Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 * David Mosberger-Tang
   7 *
   8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
 
  16#include <linux/of.h>
  17#include <linux/of_pci.h>
  18#include <linux/pci.h>
  19#include <linux/pm.h>
  20#include <linux/slab.h>
  21#include <linux/module.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/log2.h>
  25#include <linux/logic_pio.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/interrupt.h>
  28#include <linux/device.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/pci_hotplug.h>
  31#include <linux/vmalloc.h>
  32#include <linux/pci-ats.h>
  33#include <asm/setup.h>
  34#include <asm/dma.h>
  35#include <linux/aer.h>
 
  36#include "pci.h"
  37
  38DEFINE_MUTEX(pci_slot_mutex);
  39
  40const char *pci_power_names[] = {
  41	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  42};
  43EXPORT_SYMBOL_GPL(pci_power_names);
  44
 
  45int isa_dma_bridge_buggy;
  46EXPORT_SYMBOL(isa_dma_bridge_buggy);
 
  47
  48int pci_pci_problems;
  49EXPORT_SYMBOL(pci_pci_problems);
  50
  51unsigned int pci_pm_d3_delay;
  52
  53static void pci_pme_list_scan(struct work_struct *work);
  54
  55static LIST_HEAD(pci_pme_list);
  56static DEFINE_MUTEX(pci_pme_list_mutex);
  57static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  58
  59struct pci_pme_device {
  60	struct list_head list;
  61	struct pci_dev *dev;
  62};
  63
  64#define PME_TIMEOUT 1000 /* How long between PME checks */
  65
  66static void pci_dev_d3_sleep(struct pci_dev *dev)
  67{
  68	unsigned int delay = dev->d3_delay;
 
  69
  70	if (delay < pci_pm_d3_delay)
  71		delay = pci_pm_d3_delay;
 
 
 
 
 
  72
  73	if (delay)
  74		msleep(delay);
 
  75}
  76
  77#ifdef CONFIG_PCI_DOMAINS
  78int pci_domains_supported = 1;
  79#endif
  80
  81#define DEFAULT_CARDBUS_IO_SIZE		(256)
  82#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
  83/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  84unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  85unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  86
  87#define DEFAULT_HOTPLUG_IO_SIZE		(256)
  88#define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
  89/* pci=hpmemsize=nnM,hpiosize=nn can override this */
 
  90unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  91unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
 
 
 
 
 
 
  92
  93#define DEFAULT_HOTPLUG_BUS_SIZE	1
  94unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
  95
 
 
 
 
 
 
 
 
 
 
 
  96enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
 
  97
  98/*
  99 * The default CLS is used if arch didn't set CLS explicitly and not
 100 * all pci devices agree on the same value.  Arch can override either
 101 * the dfl or actual value as it sees fit.  Don't forget this is
 102 * measured in 32-bit words, not bytes.
 103 */
 104u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 105u8 pci_cache_line_size;
 106
 107/*
 108 * If we set up a device for bus mastering, we need to check the latency
 109 * timer as certain BIOSes forget to set it properly.
 110 */
 111unsigned int pcibios_max_latency = 255;
 112
 113/* If set, the PCIe ARI capability will not be used. */
 114static bool pcie_ari_disabled;
 115
 116/* If set, the PCIe ATS capability will not be used. */
 117static bool pcie_ats_disabled;
 118
 119/* If set, the PCI config space of each device is printed during boot. */
 120bool pci_early_dump;
 121
 122bool pci_ats_disabled(void)
 123{
 124	return pcie_ats_disabled;
 125}
 
 126
 127/* Disable bridge_d3 for all PCIe ports */
 128static bool pci_bridge_d3_disable;
 129/* Force bridge_d3 for all PCIe ports */
 130static bool pci_bridge_d3_force;
 131
 132static int __init pcie_port_pm_setup(char *str)
 133{
 134	if (!strcmp(str, "off"))
 135		pci_bridge_d3_disable = true;
 136	else if (!strcmp(str, "force"))
 137		pci_bridge_d3_force = true;
 138	return 1;
 139}
 140__setup("pcie_port_pm=", pcie_port_pm_setup);
 141
 142/* Time to wait after a reset for device to become responsive */
 143#define PCIE_RESET_READY_POLL_MS 60000
 144
 145/**
 146 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 147 * @bus: pointer to PCI bus structure to search
 148 *
 149 * Given a PCI bus, returns the highest PCI bus number present in the set
 150 * including the given PCI bus and its list of child PCI buses.
 151 */
 152unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 153{
 154	struct pci_bus *tmp;
 155	unsigned char max, n;
 156
 157	max = bus->busn_res.end;
 158	list_for_each_entry(tmp, &bus->children, node) {
 159		n = pci_bus_max_busnr(tmp);
 160		if (n > max)
 161			max = n;
 162	}
 163	return max;
 164}
 165EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 167#ifdef CONFIG_HAS_IOMEM
 168void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 
 169{
 170	struct resource *res = &pdev->resource[bar];
 
 
 171
 172	/*
 173	 * Make sure the BAR is actually a memory resource, not an IO resource
 174	 */
 175	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 176		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 177		return NULL;
 178	}
 179	return ioremap_nocache(res->start, resource_size(res));
 
 
 
 
 
 
 
 
 
 180}
 181EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 182
 183void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 184{
 185	/*
 186	 * Make sure the BAR is actually a memory resource, not an IO resource
 187	 */
 188	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 189		WARN_ON(1);
 190		return NULL;
 191	}
 192	return ioremap_wc(pci_resource_start(pdev, bar),
 193			  pci_resource_len(pdev, bar));
 194}
 195EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 196#endif
 197
 198/**
 199 * pci_dev_str_match_path - test if a path string matches a device
 200 * @dev: the PCI device to test
 201 * @path: string to match the device against
 202 * @endptr: pointer to the string after the match
 203 *
 204 * Test if a string (typically from a kernel parameter) formatted as a
 205 * path of device/function addresses matches a PCI device. The string must
 206 * be of the form:
 207 *
 208 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 209 *
 210 * A path for a device can be obtained using 'lspci -t'.  Using a path
 211 * is more robust against bus renumbering than using only a single bus,
 212 * device and function address.
 213 *
 214 * Returns 1 if the string matches the device, 0 if it does not and
 215 * a negative error code if it fails to parse the string.
 216 */
 217static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
 218				  const char **endptr)
 219{
 220	int ret;
 221	int seg, bus, slot, func;
 222	char *wpath, *p;
 223	char end;
 224
 225	*endptr = strchrnul(path, ';');
 226
 227	wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
 228	if (!wpath)
 229		return -ENOMEM;
 230
 231	while (1) {
 232		p = strrchr(wpath, '/');
 233		if (!p)
 234			break;
 235		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
 236		if (ret != 2) {
 237			ret = -EINVAL;
 238			goto free_and_exit;
 239		}
 240
 241		if (dev->devfn != PCI_DEVFN(slot, func)) {
 242			ret = 0;
 243			goto free_and_exit;
 244		}
 245
 246		/*
 247		 * Note: we don't need to get a reference to the upstream
 248		 * bridge because we hold a reference to the top level
 249		 * device which should hold a reference to the bridge,
 250		 * and so on.
 251		 */
 252		dev = pci_upstream_bridge(dev);
 253		if (!dev) {
 254			ret = 0;
 255			goto free_and_exit;
 256		}
 257
 258		*p = 0;
 259	}
 260
 261	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
 262		     &func, &end);
 263	if (ret != 4) {
 264		seg = 0;
 265		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
 266		if (ret != 3) {
 267			ret = -EINVAL;
 268			goto free_and_exit;
 269		}
 270	}
 271
 272	ret = (seg == pci_domain_nr(dev->bus) &&
 273	       bus == dev->bus->number &&
 274	       dev->devfn == PCI_DEVFN(slot, func));
 275
 276free_and_exit:
 277	kfree(wpath);
 278	return ret;
 279}
 280
 281/**
 282 * pci_dev_str_match - test if a string matches a device
 283 * @dev: the PCI device to test
 284 * @p: string to match the device against
 285 * @endptr: pointer to the string after the match
 286 *
 287 * Test if a string (typically from a kernel parameter) matches a specified
 288 * PCI device. The string may be of one of the following formats:
 289 *
 290 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 291 *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
 292 *
 293 * The first format specifies a PCI bus/device/function address which
 294 * may change if new hardware is inserted, if motherboard firmware changes,
 295 * or due to changes caused in kernel parameters. If the domain is
 296 * left unspecified, it is taken to be 0.  In order to be robust against
 297 * bus renumbering issues, a path of PCI device/function numbers may be used
 298 * to address the specific device.  The path for a device can be determined
 299 * through the use of 'lspci -t'.
 300 *
 301 * The second format matches devices using IDs in the configuration
 302 * space which may match multiple devices in the system. A value of 0
 303 * for any field will match all devices. (Note: this differs from
 304 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
 305 * legacy reasons and convenience so users don't have to specify
 306 * FFFFFFFFs on the command line.)
 307 *
 308 * Returns 1 if the string matches the device, 0 if it does not and
 309 * a negative error code if the string cannot be parsed.
 310 */
 311static int pci_dev_str_match(struct pci_dev *dev, const char *p,
 312			     const char **endptr)
 313{
 314	int ret;
 315	int count;
 316	unsigned short vendor, device, subsystem_vendor, subsystem_device;
 317
 318	if (strncmp(p, "pci:", 4) == 0) {
 319		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
 320		p += 4;
 321		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
 322			     &subsystem_vendor, &subsystem_device, &count);
 323		if (ret != 4) {
 324			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
 325			if (ret != 2)
 326				return -EINVAL;
 327
 328			subsystem_vendor = 0;
 329			subsystem_device = 0;
 330		}
 331
 332		p += count;
 333
 334		if ((!vendor || vendor == dev->vendor) &&
 335		    (!device || device == dev->device) &&
 336		    (!subsystem_vendor ||
 337			    subsystem_vendor == dev->subsystem_vendor) &&
 338		    (!subsystem_device ||
 339			    subsystem_device == dev->subsystem_device))
 340			goto found;
 341	} else {
 342		/*
 343		 * PCI Bus, Device, Function IDs are specified
 344		 * (optionally, may include a path of devfns following it)
 345		 */
 346		ret = pci_dev_str_match_path(dev, p, &p);
 347		if (ret < 0)
 348			return ret;
 349		else if (ret)
 350			goto found;
 351	}
 352
 353	*endptr = p;
 354	return 0;
 355
 356found:
 357	*endptr = p;
 358	return 1;
 359}
 360
 361static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 362				   u8 pos, int cap, int *ttl)
 363{
 364	u8 id;
 365	u16 ent;
 366
 367	pci_bus_read_config_byte(bus, devfn, pos, &pos);
 368
 369	while ((*ttl)--) {
 370		if (pos < 0x40)
 371			break;
 372		pos &= ~3;
 373		pci_bus_read_config_word(bus, devfn, pos, &ent);
 374
 375		id = ent & 0xff;
 376		if (id == 0xff)
 377			break;
 378		if (id == cap)
 379			return pos;
 380		pos = (ent >> 8);
 381	}
 382	return 0;
 383}
 384
 385static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 386			       u8 pos, int cap)
 387{
 388	int ttl = PCI_FIND_CAP_TTL;
 389
 390	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 391}
 392
 393int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 394{
 395	return __pci_find_next_cap(dev->bus, dev->devfn,
 396				   pos + PCI_CAP_LIST_NEXT, cap);
 397}
 398EXPORT_SYMBOL_GPL(pci_find_next_capability);
 399
 400static int __pci_bus_find_cap_start(struct pci_bus *bus,
 401				    unsigned int devfn, u8 hdr_type)
 402{
 403	u16 status;
 404
 405	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 406	if (!(status & PCI_STATUS_CAP_LIST))
 407		return 0;
 408
 409	switch (hdr_type) {
 410	case PCI_HEADER_TYPE_NORMAL:
 411	case PCI_HEADER_TYPE_BRIDGE:
 412		return PCI_CAPABILITY_LIST;
 413	case PCI_HEADER_TYPE_CARDBUS:
 414		return PCI_CB_CAPABILITY_LIST;
 415	}
 416
 417	return 0;
 418}
 419
 420/**
 421 * pci_find_capability - query for devices' capabilities
 422 * @dev: PCI device to query
 423 * @cap: capability code
 424 *
 425 * Tell if a device supports a given PCI capability.
 426 * Returns the address of the requested capability structure within the
 427 * device's PCI configuration space or 0 in case the device does not
 428 * support it.  Possible values for @cap include:
 429 *
 430 *  %PCI_CAP_ID_PM           Power Management
 431 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 432 *  %PCI_CAP_ID_VPD          Vital Product Data
 433 *  %PCI_CAP_ID_SLOTID       Slot Identification
 434 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 435 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 436 *  %PCI_CAP_ID_PCIX         PCI-X
 437 *  %PCI_CAP_ID_EXP          PCI Express
 438 */
 439int pci_find_capability(struct pci_dev *dev, int cap)
 440{
 441	int pos;
 442
 443	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 444	if (pos)
 445		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 446
 447	return pos;
 448}
 449EXPORT_SYMBOL(pci_find_capability);
 450
 451/**
 452 * pci_bus_find_capability - query for devices' capabilities
 453 * @bus: the PCI bus to query
 454 * @devfn: PCI device to query
 455 * @cap: capability code
 456 *
 457 * Like pci_find_capability() but works for PCI devices that do not have a
 458 * pci_dev structure set up yet.
 459 *
 460 * Returns the address of the requested capability structure within the
 461 * device's PCI configuration space or 0 in case the device does not
 462 * support it.
 463 */
 464int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 465{
 466	int pos;
 467	u8 hdr_type;
 468
 469	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 470
 471	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 472	if (pos)
 473		pos = __pci_find_next_cap(bus, devfn, pos, cap);
 474
 475	return pos;
 476}
 477EXPORT_SYMBOL(pci_bus_find_capability);
 478
 479/**
 480 * pci_find_next_ext_capability - Find an extended capability
 481 * @dev: PCI device to query
 482 * @start: address at which to start looking (0 to start at beginning of list)
 483 * @cap: capability code
 484 *
 485 * Returns the address of the next matching extended capability structure
 486 * within the device's PCI configuration space or 0 if the device does
 487 * not support it.  Some capabilities can occur several times, e.g., the
 488 * vendor-specific capability, and this provides a way to find them all.
 489 */
 490int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
 491{
 492	u32 header;
 493	int ttl;
 494	int pos = PCI_CFG_SPACE_SIZE;
 495
 496	/* minimum 8 bytes per capability */
 497	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 498
 499	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 500		return 0;
 501
 502	if (start)
 503		pos = start;
 504
 505	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 506		return 0;
 507
 508	/*
 509	 * If we have no capabilities, this is indicated by cap ID,
 510	 * cap version and next pointer all being 0.
 511	 */
 512	if (header == 0)
 513		return 0;
 514
 515	while (ttl-- > 0) {
 516		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 517			return pos;
 518
 519		pos = PCI_EXT_CAP_NEXT(header);
 520		if (pos < PCI_CFG_SPACE_SIZE)
 521			break;
 522
 523		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 524			break;
 525	}
 526
 527	return 0;
 528}
 529EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 530
 531/**
 532 * pci_find_ext_capability - Find an extended capability
 533 * @dev: PCI device to query
 534 * @cap: capability code
 535 *
 536 * Returns the address of the requested extended capability structure
 537 * within the device's PCI configuration space or 0 if the device does
 538 * not support it.  Possible values for @cap include:
 539 *
 540 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 541 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 542 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 543 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 544 */
 545int pci_find_ext_capability(struct pci_dev *dev, int cap)
 546{
 547	return pci_find_next_ext_capability(dev, 0, cap);
 548}
 549EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 550
 551static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 552{
 553	int rc, ttl = PCI_FIND_CAP_TTL;
 554	u8 cap, mask;
 555
 556	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 557		mask = HT_3BIT_CAP_MASK;
 558	else
 559		mask = HT_5BIT_CAP_MASK;
 560
 561	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 562				      PCI_CAP_ID_HT, &ttl);
 563	while (pos) {
 564		rc = pci_read_config_byte(dev, pos + 3, &cap);
 565		if (rc != PCIBIOS_SUCCESSFUL)
 566			return 0;
 567
 568		if ((cap & mask) == ht_cap)
 569			return pos;
 570
 571		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 572					      pos + PCI_CAP_LIST_NEXT,
 573					      PCI_CAP_ID_HT, &ttl);
 574	}
 575
 576	return 0;
 577}
 
 578/**
 579 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
 580 * @dev: PCI device to query
 581 * @pos: Position from which to continue searching
 582 * @ht_cap: Hypertransport capability code
 583 *
 584 * To be used in conjunction with pci_find_ht_capability() to search for
 585 * all capabilities matching @ht_cap. @pos should always be a value returned
 586 * from pci_find_ht_capability().
 587 *
 588 * NB. To be 100% safe against broken PCI devices, the caller should take
 589 * steps to avoid an infinite loop.
 590 */
 591int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
 592{
 593	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 594}
 595EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 596
 597/**
 598 * pci_find_ht_capability - query a device's Hypertransport capabilities
 599 * @dev: PCI device to query
 600 * @ht_cap: Hypertransport capability code
 601 *
 602 * Tell if a device supports a given Hypertransport capability.
 603 * Returns an address within the device's PCI configuration space
 604 * or 0 in case the device does not support the request capability.
 605 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 606 * which has a Hypertransport capability matching @ht_cap.
 607 */
 608int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 609{
 610	int pos;
 611
 612	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 613	if (pos)
 614		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 615
 616	return pos;
 617}
 618EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 619
 620/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621 * pci_find_parent_resource - return resource region of parent bus of given
 622 *			      region
 623 * @dev: PCI device structure contains resources to be searched
 624 * @res: child resource record for which parent is sought
 625 *
 626 * For given resource region of given device, return the resource region of
 627 * parent bus the given region is contained in.
 628 */
 629struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 630					  struct resource *res)
 631{
 632	const struct pci_bus *bus = dev->bus;
 633	struct resource *r;
 634	int i;
 635
 636	pci_bus_for_each_resource(bus, r, i) {
 637		if (!r)
 638			continue;
 639		if (resource_contains(r, res)) {
 640
 641			/*
 642			 * If the window is prefetchable but the BAR is
 643			 * not, the allocator made a mistake.
 644			 */
 645			if (r->flags & IORESOURCE_PREFETCH &&
 646			    !(res->flags & IORESOURCE_PREFETCH))
 647				return NULL;
 648
 649			/*
 650			 * If we're below a transparent bridge, there may
 651			 * be both a positively-decoded aperture and a
 652			 * subtractively-decoded region that contain the BAR.
 653			 * We want the positively-decoded one, so this depends
 654			 * on pci_bus_for_each_resource() giving us those
 655			 * first.
 656			 */
 657			return r;
 658		}
 659	}
 660	return NULL;
 661}
 662EXPORT_SYMBOL(pci_find_parent_resource);
 663
 664/**
 665 * pci_find_resource - Return matching PCI device resource
 666 * @dev: PCI device to query
 667 * @res: Resource to look for
 668 *
 669 * Goes over standard PCI resources (BARs) and checks if the given resource
 670 * is partially or fully contained in any of them. In that case the
 671 * matching resource is returned, %NULL otherwise.
 672 */
 673struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 674{
 675	int i;
 676
 677	for (i = 0; i < PCI_ROM_RESOURCE; i++) {
 678		struct resource *r = &dev->resource[i];
 679
 680		if (r->start && resource_contains(r, res))
 681			return r;
 682	}
 683
 684	return NULL;
 685}
 686EXPORT_SYMBOL(pci_find_resource);
 687
 688/**
 689 * pci_find_pcie_root_port - return PCIe Root Port
 690 * @dev: PCI device to query
 691 *
 692 * Traverse up the parent chain and return the PCIe Root Port PCI Device
 693 * for a given PCI Device.
 694 */
 695struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
 696{
 697	struct pci_dev *bridge, *highest_pcie_bridge = dev;
 698
 699	bridge = pci_upstream_bridge(dev);
 700	while (bridge && pci_is_pcie(bridge)) {
 701		highest_pcie_bridge = bridge;
 702		bridge = pci_upstream_bridge(bridge);
 703	}
 704
 705	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
 706		return NULL;
 707
 708	return highest_pcie_bridge;
 709}
 710EXPORT_SYMBOL(pci_find_pcie_root_port);
 711
 712/**
 713 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 714 * @dev: the PCI device to operate on
 715 * @pos: config space offset of status word
 716 * @mask: mask of bit(s) to care about in status word
 717 *
 718 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 719 */
 720int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 721{
 722	int i;
 723
 724	/* Wait for Transaction Pending bit clean */
 725	for (i = 0; i < 4; i++) {
 726		u16 status;
 727		if (i)
 728			msleep((1 << (i - 1)) * 100);
 729
 730		pci_read_config_word(dev, pos, &status);
 731		if (!(status & mask))
 732			return 1;
 733	}
 734
 735	return 0;
 736}
 737
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 738/**
 739 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
 740 * @dev: PCI device to have its BARs restored
 741 *
 742 * Restore the BAR values for a given device, so as to make it
 743 * accessible by its driver.
 744 */
 745static void pci_restore_bars(struct pci_dev *dev)
 746{
 747	int i;
 748
 749	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 750		pci_update_resource(dev, i);
 751}
 752
 753static const struct pci_platform_pm_ops *pci_platform_pm;
 754
 755int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
 756{
 757	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
 758	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
 759		return -EINVAL;
 760	pci_platform_pm = ops;
 761	return 0;
 762}
 763
 764static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 765{
 766	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 
 
 
 767}
 768
 769static inline int platform_pci_set_power_state(struct pci_dev *dev,
 770					       pci_power_t t)
 771{
 772	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 
 
 
 773}
 774
 775static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
 776{
 777	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
 
 
 
 778}
 779
 780static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
 781{
 782	if (pci_platform_pm && pci_platform_pm->refresh_state)
 783		pci_platform_pm->refresh_state(dev);
 784}
 785
 786static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 787{
 788	return pci_platform_pm ?
 789			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 
 
 790}
 791
 792static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
 793{
 794	return pci_platform_pm ?
 795			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
 
 
 796}
 797
 798static inline bool platform_pci_need_resume(struct pci_dev *dev)
 799{
 800	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
 801}
 802
 803static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
 804{
 805	return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false;
 806}
 807
 808/**
 809 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
 810 *			     given PCI device
 811 * @dev: PCI device to handle.
 812 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 813 *
 814 * RETURN VALUE:
 815 * -EINVAL if the requested state is invalid.
 816 * -EIO if device does not support PCI PM or its PM capabilities register has a
 817 * wrong version, or device doesn't support the requested state.
 818 * 0 if device already is in the requested state.
 819 * 0 if device's power state has been successfully changed.
 820 */
 821static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
 822{
 823	u16 pmcsr;
 824	bool need_restore = false;
 825
 826	/* Check if we're already there */
 827	if (dev->current_state == state)
 828		return 0;
 829
 830	if (!dev->pm_cap)
 831		return -EIO;
 832
 833	if (state < PCI_D0 || state > PCI_D3hot)
 834		return -EINVAL;
 835
 836	/*
 837	 * Validate current state:
 838	 * Can enter D0 from any state, but if we can only go deeper
 839	 * to sleep if we're already in a low power state
 840	 */
 841	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
 842	    && dev->current_state > state) {
 843		pci_err(dev, "invalid power transition (from state %d to %d)\n",
 844			dev->current_state, state);
 845		return -EINVAL;
 846	}
 847
 848	/* Check if this device supports the desired state */
 849	if ((state == PCI_D1 && !dev->d1_support)
 850	   || (state == PCI_D2 && !dev->d2_support))
 851		return -EIO;
 852
 853	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 854
 855	/*
 856	 * If we're (effectively) in D3, force entire word to 0.
 857	 * This doesn't affect PME_Status, disables PME_En, and
 858	 * sets PowerState to 0.
 859	 */
 860	switch (dev->current_state) {
 861	case PCI_D0:
 862	case PCI_D1:
 863	case PCI_D2:
 864		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
 865		pmcsr |= state;
 866		break;
 867	case PCI_D3hot:
 868	case PCI_D3cold:
 869	case PCI_UNKNOWN: /* Boot-up */
 870		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
 871		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
 872			need_restore = true;
 873		/* Fall-through - force to D0 */
 874	default:
 875		pmcsr = 0;
 876		break;
 877	}
 878
 879	/* Enter specified state */
 880	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
 881
 882	/*
 883	 * Mandatory power management transition delays; see PCI PM 1.1
 884	 * 5.6.1 table 18
 885	 */
 886	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
 887		pci_dev_d3_sleep(dev);
 888	else if (state == PCI_D2 || dev->current_state == PCI_D2)
 889		udelay(PCI_PM_D2_DELAY);
 890
 891	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 892	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 893	if (dev->current_state != state)
 894		pci_info_ratelimited(dev, "Refused to change power state, currently in D%d\n",
 895			 dev->current_state);
 896
 897	/*
 898	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
 899	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
 900	 * from D3hot to D0 _may_ perform an internal reset, thereby
 901	 * going to "D0 Uninitialized" rather than "D0 Initialized".
 902	 * For example, at least some versions of the 3c905B and the
 903	 * 3c556B exhibit this behaviour.
 904	 *
 905	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
 906	 * devices in a D3hot state at boot.  Consequently, we need to
 907	 * restore at least the BARs so that the device will be
 908	 * accessible to its driver.
 909	 */
 910	if (need_restore)
 911		pci_restore_bars(dev);
 912
 913	if (dev->bus->self)
 914		pcie_aspm_pm_state_change(dev->bus->self);
 915
 916	return 0;
 917}
 918
 919/**
 920 * pci_update_current_state - Read power state of given device and cache it
 921 * @dev: PCI device to handle.
 922 * @state: State to cache in case the device doesn't have the PM capability
 923 *
 924 * The power state is read from the PMCSR register, which however is
 925 * inaccessible in D3cold.  The platform firmware is therefore queried first
 926 * to detect accessibility of the register.  In case the platform firmware
 927 * reports an incorrect state or the device isn't power manageable by the
 928 * platform at all, we try to detect D3cold by testing accessibility of the
 929 * vendor ID in config space.
 930 */
 931void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
 932{
 933	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
 934	    !pci_device_is_present(dev)) {
 935		dev->current_state = PCI_D3cold;
 936	} else if (dev->pm_cap) {
 937		u16 pmcsr;
 938
 939		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 940		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 
 
 
 
 941	} else {
 942		dev->current_state = state;
 943	}
 944}
 945
 946/**
 947 * pci_refresh_power_state - Refresh the given device's power state data
 948 * @dev: Target PCI device.
 949 *
 950 * Ask the platform to refresh the devices power state information and invoke
 951 * pci_update_current_state() to update its current PCI power state.
 952 */
 953void pci_refresh_power_state(struct pci_dev *dev)
 954{
 955	if (platform_pci_power_manageable(dev))
 956		platform_pci_refresh_power_state(dev);
 957
 958	pci_update_current_state(dev, dev->current_state);
 959}
 960
 961/**
 962 * pci_platform_power_transition - Use platform to change device power state
 963 * @dev: PCI device to handle.
 964 * @state: State to put the device into.
 965 */
 966static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
 967{
 968	int error;
 969
 970	if (platform_pci_power_manageable(dev)) {
 971		error = platform_pci_set_power_state(dev, state);
 972		if (!error)
 973			pci_update_current_state(dev, state);
 974	} else
 975		error = -ENODEV;
 976
 977	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
 978		dev->current_state = PCI_D0;
 979
 980	return error;
 981}
 
 982
 983/**
 984 * pci_wakeup - Wake up a PCI device
 985 * @pci_dev: Device to handle.
 986 * @ign: ignored parameter
 987 */
 988static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
 989{
 990	pci_wakeup_event(pci_dev);
 991	pm_request_resume(&pci_dev->dev);
 992	return 0;
 993}
 994
 995/**
 996 * pci_wakeup_bus - Walk given bus and wake up devices on it
 997 * @bus: Top bus of the subtree to walk.
 998 */
 999void pci_wakeup_bus(struct pci_bus *bus)
1000{
1001	if (bus)
1002		pci_walk_bus(bus, pci_wakeup, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1003}
1004
1005/**
1006 * __pci_start_power_transition - Start power transition of a PCI device
1007 * @dev: PCI device to handle.
1008 * @state: State to put the device into.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1009 */
1010static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
1011{
1012	if (state == PCI_D0) {
1013		pci_platform_power_transition(dev, PCI_D0);
 
 
 
 
 
 
 
 
 
 
 
1014		/*
1015		 * Mandatory power management transition delays, see
1016		 * PCI Express Base Specification Revision 2.0 Section
1017		 * 6.6.1: Conventional Reset.  Do not delay for
1018		 * devices powered on/off by corresponding bridge,
1019		 * because have already delayed for the bridge.
 
 
 
 
 
 
1020		 */
1021		if (dev->runtime_d3cold) {
1022			if (dev->d3cold_delay && !dev->imm_ready)
1023				msleep(dev->d3cold_delay);
1024			/*
1025			 * When powering on a bridge from D3cold, the
1026			 * whole hierarchy may be powered on into
1027			 * D0uninitialized state, resume them to give
1028			 * them a chance to suspend again
1029			 */
1030			pci_wakeup_bus(dev->subordinate);
1031		}
1032	}
 
 
1033}
1034
1035/**
1036 * __pci_dev_set_current_state - Set current state of a PCI device
1037 * @dev: Device to handle
1038 * @data: pointer to state to be set
1039 */
1040static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1041{
1042	pci_power_t state = *(pci_power_t *)data;
1043
1044	dev->current_state = state;
1045	return 0;
1046}
1047
1048/**
1049 * pci_bus_set_current_state - Walk given bus and set current state of devices
1050 * @bus: Top bus of the subtree to walk.
1051 * @state: state to be set
1052 */
1053void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1054{
1055	if (bus)
1056		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1057}
1058
1059/**
1060 * __pci_complete_power_transition - Complete power transition of a PCI device
1061 * @dev: PCI device to handle.
1062 * @state: State to put the device into.
1063 *
1064 * This function should not be called directly by device drivers.
 
 
 
 
 
 
 
1065 */
1066int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
1067{
1068	int ret;
 
 
 
1069
1070	if (state <= PCI_D0)
 
 
 
 
 
 
 
 
 
1071		return -EINVAL;
1072	ret = pci_platform_power_transition(dev, state);
1073	/* Power off the bridge may power off the whole hierarchy */
1074	if (!ret && state == PCI_D3cold)
1075		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1076	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1077}
1078EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
1079
1080/**
1081 * pci_set_power_state - Set the power state of a PCI device
1082 * @dev: PCI device to handle.
1083 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1084 *
1085 * Transition a device to a new power state, using the platform firmware and/or
1086 * the device's PCI PM registers.
1087 *
1088 * RETURN VALUE:
1089 * -EINVAL if the requested state is invalid.
1090 * -EIO if device does not support PCI PM or its PM capabilities register has a
1091 * wrong version, or device doesn't support the requested state.
1092 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1093 * 0 if device already is in the requested state.
1094 * 0 if the transition is to D3 but D3 is not supported.
1095 * 0 if device's power state has been successfully changed.
1096 */
1097int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1098{
1099	int error;
1100
1101	/* Bound the state we're entering */
1102	if (state > PCI_D3cold)
1103		state = PCI_D3cold;
1104	else if (state < PCI_D0)
1105		state = PCI_D0;
1106	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1107
1108		/*
1109		 * If the device or the parent bridge do not support PCI
1110		 * PM, ignore the request if we're doing anything other
1111		 * than putting it into D0 (which would only happen on
1112		 * boot).
1113		 */
1114		return 0;
1115
1116	/* Check if we're already there */
1117	if (dev->current_state == state)
1118		return 0;
1119
1120	__pci_start_power_transition(dev, state);
 
1121
1122	/*
1123	 * This device is quirked not to be put into D3, so don't put it in
1124	 * D3
1125	 */
1126	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1127		return 0;
1128
1129	/*
1130	 * To put device in D3cold, we put device into D3hot in native
1131	 * way, then put device into D3cold with platform ops
1132	 */
1133	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1134					PCI_D3hot : state);
1135
1136	if (!__pci_complete_power_transition(dev, state))
1137		error = 0;
1138
1139	return error;
1140}
1141EXPORT_SYMBOL(pci_set_power_state);
1142
1143/**
1144 * pci_power_up - Put the given device into D0 forcibly
1145 * @dev: PCI device to power up
1146 */
1147void pci_power_up(struct pci_dev *dev)
1148{
1149	__pci_start_power_transition(dev, PCI_D0);
1150	pci_raw_set_power_state(dev, PCI_D0);
1151	pci_update_current_state(dev, PCI_D0);
1152}
1153
1154/**
1155 * pci_choose_state - Choose the power state of a PCI device
1156 * @dev: PCI device to be suspended
1157 * @state: target sleep state for the whole system. This is the value
1158 *	   that is passed to suspend() function.
1159 *
1160 * Returns PCI power state suitable for given device and given system
1161 * message.
1162 */
1163pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1164{
1165	pci_power_t ret;
1166
1167	if (!dev->pm_cap)
1168		return PCI_D0;
1169
1170	ret = platform_pci_choose_state(dev);
1171	if (ret != PCI_POWER_ERROR)
1172		return ret;
 
 
1173
1174	switch (state.event) {
1175	case PM_EVENT_ON:
1176		return PCI_D0;
1177	case PM_EVENT_FREEZE:
1178	case PM_EVENT_PRETHAW:
1179		/* REVISIT both freeze and pre-thaw "should" use D0 */
1180	case PM_EVENT_SUSPEND:
1181	case PM_EVENT_HIBERNATE:
1182		return PCI_D3hot;
1183	default:
1184		pci_info(dev, "unrecognized suspend event %d\n",
1185			 state.event);
1186		BUG();
1187	}
1188	return PCI_D0;
 
1189}
1190EXPORT_SYMBOL(pci_choose_state);
1191
1192#define PCI_EXP_SAVE_REGS	7
1193
1194static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1195						       u16 cap, bool extended)
1196{
1197	struct pci_cap_saved_state *tmp;
1198
1199	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1200		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1201			return tmp;
1202	}
1203	return NULL;
1204}
1205
1206struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1207{
1208	return _pci_find_saved_cap(dev, cap, false);
1209}
1210
1211struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1212{
1213	return _pci_find_saved_cap(dev, cap, true);
1214}
1215
1216static int pci_save_pcie_state(struct pci_dev *dev)
1217{
1218	int i = 0;
1219	struct pci_cap_saved_state *save_state;
1220	u16 *cap;
1221
1222	if (!pci_is_pcie(dev))
1223		return 0;
1224
1225	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1226	if (!save_state) {
1227		pci_err(dev, "buffer not found in %s\n", __func__);
1228		return -ENOMEM;
1229	}
1230
1231	cap = (u16 *)&save_state->cap.data[0];
1232	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1233	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1234	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1235	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1236	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1237	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1238	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1239
1240	return 0;
1241}
1242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1243static void pci_restore_pcie_state(struct pci_dev *dev)
1244{
1245	int i = 0;
1246	struct pci_cap_saved_state *save_state;
1247	u16 *cap;
1248
1249	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1250	if (!save_state)
1251		return;
1252
 
 
 
 
 
 
 
1253	cap = (u16 *)&save_state->cap.data[0];
1254	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1255	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1256	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1257	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1258	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1259	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1260	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1261}
1262
1263static int pci_save_pcix_state(struct pci_dev *dev)
1264{
1265	int pos;
1266	struct pci_cap_saved_state *save_state;
1267
1268	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1269	if (!pos)
1270		return 0;
1271
1272	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1273	if (!save_state) {
1274		pci_err(dev, "buffer not found in %s\n", __func__);
1275		return -ENOMEM;
1276	}
1277
1278	pci_read_config_word(dev, pos + PCI_X_CMD,
1279			     (u16 *)save_state->cap.data);
1280
1281	return 0;
1282}
1283
1284static void pci_restore_pcix_state(struct pci_dev *dev)
1285{
1286	int i = 0, pos;
1287	struct pci_cap_saved_state *save_state;
1288	u16 *cap;
1289
1290	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1291	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1292	if (!save_state || !pos)
1293		return;
1294	cap = (u16 *)&save_state->cap.data[0];
1295
1296	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1297}
1298
1299static void pci_save_ltr_state(struct pci_dev *dev)
1300{
1301	int ltr;
1302	struct pci_cap_saved_state *save_state;
1303	u16 *cap;
1304
1305	if (!pci_is_pcie(dev))
1306		return;
1307
1308	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1309	if (!ltr)
1310		return;
1311
1312	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1313	if (!save_state) {
1314		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1315		return;
1316	}
1317
1318	cap = (u16 *)&save_state->cap.data[0];
1319	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1320	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1321}
1322
1323static void pci_restore_ltr_state(struct pci_dev *dev)
1324{
1325	struct pci_cap_saved_state *save_state;
1326	int ltr;
1327	u16 *cap;
1328
1329	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1330	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1331	if (!save_state || !ltr)
1332		return;
1333
1334	cap = (u16 *)&save_state->cap.data[0];
1335	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1336	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1337}
1338
1339/**
1340 * pci_save_state - save the PCI configuration space of a device before
1341 *		    suspending
1342 * @dev: PCI device that we're dealing with
1343 */
1344int pci_save_state(struct pci_dev *dev)
1345{
1346	int i;
1347	/* XXX: 100% dword access ok here? */
1348	for (i = 0; i < 16; i++)
1349		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
 
 
 
1350	dev->state_saved = true;
1351
1352	i = pci_save_pcie_state(dev);
1353	if (i != 0)
1354		return i;
1355
1356	i = pci_save_pcix_state(dev);
1357	if (i != 0)
1358		return i;
1359
1360	pci_save_ltr_state(dev);
1361	pci_save_dpc_state(dev);
 
 
1362	return pci_save_vc_state(dev);
1363}
1364EXPORT_SYMBOL(pci_save_state);
1365
1366static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1367				     u32 saved_val, int retry, bool force)
1368{
1369	u32 val;
1370
1371	pci_read_config_dword(pdev, offset, &val);
1372	if (!force && val == saved_val)
1373		return;
1374
1375	for (;;) {
1376		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1377			offset, val, saved_val);
1378		pci_write_config_dword(pdev, offset, saved_val);
1379		if (retry-- <= 0)
1380			return;
1381
1382		pci_read_config_dword(pdev, offset, &val);
1383		if (val == saved_val)
1384			return;
1385
1386		mdelay(1);
1387	}
1388}
1389
1390static void pci_restore_config_space_range(struct pci_dev *pdev,
1391					   int start, int end, int retry,
1392					   bool force)
1393{
1394	int index;
1395
1396	for (index = end; index >= start; index--)
1397		pci_restore_config_dword(pdev, 4 * index,
1398					 pdev->saved_config_space[index],
1399					 retry, force);
1400}
1401
1402static void pci_restore_config_space(struct pci_dev *pdev)
1403{
1404	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1405		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1406		/* Restore BARs before the command register. */
1407		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1408		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1409	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1410		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1411
1412		/*
1413		 * Force rewriting of prefetch registers to avoid S3 resume
1414		 * issues on Intel PCI bridges that occur when these
1415		 * registers are not explicitly written.
1416		 */
1417		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1418		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1419	} else {
1420		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1421	}
1422}
1423
1424static void pci_restore_rebar_state(struct pci_dev *pdev)
1425{
1426	unsigned int pos, nbars, i;
1427	u32 ctrl;
1428
1429	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1430	if (!pos)
1431		return;
1432
1433	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1434	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1435		    PCI_REBAR_CTRL_NBAR_SHIFT;
1436
1437	for (i = 0; i < nbars; i++, pos += 8) {
1438		struct resource *res;
1439		int bar_idx, size;
1440
1441		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1442		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1443		res = pdev->resource + bar_idx;
1444		size = ilog2(resource_size(res)) - 20;
1445		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1446		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1447		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1448	}
1449}
1450
1451/**
1452 * pci_restore_state - Restore the saved state of a PCI device
1453 * @dev: PCI device that we're dealing with
1454 */
1455void pci_restore_state(struct pci_dev *dev)
1456{
1457	if (!dev->state_saved)
1458		return;
1459
1460	/*
1461	 * Restore max latencies (in the LTR capability) before enabling
1462	 * LTR itself (in the PCIe capability).
1463	 */
1464	pci_restore_ltr_state(dev);
1465
1466	pci_restore_pcie_state(dev);
1467	pci_restore_pasid_state(dev);
1468	pci_restore_pri_state(dev);
1469	pci_restore_ats_state(dev);
1470	pci_restore_vc_state(dev);
1471	pci_restore_rebar_state(dev);
1472	pci_restore_dpc_state(dev);
 
1473
1474	pci_cleanup_aer_error_status_regs(dev);
 
1475
1476	pci_restore_config_space(dev);
1477
1478	pci_restore_pcix_state(dev);
1479	pci_restore_msi_state(dev);
1480
1481	/* Restore ACS and IOV configuration state */
1482	pci_enable_acs(dev);
1483	pci_restore_iov_state(dev);
1484
1485	dev->state_saved = false;
1486}
1487EXPORT_SYMBOL(pci_restore_state);
1488
1489struct pci_saved_state {
1490	u32 config_space[16];
1491	struct pci_cap_saved_data cap[0];
1492};
1493
1494/**
1495 * pci_store_saved_state - Allocate and return an opaque struct containing
1496 *			   the device saved state.
1497 * @dev: PCI device that we're dealing with
1498 *
1499 * Return NULL if no state or error.
1500 */
1501struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1502{
1503	struct pci_saved_state *state;
1504	struct pci_cap_saved_state *tmp;
1505	struct pci_cap_saved_data *cap;
1506	size_t size;
1507
1508	if (!dev->state_saved)
1509		return NULL;
1510
1511	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1512
1513	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1514		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1515
1516	state = kzalloc(size, GFP_KERNEL);
1517	if (!state)
1518		return NULL;
1519
1520	memcpy(state->config_space, dev->saved_config_space,
1521	       sizeof(state->config_space));
1522
1523	cap = state->cap;
1524	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1525		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1526		memcpy(cap, &tmp->cap, len);
1527		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1528	}
1529	/* Empty cap_save terminates list */
1530
1531	return state;
1532}
1533EXPORT_SYMBOL_GPL(pci_store_saved_state);
1534
1535/**
1536 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1537 * @dev: PCI device that we're dealing with
1538 * @state: Saved state returned from pci_store_saved_state()
1539 */
1540int pci_load_saved_state(struct pci_dev *dev,
1541			 struct pci_saved_state *state)
1542{
1543	struct pci_cap_saved_data *cap;
1544
1545	dev->state_saved = false;
1546
1547	if (!state)
1548		return 0;
1549
1550	memcpy(dev->saved_config_space, state->config_space,
1551	       sizeof(state->config_space));
1552
1553	cap = state->cap;
1554	while (cap->size) {
1555		struct pci_cap_saved_state *tmp;
1556
1557		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1558		if (!tmp || tmp->cap.size != cap->size)
1559			return -EINVAL;
1560
1561		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1562		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1563		       sizeof(struct pci_cap_saved_data) + cap->size);
1564	}
1565
1566	dev->state_saved = true;
1567	return 0;
1568}
1569EXPORT_SYMBOL_GPL(pci_load_saved_state);
1570
1571/**
1572 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1573 *				   and free the memory allocated for it.
1574 * @dev: PCI device that we're dealing with
1575 * @state: Pointer to saved state returned from pci_store_saved_state()
1576 */
1577int pci_load_and_free_saved_state(struct pci_dev *dev,
1578				  struct pci_saved_state **state)
1579{
1580	int ret = pci_load_saved_state(dev, *state);
1581	kfree(*state);
1582	*state = NULL;
1583	return ret;
1584}
1585EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1586
1587int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1588{
1589	return pci_enable_resources(dev, bars);
1590}
1591
1592static int do_pci_enable_device(struct pci_dev *dev, int bars)
1593{
1594	int err;
1595	struct pci_dev *bridge;
1596	u16 cmd;
1597	u8 pin;
1598
1599	err = pci_set_power_state(dev, PCI_D0);
1600	if (err < 0 && err != -EIO)
1601		return err;
1602
1603	bridge = pci_upstream_bridge(dev);
1604	if (bridge)
1605		pcie_aspm_powersave_config_link(bridge);
1606
1607	err = pcibios_enable_device(dev, bars);
1608	if (err < 0)
1609		return err;
1610	pci_fixup_device(pci_fixup_enable, dev);
1611
1612	if (dev->msi_enabled || dev->msix_enabled)
1613		return 0;
1614
1615	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1616	if (pin) {
1617		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1618		if (cmd & PCI_COMMAND_INTX_DISABLE)
1619			pci_write_config_word(dev, PCI_COMMAND,
1620					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1621	}
1622
1623	return 0;
1624}
1625
1626/**
1627 * pci_reenable_device - Resume abandoned device
1628 * @dev: PCI device to be resumed
1629 *
1630 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1631 * to be called by normal code, write proper resume handler and use it instead.
1632 */
1633int pci_reenable_device(struct pci_dev *dev)
1634{
1635	if (pci_is_enabled(dev))
1636		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1637	return 0;
1638}
1639EXPORT_SYMBOL(pci_reenable_device);
1640
1641static void pci_enable_bridge(struct pci_dev *dev)
1642{
1643	struct pci_dev *bridge;
1644	int retval;
1645
1646	bridge = pci_upstream_bridge(dev);
1647	if (bridge)
1648		pci_enable_bridge(bridge);
1649
1650	if (pci_is_enabled(dev)) {
1651		if (!dev->is_busmaster)
1652			pci_set_master(dev);
1653		return;
1654	}
1655
1656	retval = pci_enable_device(dev);
1657	if (retval)
1658		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1659			retval);
1660	pci_set_master(dev);
1661}
1662
1663static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1664{
1665	struct pci_dev *bridge;
1666	int err;
1667	int i, bars = 0;
1668
1669	/*
1670	 * Power state could be unknown at this point, either due to a fresh
1671	 * boot or a device removal call.  So get the current power state
1672	 * so that things like MSI message writing will behave as expected
1673	 * (e.g. if the device really is in D0 at enable time).
1674	 */
1675	if (dev->pm_cap) {
1676		u16 pmcsr;
1677		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1678		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1679	}
1680
1681	if (atomic_inc_return(&dev->enable_cnt) > 1)
1682		return 0;		/* already enabled */
1683
1684	bridge = pci_upstream_bridge(dev);
1685	if (bridge)
1686		pci_enable_bridge(bridge);
1687
1688	/* only skip sriov related */
1689	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1690		if (dev->resource[i].flags & flags)
1691			bars |= (1 << i);
1692	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1693		if (dev->resource[i].flags & flags)
1694			bars |= (1 << i);
1695
1696	err = do_pci_enable_device(dev, bars);
1697	if (err < 0)
1698		atomic_dec(&dev->enable_cnt);
1699	return err;
1700}
1701
1702/**
1703 * pci_enable_device_io - Initialize a device for use with IO space
1704 * @dev: PCI device to be initialized
1705 *
1706 * Initialize device before it's used by a driver. Ask low-level code
1707 * to enable I/O resources. Wake up the device if it was suspended.
1708 * Beware, this function can fail.
1709 */
1710int pci_enable_device_io(struct pci_dev *dev)
1711{
1712	return pci_enable_device_flags(dev, IORESOURCE_IO);
1713}
1714EXPORT_SYMBOL(pci_enable_device_io);
1715
1716/**
1717 * pci_enable_device_mem - Initialize a device for use with Memory space
1718 * @dev: PCI device to be initialized
1719 *
1720 * Initialize device before it's used by a driver. Ask low-level code
1721 * to enable Memory resources. Wake up the device if it was suspended.
1722 * Beware, this function can fail.
1723 */
1724int pci_enable_device_mem(struct pci_dev *dev)
1725{
1726	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1727}
1728EXPORT_SYMBOL(pci_enable_device_mem);
1729
1730/**
1731 * pci_enable_device - Initialize device before it's used by a driver.
1732 * @dev: PCI device to be initialized
1733 *
1734 * Initialize device before it's used by a driver. Ask low-level code
1735 * to enable I/O and memory. Wake up the device if it was suspended.
1736 * Beware, this function can fail.
1737 *
1738 * Note we don't actually enable the device many times if we call
1739 * this function repeatedly (we just increment the count).
1740 */
1741int pci_enable_device(struct pci_dev *dev)
1742{
1743	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1744}
1745EXPORT_SYMBOL(pci_enable_device);
1746
1747/*
1748 * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1749 * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1750 * there's no need to track it separately.  pci_devres is initialized
1751 * when a device is enabled using managed PCI device enable interface.
1752 */
1753struct pci_devres {
1754	unsigned int enabled:1;
1755	unsigned int pinned:1;
1756	unsigned int orig_intx:1;
1757	unsigned int restore_intx:1;
1758	unsigned int mwi:1;
1759	u32 region_mask;
1760};
1761
1762static void pcim_release(struct device *gendev, void *res)
1763{
1764	struct pci_dev *dev = to_pci_dev(gendev);
1765	struct pci_devres *this = res;
1766	int i;
1767
1768	if (dev->msi_enabled)
1769		pci_disable_msi(dev);
1770	if (dev->msix_enabled)
1771		pci_disable_msix(dev);
1772
1773	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1774		if (this->region_mask & (1 << i))
1775			pci_release_region(dev, i);
1776
1777	if (this->mwi)
1778		pci_clear_mwi(dev);
1779
1780	if (this->restore_intx)
1781		pci_intx(dev, this->orig_intx);
1782
1783	if (this->enabled && !this->pinned)
1784		pci_disable_device(dev);
1785}
1786
1787static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1788{
1789	struct pci_devres *dr, *new_dr;
1790
1791	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1792	if (dr)
1793		return dr;
1794
1795	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1796	if (!new_dr)
1797		return NULL;
1798	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1799}
1800
1801static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1802{
1803	if (pci_is_managed(pdev))
1804		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1805	return NULL;
1806}
1807
1808/**
1809 * pcim_enable_device - Managed pci_enable_device()
1810 * @pdev: PCI device to be initialized
1811 *
1812 * Managed pci_enable_device().
1813 */
1814int pcim_enable_device(struct pci_dev *pdev)
1815{
1816	struct pci_devres *dr;
1817	int rc;
1818
1819	dr = get_pci_dr(pdev);
1820	if (unlikely(!dr))
1821		return -ENOMEM;
1822	if (dr->enabled)
1823		return 0;
1824
1825	rc = pci_enable_device(pdev);
1826	if (!rc) {
1827		pdev->is_managed = 1;
1828		dr->enabled = 1;
1829	}
1830	return rc;
1831}
1832EXPORT_SYMBOL(pcim_enable_device);
1833
1834/**
1835 * pcim_pin_device - Pin managed PCI device
1836 * @pdev: PCI device to pin
1837 *
1838 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1839 * driver detach.  @pdev must have been enabled with
1840 * pcim_enable_device().
1841 */
1842void pcim_pin_device(struct pci_dev *pdev)
1843{
1844	struct pci_devres *dr;
1845
1846	dr = find_pci_dr(pdev);
1847	WARN_ON(!dr || !dr->enabled);
1848	if (dr)
1849		dr->pinned = 1;
1850}
1851EXPORT_SYMBOL(pcim_pin_device);
1852
1853/*
1854 * pcibios_add_device - provide arch specific hooks when adding device dev
1855 * @dev: the PCI device being added
1856 *
1857 * Permits the platform to provide architecture specific functionality when
1858 * devices are added. This is the default implementation. Architecture
1859 * implementations can override this.
1860 */
1861int __weak pcibios_add_device(struct pci_dev *dev)
1862{
1863	return 0;
1864}
1865
1866/**
1867 * pcibios_release_device - provide arch specific hooks when releasing
1868 *			    device dev
1869 * @dev: the PCI device being released
1870 *
1871 * Permits the platform to provide architecture specific functionality when
1872 * devices are released. This is the default implementation. Architecture
1873 * implementations can override this.
1874 */
1875void __weak pcibios_release_device(struct pci_dev *dev) {}
1876
1877/**
1878 * pcibios_disable_device - disable arch specific PCI resources for device dev
1879 * @dev: the PCI device to disable
1880 *
1881 * Disables architecture specific PCI resources for the device. This
1882 * is the default implementation. Architecture implementations can
1883 * override this.
1884 */
1885void __weak pcibios_disable_device(struct pci_dev *dev) {}
1886
1887/**
1888 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1889 * @irq: ISA IRQ to penalize
1890 * @active: IRQ active or not
1891 *
1892 * Permits the platform to provide architecture-specific functionality when
1893 * penalizing ISA IRQs. This is the default implementation. Architecture
1894 * implementations can override this.
1895 */
1896void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1897
1898static void do_pci_disable_device(struct pci_dev *dev)
1899{
1900	u16 pci_command;
1901
1902	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1903	if (pci_command & PCI_COMMAND_MASTER) {
1904		pci_command &= ~PCI_COMMAND_MASTER;
1905		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1906	}
1907
1908	pcibios_disable_device(dev);
1909}
1910
1911/**
1912 * pci_disable_enabled_device - Disable device without updating enable_cnt
1913 * @dev: PCI device to disable
1914 *
1915 * NOTE: This function is a backend of PCI power management routines and is
1916 * not supposed to be called drivers.
1917 */
1918void pci_disable_enabled_device(struct pci_dev *dev)
1919{
1920	if (pci_is_enabled(dev))
1921		do_pci_disable_device(dev);
1922}
1923
1924/**
1925 * pci_disable_device - Disable PCI device after use
1926 * @dev: PCI device to be disabled
1927 *
1928 * Signal to the system that the PCI device is not in use by the system
1929 * anymore.  This only involves disabling PCI bus-mastering, if active.
1930 *
1931 * Note we don't actually disable the device until all callers of
1932 * pci_enable_device() have called pci_disable_device().
1933 */
1934void pci_disable_device(struct pci_dev *dev)
1935{
1936	struct pci_devres *dr;
1937
1938	dr = find_pci_dr(dev);
1939	if (dr)
1940		dr->enabled = 0;
1941
1942	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1943		      "disabling already-disabled device");
1944
1945	if (atomic_dec_return(&dev->enable_cnt) != 0)
1946		return;
1947
1948	do_pci_disable_device(dev);
1949
1950	dev->is_busmaster = 0;
1951}
1952EXPORT_SYMBOL(pci_disable_device);
1953
1954/**
1955 * pcibios_set_pcie_reset_state - set reset state for device dev
1956 * @dev: the PCIe device reset
1957 * @state: Reset state to enter into
1958 *
1959 * Set the PCIe reset state for the device. This is the default
1960 * implementation. Architecture implementations can override this.
1961 */
1962int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1963					enum pcie_reset_state state)
1964{
1965	return -EINVAL;
1966}
1967
1968/**
1969 * pci_set_pcie_reset_state - set reset state for device dev
1970 * @dev: the PCIe device reset
1971 * @state: Reset state to enter into
1972 *
1973 * Sets the PCI reset state for the device.
1974 */
1975int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1976{
1977	return pcibios_set_pcie_reset_state(dev, state);
1978}
1979EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1980
 
 
 
 
 
 
 
 
 
 
1981/**
1982 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1983 * @dev: PCIe root port or event collector.
1984 */
1985void pcie_clear_root_pme_status(struct pci_dev *dev)
1986{
1987	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1988}
1989
1990/**
1991 * pci_check_pme_status - Check if given device has generated PME.
1992 * @dev: Device to check.
1993 *
1994 * Check the PME status of the device and if set, clear it and clear PME enable
1995 * (if set).  Return 'true' if PME status and PME enable were both set or
1996 * 'false' otherwise.
1997 */
1998bool pci_check_pme_status(struct pci_dev *dev)
1999{
2000	int pmcsr_pos;
2001	u16 pmcsr;
2002	bool ret = false;
2003
2004	if (!dev->pm_cap)
2005		return false;
2006
2007	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2008	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2009	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2010		return false;
2011
2012	/* Clear PME status. */
2013	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2014	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2015		/* Disable PME to avoid interrupt flood. */
2016		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2017		ret = true;
2018	}
2019
2020	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2021
2022	return ret;
2023}
2024
2025/**
2026 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2027 * @dev: Device to handle.
2028 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2029 *
2030 * Check if @dev has generated PME and queue a resume request for it in that
2031 * case.
2032 */
2033static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2034{
2035	if (pme_poll_reset && dev->pme_poll)
2036		dev->pme_poll = false;
2037
2038	if (pci_check_pme_status(dev)) {
2039		pci_wakeup_event(dev);
2040		pm_request_resume(&dev->dev);
2041	}
2042	return 0;
2043}
2044
2045/**
2046 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2047 * @bus: Top bus of the subtree to walk.
2048 */
2049void pci_pme_wakeup_bus(struct pci_bus *bus)
2050{
2051	if (bus)
2052		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2053}
2054
2055
2056/**
2057 * pci_pme_capable - check the capability of PCI device to generate PME#
2058 * @dev: PCI device to handle.
2059 * @state: PCI state from which device will issue PME#.
2060 */
2061bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2062{
2063	if (!dev->pm_cap)
2064		return false;
2065
2066	return !!(dev->pme_support & (1 << state));
2067}
2068EXPORT_SYMBOL(pci_pme_capable);
2069
2070static void pci_pme_list_scan(struct work_struct *work)
2071{
2072	struct pci_pme_device *pme_dev, *n;
2073
2074	mutex_lock(&pci_pme_list_mutex);
2075	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2076		if (pme_dev->dev->pme_poll) {
2077			struct pci_dev *bridge;
2078
2079			bridge = pme_dev->dev->bus->self;
2080			/*
2081			 * If bridge is in low power state, the
2082			 * configuration space of subordinate devices
2083			 * may be not accessible
2084			 */
2085			if (bridge && bridge->current_state != PCI_D0)
2086				continue;
2087			/*
2088			 * If the device is in D3cold it should not be
2089			 * polled either.
2090			 */
2091			if (pme_dev->dev->current_state == PCI_D3cold)
2092				continue;
2093
2094			pci_pme_wakeup(pme_dev->dev, NULL);
2095		} else {
2096			list_del(&pme_dev->list);
2097			kfree(pme_dev);
2098		}
2099	}
2100	if (!list_empty(&pci_pme_list))
2101		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2102				   msecs_to_jiffies(PME_TIMEOUT));
2103	mutex_unlock(&pci_pme_list_mutex);
2104}
2105
2106static void __pci_pme_active(struct pci_dev *dev, bool enable)
2107{
2108	u16 pmcsr;
2109
2110	if (!dev->pme_support)
2111		return;
2112
2113	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2114	/* Clear PME_Status by writing 1 to it and enable PME# */
2115	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2116	if (!enable)
2117		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2118
2119	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2120}
2121
2122/**
2123 * pci_pme_restore - Restore PME configuration after config space restore.
2124 * @dev: PCI device to update.
2125 */
2126void pci_pme_restore(struct pci_dev *dev)
2127{
2128	u16 pmcsr;
2129
2130	if (!dev->pme_support)
2131		return;
2132
2133	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2134	if (dev->wakeup_prepared) {
2135		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2136		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2137	} else {
2138		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2139		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2140	}
2141	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2142}
2143
2144/**
2145 * pci_pme_active - enable or disable PCI device's PME# function
2146 * @dev: PCI device to handle.
2147 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2148 *
2149 * The caller must verify that the device is capable of generating PME# before
2150 * calling this function with @enable equal to 'true'.
2151 */
2152void pci_pme_active(struct pci_dev *dev, bool enable)
2153{
2154	__pci_pme_active(dev, enable);
2155
2156	/*
2157	 * PCI (as opposed to PCIe) PME requires that the device have
2158	 * its PME# line hooked up correctly. Not all hardware vendors
2159	 * do this, so the PME never gets delivered and the device
2160	 * remains asleep. The easiest way around this is to
2161	 * periodically walk the list of suspended devices and check
2162	 * whether any have their PME flag set. The assumption is that
2163	 * we'll wake up often enough anyway that this won't be a huge
2164	 * hit, and the power savings from the devices will still be a
2165	 * win.
2166	 *
2167	 * Although PCIe uses in-band PME message instead of PME# line
2168	 * to report PME, PME does not work for some PCIe devices in
2169	 * reality.  For example, there are devices that set their PME
2170	 * status bits, but don't really bother to send a PME message;
2171	 * there are PCI Express Root Ports that don't bother to
2172	 * trigger interrupts when they receive PME messages from the
2173	 * devices below.  So PME poll is used for PCIe devices too.
2174	 */
2175
2176	if (dev->pme_poll) {
2177		struct pci_pme_device *pme_dev;
2178		if (enable) {
2179			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2180					  GFP_KERNEL);
2181			if (!pme_dev) {
2182				pci_warn(dev, "can't enable PME#\n");
2183				return;
2184			}
2185			pme_dev->dev = dev;
2186			mutex_lock(&pci_pme_list_mutex);
2187			list_add(&pme_dev->list, &pci_pme_list);
2188			if (list_is_singular(&pci_pme_list))
2189				queue_delayed_work(system_freezable_wq,
2190						   &pci_pme_work,
2191						   msecs_to_jiffies(PME_TIMEOUT));
2192			mutex_unlock(&pci_pme_list_mutex);
2193		} else {
2194			mutex_lock(&pci_pme_list_mutex);
2195			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2196				if (pme_dev->dev == dev) {
2197					list_del(&pme_dev->list);
2198					kfree(pme_dev);
2199					break;
2200				}
2201			}
2202			mutex_unlock(&pci_pme_list_mutex);
2203		}
2204	}
2205
2206	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2207}
2208EXPORT_SYMBOL(pci_pme_active);
2209
2210/**
2211 * __pci_enable_wake - enable PCI device as wakeup event source
2212 * @dev: PCI device affected
2213 * @state: PCI state from which device will issue wakeup events
2214 * @enable: True to enable event generation; false to disable
2215 *
2216 * This enables the device as a wakeup event source, or disables it.
2217 * When such events involves platform-specific hooks, those hooks are
2218 * called automatically by this routine.
2219 *
2220 * Devices with legacy power management (no standard PCI PM capabilities)
2221 * always require such platform hooks.
2222 *
2223 * RETURN VALUE:
2224 * 0 is returned on success
2225 * -EINVAL is returned if device is not supposed to wake up the system
2226 * Error code depending on the platform is returned if both the platform and
2227 * the native mechanism fail to enable the generation of wake-up events
2228 */
2229static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2230{
2231	int ret = 0;
2232
2233	/*
2234	 * Bridges that are not power-manageable directly only signal
2235	 * wakeup on behalf of subordinate devices which is set up
2236	 * elsewhere, so skip them. However, bridges that are
2237	 * power-manageable may signal wakeup for themselves (for example,
2238	 * on a hotplug event) and they need to be covered here.
2239	 */
2240	if (!pci_power_manageable(dev))
2241		return 0;
2242
2243	/* Don't do the same thing twice in a row for one device. */
2244	if (!!enable == !!dev->wakeup_prepared)
2245		return 0;
2246
2247	/*
2248	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2249	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2250	 * enable.  To disable wake-up we call the platform first, for symmetry.
2251	 */
2252
2253	if (enable) {
2254		int error;
2255
2256		if (pci_pme_capable(dev, state))
 
 
 
 
 
 
 
2257			pci_pme_active(dev, true);
2258		else
2259			ret = 1;
2260		error = platform_pci_set_wakeup(dev, true);
2261		if (ret)
2262			ret = error;
2263		if (!ret)
2264			dev->wakeup_prepared = true;
2265	} else {
2266		platform_pci_set_wakeup(dev, false);
2267		pci_pme_active(dev, false);
2268		dev->wakeup_prepared = false;
2269	}
2270
2271	return ret;
2272}
2273
2274/**
2275 * pci_enable_wake - change wakeup settings for a PCI device
2276 * @pci_dev: Target device
2277 * @state: PCI state from which device will issue wakeup events
2278 * @enable: Whether or not to enable event generation
2279 *
2280 * If @enable is set, check device_may_wakeup() for the device before calling
2281 * __pci_enable_wake() for it.
2282 */
2283int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2284{
2285	if (enable && !device_may_wakeup(&pci_dev->dev))
2286		return -EINVAL;
2287
2288	return __pci_enable_wake(pci_dev, state, enable);
2289}
2290EXPORT_SYMBOL(pci_enable_wake);
2291
2292/**
2293 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2294 * @dev: PCI device to prepare
2295 * @enable: True to enable wake-up event generation; false to disable
2296 *
2297 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2298 * and this function allows them to set that up cleanly - pci_enable_wake()
2299 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2300 * ordering constraints.
2301 *
2302 * This function only returns error code if the device is not allowed to wake
2303 * up the system from sleep or it is not capable of generating PME# from both
2304 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2305 */
2306int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2307{
2308	return pci_pme_capable(dev, PCI_D3cold) ?
2309			pci_enable_wake(dev, PCI_D3cold, enable) :
2310			pci_enable_wake(dev, PCI_D3hot, enable);
2311}
2312EXPORT_SYMBOL(pci_wake_from_d3);
2313
2314/**
2315 * pci_target_state - find an appropriate low power state for a given PCI dev
2316 * @dev: PCI device
2317 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2318 *
2319 * Use underlying platform code to find a supported low power state for @dev.
2320 * If the platform can't manage @dev, return the deepest state from which it
2321 * can generate wake events, based on any available PME info.
2322 */
2323static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2324{
2325	pci_power_t target_state = PCI_D3hot;
2326
2327	if (platform_pci_power_manageable(dev)) {
2328		/*
2329		 * Call the platform to find the target state for the device.
2330		 */
2331		pci_power_t state = platform_pci_choose_state(dev);
2332
2333		switch (state) {
2334		case PCI_POWER_ERROR:
2335		case PCI_UNKNOWN:
2336			break;
 
2337		case PCI_D1:
2338		case PCI_D2:
2339			if (pci_no_d1d2(dev))
2340				break;
2341			/* else, fall through */
2342		default:
2343			target_state = state;
2344		}
2345
2346		return target_state;
2347	}
2348
2349	if (!dev->pm_cap)
2350		target_state = PCI_D0;
2351
2352	/*
2353	 * If the device is in D3cold even though it's not power-manageable by
2354	 * the platform, it may have been powered down by non-standard means.
2355	 * Best to let it slumber.
2356	 */
2357	if (dev->current_state == PCI_D3cold)
2358		target_state = PCI_D3cold;
 
 
 
 
 
2359
2360	if (wakeup) {
2361		/*
2362		 * Find the deepest state from which the device can generate
2363		 * PME#.
2364		 */
2365		if (dev->pme_support) {
2366			while (target_state
2367			      && !(dev->pme_support & (1 << target_state)))
2368				target_state--;
2369		}
 
 
2370	}
2371
2372	return target_state;
2373}
2374
2375/**
2376 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2377 *			  into a sleep state
2378 * @dev: Device to handle.
2379 *
2380 * Choose the power state appropriate for the device depending on whether
2381 * it can wake up the system and/or is power manageable by the platform
2382 * (PCI_D3hot is the default) and put the device into that state.
2383 */
2384int pci_prepare_to_sleep(struct pci_dev *dev)
2385{
2386	bool wakeup = device_may_wakeup(&dev->dev);
2387	pci_power_t target_state = pci_target_state(dev, wakeup);
2388	int error;
2389
2390	if (target_state == PCI_POWER_ERROR)
2391		return -EIO;
2392
2393	pci_enable_wake(dev, target_state, wakeup);
2394
2395	error = pci_set_power_state(dev, target_state);
2396
2397	if (error)
2398		pci_enable_wake(dev, target_state, false);
2399
2400	return error;
2401}
2402EXPORT_SYMBOL(pci_prepare_to_sleep);
2403
2404/**
2405 * pci_back_from_sleep - turn PCI device on during system-wide transition
2406 *			 into working state
2407 * @dev: Device to handle.
2408 *
2409 * Disable device's system wake-up capability and put it into D0.
2410 */
2411int pci_back_from_sleep(struct pci_dev *dev)
2412{
 
 
 
 
 
2413	pci_enable_wake(dev, PCI_D0, false);
2414	return pci_set_power_state(dev, PCI_D0);
2415}
2416EXPORT_SYMBOL(pci_back_from_sleep);
2417
2418/**
2419 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2420 * @dev: PCI device being suspended.
2421 *
2422 * Prepare @dev to generate wake-up events at run time and put it into a low
2423 * power state.
2424 */
2425int pci_finish_runtime_suspend(struct pci_dev *dev)
2426{
2427	pci_power_t target_state;
2428	int error;
2429
2430	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2431	if (target_state == PCI_POWER_ERROR)
2432		return -EIO;
2433
2434	dev->runtime_d3cold = target_state == PCI_D3cold;
2435
2436	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2437
2438	error = pci_set_power_state(dev, target_state);
2439
2440	if (error) {
2441		pci_enable_wake(dev, target_state, false);
2442		dev->runtime_d3cold = false;
2443	}
2444
2445	return error;
2446}
2447
2448/**
2449 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2450 * @dev: Device to check.
2451 *
2452 * Return true if the device itself is capable of generating wake-up events
2453 * (through the platform or using the native PCIe PME) or if the device supports
2454 * PME and one of its upstream bridges can generate wake-up events.
2455 */
2456bool pci_dev_run_wake(struct pci_dev *dev)
2457{
2458	struct pci_bus *bus = dev->bus;
2459
2460	if (!dev->pme_support)
2461		return false;
2462
2463	/* PME-capable in principle, but not from the target power state */
2464	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2465		return false;
2466
2467	if (device_can_wakeup(&dev->dev))
2468		return true;
2469
2470	while (bus->parent) {
2471		struct pci_dev *bridge = bus->self;
2472
2473		if (device_can_wakeup(&bridge->dev))
2474			return true;
2475
2476		bus = bus->parent;
2477	}
2478
2479	/* We have reached the root bus. */
2480	if (bus->bridge)
2481		return device_can_wakeup(bus->bridge);
2482
2483	return false;
2484}
2485EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2486
2487/**
2488 * pci_dev_need_resume - Check if it is necessary to resume the device.
2489 * @pci_dev: Device to check.
2490 *
2491 * Return 'true' if the device is not runtime-suspended or it has to be
2492 * reconfigured due to wakeup settings difference between system and runtime
2493 * suspend, or the current power state of it is not suitable for the upcoming
2494 * (system-wide) transition.
2495 */
2496bool pci_dev_need_resume(struct pci_dev *pci_dev)
2497{
2498	struct device *dev = &pci_dev->dev;
2499	pci_power_t target_state;
2500
2501	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2502		return true;
2503
2504	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2505
2506	/*
2507	 * If the earlier platform check has not triggered, D3cold is just power
2508	 * removal on top of D3hot, so no need to resume the device in that
2509	 * case.
2510	 */
2511	return target_state != pci_dev->current_state &&
2512		target_state != PCI_D3cold &&
2513		pci_dev->current_state != PCI_D3hot;
2514}
2515
2516/**
2517 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2518 * @pci_dev: Device to check.
2519 *
2520 * If the device is suspended and it is not configured for system wakeup,
2521 * disable PME for it to prevent it from waking up the system unnecessarily.
2522 *
2523 * Note that if the device's power state is D3cold and the platform check in
2524 * pci_dev_need_resume() has not triggered, the device's configuration need not
2525 * be changed.
2526 */
2527void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2528{
2529	struct device *dev = &pci_dev->dev;
2530
2531	spin_lock_irq(&dev->power.lock);
2532
2533	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2534	    pci_dev->current_state < PCI_D3cold)
2535		__pci_pme_active(pci_dev, false);
2536
2537	spin_unlock_irq(&dev->power.lock);
2538}
2539
2540/**
2541 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2542 * @pci_dev: Device to handle.
2543 *
2544 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2545 * it might have been disabled during the prepare phase of system suspend if
2546 * the device was not configured for system wakeup.
2547 */
2548void pci_dev_complete_resume(struct pci_dev *pci_dev)
2549{
2550	struct device *dev = &pci_dev->dev;
2551
2552	if (!pci_dev_run_wake(pci_dev))
2553		return;
2554
2555	spin_lock_irq(&dev->power.lock);
2556
2557	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2558		__pci_pme_active(pci_dev, true);
2559
2560	spin_unlock_irq(&dev->power.lock);
2561}
2562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2563void pci_config_pm_runtime_get(struct pci_dev *pdev)
2564{
2565	struct device *dev = &pdev->dev;
2566	struct device *parent = dev->parent;
2567
2568	if (parent)
2569		pm_runtime_get_sync(parent);
2570	pm_runtime_get_noresume(dev);
2571	/*
2572	 * pdev->current_state is set to PCI_D3cold during suspending,
2573	 * so wait until suspending completes
2574	 */
2575	pm_runtime_barrier(dev);
2576	/*
2577	 * Only need to resume devices in D3cold, because config
2578	 * registers are still accessible for devices suspended but
2579	 * not in D3cold.
2580	 */
2581	if (pdev->current_state == PCI_D3cold)
2582		pm_runtime_resume(dev);
2583}
2584
2585void pci_config_pm_runtime_put(struct pci_dev *pdev)
2586{
2587	struct device *dev = &pdev->dev;
2588	struct device *parent = dev->parent;
2589
2590	pm_runtime_put(dev);
2591	if (parent)
2592		pm_runtime_put_sync(parent);
2593}
2594
2595static const struct dmi_system_id bridge_d3_blacklist[] = {
2596#ifdef CONFIG_X86
2597	{
2598		/*
2599		 * Gigabyte X299 root port is not marked as hotplug capable
2600		 * which allows Linux to power manage it.  However, this
2601		 * confuses the BIOS SMI handler so don't power manage root
2602		 * ports on that system.
2603		 */
2604		.ident = "X299 DESIGNARE EX-CF",
2605		.matches = {
2606			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2607			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2608		},
2609	},
 
 
 
 
 
 
 
 
 
 
 
 
2610#endif
2611	{ }
2612};
2613
2614/**
2615 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2616 * @bridge: Bridge to check
2617 *
2618 * This function checks if it is possible to move the bridge to D3.
2619 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2620 */
2621bool pci_bridge_d3_possible(struct pci_dev *bridge)
2622{
2623	if (!pci_is_pcie(bridge))
2624		return false;
2625
2626	switch (pci_pcie_type(bridge)) {
2627	case PCI_EXP_TYPE_ROOT_PORT:
2628	case PCI_EXP_TYPE_UPSTREAM:
2629	case PCI_EXP_TYPE_DOWNSTREAM:
2630		if (pci_bridge_d3_disable)
2631			return false;
2632
2633		/*
2634		 * Hotplug ports handled by firmware in System Management Mode
2635		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2636		 */
2637		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2638			return false;
2639
2640		if (pci_bridge_d3_force)
2641			return true;
2642
2643		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2644		if (bridge->is_thunderbolt)
2645			return true;
2646
2647		/* Platform might know better if the bridge supports D3 */
2648		if (platform_pci_bridge_d3(bridge))
2649			return true;
2650
2651		/*
2652		 * Hotplug ports handled natively by the OS were not validated
2653		 * by vendors for runtime D3 at least until 2018 because there
2654		 * was no OS support.
2655		 */
2656		if (bridge->is_hotplug_bridge)
2657			return false;
2658
2659		if (dmi_check_system(bridge_d3_blacklist))
2660			return false;
2661
2662		/*
2663		 * It should be safe to put PCIe ports from 2015 or newer
2664		 * to D3.
2665		 */
2666		if (dmi_get_bios_year() >= 2015)
2667			return true;
2668		break;
2669	}
2670
2671	return false;
2672}
2673
2674static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2675{
2676	bool *d3cold_ok = data;
2677
2678	if (/* The device needs to be allowed to go D3cold ... */
2679	    dev->no_d3cold || !dev->d3cold_allowed ||
2680
2681	    /* ... and if it is wakeup capable to do so from D3cold. */
2682	    (device_may_wakeup(&dev->dev) &&
2683	     !pci_pme_capable(dev, PCI_D3cold)) ||
2684
2685	    /* If it is a bridge it must be allowed to go to D3. */
2686	    !pci_power_manageable(dev))
2687
2688		*d3cold_ok = false;
2689
2690	return !*d3cold_ok;
2691}
2692
2693/*
2694 * pci_bridge_d3_update - Update bridge D3 capabilities
2695 * @dev: PCI device which is changed
2696 *
2697 * Update upstream bridge PM capabilities accordingly depending on if the
2698 * device PM configuration was changed or the device is being removed.  The
2699 * change is also propagated upstream.
2700 */
2701void pci_bridge_d3_update(struct pci_dev *dev)
2702{
2703	bool remove = !device_is_registered(&dev->dev);
2704	struct pci_dev *bridge;
2705	bool d3cold_ok = true;
2706
2707	bridge = pci_upstream_bridge(dev);
2708	if (!bridge || !pci_bridge_d3_possible(bridge))
2709		return;
2710
2711	/*
2712	 * If D3 is currently allowed for the bridge, removing one of its
2713	 * children won't change that.
2714	 */
2715	if (remove && bridge->bridge_d3)
2716		return;
2717
2718	/*
2719	 * If D3 is currently allowed for the bridge and a child is added or
2720	 * changed, disallowance of D3 can only be caused by that child, so
2721	 * we only need to check that single device, not any of its siblings.
2722	 *
2723	 * If D3 is currently not allowed for the bridge, checking the device
2724	 * first may allow us to skip checking its siblings.
2725	 */
2726	if (!remove)
2727		pci_dev_check_d3cold(dev, &d3cold_ok);
2728
2729	/*
2730	 * If D3 is currently not allowed for the bridge, this may be caused
2731	 * either by the device being changed/removed or any of its siblings,
2732	 * so we need to go through all children to find out if one of them
2733	 * continues to block D3.
2734	 */
2735	if (d3cold_ok && !bridge->bridge_d3)
2736		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2737			     &d3cold_ok);
2738
2739	if (bridge->bridge_d3 != d3cold_ok) {
2740		bridge->bridge_d3 = d3cold_ok;
2741		/* Propagate change to upstream bridges */
2742		pci_bridge_d3_update(bridge);
2743	}
2744}
2745
2746/**
2747 * pci_d3cold_enable - Enable D3cold for device
2748 * @dev: PCI device to handle
2749 *
2750 * This function can be used in drivers to enable D3cold from the device
2751 * they handle.  It also updates upstream PCI bridge PM capabilities
2752 * accordingly.
2753 */
2754void pci_d3cold_enable(struct pci_dev *dev)
2755{
2756	if (dev->no_d3cold) {
2757		dev->no_d3cold = false;
2758		pci_bridge_d3_update(dev);
2759	}
2760}
2761EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2762
2763/**
2764 * pci_d3cold_disable - Disable D3cold for device
2765 * @dev: PCI device to handle
2766 *
2767 * This function can be used in drivers to disable D3cold from the device
2768 * they handle.  It also updates upstream PCI bridge PM capabilities
2769 * accordingly.
2770 */
2771void pci_d3cold_disable(struct pci_dev *dev)
2772{
2773	if (!dev->no_d3cold) {
2774		dev->no_d3cold = true;
2775		pci_bridge_d3_update(dev);
2776	}
2777}
2778EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2779
2780/**
2781 * pci_pm_init - Initialize PM functions of given PCI device
2782 * @dev: PCI device to handle.
2783 */
2784void pci_pm_init(struct pci_dev *dev)
2785{
2786	int pm;
2787	u16 status;
2788	u16 pmc;
2789
2790	pm_runtime_forbid(&dev->dev);
2791	pm_runtime_set_active(&dev->dev);
2792	pm_runtime_enable(&dev->dev);
2793	device_enable_async_suspend(&dev->dev);
2794	dev->wakeup_prepared = false;
2795
2796	dev->pm_cap = 0;
2797	dev->pme_support = 0;
2798
2799	/* find PCI PM capability in list */
2800	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2801	if (!pm)
2802		return;
2803	/* Check device's ability to generate PME# */
2804	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2805
2806	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2807		pci_err(dev, "unsupported PM cap regs version (%u)\n",
2808			pmc & PCI_PM_CAP_VER_MASK);
2809		return;
2810	}
2811
2812	dev->pm_cap = pm;
2813	dev->d3_delay = PCI_PM_D3_WAIT;
2814	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2815	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2816	dev->d3cold_allowed = true;
2817
2818	dev->d1_support = false;
2819	dev->d2_support = false;
2820	if (!pci_no_d1d2(dev)) {
2821		if (pmc & PCI_PM_CAP_D1)
2822			dev->d1_support = true;
2823		if (pmc & PCI_PM_CAP_D2)
2824			dev->d2_support = true;
2825
2826		if (dev->d1_support || dev->d2_support)
2827			pci_info(dev, "supports%s%s\n",
2828				   dev->d1_support ? " D1" : "",
2829				   dev->d2_support ? " D2" : "");
2830	}
2831
2832	pmc &= PCI_PM_CAP_PME_MASK;
2833	if (pmc) {
2834		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
2835			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2836			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2837			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2838			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2839			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2840		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2841		dev->pme_poll = true;
2842		/*
2843		 * Make device's PM flags reflect the wake-up capability, but
2844		 * let the user space enable it to wake up the system as needed.
2845		 */
2846		device_set_wakeup_capable(&dev->dev, true);
2847		/* Disable the PME# generation functionality */
2848		pci_pme_active(dev, false);
2849	}
2850
2851	pci_read_config_word(dev, PCI_STATUS, &status);
2852	if (status & PCI_STATUS_IMM_READY)
2853		dev->imm_ready = 1;
2854}
2855
2856static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2857{
2858	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2859
2860	switch (prop) {
2861	case PCI_EA_P_MEM:
2862	case PCI_EA_P_VF_MEM:
2863		flags |= IORESOURCE_MEM;
2864		break;
2865	case PCI_EA_P_MEM_PREFETCH:
2866	case PCI_EA_P_VF_MEM_PREFETCH:
2867		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2868		break;
2869	case PCI_EA_P_IO:
2870		flags |= IORESOURCE_IO;
2871		break;
2872	default:
2873		return 0;
2874	}
2875
2876	return flags;
2877}
2878
2879static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2880					    u8 prop)
2881{
2882	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2883		return &dev->resource[bei];
2884#ifdef CONFIG_PCI_IOV
2885	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2886		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2887		return &dev->resource[PCI_IOV_RESOURCES +
2888				      bei - PCI_EA_BEI_VF_BAR0];
2889#endif
2890	else if (bei == PCI_EA_BEI_ROM)
2891		return &dev->resource[PCI_ROM_RESOURCE];
2892	else
2893		return NULL;
2894}
2895
2896/* Read an Enhanced Allocation (EA) entry */
2897static int pci_ea_read(struct pci_dev *dev, int offset)
2898{
2899	struct resource *res;
2900	int ent_size, ent_offset = offset;
2901	resource_size_t start, end;
2902	unsigned long flags;
2903	u32 dw0, bei, base, max_offset;
2904	u8 prop;
2905	bool support_64 = (sizeof(resource_size_t) >= 8);
2906
2907	pci_read_config_dword(dev, ent_offset, &dw0);
2908	ent_offset += 4;
2909
2910	/* Entry size field indicates DWORDs after 1st */
2911	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2912
2913	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2914		goto out;
2915
2916	bei = (dw0 & PCI_EA_BEI) >> 4;
2917	prop = (dw0 & PCI_EA_PP) >> 8;
2918
2919	/*
2920	 * If the Property is in the reserved range, try the Secondary
2921	 * Property instead.
2922	 */
2923	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2924		prop = (dw0 & PCI_EA_SP) >> 16;
2925	if (prop > PCI_EA_P_BRIDGE_IO)
2926		goto out;
2927
2928	res = pci_ea_get_resource(dev, bei, prop);
2929	if (!res) {
2930		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2931		goto out;
2932	}
2933
2934	flags = pci_ea_flags(dev, prop);
2935	if (!flags) {
2936		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2937		goto out;
2938	}
2939
2940	/* Read Base */
2941	pci_read_config_dword(dev, ent_offset, &base);
2942	start = (base & PCI_EA_FIELD_MASK);
2943	ent_offset += 4;
2944
2945	/* Read MaxOffset */
2946	pci_read_config_dword(dev, ent_offset, &max_offset);
2947	ent_offset += 4;
2948
2949	/* Read Base MSBs (if 64-bit entry) */
2950	if (base & PCI_EA_IS_64) {
2951		u32 base_upper;
2952
2953		pci_read_config_dword(dev, ent_offset, &base_upper);
2954		ent_offset += 4;
2955
2956		flags |= IORESOURCE_MEM_64;
2957
2958		/* entry starts above 32-bit boundary, can't use */
2959		if (!support_64 && base_upper)
2960			goto out;
2961
2962		if (support_64)
2963			start |= ((u64)base_upper << 32);
2964	}
2965
2966	end = start + (max_offset | 0x03);
2967
2968	/* Read MaxOffset MSBs (if 64-bit entry) */
2969	if (max_offset & PCI_EA_IS_64) {
2970		u32 max_offset_upper;
2971
2972		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2973		ent_offset += 4;
2974
2975		flags |= IORESOURCE_MEM_64;
2976
2977		/* entry too big, can't use */
2978		if (!support_64 && max_offset_upper)
2979			goto out;
2980
2981		if (support_64)
2982			end += ((u64)max_offset_upper << 32);
2983	}
2984
2985	if (end < start) {
2986		pci_err(dev, "EA Entry crosses address boundary\n");
2987		goto out;
2988	}
2989
2990	if (ent_size != ent_offset - offset) {
2991		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2992			ent_size, ent_offset - offset);
2993		goto out;
2994	}
2995
2996	res->name = pci_name(dev);
2997	res->start = start;
2998	res->end = end;
2999	res->flags = flags;
3000
3001	if (bei <= PCI_EA_BEI_BAR5)
3002		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3003			   bei, res, prop);
3004	else if (bei == PCI_EA_BEI_ROM)
3005		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3006			   res, prop);
3007	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3008		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3009			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3010	else
3011		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3012			   bei, res, prop);
3013
3014out:
3015	return offset + ent_size;
3016}
3017
3018/* Enhanced Allocation Initialization */
3019void pci_ea_init(struct pci_dev *dev)
3020{
3021	int ea;
3022	u8 num_ent;
3023	int offset;
3024	int i;
3025
3026	/* find PCI EA capability in list */
3027	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3028	if (!ea)
3029		return;
3030
3031	/* determine the number of entries */
3032	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3033					&num_ent);
3034	num_ent &= PCI_EA_NUM_ENT_MASK;
3035
3036	offset = ea + PCI_EA_FIRST_ENT;
3037
3038	/* Skip DWORD 2 for type 1 functions */
3039	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3040		offset += 4;
3041
3042	/* parse each EA entry */
3043	for (i = 0; i < num_ent; ++i)
3044		offset = pci_ea_read(dev, offset);
3045}
3046
3047static void pci_add_saved_cap(struct pci_dev *pci_dev,
3048	struct pci_cap_saved_state *new_cap)
3049{
3050	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3051}
3052
3053/**
3054 * _pci_add_cap_save_buffer - allocate buffer for saving given
3055 *			      capability registers
3056 * @dev: the PCI device
3057 * @cap: the capability to allocate the buffer for
3058 * @extended: Standard or Extended capability ID
3059 * @size: requested size of the buffer
3060 */
3061static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3062				    bool extended, unsigned int size)
3063{
3064	int pos;
3065	struct pci_cap_saved_state *save_state;
3066
3067	if (extended)
3068		pos = pci_find_ext_capability(dev, cap);
3069	else
3070		pos = pci_find_capability(dev, cap);
3071
3072	if (!pos)
3073		return 0;
3074
3075	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3076	if (!save_state)
3077		return -ENOMEM;
3078
3079	save_state->cap.cap_nr = cap;
3080	save_state->cap.cap_extended = extended;
3081	save_state->cap.size = size;
3082	pci_add_saved_cap(dev, save_state);
3083
3084	return 0;
3085}
3086
3087int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3088{
3089	return _pci_add_cap_save_buffer(dev, cap, false, size);
3090}
3091
3092int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3093{
3094	return _pci_add_cap_save_buffer(dev, cap, true, size);
3095}
3096
3097/**
3098 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3099 * @dev: the PCI device
3100 */
3101void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3102{
3103	int error;
3104
3105	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3106					PCI_EXP_SAVE_REGS * sizeof(u16));
3107	if (error)
3108		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3109
3110	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3111	if (error)
3112		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3113
3114	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3115					    2 * sizeof(u16));
3116	if (error)
3117		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3118
3119	pci_allocate_vc_save_buffers(dev);
3120}
3121
3122void pci_free_cap_save_buffers(struct pci_dev *dev)
3123{
3124	struct pci_cap_saved_state *tmp;
3125	struct hlist_node *n;
3126
3127	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3128		kfree(tmp);
3129}
3130
3131/**
3132 * pci_configure_ari - enable or disable ARI forwarding
3133 * @dev: the PCI device
3134 *
3135 * If @dev and its upstream bridge both support ARI, enable ARI in the
3136 * bridge.  Otherwise, disable ARI in the bridge.
3137 */
3138void pci_configure_ari(struct pci_dev *dev)
3139{
3140	u32 cap;
3141	struct pci_dev *bridge;
3142
3143	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3144		return;
3145
3146	bridge = dev->bus->self;
3147	if (!bridge)
3148		return;
3149
3150	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3151	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3152		return;
3153
3154	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3155		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3156					 PCI_EXP_DEVCTL2_ARI);
3157		bridge->ari_enabled = 1;
3158	} else {
3159		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3160					   PCI_EXP_DEVCTL2_ARI);
3161		bridge->ari_enabled = 0;
3162	}
3163}
3164
3165static int pci_acs_enable;
3166
3167/**
3168 * pci_request_acs - ask for ACS to be enabled if supported
3169 */
3170void pci_request_acs(void)
3171{
3172	pci_acs_enable = 1;
3173}
3174
3175static const char *disable_acs_redir_param;
3176
3177/**
3178 * pci_disable_acs_redir - disable ACS redirect capabilities
3179 * @dev: the PCI device
3180 *
3181 * For only devices specified in the disable_acs_redir parameter.
3182 */
3183static void pci_disable_acs_redir(struct pci_dev *dev)
3184{
3185	int ret = 0;
3186	const char *p;
3187	int pos;
3188	u16 ctrl;
3189
3190	if (!disable_acs_redir_param)
3191		return;
3192
3193	p = disable_acs_redir_param;
3194	while (*p) {
3195		ret = pci_dev_str_match(dev, p, &p);
3196		if (ret < 0) {
3197			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3198				     disable_acs_redir_param);
3199
3200			break;
3201		} else if (ret == 1) {
3202			/* Found a match */
3203			break;
3204		}
3205
3206		if (*p != ';' && *p != ',') {
3207			/* End of param or invalid format */
3208			break;
3209		}
3210		p++;
3211	}
3212
3213	if (ret != 1)
3214		return;
3215
3216	if (!pci_dev_specific_disable_acs_redir(dev))
3217		return;
3218
3219	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3220	if (!pos) {
3221		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3222		return;
3223	}
3224
3225	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3226
3227	/* P2P Request & Completion Redirect */
3228	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3229
3230	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3231
3232	pci_info(dev, "disabled ACS redirect\n");
3233}
3234
3235/**
3236 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
3237 * @dev: the PCI device
3238 */
3239static void pci_std_enable_acs(struct pci_dev *dev)
3240{
3241	int pos;
3242	u16 cap;
3243	u16 ctrl;
3244
3245	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3246	if (!pos)
3247		return;
3248
3249	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3250	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3251
3252	/* Source Validation */
3253	ctrl |= (cap & PCI_ACS_SV);
3254
3255	/* P2P Request Redirect */
3256	ctrl |= (cap & PCI_ACS_RR);
3257
3258	/* P2P Completion Redirect */
3259	ctrl |= (cap & PCI_ACS_CR);
3260
3261	/* Upstream Forwarding */
3262	ctrl |= (cap & PCI_ACS_UF);
3263
3264	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3265}
3266
3267/**
3268 * pci_enable_acs - enable ACS if hardware support it
3269 * @dev: the PCI device
3270 */
3271void pci_enable_acs(struct pci_dev *dev)
3272{
3273	if (!pci_acs_enable)
3274		goto disable_acs_redir;
3275
3276	if (!pci_dev_specific_enable_acs(dev))
3277		goto disable_acs_redir;
3278
3279	pci_std_enable_acs(dev);
3280
3281disable_acs_redir:
3282	/*
3283	 * Note: pci_disable_acs_redir() must be called even if ACS was not
3284	 * enabled by the kernel because it may have been enabled by
3285	 * platform firmware.  So if we are told to disable it, we should
3286	 * always disable it after setting the kernel's default
3287	 * preferences.
3288	 */
3289	pci_disable_acs_redir(dev);
3290}
3291
3292static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3293{
3294	int pos;
3295	u16 cap, ctrl;
3296
3297	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3298	if (!pos)
3299		return false;
3300
3301	/*
3302	 * Except for egress control, capabilities are either required
3303	 * or only required if controllable.  Features missing from the
3304	 * capability field can therefore be assumed as hard-wired enabled.
3305	 */
3306	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3307	acs_flags &= (cap | PCI_ACS_EC);
3308
3309	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3310	return (ctrl & acs_flags) == acs_flags;
3311}
3312
3313/**
3314 * pci_acs_enabled - test ACS against required flags for a given device
3315 * @pdev: device to test
3316 * @acs_flags: required PCI ACS flags
3317 *
3318 * Return true if the device supports the provided flags.  Automatically
3319 * filters out flags that are not implemented on multifunction devices.
3320 *
3321 * Note that this interface checks the effective ACS capabilities of the
3322 * device rather than the actual capabilities.  For instance, most single
3323 * function endpoints are not required to support ACS because they have no
3324 * opportunity for peer-to-peer access.  We therefore return 'true'
3325 * regardless of whether the device exposes an ACS capability.  This makes
3326 * it much easier for callers of this function to ignore the actual type
3327 * or topology of the device when testing ACS support.
3328 */
3329bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3330{
3331	int ret;
3332
3333	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3334	if (ret >= 0)
3335		return ret > 0;
3336
3337	/*
3338	 * Conventional PCI and PCI-X devices never support ACS, either
3339	 * effectively or actually.  The shared bus topology implies that
3340	 * any device on the bus can receive or snoop DMA.
3341	 */
3342	if (!pci_is_pcie(pdev))
3343		return false;
3344
3345	switch (pci_pcie_type(pdev)) {
3346	/*
3347	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3348	 * but since their primary interface is PCI/X, we conservatively
3349	 * handle them as we would a non-PCIe device.
3350	 */
3351	case PCI_EXP_TYPE_PCIE_BRIDGE:
3352	/*
3353	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3354	 * applicable... must never implement an ACS Extended Capability...".
3355	 * This seems arbitrary, but we take a conservative interpretation
3356	 * of this statement.
3357	 */
3358	case PCI_EXP_TYPE_PCI_BRIDGE:
3359	case PCI_EXP_TYPE_RC_EC:
3360		return false;
3361	/*
3362	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3363	 * implement ACS in order to indicate their peer-to-peer capabilities,
3364	 * regardless of whether they are single- or multi-function devices.
3365	 */
3366	case PCI_EXP_TYPE_DOWNSTREAM:
3367	case PCI_EXP_TYPE_ROOT_PORT:
3368		return pci_acs_flags_enabled(pdev, acs_flags);
3369	/*
3370	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3371	 * implemented by the remaining PCIe types to indicate peer-to-peer
3372	 * capabilities, but only when they are part of a multifunction
3373	 * device.  The footnote for section 6.12 indicates the specific
3374	 * PCIe types included here.
3375	 */
3376	case PCI_EXP_TYPE_ENDPOINT:
3377	case PCI_EXP_TYPE_UPSTREAM:
3378	case PCI_EXP_TYPE_LEG_END:
3379	case PCI_EXP_TYPE_RC_END:
3380		if (!pdev->multifunction)
3381			break;
3382
3383		return pci_acs_flags_enabled(pdev, acs_flags);
3384	}
3385
3386	/*
3387	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3388	 * to single function devices with the exception of downstream ports.
3389	 */
3390	return true;
3391}
3392
3393/**
3394 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3395 * @start: starting downstream device
3396 * @end: ending upstream device or NULL to search to the root bus
3397 * @acs_flags: required flags
3398 *
3399 * Walk up a device tree from start to end testing PCI ACS support.  If
3400 * any step along the way does not support the required flags, return false.
3401 */
3402bool pci_acs_path_enabled(struct pci_dev *start,
3403			  struct pci_dev *end, u16 acs_flags)
3404{
3405	struct pci_dev *pdev, *parent = start;
3406
3407	do {
3408		pdev = parent;
3409
3410		if (!pci_acs_enabled(pdev, acs_flags))
3411			return false;
3412
3413		if (pci_is_root_bus(pdev->bus))
3414			return (end == NULL);
3415
3416		parent = pdev->bus->self;
3417	} while (pdev != end);
3418
3419	return true;
3420}
3421
3422/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3423 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3424 * @pdev: PCI device
3425 * @bar: BAR to find
3426 *
3427 * Helper to find the position of the ctrl register for a BAR.
3428 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3429 * Returns -ENOENT if no ctrl register for the BAR could be found.
3430 */
3431static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3432{
3433	unsigned int pos, nbars, i;
3434	u32 ctrl;
3435
3436	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3437	if (!pos)
3438		return -ENOTSUPP;
3439
3440	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3441	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3442		    PCI_REBAR_CTRL_NBAR_SHIFT;
3443
3444	for (i = 0; i < nbars; i++, pos += 8) {
3445		int bar_idx;
3446
3447		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3448		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3449		if (bar_idx == bar)
3450			return pos;
3451	}
3452
3453	return -ENOENT;
3454}
3455
3456/**
3457 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3458 * @pdev: PCI device
3459 * @bar: BAR to query
3460 *
3461 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3462 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3463 */
3464u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3465{
3466	int pos;
3467	u32 cap;
3468
3469	pos = pci_rebar_find_pos(pdev, bar);
3470	if (pos < 0)
3471		return 0;
3472
3473	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3474	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
 
 
 
 
 
 
 
3475}
 
3476
3477/**
3478 * pci_rebar_get_current_size - get the current size of a BAR
3479 * @pdev: PCI device
3480 * @bar: BAR to set size to
3481 *
3482 * Read the size of a BAR from the resizable BAR config.
3483 * Returns size if found or negative error code.
3484 */
3485int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3486{
3487	int pos;
3488	u32 ctrl;
3489
3490	pos = pci_rebar_find_pos(pdev, bar);
3491	if (pos < 0)
3492		return pos;
3493
3494	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3495	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3496}
3497
3498/**
3499 * pci_rebar_set_size - set a new size for a BAR
3500 * @pdev: PCI device
3501 * @bar: BAR to set size to
3502 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3503 *
3504 * Set the new size of a BAR as defined in the spec.
3505 * Returns zero if resizing was successful, error code otherwise.
3506 */
3507int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3508{
3509	int pos;
3510	u32 ctrl;
3511
3512	pos = pci_rebar_find_pos(pdev, bar);
3513	if (pos < 0)
3514		return pos;
3515
3516	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3517	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3518	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3519	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3520	return 0;
3521}
3522
3523/**
3524 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3525 * @dev: the PCI device
3526 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3527 *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3528 *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3529 *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3530 *
3531 * Return 0 if all upstream bridges support AtomicOp routing, egress
3532 * blocking is disabled on all upstream ports, and the root port supports
3533 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3534 * AtomicOp completion), or negative otherwise.
3535 */
3536int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3537{
3538	struct pci_bus *bus = dev->bus;
3539	struct pci_dev *bridge;
3540	u32 cap, ctl2;
3541
 
 
 
 
 
 
 
 
3542	if (!pci_is_pcie(dev))
3543		return -EINVAL;
3544
3545	/*
3546	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3547	 * AtomicOp requesters.  For now, we only support endpoints as
3548	 * requesters and root ports as completers.  No endpoints as
3549	 * completers, and no peer-to-peer.
3550	 */
3551
3552	switch (pci_pcie_type(dev)) {
3553	case PCI_EXP_TYPE_ENDPOINT:
3554	case PCI_EXP_TYPE_LEG_END:
3555	case PCI_EXP_TYPE_RC_END:
3556		break;
3557	default:
3558		return -EINVAL;
3559	}
3560
3561	while (bus->parent) {
3562		bridge = bus->self;
3563
3564		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3565
3566		switch (pci_pcie_type(bridge)) {
3567		/* Ensure switch ports support AtomicOp routing */
3568		case PCI_EXP_TYPE_UPSTREAM:
3569		case PCI_EXP_TYPE_DOWNSTREAM:
3570			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3571				return -EINVAL;
3572			break;
3573
3574		/* Ensure root port supports all the sizes we care about */
3575		case PCI_EXP_TYPE_ROOT_PORT:
3576			if ((cap & cap_mask) != cap_mask)
3577				return -EINVAL;
3578			break;
3579		}
3580
3581		/* Ensure upstream ports don't block AtomicOps on egress */
3582		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3583			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3584						   &ctl2);
3585			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3586				return -EINVAL;
3587		}
3588
3589		bus = bus->parent;
3590	}
3591
3592	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3593				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3594	return 0;
3595}
3596EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3597
3598/**
3599 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3600 * @dev: the PCI device
3601 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3602 *
3603 * Perform INTx swizzling for a device behind one level of bridge.  This is
3604 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3605 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3606 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3607 * the PCI Express Base Specification, Revision 2.1)
3608 */
3609u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3610{
3611	int slot;
3612
3613	if (pci_ari_enabled(dev->bus))
3614		slot = 0;
3615	else
3616		slot = PCI_SLOT(dev->devfn);
3617
3618	return (((pin - 1) + slot) % 4) + 1;
3619}
3620
3621int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3622{
3623	u8 pin;
3624
3625	pin = dev->pin;
3626	if (!pin)
3627		return -1;
3628
3629	while (!pci_is_root_bus(dev->bus)) {
3630		pin = pci_swizzle_interrupt_pin(dev, pin);
3631		dev = dev->bus->self;
3632	}
3633	*bridge = dev;
3634	return pin;
3635}
3636
3637/**
3638 * pci_common_swizzle - swizzle INTx all the way to root bridge
3639 * @dev: the PCI device
3640 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3641 *
3642 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3643 * bridges all the way up to a PCI root bus.
3644 */
3645u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3646{
3647	u8 pin = *pinp;
3648
3649	while (!pci_is_root_bus(dev->bus)) {
3650		pin = pci_swizzle_interrupt_pin(dev, pin);
3651		dev = dev->bus->self;
3652	}
3653	*pinp = pin;
3654	return PCI_SLOT(dev->devfn);
3655}
3656EXPORT_SYMBOL_GPL(pci_common_swizzle);
3657
3658/**
3659 * pci_release_region - Release a PCI bar
3660 * @pdev: PCI device whose resources were previously reserved by
3661 *	  pci_request_region()
3662 * @bar: BAR to release
3663 *
3664 * Releases the PCI I/O and memory resources previously reserved by a
3665 * successful call to pci_request_region().  Call this function only
3666 * after all use of the PCI regions has ceased.
3667 */
3668void pci_release_region(struct pci_dev *pdev, int bar)
3669{
3670	struct pci_devres *dr;
3671
3672	if (pci_resource_len(pdev, bar) == 0)
3673		return;
3674	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3675		release_region(pci_resource_start(pdev, bar),
3676				pci_resource_len(pdev, bar));
3677	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3678		release_mem_region(pci_resource_start(pdev, bar),
3679				pci_resource_len(pdev, bar));
3680
3681	dr = find_pci_dr(pdev);
3682	if (dr)
3683		dr->region_mask &= ~(1 << bar);
3684}
3685EXPORT_SYMBOL(pci_release_region);
3686
3687/**
3688 * __pci_request_region - Reserved PCI I/O and memory resource
3689 * @pdev: PCI device whose resources are to be reserved
3690 * @bar: BAR to be reserved
3691 * @res_name: Name to be associated with resource.
3692 * @exclusive: whether the region access is exclusive or not
3693 *
3694 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3695 * being reserved by owner @res_name.  Do not access any
3696 * address inside the PCI regions unless this call returns
3697 * successfully.
3698 *
3699 * If @exclusive is set, then the region is marked so that userspace
3700 * is explicitly not allowed to map the resource via /dev/mem or
3701 * sysfs MMIO access.
3702 *
3703 * Returns 0 on success, or %EBUSY on error.  A warning
3704 * message is also printed on failure.
3705 */
3706static int __pci_request_region(struct pci_dev *pdev, int bar,
3707				const char *res_name, int exclusive)
3708{
3709	struct pci_devres *dr;
3710
3711	if (pci_resource_len(pdev, bar) == 0)
3712		return 0;
3713
3714	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3715		if (!request_region(pci_resource_start(pdev, bar),
3716			    pci_resource_len(pdev, bar), res_name))
3717			goto err_out;
3718	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3719		if (!__request_mem_region(pci_resource_start(pdev, bar),
3720					pci_resource_len(pdev, bar), res_name,
3721					exclusive))
3722			goto err_out;
3723	}
3724
3725	dr = find_pci_dr(pdev);
3726	if (dr)
3727		dr->region_mask |= 1 << bar;
3728
3729	return 0;
3730
3731err_out:
3732	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3733		 &pdev->resource[bar]);
3734	return -EBUSY;
3735}
3736
3737/**
3738 * pci_request_region - Reserve PCI I/O and memory resource
3739 * @pdev: PCI device whose resources are to be reserved
3740 * @bar: BAR to be reserved
3741 * @res_name: Name to be associated with resource
3742 *
3743 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3744 * being reserved by owner @res_name.  Do not access any
3745 * address inside the PCI regions unless this call returns
3746 * successfully.
3747 *
3748 * Returns 0 on success, or %EBUSY on error.  A warning
3749 * message is also printed on failure.
3750 */
3751int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3752{
3753	return __pci_request_region(pdev, bar, res_name, 0);
3754}
3755EXPORT_SYMBOL(pci_request_region);
3756
3757/**
3758 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3759 * @pdev: PCI device whose resources were previously reserved
3760 * @bars: Bitmask of BARs to be released
3761 *
3762 * Release selected PCI I/O and memory resources previously reserved.
3763 * Call this function only after all use of the PCI regions has ceased.
3764 */
3765void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3766{
3767	int i;
3768
3769	for (i = 0; i < 6; i++)
3770		if (bars & (1 << i))
3771			pci_release_region(pdev, i);
3772}
3773EXPORT_SYMBOL(pci_release_selected_regions);
3774
3775static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3776					  const char *res_name, int excl)
3777{
3778	int i;
3779
3780	for (i = 0; i < 6; i++)
3781		if (bars & (1 << i))
3782			if (__pci_request_region(pdev, i, res_name, excl))
3783				goto err_out;
3784	return 0;
3785
3786err_out:
3787	while (--i >= 0)
3788		if (bars & (1 << i))
3789			pci_release_region(pdev, i);
3790
3791	return -EBUSY;
3792}
3793
3794
3795/**
3796 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3797 * @pdev: PCI device whose resources are to be reserved
3798 * @bars: Bitmask of BARs to be requested
3799 * @res_name: Name to be associated with resource
3800 */
3801int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3802				 const char *res_name)
3803{
3804	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3805}
3806EXPORT_SYMBOL(pci_request_selected_regions);
3807
3808int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3809					   const char *res_name)
3810{
3811	return __pci_request_selected_regions(pdev, bars, res_name,
3812			IORESOURCE_EXCLUSIVE);
3813}
3814EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3815
3816/**
3817 * pci_release_regions - Release reserved PCI I/O and memory resources
3818 * @pdev: PCI device whose resources were previously reserved by
3819 *	  pci_request_regions()
3820 *
3821 * Releases all PCI I/O and memory resources previously reserved by a
3822 * successful call to pci_request_regions().  Call this function only
3823 * after all use of the PCI regions has ceased.
3824 */
3825
3826void pci_release_regions(struct pci_dev *pdev)
3827{
3828	pci_release_selected_regions(pdev, (1 << 6) - 1);
3829}
3830EXPORT_SYMBOL(pci_release_regions);
3831
3832/**
3833 * pci_request_regions - Reserve PCI I/O and memory resources
3834 * @pdev: PCI device whose resources are to be reserved
3835 * @res_name: Name to be associated with resource.
3836 *
3837 * Mark all PCI regions associated with PCI device @pdev as
3838 * being reserved by owner @res_name.  Do not access any
3839 * address inside the PCI regions unless this call returns
3840 * successfully.
3841 *
3842 * Returns 0 on success, or %EBUSY on error.  A warning
3843 * message is also printed on failure.
3844 */
3845int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3846{
3847	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
 
3848}
3849EXPORT_SYMBOL(pci_request_regions);
3850
3851/**
3852 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3853 * @pdev: PCI device whose resources are to be reserved
3854 * @res_name: Name to be associated with resource.
3855 *
3856 * Mark all PCI regions associated with PCI device @pdev as being reserved
3857 * by owner @res_name.  Do not access any address inside the PCI regions
3858 * unless this call returns successfully.
3859 *
3860 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3861 * and the sysfs MMIO access will not be allowed.
3862 *
3863 * Returns 0 on success, or %EBUSY on error.  A warning message is also
3864 * printed on failure.
3865 */
3866int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3867{
3868	return pci_request_selected_regions_exclusive(pdev,
3869					((1 << 6) - 1), res_name);
3870}
3871EXPORT_SYMBOL(pci_request_regions_exclusive);
3872
3873/*
3874 * Record the PCI IO range (expressed as CPU physical address + size).
3875 * Return a negative value if an error has occurred, zero otherwise
3876 */
3877int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3878			resource_size_t	size)
3879{
3880	int ret = 0;
3881#ifdef PCI_IOBASE
3882	struct logic_pio_hwaddr *range;
3883
3884	if (!size || addr + size < addr)
3885		return -EINVAL;
3886
3887	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3888	if (!range)
3889		return -ENOMEM;
3890
3891	range->fwnode = fwnode;
3892	range->size = size;
3893	range->hw_start = addr;
3894	range->flags = LOGIC_PIO_CPU_MMIO;
3895
3896	ret = logic_pio_register_range(range);
3897	if (ret)
3898		kfree(range);
 
 
 
 
3899#endif
3900
3901	return ret;
3902}
3903
3904phys_addr_t pci_pio_to_address(unsigned long pio)
3905{
3906	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3907
3908#ifdef PCI_IOBASE
3909	if (pio >= MMIO_UPPER_LIMIT)
3910		return address;
3911
3912	address = logic_pio_to_hwaddr(pio);
3913#endif
3914
3915	return address;
3916}
 
3917
3918unsigned long __weak pci_address_to_pio(phys_addr_t address)
3919{
3920#ifdef PCI_IOBASE
3921	return logic_pio_trans_cpuaddr(address);
3922#else
3923	if (address > IO_SPACE_LIMIT)
3924		return (unsigned long)-1;
3925
3926	return (unsigned long) address;
3927#endif
3928}
3929
3930/**
3931 * pci_remap_iospace - Remap the memory mapped I/O space
3932 * @res: Resource describing the I/O space
3933 * @phys_addr: physical address of range to be mapped
3934 *
3935 * Remap the memory mapped I/O space described by the @res and the CPU
3936 * physical address @phys_addr into virtual address space.  Only
3937 * architectures that have memory mapped IO functions defined (and the
3938 * PCI_IOBASE value defined) should call this function.
3939 */
 
3940int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3941{
3942#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3943	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3944
3945	if (!(res->flags & IORESOURCE_IO))
3946		return -EINVAL;
3947
3948	if (res->end > IO_SPACE_LIMIT)
3949		return -EINVAL;
3950
3951	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3952				  pgprot_device(PAGE_KERNEL));
3953#else
3954	/*
3955	 * This architecture does not have memory mapped I/O space,
3956	 * so this function should never be called
3957	 */
3958	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3959	return -ENODEV;
3960#endif
3961}
3962EXPORT_SYMBOL(pci_remap_iospace);
 
3963
3964/**
3965 * pci_unmap_iospace - Unmap the memory mapped I/O space
3966 * @res: resource to be unmapped
3967 *
3968 * Unmap the CPU virtual address @res from virtual address space.  Only
3969 * architectures that have memory mapped IO functions defined (and the
3970 * PCI_IOBASE value defined) should call this function.
3971 */
3972void pci_unmap_iospace(struct resource *res)
3973{
3974#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3975	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3976
3977	unmap_kernel_range(vaddr, resource_size(res));
3978#endif
3979}
3980EXPORT_SYMBOL(pci_unmap_iospace);
3981
3982static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
3983{
3984	struct resource **res = ptr;
3985
3986	pci_unmap_iospace(*res);
3987}
3988
3989/**
3990 * devm_pci_remap_iospace - Managed pci_remap_iospace()
3991 * @dev: Generic device to remap IO address for
3992 * @res: Resource describing the I/O space
3993 * @phys_addr: physical address of range to be mapped
3994 *
3995 * Managed pci_remap_iospace().  Map is automatically unmapped on driver
3996 * detach.
3997 */
3998int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
3999			   phys_addr_t phys_addr)
4000{
4001	const struct resource **ptr;
4002	int error;
4003
4004	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4005	if (!ptr)
4006		return -ENOMEM;
4007
4008	error = pci_remap_iospace(res, phys_addr);
4009	if (error) {
4010		devres_free(ptr);
4011	} else	{
4012		*ptr = res;
4013		devres_add(dev, ptr);
4014	}
4015
4016	return error;
4017}
4018EXPORT_SYMBOL(devm_pci_remap_iospace);
4019
4020/**
4021 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4022 * @dev: Generic device to remap IO address for
4023 * @offset: Resource address to map
4024 * @size: Size of map
4025 *
4026 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4027 * detach.
4028 */
4029void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4030				      resource_size_t offset,
4031				      resource_size_t size)
4032{
4033	void __iomem **ptr, *addr;
4034
4035	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4036	if (!ptr)
4037		return NULL;
4038
4039	addr = pci_remap_cfgspace(offset, size);
4040	if (addr) {
4041		*ptr = addr;
4042		devres_add(dev, ptr);
4043	} else
4044		devres_free(ptr);
4045
4046	return addr;
4047}
4048EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4049
4050/**
4051 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4052 * @dev: generic device to handle the resource for
4053 * @res: configuration space resource to be handled
4054 *
4055 * Checks that a resource is a valid memory region, requests the memory
4056 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4057 * proper PCI configuration space memory attributes are guaranteed.
4058 *
4059 * All operations are managed and will be undone on driver detach.
4060 *
4061 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4062 * on failure. Usage example::
4063 *
4064 *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4065 *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4066 *	if (IS_ERR(base))
4067 *		return PTR_ERR(base);
4068 */
4069void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4070					  struct resource *res)
4071{
4072	resource_size_t size;
4073	const char *name;
4074	void __iomem *dest_ptr;
4075
4076	BUG_ON(!dev);
4077
4078	if (!res || resource_type(res) != IORESOURCE_MEM) {
4079		dev_err(dev, "invalid resource\n");
4080		return IOMEM_ERR_PTR(-EINVAL);
4081	}
4082
4083	size = resource_size(res);
4084	name = res->name ?: dev_name(dev);
 
 
 
 
 
 
 
4085
4086	if (!devm_request_mem_region(dev, res->start, size, name)) {
4087		dev_err(dev, "can't request region for resource %pR\n", res);
4088		return IOMEM_ERR_PTR(-EBUSY);
4089	}
4090
4091	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4092	if (!dest_ptr) {
4093		dev_err(dev, "ioremap failed for resource %pR\n", res);
4094		devm_release_mem_region(dev, res->start, size);
4095		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4096	}
4097
4098	return dest_ptr;
4099}
4100EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4101
4102static void __pci_set_master(struct pci_dev *dev, bool enable)
4103{
4104	u16 old_cmd, cmd;
4105
4106	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4107	if (enable)
4108		cmd = old_cmd | PCI_COMMAND_MASTER;
4109	else
4110		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4111	if (cmd != old_cmd) {
4112		pci_dbg(dev, "%s bus mastering\n",
4113			enable ? "enabling" : "disabling");
4114		pci_write_config_word(dev, PCI_COMMAND, cmd);
4115	}
4116	dev->is_busmaster = enable;
4117}
4118
4119/**
4120 * pcibios_setup - process "pci=" kernel boot arguments
4121 * @str: string used to pass in "pci=" kernel boot arguments
4122 *
4123 * Process kernel boot arguments.  This is the default implementation.
4124 * Architecture specific implementations can override this as necessary.
4125 */
4126char * __weak __init pcibios_setup(char *str)
4127{
4128	return str;
4129}
4130
4131/**
4132 * pcibios_set_master - enable PCI bus-mastering for device dev
4133 * @dev: the PCI device to enable
4134 *
4135 * Enables PCI bus-mastering for the device.  This is the default
4136 * implementation.  Architecture specific implementations can override
4137 * this if necessary.
4138 */
4139void __weak pcibios_set_master(struct pci_dev *dev)
4140{
4141	u8 lat;
4142
4143	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4144	if (pci_is_pcie(dev))
4145		return;
4146
4147	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4148	if (lat < 16)
4149		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4150	else if (lat > pcibios_max_latency)
4151		lat = pcibios_max_latency;
4152	else
4153		return;
4154
4155	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4156}
4157
4158/**
4159 * pci_set_master - enables bus-mastering for device dev
4160 * @dev: the PCI device to enable
4161 *
4162 * Enables bus-mastering on the device and calls pcibios_set_master()
4163 * to do the needed arch specific settings.
4164 */
4165void pci_set_master(struct pci_dev *dev)
4166{
4167	__pci_set_master(dev, true);
4168	pcibios_set_master(dev);
4169}
4170EXPORT_SYMBOL(pci_set_master);
4171
4172/**
4173 * pci_clear_master - disables bus-mastering for device dev
4174 * @dev: the PCI device to disable
4175 */
4176void pci_clear_master(struct pci_dev *dev)
4177{
4178	__pci_set_master(dev, false);
4179}
4180EXPORT_SYMBOL(pci_clear_master);
4181
4182/**
4183 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4184 * @dev: the PCI device for which MWI is to be enabled
4185 *
4186 * Helper function for pci_set_mwi.
4187 * Originally copied from drivers/net/acenic.c.
4188 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4189 *
4190 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4191 */
4192int pci_set_cacheline_size(struct pci_dev *dev)
4193{
4194	u8 cacheline_size;
4195
4196	if (!pci_cache_line_size)
4197		return -EINVAL;
4198
4199	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4200	   equal to or multiple of the right value. */
4201	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4202	if (cacheline_size >= pci_cache_line_size &&
4203	    (cacheline_size % pci_cache_line_size) == 0)
4204		return 0;
4205
4206	/* Write the correct value. */
4207	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4208	/* Read it back. */
4209	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4210	if (cacheline_size == pci_cache_line_size)
4211		return 0;
4212
4213	pci_info(dev, "cache line size of %d is not supported\n",
4214		   pci_cache_line_size << 2);
4215
4216	return -EINVAL;
4217}
4218EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4219
4220/**
4221 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4222 * @dev: the PCI device for which MWI is enabled
4223 *
4224 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4225 *
4226 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4227 */
4228int pci_set_mwi(struct pci_dev *dev)
4229{
4230#ifdef PCI_DISABLE_MWI
4231	return 0;
4232#else
4233	int rc;
4234	u16 cmd;
4235
4236	rc = pci_set_cacheline_size(dev);
4237	if (rc)
4238		return rc;
4239
4240	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4241	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4242		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4243		cmd |= PCI_COMMAND_INVALIDATE;
4244		pci_write_config_word(dev, PCI_COMMAND, cmd);
4245	}
4246	return 0;
4247#endif
4248}
4249EXPORT_SYMBOL(pci_set_mwi);
4250
4251/**
4252 * pcim_set_mwi - a device-managed pci_set_mwi()
4253 * @dev: the PCI device for which MWI is enabled
4254 *
4255 * Managed pci_set_mwi().
4256 *
4257 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4258 */
4259int pcim_set_mwi(struct pci_dev *dev)
4260{
4261	struct pci_devres *dr;
4262
4263	dr = find_pci_dr(dev);
4264	if (!dr)
4265		return -ENOMEM;
4266
4267	dr->mwi = 1;
4268	return pci_set_mwi(dev);
4269}
4270EXPORT_SYMBOL(pcim_set_mwi);
4271
4272/**
4273 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4274 * @dev: the PCI device for which MWI is enabled
4275 *
4276 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4277 * Callers are not required to check the return value.
4278 *
4279 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4280 */
4281int pci_try_set_mwi(struct pci_dev *dev)
4282{
4283#ifdef PCI_DISABLE_MWI
4284	return 0;
4285#else
4286	return pci_set_mwi(dev);
4287#endif
4288}
4289EXPORT_SYMBOL(pci_try_set_mwi);
4290
4291/**
4292 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4293 * @dev: the PCI device to disable
4294 *
4295 * Disables PCI Memory-Write-Invalidate transaction on the device
4296 */
4297void pci_clear_mwi(struct pci_dev *dev)
4298{
4299#ifndef PCI_DISABLE_MWI
4300	u16 cmd;
4301
4302	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4303	if (cmd & PCI_COMMAND_INVALIDATE) {
4304		cmd &= ~PCI_COMMAND_INVALIDATE;
4305		pci_write_config_word(dev, PCI_COMMAND, cmd);
4306	}
4307#endif
4308}
4309EXPORT_SYMBOL(pci_clear_mwi);
4310
4311/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4312 * pci_intx - enables/disables PCI INTx for device dev
4313 * @pdev: the PCI device to operate on
4314 * @enable: boolean: whether to enable or disable PCI INTx
4315 *
4316 * Enables/disables PCI INTx for device @pdev
4317 */
4318void pci_intx(struct pci_dev *pdev, int enable)
4319{
4320	u16 pci_command, new;
4321
4322	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4323
4324	if (enable)
4325		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4326	else
4327		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4328
4329	if (new != pci_command) {
4330		struct pci_devres *dr;
4331
4332		pci_write_config_word(pdev, PCI_COMMAND, new);
4333
4334		dr = find_pci_dr(pdev);
4335		if (dr && !dr->restore_intx) {
4336			dr->restore_intx = 1;
4337			dr->orig_intx = !enable;
4338		}
4339	}
4340}
4341EXPORT_SYMBOL_GPL(pci_intx);
4342
4343static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4344{
4345	struct pci_bus *bus = dev->bus;
4346	bool mask_updated = true;
4347	u32 cmd_status_dword;
4348	u16 origcmd, newcmd;
4349	unsigned long flags;
4350	bool irq_pending;
4351
4352	/*
4353	 * We do a single dword read to retrieve both command and status.
4354	 * Document assumptions that make this possible.
4355	 */
4356	BUILD_BUG_ON(PCI_COMMAND % 4);
4357	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4358
4359	raw_spin_lock_irqsave(&pci_lock, flags);
4360
4361	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4362
4363	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4364
4365	/*
4366	 * Check interrupt status register to see whether our device
4367	 * triggered the interrupt (when masking) or the next IRQ is
4368	 * already pending (when unmasking).
4369	 */
4370	if (mask != irq_pending) {
4371		mask_updated = false;
4372		goto done;
4373	}
4374
4375	origcmd = cmd_status_dword;
4376	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4377	if (mask)
4378		newcmd |= PCI_COMMAND_INTX_DISABLE;
4379	if (newcmd != origcmd)
4380		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4381
4382done:
4383	raw_spin_unlock_irqrestore(&pci_lock, flags);
4384
4385	return mask_updated;
4386}
4387
4388/**
4389 * pci_check_and_mask_intx - mask INTx on pending interrupt
4390 * @dev: the PCI device to operate on
4391 *
4392 * Check if the device dev has its INTx line asserted, mask it and return
4393 * true in that case. False is returned if no interrupt was pending.
4394 */
4395bool pci_check_and_mask_intx(struct pci_dev *dev)
4396{
4397	return pci_check_and_set_intx_mask(dev, true);
4398}
4399EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4400
4401/**
4402 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4403 * @dev: the PCI device to operate on
4404 *
4405 * Check if the device dev has its INTx line asserted, unmask it if not and
4406 * return true. False is returned and the mask remains active if there was
4407 * still an interrupt pending.
4408 */
4409bool pci_check_and_unmask_intx(struct pci_dev *dev)
4410{
4411	return pci_check_and_set_intx_mask(dev, false);
4412}
4413EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4414
4415/**
4416 * pci_wait_for_pending_transaction - wait for pending transaction
4417 * @dev: the PCI device to operate on
4418 *
4419 * Return 0 if transaction is pending 1 otherwise.
4420 */
4421int pci_wait_for_pending_transaction(struct pci_dev *dev)
4422{
4423	if (!pci_is_pcie(dev))
4424		return 1;
4425
4426	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4427				    PCI_EXP_DEVSTA_TRPND);
4428}
4429EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4430
4431static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
4432{
4433	int delay = 1;
4434	u32 id;
4435
4436	/*
4437	 * After reset, the device should not silently discard config
4438	 * requests, but it may still indicate that it needs more time by
4439	 * responding to them with CRS completions.  The Root Port will
4440	 * generally synthesize ~0 data to complete the read (except when
4441	 * CRS SV is enabled and the read was for the Vendor ID; in that
4442	 * case it synthesizes 0x0001 data).
4443	 *
4444	 * Wait for the device to return a non-CRS completion.  Read the
4445	 * Command register instead of Vendor ID so we don't have to
4446	 * contend with the CRS SV value.
4447	 */
4448	pci_read_config_dword(dev, PCI_COMMAND, &id);
4449	while (id == ~0) {
4450		if (delay > timeout) {
4451			pci_warn(dev, "not ready %dms after %s; giving up\n",
4452				 delay - 1, reset_type);
4453			return -ENOTTY;
4454		}
4455
4456		if (delay > 1000)
4457			pci_info(dev, "not ready %dms after %s; waiting\n",
4458				 delay - 1, reset_type);
4459
4460		msleep(delay);
4461		delay *= 2;
4462		pci_read_config_dword(dev, PCI_COMMAND, &id);
4463	}
4464
4465	if (delay > 1000)
4466		pci_info(dev, "ready %dms after %s\n", delay - 1,
4467			 reset_type);
4468
4469	return 0;
4470}
4471
4472/**
4473 * pcie_has_flr - check if a device supports function level resets
4474 * @dev: device to check
4475 *
4476 * Returns true if the device advertises support for PCIe function level
4477 * resets.
4478 */
4479bool pcie_has_flr(struct pci_dev *dev)
4480{
4481	u32 cap;
4482
4483	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4484		return false;
4485
4486	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4487	return cap & PCI_EXP_DEVCAP_FLR;
4488}
4489EXPORT_SYMBOL_GPL(pcie_has_flr);
4490
4491/**
4492 * pcie_flr - initiate a PCIe function level reset
4493 * @dev: device to reset
4494 *
4495 * Initiate a function level reset on @dev.  The caller should ensure the
4496 * device supports FLR before calling this function, e.g. by using the
4497 * pcie_has_flr() helper.
4498 */
4499int pcie_flr(struct pci_dev *dev)
4500{
4501	if (!pci_wait_for_pending_transaction(dev))
4502		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4503
4504	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4505
4506	if (dev->imm_ready)
4507		return 0;
4508
4509	/*
4510	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4511	 * 100ms, but may silently discard requests while the FLR is in
4512	 * progress.  Wait 100ms before trying to access the device.
4513	 */
4514	msleep(100);
4515
4516	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4517}
4518EXPORT_SYMBOL_GPL(pcie_flr);
4519
4520static int pci_af_flr(struct pci_dev *dev, int probe)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4521{
4522	int pos;
4523	u8 cap;
4524
4525	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4526	if (!pos)
4527		return -ENOTTY;
4528
4529	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4530		return -ENOTTY;
4531
4532	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4533	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4534		return -ENOTTY;
4535
4536	if (probe)
4537		return 0;
4538
4539	/*
4540	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4541	 * is used, so we use the control offset rather than status and shift
4542	 * the test bit to match.
4543	 */
4544	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4545				 PCI_AF_STATUS_TP << 8))
4546		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4547
4548	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4549
4550	if (dev->imm_ready)
4551		return 0;
4552
4553	/*
4554	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4555	 * updated 27 July 2006; a device must complete an FLR within
4556	 * 100ms, but may silently discard requests while the FLR is in
4557	 * progress.  Wait 100ms before trying to access the device.
4558	 */
4559	msleep(100);
4560
4561	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4562}
4563
4564/**
4565 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4566 * @dev: Device to reset.
4567 * @probe: If set, only check if the device can be reset this way.
4568 *
4569 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4570 * unset, it will be reinitialized internally when going from PCI_D3hot to
4571 * PCI_D0.  If that's the case and the device is not in a low-power state
4572 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4573 *
4574 * NOTE: This causes the caller to sleep for twice the device power transition
4575 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4576 * by default (i.e. unless the @dev's d3_delay field has a different value).
4577 * Moreover, only devices in D0 can be reset by this function.
4578 */
4579static int pci_pm_reset(struct pci_dev *dev, int probe)
4580{
4581	u16 csr;
4582
4583	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4584		return -ENOTTY;
4585
4586	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4587	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4588		return -ENOTTY;
4589
4590	if (probe)
4591		return 0;
4592
4593	if (dev->current_state != PCI_D0)
4594		return -EINVAL;
4595
4596	csr &= ~PCI_PM_CTRL_STATE_MASK;
4597	csr |= PCI_D3hot;
4598	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4599	pci_dev_d3_sleep(dev);
4600
4601	csr &= ~PCI_PM_CTRL_STATE_MASK;
4602	csr |= PCI_D0;
4603	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4604	pci_dev_d3_sleep(dev);
4605
4606	return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
4607}
 
4608/**
4609 * pcie_wait_for_link - Wait until link is active or inactive
4610 * @pdev: Bridge device
4611 * @active: waiting for active or inactive?
 
4612 *
4613 * Use this to wait till link becomes active or inactive.
4614 */
4615bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
 
4616{
4617	int timeout = 1000;
4618	bool ret;
4619	u16 lnk_status;
4620
4621	/*
4622	 * Some controllers might not implement link active reporting. In this
4623	 * case, we wait for 1000 + 100 ms.
4624	 */
4625	if (!pdev->link_active_reporting) {
4626		msleep(1100);
4627		return true;
4628	}
4629
4630	/*
4631	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4632	 * after which we should expect an link active if the reset was
4633	 * successful. If so, software must wait a minimum 100ms before sending
4634	 * configuration requests to devices downstream this port.
4635	 *
4636	 * If the link fails to activate, either the device was physically
4637	 * removed or the link is permanently failed.
4638	 */
4639	if (active)
4640		msleep(20);
4641	for (;;) {
4642		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4643		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4644		if (ret == active)
4645			break;
4646		if (timeout <= 0)
4647			break;
4648		msleep(10);
4649		timeout -= 10;
4650	}
4651	if (active && ret)
4652		msleep(100);
4653	else if (ret != active)
4654		pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4655			active ? "set" : "cleared");
4656	return ret == active;
4657}
4658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4659void pci_reset_secondary_bus(struct pci_dev *dev)
4660{
4661	u16 ctrl;
4662
4663	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4664	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4665	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4666
4667	/*
4668	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4669	 * this to 2ms to ensure that we meet the minimum requirement.
4670	 */
4671	msleep(2);
4672
4673	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4674	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4675
4676	/*
4677	 * Trhfa for conventional PCI is 2^25 clock cycles.
4678	 * Assuming a minimum 33MHz clock this results in a 1s
4679	 * delay before we can consider subordinate devices to
4680	 * be re-initialized.  PCIe has some ways to shorten this,
4681	 * but we don't make use of them yet.
4682	 */
4683	ssleep(1);
4684}
4685
4686void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4687{
4688	pci_reset_secondary_bus(dev);
4689}
4690
4691/**
4692 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4693 * @dev: Bridge device
4694 *
4695 * Use the bridge control register to assert reset on the secondary bus.
4696 * Devices on the secondary bus are left in power-on state.
4697 */
4698int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4699{
4700	pcibios_reset_secondary_bus(dev);
4701
4702	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4703}
4704EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4705
4706static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4707{
4708	struct pci_dev *pdev;
4709
4710	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4711	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4712		return -ENOTTY;
4713
4714	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4715		if (pdev != dev)
4716			return -ENOTTY;
4717
4718	if (probe)
4719		return 0;
4720
4721	return pci_bridge_secondary_bus_reset(dev->bus->self);
4722}
4723
4724static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4725{
4726	int rc = -ENOTTY;
4727
4728	if (!hotplug || !try_module_get(hotplug->owner))
4729		return rc;
4730
4731	if (hotplug->ops->reset_slot)
4732		rc = hotplug->ops->reset_slot(hotplug, probe);
4733
4734	module_put(hotplug->owner);
4735
4736	return rc;
4737}
4738
4739static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4740{
4741	struct pci_dev *pdev;
4742
4743	if (dev->subordinate || !dev->slot ||
4744	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4745		return -ENOTTY;
4746
4747	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4748		if (pdev != dev && pdev->slot == dev->slot)
4749			return -ENOTTY;
4750
4751	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4752}
4753
4754static void pci_dev_lock(struct pci_dev *dev)
 
 
 
 
 
 
 
 
 
 
4755{
4756	pci_cfg_access_lock(dev);
4757	/* block PM suspend, driver probe, etc. */
4758	device_lock(&dev->dev);
 
4759}
 
4760
4761/* Return 1 on successful lock, 0 on contention */
4762static int pci_dev_trylock(struct pci_dev *dev)
4763{
4764	if (pci_cfg_access_trylock(dev)) {
4765		if (device_trylock(&dev->dev))
4766			return 1;
4767		pci_cfg_access_unlock(dev);
4768	}
4769
4770	return 0;
4771}
 
4772
4773static void pci_dev_unlock(struct pci_dev *dev)
4774{
4775	device_unlock(&dev->dev);
4776	pci_cfg_access_unlock(dev);
 
4777}
 
4778
4779static void pci_dev_save_and_disable(struct pci_dev *dev)
4780{
4781	const struct pci_error_handlers *err_handler =
4782			dev->driver ? dev->driver->err_handler : NULL;
4783
4784	/*
4785	 * dev->driver->err_handler->reset_prepare() is protected against
4786	 * races with ->remove() by the device lock, which must be held by
4787	 * the caller.
4788	 */
4789	if (err_handler && err_handler->reset_prepare)
4790		err_handler->reset_prepare(dev);
4791
4792	/*
4793	 * Wake-up device prior to save.  PM registers default to D0 after
4794	 * reset and a simple register restore doesn't reliably return
4795	 * to a non-D0 state anyway.
4796	 */
4797	pci_set_power_state(dev, PCI_D0);
4798
4799	pci_save_state(dev);
4800	/*
4801	 * Disable the device by clearing the Command register, except for
4802	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4803	 * BARs, but also prevents the device from being Bus Master, preventing
4804	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4805	 * compliant devices, INTx-disable prevents legacy interrupts.
4806	 */
4807	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4808}
4809
4810static void pci_dev_restore(struct pci_dev *dev)
4811{
4812	const struct pci_error_handlers *err_handler =
4813			dev->driver ? dev->driver->err_handler : NULL;
4814
4815	pci_restore_state(dev);
4816
4817	/*
4818	 * dev->driver->err_handler->reset_done() is protected against
4819	 * races with ->remove() by the device lock, which must be held by
4820	 * the caller.
4821	 */
4822	if (err_handler && err_handler->reset_done)
4823		err_handler->reset_done(dev);
4824}
4825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4826/**
4827 * __pci_reset_function_locked - reset a PCI device function while holding
4828 * the @dev mutex lock.
4829 * @dev: PCI device to reset
4830 *
4831 * Some devices allow an individual function to be reset without affecting
4832 * other functions in the same device.  The PCI device must be responsive
4833 * to PCI config space in order to use this function.
4834 *
4835 * The device function is presumed to be unused and the caller is holding
4836 * the device mutex lock when this function is called.
4837 *
4838 * Resetting the device will make the contents of PCI configuration space
4839 * random, so any caller of this must be prepared to reinitialise the
4840 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4841 * etc.
4842 *
4843 * Returns 0 if the device function was successfully reset or negative if the
4844 * device doesn't support resetting a single function.
4845 */
4846int __pci_reset_function_locked(struct pci_dev *dev)
4847{
4848	int rc;
4849
4850	might_sleep();
4851
4852	/*
4853	 * A reset method returns -ENOTTY if it doesn't support this device
4854	 * and we should try the next method.
4855	 *
4856	 * If it returns 0 (success), we're finished.  If it returns any
4857	 * other error, we're also finished: this indicates that further
4858	 * reset mechanisms might be broken on the device.
4859	 */
4860	rc = pci_dev_specific_reset(dev, 0);
4861	if (rc != -ENOTTY)
4862		return rc;
4863	if (pcie_has_flr(dev)) {
4864		rc = pcie_flr(dev);
 
 
 
4865		if (rc != -ENOTTY)
4866			return rc;
4867	}
4868	rc = pci_af_flr(dev, 0);
4869	if (rc != -ENOTTY)
4870		return rc;
4871	rc = pci_pm_reset(dev, 0);
4872	if (rc != -ENOTTY)
4873		return rc;
4874	rc = pci_dev_reset_slot_function(dev, 0);
4875	if (rc != -ENOTTY)
4876		return rc;
4877	return pci_parent_bus_reset(dev, 0);
4878}
4879EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4880
4881/**
4882 * pci_probe_reset_function - check whether the device can be safely reset
4883 * @dev: PCI device to reset
 
4884 *
4885 * Some devices allow an individual function to be reset without affecting
4886 * other functions in the same device.  The PCI device must be responsive
4887 * to PCI config space in order to use this function.
4888 *
4889 * Returns 0 if the device function can be reset or negative if the
4890 * device doesn't support resetting a single function.
4891 */
4892int pci_probe_reset_function(struct pci_dev *dev)
4893{
4894	int rc;
 
 
4895
4896	might_sleep();
4897
4898	rc = pci_dev_specific_reset(dev, 1);
4899	if (rc != -ENOTTY)
4900		return rc;
4901	if (pcie_has_flr(dev))
4902		return 0;
4903	rc = pci_af_flr(dev, 1);
4904	if (rc != -ENOTTY)
4905		return rc;
4906	rc = pci_pm_reset(dev, 1);
4907	if (rc != -ENOTTY)
4908		return rc;
4909	rc = pci_dev_reset_slot_function(dev, 1);
4910	if (rc != -ENOTTY)
4911		return rc;
4912
4913	return pci_parent_bus_reset(dev, 1);
4914}
4915
4916/**
4917 * pci_reset_function - quiesce and reset a PCI device function
4918 * @dev: PCI device to reset
4919 *
4920 * Some devices allow an individual function to be reset without affecting
4921 * other functions in the same device.  The PCI device must be responsive
4922 * to PCI config space in order to use this function.
4923 *
4924 * This function does not just reset the PCI portion of a device, but
4925 * clears all the state associated with the device.  This function differs
4926 * from __pci_reset_function_locked() in that it saves and restores device state
4927 * over the reset and takes the PCI device lock.
4928 *
4929 * Returns 0 if the device function was successfully reset or negative if the
4930 * device doesn't support resetting a single function.
4931 */
4932int pci_reset_function(struct pci_dev *dev)
4933{
4934	int rc;
4935
4936	if (!dev->reset_fn)
4937		return -ENOTTY;
4938
4939	pci_dev_lock(dev);
4940	pci_dev_save_and_disable(dev);
4941
4942	rc = __pci_reset_function_locked(dev);
4943
4944	pci_dev_restore(dev);
4945	pci_dev_unlock(dev);
4946
4947	return rc;
4948}
4949EXPORT_SYMBOL_GPL(pci_reset_function);
4950
4951/**
4952 * pci_reset_function_locked - quiesce and reset a PCI device function
4953 * @dev: PCI device to reset
4954 *
4955 * Some devices allow an individual function to be reset without affecting
4956 * other functions in the same device.  The PCI device must be responsive
4957 * to PCI config space in order to use this function.
4958 *
4959 * This function does not just reset the PCI portion of a device, but
4960 * clears all the state associated with the device.  This function differs
4961 * from __pci_reset_function_locked() in that it saves and restores device state
4962 * over the reset.  It also differs from pci_reset_function() in that it
4963 * requires the PCI device lock to be held.
4964 *
4965 * Returns 0 if the device function was successfully reset or negative if the
4966 * device doesn't support resetting a single function.
4967 */
4968int pci_reset_function_locked(struct pci_dev *dev)
4969{
4970	int rc;
4971
4972	if (!dev->reset_fn)
4973		return -ENOTTY;
4974
4975	pci_dev_save_and_disable(dev);
4976
4977	rc = __pci_reset_function_locked(dev);
4978
4979	pci_dev_restore(dev);
4980
4981	return rc;
4982}
4983EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4984
4985/**
4986 * pci_try_reset_function - quiesce and reset a PCI device function
4987 * @dev: PCI device to reset
4988 *
4989 * Same as above, except return -EAGAIN if unable to lock device.
4990 */
4991int pci_try_reset_function(struct pci_dev *dev)
4992{
4993	int rc;
4994
4995	if (!dev->reset_fn)
4996		return -ENOTTY;
4997
4998	if (!pci_dev_trylock(dev))
4999		return -EAGAIN;
5000
5001	pci_dev_save_and_disable(dev);
5002	rc = __pci_reset_function_locked(dev);
5003	pci_dev_restore(dev);
5004	pci_dev_unlock(dev);
5005
5006	return rc;
5007}
5008EXPORT_SYMBOL_GPL(pci_try_reset_function);
5009
5010/* Do any devices on or below this bus prevent a bus reset? */
5011static bool pci_bus_resetable(struct pci_bus *bus)
5012{
5013	struct pci_dev *dev;
5014
5015
5016	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5017		return false;
5018
5019	list_for_each_entry(dev, &bus->devices, bus_list) {
5020		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5021		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5022			return false;
5023	}
5024
5025	return true;
5026}
5027
5028/* Lock devices from the top of the tree down */
5029static void pci_bus_lock(struct pci_bus *bus)
5030{
5031	struct pci_dev *dev;
5032
5033	list_for_each_entry(dev, &bus->devices, bus_list) {
5034		pci_dev_lock(dev);
5035		if (dev->subordinate)
5036			pci_bus_lock(dev->subordinate);
5037	}
5038}
5039
5040/* Unlock devices from the bottom of the tree up */
5041static void pci_bus_unlock(struct pci_bus *bus)
5042{
5043	struct pci_dev *dev;
5044
5045	list_for_each_entry(dev, &bus->devices, bus_list) {
5046		if (dev->subordinate)
5047			pci_bus_unlock(dev->subordinate);
5048		pci_dev_unlock(dev);
5049	}
5050}
5051
5052/* Return 1 on successful lock, 0 on contention */
5053static int pci_bus_trylock(struct pci_bus *bus)
5054{
5055	struct pci_dev *dev;
5056
5057	list_for_each_entry(dev, &bus->devices, bus_list) {
5058		if (!pci_dev_trylock(dev))
5059			goto unlock;
5060		if (dev->subordinate) {
5061			if (!pci_bus_trylock(dev->subordinate)) {
5062				pci_dev_unlock(dev);
5063				goto unlock;
5064			}
5065		}
5066	}
5067	return 1;
5068
5069unlock:
5070	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5071		if (dev->subordinate)
5072			pci_bus_unlock(dev->subordinate);
5073		pci_dev_unlock(dev);
5074	}
5075	return 0;
5076}
5077
5078/* Do any devices on or below this slot prevent a bus reset? */
5079static bool pci_slot_resetable(struct pci_slot *slot)
5080{
5081	struct pci_dev *dev;
5082
5083	if (slot->bus->self &&
5084	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5085		return false;
5086
5087	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5088		if (!dev->slot || dev->slot != slot)
5089			continue;
5090		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5091		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5092			return false;
5093	}
5094
5095	return true;
5096}
5097
5098/* Lock devices from the top of the tree down */
5099static void pci_slot_lock(struct pci_slot *slot)
5100{
5101	struct pci_dev *dev;
5102
5103	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5104		if (!dev->slot || dev->slot != slot)
5105			continue;
5106		pci_dev_lock(dev);
5107		if (dev->subordinate)
5108			pci_bus_lock(dev->subordinate);
5109	}
5110}
5111
5112/* Unlock devices from the bottom of the tree up */
5113static void pci_slot_unlock(struct pci_slot *slot)
5114{
5115	struct pci_dev *dev;
5116
5117	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5118		if (!dev->slot || dev->slot != slot)
5119			continue;
5120		if (dev->subordinate)
5121			pci_bus_unlock(dev->subordinate);
5122		pci_dev_unlock(dev);
5123	}
5124}
5125
5126/* Return 1 on successful lock, 0 on contention */
5127static int pci_slot_trylock(struct pci_slot *slot)
5128{
5129	struct pci_dev *dev;
5130
5131	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5132		if (!dev->slot || dev->slot != slot)
5133			continue;
5134		if (!pci_dev_trylock(dev))
5135			goto unlock;
5136		if (dev->subordinate) {
5137			if (!pci_bus_trylock(dev->subordinate)) {
5138				pci_dev_unlock(dev);
5139				goto unlock;
5140			}
5141		}
5142	}
5143	return 1;
5144
5145unlock:
5146	list_for_each_entry_continue_reverse(dev,
5147					     &slot->bus->devices, bus_list) {
5148		if (!dev->slot || dev->slot != slot)
5149			continue;
5150		if (dev->subordinate)
5151			pci_bus_unlock(dev->subordinate);
5152		pci_dev_unlock(dev);
5153	}
5154	return 0;
5155}
5156
5157/*
5158 * Save and disable devices from the top of the tree down while holding
5159 * the @dev mutex lock for the entire tree.
5160 */
5161static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5162{
5163	struct pci_dev *dev;
5164
5165	list_for_each_entry(dev, &bus->devices, bus_list) {
5166		pci_dev_save_and_disable(dev);
5167		if (dev->subordinate)
5168			pci_bus_save_and_disable_locked(dev->subordinate);
5169	}
5170}
5171
5172/*
5173 * Restore devices from top of the tree down while holding @dev mutex lock
5174 * for the entire tree.  Parent bridges need to be restored before we can
5175 * get to subordinate devices.
5176 */
5177static void pci_bus_restore_locked(struct pci_bus *bus)
5178{
5179	struct pci_dev *dev;
5180
5181	list_for_each_entry(dev, &bus->devices, bus_list) {
5182		pci_dev_restore(dev);
5183		if (dev->subordinate)
5184			pci_bus_restore_locked(dev->subordinate);
5185	}
5186}
5187
5188/*
5189 * Save and disable devices from the top of the tree down while holding
5190 * the @dev mutex lock for the entire tree.
5191 */
5192static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5193{
5194	struct pci_dev *dev;
5195
5196	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5197		if (!dev->slot || dev->slot != slot)
5198			continue;
5199		pci_dev_save_and_disable(dev);
5200		if (dev->subordinate)
5201			pci_bus_save_and_disable_locked(dev->subordinate);
5202	}
5203}
5204
5205/*
5206 * Restore devices from top of the tree down while holding @dev mutex lock
5207 * for the entire tree.  Parent bridges need to be restored before we can
5208 * get to subordinate devices.
5209 */
5210static void pci_slot_restore_locked(struct pci_slot *slot)
5211{
5212	struct pci_dev *dev;
5213
5214	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5215		if (!dev->slot || dev->slot != slot)
5216			continue;
5217		pci_dev_restore(dev);
5218		if (dev->subordinate)
5219			pci_bus_restore_locked(dev->subordinate);
5220	}
5221}
5222
5223static int pci_slot_reset(struct pci_slot *slot, int probe)
5224{
5225	int rc;
5226
5227	if (!slot || !pci_slot_resetable(slot))
5228		return -ENOTTY;
5229
5230	if (!probe)
5231		pci_slot_lock(slot);
5232
5233	might_sleep();
5234
5235	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5236
5237	if (!probe)
5238		pci_slot_unlock(slot);
5239
5240	return rc;
5241}
5242
5243/**
5244 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5245 * @slot: PCI slot to probe
5246 *
5247 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5248 */
5249int pci_probe_reset_slot(struct pci_slot *slot)
5250{
5251	return pci_slot_reset(slot, 1);
5252}
5253EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5254
5255/**
5256 * __pci_reset_slot - Try to reset a PCI slot
5257 * @slot: PCI slot to reset
5258 *
5259 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5260 * independent of other slots.  For instance, some slots may support slot power
5261 * control.  In the case of a 1:1 bus to slot architecture, this function may
5262 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5263 * Generally a slot reset should be attempted before a bus reset.  All of the
5264 * function of the slot and any subordinate buses behind the slot are reset
5265 * through this function.  PCI config space of all devices in the slot and
5266 * behind the slot is saved before and restored after reset.
5267 *
5268 * Same as above except return -EAGAIN if the slot cannot be locked
5269 */
5270static int __pci_reset_slot(struct pci_slot *slot)
5271{
5272	int rc;
5273
5274	rc = pci_slot_reset(slot, 1);
5275	if (rc)
5276		return rc;
5277
5278	if (pci_slot_trylock(slot)) {
5279		pci_slot_save_and_disable_locked(slot);
5280		might_sleep();
5281		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5282		pci_slot_restore_locked(slot);
5283		pci_slot_unlock(slot);
5284	} else
5285		rc = -EAGAIN;
5286
5287	return rc;
5288}
5289
5290static int pci_bus_reset(struct pci_bus *bus, int probe)
5291{
5292	int ret;
5293
5294	if (!bus->self || !pci_bus_resetable(bus))
5295		return -ENOTTY;
5296
5297	if (probe)
5298		return 0;
5299
5300	pci_bus_lock(bus);
5301
5302	might_sleep();
5303
5304	ret = pci_bridge_secondary_bus_reset(bus->self);
5305
5306	pci_bus_unlock(bus);
5307
5308	return ret;
5309}
5310
5311/**
5312 * pci_bus_error_reset - reset the bridge's subordinate bus
5313 * @bridge: The parent device that connects to the bus to reset
5314 *
5315 * This function will first try to reset the slots on this bus if the method is
5316 * available. If slot reset fails or is not available, this will fall back to a
5317 * secondary bus reset.
5318 */
5319int pci_bus_error_reset(struct pci_dev *bridge)
5320{
5321	struct pci_bus *bus = bridge->subordinate;
5322	struct pci_slot *slot;
5323
5324	if (!bus)
5325		return -ENOTTY;
5326
5327	mutex_lock(&pci_slot_mutex);
5328	if (list_empty(&bus->slots))
5329		goto bus_reset;
5330
5331	list_for_each_entry(slot, &bus->slots, list)
5332		if (pci_probe_reset_slot(slot))
5333			goto bus_reset;
5334
5335	list_for_each_entry(slot, &bus->slots, list)
5336		if (pci_slot_reset(slot, 0))
5337			goto bus_reset;
5338
5339	mutex_unlock(&pci_slot_mutex);
5340	return 0;
5341bus_reset:
5342	mutex_unlock(&pci_slot_mutex);
5343	return pci_bus_reset(bridge->subordinate, 0);
5344}
5345
5346/**
5347 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5348 * @bus: PCI bus to probe
5349 *
5350 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5351 */
5352int pci_probe_reset_bus(struct pci_bus *bus)
5353{
5354	return pci_bus_reset(bus, 1);
5355}
5356EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5357
5358/**
5359 * __pci_reset_bus - Try to reset a PCI bus
5360 * @bus: top level PCI bus to reset
5361 *
5362 * Same as above except return -EAGAIN if the bus cannot be locked
5363 */
5364static int __pci_reset_bus(struct pci_bus *bus)
5365{
5366	int rc;
5367
5368	rc = pci_bus_reset(bus, 1);
5369	if (rc)
5370		return rc;
5371
5372	if (pci_bus_trylock(bus)) {
5373		pci_bus_save_and_disable_locked(bus);
5374		might_sleep();
5375		rc = pci_bridge_secondary_bus_reset(bus->self);
5376		pci_bus_restore_locked(bus);
5377		pci_bus_unlock(bus);
5378	} else
5379		rc = -EAGAIN;
5380
5381	return rc;
5382}
5383
5384/**
5385 * pci_reset_bus - Try to reset a PCI bus
5386 * @pdev: top level PCI device to reset via slot/bus
5387 *
5388 * Same as above except return -EAGAIN if the bus cannot be locked
5389 */
5390int pci_reset_bus(struct pci_dev *pdev)
5391{
5392	return (!pci_probe_reset_slot(pdev->slot)) ?
5393	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5394}
5395EXPORT_SYMBOL_GPL(pci_reset_bus);
5396
5397/**
5398 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5399 * @dev: PCI device to query
5400 *
5401 * Returns mmrbc: maximum designed memory read count in bytes or
5402 * appropriate error value.
5403 */
5404int pcix_get_max_mmrbc(struct pci_dev *dev)
5405{
5406	int cap;
5407	u32 stat;
5408
5409	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5410	if (!cap)
5411		return -EINVAL;
5412
5413	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5414		return -EINVAL;
5415
5416	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5417}
5418EXPORT_SYMBOL(pcix_get_max_mmrbc);
5419
5420/**
5421 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5422 * @dev: PCI device to query
5423 *
5424 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5425 * value.
5426 */
5427int pcix_get_mmrbc(struct pci_dev *dev)
5428{
5429	int cap;
5430	u16 cmd;
5431
5432	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5433	if (!cap)
5434		return -EINVAL;
5435
5436	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5437		return -EINVAL;
5438
5439	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5440}
5441EXPORT_SYMBOL(pcix_get_mmrbc);
5442
5443/**
5444 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5445 * @dev: PCI device to query
5446 * @mmrbc: maximum memory read count in bytes
5447 *    valid values are 512, 1024, 2048, 4096
5448 *
5449 * If possible sets maximum memory read byte count, some bridges have errata
5450 * that prevent this.
5451 */
5452int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5453{
5454	int cap;
5455	u32 stat, v, o;
5456	u16 cmd;
5457
5458	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5459		return -EINVAL;
5460
5461	v = ffs(mmrbc) - 10;
5462
5463	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5464	if (!cap)
5465		return -EINVAL;
5466
5467	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5468		return -EINVAL;
5469
5470	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5471		return -E2BIG;
5472
5473	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5474		return -EINVAL;
5475
5476	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5477	if (o != v) {
5478		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5479			return -EIO;
5480
5481		cmd &= ~PCI_X_CMD_MAX_READ;
5482		cmd |= v << 2;
5483		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5484			return -EIO;
5485	}
5486	return 0;
5487}
5488EXPORT_SYMBOL(pcix_set_mmrbc);
5489
5490/**
5491 * pcie_get_readrq - get PCI Express read request size
5492 * @dev: PCI device to query
5493 *
5494 * Returns maximum memory read request in bytes or appropriate error value.
5495 */
5496int pcie_get_readrq(struct pci_dev *dev)
5497{
5498	u16 ctl;
5499
5500	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5501
5502	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5503}
5504EXPORT_SYMBOL(pcie_get_readrq);
5505
5506/**
5507 * pcie_set_readrq - set PCI Express maximum memory read request
5508 * @dev: PCI device to query
5509 * @rq: maximum memory read count in bytes
5510 *    valid values are 128, 256, 512, 1024, 2048, 4096
5511 *
5512 * If possible sets maximum memory read request in bytes
5513 */
5514int pcie_set_readrq(struct pci_dev *dev, int rq)
5515{
5516	u16 v;
 
5517
5518	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5519		return -EINVAL;
5520
5521	/*
5522	 * If using the "performance" PCIe config, we clamp the read rq
5523	 * size to the max packet size to keep the host bridge from
5524	 * generating requests larger than we can cope with.
5525	 */
5526	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5527		int mps = pcie_get_mps(dev);
5528
5529		if (mps < rq)
5530			rq = mps;
5531	}
5532
5533	v = (ffs(rq) - 8) << 12;
5534
5535	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5536						  PCI_EXP_DEVCTL_READRQ, v);
 
 
5537}
5538EXPORT_SYMBOL(pcie_set_readrq);
5539
5540/**
5541 * pcie_get_mps - get PCI Express maximum payload size
5542 * @dev: PCI device to query
5543 *
5544 * Returns maximum payload size in bytes
5545 */
5546int pcie_get_mps(struct pci_dev *dev)
5547{
5548	u16 ctl;
5549
5550	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5551
5552	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5553}
5554EXPORT_SYMBOL(pcie_get_mps);
5555
5556/**
5557 * pcie_set_mps - set PCI Express maximum payload size
5558 * @dev: PCI device to query
5559 * @mps: maximum payload size in bytes
5560 *    valid values are 128, 256, 512, 1024, 2048, 4096
5561 *
5562 * If possible sets maximum payload size
5563 */
5564int pcie_set_mps(struct pci_dev *dev, int mps)
5565{
5566	u16 v;
 
5567
5568	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5569		return -EINVAL;
5570
5571	v = ffs(mps) - 8;
5572	if (v > dev->pcie_mpss)
5573		return -EINVAL;
5574	v <<= 5;
5575
5576	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5577						  PCI_EXP_DEVCTL_PAYLOAD, v);
 
 
5578}
5579EXPORT_SYMBOL(pcie_set_mps);
5580
5581/**
5582 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5583 *			      device and its bandwidth limitation
5584 * @dev: PCI device to query
5585 * @limiting_dev: storage for device causing the bandwidth limitation
5586 * @speed: storage for speed of limiting device
5587 * @width: storage for width of limiting device
5588 *
5589 * Walk up the PCI device chain and find the point where the minimum
5590 * bandwidth is available.  Return the bandwidth available there and (if
5591 * limiting_dev, speed, and width pointers are supplied) information about
5592 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5593 * raw bandwidth.
5594 */
5595u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5596			     enum pci_bus_speed *speed,
5597			     enum pcie_link_width *width)
5598{
5599	u16 lnksta;
5600	enum pci_bus_speed next_speed;
5601	enum pcie_link_width next_width;
5602	u32 bw, next_bw;
5603
5604	if (speed)
5605		*speed = PCI_SPEED_UNKNOWN;
5606	if (width)
5607		*width = PCIE_LNK_WIDTH_UNKNOWN;
5608
5609	bw = 0;
5610
5611	while (dev) {
5612		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5613
5614		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5615		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5616			PCI_EXP_LNKSTA_NLW_SHIFT;
5617
5618		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5619
5620		/* Check if current device limits the total bandwidth */
5621		if (!bw || next_bw <= bw) {
5622			bw = next_bw;
5623
5624			if (limiting_dev)
5625				*limiting_dev = dev;
5626			if (speed)
5627				*speed = next_speed;
5628			if (width)
5629				*width = next_width;
5630		}
5631
5632		dev = pci_upstream_bridge(dev);
5633	}
5634
5635	return bw;
5636}
5637EXPORT_SYMBOL(pcie_bandwidth_available);
5638
5639/**
5640 * pcie_get_speed_cap - query for the PCI device's link speed capability
5641 * @dev: PCI device to query
5642 *
5643 * Query the PCI device speed capability.  Return the maximum link speed
5644 * supported by the device.
5645 */
5646enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5647{
5648	u32 lnkcap2, lnkcap;
5649
5650	/*
5651	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5652	 * implementation note there recommends using the Supported Link
5653	 * Speeds Vector in Link Capabilities 2 when supported.
5654	 *
5655	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5656	 * should use the Supported Link Speeds field in Link Capabilities,
5657	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5658	 */
5659	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5660	if (lnkcap2) { /* PCIe r3.0-compliant */
5661		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_32_0GB)
5662			return PCIE_SPEED_32_0GT;
5663		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5664			return PCIE_SPEED_16_0GT;
5665		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5666			return PCIE_SPEED_8_0GT;
5667		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5668			return PCIE_SPEED_5_0GT;
5669		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5670			return PCIE_SPEED_2_5GT;
5671		return PCI_SPEED_UNKNOWN;
5672	}
5673
5674	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5675	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5676		return PCIE_SPEED_5_0GT;
5677	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5678		return PCIE_SPEED_2_5GT;
5679
5680	return PCI_SPEED_UNKNOWN;
5681}
5682EXPORT_SYMBOL(pcie_get_speed_cap);
5683
5684/**
5685 * pcie_get_width_cap - query for the PCI device's link width capability
5686 * @dev: PCI device to query
5687 *
5688 * Query the PCI device width capability.  Return the maximum link width
5689 * supported by the device.
5690 */
5691enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5692{
5693	u32 lnkcap;
5694
5695	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5696	if (lnkcap)
5697		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5698
5699	return PCIE_LNK_WIDTH_UNKNOWN;
5700}
5701EXPORT_SYMBOL(pcie_get_width_cap);
5702
5703/**
5704 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5705 * @dev: PCI device
5706 * @speed: storage for link speed
5707 * @width: storage for link width
5708 *
5709 * Calculate a PCI device's link bandwidth by querying for its link speed
5710 * and width, multiplying them, and applying encoding overhead.  The result
5711 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5712 */
5713u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5714			   enum pcie_link_width *width)
5715{
5716	*speed = pcie_get_speed_cap(dev);
5717	*width = pcie_get_width_cap(dev);
5718
5719	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5720		return 0;
5721
5722	return *width * PCIE_SPEED2MBS_ENC(*speed);
5723}
5724
5725/**
5726 * __pcie_print_link_status - Report the PCI device's link speed and width
5727 * @dev: PCI device to query
5728 * @verbose: Print info even when enough bandwidth is available
5729 *
5730 * If the available bandwidth at the device is less than the device is
5731 * capable of, report the device's maximum possible bandwidth and the
5732 * upstream link that limits its performance.  If @verbose, always print
5733 * the available bandwidth, even if the device isn't constrained.
5734 */
5735void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5736{
5737	enum pcie_link_width width, width_cap;
5738	enum pci_bus_speed speed, speed_cap;
5739	struct pci_dev *limiting_dev = NULL;
5740	u32 bw_avail, bw_cap;
5741
5742	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5743	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5744
5745	if (bw_avail >= bw_cap && verbose)
5746		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5747			 bw_cap / 1000, bw_cap % 1000,
5748			 PCIE_SPEED2STR(speed_cap), width_cap);
5749	else if (bw_avail < bw_cap)
5750		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5751			 bw_avail / 1000, bw_avail % 1000,
5752			 PCIE_SPEED2STR(speed), width,
5753			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5754			 bw_cap / 1000, bw_cap % 1000,
5755			 PCIE_SPEED2STR(speed_cap), width_cap);
5756}
5757
5758/**
5759 * pcie_print_link_status - Report the PCI device's link speed and width
5760 * @dev: PCI device to query
5761 *
5762 * Report the available bandwidth at the device.
5763 */
5764void pcie_print_link_status(struct pci_dev *dev)
5765{
5766	__pcie_print_link_status(dev, true);
5767}
5768EXPORT_SYMBOL(pcie_print_link_status);
5769
5770/**
5771 * pci_select_bars - Make BAR mask from the type of resource
5772 * @dev: the PCI device for which BAR mask is made
5773 * @flags: resource type mask to be selected
5774 *
5775 * This helper routine makes bar mask from the type of resource.
5776 */
5777int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5778{
5779	int i, bars = 0;
5780	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5781		if (pci_resource_flags(dev, i) & flags)
5782			bars |= (1 << i);
5783	return bars;
5784}
5785EXPORT_SYMBOL(pci_select_bars);
5786
5787/* Some architectures require additional programming to enable VGA */
5788static arch_set_vga_state_t arch_set_vga_state;
5789
5790void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5791{
5792	arch_set_vga_state = func;	/* NULL disables */
5793}
5794
5795static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5796				  unsigned int command_bits, u32 flags)
5797{
5798	if (arch_set_vga_state)
5799		return arch_set_vga_state(dev, decode, command_bits,
5800						flags);
5801	return 0;
5802}
5803
5804/**
5805 * pci_set_vga_state - set VGA decode state on device and parents if requested
5806 * @dev: the PCI device
5807 * @decode: true = enable decoding, false = disable decoding
5808 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5809 * @flags: traverse ancestors and change bridges
5810 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5811 */
5812int pci_set_vga_state(struct pci_dev *dev, bool decode,
5813		      unsigned int command_bits, u32 flags)
5814{
5815	struct pci_bus *bus;
5816	struct pci_dev *bridge;
5817	u16 cmd;
5818	int rc;
5819
5820	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5821
5822	/* ARCH specific VGA enables */
5823	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5824	if (rc)
5825		return rc;
5826
5827	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5828		pci_read_config_word(dev, PCI_COMMAND, &cmd);
5829		if (decode == true)
5830			cmd |= command_bits;
5831		else
5832			cmd &= ~command_bits;
5833		pci_write_config_word(dev, PCI_COMMAND, cmd);
5834	}
5835
5836	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5837		return 0;
5838
5839	bus = dev->bus;
5840	while (bus) {
5841		bridge = bus->self;
5842		if (bridge) {
5843			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5844					     &cmd);
5845			if (decode == true)
5846				cmd |= PCI_BRIDGE_CTL_VGA;
5847			else
5848				cmd &= ~PCI_BRIDGE_CTL_VGA;
5849			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5850					      cmd);
5851		}
5852		bus = bus->parent;
5853	}
5854	return 0;
5855}
5856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5857/**
5858 * pci_add_dma_alias - Add a DMA devfn alias for a device
5859 * @dev: the PCI device for which alias is added
5860 * @devfn: alias slot and function
 
5861 *
5862 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
5863 * which is used to program permissible bus-devfn source addresses for DMA
5864 * requests in an IOMMU.  These aliases factor into IOMMU group creation
5865 * and are useful for devices generating DMA requests beyond or different
5866 * from their logical bus-devfn.  Examples include device quirks where the
5867 * device simply uses the wrong devfn, as well as non-transparent bridges
5868 * where the alias may be a proxy for devices in another domain.
5869 *
5870 * IOMMU group creation is performed during device discovery or addition,
5871 * prior to any potential DMA mapping and therefore prior to driver probing
5872 * (especially for userspace assigned devices where IOMMU group definition
5873 * cannot be left as a userspace activity).  DMA aliases should therefore
5874 * be configured via quirks, such as the PCI fixup header quirk.
5875 */
5876void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
 
5877{
 
 
 
 
 
5878	if (!dev->dma_alias_mask)
5879		dev->dma_alias_mask = bitmap_zalloc(U8_MAX, GFP_KERNEL);
5880	if (!dev->dma_alias_mask) {
5881		pci_warn(dev, "Unable to allocate DMA alias mask\n");
5882		return;
5883	}
5884
5885	set_bit(devfn, dev->dma_alias_mask);
5886	pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5887		 PCI_SLOT(devfn), PCI_FUNC(devfn));
 
 
 
 
 
 
5888}
5889
5890bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5891{
5892	return (dev1->dma_alias_mask &&
5893		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5894	       (dev2->dma_alias_mask &&
5895		test_bit(dev1->devfn, dev2->dma_alias_mask));
 
 
5896}
5897
5898bool pci_device_is_present(struct pci_dev *pdev)
5899{
5900	u32 v;
5901
 
 
5902	if (pci_dev_is_disconnected(pdev))
5903		return false;
5904	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5905}
5906EXPORT_SYMBOL_GPL(pci_device_is_present);
5907
5908void pci_ignore_hotplug(struct pci_dev *dev)
5909{
5910	struct pci_dev *bridge = dev->bus->self;
5911
5912	dev->ignore_hotplug = 1;
5913	/* Propagate the "ignore hotplug" setting to the parent bridge. */
5914	if (bridge)
5915		bridge->ignore_hotplug = 1;
5916}
5917EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5919resource_size_t __weak pcibios_default_alignment(void)
5920{
5921	return 0;
5922}
5923
5924/*
5925 * Arches that don't want to expose struct resource to userland as-is in
5926 * sysfs and /proc can implement their own pci_resource_to_user().
5927 */
5928void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
5929				 const struct resource *rsrc,
5930				 resource_size_t *start, resource_size_t *end)
5931{
5932	*start = rsrc->start;
5933	*end = rsrc->end;
5934}
5935
5936static char *resource_alignment_param;
5937static DEFINE_SPINLOCK(resource_alignment_lock);
5938
5939/**
5940 * pci_specified_resource_alignment - get resource alignment specified by user.
5941 * @dev: the PCI device to get
5942 * @resize: whether or not to change resources' size when reassigning alignment
5943 *
5944 * RETURNS: Resource alignment if it is specified.
5945 *          Zero if it is not specified.
5946 */
5947static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5948							bool *resize)
5949{
5950	int align_order, count;
5951	resource_size_t align = pcibios_default_alignment();
5952	const char *p;
5953	int ret;
5954
5955	spin_lock(&resource_alignment_lock);
5956	p = resource_alignment_param;
5957	if (!p || !*p)
5958		goto out;
5959	if (pci_has_flag(PCI_PROBE_ONLY)) {
5960		align = 0;
5961		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5962		goto out;
5963	}
5964
5965	while (*p) {
5966		count = 0;
5967		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5968							p[count] == '@') {
5969			p += count + 1;
 
 
 
 
 
5970		} else {
5971			align_order = -1;
5972		}
5973
5974		ret = pci_dev_str_match(dev, p, &p);
5975		if (ret == 1) {
5976			*resize = true;
5977			if (align_order == -1)
5978				align = PAGE_SIZE;
5979			else
5980				align = 1 << align_order;
5981			break;
5982		} else if (ret < 0) {
5983			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
5984			       p);
5985			break;
5986		}
5987
5988		if (*p != ';' && *p != ',') {
5989			/* End of param or invalid format */
5990			break;
5991		}
5992		p++;
5993	}
5994out:
5995	spin_unlock(&resource_alignment_lock);
5996	return align;
5997}
5998
5999static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6000					   resource_size_t align, bool resize)
6001{
6002	struct resource *r = &dev->resource[bar];
6003	resource_size_t size;
6004
6005	if (!(r->flags & IORESOURCE_MEM))
6006		return;
6007
6008	if (r->flags & IORESOURCE_PCI_FIXED) {
6009		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6010			 bar, r, (unsigned long long)align);
6011		return;
6012	}
6013
6014	size = resource_size(r);
6015	if (size >= align)
6016		return;
6017
6018	/*
6019	 * Increase the alignment of the resource.  There are two ways we
6020	 * can do this:
6021	 *
6022	 * 1) Increase the size of the resource.  BARs are aligned on their
6023	 *    size, so when we reallocate space for this resource, we'll
6024	 *    allocate it with the larger alignment.  This also prevents
6025	 *    assignment of any other BARs inside the alignment region, so
6026	 *    if we're requesting page alignment, this means no other BARs
6027	 *    will share the page.
6028	 *
6029	 *    The disadvantage is that this makes the resource larger than
6030	 *    the hardware BAR, which may break drivers that compute things
6031	 *    based on the resource size, e.g., to find registers at a
6032	 *    fixed offset before the end of the BAR.
6033	 *
6034	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6035	 *    set r->start to the desired alignment.  By itself this
6036	 *    doesn't prevent other BARs being put inside the alignment
6037	 *    region, but if we realign *every* resource of every device in
6038	 *    the system, none of them will share an alignment region.
6039	 *
6040	 * When the user has requested alignment for only some devices via
6041	 * the "pci=resource_alignment" argument, "resize" is true and we
6042	 * use the first method.  Otherwise we assume we're aligning all
6043	 * devices and we use the second.
6044	 */
6045
6046	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6047		 bar, r, (unsigned long long)align);
6048
6049	if (resize) {
6050		r->start = 0;
6051		r->end = align - 1;
6052	} else {
6053		r->flags &= ~IORESOURCE_SIZEALIGN;
6054		r->flags |= IORESOURCE_STARTALIGN;
6055		r->start = align;
6056		r->end = r->start + size - 1;
6057	}
6058	r->flags |= IORESOURCE_UNSET;
6059}
6060
6061/*
6062 * This function disables memory decoding and releases memory resources
6063 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6064 * It also rounds up size to specified alignment.
6065 * Later on, the kernel will assign page-aligned memory resource back
6066 * to the device.
6067 */
6068void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6069{
6070	int i;
6071	struct resource *r;
6072	resource_size_t align;
6073	u16 command;
6074	bool resize = false;
6075
6076	/*
6077	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6078	 * 3.4.1.11.  Their resources are allocated from the space
6079	 * described by the VF BARx register in the PF's SR-IOV capability.
6080	 * We can't influence their alignment here.
6081	 */
6082	if (dev->is_virtfn)
6083		return;
6084
6085	/* check if specified PCI is target device to reassign */
6086	align = pci_specified_resource_alignment(dev, &resize);
6087	if (!align)
6088		return;
6089
6090	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6091	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6092		pci_warn(dev, "Can't reassign resources to host bridge\n");
6093		return;
6094	}
6095
6096	pci_read_config_word(dev, PCI_COMMAND, &command);
6097	command &= ~PCI_COMMAND_MEMORY;
6098	pci_write_config_word(dev, PCI_COMMAND, command);
6099
6100	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6101		pci_request_resource_alignment(dev, i, align, resize);
6102
6103	/*
6104	 * Need to disable bridge's resource window,
6105	 * to enable the kernel to reassign new resource
6106	 * window later on.
6107	 */
6108	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6109		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6110			r = &dev->resource[i];
6111			if (!(r->flags & IORESOURCE_MEM))
6112				continue;
6113			r->flags |= IORESOURCE_UNSET;
6114			r->end = resource_size(r) - 1;
6115			r->start = 0;
6116		}
6117		pci_disable_bridge_window(dev);
6118	}
6119}
6120
6121static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6122{
6123	size_t count = 0;
6124
6125	spin_lock(&resource_alignment_lock);
6126	if (resource_alignment_param)
6127		count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6128	spin_unlock(&resource_alignment_lock);
6129
6130	/*
6131	 * When set by the command line, resource_alignment_param will not
6132	 * have a trailing line feed, which is ugly. So conditionally add
6133	 * it here.
6134	 */
6135	if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6136		buf[count - 1] = '\n';
6137		buf[count++] = 0;
6138	}
6139
6140	return count;
6141}
6142
6143static ssize_t resource_alignment_store(struct bus_type *bus,
6144					const char *buf, size_t count)
6145{
6146	char *param = kstrndup(buf, count, GFP_KERNEL);
 
 
 
6147
 
6148	if (!param)
6149		return -ENOMEM;
6150
 
 
 
 
6151	spin_lock(&resource_alignment_lock);
6152	kfree(resource_alignment_param);
6153	resource_alignment_param = param;
 
 
 
 
 
6154	spin_unlock(&resource_alignment_lock);
 
 
 
6155	return count;
6156}
6157
6158static BUS_ATTR_RW(resource_alignment);
6159
6160static int __init pci_resource_alignment_sysfs_init(void)
6161{
6162	return bus_create_file(&pci_bus_type,
6163					&bus_attr_resource_alignment);
6164}
6165late_initcall(pci_resource_alignment_sysfs_init);
6166
6167static void pci_no_domains(void)
6168{
6169#ifdef CONFIG_PCI_DOMAINS
6170	pci_domains_supported = 0;
6171#endif
6172}
6173
6174#ifdef CONFIG_PCI_DOMAINS_GENERIC
6175static atomic_t __domain_nr = ATOMIC_INIT(-1);
 
6176
6177static int pci_get_new_domain_nr(void)
6178{
6179	return atomic_inc_return(&__domain_nr);
 
 
 
 
 
 
 
 
 
 
 
 
 
6180}
6181
6182static int of_pci_bus_find_domain_nr(struct device *parent)
6183{
6184	static int use_dt_domains = -1;
6185	int domain = -1;
6186
6187	if (parent)
6188		domain = of_get_pci_domain_nr(parent->of_node);
 
 
 
6189
6190	/*
6191	 * Check DT domain and use_dt_domains values.
6192	 *
6193	 * If DT domain property is valid (domain >= 0) and
6194	 * use_dt_domains != 0, the DT assignment is valid since this means
6195	 * we have not previously allocated a domain number by using
6196	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6197	 * 1, to indicate that we have just assigned a domain number from
6198	 * DT.
6199	 *
6200	 * If DT domain property value is not valid (ie domain < 0), and we
6201	 * have not previously assigned a domain number from DT
6202	 * (use_dt_domains != 1) we should assign a domain number by
6203	 * using the:
6204	 *
6205	 * pci_get_new_domain_nr()
6206	 *
6207	 * API and update the use_dt_domains value to keep track of method we
6208	 * are using to assign domain numbers (use_dt_domains = 0).
6209	 *
6210	 * All other combinations imply we have a platform that is trying
6211	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6212	 * which is a recipe for domain mishandling and it is prevented by
6213	 * invalidating the domain value (domain = -1) and printing a
6214	 * corresponding error.
6215	 */
6216	if (domain >= 0 && use_dt_domains) {
6217		use_dt_domains = 1;
6218	} else if (domain < 0 && use_dt_domains != 1) {
6219		use_dt_domains = 0;
6220		domain = pci_get_new_domain_nr();
6221	} else {
6222		if (parent)
6223			pr_err("Node %pOF has ", parent->of_node);
6224		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6225		domain = -1;
6226	}
6227
6228	return domain;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6229}
6230
6231int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6232{
6233	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6234			       acpi_pci_bus_find_domain_nr(bus);
6235}
 
 
 
 
 
 
 
6236#endif
6237
6238/**
6239 * pci_ext_cfg_avail - can we access extended PCI config space?
6240 *
6241 * Returns 1 if we can access PCI extended config space (offsets
6242 * greater than 0xff). This is the default implementation. Architecture
6243 * implementations can override this.
6244 */
6245int __weak pci_ext_cfg_avail(void)
6246{
6247	return 1;
6248}
6249
6250void __weak pci_fixup_cardbus(struct pci_bus *bus)
6251{
6252}
6253EXPORT_SYMBOL(pci_fixup_cardbus);
6254
6255static int __init pci_setup(char *str)
6256{
6257	while (str) {
6258		char *k = strchr(str, ',');
6259		if (k)
6260			*k++ = 0;
6261		if (*str && (str = pcibios_setup(str)) && *str) {
6262			if (!strcmp(str, "nomsi")) {
6263				pci_no_msi();
6264			} else if (!strncmp(str, "noats", 5)) {
6265				pr_info("PCIe: ATS is disabled\n");
6266				pcie_ats_disabled = true;
6267			} else if (!strcmp(str, "noaer")) {
6268				pci_no_aer();
6269			} else if (!strcmp(str, "earlydump")) {
6270				pci_early_dump = true;
6271			} else if (!strncmp(str, "realloc=", 8)) {
6272				pci_realloc_get_opt(str + 8);
6273			} else if (!strncmp(str, "realloc", 7)) {
6274				pci_realloc_get_opt("on");
6275			} else if (!strcmp(str, "nodomains")) {
6276				pci_no_domains();
6277			} else if (!strncmp(str, "noari", 5)) {
6278				pcie_ari_disabled = true;
6279			} else if (!strncmp(str, "cbiosize=", 9)) {
6280				pci_cardbus_io_size = memparse(str + 9, &str);
6281			} else if (!strncmp(str, "cbmemsize=", 10)) {
6282				pci_cardbus_mem_size = memparse(str + 10, &str);
6283			} else if (!strncmp(str, "resource_alignment=", 19)) {
6284				resource_alignment_param = str + 19;
6285			} else if (!strncmp(str, "ecrc=", 5)) {
6286				pcie_ecrc_get_policy(str + 5);
6287			} else if (!strncmp(str, "hpiosize=", 9)) {
6288				pci_hotplug_io_size = memparse(str + 9, &str);
 
 
 
 
6289			} else if (!strncmp(str, "hpmemsize=", 10)) {
6290				pci_hotplug_mem_size = memparse(str + 10, &str);
 
6291			} else if (!strncmp(str, "hpbussize=", 10)) {
6292				pci_hotplug_bus_size =
6293					simple_strtoul(str + 10, &str, 0);
6294				if (pci_hotplug_bus_size > 0xff)
6295					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6296			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6297				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6298			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6299				pcie_bus_config = PCIE_BUS_SAFE;
6300			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6301				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6302			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6303				pcie_bus_config = PCIE_BUS_PEER2PEER;
6304			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6305				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6306			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6307				disable_acs_redir_param = str + 18;
6308			} else {
6309				pr_err("PCI: Unknown option `%s'\n", str);
6310			}
6311		}
6312		str = k;
6313	}
6314	return 0;
6315}
6316early_param("pci", pci_setup);
6317
6318/*
6319 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6320 * in pci_setup(), above, to point to data in the __initdata section which
6321 * will be freed after the init sequence is complete. We can't allocate memory
6322 * in pci_setup() because some architectures do not have any memory allocation
6323 * service available during an early_param() call. So we allocate memory and
6324 * copy the variable here before the init section is freed.
6325 *
6326 */
6327static int __init pci_realloc_setup_params(void)
6328{
6329	resource_alignment_param = kstrdup(resource_alignment_param,
6330					   GFP_KERNEL);
6331	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6332
6333	return 0;
6334}
6335pure_initcall(pci_realloc_setup_params);
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 * David Mosberger-Tang
   7 *
   8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
  16#include <linux/msi.h>
  17#include <linux/of.h>
 
  18#include <linux/pci.h>
  19#include <linux/pm.h>
  20#include <linux/slab.h>
  21#include <linux/module.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/log2.h>
  25#include <linux/logic_pio.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/interrupt.h>
  28#include <linux/device.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/pci_hotplug.h>
  31#include <linux/vmalloc.h>
 
 
  32#include <asm/dma.h>
  33#include <linux/aer.h>
  34#include <linux/bitfield.h>
  35#include "pci.h"
  36
  37DEFINE_MUTEX(pci_slot_mutex);
  38
  39const char *pci_power_names[] = {
  40	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  41};
  42EXPORT_SYMBOL_GPL(pci_power_names);
  43
  44#ifdef CONFIG_X86_32
  45int isa_dma_bridge_buggy;
  46EXPORT_SYMBOL(isa_dma_bridge_buggy);
  47#endif
  48
  49int pci_pci_problems;
  50EXPORT_SYMBOL(pci_pci_problems);
  51
  52unsigned int pci_pm_d3hot_delay;
  53
  54static void pci_pme_list_scan(struct work_struct *work);
  55
  56static LIST_HEAD(pci_pme_list);
  57static DEFINE_MUTEX(pci_pme_list_mutex);
  58static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  59
  60struct pci_pme_device {
  61	struct list_head list;
  62	struct pci_dev *dev;
  63};
  64
  65#define PME_TIMEOUT 1000 /* How long between PME checks */
  66
  67static void pci_dev_d3_sleep(struct pci_dev *dev)
  68{
  69	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
  70	unsigned int upper;
  71
  72	if (delay_ms) {
  73		/* Use a 20% upper bound, 1ms minimum */
  74		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
  75		usleep_range(delay_ms * USEC_PER_MSEC,
  76			     (delay_ms + upper) * USEC_PER_MSEC);
  77	}
  78}
  79
  80bool pci_reset_supported(struct pci_dev *dev)
  81{
  82	return dev->reset_methods[0] != 0;
  83}
  84
  85#ifdef CONFIG_PCI_DOMAINS
  86int pci_domains_supported = 1;
  87#endif
  88
  89#define DEFAULT_CARDBUS_IO_SIZE		(256)
  90#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
  91/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  92unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  93unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  94
  95#define DEFAULT_HOTPLUG_IO_SIZE		(256)
  96#define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
  97#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
  98/* hpiosize=nn can override this */
  99unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
 100/*
 101 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
 102 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
 103 * pci=hpmemsize=nnM overrides both
 104 */
 105unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
 106unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
 107
 108#define DEFAULT_HOTPLUG_BUS_SIZE	1
 109unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
 110
 111
 112/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
 113#ifdef CONFIG_PCIE_BUS_TUNE_OFF
 114enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
 115#elif defined CONFIG_PCIE_BUS_SAFE
 116enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
 117#elif defined CONFIG_PCIE_BUS_PERFORMANCE
 118enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
 119#elif defined CONFIG_PCIE_BUS_PEER2PEER
 120enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
 121#else
 122enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
 123#endif
 124
 125/*
 126 * The default CLS is used if arch didn't set CLS explicitly and not
 127 * all pci devices agree on the same value.  Arch can override either
 128 * the dfl or actual value as it sees fit.  Don't forget this is
 129 * measured in 32-bit words, not bytes.
 130 */
 131u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 132u8 pci_cache_line_size;
 133
 134/*
 135 * If we set up a device for bus mastering, we need to check the latency
 136 * timer as certain BIOSes forget to set it properly.
 137 */
 138unsigned int pcibios_max_latency = 255;
 139
 140/* If set, the PCIe ARI capability will not be used. */
 141static bool pcie_ari_disabled;
 142
 143/* If set, the PCIe ATS capability will not be used. */
 144static bool pcie_ats_disabled;
 145
 146/* If set, the PCI config space of each device is printed during boot. */
 147bool pci_early_dump;
 148
 149bool pci_ats_disabled(void)
 150{
 151	return pcie_ats_disabled;
 152}
 153EXPORT_SYMBOL_GPL(pci_ats_disabled);
 154
 155/* Disable bridge_d3 for all PCIe ports */
 156static bool pci_bridge_d3_disable;
 157/* Force bridge_d3 for all PCIe ports */
 158static bool pci_bridge_d3_force;
 159
 160static int __init pcie_port_pm_setup(char *str)
 161{
 162	if (!strcmp(str, "off"))
 163		pci_bridge_d3_disable = true;
 164	else if (!strcmp(str, "force"))
 165		pci_bridge_d3_force = true;
 166	return 1;
 167}
 168__setup("pcie_port_pm=", pcie_port_pm_setup);
 169
 170/* Time to wait after a reset for device to become responsive */
 171#define PCIE_RESET_READY_POLL_MS 60000
 172
 173/**
 174 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 175 * @bus: pointer to PCI bus structure to search
 176 *
 177 * Given a PCI bus, returns the highest PCI bus number present in the set
 178 * including the given PCI bus and its list of child PCI buses.
 179 */
 180unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 181{
 182	struct pci_bus *tmp;
 183	unsigned char max, n;
 184
 185	max = bus->busn_res.end;
 186	list_for_each_entry(tmp, &bus->children, node) {
 187		n = pci_bus_max_busnr(tmp);
 188		if (n > max)
 189			max = n;
 190	}
 191	return max;
 192}
 193EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 194
 195/**
 196 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
 197 * @pdev: the PCI device
 198 *
 199 * Returns error bits set in PCI_STATUS and clears them.
 200 */
 201int pci_status_get_and_clear_errors(struct pci_dev *pdev)
 202{
 203	u16 status;
 204	int ret;
 205
 206	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
 207	if (ret != PCIBIOS_SUCCESSFUL)
 208		return -EIO;
 209
 210	status &= PCI_STATUS_ERROR_BITS;
 211	if (status)
 212		pci_write_config_word(pdev, PCI_STATUS, status);
 213
 214	return status;
 215}
 216EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
 217
 218#ifdef CONFIG_HAS_IOMEM
 219static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
 220					    bool write_combine)
 221{
 222	struct resource *res = &pdev->resource[bar];
 223	resource_size_t start = res->start;
 224	resource_size_t size = resource_size(res);
 225
 226	/*
 227	 * Make sure the BAR is actually a memory resource, not an IO resource
 228	 */
 229	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 230		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 231		return NULL;
 232	}
 233
 234	if (write_combine)
 235		return ioremap_wc(start, size);
 236
 237	return ioremap(start, size);
 238}
 239
 240void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 241{
 242	return __pci_ioremap_resource(pdev, bar, false);
 243}
 244EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 245
 246void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 247{
 248	return __pci_ioremap_resource(pdev, bar, true);
 
 
 
 
 
 
 
 
 249}
 250EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 251#endif
 252
 253/**
 254 * pci_dev_str_match_path - test if a path string matches a device
 255 * @dev: the PCI device to test
 256 * @path: string to match the device against
 257 * @endptr: pointer to the string after the match
 258 *
 259 * Test if a string (typically from a kernel parameter) formatted as a
 260 * path of device/function addresses matches a PCI device. The string must
 261 * be of the form:
 262 *
 263 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 264 *
 265 * A path for a device can be obtained using 'lspci -t'.  Using a path
 266 * is more robust against bus renumbering than using only a single bus,
 267 * device and function address.
 268 *
 269 * Returns 1 if the string matches the device, 0 if it does not and
 270 * a negative error code if it fails to parse the string.
 271 */
 272static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
 273				  const char **endptr)
 274{
 275	int ret;
 276	unsigned int seg, bus, slot, func;
 277	char *wpath, *p;
 278	char end;
 279
 280	*endptr = strchrnul(path, ';');
 281
 282	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
 283	if (!wpath)
 284		return -ENOMEM;
 285
 286	while (1) {
 287		p = strrchr(wpath, '/');
 288		if (!p)
 289			break;
 290		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
 291		if (ret != 2) {
 292			ret = -EINVAL;
 293			goto free_and_exit;
 294		}
 295
 296		if (dev->devfn != PCI_DEVFN(slot, func)) {
 297			ret = 0;
 298			goto free_and_exit;
 299		}
 300
 301		/*
 302		 * Note: we don't need to get a reference to the upstream
 303		 * bridge because we hold a reference to the top level
 304		 * device which should hold a reference to the bridge,
 305		 * and so on.
 306		 */
 307		dev = pci_upstream_bridge(dev);
 308		if (!dev) {
 309			ret = 0;
 310			goto free_and_exit;
 311		}
 312
 313		*p = 0;
 314	}
 315
 316	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
 317		     &func, &end);
 318	if (ret != 4) {
 319		seg = 0;
 320		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
 321		if (ret != 3) {
 322			ret = -EINVAL;
 323			goto free_and_exit;
 324		}
 325	}
 326
 327	ret = (seg == pci_domain_nr(dev->bus) &&
 328	       bus == dev->bus->number &&
 329	       dev->devfn == PCI_DEVFN(slot, func));
 330
 331free_and_exit:
 332	kfree(wpath);
 333	return ret;
 334}
 335
 336/**
 337 * pci_dev_str_match - test if a string matches a device
 338 * @dev: the PCI device to test
 339 * @p: string to match the device against
 340 * @endptr: pointer to the string after the match
 341 *
 342 * Test if a string (typically from a kernel parameter) matches a specified
 343 * PCI device. The string may be of one of the following formats:
 344 *
 345 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 346 *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
 347 *
 348 * The first format specifies a PCI bus/device/function address which
 349 * may change if new hardware is inserted, if motherboard firmware changes,
 350 * or due to changes caused in kernel parameters. If the domain is
 351 * left unspecified, it is taken to be 0.  In order to be robust against
 352 * bus renumbering issues, a path of PCI device/function numbers may be used
 353 * to address the specific device.  The path for a device can be determined
 354 * through the use of 'lspci -t'.
 355 *
 356 * The second format matches devices using IDs in the configuration
 357 * space which may match multiple devices in the system. A value of 0
 358 * for any field will match all devices. (Note: this differs from
 359 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
 360 * legacy reasons and convenience so users don't have to specify
 361 * FFFFFFFFs on the command line.)
 362 *
 363 * Returns 1 if the string matches the device, 0 if it does not and
 364 * a negative error code if the string cannot be parsed.
 365 */
 366static int pci_dev_str_match(struct pci_dev *dev, const char *p,
 367			     const char **endptr)
 368{
 369	int ret;
 370	int count;
 371	unsigned short vendor, device, subsystem_vendor, subsystem_device;
 372
 373	if (strncmp(p, "pci:", 4) == 0) {
 374		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
 375		p += 4;
 376		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
 377			     &subsystem_vendor, &subsystem_device, &count);
 378		if (ret != 4) {
 379			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
 380			if (ret != 2)
 381				return -EINVAL;
 382
 383			subsystem_vendor = 0;
 384			subsystem_device = 0;
 385		}
 386
 387		p += count;
 388
 389		if ((!vendor || vendor == dev->vendor) &&
 390		    (!device || device == dev->device) &&
 391		    (!subsystem_vendor ||
 392			    subsystem_vendor == dev->subsystem_vendor) &&
 393		    (!subsystem_device ||
 394			    subsystem_device == dev->subsystem_device))
 395			goto found;
 396	} else {
 397		/*
 398		 * PCI Bus, Device, Function IDs are specified
 399		 * (optionally, may include a path of devfns following it)
 400		 */
 401		ret = pci_dev_str_match_path(dev, p, &p);
 402		if (ret < 0)
 403			return ret;
 404		else if (ret)
 405			goto found;
 406	}
 407
 408	*endptr = p;
 409	return 0;
 410
 411found:
 412	*endptr = p;
 413	return 1;
 414}
 415
 416static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 417				  u8 pos, int cap, int *ttl)
 418{
 419	u8 id;
 420	u16 ent;
 421
 422	pci_bus_read_config_byte(bus, devfn, pos, &pos);
 423
 424	while ((*ttl)--) {
 425		if (pos < 0x40)
 426			break;
 427		pos &= ~3;
 428		pci_bus_read_config_word(bus, devfn, pos, &ent);
 429
 430		id = ent & 0xff;
 431		if (id == 0xff)
 432			break;
 433		if (id == cap)
 434			return pos;
 435		pos = (ent >> 8);
 436	}
 437	return 0;
 438}
 439
 440static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 441			      u8 pos, int cap)
 442{
 443	int ttl = PCI_FIND_CAP_TTL;
 444
 445	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 446}
 447
 448u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 449{
 450	return __pci_find_next_cap(dev->bus, dev->devfn,
 451				   pos + PCI_CAP_LIST_NEXT, cap);
 452}
 453EXPORT_SYMBOL_GPL(pci_find_next_capability);
 454
 455static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
 456				    unsigned int devfn, u8 hdr_type)
 457{
 458	u16 status;
 459
 460	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 461	if (!(status & PCI_STATUS_CAP_LIST))
 462		return 0;
 463
 464	switch (hdr_type) {
 465	case PCI_HEADER_TYPE_NORMAL:
 466	case PCI_HEADER_TYPE_BRIDGE:
 467		return PCI_CAPABILITY_LIST;
 468	case PCI_HEADER_TYPE_CARDBUS:
 469		return PCI_CB_CAPABILITY_LIST;
 470	}
 471
 472	return 0;
 473}
 474
 475/**
 476 * pci_find_capability - query for devices' capabilities
 477 * @dev: PCI device to query
 478 * @cap: capability code
 479 *
 480 * Tell if a device supports a given PCI capability.
 481 * Returns the address of the requested capability structure within the
 482 * device's PCI configuration space or 0 in case the device does not
 483 * support it.  Possible values for @cap include:
 484 *
 485 *  %PCI_CAP_ID_PM           Power Management
 486 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 487 *  %PCI_CAP_ID_VPD          Vital Product Data
 488 *  %PCI_CAP_ID_SLOTID       Slot Identification
 489 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 490 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 491 *  %PCI_CAP_ID_PCIX         PCI-X
 492 *  %PCI_CAP_ID_EXP          PCI Express
 493 */
 494u8 pci_find_capability(struct pci_dev *dev, int cap)
 495{
 496	u8 pos;
 497
 498	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 499	if (pos)
 500		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 501
 502	return pos;
 503}
 504EXPORT_SYMBOL(pci_find_capability);
 505
 506/**
 507 * pci_bus_find_capability - query for devices' capabilities
 508 * @bus: the PCI bus to query
 509 * @devfn: PCI device to query
 510 * @cap: capability code
 511 *
 512 * Like pci_find_capability() but works for PCI devices that do not have a
 513 * pci_dev structure set up yet.
 514 *
 515 * Returns the address of the requested capability structure within the
 516 * device's PCI configuration space or 0 in case the device does not
 517 * support it.
 518 */
 519u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 520{
 521	u8 hdr_type, pos;
 
 522
 523	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 524
 525	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 526	if (pos)
 527		pos = __pci_find_next_cap(bus, devfn, pos, cap);
 528
 529	return pos;
 530}
 531EXPORT_SYMBOL(pci_bus_find_capability);
 532
 533/**
 534 * pci_find_next_ext_capability - Find an extended capability
 535 * @dev: PCI device to query
 536 * @start: address at which to start looking (0 to start at beginning of list)
 537 * @cap: capability code
 538 *
 539 * Returns the address of the next matching extended capability structure
 540 * within the device's PCI configuration space or 0 if the device does
 541 * not support it.  Some capabilities can occur several times, e.g., the
 542 * vendor-specific capability, and this provides a way to find them all.
 543 */
 544u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
 545{
 546	u32 header;
 547	int ttl;
 548	u16 pos = PCI_CFG_SPACE_SIZE;
 549
 550	/* minimum 8 bytes per capability */
 551	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 552
 553	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 554		return 0;
 555
 556	if (start)
 557		pos = start;
 558
 559	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 560		return 0;
 561
 562	/*
 563	 * If we have no capabilities, this is indicated by cap ID,
 564	 * cap version and next pointer all being 0.
 565	 */
 566	if (header == 0)
 567		return 0;
 568
 569	while (ttl-- > 0) {
 570		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 571			return pos;
 572
 573		pos = PCI_EXT_CAP_NEXT(header);
 574		if (pos < PCI_CFG_SPACE_SIZE)
 575			break;
 576
 577		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 578			break;
 579	}
 580
 581	return 0;
 582}
 583EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 584
 585/**
 586 * pci_find_ext_capability - Find an extended capability
 587 * @dev: PCI device to query
 588 * @cap: capability code
 589 *
 590 * Returns the address of the requested extended capability structure
 591 * within the device's PCI configuration space or 0 if the device does
 592 * not support it.  Possible values for @cap include:
 593 *
 594 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 595 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 596 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 597 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 598 */
 599u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
 600{
 601	return pci_find_next_ext_capability(dev, 0, cap);
 602}
 603EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 604
 605/**
 606 * pci_get_dsn - Read and return the 8-byte Device Serial Number
 607 * @dev: PCI device to query
 608 *
 609 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
 610 * Number.
 611 *
 612 * Returns the DSN, or zero if the capability does not exist.
 613 */
 614u64 pci_get_dsn(struct pci_dev *dev)
 615{
 616	u32 dword;
 617	u64 dsn;
 618	int pos;
 619
 620	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
 621	if (!pos)
 622		return 0;
 623
 624	/*
 625	 * The Device Serial Number is two dwords offset 4 bytes from the
 626	 * capability position. The specification says that the first dword is
 627	 * the lower half, and the second dword is the upper half.
 628	 */
 629	pos += 4;
 630	pci_read_config_dword(dev, pos, &dword);
 631	dsn = (u64)dword;
 632	pci_read_config_dword(dev, pos + 4, &dword);
 633	dsn |= ((u64)dword) << 32;
 634
 635	return dsn;
 636}
 637EXPORT_SYMBOL_GPL(pci_get_dsn);
 638
 639static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
 640{
 641	int rc, ttl = PCI_FIND_CAP_TTL;
 642	u8 cap, mask;
 643
 644	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 645		mask = HT_3BIT_CAP_MASK;
 646	else
 647		mask = HT_5BIT_CAP_MASK;
 648
 649	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 650				      PCI_CAP_ID_HT, &ttl);
 651	while (pos) {
 652		rc = pci_read_config_byte(dev, pos + 3, &cap);
 653		if (rc != PCIBIOS_SUCCESSFUL)
 654			return 0;
 655
 656		if ((cap & mask) == ht_cap)
 657			return pos;
 658
 659		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 660					      pos + PCI_CAP_LIST_NEXT,
 661					      PCI_CAP_ID_HT, &ttl);
 662	}
 663
 664	return 0;
 665}
 666
 667/**
 668 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
 669 * @dev: PCI device to query
 670 * @pos: Position from which to continue searching
 671 * @ht_cap: HyperTransport capability code
 672 *
 673 * To be used in conjunction with pci_find_ht_capability() to search for
 674 * all capabilities matching @ht_cap. @pos should always be a value returned
 675 * from pci_find_ht_capability().
 676 *
 677 * NB. To be 100% safe against broken PCI devices, the caller should take
 678 * steps to avoid an infinite loop.
 679 */
 680u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
 681{
 682	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 683}
 684EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 685
 686/**
 687 * pci_find_ht_capability - query a device's HyperTransport capabilities
 688 * @dev: PCI device to query
 689 * @ht_cap: HyperTransport capability code
 690 *
 691 * Tell if a device supports a given HyperTransport capability.
 692 * Returns an address within the device's PCI configuration space
 693 * or 0 in case the device does not support the request capability.
 694 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 695 * which has a HyperTransport capability matching @ht_cap.
 696 */
 697u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 698{
 699	u8 pos;
 700
 701	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 702	if (pos)
 703		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 704
 705	return pos;
 706}
 707EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 708
 709/**
 710 * pci_find_vsec_capability - Find a vendor-specific extended capability
 711 * @dev: PCI device to query
 712 * @vendor: Vendor ID for which capability is defined
 713 * @cap: Vendor-specific capability ID
 714 *
 715 * If @dev has Vendor ID @vendor, search for a VSEC capability with
 716 * VSEC ID @cap. If found, return the capability offset in
 717 * config space; otherwise return 0.
 718 */
 719u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
 720{
 721	u16 vsec = 0;
 722	u32 header;
 723
 724	if (vendor != dev->vendor)
 725		return 0;
 726
 727	while ((vsec = pci_find_next_ext_capability(dev, vsec,
 728						     PCI_EXT_CAP_ID_VNDR))) {
 729		if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
 730					  &header) == PCIBIOS_SUCCESSFUL &&
 731		    PCI_VNDR_HEADER_ID(header) == cap)
 732			return vsec;
 733	}
 734
 735	return 0;
 736}
 737EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
 738
 739/**
 740 * pci_find_dvsec_capability - Find DVSEC for vendor
 741 * @dev: PCI device to query
 742 * @vendor: Vendor ID to match for the DVSEC
 743 * @dvsec: Designated Vendor-specific capability ID
 744 *
 745 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
 746 * offset in config space; otherwise return 0.
 747 */
 748u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
 749{
 750	int pos;
 751
 752	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
 753	if (!pos)
 754		return 0;
 755
 756	while (pos) {
 757		u16 v, id;
 758
 759		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
 760		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
 761		if (vendor == v && dvsec == id)
 762			return pos;
 763
 764		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
 765	}
 766
 767	return 0;
 768}
 769EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
 770
 771/**
 772 * pci_find_parent_resource - return resource region of parent bus of given
 773 *			      region
 774 * @dev: PCI device structure contains resources to be searched
 775 * @res: child resource record for which parent is sought
 776 *
 777 * For given resource region of given device, return the resource region of
 778 * parent bus the given region is contained in.
 779 */
 780struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 781					  struct resource *res)
 782{
 783	const struct pci_bus *bus = dev->bus;
 784	struct resource *r;
 785	int i;
 786
 787	pci_bus_for_each_resource(bus, r, i) {
 788		if (!r)
 789			continue;
 790		if (resource_contains(r, res)) {
 791
 792			/*
 793			 * If the window is prefetchable but the BAR is
 794			 * not, the allocator made a mistake.
 795			 */
 796			if (r->flags & IORESOURCE_PREFETCH &&
 797			    !(res->flags & IORESOURCE_PREFETCH))
 798				return NULL;
 799
 800			/*
 801			 * If we're below a transparent bridge, there may
 802			 * be both a positively-decoded aperture and a
 803			 * subtractively-decoded region that contain the BAR.
 804			 * We want the positively-decoded one, so this depends
 805			 * on pci_bus_for_each_resource() giving us those
 806			 * first.
 807			 */
 808			return r;
 809		}
 810	}
 811	return NULL;
 812}
 813EXPORT_SYMBOL(pci_find_parent_resource);
 814
 815/**
 816 * pci_find_resource - Return matching PCI device resource
 817 * @dev: PCI device to query
 818 * @res: Resource to look for
 819 *
 820 * Goes over standard PCI resources (BARs) and checks if the given resource
 821 * is partially or fully contained in any of them. In that case the
 822 * matching resource is returned, %NULL otherwise.
 823 */
 824struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 825{
 826	int i;
 827
 828	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
 829		struct resource *r = &dev->resource[i];
 830
 831		if (r->start && resource_contains(r, res))
 832			return r;
 833	}
 834
 835	return NULL;
 836}
 837EXPORT_SYMBOL(pci_find_resource);
 838
 839/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 840 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 841 * @dev: the PCI device to operate on
 842 * @pos: config space offset of status word
 843 * @mask: mask of bit(s) to care about in status word
 844 *
 845 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 846 */
 847int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 848{
 849	int i;
 850
 851	/* Wait for Transaction Pending bit clean */
 852	for (i = 0; i < 4; i++) {
 853		u16 status;
 854		if (i)
 855			msleep((1 << (i - 1)) * 100);
 856
 857		pci_read_config_word(dev, pos, &status);
 858		if (!(status & mask))
 859			return 1;
 860	}
 861
 862	return 0;
 863}
 864
 865static int pci_acs_enable;
 866
 867/**
 868 * pci_request_acs - ask for ACS to be enabled if supported
 869 */
 870void pci_request_acs(void)
 871{
 872	pci_acs_enable = 1;
 873}
 874
 875static const char *disable_acs_redir_param;
 876
 877/**
 878 * pci_disable_acs_redir - disable ACS redirect capabilities
 879 * @dev: the PCI device
 880 *
 881 * For only devices specified in the disable_acs_redir parameter.
 882 */
 883static void pci_disable_acs_redir(struct pci_dev *dev)
 884{
 885	int ret = 0;
 886	const char *p;
 887	int pos;
 888	u16 ctrl;
 889
 890	if (!disable_acs_redir_param)
 891		return;
 892
 893	p = disable_acs_redir_param;
 894	while (*p) {
 895		ret = pci_dev_str_match(dev, p, &p);
 896		if (ret < 0) {
 897			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
 898				     disable_acs_redir_param);
 899
 900			break;
 901		} else if (ret == 1) {
 902			/* Found a match */
 903			break;
 904		}
 905
 906		if (*p != ';' && *p != ',') {
 907			/* End of param or invalid format */
 908			break;
 909		}
 910		p++;
 911	}
 912
 913	if (ret != 1)
 914		return;
 915
 916	if (!pci_dev_specific_disable_acs_redir(dev))
 917		return;
 918
 919	pos = dev->acs_cap;
 920	if (!pos) {
 921		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
 922		return;
 923	}
 924
 925	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
 926
 927	/* P2P Request & Completion Redirect */
 928	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
 929
 930	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
 931
 932	pci_info(dev, "disabled ACS redirect\n");
 933}
 934
 935/**
 936 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
 937 * @dev: the PCI device
 938 */
 939static void pci_std_enable_acs(struct pci_dev *dev)
 940{
 941	int pos;
 942	u16 cap;
 943	u16 ctrl;
 944
 945	pos = dev->acs_cap;
 946	if (!pos)
 947		return;
 948
 949	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
 950	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
 951
 952	/* Source Validation */
 953	ctrl |= (cap & PCI_ACS_SV);
 954
 955	/* P2P Request Redirect */
 956	ctrl |= (cap & PCI_ACS_RR);
 957
 958	/* P2P Completion Redirect */
 959	ctrl |= (cap & PCI_ACS_CR);
 960
 961	/* Upstream Forwarding */
 962	ctrl |= (cap & PCI_ACS_UF);
 963
 964	/* Enable Translation Blocking for external devices and noats */
 965	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
 966		ctrl |= (cap & PCI_ACS_TB);
 967
 968	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
 969}
 970
 971/**
 972 * pci_enable_acs - enable ACS if hardware support it
 973 * @dev: the PCI device
 974 */
 975static void pci_enable_acs(struct pci_dev *dev)
 976{
 977	if (!pci_acs_enable)
 978		goto disable_acs_redir;
 979
 980	if (!pci_dev_specific_enable_acs(dev))
 981		goto disable_acs_redir;
 982
 983	pci_std_enable_acs(dev);
 984
 985disable_acs_redir:
 986	/*
 987	 * Note: pci_disable_acs_redir() must be called even if ACS was not
 988	 * enabled by the kernel because it may have been enabled by
 989	 * platform firmware.  So if we are told to disable it, we should
 990	 * always disable it after setting the kernel's default
 991	 * preferences.
 992	 */
 993	pci_disable_acs_redir(dev);
 994}
 995
 996/**
 997 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
 998 * @dev: PCI device to have its BARs restored
 999 *
1000 * Restore the BAR values for a given device, so as to make it
1001 * accessible by its driver.
1002 */
1003static void pci_restore_bars(struct pci_dev *dev)
1004{
1005	int i;
1006
1007	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1008		pci_update_resource(dev, i);
1009}
1010
 
 
 
 
 
 
 
 
 
 
 
1011static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1012{
1013	if (pci_use_mid_pm())
1014		return true;
1015
1016	return acpi_pci_power_manageable(dev);
1017}
1018
1019static inline int platform_pci_set_power_state(struct pci_dev *dev,
1020					       pci_power_t t)
1021{
1022	if (pci_use_mid_pm())
1023		return mid_pci_set_power_state(dev, t);
1024
1025	return acpi_pci_set_power_state(dev, t);
1026}
1027
1028static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1029{
1030	if (pci_use_mid_pm())
1031		return mid_pci_get_power_state(dev);
1032
1033	return acpi_pci_get_power_state(dev);
1034}
1035
1036static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1037{
1038	if (!pci_use_mid_pm())
1039		acpi_pci_refresh_power_state(dev);
1040}
1041
1042static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1043{
1044	if (pci_use_mid_pm())
1045		return PCI_POWER_ERROR;
1046
1047	return acpi_pci_choose_state(dev);
1048}
1049
1050static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1051{
1052	if (pci_use_mid_pm())
1053		return PCI_POWER_ERROR;
1054
1055	return acpi_pci_wakeup(dev, enable);
1056}
1057
1058static inline bool platform_pci_need_resume(struct pci_dev *dev)
1059{
1060	if (pci_use_mid_pm())
1061		return false;
1062
1063	return acpi_pci_need_resume(dev);
 
 
1064}
1065
1066static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
1067{
1068	if (pci_use_mid_pm())
1069		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1070
1071	return acpi_pci_bridge_d3(dev);
1072}
1073
1074/**
1075 * pci_update_current_state - Read power state of given device and cache it
1076 * @dev: PCI device to handle.
1077 * @state: State to cache in case the device doesn't have the PM capability
1078 *
1079 * The power state is read from the PMCSR register, which however is
1080 * inaccessible in D3cold.  The platform firmware is therefore queried first
1081 * to detect accessibility of the register.  In case the platform firmware
1082 * reports an incorrect state or the device isn't power manageable by the
1083 * platform at all, we try to detect D3cold by testing accessibility of the
1084 * vendor ID in config space.
1085 */
1086void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1087{
1088	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
 
1089		dev->current_state = PCI_D3cold;
1090	} else if (dev->pm_cap) {
1091		u16 pmcsr;
1092
1093		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1094		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1095			dev->current_state = PCI_D3cold;
1096			return;
1097		}
1098		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1099	} else {
1100		dev->current_state = state;
1101	}
1102}
1103
1104/**
1105 * pci_refresh_power_state - Refresh the given device's power state data
1106 * @dev: Target PCI device.
1107 *
1108 * Ask the platform to refresh the devices power state information and invoke
1109 * pci_update_current_state() to update its current PCI power state.
1110 */
1111void pci_refresh_power_state(struct pci_dev *dev)
1112{
1113	platform_pci_refresh_power_state(dev);
 
 
1114	pci_update_current_state(dev, dev->current_state);
1115}
1116
1117/**
1118 * pci_platform_power_transition - Use platform to change device power state
1119 * @dev: PCI device to handle.
1120 * @state: State to put the device into.
1121 */
1122int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1123{
1124	int error;
1125
1126	error = platform_pci_set_power_state(dev, state);
1127	if (!error)
1128		pci_update_current_state(dev, state);
1129	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
 
 
 
 
1130		dev->current_state = PCI_D0;
1131
1132	return error;
1133}
1134EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1135
1136static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
 
 
 
 
 
1137{
 
1138	pm_request_resume(&pci_dev->dev);
1139	return 0;
1140}
1141
1142/**
1143 * pci_resume_bus - Walk given bus and runtime resume devices on it
1144 * @bus: Top bus of the subtree to walk.
1145 */
1146void pci_resume_bus(struct pci_bus *bus)
1147{
1148	if (bus)
1149		pci_walk_bus(bus, pci_resume_one, NULL);
1150}
1151
1152static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1153{
1154	int delay = 1;
1155	u32 id;
1156
1157	/*
1158	 * After reset, the device should not silently discard config
1159	 * requests, but it may still indicate that it needs more time by
1160	 * responding to them with CRS completions.  The Root Port will
1161	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1162	 * the read (except when CRS SV is enabled and the read was for the
1163	 * Vendor ID; in that case it synthesizes 0x0001 data).
1164	 *
1165	 * Wait for the device to return a non-CRS completion.  Read the
1166	 * Command register instead of Vendor ID so we don't have to
1167	 * contend with the CRS SV value.
1168	 */
1169	pci_read_config_dword(dev, PCI_COMMAND, &id);
1170	while (PCI_POSSIBLE_ERROR(id)) {
1171		if (delay > timeout) {
1172			pci_warn(dev, "not ready %dms after %s; giving up\n",
1173				 delay - 1, reset_type);
1174			return -ENOTTY;
1175		}
1176
1177		if (delay > 1000)
1178			pci_info(dev, "not ready %dms after %s; waiting\n",
1179				 delay - 1, reset_type);
1180
1181		msleep(delay);
1182		delay *= 2;
1183		pci_read_config_dword(dev, PCI_COMMAND, &id);
1184	}
1185
1186	if (delay > 1000)
1187		pci_info(dev, "ready %dms after %s\n", delay - 1,
1188			 reset_type);
1189
1190	return 0;
1191}
1192
1193/**
1194 * pci_power_up - Put the given device into D0
1195 * @dev: PCI device to power up
1196 *
1197 * On success, return 0 or 1, depending on whether or not it is necessary to
1198 * restore the device's BARs subsequently (1 is returned in that case).
1199 */
1200int pci_power_up(struct pci_dev *dev)
1201{
1202	bool need_restore;
1203	pci_power_t state;
1204	u16 pmcsr;
1205
1206	platform_pci_set_power_state(dev, PCI_D0);
1207
1208	if (!dev->pm_cap) {
1209		state = platform_pci_get_power_state(dev);
1210		if (state == PCI_UNKNOWN)
1211			dev->current_state = PCI_D0;
1212		else
1213			dev->current_state = state;
1214
1215		if (state == PCI_D0)
1216			return 0;
1217
1218		return -EIO;
1219	}
1220
1221	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1222	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1223		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1224			pci_power_name(dev->current_state));
1225		dev->current_state = PCI_D3cold;
1226		return -EIO;
1227	}
1228
1229	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1230
1231	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1232			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1233
1234	if (state == PCI_D0)
1235		goto end;
1236
1237	/*
1238	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1239	 * PME_En, and sets PowerState to 0.
1240	 */
1241	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1242
1243	/* Mandatory transition delays; see PCI PM 1.2. */
1244	if (state == PCI_D3hot)
1245		pci_dev_d3_sleep(dev);
1246	else if (state == PCI_D2)
1247		udelay(PCI_PM_D2_DELAY);
1248
1249end:
1250	dev->current_state = PCI_D0;
1251	if (need_restore)
1252		return 1;
1253
1254	return 0;
1255}
1256
1257/**
1258 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1259 * @dev: PCI device to power up
1260 *
1261 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1262 * to confirm the state change, restore its BARs if they might be lost and
1263 * reconfigure ASPM in acordance with the new power state.
1264 *
1265 * If pci_restore_state() is going to be called right after a power state change
1266 * to D0, it is more efficient to use pci_power_up() directly instead of this
1267 * function.
1268 */
1269static int pci_set_full_power_state(struct pci_dev *dev)
1270{
1271	u16 pmcsr;
1272	int ret;
1273
1274	ret = pci_power_up(dev);
1275	if (ret < 0)
1276		return ret;
1277
1278	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1279	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1280	if (dev->current_state != PCI_D0) {
1281		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1282				     pci_power_name(dev->current_state));
1283	} else if (ret > 0) {
1284		/*
1285		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1286		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1287		 * from D3hot to D0 _may_ perform an internal reset, thereby
1288		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1289		 * For example, at least some versions of the 3c905B and the
1290		 * 3c556B exhibit this behaviour.
1291		 *
1292		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1293		 * devices in a D3hot state at boot.  Consequently, we need to
1294		 * restore at least the BARs so that the device will be
1295		 * accessible to its driver.
1296		 */
1297		pci_restore_bars(dev);
 
 
 
 
 
 
 
 
 
 
1298	}
1299
1300	return 0;
1301}
1302
1303/**
1304 * __pci_dev_set_current_state - Set current state of a PCI device
1305 * @dev: Device to handle
1306 * @data: pointer to state to be set
1307 */
1308static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1309{
1310	pci_power_t state = *(pci_power_t *)data;
1311
1312	dev->current_state = state;
1313	return 0;
1314}
1315
1316/**
1317 * pci_bus_set_current_state - Walk given bus and set current state of devices
1318 * @bus: Top bus of the subtree to walk.
1319 * @state: state to be set
1320 */
1321void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1322{
1323	if (bus)
1324		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1325}
1326
1327/**
1328 * pci_set_low_power_state - Put a PCI device into a low-power state.
1329 * @dev: PCI device to handle.
1330 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1331 *
1332 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1333 *
1334 * RETURN VALUE:
1335 * -EINVAL if the requested state is invalid.
1336 * -EIO if device does not support PCI PM or its PM capabilities register has a
1337 * wrong version, or device doesn't support the requested state.
1338 * 0 if device already is in the requested state.
1339 * 0 if device's power state has been successfully changed.
1340 */
1341static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1342{
1343	u16 pmcsr;
1344
1345	if (!dev->pm_cap)
1346		return -EIO;
1347
1348	/*
1349	 * Validate transition: We can enter D0 from any state, but if
1350	 * we're already in a low-power state, we can only go deeper.  E.g.,
1351	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1352	 * we'd have to go from D3 to D0, then to D1.
1353	 */
1354	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1355		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1356			pci_power_name(dev->current_state),
1357			pci_power_name(state));
1358		return -EINVAL;
1359	}
1360
1361	/* Check if this device supports the desired state */
1362	if ((state == PCI_D1 && !dev->d1_support)
1363	   || (state == PCI_D2 && !dev->d2_support))
1364		return -EIO;
1365
1366	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1367	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1368		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1369			pci_power_name(dev->current_state),
1370			pci_power_name(state));
1371		dev->current_state = PCI_D3cold;
1372		return -EIO;
1373	}
1374
1375	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1376	pmcsr |= state;
1377
1378	/* Enter specified state */
1379	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1380
1381	/* Mandatory power management transition delays; see PCI PM 1.2. */
1382	if (state == PCI_D3hot)
1383		pci_dev_d3_sleep(dev);
1384	else if (state == PCI_D2)
1385		udelay(PCI_PM_D2_DELAY);
1386
1387	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1388	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1389	if (dev->current_state != state)
1390		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1391				     pci_power_name(dev->current_state),
1392				     pci_power_name(state));
1393
1394	return 0;
1395}
 
1396
1397/**
1398 * pci_set_power_state - Set the power state of a PCI device
1399 * @dev: PCI device to handle.
1400 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1401 *
1402 * Transition a device to a new power state, using the platform firmware and/or
1403 * the device's PCI PM registers.
1404 *
1405 * RETURN VALUE:
1406 * -EINVAL if the requested state is invalid.
1407 * -EIO if device does not support PCI PM or its PM capabilities register has a
1408 * wrong version, or device doesn't support the requested state.
1409 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1410 * 0 if device already is in the requested state.
1411 * 0 if the transition is to D3 but D3 is not supported.
1412 * 0 if device's power state has been successfully changed.
1413 */
1414int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1415{
1416	int error;
1417
1418	/* Bound the state we're entering */
1419	if (state > PCI_D3cold)
1420		state = PCI_D3cold;
1421	else if (state < PCI_D0)
1422		state = PCI_D0;
1423	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1424
1425		/*
1426		 * If the device or the parent bridge do not support PCI
1427		 * PM, ignore the request if we're doing anything other
1428		 * than putting it into D0 (which would only happen on
1429		 * boot).
1430		 */
1431		return 0;
1432
1433	/* Check if we're already there */
1434	if (dev->current_state == state)
1435		return 0;
1436
1437	if (state == PCI_D0)
1438		return pci_set_full_power_state(dev);
1439
1440	/*
1441	 * This device is quirked not to be put into D3, so don't put it in
1442	 * D3
1443	 */
1444	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1445		return 0;
1446
1447	if (state == PCI_D3cold) {
1448		/*
1449		 * To put the device in D3cold, put it into D3hot in the native
1450		 * way, then put it into D3cold using platform ops.
1451		 */
1452		error = pci_set_low_power_state(dev, PCI_D3hot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1453
1454		if (pci_platform_power_transition(dev, PCI_D3cold))
1455			return error;
1456
1457		/* Powering off a bridge may power off the whole hierarchy */
1458		if (dev->current_state == PCI_D3cold)
1459			pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1460	} else {
1461		error = pci_set_low_power_state(dev, state);
1462
1463		if (pci_platform_power_transition(dev, state))
1464			return error;
 
 
 
 
 
 
 
 
 
 
 
1465	}
1466
1467	return 0;
1468}
1469EXPORT_SYMBOL(pci_set_power_state);
1470
1471#define PCI_EXP_SAVE_REGS	7
1472
1473static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1474						       u16 cap, bool extended)
1475{
1476	struct pci_cap_saved_state *tmp;
1477
1478	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1479		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1480			return tmp;
1481	}
1482	return NULL;
1483}
1484
1485struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1486{
1487	return _pci_find_saved_cap(dev, cap, false);
1488}
1489
1490struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1491{
1492	return _pci_find_saved_cap(dev, cap, true);
1493}
1494
1495static int pci_save_pcie_state(struct pci_dev *dev)
1496{
1497	int i = 0;
1498	struct pci_cap_saved_state *save_state;
1499	u16 *cap;
1500
1501	if (!pci_is_pcie(dev))
1502		return 0;
1503
1504	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1505	if (!save_state) {
1506		pci_err(dev, "buffer not found in %s\n", __func__);
1507		return -ENOMEM;
1508	}
1509
1510	cap = (u16 *)&save_state->cap.data[0];
1511	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1512	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1513	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1514	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1515	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1516	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1517	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1518
1519	return 0;
1520}
1521
1522void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1523{
1524#ifdef CONFIG_PCIEASPM
1525	struct pci_dev *bridge;
1526	u32 ctl;
1527
1528	bridge = pci_upstream_bridge(dev);
1529	if (bridge && bridge->ltr_path) {
1530		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1531		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1532			pci_dbg(bridge, "re-enabling LTR\n");
1533			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1534						 PCI_EXP_DEVCTL2_LTR_EN);
1535		}
1536	}
1537#endif
1538}
1539
1540static void pci_restore_pcie_state(struct pci_dev *dev)
1541{
1542	int i = 0;
1543	struct pci_cap_saved_state *save_state;
1544	u16 *cap;
1545
1546	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1547	if (!save_state)
1548		return;
1549
1550	/*
1551	 * Downstream ports reset the LTR enable bit when link goes down.
1552	 * Check and re-configure the bit here before restoring device.
1553	 * PCIe r5.0, sec 7.5.3.16.
1554	 */
1555	pci_bridge_reconfigure_ltr(dev);
1556
1557	cap = (u16 *)&save_state->cap.data[0];
1558	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1559	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1560	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1561	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1562	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1563	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1564	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1565}
1566
1567static int pci_save_pcix_state(struct pci_dev *dev)
1568{
1569	int pos;
1570	struct pci_cap_saved_state *save_state;
1571
1572	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1573	if (!pos)
1574		return 0;
1575
1576	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1577	if (!save_state) {
1578		pci_err(dev, "buffer not found in %s\n", __func__);
1579		return -ENOMEM;
1580	}
1581
1582	pci_read_config_word(dev, pos + PCI_X_CMD,
1583			     (u16 *)save_state->cap.data);
1584
1585	return 0;
1586}
1587
1588static void pci_restore_pcix_state(struct pci_dev *dev)
1589{
1590	int i = 0, pos;
1591	struct pci_cap_saved_state *save_state;
1592	u16 *cap;
1593
1594	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1595	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1596	if (!save_state || !pos)
1597		return;
1598	cap = (u16 *)&save_state->cap.data[0];
1599
1600	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1601}
1602
1603static void pci_save_ltr_state(struct pci_dev *dev)
1604{
1605	int ltr;
1606	struct pci_cap_saved_state *save_state;
1607	u32 *cap;
1608
1609	if (!pci_is_pcie(dev))
1610		return;
1611
1612	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1613	if (!ltr)
1614		return;
1615
1616	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1617	if (!save_state) {
1618		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1619		return;
1620	}
1621
1622	/* Some broken devices only support dword access to LTR */
1623	cap = &save_state->cap.data[0];
1624	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1625}
1626
1627static void pci_restore_ltr_state(struct pci_dev *dev)
1628{
1629	struct pci_cap_saved_state *save_state;
1630	int ltr;
1631	u32 *cap;
1632
1633	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1634	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1635	if (!save_state || !ltr)
1636		return;
1637
1638	/* Some broken devices only support dword access to LTR */
1639	cap = &save_state->cap.data[0];
1640	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1641}
1642
1643/**
1644 * pci_save_state - save the PCI configuration space of a device before
1645 *		    suspending
1646 * @dev: PCI device that we're dealing with
1647 */
1648int pci_save_state(struct pci_dev *dev)
1649{
1650	int i;
1651	/* XXX: 100% dword access ok here? */
1652	for (i = 0; i < 16; i++) {
1653		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1654		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1655			i * 4, dev->saved_config_space[i]);
1656	}
1657	dev->state_saved = true;
1658
1659	i = pci_save_pcie_state(dev);
1660	if (i != 0)
1661		return i;
1662
1663	i = pci_save_pcix_state(dev);
1664	if (i != 0)
1665		return i;
1666
1667	pci_save_ltr_state(dev);
1668	pci_save_dpc_state(dev);
1669	pci_save_aer_state(dev);
1670	pci_save_ptm_state(dev);
1671	return pci_save_vc_state(dev);
1672}
1673EXPORT_SYMBOL(pci_save_state);
1674
1675static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1676				     u32 saved_val, int retry, bool force)
1677{
1678	u32 val;
1679
1680	pci_read_config_dword(pdev, offset, &val);
1681	if (!force && val == saved_val)
1682		return;
1683
1684	for (;;) {
1685		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1686			offset, val, saved_val);
1687		pci_write_config_dword(pdev, offset, saved_val);
1688		if (retry-- <= 0)
1689			return;
1690
1691		pci_read_config_dword(pdev, offset, &val);
1692		if (val == saved_val)
1693			return;
1694
1695		mdelay(1);
1696	}
1697}
1698
1699static void pci_restore_config_space_range(struct pci_dev *pdev,
1700					   int start, int end, int retry,
1701					   bool force)
1702{
1703	int index;
1704
1705	for (index = end; index >= start; index--)
1706		pci_restore_config_dword(pdev, 4 * index,
1707					 pdev->saved_config_space[index],
1708					 retry, force);
1709}
1710
1711static void pci_restore_config_space(struct pci_dev *pdev)
1712{
1713	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1714		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1715		/* Restore BARs before the command register. */
1716		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1717		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1718	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1719		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1720
1721		/*
1722		 * Force rewriting of prefetch registers to avoid S3 resume
1723		 * issues on Intel PCI bridges that occur when these
1724		 * registers are not explicitly written.
1725		 */
1726		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1727		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1728	} else {
1729		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1730	}
1731}
1732
1733static void pci_restore_rebar_state(struct pci_dev *pdev)
1734{
1735	unsigned int pos, nbars, i;
1736	u32 ctrl;
1737
1738	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1739	if (!pos)
1740		return;
1741
1742	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1743	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1744		    PCI_REBAR_CTRL_NBAR_SHIFT;
1745
1746	for (i = 0; i < nbars; i++, pos += 8) {
1747		struct resource *res;
1748		int bar_idx, size;
1749
1750		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1751		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1752		res = pdev->resource + bar_idx;
1753		size = pci_rebar_bytes_to_size(resource_size(res));
1754		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1755		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1756		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1757	}
1758}
1759
1760/**
1761 * pci_restore_state - Restore the saved state of a PCI device
1762 * @dev: PCI device that we're dealing with
1763 */
1764void pci_restore_state(struct pci_dev *dev)
1765{
1766	if (!dev->state_saved)
1767		return;
1768
1769	/*
1770	 * Restore max latencies (in the LTR capability) before enabling
1771	 * LTR itself (in the PCIe capability).
1772	 */
1773	pci_restore_ltr_state(dev);
1774
1775	pci_restore_pcie_state(dev);
1776	pci_restore_pasid_state(dev);
1777	pci_restore_pri_state(dev);
1778	pci_restore_ats_state(dev);
1779	pci_restore_vc_state(dev);
1780	pci_restore_rebar_state(dev);
1781	pci_restore_dpc_state(dev);
1782	pci_restore_ptm_state(dev);
1783
1784	pci_aer_clear_status(dev);
1785	pci_restore_aer_state(dev);
1786
1787	pci_restore_config_space(dev);
1788
1789	pci_restore_pcix_state(dev);
1790	pci_restore_msi_state(dev);
1791
1792	/* Restore ACS and IOV configuration state */
1793	pci_enable_acs(dev);
1794	pci_restore_iov_state(dev);
1795
1796	dev->state_saved = false;
1797}
1798EXPORT_SYMBOL(pci_restore_state);
1799
1800struct pci_saved_state {
1801	u32 config_space[16];
1802	struct pci_cap_saved_data cap[];
1803};
1804
1805/**
1806 * pci_store_saved_state - Allocate and return an opaque struct containing
1807 *			   the device saved state.
1808 * @dev: PCI device that we're dealing with
1809 *
1810 * Return NULL if no state or error.
1811 */
1812struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1813{
1814	struct pci_saved_state *state;
1815	struct pci_cap_saved_state *tmp;
1816	struct pci_cap_saved_data *cap;
1817	size_t size;
1818
1819	if (!dev->state_saved)
1820		return NULL;
1821
1822	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1823
1824	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1825		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1826
1827	state = kzalloc(size, GFP_KERNEL);
1828	if (!state)
1829		return NULL;
1830
1831	memcpy(state->config_space, dev->saved_config_space,
1832	       sizeof(state->config_space));
1833
1834	cap = state->cap;
1835	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1836		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1837		memcpy(cap, &tmp->cap, len);
1838		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1839	}
1840	/* Empty cap_save terminates list */
1841
1842	return state;
1843}
1844EXPORT_SYMBOL_GPL(pci_store_saved_state);
1845
1846/**
1847 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1848 * @dev: PCI device that we're dealing with
1849 * @state: Saved state returned from pci_store_saved_state()
1850 */
1851int pci_load_saved_state(struct pci_dev *dev,
1852			 struct pci_saved_state *state)
1853{
1854	struct pci_cap_saved_data *cap;
1855
1856	dev->state_saved = false;
1857
1858	if (!state)
1859		return 0;
1860
1861	memcpy(dev->saved_config_space, state->config_space,
1862	       sizeof(state->config_space));
1863
1864	cap = state->cap;
1865	while (cap->size) {
1866		struct pci_cap_saved_state *tmp;
1867
1868		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1869		if (!tmp || tmp->cap.size != cap->size)
1870			return -EINVAL;
1871
1872		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1873		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1874		       sizeof(struct pci_cap_saved_data) + cap->size);
1875	}
1876
1877	dev->state_saved = true;
1878	return 0;
1879}
1880EXPORT_SYMBOL_GPL(pci_load_saved_state);
1881
1882/**
1883 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1884 *				   and free the memory allocated for it.
1885 * @dev: PCI device that we're dealing with
1886 * @state: Pointer to saved state returned from pci_store_saved_state()
1887 */
1888int pci_load_and_free_saved_state(struct pci_dev *dev,
1889				  struct pci_saved_state **state)
1890{
1891	int ret = pci_load_saved_state(dev, *state);
1892	kfree(*state);
1893	*state = NULL;
1894	return ret;
1895}
1896EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1897
1898int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1899{
1900	return pci_enable_resources(dev, bars);
1901}
1902
1903static int do_pci_enable_device(struct pci_dev *dev, int bars)
1904{
1905	int err;
1906	struct pci_dev *bridge;
1907	u16 cmd;
1908	u8 pin;
1909
1910	err = pci_set_power_state(dev, PCI_D0);
1911	if (err < 0 && err != -EIO)
1912		return err;
1913
1914	bridge = pci_upstream_bridge(dev);
1915	if (bridge)
1916		pcie_aspm_powersave_config_link(bridge);
1917
1918	err = pcibios_enable_device(dev, bars);
1919	if (err < 0)
1920		return err;
1921	pci_fixup_device(pci_fixup_enable, dev);
1922
1923	if (dev->msi_enabled || dev->msix_enabled)
1924		return 0;
1925
1926	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1927	if (pin) {
1928		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1929		if (cmd & PCI_COMMAND_INTX_DISABLE)
1930			pci_write_config_word(dev, PCI_COMMAND,
1931					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1932	}
1933
1934	return 0;
1935}
1936
1937/**
1938 * pci_reenable_device - Resume abandoned device
1939 * @dev: PCI device to be resumed
1940 *
1941 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1942 * to be called by normal code, write proper resume handler and use it instead.
1943 */
1944int pci_reenable_device(struct pci_dev *dev)
1945{
1946	if (pci_is_enabled(dev))
1947		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1948	return 0;
1949}
1950EXPORT_SYMBOL(pci_reenable_device);
1951
1952static void pci_enable_bridge(struct pci_dev *dev)
1953{
1954	struct pci_dev *bridge;
1955	int retval;
1956
1957	bridge = pci_upstream_bridge(dev);
1958	if (bridge)
1959		pci_enable_bridge(bridge);
1960
1961	if (pci_is_enabled(dev)) {
1962		if (!dev->is_busmaster)
1963			pci_set_master(dev);
1964		return;
1965	}
1966
1967	retval = pci_enable_device(dev);
1968	if (retval)
1969		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1970			retval);
1971	pci_set_master(dev);
1972}
1973
1974static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1975{
1976	struct pci_dev *bridge;
1977	int err;
1978	int i, bars = 0;
1979
1980	/*
1981	 * Power state could be unknown at this point, either due to a fresh
1982	 * boot or a device removal call.  So get the current power state
1983	 * so that things like MSI message writing will behave as expected
1984	 * (e.g. if the device really is in D0 at enable time).
1985	 */
1986	pci_update_current_state(dev, dev->current_state);
 
 
 
 
1987
1988	if (atomic_inc_return(&dev->enable_cnt) > 1)
1989		return 0;		/* already enabled */
1990
1991	bridge = pci_upstream_bridge(dev);
1992	if (bridge)
1993		pci_enable_bridge(bridge);
1994
1995	/* only skip sriov related */
1996	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1997		if (dev->resource[i].flags & flags)
1998			bars |= (1 << i);
1999	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2000		if (dev->resource[i].flags & flags)
2001			bars |= (1 << i);
2002
2003	err = do_pci_enable_device(dev, bars);
2004	if (err < 0)
2005		atomic_dec(&dev->enable_cnt);
2006	return err;
2007}
2008
2009/**
2010 * pci_enable_device_io - Initialize a device for use with IO space
2011 * @dev: PCI device to be initialized
2012 *
2013 * Initialize device before it's used by a driver. Ask low-level code
2014 * to enable I/O resources. Wake up the device if it was suspended.
2015 * Beware, this function can fail.
2016 */
2017int pci_enable_device_io(struct pci_dev *dev)
2018{
2019	return pci_enable_device_flags(dev, IORESOURCE_IO);
2020}
2021EXPORT_SYMBOL(pci_enable_device_io);
2022
2023/**
2024 * pci_enable_device_mem - Initialize a device for use with Memory space
2025 * @dev: PCI device to be initialized
2026 *
2027 * Initialize device before it's used by a driver. Ask low-level code
2028 * to enable Memory resources. Wake up the device if it was suspended.
2029 * Beware, this function can fail.
2030 */
2031int pci_enable_device_mem(struct pci_dev *dev)
2032{
2033	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2034}
2035EXPORT_SYMBOL(pci_enable_device_mem);
2036
2037/**
2038 * pci_enable_device - Initialize device before it's used by a driver.
2039 * @dev: PCI device to be initialized
2040 *
2041 * Initialize device before it's used by a driver. Ask low-level code
2042 * to enable I/O and memory. Wake up the device if it was suspended.
2043 * Beware, this function can fail.
2044 *
2045 * Note we don't actually enable the device many times if we call
2046 * this function repeatedly (we just increment the count).
2047 */
2048int pci_enable_device(struct pci_dev *dev)
2049{
2050	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2051}
2052EXPORT_SYMBOL(pci_enable_device);
2053
2054/*
2055 * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2056 * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2057 * there's no need to track it separately.  pci_devres is initialized
2058 * when a device is enabled using managed PCI device enable interface.
2059 */
2060struct pci_devres {
2061	unsigned int enabled:1;
2062	unsigned int pinned:1;
2063	unsigned int orig_intx:1;
2064	unsigned int restore_intx:1;
2065	unsigned int mwi:1;
2066	u32 region_mask;
2067};
2068
2069static void pcim_release(struct device *gendev, void *res)
2070{
2071	struct pci_dev *dev = to_pci_dev(gendev);
2072	struct pci_devres *this = res;
2073	int i;
2074
 
 
 
 
 
2075	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2076		if (this->region_mask & (1 << i))
2077			pci_release_region(dev, i);
2078
2079	if (this->mwi)
2080		pci_clear_mwi(dev);
2081
2082	if (this->restore_intx)
2083		pci_intx(dev, this->orig_intx);
2084
2085	if (this->enabled && !this->pinned)
2086		pci_disable_device(dev);
2087}
2088
2089static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2090{
2091	struct pci_devres *dr, *new_dr;
2092
2093	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2094	if (dr)
2095		return dr;
2096
2097	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2098	if (!new_dr)
2099		return NULL;
2100	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2101}
2102
2103static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2104{
2105	if (pci_is_managed(pdev))
2106		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2107	return NULL;
2108}
2109
2110/**
2111 * pcim_enable_device - Managed pci_enable_device()
2112 * @pdev: PCI device to be initialized
2113 *
2114 * Managed pci_enable_device().
2115 */
2116int pcim_enable_device(struct pci_dev *pdev)
2117{
2118	struct pci_devres *dr;
2119	int rc;
2120
2121	dr = get_pci_dr(pdev);
2122	if (unlikely(!dr))
2123		return -ENOMEM;
2124	if (dr->enabled)
2125		return 0;
2126
2127	rc = pci_enable_device(pdev);
2128	if (!rc) {
2129		pdev->is_managed = 1;
2130		dr->enabled = 1;
2131	}
2132	return rc;
2133}
2134EXPORT_SYMBOL(pcim_enable_device);
2135
2136/**
2137 * pcim_pin_device - Pin managed PCI device
2138 * @pdev: PCI device to pin
2139 *
2140 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2141 * driver detach.  @pdev must have been enabled with
2142 * pcim_enable_device().
2143 */
2144void pcim_pin_device(struct pci_dev *pdev)
2145{
2146	struct pci_devres *dr;
2147
2148	dr = find_pci_dr(pdev);
2149	WARN_ON(!dr || !dr->enabled);
2150	if (dr)
2151		dr->pinned = 1;
2152}
2153EXPORT_SYMBOL(pcim_pin_device);
2154
2155/*
2156 * pcibios_device_add - provide arch specific hooks when adding device dev
2157 * @dev: the PCI device being added
2158 *
2159 * Permits the platform to provide architecture specific functionality when
2160 * devices are added. This is the default implementation. Architecture
2161 * implementations can override this.
2162 */
2163int __weak pcibios_device_add(struct pci_dev *dev)
2164{
2165	return 0;
2166}
2167
2168/**
2169 * pcibios_release_device - provide arch specific hooks when releasing
2170 *			    device dev
2171 * @dev: the PCI device being released
2172 *
2173 * Permits the platform to provide architecture specific functionality when
2174 * devices are released. This is the default implementation. Architecture
2175 * implementations can override this.
2176 */
2177void __weak pcibios_release_device(struct pci_dev *dev) {}
2178
2179/**
2180 * pcibios_disable_device - disable arch specific PCI resources for device dev
2181 * @dev: the PCI device to disable
2182 *
2183 * Disables architecture specific PCI resources for the device. This
2184 * is the default implementation. Architecture implementations can
2185 * override this.
2186 */
2187void __weak pcibios_disable_device(struct pci_dev *dev) {}
2188
2189/**
2190 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2191 * @irq: ISA IRQ to penalize
2192 * @active: IRQ active or not
2193 *
2194 * Permits the platform to provide architecture-specific functionality when
2195 * penalizing ISA IRQs. This is the default implementation. Architecture
2196 * implementations can override this.
2197 */
2198void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2199
2200static void do_pci_disable_device(struct pci_dev *dev)
2201{
2202	u16 pci_command;
2203
2204	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2205	if (pci_command & PCI_COMMAND_MASTER) {
2206		pci_command &= ~PCI_COMMAND_MASTER;
2207		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2208	}
2209
2210	pcibios_disable_device(dev);
2211}
2212
2213/**
2214 * pci_disable_enabled_device - Disable device without updating enable_cnt
2215 * @dev: PCI device to disable
2216 *
2217 * NOTE: This function is a backend of PCI power management routines and is
2218 * not supposed to be called drivers.
2219 */
2220void pci_disable_enabled_device(struct pci_dev *dev)
2221{
2222	if (pci_is_enabled(dev))
2223		do_pci_disable_device(dev);
2224}
2225
2226/**
2227 * pci_disable_device - Disable PCI device after use
2228 * @dev: PCI device to be disabled
2229 *
2230 * Signal to the system that the PCI device is not in use by the system
2231 * anymore.  This only involves disabling PCI bus-mastering, if active.
2232 *
2233 * Note we don't actually disable the device until all callers of
2234 * pci_enable_device() have called pci_disable_device().
2235 */
2236void pci_disable_device(struct pci_dev *dev)
2237{
2238	struct pci_devres *dr;
2239
2240	dr = find_pci_dr(dev);
2241	if (dr)
2242		dr->enabled = 0;
2243
2244	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2245		      "disabling already-disabled device");
2246
2247	if (atomic_dec_return(&dev->enable_cnt) != 0)
2248		return;
2249
2250	do_pci_disable_device(dev);
2251
2252	dev->is_busmaster = 0;
2253}
2254EXPORT_SYMBOL(pci_disable_device);
2255
2256/**
2257 * pcibios_set_pcie_reset_state - set reset state for device dev
2258 * @dev: the PCIe device reset
2259 * @state: Reset state to enter into
2260 *
2261 * Set the PCIe reset state for the device. This is the default
2262 * implementation. Architecture implementations can override this.
2263 */
2264int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2265					enum pcie_reset_state state)
2266{
2267	return -EINVAL;
2268}
2269
2270/**
2271 * pci_set_pcie_reset_state - set reset state for device dev
2272 * @dev: the PCIe device reset
2273 * @state: Reset state to enter into
2274 *
2275 * Sets the PCI reset state for the device.
2276 */
2277int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2278{
2279	return pcibios_set_pcie_reset_state(dev, state);
2280}
2281EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2282
2283#ifdef CONFIG_PCIEAER
2284void pcie_clear_device_status(struct pci_dev *dev)
2285{
2286	u16 sta;
2287
2288	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2289	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2290}
2291#endif
2292
2293/**
2294 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2295 * @dev: PCIe root port or event collector.
2296 */
2297void pcie_clear_root_pme_status(struct pci_dev *dev)
2298{
2299	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2300}
2301
2302/**
2303 * pci_check_pme_status - Check if given device has generated PME.
2304 * @dev: Device to check.
2305 *
2306 * Check the PME status of the device and if set, clear it and clear PME enable
2307 * (if set).  Return 'true' if PME status and PME enable were both set or
2308 * 'false' otherwise.
2309 */
2310bool pci_check_pme_status(struct pci_dev *dev)
2311{
2312	int pmcsr_pos;
2313	u16 pmcsr;
2314	bool ret = false;
2315
2316	if (!dev->pm_cap)
2317		return false;
2318
2319	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2320	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2321	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2322		return false;
2323
2324	/* Clear PME status. */
2325	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2326	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2327		/* Disable PME to avoid interrupt flood. */
2328		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2329		ret = true;
2330	}
2331
2332	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2333
2334	return ret;
2335}
2336
2337/**
2338 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2339 * @dev: Device to handle.
2340 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2341 *
2342 * Check if @dev has generated PME and queue a resume request for it in that
2343 * case.
2344 */
2345static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2346{
2347	if (pme_poll_reset && dev->pme_poll)
2348		dev->pme_poll = false;
2349
2350	if (pci_check_pme_status(dev)) {
2351		pci_wakeup_event(dev);
2352		pm_request_resume(&dev->dev);
2353	}
2354	return 0;
2355}
2356
2357/**
2358 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2359 * @bus: Top bus of the subtree to walk.
2360 */
2361void pci_pme_wakeup_bus(struct pci_bus *bus)
2362{
2363	if (bus)
2364		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2365}
2366
2367
2368/**
2369 * pci_pme_capable - check the capability of PCI device to generate PME#
2370 * @dev: PCI device to handle.
2371 * @state: PCI state from which device will issue PME#.
2372 */
2373bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2374{
2375	if (!dev->pm_cap)
2376		return false;
2377
2378	return !!(dev->pme_support & (1 << state));
2379}
2380EXPORT_SYMBOL(pci_pme_capable);
2381
2382static void pci_pme_list_scan(struct work_struct *work)
2383{
2384	struct pci_pme_device *pme_dev, *n;
2385
2386	mutex_lock(&pci_pme_list_mutex);
2387	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2388		if (pme_dev->dev->pme_poll) {
2389			struct pci_dev *bridge;
2390
2391			bridge = pme_dev->dev->bus->self;
2392			/*
2393			 * If bridge is in low power state, the
2394			 * configuration space of subordinate devices
2395			 * may be not accessible
2396			 */
2397			if (bridge && bridge->current_state != PCI_D0)
2398				continue;
2399			/*
2400			 * If the device is in D3cold it should not be
2401			 * polled either.
2402			 */
2403			if (pme_dev->dev->current_state == PCI_D3cold)
2404				continue;
2405
2406			pci_pme_wakeup(pme_dev->dev, NULL);
2407		} else {
2408			list_del(&pme_dev->list);
2409			kfree(pme_dev);
2410		}
2411	}
2412	if (!list_empty(&pci_pme_list))
2413		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2414				   msecs_to_jiffies(PME_TIMEOUT));
2415	mutex_unlock(&pci_pme_list_mutex);
2416}
2417
2418static void __pci_pme_active(struct pci_dev *dev, bool enable)
2419{
2420	u16 pmcsr;
2421
2422	if (!dev->pme_support)
2423		return;
2424
2425	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2426	/* Clear PME_Status by writing 1 to it and enable PME# */
2427	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2428	if (!enable)
2429		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2430
2431	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2432}
2433
2434/**
2435 * pci_pme_restore - Restore PME configuration after config space restore.
2436 * @dev: PCI device to update.
2437 */
2438void pci_pme_restore(struct pci_dev *dev)
2439{
2440	u16 pmcsr;
2441
2442	if (!dev->pme_support)
2443		return;
2444
2445	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2446	if (dev->wakeup_prepared) {
2447		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2448		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2449	} else {
2450		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2451		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2452	}
2453	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2454}
2455
2456/**
2457 * pci_pme_active - enable or disable PCI device's PME# function
2458 * @dev: PCI device to handle.
2459 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2460 *
2461 * The caller must verify that the device is capable of generating PME# before
2462 * calling this function with @enable equal to 'true'.
2463 */
2464void pci_pme_active(struct pci_dev *dev, bool enable)
2465{
2466	__pci_pme_active(dev, enable);
2467
2468	/*
2469	 * PCI (as opposed to PCIe) PME requires that the device have
2470	 * its PME# line hooked up correctly. Not all hardware vendors
2471	 * do this, so the PME never gets delivered and the device
2472	 * remains asleep. The easiest way around this is to
2473	 * periodically walk the list of suspended devices and check
2474	 * whether any have their PME flag set. The assumption is that
2475	 * we'll wake up often enough anyway that this won't be a huge
2476	 * hit, and the power savings from the devices will still be a
2477	 * win.
2478	 *
2479	 * Although PCIe uses in-band PME message instead of PME# line
2480	 * to report PME, PME does not work for some PCIe devices in
2481	 * reality.  For example, there are devices that set their PME
2482	 * status bits, but don't really bother to send a PME message;
2483	 * there are PCI Express Root Ports that don't bother to
2484	 * trigger interrupts when they receive PME messages from the
2485	 * devices below.  So PME poll is used for PCIe devices too.
2486	 */
2487
2488	if (dev->pme_poll) {
2489		struct pci_pme_device *pme_dev;
2490		if (enable) {
2491			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2492					  GFP_KERNEL);
2493			if (!pme_dev) {
2494				pci_warn(dev, "can't enable PME#\n");
2495				return;
2496			}
2497			pme_dev->dev = dev;
2498			mutex_lock(&pci_pme_list_mutex);
2499			list_add(&pme_dev->list, &pci_pme_list);
2500			if (list_is_singular(&pci_pme_list))
2501				queue_delayed_work(system_freezable_wq,
2502						   &pci_pme_work,
2503						   msecs_to_jiffies(PME_TIMEOUT));
2504			mutex_unlock(&pci_pme_list_mutex);
2505		} else {
2506			mutex_lock(&pci_pme_list_mutex);
2507			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2508				if (pme_dev->dev == dev) {
2509					list_del(&pme_dev->list);
2510					kfree(pme_dev);
2511					break;
2512				}
2513			}
2514			mutex_unlock(&pci_pme_list_mutex);
2515		}
2516	}
2517
2518	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2519}
2520EXPORT_SYMBOL(pci_pme_active);
2521
2522/**
2523 * __pci_enable_wake - enable PCI device as wakeup event source
2524 * @dev: PCI device affected
2525 * @state: PCI state from which device will issue wakeup events
2526 * @enable: True to enable event generation; false to disable
2527 *
2528 * This enables the device as a wakeup event source, or disables it.
2529 * When such events involves platform-specific hooks, those hooks are
2530 * called automatically by this routine.
2531 *
2532 * Devices with legacy power management (no standard PCI PM capabilities)
2533 * always require such platform hooks.
2534 *
2535 * RETURN VALUE:
2536 * 0 is returned on success
2537 * -EINVAL is returned if device is not supposed to wake up the system
2538 * Error code depending on the platform is returned if both the platform and
2539 * the native mechanism fail to enable the generation of wake-up events
2540 */
2541static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2542{
2543	int ret = 0;
2544
2545	/*
2546	 * Bridges that are not power-manageable directly only signal
2547	 * wakeup on behalf of subordinate devices which is set up
2548	 * elsewhere, so skip them. However, bridges that are
2549	 * power-manageable may signal wakeup for themselves (for example,
2550	 * on a hotplug event) and they need to be covered here.
2551	 */
2552	if (!pci_power_manageable(dev))
2553		return 0;
2554
2555	/* Don't do the same thing twice in a row for one device. */
2556	if (!!enable == !!dev->wakeup_prepared)
2557		return 0;
2558
2559	/*
2560	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2561	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2562	 * enable.  To disable wake-up we call the platform first, for symmetry.
2563	 */
2564
2565	if (enable) {
2566		int error;
2567
2568		/*
2569		 * Enable PME signaling if the device can signal PME from
2570		 * D3cold regardless of whether or not it can signal PME from
2571		 * the current target state, because that will allow it to
2572		 * signal PME when the hierarchy above it goes into D3cold and
2573		 * the device itself ends up in D3cold as a result of that.
2574		 */
2575		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2576			pci_pme_active(dev, true);
2577		else
2578			ret = 1;
2579		error = platform_pci_set_wakeup(dev, true);
2580		if (ret)
2581			ret = error;
2582		if (!ret)
2583			dev->wakeup_prepared = true;
2584	} else {
2585		platform_pci_set_wakeup(dev, false);
2586		pci_pme_active(dev, false);
2587		dev->wakeup_prepared = false;
2588	}
2589
2590	return ret;
2591}
2592
2593/**
2594 * pci_enable_wake - change wakeup settings for a PCI device
2595 * @pci_dev: Target device
2596 * @state: PCI state from which device will issue wakeup events
2597 * @enable: Whether or not to enable event generation
2598 *
2599 * If @enable is set, check device_may_wakeup() for the device before calling
2600 * __pci_enable_wake() for it.
2601 */
2602int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2603{
2604	if (enable && !device_may_wakeup(&pci_dev->dev))
2605		return -EINVAL;
2606
2607	return __pci_enable_wake(pci_dev, state, enable);
2608}
2609EXPORT_SYMBOL(pci_enable_wake);
2610
2611/**
2612 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2613 * @dev: PCI device to prepare
2614 * @enable: True to enable wake-up event generation; false to disable
2615 *
2616 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2617 * and this function allows them to set that up cleanly - pci_enable_wake()
2618 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2619 * ordering constraints.
2620 *
2621 * This function only returns error code if the device is not allowed to wake
2622 * up the system from sleep or it is not capable of generating PME# from both
2623 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2624 */
2625int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2626{
2627	return pci_pme_capable(dev, PCI_D3cold) ?
2628			pci_enable_wake(dev, PCI_D3cold, enable) :
2629			pci_enable_wake(dev, PCI_D3hot, enable);
2630}
2631EXPORT_SYMBOL(pci_wake_from_d3);
2632
2633/**
2634 * pci_target_state - find an appropriate low power state for a given PCI dev
2635 * @dev: PCI device
2636 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2637 *
2638 * Use underlying platform code to find a supported low power state for @dev.
2639 * If the platform can't manage @dev, return the deepest state from which it
2640 * can generate wake events, based on any available PME info.
2641 */
2642static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2643{
 
 
2644	if (platform_pci_power_manageable(dev)) {
2645		/*
2646		 * Call the platform to find the target state for the device.
2647		 */
2648		pci_power_t state = platform_pci_choose_state(dev);
2649
2650		switch (state) {
2651		case PCI_POWER_ERROR:
2652		case PCI_UNKNOWN:
2653			return PCI_D3hot;
2654
2655		case PCI_D1:
2656		case PCI_D2:
2657			if (pci_no_d1d2(dev))
2658				return PCI_D3hot;
 
 
 
2659		}
2660
2661		return state;
2662	}
2663
 
 
 
2664	/*
2665	 * If the device is in D3cold even though it's not power-manageable by
2666	 * the platform, it may have been powered down by non-standard means.
2667	 * Best to let it slumber.
2668	 */
2669	if (dev->current_state == PCI_D3cold)
2670		return PCI_D3cold;
2671	else if (!dev->pm_cap)
2672		return PCI_D0;
2673
2674	if (wakeup && dev->pme_support) {
2675		pci_power_t state = PCI_D3hot;
2676
 
2677		/*
2678		 * Find the deepest state from which the device can generate
2679		 * PME#.
2680		 */
2681		while (state && !(dev->pme_support & (1 << state)))
2682			state--;
2683
2684		if (state)
2685			return state;
2686		else if (dev->pme_support & 1)
2687			return PCI_D0;
2688	}
2689
2690	return PCI_D3hot;
2691}
2692
2693/**
2694 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2695 *			  into a sleep state
2696 * @dev: Device to handle.
2697 *
2698 * Choose the power state appropriate for the device depending on whether
2699 * it can wake up the system and/or is power manageable by the platform
2700 * (PCI_D3hot is the default) and put the device into that state.
2701 */
2702int pci_prepare_to_sleep(struct pci_dev *dev)
2703{
2704	bool wakeup = device_may_wakeup(&dev->dev);
2705	pci_power_t target_state = pci_target_state(dev, wakeup);
2706	int error;
2707
2708	if (target_state == PCI_POWER_ERROR)
2709		return -EIO;
2710
2711	pci_enable_wake(dev, target_state, wakeup);
2712
2713	error = pci_set_power_state(dev, target_state);
2714
2715	if (error)
2716		pci_enable_wake(dev, target_state, false);
2717
2718	return error;
2719}
2720EXPORT_SYMBOL(pci_prepare_to_sleep);
2721
2722/**
2723 * pci_back_from_sleep - turn PCI device on during system-wide transition
2724 *			 into working state
2725 * @dev: Device to handle.
2726 *
2727 * Disable device's system wake-up capability and put it into D0.
2728 */
2729int pci_back_from_sleep(struct pci_dev *dev)
2730{
2731	int ret = pci_set_power_state(dev, PCI_D0);
2732
2733	if (ret)
2734		return ret;
2735
2736	pci_enable_wake(dev, PCI_D0, false);
2737	return 0;
2738}
2739EXPORT_SYMBOL(pci_back_from_sleep);
2740
2741/**
2742 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2743 * @dev: PCI device being suspended.
2744 *
2745 * Prepare @dev to generate wake-up events at run time and put it into a low
2746 * power state.
2747 */
2748int pci_finish_runtime_suspend(struct pci_dev *dev)
2749{
2750	pci_power_t target_state;
2751	int error;
2752
2753	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2754	if (target_state == PCI_POWER_ERROR)
2755		return -EIO;
2756
 
 
2757	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2758
2759	error = pci_set_power_state(dev, target_state);
2760
2761	if (error)
2762		pci_enable_wake(dev, target_state, false);
 
 
2763
2764	return error;
2765}
2766
2767/**
2768 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2769 * @dev: Device to check.
2770 *
2771 * Return true if the device itself is capable of generating wake-up events
2772 * (through the platform or using the native PCIe PME) or if the device supports
2773 * PME and one of its upstream bridges can generate wake-up events.
2774 */
2775bool pci_dev_run_wake(struct pci_dev *dev)
2776{
2777	struct pci_bus *bus = dev->bus;
2778
2779	if (!dev->pme_support)
2780		return false;
2781
2782	/* PME-capable in principle, but not from the target power state */
2783	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2784		return false;
2785
2786	if (device_can_wakeup(&dev->dev))
2787		return true;
2788
2789	while (bus->parent) {
2790		struct pci_dev *bridge = bus->self;
2791
2792		if (device_can_wakeup(&bridge->dev))
2793			return true;
2794
2795		bus = bus->parent;
2796	}
2797
2798	/* We have reached the root bus. */
2799	if (bus->bridge)
2800		return device_can_wakeup(bus->bridge);
2801
2802	return false;
2803}
2804EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2805
2806/**
2807 * pci_dev_need_resume - Check if it is necessary to resume the device.
2808 * @pci_dev: Device to check.
2809 *
2810 * Return 'true' if the device is not runtime-suspended or it has to be
2811 * reconfigured due to wakeup settings difference between system and runtime
2812 * suspend, or the current power state of it is not suitable for the upcoming
2813 * (system-wide) transition.
2814 */
2815bool pci_dev_need_resume(struct pci_dev *pci_dev)
2816{
2817	struct device *dev = &pci_dev->dev;
2818	pci_power_t target_state;
2819
2820	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2821		return true;
2822
2823	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2824
2825	/*
2826	 * If the earlier platform check has not triggered, D3cold is just power
2827	 * removal on top of D3hot, so no need to resume the device in that
2828	 * case.
2829	 */
2830	return target_state != pci_dev->current_state &&
2831		target_state != PCI_D3cold &&
2832		pci_dev->current_state != PCI_D3hot;
2833}
2834
2835/**
2836 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2837 * @pci_dev: Device to check.
2838 *
2839 * If the device is suspended and it is not configured for system wakeup,
2840 * disable PME for it to prevent it from waking up the system unnecessarily.
2841 *
2842 * Note that if the device's power state is D3cold and the platform check in
2843 * pci_dev_need_resume() has not triggered, the device's configuration need not
2844 * be changed.
2845 */
2846void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2847{
2848	struct device *dev = &pci_dev->dev;
2849
2850	spin_lock_irq(&dev->power.lock);
2851
2852	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2853	    pci_dev->current_state < PCI_D3cold)
2854		__pci_pme_active(pci_dev, false);
2855
2856	spin_unlock_irq(&dev->power.lock);
2857}
2858
2859/**
2860 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2861 * @pci_dev: Device to handle.
2862 *
2863 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2864 * it might have been disabled during the prepare phase of system suspend if
2865 * the device was not configured for system wakeup.
2866 */
2867void pci_dev_complete_resume(struct pci_dev *pci_dev)
2868{
2869	struct device *dev = &pci_dev->dev;
2870
2871	if (!pci_dev_run_wake(pci_dev))
2872		return;
2873
2874	spin_lock_irq(&dev->power.lock);
2875
2876	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2877		__pci_pme_active(pci_dev, true);
2878
2879	spin_unlock_irq(&dev->power.lock);
2880}
2881
2882/**
2883 * pci_choose_state - Choose the power state of a PCI device.
2884 * @dev: Target PCI device.
2885 * @state: Target state for the whole system.
2886 *
2887 * Returns PCI power state suitable for @dev and @state.
2888 */
2889pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2890{
2891	if (state.event == PM_EVENT_ON)
2892		return PCI_D0;
2893
2894	return pci_target_state(dev, false);
2895}
2896EXPORT_SYMBOL(pci_choose_state);
2897
2898void pci_config_pm_runtime_get(struct pci_dev *pdev)
2899{
2900	struct device *dev = &pdev->dev;
2901	struct device *parent = dev->parent;
2902
2903	if (parent)
2904		pm_runtime_get_sync(parent);
2905	pm_runtime_get_noresume(dev);
2906	/*
2907	 * pdev->current_state is set to PCI_D3cold during suspending,
2908	 * so wait until suspending completes
2909	 */
2910	pm_runtime_barrier(dev);
2911	/*
2912	 * Only need to resume devices in D3cold, because config
2913	 * registers are still accessible for devices suspended but
2914	 * not in D3cold.
2915	 */
2916	if (pdev->current_state == PCI_D3cold)
2917		pm_runtime_resume(dev);
2918}
2919
2920void pci_config_pm_runtime_put(struct pci_dev *pdev)
2921{
2922	struct device *dev = &pdev->dev;
2923	struct device *parent = dev->parent;
2924
2925	pm_runtime_put(dev);
2926	if (parent)
2927		pm_runtime_put_sync(parent);
2928}
2929
2930static const struct dmi_system_id bridge_d3_blacklist[] = {
2931#ifdef CONFIG_X86
2932	{
2933		/*
2934		 * Gigabyte X299 root port is not marked as hotplug capable
2935		 * which allows Linux to power manage it.  However, this
2936		 * confuses the BIOS SMI handler so don't power manage root
2937		 * ports on that system.
2938		 */
2939		.ident = "X299 DESIGNARE EX-CF",
2940		.matches = {
2941			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2942			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2943		},
2944	},
2945	{
2946		/*
2947		 * Downstream device is not accessible after putting a root port
2948		 * into D3cold and back into D0 on Elo i2.
2949		 */
2950		.ident = "Elo i2",
2951		.matches = {
2952			DMI_MATCH(DMI_SYS_VENDOR, "Elo Touch Solutions"),
2953			DMI_MATCH(DMI_PRODUCT_NAME, "Elo i2"),
2954			DMI_MATCH(DMI_PRODUCT_VERSION, "RevB"),
2955		},
2956	},
2957#endif
2958	{ }
2959};
2960
2961/**
2962 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2963 * @bridge: Bridge to check
2964 *
2965 * This function checks if it is possible to move the bridge to D3.
2966 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2967 */
2968bool pci_bridge_d3_possible(struct pci_dev *bridge)
2969{
2970	if (!pci_is_pcie(bridge))
2971		return false;
2972
2973	switch (pci_pcie_type(bridge)) {
2974	case PCI_EXP_TYPE_ROOT_PORT:
2975	case PCI_EXP_TYPE_UPSTREAM:
2976	case PCI_EXP_TYPE_DOWNSTREAM:
2977		if (pci_bridge_d3_disable)
2978			return false;
2979
2980		/*
2981		 * Hotplug ports handled by firmware in System Management Mode
2982		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2983		 */
2984		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2985			return false;
2986
2987		if (pci_bridge_d3_force)
2988			return true;
2989
2990		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2991		if (bridge->is_thunderbolt)
2992			return true;
2993
2994		/* Platform might know better if the bridge supports D3 */
2995		if (platform_pci_bridge_d3(bridge))
2996			return true;
2997
2998		/*
2999		 * Hotplug ports handled natively by the OS were not validated
3000		 * by vendors for runtime D3 at least until 2018 because there
3001		 * was no OS support.
3002		 */
3003		if (bridge->is_hotplug_bridge)
3004			return false;
3005
3006		if (dmi_check_system(bridge_d3_blacklist))
3007			return false;
3008
3009		/*
3010		 * It should be safe to put PCIe ports from 2015 or newer
3011		 * to D3.
3012		 */
3013		if (dmi_get_bios_year() >= 2015)
3014			return true;
3015		break;
3016	}
3017
3018	return false;
3019}
3020
3021static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3022{
3023	bool *d3cold_ok = data;
3024
3025	if (/* The device needs to be allowed to go D3cold ... */
3026	    dev->no_d3cold || !dev->d3cold_allowed ||
3027
3028	    /* ... and if it is wakeup capable to do so from D3cold. */
3029	    (device_may_wakeup(&dev->dev) &&
3030	     !pci_pme_capable(dev, PCI_D3cold)) ||
3031
3032	    /* If it is a bridge it must be allowed to go to D3. */
3033	    !pci_power_manageable(dev))
3034
3035		*d3cold_ok = false;
3036
3037	return !*d3cold_ok;
3038}
3039
3040/*
3041 * pci_bridge_d3_update - Update bridge D3 capabilities
3042 * @dev: PCI device which is changed
3043 *
3044 * Update upstream bridge PM capabilities accordingly depending on if the
3045 * device PM configuration was changed or the device is being removed.  The
3046 * change is also propagated upstream.
3047 */
3048void pci_bridge_d3_update(struct pci_dev *dev)
3049{
3050	bool remove = !device_is_registered(&dev->dev);
3051	struct pci_dev *bridge;
3052	bool d3cold_ok = true;
3053
3054	bridge = pci_upstream_bridge(dev);
3055	if (!bridge || !pci_bridge_d3_possible(bridge))
3056		return;
3057
3058	/*
3059	 * If D3 is currently allowed for the bridge, removing one of its
3060	 * children won't change that.
3061	 */
3062	if (remove && bridge->bridge_d3)
3063		return;
3064
3065	/*
3066	 * If D3 is currently allowed for the bridge and a child is added or
3067	 * changed, disallowance of D3 can only be caused by that child, so
3068	 * we only need to check that single device, not any of its siblings.
3069	 *
3070	 * If D3 is currently not allowed for the bridge, checking the device
3071	 * first may allow us to skip checking its siblings.
3072	 */
3073	if (!remove)
3074		pci_dev_check_d3cold(dev, &d3cold_ok);
3075
3076	/*
3077	 * If D3 is currently not allowed for the bridge, this may be caused
3078	 * either by the device being changed/removed or any of its siblings,
3079	 * so we need to go through all children to find out if one of them
3080	 * continues to block D3.
3081	 */
3082	if (d3cold_ok && !bridge->bridge_d3)
3083		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3084			     &d3cold_ok);
3085
3086	if (bridge->bridge_d3 != d3cold_ok) {
3087		bridge->bridge_d3 = d3cold_ok;
3088		/* Propagate change to upstream bridges */
3089		pci_bridge_d3_update(bridge);
3090	}
3091}
3092
3093/**
3094 * pci_d3cold_enable - Enable D3cold for device
3095 * @dev: PCI device to handle
3096 *
3097 * This function can be used in drivers to enable D3cold from the device
3098 * they handle.  It also updates upstream PCI bridge PM capabilities
3099 * accordingly.
3100 */
3101void pci_d3cold_enable(struct pci_dev *dev)
3102{
3103	if (dev->no_d3cold) {
3104		dev->no_d3cold = false;
3105		pci_bridge_d3_update(dev);
3106	}
3107}
3108EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3109
3110/**
3111 * pci_d3cold_disable - Disable D3cold for device
3112 * @dev: PCI device to handle
3113 *
3114 * This function can be used in drivers to disable D3cold from the device
3115 * they handle.  It also updates upstream PCI bridge PM capabilities
3116 * accordingly.
3117 */
3118void pci_d3cold_disable(struct pci_dev *dev)
3119{
3120	if (!dev->no_d3cold) {
3121		dev->no_d3cold = true;
3122		pci_bridge_d3_update(dev);
3123	}
3124}
3125EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3126
3127/**
3128 * pci_pm_init - Initialize PM functions of given PCI device
3129 * @dev: PCI device to handle.
3130 */
3131void pci_pm_init(struct pci_dev *dev)
3132{
3133	int pm;
3134	u16 status;
3135	u16 pmc;
3136
3137	pm_runtime_forbid(&dev->dev);
3138	pm_runtime_set_active(&dev->dev);
3139	pm_runtime_enable(&dev->dev);
3140	device_enable_async_suspend(&dev->dev);
3141	dev->wakeup_prepared = false;
3142
3143	dev->pm_cap = 0;
3144	dev->pme_support = 0;
3145
3146	/* find PCI PM capability in list */
3147	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3148	if (!pm)
3149		return;
3150	/* Check device's ability to generate PME# */
3151	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3152
3153	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3154		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3155			pmc & PCI_PM_CAP_VER_MASK);
3156		return;
3157	}
3158
3159	dev->pm_cap = pm;
3160	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3161	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3162	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3163	dev->d3cold_allowed = true;
3164
3165	dev->d1_support = false;
3166	dev->d2_support = false;
3167	if (!pci_no_d1d2(dev)) {
3168		if (pmc & PCI_PM_CAP_D1)
3169			dev->d1_support = true;
3170		if (pmc & PCI_PM_CAP_D2)
3171			dev->d2_support = true;
3172
3173		if (dev->d1_support || dev->d2_support)
3174			pci_info(dev, "supports%s%s\n",
3175				   dev->d1_support ? " D1" : "",
3176				   dev->d2_support ? " D2" : "");
3177	}
3178
3179	pmc &= PCI_PM_CAP_PME_MASK;
3180	if (pmc) {
3181		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3182			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3183			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3184			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3185			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3186			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3187		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3188		dev->pme_poll = true;
3189		/*
3190		 * Make device's PM flags reflect the wake-up capability, but
3191		 * let the user space enable it to wake up the system as needed.
3192		 */
3193		device_set_wakeup_capable(&dev->dev, true);
3194		/* Disable the PME# generation functionality */
3195		pci_pme_active(dev, false);
3196	}
3197
3198	pci_read_config_word(dev, PCI_STATUS, &status);
3199	if (status & PCI_STATUS_IMM_READY)
3200		dev->imm_ready = 1;
3201}
3202
3203static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3204{
3205	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3206
3207	switch (prop) {
3208	case PCI_EA_P_MEM:
3209	case PCI_EA_P_VF_MEM:
3210		flags |= IORESOURCE_MEM;
3211		break;
3212	case PCI_EA_P_MEM_PREFETCH:
3213	case PCI_EA_P_VF_MEM_PREFETCH:
3214		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3215		break;
3216	case PCI_EA_P_IO:
3217		flags |= IORESOURCE_IO;
3218		break;
3219	default:
3220		return 0;
3221	}
3222
3223	return flags;
3224}
3225
3226static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3227					    u8 prop)
3228{
3229	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3230		return &dev->resource[bei];
3231#ifdef CONFIG_PCI_IOV
3232	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3233		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3234		return &dev->resource[PCI_IOV_RESOURCES +
3235				      bei - PCI_EA_BEI_VF_BAR0];
3236#endif
3237	else if (bei == PCI_EA_BEI_ROM)
3238		return &dev->resource[PCI_ROM_RESOURCE];
3239	else
3240		return NULL;
3241}
3242
3243/* Read an Enhanced Allocation (EA) entry */
3244static int pci_ea_read(struct pci_dev *dev, int offset)
3245{
3246	struct resource *res;
3247	int ent_size, ent_offset = offset;
3248	resource_size_t start, end;
3249	unsigned long flags;
3250	u32 dw0, bei, base, max_offset;
3251	u8 prop;
3252	bool support_64 = (sizeof(resource_size_t) >= 8);
3253
3254	pci_read_config_dword(dev, ent_offset, &dw0);
3255	ent_offset += 4;
3256
3257	/* Entry size field indicates DWORDs after 1st */
3258	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3259
3260	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3261		goto out;
3262
3263	bei = (dw0 & PCI_EA_BEI) >> 4;
3264	prop = (dw0 & PCI_EA_PP) >> 8;
3265
3266	/*
3267	 * If the Property is in the reserved range, try the Secondary
3268	 * Property instead.
3269	 */
3270	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3271		prop = (dw0 & PCI_EA_SP) >> 16;
3272	if (prop > PCI_EA_P_BRIDGE_IO)
3273		goto out;
3274
3275	res = pci_ea_get_resource(dev, bei, prop);
3276	if (!res) {
3277		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3278		goto out;
3279	}
3280
3281	flags = pci_ea_flags(dev, prop);
3282	if (!flags) {
3283		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3284		goto out;
3285	}
3286
3287	/* Read Base */
3288	pci_read_config_dword(dev, ent_offset, &base);
3289	start = (base & PCI_EA_FIELD_MASK);
3290	ent_offset += 4;
3291
3292	/* Read MaxOffset */
3293	pci_read_config_dword(dev, ent_offset, &max_offset);
3294	ent_offset += 4;
3295
3296	/* Read Base MSBs (if 64-bit entry) */
3297	if (base & PCI_EA_IS_64) {
3298		u32 base_upper;
3299
3300		pci_read_config_dword(dev, ent_offset, &base_upper);
3301		ent_offset += 4;
3302
3303		flags |= IORESOURCE_MEM_64;
3304
3305		/* entry starts above 32-bit boundary, can't use */
3306		if (!support_64 && base_upper)
3307			goto out;
3308
3309		if (support_64)
3310			start |= ((u64)base_upper << 32);
3311	}
3312
3313	end = start + (max_offset | 0x03);
3314
3315	/* Read MaxOffset MSBs (if 64-bit entry) */
3316	if (max_offset & PCI_EA_IS_64) {
3317		u32 max_offset_upper;
3318
3319		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3320		ent_offset += 4;
3321
3322		flags |= IORESOURCE_MEM_64;
3323
3324		/* entry too big, can't use */
3325		if (!support_64 && max_offset_upper)
3326			goto out;
3327
3328		if (support_64)
3329			end += ((u64)max_offset_upper << 32);
3330	}
3331
3332	if (end < start) {
3333		pci_err(dev, "EA Entry crosses address boundary\n");
3334		goto out;
3335	}
3336
3337	if (ent_size != ent_offset - offset) {
3338		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3339			ent_size, ent_offset - offset);
3340		goto out;
3341	}
3342
3343	res->name = pci_name(dev);
3344	res->start = start;
3345	res->end = end;
3346	res->flags = flags;
3347
3348	if (bei <= PCI_EA_BEI_BAR5)
3349		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3350			   bei, res, prop);
3351	else if (bei == PCI_EA_BEI_ROM)
3352		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3353			   res, prop);
3354	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3355		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3356			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3357	else
3358		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3359			   bei, res, prop);
3360
3361out:
3362	return offset + ent_size;
3363}
3364
3365/* Enhanced Allocation Initialization */
3366void pci_ea_init(struct pci_dev *dev)
3367{
3368	int ea;
3369	u8 num_ent;
3370	int offset;
3371	int i;
3372
3373	/* find PCI EA capability in list */
3374	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3375	if (!ea)
3376		return;
3377
3378	/* determine the number of entries */
3379	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3380					&num_ent);
3381	num_ent &= PCI_EA_NUM_ENT_MASK;
3382
3383	offset = ea + PCI_EA_FIRST_ENT;
3384
3385	/* Skip DWORD 2 for type 1 functions */
3386	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3387		offset += 4;
3388
3389	/* parse each EA entry */
3390	for (i = 0; i < num_ent; ++i)
3391		offset = pci_ea_read(dev, offset);
3392}
3393
3394static void pci_add_saved_cap(struct pci_dev *pci_dev,
3395	struct pci_cap_saved_state *new_cap)
3396{
3397	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3398}
3399
3400/**
3401 * _pci_add_cap_save_buffer - allocate buffer for saving given
3402 *			      capability registers
3403 * @dev: the PCI device
3404 * @cap: the capability to allocate the buffer for
3405 * @extended: Standard or Extended capability ID
3406 * @size: requested size of the buffer
3407 */
3408static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3409				    bool extended, unsigned int size)
3410{
3411	int pos;
3412	struct pci_cap_saved_state *save_state;
3413
3414	if (extended)
3415		pos = pci_find_ext_capability(dev, cap);
3416	else
3417		pos = pci_find_capability(dev, cap);
3418
3419	if (!pos)
3420		return 0;
3421
3422	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3423	if (!save_state)
3424		return -ENOMEM;
3425
3426	save_state->cap.cap_nr = cap;
3427	save_state->cap.cap_extended = extended;
3428	save_state->cap.size = size;
3429	pci_add_saved_cap(dev, save_state);
3430
3431	return 0;
3432}
3433
3434int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3435{
3436	return _pci_add_cap_save_buffer(dev, cap, false, size);
3437}
3438
3439int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3440{
3441	return _pci_add_cap_save_buffer(dev, cap, true, size);
3442}
3443
3444/**
3445 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3446 * @dev: the PCI device
3447 */
3448void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3449{
3450	int error;
3451
3452	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3453					PCI_EXP_SAVE_REGS * sizeof(u16));
3454	if (error)
3455		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3456
3457	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3458	if (error)
3459		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3460
3461	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3462					    2 * sizeof(u16));
3463	if (error)
3464		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3465
3466	pci_allocate_vc_save_buffers(dev);
3467}
3468
3469void pci_free_cap_save_buffers(struct pci_dev *dev)
3470{
3471	struct pci_cap_saved_state *tmp;
3472	struct hlist_node *n;
3473
3474	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3475		kfree(tmp);
3476}
3477
3478/**
3479 * pci_configure_ari - enable or disable ARI forwarding
3480 * @dev: the PCI device
3481 *
3482 * If @dev and its upstream bridge both support ARI, enable ARI in the
3483 * bridge.  Otherwise, disable ARI in the bridge.
3484 */
3485void pci_configure_ari(struct pci_dev *dev)
3486{
3487	u32 cap;
3488	struct pci_dev *bridge;
3489
3490	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3491		return;
3492
3493	bridge = dev->bus->self;
3494	if (!bridge)
3495		return;
3496
3497	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3498	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3499		return;
3500
3501	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3502		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3503					 PCI_EXP_DEVCTL2_ARI);
3504		bridge->ari_enabled = 1;
3505	} else {
3506		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3507					   PCI_EXP_DEVCTL2_ARI);
3508		bridge->ari_enabled = 0;
3509	}
3510}
3511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3512static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3513{
3514	int pos;
3515	u16 cap, ctrl;
3516
3517	pos = pdev->acs_cap;
3518	if (!pos)
3519		return false;
3520
3521	/*
3522	 * Except for egress control, capabilities are either required
3523	 * or only required if controllable.  Features missing from the
3524	 * capability field can therefore be assumed as hard-wired enabled.
3525	 */
3526	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3527	acs_flags &= (cap | PCI_ACS_EC);
3528
3529	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3530	return (ctrl & acs_flags) == acs_flags;
3531}
3532
3533/**
3534 * pci_acs_enabled - test ACS against required flags for a given device
3535 * @pdev: device to test
3536 * @acs_flags: required PCI ACS flags
3537 *
3538 * Return true if the device supports the provided flags.  Automatically
3539 * filters out flags that are not implemented on multifunction devices.
3540 *
3541 * Note that this interface checks the effective ACS capabilities of the
3542 * device rather than the actual capabilities.  For instance, most single
3543 * function endpoints are not required to support ACS because they have no
3544 * opportunity for peer-to-peer access.  We therefore return 'true'
3545 * regardless of whether the device exposes an ACS capability.  This makes
3546 * it much easier for callers of this function to ignore the actual type
3547 * or topology of the device when testing ACS support.
3548 */
3549bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3550{
3551	int ret;
3552
3553	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3554	if (ret >= 0)
3555		return ret > 0;
3556
3557	/*
3558	 * Conventional PCI and PCI-X devices never support ACS, either
3559	 * effectively or actually.  The shared bus topology implies that
3560	 * any device on the bus can receive or snoop DMA.
3561	 */
3562	if (!pci_is_pcie(pdev))
3563		return false;
3564
3565	switch (pci_pcie_type(pdev)) {
3566	/*
3567	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3568	 * but since their primary interface is PCI/X, we conservatively
3569	 * handle them as we would a non-PCIe device.
3570	 */
3571	case PCI_EXP_TYPE_PCIE_BRIDGE:
3572	/*
3573	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3574	 * applicable... must never implement an ACS Extended Capability...".
3575	 * This seems arbitrary, but we take a conservative interpretation
3576	 * of this statement.
3577	 */
3578	case PCI_EXP_TYPE_PCI_BRIDGE:
3579	case PCI_EXP_TYPE_RC_EC:
3580		return false;
3581	/*
3582	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3583	 * implement ACS in order to indicate their peer-to-peer capabilities,
3584	 * regardless of whether they are single- or multi-function devices.
3585	 */
3586	case PCI_EXP_TYPE_DOWNSTREAM:
3587	case PCI_EXP_TYPE_ROOT_PORT:
3588		return pci_acs_flags_enabled(pdev, acs_flags);
3589	/*
3590	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3591	 * implemented by the remaining PCIe types to indicate peer-to-peer
3592	 * capabilities, but only when they are part of a multifunction
3593	 * device.  The footnote for section 6.12 indicates the specific
3594	 * PCIe types included here.
3595	 */
3596	case PCI_EXP_TYPE_ENDPOINT:
3597	case PCI_EXP_TYPE_UPSTREAM:
3598	case PCI_EXP_TYPE_LEG_END:
3599	case PCI_EXP_TYPE_RC_END:
3600		if (!pdev->multifunction)
3601			break;
3602
3603		return pci_acs_flags_enabled(pdev, acs_flags);
3604	}
3605
3606	/*
3607	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3608	 * to single function devices with the exception of downstream ports.
3609	 */
3610	return true;
3611}
3612
3613/**
3614 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3615 * @start: starting downstream device
3616 * @end: ending upstream device or NULL to search to the root bus
3617 * @acs_flags: required flags
3618 *
3619 * Walk up a device tree from start to end testing PCI ACS support.  If
3620 * any step along the way does not support the required flags, return false.
3621 */
3622bool pci_acs_path_enabled(struct pci_dev *start,
3623			  struct pci_dev *end, u16 acs_flags)
3624{
3625	struct pci_dev *pdev, *parent = start;
3626
3627	do {
3628		pdev = parent;
3629
3630		if (!pci_acs_enabled(pdev, acs_flags))
3631			return false;
3632
3633		if (pci_is_root_bus(pdev->bus))
3634			return (end == NULL);
3635
3636		parent = pdev->bus->self;
3637	} while (pdev != end);
3638
3639	return true;
3640}
3641
3642/**
3643 * pci_acs_init - Initialize ACS if hardware supports it
3644 * @dev: the PCI device
3645 */
3646void pci_acs_init(struct pci_dev *dev)
3647{
3648	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3649
3650	/*
3651	 * Attempt to enable ACS regardless of capability because some Root
3652	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3653	 * the standard ACS capability but still support ACS via those
3654	 * quirks.
3655	 */
3656	pci_enable_acs(dev);
3657}
3658
3659/**
3660 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3661 * @pdev: PCI device
3662 * @bar: BAR to find
3663 *
3664 * Helper to find the position of the ctrl register for a BAR.
3665 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3666 * Returns -ENOENT if no ctrl register for the BAR could be found.
3667 */
3668static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3669{
3670	unsigned int pos, nbars, i;
3671	u32 ctrl;
3672
3673	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3674	if (!pos)
3675		return -ENOTSUPP;
3676
3677	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3678	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3679		    PCI_REBAR_CTRL_NBAR_SHIFT;
3680
3681	for (i = 0; i < nbars; i++, pos += 8) {
3682		int bar_idx;
3683
3684		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3685		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3686		if (bar_idx == bar)
3687			return pos;
3688	}
3689
3690	return -ENOENT;
3691}
3692
3693/**
3694 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3695 * @pdev: PCI device
3696 * @bar: BAR to query
3697 *
3698 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3699 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3700 */
3701u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3702{
3703	int pos;
3704	u32 cap;
3705
3706	pos = pci_rebar_find_pos(pdev, bar);
3707	if (pos < 0)
3708		return 0;
3709
3710	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3711	cap &= PCI_REBAR_CAP_SIZES;
3712
3713	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3714	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3715	    bar == 0 && cap == 0x7000)
3716		cap = 0x3f000;
3717
3718	return cap >> 4;
3719}
3720EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3721
3722/**
3723 * pci_rebar_get_current_size - get the current size of a BAR
3724 * @pdev: PCI device
3725 * @bar: BAR to set size to
3726 *
3727 * Read the size of a BAR from the resizable BAR config.
3728 * Returns size if found or negative error code.
3729 */
3730int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3731{
3732	int pos;
3733	u32 ctrl;
3734
3735	pos = pci_rebar_find_pos(pdev, bar);
3736	if (pos < 0)
3737		return pos;
3738
3739	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3740	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3741}
3742
3743/**
3744 * pci_rebar_set_size - set a new size for a BAR
3745 * @pdev: PCI device
3746 * @bar: BAR to set size to
3747 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3748 *
3749 * Set the new size of a BAR as defined in the spec.
3750 * Returns zero if resizing was successful, error code otherwise.
3751 */
3752int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3753{
3754	int pos;
3755	u32 ctrl;
3756
3757	pos = pci_rebar_find_pos(pdev, bar);
3758	if (pos < 0)
3759		return pos;
3760
3761	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3762	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3763	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3764	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3765	return 0;
3766}
3767
3768/**
3769 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3770 * @dev: the PCI device
3771 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3772 *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3773 *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3774 *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3775 *
3776 * Return 0 if all upstream bridges support AtomicOp routing, egress
3777 * blocking is disabled on all upstream ports, and the root port supports
3778 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3779 * AtomicOp completion), or negative otherwise.
3780 */
3781int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3782{
3783	struct pci_bus *bus = dev->bus;
3784	struct pci_dev *bridge;
3785	u32 cap, ctl2;
3786
3787	/*
3788	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3789	 * in Device Control 2 is reserved in VFs and the PF value applies
3790	 * to all associated VFs.
3791	 */
3792	if (dev->is_virtfn)
3793		return -EINVAL;
3794
3795	if (!pci_is_pcie(dev))
3796		return -EINVAL;
3797
3798	/*
3799	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3800	 * AtomicOp requesters.  For now, we only support endpoints as
3801	 * requesters and root ports as completers.  No endpoints as
3802	 * completers, and no peer-to-peer.
3803	 */
3804
3805	switch (pci_pcie_type(dev)) {
3806	case PCI_EXP_TYPE_ENDPOINT:
3807	case PCI_EXP_TYPE_LEG_END:
3808	case PCI_EXP_TYPE_RC_END:
3809		break;
3810	default:
3811		return -EINVAL;
3812	}
3813
3814	while (bus->parent) {
3815		bridge = bus->self;
3816
3817		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3818
3819		switch (pci_pcie_type(bridge)) {
3820		/* Ensure switch ports support AtomicOp routing */
3821		case PCI_EXP_TYPE_UPSTREAM:
3822		case PCI_EXP_TYPE_DOWNSTREAM:
3823			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3824				return -EINVAL;
3825			break;
3826
3827		/* Ensure root port supports all the sizes we care about */
3828		case PCI_EXP_TYPE_ROOT_PORT:
3829			if ((cap & cap_mask) != cap_mask)
3830				return -EINVAL;
3831			break;
3832		}
3833
3834		/* Ensure upstream ports don't block AtomicOps on egress */
3835		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3836			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3837						   &ctl2);
3838			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3839				return -EINVAL;
3840		}
3841
3842		bus = bus->parent;
3843	}
3844
3845	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3846				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3847	return 0;
3848}
3849EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3850
3851/**
3852 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3853 * @dev: the PCI device
3854 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3855 *
3856 * Perform INTx swizzling for a device behind one level of bridge.  This is
3857 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3858 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3859 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3860 * the PCI Express Base Specification, Revision 2.1)
3861 */
3862u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3863{
3864	int slot;
3865
3866	if (pci_ari_enabled(dev->bus))
3867		slot = 0;
3868	else
3869		slot = PCI_SLOT(dev->devfn);
3870
3871	return (((pin - 1) + slot) % 4) + 1;
3872}
3873
3874int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3875{
3876	u8 pin;
3877
3878	pin = dev->pin;
3879	if (!pin)
3880		return -1;
3881
3882	while (!pci_is_root_bus(dev->bus)) {
3883		pin = pci_swizzle_interrupt_pin(dev, pin);
3884		dev = dev->bus->self;
3885	}
3886	*bridge = dev;
3887	return pin;
3888}
3889
3890/**
3891 * pci_common_swizzle - swizzle INTx all the way to root bridge
3892 * @dev: the PCI device
3893 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3894 *
3895 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3896 * bridges all the way up to a PCI root bus.
3897 */
3898u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3899{
3900	u8 pin = *pinp;
3901
3902	while (!pci_is_root_bus(dev->bus)) {
3903		pin = pci_swizzle_interrupt_pin(dev, pin);
3904		dev = dev->bus->self;
3905	}
3906	*pinp = pin;
3907	return PCI_SLOT(dev->devfn);
3908}
3909EXPORT_SYMBOL_GPL(pci_common_swizzle);
3910
3911/**
3912 * pci_release_region - Release a PCI bar
3913 * @pdev: PCI device whose resources were previously reserved by
3914 *	  pci_request_region()
3915 * @bar: BAR to release
3916 *
3917 * Releases the PCI I/O and memory resources previously reserved by a
3918 * successful call to pci_request_region().  Call this function only
3919 * after all use of the PCI regions has ceased.
3920 */
3921void pci_release_region(struct pci_dev *pdev, int bar)
3922{
3923	struct pci_devres *dr;
3924
3925	if (pci_resource_len(pdev, bar) == 0)
3926		return;
3927	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3928		release_region(pci_resource_start(pdev, bar),
3929				pci_resource_len(pdev, bar));
3930	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3931		release_mem_region(pci_resource_start(pdev, bar),
3932				pci_resource_len(pdev, bar));
3933
3934	dr = find_pci_dr(pdev);
3935	if (dr)
3936		dr->region_mask &= ~(1 << bar);
3937}
3938EXPORT_SYMBOL(pci_release_region);
3939
3940/**
3941 * __pci_request_region - Reserved PCI I/O and memory resource
3942 * @pdev: PCI device whose resources are to be reserved
3943 * @bar: BAR to be reserved
3944 * @res_name: Name to be associated with resource.
3945 * @exclusive: whether the region access is exclusive or not
3946 *
3947 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3948 * being reserved by owner @res_name.  Do not access any
3949 * address inside the PCI regions unless this call returns
3950 * successfully.
3951 *
3952 * If @exclusive is set, then the region is marked so that userspace
3953 * is explicitly not allowed to map the resource via /dev/mem or
3954 * sysfs MMIO access.
3955 *
3956 * Returns 0 on success, or %EBUSY on error.  A warning
3957 * message is also printed on failure.
3958 */
3959static int __pci_request_region(struct pci_dev *pdev, int bar,
3960				const char *res_name, int exclusive)
3961{
3962	struct pci_devres *dr;
3963
3964	if (pci_resource_len(pdev, bar) == 0)
3965		return 0;
3966
3967	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3968		if (!request_region(pci_resource_start(pdev, bar),
3969			    pci_resource_len(pdev, bar), res_name))
3970			goto err_out;
3971	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3972		if (!__request_mem_region(pci_resource_start(pdev, bar),
3973					pci_resource_len(pdev, bar), res_name,
3974					exclusive))
3975			goto err_out;
3976	}
3977
3978	dr = find_pci_dr(pdev);
3979	if (dr)
3980		dr->region_mask |= 1 << bar;
3981
3982	return 0;
3983
3984err_out:
3985	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3986		 &pdev->resource[bar]);
3987	return -EBUSY;
3988}
3989
3990/**
3991 * pci_request_region - Reserve PCI I/O and memory resource
3992 * @pdev: PCI device whose resources are to be reserved
3993 * @bar: BAR to be reserved
3994 * @res_name: Name to be associated with resource
3995 *
3996 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3997 * being reserved by owner @res_name.  Do not access any
3998 * address inside the PCI regions unless this call returns
3999 * successfully.
4000 *
4001 * Returns 0 on success, or %EBUSY on error.  A warning
4002 * message is also printed on failure.
4003 */
4004int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4005{
4006	return __pci_request_region(pdev, bar, res_name, 0);
4007}
4008EXPORT_SYMBOL(pci_request_region);
4009
4010/**
4011 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4012 * @pdev: PCI device whose resources were previously reserved
4013 * @bars: Bitmask of BARs to be released
4014 *
4015 * Release selected PCI I/O and memory resources previously reserved.
4016 * Call this function only after all use of the PCI regions has ceased.
4017 */
4018void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4019{
4020	int i;
4021
4022	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4023		if (bars & (1 << i))
4024			pci_release_region(pdev, i);
4025}
4026EXPORT_SYMBOL(pci_release_selected_regions);
4027
4028static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4029					  const char *res_name, int excl)
4030{
4031	int i;
4032
4033	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4034		if (bars & (1 << i))
4035			if (__pci_request_region(pdev, i, res_name, excl))
4036				goto err_out;
4037	return 0;
4038
4039err_out:
4040	while (--i >= 0)
4041		if (bars & (1 << i))
4042			pci_release_region(pdev, i);
4043
4044	return -EBUSY;
4045}
4046
4047
4048/**
4049 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4050 * @pdev: PCI device whose resources are to be reserved
4051 * @bars: Bitmask of BARs to be requested
4052 * @res_name: Name to be associated with resource
4053 */
4054int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4055				 const char *res_name)
4056{
4057	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4058}
4059EXPORT_SYMBOL(pci_request_selected_regions);
4060
4061int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4062					   const char *res_name)
4063{
4064	return __pci_request_selected_regions(pdev, bars, res_name,
4065			IORESOURCE_EXCLUSIVE);
4066}
4067EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4068
4069/**
4070 * pci_release_regions - Release reserved PCI I/O and memory resources
4071 * @pdev: PCI device whose resources were previously reserved by
4072 *	  pci_request_regions()
4073 *
4074 * Releases all PCI I/O and memory resources previously reserved by a
4075 * successful call to pci_request_regions().  Call this function only
4076 * after all use of the PCI regions has ceased.
4077 */
4078
4079void pci_release_regions(struct pci_dev *pdev)
4080{
4081	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4082}
4083EXPORT_SYMBOL(pci_release_regions);
4084
4085/**
4086 * pci_request_regions - Reserve PCI I/O and memory resources
4087 * @pdev: PCI device whose resources are to be reserved
4088 * @res_name: Name to be associated with resource.
4089 *
4090 * Mark all PCI regions associated with PCI device @pdev as
4091 * being reserved by owner @res_name.  Do not access any
4092 * address inside the PCI regions unless this call returns
4093 * successfully.
4094 *
4095 * Returns 0 on success, or %EBUSY on error.  A warning
4096 * message is also printed on failure.
4097 */
4098int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4099{
4100	return pci_request_selected_regions(pdev,
4101			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4102}
4103EXPORT_SYMBOL(pci_request_regions);
4104
4105/**
4106 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4107 * @pdev: PCI device whose resources are to be reserved
4108 * @res_name: Name to be associated with resource.
4109 *
4110 * Mark all PCI regions associated with PCI device @pdev as being reserved
4111 * by owner @res_name.  Do not access any address inside the PCI regions
4112 * unless this call returns successfully.
4113 *
4114 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4115 * and the sysfs MMIO access will not be allowed.
4116 *
4117 * Returns 0 on success, or %EBUSY on error.  A warning message is also
4118 * printed on failure.
4119 */
4120int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4121{
4122	return pci_request_selected_regions_exclusive(pdev,
4123				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4124}
4125EXPORT_SYMBOL(pci_request_regions_exclusive);
4126
4127/*
4128 * Record the PCI IO range (expressed as CPU physical address + size).
4129 * Return a negative value if an error has occurred, zero otherwise
4130 */
4131int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4132			resource_size_t	size)
4133{
4134	int ret = 0;
4135#ifdef PCI_IOBASE
4136	struct logic_pio_hwaddr *range;
4137
4138	if (!size || addr + size < addr)
4139		return -EINVAL;
4140
4141	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4142	if (!range)
4143		return -ENOMEM;
4144
4145	range->fwnode = fwnode;
4146	range->size = size;
4147	range->hw_start = addr;
4148	range->flags = LOGIC_PIO_CPU_MMIO;
4149
4150	ret = logic_pio_register_range(range);
4151	if (ret)
4152		kfree(range);
4153
4154	/* Ignore duplicates due to deferred probing */
4155	if (ret == -EEXIST)
4156		ret = 0;
4157#endif
4158
4159	return ret;
4160}
4161
4162phys_addr_t pci_pio_to_address(unsigned long pio)
4163{
4164	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4165
4166#ifdef PCI_IOBASE
4167	if (pio >= MMIO_UPPER_LIMIT)
4168		return address;
4169
4170	address = logic_pio_to_hwaddr(pio);
4171#endif
4172
4173	return address;
4174}
4175EXPORT_SYMBOL_GPL(pci_pio_to_address);
4176
4177unsigned long __weak pci_address_to_pio(phys_addr_t address)
4178{
4179#ifdef PCI_IOBASE
4180	return logic_pio_trans_cpuaddr(address);
4181#else
4182	if (address > IO_SPACE_LIMIT)
4183		return (unsigned long)-1;
4184
4185	return (unsigned long) address;
4186#endif
4187}
4188
4189/**
4190 * pci_remap_iospace - Remap the memory mapped I/O space
4191 * @res: Resource describing the I/O space
4192 * @phys_addr: physical address of range to be mapped
4193 *
4194 * Remap the memory mapped I/O space described by the @res and the CPU
4195 * physical address @phys_addr into virtual address space.  Only
4196 * architectures that have memory mapped IO functions defined (and the
4197 * PCI_IOBASE value defined) should call this function.
4198 */
4199#ifndef pci_remap_iospace
4200int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4201{
4202#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4203	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4204
4205	if (!(res->flags & IORESOURCE_IO))
4206		return -EINVAL;
4207
4208	if (res->end > IO_SPACE_LIMIT)
4209		return -EINVAL;
4210
4211	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4212				  pgprot_device(PAGE_KERNEL));
4213#else
4214	/*
4215	 * This architecture does not have memory mapped I/O space,
4216	 * so this function should never be called
4217	 */
4218	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4219	return -ENODEV;
4220#endif
4221}
4222EXPORT_SYMBOL(pci_remap_iospace);
4223#endif
4224
4225/**
4226 * pci_unmap_iospace - Unmap the memory mapped I/O space
4227 * @res: resource to be unmapped
4228 *
4229 * Unmap the CPU virtual address @res from virtual address space.  Only
4230 * architectures that have memory mapped IO functions defined (and the
4231 * PCI_IOBASE value defined) should call this function.
4232 */
4233void pci_unmap_iospace(struct resource *res)
4234{
4235#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4236	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4237
4238	vunmap_range(vaddr, vaddr + resource_size(res));
4239#endif
4240}
4241EXPORT_SYMBOL(pci_unmap_iospace);
4242
4243static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4244{
4245	struct resource **res = ptr;
4246
4247	pci_unmap_iospace(*res);
4248}
4249
4250/**
4251 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4252 * @dev: Generic device to remap IO address for
4253 * @res: Resource describing the I/O space
4254 * @phys_addr: physical address of range to be mapped
4255 *
4256 * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4257 * detach.
4258 */
4259int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4260			   phys_addr_t phys_addr)
4261{
4262	const struct resource **ptr;
4263	int error;
4264
4265	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4266	if (!ptr)
4267		return -ENOMEM;
4268
4269	error = pci_remap_iospace(res, phys_addr);
4270	if (error) {
4271		devres_free(ptr);
4272	} else	{
4273		*ptr = res;
4274		devres_add(dev, ptr);
4275	}
4276
4277	return error;
4278}
4279EXPORT_SYMBOL(devm_pci_remap_iospace);
4280
4281/**
4282 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4283 * @dev: Generic device to remap IO address for
4284 * @offset: Resource address to map
4285 * @size: Size of map
4286 *
4287 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4288 * detach.
4289 */
4290void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4291				      resource_size_t offset,
4292				      resource_size_t size)
4293{
4294	void __iomem **ptr, *addr;
4295
4296	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4297	if (!ptr)
4298		return NULL;
4299
4300	addr = pci_remap_cfgspace(offset, size);
4301	if (addr) {
4302		*ptr = addr;
4303		devres_add(dev, ptr);
4304	} else
4305		devres_free(ptr);
4306
4307	return addr;
4308}
4309EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4310
4311/**
4312 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4313 * @dev: generic device to handle the resource for
4314 * @res: configuration space resource to be handled
4315 *
4316 * Checks that a resource is a valid memory region, requests the memory
4317 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4318 * proper PCI configuration space memory attributes are guaranteed.
4319 *
4320 * All operations are managed and will be undone on driver detach.
4321 *
4322 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4323 * on failure. Usage example::
4324 *
4325 *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4326 *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4327 *	if (IS_ERR(base))
4328 *		return PTR_ERR(base);
4329 */
4330void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4331					  struct resource *res)
4332{
4333	resource_size_t size;
4334	const char *name;
4335	void __iomem *dest_ptr;
4336
4337	BUG_ON(!dev);
4338
4339	if (!res || resource_type(res) != IORESOURCE_MEM) {
4340		dev_err(dev, "invalid resource\n");
4341		return IOMEM_ERR_PTR(-EINVAL);
4342	}
4343
4344	size = resource_size(res);
4345
4346	if (res->name)
4347		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4348				      res->name);
4349	else
4350		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4351	if (!name)
4352		return IOMEM_ERR_PTR(-ENOMEM);
4353
4354	if (!devm_request_mem_region(dev, res->start, size, name)) {
4355		dev_err(dev, "can't request region for resource %pR\n", res);
4356		return IOMEM_ERR_PTR(-EBUSY);
4357	}
4358
4359	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4360	if (!dest_ptr) {
4361		dev_err(dev, "ioremap failed for resource %pR\n", res);
4362		devm_release_mem_region(dev, res->start, size);
4363		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4364	}
4365
4366	return dest_ptr;
4367}
4368EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4369
4370static void __pci_set_master(struct pci_dev *dev, bool enable)
4371{
4372	u16 old_cmd, cmd;
4373
4374	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4375	if (enable)
4376		cmd = old_cmd | PCI_COMMAND_MASTER;
4377	else
4378		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4379	if (cmd != old_cmd) {
4380		pci_dbg(dev, "%s bus mastering\n",
4381			enable ? "enabling" : "disabling");
4382		pci_write_config_word(dev, PCI_COMMAND, cmd);
4383	}
4384	dev->is_busmaster = enable;
4385}
4386
4387/**
4388 * pcibios_setup - process "pci=" kernel boot arguments
4389 * @str: string used to pass in "pci=" kernel boot arguments
4390 *
4391 * Process kernel boot arguments.  This is the default implementation.
4392 * Architecture specific implementations can override this as necessary.
4393 */
4394char * __weak __init pcibios_setup(char *str)
4395{
4396	return str;
4397}
4398
4399/**
4400 * pcibios_set_master - enable PCI bus-mastering for device dev
4401 * @dev: the PCI device to enable
4402 *
4403 * Enables PCI bus-mastering for the device.  This is the default
4404 * implementation.  Architecture specific implementations can override
4405 * this if necessary.
4406 */
4407void __weak pcibios_set_master(struct pci_dev *dev)
4408{
4409	u8 lat;
4410
4411	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4412	if (pci_is_pcie(dev))
4413		return;
4414
4415	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4416	if (lat < 16)
4417		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4418	else if (lat > pcibios_max_latency)
4419		lat = pcibios_max_latency;
4420	else
4421		return;
4422
4423	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4424}
4425
4426/**
4427 * pci_set_master - enables bus-mastering for device dev
4428 * @dev: the PCI device to enable
4429 *
4430 * Enables bus-mastering on the device and calls pcibios_set_master()
4431 * to do the needed arch specific settings.
4432 */
4433void pci_set_master(struct pci_dev *dev)
4434{
4435	__pci_set_master(dev, true);
4436	pcibios_set_master(dev);
4437}
4438EXPORT_SYMBOL(pci_set_master);
4439
4440/**
4441 * pci_clear_master - disables bus-mastering for device dev
4442 * @dev: the PCI device to disable
4443 */
4444void pci_clear_master(struct pci_dev *dev)
4445{
4446	__pci_set_master(dev, false);
4447}
4448EXPORT_SYMBOL(pci_clear_master);
4449
4450/**
4451 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4452 * @dev: the PCI device for which MWI is to be enabled
4453 *
4454 * Helper function for pci_set_mwi.
4455 * Originally copied from drivers/net/acenic.c.
4456 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4457 *
4458 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4459 */
4460int pci_set_cacheline_size(struct pci_dev *dev)
4461{
4462	u8 cacheline_size;
4463
4464	if (!pci_cache_line_size)
4465		return -EINVAL;
4466
4467	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4468	   equal to or multiple of the right value. */
4469	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4470	if (cacheline_size >= pci_cache_line_size &&
4471	    (cacheline_size % pci_cache_line_size) == 0)
4472		return 0;
4473
4474	/* Write the correct value. */
4475	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4476	/* Read it back. */
4477	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4478	if (cacheline_size == pci_cache_line_size)
4479		return 0;
4480
4481	pci_dbg(dev, "cache line size of %d is not supported\n",
4482		   pci_cache_line_size << 2);
4483
4484	return -EINVAL;
4485}
4486EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4487
4488/**
4489 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4490 * @dev: the PCI device for which MWI is enabled
4491 *
4492 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4493 *
4494 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4495 */
4496int pci_set_mwi(struct pci_dev *dev)
4497{
4498#ifdef PCI_DISABLE_MWI
4499	return 0;
4500#else
4501	int rc;
4502	u16 cmd;
4503
4504	rc = pci_set_cacheline_size(dev);
4505	if (rc)
4506		return rc;
4507
4508	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4509	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4510		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4511		cmd |= PCI_COMMAND_INVALIDATE;
4512		pci_write_config_word(dev, PCI_COMMAND, cmd);
4513	}
4514	return 0;
4515#endif
4516}
4517EXPORT_SYMBOL(pci_set_mwi);
4518
4519/**
4520 * pcim_set_mwi - a device-managed pci_set_mwi()
4521 * @dev: the PCI device for which MWI is enabled
4522 *
4523 * Managed pci_set_mwi().
4524 *
4525 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4526 */
4527int pcim_set_mwi(struct pci_dev *dev)
4528{
4529	struct pci_devres *dr;
4530
4531	dr = find_pci_dr(dev);
4532	if (!dr)
4533		return -ENOMEM;
4534
4535	dr->mwi = 1;
4536	return pci_set_mwi(dev);
4537}
4538EXPORT_SYMBOL(pcim_set_mwi);
4539
4540/**
4541 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4542 * @dev: the PCI device for which MWI is enabled
4543 *
4544 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4545 * Callers are not required to check the return value.
4546 *
4547 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4548 */
4549int pci_try_set_mwi(struct pci_dev *dev)
4550{
4551#ifdef PCI_DISABLE_MWI
4552	return 0;
4553#else
4554	return pci_set_mwi(dev);
4555#endif
4556}
4557EXPORT_SYMBOL(pci_try_set_mwi);
4558
4559/**
4560 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4561 * @dev: the PCI device to disable
4562 *
4563 * Disables PCI Memory-Write-Invalidate transaction on the device
4564 */
4565void pci_clear_mwi(struct pci_dev *dev)
4566{
4567#ifndef PCI_DISABLE_MWI
4568	u16 cmd;
4569
4570	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4571	if (cmd & PCI_COMMAND_INVALIDATE) {
4572		cmd &= ~PCI_COMMAND_INVALIDATE;
4573		pci_write_config_word(dev, PCI_COMMAND, cmd);
4574	}
4575#endif
4576}
4577EXPORT_SYMBOL(pci_clear_mwi);
4578
4579/**
4580 * pci_disable_parity - disable parity checking for device
4581 * @dev: the PCI device to operate on
4582 *
4583 * Disable parity checking for device @dev
4584 */
4585void pci_disable_parity(struct pci_dev *dev)
4586{
4587	u16 cmd;
4588
4589	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4590	if (cmd & PCI_COMMAND_PARITY) {
4591		cmd &= ~PCI_COMMAND_PARITY;
4592		pci_write_config_word(dev, PCI_COMMAND, cmd);
4593	}
4594}
4595
4596/**
4597 * pci_intx - enables/disables PCI INTx for device dev
4598 * @pdev: the PCI device to operate on
4599 * @enable: boolean: whether to enable or disable PCI INTx
4600 *
4601 * Enables/disables PCI INTx for device @pdev
4602 */
4603void pci_intx(struct pci_dev *pdev, int enable)
4604{
4605	u16 pci_command, new;
4606
4607	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4608
4609	if (enable)
4610		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4611	else
4612		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4613
4614	if (new != pci_command) {
4615		struct pci_devres *dr;
4616
4617		pci_write_config_word(pdev, PCI_COMMAND, new);
4618
4619		dr = find_pci_dr(pdev);
4620		if (dr && !dr->restore_intx) {
4621			dr->restore_intx = 1;
4622			dr->orig_intx = !enable;
4623		}
4624	}
4625}
4626EXPORT_SYMBOL_GPL(pci_intx);
4627
4628static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4629{
4630	struct pci_bus *bus = dev->bus;
4631	bool mask_updated = true;
4632	u32 cmd_status_dword;
4633	u16 origcmd, newcmd;
4634	unsigned long flags;
4635	bool irq_pending;
4636
4637	/*
4638	 * We do a single dword read to retrieve both command and status.
4639	 * Document assumptions that make this possible.
4640	 */
4641	BUILD_BUG_ON(PCI_COMMAND % 4);
4642	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4643
4644	raw_spin_lock_irqsave(&pci_lock, flags);
4645
4646	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4647
4648	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4649
4650	/*
4651	 * Check interrupt status register to see whether our device
4652	 * triggered the interrupt (when masking) or the next IRQ is
4653	 * already pending (when unmasking).
4654	 */
4655	if (mask != irq_pending) {
4656		mask_updated = false;
4657		goto done;
4658	}
4659
4660	origcmd = cmd_status_dword;
4661	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4662	if (mask)
4663		newcmd |= PCI_COMMAND_INTX_DISABLE;
4664	if (newcmd != origcmd)
4665		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4666
4667done:
4668	raw_spin_unlock_irqrestore(&pci_lock, flags);
4669
4670	return mask_updated;
4671}
4672
4673/**
4674 * pci_check_and_mask_intx - mask INTx on pending interrupt
4675 * @dev: the PCI device to operate on
4676 *
4677 * Check if the device dev has its INTx line asserted, mask it and return
4678 * true in that case. False is returned if no interrupt was pending.
4679 */
4680bool pci_check_and_mask_intx(struct pci_dev *dev)
4681{
4682	return pci_check_and_set_intx_mask(dev, true);
4683}
4684EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4685
4686/**
4687 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4688 * @dev: the PCI device to operate on
4689 *
4690 * Check if the device dev has its INTx line asserted, unmask it if not and
4691 * return true. False is returned and the mask remains active if there was
4692 * still an interrupt pending.
4693 */
4694bool pci_check_and_unmask_intx(struct pci_dev *dev)
4695{
4696	return pci_check_and_set_intx_mask(dev, false);
4697}
4698EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4699
4700/**
4701 * pci_wait_for_pending_transaction - wait for pending transaction
4702 * @dev: the PCI device to operate on
4703 *
4704 * Return 0 if transaction is pending 1 otherwise.
4705 */
4706int pci_wait_for_pending_transaction(struct pci_dev *dev)
4707{
4708	if (!pci_is_pcie(dev))
4709		return 1;
4710
4711	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4712				    PCI_EXP_DEVSTA_TRPND);
4713}
4714EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4716/**
4717 * pcie_flr - initiate a PCIe function level reset
4718 * @dev: device to reset
4719 *
4720 * Initiate a function level reset unconditionally on @dev without
4721 * checking any flags and DEVCAP
 
4722 */
4723int pcie_flr(struct pci_dev *dev)
4724{
4725	if (!pci_wait_for_pending_transaction(dev))
4726		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4727
4728	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4729
4730	if (dev->imm_ready)
4731		return 0;
4732
4733	/*
4734	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4735	 * 100ms, but may silently discard requests while the FLR is in
4736	 * progress.  Wait 100ms before trying to access the device.
4737	 */
4738	msleep(100);
4739
4740	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4741}
4742EXPORT_SYMBOL_GPL(pcie_flr);
4743
4744/**
4745 * pcie_reset_flr - initiate a PCIe function level reset
4746 * @dev: device to reset
4747 * @probe: if true, return 0 if device can be reset this way
4748 *
4749 * Initiate a function level reset on @dev.
4750 */
4751int pcie_reset_flr(struct pci_dev *dev, bool probe)
4752{
4753	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4754		return -ENOTTY;
4755
4756	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4757		return -ENOTTY;
4758
4759	if (probe)
4760		return 0;
4761
4762	return pcie_flr(dev);
4763}
4764EXPORT_SYMBOL_GPL(pcie_reset_flr);
4765
4766static int pci_af_flr(struct pci_dev *dev, bool probe)
4767{
4768	int pos;
4769	u8 cap;
4770
4771	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4772	if (!pos)
4773		return -ENOTTY;
4774
4775	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4776		return -ENOTTY;
4777
4778	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4779	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4780		return -ENOTTY;
4781
4782	if (probe)
4783		return 0;
4784
4785	/*
4786	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4787	 * is used, so we use the control offset rather than status and shift
4788	 * the test bit to match.
4789	 */
4790	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4791				 PCI_AF_STATUS_TP << 8))
4792		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4793
4794	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4795
4796	if (dev->imm_ready)
4797		return 0;
4798
4799	/*
4800	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4801	 * updated 27 July 2006; a device must complete an FLR within
4802	 * 100ms, but may silently discard requests while the FLR is in
4803	 * progress.  Wait 100ms before trying to access the device.
4804	 */
4805	msleep(100);
4806
4807	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4808}
4809
4810/**
4811 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4812 * @dev: Device to reset.
4813 * @probe: if true, return 0 if the device can be reset this way.
4814 *
4815 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4816 * unset, it will be reinitialized internally when going from PCI_D3hot to
4817 * PCI_D0.  If that's the case and the device is not in a low-power state
4818 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4819 *
4820 * NOTE: This causes the caller to sleep for twice the device power transition
4821 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4822 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4823 * Moreover, only devices in D0 can be reset by this function.
4824 */
4825static int pci_pm_reset(struct pci_dev *dev, bool probe)
4826{
4827	u16 csr;
4828
4829	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4830		return -ENOTTY;
4831
4832	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4833	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4834		return -ENOTTY;
4835
4836	if (probe)
4837		return 0;
4838
4839	if (dev->current_state != PCI_D0)
4840		return -EINVAL;
4841
4842	csr &= ~PCI_PM_CTRL_STATE_MASK;
4843	csr |= PCI_D3hot;
4844	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4845	pci_dev_d3_sleep(dev);
4846
4847	csr &= ~PCI_PM_CTRL_STATE_MASK;
4848	csr |= PCI_D0;
4849	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4850	pci_dev_d3_sleep(dev);
4851
4852	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4853}
4854
4855/**
4856 * pcie_wait_for_link_delay - Wait until link is active or inactive
4857 * @pdev: Bridge device
4858 * @active: waiting for active or inactive?
4859 * @delay: Delay to wait after link has become active (in ms)
4860 *
4861 * Use this to wait till link becomes active or inactive.
4862 */
4863static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4864				     int delay)
4865{
4866	int timeout = 1000;
4867	bool ret;
4868	u16 lnk_status;
4869
4870	/*
4871	 * Some controllers might not implement link active reporting. In this
4872	 * case, we wait for 1000 ms + any delay requested by the caller.
4873	 */
4874	if (!pdev->link_active_reporting) {
4875		msleep(timeout + delay);
4876		return true;
4877	}
4878
4879	/*
4880	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4881	 * after which we should expect an link active if the reset was
4882	 * successful. If so, software must wait a minimum 100ms before sending
4883	 * configuration requests to devices downstream this port.
4884	 *
4885	 * If the link fails to activate, either the device was physically
4886	 * removed or the link is permanently failed.
4887	 */
4888	if (active)
4889		msleep(20);
4890	for (;;) {
4891		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4892		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4893		if (ret == active)
4894			break;
4895		if (timeout <= 0)
4896			break;
4897		msleep(10);
4898		timeout -= 10;
4899	}
4900	if (active && ret)
4901		msleep(delay);
4902
 
 
4903	return ret == active;
4904}
4905
4906/**
4907 * pcie_wait_for_link - Wait until link is active or inactive
4908 * @pdev: Bridge device
4909 * @active: waiting for active or inactive?
4910 *
4911 * Use this to wait till link becomes active or inactive.
4912 */
4913bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4914{
4915	return pcie_wait_for_link_delay(pdev, active, 100);
4916}
4917
4918/*
4919 * Find maximum D3cold delay required by all the devices on the bus.  The
4920 * spec says 100 ms, but firmware can lower it and we allow drivers to
4921 * increase it as well.
4922 *
4923 * Called with @pci_bus_sem locked for reading.
4924 */
4925static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4926{
4927	const struct pci_dev *pdev;
4928	int min_delay = 100;
4929	int max_delay = 0;
4930
4931	list_for_each_entry(pdev, &bus->devices, bus_list) {
4932		if (pdev->d3cold_delay < min_delay)
4933			min_delay = pdev->d3cold_delay;
4934		if (pdev->d3cold_delay > max_delay)
4935			max_delay = pdev->d3cold_delay;
4936	}
4937
4938	return max(min_delay, max_delay);
4939}
4940
4941/**
4942 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4943 * @dev: PCI bridge
4944 *
4945 * Handle necessary delays before access to the devices on the secondary
4946 * side of the bridge are permitted after D3cold to D0 transition.
4947 *
4948 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4949 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4950 * 4.3.2.
4951 */
4952void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4953{
4954	struct pci_dev *child;
4955	int delay;
4956
4957	if (pci_dev_is_disconnected(dev))
4958		return;
4959
4960	if (!pci_is_bridge(dev) || !dev->bridge_d3)
4961		return;
4962
4963	down_read(&pci_bus_sem);
4964
4965	/*
4966	 * We only deal with devices that are present currently on the bus.
4967	 * For any hot-added devices the access delay is handled in pciehp
4968	 * board_added(). In case of ACPI hotplug the firmware is expected
4969	 * to configure the devices before OS is notified.
4970	 */
4971	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4972		up_read(&pci_bus_sem);
4973		return;
4974	}
4975
4976	/* Take d3cold_delay requirements into account */
4977	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4978	if (!delay) {
4979		up_read(&pci_bus_sem);
4980		return;
4981	}
4982
4983	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4984				 bus_list);
4985	up_read(&pci_bus_sem);
4986
4987	/*
4988	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4989	 * accessing the device after reset (that is 1000 ms + 100 ms). In
4990	 * practice this should not be needed because we don't do power
4991	 * management for them (see pci_bridge_d3_possible()).
4992	 */
4993	if (!pci_is_pcie(dev)) {
4994		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4995		msleep(1000 + delay);
4996		return;
4997	}
4998
4999	/*
5000	 * For PCIe downstream and root ports that do not support speeds
5001	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5002	 * speeds (gen3) we need to wait first for the data link layer to
5003	 * become active.
5004	 *
5005	 * However, 100 ms is the minimum and the PCIe spec says the
5006	 * software must allow at least 1s before it can determine that the
5007	 * device that did not respond is a broken device. There is
5008	 * evidence that 100 ms is not always enough, for example certain
5009	 * Titan Ridge xHCI controller does not always respond to
5010	 * configuration requests if we only wait for 100 ms (see
5011	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
5012	 *
5013	 * Therefore we wait for 100 ms and check for the device presence.
5014	 * If it is still not present give it an additional 100 ms.
5015	 */
5016	if (!pcie_downstream_port(dev))
5017		return;
5018
5019	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5020		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5021		msleep(delay);
5022	} else {
5023		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5024			delay);
5025		if (!pcie_wait_for_link_delay(dev, true, delay)) {
5026			/* Did not train, no need to wait any further */
5027			pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5028			return;
5029		}
5030	}
5031
5032	if (!pci_device_is_present(child)) {
5033		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
5034		msleep(delay);
5035	}
5036}
5037
5038void pci_reset_secondary_bus(struct pci_dev *dev)
5039{
5040	u16 ctrl;
5041
5042	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5043	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5044	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5045
5046	/*
5047	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5048	 * this to 2ms to ensure that we meet the minimum requirement.
5049	 */
5050	msleep(2);
5051
5052	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5053	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5054
5055	/*
5056	 * Trhfa for conventional PCI is 2^25 clock cycles.
5057	 * Assuming a minimum 33MHz clock this results in a 1s
5058	 * delay before we can consider subordinate devices to
5059	 * be re-initialized.  PCIe has some ways to shorten this,
5060	 * but we don't make use of them yet.
5061	 */
5062	ssleep(1);
5063}
5064
5065void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5066{
5067	pci_reset_secondary_bus(dev);
5068}
5069
5070/**
5071 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5072 * @dev: Bridge device
5073 *
5074 * Use the bridge control register to assert reset on the secondary bus.
5075 * Devices on the secondary bus are left in power-on state.
5076 */
5077int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5078{
5079	pcibios_reset_secondary_bus(dev);
5080
5081	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
5082}
5083EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5084
5085static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5086{
5087	struct pci_dev *pdev;
5088
5089	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5090	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5091		return -ENOTTY;
5092
5093	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5094		if (pdev != dev)
5095			return -ENOTTY;
5096
5097	if (probe)
5098		return 0;
5099
5100	return pci_bridge_secondary_bus_reset(dev->bus->self);
5101}
5102
5103static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5104{
5105	int rc = -ENOTTY;
5106
5107	if (!hotplug || !try_module_get(hotplug->owner))
5108		return rc;
5109
5110	if (hotplug->ops->reset_slot)
5111		rc = hotplug->ops->reset_slot(hotplug, probe);
5112
5113	module_put(hotplug->owner);
5114
5115	return rc;
5116}
5117
5118static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5119{
5120	if (dev->multifunction || dev->subordinate || !dev->slot ||
 
 
5121	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5122		return -ENOTTY;
5123
 
 
 
 
5124	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5125}
5126
5127static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5128{
5129	int rc;
5130
5131	rc = pci_dev_reset_slot_function(dev, probe);
5132	if (rc != -ENOTTY)
5133		return rc;
5134	return pci_parent_bus_reset(dev, probe);
5135}
5136
5137void pci_dev_lock(struct pci_dev *dev)
5138{
 
5139	/* block PM suspend, driver probe, etc. */
5140	device_lock(&dev->dev);
5141	pci_cfg_access_lock(dev);
5142}
5143EXPORT_SYMBOL_GPL(pci_dev_lock);
5144
5145/* Return 1 on successful lock, 0 on contention */
5146int pci_dev_trylock(struct pci_dev *dev)
5147{
5148	if (device_trylock(&dev->dev)) {
5149		if (pci_cfg_access_trylock(dev))
5150			return 1;
5151		device_unlock(&dev->dev);
5152	}
5153
5154	return 0;
5155}
5156EXPORT_SYMBOL_GPL(pci_dev_trylock);
5157
5158void pci_dev_unlock(struct pci_dev *dev)
5159{
 
5160	pci_cfg_access_unlock(dev);
5161	device_unlock(&dev->dev);
5162}
5163EXPORT_SYMBOL_GPL(pci_dev_unlock);
5164
5165static void pci_dev_save_and_disable(struct pci_dev *dev)
5166{
5167	const struct pci_error_handlers *err_handler =
5168			dev->driver ? dev->driver->err_handler : NULL;
5169
5170	/*
5171	 * dev->driver->err_handler->reset_prepare() is protected against
5172	 * races with ->remove() by the device lock, which must be held by
5173	 * the caller.
5174	 */
5175	if (err_handler && err_handler->reset_prepare)
5176		err_handler->reset_prepare(dev);
5177
5178	/*
5179	 * Wake-up device prior to save.  PM registers default to D0 after
5180	 * reset and a simple register restore doesn't reliably return
5181	 * to a non-D0 state anyway.
5182	 */
5183	pci_set_power_state(dev, PCI_D0);
5184
5185	pci_save_state(dev);
5186	/*
5187	 * Disable the device by clearing the Command register, except for
5188	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5189	 * BARs, but also prevents the device from being Bus Master, preventing
5190	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5191	 * compliant devices, INTx-disable prevents legacy interrupts.
5192	 */
5193	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5194}
5195
5196static void pci_dev_restore(struct pci_dev *dev)
5197{
5198	const struct pci_error_handlers *err_handler =
5199			dev->driver ? dev->driver->err_handler : NULL;
5200
5201	pci_restore_state(dev);
5202
5203	/*
5204	 * dev->driver->err_handler->reset_done() is protected against
5205	 * races with ->remove() by the device lock, which must be held by
5206	 * the caller.
5207	 */
5208	if (err_handler && err_handler->reset_done)
5209		err_handler->reset_done(dev);
5210}
5211
5212/* dev->reset_methods[] is a 0-terminated list of indices into this array */
5213static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5214	{ },
5215	{ pci_dev_specific_reset, .name = "device_specific" },
5216	{ pci_dev_acpi_reset, .name = "acpi" },
5217	{ pcie_reset_flr, .name = "flr" },
5218	{ pci_af_flr, .name = "af_flr" },
5219	{ pci_pm_reset, .name = "pm" },
5220	{ pci_reset_bus_function, .name = "bus" },
5221};
5222
5223static ssize_t reset_method_show(struct device *dev,
5224				 struct device_attribute *attr, char *buf)
5225{
5226	struct pci_dev *pdev = to_pci_dev(dev);
5227	ssize_t len = 0;
5228	int i, m;
5229
5230	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5231		m = pdev->reset_methods[i];
5232		if (!m)
5233			break;
5234
5235		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5236				     pci_reset_fn_methods[m].name);
5237	}
5238
5239	if (len)
5240		len += sysfs_emit_at(buf, len, "\n");
5241
5242	return len;
5243}
5244
5245static int reset_method_lookup(const char *name)
5246{
5247	int m;
5248
5249	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5250		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5251			return m;
5252	}
5253
5254	return 0;	/* not found */
5255}
5256
5257static ssize_t reset_method_store(struct device *dev,
5258				  struct device_attribute *attr,
5259				  const char *buf, size_t count)
5260{
5261	struct pci_dev *pdev = to_pci_dev(dev);
5262	char *options, *name;
5263	int m, n;
5264	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5265
5266	if (sysfs_streq(buf, "")) {
5267		pdev->reset_methods[0] = 0;
5268		pci_warn(pdev, "All device reset methods disabled by user");
5269		return count;
5270	}
5271
5272	if (sysfs_streq(buf, "default")) {
5273		pci_init_reset_methods(pdev);
5274		return count;
5275	}
5276
5277	options = kstrndup(buf, count, GFP_KERNEL);
5278	if (!options)
5279		return -ENOMEM;
5280
5281	n = 0;
5282	while ((name = strsep(&options, " ")) != NULL) {
5283		if (sysfs_streq(name, ""))
5284			continue;
5285
5286		name = strim(name);
5287
5288		m = reset_method_lookup(name);
5289		if (!m) {
5290			pci_err(pdev, "Invalid reset method '%s'", name);
5291			goto error;
5292		}
5293
5294		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5295			pci_err(pdev, "Unsupported reset method '%s'", name);
5296			goto error;
5297		}
5298
5299		if (n == PCI_NUM_RESET_METHODS - 1) {
5300			pci_err(pdev, "Too many reset methods\n");
5301			goto error;
5302		}
5303
5304		reset_methods[n++] = m;
5305	}
5306
5307	reset_methods[n] = 0;
5308
5309	/* Warn if dev-specific supported but not highest priority */
5310	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5311	    reset_methods[0] != 1)
5312		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5313	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5314	kfree(options);
5315	return count;
5316
5317error:
5318	/* Leave previous methods unchanged */
5319	kfree(options);
5320	return -EINVAL;
5321}
5322static DEVICE_ATTR_RW(reset_method);
5323
5324static struct attribute *pci_dev_reset_method_attrs[] = {
5325	&dev_attr_reset_method.attr,
5326	NULL,
5327};
5328
5329static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5330						    struct attribute *a, int n)
5331{
5332	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5333
5334	if (!pci_reset_supported(pdev))
5335		return 0;
5336
5337	return a->mode;
5338}
5339
5340const struct attribute_group pci_dev_reset_method_attr_group = {
5341	.attrs = pci_dev_reset_method_attrs,
5342	.is_visible = pci_dev_reset_method_attr_is_visible,
5343};
5344
5345/**
5346 * __pci_reset_function_locked - reset a PCI device function while holding
5347 * the @dev mutex lock.
5348 * @dev: PCI device to reset
5349 *
5350 * Some devices allow an individual function to be reset without affecting
5351 * other functions in the same device.  The PCI device must be responsive
5352 * to PCI config space in order to use this function.
5353 *
5354 * The device function is presumed to be unused and the caller is holding
5355 * the device mutex lock when this function is called.
5356 *
5357 * Resetting the device will make the contents of PCI configuration space
5358 * random, so any caller of this must be prepared to reinitialise the
5359 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5360 * etc.
5361 *
5362 * Returns 0 if the device function was successfully reset or negative if the
5363 * device doesn't support resetting a single function.
5364 */
5365int __pci_reset_function_locked(struct pci_dev *dev)
5366{
5367	int i, m, rc;
5368
5369	might_sleep();
5370
5371	/*
5372	 * A reset method returns -ENOTTY if it doesn't support this device and
5373	 * we should try the next method.
5374	 *
5375	 * If it returns 0 (success), we're finished.  If it returns any other
5376	 * error, we're also finished: this indicates that further reset
5377	 * mechanisms might be broken on the device.
5378	 */
5379	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5380		m = dev->reset_methods[i];
5381		if (!m)
5382			return -ENOTTY;
5383
5384		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5385		if (!rc)
5386			return 0;
5387		if (rc != -ENOTTY)
5388			return rc;
5389	}
5390
5391	return -ENOTTY;
 
 
 
 
 
 
 
 
5392}
5393EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5394
5395/**
5396 * pci_init_reset_methods - check whether device can be safely reset
5397 * and store supported reset mechanisms.
5398 * @dev: PCI device to check for reset mechanisms
5399 *
5400 * Some devices allow an individual function to be reset without affecting
5401 * other functions in the same device.  The PCI device must be in D0-D3hot
5402 * state.
5403 *
5404 * Stores reset mechanisms supported by device in reset_methods byte array
5405 * which is a member of struct pci_dev.
5406 */
5407void pci_init_reset_methods(struct pci_dev *dev)
5408{
5409	int m, i, rc;
5410
5411	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5412
5413	might_sleep();
5414
5415	i = 0;
5416	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5417		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5418		if (!rc)
5419			dev->reset_methods[i++] = m;
5420		else if (rc != -ENOTTY)
5421			break;
5422	}
 
 
 
 
 
 
5423
5424	dev->reset_methods[i] = 0;
5425}
5426
5427/**
5428 * pci_reset_function - quiesce and reset a PCI device function
5429 * @dev: PCI device to reset
5430 *
5431 * Some devices allow an individual function to be reset without affecting
5432 * other functions in the same device.  The PCI device must be responsive
5433 * to PCI config space in order to use this function.
5434 *
5435 * This function does not just reset the PCI portion of a device, but
5436 * clears all the state associated with the device.  This function differs
5437 * from __pci_reset_function_locked() in that it saves and restores device state
5438 * over the reset and takes the PCI device lock.
5439 *
5440 * Returns 0 if the device function was successfully reset or negative if the
5441 * device doesn't support resetting a single function.
5442 */
5443int pci_reset_function(struct pci_dev *dev)
5444{
5445	int rc;
5446
5447	if (!pci_reset_supported(dev))
5448		return -ENOTTY;
5449
5450	pci_dev_lock(dev);
5451	pci_dev_save_and_disable(dev);
5452
5453	rc = __pci_reset_function_locked(dev);
5454
5455	pci_dev_restore(dev);
5456	pci_dev_unlock(dev);
5457
5458	return rc;
5459}
5460EXPORT_SYMBOL_GPL(pci_reset_function);
5461
5462/**
5463 * pci_reset_function_locked - quiesce and reset a PCI device function
5464 * @dev: PCI device to reset
5465 *
5466 * Some devices allow an individual function to be reset without affecting
5467 * other functions in the same device.  The PCI device must be responsive
5468 * to PCI config space in order to use this function.
5469 *
5470 * This function does not just reset the PCI portion of a device, but
5471 * clears all the state associated with the device.  This function differs
5472 * from __pci_reset_function_locked() in that it saves and restores device state
5473 * over the reset.  It also differs from pci_reset_function() in that it
5474 * requires the PCI device lock to be held.
5475 *
5476 * Returns 0 if the device function was successfully reset or negative if the
5477 * device doesn't support resetting a single function.
5478 */
5479int pci_reset_function_locked(struct pci_dev *dev)
5480{
5481	int rc;
5482
5483	if (!pci_reset_supported(dev))
5484		return -ENOTTY;
5485
5486	pci_dev_save_and_disable(dev);
5487
5488	rc = __pci_reset_function_locked(dev);
5489
5490	pci_dev_restore(dev);
5491
5492	return rc;
5493}
5494EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5495
5496/**
5497 * pci_try_reset_function - quiesce and reset a PCI device function
5498 * @dev: PCI device to reset
5499 *
5500 * Same as above, except return -EAGAIN if unable to lock device.
5501 */
5502int pci_try_reset_function(struct pci_dev *dev)
5503{
5504	int rc;
5505
5506	if (!pci_reset_supported(dev))
5507		return -ENOTTY;
5508
5509	if (!pci_dev_trylock(dev))
5510		return -EAGAIN;
5511
5512	pci_dev_save_and_disable(dev);
5513	rc = __pci_reset_function_locked(dev);
5514	pci_dev_restore(dev);
5515	pci_dev_unlock(dev);
5516
5517	return rc;
5518}
5519EXPORT_SYMBOL_GPL(pci_try_reset_function);
5520
5521/* Do any devices on or below this bus prevent a bus reset? */
5522static bool pci_bus_resetable(struct pci_bus *bus)
5523{
5524	struct pci_dev *dev;
5525
5526
5527	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5528		return false;
5529
5530	list_for_each_entry(dev, &bus->devices, bus_list) {
5531		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5532		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5533			return false;
5534	}
5535
5536	return true;
5537}
5538
5539/* Lock devices from the top of the tree down */
5540static void pci_bus_lock(struct pci_bus *bus)
5541{
5542	struct pci_dev *dev;
5543
5544	list_for_each_entry(dev, &bus->devices, bus_list) {
5545		pci_dev_lock(dev);
5546		if (dev->subordinate)
5547			pci_bus_lock(dev->subordinate);
5548	}
5549}
5550
5551/* Unlock devices from the bottom of the tree up */
5552static void pci_bus_unlock(struct pci_bus *bus)
5553{
5554	struct pci_dev *dev;
5555
5556	list_for_each_entry(dev, &bus->devices, bus_list) {
5557		if (dev->subordinate)
5558			pci_bus_unlock(dev->subordinate);
5559		pci_dev_unlock(dev);
5560	}
5561}
5562
5563/* Return 1 on successful lock, 0 on contention */
5564static int pci_bus_trylock(struct pci_bus *bus)
5565{
5566	struct pci_dev *dev;
5567
5568	list_for_each_entry(dev, &bus->devices, bus_list) {
5569		if (!pci_dev_trylock(dev))
5570			goto unlock;
5571		if (dev->subordinate) {
5572			if (!pci_bus_trylock(dev->subordinate)) {
5573				pci_dev_unlock(dev);
5574				goto unlock;
5575			}
5576		}
5577	}
5578	return 1;
5579
5580unlock:
5581	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5582		if (dev->subordinate)
5583			pci_bus_unlock(dev->subordinate);
5584		pci_dev_unlock(dev);
5585	}
5586	return 0;
5587}
5588
5589/* Do any devices on or below this slot prevent a bus reset? */
5590static bool pci_slot_resetable(struct pci_slot *slot)
5591{
5592	struct pci_dev *dev;
5593
5594	if (slot->bus->self &&
5595	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5596		return false;
5597
5598	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5599		if (!dev->slot || dev->slot != slot)
5600			continue;
5601		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5602		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5603			return false;
5604	}
5605
5606	return true;
5607}
5608
5609/* Lock devices from the top of the tree down */
5610static void pci_slot_lock(struct pci_slot *slot)
5611{
5612	struct pci_dev *dev;
5613
5614	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5615		if (!dev->slot || dev->slot != slot)
5616			continue;
5617		pci_dev_lock(dev);
5618		if (dev->subordinate)
5619			pci_bus_lock(dev->subordinate);
5620	}
5621}
5622
5623/* Unlock devices from the bottom of the tree up */
5624static void pci_slot_unlock(struct pci_slot *slot)
5625{
5626	struct pci_dev *dev;
5627
5628	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5629		if (!dev->slot || dev->slot != slot)
5630			continue;
5631		if (dev->subordinate)
5632			pci_bus_unlock(dev->subordinate);
5633		pci_dev_unlock(dev);
5634	}
5635}
5636
5637/* Return 1 on successful lock, 0 on contention */
5638static int pci_slot_trylock(struct pci_slot *slot)
5639{
5640	struct pci_dev *dev;
5641
5642	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5643		if (!dev->slot || dev->slot != slot)
5644			continue;
5645		if (!pci_dev_trylock(dev))
5646			goto unlock;
5647		if (dev->subordinate) {
5648			if (!pci_bus_trylock(dev->subordinate)) {
5649				pci_dev_unlock(dev);
5650				goto unlock;
5651			}
5652		}
5653	}
5654	return 1;
5655
5656unlock:
5657	list_for_each_entry_continue_reverse(dev,
5658					     &slot->bus->devices, bus_list) {
5659		if (!dev->slot || dev->slot != slot)
5660			continue;
5661		if (dev->subordinate)
5662			pci_bus_unlock(dev->subordinate);
5663		pci_dev_unlock(dev);
5664	}
5665	return 0;
5666}
5667
5668/*
5669 * Save and disable devices from the top of the tree down while holding
5670 * the @dev mutex lock for the entire tree.
5671 */
5672static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5673{
5674	struct pci_dev *dev;
5675
5676	list_for_each_entry(dev, &bus->devices, bus_list) {
5677		pci_dev_save_and_disable(dev);
5678		if (dev->subordinate)
5679			pci_bus_save_and_disable_locked(dev->subordinate);
5680	}
5681}
5682
5683/*
5684 * Restore devices from top of the tree down while holding @dev mutex lock
5685 * for the entire tree.  Parent bridges need to be restored before we can
5686 * get to subordinate devices.
5687 */
5688static void pci_bus_restore_locked(struct pci_bus *bus)
5689{
5690	struct pci_dev *dev;
5691
5692	list_for_each_entry(dev, &bus->devices, bus_list) {
5693		pci_dev_restore(dev);
5694		if (dev->subordinate)
5695			pci_bus_restore_locked(dev->subordinate);
5696	}
5697}
5698
5699/*
5700 * Save and disable devices from the top of the tree down while holding
5701 * the @dev mutex lock for the entire tree.
5702 */
5703static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5704{
5705	struct pci_dev *dev;
5706
5707	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5708		if (!dev->slot || dev->slot != slot)
5709			continue;
5710		pci_dev_save_and_disable(dev);
5711		if (dev->subordinate)
5712			pci_bus_save_and_disable_locked(dev->subordinate);
5713	}
5714}
5715
5716/*
5717 * Restore devices from top of the tree down while holding @dev mutex lock
5718 * for the entire tree.  Parent bridges need to be restored before we can
5719 * get to subordinate devices.
5720 */
5721static void pci_slot_restore_locked(struct pci_slot *slot)
5722{
5723	struct pci_dev *dev;
5724
5725	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5726		if (!dev->slot || dev->slot != slot)
5727			continue;
5728		pci_dev_restore(dev);
5729		if (dev->subordinate)
5730			pci_bus_restore_locked(dev->subordinate);
5731	}
5732}
5733
5734static int pci_slot_reset(struct pci_slot *slot, bool probe)
5735{
5736	int rc;
5737
5738	if (!slot || !pci_slot_resetable(slot))
5739		return -ENOTTY;
5740
5741	if (!probe)
5742		pci_slot_lock(slot);
5743
5744	might_sleep();
5745
5746	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5747
5748	if (!probe)
5749		pci_slot_unlock(slot);
5750
5751	return rc;
5752}
5753
5754/**
5755 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5756 * @slot: PCI slot to probe
5757 *
5758 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5759 */
5760int pci_probe_reset_slot(struct pci_slot *slot)
5761{
5762	return pci_slot_reset(slot, PCI_RESET_PROBE);
5763}
5764EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5765
5766/**
5767 * __pci_reset_slot - Try to reset a PCI slot
5768 * @slot: PCI slot to reset
5769 *
5770 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5771 * independent of other slots.  For instance, some slots may support slot power
5772 * control.  In the case of a 1:1 bus to slot architecture, this function may
5773 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5774 * Generally a slot reset should be attempted before a bus reset.  All of the
5775 * function of the slot and any subordinate buses behind the slot are reset
5776 * through this function.  PCI config space of all devices in the slot and
5777 * behind the slot is saved before and restored after reset.
5778 *
5779 * Same as above except return -EAGAIN if the slot cannot be locked
5780 */
5781static int __pci_reset_slot(struct pci_slot *slot)
5782{
5783	int rc;
5784
5785	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5786	if (rc)
5787		return rc;
5788
5789	if (pci_slot_trylock(slot)) {
5790		pci_slot_save_and_disable_locked(slot);
5791		might_sleep();
5792		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5793		pci_slot_restore_locked(slot);
5794		pci_slot_unlock(slot);
5795	} else
5796		rc = -EAGAIN;
5797
5798	return rc;
5799}
5800
5801static int pci_bus_reset(struct pci_bus *bus, bool probe)
5802{
5803	int ret;
5804
5805	if (!bus->self || !pci_bus_resetable(bus))
5806		return -ENOTTY;
5807
5808	if (probe)
5809		return 0;
5810
5811	pci_bus_lock(bus);
5812
5813	might_sleep();
5814
5815	ret = pci_bridge_secondary_bus_reset(bus->self);
5816
5817	pci_bus_unlock(bus);
5818
5819	return ret;
5820}
5821
5822/**
5823 * pci_bus_error_reset - reset the bridge's subordinate bus
5824 * @bridge: The parent device that connects to the bus to reset
5825 *
5826 * This function will first try to reset the slots on this bus if the method is
5827 * available. If slot reset fails or is not available, this will fall back to a
5828 * secondary bus reset.
5829 */
5830int pci_bus_error_reset(struct pci_dev *bridge)
5831{
5832	struct pci_bus *bus = bridge->subordinate;
5833	struct pci_slot *slot;
5834
5835	if (!bus)
5836		return -ENOTTY;
5837
5838	mutex_lock(&pci_slot_mutex);
5839	if (list_empty(&bus->slots))
5840		goto bus_reset;
5841
5842	list_for_each_entry(slot, &bus->slots, list)
5843		if (pci_probe_reset_slot(slot))
5844			goto bus_reset;
5845
5846	list_for_each_entry(slot, &bus->slots, list)
5847		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5848			goto bus_reset;
5849
5850	mutex_unlock(&pci_slot_mutex);
5851	return 0;
5852bus_reset:
5853	mutex_unlock(&pci_slot_mutex);
5854	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5855}
5856
5857/**
5858 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5859 * @bus: PCI bus to probe
5860 *
5861 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5862 */
5863int pci_probe_reset_bus(struct pci_bus *bus)
5864{
5865	return pci_bus_reset(bus, PCI_RESET_PROBE);
5866}
5867EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5868
5869/**
5870 * __pci_reset_bus - Try to reset a PCI bus
5871 * @bus: top level PCI bus to reset
5872 *
5873 * Same as above except return -EAGAIN if the bus cannot be locked
5874 */
5875static int __pci_reset_bus(struct pci_bus *bus)
5876{
5877	int rc;
5878
5879	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5880	if (rc)
5881		return rc;
5882
5883	if (pci_bus_trylock(bus)) {
5884		pci_bus_save_and_disable_locked(bus);
5885		might_sleep();
5886		rc = pci_bridge_secondary_bus_reset(bus->self);
5887		pci_bus_restore_locked(bus);
5888		pci_bus_unlock(bus);
5889	} else
5890		rc = -EAGAIN;
5891
5892	return rc;
5893}
5894
5895/**
5896 * pci_reset_bus - Try to reset a PCI bus
5897 * @pdev: top level PCI device to reset via slot/bus
5898 *
5899 * Same as above except return -EAGAIN if the bus cannot be locked
5900 */
5901int pci_reset_bus(struct pci_dev *pdev)
5902{
5903	return (!pci_probe_reset_slot(pdev->slot)) ?
5904	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5905}
5906EXPORT_SYMBOL_GPL(pci_reset_bus);
5907
5908/**
5909 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5910 * @dev: PCI device to query
5911 *
5912 * Returns mmrbc: maximum designed memory read count in bytes or
5913 * appropriate error value.
5914 */
5915int pcix_get_max_mmrbc(struct pci_dev *dev)
5916{
5917	int cap;
5918	u32 stat;
5919
5920	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5921	if (!cap)
5922		return -EINVAL;
5923
5924	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5925		return -EINVAL;
5926
5927	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5928}
5929EXPORT_SYMBOL(pcix_get_max_mmrbc);
5930
5931/**
5932 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5933 * @dev: PCI device to query
5934 *
5935 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5936 * value.
5937 */
5938int pcix_get_mmrbc(struct pci_dev *dev)
5939{
5940	int cap;
5941	u16 cmd;
5942
5943	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5944	if (!cap)
5945		return -EINVAL;
5946
5947	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5948		return -EINVAL;
5949
5950	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5951}
5952EXPORT_SYMBOL(pcix_get_mmrbc);
5953
5954/**
5955 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5956 * @dev: PCI device to query
5957 * @mmrbc: maximum memory read count in bytes
5958 *    valid values are 512, 1024, 2048, 4096
5959 *
5960 * If possible sets maximum memory read byte count, some bridges have errata
5961 * that prevent this.
5962 */
5963int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5964{
5965	int cap;
5966	u32 stat, v, o;
5967	u16 cmd;
5968
5969	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5970		return -EINVAL;
5971
5972	v = ffs(mmrbc) - 10;
5973
5974	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5975	if (!cap)
5976		return -EINVAL;
5977
5978	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5979		return -EINVAL;
5980
5981	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5982		return -E2BIG;
5983
5984	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5985		return -EINVAL;
5986
5987	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5988	if (o != v) {
5989		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5990			return -EIO;
5991
5992		cmd &= ~PCI_X_CMD_MAX_READ;
5993		cmd |= v << 2;
5994		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5995			return -EIO;
5996	}
5997	return 0;
5998}
5999EXPORT_SYMBOL(pcix_set_mmrbc);
6000
6001/**
6002 * pcie_get_readrq - get PCI Express read request size
6003 * @dev: PCI device to query
6004 *
6005 * Returns maximum memory read request in bytes or appropriate error value.
6006 */
6007int pcie_get_readrq(struct pci_dev *dev)
6008{
6009	u16 ctl;
6010
6011	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6012
6013	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6014}
6015EXPORT_SYMBOL(pcie_get_readrq);
6016
6017/**
6018 * pcie_set_readrq - set PCI Express maximum memory read request
6019 * @dev: PCI device to query
6020 * @rq: maximum memory read count in bytes
6021 *    valid values are 128, 256, 512, 1024, 2048, 4096
6022 *
6023 * If possible sets maximum memory read request in bytes
6024 */
6025int pcie_set_readrq(struct pci_dev *dev, int rq)
6026{
6027	u16 v;
6028	int ret;
6029
6030	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6031		return -EINVAL;
6032
6033	/*
6034	 * If using the "performance" PCIe config, we clamp the read rq
6035	 * size to the max packet size to keep the host bridge from
6036	 * generating requests larger than we can cope with.
6037	 */
6038	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6039		int mps = pcie_get_mps(dev);
6040
6041		if (mps < rq)
6042			rq = mps;
6043	}
6044
6045	v = (ffs(rq) - 8) << 12;
6046
6047	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6048						  PCI_EXP_DEVCTL_READRQ, v);
6049
6050	return pcibios_err_to_errno(ret);
6051}
6052EXPORT_SYMBOL(pcie_set_readrq);
6053
6054/**
6055 * pcie_get_mps - get PCI Express maximum payload size
6056 * @dev: PCI device to query
6057 *
6058 * Returns maximum payload size in bytes
6059 */
6060int pcie_get_mps(struct pci_dev *dev)
6061{
6062	u16 ctl;
6063
6064	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6065
6066	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6067}
6068EXPORT_SYMBOL(pcie_get_mps);
6069
6070/**
6071 * pcie_set_mps - set PCI Express maximum payload size
6072 * @dev: PCI device to query
6073 * @mps: maximum payload size in bytes
6074 *    valid values are 128, 256, 512, 1024, 2048, 4096
6075 *
6076 * If possible sets maximum payload size
6077 */
6078int pcie_set_mps(struct pci_dev *dev, int mps)
6079{
6080	u16 v;
6081	int ret;
6082
6083	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6084		return -EINVAL;
6085
6086	v = ffs(mps) - 8;
6087	if (v > dev->pcie_mpss)
6088		return -EINVAL;
6089	v <<= 5;
6090
6091	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6092						  PCI_EXP_DEVCTL_PAYLOAD, v);
6093
6094	return pcibios_err_to_errno(ret);
6095}
6096EXPORT_SYMBOL(pcie_set_mps);
6097
6098/**
6099 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6100 *			      device and its bandwidth limitation
6101 * @dev: PCI device to query
6102 * @limiting_dev: storage for device causing the bandwidth limitation
6103 * @speed: storage for speed of limiting device
6104 * @width: storage for width of limiting device
6105 *
6106 * Walk up the PCI device chain and find the point where the minimum
6107 * bandwidth is available.  Return the bandwidth available there and (if
6108 * limiting_dev, speed, and width pointers are supplied) information about
6109 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6110 * raw bandwidth.
6111 */
6112u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6113			     enum pci_bus_speed *speed,
6114			     enum pcie_link_width *width)
6115{
6116	u16 lnksta;
6117	enum pci_bus_speed next_speed;
6118	enum pcie_link_width next_width;
6119	u32 bw, next_bw;
6120
6121	if (speed)
6122		*speed = PCI_SPEED_UNKNOWN;
6123	if (width)
6124		*width = PCIE_LNK_WIDTH_UNKNOWN;
6125
6126	bw = 0;
6127
6128	while (dev) {
6129		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6130
6131		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6132		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6133			PCI_EXP_LNKSTA_NLW_SHIFT;
6134
6135		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6136
6137		/* Check if current device limits the total bandwidth */
6138		if (!bw || next_bw <= bw) {
6139			bw = next_bw;
6140
6141			if (limiting_dev)
6142				*limiting_dev = dev;
6143			if (speed)
6144				*speed = next_speed;
6145			if (width)
6146				*width = next_width;
6147		}
6148
6149		dev = pci_upstream_bridge(dev);
6150	}
6151
6152	return bw;
6153}
6154EXPORT_SYMBOL(pcie_bandwidth_available);
6155
6156/**
6157 * pcie_get_speed_cap - query for the PCI device's link speed capability
6158 * @dev: PCI device to query
6159 *
6160 * Query the PCI device speed capability.  Return the maximum link speed
6161 * supported by the device.
6162 */
6163enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6164{
6165	u32 lnkcap2, lnkcap;
6166
6167	/*
6168	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6169	 * implementation note there recommends using the Supported Link
6170	 * Speeds Vector in Link Capabilities 2 when supported.
6171	 *
6172	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6173	 * should use the Supported Link Speeds field in Link Capabilities,
6174	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6175	 */
6176	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6177
6178	/* PCIe r3.0-compliant */
6179	if (lnkcap2)
6180		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
 
 
 
 
 
 
 
 
 
6181
6182	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6183	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6184		return PCIE_SPEED_5_0GT;
6185	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6186		return PCIE_SPEED_2_5GT;
6187
6188	return PCI_SPEED_UNKNOWN;
6189}
6190EXPORT_SYMBOL(pcie_get_speed_cap);
6191
6192/**
6193 * pcie_get_width_cap - query for the PCI device's link width capability
6194 * @dev: PCI device to query
6195 *
6196 * Query the PCI device width capability.  Return the maximum link width
6197 * supported by the device.
6198 */
6199enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6200{
6201	u32 lnkcap;
6202
6203	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6204	if (lnkcap)
6205		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6206
6207	return PCIE_LNK_WIDTH_UNKNOWN;
6208}
6209EXPORT_SYMBOL(pcie_get_width_cap);
6210
6211/**
6212 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6213 * @dev: PCI device
6214 * @speed: storage for link speed
6215 * @width: storage for link width
6216 *
6217 * Calculate a PCI device's link bandwidth by querying for its link speed
6218 * and width, multiplying them, and applying encoding overhead.  The result
6219 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6220 */
6221u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6222			   enum pcie_link_width *width)
6223{
6224	*speed = pcie_get_speed_cap(dev);
6225	*width = pcie_get_width_cap(dev);
6226
6227	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6228		return 0;
6229
6230	return *width * PCIE_SPEED2MBS_ENC(*speed);
6231}
6232
6233/**
6234 * __pcie_print_link_status - Report the PCI device's link speed and width
6235 * @dev: PCI device to query
6236 * @verbose: Print info even when enough bandwidth is available
6237 *
6238 * If the available bandwidth at the device is less than the device is
6239 * capable of, report the device's maximum possible bandwidth and the
6240 * upstream link that limits its performance.  If @verbose, always print
6241 * the available bandwidth, even if the device isn't constrained.
6242 */
6243void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6244{
6245	enum pcie_link_width width, width_cap;
6246	enum pci_bus_speed speed, speed_cap;
6247	struct pci_dev *limiting_dev = NULL;
6248	u32 bw_avail, bw_cap;
6249
6250	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6251	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6252
6253	if (bw_avail >= bw_cap && verbose)
6254		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6255			 bw_cap / 1000, bw_cap % 1000,
6256			 pci_speed_string(speed_cap), width_cap);
6257	else if (bw_avail < bw_cap)
6258		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6259			 bw_avail / 1000, bw_avail % 1000,
6260			 pci_speed_string(speed), width,
6261			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6262			 bw_cap / 1000, bw_cap % 1000,
6263			 pci_speed_string(speed_cap), width_cap);
6264}
6265
6266/**
6267 * pcie_print_link_status - Report the PCI device's link speed and width
6268 * @dev: PCI device to query
6269 *
6270 * Report the available bandwidth at the device.
6271 */
6272void pcie_print_link_status(struct pci_dev *dev)
6273{
6274	__pcie_print_link_status(dev, true);
6275}
6276EXPORT_SYMBOL(pcie_print_link_status);
6277
6278/**
6279 * pci_select_bars - Make BAR mask from the type of resource
6280 * @dev: the PCI device for which BAR mask is made
6281 * @flags: resource type mask to be selected
6282 *
6283 * This helper routine makes bar mask from the type of resource.
6284 */
6285int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6286{
6287	int i, bars = 0;
6288	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6289		if (pci_resource_flags(dev, i) & flags)
6290			bars |= (1 << i);
6291	return bars;
6292}
6293EXPORT_SYMBOL(pci_select_bars);
6294
6295/* Some architectures require additional programming to enable VGA */
6296static arch_set_vga_state_t arch_set_vga_state;
6297
6298void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6299{
6300	arch_set_vga_state = func;	/* NULL disables */
6301}
6302
6303static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6304				  unsigned int command_bits, u32 flags)
6305{
6306	if (arch_set_vga_state)
6307		return arch_set_vga_state(dev, decode, command_bits,
6308						flags);
6309	return 0;
6310}
6311
6312/**
6313 * pci_set_vga_state - set VGA decode state on device and parents if requested
6314 * @dev: the PCI device
6315 * @decode: true = enable decoding, false = disable decoding
6316 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6317 * @flags: traverse ancestors and change bridges
6318 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6319 */
6320int pci_set_vga_state(struct pci_dev *dev, bool decode,
6321		      unsigned int command_bits, u32 flags)
6322{
6323	struct pci_bus *bus;
6324	struct pci_dev *bridge;
6325	u16 cmd;
6326	int rc;
6327
6328	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6329
6330	/* ARCH specific VGA enables */
6331	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6332	if (rc)
6333		return rc;
6334
6335	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6336		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6337		if (decode)
6338			cmd |= command_bits;
6339		else
6340			cmd &= ~command_bits;
6341		pci_write_config_word(dev, PCI_COMMAND, cmd);
6342	}
6343
6344	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6345		return 0;
6346
6347	bus = dev->bus;
6348	while (bus) {
6349		bridge = bus->self;
6350		if (bridge) {
6351			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6352					     &cmd);
6353			if (decode)
6354				cmd |= PCI_BRIDGE_CTL_VGA;
6355			else
6356				cmd &= ~PCI_BRIDGE_CTL_VGA;
6357			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6358					      cmd);
6359		}
6360		bus = bus->parent;
6361	}
6362	return 0;
6363}
6364
6365#ifdef CONFIG_ACPI
6366bool pci_pr3_present(struct pci_dev *pdev)
6367{
6368	struct acpi_device *adev;
6369
6370	if (acpi_disabled)
6371		return false;
6372
6373	adev = ACPI_COMPANION(&pdev->dev);
6374	if (!adev)
6375		return false;
6376
6377	return adev->power.flags.power_resources &&
6378		acpi_has_method(adev->handle, "_PR3");
6379}
6380EXPORT_SYMBOL_GPL(pci_pr3_present);
6381#endif
6382
6383/**
6384 * pci_add_dma_alias - Add a DMA devfn alias for a device
6385 * @dev: the PCI device for which alias is added
6386 * @devfn_from: alias slot and function
6387 * @nr_devfns: number of subsequent devfns to alias
6388 *
6389 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6390 * which is used to program permissible bus-devfn source addresses for DMA
6391 * requests in an IOMMU.  These aliases factor into IOMMU group creation
6392 * and are useful for devices generating DMA requests beyond or different
6393 * from their logical bus-devfn.  Examples include device quirks where the
6394 * device simply uses the wrong devfn, as well as non-transparent bridges
6395 * where the alias may be a proxy for devices in another domain.
6396 *
6397 * IOMMU group creation is performed during device discovery or addition,
6398 * prior to any potential DMA mapping and therefore prior to driver probing
6399 * (especially for userspace assigned devices where IOMMU group definition
6400 * cannot be left as a userspace activity).  DMA aliases should therefore
6401 * be configured via quirks, such as the PCI fixup header quirk.
6402 */
6403void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6404		       unsigned int nr_devfns)
6405{
6406	int devfn_to;
6407
6408	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6409	devfn_to = devfn_from + nr_devfns - 1;
6410
6411	if (!dev->dma_alias_mask)
6412		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6413	if (!dev->dma_alias_mask) {
6414		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6415		return;
6416	}
6417
6418	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6419
6420	if (nr_devfns == 1)
6421		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6422				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6423	else if (nr_devfns > 1)
6424		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6425				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6426				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6427}
6428
6429bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6430{
6431	return (dev1->dma_alias_mask &&
6432		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6433	       (dev2->dma_alias_mask &&
6434		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6435	       pci_real_dma_dev(dev1) == dev2 ||
6436	       pci_real_dma_dev(dev2) == dev1;
6437}
6438
6439bool pci_device_is_present(struct pci_dev *pdev)
6440{
6441	u32 v;
6442
6443	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6444	pdev = pci_physfn(pdev);
6445	if (pci_dev_is_disconnected(pdev))
6446		return false;
6447	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6448}
6449EXPORT_SYMBOL_GPL(pci_device_is_present);
6450
6451void pci_ignore_hotplug(struct pci_dev *dev)
6452{
6453	struct pci_dev *bridge = dev->bus->self;
6454
6455	dev->ignore_hotplug = 1;
6456	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6457	if (bridge)
6458		bridge->ignore_hotplug = 1;
6459}
6460EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6461
6462/**
6463 * pci_real_dma_dev - Get PCI DMA device for PCI device
6464 * @dev: the PCI device that may have a PCI DMA alias
6465 *
6466 * Permits the platform to provide architecture-specific functionality to
6467 * devices needing to alias DMA to another PCI device on another PCI bus. If
6468 * the PCI device is on the same bus, it is recommended to use
6469 * pci_add_dma_alias(). This is the default implementation. Architecture
6470 * implementations can override this.
6471 */
6472struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6473{
6474	return dev;
6475}
6476
6477resource_size_t __weak pcibios_default_alignment(void)
6478{
6479	return 0;
6480}
6481
6482/*
6483 * Arches that don't want to expose struct resource to userland as-is in
6484 * sysfs and /proc can implement their own pci_resource_to_user().
6485 */
6486void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6487				 const struct resource *rsrc,
6488				 resource_size_t *start, resource_size_t *end)
6489{
6490	*start = rsrc->start;
6491	*end = rsrc->end;
6492}
6493
6494static char *resource_alignment_param;
6495static DEFINE_SPINLOCK(resource_alignment_lock);
6496
6497/**
6498 * pci_specified_resource_alignment - get resource alignment specified by user.
6499 * @dev: the PCI device to get
6500 * @resize: whether or not to change resources' size when reassigning alignment
6501 *
6502 * RETURNS: Resource alignment if it is specified.
6503 *          Zero if it is not specified.
6504 */
6505static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6506							bool *resize)
6507{
6508	int align_order, count;
6509	resource_size_t align = pcibios_default_alignment();
6510	const char *p;
6511	int ret;
6512
6513	spin_lock(&resource_alignment_lock);
6514	p = resource_alignment_param;
6515	if (!p || !*p)
6516		goto out;
6517	if (pci_has_flag(PCI_PROBE_ONLY)) {
6518		align = 0;
6519		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6520		goto out;
6521	}
6522
6523	while (*p) {
6524		count = 0;
6525		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6526		    p[count] == '@') {
6527			p += count + 1;
6528			if (align_order > 63) {
6529				pr_err("PCI: Invalid requested alignment (order %d)\n",
6530				       align_order);
6531				align_order = PAGE_SHIFT;
6532			}
6533		} else {
6534			align_order = PAGE_SHIFT;
6535		}
6536
6537		ret = pci_dev_str_match(dev, p, &p);
6538		if (ret == 1) {
6539			*resize = true;
6540			align = 1ULL << align_order;
 
 
 
6541			break;
6542		} else if (ret < 0) {
6543			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6544			       p);
6545			break;
6546		}
6547
6548		if (*p != ';' && *p != ',') {
6549			/* End of param or invalid format */
6550			break;
6551		}
6552		p++;
6553	}
6554out:
6555	spin_unlock(&resource_alignment_lock);
6556	return align;
6557}
6558
6559static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6560					   resource_size_t align, bool resize)
6561{
6562	struct resource *r = &dev->resource[bar];
6563	resource_size_t size;
6564
6565	if (!(r->flags & IORESOURCE_MEM))
6566		return;
6567
6568	if (r->flags & IORESOURCE_PCI_FIXED) {
6569		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6570			 bar, r, (unsigned long long)align);
6571		return;
6572	}
6573
6574	size = resource_size(r);
6575	if (size >= align)
6576		return;
6577
6578	/*
6579	 * Increase the alignment of the resource.  There are two ways we
6580	 * can do this:
6581	 *
6582	 * 1) Increase the size of the resource.  BARs are aligned on their
6583	 *    size, so when we reallocate space for this resource, we'll
6584	 *    allocate it with the larger alignment.  This also prevents
6585	 *    assignment of any other BARs inside the alignment region, so
6586	 *    if we're requesting page alignment, this means no other BARs
6587	 *    will share the page.
6588	 *
6589	 *    The disadvantage is that this makes the resource larger than
6590	 *    the hardware BAR, which may break drivers that compute things
6591	 *    based on the resource size, e.g., to find registers at a
6592	 *    fixed offset before the end of the BAR.
6593	 *
6594	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6595	 *    set r->start to the desired alignment.  By itself this
6596	 *    doesn't prevent other BARs being put inside the alignment
6597	 *    region, but if we realign *every* resource of every device in
6598	 *    the system, none of them will share an alignment region.
6599	 *
6600	 * When the user has requested alignment for only some devices via
6601	 * the "pci=resource_alignment" argument, "resize" is true and we
6602	 * use the first method.  Otherwise we assume we're aligning all
6603	 * devices and we use the second.
6604	 */
6605
6606	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6607		 bar, r, (unsigned long long)align);
6608
6609	if (resize) {
6610		r->start = 0;
6611		r->end = align - 1;
6612	} else {
6613		r->flags &= ~IORESOURCE_SIZEALIGN;
6614		r->flags |= IORESOURCE_STARTALIGN;
6615		r->start = align;
6616		r->end = r->start + size - 1;
6617	}
6618	r->flags |= IORESOURCE_UNSET;
6619}
6620
6621/*
6622 * This function disables memory decoding and releases memory resources
6623 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6624 * It also rounds up size to specified alignment.
6625 * Later on, the kernel will assign page-aligned memory resource back
6626 * to the device.
6627 */
6628void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6629{
6630	int i;
6631	struct resource *r;
6632	resource_size_t align;
6633	u16 command;
6634	bool resize = false;
6635
6636	/*
6637	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6638	 * 3.4.1.11.  Their resources are allocated from the space
6639	 * described by the VF BARx register in the PF's SR-IOV capability.
6640	 * We can't influence their alignment here.
6641	 */
6642	if (dev->is_virtfn)
6643		return;
6644
6645	/* check if specified PCI is target device to reassign */
6646	align = pci_specified_resource_alignment(dev, &resize);
6647	if (!align)
6648		return;
6649
6650	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6651	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6652		pci_warn(dev, "Can't reassign resources to host bridge\n");
6653		return;
6654	}
6655
6656	pci_read_config_word(dev, PCI_COMMAND, &command);
6657	command &= ~PCI_COMMAND_MEMORY;
6658	pci_write_config_word(dev, PCI_COMMAND, command);
6659
6660	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6661		pci_request_resource_alignment(dev, i, align, resize);
6662
6663	/*
6664	 * Need to disable bridge's resource window,
6665	 * to enable the kernel to reassign new resource
6666	 * window later on.
6667	 */
6668	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6669		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6670			r = &dev->resource[i];
6671			if (!(r->flags & IORESOURCE_MEM))
6672				continue;
6673			r->flags |= IORESOURCE_UNSET;
6674			r->end = resource_size(r) - 1;
6675			r->start = 0;
6676		}
6677		pci_disable_bridge_window(dev);
6678	}
6679}
6680
6681static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6682{
6683	size_t count = 0;
6684
6685	spin_lock(&resource_alignment_lock);
6686	if (resource_alignment_param)
6687		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6688	spin_unlock(&resource_alignment_lock);
6689
 
 
 
 
 
 
 
 
 
 
6690	return count;
6691}
6692
6693static ssize_t resource_alignment_store(struct bus_type *bus,
6694					const char *buf, size_t count)
6695{
6696	char *param, *old, *end;
6697
6698	if (count >= (PAGE_SIZE - 1))
6699		return -EINVAL;
6700
6701	param = kstrndup(buf, count, GFP_KERNEL);
6702	if (!param)
6703		return -ENOMEM;
6704
6705	end = strchr(param, '\n');
6706	if (end)
6707		*end = '\0';
6708
6709	spin_lock(&resource_alignment_lock);
6710	old = resource_alignment_param;
6711	if (strlen(param)) {
6712		resource_alignment_param = param;
6713	} else {
6714		kfree(param);
6715		resource_alignment_param = NULL;
6716	}
6717	spin_unlock(&resource_alignment_lock);
6718
6719	kfree(old);
6720
6721	return count;
6722}
6723
6724static BUS_ATTR_RW(resource_alignment);
6725
6726static int __init pci_resource_alignment_sysfs_init(void)
6727{
6728	return bus_create_file(&pci_bus_type,
6729					&bus_attr_resource_alignment);
6730}
6731late_initcall(pci_resource_alignment_sysfs_init);
6732
6733static void pci_no_domains(void)
6734{
6735#ifdef CONFIG_PCI_DOMAINS
6736	pci_domains_supported = 0;
6737#endif
6738}
6739
6740#ifdef CONFIG_PCI_DOMAINS_GENERIC
6741static DEFINE_IDA(pci_domain_nr_static_ida);
6742static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6743
6744static void of_pci_reserve_static_domain_nr(void)
6745{
6746	struct device_node *np;
6747	int domain_nr;
6748
6749	for_each_node_by_type(np, "pci") {
6750		domain_nr = of_get_pci_domain_nr(np);
6751		if (domain_nr < 0)
6752			continue;
6753		/*
6754		 * Permanently allocate domain_nr in dynamic_ida
6755		 * to prevent it from dynamic allocation.
6756		 */
6757		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6758				domain_nr, domain_nr, GFP_KERNEL);
6759	}
6760}
6761
6762static int of_pci_bus_find_domain_nr(struct device *parent)
6763{
6764	static bool static_domains_reserved = false;
6765	int domain_nr;
6766
6767	/* On the first call scan device tree for static allocations. */
6768	if (!static_domains_reserved) {
6769		of_pci_reserve_static_domain_nr();
6770		static_domains_reserved = true;
6771	}
6772
6773	if (parent) {
6774		/*
6775		 * If domain is in DT, allocate it in static IDA.  This
6776		 * prevents duplicate static allocations in case of errors
6777		 * in DT.
6778		 */
6779		domain_nr = of_get_pci_domain_nr(parent->of_node);
6780		if (domain_nr >= 0)
6781			return ida_alloc_range(&pci_domain_nr_static_ida,
6782					       domain_nr, domain_nr,
6783					       GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6784	}
6785
6786	/*
6787	 * If domain was not specified in DT, choose a free ID from dynamic
6788	 * allocations. All domain numbers from DT are permanently in
6789	 * dynamic allocations to prevent assigning them to other DT nodes
6790	 * without static domain.
6791	 */
6792	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6793}
6794
6795static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6796{
6797	if (bus->domain_nr < 0)
6798		return;
6799
6800	/* Release domain from IDA where it was allocated. */
6801	if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6802		ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6803	else
6804		ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6805}
6806
6807int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6808{
6809	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6810			       acpi_pci_bus_find_domain_nr(bus);
6811}
6812
6813void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6814{
6815	if (!acpi_disabled)
6816		return;
6817	of_pci_bus_release_domain_nr(bus, parent);
6818}
6819#endif
6820
6821/**
6822 * pci_ext_cfg_avail - can we access extended PCI config space?
6823 *
6824 * Returns 1 if we can access PCI extended config space (offsets
6825 * greater than 0xff). This is the default implementation. Architecture
6826 * implementations can override this.
6827 */
6828int __weak pci_ext_cfg_avail(void)
6829{
6830	return 1;
6831}
6832
6833void __weak pci_fixup_cardbus(struct pci_bus *bus)
6834{
6835}
6836EXPORT_SYMBOL(pci_fixup_cardbus);
6837
6838static int __init pci_setup(char *str)
6839{
6840	while (str) {
6841		char *k = strchr(str, ',');
6842		if (k)
6843			*k++ = 0;
6844		if (*str && (str = pcibios_setup(str)) && *str) {
6845			if (!strcmp(str, "nomsi")) {
6846				pci_no_msi();
6847			} else if (!strncmp(str, "noats", 5)) {
6848				pr_info("PCIe: ATS is disabled\n");
6849				pcie_ats_disabled = true;
6850			} else if (!strcmp(str, "noaer")) {
6851				pci_no_aer();
6852			} else if (!strcmp(str, "earlydump")) {
6853				pci_early_dump = true;
6854			} else if (!strncmp(str, "realloc=", 8)) {
6855				pci_realloc_get_opt(str + 8);
6856			} else if (!strncmp(str, "realloc", 7)) {
6857				pci_realloc_get_opt("on");
6858			} else if (!strcmp(str, "nodomains")) {
6859				pci_no_domains();
6860			} else if (!strncmp(str, "noari", 5)) {
6861				pcie_ari_disabled = true;
6862			} else if (!strncmp(str, "cbiosize=", 9)) {
6863				pci_cardbus_io_size = memparse(str + 9, &str);
6864			} else if (!strncmp(str, "cbmemsize=", 10)) {
6865				pci_cardbus_mem_size = memparse(str + 10, &str);
6866			} else if (!strncmp(str, "resource_alignment=", 19)) {
6867				resource_alignment_param = str + 19;
6868			} else if (!strncmp(str, "ecrc=", 5)) {
6869				pcie_ecrc_get_policy(str + 5);
6870			} else if (!strncmp(str, "hpiosize=", 9)) {
6871				pci_hotplug_io_size = memparse(str + 9, &str);
6872			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6873				pci_hotplug_mmio_size = memparse(str + 11, &str);
6874			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6875				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6876			} else if (!strncmp(str, "hpmemsize=", 10)) {
6877				pci_hotplug_mmio_size = memparse(str + 10, &str);
6878				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6879			} else if (!strncmp(str, "hpbussize=", 10)) {
6880				pci_hotplug_bus_size =
6881					simple_strtoul(str + 10, &str, 0);
6882				if (pci_hotplug_bus_size > 0xff)
6883					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6884			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6885				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6886			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6887				pcie_bus_config = PCIE_BUS_SAFE;
6888			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6889				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6890			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6891				pcie_bus_config = PCIE_BUS_PEER2PEER;
6892			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6893				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6894			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6895				disable_acs_redir_param = str + 18;
6896			} else {
6897				pr_err("PCI: Unknown option `%s'\n", str);
6898			}
6899		}
6900		str = k;
6901	}
6902	return 0;
6903}
6904early_param("pci", pci_setup);
6905
6906/*
6907 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6908 * in pci_setup(), above, to point to data in the __initdata section which
6909 * will be freed after the init sequence is complete. We can't allocate memory
6910 * in pci_setup() because some architectures do not have any memory allocation
6911 * service available during an early_param() call. So we allocate memory and
6912 * copy the variable here before the init section is freed.
6913 *
6914 */
6915static int __init pci_realloc_setup_params(void)
6916{
6917	resource_alignment_param = kstrdup(resource_alignment_param,
6918					   GFP_KERNEL);
6919	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6920
6921	return 0;
6922}
6923pure_initcall(pci_realloc_setup_params);