Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * arch-independent dma-mapping routines
  4 *
  5 * Copyright (c) 2006  SUSE Linux Products GmbH
  6 * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
  7 */
  8#include <linux/memblock.h> /* for max_pfn */
  9#include <linux/acpi.h>
 10#include <linux/dma-direct.h>
 11#include <linux/dma-noncoherent.h>
 12#include <linux/export.h>
 13#include <linux/gfp.h>
 
 14#include <linux/of_device.h>
 15#include <linux/slab.h>
 16#include <linux/vmalloc.h>
 
 
 
 
 
 
 
 
 17
 18/*
 19 * Managed DMA API
 20 */
 21struct dma_devres {
 22	size_t		size;
 23	void		*vaddr;
 24	dma_addr_t	dma_handle;
 25	unsigned long	attrs;
 26};
 27
 28static void dmam_release(struct device *dev, void *res)
 29{
 30	struct dma_devres *this = res;
 31
 32	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
 33			this->attrs);
 34}
 35
 36static int dmam_match(struct device *dev, void *res, void *match_data)
 37{
 38	struct dma_devres *this = res, *match = match_data;
 39
 40	if (this->vaddr == match->vaddr) {
 41		WARN_ON(this->size != match->size ||
 42			this->dma_handle != match->dma_handle);
 43		return 1;
 44	}
 45	return 0;
 46}
 47
 48/**
 49 * dmam_free_coherent - Managed dma_free_coherent()
 50 * @dev: Device to free coherent memory for
 51 * @size: Size of allocation
 52 * @vaddr: Virtual address of the memory to free
 53 * @dma_handle: DMA handle of the memory to free
 54 *
 55 * Managed dma_free_coherent().
 56 */
 57void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
 58			dma_addr_t dma_handle)
 59{
 60	struct dma_devres match_data = { size, vaddr, dma_handle };
 61
 62	dma_free_coherent(dev, size, vaddr, dma_handle);
 63	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
 64}
 65EXPORT_SYMBOL(dmam_free_coherent);
 66
 67/**
 68 * dmam_alloc_attrs - Managed dma_alloc_attrs()
 69 * @dev: Device to allocate non_coherent memory for
 70 * @size: Size of allocation
 71 * @dma_handle: Out argument for allocated DMA handle
 72 * @gfp: Allocation flags
 73 * @attrs: Flags in the DMA_ATTR_* namespace.
 74 *
 75 * Managed dma_alloc_attrs().  Memory allocated using this function will be
 76 * automatically released on driver detach.
 77 *
 78 * RETURNS:
 79 * Pointer to allocated memory on success, NULL on failure.
 80 */
 81void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
 82		gfp_t gfp, unsigned long attrs)
 83{
 84	struct dma_devres *dr;
 85	void *vaddr;
 86
 87	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
 88	if (!dr)
 89		return NULL;
 90
 91	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
 92	if (!vaddr) {
 93		devres_free(dr);
 94		return NULL;
 95	}
 96
 97	dr->vaddr = vaddr;
 98	dr->dma_handle = *dma_handle;
 99	dr->size = size;
100	dr->attrs = attrs;
101
102	devres_add(dev, dr);
103
104	return vaddr;
105}
106EXPORT_SYMBOL(dmam_alloc_attrs);
107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108/*
109 * Create scatter-list for the already allocated DMA buffer.
 
 
110 */
111int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
112		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
113		 unsigned long attrs)
114{
115	struct page *page;
116	int ret;
117
118	if (!dev_is_dma_coherent(dev)) {
119		unsigned long pfn;
 
 
 
120
121		if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
122			return -ENXIO;
 
 
 
 
123
124		/* If the PFN is not valid, we do not have a struct page */
125		pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
126		if (!pfn_valid(pfn))
127			return -ENXIO;
128		page = pfn_to_page(pfn);
129	} else {
130		page = virt_to_page(cpu_addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131	}
132
133	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
134	if (!ret)
135		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136	return ret;
137}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138
139/*
140 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
141 * that the intention is to allow exporting memory allocated via the
142 * coherent DMA APIs through the dma_buf API, which only accepts a
143 * scattertable.  This presents a couple of problems:
144 * 1. Not all memory allocated via the coherent DMA APIs is backed by
145 *    a struct page
146 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
147 *    as we will try to flush the memory through a different alias to that
148 *    actually being used (and the flushes are redundant.)
149 */
150int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
151		void *cpu_addr, dma_addr_t dma_addr, size_t size,
152		unsigned long attrs)
153{
154	const struct dma_map_ops *ops = get_dma_ops(dev);
155
156	if (dma_is_direct(ops))
157		return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr,
158				size, attrs);
159	if (!ops->get_sgtable)
160		return -ENXIO;
161	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
162}
163EXPORT_SYMBOL(dma_get_sgtable_attrs);
164
165#ifdef CONFIG_MMU
166/*
167 * Return the page attributes used for mapping dma_alloc_* memory, either in
168 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
169 */
170pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
171{
172	if (dev_is_dma_coherent(dev) ||
173	    (IS_ENABLED(CONFIG_DMA_NONCOHERENT_CACHE_SYNC) &&
174             (attrs & DMA_ATTR_NON_CONSISTENT)))
175		return prot;
176#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
177	if (attrs & DMA_ATTR_WRITE_COMBINE)
178		return pgprot_writecombine(prot);
179#endif
180	return pgprot_dmacoherent(prot);
181}
182#endif /* CONFIG_MMU */
183
184/*
185 * Create userspace mapping for the DMA-coherent memory.
186 */
187int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
188		void *cpu_addr, dma_addr_t dma_addr, size_t size,
189		unsigned long attrs)
190{
191#ifdef CONFIG_MMU
192	unsigned long user_count = vma_pages(vma);
193	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
194	unsigned long off = vma->vm_pgoff;
195	unsigned long pfn;
196	int ret = -ENXIO;
197
198	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
199
200	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
201		return ret;
202
203	if (off >= count || user_count > count - off)
204		return -ENXIO;
205
206	if (!dev_is_dma_coherent(dev)) {
207		if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
208			return -ENXIO;
209
210		/* If the PFN is not valid, we do not have a struct page */
211		pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
212		if (!pfn_valid(pfn))
213			return -ENXIO;
214	} else {
215		pfn = page_to_pfn(virt_to_page(cpu_addr));
216	}
217
218	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
219			user_count << PAGE_SHIFT, vma->vm_page_prot);
220#else
221	return -ENXIO;
222#endif /* CONFIG_MMU */
223}
224
225/**
226 * dma_can_mmap - check if a given device supports dma_mmap_*
227 * @dev: device to check
228 *
229 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
230 * map DMA allocations to userspace.
231 */
232bool dma_can_mmap(struct device *dev)
233{
234	const struct dma_map_ops *ops = get_dma_ops(dev);
235
236	if (dma_is_direct(ops)) {
237		return IS_ENABLED(CONFIG_MMU) &&
238		       (dev_is_dma_coherent(dev) ||
239			IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN));
240	}
241
242	return ops->mmap != NULL;
243}
244EXPORT_SYMBOL_GPL(dma_can_mmap);
245
246/**
247 * dma_mmap_attrs - map a coherent DMA allocation into user space
248 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
249 * @vma: vm_area_struct describing requested user mapping
250 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
251 * @dma_addr: device-view address returned from dma_alloc_attrs
252 * @size: size of memory originally requested in dma_alloc_attrs
253 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
254 *
255 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
256 * space.  The coherent DMA buffer must not be freed by the driver until the
257 * user space mapping has been released.
258 */
259int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
260		void *cpu_addr, dma_addr_t dma_addr, size_t size,
261		unsigned long attrs)
262{
263	const struct dma_map_ops *ops = get_dma_ops(dev);
264
265	if (dma_is_direct(ops))
266		return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size,
267				attrs);
268	if (!ops->mmap)
269		return -ENXIO;
270	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
271}
272EXPORT_SYMBOL(dma_mmap_attrs);
273
274u64 dma_get_required_mask(struct device *dev)
275{
276	const struct dma_map_ops *ops = get_dma_ops(dev);
277
278	if (dma_is_direct(ops))
279		return dma_direct_get_required_mask(dev);
280	if (ops->get_required_mask)
281		return ops->get_required_mask(dev);
282
283	/*
284	 * We require every DMA ops implementation to at least support a 32-bit
285	 * DMA mask (and use bounce buffering if that isn't supported in
286	 * hardware).  As the direct mapping code has its own routine to
287	 * actually report an optimal mask we default to 32-bit here as that
288	 * is the right thing for most IOMMUs, and at least not actively
289	 * harmful in general.
290	 */
291	return DMA_BIT_MASK(32);
292}
293EXPORT_SYMBOL_GPL(dma_get_required_mask);
294
295void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
296		gfp_t flag, unsigned long attrs)
297{
298	const struct dma_map_ops *ops = get_dma_ops(dev);
299	void *cpu_addr;
300
301	WARN_ON_ONCE(!dev->coherent_dma_mask);
302
 
 
 
 
 
 
 
 
303	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
304		return cpu_addr;
305
306	/* let the implementation decide on the zone to allocate from: */
307	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
308
309	if (dma_is_direct(ops))
310		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
311	else if (ops->alloc)
312		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
313	else
314		return NULL;
315
316	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
317	return cpu_addr;
318}
319EXPORT_SYMBOL(dma_alloc_attrs);
320
321void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
322		dma_addr_t dma_handle, unsigned long attrs)
323{
324	const struct dma_map_ops *ops = get_dma_ops(dev);
325
326	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
327		return;
328	/*
329	 * On non-coherent platforms which implement DMA-coherent buffers via
330	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
331	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
332	 * sleep on some machines, and b) an indication that the driver is
333	 * probably misusing the coherent API anyway.
334	 */
335	WARN_ON(irqs_disabled());
336
337	if (!cpu_addr)
338		return;
339
340	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
341	if (dma_is_direct(ops))
342		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
343	else if (ops->free)
344		ops->free(dev, size, cpu_addr, dma_handle, attrs);
345}
346EXPORT_SYMBOL(dma_free_attrs);
347
348int dma_supported(struct device *dev, u64 mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
349{
350	const struct dma_map_ops *ops = get_dma_ops(dev);
351
352	if (dma_is_direct(ops))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
353		return dma_direct_supported(dev, mask);
354	if (!ops->dma_supported)
355		return 1;
356	return ops->dma_supported(dev, mask);
357}
358EXPORT_SYMBOL(dma_supported);
359
360#ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
361void arch_dma_set_mask(struct device *dev, u64 mask);
362#else
363#define arch_dma_set_mask(dev, mask)	do { } while (0)
364#endif
 
 
 
 
 
 
 
 
 
 
 
 
365
366int dma_set_mask(struct device *dev, u64 mask)
367{
368	/*
369	 * Truncate the mask to the actually supported dma_addr_t width to
370	 * avoid generating unsupportable addresses.
371	 */
372	mask = (dma_addr_t)mask;
373
374	if (!dev->dma_mask || !dma_supported(dev, mask))
375		return -EIO;
376
377	arch_dma_set_mask(dev, mask);
378	*dev->dma_mask = mask;
379	return 0;
380}
381EXPORT_SYMBOL(dma_set_mask);
382
383#ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
384int dma_set_coherent_mask(struct device *dev, u64 mask)
385{
386	/*
387	 * Truncate the mask to the actually supported dma_addr_t width to
388	 * avoid generating unsupportable addresses.
389	 */
390	mask = (dma_addr_t)mask;
391
392	if (!dma_supported(dev, mask))
393		return -EIO;
394
395	dev->coherent_dma_mask = mask;
396	return 0;
397}
398EXPORT_SYMBOL(dma_set_coherent_mask);
399#endif
400
401void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
402		enum dma_data_direction dir)
 
 
 
 
 
 
 
403{
404	const struct dma_map_ops *ops = get_dma_ops(dev);
405
406	BUG_ON(!valid_dma_direction(dir));
407
408	if (dma_is_direct(ops))
409		arch_dma_cache_sync(dev, vaddr, size, dir);
410	else if (ops->cache_sync)
411		ops->cache_sync(dev, vaddr, size, dir);
 
412}
413EXPORT_SYMBOL(dma_cache_sync);
414
415size_t dma_max_mapping_size(struct device *dev)
416{
417	const struct dma_map_ops *ops = get_dma_ops(dev);
418	size_t size = SIZE_MAX;
419
420	if (dma_is_direct(ops))
421		size = dma_direct_max_mapping_size(dev);
422	else if (ops && ops->max_mapping_size)
423		size = ops->max_mapping_size(dev);
424
425	return size;
426}
427EXPORT_SYMBOL_GPL(dma_max_mapping_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
428
429unsigned long dma_get_merge_boundary(struct device *dev)
430{
431	const struct dma_map_ops *ops = get_dma_ops(dev);
432
433	if (!ops || !ops->get_merge_boundary)
434		return 0;	/* can't merge */
435
436	return ops->get_merge_boundary(dev);
437}
438EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * arch-independent dma-mapping routines
  4 *
  5 * Copyright (c) 2006  SUSE Linux Products GmbH
  6 * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
  7 */
  8#include <linux/memblock.h> /* for max_pfn */
  9#include <linux/acpi.h>
 10#include <linux/dma-map-ops.h>
 
 11#include <linux/export.h>
 12#include <linux/gfp.h>
 13#include <linux/kmsan.h>
 14#include <linux/of_device.h>
 15#include <linux/slab.h>
 16#include <linux/vmalloc.h>
 17#include "debug.h"
 18#include "direct.h"
 19
 20#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
 21	defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
 22	defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
 23bool dma_default_coherent = IS_ENABLED(CONFIG_ARCH_DMA_DEFAULT_COHERENT);
 24#endif
 25
 26/*
 27 * Managed DMA API
 28 */
 29struct dma_devres {
 30	size_t		size;
 31	void		*vaddr;
 32	dma_addr_t	dma_handle;
 33	unsigned long	attrs;
 34};
 35
 36static void dmam_release(struct device *dev, void *res)
 37{
 38	struct dma_devres *this = res;
 39
 40	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
 41			this->attrs);
 42}
 43
 44static int dmam_match(struct device *dev, void *res, void *match_data)
 45{
 46	struct dma_devres *this = res, *match = match_data;
 47
 48	if (this->vaddr == match->vaddr) {
 49		WARN_ON(this->size != match->size ||
 50			this->dma_handle != match->dma_handle);
 51		return 1;
 52	}
 53	return 0;
 54}
 55
 56/**
 57 * dmam_free_coherent - Managed dma_free_coherent()
 58 * @dev: Device to free coherent memory for
 59 * @size: Size of allocation
 60 * @vaddr: Virtual address of the memory to free
 61 * @dma_handle: DMA handle of the memory to free
 62 *
 63 * Managed dma_free_coherent().
 64 */
 65void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
 66			dma_addr_t dma_handle)
 67{
 68	struct dma_devres match_data = { size, vaddr, dma_handle };
 69
 70	dma_free_coherent(dev, size, vaddr, dma_handle);
 71	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
 72}
 73EXPORT_SYMBOL(dmam_free_coherent);
 74
 75/**
 76 * dmam_alloc_attrs - Managed dma_alloc_attrs()
 77 * @dev: Device to allocate non_coherent memory for
 78 * @size: Size of allocation
 79 * @dma_handle: Out argument for allocated DMA handle
 80 * @gfp: Allocation flags
 81 * @attrs: Flags in the DMA_ATTR_* namespace.
 82 *
 83 * Managed dma_alloc_attrs().  Memory allocated using this function will be
 84 * automatically released on driver detach.
 85 *
 86 * RETURNS:
 87 * Pointer to allocated memory on success, NULL on failure.
 88 */
 89void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
 90		gfp_t gfp, unsigned long attrs)
 91{
 92	struct dma_devres *dr;
 93	void *vaddr;
 94
 95	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
 96	if (!dr)
 97		return NULL;
 98
 99	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
100	if (!vaddr) {
101		devres_free(dr);
102		return NULL;
103	}
104
105	dr->vaddr = vaddr;
106	dr->dma_handle = *dma_handle;
107	dr->size = size;
108	dr->attrs = attrs;
109
110	devres_add(dev, dr);
111
112	return vaddr;
113}
114EXPORT_SYMBOL(dmam_alloc_attrs);
115
116static bool dma_go_direct(struct device *dev, dma_addr_t mask,
117		const struct dma_map_ops *ops)
118{
119	if (likely(!ops))
120		return true;
121#ifdef CONFIG_DMA_OPS_BYPASS
122	if (dev->dma_ops_bypass)
123		return min_not_zero(mask, dev->bus_dma_limit) >=
124			    dma_direct_get_required_mask(dev);
125#endif
126	return false;
127}
128
129
130/*
131 * Check if the devices uses a direct mapping for streaming DMA operations.
132 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
133 * enough.
134 */
135static inline bool dma_alloc_direct(struct device *dev,
136		const struct dma_map_ops *ops)
 
137{
138	return dma_go_direct(dev, dev->coherent_dma_mask, ops);
139}
140
141static inline bool dma_map_direct(struct device *dev,
142		const struct dma_map_ops *ops)
143{
144	return dma_go_direct(dev, *dev->dma_mask, ops);
145}
146
147dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
148		size_t offset, size_t size, enum dma_data_direction dir,
149		unsigned long attrs)
150{
151	const struct dma_map_ops *ops = get_dma_ops(dev);
152	dma_addr_t addr;
153
154	BUG_ON(!valid_dma_direction(dir));
155
156	if (WARN_ON_ONCE(!dev->dma_mask))
157		return DMA_MAPPING_ERROR;
158
159	if (dma_map_direct(dev, ops) ||
160	    arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
161		addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
162	else
163		addr = ops->map_page(dev, page, offset, size, dir, attrs);
164	kmsan_handle_dma(page, offset, size, dir);
165	debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
166
167	return addr;
168}
169EXPORT_SYMBOL(dma_map_page_attrs);
170
171void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
172		enum dma_data_direction dir, unsigned long attrs)
173{
174	const struct dma_map_ops *ops = get_dma_ops(dev);
175
176	BUG_ON(!valid_dma_direction(dir));
177	if (dma_map_direct(dev, ops) ||
178	    arch_dma_unmap_page_direct(dev, addr + size))
179		dma_direct_unmap_page(dev, addr, size, dir, attrs);
180	else if (ops->unmap_page)
181		ops->unmap_page(dev, addr, size, dir, attrs);
182	debug_dma_unmap_page(dev, addr, size, dir);
183}
184EXPORT_SYMBOL(dma_unmap_page_attrs);
185
186static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
187	 int nents, enum dma_data_direction dir, unsigned long attrs)
188{
189	const struct dma_map_ops *ops = get_dma_ops(dev);
190	int ents;
191
192	BUG_ON(!valid_dma_direction(dir));
193
194	if (WARN_ON_ONCE(!dev->dma_mask))
195		return 0;
196
197	if (dma_map_direct(dev, ops) ||
198	    arch_dma_map_sg_direct(dev, sg, nents))
199		ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
200	else
201		ents = ops->map_sg(dev, sg, nents, dir, attrs);
202
203	if (ents > 0) {
204		kmsan_handle_dma_sg(sg, nents, dir);
205		debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
206	} else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
207				ents != -EIO && ents != -EREMOTEIO)) {
208		return -EIO;
209	}
210
211	return ents;
212}
213
214/**
215 * dma_map_sg_attrs - Map the given buffer for DMA
216 * @dev:	The device for which to perform the DMA operation
217 * @sg:		The sg_table object describing the buffer
218 * @nents:	Number of entries to map
219 * @dir:	DMA direction
220 * @attrs:	Optional DMA attributes for the map operation
221 *
222 * Maps a buffer described by a scatterlist passed in the sg argument with
223 * nents segments for the @dir DMA operation by the @dev device.
224 *
225 * Returns the number of mapped entries (which can be less than nents)
226 * on success. Zero is returned for any error.
227 *
228 * dma_unmap_sg_attrs() should be used to unmap the buffer with the
229 * original sg and original nents (not the value returned by this funciton).
230 */
231unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
232		    int nents, enum dma_data_direction dir, unsigned long attrs)
233{
234	int ret;
235
236	ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
237	if (ret < 0)
238		return 0;
239	return ret;
240}
241EXPORT_SYMBOL(dma_map_sg_attrs);
242
243/**
244 * dma_map_sgtable - Map the given buffer for DMA
245 * @dev:	The device for which to perform the DMA operation
246 * @sgt:	The sg_table object describing the buffer
247 * @dir:	DMA direction
248 * @attrs:	Optional DMA attributes for the map operation
249 *
250 * Maps a buffer described by a scatterlist stored in the given sg_table
251 * object for the @dir DMA operation by the @dev device. After success, the
252 * ownership for the buffer is transferred to the DMA domain.  One has to
253 * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
254 * ownership of the buffer back to the CPU domain before touching the
255 * buffer by the CPU.
256 *
257 * Returns 0 on success or a negative error code on error. The following
258 * error codes are supported with the given meaning:
259 *
260 *   -EINVAL		An invalid argument, unaligned access or other error
261 *			in usage. Will not succeed if retried.
262 *   -ENOMEM		Insufficient resources (like memory or IOVA space) to
263 *			complete the mapping. Should succeed if retried later.
264 *   -EIO		Legacy error code with an unknown meaning. eg. this is
265 *			returned if a lower level call returned
266 *			DMA_MAPPING_ERROR.
267 *   -EREMOTEIO		The DMA device cannot access P2PDMA memory specified
268 *			in the sg_table. This will not succeed if retried.
269 */
270int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
271		    enum dma_data_direction dir, unsigned long attrs)
272{
273	int nents;
274
275	nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
276	if (nents < 0)
277		return nents;
278	sgt->nents = nents;
279	return 0;
280}
281EXPORT_SYMBOL_GPL(dma_map_sgtable);
282
283void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
284				      int nents, enum dma_data_direction dir,
285				      unsigned long attrs)
286{
287	const struct dma_map_ops *ops = get_dma_ops(dev);
288
289	BUG_ON(!valid_dma_direction(dir));
290	debug_dma_unmap_sg(dev, sg, nents, dir);
291	if (dma_map_direct(dev, ops) ||
292	    arch_dma_unmap_sg_direct(dev, sg, nents))
293		dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
294	else if (ops->unmap_sg)
295		ops->unmap_sg(dev, sg, nents, dir, attrs);
296}
297EXPORT_SYMBOL(dma_unmap_sg_attrs);
298
299dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
300		size_t size, enum dma_data_direction dir, unsigned long attrs)
301{
302	const struct dma_map_ops *ops = get_dma_ops(dev);
303	dma_addr_t addr = DMA_MAPPING_ERROR;
304
305	BUG_ON(!valid_dma_direction(dir));
306
307	if (WARN_ON_ONCE(!dev->dma_mask))
308		return DMA_MAPPING_ERROR;
309
310	if (dma_map_direct(dev, ops))
311		addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
312	else if (ops->map_resource)
313		addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
314
315	debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
316	return addr;
317}
318EXPORT_SYMBOL(dma_map_resource);
319
320void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
321		enum dma_data_direction dir, unsigned long attrs)
322{
323	const struct dma_map_ops *ops = get_dma_ops(dev);
324
325	BUG_ON(!valid_dma_direction(dir));
326	if (!dma_map_direct(dev, ops) && ops->unmap_resource)
327		ops->unmap_resource(dev, addr, size, dir, attrs);
328	debug_dma_unmap_resource(dev, addr, size, dir);
329}
330EXPORT_SYMBOL(dma_unmap_resource);
331
332void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
333		enum dma_data_direction dir)
334{
335	const struct dma_map_ops *ops = get_dma_ops(dev);
336
337	BUG_ON(!valid_dma_direction(dir));
338	if (dma_map_direct(dev, ops))
339		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
340	else if (ops->sync_single_for_cpu)
341		ops->sync_single_for_cpu(dev, addr, size, dir);
342	debug_dma_sync_single_for_cpu(dev, addr, size, dir);
343}
344EXPORT_SYMBOL(dma_sync_single_for_cpu);
345
346void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
347		size_t size, enum dma_data_direction dir)
348{
349	const struct dma_map_ops *ops = get_dma_ops(dev);
350
351	BUG_ON(!valid_dma_direction(dir));
352	if (dma_map_direct(dev, ops))
353		dma_direct_sync_single_for_device(dev, addr, size, dir);
354	else if (ops->sync_single_for_device)
355		ops->sync_single_for_device(dev, addr, size, dir);
356	debug_dma_sync_single_for_device(dev, addr, size, dir);
357}
358EXPORT_SYMBOL(dma_sync_single_for_device);
359
360void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
361		    int nelems, enum dma_data_direction dir)
362{
363	const struct dma_map_ops *ops = get_dma_ops(dev);
364
365	BUG_ON(!valid_dma_direction(dir));
366	if (dma_map_direct(dev, ops))
367		dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
368	else if (ops->sync_sg_for_cpu)
369		ops->sync_sg_for_cpu(dev, sg, nelems, dir);
370	debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
371}
372EXPORT_SYMBOL(dma_sync_sg_for_cpu);
373
374void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
375		       int nelems, enum dma_data_direction dir)
376{
377	const struct dma_map_ops *ops = get_dma_ops(dev);
378
379	BUG_ON(!valid_dma_direction(dir));
380	if (dma_map_direct(dev, ops))
381		dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
382	else if (ops->sync_sg_for_device)
383		ops->sync_sg_for_device(dev, sg, nelems, dir);
384	debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
385}
386EXPORT_SYMBOL(dma_sync_sg_for_device);
387
388/*
389 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
390 * that the intention is to allow exporting memory allocated via the
391 * coherent DMA APIs through the dma_buf API, which only accepts a
392 * scattertable.  This presents a couple of problems:
393 * 1. Not all memory allocated via the coherent DMA APIs is backed by
394 *    a struct page
395 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
396 *    as we will try to flush the memory through a different alias to that
397 *    actually being used (and the flushes are redundant.)
398 */
399int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
400		void *cpu_addr, dma_addr_t dma_addr, size_t size,
401		unsigned long attrs)
402{
403	const struct dma_map_ops *ops = get_dma_ops(dev);
404
405	if (dma_alloc_direct(dev, ops))
406		return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
407				size, attrs);
408	if (!ops->get_sgtable)
409		return -ENXIO;
410	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
411}
412EXPORT_SYMBOL(dma_get_sgtable_attrs);
413
414#ifdef CONFIG_MMU
415/*
416 * Return the page attributes used for mapping dma_alloc_* memory, either in
417 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
418 */
419pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
420{
421	if (dev_is_dma_coherent(dev))
 
 
422		return prot;
423#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
424	if (attrs & DMA_ATTR_WRITE_COMBINE)
425		return pgprot_writecombine(prot);
426#endif
427	return pgprot_dmacoherent(prot);
428}
429#endif /* CONFIG_MMU */
430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
431/**
432 * dma_can_mmap - check if a given device supports dma_mmap_*
433 * @dev: device to check
434 *
435 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
436 * map DMA allocations to userspace.
437 */
438bool dma_can_mmap(struct device *dev)
439{
440	const struct dma_map_ops *ops = get_dma_ops(dev);
441
442	if (dma_alloc_direct(dev, ops))
443		return dma_direct_can_mmap(dev);
 
 
 
 
444	return ops->mmap != NULL;
445}
446EXPORT_SYMBOL_GPL(dma_can_mmap);
447
448/**
449 * dma_mmap_attrs - map a coherent DMA allocation into user space
450 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
451 * @vma: vm_area_struct describing requested user mapping
452 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
453 * @dma_addr: device-view address returned from dma_alloc_attrs
454 * @size: size of memory originally requested in dma_alloc_attrs
455 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
456 *
457 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
458 * space.  The coherent DMA buffer must not be freed by the driver until the
459 * user space mapping has been released.
460 */
461int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
462		void *cpu_addr, dma_addr_t dma_addr, size_t size,
463		unsigned long attrs)
464{
465	const struct dma_map_ops *ops = get_dma_ops(dev);
466
467	if (dma_alloc_direct(dev, ops))
468		return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
469				attrs);
470	if (!ops->mmap)
471		return -ENXIO;
472	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
473}
474EXPORT_SYMBOL(dma_mmap_attrs);
475
476u64 dma_get_required_mask(struct device *dev)
477{
478	const struct dma_map_ops *ops = get_dma_ops(dev);
479
480	if (dma_alloc_direct(dev, ops))
481		return dma_direct_get_required_mask(dev);
482	if (ops->get_required_mask)
483		return ops->get_required_mask(dev);
484
485	/*
486	 * We require every DMA ops implementation to at least support a 32-bit
487	 * DMA mask (and use bounce buffering if that isn't supported in
488	 * hardware).  As the direct mapping code has its own routine to
489	 * actually report an optimal mask we default to 32-bit here as that
490	 * is the right thing for most IOMMUs, and at least not actively
491	 * harmful in general.
492	 */
493	return DMA_BIT_MASK(32);
494}
495EXPORT_SYMBOL_GPL(dma_get_required_mask);
496
497void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
498		gfp_t flag, unsigned long attrs)
499{
500	const struct dma_map_ops *ops = get_dma_ops(dev);
501	void *cpu_addr;
502
503	WARN_ON_ONCE(!dev->coherent_dma_mask);
504
505	/*
506	 * DMA allocations can never be turned back into a page pointer, so
507	 * requesting compound pages doesn't make sense (and can't even be
508	 * supported at all by various backends).
509	 */
510	if (WARN_ON_ONCE(flag & __GFP_COMP))
511		return NULL;
512
513	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
514		return cpu_addr;
515
516	/* let the implementation decide on the zone to allocate from: */
517	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
518
519	if (dma_alloc_direct(dev, ops))
520		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
521	else if (ops->alloc)
522		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
523	else
524		return NULL;
525
526	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
527	return cpu_addr;
528}
529EXPORT_SYMBOL(dma_alloc_attrs);
530
531void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
532		dma_addr_t dma_handle, unsigned long attrs)
533{
534	const struct dma_map_ops *ops = get_dma_ops(dev);
535
536	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
537		return;
538	/*
539	 * On non-coherent platforms which implement DMA-coherent buffers via
540	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
541	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
542	 * sleep on some machines, and b) an indication that the driver is
543	 * probably misusing the coherent API anyway.
544	 */
545	WARN_ON(irqs_disabled());
546
547	if (!cpu_addr)
548		return;
549
550	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
551	if (dma_alloc_direct(dev, ops))
552		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
553	else if (ops->free)
554		ops->free(dev, size, cpu_addr, dma_handle, attrs);
555}
556EXPORT_SYMBOL(dma_free_attrs);
557
558static struct page *__dma_alloc_pages(struct device *dev, size_t size,
559		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
560{
561	const struct dma_map_ops *ops = get_dma_ops(dev);
562
563	if (WARN_ON_ONCE(!dev->coherent_dma_mask))
564		return NULL;
565	if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
566		return NULL;
567	if (WARN_ON_ONCE(gfp & __GFP_COMP))
568		return NULL;
569
570	size = PAGE_ALIGN(size);
571	if (dma_alloc_direct(dev, ops))
572		return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
573	if (!ops->alloc_pages)
574		return NULL;
575	return ops->alloc_pages(dev, size, dma_handle, dir, gfp);
576}
577
578struct page *dma_alloc_pages(struct device *dev, size_t size,
579		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
580{
581	struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
582
583	if (page)
584		debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
585	return page;
586}
587EXPORT_SYMBOL_GPL(dma_alloc_pages);
588
589static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
590		dma_addr_t dma_handle, enum dma_data_direction dir)
591{
592	const struct dma_map_ops *ops = get_dma_ops(dev);
593
594	size = PAGE_ALIGN(size);
595	if (dma_alloc_direct(dev, ops))
596		dma_direct_free_pages(dev, size, page, dma_handle, dir);
597	else if (ops->free_pages)
598		ops->free_pages(dev, size, page, dma_handle, dir);
599}
600
601void dma_free_pages(struct device *dev, size_t size, struct page *page,
602		dma_addr_t dma_handle, enum dma_data_direction dir)
603{
604	debug_dma_unmap_page(dev, dma_handle, size, dir);
605	__dma_free_pages(dev, size, page, dma_handle, dir);
606}
607EXPORT_SYMBOL_GPL(dma_free_pages);
608
609int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
610		size_t size, struct page *page)
611{
612	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
613
614	if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
615		return -ENXIO;
616	return remap_pfn_range(vma, vma->vm_start,
617			       page_to_pfn(page) + vma->vm_pgoff,
618			       vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
619}
620EXPORT_SYMBOL_GPL(dma_mmap_pages);
621
622static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
623		enum dma_data_direction dir, gfp_t gfp)
624{
625	struct sg_table *sgt;
626	struct page *page;
627
628	sgt = kmalloc(sizeof(*sgt), gfp);
629	if (!sgt)
630		return NULL;
631	if (sg_alloc_table(sgt, 1, gfp))
632		goto out_free_sgt;
633	page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
634	if (!page)
635		goto out_free_table;
636	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
637	sg_dma_len(sgt->sgl) = sgt->sgl->length;
638	return sgt;
639out_free_table:
640	sg_free_table(sgt);
641out_free_sgt:
642	kfree(sgt);
643	return NULL;
644}
645
646struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
647		enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
648{
649	const struct dma_map_ops *ops = get_dma_ops(dev);
650	struct sg_table *sgt;
651
652	if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
653		return NULL;
654	if (WARN_ON_ONCE(gfp & __GFP_COMP))
655		return NULL;
656
657	if (ops && ops->alloc_noncontiguous)
658		sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs);
659	else
660		sgt = alloc_single_sgt(dev, size, dir, gfp);
661
662	if (sgt) {
663		sgt->nents = 1;
664		debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
665	}
666	return sgt;
667}
668EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
669
670static void free_single_sgt(struct device *dev, size_t size,
671		struct sg_table *sgt, enum dma_data_direction dir)
672{
673	__dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
674			 dir);
675	sg_free_table(sgt);
676	kfree(sgt);
677}
678
679void dma_free_noncontiguous(struct device *dev, size_t size,
680		struct sg_table *sgt, enum dma_data_direction dir)
681{
682	const struct dma_map_ops *ops = get_dma_ops(dev);
683
684	debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
685	if (ops && ops->free_noncontiguous)
686		ops->free_noncontiguous(dev, size, sgt, dir);
687	else
688		free_single_sgt(dev, size, sgt, dir);
689}
690EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
691
692void *dma_vmap_noncontiguous(struct device *dev, size_t size,
693		struct sg_table *sgt)
694{
695	const struct dma_map_ops *ops = get_dma_ops(dev);
696	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
697
698	if (ops && ops->alloc_noncontiguous)
699		return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
700	return page_address(sg_page(sgt->sgl));
701}
702EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
703
704void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
705{
706	const struct dma_map_ops *ops = get_dma_ops(dev);
707
708	if (ops && ops->alloc_noncontiguous)
709		vunmap(vaddr);
710}
711EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
712
713int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
714		size_t size, struct sg_table *sgt)
715{
716	const struct dma_map_ops *ops = get_dma_ops(dev);
717
718	if (ops && ops->alloc_noncontiguous) {
719		unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
720
721		if (vma->vm_pgoff >= count ||
722		    vma_pages(vma) > count - vma->vm_pgoff)
723			return -ENXIO;
724		return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
725	}
726	return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
727}
728EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
729
730static int dma_supported(struct device *dev, u64 mask)
731{
732	const struct dma_map_ops *ops = get_dma_ops(dev);
733
734	/*
735	 * ->dma_supported sets the bypass flag, so we must always call
736	 * into the method here unless the device is truly direct mapped.
737	 */
738	if (!ops)
739		return dma_direct_supported(dev, mask);
740	if (!ops->dma_supported)
741		return 1;
742	return ops->dma_supported(dev, mask);
743}
 
744
745bool dma_pci_p2pdma_supported(struct device *dev)
746{
747	const struct dma_map_ops *ops = get_dma_ops(dev);
748
749	/* if ops is not set, dma direct will be used which supports P2PDMA */
750	if (!ops)
751		return true;
752
753	/*
754	 * Note: dma_ops_bypass is not checked here because P2PDMA should
755	 * not be used with dma mapping ops that do not have support even
756	 * if the specific device is bypassing them.
757	 */
758
759	return ops->flags & DMA_F_PCI_P2PDMA_SUPPORTED;
760}
761EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
762
763int dma_set_mask(struct device *dev, u64 mask)
764{
765	/*
766	 * Truncate the mask to the actually supported dma_addr_t width to
767	 * avoid generating unsupportable addresses.
768	 */
769	mask = (dma_addr_t)mask;
770
771	if (!dev->dma_mask || !dma_supported(dev, mask))
772		return -EIO;
773
774	arch_dma_set_mask(dev, mask);
775	*dev->dma_mask = mask;
776	return 0;
777}
778EXPORT_SYMBOL(dma_set_mask);
779
 
780int dma_set_coherent_mask(struct device *dev, u64 mask)
781{
782	/*
783	 * Truncate the mask to the actually supported dma_addr_t width to
784	 * avoid generating unsupportable addresses.
785	 */
786	mask = (dma_addr_t)mask;
787
788	if (!dma_supported(dev, mask))
789		return -EIO;
790
791	dev->coherent_dma_mask = mask;
792	return 0;
793}
794EXPORT_SYMBOL(dma_set_coherent_mask);
 
795
796/**
797 * dma_addressing_limited - return if the device is addressing limited
798 * @dev:	device to check
799 *
800 * Return %true if the devices DMA mask is too small to address all memory in
801 * the system, else %false.  Lack of addressing bits is the prime reason for
802 * bounce buffering, but might not be the only one.
803 */
804bool dma_addressing_limited(struct device *dev)
805{
806	const struct dma_map_ops *ops = get_dma_ops(dev);
807
808	if (min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
809			 dma_get_required_mask(dev))
810		return true;
811
812	if (unlikely(ops))
813		return false;
814	return !dma_direct_all_ram_mapped(dev);
815}
816EXPORT_SYMBOL_GPL(dma_addressing_limited);
817
818size_t dma_max_mapping_size(struct device *dev)
819{
820	const struct dma_map_ops *ops = get_dma_ops(dev);
821	size_t size = SIZE_MAX;
822
823	if (dma_map_direct(dev, ops))
824		size = dma_direct_max_mapping_size(dev);
825	else if (ops && ops->max_mapping_size)
826		size = ops->max_mapping_size(dev);
827
828	return size;
829}
830EXPORT_SYMBOL_GPL(dma_max_mapping_size);
831
832size_t dma_opt_mapping_size(struct device *dev)
833{
834	const struct dma_map_ops *ops = get_dma_ops(dev);
835	size_t size = SIZE_MAX;
836
837	if (ops && ops->opt_mapping_size)
838		size = ops->opt_mapping_size();
839
840	return min(dma_max_mapping_size(dev), size);
841}
842EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
843
844bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
845{
846	const struct dma_map_ops *ops = get_dma_ops(dev);
847
848	if (dma_map_direct(dev, ops))
849		return dma_direct_need_sync(dev, dma_addr);
850	return ops->sync_single_for_cpu || ops->sync_single_for_device;
851}
852EXPORT_SYMBOL_GPL(dma_need_sync);
853
854unsigned long dma_get_merge_boundary(struct device *dev)
855{
856	const struct dma_map_ops *ops = get_dma_ops(dev);
857
858	if (!ops || !ops->get_merge_boundary)
859		return 0;	/* can't merge */
860
861	return ops->get_merge_boundary(dev);
862}
863EXPORT_SYMBOL_GPL(dma_get_merge_boundary);