the flushes are redundant.)
398 */
399int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
400 void *cpu_addr, dma_addr_t dma_addr, size_t size,
401 unsigned long attrs)
402{
403 const struct dma_map_ops *ops = get_dma_ops(dev);
404
405 if (dma_alloc_direct(dev, ops))
406 return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
407 size, attrs);
408 if (!ops->get_sgtable)
409 return -ENXIO;
410 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
411}
412EXPORT_SYMBOL(dma_get_sgtable_attrs);
413
414#ifdef CONFIG_MMU
415/*
416 * Return the page attributes used for mapping dma_alloc_* memory, either in
417 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
418 */
419pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
420{
421 if (dev_is_dma_coherent(dev))
422 return prot;
423#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
424 if (attrs & DMA_ATTR_WRITE_COMBINE)
425 return pgprot_writecombine(prot);
426#endif
427 return pgprot_dmacoherent(prot);
428}
429#endif /* CONFIG_MMU */
430
431/**
432 * dma_can_mmap - check if a given device supports dma_mmap_*
433 * @dev: device to check
434 *
435 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
436 * map DMA allocations to userspace.
437 */
438bool dma_can_mmap(struct device *dev)
439{
440 const struct dma_map_ops *ops = get_dma_ops(dev);
441
442 if (dma_alloc_direct(dev, ops))
443 return dma_direct_can_mmap(dev);
444 return ops->mmap != NULL;
445}
446EXPORT_SYMBOL_GPL(dma_can_mmap);
447
448/**
449 * dma_mmap_attrs - map a coherent DMA allocation into user space
450 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
451 * @vma: vm_area_struct describing requested user mapping
452 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
453 * @dma_addr: device-view address returned from dma_alloc_attrs
454 * @size: size of memory originally requested in dma_alloc_attrs
455 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
456 *
457 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
458 * space. The coherent DMA buffer must not be freed by the driver until the
459 * user space mapping has been released.
460 */
461int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
462 void *cpu_addr, dma_addr_t dma_addr, size_t size,
463 unsigned long attrs)
464{
465 const struct dma_map_ops *ops = get_dma_ops(dev);
466
467 if (dma_alloc_direct(dev, ops))
468 return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
469 attrs);
470 if (!ops->mmap)
471 return -ENXIO;
472 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
473}
474EXPORT_SYMBOL(dma_mmap_attrs);
475
476u64 dma_get_required_mask(struct device *dev)
477{
478 const struct dma_map_ops *ops = get_dma_ops(dev);
479
480 if (dma_alloc_direct(dev, ops))
481 return dma_direct_get_required_mask(dev);
482 if (ops->get_required_mask)
483 return ops->get_required_mask(dev);
484
485 /*
486 * We require every DMA ops implementation to at least support a 32-bit
487 * DMA mask (and use bounce buffering if that isn't supported in
488 * hardware). As the direct mapping code has its own routine to
489 * actually report an optimal mask we default to 32-bit here as that
490 * is the right thing for most IOMMUs, and at least not actively
491 * harmful in general.
492 */
493 return DMA_BIT_MASK(32);
494}
495EXPORT_SYMBOL_GPL(dma_get_required_mask);
496
497void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
498 gfp_t flag, unsigned long attrs)
499{
500 const struct dma_map_ops *ops = get_dma_ops(dev);
501 void *cpu_addr;
502
503 WARN_ON_ONCE(!dev->coherent_dma_mask);
504
505 /*
506 * DMA allocations can never be turned back into a page pointer, so
507 * requesting compound pages doesn't make sense (and can't even be
508 * supported at all by various backends).
509 */
510 if (WARN_ON_ONCE(flag & __GFP_COMP))
511 return NULL;
512
513 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
514 return cpu_addr;
515
516 /* let the implementation decide on the zone to allocate from: */
517 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
518
519 if (dma_alloc_direct(dev, ops))
520 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
521 else if (ops->alloc)
522 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
523 else
524 return NULL;
525
526 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
527 return cpu_addr;
528}
529EXPORT_SYMBOL(dma_alloc_attrs);
530
531void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
532 dma_addr_t dma_handle, unsigned long attrs)
533{
534 const struct dma_map_ops *ops = get_dma_ops(dev);
535
536 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
537 return;
538 /*
539 * On non-coherent platforms which implement DMA-coherent buffers via
540 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
541 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
542 * sleep on some machines, and b) an indication that the driver is
543 * probably misusing the coherent API anyway.
544 */
545 WARN_ON(irqs_disabled());
546
547 if (!cpu_addr)
548 return;
549
550 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
551 if (dma_alloc_direct(dev, ops))
552 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
553 else if (ops->free)
554 ops->free(dev, size, cpu_addr, dma_handle, attrs);
555}
556EXPORT_SYMBOL(dma_free_attrs);
557
558static struct page *__dma_alloc_pages(struct device *dev, size_t size,
559 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
560{
561 const struct dma_map_ops *ops = get_dma_ops(dev);
562
563 if (WARN_ON_ONCE(!dev->coherent_dma_mask))
564 return NULL;
565 if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
566 return NULL;
567 if (WARN_ON_ONCE(gfp & __GFP_COMP))
568 return NULL;
569
570 size = PAGE_ALIGN(size);
571 if (dma_alloc_direct(dev, ops))
572 return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
573 if (!ops->alloc_pages)
574 return NULL;
575 return ops->alloc_pages(dev, size, dma_handle, dir, gfp);
576}
577
578struct page *dma_alloc_pages(struct device *dev, size_t size,
579 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
580{
581 struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
582
583 if (page)
584 debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
585 return page;
586}
587EXPORT_SYMBOL_GPL(dma_alloc_pages);
588
589static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
590 dma_addr_t dma_handle, enum dma_data_direction dir)
591{
592 const struct dma_map_ops *ops = get_dma_ops(dev);
593
594 size = PAGE_ALIGN(size);
595 if (dma_alloc_direct(dev, ops))
596 dma_direct_free_pages(dev, size, page, dma_handle, dir);
597 else if (ops->free_pages)
598 ops->free_pages(dev, size, page, dma_handle, dir);
599}
600
601void dma_free_pages(struct device *dev, size_t size, struct page *page,
602 dma_addr_t dma_handle, enum dma_data_direction dir)
603{
604 debug_dma_unmap_page(dev, dma_handle, size, dir);
605 __dma_free_pages(dev, size, page, dma_handle, dir);
606}
607EXPORT_SYMBOL_GPL(dma_free_pages);
608
609int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
610 size_t size, struct page *page)
611{
612 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
613
614 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
615 return -ENXIO;
616 return remap_pfn_range(vma, vma->vm_start,
617 page_to_pfn(page) + vma->vm_pgoff,
618 vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
619}
620EXPORT_SYMBOL_GPL(dma_mmap_pages);
621
622static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
623 enum dma_data_direction dir, gfp_t gfp)
624{
625 struct sg_table *sgt;
626 struct page *page;
627
628 sgt = kmalloc(sizeof(*sgt), gfp);
629 if (!sgt)
630 return NULL;
631 if (sg_alloc_table(sgt, 1, gfp))
632 goto out_free_sgt;
633 page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
634 if (!page)
635 goto out_free_table;
636 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
637 sg_dma_len(sgt->sgl) = sgt->sgl->length;
638 return sgt;
639out_free_table:
640 sg_free_table(sgt);
641out_free_sgt:
642 kfree(sgt);
643 return NULL;
644}
645
646struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
647 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
648{
649 const struct dma_map_ops *ops = get_dma_ops(dev);
650 struct sg_table *sgt;
651
652 if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
653 return NULL;
654 if (WARN_ON_ONCE(gfp & __GFP_COMP))
655 return NULL;
656
657 if (ops && ops->alloc_noncontiguous)
658 sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs);
659 else
660 sgt = alloc_single_sgt(dev, size, dir, gfp);
661
662 if (sgt) {
663 sgt->nents = 1;
664 debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
665 }
666 return sgt;
667}
668EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
669
670static void free_single_sgt(struct device *dev, size_t size,
671 struct sg_table *sgt, enum dma_data_direction dir)
672{
673 __dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
674 dir);
675 sg_free_table(sgt);
676 kfree(sgt);
677}
678
679void dma_free_noncontiguous(struct device *dev, size_t size,
680 struct sg_table *sgt, enum dma_data_direction dir)
681{
682 const struct dma_map_ops *ops = get_dma_ops(dev);
683
684 debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
685 if (ops && ops->free_noncontiguous)
686 ops->free_noncontiguous(dev, size, sgt, dir);
687 else
688 free_single_sgt(dev, size, sgt, dir);
689}
690EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
691
692void *dma_vmap_noncontiguous(struct device *dev, size_t size,
693 struct sg_table *sgt)
694{
695 const struct dma_map_ops *ops = get_dma_ops(dev);
696 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
697
698 if (ops && ops->alloc_noncontiguous)
699 return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
700 return page_address(sg_page(sgt->sgl));
701}
702EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
703
704void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
705{
706 const struct dma_map_ops *ops = get_dma_ops(dev);
707
708 if (ops && ops->alloc_noncontiguous)
709 vunmap(vaddr);
710}
711EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
712
713int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
714 size_t size, struct sg_table *sgt)
715{
716 const struct dma_map_ops *ops = get_dma_ops(dev);
717
718 if (ops && ops->alloc_noncontiguous) {
719 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
720
721 if (vma->vm_pgoff >= count ||
722 vma_pages(vma) > count - vma->vm_pgoff)
723 return -ENXIO;
724 return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
725 }
726 return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
727}
728EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
729
730static int dma_supported(struct device *dev, u64 mask)
731{
732 const struct dma_map_ops *ops = get_dma_ops(dev);
733
734 /*
735 * ->dma_supported sets the bypass flag, so we must always call
736 * into the method here unless the device is truly direct mapped.
737 */
738 if (!ops)
739 return dma_direct_supported(dev, mask);
740 if (!ops->dma_supported)
741 return 1;
742 return ops->dma_supported(dev, mask);
743}
744
745bool dma_pci_p2pdma_supported(struct device *dev)
746{
747 const struct dma_map_ops *ops = get_dma_ops(dev);
748
749 /* if ops is not set, dma direct will be used which supports P2PDMA */
750 if (!ops)
751 return true;
752
753 /*
754 * Note: dma_ops_bypass is not checked here because P2PDMA should
755 * not be used with dma mapping ops that do not have support even
756 * if the specific device is bypassing them.
757 */
758
759 return ops->flags & DMA_F_PCI_P2PDMA_SUPPORTED;
760}
761EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
762
763int dma_set_mask(struct device *dev, u64 mask)
764{
765 /*
766 * Truncate the mask to the actually supported dma_addr_t width to
767 * avoid generating unsupportable addresses.
768 */
769 mask = (dma_addr_t)mask;
770
771 if (!dev->dma_mask || !dma_supported(dev, mask))
772 return -EIO;
773
774 arch_dma_set_mask(dev, mask);
775 *dev->dma_mask = mask;
776 return 0;
777}
778EXPORT_SYMBOL(dma_set_mask);
779
780int dma_set_coherent_mask(struct device *dev, u64 mask)
781{
782 /*
783 * Truncate the mask to the actually supported dma_addr_t width to
784 * avoid generating unsupportable addresses.
785 */
786 mask = (dma_addr_t)mask;
787
788 if (!dma_supported(dev, mask))
789 return -EIO;
790
791 dev->coherent_dma_mask = mask;
792 return 0;
793}
794EXPORT_SYMBOL(dma_set_coherent_mask);
795
796/**
797 * dma_addressing_limited - return if the device is addressing limited
798 * @dev: device to check
799 *
800 * Return %true if the devices DMA mask is too small to address all memory in
801 * the system, else %false. Lack of addressing bits is the prime reason for
802 * bounce buffering, but might not be the only one.
803 */
804bool dma_addressing_limited(struct device *dev)
805{
806 const struct dma_map_ops *ops = get_dma_ops(dev);
807
808 if (min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
809 dma_get_required_mask(dev))
810 return true;
811
812 if (unlikely(ops))
813 return false;
814 return !dma_direct_all_ram_mapped(dev);
815}
816EXPORT_SYMBOL_GPL(dma_addressing_limited);
817
818size_t dma_max_mapping_size(struct device *dev)
819{
820 const struct dma_map_ops *ops = get_dma_ops(dev);
821 size_t size = SIZE_MAX;
822
823 if (dma_map_direct(dev, ops))
824 size = dma_direct_max_mapping_size(dev);
825 else if (ops && ops->max_mapping_size)
826 size = ops->max_mapping_size(dev);
827
828 return size;
829}
830EXPORT_SYMBOL_GPL(dma_max_mapping_size);
831
832size_t dma_opt_mapping_size(struct device *dev)
833{
834 const struct dma_map_ops *ops = get_dma_ops(dev);
835 size_t size = SIZE_MAX;
836
837 if (ops && ops->opt_mapping_size)
838 size = ops->opt_mapping_size();
839
840 return min(dma_max_mapping_size(dev), size);
841}
842EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
843
844bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
845{
846 const struct dma_map_ops *ops = get_dma_ops(dev);
847
848 if (dma_map_direct(dev, ops))
849 return dma_direct_need_sync(dev, dma_addr);
850 return ops->sync_single_for_cpu || ops->sync_single_for_device;
851}
852EXPORT_SYMBOL_GPL(dma_need_sync);
853
854unsigned long dma_get_merge_boundary(struct device *dev)
855{
856 const struct dma_map_ops *ops = get_dma_ops(dev);
857
858 if (!ops || !ops->get_merge_boundary)
859 return 0; /* can't merge */
860
861 return ops->get_merge_boundary(dev);
862}
863EXPORT_SYMBOL_GPL(dma_get_merge_boundary);