Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 * David Mosberger-Tang
   7 *
   8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
 
  16#include <linux/of.h>
  17#include <linux/of_pci.h>
  18#include <linux/pci.h>
  19#include <linux/pm.h>
  20#include <linux/slab.h>
  21#include <linux/module.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/log2.h>
  25#include <linux/logic_pio.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/interrupt.h>
  28#include <linux/device.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/pci_hotplug.h>
  31#include <linux/vmalloc.h>
  32#include <linux/pci-ats.h>
  33#include <asm/setup.h>
  34#include <asm/dma.h>
  35#include <linux/aer.h>
  36#include "pci.h"
  37
  38DEFINE_MUTEX(pci_slot_mutex);
  39
  40const char *pci_power_names[] = {
  41	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  42};
  43EXPORT_SYMBOL_GPL(pci_power_names);
  44
  45int isa_dma_bridge_buggy;
  46EXPORT_SYMBOL(isa_dma_bridge_buggy);
  47
  48int pci_pci_problems;
  49EXPORT_SYMBOL(pci_pci_problems);
  50
  51unsigned int pci_pm_d3_delay;
  52
  53static void pci_pme_list_scan(struct work_struct *work);
  54
  55static LIST_HEAD(pci_pme_list);
  56static DEFINE_MUTEX(pci_pme_list_mutex);
  57static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  58
  59struct pci_pme_device {
  60	struct list_head list;
  61	struct pci_dev *dev;
  62};
  63
  64#define PME_TIMEOUT 1000 /* How long between PME checks */
  65
  66static void pci_dev_d3_sleep(struct pci_dev *dev)
  67{
  68	unsigned int delay = dev->d3_delay;
  69
  70	if (delay < pci_pm_d3_delay)
  71		delay = pci_pm_d3_delay;
  72
  73	if (delay)
  74		msleep(delay);
  75}
  76
  77#ifdef CONFIG_PCI_DOMAINS
  78int pci_domains_supported = 1;
  79#endif
  80
  81#define DEFAULT_CARDBUS_IO_SIZE		(256)
  82#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
  83/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  84unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  85unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  86
  87#define DEFAULT_HOTPLUG_IO_SIZE		(256)
  88#define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
  89/* pci=hpmemsize=nnM,hpiosize=nn can override this */
 
  90unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  91unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
 
 
 
 
 
 
  92
  93#define DEFAULT_HOTPLUG_BUS_SIZE	1
  94unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
  95
 
 
 
 
 
 
 
 
 
 
 
  96enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
 
  97
  98/*
  99 * The default CLS is used if arch didn't set CLS explicitly and not
 100 * all pci devices agree on the same value.  Arch can override either
 101 * the dfl or actual value as it sees fit.  Don't forget this is
 102 * measured in 32-bit words, not bytes.
 103 */
 104u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 105u8 pci_cache_line_size;
 106
 107/*
 108 * If we set up a device for bus mastering, we need to check the latency
 109 * timer as certain BIOSes forget to set it properly.
 110 */
 111unsigned int pcibios_max_latency = 255;
 112
 113/* If set, the PCIe ARI capability will not be used. */
 114static bool pcie_ari_disabled;
 115
 116/* If set, the PCIe ATS capability will not be used. */
 117static bool pcie_ats_disabled;
 118
 119/* If set, the PCI config space of each device is printed during boot. */
 120bool pci_early_dump;
 121
 122bool pci_ats_disabled(void)
 123{
 124	return pcie_ats_disabled;
 125}
 
 126
 127/* Disable bridge_d3 for all PCIe ports */
 128static bool pci_bridge_d3_disable;
 129/* Force bridge_d3 for all PCIe ports */
 130static bool pci_bridge_d3_force;
 131
 132static int __init pcie_port_pm_setup(char *str)
 133{
 134	if (!strcmp(str, "off"))
 135		pci_bridge_d3_disable = true;
 136	else if (!strcmp(str, "force"))
 137		pci_bridge_d3_force = true;
 138	return 1;
 139}
 140__setup("pcie_port_pm=", pcie_port_pm_setup);
 141
 142/* Time to wait after a reset for device to become responsive */
 143#define PCIE_RESET_READY_POLL_MS 60000
 144
 145/**
 146 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 147 * @bus: pointer to PCI bus structure to search
 148 *
 149 * Given a PCI bus, returns the highest PCI bus number present in the set
 150 * including the given PCI bus and its list of child PCI buses.
 151 */
 152unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 153{
 154	struct pci_bus *tmp;
 155	unsigned char max, n;
 156
 157	max = bus->busn_res.end;
 158	list_for_each_entry(tmp, &bus->children, node) {
 159		n = pci_bus_max_busnr(tmp);
 160		if (n > max)
 161			max = n;
 162	}
 163	return max;
 164}
 165EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 167#ifdef CONFIG_HAS_IOMEM
 168void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 169{
 170	struct resource *res = &pdev->resource[bar];
 171
 172	/*
 173	 * Make sure the BAR is actually a memory resource, not an IO resource
 174	 */
 175	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 176		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 177		return NULL;
 178	}
 179	return ioremap_nocache(res->start, resource_size(res));
 180}
 181EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 182
 183void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 184{
 185	/*
 186	 * Make sure the BAR is actually a memory resource, not an IO resource
 187	 */
 188	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 189		WARN_ON(1);
 190		return NULL;
 191	}
 192	return ioremap_wc(pci_resource_start(pdev, bar),
 193			  pci_resource_len(pdev, bar));
 194}
 195EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 196#endif
 197
 198/**
 199 * pci_dev_str_match_path - test if a path string matches a device
 200 * @dev: the PCI device to test
 201 * @path: string to match the device against
 202 * @endptr: pointer to the string after the match
 203 *
 204 * Test if a string (typically from a kernel parameter) formatted as a
 205 * path of device/function addresses matches a PCI device. The string must
 206 * be of the form:
 207 *
 208 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 209 *
 210 * A path for a device can be obtained using 'lspci -t'.  Using a path
 211 * is more robust against bus renumbering than using only a single bus,
 212 * device and function address.
 213 *
 214 * Returns 1 if the string matches the device, 0 if it does not and
 215 * a negative error code if it fails to parse the string.
 216 */
 217static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
 218				  const char **endptr)
 219{
 220	int ret;
 221	int seg, bus, slot, func;
 222	char *wpath, *p;
 223	char end;
 224
 225	*endptr = strchrnul(path, ';');
 226
 227	wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
 228	if (!wpath)
 229		return -ENOMEM;
 230
 231	while (1) {
 232		p = strrchr(wpath, '/');
 233		if (!p)
 234			break;
 235		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
 236		if (ret != 2) {
 237			ret = -EINVAL;
 238			goto free_and_exit;
 239		}
 240
 241		if (dev->devfn != PCI_DEVFN(slot, func)) {
 242			ret = 0;
 243			goto free_and_exit;
 244		}
 245
 246		/*
 247		 * Note: we don't need to get a reference to the upstream
 248		 * bridge because we hold a reference to the top level
 249		 * device which should hold a reference to the bridge,
 250		 * and so on.
 251		 */
 252		dev = pci_upstream_bridge(dev);
 253		if (!dev) {
 254			ret = 0;
 255			goto free_and_exit;
 256		}
 257
 258		*p = 0;
 259	}
 260
 261	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
 262		     &func, &end);
 263	if (ret != 4) {
 264		seg = 0;
 265		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
 266		if (ret != 3) {
 267			ret = -EINVAL;
 268			goto free_and_exit;
 269		}
 270	}
 271
 272	ret = (seg == pci_domain_nr(dev->bus) &&
 273	       bus == dev->bus->number &&
 274	       dev->devfn == PCI_DEVFN(slot, func));
 275
 276free_and_exit:
 277	kfree(wpath);
 278	return ret;
 279}
 280
 281/**
 282 * pci_dev_str_match - test if a string matches a device
 283 * @dev: the PCI device to test
 284 * @p: string to match the device against
 285 * @endptr: pointer to the string after the match
 286 *
 287 * Test if a string (typically from a kernel parameter) matches a specified
 288 * PCI device. The string may be of one of the following formats:
 289 *
 290 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 291 *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
 292 *
 293 * The first format specifies a PCI bus/device/function address which
 294 * may change if new hardware is inserted, if motherboard firmware changes,
 295 * or due to changes caused in kernel parameters. If the domain is
 296 * left unspecified, it is taken to be 0.  In order to be robust against
 297 * bus renumbering issues, a path of PCI device/function numbers may be used
 298 * to address the specific device.  The path for a device can be determined
 299 * through the use of 'lspci -t'.
 300 *
 301 * The second format matches devices using IDs in the configuration
 302 * space which may match multiple devices in the system. A value of 0
 303 * for any field will match all devices. (Note: this differs from
 304 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
 305 * legacy reasons and convenience so users don't have to specify
 306 * FFFFFFFFs on the command line.)
 307 *
 308 * Returns 1 if the string matches the device, 0 if it does not and
 309 * a negative error code if the string cannot be parsed.
 310 */
 311static int pci_dev_str_match(struct pci_dev *dev, const char *p,
 312			     const char **endptr)
 313{
 314	int ret;
 315	int count;
 316	unsigned short vendor, device, subsystem_vendor, subsystem_device;
 317
 318	if (strncmp(p, "pci:", 4) == 0) {
 319		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
 320		p += 4;
 321		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
 322			     &subsystem_vendor, &subsystem_device, &count);
 323		if (ret != 4) {
 324			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
 325			if (ret != 2)
 326				return -EINVAL;
 327
 328			subsystem_vendor = 0;
 329			subsystem_device = 0;
 330		}
 331
 332		p += count;
 333
 334		if ((!vendor || vendor == dev->vendor) &&
 335		    (!device || device == dev->device) &&
 336		    (!subsystem_vendor ||
 337			    subsystem_vendor == dev->subsystem_vendor) &&
 338		    (!subsystem_device ||
 339			    subsystem_device == dev->subsystem_device))
 340			goto found;
 341	} else {
 342		/*
 343		 * PCI Bus, Device, Function IDs are specified
 344		 * (optionally, may include a path of devfns following it)
 345		 */
 346		ret = pci_dev_str_match_path(dev, p, &p);
 347		if (ret < 0)
 348			return ret;
 349		else if (ret)
 350			goto found;
 351	}
 352
 353	*endptr = p;
 354	return 0;
 355
 356found:
 357	*endptr = p;
 358	return 1;
 359}
 360
 361static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 362				   u8 pos, int cap, int *ttl)
 363{
 364	u8 id;
 365	u16 ent;
 366
 367	pci_bus_read_config_byte(bus, devfn, pos, &pos);
 368
 369	while ((*ttl)--) {
 370		if (pos < 0x40)
 371			break;
 372		pos &= ~3;
 373		pci_bus_read_config_word(bus, devfn, pos, &ent);
 374
 375		id = ent & 0xff;
 376		if (id == 0xff)
 377			break;
 378		if (id == cap)
 379			return pos;
 380		pos = (ent >> 8);
 381	}
 382	return 0;
 383}
 384
 385static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 386			       u8 pos, int cap)
 387{
 388	int ttl = PCI_FIND_CAP_TTL;
 389
 390	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 391}
 392
 393int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 394{
 395	return __pci_find_next_cap(dev->bus, dev->devfn,
 396				   pos + PCI_CAP_LIST_NEXT, cap);
 397}
 398EXPORT_SYMBOL_GPL(pci_find_next_capability);
 399
 400static int __pci_bus_find_cap_start(struct pci_bus *bus,
 401				    unsigned int devfn, u8 hdr_type)
 402{
 403	u16 status;
 404
 405	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 406	if (!(status & PCI_STATUS_CAP_LIST))
 407		return 0;
 408
 409	switch (hdr_type) {
 410	case PCI_HEADER_TYPE_NORMAL:
 411	case PCI_HEADER_TYPE_BRIDGE:
 412		return PCI_CAPABILITY_LIST;
 413	case PCI_HEADER_TYPE_CARDBUS:
 414		return PCI_CB_CAPABILITY_LIST;
 415	}
 416
 417	return 0;
 418}
 419
 420/**
 421 * pci_find_capability - query for devices' capabilities
 422 * @dev: PCI device to query
 423 * @cap: capability code
 424 *
 425 * Tell if a device supports a given PCI capability.
 426 * Returns the address of the requested capability structure within the
 427 * device's PCI configuration space or 0 in case the device does not
 428 * support it.  Possible values for @cap include:
 429 *
 430 *  %PCI_CAP_ID_PM           Power Management
 431 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 432 *  %PCI_CAP_ID_VPD          Vital Product Data
 433 *  %PCI_CAP_ID_SLOTID       Slot Identification
 434 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 435 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 436 *  %PCI_CAP_ID_PCIX         PCI-X
 437 *  %PCI_CAP_ID_EXP          PCI Express
 438 */
 439int pci_find_capability(struct pci_dev *dev, int cap)
 440{
 441	int pos;
 442
 443	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 444	if (pos)
 445		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 446
 447	return pos;
 448}
 449EXPORT_SYMBOL(pci_find_capability);
 450
 451/**
 452 * pci_bus_find_capability - query for devices' capabilities
 453 * @bus: the PCI bus to query
 454 * @devfn: PCI device to query
 455 * @cap: capability code
 456 *
 457 * Like pci_find_capability() but works for PCI devices that do not have a
 458 * pci_dev structure set up yet.
 459 *
 460 * Returns the address of the requested capability structure within the
 461 * device's PCI configuration space or 0 in case the device does not
 462 * support it.
 463 */
 464int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 465{
 466	int pos;
 467	u8 hdr_type;
 468
 469	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 470
 471	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 472	if (pos)
 473		pos = __pci_find_next_cap(bus, devfn, pos, cap);
 474
 475	return pos;
 476}
 477EXPORT_SYMBOL(pci_bus_find_capability);
 478
 479/**
 480 * pci_find_next_ext_capability - Find an extended capability
 481 * @dev: PCI device to query
 482 * @start: address at which to start looking (0 to start at beginning of list)
 483 * @cap: capability code
 484 *
 485 * Returns the address of the next matching extended capability structure
 486 * within the device's PCI configuration space or 0 if the device does
 487 * not support it.  Some capabilities can occur several times, e.g., the
 488 * vendor-specific capability, and this provides a way to find them all.
 489 */
 490int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
 491{
 492	u32 header;
 493	int ttl;
 494	int pos = PCI_CFG_SPACE_SIZE;
 495
 496	/* minimum 8 bytes per capability */
 497	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 498
 499	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 500		return 0;
 501
 502	if (start)
 503		pos = start;
 504
 505	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 506		return 0;
 507
 508	/*
 509	 * If we have no capabilities, this is indicated by cap ID,
 510	 * cap version and next pointer all being 0.
 511	 */
 512	if (header == 0)
 513		return 0;
 514
 515	while (ttl-- > 0) {
 516		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 517			return pos;
 518
 519		pos = PCI_EXT_CAP_NEXT(header);
 520		if (pos < PCI_CFG_SPACE_SIZE)
 521			break;
 522
 523		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 524			break;
 525	}
 526
 527	return 0;
 528}
 529EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 530
 531/**
 532 * pci_find_ext_capability - Find an extended capability
 533 * @dev: PCI device to query
 534 * @cap: capability code
 535 *
 536 * Returns the address of the requested extended capability structure
 537 * within the device's PCI configuration space or 0 if the device does
 538 * not support it.  Possible values for @cap include:
 539 *
 540 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 541 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 542 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 543 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 544 */
 545int pci_find_ext_capability(struct pci_dev *dev, int cap)
 546{
 547	return pci_find_next_ext_capability(dev, 0, cap);
 548}
 549EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 550
 551static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 552{
 553	int rc, ttl = PCI_FIND_CAP_TTL;
 554	u8 cap, mask;
 555
 556	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 557		mask = HT_3BIT_CAP_MASK;
 558	else
 559		mask = HT_5BIT_CAP_MASK;
 560
 561	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 562				      PCI_CAP_ID_HT, &ttl);
 563	while (pos) {
 564		rc = pci_read_config_byte(dev, pos + 3, &cap);
 565		if (rc != PCIBIOS_SUCCESSFUL)
 566			return 0;
 567
 568		if ((cap & mask) == ht_cap)
 569			return pos;
 570
 571		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 572					      pos + PCI_CAP_LIST_NEXT,
 573					      PCI_CAP_ID_HT, &ttl);
 574	}
 575
 576	return 0;
 577}
 
 578/**
 579 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
 580 * @dev: PCI device to query
 581 * @pos: Position from which to continue searching
 582 * @ht_cap: Hypertransport capability code
 583 *
 584 * To be used in conjunction with pci_find_ht_capability() to search for
 585 * all capabilities matching @ht_cap. @pos should always be a value returned
 586 * from pci_find_ht_capability().
 587 *
 588 * NB. To be 100% safe against broken PCI devices, the caller should take
 589 * steps to avoid an infinite loop.
 590 */
 591int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
 592{
 593	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 594}
 595EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 596
 597/**
 598 * pci_find_ht_capability - query a device's Hypertransport capabilities
 599 * @dev: PCI device to query
 600 * @ht_cap: Hypertransport capability code
 601 *
 602 * Tell if a device supports a given Hypertransport capability.
 603 * Returns an address within the device's PCI configuration space
 604 * or 0 in case the device does not support the request capability.
 605 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 606 * which has a Hypertransport capability matching @ht_cap.
 607 */
 608int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 609{
 610	int pos;
 611
 612	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 613	if (pos)
 614		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 615
 616	return pos;
 617}
 618EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 619
 620/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621 * pci_find_parent_resource - return resource region of parent bus of given
 622 *			      region
 623 * @dev: PCI device structure contains resources to be searched
 624 * @res: child resource record for which parent is sought
 625 *
 626 * For given resource region of given device, return the resource region of
 627 * parent bus the given region is contained in.
 628 */
 629struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 630					  struct resource *res)
 631{
 632	const struct pci_bus *bus = dev->bus;
 633	struct resource *r;
 634	int i;
 635
 636	pci_bus_for_each_resource(bus, r, i) {
 637		if (!r)
 638			continue;
 639		if (resource_contains(r, res)) {
 640
 641			/*
 642			 * If the window is prefetchable but the BAR is
 643			 * not, the allocator made a mistake.
 644			 */
 645			if (r->flags & IORESOURCE_PREFETCH &&
 646			    !(res->flags & IORESOURCE_PREFETCH))
 647				return NULL;
 648
 649			/*
 650			 * If we're below a transparent bridge, there may
 651			 * be both a positively-decoded aperture and a
 652			 * subtractively-decoded region that contain the BAR.
 653			 * We want the positively-decoded one, so this depends
 654			 * on pci_bus_for_each_resource() giving us those
 655			 * first.
 656			 */
 657			return r;
 658		}
 659	}
 660	return NULL;
 661}
 662EXPORT_SYMBOL(pci_find_parent_resource);
 663
 664/**
 665 * pci_find_resource - Return matching PCI device resource
 666 * @dev: PCI device to query
 667 * @res: Resource to look for
 668 *
 669 * Goes over standard PCI resources (BARs) and checks if the given resource
 670 * is partially or fully contained in any of them. In that case the
 671 * matching resource is returned, %NULL otherwise.
 672 */
 673struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 674{
 675	int i;
 676
 677	for (i = 0; i < PCI_ROM_RESOURCE; i++) {
 678		struct resource *r = &dev->resource[i];
 679
 680		if (r->start && resource_contains(r, res))
 681			return r;
 682	}
 683
 684	return NULL;
 685}
 686EXPORT_SYMBOL(pci_find_resource);
 687
 688/**
 689 * pci_find_pcie_root_port - return PCIe Root Port
 690 * @dev: PCI device to query
 691 *
 692 * Traverse up the parent chain and return the PCIe Root Port PCI Device
 693 * for a given PCI Device.
 694 */
 695struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
 696{
 697	struct pci_dev *bridge, *highest_pcie_bridge = dev;
 698
 699	bridge = pci_upstream_bridge(dev);
 700	while (bridge && pci_is_pcie(bridge)) {
 701		highest_pcie_bridge = bridge;
 702		bridge = pci_upstream_bridge(bridge);
 703	}
 704
 705	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
 706		return NULL;
 707
 708	return highest_pcie_bridge;
 709}
 710EXPORT_SYMBOL(pci_find_pcie_root_port);
 711
 712/**
 713 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 714 * @dev: the PCI device to operate on
 715 * @pos: config space offset of status word
 716 * @mask: mask of bit(s) to care about in status word
 717 *
 718 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 719 */
 720int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 721{
 722	int i;
 723
 724	/* Wait for Transaction Pending bit clean */
 725	for (i = 0; i < 4; i++) {
 726		u16 status;
 727		if (i)
 728			msleep((1 << (i - 1)) * 100);
 729
 730		pci_read_config_word(dev, pos, &status);
 731		if (!(status & mask))
 732			return 1;
 733	}
 734
 735	return 0;
 736}
 737
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 738/**
 739 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
 740 * @dev: PCI device to have its BARs restored
 741 *
 742 * Restore the BAR values for a given device, so as to make it
 743 * accessible by its driver.
 744 */
 745static void pci_restore_bars(struct pci_dev *dev)
 746{
 747	int i;
 748
 749	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 750		pci_update_resource(dev, i);
 751}
 752
 753static const struct pci_platform_pm_ops *pci_platform_pm;
 754
 755int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
 756{
 757	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
 758	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
 759		return -EINVAL;
 760	pci_platform_pm = ops;
 761	return 0;
 762}
 763
 764static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 765{
 766	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 767}
 768
 769static inline int platform_pci_set_power_state(struct pci_dev *dev,
 770					       pci_power_t t)
 771{
 772	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 773}
 774
 775static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
 776{
 777	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
 778}
 779
 780static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
 781{
 782	if (pci_platform_pm && pci_platform_pm->refresh_state)
 783		pci_platform_pm->refresh_state(dev);
 784}
 785
 786static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 787{
 788	return pci_platform_pm ?
 789			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 790}
 791
 792static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
 793{
 794	return pci_platform_pm ?
 795			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
 796}
 797
 798static inline bool platform_pci_need_resume(struct pci_dev *dev)
 799{
 800	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
 801}
 802
 803static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
 804{
 805	return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false;
 
 
 806}
 807
 808/**
 809 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
 810 *			     given PCI device
 811 * @dev: PCI device to handle.
 812 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 813 *
 814 * RETURN VALUE:
 815 * -EINVAL if the requested state is invalid.
 816 * -EIO if device does not support PCI PM or its PM capabilities register has a
 817 * wrong version, or device doesn't support the requested state.
 818 * 0 if device already is in the requested state.
 819 * 0 if device's power state has been successfully changed.
 820 */
 821static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
 822{
 823	u16 pmcsr;
 824	bool need_restore = false;
 825
 826	/* Check if we're already there */
 827	if (dev->current_state == state)
 828		return 0;
 829
 830	if (!dev->pm_cap)
 831		return -EIO;
 832
 833	if (state < PCI_D0 || state > PCI_D3hot)
 834		return -EINVAL;
 835
 836	/*
 837	 * Validate current state:
 838	 * Can enter D0 from any state, but if we can only go deeper
 839	 * to sleep if we're already in a low power state
 
 840	 */
 841	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
 842	    && dev->current_state > state) {
 843		pci_err(dev, "invalid power transition (from state %d to %d)\n",
 844			dev->current_state, state);
 
 845		return -EINVAL;
 846	}
 847
 848	/* Check if this device supports the desired state */
 849	if ((state == PCI_D1 && !dev->d1_support)
 850	   || (state == PCI_D2 && !dev->d2_support))
 851		return -EIO;
 852
 853	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 
 
 
 
 
 
 854
 855	/*
 856	 * If we're (effectively) in D3, force entire word to 0.
 857	 * This doesn't affect PME_Status, disables PME_En, and
 858	 * sets PowerState to 0.
 859	 */
 860	switch (dev->current_state) {
 861	case PCI_D0:
 862	case PCI_D1:
 863	case PCI_D2:
 864		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
 865		pmcsr |= state;
 866		break;
 867	case PCI_D3hot:
 868	case PCI_D3cold:
 869	case PCI_UNKNOWN: /* Boot-up */
 870		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
 871		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
 872			need_restore = true;
 873		/* Fall-through - force to D0 */
 874	default:
 875		pmcsr = 0;
 876		break;
 877	}
 878
 879	/* Enter specified state */
 880	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
 881
 882	/*
 883	 * Mandatory power management transition delays; see PCI PM 1.1
 884	 * 5.6.1 table 18
 885	 */
 886	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
 887		pci_dev_d3_sleep(dev);
 888	else if (state == PCI_D2 || dev->current_state == PCI_D2)
 889		udelay(PCI_PM_D2_DELAY);
 890
 891	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 892	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 893	if (dev->current_state != state)
 894		pci_info_ratelimited(dev, "Refused to change power state, currently in D%d\n",
 895			 dev->current_state);
 
 896
 897	/*
 898	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
 899	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
 900	 * from D3hot to D0 _may_ perform an internal reset, thereby
 901	 * going to "D0 Uninitialized" rather than "D0 Initialized".
 902	 * For example, at least some versions of the 3c905B and the
 903	 * 3c556B exhibit this behaviour.
 904	 *
 905	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
 906	 * devices in a D3hot state at boot.  Consequently, we need to
 907	 * restore at least the BARs so that the device will be
 908	 * accessible to its driver.
 909	 */
 910	if (need_restore)
 911		pci_restore_bars(dev);
 912
 913	if (dev->bus->self)
 914		pcie_aspm_pm_state_change(dev->bus->self);
 915
 916	return 0;
 917}
 918
 919/**
 920 * pci_update_current_state - Read power state of given device and cache it
 921 * @dev: PCI device to handle.
 922 * @state: State to cache in case the device doesn't have the PM capability
 923 *
 924 * The power state is read from the PMCSR register, which however is
 925 * inaccessible in D3cold.  The platform firmware is therefore queried first
 926 * to detect accessibility of the register.  In case the platform firmware
 927 * reports an incorrect state or the device isn't power manageable by the
 928 * platform at all, we try to detect D3cold by testing accessibility of the
 929 * vendor ID in config space.
 930 */
 931void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
 932{
 933	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
 934	    !pci_device_is_present(dev)) {
 935		dev->current_state = PCI_D3cold;
 936	} else if (dev->pm_cap) {
 937		u16 pmcsr;
 938
 939		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 940		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 941	} else {
 942		dev->current_state = state;
 943	}
 944}
 945
 946/**
 947 * pci_refresh_power_state - Refresh the given device's power state data
 948 * @dev: Target PCI device.
 949 *
 950 * Ask the platform to refresh the devices power state information and invoke
 951 * pci_update_current_state() to update its current PCI power state.
 952 */
 953void pci_refresh_power_state(struct pci_dev *dev)
 954{
 955	if (platform_pci_power_manageable(dev))
 956		platform_pci_refresh_power_state(dev);
 957
 958	pci_update_current_state(dev, dev->current_state);
 959}
 960
 961/**
 962 * pci_platform_power_transition - Use platform to change device power state
 963 * @dev: PCI device to handle.
 964 * @state: State to put the device into.
 965 */
 966static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
 967{
 968	int error;
 969
 970	if (platform_pci_power_manageable(dev)) {
 971		error = platform_pci_set_power_state(dev, state);
 972		if (!error)
 973			pci_update_current_state(dev, state);
 974	} else
 975		error = -ENODEV;
 976
 977	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
 978		dev->current_state = PCI_D0;
 979
 980	return error;
 981}
 
 982
 983/**
 984 * pci_wakeup - Wake up a PCI device
 985 * @pci_dev: Device to handle.
 986 * @ign: ignored parameter
 987 */
 988static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
 989{
 990	pci_wakeup_event(pci_dev);
 991	pm_request_resume(&pci_dev->dev);
 992	return 0;
 993}
 994
 995/**
 996 * pci_wakeup_bus - Walk given bus and wake up devices on it
 997 * @bus: Top bus of the subtree to walk.
 998 */
 999void pci_wakeup_bus(struct pci_bus *bus)
1000{
1001	if (bus)
1002		pci_walk_bus(bus, pci_wakeup, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1003}
1004
1005/**
1006 * __pci_start_power_transition - Start power transition of a PCI device
1007 * @dev: PCI device to handle.
1008 * @state: State to put the device into.
1009 */
1010static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
1011{
1012	if (state == PCI_D0) {
1013		pci_platform_power_transition(dev, PCI_D0);
 
 
 
 
 
 
1014		/*
1015		 * Mandatory power management transition delays, see
1016		 * PCI Express Base Specification Revision 2.0 Section
1017		 * 6.6.1: Conventional Reset.  Do not delay for
1018		 * devices powered on/off by corresponding bridge,
1019		 * because have already delayed for the bridge.
1020		 */
1021		if (dev->runtime_d3cold) {
1022			if (dev->d3cold_delay && !dev->imm_ready)
1023				msleep(dev->d3cold_delay);
1024			/*
1025			 * When powering on a bridge from D3cold, the
1026			 * whole hierarchy may be powered on into
1027			 * D0uninitialized state, resume them to give
1028			 * them a chance to suspend again
1029			 */
1030			pci_wakeup_bus(dev->subordinate);
1031		}
1032	}
 
 
1033}
1034
1035/**
1036 * __pci_dev_set_current_state - Set current state of a PCI device
1037 * @dev: Device to handle
1038 * @data: pointer to state to be set
1039 */
1040static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1041{
1042	pci_power_t state = *(pci_power_t *)data;
1043
1044	dev->current_state = state;
1045	return 0;
1046}
1047
1048/**
1049 * pci_bus_set_current_state - Walk given bus and set current state of devices
1050 * @bus: Top bus of the subtree to walk.
1051 * @state: state to be set
1052 */
1053void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1054{
1055	if (bus)
1056		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1057}
1058
1059/**
1060 * __pci_complete_power_transition - Complete power transition of a PCI device
1061 * @dev: PCI device to handle.
1062 * @state: State to put the device into.
1063 *
1064 * This function should not be called directly by device drivers.
1065 */
1066int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
1067{
1068	int ret;
1069
1070	if (state <= PCI_D0)
1071		return -EINVAL;
1072	ret = pci_platform_power_transition(dev, state);
1073	/* Power off the bridge may power off the whole hierarchy */
1074	if (!ret && state == PCI_D3cold)
1075		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1076	return ret;
1077}
1078EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
1079
1080/**
1081 * pci_set_power_state - Set the power state of a PCI device
1082 * @dev: PCI device to handle.
1083 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1084 *
1085 * Transition a device to a new power state, using the platform firmware and/or
1086 * the device's PCI PM registers.
1087 *
1088 * RETURN VALUE:
1089 * -EINVAL if the requested state is invalid.
1090 * -EIO if device does not support PCI PM or its PM capabilities register has a
1091 * wrong version, or device doesn't support the requested state.
1092 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1093 * 0 if device already is in the requested state.
1094 * 0 if the transition is to D3 but D3 is not supported.
1095 * 0 if device's power state has been successfully changed.
1096 */
1097int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1098{
1099	int error;
1100
1101	/* Bound the state we're entering */
1102	if (state > PCI_D3cold)
1103		state = PCI_D3cold;
1104	else if (state < PCI_D0)
1105		state = PCI_D0;
1106	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1107
1108		/*
1109		 * If the device or the parent bridge do not support PCI
1110		 * PM, ignore the request if we're doing anything other
1111		 * than putting it into D0 (which would only happen on
1112		 * boot).
1113		 */
1114		return 0;
1115
1116	/* Check if we're already there */
1117	if (dev->current_state == state)
1118		return 0;
1119
1120	__pci_start_power_transition(dev, state);
 
1121
1122	/*
1123	 * This device is quirked not to be put into D3, so don't put it in
1124	 * D3
1125	 */
1126	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1127		return 0;
1128
1129	/*
1130	 * To put device in D3cold, we put device into D3hot in native
1131	 * way, then put device into D3cold with platform ops
1132	 */
1133	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1134					PCI_D3hot : state);
1135
1136	if (!__pci_complete_power_transition(dev, state))
1137		error = 0;
1138
1139	return error;
1140}
1141EXPORT_SYMBOL(pci_set_power_state);
1142
1143/**
1144 * pci_power_up - Put the given device into D0 forcibly
1145 * @dev: PCI device to power up
1146 */
1147void pci_power_up(struct pci_dev *dev)
1148{
1149	__pci_start_power_transition(dev, PCI_D0);
1150	pci_raw_set_power_state(dev, PCI_D0);
1151	pci_update_current_state(dev, PCI_D0);
1152}
 
1153
1154/**
1155 * pci_choose_state - Choose the power state of a PCI device
1156 * @dev: PCI device to be suspended
1157 * @state: target sleep state for the whole system. This is the value
1158 *	   that is passed to suspend() function.
1159 *
1160 * Returns PCI power state suitable for given device and given system
1161 * message.
1162 */
1163pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1164{
1165	pci_power_t ret;
1166
1167	if (!dev->pm_cap)
1168		return PCI_D0;
1169
1170	ret = platform_pci_choose_state(dev);
1171	if (ret != PCI_POWER_ERROR)
1172		return ret;
1173
1174	switch (state.event) {
1175	case PM_EVENT_ON:
1176		return PCI_D0;
1177	case PM_EVENT_FREEZE:
1178	case PM_EVENT_PRETHAW:
1179		/* REVISIT both freeze and pre-thaw "should" use D0 */
1180	case PM_EVENT_SUSPEND:
1181	case PM_EVENT_HIBERNATE:
1182		return PCI_D3hot;
1183	default:
1184		pci_info(dev, "unrecognized suspend event %d\n",
1185			 state.event);
1186		BUG();
1187	}
1188	return PCI_D0;
1189}
1190EXPORT_SYMBOL(pci_choose_state);
1191
1192#define PCI_EXP_SAVE_REGS	7
1193
1194static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1195						       u16 cap, bool extended)
1196{
1197	struct pci_cap_saved_state *tmp;
1198
1199	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1200		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1201			return tmp;
1202	}
1203	return NULL;
1204}
1205
1206struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1207{
1208	return _pci_find_saved_cap(dev, cap, false);
1209}
1210
1211struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1212{
1213	return _pci_find_saved_cap(dev, cap, true);
1214}
1215
1216static int pci_save_pcie_state(struct pci_dev *dev)
1217{
1218	int i = 0;
1219	struct pci_cap_saved_state *save_state;
1220	u16 *cap;
1221
1222	if (!pci_is_pcie(dev))
1223		return 0;
1224
1225	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1226	if (!save_state) {
1227		pci_err(dev, "buffer not found in %s\n", __func__);
1228		return -ENOMEM;
1229	}
1230
1231	cap = (u16 *)&save_state->cap.data[0];
1232	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1233	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1234	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1235	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1236	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1237	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1238	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1239
1240	return 0;
1241}
1242
1243static void pci_restore_pcie_state(struct pci_dev *dev)
1244{
1245	int i = 0;
1246	struct pci_cap_saved_state *save_state;
1247	u16 *cap;
1248
1249	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1250	if (!save_state)
1251		return;
1252
1253	cap = (u16 *)&save_state->cap.data[0];
1254	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1255	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1256	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1257	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1258	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1259	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1260	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1261}
1262
1263static int pci_save_pcix_state(struct pci_dev *dev)
1264{
1265	int pos;
1266	struct pci_cap_saved_state *save_state;
1267
1268	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1269	if (!pos)
1270		return 0;
1271
1272	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1273	if (!save_state) {
1274		pci_err(dev, "buffer not found in %s\n", __func__);
1275		return -ENOMEM;
1276	}
1277
1278	pci_read_config_word(dev, pos + PCI_X_CMD,
1279			     (u16 *)save_state->cap.data);
1280
1281	return 0;
1282}
1283
1284static void pci_restore_pcix_state(struct pci_dev *dev)
1285{
1286	int i = 0, pos;
1287	struct pci_cap_saved_state *save_state;
1288	u16 *cap;
1289
1290	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1291	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1292	if (!save_state || !pos)
1293		return;
1294	cap = (u16 *)&save_state->cap.data[0];
1295
1296	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1297}
1298
1299static void pci_save_ltr_state(struct pci_dev *dev)
1300{
1301	int ltr;
1302	struct pci_cap_saved_state *save_state;
1303	u16 *cap;
1304
1305	if (!pci_is_pcie(dev))
1306		return;
1307
1308	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1309	if (!ltr)
1310		return;
1311
1312	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1313	if (!save_state) {
1314		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1315		return;
1316	}
1317
1318	cap = (u16 *)&save_state->cap.data[0];
1319	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1320	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1321}
1322
1323static void pci_restore_ltr_state(struct pci_dev *dev)
1324{
1325	struct pci_cap_saved_state *save_state;
1326	int ltr;
1327	u16 *cap;
1328
1329	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1330	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1331	if (!save_state || !ltr)
1332		return;
1333
1334	cap = (u16 *)&save_state->cap.data[0];
1335	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1336	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1337}
1338
1339/**
1340 * pci_save_state - save the PCI configuration space of a device before
1341 *		    suspending
1342 * @dev: PCI device that we're dealing with
1343 */
1344int pci_save_state(struct pci_dev *dev)
1345{
1346	int i;
1347	/* XXX: 100% dword access ok here? */
1348	for (i = 0; i < 16; i++)
1349		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
 
 
 
1350	dev->state_saved = true;
1351
1352	i = pci_save_pcie_state(dev);
1353	if (i != 0)
1354		return i;
1355
1356	i = pci_save_pcix_state(dev);
1357	if (i != 0)
1358		return i;
1359
1360	pci_save_ltr_state(dev);
1361	pci_save_dpc_state(dev);
 
 
1362	return pci_save_vc_state(dev);
1363}
1364EXPORT_SYMBOL(pci_save_state);
1365
1366static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1367				     u32 saved_val, int retry, bool force)
1368{
1369	u32 val;
1370
1371	pci_read_config_dword(pdev, offset, &val);
1372	if (!force && val == saved_val)
1373		return;
1374
1375	for (;;) {
1376		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1377			offset, val, saved_val);
1378		pci_write_config_dword(pdev, offset, saved_val);
1379		if (retry-- <= 0)
1380			return;
1381
1382		pci_read_config_dword(pdev, offset, &val);
1383		if (val == saved_val)
1384			return;
1385
1386		mdelay(1);
1387	}
1388}
1389
1390static void pci_restore_config_space_range(struct pci_dev *pdev,
1391					   int start, int end, int retry,
1392					   bool force)
1393{
1394	int index;
1395
1396	for (index = end; index >= start; index--)
1397		pci_restore_config_dword(pdev, 4 * index,
1398					 pdev->saved_config_space[index],
1399					 retry, force);
1400}
1401
1402static void pci_restore_config_space(struct pci_dev *pdev)
1403{
1404	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1405		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1406		/* Restore BARs before the command register. */
1407		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1408		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1409	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1410		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1411
1412		/*
1413		 * Force rewriting of prefetch registers to avoid S3 resume
1414		 * issues on Intel PCI bridges that occur when these
1415		 * registers are not explicitly written.
1416		 */
1417		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1418		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1419	} else {
1420		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1421	}
1422}
1423
1424static void pci_restore_rebar_state(struct pci_dev *pdev)
1425{
1426	unsigned int pos, nbars, i;
1427	u32 ctrl;
1428
1429	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1430	if (!pos)
1431		return;
1432
1433	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1434	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1435		    PCI_REBAR_CTRL_NBAR_SHIFT;
1436
1437	for (i = 0; i < nbars; i++, pos += 8) {
1438		struct resource *res;
1439		int bar_idx, size;
1440
1441		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1442		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1443		res = pdev->resource + bar_idx;
1444		size = ilog2(resource_size(res)) - 20;
1445		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1446		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1447		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1448	}
1449}
1450
1451/**
1452 * pci_restore_state - Restore the saved state of a PCI device
1453 * @dev: PCI device that we're dealing with
1454 */
1455void pci_restore_state(struct pci_dev *dev)
1456{
1457	if (!dev->state_saved)
1458		return;
1459
1460	/*
1461	 * Restore max latencies (in the LTR capability) before enabling
1462	 * LTR itself (in the PCIe capability).
1463	 */
1464	pci_restore_ltr_state(dev);
1465
1466	pci_restore_pcie_state(dev);
1467	pci_restore_pasid_state(dev);
1468	pci_restore_pri_state(dev);
1469	pci_restore_ats_state(dev);
1470	pci_restore_vc_state(dev);
1471	pci_restore_rebar_state(dev);
1472	pci_restore_dpc_state(dev);
 
1473
1474	pci_cleanup_aer_error_status_regs(dev);
 
1475
1476	pci_restore_config_space(dev);
1477
1478	pci_restore_pcix_state(dev);
1479	pci_restore_msi_state(dev);
1480
1481	/* Restore ACS and IOV configuration state */
1482	pci_enable_acs(dev);
1483	pci_restore_iov_state(dev);
1484
1485	dev->state_saved = false;
1486}
1487EXPORT_SYMBOL(pci_restore_state);
1488
1489struct pci_saved_state {
1490	u32 config_space[16];
1491	struct pci_cap_saved_data cap[0];
1492};
1493
1494/**
1495 * pci_store_saved_state - Allocate and return an opaque struct containing
1496 *			   the device saved state.
1497 * @dev: PCI device that we're dealing with
1498 *
1499 * Return NULL if no state or error.
1500 */
1501struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1502{
1503	struct pci_saved_state *state;
1504	struct pci_cap_saved_state *tmp;
1505	struct pci_cap_saved_data *cap;
1506	size_t size;
1507
1508	if (!dev->state_saved)
1509		return NULL;
1510
1511	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1512
1513	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1514		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1515
1516	state = kzalloc(size, GFP_KERNEL);
1517	if (!state)
1518		return NULL;
1519
1520	memcpy(state->config_space, dev->saved_config_space,
1521	       sizeof(state->config_space));
1522
1523	cap = state->cap;
1524	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1525		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1526		memcpy(cap, &tmp->cap, len);
1527		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1528	}
1529	/* Empty cap_save terminates list */
1530
1531	return state;
1532}
1533EXPORT_SYMBOL_GPL(pci_store_saved_state);
1534
1535/**
1536 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1537 * @dev: PCI device that we're dealing with
1538 * @state: Saved state returned from pci_store_saved_state()
1539 */
1540int pci_load_saved_state(struct pci_dev *dev,
1541			 struct pci_saved_state *state)
1542{
1543	struct pci_cap_saved_data *cap;
1544
1545	dev->state_saved = false;
1546
1547	if (!state)
1548		return 0;
1549
1550	memcpy(dev->saved_config_space, state->config_space,
1551	       sizeof(state->config_space));
1552
1553	cap = state->cap;
1554	while (cap->size) {
1555		struct pci_cap_saved_state *tmp;
1556
1557		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1558		if (!tmp || tmp->cap.size != cap->size)
1559			return -EINVAL;
1560
1561		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1562		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1563		       sizeof(struct pci_cap_saved_data) + cap->size);
1564	}
1565
1566	dev->state_saved = true;
1567	return 0;
1568}
1569EXPORT_SYMBOL_GPL(pci_load_saved_state);
1570
1571/**
1572 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1573 *				   and free the memory allocated for it.
1574 * @dev: PCI device that we're dealing with
1575 * @state: Pointer to saved state returned from pci_store_saved_state()
1576 */
1577int pci_load_and_free_saved_state(struct pci_dev *dev,
1578				  struct pci_saved_state **state)
1579{
1580	int ret = pci_load_saved_state(dev, *state);
1581	kfree(*state);
1582	*state = NULL;
1583	return ret;
1584}
1585EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1586
1587int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1588{
1589	return pci_enable_resources(dev, bars);
1590}
1591
1592static int do_pci_enable_device(struct pci_dev *dev, int bars)
1593{
1594	int err;
1595	struct pci_dev *bridge;
1596	u16 cmd;
1597	u8 pin;
1598
1599	err = pci_set_power_state(dev, PCI_D0);
1600	if (err < 0 && err != -EIO)
1601		return err;
1602
1603	bridge = pci_upstream_bridge(dev);
1604	if (bridge)
1605		pcie_aspm_powersave_config_link(bridge);
1606
1607	err = pcibios_enable_device(dev, bars);
1608	if (err < 0)
1609		return err;
1610	pci_fixup_device(pci_fixup_enable, dev);
1611
1612	if (dev->msi_enabled || dev->msix_enabled)
1613		return 0;
1614
1615	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1616	if (pin) {
1617		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1618		if (cmd & PCI_COMMAND_INTX_DISABLE)
1619			pci_write_config_word(dev, PCI_COMMAND,
1620					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1621	}
1622
1623	return 0;
1624}
1625
1626/**
1627 * pci_reenable_device - Resume abandoned device
1628 * @dev: PCI device to be resumed
1629 *
1630 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1631 * to be called by normal code, write proper resume handler and use it instead.
1632 */
1633int pci_reenable_device(struct pci_dev *dev)
1634{
1635	if (pci_is_enabled(dev))
1636		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1637	return 0;
1638}
1639EXPORT_SYMBOL(pci_reenable_device);
1640
1641static void pci_enable_bridge(struct pci_dev *dev)
1642{
1643	struct pci_dev *bridge;
1644	int retval;
1645
1646	bridge = pci_upstream_bridge(dev);
1647	if (bridge)
1648		pci_enable_bridge(bridge);
1649
1650	if (pci_is_enabled(dev)) {
1651		if (!dev->is_busmaster)
1652			pci_set_master(dev);
1653		return;
1654	}
1655
1656	retval = pci_enable_device(dev);
1657	if (retval)
1658		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1659			retval);
1660	pci_set_master(dev);
1661}
1662
1663static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1664{
1665	struct pci_dev *bridge;
1666	int err;
1667	int i, bars = 0;
1668
1669	/*
1670	 * Power state could be unknown at this point, either due to a fresh
1671	 * boot or a device removal call.  So get the current power state
1672	 * so that things like MSI message writing will behave as expected
1673	 * (e.g. if the device really is in D0 at enable time).
1674	 */
1675	if (dev->pm_cap) {
1676		u16 pmcsr;
1677		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1678		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1679	}
1680
1681	if (atomic_inc_return(&dev->enable_cnt) > 1)
1682		return 0;		/* already enabled */
1683
1684	bridge = pci_upstream_bridge(dev);
1685	if (bridge)
1686		pci_enable_bridge(bridge);
1687
1688	/* only skip sriov related */
1689	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1690		if (dev->resource[i].flags & flags)
1691			bars |= (1 << i);
1692	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1693		if (dev->resource[i].flags & flags)
1694			bars |= (1 << i);
1695
1696	err = do_pci_enable_device(dev, bars);
1697	if (err < 0)
1698		atomic_dec(&dev->enable_cnt);
1699	return err;
1700}
1701
1702/**
1703 * pci_enable_device_io - Initialize a device for use with IO space
1704 * @dev: PCI device to be initialized
1705 *
1706 * Initialize device before it's used by a driver. Ask low-level code
1707 * to enable I/O resources. Wake up the device if it was suspended.
1708 * Beware, this function can fail.
1709 */
1710int pci_enable_device_io(struct pci_dev *dev)
1711{
1712	return pci_enable_device_flags(dev, IORESOURCE_IO);
1713}
1714EXPORT_SYMBOL(pci_enable_device_io);
1715
1716/**
1717 * pci_enable_device_mem - Initialize a device for use with Memory space
1718 * @dev: PCI device to be initialized
1719 *
1720 * Initialize device before it's used by a driver. Ask low-level code
1721 * to enable Memory resources. Wake up the device if it was suspended.
1722 * Beware, this function can fail.
1723 */
1724int pci_enable_device_mem(struct pci_dev *dev)
1725{
1726	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1727}
1728EXPORT_SYMBOL(pci_enable_device_mem);
1729
1730/**
1731 * pci_enable_device - Initialize device before it's used by a driver.
1732 * @dev: PCI device to be initialized
1733 *
1734 * Initialize device before it's used by a driver. Ask low-level code
1735 * to enable I/O and memory. Wake up the device if it was suspended.
1736 * Beware, this function can fail.
1737 *
1738 * Note we don't actually enable the device many times if we call
1739 * this function repeatedly (we just increment the count).
1740 */
1741int pci_enable_device(struct pci_dev *dev)
1742{
1743	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1744}
1745EXPORT_SYMBOL(pci_enable_device);
1746
1747/*
1748 * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1749 * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1750 * there's no need to track it separately.  pci_devres is initialized
1751 * when a device is enabled using managed PCI device enable interface.
1752 */
1753struct pci_devres {
1754	unsigned int enabled:1;
1755	unsigned int pinned:1;
1756	unsigned int orig_intx:1;
1757	unsigned int restore_intx:1;
1758	unsigned int mwi:1;
1759	u32 region_mask;
1760};
1761
1762static void pcim_release(struct device *gendev, void *res)
1763{
1764	struct pci_dev *dev = to_pci_dev(gendev);
1765	struct pci_devres *this = res;
1766	int i;
1767
1768	if (dev->msi_enabled)
1769		pci_disable_msi(dev);
1770	if (dev->msix_enabled)
1771		pci_disable_msix(dev);
1772
1773	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1774		if (this->region_mask & (1 << i))
1775			pci_release_region(dev, i);
1776
1777	if (this->mwi)
1778		pci_clear_mwi(dev);
1779
1780	if (this->restore_intx)
1781		pci_intx(dev, this->orig_intx);
1782
1783	if (this->enabled && !this->pinned)
1784		pci_disable_device(dev);
1785}
1786
1787static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1788{
1789	struct pci_devres *dr, *new_dr;
1790
1791	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1792	if (dr)
1793		return dr;
1794
1795	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1796	if (!new_dr)
1797		return NULL;
1798	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1799}
1800
1801static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1802{
1803	if (pci_is_managed(pdev))
1804		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1805	return NULL;
1806}
1807
1808/**
1809 * pcim_enable_device - Managed pci_enable_device()
1810 * @pdev: PCI device to be initialized
1811 *
1812 * Managed pci_enable_device().
1813 */
1814int pcim_enable_device(struct pci_dev *pdev)
1815{
1816	struct pci_devres *dr;
1817	int rc;
1818
1819	dr = get_pci_dr(pdev);
1820	if (unlikely(!dr))
1821		return -ENOMEM;
1822	if (dr->enabled)
1823		return 0;
1824
1825	rc = pci_enable_device(pdev);
1826	if (!rc) {
1827		pdev->is_managed = 1;
1828		dr->enabled = 1;
1829	}
1830	return rc;
1831}
1832EXPORT_SYMBOL(pcim_enable_device);
1833
1834/**
1835 * pcim_pin_device - Pin managed PCI device
1836 * @pdev: PCI device to pin
1837 *
1838 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1839 * driver detach.  @pdev must have been enabled with
1840 * pcim_enable_device().
1841 */
1842void pcim_pin_device(struct pci_dev *pdev)
1843{
1844	struct pci_devres *dr;
1845
1846	dr = find_pci_dr(pdev);
1847	WARN_ON(!dr || !dr->enabled);
1848	if (dr)
1849		dr->pinned = 1;
1850}
1851EXPORT_SYMBOL(pcim_pin_device);
1852
1853/*
1854 * pcibios_add_device - provide arch specific hooks when adding device dev
1855 * @dev: the PCI device being added
1856 *
1857 * Permits the platform to provide architecture specific functionality when
1858 * devices are added. This is the default implementation. Architecture
1859 * implementations can override this.
1860 */
1861int __weak pcibios_add_device(struct pci_dev *dev)
1862{
1863	return 0;
1864}
1865
1866/**
1867 * pcibios_release_device - provide arch specific hooks when releasing
1868 *			    device dev
1869 * @dev: the PCI device being released
1870 *
1871 * Permits the platform to provide architecture specific functionality when
1872 * devices are released. This is the default implementation. Architecture
1873 * implementations can override this.
1874 */
1875void __weak pcibios_release_device(struct pci_dev *dev) {}
1876
1877/**
1878 * pcibios_disable_device - disable arch specific PCI resources for device dev
1879 * @dev: the PCI device to disable
1880 *
1881 * Disables architecture specific PCI resources for the device. This
1882 * is the default implementation. Architecture implementations can
1883 * override this.
1884 */
1885void __weak pcibios_disable_device(struct pci_dev *dev) {}
1886
1887/**
1888 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1889 * @irq: ISA IRQ to penalize
1890 * @active: IRQ active or not
1891 *
1892 * Permits the platform to provide architecture-specific functionality when
1893 * penalizing ISA IRQs. This is the default implementation. Architecture
1894 * implementations can override this.
1895 */
1896void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1897
1898static void do_pci_disable_device(struct pci_dev *dev)
1899{
1900	u16 pci_command;
1901
1902	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1903	if (pci_command & PCI_COMMAND_MASTER) {
1904		pci_command &= ~PCI_COMMAND_MASTER;
1905		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1906	}
1907
1908	pcibios_disable_device(dev);
1909}
1910
1911/**
1912 * pci_disable_enabled_device - Disable device without updating enable_cnt
1913 * @dev: PCI device to disable
1914 *
1915 * NOTE: This function is a backend of PCI power management routines and is
1916 * not supposed to be called drivers.
1917 */
1918void pci_disable_enabled_device(struct pci_dev *dev)
1919{
1920	if (pci_is_enabled(dev))
1921		do_pci_disable_device(dev);
1922}
1923
1924/**
1925 * pci_disable_device - Disable PCI device after use
1926 * @dev: PCI device to be disabled
1927 *
1928 * Signal to the system that the PCI device is not in use by the system
1929 * anymore.  This only involves disabling PCI bus-mastering, if active.
1930 *
1931 * Note we don't actually disable the device until all callers of
1932 * pci_enable_device() have called pci_disable_device().
1933 */
1934void pci_disable_device(struct pci_dev *dev)
1935{
1936	struct pci_devres *dr;
1937
1938	dr = find_pci_dr(dev);
1939	if (dr)
1940		dr->enabled = 0;
1941
1942	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1943		      "disabling already-disabled device");
1944
1945	if (atomic_dec_return(&dev->enable_cnt) != 0)
1946		return;
1947
1948	do_pci_disable_device(dev);
1949
1950	dev->is_busmaster = 0;
1951}
1952EXPORT_SYMBOL(pci_disable_device);
1953
1954/**
1955 * pcibios_set_pcie_reset_state - set reset state for device dev
1956 * @dev: the PCIe device reset
1957 * @state: Reset state to enter into
1958 *
1959 * Set the PCIe reset state for the device. This is the default
1960 * implementation. Architecture implementations can override this.
1961 */
1962int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1963					enum pcie_reset_state state)
1964{
1965	return -EINVAL;
1966}
1967
1968/**
1969 * pci_set_pcie_reset_state - set reset state for device dev
1970 * @dev: the PCIe device reset
1971 * @state: Reset state to enter into
1972 *
1973 * Sets the PCI reset state for the device.
1974 */
1975int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1976{
1977	return pcibios_set_pcie_reset_state(dev, state);
1978}
1979EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1980
 
 
 
 
 
 
 
 
1981/**
1982 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1983 * @dev: PCIe root port or event collector.
1984 */
1985void pcie_clear_root_pme_status(struct pci_dev *dev)
1986{
1987	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1988}
1989
1990/**
1991 * pci_check_pme_status - Check if given device has generated PME.
1992 * @dev: Device to check.
1993 *
1994 * Check the PME status of the device and if set, clear it and clear PME enable
1995 * (if set).  Return 'true' if PME status and PME enable were both set or
1996 * 'false' otherwise.
1997 */
1998bool pci_check_pme_status(struct pci_dev *dev)
1999{
2000	int pmcsr_pos;
2001	u16 pmcsr;
2002	bool ret = false;
2003
2004	if (!dev->pm_cap)
2005		return false;
2006
2007	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2008	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2009	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2010		return false;
2011
2012	/* Clear PME status. */
2013	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2014	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2015		/* Disable PME to avoid interrupt flood. */
2016		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2017		ret = true;
2018	}
2019
2020	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2021
2022	return ret;
2023}
2024
2025/**
2026 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2027 * @dev: Device to handle.
2028 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2029 *
2030 * Check if @dev has generated PME and queue a resume request for it in that
2031 * case.
2032 */
2033static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2034{
2035	if (pme_poll_reset && dev->pme_poll)
2036		dev->pme_poll = false;
2037
2038	if (pci_check_pme_status(dev)) {
2039		pci_wakeup_event(dev);
2040		pm_request_resume(&dev->dev);
2041	}
2042	return 0;
2043}
2044
2045/**
2046 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2047 * @bus: Top bus of the subtree to walk.
2048 */
2049void pci_pme_wakeup_bus(struct pci_bus *bus)
2050{
2051	if (bus)
2052		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2053}
2054
2055
2056/**
2057 * pci_pme_capable - check the capability of PCI device to generate PME#
2058 * @dev: PCI device to handle.
2059 * @state: PCI state from which device will issue PME#.
2060 */
2061bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2062{
2063	if (!dev->pm_cap)
2064		return false;
2065
2066	return !!(dev->pme_support & (1 << state));
2067}
2068EXPORT_SYMBOL(pci_pme_capable);
2069
2070static void pci_pme_list_scan(struct work_struct *work)
2071{
2072	struct pci_pme_device *pme_dev, *n;
2073
2074	mutex_lock(&pci_pme_list_mutex);
2075	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2076		if (pme_dev->dev->pme_poll) {
2077			struct pci_dev *bridge;
2078
2079			bridge = pme_dev->dev->bus->self;
2080			/*
2081			 * If bridge is in low power state, the
2082			 * configuration space of subordinate devices
2083			 * may be not accessible
2084			 */
2085			if (bridge && bridge->current_state != PCI_D0)
2086				continue;
2087			/*
2088			 * If the device is in D3cold it should not be
2089			 * polled either.
2090			 */
2091			if (pme_dev->dev->current_state == PCI_D3cold)
2092				continue;
2093
2094			pci_pme_wakeup(pme_dev->dev, NULL);
2095		} else {
2096			list_del(&pme_dev->list);
2097			kfree(pme_dev);
2098		}
2099	}
2100	if (!list_empty(&pci_pme_list))
2101		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2102				   msecs_to_jiffies(PME_TIMEOUT));
2103	mutex_unlock(&pci_pme_list_mutex);
2104}
2105
2106static void __pci_pme_active(struct pci_dev *dev, bool enable)
2107{
2108	u16 pmcsr;
2109
2110	if (!dev->pme_support)
2111		return;
2112
2113	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2114	/* Clear PME_Status by writing 1 to it and enable PME# */
2115	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2116	if (!enable)
2117		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2118
2119	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2120}
2121
2122/**
2123 * pci_pme_restore - Restore PME configuration after config space restore.
2124 * @dev: PCI device to update.
2125 */
2126void pci_pme_restore(struct pci_dev *dev)
2127{
2128	u16 pmcsr;
2129
2130	if (!dev->pme_support)
2131		return;
2132
2133	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2134	if (dev->wakeup_prepared) {
2135		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2136		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2137	} else {
2138		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2139		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2140	}
2141	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2142}
2143
2144/**
2145 * pci_pme_active - enable or disable PCI device's PME# function
2146 * @dev: PCI device to handle.
2147 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2148 *
2149 * The caller must verify that the device is capable of generating PME# before
2150 * calling this function with @enable equal to 'true'.
2151 */
2152void pci_pme_active(struct pci_dev *dev, bool enable)
2153{
2154	__pci_pme_active(dev, enable);
2155
2156	/*
2157	 * PCI (as opposed to PCIe) PME requires that the device have
2158	 * its PME# line hooked up correctly. Not all hardware vendors
2159	 * do this, so the PME never gets delivered and the device
2160	 * remains asleep. The easiest way around this is to
2161	 * periodically walk the list of suspended devices and check
2162	 * whether any have their PME flag set. The assumption is that
2163	 * we'll wake up often enough anyway that this won't be a huge
2164	 * hit, and the power savings from the devices will still be a
2165	 * win.
2166	 *
2167	 * Although PCIe uses in-band PME message instead of PME# line
2168	 * to report PME, PME does not work for some PCIe devices in
2169	 * reality.  For example, there are devices that set their PME
2170	 * status bits, but don't really bother to send a PME message;
2171	 * there are PCI Express Root Ports that don't bother to
2172	 * trigger interrupts when they receive PME messages from the
2173	 * devices below.  So PME poll is used for PCIe devices too.
2174	 */
2175
2176	if (dev->pme_poll) {
2177		struct pci_pme_device *pme_dev;
2178		if (enable) {
2179			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2180					  GFP_KERNEL);
2181			if (!pme_dev) {
2182				pci_warn(dev, "can't enable PME#\n");
2183				return;
2184			}
2185			pme_dev->dev = dev;
2186			mutex_lock(&pci_pme_list_mutex);
2187			list_add(&pme_dev->list, &pci_pme_list);
2188			if (list_is_singular(&pci_pme_list))
2189				queue_delayed_work(system_freezable_wq,
2190						   &pci_pme_work,
2191						   msecs_to_jiffies(PME_TIMEOUT));
2192			mutex_unlock(&pci_pme_list_mutex);
2193		} else {
2194			mutex_lock(&pci_pme_list_mutex);
2195			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2196				if (pme_dev->dev == dev) {
2197					list_del(&pme_dev->list);
2198					kfree(pme_dev);
2199					break;
2200				}
2201			}
2202			mutex_unlock(&pci_pme_list_mutex);
2203		}
2204	}
2205
2206	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2207}
2208EXPORT_SYMBOL(pci_pme_active);
2209
2210/**
2211 * __pci_enable_wake - enable PCI device as wakeup event source
2212 * @dev: PCI device affected
2213 * @state: PCI state from which device will issue wakeup events
2214 * @enable: True to enable event generation; false to disable
2215 *
2216 * This enables the device as a wakeup event source, or disables it.
2217 * When such events involves platform-specific hooks, those hooks are
2218 * called automatically by this routine.
2219 *
2220 * Devices with legacy power management (no standard PCI PM capabilities)
2221 * always require such platform hooks.
2222 *
2223 * RETURN VALUE:
2224 * 0 is returned on success
2225 * -EINVAL is returned if device is not supposed to wake up the system
2226 * Error code depending on the platform is returned if both the platform and
2227 * the native mechanism fail to enable the generation of wake-up events
2228 */
2229static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2230{
2231	int ret = 0;
2232
2233	/*
2234	 * Bridges that are not power-manageable directly only signal
2235	 * wakeup on behalf of subordinate devices which is set up
2236	 * elsewhere, so skip them. However, bridges that are
2237	 * power-manageable may signal wakeup for themselves (for example,
2238	 * on a hotplug event) and they need to be covered here.
2239	 */
2240	if (!pci_power_manageable(dev))
2241		return 0;
2242
2243	/* Don't do the same thing twice in a row for one device. */
2244	if (!!enable == !!dev->wakeup_prepared)
2245		return 0;
2246
2247	/*
2248	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2249	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2250	 * enable.  To disable wake-up we call the platform first, for symmetry.
2251	 */
2252
2253	if (enable) {
2254		int error;
2255
2256		if (pci_pme_capable(dev, state))
 
 
 
 
 
 
 
2257			pci_pme_active(dev, true);
2258		else
2259			ret = 1;
2260		error = platform_pci_set_wakeup(dev, true);
2261		if (ret)
2262			ret = error;
2263		if (!ret)
2264			dev->wakeup_prepared = true;
2265	} else {
2266		platform_pci_set_wakeup(dev, false);
2267		pci_pme_active(dev, false);
2268		dev->wakeup_prepared = false;
2269	}
2270
2271	return ret;
2272}
2273
2274/**
2275 * pci_enable_wake - change wakeup settings for a PCI device
2276 * @pci_dev: Target device
2277 * @state: PCI state from which device will issue wakeup events
2278 * @enable: Whether or not to enable event generation
2279 *
2280 * If @enable is set, check device_may_wakeup() for the device before calling
2281 * __pci_enable_wake() for it.
2282 */
2283int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2284{
2285	if (enable && !device_may_wakeup(&pci_dev->dev))
2286		return -EINVAL;
2287
2288	return __pci_enable_wake(pci_dev, state, enable);
2289}
2290EXPORT_SYMBOL(pci_enable_wake);
2291
2292/**
2293 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2294 * @dev: PCI device to prepare
2295 * @enable: True to enable wake-up event generation; false to disable
2296 *
2297 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2298 * and this function allows them to set that up cleanly - pci_enable_wake()
2299 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2300 * ordering constraints.
2301 *
2302 * This function only returns error code if the device is not allowed to wake
2303 * up the system from sleep or it is not capable of generating PME# from both
2304 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2305 */
2306int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2307{
2308	return pci_pme_capable(dev, PCI_D3cold) ?
2309			pci_enable_wake(dev, PCI_D3cold, enable) :
2310			pci_enable_wake(dev, PCI_D3hot, enable);
2311}
2312EXPORT_SYMBOL(pci_wake_from_d3);
2313
2314/**
2315 * pci_target_state - find an appropriate low power state for a given PCI dev
2316 * @dev: PCI device
2317 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2318 *
2319 * Use underlying platform code to find a supported low power state for @dev.
2320 * If the platform can't manage @dev, return the deepest state from which it
2321 * can generate wake events, based on any available PME info.
2322 */
2323static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2324{
2325	pci_power_t target_state = PCI_D3hot;
2326
2327	if (platform_pci_power_manageable(dev)) {
2328		/*
2329		 * Call the platform to find the target state for the device.
2330		 */
2331		pci_power_t state = platform_pci_choose_state(dev);
2332
2333		switch (state) {
2334		case PCI_POWER_ERROR:
2335		case PCI_UNKNOWN:
2336			break;
2337		case PCI_D1:
2338		case PCI_D2:
2339			if (pci_no_d1d2(dev))
2340				break;
2341			/* else, fall through */
2342		default:
2343			target_state = state;
2344		}
2345
2346		return target_state;
2347	}
2348
2349	if (!dev->pm_cap)
2350		target_state = PCI_D0;
2351
2352	/*
2353	 * If the device is in D3cold even though it's not power-manageable by
2354	 * the platform, it may have been powered down by non-standard means.
2355	 * Best to let it slumber.
2356	 */
2357	if (dev->current_state == PCI_D3cold)
2358		target_state = PCI_D3cold;
2359
2360	if (wakeup) {
 
 
2361		/*
2362		 * Find the deepest state from which the device can generate
2363		 * PME#.
2364		 */
2365		if (dev->pme_support) {
2366			while (target_state
2367			      && !(dev->pme_support & (1 << target_state)))
2368				target_state--;
2369		}
 
 
2370	}
2371
2372	return target_state;
2373}
2374
2375/**
2376 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2377 *			  into a sleep state
2378 * @dev: Device to handle.
2379 *
2380 * Choose the power state appropriate for the device depending on whether
2381 * it can wake up the system and/or is power manageable by the platform
2382 * (PCI_D3hot is the default) and put the device into that state.
2383 */
2384int pci_prepare_to_sleep(struct pci_dev *dev)
2385{
2386	bool wakeup = device_may_wakeup(&dev->dev);
2387	pci_power_t target_state = pci_target_state(dev, wakeup);
2388	int error;
2389
2390	if (target_state == PCI_POWER_ERROR)
2391		return -EIO;
2392
 
 
 
 
 
 
 
 
 
 
2393	pci_enable_wake(dev, target_state, wakeup);
2394
2395	error = pci_set_power_state(dev, target_state);
2396
2397	if (error)
2398		pci_enable_wake(dev, target_state, false);
 
 
2399
2400	return error;
2401}
2402EXPORT_SYMBOL(pci_prepare_to_sleep);
2403
2404/**
2405 * pci_back_from_sleep - turn PCI device on during system-wide transition
2406 *			 into working state
2407 * @dev: Device to handle.
2408 *
2409 * Disable device's system wake-up capability and put it into D0.
2410 */
2411int pci_back_from_sleep(struct pci_dev *dev)
2412{
2413	pci_enable_wake(dev, PCI_D0, false);
2414	return pci_set_power_state(dev, PCI_D0);
2415}
2416EXPORT_SYMBOL(pci_back_from_sleep);
2417
2418/**
2419 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2420 * @dev: PCI device being suspended.
2421 *
2422 * Prepare @dev to generate wake-up events at run time and put it into a low
2423 * power state.
2424 */
2425int pci_finish_runtime_suspend(struct pci_dev *dev)
2426{
2427	pci_power_t target_state;
2428	int error;
2429
2430	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2431	if (target_state == PCI_POWER_ERROR)
2432		return -EIO;
2433
2434	dev->runtime_d3cold = target_state == PCI_D3cold;
2435
 
 
 
 
 
 
 
 
 
 
2436	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2437
2438	error = pci_set_power_state(dev, target_state);
2439
2440	if (error) {
2441		pci_enable_wake(dev, target_state, false);
 
2442		dev->runtime_d3cold = false;
2443	}
2444
2445	return error;
2446}
2447
2448/**
2449 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2450 * @dev: Device to check.
2451 *
2452 * Return true if the device itself is capable of generating wake-up events
2453 * (through the platform or using the native PCIe PME) or if the device supports
2454 * PME and one of its upstream bridges can generate wake-up events.
2455 */
2456bool pci_dev_run_wake(struct pci_dev *dev)
2457{
2458	struct pci_bus *bus = dev->bus;
2459
2460	if (!dev->pme_support)
2461		return false;
2462
2463	/* PME-capable in principle, but not from the target power state */
2464	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2465		return false;
2466
2467	if (device_can_wakeup(&dev->dev))
2468		return true;
2469
2470	while (bus->parent) {
2471		struct pci_dev *bridge = bus->self;
2472
2473		if (device_can_wakeup(&bridge->dev))
2474			return true;
2475
2476		bus = bus->parent;
2477	}
2478
2479	/* We have reached the root bus. */
2480	if (bus->bridge)
2481		return device_can_wakeup(bus->bridge);
2482
2483	return false;
2484}
2485EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2486
2487/**
2488 * pci_dev_need_resume - Check if it is necessary to resume the device.
2489 * @pci_dev: Device to check.
2490 *
2491 * Return 'true' if the device is not runtime-suspended or it has to be
2492 * reconfigured due to wakeup settings difference between system and runtime
2493 * suspend, or the current power state of it is not suitable for the upcoming
2494 * (system-wide) transition.
2495 */
2496bool pci_dev_need_resume(struct pci_dev *pci_dev)
2497{
2498	struct device *dev = &pci_dev->dev;
2499	pci_power_t target_state;
2500
2501	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2502		return true;
2503
2504	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2505
2506	/*
2507	 * If the earlier platform check has not triggered, D3cold is just power
2508	 * removal on top of D3hot, so no need to resume the device in that
2509	 * case.
2510	 */
2511	return target_state != pci_dev->current_state &&
2512		target_state != PCI_D3cold &&
2513		pci_dev->current_state != PCI_D3hot;
2514}
2515
2516/**
2517 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2518 * @pci_dev: Device to check.
2519 *
2520 * If the device is suspended and it is not configured for system wakeup,
2521 * disable PME for it to prevent it from waking up the system unnecessarily.
2522 *
2523 * Note that if the device's power state is D3cold and the platform check in
2524 * pci_dev_need_resume() has not triggered, the device's configuration need not
2525 * be changed.
2526 */
2527void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2528{
2529	struct device *dev = &pci_dev->dev;
2530
2531	spin_lock_irq(&dev->power.lock);
2532
2533	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2534	    pci_dev->current_state < PCI_D3cold)
2535		__pci_pme_active(pci_dev, false);
2536
2537	spin_unlock_irq(&dev->power.lock);
2538}
2539
2540/**
2541 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2542 * @pci_dev: Device to handle.
2543 *
2544 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2545 * it might have been disabled during the prepare phase of system suspend if
2546 * the device was not configured for system wakeup.
2547 */
2548void pci_dev_complete_resume(struct pci_dev *pci_dev)
2549{
2550	struct device *dev = &pci_dev->dev;
2551
2552	if (!pci_dev_run_wake(pci_dev))
2553		return;
2554
2555	spin_lock_irq(&dev->power.lock);
2556
2557	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2558		__pci_pme_active(pci_dev, true);
2559
2560	spin_unlock_irq(&dev->power.lock);
2561}
2562
2563void pci_config_pm_runtime_get(struct pci_dev *pdev)
2564{
2565	struct device *dev = &pdev->dev;
2566	struct device *parent = dev->parent;
2567
2568	if (parent)
2569		pm_runtime_get_sync(parent);
2570	pm_runtime_get_noresume(dev);
2571	/*
2572	 * pdev->current_state is set to PCI_D3cold during suspending,
2573	 * so wait until suspending completes
2574	 */
2575	pm_runtime_barrier(dev);
2576	/*
2577	 * Only need to resume devices in D3cold, because config
2578	 * registers are still accessible for devices suspended but
2579	 * not in D3cold.
2580	 */
2581	if (pdev->current_state == PCI_D3cold)
2582		pm_runtime_resume(dev);
2583}
2584
2585void pci_config_pm_runtime_put(struct pci_dev *pdev)
2586{
2587	struct device *dev = &pdev->dev;
2588	struct device *parent = dev->parent;
2589
2590	pm_runtime_put(dev);
2591	if (parent)
2592		pm_runtime_put_sync(parent);
2593}
2594
2595static const struct dmi_system_id bridge_d3_blacklist[] = {
2596#ifdef CONFIG_X86
2597	{
2598		/*
2599		 * Gigabyte X299 root port is not marked as hotplug capable
2600		 * which allows Linux to power manage it.  However, this
2601		 * confuses the BIOS SMI handler so don't power manage root
2602		 * ports on that system.
2603		 */
2604		.ident = "X299 DESIGNARE EX-CF",
2605		.matches = {
2606			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2607			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2608		},
2609	},
2610#endif
2611	{ }
2612};
2613
2614/**
2615 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2616 * @bridge: Bridge to check
2617 *
2618 * This function checks if it is possible to move the bridge to D3.
2619 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2620 */
2621bool pci_bridge_d3_possible(struct pci_dev *bridge)
2622{
2623	if (!pci_is_pcie(bridge))
2624		return false;
2625
2626	switch (pci_pcie_type(bridge)) {
2627	case PCI_EXP_TYPE_ROOT_PORT:
2628	case PCI_EXP_TYPE_UPSTREAM:
2629	case PCI_EXP_TYPE_DOWNSTREAM:
2630		if (pci_bridge_d3_disable)
2631			return false;
2632
2633		/*
2634		 * Hotplug ports handled by firmware in System Management Mode
2635		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2636		 */
2637		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2638			return false;
2639
2640		if (pci_bridge_d3_force)
2641			return true;
2642
2643		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2644		if (bridge->is_thunderbolt)
2645			return true;
2646
2647		/* Platform might know better if the bridge supports D3 */
2648		if (platform_pci_bridge_d3(bridge))
2649			return true;
2650
2651		/*
2652		 * Hotplug ports handled natively by the OS were not validated
2653		 * by vendors for runtime D3 at least until 2018 because there
2654		 * was no OS support.
2655		 */
2656		if (bridge->is_hotplug_bridge)
2657			return false;
2658
2659		if (dmi_check_system(bridge_d3_blacklist))
2660			return false;
2661
2662		/*
2663		 * It should be safe to put PCIe ports from 2015 or newer
2664		 * to D3.
2665		 */
2666		if (dmi_get_bios_year() >= 2015)
2667			return true;
2668		break;
2669	}
2670
2671	return false;
2672}
2673
2674static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2675{
2676	bool *d3cold_ok = data;
2677
2678	if (/* The device needs to be allowed to go D3cold ... */
2679	    dev->no_d3cold || !dev->d3cold_allowed ||
2680
2681	    /* ... and if it is wakeup capable to do so from D3cold. */
2682	    (device_may_wakeup(&dev->dev) &&
2683	     !pci_pme_capable(dev, PCI_D3cold)) ||
2684
2685	    /* If it is a bridge it must be allowed to go to D3. */
2686	    !pci_power_manageable(dev))
2687
2688		*d3cold_ok = false;
2689
2690	return !*d3cold_ok;
2691}
2692
2693/*
2694 * pci_bridge_d3_update - Update bridge D3 capabilities
2695 * @dev: PCI device which is changed
2696 *
2697 * Update upstream bridge PM capabilities accordingly depending on if the
2698 * device PM configuration was changed or the device is being removed.  The
2699 * change is also propagated upstream.
2700 */
2701void pci_bridge_d3_update(struct pci_dev *dev)
2702{
2703	bool remove = !device_is_registered(&dev->dev);
2704	struct pci_dev *bridge;
2705	bool d3cold_ok = true;
2706
2707	bridge = pci_upstream_bridge(dev);
2708	if (!bridge || !pci_bridge_d3_possible(bridge))
2709		return;
2710
2711	/*
2712	 * If D3 is currently allowed for the bridge, removing one of its
2713	 * children won't change that.
2714	 */
2715	if (remove && bridge->bridge_d3)
2716		return;
2717
2718	/*
2719	 * If D3 is currently allowed for the bridge and a child is added or
2720	 * changed, disallowance of D3 can only be caused by that child, so
2721	 * we only need to check that single device, not any of its siblings.
2722	 *
2723	 * If D3 is currently not allowed for the bridge, checking the device
2724	 * first may allow us to skip checking its siblings.
2725	 */
2726	if (!remove)
2727		pci_dev_check_d3cold(dev, &d3cold_ok);
2728
2729	/*
2730	 * If D3 is currently not allowed for the bridge, this may be caused
2731	 * either by the device being changed/removed or any of its siblings,
2732	 * so we need to go through all children to find out if one of them
2733	 * continues to block D3.
2734	 */
2735	if (d3cold_ok && !bridge->bridge_d3)
2736		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2737			     &d3cold_ok);
2738
2739	if (bridge->bridge_d3 != d3cold_ok) {
2740		bridge->bridge_d3 = d3cold_ok;
2741		/* Propagate change to upstream bridges */
2742		pci_bridge_d3_update(bridge);
2743	}
2744}
2745
2746/**
2747 * pci_d3cold_enable - Enable D3cold for device
2748 * @dev: PCI device to handle
2749 *
2750 * This function can be used in drivers to enable D3cold from the device
2751 * they handle.  It also updates upstream PCI bridge PM capabilities
2752 * accordingly.
2753 */
2754void pci_d3cold_enable(struct pci_dev *dev)
2755{
2756	if (dev->no_d3cold) {
2757		dev->no_d3cold = false;
2758		pci_bridge_d3_update(dev);
2759	}
2760}
2761EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2762
2763/**
2764 * pci_d3cold_disable - Disable D3cold for device
2765 * @dev: PCI device to handle
2766 *
2767 * This function can be used in drivers to disable D3cold from the device
2768 * they handle.  It also updates upstream PCI bridge PM capabilities
2769 * accordingly.
2770 */
2771void pci_d3cold_disable(struct pci_dev *dev)
2772{
2773	if (!dev->no_d3cold) {
2774		dev->no_d3cold = true;
2775		pci_bridge_d3_update(dev);
2776	}
2777}
2778EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2779
2780/**
2781 * pci_pm_init - Initialize PM functions of given PCI device
2782 * @dev: PCI device to handle.
2783 */
2784void pci_pm_init(struct pci_dev *dev)
2785{
2786	int pm;
2787	u16 status;
2788	u16 pmc;
2789
2790	pm_runtime_forbid(&dev->dev);
2791	pm_runtime_set_active(&dev->dev);
2792	pm_runtime_enable(&dev->dev);
2793	device_enable_async_suspend(&dev->dev);
2794	dev->wakeup_prepared = false;
2795
2796	dev->pm_cap = 0;
2797	dev->pme_support = 0;
2798
2799	/* find PCI PM capability in list */
2800	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2801	if (!pm)
2802		return;
2803	/* Check device's ability to generate PME# */
2804	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2805
2806	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2807		pci_err(dev, "unsupported PM cap regs version (%u)\n",
2808			pmc & PCI_PM_CAP_VER_MASK);
2809		return;
2810	}
2811
2812	dev->pm_cap = pm;
2813	dev->d3_delay = PCI_PM_D3_WAIT;
2814	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2815	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2816	dev->d3cold_allowed = true;
2817
2818	dev->d1_support = false;
2819	dev->d2_support = false;
2820	if (!pci_no_d1d2(dev)) {
2821		if (pmc & PCI_PM_CAP_D1)
2822			dev->d1_support = true;
2823		if (pmc & PCI_PM_CAP_D2)
2824			dev->d2_support = true;
2825
2826		if (dev->d1_support || dev->d2_support)
2827			pci_info(dev, "supports%s%s\n",
2828				   dev->d1_support ? " D1" : "",
2829				   dev->d2_support ? " D2" : "");
2830	}
2831
2832	pmc &= PCI_PM_CAP_PME_MASK;
2833	if (pmc) {
2834		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
2835			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2836			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2837			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2838			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2839			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2840		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2841		dev->pme_poll = true;
2842		/*
2843		 * Make device's PM flags reflect the wake-up capability, but
2844		 * let the user space enable it to wake up the system as needed.
2845		 */
2846		device_set_wakeup_capable(&dev->dev, true);
2847		/* Disable the PME# generation functionality */
2848		pci_pme_active(dev, false);
2849	}
2850
2851	pci_read_config_word(dev, PCI_STATUS, &status);
2852	if (status & PCI_STATUS_IMM_READY)
2853		dev->imm_ready = 1;
2854}
2855
2856static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2857{
2858	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2859
2860	switch (prop) {
2861	case PCI_EA_P_MEM:
2862	case PCI_EA_P_VF_MEM:
2863		flags |= IORESOURCE_MEM;
2864		break;
2865	case PCI_EA_P_MEM_PREFETCH:
2866	case PCI_EA_P_VF_MEM_PREFETCH:
2867		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2868		break;
2869	case PCI_EA_P_IO:
2870		flags |= IORESOURCE_IO;
2871		break;
2872	default:
2873		return 0;
2874	}
2875
2876	return flags;
2877}
2878
2879static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2880					    u8 prop)
2881{
2882	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2883		return &dev->resource[bei];
2884#ifdef CONFIG_PCI_IOV
2885	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2886		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2887		return &dev->resource[PCI_IOV_RESOURCES +
2888				      bei - PCI_EA_BEI_VF_BAR0];
2889#endif
2890	else if (bei == PCI_EA_BEI_ROM)
2891		return &dev->resource[PCI_ROM_RESOURCE];
2892	else
2893		return NULL;
2894}
2895
2896/* Read an Enhanced Allocation (EA) entry */
2897static int pci_ea_read(struct pci_dev *dev, int offset)
2898{
2899	struct resource *res;
2900	int ent_size, ent_offset = offset;
2901	resource_size_t start, end;
2902	unsigned long flags;
2903	u32 dw0, bei, base, max_offset;
2904	u8 prop;
2905	bool support_64 = (sizeof(resource_size_t) >= 8);
2906
2907	pci_read_config_dword(dev, ent_offset, &dw0);
2908	ent_offset += 4;
2909
2910	/* Entry size field indicates DWORDs after 1st */
2911	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2912
2913	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2914		goto out;
2915
2916	bei = (dw0 & PCI_EA_BEI) >> 4;
2917	prop = (dw0 & PCI_EA_PP) >> 8;
2918
2919	/*
2920	 * If the Property is in the reserved range, try the Secondary
2921	 * Property instead.
2922	 */
2923	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2924		prop = (dw0 & PCI_EA_SP) >> 16;
2925	if (prop > PCI_EA_P_BRIDGE_IO)
2926		goto out;
2927
2928	res = pci_ea_get_resource(dev, bei, prop);
2929	if (!res) {
2930		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2931		goto out;
2932	}
2933
2934	flags = pci_ea_flags(dev, prop);
2935	if (!flags) {
2936		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2937		goto out;
2938	}
2939
2940	/* Read Base */
2941	pci_read_config_dword(dev, ent_offset, &base);
2942	start = (base & PCI_EA_FIELD_MASK);
2943	ent_offset += 4;
2944
2945	/* Read MaxOffset */
2946	pci_read_config_dword(dev, ent_offset, &max_offset);
2947	ent_offset += 4;
2948
2949	/* Read Base MSBs (if 64-bit entry) */
2950	if (base & PCI_EA_IS_64) {
2951		u32 base_upper;
2952
2953		pci_read_config_dword(dev, ent_offset, &base_upper);
2954		ent_offset += 4;
2955
2956		flags |= IORESOURCE_MEM_64;
2957
2958		/* entry starts above 32-bit boundary, can't use */
2959		if (!support_64 && base_upper)
2960			goto out;
2961
2962		if (support_64)
2963			start |= ((u64)base_upper << 32);
2964	}
2965
2966	end = start + (max_offset | 0x03);
2967
2968	/* Read MaxOffset MSBs (if 64-bit entry) */
2969	if (max_offset & PCI_EA_IS_64) {
2970		u32 max_offset_upper;
2971
2972		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2973		ent_offset += 4;
2974
2975		flags |= IORESOURCE_MEM_64;
2976
2977		/* entry too big, can't use */
2978		if (!support_64 && max_offset_upper)
2979			goto out;
2980
2981		if (support_64)
2982			end += ((u64)max_offset_upper << 32);
2983	}
2984
2985	if (end < start) {
2986		pci_err(dev, "EA Entry crosses address boundary\n");
2987		goto out;
2988	}
2989
2990	if (ent_size != ent_offset - offset) {
2991		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2992			ent_size, ent_offset - offset);
2993		goto out;
2994	}
2995
2996	res->name = pci_name(dev);
2997	res->start = start;
2998	res->end = end;
2999	res->flags = flags;
3000
3001	if (bei <= PCI_EA_BEI_BAR5)
3002		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3003			   bei, res, prop);
3004	else if (bei == PCI_EA_BEI_ROM)
3005		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3006			   res, prop);
3007	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3008		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3009			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3010	else
3011		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3012			   bei, res, prop);
3013
3014out:
3015	return offset + ent_size;
3016}
3017
3018/* Enhanced Allocation Initialization */
3019void pci_ea_init(struct pci_dev *dev)
3020{
3021	int ea;
3022	u8 num_ent;
3023	int offset;
3024	int i;
3025
3026	/* find PCI EA capability in list */
3027	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3028	if (!ea)
3029		return;
3030
3031	/* determine the number of entries */
3032	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3033					&num_ent);
3034	num_ent &= PCI_EA_NUM_ENT_MASK;
3035
3036	offset = ea + PCI_EA_FIRST_ENT;
3037
3038	/* Skip DWORD 2 for type 1 functions */
3039	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3040		offset += 4;
3041
3042	/* parse each EA entry */
3043	for (i = 0; i < num_ent; ++i)
3044		offset = pci_ea_read(dev, offset);
3045}
3046
3047static void pci_add_saved_cap(struct pci_dev *pci_dev,
3048	struct pci_cap_saved_state *new_cap)
3049{
3050	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3051}
3052
3053/**
3054 * _pci_add_cap_save_buffer - allocate buffer for saving given
3055 *			      capability registers
3056 * @dev: the PCI device
3057 * @cap: the capability to allocate the buffer for
3058 * @extended: Standard or Extended capability ID
3059 * @size: requested size of the buffer
3060 */
3061static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3062				    bool extended, unsigned int size)
3063{
3064	int pos;
3065	struct pci_cap_saved_state *save_state;
3066
3067	if (extended)
3068		pos = pci_find_ext_capability(dev, cap);
3069	else
3070		pos = pci_find_capability(dev, cap);
3071
3072	if (!pos)
3073		return 0;
3074
3075	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3076	if (!save_state)
3077		return -ENOMEM;
3078
3079	save_state->cap.cap_nr = cap;
3080	save_state->cap.cap_extended = extended;
3081	save_state->cap.size = size;
3082	pci_add_saved_cap(dev, save_state);
3083
3084	return 0;
3085}
3086
3087int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3088{
3089	return _pci_add_cap_save_buffer(dev, cap, false, size);
3090}
3091
3092int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3093{
3094	return _pci_add_cap_save_buffer(dev, cap, true, size);
3095}
3096
3097/**
3098 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3099 * @dev: the PCI device
3100 */
3101void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3102{
3103	int error;
3104
3105	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3106					PCI_EXP_SAVE_REGS * sizeof(u16));
3107	if (error)
3108		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3109
3110	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3111	if (error)
3112		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3113
3114	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3115					    2 * sizeof(u16));
3116	if (error)
3117		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3118
3119	pci_allocate_vc_save_buffers(dev);
3120}
3121
3122void pci_free_cap_save_buffers(struct pci_dev *dev)
3123{
3124	struct pci_cap_saved_state *tmp;
3125	struct hlist_node *n;
3126
3127	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3128		kfree(tmp);
3129}
3130
3131/**
3132 * pci_configure_ari - enable or disable ARI forwarding
3133 * @dev: the PCI device
3134 *
3135 * If @dev and its upstream bridge both support ARI, enable ARI in the
3136 * bridge.  Otherwise, disable ARI in the bridge.
3137 */
3138void pci_configure_ari(struct pci_dev *dev)
3139{
3140	u32 cap;
3141	struct pci_dev *bridge;
3142
3143	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3144		return;
3145
3146	bridge = dev->bus->self;
3147	if (!bridge)
3148		return;
3149
3150	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3151	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3152		return;
3153
3154	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3155		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3156					 PCI_EXP_DEVCTL2_ARI);
3157		bridge->ari_enabled = 1;
3158	} else {
3159		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3160					   PCI_EXP_DEVCTL2_ARI);
3161		bridge->ari_enabled = 0;
3162	}
3163}
3164
3165static int pci_acs_enable;
3166
3167/**
3168 * pci_request_acs - ask for ACS to be enabled if supported
3169 */
3170void pci_request_acs(void)
3171{
3172	pci_acs_enable = 1;
3173}
3174
3175static const char *disable_acs_redir_param;
3176
3177/**
3178 * pci_disable_acs_redir - disable ACS redirect capabilities
3179 * @dev: the PCI device
3180 *
3181 * For only devices specified in the disable_acs_redir parameter.
3182 */
3183static void pci_disable_acs_redir(struct pci_dev *dev)
3184{
3185	int ret = 0;
3186	const char *p;
3187	int pos;
3188	u16 ctrl;
3189
3190	if (!disable_acs_redir_param)
3191		return;
3192
3193	p = disable_acs_redir_param;
3194	while (*p) {
3195		ret = pci_dev_str_match(dev, p, &p);
3196		if (ret < 0) {
3197			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3198				     disable_acs_redir_param);
3199
3200			break;
3201		} else if (ret == 1) {
3202			/* Found a match */
3203			break;
3204		}
3205
3206		if (*p != ';' && *p != ',') {
3207			/* End of param or invalid format */
3208			break;
3209		}
3210		p++;
3211	}
3212
3213	if (ret != 1)
3214		return;
3215
3216	if (!pci_dev_specific_disable_acs_redir(dev))
3217		return;
3218
3219	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3220	if (!pos) {
3221		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3222		return;
3223	}
3224
3225	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3226
3227	/* P2P Request & Completion Redirect */
3228	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3229
3230	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3231
3232	pci_info(dev, "disabled ACS redirect\n");
3233}
3234
3235/**
3236 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
3237 * @dev: the PCI device
3238 */
3239static void pci_std_enable_acs(struct pci_dev *dev)
3240{
3241	int pos;
3242	u16 cap;
3243	u16 ctrl;
3244
3245	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3246	if (!pos)
3247		return;
3248
3249	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3250	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3251
3252	/* Source Validation */
3253	ctrl |= (cap & PCI_ACS_SV);
3254
3255	/* P2P Request Redirect */
3256	ctrl |= (cap & PCI_ACS_RR);
3257
3258	/* P2P Completion Redirect */
3259	ctrl |= (cap & PCI_ACS_CR);
3260
3261	/* Upstream Forwarding */
3262	ctrl |= (cap & PCI_ACS_UF);
3263
3264	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3265}
3266
3267/**
3268 * pci_enable_acs - enable ACS if hardware support it
3269 * @dev: the PCI device
3270 */
3271void pci_enable_acs(struct pci_dev *dev)
3272{
3273	if (!pci_acs_enable)
3274		goto disable_acs_redir;
3275
3276	if (!pci_dev_specific_enable_acs(dev))
3277		goto disable_acs_redir;
3278
3279	pci_std_enable_acs(dev);
3280
3281disable_acs_redir:
3282	/*
3283	 * Note: pci_disable_acs_redir() must be called even if ACS was not
3284	 * enabled by the kernel because it may have been enabled by
3285	 * platform firmware.  So if we are told to disable it, we should
3286	 * always disable it after setting the kernel's default
3287	 * preferences.
3288	 */
3289	pci_disable_acs_redir(dev);
3290}
3291
3292static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3293{
3294	int pos;
3295	u16 cap, ctrl;
3296
3297	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3298	if (!pos)
3299		return false;
3300
3301	/*
3302	 * Except for egress control, capabilities are either required
3303	 * or only required if controllable.  Features missing from the
3304	 * capability field can therefore be assumed as hard-wired enabled.
3305	 */
3306	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3307	acs_flags &= (cap | PCI_ACS_EC);
3308
3309	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3310	return (ctrl & acs_flags) == acs_flags;
3311}
3312
3313/**
3314 * pci_acs_enabled - test ACS against required flags for a given device
3315 * @pdev: device to test
3316 * @acs_flags: required PCI ACS flags
3317 *
3318 * Return true if the device supports the provided flags.  Automatically
3319 * filters out flags that are not implemented on multifunction devices.
3320 *
3321 * Note that this interface checks the effective ACS capabilities of the
3322 * device rather than the actual capabilities.  For instance, most single
3323 * function endpoints are not required to support ACS because they have no
3324 * opportunity for peer-to-peer access.  We therefore return 'true'
3325 * regardless of whether the device exposes an ACS capability.  This makes
3326 * it much easier for callers of this function to ignore the actual type
3327 * or topology of the device when testing ACS support.
3328 */
3329bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3330{
3331	int ret;
3332
3333	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3334	if (ret >= 0)
3335		return ret > 0;
3336
3337	/*
3338	 * Conventional PCI and PCI-X devices never support ACS, either
3339	 * effectively or actually.  The shared bus topology implies that
3340	 * any device on the bus can receive or snoop DMA.
3341	 */
3342	if (!pci_is_pcie(pdev))
3343		return false;
3344
3345	switch (pci_pcie_type(pdev)) {
3346	/*
3347	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3348	 * but since their primary interface is PCI/X, we conservatively
3349	 * handle them as we would a non-PCIe device.
3350	 */
3351	case PCI_EXP_TYPE_PCIE_BRIDGE:
3352	/*
3353	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3354	 * applicable... must never implement an ACS Extended Capability...".
3355	 * This seems arbitrary, but we take a conservative interpretation
3356	 * of this statement.
3357	 */
3358	case PCI_EXP_TYPE_PCI_BRIDGE:
3359	case PCI_EXP_TYPE_RC_EC:
3360		return false;
3361	/*
3362	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3363	 * implement ACS in order to indicate their peer-to-peer capabilities,
3364	 * regardless of whether they are single- or multi-function devices.
3365	 */
3366	case PCI_EXP_TYPE_DOWNSTREAM:
3367	case PCI_EXP_TYPE_ROOT_PORT:
3368		return pci_acs_flags_enabled(pdev, acs_flags);
3369	/*
3370	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3371	 * implemented by the remaining PCIe types to indicate peer-to-peer
3372	 * capabilities, but only when they are part of a multifunction
3373	 * device.  The footnote for section 6.12 indicates the specific
3374	 * PCIe types included here.
3375	 */
3376	case PCI_EXP_TYPE_ENDPOINT:
3377	case PCI_EXP_TYPE_UPSTREAM:
3378	case PCI_EXP_TYPE_LEG_END:
3379	case PCI_EXP_TYPE_RC_END:
3380		if (!pdev->multifunction)
3381			break;
3382
3383		return pci_acs_flags_enabled(pdev, acs_flags);
3384	}
3385
3386	/*
3387	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3388	 * to single function devices with the exception of downstream ports.
3389	 */
3390	return true;
3391}
3392
3393/**
3394 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3395 * @start: starting downstream device
3396 * @end: ending upstream device or NULL to search to the root bus
3397 * @acs_flags: required flags
3398 *
3399 * Walk up a device tree from start to end testing PCI ACS support.  If
3400 * any step along the way does not support the required flags, return false.
3401 */
3402bool pci_acs_path_enabled(struct pci_dev *start,
3403			  struct pci_dev *end, u16 acs_flags)
3404{
3405	struct pci_dev *pdev, *parent = start;
3406
3407	do {
3408		pdev = parent;
3409
3410		if (!pci_acs_enabled(pdev, acs_flags))
3411			return false;
3412
3413		if (pci_is_root_bus(pdev->bus))
3414			return (end == NULL);
3415
3416		parent = pdev->bus->self;
3417	} while (pdev != end);
3418
3419	return true;
3420}
3421
3422/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3423 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3424 * @pdev: PCI device
3425 * @bar: BAR to find
3426 *
3427 * Helper to find the position of the ctrl register for a BAR.
3428 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3429 * Returns -ENOENT if no ctrl register for the BAR could be found.
3430 */
3431static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3432{
3433	unsigned int pos, nbars, i;
3434	u32 ctrl;
3435
3436	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3437	if (!pos)
3438		return -ENOTSUPP;
3439
3440	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3441	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3442		    PCI_REBAR_CTRL_NBAR_SHIFT;
3443
3444	for (i = 0; i < nbars; i++, pos += 8) {
3445		int bar_idx;
3446
3447		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3448		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3449		if (bar_idx == bar)
3450			return pos;
3451	}
3452
3453	return -ENOENT;
3454}
3455
3456/**
3457 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3458 * @pdev: PCI device
3459 * @bar: BAR to query
3460 *
3461 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3462 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3463 */
3464u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3465{
3466	int pos;
3467	u32 cap;
3468
3469	pos = pci_rebar_find_pos(pdev, bar);
3470	if (pos < 0)
3471		return 0;
3472
3473	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3474	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
 
 
 
 
 
 
 
3475}
 
3476
3477/**
3478 * pci_rebar_get_current_size - get the current size of a BAR
3479 * @pdev: PCI device
3480 * @bar: BAR to set size to
3481 *
3482 * Read the size of a BAR from the resizable BAR config.
3483 * Returns size if found or negative error code.
3484 */
3485int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3486{
3487	int pos;
3488	u32 ctrl;
3489
3490	pos = pci_rebar_find_pos(pdev, bar);
3491	if (pos < 0)
3492		return pos;
3493
3494	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3495	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3496}
3497
3498/**
3499 * pci_rebar_set_size - set a new size for a BAR
3500 * @pdev: PCI device
3501 * @bar: BAR to set size to
3502 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3503 *
3504 * Set the new size of a BAR as defined in the spec.
3505 * Returns zero if resizing was successful, error code otherwise.
3506 */
3507int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3508{
3509	int pos;
3510	u32 ctrl;
3511
3512	pos = pci_rebar_find_pos(pdev, bar);
3513	if (pos < 0)
3514		return pos;
3515
3516	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3517	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3518	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3519	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3520	return 0;
3521}
3522
3523/**
3524 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3525 * @dev: the PCI device
3526 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3527 *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3528 *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3529 *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3530 *
3531 * Return 0 if all upstream bridges support AtomicOp routing, egress
3532 * blocking is disabled on all upstream ports, and the root port supports
3533 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3534 * AtomicOp completion), or negative otherwise.
3535 */
3536int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3537{
3538	struct pci_bus *bus = dev->bus;
3539	struct pci_dev *bridge;
3540	u32 cap, ctl2;
3541
3542	if (!pci_is_pcie(dev))
3543		return -EINVAL;
3544
3545	/*
3546	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3547	 * AtomicOp requesters.  For now, we only support endpoints as
3548	 * requesters and root ports as completers.  No endpoints as
3549	 * completers, and no peer-to-peer.
3550	 */
3551
3552	switch (pci_pcie_type(dev)) {
3553	case PCI_EXP_TYPE_ENDPOINT:
3554	case PCI_EXP_TYPE_LEG_END:
3555	case PCI_EXP_TYPE_RC_END:
3556		break;
3557	default:
3558		return -EINVAL;
3559	}
3560
3561	while (bus->parent) {
3562		bridge = bus->self;
3563
3564		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3565
3566		switch (pci_pcie_type(bridge)) {
3567		/* Ensure switch ports support AtomicOp routing */
3568		case PCI_EXP_TYPE_UPSTREAM:
3569		case PCI_EXP_TYPE_DOWNSTREAM:
3570			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3571				return -EINVAL;
3572			break;
3573
3574		/* Ensure root port supports all the sizes we care about */
3575		case PCI_EXP_TYPE_ROOT_PORT:
3576			if ((cap & cap_mask) != cap_mask)
3577				return -EINVAL;
3578			break;
3579		}
3580
3581		/* Ensure upstream ports don't block AtomicOps on egress */
3582		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3583			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3584						   &ctl2);
3585			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3586				return -EINVAL;
3587		}
3588
3589		bus = bus->parent;
3590	}
3591
3592	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3593				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3594	return 0;
3595}
3596EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3597
3598/**
3599 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3600 * @dev: the PCI device
3601 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3602 *
3603 * Perform INTx swizzling for a device behind one level of bridge.  This is
3604 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3605 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3606 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3607 * the PCI Express Base Specification, Revision 2.1)
3608 */
3609u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3610{
3611	int slot;
3612
3613	if (pci_ari_enabled(dev->bus))
3614		slot = 0;
3615	else
3616		slot = PCI_SLOT(dev->devfn);
3617
3618	return (((pin - 1) + slot) % 4) + 1;
3619}
3620
3621int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3622{
3623	u8 pin;
3624
3625	pin = dev->pin;
3626	if (!pin)
3627		return -1;
3628
3629	while (!pci_is_root_bus(dev->bus)) {
3630		pin = pci_swizzle_interrupt_pin(dev, pin);
3631		dev = dev->bus->self;
3632	}
3633	*bridge = dev;
3634	return pin;
3635}
3636
3637/**
3638 * pci_common_swizzle - swizzle INTx all the way to root bridge
3639 * @dev: the PCI device
3640 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3641 *
3642 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3643 * bridges all the way up to a PCI root bus.
3644 */
3645u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3646{
3647	u8 pin = *pinp;
3648
3649	while (!pci_is_root_bus(dev->bus)) {
3650		pin = pci_swizzle_interrupt_pin(dev, pin);
3651		dev = dev->bus->self;
3652	}
3653	*pinp = pin;
3654	return PCI_SLOT(dev->devfn);
3655}
3656EXPORT_SYMBOL_GPL(pci_common_swizzle);
3657
3658/**
3659 * pci_release_region - Release a PCI bar
3660 * @pdev: PCI device whose resources were previously reserved by
3661 *	  pci_request_region()
3662 * @bar: BAR to release
3663 *
3664 * Releases the PCI I/O and memory resources previously reserved by a
3665 * successful call to pci_request_region().  Call this function only
3666 * after all use of the PCI regions has ceased.
3667 */
3668void pci_release_region(struct pci_dev *pdev, int bar)
3669{
3670	struct pci_devres *dr;
3671
3672	if (pci_resource_len(pdev, bar) == 0)
3673		return;
3674	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3675		release_region(pci_resource_start(pdev, bar),
3676				pci_resource_len(pdev, bar));
3677	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3678		release_mem_region(pci_resource_start(pdev, bar),
3679				pci_resource_len(pdev, bar));
3680
3681	dr = find_pci_dr(pdev);
3682	if (dr)
3683		dr->region_mask &= ~(1 << bar);
3684}
3685EXPORT_SYMBOL(pci_release_region);
3686
3687/**
3688 * __pci_request_region - Reserved PCI I/O and memory resource
3689 * @pdev: PCI device whose resources are to be reserved
3690 * @bar: BAR to be reserved
3691 * @res_name: Name to be associated with resource.
3692 * @exclusive: whether the region access is exclusive or not
3693 *
3694 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3695 * being reserved by owner @res_name.  Do not access any
3696 * address inside the PCI regions unless this call returns
3697 * successfully.
3698 *
3699 * If @exclusive is set, then the region is marked so that userspace
3700 * is explicitly not allowed to map the resource via /dev/mem or
3701 * sysfs MMIO access.
3702 *
3703 * Returns 0 on success, or %EBUSY on error.  A warning
3704 * message is also printed on failure.
3705 */
3706static int __pci_request_region(struct pci_dev *pdev, int bar,
3707				const char *res_name, int exclusive)
3708{
3709	struct pci_devres *dr;
3710
3711	if (pci_resource_len(pdev, bar) == 0)
3712		return 0;
3713
3714	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3715		if (!request_region(pci_resource_start(pdev, bar),
3716			    pci_resource_len(pdev, bar), res_name))
3717			goto err_out;
3718	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3719		if (!__request_mem_region(pci_resource_start(pdev, bar),
3720					pci_resource_len(pdev, bar), res_name,
3721					exclusive))
3722			goto err_out;
3723	}
3724
3725	dr = find_pci_dr(pdev);
3726	if (dr)
3727		dr->region_mask |= 1 << bar;
3728
3729	return 0;
3730
3731err_out:
3732	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3733		 &pdev->resource[bar]);
3734	return -EBUSY;
3735}
3736
3737/**
3738 * pci_request_region - Reserve PCI I/O and memory resource
3739 * @pdev: PCI device whose resources are to be reserved
3740 * @bar: BAR to be reserved
3741 * @res_name: Name to be associated with resource
3742 *
3743 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3744 * being reserved by owner @res_name.  Do not access any
3745 * address inside the PCI regions unless this call returns
3746 * successfully.
3747 *
3748 * Returns 0 on success, or %EBUSY on error.  A warning
3749 * message is also printed on failure.
3750 */
3751int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3752{
3753	return __pci_request_region(pdev, bar, res_name, 0);
3754}
3755EXPORT_SYMBOL(pci_request_region);
3756
3757/**
3758 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3759 * @pdev: PCI device whose resources were previously reserved
3760 * @bars: Bitmask of BARs to be released
3761 *
3762 * Release selected PCI I/O and memory resources previously reserved.
3763 * Call this function only after all use of the PCI regions has ceased.
3764 */
3765void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3766{
3767	int i;
3768
3769	for (i = 0; i < 6; i++)
3770		if (bars & (1 << i))
3771			pci_release_region(pdev, i);
3772}
3773EXPORT_SYMBOL(pci_release_selected_regions);
3774
3775static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3776					  const char *res_name, int excl)
3777{
3778	int i;
3779
3780	for (i = 0; i < 6; i++)
3781		if (bars & (1 << i))
3782			if (__pci_request_region(pdev, i, res_name, excl))
3783				goto err_out;
3784	return 0;
3785
3786err_out:
3787	while (--i >= 0)
3788		if (bars & (1 << i))
3789			pci_release_region(pdev, i);
3790
3791	return -EBUSY;
3792}
3793
3794
3795/**
3796 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3797 * @pdev: PCI device whose resources are to be reserved
3798 * @bars: Bitmask of BARs to be requested
3799 * @res_name: Name to be associated with resource
3800 */
3801int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3802				 const char *res_name)
3803{
3804	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3805}
3806EXPORT_SYMBOL(pci_request_selected_regions);
3807
3808int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3809					   const char *res_name)
3810{
3811	return __pci_request_selected_regions(pdev, bars, res_name,
3812			IORESOURCE_EXCLUSIVE);
3813}
3814EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3815
3816/**
3817 * pci_release_regions - Release reserved PCI I/O and memory resources
3818 * @pdev: PCI device whose resources were previously reserved by
3819 *	  pci_request_regions()
3820 *
3821 * Releases all PCI I/O and memory resources previously reserved by a
3822 * successful call to pci_request_regions().  Call this function only
3823 * after all use of the PCI regions has ceased.
3824 */
3825
3826void pci_release_regions(struct pci_dev *pdev)
3827{
3828	pci_release_selected_regions(pdev, (1 << 6) - 1);
3829}
3830EXPORT_SYMBOL(pci_release_regions);
3831
3832/**
3833 * pci_request_regions - Reserve PCI I/O and memory resources
3834 * @pdev: PCI device whose resources are to be reserved
3835 * @res_name: Name to be associated with resource.
3836 *
3837 * Mark all PCI regions associated with PCI device @pdev as
3838 * being reserved by owner @res_name.  Do not access any
3839 * address inside the PCI regions unless this call returns
3840 * successfully.
3841 *
3842 * Returns 0 on success, or %EBUSY on error.  A warning
3843 * message is also printed on failure.
3844 */
3845int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3846{
3847	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
 
3848}
3849EXPORT_SYMBOL(pci_request_regions);
3850
3851/**
3852 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3853 * @pdev: PCI device whose resources are to be reserved
3854 * @res_name: Name to be associated with resource.
3855 *
3856 * Mark all PCI regions associated with PCI device @pdev as being reserved
3857 * by owner @res_name.  Do not access any address inside the PCI regions
3858 * unless this call returns successfully.
3859 *
3860 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3861 * and the sysfs MMIO access will not be allowed.
3862 *
3863 * Returns 0 on success, or %EBUSY on error.  A warning message is also
3864 * printed on failure.
3865 */
3866int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3867{
3868	return pci_request_selected_regions_exclusive(pdev,
3869					((1 << 6) - 1), res_name);
3870}
3871EXPORT_SYMBOL(pci_request_regions_exclusive);
3872
3873/*
3874 * Record the PCI IO range (expressed as CPU physical address + size).
3875 * Return a negative value if an error has occurred, zero otherwise
3876 */
3877int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3878			resource_size_t	size)
3879{
3880	int ret = 0;
3881#ifdef PCI_IOBASE
3882	struct logic_pio_hwaddr *range;
3883
3884	if (!size || addr + size < addr)
3885		return -EINVAL;
3886
3887	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3888	if (!range)
3889		return -ENOMEM;
3890
3891	range->fwnode = fwnode;
3892	range->size = size;
3893	range->hw_start = addr;
3894	range->flags = LOGIC_PIO_CPU_MMIO;
3895
3896	ret = logic_pio_register_range(range);
3897	if (ret)
3898		kfree(range);
 
 
 
 
3899#endif
3900
3901	return ret;
3902}
3903
3904phys_addr_t pci_pio_to_address(unsigned long pio)
3905{
3906	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3907
3908#ifdef PCI_IOBASE
3909	if (pio >= MMIO_UPPER_LIMIT)
3910		return address;
3911
3912	address = logic_pio_to_hwaddr(pio);
3913#endif
3914
3915	return address;
3916}
 
3917
3918unsigned long __weak pci_address_to_pio(phys_addr_t address)
3919{
3920#ifdef PCI_IOBASE
3921	return logic_pio_trans_cpuaddr(address);
3922#else
3923	if (address > IO_SPACE_LIMIT)
3924		return (unsigned long)-1;
3925
3926	return (unsigned long) address;
3927#endif
3928}
3929
3930/**
3931 * pci_remap_iospace - Remap the memory mapped I/O space
3932 * @res: Resource describing the I/O space
3933 * @phys_addr: physical address of range to be mapped
3934 *
3935 * Remap the memory mapped I/O space described by the @res and the CPU
3936 * physical address @phys_addr into virtual address space.  Only
3937 * architectures that have memory mapped IO functions defined (and the
3938 * PCI_IOBASE value defined) should call this function.
3939 */
3940int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3941{
3942#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3943	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3944
3945	if (!(res->flags & IORESOURCE_IO))
3946		return -EINVAL;
3947
3948	if (res->end > IO_SPACE_LIMIT)
3949		return -EINVAL;
3950
3951	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3952				  pgprot_device(PAGE_KERNEL));
3953#else
3954	/*
3955	 * This architecture does not have memory mapped I/O space,
3956	 * so this function should never be called
3957	 */
3958	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3959	return -ENODEV;
3960#endif
3961}
3962EXPORT_SYMBOL(pci_remap_iospace);
3963
3964/**
3965 * pci_unmap_iospace - Unmap the memory mapped I/O space
3966 * @res: resource to be unmapped
3967 *
3968 * Unmap the CPU virtual address @res from virtual address space.  Only
3969 * architectures that have memory mapped IO functions defined (and the
3970 * PCI_IOBASE value defined) should call this function.
3971 */
3972void pci_unmap_iospace(struct resource *res)
3973{
3974#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3975	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3976
3977	unmap_kernel_range(vaddr, resource_size(res));
3978#endif
3979}
3980EXPORT_SYMBOL(pci_unmap_iospace);
3981
3982static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
3983{
3984	struct resource **res = ptr;
3985
3986	pci_unmap_iospace(*res);
3987}
3988
3989/**
3990 * devm_pci_remap_iospace - Managed pci_remap_iospace()
3991 * @dev: Generic device to remap IO address for
3992 * @res: Resource describing the I/O space
3993 * @phys_addr: physical address of range to be mapped
3994 *
3995 * Managed pci_remap_iospace().  Map is automatically unmapped on driver
3996 * detach.
3997 */
3998int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
3999			   phys_addr_t phys_addr)
4000{
4001	const struct resource **ptr;
4002	int error;
4003
4004	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4005	if (!ptr)
4006		return -ENOMEM;
4007
4008	error = pci_remap_iospace(res, phys_addr);
4009	if (error) {
4010		devres_free(ptr);
4011	} else	{
4012		*ptr = res;
4013		devres_add(dev, ptr);
4014	}
4015
4016	return error;
4017}
4018EXPORT_SYMBOL(devm_pci_remap_iospace);
4019
4020/**
4021 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4022 * @dev: Generic device to remap IO address for
4023 * @offset: Resource address to map
4024 * @size: Size of map
4025 *
4026 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4027 * detach.
4028 */
4029void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4030				      resource_size_t offset,
4031				      resource_size_t size)
4032{
4033	void __iomem **ptr, *addr;
4034
4035	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4036	if (!ptr)
4037		return NULL;
4038
4039	addr = pci_remap_cfgspace(offset, size);
4040	if (addr) {
4041		*ptr = addr;
4042		devres_add(dev, ptr);
4043	} else
4044		devres_free(ptr);
4045
4046	return addr;
4047}
4048EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4049
4050/**
4051 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4052 * @dev: generic device to handle the resource for
4053 * @res: configuration space resource to be handled
4054 *
4055 * Checks that a resource is a valid memory region, requests the memory
4056 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4057 * proper PCI configuration space memory attributes are guaranteed.
4058 *
4059 * All operations are managed and will be undone on driver detach.
4060 *
4061 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4062 * on failure. Usage example::
4063 *
4064 *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4065 *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4066 *	if (IS_ERR(base))
4067 *		return PTR_ERR(base);
4068 */
4069void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4070					  struct resource *res)
4071{
4072	resource_size_t size;
4073	const char *name;
4074	void __iomem *dest_ptr;
4075
4076	BUG_ON(!dev);
4077
4078	if (!res || resource_type(res) != IORESOURCE_MEM) {
4079		dev_err(dev, "invalid resource\n");
4080		return IOMEM_ERR_PTR(-EINVAL);
4081	}
4082
4083	size = resource_size(res);
4084	name = res->name ?: dev_name(dev);
 
 
 
 
 
 
 
4085
4086	if (!devm_request_mem_region(dev, res->start, size, name)) {
4087		dev_err(dev, "can't request region for resource %pR\n", res);
4088		return IOMEM_ERR_PTR(-EBUSY);
4089	}
4090
4091	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4092	if (!dest_ptr) {
4093		dev_err(dev, "ioremap failed for resource %pR\n", res);
4094		devm_release_mem_region(dev, res->start, size);
4095		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4096	}
4097
4098	return dest_ptr;
4099}
4100EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4101
4102static void __pci_set_master(struct pci_dev *dev, bool enable)
4103{
4104	u16 old_cmd, cmd;
4105
4106	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4107	if (enable)
4108		cmd = old_cmd | PCI_COMMAND_MASTER;
4109	else
4110		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4111	if (cmd != old_cmd) {
4112		pci_dbg(dev, "%s bus mastering\n",
4113			enable ? "enabling" : "disabling");
4114		pci_write_config_word(dev, PCI_COMMAND, cmd);
4115	}
4116	dev->is_busmaster = enable;
4117}
4118
4119/**
4120 * pcibios_setup - process "pci=" kernel boot arguments
4121 * @str: string used to pass in "pci=" kernel boot arguments
4122 *
4123 * Process kernel boot arguments.  This is the default implementation.
4124 * Architecture specific implementations can override this as necessary.
4125 */
4126char * __weak __init pcibios_setup(char *str)
4127{
4128	return str;
4129}
4130
4131/**
4132 * pcibios_set_master - enable PCI bus-mastering for device dev
4133 * @dev: the PCI device to enable
4134 *
4135 * Enables PCI bus-mastering for the device.  This is the default
4136 * implementation.  Architecture specific implementations can override
4137 * this if necessary.
4138 */
4139void __weak pcibios_set_master(struct pci_dev *dev)
4140{
4141	u8 lat;
4142
4143	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4144	if (pci_is_pcie(dev))
4145		return;
4146
4147	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4148	if (lat < 16)
4149		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4150	else if (lat > pcibios_max_latency)
4151		lat = pcibios_max_latency;
4152	else
4153		return;
4154
4155	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4156}
4157
4158/**
4159 * pci_set_master - enables bus-mastering for device dev
4160 * @dev: the PCI device to enable
4161 *
4162 * Enables bus-mastering on the device and calls pcibios_set_master()
4163 * to do the needed arch specific settings.
4164 */
4165void pci_set_master(struct pci_dev *dev)
4166{
4167	__pci_set_master(dev, true);
4168	pcibios_set_master(dev);
4169}
4170EXPORT_SYMBOL(pci_set_master);
4171
4172/**
4173 * pci_clear_master - disables bus-mastering for device dev
4174 * @dev: the PCI device to disable
4175 */
4176void pci_clear_master(struct pci_dev *dev)
4177{
4178	__pci_set_master(dev, false);
4179}
4180EXPORT_SYMBOL(pci_clear_master);
4181
4182/**
4183 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4184 * @dev: the PCI device for which MWI is to be enabled
4185 *
4186 * Helper function for pci_set_mwi.
4187 * Originally copied from drivers/net/acenic.c.
4188 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4189 *
4190 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4191 */
4192int pci_set_cacheline_size(struct pci_dev *dev)
4193{
4194	u8 cacheline_size;
4195
4196	if (!pci_cache_line_size)
4197		return -EINVAL;
4198
4199	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4200	   equal to or multiple of the right value. */
4201	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4202	if (cacheline_size >= pci_cache_line_size &&
4203	    (cacheline_size % pci_cache_line_size) == 0)
4204		return 0;
4205
4206	/* Write the correct value. */
4207	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4208	/* Read it back. */
4209	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4210	if (cacheline_size == pci_cache_line_size)
4211		return 0;
4212
4213	pci_info(dev, "cache line size of %d is not supported\n",
4214		   pci_cache_line_size << 2);
4215
4216	return -EINVAL;
4217}
4218EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4219
4220/**
4221 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4222 * @dev: the PCI device for which MWI is enabled
4223 *
4224 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4225 *
4226 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4227 */
4228int pci_set_mwi(struct pci_dev *dev)
4229{
4230#ifdef PCI_DISABLE_MWI
4231	return 0;
4232#else
4233	int rc;
4234	u16 cmd;
4235
4236	rc = pci_set_cacheline_size(dev);
4237	if (rc)
4238		return rc;
4239
4240	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4241	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4242		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4243		cmd |= PCI_COMMAND_INVALIDATE;
4244		pci_write_config_word(dev, PCI_COMMAND, cmd);
4245	}
4246	return 0;
4247#endif
4248}
4249EXPORT_SYMBOL(pci_set_mwi);
4250
4251/**
4252 * pcim_set_mwi - a device-managed pci_set_mwi()
4253 * @dev: the PCI device for which MWI is enabled
4254 *
4255 * Managed pci_set_mwi().
4256 *
4257 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4258 */
4259int pcim_set_mwi(struct pci_dev *dev)
4260{
4261	struct pci_devres *dr;
4262
4263	dr = find_pci_dr(dev);
4264	if (!dr)
4265		return -ENOMEM;
4266
4267	dr->mwi = 1;
4268	return pci_set_mwi(dev);
4269}
4270EXPORT_SYMBOL(pcim_set_mwi);
4271
4272/**
4273 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4274 * @dev: the PCI device for which MWI is enabled
4275 *
4276 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4277 * Callers are not required to check the return value.
4278 *
4279 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4280 */
4281int pci_try_set_mwi(struct pci_dev *dev)
4282{
4283#ifdef PCI_DISABLE_MWI
4284	return 0;
4285#else
4286	return pci_set_mwi(dev);
4287#endif
4288}
4289EXPORT_SYMBOL(pci_try_set_mwi);
4290
4291/**
4292 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4293 * @dev: the PCI device to disable
4294 *
4295 * Disables PCI Memory-Write-Invalidate transaction on the device
4296 */
4297void pci_clear_mwi(struct pci_dev *dev)
4298{
4299#ifndef PCI_DISABLE_MWI
4300	u16 cmd;
4301
4302	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4303	if (cmd & PCI_COMMAND_INVALIDATE) {
4304		cmd &= ~PCI_COMMAND_INVALIDATE;
4305		pci_write_config_word(dev, PCI_COMMAND, cmd);
4306	}
4307#endif
4308}
4309EXPORT_SYMBOL(pci_clear_mwi);
4310
4311/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4312 * pci_intx - enables/disables PCI INTx for device dev
4313 * @pdev: the PCI device to operate on
4314 * @enable: boolean: whether to enable or disable PCI INTx
4315 *
4316 * Enables/disables PCI INTx for device @pdev
4317 */
4318void pci_intx(struct pci_dev *pdev, int enable)
4319{
4320	u16 pci_command, new;
4321
4322	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4323
4324	if (enable)
4325		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4326	else
4327		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4328
4329	if (new != pci_command) {
4330		struct pci_devres *dr;
4331
4332		pci_write_config_word(pdev, PCI_COMMAND, new);
4333
4334		dr = find_pci_dr(pdev);
4335		if (dr && !dr->restore_intx) {
4336			dr->restore_intx = 1;
4337			dr->orig_intx = !enable;
4338		}
4339	}
4340}
4341EXPORT_SYMBOL_GPL(pci_intx);
4342
4343static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4344{
4345	struct pci_bus *bus = dev->bus;
4346	bool mask_updated = true;
4347	u32 cmd_status_dword;
4348	u16 origcmd, newcmd;
4349	unsigned long flags;
4350	bool irq_pending;
4351
4352	/*
4353	 * We do a single dword read to retrieve both command and status.
4354	 * Document assumptions that make this possible.
4355	 */
4356	BUILD_BUG_ON(PCI_COMMAND % 4);
4357	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4358
4359	raw_spin_lock_irqsave(&pci_lock, flags);
4360
4361	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4362
4363	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4364
4365	/*
4366	 * Check interrupt status register to see whether our device
4367	 * triggered the interrupt (when masking) or the next IRQ is
4368	 * already pending (when unmasking).
4369	 */
4370	if (mask != irq_pending) {
4371		mask_updated = false;
4372		goto done;
4373	}
4374
4375	origcmd = cmd_status_dword;
4376	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4377	if (mask)
4378		newcmd |= PCI_COMMAND_INTX_DISABLE;
4379	if (newcmd != origcmd)
4380		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4381
4382done:
4383	raw_spin_unlock_irqrestore(&pci_lock, flags);
4384
4385	return mask_updated;
4386}
4387
4388/**
4389 * pci_check_and_mask_intx - mask INTx on pending interrupt
4390 * @dev: the PCI device to operate on
4391 *
4392 * Check if the device dev has its INTx line asserted, mask it and return
4393 * true in that case. False is returned if no interrupt was pending.
4394 */
4395bool pci_check_and_mask_intx(struct pci_dev *dev)
4396{
4397	return pci_check_and_set_intx_mask(dev, true);
4398}
4399EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4400
4401/**
4402 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4403 * @dev: the PCI device to operate on
4404 *
4405 * Check if the device dev has its INTx line asserted, unmask it if not and
4406 * return true. False is returned and the mask remains active if there was
4407 * still an interrupt pending.
4408 */
4409bool pci_check_and_unmask_intx(struct pci_dev *dev)
4410{
4411	return pci_check_and_set_intx_mask(dev, false);
4412}
4413EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4414
4415/**
4416 * pci_wait_for_pending_transaction - wait for pending transaction
4417 * @dev: the PCI device to operate on
4418 *
4419 * Return 0 if transaction is pending 1 otherwise.
4420 */
4421int pci_wait_for_pending_transaction(struct pci_dev *dev)
4422{
4423	if (!pci_is_pcie(dev))
4424		return 1;
4425
4426	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4427				    PCI_EXP_DEVSTA_TRPND);
4428}
4429EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4430
4431static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
4432{
4433	int delay = 1;
4434	u32 id;
4435
4436	/*
4437	 * After reset, the device should not silently discard config
4438	 * requests, but it may still indicate that it needs more time by
4439	 * responding to them with CRS completions.  The Root Port will
4440	 * generally synthesize ~0 data to complete the read (except when
4441	 * CRS SV is enabled and the read was for the Vendor ID; in that
4442	 * case it synthesizes 0x0001 data).
4443	 *
4444	 * Wait for the device to return a non-CRS completion.  Read the
4445	 * Command register instead of Vendor ID so we don't have to
4446	 * contend with the CRS SV value.
4447	 */
4448	pci_read_config_dword(dev, PCI_COMMAND, &id);
4449	while (id == ~0) {
4450		if (delay > timeout) {
4451			pci_warn(dev, "not ready %dms after %s; giving up\n",
4452				 delay - 1, reset_type);
4453			return -ENOTTY;
4454		}
4455
4456		if (delay > 1000)
4457			pci_info(dev, "not ready %dms after %s; waiting\n",
4458				 delay - 1, reset_type);
4459
4460		msleep(delay);
4461		delay *= 2;
4462		pci_read_config_dword(dev, PCI_COMMAND, &id);
4463	}
4464
4465	if (delay > 1000)
4466		pci_info(dev, "ready %dms after %s\n", delay - 1,
4467			 reset_type);
4468
4469	return 0;
4470}
4471
4472/**
4473 * pcie_has_flr - check if a device supports function level resets
4474 * @dev: device to check
4475 *
4476 * Returns true if the device advertises support for PCIe function level
4477 * resets.
4478 */
4479bool pcie_has_flr(struct pci_dev *dev)
4480{
4481	u32 cap;
4482
4483	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4484		return false;
4485
4486	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4487	return cap & PCI_EXP_DEVCAP_FLR;
4488}
4489EXPORT_SYMBOL_GPL(pcie_has_flr);
4490
4491/**
4492 * pcie_flr - initiate a PCIe function level reset
4493 * @dev: device to reset
4494 *
4495 * Initiate a function level reset on @dev.  The caller should ensure the
4496 * device supports FLR before calling this function, e.g. by using the
4497 * pcie_has_flr() helper.
4498 */
4499int pcie_flr(struct pci_dev *dev)
4500{
4501	if (!pci_wait_for_pending_transaction(dev))
4502		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4503
4504	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4505
4506	if (dev->imm_ready)
4507		return 0;
4508
4509	/*
4510	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4511	 * 100ms, but may silently discard requests while the FLR is in
4512	 * progress.  Wait 100ms before trying to access the device.
4513	 */
4514	msleep(100);
4515
4516	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4517}
4518EXPORT_SYMBOL_GPL(pcie_flr);
4519
4520static int pci_af_flr(struct pci_dev *dev, int probe)
4521{
4522	int pos;
4523	u8 cap;
4524
4525	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4526	if (!pos)
4527		return -ENOTTY;
4528
4529	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4530		return -ENOTTY;
4531
4532	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4533	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4534		return -ENOTTY;
4535
4536	if (probe)
4537		return 0;
4538
4539	/*
4540	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4541	 * is used, so we use the control offset rather than status and shift
4542	 * the test bit to match.
4543	 */
4544	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4545				 PCI_AF_STATUS_TP << 8))
4546		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4547
4548	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4549
4550	if (dev->imm_ready)
4551		return 0;
4552
4553	/*
4554	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4555	 * updated 27 July 2006; a device must complete an FLR within
4556	 * 100ms, but may silently discard requests while the FLR is in
4557	 * progress.  Wait 100ms before trying to access the device.
4558	 */
4559	msleep(100);
4560
4561	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4562}
4563
4564/**
4565 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4566 * @dev: Device to reset.
4567 * @probe: If set, only check if the device can be reset this way.
4568 *
4569 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4570 * unset, it will be reinitialized internally when going from PCI_D3hot to
4571 * PCI_D0.  If that's the case and the device is not in a low-power state
4572 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4573 *
4574 * NOTE: This causes the caller to sleep for twice the device power transition
4575 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4576 * by default (i.e. unless the @dev's d3_delay field has a different value).
4577 * Moreover, only devices in D0 can be reset by this function.
4578 */
4579static int pci_pm_reset(struct pci_dev *dev, int probe)
4580{
4581	u16 csr;
4582
4583	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4584		return -ENOTTY;
4585
4586	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4587	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4588		return -ENOTTY;
4589
4590	if (probe)
4591		return 0;
4592
4593	if (dev->current_state != PCI_D0)
4594		return -EINVAL;
4595
4596	csr &= ~PCI_PM_CTRL_STATE_MASK;
4597	csr |= PCI_D3hot;
4598	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4599	pci_dev_d3_sleep(dev);
4600
4601	csr &= ~PCI_PM_CTRL_STATE_MASK;
4602	csr |= PCI_D0;
4603	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4604	pci_dev_d3_sleep(dev);
4605
4606	return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
4607}
 
4608/**
4609 * pcie_wait_for_link - Wait until link is active or inactive
4610 * @pdev: Bridge device
4611 * @active: waiting for active or inactive?
 
4612 *
4613 * Use this to wait till link becomes active or inactive.
4614 */
4615bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
 
4616{
4617	int timeout = 1000;
4618	bool ret;
4619	u16 lnk_status;
4620
4621	/*
4622	 * Some controllers might not implement link active reporting. In this
4623	 * case, we wait for 1000 + 100 ms.
4624	 */
4625	if (!pdev->link_active_reporting) {
4626		msleep(1100);
4627		return true;
4628	}
4629
4630	/*
4631	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4632	 * after which we should expect an link active if the reset was
4633	 * successful. If so, software must wait a minimum 100ms before sending
4634	 * configuration requests to devices downstream this port.
4635	 *
4636	 * If the link fails to activate, either the device was physically
4637	 * removed or the link is permanently failed.
4638	 */
4639	if (active)
4640		msleep(20);
4641	for (;;) {
4642		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4643		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4644		if (ret == active)
4645			break;
4646		if (timeout <= 0)
4647			break;
4648		msleep(10);
4649		timeout -= 10;
4650	}
4651	if (active && ret)
4652		msleep(100);
4653	else if (ret != active)
4654		pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4655			active ? "set" : "cleared");
4656	return ret == active;
4657}
4658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4659void pci_reset_secondary_bus(struct pci_dev *dev)
4660{
4661	u16 ctrl;
4662
4663	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4664	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4665	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4666
4667	/*
4668	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4669	 * this to 2ms to ensure that we meet the minimum requirement.
4670	 */
4671	msleep(2);
4672
4673	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4674	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4675
4676	/*
4677	 * Trhfa for conventional PCI is 2^25 clock cycles.
4678	 * Assuming a minimum 33MHz clock this results in a 1s
4679	 * delay before we can consider subordinate devices to
4680	 * be re-initialized.  PCIe has some ways to shorten this,
4681	 * but we don't make use of them yet.
4682	 */
4683	ssleep(1);
4684}
4685
4686void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4687{
4688	pci_reset_secondary_bus(dev);
4689}
4690
4691/**
4692 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4693 * @dev: Bridge device
4694 *
4695 * Use the bridge control register to assert reset on the secondary bus.
4696 * Devices on the secondary bus are left in power-on state.
4697 */
4698int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4699{
4700	pcibios_reset_secondary_bus(dev);
4701
4702	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4703}
4704EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4705
4706static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4707{
4708	struct pci_dev *pdev;
4709
4710	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4711	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4712		return -ENOTTY;
4713
4714	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4715		if (pdev != dev)
4716			return -ENOTTY;
4717
4718	if (probe)
4719		return 0;
4720
4721	return pci_bridge_secondary_bus_reset(dev->bus->self);
4722}
4723
4724static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4725{
4726	int rc = -ENOTTY;
4727
4728	if (!hotplug || !try_module_get(hotplug->owner))
4729		return rc;
4730
4731	if (hotplug->ops->reset_slot)
4732		rc = hotplug->ops->reset_slot(hotplug, probe);
4733
4734	module_put(hotplug->owner);
4735
4736	return rc;
4737}
4738
4739static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4740{
4741	struct pci_dev *pdev;
4742
4743	if (dev->subordinate || !dev->slot ||
4744	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4745		return -ENOTTY;
4746
4747	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4748		if (pdev != dev && pdev->slot == dev->slot)
4749			return -ENOTTY;
4750
4751	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4752}
4753
 
 
 
 
 
 
 
 
 
 
4754static void pci_dev_lock(struct pci_dev *dev)
4755{
4756	pci_cfg_access_lock(dev);
4757	/* block PM suspend, driver probe, etc. */
4758	device_lock(&dev->dev);
4759}
4760
4761/* Return 1 on successful lock, 0 on contention */
4762static int pci_dev_trylock(struct pci_dev *dev)
4763{
4764	if (pci_cfg_access_trylock(dev)) {
4765		if (device_trylock(&dev->dev))
4766			return 1;
4767		pci_cfg_access_unlock(dev);
4768	}
4769
4770	return 0;
4771}
 
4772
4773static void pci_dev_unlock(struct pci_dev *dev)
4774{
4775	device_unlock(&dev->dev);
4776	pci_cfg_access_unlock(dev);
4777}
 
4778
4779static void pci_dev_save_and_disable(struct pci_dev *dev)
4780{
4781	const struct pci_error_handlers *err_handler =
4782			dev->driver ? dev->driver->err_handler : NULL;
4783
4784	/*
4785	 * dev->driver->err_handler->reset_prepare() is protected against
4786	 * races with ->remove() by the device lock, which must be held by
4787	 * the caller.
4788	 */
4789	if (err_handler && err_handler->reset_prepare)
4790		err_handler->reset_prepare(dev);
4791
4792	/*
4793	 * Wake-up device prior to save.  PM registers default to D0 after
4794	 * reset and a simple register restore doesn't reliably return
4795	 * to a non-D0 state anyway.
4796	 */
4797	pci_set_power_state(dev, PCI_D0);
4798
4799	pci_save_state(dev);
4800	/*
4801	 * Disable the device by clearing the Command register, except for
4802	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4803	 * BARs, but also prevents the device from being Bus Master, preventing
4804	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4805	 * compliant devices, INTx-disable prevents legacy interrupts.
4806	 */
4807	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4808}
4809
4810static void pci_dev_restore(struct pci_dev *dev)
4811{
4812	const struct pci_error_handlers *err_handler =
4813			dev->driver ? dev->driver->err_handler : NULL;
4814
4815	pci_restore_state(dev);
4816
4817	/*
4818	 * dev->driver->err_handler->reset_done() is protected against
4819	 * races with ->remove() by the device lock, which must be held by
4820	 * the caller.
4821	 */
4822	if (err_handler && err_handler->reset_done)
4823		err_handler->reset_done(dev);
4824}
4825
4826/**
4827 * __pci_reset_function_locked - reset a PCI device function while holding
4828 * the @dev mutex lock.
4829 * @dev: PCI device to reset
4830 *
4831 * Some devices allow an individual function to be reset without affecting
4832 * other functions in the same device.  The PCI device must be responsive
4833 * to PCI config space in order to use this function.
4834 *
4835 * The device function is presumed to be unused and the caller is holding
4836 * the device mutex lock when this function is called.
4837 *
4838 * Resetting the device will make the contents of PCI configuration space
4839 * random, so any caller of this must be prepared to reinitialise the
4840 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4841 * etc.
4842 *
4843 * Returns 0 if the device function was successfully reset or negative if the
4844 * device doesn't support resetting a single function.
4845 */
4846int __pci_reset_function_locked(struct pci_dev *dev)
4847{
4848	int rc;
4849
4850	might_sleep();
4851
4852	/*
4853	 * A reset method returns -ENOTTY if it doesn't support this device
4854	 * and we should try the next method.
4855	 *
4856	 * If it returns 0 (success), we're finished.  If it returns any
4857	 * other error, we're also finished: this indicates that further
4858	 * reset mechanisms might be broken on the device.
4859	 */
4860	rc = pci_dev_specific_reset(dev, 0);
4861	if (rc != -ENOTTY)
4862		return rc;
4863	if (pcie_has_flr(dev)) {
4864		rc = pcie_flr(dev);
4865		if (rc != -ENOTTY)
4866			return rc;
4867	}
4868	rc = pci_af_flr(dev, 0);
4869	if (rc != -ENOTTY)
4870		return rc;
4871	rc = pci_pm_reset(dev, 0);
4872	if (rc != -ENOTTY)
4873		return rc;
4874	rc = pci_dev_reset_slot_function(dev, 0);
4875	if (rc != -ENOTTY)
4876		return rc;
4877	return pci_parent_bus_reset(dev, 0);
4878}
4879EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4880
4881/**
4882 * pci_probe_reset_function - check whether the device can be safely reset
4883 * @dev: PCI device to reset
4884 *
4885 * Some devices allow an individual function to be reset without affecting
4886 * other functions in the same device.  The PCI device must be responsive
4887 * to PCI config space in order to use this function.
4888 *
4889 * Returns 0 if the device function can be reset or negative if the
4890 * device doesn't support resetting a single function.
4891 */
4892int pci_probe_reset_function(struct pci_dev *dev)
4893{
4894	int rc;
4895
4896	might_sleep();
4897
4898	rc = pci_dev_specific_reset(dev, 1);
4899	if (rc != -ENOTTY)
4900		return rc;
4901	if (pcie_has_flr(dev))
4902		return 0;
4903	rc = pci_af_flr(dev, 1);
4904	if (rc != -ENOTTY)
4905		return rc;
4906	rc = pci_pm_reset(dev, 1);
4907	if (rc != -ENOTTY)
4908		return rc;
4909	rc = pci_dev_reset_slot_function(dev, 1);
4910	if (rc != -ENOTTY)
4911		return rc;
4912
4913	return pci_parent_bus_reset(dev, 1);
4914}
4915
4916/**
4917 * pci_reset_function - quiesce and reset a PCI device function
4918 * @dev: PCI device to reset
4919 *
4920 * Some devices allow an individual function to be reset without affecting
4921 * other functions in the same device.  The PCI device must be responsive
4922 * to PCI config space in order to use this function.
4923 *
4924 * This function does not just reset the PCI portion of a device, but
4925 * clears all the state associated with the device.  This function differs
4926 * from __pci_reset_function_locked() in that it saves and restores device state
4927 * over the reset and takes the PCI device lock.
4928 *
4929 * Returns 0 if the device function was successfully reset or negative if the
4930 * device doesn't support resetting a single function.
4931 */
4932int pci_reset_function(struct pci_dev *dev)
4933{
4934	int rc;
4935
4936	if (!dev->reset_fn)
4937		return -ENOTTY;
4938
4939	pci_dev_lock(dev);
4940	pci_dev_save_and_disable(dev);
4941
4942	rc = __pci_reset_function_locked(dev);
4943
4944	pci_dev_restore(dev);
4945	pci_dev_unlock(dev);
4946
4947	return rc;
4948}
4949EXPORT_SYMBOL_GPL(pci_reset_function);
4950
4951/**
4952 * pci_reset_function_locked - quiesce and reset a PCI device function
4953 * @dev: PCI device to reset
4954 *
4955 * Some devices allow an individual function to be reset without affecting
4956 * other functions in the same device.  The PCI device must be responsive
4957 * to PCI config space in order to use this function.
4958 *
4959 * This function does not just reset the PCI portion of a device, but
4960 * clears all the state associated with the device.  This function differs
4961 * from __pci_reset_function_locked() in that it saves and restores device state
4962 * over the reset.  It also differs from pci_reset_function() in that it
4963 * requires the PCI device lock to be held.
4964 *
4965 * Returns 0 if the device function was successfully reset or negative if the
4966 * device doesn't support resetting a single function.
4967 */
4968int pci_reset_function_locked(struct pci_dev *dev)
4969{
4970	int rc;
4971
4972	if (!dev->reset_fn)
4973		return -ENOTTY;
4974
4975	pci_dev_save_and_disable(dev);
4976
4977	rc = __pci_reset_function_locked(dev);
4978
4979	pci_dev_restore(dev);
4980
4981	return rc;
4982}
4983EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4984
4985/**
4986 * pci_try_reset_function - quiesce and reset a PCI device function
4987 * @dev: PCI device to reset
4988 *
4989 * Same as above, except return -EAGAIN if unable to lock device.
4990 */
4991int pci_try_reset_function(struct pci_dev *dev)
4992{
4993	int rc;
4994
4995	if (!dev->reset_fn)
4996		return -ENOTTY;
4997
4998	if (!pci_dev_trylock(dev))
4999		return -EAGAIN;
5000
5001	pci_dev_save_and_disable(dev);
5002	rc = __pci_reset_function_locked(dev);
5003	pci_dev_restore(dev);
5004	pci_dev_unlock(dev);
5005
5006	return rc;
5007}
5008EXPORT_SYMBOL_GPL(pci_try_reset_function);
5009
5010/* Do any devices on or below this bus prevent a bus reset? */
5011static bool pci_bus_resetable(struct pci_bus *bus)
5012{
5013	struct pci_dev *dev;
5014
5015
5016	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5017		return false;
5018
5019	list_for_each_entry(dev, &bus->devices, bus_list) {
5020		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5021		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5022			return false;
5023	}
5024
5025	return true;
5026}
5027
5028/* Lock devices from the top of the tree down */
5029static void pci_bus_lock(struct pci_bus *bus)
5030{
5031	struct pci_dev *dev;
5032
5033	list_for_each_entry(dev, &bus->devices, bus_list) {
5034		pci_dev_lock(dev);
5035		if (dev->subordinate)
5036			pci_bus_lock(dev->subordinate);
5037	}
5038}
5039
5040/* Unlock devices from the bottom of the tree up */
5041static void pci_bus_unlock(struct pci_bus *bus)
5042{
5043	struct pci_dev *dev;
5044
5045	list_for_each_entry(dev, &bus->devices, bus_list) {
5046		if (dev->subordinate)
5047			pci_bus_unlock(dev->subordinate);
5048		pci_dev_unlock(dev);
5049	}
5050}
5051
5052/* Return 1 on successful lock, 0 on contention */
5053static int pci_bus_trylock(struct pci_bus *bus)
5054{
5055	struct pci_dev *dev;
5056
5057	list_for_each_entry(dev, &bus->devices, bus_list) {
5058		if (!pci_dev_trylock(dev))
5059			goto unlock;
5060		if (dev->subordinate) {
5061			if (!pci_bus_trylock(dev->subordinate)) {
5062				pci_dev_unlock(dev);
5063				goto unlock;
5064			}
5065		}
5066	}
5067	return 1;
5068
5069unlock:
5070	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5071		if (dev->subordinate)
5072			pci_bus_unlock(dev->subordinate);
5073		pci_dev_unlock(dev);
5074	}
5075	return 0;
5076}
5077
5078/* Do any devices on or below this slot prevent a bus reset? */
5079static bool pci_slot_resetable(struct pci_slot *slot)
5080{
5081	struct pci_dev *dev;
5082
5083	if (slot->bus->self &&
5084	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5085		return false;
5086
5087	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5088		if (!dev->slot || dev->slot != slot)
5089			continue;
5090		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5091		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5092			return false;
5093	}
5094
5095	return true;
5096}
5097
5098/* Lock devices from the top of the tree down */
5099static void pci_slot_lock(struct pci_slot *slot)
5100{
5101	struct pci_dev *dev;
5102
5103	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5104		if (!dev->slot || dev->slot != slot)
5105			continue;
5106		pci_dev_lock(dev);
5107		if (dev->subordinate)
5108			pci_bus_lock(dev->subordinate);
5109	}
5110}
5111
5112/* Unlock devices from the bottom of the tree up */
5113static void pci_slot_unlock(struct pci_slot *slot)
5114{
5115	struct pci_dev *dev;
5116
5117	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5118		if (!dev->slot || dev->slot != slot)
5119			continue;
5120		if (dev->subordinate)
5121			pci_bus_unlock(dev->subordinate);
5122		pci_dev_unlock(dev);
5123	}
5124}
5125
5126/* Return 1 on successful lock, 0 on contention */
5127static int pci_slot_trylock(struct pci_slot *slot)
5128{
5129	struct pci_dev *dev;
5130
5131	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5132		if (!dev->slot || dev->slot != slot)
5133			continue;
5134		if (!pci_dev_trylock(dev))
5135			goto unlock;
5136		if (dev->subordinate) {
5137			if (!pci_bus_trylock(dev->subordinate)) {
5138				pci_dev_unlock(dev);
5139				goto unlock;
5140			}
5141		}
5142	}
5143	return 1;
5144
5145unlock:
5146	list_for_each_entry_continue_reverse(dev,
5147					     &slot->bus->devices, bus_list) {
5148		if (!dev->slot || dev->slot != slot)
5149			continue;
5150		if (dev->subordinate)
5151			pci_bus_unlock(dev->subordinate);
5152		pci_dev_unlock(dev);
5153	}
5154	return 0;
5155}
5156
5157/*
5158 * Save and disable devices from the top of the tree down while holding
5159 * the @dev mutex lock for the entire tree.
5160 */
5161static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5162{
5163	struct pci_dev *dev;
5164
5165	list_for_each_entry(dev, &bus->devices, bus_list) {
5166		pci_dev_save_and_disable(dev);
5167		if (dev->subordinate)
5168			pci_bus_save_and_disable_locked(dev->subordinate);
5169	}
5170}
5171
5172/*
5173 * Restore devices from top of the tree down while holding @dev mutex lock
5174 * for the entire tree.  Parent bridges need to be restored before we can
5175 * get to subordinate devices.
5176 */
5177static void pci_bus_restore_locked(struct pci_bus *bus)
5178{
5179	struct pci_dev *dev;
5180
5181	list_for_each_entry(dev, &bus->devices, bus_list) {
5182		pci_dev_restore(dev);
5183		if (dev->subordinate)
5184			pci_bus_restore_locked(dev->subordinate);
5185	}
5186}
5187
5188/*
5189 * Save and disable devices from the top of the tree down while holding
5190 * the @dev mutex lock for the entire tree.
5191 */
5192static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5193{
5194	struct pci_dev *dev;
5195
5196	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5197		if (!dev->slot || dev->slot != slot)
5198			continue;
5199		pci_dev_save_and_disable(dev);
5200		if (dev->subordinate)
5201			pci_bus_save_and_disable_locked(dev->subordinate);
5202	}
5203}
5204
5205/*
5206 * Restore devices from top of the tree down while holding @dev mutex lock
5207 * for the entire tree.  Parent bridges need to be restored before we can
5208 * get to subordinate devices.
5209 */
5210static void pci_slot_restore_locked(struct pci_slot *slot)
5211{
5212	struct pci_dev *dev;
5213
5214	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5215		if (!dev->slot || dev->slot != slot)
5216			continue;
5217		pci_dev_restore(dev);
5218		if (dev->subordinate)
5219			pci_bus_restore_locked(dev->subordinate);
5220	}
5221}
5222
5223static int pci_slot_reset(struct pci_slot *slot, int probe)
5224{
5225	int rc;
5226
5227	if (!slot || !pci_slot_resetable(slot))
5228		return -ENOTTY;
5229
5230	if (!probe)
5231		pci_slot_lock(slot);
5232
5233	might_sleep();
5234
5235	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5236
5237	if (!probe)
5238		pci_slot_unlock(slot);
5239
5240	return rc;
5241}
5242
5243/**
5244 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5245 * @slot: PCI slot to probe
5246 *
5247 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5248 */
5249int pci_probe_reset_slot(struct pci_slot *slot)
5250{
5251	return pci_slot_reset(slot, 1);
5252}
5253EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5254
5255/**
5256 * __pci_reset_slot - Try to reset a PCI slot
5257 * @slot: PCI slot to reset
5258 *
5259 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5260 * independent of other slots.  For instance, some slots may support slot power
5261 * control.  In the case of a 1:1 bus to slot architecture, this function may
5262 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5263 * Generally a slot reset should be attempted before a bus reset.  All of the
5264 * function of the slot and any subordinate buses behind the slot are reset
5265 * through this function.  PCI config space of all devices in the slot and
5266 * behind the slot is saved before and restored after reset.
5267 *
5268 * Same as above except return -EAGAIN if the slot cannot be locked
5269 */
5270static int __pci_reset_slot(struct pci_slot *slot)
5271{
5272	int rc;
5273
5274	rc = pci_slot_reset(slot, 1);
5275	if (rc)
5276		return rc;
5277
5278	if (pci_slot_trylock(slot)) {
5279		pci_slot_save_and_disable_locked(slot);
5280		might_sleep();
5281		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5282		pci_slot_restore_locked(slot);
5283		pci_slot_unlock(slot);
5284	} else
5285		rc = -EAGAIN;
5286
5287	return rc;
5288}
5289
5290static int pci_bus_reset(struct pci_bus *bus, int probe)
5291{
5292	int ret;
5293
5294	if (!bus->self || !pci_bus_resetable(bus))
5295		return -ENOTTY;
5296
5297	if (probe)
5298		return 0;
5299
5300	pci_bus_lock(bus);
5301
5302	might_sleep();
5303
5304	ret = pci_bridge_secondary_bus_reset(bus->self);
5305
5306	pci_bus_unlock(bus);
5307
5308	return ret;
5309}
5310
5311/**
5312 * pci_bus_error_reset - reset the bridge's subordinate bus
5313 * @bridge: The parent device that connects to the bus to reset
5314 *
5315 * This function will first try to reset the slots on this bus if the method is
5316 * available. If slot reset fails or is not available, this will fall back to a
5317 * secondary bus reset.
5318 */
5319int pci_bus_error_reset(struct pci_dev *bridge)
5320{
5321	struct pci_bus *bus = bridge->subordinate;
5322	struct pci_slot *slot;
5323
5324	if (!bus)
5325		return -ENOTTY;
5326
5327	mutex_lock(&pci_slot_mutex);
5328	if (list_empty(&bus->slots))
5329		goto bus_reset;
5330
5331	list_for_each_entry(slot, &bus->slots, list)
5332		if (pci_probe_reset_slot(slot))
5333			goto bus_reset;
5334
5335	list_for_each_entry(slot, &bus->slots, list)
5336		if (pci_slot_reset(slot, 0))
5337			goto bus_reset;
5338
5339	mutex_unlock(&pci_slot_mutex);
5340	return 0;
5341bus_reset:
5342	mutex_unlock(&pci_slot_mutex);
5343	return pci_bus_reset(bridge->subordinate, 0);
5344}
5345
5346/**
5347 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5348 * @bus: PCI bus to probe
5349 *
5350 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5351 */
5352int pci_probe_reset_bus(struct pci_bus *bus)
5353{
5354	return pci_bus_reset(bus, 1);
5355}
5356EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5357
5358/**
5359 * __pci_reset_bus - Try to reset a PCI bus
5360 * @bus: top level PCI bus to reset
5361 *
5362 * Same as above except return -EAGAIN if the bus cannot be locked
5363 */
5364static int __pci_reset_bus(struct pci_bus *bus)
5365{
5366	int rc;
5367
5368	rc = pci_bus_reset(bus, 1);
5369	if (rc)
5370		return rc;
5371
5372	if (pci_bus_trylock(bus)) {
5373		pci_bus_save_and_disable_locked(bus);
5374		might_sleep();
5375		rc = pci_bridge_secondary_bus_reset(bus->self);
5376		pci_bus_restore_locked(bus);
5377		pci_bus_unlock(bus);
5378	} else
5379		rc = -EAGAIN;
5380
5381	return rc;
5382}
5383
5384/**
5385 * pci_reset_bus - Try to reset a PCI bus
5386 * @pdev: top level PCI device to reset via slot/bus
5387 *
5388 * Same as above except return -EAGAIN if the bus cannot be locked
5389 */
5390int pci_reset_bus(struct pci_dev *pdev)
5391{
5392	return (!pci_probe_reset_slot(pdev->slot)) ?
5393	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5394}
5395EXPORT_SYMBOL_GPL(pci_reset_bus);
5396
5397/**
5398 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5399 * @dev: PCI device to query
5400 *
5401 * Returns mmrbc: maximum designed memory read count in bytes or
5402 * appropriate error value.
5403 */
5404int pcix_get_max_mmrbc(struct pci_dev *dev)
5405{
5406	int cap;
5407	u32 stat;
5408
5409	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5410	if (!cap)
5411		return -EINVAL;
5412
5413	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5414		return -EINVAL;
5415
5416	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5417}
5418EXPORT_SYMBOL(pcix_get_max_mmrbc);
5419
5420/**
5421 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5422 * @dev: PCI device to query
5423 *
5424 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5425 * value.
5426 */
5427int pcix_get_mmrbc(struct pci_dev *dev)
5428{
5429	int cap;
5430	u16 cmd;
5431
5432	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5433	if (!cap)
5434		return -EINVAL;
5435
5436	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5437		return -EINVAL;
5438
5439	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5440}
5441EXPORT_SYMBOL(pcix_get_mmrbc);
5442
5443/**
5444 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5445 * @dev: PCI device to query
5446 * @mmrbc: maximum memory read count in bytes
5447 *    valid values are 512, 1024, 2048, 4096
5448 *
5449 * If possible sets maximum memory read byte count, some bridges have errata
5450 * that prevent this.
5451 */
5452int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5453{
5454	int cap;
5455	u32 stat, v, o;
5456	u16 cmd;
5457
5458	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5459		return -EINVAL;
5460
5461	v = ffs(mmrbc) - 10;
5462
5463	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5464	if (!cap)
5465		return -EINVAL;
5466
5467	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5468		return -EINVAL;
5469
5470	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5471		return -E2BIG;
5472
5473	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5474		return -EINVAL;
5475
5476	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5477	if (o != v) {
5478		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5479			return -EIO;
5480
5481		cmd &= ~PCI_X_CMD_MAX_READ;
5482		cmd |= v << 2;
5483		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5484			return -EIO;
5485	}
5486	return 0;
5487}
5488EXPORT_SYMBOL(pcix_set_mmrbc);
5489
5490/**
5491 * pcie_get_readrq - get PCI Express read request size
5492 * @dev: PCI device to query
5493 *
5494 * Returns maximum memory read request in bytes or appropriate error value.
5495 */
5496int pcie_get_readrq(struct pci_dev *dev)
5497{
5498	u16 ctl;
5499
5500	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5501
5502	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5503}
5504EXPORT_SYMBOL(pcie_get_readrq);
5505
5506/**
5507 * pcie_set_readrq - set PCI Express maximum memory read request
5508 * @dev: PCI device to query
5509 * @rq: maximum memory read count in bytes
5510 *    valid values are 128, 256, 512, 1024, 2048, 4096
5511 *
5512 * If possible sets maximum memory read request in bytes
5513 */
5514int pcie_set_readrq(struct pci_dev *dev, int rq)
5515{
5516	u16 v;
 
5517
5518	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5519		return -EINVAL;
5520
5521	/*
5522	 * If using the "performance" PCIe config, we clamp the read rq
5523	 * size to the max packet size to keep the host bridge from
5524	 * generating requests larger than we can cope with.
5525	 */
5526	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5527		int mps = pcie_get_mps(dev);
5528
5529		if (mps < rq)
5530			rq = mps;
5531	}
5532
5533	v = (ffs(rq) - 8) << 12;
5534
5535	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5536						  PCI_EXP_DEVCTL_READRQ, v);
 
 
5537}
5538EXPORT_SYMBOL(pcie_set_readrq);
5539
5540/**
5541 * pcie_get_mps - get PCI Express maximum payload size
5542 * @dev: PCI device to query
5543 *
5544 * Returns maximum payload size in bytes
5545 */
5546int pcie_get_mps(struct pci_dev *dev)
5547{
5548	u16 ctl;
5549
5550	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5551
5552	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5553}
5554EXPORT_SYMBOL(pcie_get_mps);
5555
5556/**
5557 * pcie_set_mps - set PCI Express maximum payload size
5558 * @dev: PCI device to query
5559 * @mps: maximum payload size in bytes
5560 *    valid values are 128, 256, 512, 1024, 2048, 4096
5561 *
5562 * If possible sets maximum payload size
5563 */
5564int pcie_set_mps(struct pci_dev *dev, int mps)
5565{
5566	u16 v;
 
5567
5568	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5569		return -EINVAL;
5570
5571	v = ffs(mps) - 8;
5572	if (v > dev->pcie_mpss)
5573		return -EINVAL;
5574	v <<= 5;
5575
5576	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5577						  PCI_EXP_DEVCTL_PAYLOAD, v);
 
 
5578}
5579EXPORT_SYMBOL(pcie_set_mps);
5580
5581/**
5582 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5583 *			      device and its bandwidth limitation
5584 * @dev: PCI device to query
5585 * @limiting_dev: storage for device causing the bandwidth limitation
5586 * @speed: storage for speed of limiting device
5587 * @width: storage for width of limiting device
5588 *
5589 * Walk up the PCI device chain and find the point where the minimum
5590 * bandwidth is available.  Return the bandwidth available there and (if
5591 * limiting_dev, speed, and width pointers are supplied) information about
5592 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5593 * raw bandwidth.
5594 */
5595u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5596			     enum pci_bus_speed *speed,
5597			     enum pcie_link_width *width)
5598{
5599	u16 lnksta;
5600	enum pci_bus_speed next_speed;
5601	enum pcie_link_width next_width;
5602	u32 bw, next_bw;
5603
5604	if (speed)
5605		*speed = PCI_SPEED_UNKNOWN;
5606	if (width)
5607		*width = PCIE_LNK_WIDTH_UNKNOWN;
5608
5609	bw = 0;
5610
5611	while (dev) {
5612		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5613
5614		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5615		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5616			PCI_EXP_LNKSTA_NLW_SHIFT;
5617
5618		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5619
5620		/* Check if current device limits the total bandwidth */
5621		if (!bw || next_bw <= bw) {
5622			bw = next_bw;
5623
5624			if (limiting_dev)
5625				*limiting_dev = dev;
5626			if (speed)
5627				*speed = next_speed;
5628			if (width)
5629				*width = next_width;
5630		}
5631
5632		dev = pci_upstream_bridge(dev);
5633	}
5634
5635	return bw;
5636}
5637EXPORT_SYMBOL(pcie_bandwidth_available);
5638
5639/**
5640 * pcie_get_speed_cap - query for the PCI device's link speed capability
5641 * @dev: PCI device to query
5642 *
5643 * Query the PCI device speed capability.  Return the maximum link speed
5644 * supported by the device.
5645 */
5646enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5647{
5648	u32 lnkcap2, lnkcap;
5649
5650	/*
5651	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5652	 * implementation note there recommends using the Supported Link
5653	 * Speeds Vector in Link Capabilities 2 when supported.
5654	 *
5655	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5656	 * should use the Supported Link Speeds field in Link Capabilities,
5657	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5658	 */
5659	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5660	if (lnkcap2) { /* PCIe r3.0-compliant */
5661		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_32_0GB)
5662			return PCIE_SPEED_32_0GT;
5663		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5664			return PCIE_SPEED_16_0GT;
5665		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5666			return PCIE_SPEED_8_0GT;
5667		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5668			return PCIE_SPEED_5_0GT;
5669		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5670			return PCIE_SPEED_2_5GT;
5671		return PCI_SPEED_UNKNOWN;
5672	}
5673
5674	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5675	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5676		return PCIE_SPEED_5_0GT;
5677	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5678		return PCIE_SPEED_2_5GT;
5679
5680	return PCI_SPEED_UNKNOWN;
5681}
5682EXPORT_SYMBOL(pcie_get_speed_cap);
5683
5684/**
5685 * pcie_get_width_cap - query for the PCI device's link width capability
5686 * @dev: PCI device to query
5687 *
5688 * Query the PCI device width capability.  Return the maximum link width
5689 * supported by the device.
5690 */
5691enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5692{
5693	u32 lnkcap;
5694
5695	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5696	if (lnkcap)
5697		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5698
5699	return PCIE_LNK_WIDTH_UNKNOWN;
5700}
5701EXPORT_SYMBOL(pcie_get_width_cap);
5702
5703/**
5704 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5705 * @dev: PCI device
5706 * @speed: storage for link speed
5707 * @width: storage for link width
5708 *
5709 * Calculate a PCI device's link bandwidth by querying for its link speed
5710 * and width, multiplying them, and applying encoding overhead.  The result
5711 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5712 */
5713u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5714			   enum pcie_link_width *width)
5715{
5716	*speed = pcie_get_speed_cap(dev);
5717	*width = pcie_get_width_cap(dev);
5718
5719	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5720		return 0;
5721
5722	return *width * PCIE_SPEED2MBS_ENC(*speed);
5723}
5724
5725/**
5726 * __pcie_print_link_status - Report the PCI device's link speed and width
5727 * @dev: PCI device to query
5728 * @verbose: Print info even when enough bandwidth is available
5729 *
5730 * If the available bandwidth at the device is less than the device is
5731 * capable of, report the device's maximum possible bandwidth and the
5732 * upstream link that limits its performance.  If @verbose, always print
5733 * the available bandwidth, even if the device isn't constrained.
5734 */
5735void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5736{
5737	enum pcie_link_width width, width_cap;
5738	enum pci_bus_speed speed, speed_cap;
5739	struct pci_dev *limiting_dev = NULL;
5740	u32 bw_avail, bw_cap;
5741
5742	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5743	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5744
5745	if (bw_avail >= bw_cap && verbose)
5746		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5747			 bw_cap / 1000, bw_cap % 1000,
5748			 PCIE_SPEED2STR(speed_cap), width_cap);
5749	else if (bw_avail < bw_cap)
5750		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5751			 bw_avail / 1000, bw_avail % 1000,
5752			 PCIE_SPEED2STR(speed), width,
5753			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5754			 bw_cap / 1000, bw_cap % 1000,
5755			 PCIE_SPEED2STR(speed_cap), width_cap);
5756}
5757
5758/**
5759 * pcie_print_link_status - Report the PCI device's link speed and width
5760 * @dev: PCI device to query
5761 *
5762 * Report the available bandwidth at the device.
5763 */
5764void pcie_print_link_status(struct pci_dev *dev)
5765{
5766	__pcie_print_link_status(dev, true);
5767}
5768EXPORT_SYMBOL(pcie_print_link_status);
5769
5770/**
5771 * pci_select_bars - Make BAR mask from the type of resource
5772 * @dev: the PCI device for which BAR mask is made
5773 * @flags: resource type mask to be selected
5774 *
5775 * This helper routine makes bar mask from the type of resource.
5776 */
5777int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5778{
5779	int i, bars = 0;
5780	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5781		if (pci_resource_flags(dev, i) & flags)
5782			bars |= (1 << i);
5783	return bars;
5784}
5785EXPORT_SYMBOL(pci_select_bars);
5786
5787/* Some architectures require additional programming to enable VGA */
5788static arch_set_vga_state_t arch_set_vga_state;
5789
5790void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5791{
5792	arch_set_vga_state = func;	/* NULL disables */
5793}
5794
5795static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5796				  unsigned int command_bits, u32 flags)
5797{
5798	if (arch_set_vga_state)
5799		return arch_set_vga_state(dev, decode, command_bits,
5800						flags);
5801	return 0;
5802}
5803
5804/**
5805 * pci_set_vga_state - set VGA decode state on device and parents if requested
5806 * @dev: the PCI device
5807 * @decode: true = enable decoding, false = disable decoding
5808 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5809 * @flags: traverse ancestors and change bridges
5810 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5811 */
5812int pci_set_vga_state(struct pci_dev *dev, bool decode,
5813		      unsigned int command_bits, u32 flags)
5814{
5815	struct pci_bus *bus;
5816	struct pci_dev *bridge;
5817	u16 cmd;
5818	int rc;
5819
5820	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5821
5822	/* ARCH specific VGA enables */
5823	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5824	if (rc)
5825		return rc;
5826
5827	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5828		pci_read_config_word(dev, PCI_COMMAND, &cmd);
5829		if (decode == true)
5830			cmd |= command_bits;
5831		else
5832			cmd &= ~command_bits;
5833		pci_write_config_word(dev, PCI_COMMAND, cmd);
5834	}
5835
5836	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5837		return 0;
5838
5839	bus = dev->bus;
5840	while (bus) {
5841		bridge = bus->self;
5842		if (bridge) {
5843			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5844					     &cmd);
5845			if (decode == true)
5846				cmd |= PCI_BRIDGE_CTL_VGA;
5847			else
5848				cmd &= ~PCI_BRIDGE_CTL_VGA;
5849			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5850					      cmd);
5851		}
5852		bus = bus->parent;
5853	}
5854	return 0;
5855}
5856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5857/**
5858 * pci_add_dma_alias - Add a DMA devfn alias for a device
5859 * @dev: the PCI device for which alias is added
5860 * @devfn: alias slot and function
 
5861 *
5862 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
5863 * which is used to program permissible bus-devfn source addresses for DMA
5864 * requests in an IOMMU.  These aliases factor into IOMMU group creation
5865 * and are useful for devices generating DMA requests beyond or different
5866 * from their logical bus-devfn.  Examples include device quirks where the
5867 * device simply uses the wrong devfn, as well as non-transparent bridges
5868 * where the alias may be a proxy for devices in another domain.
5869 *
5870 * IOMMU group creation is performed during device discovery or addition,
5871 * prior to any potential DMA mapping and therefore prior to driver probing
5872 * (especially for userspace assigned devices where IOMMU group definition
5873 * cannot be left as a userspace activity).  DMA aliases should therefore
5874 * be configured via quirks, such as the PCI fixup header quirk.
5875 */
5876void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5877{
 
 
 
 
 
5878	if (!dev->dma_alias_mask)
5879		dev->dma_alias_mask = bitmap_zalloc(U8_MAX, GFP_KERNEL);
5880	if (!dev->dma_alias_mask) {
5881		pci_warn(dev, "Unable to allocate DMA alias mask\n");
5882		return;
5883	}
5884
5885	set_bit(devfn, dev->dma_alias_mask);
5886	pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5887		 PCI_SLOT(devfn), PCI_FUNC(devfn));
 
 
 
 
 
 
5888}
5889
5890bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5891{
5892	return (dev1->dma_alias_mask &&
5893		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5894	       (dev2->dma_alias_mask &&
5895		test_bit(dev1->devfn, dev2->dma_alias_mask));
 
 
5896}
5897
5898bool pci_device_is_present(struct pci_dev *pdev)
5899{
5900	u32 v;
5901
5902	if (pci_dev_is_disconnected(pdev))
5903		return false;
5904	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5905}
5906EXPORT_SYMBOL_GPL(pci_device_is_present);
5907
5908void pci_ignore_hotplug(struct pci_dev *dev)
5909{
5910	struct pci_dev *bridge = dev->bus->self;
5911
5912	dev->ignore_hotplug = 1;
5913	/* Propagate the "ignore hotplug" setting to the parent bridge. */
5914	if (bridge)
5915		bridge->ignore_hotplug = 1;
5916}
5917EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5919resource_size_t __weak pcibios_default_alignment(void)
5920{
5921	return 0;
5922}
5923
5924/*
5925 * Arches that don't want to expose struct resource to userland as-is in
5926 * sysfs and /proc can implement their own pci_resource_to_user().
5927 */
5928void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
5929				 const struct resource *rsrc,
5930				 resource_size_t *start, resource_size_t *end)
5931{
5932	*start = rsrc->start;
5933	*end = rsrc->end;
5934}
5935
5936static char *resource_alignment_param;
5937static DEFINE_SPINLOCK(resource_alignment_lock);
5938
5939/**
5940 * pci_specified_resource_alignment - get resource alignment specified by user.
5941 * @dev: the PCI device to get
5942 * @resize: whether or not to change resources' size when reassigning alignment
5943 *
5944 * RETURNS: Resource alignment if it is specified.
5945 *          Zero if it is not specified.
5946 */
5947static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5948							bool *resize)
5949{
5950	int align_order, count;
5951	resource_size_t align = pcibios_default_alignment();
5952	const char *p;
5953	int ret;
5954
5955	spin_lock(&resource_alignment_lock);
5956	p = resource_alignment_param;
5957	if (!p || !*p)
5958		goto out;
5959	if (pci_has_flag(PCI_PROBE_ONLY)) {
5960		align = 0;
5961		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5962		goto out;
5963	}
5964
5965	while (*p) {
5966		count = 0;
5967		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5968							p[count] == '@') {
5969			p += count + 1;
 
 
 
 
 
5970		} else {
5971			align_order = -1;
5972		}
5973
5974		ret = pci_dev_str_match(dev, p, &p);
5975		if (ret == 1) {
5976			*resize = true;
5977			if (align_order == -1)
5978				align = PAGE_SIZE;
5979			else
5980				align = 1 << align_order;
5981			break;
5982		} else if (ret < 0) {
5983			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
5984			       p);
5985			break;
5986		}
5987
5988		if (*p != ';' && *p != ',') {
5989			/* End of param or invalid format */
5990			break;
5991		}
5992		p++;
5993	}
5994out:
5995	spin_unlock(&resource_alignment_lock);
5996	return align;
5997}
5998
5999static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6000					   resource_size_t align, bool resize)
6001{
6002	struct resource *r = &dev->resource[bar];
6003	resource_size_t size;
6004
6005	if (!(r->flags & IORESOURCE_MEM))
6006		return;
6007
6008	if (r->flags & IORESOURCE_PCI_FIXED) {
6009		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6010			 bar, r, (unsigned long long)align);
6011		return;
6012	}
6013
6014	size = resource_size(r);
6015	if (size >= align)
6016		return;
6017
6018	/*
6019	 * Increase the alignment of the resource.  There are two ways we
6020	 * can do this:
6021	 *
6022	 * 1) Increase the size of the resource.  BARs are aligned on their
6023	 *    size, so when we reallocate space for this resource, we'll
6024	 *    allocate it with the larger alignment.  This also prevents
6025	 *    assignment of any other BARs inside the alignment region, so
6026	 *    if we're requesting page alignment, this means no other BARs
6027	 *    will share the page.
6028	 *
6029	 *    The disadvantage is that this makes the resource larger than
6030	 *    the hardware BAR, which may break drivers that compute things
6031	 *    based on the resource size, e.g., to find registers at a
6032	 *    fixed offset before the end of the BAR.
6033	 *
6034	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6035	 *    set r->start to the desired alignment.  By itself this
6036	 *    doesn't prevent other BARs being put inside the alignment
6037	 *    region, but if we realign *every* resource of every device in
6038	 *    the system, none of them will share an alignment region.
6039	 *
6040	 * When the user has requested alignment for only some devices via
6041	 * the "pci=resource_alignment" argument, "resize" is true and we
6042	 * use the first method.  Otherwise we assume we're aligning all
6043	 * devices and we use the second.
6044	 */
6045
6046	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6047		 bar, r, (unsigned long long)align);
6048
6049	if (resize) {
6050		r->start = 0;
6051		r->end = align - 1;
6052	} else {
6053		r->flags &= ~IORESOURCE_SIZEALIGN;
6054		r->flags |= IORESOURCE_STARTALIGN;
6055		r->start = align;
6056		r->end = r->start + size - 1;
6057	}
6058	r->flags |= IORESOURCE_UNSET;
6059}
6060
6061/*
6062 * This function disables memory decoding and releases memory resources
6063 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6064 * It also rounds up size to specified alignment.
6065 * Later on, the kernel will assign page-aligned memory resource back
6066 * to the device.
6067 */
6068void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6069{
6070	int i;
6071	struct resource *r;
6072	resource_size_t align;
6073	u16 command;
6074	bool resize = false;
6075
6076	/*
6077	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6078	 * 3.4.1.11.  Their resources are allocated from the space
6079	 * described by the VF BARx register in the PF's SR-IOV capability.
6080	 * We can't influence their alignment here.
6081	 */
6082	if (dev->is_virtfn)
6083		return;
6084
6085	/* check if specified PCI is target device to reassign */
6086	align = pci_specified_resource_alignment(dev, &resize);
6087	if (!align)
6088		return;
6089
6090	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6091	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6092		pci_warn(dev, "Can't reassign resources to host bridge\n");
6093		return;
6094	}
6095
6096	pci_read_config_word(dev, PCI_COMMAND, &command);
6097	command &= ~PCI_COMMAND_MEMORY;
6098	pci_write_config_word(dev, PCI_COMMAND, command);
6099
6100	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6101		pci_request_resource_alignment(dev, i, align, resize);
6102
6103	/*
6104	 * Need to disable bridge's resource window,
6105	 * to enable the kernel to reassign new resource
6106	 * window later on.
6107	 */
6108	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6109		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6110			r = &dev->resource[i];
6111			if (!(r->flags & IORESOURCE_MEM))
6112				continue;
6113			r->flags |= IORESOURCE_UNSET;
6114			r->end = resource_size(r) - 1;
6115			r->start = 0;
6116		}
6117		pci_disable_bridge_window(dev);
6118	}
6119}
6120
6121static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6122{
6123	size_t count = 0;
6124
6125	spin_lock(&resource_alignment_lock);
6126	if (resource_alignment_param)
6127		count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6128	spin_unlock(&resource_alignment_lock);
6129
6130	/*
6131	 * When set by the command line, resource_alignment_param will not
6132	 * have a trailing line feed, which is ugly. So conditionally add
6133	 * it here.
6134	 */
6135	if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6136		buf[count - 1] = '\n';
6137		buf[count++] = 0;
6138	}
6139
6140	return count;
6141}
6142
6143static ssize_t resource_alignment_store(struct bus_type *bus,
6144					const char *buf, size_t count)
6145{
6146	char *param = kstrndup(buf, count, GFP_KERNEL);
6147
 
 
 
 
6148	if (!param)
6149		return -ENOMEM;
6150
 
 
 
 
6151	spin_lock(&resource_alignment_lock);
6152	kfree(resource_alignment_param);
6153	resource_alignment_param = param;
 
 
 
 
 
6154	spin_unlock(&resource_alignment_lock);
 
 
 
6155	return count;
6156}
6157
6158static BUS_ATTR_RW(resource_alignment);
6159
6160static int __init pci_resource_alignment_sysfs_init(void)
6161{
6162	return bus_create_file(&pci_bus_type,
6163					&bus_attr_resource_alignment);
6164}
6165late_initcall(pci_resource_alignment_sysfs_init);
6166
6167static void pci_no_domains(void)
6168{
6169#ifdef CONFIG_PCI_DOMAINS
6170	pci_domains_supported = 0;
6171#endif
6172}
6173
6174#ifdef CONFIG_PCI_DOMAINS_GENERIC
6175static atomic_t __domain_nr = ATOMIC_INIT(-1);
6176
6177static int pci_get_new_domain_nr(void)
6178{
6179	return atomic_inc_return(&__domain_nr);
6180}
6181
6182static int of_pci_bus_find_domain_nr(struct device *parent)
6183{
6184	static int use_dt_domains = -1;
6185	int domain = -1;
6186
6187	if (parent)
6188		domain = of_get_pci_domain_nr(parent->of_node);
6189
6190	/*
6191	 * Check DT domain and use_dt_domains values.
6192	 *
6193	 * If DT domain property is valid (domain >= 0) and
6194	 * use_dt_domains != 0, the DT assignment is valid since this means
6195	 * we have not previously allocated a domain number by using
6196	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6197	 * 1, to indicate that we have just assigned a domain number from
6198	 * DT.
6199	 *
6200	 * If DT domain property value is not valid (ie domain < 0), and we
6201	 * have not previously assigned a domain number from DT
6202	 * (use_dt_domains != 1) we should assign a domain number by
6203	 * using the:
6204	 *
6205	 * pci_get_new_domain_nr()
6206	 *
6207	 * API and update the use_dt_domains value to keep track of method we
6208	 * are using to assign domain numbers (use_dt_domains = 0).
6209	 *
6210	 * All other combinations imply we have a platform that is trying
6211	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6212	 * which is a recipe for domain mishandling and it is prevented by
6213	 * invalidating the domain value (domain = -1) and printing a
6214	 * corresponding error.
6215	 */
6216	if (domain >= 0 && use_dt_domains) {
6217		use_dt_domains = 1;
6218	} else if (domain < 0 && use_dt_domains != 1) {
6219		use_dt_domains = 0;
6220		domain = pci_get_new_domain_nr();
6221	} else {
6222		if (parent)
6223			pr_err("Node %pOF has ", parent->of_node);
6224		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6225		domain = -1;
6226	}
6227
6228	return domain;
6229}
6230
6231int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6232{
6233	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6234			       acpi_pci_bus_find_domain_nr(bus);
6235}
6236#endif
6237
6238/**
6239 * pci_ext_cfg_avail - can we access extended PCI config space?
6240 *
6241 * Returns 1 if we can access PCI extended config space (offsets
6242 * greater than 0xff). This is the default implementation. Architecture
6243 * implementations can override this.
6244 */
6245int __weak pci_ext_cfg_avail(void)
6246{
6247	return 1;
6248}
6249
6250void __weak pci_fixup_cardbus(struct pci_bus *bus)
6251{
6252}
6253EXPORT_SYMBOL(pci_fixup_cardbus);
6254
6255static int __init pci_setup(char *str)
6256{
6257	while (str) {
6258		char *k = strchr(str, ',');
6259		if (k)
6260			*k++ = 0;
6261		if (*str && (str = pcibios_setup(str)) && *str) {
6262			if (!strcmp(str, "nomsi")) {
6263				pci_no_msi();
6264			} else if (!strncmp(str, "noats", 5)) {
6265				pr_info("PCIe: ATS is disabled\n");
6266				pcie_ats_disabled = true;
6267			} else if (!strcmp(str, "noaer")) {
6268				pci_no_aer();
6269			} else if (!strcmp(str, "earlydump")) {
6270				pci_early_dump = true;
6271			} else if (!strncmp(str, "realloc=", 8)) {
6272				pci_realloc_get_opt(str + 8);
6273			} else if (!strncmp(str, "realloc", 7)) {
6274				pci_realloc_get_opt("on");
6275			} else if (!strcmp(str, "nodomains")) {
6276				pci_no_domains();
6277			} else if (!strncmp(str, "noari", 5)) {
6278				pcie_ari_disabled = true;
6279			} else if (!strncmp(str, "cbiosize=", 9)) {
6280				pci_cardbus_io_size = memparse(str + 9, &str);
6281			} else if (!strncmp(str, "cbmemsize=", 10)) {
6282				pci_cardbus_mem_size = memparse(str + 10, &str);
6283			} else if (!strncmp(str, "resource_alignment=", 19)) {
6284				resource_alignment_param = str + 19;
6285			} else if (!strncmp(str, "ecrc=", 5)) {
6286				pcie_ecrc_get_policy(str + 5);
6287			} else if (!strncmp(str, "hpiosize=", 9)) {
6288				pci_hotplug_io_size = memparse(str + 9, &str);
 
 
 
 
6289			} else if (!strncmp(str, "hpmemsize=", 10)) {
6290				pci_hotplug_mem_size = memparse(str + 10, &str);
 
6291			} else if (!strncmp(str, "hpbussize=", 10)) {
6292				pci_hotplug_bus_size =
6293					simple_strtoul(str + 10, &str, 0);
6294				if (pci_hotplug_bus_size > 0xff)
6295					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6296			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6297				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6298			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6299				pcie_bus_config = PCIE_BUS_SAFE;
6300			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6301				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6302			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6303				pcie_bus_config = PCIE_BUS_PEER2PEER;
6304			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6305				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6306			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6307				disable_acs_redir_param = str + 18;
6308			} else {
6309				pr_err("PCI: Unknown option `%s'\n", str);
6310			}
6311		}
6312		str = k;
6313	}
6314	return 0;
6315}
6316early_param("pci", pci_setup);
6317
6318/*
6319 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6320 * in pci_setup(), above, to point to data in the __initdata section which
6321 * will be freed after the init sequence is complete. We can't allocate memory
6322 * in pci_setup() because some architectures do not have any memory allocation
6323 * service available during an early_param() call. So we allocate memory and
6324 * copy the variable here before the init section is freed.
6325 *
6326 */
6327static int __init pci_realloc_setup_params(void)
6328{
6329	resource_alignment_param = kstrdup(resource_alignment_param,
6330					   GFP_KERNEL);
6331	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6332
6333	return 0;
6334}
6335pure_initcall(pci_realloc_setup_params);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 * David Mosberger-Tang
   7 *
   8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
  16#include <linux/msi.h>
  17#include <linux/of.h>
 
  18#include <linux/pci.h>
  19#include <linux/pm.h>
  20#include <linux/slab.h>
  21#include <linux/module.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/log2.h>
  25#include <linux/logic_pio.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/interrupt.h>
  28#include <linux/device.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/pci_hotplug.h>
  31#include <linux/vmalloc.h>
 
 
  32#include <asm/dma.h>
  33#include <linux/aer.h>
  34#include "pci.h"
  35
  36DEFINE_MUTEX(pci_slot_mutex);
  37
  38const char *pci_power_names[] = {
  39	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  40};
  41EXPORT_SYMBOL_GPL(pci_power_names);
  42
  43int isa_dma_bridge_buggy;
  44EXPORT_SYMBOL(isa_dma_bridge_buggy);
  45
  46int pci_pci_problems;
  47EXPORT_SYMBOL(pci_pci_problems);
  48
  49unsigned int pci_pm_d3hot_delay;
  50
  51static void pci_pme_list_scan(struct work_struct *work);
  52
  53static LIST_HEAD(pci_pme_list);
  54static DEFINE_MUTEX(pci_pme_list_mutex);
  55static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  56
  57struct pci_pme_device {
  58	struct list_head list;
  59	struct pci_dev *dev;
  60};
  61
  62#define PME_TIMEOUT 1000 /* How long between PME checks */
  63
  64static void pci_dev_d3_sleep(struct pci_dev *dev)
  65{
  66	unsigned int delay = dev->d3hot_delay;
  67
  68	if (delay < pci_pm_d3hot_delay)
  69		delay = pci_pm_d3hot_delay;
  70
  71	if (delay)
  72		msleep(delay);
  73}
  74
  75#ifdef CONFIG_PCI_DOMAINS
  76int pci_domains_supported = 1;
  77#endif
  78
  79#define DEFAULT_CARDBUS_IO_SIZE		(256)
  80#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
  81/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  82unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  83unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  84
  85#define DEFAULT_HOTPLUG_IO_SIZE		(256)
  86#define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
  87#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
  88/* hpiosize=nn can override this */
  89unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  90/*
  91 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
  92 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
  93 * pci=hpmemsize=nnM overrides both
  94 */
  95unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
  96unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
  97
  98#define DEFAULT_HOTPLUG_BUS_SIZE	1
  99unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
 100
 101
 102/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
 103#ifdef CONFIG_PCIE_BUS_TUNE_OFF
 104enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
 105#elif defined CONFIG_PCIE_BUS_SAFE
 106enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
 107#elif defined CONFIG_PCIE_BUS_PERFORMANCE
 108enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
 109#elif defined CONFIG_PCIE_BUS_PEER2PEER
 110enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
 111#else
 112enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
 113#endif
 114
 115/*
 116 * The default CLS is used if arch didn't set CLS explicitly and not
 117 * all pci devices agree on the same value.  Arch can override either
 118 * the dfl or actual value as it sees fit.  Don't forget this is
 119 * measured in 32-bit words, not bytes.
 120 */
 121u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 122u8 pci_cache_line_size;
 123
 124/*
 125 * If we set up a device for bus mastering, we need to check the latency
 126 * timer as certain BIOSes forget to set it properly.
 127 */
 128unsigned int pcibios_max_latency = 255;
 129
 130/* If set, the PCIe ARI capability will not be used. */
 131static bool pcie_ari_disabled;
 132
 133/* If set, the PCIe ATS capability will not be used. */
 134static bool pcie_ats_disabled;
 135
 136/* If set, the PCI config space of each device is printed during boot. */
 137bool pci_early_dump;
 138
 139bool pci_ats_disabled(void)
 140{
 141	return pcie_ats_disabled;
 142}
 143EXPORT_SYMBOL_GPL(pci_ats_disabled);
 144
 145/* Disable bridge_d3 for all PCIe ports */
 146static bool pci_bridge_d3_disable;
 147/* Force bridge_d3 for all PCIe ports */
 148static bool pci_bridge_d3_force;
 149
 150static int __init pcie_port_pm_setup(char *str)
 151{
 152	if (!strcmp(str, "off"))
 153		pci_bridge_d3_disable = true;
 154	else if (!strcmp(str, "force"))
 155		pci_bridge_d3_force = true;
 156	return 1;
 157}
 158__setup("pcie_port_pm=", pcie_port_pm_setup);
 159
 160/* Time to wait after a reset for device to become responsive */
 161#define PCIE_RESET_READY_POLL_MS 60000
 162
 163/**
 164 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 165 * @bus: pointer to PCI bus structure to search
 166 *
 167 * Given a PCI bus, returns the highest PCI bus number present in the set
 168 * including the given PCI bus and its list of child PCI buses.
 169 */
 170unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 171{
 172	struct pci_bus *tmp;
 173	unsigned char max, n;
 174
 175	max = bus->busn_res.end;
 176	list_for_each_entry(tmp, &bus->children, node) {
 177		n = pci_bus_max_busnr(tmp);
 178		if (n > max)
 179			max = n;
 180	}
 181	return max;
 182}
 183EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 184
 185/**
 186 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
 187 * @pdev: the PCI device
 188 *
 189 * Returns error bits set in PCI_STATUS and clears them.
 190 */
 191int pci_status_get_and_clear_errors(struct pci_dev *pdev)
 192{
 193	u16 status;
 194	int ret;
 195
 196	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
 197	if (ret != PCIBIOS_SUCCESSFUL)
 198		return -EIO;
 199
 200	status &= PCI_STATUS_ERROR_BITS;
 201	if (status)
 202		pci_write_config_word(pdev, PCI_STATUS, status);
 203
 204	return status;
 205}
 206EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
 207
 208#ifdef CONFIG_HAS_IOMEM
 209void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 210{
 211	struct resource *res = &pdev->resource[bar];
 212
 213	/*
 214	 * Make sure the BAR is actually a memory resource, not an IO resource
 215	 */
 216	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 217		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 218		return NULL;
 219	}
 220	return ioremap(res->start, resource_size(res));
 221}
 222EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 223
 224void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 225{
 226	/*
 227	 * Make sure the BAR is actually a memory resource, not an IO resource
 228	 */
 229	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 230		WARN_ON(1);
 231		return NULL;
 232	}
 233	return ioremap_wc(pci_resource_start(pdev, bar),
 234			  pci_resource_len(pdev, bar));
 235}
 236EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 237#endif
 238
 239/**
 240 * pci_dev_str_match_path - test if a path string matches a device
 241 * @dev: the PCI device to test
 242 * @path: string to match the device against
 243 * @endptr: pointer to the string after the match
 244 *
 245 * Test if a string (typically from a kernel parameter) formatted as a
 246 * path of device/function addresses matches a PCI device. The string must
 247 * be of the form:
 248 *
 249 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 250 *
 251 * A path for a device can be obtained using 'lspci -t'.  Using a path
 252 * is more robust against bus renumbering than using only a single bus,
 253 * device and function address.
 254 *
 255 * Returns 1 if the string matches the device, 0 if it does not and
 256 * a negative error code if it fails to parse the string.
 257 */
 258static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
 259				  const char **endptr)
 260{
 261	int ret;
 262	int seg, bus, slot, func;
 263	char *wpath, *p;
 264	char end;
 265
 266	*endptr = strchrnul(path, ';');
 267
 268	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
 269	if (!wpath)
 270		return -ENOMEM;
 271
 272	while (1) {
 273		p = strrchr(wpath, '/');
 274		if (!p)
 275			break;
 276		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
 277		if (ret != 2) {
 278			ret = -EINVAL;
 279			goto free_and_exit;
 280		}
 281
 282		if (dev->devfn != PCI_DEVFN(slot, func)) {
 283			ret = 0;
 284			goto free_and_exit;
 285		}
 286
 287		/*
 288		 * Note: we don't need to get a reference to the upstream
 289		 * bridge because we hold a reference to the top level
 290		 * device which should hold a reference to the bridge,
 291		 * and so on.
 292		 */
 293		dev = pci_upstream_bridge(dev);
 294		if (!dev) {
 295			ret = 0;
 296			goto free_and_exit;
 297		}
 298
 299		*p = 0;
 300	}
 301
 302	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
 303		     &func, &end);
 304	if (ret != 4) {
 305		seg = 0;
 306		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
 307		if (ret != 3) {
 308			ret = -EINVAL;
 309			goto free_and_exit;
 310		}
 311	}
 312
 313	ret = (seg == pci_domain_nr(dev->bus) &&
 314	       bus == dev->bus->number &&
 315	       dev->devfn == PCI_DEVFN(slot, func));
 316
 317free_and_exit:
 318	kfree(wpath);
 319	return ret;
 320}
 321
 322/**
 323 * pci_dev_str_match - test if a string matches a device
 324 * @dev: the PCI device to test
 325 * @p: string to match the device against
 326 * @endptr: pointer to the string after the match
 327 *
 328 * Test if a string (typically from a kernel parameter) matches a specified
 329 * PCI device. The string may be of one of the following formats:
 330 *
 331 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 332 *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
 333 *
 334 * The first format specifies a PCI bus/device/function address which
 335 * may change if new hardware is inserted, if motherboard firmware changes,
 336 * or due to changes caused in kernel parameters. If the domain is
 337 * left unspecified, it is taken to be 0.  In order to be robust against
 338 * bus renumbering issues, a path of PCI device/function numbers may be used
 339 * to address the specific device.  The path for a device can be determined
 340 * through the use of 'lspci -t'.
 341 *
 342 * The second format matches devices using IDs in the configuration
 343 * space which may match multiple devices in the system. A value of 0
 344 * for any field will match all devices. (Note: this differs from
 345 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
 346 * legacy reasons and convenience so users don't have to specify
 347 * FFFFFFFFs on the command line.)
 348 *
 349 * Returns 1 if the string matches the device, 0 if it does not and
 350 * a negative error code if the string cannot be parsed.
 351 */
 352static int pci_dev_str_match(struct pci_dev *dev, const char *p,
 353			     const char **endptr)
 354{
 355	int ret;
 356	int count;
 357	unsigned short vendor, device, subsystem_vendor, subsystem_device;
 358
 359	if (strncmp(p, "pci:", 4) == 0) {
 360		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
 361		p += 4;
 362		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
 363			     &subsystem_vendor, &subsystem_device, &count);
 364		if (ret != 4) {
 365			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
 366			if (ret != 2)
 367				return -EINVAL;
 368
 369			subsystem_vendor = 0;
 370			subsystem_device = 0;
 371		}
 372
 373		p += count;
 374
 375		if ((!vendor || vendor == dev->vendor) &&
 376		    (!device || device == dev->device) &&
 377		    (!subsystem_vendor ||
 378			    subsystem_vendor == dev->subsystem_vendor) &&
 379		    (!subsystem_device ||
 380			    subsystem_device == dev->subsystem_device))
 381			goto found;
 382	} else {
 383		/*
 384		 * PCI Bus, Device, Function IDs are specified
 385		 * (optionally, may include a path of devfns following it)
 386		 */
 387		ret = pci_dev_str_match_path(dev, p, &p);
 388		if (ret < 0)
 389			return ret;
 390		else if (ret)
 391			goto found;
 392	}
 393
 394	*endptr = p;
 395	return 0;
 396
 397found:
 398	*endptr = p;
 399	return 1;
 400}
 401
 402static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 403				  u8 pos, int cap, int *ttl)
 404{
 405	u8 id;
 406	u16 ent;
 407
 408	pci_bus_read_config_byte(bus, devfn, pos, &pos);
 409
 410	while ((*ttl)--) {
 411		if (pos < 0x40)
 412			break;
 413		pos &= ~3;
 414		pci_bus_read_config_word(bus, devfn, pos, &ent);
 415
 416		id = ent & 0xff;
 417		if (id == 0xff)
 418			break;
 419		if (id == cap)
 420			return pos;
 421		pos = (ent >> 8);
 422	}
 423	return 0;
 424}
 425
 426static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 427			      u8 pos, int cap)
 428{
 429	int ttl = PCI_FIND_CAP_TTL;
 430
 431	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 432}
 433
 434u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 435{
 436	return __pci_find_next_cap(dev->bus, dev->devfn,
 437				   pos + PCI_CAP_LIST_NEXT, cap);
 438}
 439EXPORT_SYMBOL_GPL(pci_find_next_capability);
 440
 441static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
 442				    unsigned int devfn, u8 hdr_type)
 443{
 444	u16 status;
 445
 446	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 447	if (!(status & PCI_STATUS_CAP_LIST))
 448		return 0;
 449
 450	switch (hdr_type) {
 451	case PCI_HEADER_TYPE_NORMAL:
 452	case PCI_HEADER_TYPE_BRIDGE:
 453		return PCI_CAPABILITY_LIST;
 454	case PCI_HEADER_TYPE_CARDBUS:
 455		return PCI_CB_CAPABILITY_LIST;
 456	}
 457
 458	return 0;
 459}
 460
 461/**
 462 * pci_find_capability - query for devices' capabilities
 463 * @dev: PCI device to query
 464 * @cap: capability code
 465 *
 466 * Tell if a device supports a given PCI capability.
 467 * Returns the address of the requested capability structure within the
 468 * device's PCI configuration space or 0 in case the device does not
 469 * support it.  Possible values for @cap include:
 470 *
 471 *  %PCI_CAP_ID_PM           Power Management
 472 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 473 *  %PCI_CAP_ID_VPD          Vital Product Data
 474 *  %PCI_CAP_ID_SLOTID       Slot Identification
 475 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 476 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 477 *  %PCI_CAP_ID_PCIX         PCI-X
 478 *  %PCI_CAP_ID_EXP          PCI Express
 479 */
 480u8 pci_find_capability(struct pci_dev *dev, int cap)
 481{
 482	u8 pos;
 483
 484	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 485	if (pos)
 486		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 487
 488	return pos;
 489}
 490EXPORT_SYMBOL(pci_find_capability);
 491
 492/**
 493 * pci_bus_find_capability - query for devices' capabilities
 494 * @bus: the PCI bus to query
 495 * @devfn: PCI device to query
 496 * @cap: capability code
 497 *
 498 * Like pci_find_capability() but works for PCI devices that do not have a
 499 * pci_dev structure set up yet.
 500 *
 501 * Returns the address of the requested capability structure within the
 502 * device's PCI configuration space or 0 in case the device does not
 503 * support it.
 504 */
 505u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 506{
 507	u8 hdr_type, pos;
 
 508
 509	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 510
 511	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 512	if (pos)
 513		pos = __pci_find_next_cap(bus, devfn, pos, cap);
 514
 515	return pos;
 516}
 517EXPORT_SYMBOL(pci_bus_find_capability);
 518
 519/**
 520 * pci_find_next_ext_capability - Find an extended capability
 521 * @dev: PCI device to query
 522 * @start: address at which to start looking (0 to start at beginning of list)
 523 * @cap: capability code
 524 *
 525 * Returns the address of the next matching extended capability structure
 526 * within the device's PCI configuration space or 0 if the device does
 527 * not support it.  Some capabilities can occur several times, e.g., the
 528 * vendor-specific capability, and this provides a way to find them all.
 529 */
 530u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
 531{
 532	u32 header;
 533	int ttl;
 534	u16 pos = PCI_CFG_SPACE_SIZE;
 535
 536	/* minimum 8 bytes per capability */
 537	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 538
 539	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 540		return 0;
 541
 542	if (start)
 543		pos = start;
 544
 545	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 546		return 0;
 547
 548	/*
 549	 * If we have no capabilities, this is indicated by cap ID,
 550	 * cap version and next pointer all being 0.
 551	 */
 552	if (header == 0)
 553		return 0;
 554
 555	while (ttl-- > 0) {
 556		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 557			return pos;
 558
 559		pos = PCI_EXT_CAP_NEXT(header);
 560		if (pos < PCI_CFG_SPACE_SIZE)
 561			break;
 562
 563		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 564			break;
 565	}
 566
 567	return 0;
 568}
 569EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 570
 571/**
 572 * pci_find_ext_capability - Find an extended capability
 573 * @dev: PCI device to query
 574 * @cap: capability code
 575 *
 576 * Returns the address of the requested extended capability structure
 577 * within the device's PCI configuration space or 0 if the device does
 578 * not support it.  Possible values for @cap include:
 579 *
 580 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 581 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 582 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 583 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 584 */
 585u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
 586{
 587	return pci_find_next_ext_capability(dev, 0, cap);
 588}
 589EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 590
 591/**
 592 * pci_get_dsn - Read and return the 8-byte Device Serial Number
 593 * @dev: PCI device to query
 594 *
 595 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
 596 * Number.
 597 *
 598 * Returns the DSN, or zero if the capability does not exist.
 599 */
 600u64 pci_get_dsn(struct pci_dev *dev)
 601{
 602	u32 dword;
 603	u64 dsn;
 604	int pos;
 605
 606	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
 607	if (!pos)
 608		return 0;
 609
 610	/*
 611	 * The Device Serial Number is two dwords offset 4 bytes from the
 612	 * capability position. The specification says that the first dword is
 613	 * the lower half, and the second dword is the upper half.
 614	 */
 615	pos += 4;
 616	pci_read_config_dword(dev, pos, &dword);
 617	dsn = (u64)dword;
 618	pci_read_config_dword(dev, pos + 4, &dword);
 619	dsn |= ((u64)dword) << 32;
 620
 621	return dsn;
 622}
 623EXPORT_SYMBOL_GPL(pci_get_dsn);
 624
 625static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
 626{
 627	int rc, ttl = PCI_FIND_CAP_TTL;
 628	u8 cap, mask;
 629
 630	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 631		mask = HT_3BIT_CAP_MASK;
 632	else
 633		mask = HT_5BIT_CAP_MASK;
 634
 635	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 636				      PCI_CAP_ID_HT, &ttl);
 637	while (pos) {
 638		rc = pci_read_config_byte(dev, pos + 3, &cap);
 639		if (rc != PCIBIOS_SUCCESSFUL)
 640			return 0;
 641
 642		if ((cap & mask) == ht_cap)
 643			return pos;
 644
 645		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 646					      pos + PCI_CAP_LIST_NEXT,
 647					      PCI_CAP_ID_HT, &ttl);
 648	}
 649
 650	return 0;
 651}
 652
 653/**
 654 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
 655 * @dev: PCI device to query
 656 * @pos: Position from which to continue searching
 657 * @ht_cap: HyperTransport capability code
 658 *
 659 * To be used in conjunction with pci_find_ht_capability() to search for
 660 * all capabilities matching @ht_cap. @pos should always be a value returned
 661 * from pci_find_ht_capability().
 662 *
 663 * NB. To be 100% safe against broken PCI devices, the caller should take
 664 * steps to avoid an infinite loop.
 665 */
 666u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
 667{
 668	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 669}
 670EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 671
 672/**
 673 * pci_find_ht_capability - query a device's HyperTransport capabilities
 674 * @dev: PCI device to query
 675 * @ht_cap: HyperTransport capability code
 676 *
 677 * Tell if a device supports a given HyperTransport capability.
 678 * Returns an address within the device's PCI configuration space
 679 * or 0 in case the device does not support the request capability.
 680 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 681 * which has a HyperTransport capability matching @ht_cap.
 682 */
 683u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 684{
 685	u8 pos;
 686
 687	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 688	if (pos)
 689		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 690
 691	return pos;
 692}
 693EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 694
 695/**
 696 * pci_find_vsec_capability - Find a vendor-specific extended capability
 697 * @dev: PCI device to query
 698 * @vendor: Vendor ID for which capability is defined
 699 * @cap: Vendor-specific capability ID
 700 *
 701 * If @dev has Vendor ID @vendor, search for a VSEC capability with
 702 * VSEC ID @cap. If found, return the capability offset in
 703 * config space; otherwise return 0.
 704 */
 705u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
 706{
 707	u16 vsec = 0;
 708	u32 header;
 709
 710	if (vendor != dev->vendor)
 711		return 0;
 712
 713	while ((vsec = pci_find_next_ext_capability(dev, vsec,
 714						     PCI_EXT_CAP_ID_VNDR))) {
 715		if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
 716					  &header) == PCIBIOS_SUCCESSFUL &&
 717		    PCI_VNDR_HEADER_ID(header) == cap)
 718			return vsec;
 719	}
 720
 721	return 0;
 722}
 723EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
 724
 725/**
 726 * pci_find_parent_resource - return resource region of parent bus of given
 727 *			      region
 728 * @dev: PCI device structure contains resources to be searched
 729 * @res: child resource record for which parent is sought
 730 *
 731 * For given resource region of given device, return the resource region of
 732 * parent bus the given region is contained in.
 733 */
 734struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 735					  struct resource *res)
 736{
 737	const struct pci_bus *bus = dev->bus;
 738	struct resource *r;
 739	int i;
 740
 741	pci_bus_for_each_resource(bus, r, i) {
 742		if (!r)
 743			continue;
 744		if (resource_contains(r, res)) {
 745
 746			/*
 747			 * If the window is prefetchable but the BAR is
 748			 * not, the allocator made a mistake.
 749			 */
 750			if (r->flags & IORESOURCE_PREFETCH &&
 751			    !(res->flags & IORESOURCE_PREFETCH))
 752				return NULL;
 753
 754			/*
 755			 * If we're below a transparent bridge, there may
 756			 * be both a positively-decoded aperture and a
 757			 * subtractively-decoded region that contain the BAR.
 758			 * We want the positively-decoded one, so this depends
 759			 * on pci_bus_for_each_resource() giving us those
 760			 * first.
 761			 */
 762			return r;
 763		}
 764	}
 765	return NULL;
 766}
 767EXPORT_SYMBOL(pci_find_parent_resource);
 768
 769/**
 770 * pci_find_resource - Return matching PCI device resource
 771 * @dev: PCI device to query
 772 * @res: Resource to look for
 773 *
 774 * Goes over standard PCI resources (BARs) and checks if the given resource
 775 * is partially or fully contained in any of them. In that case the
 776 * matching resource is returned, %NULL otherwise.
 777 */
 778struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 779{
 780	int i;
 781
 782	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
 783		struct resource *r = &dev->resource[i];
 784
 785		if (r->start && resource_contains(r, res))
 786			return r;
 787	}
 788
 789	return NULL;
 790}
 791EXPORT_SYMBOL(pci_find_resource);
 792
 793/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 794 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 795 * @dev: the PCI device to operate on
 796 * @pos: config space offset of status word
 797 * @mask: mask of bit(s) to care about in status word
 798 *
 799 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 800 */
 801int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 802{
 803	int i;
 804
 805	/* Wait for Transaction Pending bit clean */
 806	for (i = 0; i < 4; i++) {
 807		u16 status;
 808		if (i)
 809			msleep((1 << (i - 1)) * 100);
 810
 811		pci_read_config_word(dev, pos, &status);
 812		if (!(status & mask))
 813			return 1;
 814	}
 815
 816	return 0;
 817}
 818
 819static int pci_acs_enable;
 820
 821/**
 822 * pci_request_acs - ask for ACS to be enabled if supported
 823 */
 824void pci_request_acs(void)
 825{
 826	pci_acs_enable = 1;
 827}
 828
 829static const char *disable_acs_redir_param;
 830
 831/**
 832 * pci_disable_acs_redir - disable ACS redirect capabilities
 833 * @dev: the PCI device
 834 *
 835 * For only devices specified in the disable_acs_redir parameter.
 836 */
 837static void pci_disable_acs_redir(struct pci_dev *dev)
 838{
 839	int ret = 0;
 840	const char *p;
 841	int pos;
 842	u16 ctrl;
 843
 844	if (!disable_acs_redir_param)
 845		return;
 846
 847	p = disable_acs_redir_param;
 848	while (*p) {
 849		ret = pci_dev_str_match(dev, p, &p);
 850		if (ret < 0) {
 851			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
 852				     disable_acs_redir_param);
 853
 854			break;
 855		} else if (ret == 1) {
 856			/* Found a match */
 857			break;
 858		}
 859
 860		if (*p != ';' && *p != ',') {
 861			/* End of param or invalid format */
 862			break;
 863		}
 864		p++;
 865	}
 866
 867	if (ret != 1)
 868		return;
 869
 870	if (!pci_dev_specific_disable_acs_redir(dev))
 871		return;
 872
 873	pos = dev->acs_cap;
 874	if (!pos) {
 875		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
 876		return;
 877	}
 878
 879	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
 880
 881	/* P2P Request & Completion Redirect */
 882	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
 883
 884	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
 885
 886	pci_info(dev, "disabled ACS redirect\n");
 887}
 888
 889/**
 890 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
 891 * @dev: the PCI device
 892 */
 893static void pci_std_enable_acs(struct pci_dev *dev)
 894{
 895	int pos;
 896	u16 cap;
 897	u16 ctrl;
 898
 899	pos = dev->acs_cap;
 900	if (!pos)
 901		return;
 902
 903	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
 904	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
 905
 906	/* Source Validation */
 907	ctrl |= (cap & PCI_ACS_SV);
 908
 909	/* P2P Request Redirect */
 910	ctrl |= (cap & PCI_ACS_RR);
 911
 912	/* P2P Completion Redirect */
 913	ctrl |= (cap & PCI_ACS_CR);
 914
 915	/* Upstream Forwarding */
 916	ctrl |= (cap & PCI_ACS_UF);
 917
 918	/* Enable Translation Blocking for external devices */
 919	if (dev->external_facing || dev->untrusted)
 920		ctrl |= (cap & PCI_ACS_TB);
 921
 922	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
 923}
 924
 925/**
 926 * pci_enable_acs - enable ACS if hardware support it
 927 * @dev: the PCI device
 928 */
 929static void pci_enable_acs(struct pci_dev *dev)
 930{
 931	if (!pci_acs_enable)
 932		goto disable_acs_redir;
 933
 934	if (!pci_dev_specific_enable_acs(dev))
 935		goto disable_acs_redir;
 936
 937	pci_std_enable_acs(dev);
 938
 939disable_acs_redir:
 940	/*
 941	 * Note: pci_disable_acs_redir() must be called even if ACS was not
 942	 * enabled by the kernel because it may have been enabled by
 943	 * platform firmware.  So if we are told to disable it, we should
 944	 * always disable it after setting the kernel's default
 945	 * preferences.
 946	 */
 947	pci_disable_acs_redir(dev);
 948}
 949
 950/**
 951 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
 952 * @dev: PCI device to have its BARs restored
 953 *
 954 * Restore the BAR values for a given device, so as to make it
 955 * accessible by its driver.
 956 */
 957static void pci_restore_bars(struct pci_dev *dev)
 958{
 959	int i;
 960
 961	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 962		pci_update_resource(dev, i);
 963}
 964
 965static const struct pci_platform_pm_ops *pci_platform_pm;
 966
 967int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
 968{
 969	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
 970	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
 971		return -EINVAL;
 972	pci_platform_pm = ops;
 973	return 0;
 974}
 975
 976static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 977{
 978	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 979}
 980
 981static inline int platform_pci_set_power_state(struct pci_dev *dev,
 982					       pci_power_t t)
 983{
 984	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 985}
 986
 987static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
 988{
 989	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
 990}
 991
 992static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
 993{
 994	if (pci_platform_pm && pci_platform_pm->refresh_state)
 995		pci_platform_pm->refresh_state(dev);
 996}
 997
 998static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 999{
1000	return pci_platform_pm ?
1001			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
1002}
1003
1004static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1005{
1006	return pci_platform_pm ?
1007			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
1008}
1009
1010static inline bool platform_pci_need_resume(struct pci_dev *dev)
1011{
1012	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
1013}
1014
1015static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1016{
1017	if (pci_platform_pm && pci_platform_pm->bridge_d3)
1018		return pci_platform_pm->bridge_d3(dev);
1019	return false;
1020}
1021
1022/**
1023 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
1024 *			     given PCI device
1025 * @dev: PCI device to handle.
1026 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1027 *
1028 * RETURN VALUE:
1029 * -EINVAL if the requested state is invalid.
1030 * -EIO if device does not support PCI PM or its PM capabilities register has a
1031 * wrong version, or device doesn't support the requested state.
1032 * 0 if device already is in the requested state.
1033 * 0 if device's power state has been successfully changed.
1034 */
1035static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1036{
1037	u16 pmcsr;
1038	bool need_restore = false;
1039
1040	/* Check if we're already there */
1041	if (dev->current_state == state)
1042		return 0;
1043
1044	if (!dev->pm_cap)
1045		return -EIO;
1046
1047	if (state < PCI_D0 || state > PCI_D3hot)
1048		return -EINVAL;
1049
1050	/*
1051	 * Validate transition: We can enter D0 from any state, but if
1052	 * we're already in a low-power state, we can only go deeper.  E.g.,
1053	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1054	 * we'd have to go from D3 to D0, then to D1.
1055	 */
1056	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1057	    && dev->current_state > state) {
1058		pci_err(dev, "invalid power transition (from %s to %s)\n",
1059			pci_power_name(dev->current_state),
1060			pci_power_name(state));
1061		return -EINVAL;
1062	}
1063
1064	/* Check if this device supports the desired state */
1065	if ((state == PCI_D1 && !dev->d1_support)
1066	   || (state == PCI_D2 && !dev->d2_support))
1067		return -EIO;
1068
1069	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1070	if (pmcsr == (u16) ~0) {
1071		pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1072			pci_power_name(dev->current_state),
1073			pci_power_name(state));
1074		return -EIO;
1075	}
1076
1077	/*
1078	 * If we're (effectively) in D3, force entire word to 0.
1079	 * This doesn't affect PME_Status, disables PME_En, and
1080	 * sets PowerState to 0.
1081	 */
1082	switch (dev->current_state) {
1083	case PCI_D0:
1084	case PCI_D1:
1085	case PCI_D2:
1086		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1087		pmcsr |= state;
1088		break;
1089	case PCI_D3hot:
1090	case PCI_D3cold:
1091	case PCI_UNKNOWN: /* Boot-up */
1092		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1093		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1094			need_restore = true;
1095		fallthrough;	/* force to D0 */
1096	default:
1097		pmcsr = 0;
1098		break;
1099	}
1100
1101	/* Enter specified state */
1102	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1103
1104	/*
1105	 * Mandatory power management transition delays; see PCI PM 1.1
1106	 * 5.6.1 table 18
1107	 */
1108	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1109		pci_dev_d3_sleep(dev);
1110	else if (state == PCI_D2 || dev->current_state == PCI_D2)
1111		udelay(PCI_PM_D2_DELAY);
1112
1113	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1114	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1115	if (dev->current_state != state)
1116		pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1117			 pci_power_name(dev->current_state),
1118			 pci_power_name(state));
1119
1120	/*
1121	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1122	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1123	 * from D3hot to D0 _may_ perform an internal reset, thereby
1124	 * going to "D0 Uninitialized" rather than "D0 Initialized".
1125	 * For example, at least some versions of the 3c905B and the
1126	 * 3c556B exhibit this behaviour.
1127	 *
1128	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1129	 * devices in a D3hot state at boot.  Consequently, we need to
1130	 * restore at least the BARs so that the device will be
1131	 * accessible to its driver.
1132	 */
1133	if (need_restore)
1134		pci_restore_bars(dev);
1135
1136	if (dev->bus->self)
1137		pcie_aspm_pm_state_change(dev->bus->self);
1138
1139	return 0;
1140}
1141
1142/**
1143 * pci_update_current_state - Read power state of given device and cache it
1144 * @dev: PCI device to handle.
1145 * @state: State to cache in case the device doesn't have the PM capability
1146 *
1147 * The power state is read from the PMCSR register, which however is
1148 * inaccessible in D3cold.  The platform firmware is therefore queried first
1149 * to detect accessibility of the register.  In case the platform firmware
1150 * reports an incorrect state or the device isn't power manageable by the
1151 * platform at all, we try to detect D3cold by testing accessibility of the
1152 * vendor ID in config space.
1153 */
1154void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1155{
1156	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1157	    !pci_device_is_present(dev)) {
1158		dev->current_state = PCI_D3cold;
1159	} else if (dev->pm_cap) {
1160		u16 pmcsr;
1161
1162		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1163		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1164	} else {
1165		dev->current_state = state;
1166	}
1167}
1168
1169/**
1170 * pci_refresh_power_state - Refresh the given device's power state data
1171 * @dev: Target PCI device.
1172 *
1173 * Ask the platform to refresh the devices power state information and invoke
1174 * pci_update_current_state() to update its current PCI power state.
1175 */
1176void pci_refresh_power_state(struct pci_dev *dev)
1177{
1178	if (platform_pci_power_manageable(dev))
1179		platform_pci_refresh_power_state(dev);
1180
1181	pci_update_current_state(dev, dev->current_state);
1182}
1183
1184/**
1185 * pci_platform_power_transition - Use platform to change device power state
1186 * @dev: PCI device to handle.
1187 * @state: State to put the device into.
1188 */
1189int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1190{
1191	int error;
1192
1193	if (platform_pci_power_manageable(dev)) {
1194		error = platform_pci_set_power_state(dev, state);
1195		if (!error)
1196			pci_update_current_state(dev, state);
1197	} else
1198		error = -ENODEV;
1199
1200	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1201		dev->current_state = PCI_D0;
1202
1203	return error;
1204}
1205EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1206
1207static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
 
 
 
 
 
1208{
 
1209	pm_request_resume(&pci_dev->dev);
1210	return 0;
1211}
1212
1213/**
1214 * pci_resume_bus - Walk given bus and runtime resume devices on it
1215 * @bus: Top bus of the subtree to walk.
1216 */
1217void pci_resume_bus(struct pci_bus *bus)
1218{
1219	if (bus)
1220		pci_walk_bus(bus, pci_resume_one, NULL);
1221}
1222
1223static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1224{
1225	int delay = 1;
1226	u32 id;
1227
1228	/*
1229	 * After reset, the device should not silently discard config
1230	 * requests, but it may still indicate that it needs more time by
1231	 * responding to them with CRS completions.  The Root Port will
1232	 * generally synthesize ~0 data to complete the read (except when
1233	 * CRS SV is enabled and the read was for the Vendor ID; in that
1234	 * case it synthesizes 0x0001 data).
1235	 *
1236	 * Wait for the device to return a non-CRS completion.  Read the
1237	 * Command register instead of Vendor ID so we don't have to
1238	 * contend with the CRS SV value.
1239	 */
1240	pci_read_config_dword(dev, PCI_COMMAND, &id);
1241	while (id == ~0) {
1242		if (delay > timeout) {
1243			pci_warn(dev, "not ready %dms after %s; giving up\n",
1244				 delay - 1, reset_type);
1245			return -ENOTTY;
1246		}
1247
1248		if (delay > 1000)
1249			pci_info(dev, "not ready %dms after %s; waiting\n",
1250				 delay - 1, reset_type);
1251
1252		msleep(delay);
1253		delay *= 2;
1254		pci_read_config_dword(dev, PCI_COMMAND, &id);
1255	}
1256
1257	if (delay > 1000)
1258		pci_info(dev, "ready %dms after %s\n", delay - 1,
1259			 reset_type);
1260
1261	return 0;
1262}
1263
1264/**
1265 * pci_power_up - Put the given device into D0
1266 * @dev: PCI device to power up
 
1267 */
1268int pci_power_up(struct pci_dev *dev)
1269{
1270	pci_platform_power_transition(dev, PCI_D0);
1271
1272	/*
1273	 * Mandatory power management transition delays are handled in
1274	 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1275	 * corresponding bridge.
1276	 */
1277	if (dev->runtime_d3cold) {
1278		/*
1279		 * When powering on a bridge from D3cold, the whole hierarchy
1280		 * may be powered on into D0uninitialized state, resume them to
1281		 * give them a chance to suspend again
 
 
1282		 */
1283		pci_resume_bus(dev->subordinate);
 
 
 
 
 
 
 
 
 
 
1284	}
1285
1286	return pci_raw_set_power_state(dev, PCI_D0);
1287}
1288
1289/**
1290 * __pci_dev_set_current_state - Set current state of a PCI device
1291 * @dev: Device to handle
1292 * @data: pointer to state to be set
1293 */
1294static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1295{
1296	pci_power_t state = *(pci_power_t *)data;
1297
1298	dev->current_state = state;
1299	return 0;
1300}
1301
1302/**
1303 * pci_bus_set_current_state - Walk given bus and set current state of devices
1304 * @bus: Top bus of the subtree to walk.
1305 * @state: state to be set
1306 */
1307void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1308{
1309	if (bus)
1310		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1311}
1312
1313/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1314 * pci_set_power_state - Set the power state of a PCI device
1315 * @dev: PCI device to handle.
1316 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1317 *
1318 * Transition a device to a new power state, using the platform firmware and/or
1319 * the device's PCI PM registers.
1320 *
1321 * RETURN VALUE:
1322 * -EINVAL if the requested state is invalid.
1323 * -EIO if device does not support PCI PM or its PM capabilities register has a
1324 * wrong version, or device doesn't support the requested state.
1325 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1326 * 0 if device already is in the requested state.
1327 * 0 if the transition is to D3 but D3 is not supported.
1328 * 0 if device's power state has been successfully changed.
1329 */
1330int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1331{
1332	int error;
1333
1334	/* Bound the state we're entering */
1335	if (state > PCI_D3cold)
1336		state = PCI_D3cold;
1337	else if (state < PCI_D0)
1338		state = PCI_D0;
1339	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1340
1341		/*
1342		 * If the device or the parent bridge do not support PCI
1343		 * PM, ignore the request if we're doing anything other
1344		 * than putting it into D0 (which would only happen on
1345		 * boot).
1346		 */
1347		return 0;
1348
1349	/* Check if we're already there */
1350	if (dev->current_state == state)
1351		return 0;
1352
1353	if (state == PCI_D0)
1354		return pci_power_up(dev);
1355
1356	/*
1357	 * This device is quirked not to be put into D3, so don't put it in
1358	 * D3
1359	 */
1360	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1361		return 0;
1362
1363	/*
1364	 * To put device in D3cold, we put device into D3hot in native
1365	 * way, then put device into D3cold with platform ops
1366	 */
1367	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1368					PCI_D3hot : state);
1369
1370	if (pci_platform_power_transition(dev, state))
1371		return error;
1372
1373	/* Powering off a bridge may power off the whole hierarchy */
1374	if (state == PCI_D3cold)
1375		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1376
1377	return 0;
 
 
 
 
 
 
 
 
1378}
1379EXPORT_SYMBOL(pci_set_power_state);
1380
1381/**
1382 * pci_choose_state - Choose the power state of a PCI device
1383 * @dev: PCI device to be suspended
1384 * @state: target sleep state for the whole system. This is the value
1385 *	   that is passed to suspend() function.
1386 *
1387 * Returns PCI power state suitable for given device and given system
1388 * message.
1389 */
1390pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1391{
1392	pci_power_t ret;
1393
1394	if (!dev->pm_cap)
1395		return PCI_D0;
1396
1397	ret = platform_pci_choose_state(dev);
1398	if (ret != PCI_POWER_ERROR)
1399		return ret;
1400
1401	switch (state.event) {
1402	case PM_EVENT_ON:
1403		return PCI_D0;
1404	case PM_EVENT_FREEZE:
1405	case PM_EVENT_PRETHAW:
1406		/* REVISIT both freeze and pre-thaw "should" use D0 */
1407	case PM_EVENT_SUSPEND:
1408	case PM_EVENT_HIBERNATE:
1409		return PCI_D3hot;
1410	default:
1411		pci_info(dev, "unrecognized suspend event %d\n",
1412			 state.event);
1413		BUG();
1414	}
1415	return PCI_D0;
1416}
1417EXPORT_SYMBOL(pci_choose_state);
1418
1419#define PCI_EXP_SAVE_REGS	7
1420
1421static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1422						       u16 cap, bool extended)
1423{
1424	struct pci_cap_saved_state *tmp;
1425
1426	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1427		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1428			return tmp;
1429	}
1430	return NULL;
1431}
1432
1433struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1434{
1435	return _pci_find_saved_cap(dev, cap, false);
1436}
1437
1438struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1439{
1440	return _pci_find_saved_cap(dev, cap, true);
1441}
1442
1443static int pci_save_pcie_state(struct pci_dev *dev)
1444{
1445	int i = 0;
1446	struct pci_cap_saved_state *save_state;
1447	u16 *cap;
1448
1449	if (!pci_is_pcie(dev))
1450		return 0;
1451
1452	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1453	if (!save_state) {
1454		pci_err(dev, "buffer not found in %s\n", __func__);
1455		return -ENOMEM;
1456	}
1457
1458	cap = (u16 *)&save_state->cap.data[0];
1459	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1460	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1461	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1462	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1463	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1464	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1465	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1466
1467	return 0;
1468}
1469
1470static void pci_restore_pcie_state(struct pci_dev *dev)
1471{
1472	int i = 0;
1473	struct pci_cap_saved_state *save_state;
1474	u16 *cap;
1475
1476	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1477	if (!save_state)
1478		return;
1479
1480	cap = (u16 *)&save_state->cap.data[0];
1481	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1482	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1483	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1484	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1485	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1486	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1487	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1488}
1489
1490static int pci_save_pcix_state(struct pci_dev *dev)
1491{
1492	int pos;
1493	struct pci_cap_saved_state *save_state;
1494
1495	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1496	if (!pos)
1497		return 0;
1498
1499	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1500	if (!save_state) {
1501		pci_err(dev, "buffer not found in %s\n", __func__);
1502		return -ENOMEM;
1503	}
1504
1505	pci_read_config_word(dev, pos + PCI_X_CMD,
1506			     (u16 *)save_state->cap.data);
1507
1508	return 0;
1509}
1510
1511static void pci_restore_pcix_state(struct pci_dev *dev)
1512{
1513	int i = 0, pos;
1514	struct pci_cap_saved_state *save_state;
1515	u16 *cap;
1516
1517	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1518	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1519	if (!save_state || !pos)
1520		return;
1521	cap = (u16 *)&save_state->cap.data[0];
1522
1523	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1524}
1525
1526static void pci_save_ltr_state(struct pci_dev *dev)
1527{
1528	int ltr;
1529	struct pci_cap_saved_state *save_state;
1530	u16 *cap;
1531
1532	if (!pci_is_pcie(dev))
1533		return;
1534
1535	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1536	if (!ltr)
1537		return;
1538
1539	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1540	if (!save_state) {
1541		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1542		return;
1543	}
1544
1545	cap = (u16 *)&save_state->cap.data[0];
1546	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1547	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1548}
1549
1550static void pci_restore_ltr_state(struct pci_dev *dev)
1551{
1552	struct pci_cap_saved_state *save_state;
1553	int ltr;
1554	u16 *cap;
1555
1556	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1557	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1558	if (!save_state || !ltr)
1559		return;
1560
1561	cap = (u16 *)&save_state->cap.data[0];
1562	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1563	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1564}
1565
1566/**
1567 * pci_save_state - save the PCI configuration space of a device before
1568 *		    suspending
1569 * @dev: PCI device that we're dealing with
1570 */
1571int pci_save_state(struct pci_dev *dev)
1572{
1573	int i;
1574	/* XXX: 100% dword access ok here? */
1575	for (i = 0; i < 16; i++) {
1576		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1577		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1578			i * 4, dev->saved_config_space[i]);
1579	}
1580	dev->state_saved = true;
1581
1582	i = pci_save_pcie_state(dev);
1583	if (i != 0)
1584		return i;
1585
1586	i = pci_save_pcix_state(dev);
1587	if (i != 0)
1588		return i;
1589
1590	pci_save_ltr_state(dev);
1591	pci_save_dpc_state(dev);
1592	pci_save_aer_state(dev);
1593	pci_save_ptm_state(dev);
1594	return pci_save_vc_state(dev);
1595}
1596EXPORT_SYMBOL(pci_save_state);
1597
1598static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1599				     u32 saved_val, int retry, bool force)
1600{
1601	u32 val;
1602
1603	pci_read_config_dword(pdev, offset, &val);
1604	if (!force && val == saved_val)
1605		return;
1606
1607	for (;;) {
1608		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1609			offset, val, saved_val);
1610		pci_write_config_dword(pdev, offset, saved_val);
1611		if (retry-- <= 0)
1612			return;
1613
1614		pci_read_config_dword(pdev, offset, &val);
1615		if (val == saved_val)
1616			return;
1617
1618		mdelay(1);
1619	}
1620}
1621
1622static void pci_restore_config_space_range(struct pci_dev *pdev,
1623					   int start, int end, int retry,
1624					   bool force)
1625{
1626	int index;
1627
1628	for (index = end; index >= start; index--)
1629		pci_restore_config_dword(pdev, 4 * index,
1630					 pdev->saved_config_space[index],
1631					 retry, force);
1632}
1633
1634static void pci_restore_config_space(struct pci_dev *pdev)
1635{
1636	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1637		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1638		/* Restore BARs before the command register. */
1639		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1640		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1641	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1642		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1643
1644		/*
1645		 * Force rewriting of prefetch registers to avoid S3 resume
1646		 * issues on Intel PCI bridges that occur when these
1647		 * registers are not explicitly written.
1648		 */
1649		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1650		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1651	} else {
1652		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1653	}
1654}
1655
1656static void pci_restore_rebar_state(struct pci_dev *pdev)
1657{
1658	unsigned int pos, nbars, i;
1659	u32 ctrl;
1660
1661	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1662	if (!pos)
1663		return;
1664
1665	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1666	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1667		    PCI_REBAR_CTRL_NBAR_SHIFT;
1668
1669	for (i = 0; i < nbars; i++, pos += 8) {
1670		struct resource *res;
1671		int bar_idx, size;
1672
1673		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1674		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1675		res = pdev->resource + bar_idx;
1676		size = pci_rebar_bytes_to_size(resource_size(res));
1677		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1678		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1679		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1680	}
1681}
1682
1683/**
1684 * pci_restore_state - Restore the saved state of a PCI device
1685 * @dev: PCI device that we're dealing with
1686 */
1687void pci_restore_state(struct pci_dev *dev)
1688{
1689	if (!dev->state_saved)
1690		return;
1691
1692	/*
1693	 * Restore max latencies (in the LTR capability) before enabling
1694	 * LTR itself (in the PCIe capability).
1695	 */
1696	pci_restore_ltr_state(dev);
1697
1698	pci_restore_pcie_state(dev);
1699	pci_restore_pasid_state(dev);
1700	pci_restore_pri_state(dev);
1701	pci_restore_ats_state(dev);
1702	pci_restore_vc_state(dev);
1703	pci_restore_rebar_state(dev);
1704	pci_restore_dpc_state(dev);
1705	pci_restore_ptm_state(dev);
1706
1707	pci_aer_clear_status(dev);
1708	pci_restore_aer_state(dev);
1709
1710	pci_restore_config_space(dev);
1711
1712	pci_restore_pcix_state(dev);
1713	pci_restore_msi_state(dev);
1714
1715	/* Restore ACS and IOV configuration state */
1716	pci_enable_acs(dev);
1717	pci_restore_iov_state(dev);
1718
1719	dev->state_saved = false;
1720}
1721EXPORT_SYMBOL(pci_restore_state);
1722
1723struct pci_saved_state {
1724	u32 config_space[16];
1725	struct pci_cap_saved_data cap[];
1726};
1727
1728/**
1729 * pci_store_saved_state - Allocate and return an opaque struct containing
1730 *			   the device saved state.
1731 * @dev: PCI device that we're dealing with
1732 *
1733 * Return NULL if no state or error.
1734 */
1735struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1736{
1737	struct pci_saved_state *state;
1738	struct pci_cap_saved_state *tmp;
1739	struct pci_cap_saved_data *cap;
1740	size_t size;
1741
1742	if (!dev->state_saved)
1743		return NULL;
1744
1745	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1746
1747	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1748		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1749
1750	state = kzalloc(size, GFP_KERNEL);
1751	if (!state)
1752		return NULL;
1753
1754	memcpy(state->config_space, dev->saved_config_space,
1755	       sizeof(state->config_space));
1756
1757	cap = state->cap;
1758	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1759		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1760		memcpy(cap, &tmp->cap, len);
1761		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1762	}
1763	/* Empty cap_save terminates list */
1764
1765	return state;
1766}
1767EXPORT_SYMBOL_GPL(pci_store_saved_state);
1768
1769/**
1770 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1771 * @dev: PCI device that we're dealing with
1772 * @state: Saved state returned from pci_store_saved_state()
1773 */
1774int pci_load_saved_state(struct pci_dev *dev,
1775			 struct pci_saved_state *state)
1776{
1777	struct pci_cap_saved_data *cap;
1778
1779	dev->state_saved = false;
1780
1781	if (!state)
1782		return 0;
1783
1784	memcpy(dev->saved_config_space, state->config_space,
1785	       sizeof(state->config_space));
1786
1787	cap = state->cap;
1788	while (cap->size) {
1789		struct pci_cap_saved_state *tmp;
1790
1791		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1792		if (!tmp || tmp->cap.size != cap->size)
1793			return -EINVAL;
1794
1795		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1796		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1797		       sizeof(struct pci_cap_saved_data) + cap->size);
1798	}
1799
1800	dev->state_saved = true;
1801	return 0;
1802}
1803EXPORT_SYMBOL_GPL(pci_load_saved_state);
1804
1805/**
1806 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1807 *				   and free the memory allocated for it.
1808 * @dev: PCI device that we're dealing with
1809 * @state: Pointer to saved state returned from pci_store_saved_state()
1810 */
1811int pci_load_and_free_saved_state(struct pci_dev *dev,
1812				  struct pci_saved_state **state)
1813{
1814	int ret = pci_load_saved_state(dev, *state);
1815	kfree(*state);
1816	*state = NULL;
1817	return ret;
1818}
1819EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1820
1821int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1822{
1823	return pci_enable_resources(dev, bars);
1824}
1825
1826static int do_pci_enable_device(struct pci_dev *dev, int bars)
1827{
1828	int err;
1829	struct pci_dev *bridge;
1830	u16 cmd;
1831	u8 pin;
1832
1833	err = pci_set_power_state(dev, PCI_D0);
1834	if (err < 0 && err != -EIO)
1835		return err;
1836
1837	bridge = pci_upstream_bridge(dev);
1838	if (bridge)
1839		pcie_aspm_powersave_config_link(bridge);
1840
1841	err = pcibios_enable_device(dev, bars);
1842	if (err < 0)
1843		return err;
1844	pci_fixup_device(pci_fixup_enable, dev);
1845
1846	if (dev->msi_enabled || dev->msix_enabled)
1847		return 0;
1848
1849	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1850	if (pin) {
1851		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1852		if (cmd & PCI_COMMAND_INTX_DISABLE)
1853			pci_write_config_word(dev, PCI_COMMAND,
1854					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1855	}
1856
1857	return 0;
1858}
1859
1860/**
1861 * pci_reenable_device - Resume abandoned device
1862 * @dev: PCI device to be resumed
1863 *
1864 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1865 * to be called by normal code, write proper resume handler and use it instead.
1866 */
1867int pci_reenable_device(struct pci_dev *dev)
1868{
1869	if (pci_is_enabled(dev))
1870		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1871	return 0;
1872}
1873EXPORT_SYMBOL(pci_reenable_device);
1874
1875static void pci_enable_bridge(struct pci_dev *dev)
1876{
1877	struct pci_dev *bridge;
1878	int retval;
1879
1880	bridge = pci_upstream_bridge(dev);
1881	if (bridge)
1882		pci_enable_bridge(bridge);
1883
1884	if (pci_is_enabled(dev)) {
1885		if (!dev->is_busmaster)
1886			pci_set_master(dev);
1887		return;
1888	}
1889
1890	retval = pci_enable_device(dev);
1891	if (retval)
1892		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1893			retval);
1894	pci_set_master(dev);
1895}
1896
1897static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1898{
1899	struct pci_dev *bridge;
1900	int err;
1901	int i, bars = 0;
1902
1903	/*
1904	 * Power state could be unknown at this point, either due to a fresh
1905	 * boot or a device removal call.  So get the current power state
1906	 * so that things like MSI message writing will behave as expected
1907	 * (e.g. if the device really is in D0 at enable time).
1908	 */
1909	pci_update_current_state(dev, dev->current_state);
 
 
 
 
1910
1911	if (atomic_inc_return(&dev->enable_cnt) > 1)
1912		return 0;		/* already enabled */
1913
1914	bridge = pci_upstream_bridge(dev);
1915	if (bridge)
1916		pci_enable_bridge(bridge);
1917
1918	/* only skip sriov related */
1919	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1920		if (dev->resource[i].flags & flags)
1921			bars |= (1 << i);
1922	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1923		if (dev->resource[i].flags & flags)
1924			bars |= (1 << i);
1925
1926	err = do_pci_enable_device(dev, bars);
1927	if (err < 0)
1928		atomic_dec(&dev->enable_cnt);
1929	return err;
1930}
1931
1932/**
1933 * pci_enable_device_io - Initialize a device for use with IO space
1934 * @dev: PCI device to be initialized
1935 *
1936 * Initialize device before it's used by a driver. Ask low-level code
1937 * to enable I/O resources. Wake up the device if it was suspended.
1938 * Beware, this function can fail.
1939 */
1940int pci_enable_device_io(struct pci_dev *dev)
1941{
1942	return pci_enable_device_flags(dev, IORESOURCE_IO);
1943}
1944EXPORT_SYMBOL(pci_enable_device_io);
1945
1946/**
1947 * pci_enable_device_mem - Initialize a device for use with Memory space
1948 * @dev: PCI device to be initialized
1949 *
1950 * Initialize device before it's used by a driver. Ask low-level code
1951 * to enable Memory resources. Wake up the device if it was suspended.
1952 * Beware, this function can fail.
1953 */
1954int pci_enable_device_mem(struct pci_dev *dev)
1955{
1956	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1957}
1958EXPORT_SYMBOL(pci_enable_device_mem);
1959
1960/**
1961 * pci_enable_device - Initialize device before it's used by a driver.
1962 * @dev: PCI device to be initialized
1963 *
1964 * Initialize device before it's used by a driver. Ask low-level code
1965 * to enable I/O and memory. Wake up the device if it was suspended.
1966 * Beware, this function can fail.
1967 *
1968 * Note we don't actually enable the device many times if we call
1969 * this function repeatedly (we just increment the count).
1970 */
1971int pci_enable_device(struct pci_dev *dev)
1972{
1973	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1974}
1975EXPORT_SYMBOL(pci_enable_device);
1976
1977/*
1978 * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1979 * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1980 * there's no need to track it separately.  pci_devres is initialized
1981 * when a device is enabled using managed PCI device enable interface.
1982 */
1983struct pci_devres {
1984	unsigned int enabled:1;
1985	unsigned int pinned:1;
1986	unsigned int orig_intx:1;
1987	unsigned int restore_intx:1;
1988	unsigned int mwi:1;
1989	u32 region_mask;
1990};
1991
1992static void pcim_release(struct device *gendev, void *res)
1993{
1994	struct pci_dev *dev = to_pci_dev(gendev);
1995	struct pci_devres *this = res;
1996	int i;
1997
1998	if (dev->msi_enabled)
1999		pci_disable_msi(dev);
2000	if (dev->msix_enabled)
2001		pci_disable_msix(dev);
2002
2003	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2004		if (this->region_mask & (1 << i))
2005			pci_release_region(dev, i);
2006
2007	if (this->mwi)
2008		pci_clear_mwi(dev);
2009
2010	if (this->restore_intx)
2011		pci_intx(dev, this->orig_intx);
2012
2013	if (this->enabled && !this->pinned)
2014		pci_disable_device(dev);
2015}
2016
2017static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2018{
2019	struct pci_devres *dr, *new_dr;
2020
2021	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2022	if (dr)
2023		return dr;
2024
2025	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2026	if (!new_dr)
2027		return NULL;
2028	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2029}
2030
2031static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2032{
2033	if (pci_is_managed(pdev))
2034		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2035	return NULL;
2036}
2037
2038/**
2039 * pcim_enable_device - Managed pci_enable_device()
2040 * @pdev: PCI device to be initialized
2041 *
2042 * Managed pci_enable_device().
2043 */
2044int pcim_enable_device(struct pci_dev *pdev)
2045{
2046	struct pci_devres *dr;
2047	int rc;
2048
2049	dr = get_pci_dr(pdev);
2050	if (unlikely(!dr))
2051		return -ENOMEM;
2052	if (dr->enabled)
2053		return 0;
2054
2055	rc = pci_enable_device(pdev);
2056	if (!rc) {
2057		pdev->is_managed = 1;
2058		dr->enabled = 1;
2059	}
2060	return rc;
2061}
2062EXPORT_SYMBOL(pcim_enable_device);
2063
2064/**
2065 * pcim_pin_device - Pin managed PCI device
2066 * @pdev: PCI device to pin
2067 *
2068 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2069 * driver detach.  @pdev must have been enabled with
2070 * pcim_enable_device().
2071 */
2072void pcim_pin_device(struct pci_dev *pdev)
2073{
2074	struct pci_devres *dr;
2075
2076	dr = find_pci_dr(pdev);
2077	WARN_ON(!dr || !dr->enabled);
2078	if (dr)
2079		dr->pinned = 1;
2080}
2081EXPORT_SYMBOL(pcim_pin_device);
2082
2083/*
2084 * pcibios_add_device - provide arch specific hooks when adding device dev
2085 * @dev: the PCI device being added
2086 *
2087 * Permits the platform to provide architecture specific functionality when
2088 * devices are added. This is the default implementation. Architecture
2089 * implementations can override this.
2090 */
2091int __weak pcibios_add_device(struct pci_dev *dev)
2092{
2093	return 0;
2094}
2095
2096/**
2097 * pcibios_release_device - provide arch specific hooks when releasing
2098 *			    device dev
2099 * @dev: the PCI device being released
2100 *
2101 * Permits the platform to provide architecture specific functionality when
2102 * devices are released. This is the default implementation. Architecture
2103 * implementations can override this.
2104 */
2105void __weak pcibios_release_device(struct pci_dev *dev) {}
2106
2107/**
2108 * pcibios_disable_device - disable arch specific PCI resources for device dev
2109 * @dev: the PCI device to disable
2110 *
2111 * Disables architecture specific PCI resources for the device. This
2112 * is the default implementation. Architecture implementations can
2113 * override this.
2114 */
2115void __weak pcibios_disable_device(struct pci_dev *dev) {}
2116
2117/**
2118 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2119 * @irq: ISA IRQ to penalize
2120 * @active: IRQ active or not
2121 *
2122 * Permits the platform to provide architecture-specific functionality when
2123 * penalizing ISA IRQs. This is the default implementation. Architecture
2124 * implementations can override this.
2125 */
2126void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2127
2128static void do_pci_disable_device(struct pci_dev *dev)
2129{
2130	u16 pci_command;
2131
2132	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2133	if (pci_command & PCI_COMMAND_MASTER) {
2134		pci_command &= ~PCI_COMMAND_MASTER;
2135		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2136	}
2137
2138	pcibios_disable_device(dev);
2139}
2140
2141/**
2142 * pci_disable_enabled_device - Disable device without updating enable_cnt
2143 * @dev: PCI device to disable
2144 *
2145 * NOTE: This function is a backend of PCI power management routines and is
2146 * not supposed to be called drivers.
2147 */
2148void pci_disable_enabled_device(struct pci_dev *dev)
2149{
2150	if (pci_is_enabled(dev))
2151		do_pci_disable_device(dev);
2152}
2153
2154/**
2155 * pci_disable_device - Disable PCI device after use
2156 * @dev: PCI device to be disabled
2157 *
2158 * Signal to the system that the PCI device is not in use by the system
2159 * anymore.  This only involves disabling PCI bus-mastering, if active.
2160 *
2161 * Note we don't actually disable the device until all callers of
2162 * pci_enable_device() have called pci_disable_device().
2163 */
2164void pci_disable_device(struct pci_dev *dev)
2165{
2166	struct pci_devres *dr;
2167
2168	dr = find_pci_dr(dev);
2169	if (dr)
2170		dr->enabled = 0;
2171
2172	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2173		      "disabling already-disabled device");
2174
2175	if (atomic_dec_return(&dev->enable_cnt) != 0)
2176		return;
2177
2178	do_pci_disable_device(dev);
2179
2180	dev->is_busmaster = 0;
2181}
2182EXPORT_SYMBOL(pci_disable_device);
2183
2184/**
2185 * pcibios_set_pcie_reset_state - set reset state for device dev
2186 * @dev: the PCIe device reset
2187 * @state: Reset state to enter into
2188 *
2189 * Set the PCIe reset state for the device. This is the default
2190 * implementation. Architecture implementations can override this.
2191 */
2192int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2193					enum pcie_reset_state state)
2194{
2195	return -EINVAL;
2196}
2197
2198/**
2199 * pci_set_pcie_reset_state - set reset state for device dev
2200 * @dev: the PCIe device reset
2201 * @state: Reset state to enter into
2202 *
2203 * Sets the PCI reset state for the device.
2204 */
2205int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2206{
2207	return pcibios_set_pcie_reset_state(dev, state);
2208}
2209EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2210
2211void pcie_clear_device_status(struct pci_dev *dev)
2212{
2213	u16 sta;
2214
2215	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2216	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2217}
2218
2219/**
2220 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2221 * @dev: PCIe root port or event collector.
2222 */
2223void pcie_clear_root_pme_status(struct pci_dev *dev)
2224{
2225	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2226}
2227
2228/**
2229 * pci_check_pme_status - Check if given device has generated PME.
2230 * @dev: Device to check.
2231 *
2232 * Check the PME status of the device and if set, clear it and clear PME enable
2233 * (if set).  Return 'true' if PME status and PME enable were both set or
2234 * 'false' otherwise.
2235 */
2236bool pci_check_pme_status(struct pci_dev *dev)
2237{
2238	int pmcsr_pos;
2239	u16 pmcsr;
2240	bool ret = false;
2241
2242	if (!dev->pm_cap)
2243		return false;
2244
2245	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2246	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2247	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2248		return false;
2249
2250	/* Clear PME status. */
2251	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2252	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2253		/* Disable PME to avoid interrupt flood. */
2254		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2255		ret = true;
2256	}
2257
2258	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2259
2260	return ret;
2261}
2262
2263/**
2264 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2265 * @dev: Device to handle.
2266 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2267 *
2268 * Check if @dev has generated PME and queue a resume request for it in that
2269 * case.
2270 */
2271static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2272{
2273	if (pme_poll_reset && dev->pme_poll)
2274		dev->pme_poll = false;
2275
2276	if (pci_check_pme_status(dev)) {
2277		pci_wakeup_event(dev);
2278		pm_request_resume(&dev->dev);
2279	}
2280	return 0;
2281}
2282
2283/**
2284 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2285 * @bus: Top bus of the subtree to walk.
2286 */
2287void pci_pme_wakeup_bus(struct pci_bus *bus)
2288{
2289	if (bus)
2290		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2291}
2292
2293
2294/**
2295 * pci_pme_capable - check the capability of PCI device to generate PME#
2296 * @dev: PCI device to handle.
2297 * @state: PCI state from which device will issue PME#.
2298 */
2299bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2300{
2301	if (!dev->pm_cap)
2302		return false;
2303
2304	return !!(dev->pme_support & (1 << state));
2305}
2306EXPORT_SYMBOL(pci_pme_capable);
2307
2308static void pci_pme_list_scan(struct work_struct *work)
2309{
2310	struct pci_pme_device *pme_dev, *n;
2311
2312	mutex_lock(&pci_pme_list_mutex);
2313	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2314		if (pme_dev->dev->pme_poll) {
2315			struct pci_dev *bridge;
2316
2317			bridge = pme_dev->dev->bus->self;
2318			/*
2319			 * If bridge is in low power state, the
2320			 * configuration space of subordinate devices
2321			 * may be not accessible
2322			 */
2323			if (bridge && bridge->current_state != PCI_D0)
2324				continue;
2325			/*
2326			 * If the device is in D3cold it should not be
2327			 * polled either.
2328			 */
2329			if (pme_dev->dev->current_state == PCI_D3cold)
2330				continue;
2331
2332			pci_pme_wakeup(pme_dev->dev, NULL);
2333		} else {
2334			list_del(&pme_dev->list);
2335			kfree(pme_dev);
2336		}
2337	}
2338	if (!list_empty(&pci_pme_list))
2339		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2340				   msecs_to_jiffies(PME_TIMEOUT));
2341	mutex_unlock(&pci_pme_list_mutex);
2342}
2343
2344static void __pci_pme_active(struct pci_dev *dev, bool enable)
2345{
2346	u16 pmcsr;
2347
2348	if (!dev->pme_support)
2349		return;
2350
2351	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2352	/* Clear PME_Status by writing 1 to it and enable PME# */
2353	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2354	if (!enable)
2355		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2356
2357	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2358}
2359
2360/**
2361 * pci_pme_restore - Restore PME configuration after config space restore.
2362 * @dev: PCI device to update.
2363 */
2364void pci_pme_restore(struct pci_dev *dev)
2365{
2366	u16 pmcsr;
2367
2368	if (!dev->pme_support)
2369		return;
2370
2371	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2372	if (dev->wakeup_prepared) {
2373		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2374		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2375	} else {
2376		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2377		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2378	}
2379	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2380}
2381
2382/**
2383 * pci_pme_active - enable or disable PCI device's PME# function
2384 * @dev: PCI device to handle.
2385 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2386 *
2387 * The caller must verify that the device is capable of generating PME# before
2388 * calling this function with @enable equal to 'true'.
2389 */
2390void pci_pme_active(struct pci_dev *dev, bool enable)
2391{
2392	__pci_pme_active(dev, enable);
2393
2394	/*
2395	 * PCI (as opposed to PCIe) PME requires that the device have
2396	 * its PME# line hooked up correctly. Not all hardware vendors
2397	 * do this, so the PME never gets delivered and the device
2398	 * remains asleep. The easiest way around this is to
2399	 * periodically walk the list of suspended devices and check
2400	 * whether any have their PME flag set. The assumption is that
2401	 * we'll wake up often enough anyway that this won't be a huge
2402	 * hit, and the power savings from the devices will still be a
2403	 * win.
2404	 *
2405	 * Although PCIe uses in-band PME message instead of PME# line
2406	 * to report PME, PME does not work for some PCIe devices in
2407	 * reality.  For example, there are devices that set their PME
2408	 * status bits, but don't really bother to send a PME message;
2409	 * there are PCI Express Root Ports that don't bother to
2410	 * trigger interrupts when they receive PME messages from the
2411	 * devices below.  So PME poll is used for PCIe devices too.
2412	 */
2413
2414	if (dev->pme_poll) {
2415		struct pci_pme_device *pme_dev;
2416		if (enable) {
2417			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2418					  GFP_KERNEL);
2419			if (!pme_dev) {
2420				pci_warn(dev, "can't enable PME#\n");
2421				return;
2422			}
2423			pme_dev->dev = dev;
2424			mutex_lock(&pci_pme_list_mutex);
2425			list_add(&pme_dev->list, &pci_pme_list);
2426			if (list_is_singular(&pci_pme_list))
2427				queue_delayed_work(system_freezable_wq,
2428						   &pci_pme_work,
2429						   msecs_to_jiffies(PME_TIMEOUT));
2430			mutex_unlock(&pci_pme_list_mutex);
2431		} else {
2432			mutex_lock(&pci_pme_list_mutex);
2433			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2434				if (pme_dev->dev == dev) {
2435					list_del(&pme_dev->list);
2436					kfree(pme_dev);
2437					break;
2438				}
2439			}
2440			mutex_unlock(&pci_pme_list_mutex);
2441		}
2442	}
2443
2444	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2445}
2446EXPORT_SYMBOL(pci_pme_active);
2447
2448/**
2449 * __pci_enable_wake - enable PCI device as wakeup event source
2450 * @dev: PCI device affected
2451 * @state: PCI state from which device will issue wakeup events
2452 * @enable: True to enable event generation; false to disable
2453 *
2454 * This enables the device as a wakeup event source, or disables it.
2455 * When such events involves platform-specific hooks, those hooks are
2456 * called automatically by this routine.
2457 *
2458 * Devices with legacy power management (no standard PCI PM capabilities)
2459 * always require such platform hooks.
2460 *
2461 * RETURN VALUE:
2462 * 0 is returned on success
2463 * -EINVAL is returned if device is not supposed to wake up the system
2464 * Error code depending on the platform is returned if both the platform and
2465 * the native mechanism fail to enable the generation of wake-up events
2466 */
2467static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2468{
2469	int ret = 0;
2470
2471	/*
2472	 * Bridges that are not power-manageable directly only signal
2473	 * wakeup on behalf of subordinate devices which is set up
2474	 * elsewhere, so skip them. However, bridges that are
2475	 * power-manageable may signal wakeup for themselves (for example,
2476	 * on a hotplug event) and they need to be covered here.
2477	 */
2478	if (!pci_power_manageable(dev))
2479		return 0;
2480
2481	/* Don't do the same thing twice in a row for one device. */
2482	if (!!enable == !!dev->wakeup_prepared)
2483		return 0;
2484
2485	/*
2486	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2487	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2488	 * enable.  To disable wake-up we call the platform first, for symmetry.
2489	 */
2490
2491	if (enable) {
2492		int error;
2493
2494		/*
2495		 * Enable PME signaling if the device can signal PME from
2496		 * D3cold regardless of whether or not it can signal PME from
2497		 * the current target state, because that will allow it to
2498		 * signal PME when the hierarchy above it goes into D3cold and
2499		 * the device itself ends up in D3cold as a result of that.
2500		 */
2501		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2502			pci_pme_active(dev, true);
2503		else
2504			ret = 1;
2505		error = platform_pci_set_wakeup(dev, true);
2506		if (ret)
2507			ret = error;
2508		if (!ret)
2509			dev->wakeup_prepared = true;
2510	} else {
2511		platform_pci_set_wakeup(dev, false);
2512		pci_pme_active(dev, false);
2513		dev->wakeup_prepared = false;
2514	}
2515
2516	return ret;
2517}
2518
2519/**
2520 * pci_enable_wake - change wakeup settings for a PCI device
2521 * @pci_dev: Target device
2522 * @state: PCI state from which device will issue wakeup events
2523 * @enable: Whether or not to enable event generation
2524 *
2525 * If @enable is set, check device_may_wakeup() for the device before calling
2526 * __pci_enable_wake() for it.
2527 */
2528int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2529{
2530	if (enable && !device_may_wakeup(&pci_dev->dev))
2531		return -EINVAL;
2532
2533	return __pci_enable_wake(pci_dev, state, enable);
2534}
2535EXPORT_SYMBOL(pci_enable_wake);
2536
2537/**
2538 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2539 * @dev: PCI device to prepare
2540 * @enable: True to enable wake-up event generation; false to disable
2541 *
2542 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2543 * and this function allows them to set that up cleanly - pci_enable_wake()
2544 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2545 * ordering constraints.
2546 *
2547 * This function only returns error code if the device is not allowed to wake
2548 * up the system from sleep or it is not capable of generating PME# from both
2549 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2550 */
2551int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2552{
2553	return pci_pme_capable(dev, PCI_D3cold) ?
2554			pci_enable_wake(dev, PCI_D3cold, enable) :
2555			pci_enable_wake(dev, PCI_D3hot, enable);
2556}
2557EXPORT_SYMBOL(pci_wake_from_d3);
2558
2559/**
2560 * pci_target_state - find an appropriate low power state for a given PCI dev
2561 * @dev: PCI device
2562 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2563 *
2564 * Use underlying platform code to find a supported low power state for @dev.
2565 * If the platform can't manage @dev, return the deepest state from which it
2566 * can generate wake events, based on any available PME info.
2567 */
2568static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2569{
2570	pci_power_t target_state = PCI_D3hot;
2571
2572	if (platform_pci_power_manageable(dev)) {
2573		/*
2574		 * Call the platform to find the target state for the device.
2575		 */
2576		pci_power_t state = platform_pci_choose_state(dev);
2577
2578		switch (state) {
2579		case PCI_POWER_ERROR:
2580		case PCI_UNKNOWN:
2581			break;
2582		case PCI_D1:
2583		case PCI_D2:
2584			if (pci_no_d1d2(dev))
2585				break;
2586			fallthrough;
2587		default:
2588			target_state = state;
2589		}
2590
2591		return target_state;
2592	}
2593
2594	if (!dev->pm_cap)
2595		target_state = PCI_D0;
2596
2597	/*
2598	 * If the device is in D3cold even though it's not power-manageable by
2599	 * the platform, it may have been powered down by non-standard means.
2600	 * Best to let it slumber.
2601	 */
2602	if (dev->current_state == PCI_D3cold)
2603		target_state = PCI_D3cold;
2604
2605	if (wakeup && dev->pme_support) {
2606		pci_power_t state = target_state;
2607
2608		/*
2609		 * Find the deepest state from which the device can generate
2610		 * PME#.
2611		 */
2612		while (state && !(dev->pme_support & (1 << state)))
2613			state--;
2614
2615		if (state)
2616			return state;
2617		else if (dev->pme_support & 1)
2618			return PCI_D0;
2619	}
2620
2621	return target_state;
2622}
2623
2624/**
2625 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2626 *			  into a sleep state
2627 * @dev: Device to handle.
2628 *
2629 * Choose the power state appropriate for the device depending on whether
2630 * it can wake up the system and/or is power manageable by the platform
2631 * (PCI_D3hot is the default) and put the device into that state.
2632 */
2633int pci_prepare_to_sleep(struct pci_dev *dev)
2634{
2635	bool wakeup = device_may_wakeup(&dev->dev);
2636	pci_power_t target_state = pci_target_state(dev, wakeup);
2637	int error;
2638
2639	if (target_state == PCI_POWER_ERROR)
2640		return -EIO;
2641
2642	/*
2643	 * There are systems (for example, Intel mobile chips since Coffee
2644	 * Lake) where the power drawn while suspended can be significantly
2645	 * reduced by disabling PTM on PCIe root ports as this allows the
2646	 * port to enter a lower-power PM state and the SoC to reach a
2647	 * lower-power idle state as a whole.
2648	 */
2649	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2650		pci_disable_ptm(dev);
2651
2652	pci_enable_wake(dev, target_state, wakeup);
2653
2654	error = pci_set_power_state(dev, target_state);
2655
2656	if (error) {
2657		pci_enable_wake(dev, target_state, false);
2658		pci_restore_ptm_state(dev);
2659	}
2660
2661	return error;
2662}
2663EXPORT_SYMBOL(pci_prepare_to_sleep);
2664
2665/**
2666 * pci_back_from_sleep - turn PCI device on during system-wide transition
2667 *			 into working state
2668 * @dev: Device to handle.
2669 *
2670 * Disable device's system wake-up capability and put it into D0.
2671 */
2672int pci_back_from_sleep(struct pci_dev *dev)
2673{
2674	pci_enable_wake(dev, PCI_D0, false);
2675	return pci_set_power_state(dev, PCI_D0);
2676}
2677EXPORT_SYMBOL(pci_back_from_sleep);
2678
2679/**
2680 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2681 * @dev: PCI device being suspended.
2682 *
2683 * Prepare @dev to generate wake-up events at run time and put it into a low
2684 * power state.
2685 */
2686int pci_finish_runtime_suspend(struct pci_dev *dev)
2687{
2688	pci_power_t target_state;
2689	int error;
2690
2691	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2692	if (target_state == PCI_POWER_ERROR)
2693		return -EIO;
2694
2695	dev->runtime_d3cold = target_state == PCI_D3cold;
2696
2697	/*
2698	 * There are systems (for example, Intel mobile chips since Coffee
2699	 * Lake) where the power drawn while suspended can be significantly
2700	 * reduced by disabling PTM on PCIe root ports as this allows the
2701	 * port to enter a lower-power PM state and the SoC to reach a
2702	 * lower-power idle state as a whole.
2703	 */
2704	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2705		pci_disable_ptm(dev);
2706
2707	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2708
2709	error = pci_set_power_state(dev, target_state);
2710
2711	if (error) {
2712		pci_enable_wake(dev, target_state, false);
2713		pci_restore_ptm_state(dev);
2714		dev->runtime_d3cold = false;
2715	}
2716
2717	return error;
2718}
2719
2720/**
2721 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2722 * @dev: Device to check.
2723 *
2724 * Return true if the device itself is capable of generating wake-up events
2725 * (through the platform or using the native PCIe PME) or if the device supports
2726 * PME and one of its upstream bridges can generate wake-up events.
2727 */
2728bool pci_dev_run_wake(struct pci_dev *dev)
2729{
2730	struct pci_bus *bus = dev->bus;
2731
2732	if (!dev->pme_support)
2733		return false;
2734
2735	/* PME-capable in principle, but not from the target power state */
2736	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2737		return false;
2738
2739	if (device_can_wakeup(&dev->dev))
2740		return true;
2741
2742	while (bus->parent) {
2743		struct pci_dev *bridge = bus->self;
2744
2745		if (device_can_wakeup(&bridge->dev))
2746			return true;
2747
2748		bus = bus->parent;
2749	}
2750
2751	/* We have reached the root bus. */
2752	if (bus->bridge)
2753		return device_can_wakeup(bus->bridge);
2754
2755	return false;
2756}
2757EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2758
2759/**
2760 * pci_dev_need_resume - Check if it is necessary to resume the device.
2761 * @pci_dev: Device to check.
2762 *
2763 * Return 'true' if the device is not runtime-suspended or it has to be
2764 * reconfigured due to wakeup settings difference between system and runtime
2765 * suspend, or the current power state of it is not suitable for the upcoming
2766 * (system-wide) transition.
2767 */
2768bool pci_dev_need_resume(struct pci_dev *pci_dev)
2769{
2770	struct device *dev = &pci_dev->dev;
2771	pci_power_t target_state;
2772
2773	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2774		return true;
2775
2776	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2777
2778	/*
2779	 * If the earlier platform check has not triggered, D3cold is just power
2780	 * removal on top of D3hot, so no need to resume the device in that
2781	 * case.
2782	 */
2783	return target_state != pci_dev->current_state &&
2784		target_state != PCI_D3cold &&
2785		pci_dev->current_state != PCI_D3hot;
2786}
2787
2788/**
2789 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2790 * @pci_dev: Device to check.
2791 *
2792 * If the device is suspended and it is not configured for system wakeup,
2793 * disable PME for it to prevent it from waking up the system unnecessarily.
2794 *
2795 * Note that if the device's power state is D3cold and the platform check in
2796 * pci_dev_need_resume() has not triggered, the device's configuration need not
2797 * be changed.
2798 */
2799void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2800{
2801	struct device *dev = &pci_dev->dev;
2802
2803	spin_lock_irq(&dev->power.lock);
2804
2805	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2806	    pci_dev->current_state < PCI_D3cold)
2807		__pci_pme_active(pci_dev, false);
2808
2809	spin_unlock_irq(&dev->power.lock);
2810}
2811
2812/**
2813 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2814 * @pci_dev: Device to handle.
2815 *
2816 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2817 * it might have been disabled during the prepare phase of system suspend if
2818 * the device was not configured for system wakeup.
2819 */
2820void pci_dev_complete_resume(struct pci_dev *pci_dev)
2821{
2822	struct device *dev = &pci_dev->dev;
2823
2824	if (!pci_dev_run_wake(pci_dev))
2825		return;
2826
2827	spin_lock_irq(&dev->power.lock);
2828
2829	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2830		__pci_pme_active(pci_dev, true);
2831
2832	spin_unlock_irq(&dev->power.lock);
2833}
2834
2835void pci_config_pm_runtime_get(struct pci_dev *pdev)
2836{
2837	struct device *dev = &pdev->dev;
2838	struct device *parent = dev->parent;
2839
2840	if (parent)
2841		pm_runtime_get_sync(parent);
2842	pm_runtime_get_noresume(dev);
2843	/*
2844	 * pdev->current_state is set to PCI_D3cold during suspending,
2845	 * so wait until suspending completes
2846	 */
2847	pm_runtime_barrier(dev);
2848	/*
2849	 * Only need to resume devices in D3cold, because config
2850	 * registers are still accessible for devices suspended but
2851	 * not in D3cold.
2852	 */
2853	if (pdev->current_state == PCI_D3cold)
2854		pm_runtime_resume(dev);
2855}
2856
2857void pci_config_pm_runtime_put(struct pci_dev *pdev)
2858{
2859	struct device *dev = &pdev->dev;
2860	struct device *parent = dev->parent;
2861
2862	pm_runtime_put(dev);
2863	if (parent)
2864		pm_runtime_put_sync(parent);
2865}
2866
2867static const struct dmi_system_id bridge_d3_blacklist[] = {
2868#ifdef CONFIG_X86
2869	{
2870		/*
2871		 * Gigabyte X299 root port is not marked as hotplug capable
2872		 * which allows Linux to power manage it.  However, this
2873		 * confuses the BIOS SMI handler so don't power manage root
2874		 * ports on that system.
2875		 */
2876		.ident = "X299 DESIGNARE EX-CF",
2877		.matches = {
2878			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2879			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2880		},
2881	},
2882#endif
2883	{ }
2884};
2885
2886/**
2887 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2888 * @bridge: Bridge to check
2889 *
2890 * This function checks if it is possible to move the bridge to D3.
2891 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2892 */
2893bool pci_bridge_d3_possible(struct pci_dev *bridge)
2894{
2895	if (!pci_is_pcie(bridge))
2896		return false;
2897
2898	switch (pci_pcie_type(bridge)) {
2899	case PCI_EXP_TYPE_ROOT_PORT:
2900	case PCI_EXP_TYPE_UPSTREAM:
2901	case PCI_EXP_TYPE_DOWNSTREAM:
2902		if (pci_bridge_d3_disable)
2903			return false;
2904
2905		/*
2906		 * Hotplug ports handled by firmware in System Management Mode
2907		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2908		 */
2909		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2910			return false;
2911
2912		if (pci_bridge_d3_force)
2913			return true;
2914
2915		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2916		if (bridge->is_thunderbolt)
2917			return true;
2918
2919		/* Platform might know better if the bridge supports D3 */
2920		if (platform_pci_bridge_d3(bridge))
2921			return true;
2922
2923		/*
2924		 * Hotplug ports handled natively by the OS were not validated
2925		 * by vendors for runtime D3 at least until 2018 because there
2926		 * was no OS support.
2927		 */
2928		if (bridge->is_hotplug_bridge)
2929			return false;
2930
2931		if (dmi_check_system(bridge_d3_blacklist))
2932			return false;
2933
2934		/*
2935		 * It should be safe to put PCIe ports from 2015 or newer
2936		 * to D3.
2937		 */
2938		if (dmi_get_bios_year() >= 2015)
2939			return true;
2940		break;
2941	}
2942
2943	return false;
2944}
2945
2946static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2947{
2948	bool *d3cold_ok = data;
2949
2950	if (/* The device needs to be allowed to go D3cold ... */
2951	    dev->no_d3cold || !dev->d3cold_allowed ||
2952
2953	    /* ... and if it is wakeup capable to do so from D3cold. */
2954	    (device_may_wakeup(&dev->dev) &&
2955	     !pci_pme_capable(dev, PCI_D3cold)) ||
2956
2957	    /* If it is a bridge it must be allowed to go to D3. */
2958	    !pci_power_manageable(dev))
2959
2960		*d3cold_ok = false;
2961
2962	return !*d3cold_ok;
2963}
2964
2965/*
2966 * pci_bridge_d3_update - Update bridge D3 capabilities
2967 * @dev: PCI device which is changed
2968 *
2969 * Update upstream bridge PM capabilities accordingly depending on if the
2970 * device PM configuration was changed or the device is being removed.  The
2971 * change is also propagated upstream.
2972 */
2973void pci_bridge_d3_update(struct pci_dev *dev)
2974{
2975	bool remove = !device_is_registered(&dev->dev);
2976	struct pci_dev *bridge;
2977	bool d3cold_ok = true;
2978
2979	bridge = pci_upstream_bridge(dev);
2980	if (!bridge || !pci_bridge_d3_possible(bridge))
2981		return;
2982
2983	/*
2984	 * If D3 is currently allowed for the bridge, removing one of its
2985	 * children won't change that.
2986	 */
2987	if (remove && bridge->bridge_d3)
2988		return;
2989
2990	/*
2991	 * If D3 is currently allowed for the bridge and a child is added or
2992	 * changed, disallowance of D3 can only be caused by that child, so
2993	 * we only need to check that single device, not any of its siblings.
2994	 *
2995	 * If D3 is currently not allowed for the bridge, checking the device
2996	 * first may allow us to skip checking its siblings.
2997	 */
2998	if (!remove)
2999		pci_dev_check_d3cold(dev, &d3cold_ok);
3000
3001	/*
3002	 * If D3 is currently not allowed for the bridge, this may be caused
3003	 * either by the device being changed/removed or any of its siblings,
3004	 * so we need to go through all children to find out if one of them
3005	 * continues to block D3.
3006	 */
3007	if (d3cold_ok && !bridge->bridge_d3)
3008		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3009			     &d3cold_ok);
3010
3011	if (bridge->bridge_d3 != d3cold_ok) {
3012		bridge->bridge_d3 = d3cold_ok;
3013		/* Propagate change to upstream bridges */
3014		pci_bridge_d3_update(bridge);
3015	}
3016}
3017
3018/**
3019 * pci_d3cold_enable - Enable D3cold for device
3020 * @dev: PCI device to handle
3021 *
3022 * This function can be used in drivers to enable D3cold from the device
3023 * they handle.  It also updates upstream PCI bridge PM capabilities
3024 * accordingly.
3025 */
3026void pci_d3cold_enable(struct pci_dev *dev)
3027{
3028	if (dev->no_d3cold) {
3029		dev->no_d3cold = false;
3030		pci_bridge_d3_update(dev);
3031	}
3032}
3033EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3034
3035/**
3036 * pci_d3cold_disable - Disable D3cold for device
3037 * @dev: PCI device to handle
3038 *
3039 * This function can be used in drivers to disable D3cold from the device
3040 * they handle.  It also updates upstream PCI bridge PM capabilities
3041 * accordingly.
3042 */
3043void pci_d3cold_disable(struct pci_dev *dev)
3044{
3045	if (!dev->no_d3cold) {
3046		dev->no_d3cold = true;
3047		pci_bridge_d3_update(dev);
3048	}
3049}
3050EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3051
3052/**
3053 * pci_pm_init - Initialize PM functions of given PCI device
3054 * @dev: PCI device to handle.
3055 */
3056void pci_pm_init(struct pci_dev *dev)
3057{
3058	int pm;
3059	u16 status;
3060	u16 pmc;
3061
3062	pm_runtime_forbid(&dev->dev);
3063	pm_runtime_set_active(&dev->dev);
3064	pm_runtime_enable(&dev->dev);
3065	device_enable_async_suspend(&dev->dev);
3066	dev->wakeup_prepared = false;
3067
3068	dev->pm_cap = 0;
3069	dev->pme_support = 0;
3070
3071	/* find PCI PM capability in list */
3072	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3073	if (!pm)
3074		return;
3075	/* Check device's ability to generate PME# */
3076	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3077
3078	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3079		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3080			pmc & PCI_PM_CAP_VER_MASK);
3081		return;
3082	}
3083
3084	dev->pm_cap = pm;
3085	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3086	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3087	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3088	dev->d3cold_allowed = true;
3089
3090	dev->d1_support = false;
3091	dev->d2_support = false;
3092	if (!pci_no_d1d2(dev)) {
3093		if (pmc & PCI_PM_CAP_D1)
3094			dev->d1_support = true;
3095		if (pmc & PCI_PM_CAP_D2)
3096			dev->d2_support = true;
3097
3098		if (dev->d1_support || dev->d2_support)
3099			pci_info(dev, "supports%s%s\n",
3100				   dev->d1_support ? " D1" : "",
3101				   dev->d2_support ? " D2" : "");
3102	}
3103
3104	pmc &= PCI_PM_CAP_PME_MASK;
3105	if (pmc) {
3106		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3107			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3108			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3109			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3110			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3111			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3112		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3113		dev->pme_poll = true;
3114		/*
3115		 * Make device's PM flags reflect the wake-up capability, but
3116		 * let the user space enable it to wake up the system as needed.
3117		 */
3118		device_set_wakeup_capable(&dev->dev, true);
3119		/* Disable the PME# generation functionality */
3120		pci_pme_active(dev, false);
3121	}
3122
3123	pci_read_config_word(dev, PCI_STATUS, &status);
3124	if (status & PCI_STATUS_IMM_READY)
3125		dev->imm_ready = 1;
3126}
3127
3128static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3129{
3130	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3131
3132	switch (prop) {
3133	case PCI_EA_P_MEM:
3134	case PCI_EA_P_VF_MEM:
3135		flags |= IORESOURCE_MEM;
3136		break;
3137	case PCI_EA_P_MEM_PREFETCH:
3138	case PCI_EA_P_VF_MEM_PREFETCH:
3139		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3140		break;
3141	case PCI_EA_P_IO:
3142		flags |= IORESOURCE_IO;
3143		break;
3144	default:
3145		return 0;
3146	}
3147
3148	return flags;
3149}
3150
3151static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3152					    u8 prop)
3153{
3154	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3155		return &dev->resource[bei];
3156#ifdef CONFIG_PCI_IOV
3157	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3158		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3159		return &dev->resource[PCI_IOV_RESOURCES +
3160				      bei - PCI_EA_BEI_VF_BAR0];
3161#endif
3162	else if (bei == PCI_EA_BEI_ROM)
3163		return &dev->resource[PCI_ROM_RESOURCE];
3164	else
3165		return NULL;
3166}
3167
3168/* Read an Enhanced Allocation (EA) entry */
3169static int pci_ea_read(struct pci_dev *dev, int offset)
3170{
3171	struct resource *res;
3172	int ent_size, ent_offset = offset;
3173	resource_size_t start, end;
3174	unsigned long flags;
3175	u32 dw0, bei, base, max_offset;
3176	u8 prop;
3177	bool support_64 = (sizeof(resource_size_t) >= 8);
3178
3179	pci_read_config_dword(dev, ent_offset, &dw0);
3180	ent_offset += 4;
3181
3182	/* Entry size field indicates DWORDs after 1st */
3183	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3184
3185	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3186		goto out;
3187
3188	bei = (dw0 & PCI_EA_BEI) >> 4;
3189	prop = (dw0 & PCI_EA_PP) >> 8;
3190
3191	/*
3192	 * If the Property is in the reserved range, try the Secondary
3193	 * Property instead.
3194	 */
3195	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3196		prop = (dw0 & PCI_EA_SP) >> 16;
3197	if (prop > PCI_EA_P_BRIDGE_IO)
3198		goto out;
3199
3200	res = pci_ea_get_resource(dev, bei, prop);
3201	if (!res) {
3202		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3203		goto out;
3204	}
3205
3206	flags = pci_ea_flags(dev, prop);
3207	if (!flags) {
3208		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3209		goto out;
3210	}
3211
3212	/* Read Base */
3213	pci_read_config_dword(dev, ent_offset, &base);
3214	start = (base & PCI_EA_FIELD_MASK);
3215	ent_offset += 4;
3216
3217	/* Read MaxOffset */
3218	pci_read_config_dword(dev, ent_offset, &max_offset);
3219	ent_offset += 4;
3220
3221	/* Read Base MSBs (if 64-bit entry) */
3222	if (base & PCI_EA_IS_64) {
3223		u32 base_upper;
3224
3225		pci_read_config_dword(dev, ent_offset, &base_upper);
3226		ent_offset += 4;
3227
3228		flags |= IORESOURCE_MEM_64;
3229
3230		/* entry starts above 32-bit boundary, can't use */
3231		if (!support_64 && base_upper)
3232			goto out;
3233
3234		if (support_64)
3235			start |= ((u64)base_upper << 32);
3236	}
3237
3238	end = start + (max_offset | 0x03);
3239
3240	/* Read MaxOffset MSBs (if 64-bit entry) */
3241	if (max_offset & PCI_EA_IS_64) {
3242		u32 max_offset_upper;
3243
3244		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3245		ent_offset += 4;
3246
3247		flags |= IORESOURCE_MEM_64;
3248
3249		/* entry too big, can't use */
3250		if (!support_64 && max_offset_upper)
3251			goto out;
3252
3253		if (support_64)
3254			end += ((u64)max_offset_upper << 32);
3255	}
3256
3257	if (end < start) {
3258		pci_err(dev, "EA Entry crosses address boundary\n");
3259		goto out;
3260	}
3261
3262	if (ent_size != ent_offset - offset) {
3263		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3264			ent_size, ent_offset - offset);
3265		goto out;
3266	}
3267
3268	res->name = pci_name(dev);
3269	res->start = start;
3270	res->end = end;
3271	res->flags = flags;
3272
3273	if (bei <= PCI_EA_BEI_BAR5)
3274		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3275			   bei, res, prop);
3276	else if (bei == PCI_EA_BEI_ROM)
3277		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3278			   res, prop);
3279	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3280		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3281			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3282	else
3283		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3284			   bei, res, prop);
3285
3286out:
3287	return offset + ent_size;
3288}
3289
3290/* Enhanced Allocation Initialization */
3291void pci_ea_init(struct pci_dev *dev)
3292{
3293	int ea;
3294	u8 num_ent;
3295	int offset;
3296	int i;
3297
3298	/* find PCI EA capability in list */
3299	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3300	if (!ea)
3301		return;
3302
3303	/* determine the number of entries */
3304	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3305					&num_ent);
3306	num_ent &= PCI_EA_NUM_ENT_MASK;
3307
3308	offset = ea + PCI_EA_FIRST_ENT;
3309
3310	/* Skip DWORD 2 for type 1 functions */
3311	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3312		offset += 4;
3313
3314	/* parse each EA entry */
3315	for (i = 0; i < num_ent; ++i)
3316		offset = pci_ea_read(dev, offset);
3317}
3318
3319static void pci_add_saved_cap(struct pci_dev *pci_dev,
3320	struct pci_cap_saved_state *new_cap)
3321{
3322	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3323}
3324
3325/**
3326 * _pci_add_cap_save_buffer - allocate buffer for saving given
3327 *			      capability registers
3328 * @dev: the PCI device
3329 * @cap: the capability to allocate the buffer for
3330 * @extended: Standard or Extended capability ID
3331 * @size: requested size of the buffer
3332 */
3333static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3334				    bool extended, unsigned int size)
3335{
3336	int pos;
3337	struct pci_cap_saved_state *save_state;
3338
3339	if (extended)
3340		pos = pci_find_ext_capability(dev, cap);
3341	else
3342		pos = pci_find_capability(dev, cap);
3343
3344	if (!pos)
3345		return 0;
3346
3347	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3348	if (!save_state)
3349		return -ENOMEM;
3350
3351	save_state->cap.cap_nr = cap;
3352	save_state->cap.cap_extended = extended;
3353	save_state->cap.size = size;
3354	pci_add_saved_cap(dev, save_state);
3355
3356	return 0;
3357}
3358
3359int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3360{
3361	return _pci_add_cap_save_buffer(dev, cap, false, size);
3362}
3363
3364int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3365{
3366	return _pci_add_cap_save_buffer(dev, cap, true, size);
3367}
3368
3369/**
3370 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3371 * @dev: the PCI device
3372 */
3373void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3374{
3375	int error;
3376
3377	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3378					PCI_EXP_SAVE_REGS * sizeof(u16));
3379	if (error)
3380		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3381
3382	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3383	if (error)
3384		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3385
3386	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3387					    2 * sizeof(u16));
3388	if (error)
3389		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3390
3391	pci_allocate_vc_save_buffers(dev);
3392}
3393
3394void pci_free_cap_save_buffers(struct pci_dev *dev)
3395{
3396	struct pci_cap_saved_state *tmp;
3397	struct hlist_node *n;
3398
3399	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3400		kfree(tmp);
3401}
3402
3403/**
3404 * pci_configure_ari - enable or disable ARI forwarding
3405 * @dev: the PCI device
3406 *
3407 * If @dev and its upstream bridge both support ARI, enable ARI in the
3408 * bridge.  Otherwise, disable ARI in the bridge.
3409 */
3410void pci_configure_ari(struct pci_dev *dev)
3411{
3412	u32 cap;
3413	struct pci_dev *bridge;
3414
3415	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3416		return;
3417
3418	bridge = dev->bus->self;
3419	if (!bridge)
3420		return;
3421
3422	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3423	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3424		return;
3425
3426	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3427		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3428					 PCI_EXP_DEVCTL2_ARI);
3429		bridge->ari_enabled = 1;
3430	} else {
3431		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3432					   PCI_EXP_DEVCTL2_ARI);
3433		bridge->ari_enabled = 0;
3434	}
3435}
3436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3437static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3438{
3439	int pos;
3440	u16 cap, ctrl;
3441
3442	pos = pdev->acs_cap;
3443	if (!pos)
3444		return false;
3445
3446	/*
3447	 * Except for egress control, capabilities are either required
3448	 * or only required if controllable.  Features missing from the
3449	 * capability field can therefore be assumed as hard-wired enabled.
3450	 */
3451	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3452	acs_flags &= (cap | PCI_ACS_EC);
3453
3454	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3455	return (ctrl & acs_flags) == acs_flags;
3456}
3457
3458/**
3459 * pci_acs_enabled - test ACS against required flags for a given device
3460 * @pdev: device to test
3461 * @acs_flags: required PCI ACS flags
3462 *
3463 * Return true if the device supports the provided flags.  Automatically
3464 * filters out flags that are not implemented on multifunction devices.
3465 *
3466 * Note that this interface checks the effective ACS capabilities of the
3467 * device rather than the actual capabilities.  For instance, most single
3468 * function endpoints are not required to support ACS because they have no
3469 * opportunity for peer-to-peer access.  We therefore return 'true'
3470 * regardless of whether the device exposes an ACS capability.  This makes
3471 * it much easier for callers of this function to ignore the actual type
3472 * or topology of the device when testing ACS support.
3473 */
3474bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3475{
3476	int ret;
3477
3478	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3479	if (ret >= 0)
3480		return ret > 0;
3481
3482	/*
3483	 * Conventional PCI and PCI-X devices never support ACS, either
3484	 * effectively or actually.  The shared bus topology implies that
3485	 * any device on the bus can receive or snoop DMA.
3486	 */
3487	if (!pci_is_pcie(pdev))
3488		return false;
3489
3490	switch (pci_pcie_type(pdev)) {
3491	/*
3492	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3493	 * but since their primary interface is PCI/X, we conservatively
3494	 * handle them as we would a non-PCIe device.
3495	 */
3496	case PCI_EXP_TYPE_PCIE_BRIDGE:
3497	/*
3498	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3499	 * applicable... must never implement an ACS Extended Capability...".
3500	 * This seems arbitrary, but we take a conservative interpretation
3501	 * of this statement.
3502	 */
3503	case PCI_EXP_TYPE_PCI_BRIDGE:
3504	case PCI_EXP_TYPE_RC_EC:
3505		return false;
3506	/*
3507	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3508	 * implement ACS in order to indicate their peer-to-peer capabilities,
3509	 * regardless of whether they are single- or multi-function devices.
3510	 */
3511	case PCI_EXP_TYPE_DOWNSTREAM:
3512	case PCI_EXP_TYPE_ROOT_PORT:
3513		return pci_acs_flags_enabled(pdev, acs_flags);
3514	/*
3515	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3516	 * implemented by the remaining PCIe types to indicate peer-to-peer
3517	 * capabilities, but only when they are part of a multifunction
3518	 * device.  The footnote for section 6.12 indicates the specific
3519	 * PCIe types included here.
3520	 */
3521	case PCI_EXP_TYPE_ENDPOINT:
3522	case PCI_EXP_TYPE_UPSTREAM:
3523	case PCI_EXP_TYPE_LEG_END:
3524	case PCI_EXP_TYPE_RC_END:
3525		if (!pdev->multifunction)
3526			break;
3527
3528		return pci_acs_flags_enabled(pdev, acs_flags);
3529	}
3530
3531	/*
3532	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3533	 * to single function devices with the exception of downstream ports.
3534	 */
3535	return true;
3536}
3537
3538/**
3539 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3540 * @start: starting downstream device
3541 * @end: ending upstream device or NULL to search to the root bus
3542 * @acs_flags: required flags
3543 *
3544 * Walk up a device tree from start to end testing PCI ACS support.  If
3545 * any step along the way does not support the required flags, return false.
3546 */
3547bool pci_acs_path_enabled(struct pci_dev *start,
3548			  struct pci_dev *end, u16 acs_flags)
3549{
3550	struct pci_dev *pdev, *parent = start;
3551
3552	do {
3553		pdev = parent;
3554
3555		if (!pci_acs_enabled(pdev, acs_flags))
3556			return false;
3557
3558		if (pci_is_root_bus(pdev->bus))
3559			return (end == NULL);
3560
3561		parent = pdev->bus->self;
3562	} while (pdev != end);
3563
3564	return true;
3565}
3566
3567/**
3568 * pci_acs_init - Initialize ACS if hardware supports it
3569 * @dev: the PCI device
3570 */
3571void pci_acs_init(struct pci_dev *dev)
3572{
3573	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3574
3575	/*
3576	 * Attempt to enable ACS regardless of capability because some Root
3577	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3578	 * the standard ACS capability but still support ACS via those
3579	 * quirks.
3580	 */
3581	pci_enable_acs(dev);
3582}
3583
3584/**
3585 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3586 * @pdev: PCI device
3587 * @bar: BAR to find
3588 *
3589 * Helper to find the position of the ctrl register for a BAR.
3590 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3591 * Returns -ENOENT if no ctrl register for the BAR could be found.
3592 */
3593static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3594{
3595	unsigned int pos, nbars, i;
3596	u32 ctrl;
3597
3598	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3599	if (!pos)
3600		return -ENOTSUPP;
3601
3602	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3603	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3604		    PCI_REBAR_CTRL_NBAR_SHIFT;
3605
3606	for (i = 0; i < nbars; i++, pos += 8) {
3607		int bar_idx;
3608
3609		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3610		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3611		if (bar_idx == bar)
3612			return pos;
3613	}
3614
3615	return -ENOENT;
3616}
3617
3618/**
3619 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3620 * @pdev: PCI device
3621 * @bar: BAR to query
3622 *
3623 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3624 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3625 */
3626u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3627{
3628	int pos;
3629	u32 cap;
3630
3631	pos = pci_rebar_find_pos(pdev, bar);
3632	if (pos < 0)
3633		return 0;
3634
3635	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3636	cap &= PCI_REBAR_CAP_SIZES;
3637
3638	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3639	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3640	    bar == 0 && cap == 0x7000)
3641		cap = 0x3f000;
3642
3643	return cap >> 4;
3644}
3645EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3646
3647/**
3648 * pci_rebar_get_current_size - get the current size of a BAR
3649 * @pdev: PCI device
3650 * @bar: BAR to set size to
3651 *
3652 * Read the size of a BAR from the resizable BAR config.
3653 * Returns size if found or negative error code.
3654 */
3655int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3656{
3657	int pos;
3658	u32 ctrl;
3659
3660	pos = pci_rebar_find_pos(pdev, bar);
3661	if (pos < 0)
3662		return pos;
3663
3664	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3665	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3666}
3667
3668/**
3669 * pci_rebar_set_size - set a new size for a BAR
3670 * @pdev: PCI device
3671 * @bar: BAR to set size to
3672 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3673 *
3674 * Set the new size of a BAR as defined in the spec.
3675 * Returns zero if resizing was successful, error code otherwise.
3676 */
3677int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3678{
3679	int pos;
3680	u32 ctrl;
3681
3682	pos = pci_rebar_find_pos(pdev, bar);
3683	if (pos < 0)
3684		return pos;
3685
3686	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3687	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3688	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3689	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3690	return 0;
3691}
3692
3693/**
3694 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3695 * @dev: the PCI device
3696 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3697 *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3698 *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3699 *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3700 *
3701 * Return 0 if all upstream bridges support AtomicOp routing, egress
3702 * blocking is disabled on all upstream ports, and the root port supports
3703 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3704 * AtomicOp completion), or negative otherwise.
3705 */
3706int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3707{
3708	struct pci_bus *bus = dev->bus;
3709	struct pci_dev *bridge;
3710	u32 cap, ctl2;
3711
3712	if (!pci_is_pcie(dev))
3713		return -EINVAL;
3714
3715	/*
3716	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3717	 * AtomicOp requesters.  For now, we only support endpoints as
3718	 * requesters and root ports as completers.  No endpoints as
3719	 * completers, and no peer-to-peer.
3720	 */
3721
3722	switch (pci_pcie_type(dev)) {
3723	case PCI_EXP_TYPE_ENDPOINT:
3724	case PCI_EXP_TYPE_LEG_END:
3725	case PCI_EXP_TYPE_RC_END:
3726		break;
3727	default:
3728		return -EINVAL;
3729	}
3730
3731	while (bus->parent) {
3732		bridge = bus->self;
3733
3734		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3735
3736		switch (pci_pcie_type(bridge)) {
3737		/* Ensure switch ports support AtomicOp routing */
3738		case PCI_EXP_TYPE_UPSTREAM:
3739		case PCI_EXP_TYPE_DOWNSTREAM:
3740			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3741				return -EINVAL;
3742			break;
3743
3744		/* Ensure root port supports all the sizes we care about */
3745		case PCI_EXP_TYPE_ROOT_PORT:
3746			if ((cap & cap_mask) != cap_mask)
3747				return -EINVAL;
3748			break;
3749		}
3750
3751		/* Ensure upstream ports don't block AtomicOps on egress */
3752		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3753			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3754						   &ctl2);
3755			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3756				return -EINVAL;
3757		}
3758
3759		bus = bus->parent;
3760	}
3761
3762	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3763				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3764	return 0;
3765}
3766EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3767
3768/**
3769 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3770 * @dev: the PCI device
3771 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3772 *
3773 * Perform INTx swizzling for a device behind one level of bridge.  This is
3774 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3775 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3776 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3777 * the PCI Express Base Specification, Revision 2.1)
3778 */
3779u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3780{
3781	int slot;
3782
3783	if (pci_ari_enabled(dev->bus))
3784		slot = 0;
3785	else
3786		slot = PCI_SLOT(dev->devfn);
3787
3788	return (((pin - 1) + slot) % 4) + 1;
3789}
3790
3791int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3792{
3793	u8 pin;
3794
3795	pin = dev->pin;
3796	if (!pin)
3797		return -1;
3798
3799	while (!pci_is_root_bus(dev->bus)) {
3800		pin = pci_swizzle_interrupt_pin(dev, pin);
3801		dev = dev->bus->self;
3802	}
3803	*bridge = dev;
3804	return pin;
3805}
3806
3807/**
3808 * pci_common_swizzle - swizzle INTx all the way to root bridge
3809 * @dev: the PCI device
3810 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3811 *
3812 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3813 * bridges all the way up to a PCI root bus.
3814 */
3815u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3816{
3817	u8 pin = *pinp;
3818
3819	while (!pci_is_root_bus(dev->bus)) {
3820		pin = pci_swizzle_interrupt_pin(dev, pin);
3821		dev = dev->bus->self;
3822	}
3823	*pinp = pin;
3824	return PCI_SLOT(dev->devfn);
3825}
3826EXPORT_SYMBOL_GPL(pci_common_swizzle);
3827
3828/**
3829 * pci_release_region - Release a PCI bar
3830 * @pdev: PCI device whose resources were previously reserved by
3831 *	  pci_request_region()
3832 * @bar: BAR to release
3833 *
3834 * Releases the PCI I/O and memory resources previously reserved by a
3835 * successful call to pci_request_region().  Call this function only
3836 * after all use of the PCI regions has ceased.
3837 */
3838void pci_release_region(struct pci_dev *pdev, int bar)
3839{
3840	struct pci_devres *dr;
3841
3842	if (pci_resource_len(pdev, bar) == 0)
3843		return;
3844	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3845		release_region(pci_resource_start(pdev, bar),
3846				pci_resource_len(pdev, bar));
3847	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3848		release_mem_region(pci_resource_start(pdev, bar),
3849				pci_resource_len(pdev, bar));
3850
3851	dr = find_pci_dr(pdev);
3852	if (dr)
3853		dr->region_mask &= ~(1 << bar);
3854}
3855EXPORT_SYMBOL(pci_release_region);
3856
3857/**
3858 * __pci_request_region - Reserved PCI I/O and memory resource
3859 * @pdev: PCI device whose resources are to be reserved
3860 * @bar: BAR to be reserved
3861 * @res_name: Name to be associated with resource.
3862 * @exclusive: whether the region access is exclusive or not
3863 *
3864 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3865 * being reserved by owner @res_name.  Do not access any
3866 * address inside the PCI regions unless this call returns
3867 * successfully.
3868 *
3869 * If @exclusive is set, then the region is marked so that userspace
3870 * is explicitly not allowed to map the resource via /dev/mem or
3871 * sysfs MMIO access.
3872 *
3873 * Returns 0 on success, or %EBUSY on error.  A warning
3874 * message is also printed on failure.
3875 */
3876static int __pci_request_region(struct pci_dev *pdev, int bar,
3877				const char *res_name, int exclusive)
3878{
3879	struct pci_devres *dr;
3880
3881	if (pci_resource_len(pdev, bar) == 0)
3882		return 0;
3883
3884	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3885		if (!request_region(pci_resource_start(pdev, bar),
3886			    pci_resource_len(pdev, bar), res_name))
3887			goto err_out;
3888	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3889		if (!__request_mem_region(pci_resource_start(pdev, bar),
3890					pci_resource_len(pdev, bar), res_name,
3891					exclusive))
3892			goto err_out;
3893	}
3894
3895	dr = find_pci_dr(pdev);
3896	if (dr)
3897		dr->region_mask |= 1 << bar;
3898
3899	return 0;
3900
3901err_out:
3902	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3903		 &pdev->resource[bar]);
3904	return -EBUSY;
3905}
3906
3907/**
3908 * pci_request_region - Reserve PCI I/O and memory resource
3909 * @pdev: PCI device whose resources are to be reserved
3910 * @bar: BAR to be reserved
3911 * @res_name: Name to be associated with resource
3912 *
3913 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3914 * being reserved by owner @res_name.  Do not access any
3915 * address inside the PCI regions unless this call returns
3916 * successfully.
3917 *
3918 * Returns 0 on success, or %EBUSY on error.  A warning
3919 * message is also printed on failure.
3920 */
3921int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3922{
3923	return __pci_request_region(pdev, bar, res_name, 0);
3924}
3925EXPORT_SYMBOL(pci_request_region);
3926
3927/**
3928 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3929 * @pdev: PCI device whose resources were previously reserved
3930 * @bars: Bitmask of BARs to be released
3931 *
3932 * Release selected PCI I/O and memory resources previously reserved.
3933 * Call this function only after all use of the PCI regions has ceased.
3934 */
3935void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3936{
3937	int i;
3938
3939	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3940		if (bars & (1 << i))
3941			pci_release_region(pdev, i);
3942}
3943EXPORT_SYMBOL(pci_release_selected_regions);
3944
3945static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3946					  const char *res_name, int excl)
3947{
3948	int i;
3949
3950	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3951		if (bars & (1 << i))
3952			if (__pci_request_region(pdev, i, res_name, excl))
3953				goto err_out;
3954	return 0;
3955
3956err_out:
3957	while (--i >= 0)
3958		if (bars & (1 << i))
3959			pci_release_region(pdev, i);
3960
3961	return -EBUSY;
3962}
3963
3964
3965/**
3966 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3967 * @pdev: PCI device whose resources are to be reserved
3968 * @bars: Bitmask of BARs to be requested
3969 * @res_name: Name to be associated with resource
3970 */
3971int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3972				 const char *res_name)
3973{
3974	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3975}
3976EXPORT_SYMBOL(pci_request_selected_regions);
3977
3978int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3979					   const char *res_name)
3980{
3981	return __pci_request_selected_regions(pdev, bars, res_name,
3982			IORESOURCE_EXCLUSIVE);
3983}
3984EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3985
3986/**
3987 * pci_release_regions - Release reserved PCI I/O and memory resources
3988 * @pdev: PCI device whose resources were previously reserved by
3989 *	  pci_request_regions()
3990 *
3991 * Releases all PCI I/O and memory resources previously reserved by a
3992 * successful call to pci_request_regions().  Call this function only
3993 * after all use of the PCI regions has ceased.
3994 */
3995
3996void pci_release_regions(struct pci_dev *pdev)
3997{
3998	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3999}
4000EXPORT_SYMBOL(pci_release_regions);
4001
4002/**
4003 * pci_request_regions - Reserve PCI I/O and memory resources
4004 * @pdev: PCI device whose resources are to be reserved
4005 * @res_name: Name to be associated with resource.
4006 *
4007 * Mark all PCI regions associated with PCI device @pdev as
4008 * being reserved by owner @res_name.  Do not access any
4009 * address inside the PCI regions unless this call returns
4010 * successfully.
4011 *
4012 * Returns 0 on success, or %EBUSY on error.  A warning
4013 * message is also printed on failure.
4014 */
4015int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4016{
4017	return pci_request_selected_regions(pdev,
4018			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4019}
4020EXPORT_SYMBOL(pci_request_regions);
4021
4022/**
4023 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4024 * @pdev: PCI device whose resources are to be reserved
4025 * @res_name: Name to be associated with resource.
4026 *
4027 * Mark all PCI regions associated with PCI device @pdev as being reserved
4028 * by owner @res_name.  Do not access any address inside the PCI regions
4029 * unless this call returns successfully.
4030 *
4031 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4032 * and the sysfs MMIO access will not be allowed.
4033 *
4034 * Returns 0 on success, or %EBUSY on error.  A warning message is also
4035 * printed on failure.
4036 */
4037int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4038{
4039	return pci_request_selected_regions_exclusive(pdev,
4040				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4041}
4042EXPORT_SYMBOL(pci_request_regions_exclusive);
4043
4044/*
4045 * Record the PCI IO range (expressed as CPU physical address + size).
4046 * Return a negative value if an error has occurred, zero otherwise
4047 */
4048int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4049			resource_size_t	size)
4050{
4051	int ret = 0;
4052#ifdef PCI_IOBASE
4053	struct logic_pio_hwaddr *range;
4054
4055	if (!size || addr + size < addr)
4056		return -EINVAL;
4057
4058	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4059	if (!range)
4060		return -ENOMEM;
4061
4062	range->fwnode = fwnode;
4063	range->size = size;
4064	range->hw_start = addr;
4065	range->flags = LOGIC_PIO_CPU_MMIO;
4066
4067	ret = logic_pio_register_range(range);
4068	if (ret)
4069		kfree(range);
4070
4071	/* Ignore duplicates due to deferred probing */
4072	if (ret == -EEXIST)
4073		ret = 0;
4074#endif
4075
4076	return ret;
4077}
4078
4079phys_addr_t pci_pio_to_address(unsigned long pio)
4080{
4081	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4082
4083#ifdef PCI_IOBASE
4084	if (pio >= MMIO_UPPER_LIMIT)
4085		return address;
4086
4087	address = logic_pio_to_hwaddr(pio);
4088#endif
4089
4090	return address;
4091}
4092EXPORT_SYMBOL_GPL(pci_pio_to_address);
4093
4094unsigned long __weak pci_address_to_pio(phys_addr_t address)
4095{
4096#ifdef PCI_IOBASE
4097	return logic_pio_trans_cpuaddr(address);
4098#else
4099	if (address > IO_SPACE_LIMIT)
4100		return (unsigned long)-1;
4101
4102	return (unsigned long) address;
4103#endif
4104}
4105
4106/**
4107 * pci_remap_iospace - Remap the memory mapped I/O space
4108 * @res: Resource describing the I/O space
4109 * @phys_addr: physical address of range to be mapped
4110 *
4111 * Remap the memory mapped I/O space described by the @res and the CPU
4112 * physical address @phys_addr into virtual address space.  Only
4113 * architectures that have memory mapped IO functions defined (and the
4114 * PCI_IOBASE value defined) should call this function.
4115 */
4116int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4117{
4118#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4119	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4120
4121	if (!(res->flags & IORESOURCE_IO))
4122		return -EINVAL;
4123
4124	if (res->end > IO_SPACE_LIMIT)
4125		return -EINVAL;
4126
4127	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4128				  pgprot_device(PAGE_KERNEL));
4129#else
4130	/*
4131	 * This architecture does not have memory mapped I/O space,
4132	 * so this function should never be called
4133	 */
4134	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4135	return -ENODEV;
4136#endif
4137}
4138EXPORT_SYMBOL(pci_remap_iospace);
4139
4140/**
4141 * pci_unmap_iospace - Unmap the memory mapped I/O space
4142 * @res: resource to be unmapped
4143 *
4144 * Unmap the CPU virtual address @res from virtual address space.  Only
4145 * architectures that have memory mapped IO functions defined (and the
4146 * PCI_IOBASE value defined) should call this function.
4147 */
4148void pci_unmap_iospace(struct resource *res)
4149{
4150#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4151	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4152
4153	vunmap_range(vaddr, vaddr + resource_size(res));
4154#endif
4155}
4156EXPORT_SYMBOL(pci_unmap_iospace);
4157
4158static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4159{
4160	struct resource **res = ptr;
4161
4162	pci_unmap_iospace(*res);
4163}
4164
4165/**
4166 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4167 * @dev: Generic device to remap IO address for
4168 * @res: Resource describing the I/O space
4169 * @phys_addr: physical address of range to be mapped
4170 *
4171 * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4172 * detach.
4173 */
4174int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4175			   phys_addr_t phys_addr)
4176{
4177	const struct resource **ptr;
4178	int error;
4179
4180	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4181	if (!ptr)
4182		return -ENOMEM;
4183
4184	error = pci_remap_iospace(res, phys_addr);
4185	if (error) {
4186		devres_free(ptr);
4187	} else	{
4188		*ptr = res;
4189		devres_add(dev, ptr);
4190	}
4191
4192	return error;
4193}
4194EXPORT_SYMBOL(devm_pci_remap_iospace);
4195
4196/**
4197 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4198 * @dev: Generic device to remap IO address for
4199 * @offset: Resource address to map
4200 * @size: Size of map
4201 *
4202 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4203 * detach.
4204 */
4205void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4206				      resource_size_t offset,
4207				      resource_size_t size)
4208{
4209	void __iomem **ptr, *addr;
4210
4211	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4212	if (!ptr)
4213		return NULL;
4214
4215	addr = pci_remap_cfgspace(offset, size);
4216	if (addr) {
4217		*ptr = addr;
4218		devres_add(dev, ptr);
4219	} else
4220		devres_free(ptr);
4221
4222	return addr;
4223}
4224EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4225
4226/**
4227 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4228 * @dev: generic device to handle the resource for
4229 * @res: configuration space resource to be handled
4230 *
4231 * Checks that a resource is a valid memory region, requests the memory
4232 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4233 * proper PCI configuration space memory attributes are guaranteed.
4234 *
4235 * All operations are managed and will be undone on driver detach.
4236 *
4237 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4238 * on failure. Usage example::
4239 *
4240 *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4241 *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4242 *	if (IS_ERR(base))
4243 *		return PTR_ERR(base);
4244 */
4245void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4246					  struct resource *res)
4247{
4248	resource_size_t size;
4249	const char *name;
4250	void __iomem *dest_ptr;
4251
4252	BUG_ON(!dev);
4253
4254	if (!res || resource_type(res) != IORESOURCE_MEM) {
4255		dev_err(dev, "invalid resource\n");
4256		return IOMEM_ERR_PTR(-EINVAL);
4257	}
4258
4259	size = resource_size(res);
4260
4261	if (res->name)
4262		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4263				      res->name);
4264	else
4265		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4266	if (!name)
4267		return IOMEM_ERR_PTR(-ENOMEM);
4268
4269	if (!devm_request_mem_region(dev, res->start, size, name)) {
4270		dev_err(dev, "can't request region for resource %pR\n", res);
4271		return IOMEM_ERR_PTR(-EBUSY);
4272	}
4273
4274	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4275	if (!dest_ptr) {
4276		dev_err(dev, "ioremap failed for resource %pR\n", res);
4277		devm_release_mem_region(dev, res->start, size);
4278		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4279	}
4280
4281	return dest_ptr;
4282}
4283EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4284
4285static void __pci_set_master(struct pci_dev *dev, bool enable)
4286{
4287	u16 old_cmd, cmd;
4288
4289	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4290	if (enable)
4291		cmd = old_cmd | PCI_COMMAND_MASTER;
4292	else
4293		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4294	if (cmd != old_cmd) {
4295		pci_dbg(dev, "%s bus mastering\n",
4296			enable ? "enabling" : "disabling");
4297		pci_write_config_word(dev, PCI_COMMAND, cmd);
4298	}
4299	dev->is_busmaster = enable;
4300}
4301
4302/**
4303 * pcibios_setup - process "pci=" kernel boot arguments
4304 * @str: string used to pass in "pci=" kernel boot arguments
4305 *
4306 * Process kernel boot arguments.  This is the default implementation.
4307 * Architecture specific implementations can override this as necessary.
4308 */
4309char * __weak __init pcibios_setup(char *str)
4310{
4311	return str;
4312}
4313
4314/**
4315 * pcibios_set_master - enable PCI bus-mastering for device dev
4316 * @dev: the PCI device to enable
4317 *
4318 * Enables PCI bus-mastering for the device.  This is the default
4319 * implementation.  Architecture specific implementations can override
4320 * this if necessary.
4321 */
4322void __weak pcibios_set_master(struct pci_dev *dev)
4323{
4324	u8 lat;
4325
4326	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4327	if (pci_is_pcie(dev))
4328		return;
4329
4330	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4331	if (lat < 16)
4332		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4333	else if (lat > pcibios_max_latency)
4334		lat = pcibios_max_latency;
4335	else
4336		return;
4337
4338	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4339}
4340
4341/**
4342 * pci_set_master - enables bus-mastering for device dev
4343 * @dev: the PCI device to enable
4344 *
4345 * Enables bus-mastering on the device and calls pcibios_set_master()
4346 * to do the needed arch specific settings.
4347 */
4348void pci_set_master(struct pci_dev *dev)
4349{
4350	__pci_set_master(dev, true);
4351	pcibios_set_master(dev);
4352}
4353EXPORT_SYMBOL(pci_set_master);
4354
4355/**
4356 * pci_clear_master - disables bus-mastering for device dev
4357 * @dev: the PCI device to disable
4358 */
4359void pci_clear_master(struct pci_dev *dev)
4360{
4361	__pci_set_master(dev, false);
4362}
4363EXPORT_SYMBOL(pci_clear_master);
4364
4365/**
4366 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4367 * @dev: the PCI device for which MWI is to be enabled
4368 *
4369 * Helper function for pci_set_mwi.
4370 * Originally copied from drivers/net/acenic.c.
4371 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4372 *
4373 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4374 */
4375int pci_set_cacheline_size(struct pci_dev *dev)
4376{
4377	u8 cacheline_size;
4378
4379	if (!pci_cache_line_size)
4380		return -EINVAL;
4381
4382	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4383	   equal to or multiple of the right value. */
4384	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4385	if (cacheline_size >= pci_cache_line_size &&
4386	    (cacheline_size % pci_cache_line_size) == 0)
4387		return 0;
4388
4389	/* Write the correct value. */
4390	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4391	/* Read it back. */
4392	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4393	if (cacheline_size == pci_cache_line_size)
4394		return 0;
4395
4396	pci_dbg(dev, "cache line size of %d is not supported\n",
4397		   pci_cache_line_size << 2);
4398
4399	return -EINVAL;
4400}
4401EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4402
4403/**
4404 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4405 * @dev: the PCI device for which MWI is enabled
4406 *
4407 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4408 *
4409 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4410 */
4411int pci_set_mwi(struct pci_dev *dev)
4412{
4413#ifdef PCI_DISABLE_MWI
4414	return 0;
4415#else
4416	int rc;
4417	u16 cmd;
4418
4419	rc = pci_set_cacheline_size(dev);
4420	if (rc)
4421		return rc;
4422
4423	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4424	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4425		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4426		cmd |= PCI_COMMAND_INVALIDATE;
4427		pci_write_config_word(dev, PCI_COMMAND, cmd);
4428	}
4429	return 0;
4430#endif
4431}
4432EXPORT_SYMBOL(pci_set_mwi);
4433
4434/**
4435 * pcim_set_mwi - a device-managed pci_set_mwi()
4436 * @dev: the PCI device for which MWI is enabled
4437 *
4438 * Managed pci_set_mwi().
4439 *
4440 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4441 */
4442int pcim_set_mwi(struct pci_dev *dev)
4443{
4444	struct pci_devres *dr;
4445
4446	dr = find_pci_dr(dev);
4447	if (!dr)
4448		return -ENOMEM;
4449
4450	dr->mwi = 1;
4451	return pci_set_mwi(dev);
4452}
4453EXPORT_SYMBOL(pcim_set_mwi);
4454
4455/**
4456 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4457 * @dev: the PCI device for which MWI is enabled
4458 *
4459 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4460 * Callers are not required to check the return value.
4461 *
4462 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4463 */
4464int pci_try_set_mwi(struct pci_dev *dev)
4465{
4466#ifdef PCI_DISABLE_MWI
4467	return 0;
4468#else
4469	return pci_set_mwi(dev);
4470#endif
4471}
4472EXPORT_SYMBOL(pci_try_set_mwi);
4473
4474/**
4475 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4476 * @dev: the PCI device to disable
4477 *
4478 * Disables PCI Memory-Write-Invalidate transaction on the device
4479 */
4480void pci_clear_mwi(struct pci_dev *dev)
4481{
4482#ifndef PCI_DISABLE_MWI
4483	u16 cmd;
4484
4485	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4486	if (cmd & PCI_COMMAND_INVALIDATE) {
4487		cmd &= ~PCI_COMMAND_INVALIDATE;
4488		pci_write_config_word(dev, PCI_COMMAND, cmd);
4489	}
4490#endif
4491}
4492EXPORT_SYMBOL(pci_clear_mwi);
4493
4494/**
4495 * pci_disable_parity - disable parity checking for device
4496 * @dev: the PCI device to operate on
4497 *
4498 * Disable parity checking for device @dev
4499 */
4500void pci_disable_parity(struct pci_dev *dev)
4501{
4502	u16 cmd;
4503
4504	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4505	if (cmd & PCI_COMMAND_PARITY) {
4506		cmd &= ~PCI_COMMAND_PARITY;
4507		pci_write_config_word(dev, PCI_COMMAND, cmd);
4508	}
4509}
4510
4511/**
4512 * pci_intx - enables/disables PCI INTx for device dev
4513 * @pdev: the PCI device to operate on
4514 * @enable: boolean: whether to enable or disable PCI INTx
4515 *
4516 * Enables/disables PCI INTx for device @pdev
4517 */
4518void pci_intx(struct pci_dev *pdev, int enable)
4519{
4520	u16 pci_command, new;
4521
4522	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4523
4524	if (enable)
4525		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4526	else
4527		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4528
4529	if (new != pci_command) {
4530		struct pci_devres *dr;
4531
4532		pci_write_config_word(pdev, PCI_COMMAND, new);
4533
4534		dr = find_pci_dr(pdev);
4535		if (dr && !dr->restore_intx) {
4536			dr->restore_intx = 1;
4537			dr->orig_intx = !enable;
4538		}
4539	}
4540}
4541EXPORT_SYMBOL_GPL(pci_intx);
4542
4543static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4544{
4545	struct pci_bus *bus = dev->bus;
4546	bool mask_updated = true;
4547	u32 cmd_status_dword;
4548	u16 origcmd, newcmd;
4549	unsigned long flags;
4550	bool irq_pending;
4551
4552	/*
4553	 * We do a single dword read to retrieve both command and status.
4554	 * Document assumptions that make this possible.
4555	 */
4556	BUILD_BUG_ON(PCI_COMMAND % 4);
4557	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4558
4559	raw_spin_lock_irqsave(&pci_lock, flags);
4560
4561	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4562
4563	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4564
4565	/*
4566	 * Check interrupt status register to see whether our device
4567	 * triggered the interrupt (when masking) or the next IRQ is
4568	 * already pending (when unmasking).
4569	 */
4570	if (mask != irq_pending) {
4571		mask_updated = false;
4572		goto done;
4573	}
4574
4575	origcmd = cmd_status_dword;
4576	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4577	if (mask)
4578		newcmd |= PCI_COMMAND_INTX_DISABLE;
4579	if (newcmd != origcmd)
4580		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4581
4582done:
4583	raw_spin_unlock_irqrestore(&pci_lock, flags);
4584
4585	return mask_updated;
4586}
4587
4588/**
4589 * pci_check_and_mask_intx - mask INTx on pending interrupt
4590 * @dev: the PCI device to operate on
4591 *
4592 * Check if the device dev has its INTx line asserted, mask it and return
4593 * true in that case. False is returned if no interrupt was pending.
4594 */
4595bool pci_check_and_mask_intx(struct pci_dev *dev)
4596{
4597	return pci_check_and_set_intx_mask(dev, true);
4598}
4599EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4600
4601/**
4602 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4603 * @dev: the PCI device to operate on
4604 *
4605 * Check if the device dev has its INTx line asserted, unmask it if not and
4606 * return true. False is returned and the mask remains active if there was
4607 * still an interrupt pending.
4608 */
4609bool pci_check_and_unmask_intx(struct pci_dev *dev)
4610{
4611	return pci_check_and_set_intx_mask(dev, false);
4612}
4613EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4614
4615/**
4616 * pci_wait_for_pending_transaction - wait for pending transaction
4617 * @dev: the PCI device to operate on
4618 *
4619 * Return 0 if transaction is pending 1 otherwise.
4620 */
4621int pci_wait_for_pending_transaction(struct pci_dev *dev)
4622{
4623	if (!pci_is_pcie(dev))
4624		return 1;
4625
4626	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4627				    PCI_EXP_DEVSTA_TRPND);
4628}
4629EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4630
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4631/**
4632 * pcie_has_flr - check if a device supports function level resets
4633 * @dev: device to check
4634 *
4635 * Returns true if the device advertises support for PCIe function level
4636 * resets.
4637 */
4638bool pcie_has_flr(struct pci_dev *dev)
4639{
4640	u32 cap;
4641
4642	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4643		return false;
4644
4645	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4646	return cap & PCI_EXP_DEVCAP_FLR;
4647}
4648EXPORT_SYMBOL_GPL(pcie_has_flr);
4649
4650/**
4651 * pcie_flr - initiate a PCIe function level reset
4652 * @dev: device to reset
4653 *
4654 * Initiate a function level reset on @dev.  The caller should ensure the
4655 * device supports FLR before calling this function, e.g. by using the
4656 * pcie_has_flr() helper.
4657 */
4658int pcie_flr(struct pci_dev *dev)
4659{
4660	if (!pci_wait_for_pending_transaction(dev))
4661		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4662
4663	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4664
4665	if (dev->imm_ready)
4666		return 0;
4667
4668	/*
4669	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4670	 * 100ms, but may silently discard requests while the FLR is in
4671	 * progress.  Wait 100ms before trying to access the device.
4672	 */
4673	msleep(100);
4674
4675	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4676}
4677EXPORT_SYMBOL_GPL(pcie_flr);
4678
4679static int pci_af_flr(struct pci_dev *dev, int probe)
4680{
4681	int pos;
4682	u8 cap;
4683
4684	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4685	if (!pos)
4686		return -ENOTTY;
4687
4688	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4689		return -ENOTTY;
4690
4691	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4692	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4693		return -ENOTTY;
4694
4695	if (probe)
4696		return 0;
4697
4698	/*
4699	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4700	 * is used, so we use the control offset rather than status and shift
4701	 * the test bit to match.
4702	 */
4703	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4704				 PCI_AF_STATUS_TP << 8))
4705		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4706
4707	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4708
4709	if (dev->imm_ready)
4710		return 0;
4711
4712	/*
4713	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4714	 * updated 27 July 2006; a device must complete an FLR within
4715	 * 100ms, but may silently discard requests while the FLR is in
4716	 * progress.  Wait 100ms before trying to access the device.
4717	 */
4718	msleep(100);
4719
4720	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4721}
4722
4723/**
4724 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4725 * @dev: Device to reset.
4726 * @probe: If set, only check if the device can be reset this way.
4727 *
4728 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4729 * unset, it will be reinitialized internally when going from PCI_D3hot to
4730 * PCI_D0.  If that's the case and the device is not in a low-power state
4731 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4732 *
4733 * NOTE: This causes the caller to sleep for twice the device power transition
4734 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4735 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4736 * Moreover, only devices in D0 can be reset by this function.
4737 */
4738static int pci_pm_reset(struct pci_dev *dev, int probe)
4739{
4740	u16 csr;
4741
4742	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4743		return -ENOTTY;
4744
4745	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4746	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4747		return -ENOTTY;
4748
4749	if (probe)
4750		return 0;
4751
4752	if (dev->current_state != PCI_D0)
4753		return -EINVAL;
4754
4755	csr &= ~PCI_PM_CTRL_STATE_MASK;
4756	csr |= PCI_D3hot;
4757	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4758	pci_dev_d3_sleep(dev);
4759
4760	csr &= ~PCI_PM_CTRL_STATE_MASK;
4761	csr |= PCI_D0;
4762	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4763	pci_dev_d3_sleep(dev);
4764
4765	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4766}
4767
4768/**
4769 * pcie_wait_for_link_delay - Wait until link is active or inactive
4770 * @pdev: Bridge device
4771 * @active: waiting for active or inactive?
4772 * @delay: Delay to wait after link has become active (in ms)
4773 *
4774 * Use this to wait till link becomes active or inactive.
4775 */
4776static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4777				     int delay)
4778{
4779	int timeout = 1000;
4780	bool ret;
4781	u16 lnk_status;
4782
4783	/*
4784	 * Some controllers might not implement link active reporting. In this
4785	 * case, we wait for 1000 ms + any delay requested by the caller.
4786	 */
4787	if (!pdev->link_active_reporting) {
4788		msleep(timeout + delay);
4789		return true;
4790	}
4791
4792	/*
4793	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4794	 * after which we should expect an link active if the reset was
4795	 * successful. If so, software must wait a minimum 100ms before sending
4796	 * configuration requests to devices downstream this port.
4797	 *
4798	 * If the link fails to activate, either the device was physically
4799	 * removed or the link is permanently failed.
4800	 */
4801	if (active)
4802		msleep(20);
4803	for (;;) {
4804		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4805		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4806		if (ret == active)
4807			break;
4808		if (timeout <= 0)
4809			break;
4810		msleep(10);
4811		timeout -= 10;
4812	}
4813	if (active && ret)
4814		msleep(delay);
4815
 
 
4816	return ret == active;
4817}
4818
4819/**
4820 * pcie_wait_for_link - Wait until link is active or inactive
4821 * @pdev: Bridge device
4822 * @active: waiting for active or inactive?
4823 *
4824 * Use this to wait till link becomes active or inactive.
4825 */
4826bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4827{
4828	return pcie_wait_for_link_delay(pdev, active, 100);
4829}
4830
4831/*
4832 * Find maximum D3cold delay required by all the devices on the bus.  The
4833 * spec says 100 ms, but firmware can lower it and we allow drivers to
4834 * increase it as well.
4835 *
4836 * Called with @pci_bus_sem locked for reading.
4837 */
4838static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4839{
4840	const struct pci_dev *pdev;
4841	int min_delay = 100;
4842	int max_delay = 0;
4843
4844	list_for_each_entry(pdev, &bus->devices, bus_list) {
4845		if (pdev->d3cold_delay < min_delay)
4846			min_delay = pdev->d3cold_delay;
4847		if (pdev->d3cold_delay > max_delay)
4848			max_delay = pdev->d3cold_delay;
4849	}
4850
4851	return max(min_delay, max_delay);
4852}
4853
4854/**
4855 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4856 * @dev: PCI bridge
4857 *
4858 * Handle necessary delays before access to the devices on the secondary
4859 * side of the bridge are permitted after D3cold to D0 transition.
4860 *
4861 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4862 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4863 * 4.3.2.
4864 */
4865void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4866{
4867	struct pci_dev *child;
4868	int delay;
4869
4870	if (pci_dev_is_disconnected(dev))
4871		return;
4872
4873	if (!pci_is_bridge(dev) || !dev->bridge_d3)
4874		return;
4875
4876	down_read(&pci_bus_sem);
4877
4878	/*
4879	 * We only deal with devices that are present currently on the bus.
4880	 * For any hot-added devices the access delay is handled in pciehp
4881	 * board_added(). In case of ACPI hotplug the firmware is expected
4882	 * to configure the devices before OS is notified.
4883	 */
4884	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4885		up_read(&pci_bus_sem);
4886		return;
4887	}
4888
4889	/* Take d3cold_delay requirements into account */
4890	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4891	if (!delay) {
4892		up_read(&pci_bus_sem);
4893		return;
4894	}
4895
4896	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4897				 bus_list);
4898	up_read(&pci_bus_sem);
4899
4900	/*
4901	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4902	 * accessing the device after reset (that is 1000 ms + 100 ms). In
4903	 * practice this should not be needed because we don't do power
4904	 * management for them (see pci_bridge_d3_possible()).
4905	 */
4906	if (!pci_is_pcie(dev)) {
4907		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4908		msleep(1000 + delay);
4909		return;
4910	}
4911
4912	/*
4913	 * For PCIe downstream and root ports that do not support speeds
4914	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4915	 * speeds (gen3) we need to wait first for the data link layer to
4916	 * become active.
4917	 *
4918	 * However, 100 ms is the minimum and the PCIe spec says the
4919	 * software must allow at least 1s before it can determine that the
4920	 * device that did not respond is a broken device. There is
4921	 * evidence that 100 ms is not always enough, for example certain
4922	 * Titan Ridge xHCI controller does not always respond to
4923	 * configuration requests if we only wait for 100 ms (see
4924	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4925	 *
4926	 * Therefore we wait for 100 ms and check for the device presence.
4927	 * If it is still not present give it an additional 100 ms.
4928	 */
4929	if (!pcie_downstream_port(dev))
4930		return;
4931
4932	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4933		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4934		msleep(delay);
4935	} else {
4936		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4937			delay);
4938		if (!pcie_wait_for_link_delay(dev, true, delay)) {
4939			/* Did not train, no need to wait any further */
4940			pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4941			return;
4942		}
4943	}
4944
4945	if (!pci_device_is_present(child)) {
4946		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4947		msleep(delay);
4948	}
4949}
4950
4951void pci_reset_secondary_bus(struct pci_dev *dev)
4952{
4953	u16 ctrl;
4954
4955	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4956	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4957	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4958
4959	/*
4960	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4961	 * this to 2ms to ensure that we meet the minimum requirement.
4962	 */
4963	msleep(2);
4964
4965	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4966	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4967
4968	/*
4969	 * Trhfa for conventional PCI is 2^25 clock cycles.
4970	 * Assuming a minimum 33MHz clock this results in a 1s
4971	 * delay before we can consider subordinate devices to
4972	 * be re-initialized.  PCIe has some ways to shorten this,
4973	 * but we don't make use of them yet.
4974	 */
4975	ssleep(1);
4976}
4977
4978void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4979{
4980	pci_reset_secondary_bus(dev);
4981}
4982
4983/**
4984 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4985 * @dev: Bridge device
4986 *
4987 * Use the bridge control register to assert reset on the secondary bus.
4988 * Devices on the secondary bus are left in power-on state.
4989 */
4990int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4991{
4992	pcibios_reset_secondary_bus(dev);
4993
4994	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4995}
4996EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4997
4998static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4999{
5000	struct pci_dev *pdev;
5001
5002	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5003	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5004		return -ENOTTY;
5005
5006	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5007		if (pdev != dev)
5008			return -ENOTTY;
5009
5010	if (probe)
5011		return 0;
5012
5013	return pci_bridge_secondary_bus_reset(dev->bus->self);
5014}
5015
5016static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
5017{
5018	int rc = -ENOTTY;
5019
5020	if (!hotplug || !try_module_get(hotplug->owner))
5021		return rc;
5022
5023	if (hotplug->ops->reset_slot)
5024		rc = hotplug->ops->reset_slot(hotplug, probe);
5025
5026	module_put(hotplug->owner);
5027
5028	return rc;
5029}
5030
5031static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
5032{
5033	if (dev->multifunction || dev->subordinate || !dev->slot ||
 
 
5034	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5035		return -ENOTTY;
5036
 
 
 
 
5037	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5038}
5039
5040static int pci_reset_bus_function(struct pci_dev *dev, int probe)
5041{
5042	int rc;
5043
5044	rc = pci_dev_reset_slot_function(dev, probe);
5045	if (rc != -ENOTTY)
5046		return rc;
5047	return pci_parent_bus_reset(dev, probe);
5048}
5049
5050static void pci_dev_lock(struct pci_dev *dev)
5051{
5052	pci_cfg_access_lock(dev);
5053	/* block PM suspend, driver probe, etc. */
5054	device_lock(&dev->dev);
5055}
5056
5057/* Return 1 on successful lock, 0 on contention */
5058int pci_dev_trylock(struct pci_dev *dev)
5059{
5060	if (pci_cfg_access_trylock(dev)) {
5061		if (device_trylock(&dev->dev))
5062			return 1;
5063		pci_cfg_access_unlock(dev);
5064	}
5065
5066	return 0;
5067}
5068EXPORT_SYMBOL_GPL(pci_dev_trylock);
5069
5070void pci_dev_unlock(struct pci_dev *dev)
5071{
5072	device_unlock(&dev->dev);
5073	pci_cfg_access_unlock(dev);
5074}
5075EXPORT_SYMBOL_GPL(pci_dev_unlock);
5076
5077static void pci_dev_save_and_disable(struct pci_dev *dev)
5078{
5079	const struct pci_error_handlers *err_handler =
5080			dev->driver ? dev->driver->err_handler : NULL;
5081
5082	/*
5083	 * dev->driver->err_handler->reset_prepare() is protected against
5084	 * races with ->remove() by the device lock, which must be held by
5085	 * the caller.
5086	 */
5087	if (err_handler && err_handler->reset_prepare)
5088		err_handler->reset_prepare(dev);
5089
5090	/*
5091	 * Wake-up device prior to save.  PM registers default to D0 after
5092	 * reset and a simple register restore doesn't reliably return
5093	 * to a non-D0 state anyway.
5094	 */
5095	pci_set_power_state(dev, PCI_D0);
5096
5097	pci_save_state(dev);
5098	/*
5099	 * Disable the device by clearing the Command register, except for
5100	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5101	 * BARs, but also prevents the device from being Bus Master, preventing
5102	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5103	 * compliant devices, INTx-disable prevents legacy interrupts.
5104	 */
5105	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5106}
5107
5108static void pci_dev_restore(struct pci_dev *dev)
5109{
5110	const struct pci_error_handlers *err_handler =
5111			dev->driver ? dev->driver->err_handler : NULL;
5112
5113	pci_restore_state(dev);
5114
5115	/*
5116	 * dev->driver->err_handler->reset_done() is protected against
5117	 * races with ->remove() by the device lock, which must be held by
5118	 * the caller.
5119	 */
5120	if (err_handler && err_handler->reset_done)
5121		err_handler->reset_done(dev);
5122}
5123
5124/**
5125 * __pci_reset_function_locked - reset a PCI device function while holding
5126 * the @dev mutex lock.
5127 * @dev: PCI device to reset
5128 *
5129 * Some devices allow an individual function to be reset without affecting
5130 * other functions in the same device.  The PCI device must be responsive
5131 * to PCI config space in order to use this function.
5132 *
5133 * The device function is presumed to be unused and the caller is holding
5134 * the device mutex lock when this function is called.
5135 *
5136 * Resetting the device will make the contents of PCI configuration space
5137 * random, so any caller of this must be prepared to reinitialise the
5138 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5139 * etc.
5140 *
5141 * Returns 0 if the device function was successfully reset or negative if the
5142 * device doesn't support resetting a single function.
5143 */
5144int __pci_reset_function_locked(struct pci_dev *dev)
5145{
5146	int rc;
5147
5148	might_sleep();
5149
5150	/*
5151	 * A reset method returns -ENOTTY if it doesn't support this device
5152	 * and we should try the next method.
5153	 *
5154	 * If it returns 0 (success), we're finished.  If it returns any
5155	 * other error, we're also finished: this indicates that further
5156	 * reset mechanisms might be broken on the device.
5157	 */
5158	rc = pci_dev_specific_reset(dev, 0);
5159	if (rc != -ENOTTY)
5160		return rc;
5161	if (pcie_has_flr(dev)) {
5162		rc = pcie_flr(dev);
5163		if (rc != -ENOTTY)
5164			return rc;
5165	}
5166	rc = pci_af_flr(dev, 0);
5167	if (rc != -ENOTTY)
5168		return rc;
5169	rc = pci_pm_reset(dev, 0);
5170	if (rc != -ENOTTY)
5171		return rc;
5172	return pci_reset_bus_function(dev, 0);
 
 
 
5173}
5174EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5175
5176/**
5177 * pci_probe_reset_function - check whether the device can be safely reset
5178 * @dev: PCI device to reset
5179 *
5180 * Some devices allow an individual function to be reset without affecting
5181 * other functions in the same device.  The PCI device must be responsive
5182 * to PCI config space in order to use this function.
5183 *
5184 * Returns 0 if the device function can be reset or negative if the
5185 * device doesn't support resetting a single function.
5186 */
5187int pci_probe_reset_function(struct pci_dev *dev)
5188{
5189	int rc;
5190
5191	might_sleep();
5192
5193	rc = pci_dev_specific_reset(dev, 1);
5194	if (rc != -ENOTTY)
5195		return rc;
5196	if (pcie_has_flr(dev))
5197		return 0;
5198	rc = pci_af_flr(dev, 1);
5199	if (rc != -ENOTTY)
5200		return rc;
5201	rc = pci_pm_reset(dev, 1);
5202	if (rc != -ENOTTY)
5203		return rc;
 
 
 
5204
5205	return pci_reset_bus_function(dev, 1);
5206}
5207
5208/**
5209 * pci_reset_function - quiesce and reset a PCI device function
5210 * @dev: PCI device to reset
5211 *
5212 * Some devices allow an individual function to be reset without affecting
5213 * other functions in the same device.  The PCI device must be responsive
5214 * to PCI config space in order to use this function.
5215 *
5216 * This function does not just reset the PCI portion of a device, but
5217 * clears all the state associated with the device.  This function differs
5218 * from __pci_reset_function_locked() in that it saves and restores device state
5219 * over the reset and takes the PCI device lock.
5220 *
5221 * Returns 0 if the device function was successfully reset or negative if the
5222 * device doesn't support resetting a single function.
5223 */
5224int pci_reset_function(struct pci_dev *dev)
5225{
5226	int rc;
5227
5228	if (!dev->reset_fn)
5229		return -ENOTTY;
5230
5231	pci_dev_lock(dev);
5232	pci_dev_save_and_disable(dev);
5233
5234	rc = __pci_reset_function_locked(dev);
5235
5236	pci_dev_restore(dev);
5237	pci_dev_unlock(dev);
5238
5239	return rc;
5240}
5241EXPORT_SYMBOL_GPL(pci_reset_function);
5242
5243/**
5244 * pci_reset_function_locked - quiesce and reset a PCI device function
5245 * @dev: PCI device to reset
5246 *
5247 * Some devices allow an individual function to be reset without affecting
5248 * other functions in the same device.  The PCI device must be responsive
5249 * to PCI config space in order to use this function.
5250 *
5251 * This function does not just reset the PCI portion of a device, but
5252 * clears all the state associated with the device.  This function differs
5253 * from __pci_reset_function_locked() in that it saves and restores device state
5254 * over the reset.  It also differs from pci_reset_function() in that it
5255 * requires the PCI device lock to be held.
5256 *
5257 * Returns 0 if the device function was successfully reset or negative if the
5258 * device doesn't support resetting a single function.
5259 */
5260int pci_reset_function_locked(struct pci_dev *dev)
5261{
5262	int rc;
5263
5264	if (!dev->reset_fn)
5265		return -ENOTTY;
5266
5267	pci_dev_save_and_disable(dev);
5268
5269	rc = __pci_reset_function_locked(dev);
5270
5271	pci_dev_restore(dev);
5272
5273	return rc;
5274}
5275EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5276
5277/**
5278 * pci_try_reset_function - quiesce and reset a PCI device function
5279 * @dev: PCI device to reset
5280 *
5281 * Same as above, except return -EAGAIN if unable to lock device.
5282 */
5283int pci_try_reset_function(struct pci_dev *dev)
5284{
5285	int rc;
5286
5287	if (!dev->reset_fn)
5288		return -ENOTTY;
5289
5290	if (!pci_dev_trylock(dev))
5291		return -EAGAIN;
5292
5293	pci_dev_save_and_disable(dev);
5294	rc = __pci_reset_function_locked(dev);
5295	pci_dev_restore(dev);
5296	pci_dev_unlock(dev);
5297
5298	return rc;
5299}
5300EXPORT_SYMBOL_GPL(pci_try_reset_function);
5301
5302/* Do any devices on or below this bus prevent a bus reset? */
5303static bool pci_bus_resetable(struct pci_bus *bus)
5304{
5305	struct pci_dev *dev;
5306
5307
5308	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5309		return false;
5310
5311	list_for_each_entry(dev, &bus->devices, bus_list) {
5312		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5313		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5314			return false;
5315	}
5316
5317	return true;
5318}
5319
5320/* Lock devices from the top of the tree down */
5321static void pci_bus_lock(struct pci_bus *bus)
5322{
5323	struct pci_dev *dev;
5324
5325	list_for_each_entry(dev, &bus->devices, bus_list) {
5326		pci_dev_lock(dev);
5327		if (dev->subordinate)
5328			pci_bus_lock(dev->subordinate);
5329	}
5330}
5331
5332/* Unlock devices from the bottom of the tree up */
5333static void pci_bus_unlock(struct pci_bus *bus)
5334{
5335	struct pci_dev *dev;
5336
5337	list_for_each_entry(dev, &bus->devices, bus_list) {
5338		if (dev->subordinate)
5339			pci_bus_unlock(dev->subordinate);
5340		pci_dev_unlock(dev);
5341	}
5342}
5343
5344/* Return 1 on successful lock, 0 on contention */
5345static int pci_bus_trylock(struct pci_bus *bus)
5346{
5347	struct pci_dev *dev;
5348
5349	list_for_each_entry(dev, &bus->devices, bus_list) {
5350		if (!pci_dev_trylock(dev))
5351			goto unlock;
5352		if (dev->subordinate) {
5353			if (!pci_bus_trylock(dev->subordinate)) {
5354				pci_dev_unlock(dev);
5355				goto unlock;
5356			}
5357		}
5358	}
5359	return 1;
5360
5361unlock:
5362	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5363		if (dev->subordinate)
5364			pci_bus_unlock(dev->subordinate);
5365		pci_dev_unlock(dev);
5366	}
5367	return 0;
5368}
5369
5370/* Do any devices on or below this slot prevent a bus reset? */
5371static bool pci_slot_resetable(struct pci_slot *slot)
5372{
5373	struct pci_dev *dev;
5374
5375	if (slot->bus->self &&
5376	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5377		return false;
5378
5379	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5380		if (!dev->slot || dev->slot != slot)
5381			continue;
5382		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5383		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5384			return false;
5385	}
5386
5387	return true;
5388}
5389
5390/* Lock devices from the top of the tree down */
5391static void pci_slot_lock(struct pci_slot *slot)
5392{
5393	struct pci_dev *dev;
5394
5395	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5396		if (!dev->slot || dev->slot != slot)
5397			continue;
5398		pci_dev_lock(dev);
5399		if (dev->subordinate)
5400			pci_bus_lock(dev->subordinate);
5401	}
5402}
5403
5404/* Unlock devices from the bottom of the tree up */
5405static void pci_slot_unlock(struct pci_slot *slot)
5406{
5407	struct pci_dev *dev;
5408
5409	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5410		if (!dev->slot || dev->slot != slot)
5411			continue;
5412		if (dev->subordinate)
5413			pci_bus_unlock(dev->subordinate);
5414		pci_dev_unlock(dev);
5415	}
5416}
5417
5418/* Return 1 on successful lock, 0 on contention */
5419static int pci_slot_trylock(struct pci_slot *slot)
5420{
5421	struct pci_dev *dev;
5422
5423	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5424		if (!dev->slot || dev->slot != slot)
5425			continue;
5426		if (!pci_dev_trylock(dev))
5427			goto unlock;
5428		if (dev->subordinate) {
5429			if (!pci_bus_trylock(dev->subordinate)) {
5430				pci_dev_unlock(dev);
5431				goto unlock;
5432			}
5433		}
5434	}
5435	return 1;
5436
5437unlock:
5438	list_for_each_entry_continue_reverse(dev,
5439					     &slot->bus->devices, bus_list) {
5440		if (!dev->slot || dev->slot != slot)
5441			continue;
5442		if (dev->subordinate)
5443			pci_bus_unlock(dev->subordinate);
5444		pci_dev_unlock(dev);
5445	}
5446	return 0;
5447}
5448
5449/*
5450 * Save and disable devices from the top of the tree down while holding
5451 * the @dev mutex lock for the entire tree.
5452 */
5453static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5454{
5455	struct pci_dev *dev;
5456
5457	list_for_each_entry(dev, &bus->devices, bus_list) {
5458		pci_dev_save_and_disable(dev);
5459		if (dev->subordinate)
5460			pci_bus_save_and_disable_locked(dev->subordinate);
5461	}
5462}
5463
5464/*
5465 * Restore devices from top of the tree down while holding @dev mutex lock
5466 * for the entire tree.  Parent bridges need to be restored before we can
5467 * get to subordinate devices.
5468 */
5469static void pci_bus_restore_locked(struct pci_bus *bus)
5470{
5471	struct pci_dev *dev;
5472
5473	list_for_each_entry(dev, &bus->devices, bus_list) {
5474		pci_dev_restore(dev);
5475		if (dev->subordinate)
5476			pci_bus_restore_locked(dev->subordinate);
5477	}
5478}
5479
5480/*
5481 * Save and disable devices from the top of the tree down while holding
5482 * the @dev mutex lock for the entire tree.
5483 */
5484static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5485{
5486	struct pci_dev *dev;
5487
5488	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5489		if (!dev->slot || dev->slot != slot)
5490			continue;
5491		pci_dev_save_and_disable(dev);
5492		if (dev->subordinate)
5493			pci_bus_save_and_disable_locked(dev->subordinate);
5494	}
5495}
5496
5497/*
5498 * Restore devices from top of the tree down while holding @dev mutex lock
5499 * for the entire tree.  Parent bridges need to be restored before we can
5500 * get to subordinate devices.
5501 */
5502static void pci_slot_restore_locked(struct pci_slot *slot)
5503{
5504	struct pci_dev *dev;
5505
5506	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5507		if (!dev->slot || dev->slot != slot)
5508			continue;
5509		pci_dev_restore(dev);
5510		if (dev->subordinate)
5511			pci_bus_restore_locked(dev->subordinate);
5512	}
5513}
5514
5515static int pci_slot_reset(struct pci_slot *slot, int probe)
5516{
5517	int rc;
5518
5519	if (!slot || !pci_slot_resetable(slot))
5520		return -ENOTTY;
5521
5522	if (!probe)
5523		pci_slot_lock(slot);
5524
5525	might_sleep();
5526
5527	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5528
5529	if (!probe)
5530		pci_slot_unlock(slot);
5531
5532	return rc;
5533}
5534
5535/**
5536 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5537 * @slot: PCI slot to probe
5538 *
5539 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5540 */
5541int pci_probe_reset_slot(struct pci_slot *slot)
5542{
5543	return pci_slot_reset(slot, 1);
5544}
5545EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5546
5547/**
5548 * __pci_reset_slot - Try to reset a PCI slot
5549 * @slot: PCI slot to reset
5550 *
5551 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5552 * independent of other slots.  For instance, some slots may support slot power
5553 * control.  In the case of a 1:1 bus to slot architecture, this function may
5554 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5555 * Generally a slot reset should be attempted before a bus reset.  All of the
5556 * function of the slot and any subordinate buses behind the slot are reset
5557 * through this function.  PCI config space of all devices in the slot and
5558 * behind the slot is saved before and restored after reset.
5559 *
5560 * Same as above except return -EAGAIN if the slot cannot be locked
5561 */
5562static int __pci_reset_slot(struct pci_slot *slot)
5563{
5564	int rc;
5565
5566	rc = pci_slot_reset(slot, 1);
5567	if (rc)
5568		return rc;
5569
5570	if (pci_slot_trylock(slot)) {
5571		pci_slot_save_and_disable_locked(slot);
5572		might_sleep();
5573		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5574		pci_slot_restore_locked(slot);
5575		pci_slot_unlock(slot);
5576	} else
5577		rc = -EAGAIN;
5578
5579	return rc;
5580}
5581
5582static int pci_bus_reset(struct pci_bus *bus, int probe)
5583{
5584	int ret;
5585
5586	if (!bus->self || !pci_bus_resetable(bus))
5587		return -ENOTTY;
5588
5589	if (probe)
5590		return 0;
5591
5592	pci_bus_lock(bus);
5593
5594	might_sleep();
5595
5596	ret = pci_bridge_secondary_bus_reset(bus->self);
5597
5598	pci_bus_unlock(bus);
5599
5600	return ret;
5601}
5602
5603/**
5604 * pci_bus_error_reset - reset the bridge's subordinate bus
5605 * @bridge: The parent device that connects to the bus to reset
5606 *
5607 * This function will first try to reset the slots on this bus if the method is
5608 * available. If slot reset fails or is not available, this will fall back to a
5609 * secondary bus reset.
5610 */
5611int pci_bus_error_reset(struct pci_dev *bridge)
5612{
5613	struct pci_bus *bus = bridge->subordinate;
5614	struct pci_slot *slot;
5615
5616	if (!bus)
5617		return -ENOTTY;
5618
5619	mutex_lock(&pci_slot_mutex);
5620	if (list_empty(&bus->slots))
5621		goto bus_reset;
5622
5623	list_for_each_entry(slot, &bus->slots, list)
5624		if (pci_probe_reset_slot(slot))
5625			goto bus_reset;
5626
5627	list_for_each_entry(slot, &bus->slots, list)
5628		if (pci_slot_reset(slot, 0))
5629			goto bus_reset;
5630
5631	mutex_unlock(&pci_slot_mutex);
5632	return 0;
5633bus_reset:
5634	mutex_unlock(&pci_slot_mutex);
5635	return pci_bus_reset(bridge->subordinate, 0);
5636}
5637
5638/**
5639 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5640 * @bus: PCI bus to probe
5641 *
5642 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5643 */
5644int pci_probe_reset_bus(struct pci_bus *bus)
5645{
5646	return pci_bus_reset(bus, 1);
5647}
5648EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5649
5650/**
5651 * __pci_reset_bus - Try to reset a PCI bus
5652 * @bus: top level PCI bus to reset
5653 *
5654 * Same as above except return -EAGAIN if the bus cannot be locked
5655 */
5656static int __pci_reset_bus(struct pci_bus *bus)
5657{
5658	int rc;
5659
5660	rc = pci_bus_reset(bus, 1);
5661	if (rc)
5662		return rc;
5663
5664	if (pci_bus_trylock(bus)) {
5665		pci_bus_save_and_disable_locked(bus);
5666		might_sleep();
5667		rc = pci_bridge_secondary_bus_reset(bus->self);
5668		pci_bus_restore_locked(bus);
5669		pci_bus_unlock(bus);
5670	} else
5671		rc = -EAGAIN;
5672
5673	return rc;
5674}
5675
5676/**
5677 * pci_reset_bus - Try to reset a PCI bus
5678 * @pdev: top level PCI device to reset via slot/bus
5679 *
5680 * Same as above except return -EAGAIN if the bus cannot be locked
5681 */
5682int pci_reset_bus(struct pci_dev *pdev)
5683{
5684	return (!pci_probe_reset_slot(pdev->slot)) ?
5685	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5686}
5687EXPORT_SYMBOL_GPL(pci_reset_bus);
5688
5689/**
5690 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5691 * @dev: PCI device to query
5692 *
5693 * Returns mmrbc: maximum designed memory read count in bytes or
5694 * appropriate error value.
5695 */
5696int pcix_get_max_mmrbc(struct pci_dev *dev)
5697{
5698	int cap;
5699	u32 stat;
5700
5701	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5702	if (!cap)
5703		return -EINVAL;
5704
5705	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5706		return -EINVAL;
5707
5708	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5709}
5710EXPORT_SYMBOL(pcix_get_max_mmrbc);
5711
5712/**
5713 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5714 * @dev: PCI device to query
5715 *
5716 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5717 * value.
5718 */
5719int pcix_get_mmrbc(struct pci_dev *dev)
5720{
5721	int cap;
5722	u16 cmd;
5723
5724	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5725	if (!cap)
5726		return -EINVAL;
5727
5728	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5729		return -EINVAL;
5730
5731	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5732}
5733EXPORT_SYMBOL(pcix_get_mmrbc);
5734
5735/**
5736 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5737 * @dev: PCI device to query
5738 * @mmrbc: maximum memory read count in bytes
5739 *    valid values are 512, 1024, 2048, 4096
5740 *
5741 * If possible sets maximum memory read byte count, some bridges have errata
5742 * that prevent this.
5743 */
5744int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5745{
5746	int cap;
5747	u32 stat, v, o;
5748	u16 cmd;
5749
5750	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5751		return -EINVAL;
5752
5753	v = ffs(mmrbc) - 10;
5754
5755	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5756	if (!cap)
5757		return -EINVAL;
5758
5759	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5760		return -EINVAL;
5761
5762	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5763		return -E2BIG;
5764
5765	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5766		return -EINVAL;
5767
5768	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5769	if (o != v) {
5770		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5771			return -EIO;
5772
5773		cmd &= ~PCI_X_CMD_MAX_READ;
5774		cmd |= v << 2;
5775		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5776			return -EIO;
5777	}
5778	return 0;
5779}
5780EXPORT_SYMBOL(pcix_set_mmrbc);
5781
5782/**
5783 * pcie_get_readrq - get PCI Express read request size
5784 * @dev: PCI device to query
5785 *
5786 * Returns maximum memory read request in bytes or appropriate error value.
5787 */
5788int pcie_get_readrq(struct pci_dev *dev)
5789{
5790	u16 ctl;
5791
5792	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5793
5794	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5795}
5796EXPORT_SYMBOL(pcie_get_readrq);
5797
5798/**
5799 * pcie_set_readrq - set PCI Express maximum memory read request
5800 * @dev: PCI device to query
5801 * @rq: maximum memory read count in bytes
5802 *    valid values are 128, 256, 512, 1024, 2048, 4096
5803 *
5804 * If possible sets maximum memory read request in bytes
5805 */
5806int pcie_set_readrq(struct pci_dev *dev, int rq)
5807{
5808	u16 v;
5809	int ret;
5810
5811	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5812		return -EINVAL;
5813
5814	/*
5815	 * If using the "performance" PCIe config, we clamp the read rq
5816	 * size to the max packet size to keep the host bridge from
5817	 * generating requests larger than we can cope with.
5818	 */
5819	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5820		int mps = pcie_get_mps(dev);
5821
5822		if (mps < rq)
5823			rq = mps;
5824	}
5825
5826	v = (ffs(rq) - 8) << 12;
5827
5828	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5829						  PCI_EXP_DEVCTL_READRQ, v);
5830
5831	return pcibios_err_to_errno(ret);
5832}
5833EXPORT_SYMBOL(pcie_set_readrq);
5834
5835/**
5836 * pcie_get_mps - get PCI Express maximum payload size
5837 * @dev: PCI device to query
5838 *
5839 * Returns maximum payload size in bytes
5840 */
5841int pcie_get_mps(struct pci_dev *dev)
5842{
5843	u16 ctl;
5844
5845	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5846
5847	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5848}
5849EXPORT_SYMBOL(pcie_get_mps);
5850
5851/**
5852 * pcie_set_mps - set PCI Express maximum payload size
5853 * @dev: PCI device to query
5854 * @mps: maximum payload size in bytes
5855 *    valid values are 128, 256, 512, 1024, 2048, 4096
5856 *
5857 * If possible sets maximum payload size
5858 */
5859int pcie_set_mps(struct pci_dev *dev, int mps)
5860{
5861	u16 v;
5862	int ret;
5863
5864	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5865		return -EINVAL;
5866
5867	v = ffs(mps) - 8;
5868	if (v > dev->pcie_mpss)
5869		return -EINVAL;
5870	v <<= 5;
5871
5872	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5873						  PCI_EXP_DEVCTL_PAYLOAD, v);
5874
5875	return pcibios_err_to_errno(ret);
5876}
5877EXPORT_SYMBOL(pcie_set_mps);
5878
5879/**
5880 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5881 *			      device and its bandwidth limitation
5882 * @dev: PCI device to query
5883 * @limiting_dev: storage for device causing the bandwidth limitation
5884 * @speed: storage for speed of limiting device
5885 * @width: storage for width of limiting device
5886 *
5887 * Walk up the PCI device chain and find the point where the minimum
5888 * bandwidth is available.  Return the bandwidth available there and (if
5889 * limiting_dev, speed, and width pointers are supplied) information about
5890 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5891 * raw bandwidth.
5892 */
5893u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5894			     enum pci_bus_speed *speed,
5895			     enum pcie_link_width *width)
5896{
5897	u16 lnksta;
5898	enum pci_bus_speed next_speed;
5899	enum pcie_link_width next_width;
5900	u32 bw, next_bw;
5901
5902	if (speed)
5903		*speed = PCI_SPEED_UNKNOWN;
5904	if (width)
5905		*width = PCIE_LNK_WIDTH_UNKNOWN;
5906
5907	bw = 0;
5908
5909	while (dev) {
5910		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5911
5912		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5913		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5914			PCI_EXP_LNKSTA_NLW_SHIFT;
5915
5916		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5917
5918		/* Check if current device limits the total bandwidth */
5919		if (!bw || next_bw <= bw) {
5920			bw = next_bw;
5921
5922			if (limiting_dev)
5923				*limiting_dev = dev;
5924			if (speed)
5925				*speed = next_speed;
5926			if (width)
5927				*width = next_width;
5928		}
5929
5930		dev = pci_upstream_bridge(dev);
5931	}
5932
5933	return bw;
5934}
5935EXPORT_SYMBOL(pcie_bandwidth_available);
5936
5937/**
5938 * pcie_get_speed_cap - query for the PCI device's link speed capability
5939 * @dev: PCI device to query
5940 *
5941 * Query the PCI device speed capability.  Return the maximum link speed
5942 * supported by the device.
5943 */
5944enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5945{
5946	u32 lnkcap2, lnkcap;
5947
5948	/*
5949	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5950	 * implementation note there recommends using the Supported Link
5951	 * Speeds Vector in Link Capabilities 2 when supported.
5952	 *
5953	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5954	 * should use the Supported Link Speeds field in Link Capabilities,
5955	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5956	 */
5957	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5958
5959	/* PCIe r3.0-compliant */
5960	if (lnkcap2)
5961		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
 
 
 
 
 
 
 
 
 
5962
5963	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5964	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5965		return PCIE_SPEED_5_0GT;
5966	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5967		return PCIE_SPEED_2_5GT;
5968
5969	return PCI_SPEED_UNKNOWN;
5970}
5971EXPORT_SYMBOL(pcie_get_speed_cap);
5972
5973/**
5974 * pcie_get_width_cap - query for the PCI device's link width capability
5975 * @dev: PCI device to query
5976 *
5977 * Query the PCI device width capability.  Return the maximum link width
5978 * supported by the device.
5979 */
5980enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5981{
5982	u32 lnkcap;
5983
5984	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5985	if (lnkcap)
5986		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5987
5988	return PCIE_LNK_WIDTH_UNKNOWN;
5989}
5990EXPORT_SYMBOL(pcie_get_width_cap);
5991
5992/**
5993 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5994 * @dev: PCI device
5995 * @speed: storage for link speed
5996 * @width: storage for link width
5997 *
5998 * Calculate a PCI device's link bandwidth by querying for its link speed
5999 * and width, multiplying them, and applying encoding overhead.  The result
6000 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6001 */
6002u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6003			   enum pcie_link_width *width)
6004{
6005	*speed = pcie_get_speed_cap(dev);
6006	*width = pcie_get_width_cap(dev);
6007
6008	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6009		return 0;
6010
6011	return *width * PCIE_SPEED2MBS_ENC(*speed);
6012}
6013
6014/**
6015 * __pcie_print_link_status - Report the PCI device's link speed and width
6016 * @dev: PCI device to query
6017 * @verbose: Print info even when enough bandwidth is available
6018 *
6019 * If the available bandwidth at the device is less than the device is
6020 * capable of, report the device's maximum possible bandwidth and the
6021 * upstream link that limits its performance.  If @verbose, always print
6022 * the available bandwidth, even if the device isn't constrained.
6023 */
6024void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6025{
6026	enum pcie_link_width width, width_cap;
6027	enum pci_bus_speed speed, speed_cap;
6028	struct pci_dev *limiting_dev = NULL;
6029	u32 bw_avail, bw_cap;
6030
6031	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6032	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6033
6034	if (bw_avail >= bw_cap && verbose)
6035		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6036			 bw_cap / 1000, bw_cap % 1000,
6037			 pci_speed_string(speed_cap), width_cap);
6038	else if (bw_avail < bw_cap)
6039		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6040			 bw_avail / 1000, bw_avail % 1000,
6041			 pci_speed_string(speed), width,
6042			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6043			 bw_cap / 1000, bw_cap % 1000,
6044			 pci_speed_string(speed_cap), width_cap);
6045}
6046
6047/**
6048 * pcie_print_link_status - Report the PCI device's link speed and width
6049 * @dev: PCI device to query
6050 *
6051 * Report the available bandwidth at the device.
6052 */
6053void pcie_print_link_status(struct pci_dev *dev)
6054{
6055	__pcie_print_link_status(dev, true);
6056}
6057EXPORT_SYMBOL(pcie_print_link_status);
6058
6059/**
6060 * pci_select_bars - Make BAR mask from the type of resource
6061 * @dev: the PCI device for which BAR mask is made
6062 * @flags: resource type mask to be selected
6063 *
6064 * This helper routine makes bar mask from the type of resource.
6065 */
6066int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6067{
6068	int i, bars = 0;
6069	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6070		if (pci_resource_flags(dev, i) & flags)
6071			bars |= (1 << i);
6072	return bars;
6073}
6074EXPORT_SYMBOL(pci_select_bars);
6075
6076/* Some architectures require additional programming to enable VGA */
6077static arch_set_vga_state_t arch_set_vga_state;
6078
6079void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6080{
6081	arch_set_vga_state = func;	/* NULL disables */
6082}
6083
6084static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6085				  unsigned int command_bits, u32 flags)
6086{
6087	if (arch_set_vga_state)
6088		return arch_set_vga_state(dev, decode, command_bits,
6089						flags);
6090	return 0;
6091}
6092
6093/**
6094 * pci_set_vga_state - set VGA decode state on device and parents if requested
6095 * @dev: the PCI device
6096 * @decode: true = enable decoding, false = disable decoding
6097 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6098 * @flags: traverse ancestors and change bridges
6099 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6100 */
6101int pci_set_vga_state(struct pci_dev *dev, bool decode,
6102		      unsigned int command_bits, u32 flags)
6103{
6104	struct pci_bus *bus;
6105	struct pci_dev *bridge;
6106	u16 cmd;
6107	int rc;
6108
6109	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6110
6111	/* ARCH specific VGA enables */
6112	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6113	if (rc)
6114		return rc;
6115
6116	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6117		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6118		if (decode)
6119			cmd |= command_bits;
6120		else
6121			cmd &= ~command_bits;
6122		pci_write_config_word(dev, PCI_COMMAND, cmd);
6123	}
6124
6125	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6126		return 0;
6127
6128	bus = dev->bus;
6129	while (bus) {
6130		bridge = bus->self;
6131		if (bridge) {
6132			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6133					     &cmd);
6134			if (decode)
6135				cmd |= PCI_BRIDGE_CTL_VGA;
6136			else
6137				cmd &= ~PCI_BRIDGE_CTL_VGA;
6138			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6139					      cmd);
6140		}
6141		bus = bus->parent;
6142	}
6143	return 0;
6144}
6145
6146#ifdef CONFIG_ACPI
6147bool pci_pr3_present(struct pci_dev *pdev)
6148{
6149	struct acpi_device *adev;
6150
6151	if (acpi_disabled)
6152		return false;
6153
6154	adev = ACPI_COMPANION(&pdev->dev);
6155	if (!adev)
6156		return false;
6157
6158	return adev->power.flags.power_resources &&
6159		acpi_has_method(adev->handle, "_PR3");
6160}
6161EXPORT_SYMBOL_GPL(pci_pr3_present);
6162#endif
6163
6164/**
6165 * pci_add_dma_alias - Add a DMA devfn alias for a device
6166 * @dev: the PCI device for which alias is added
6167 * @devfn_from: alias slot and function
6168 * @nr_devfns: number of subsequent devfns to alias
6169 *
6170 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6171 * which is used to program permissible bus-devfn source addresses for DMA
6172 * requests in an IOMMU.  These aliases factor into IOMMU group creation
6173 * and are useful for devices generating DMA requests beyond or different
6174 * from their logical bus-devfn.  Examples include device quirks where the
6175 * device simply uses the wrong devfn, as well as non-transparent bridges
6176 * where the alias may be a proxy for devices in another domain.
6177 *
6178 * IOMMU group creation is performed during device discovery or addition,
6179 * prior to any potential DMA mapping and therefore prior to driver probing
6180 * (especially for userspace assigned devices where IOMMU group definition
6181 * cannot be left as a userspace activity).  DMA aliases should therefore
6182 * be configured via quirks, such as the PCI fixup header quirk.
6183 */
6184void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6185{
6186	int devfn_to;
6187
6188	nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6189	devfn_to = devfn_from + nr_devfns - 1;
6190
6191	if (!dev->dma_alias_mask)
6192		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6193	if (!dev->dma_alias_mask) {
6194		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6195		return;
6196	}
6197
6198	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6199
6200	if (nr_devfns == 1)
6201		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6202				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6203	else if (nr_devfns > 1)
6204		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6205				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6206				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6207}
6208
6209bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6210{
6211	return (dev1->dma_alias_mask &&
6212		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6213	       (dev2->dma_alias_mask &&
6214		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6215	       pci_real_dma_dev(dev1) == dev2 ||
6216	       pci_real_dma_dev(dev2) == dev1;
6217}
6218
6219bool pci_device_is_present(struct pci_dev *pdev)
6220{
6221	u32 v;
6222
6223	if (pci_dev_is_disconnected(pdev))
6224		return false;
6225	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6226}
6227EXPORT_SYMBOL_GPL(pci_device_is_present);
6228
6229void pci_ignore_hotplug(struct pci_dev *dev)
6230{
6231	struct pci_dev *bridge = dev->bus->self;
6232
6233	dev->ignore_hotplug = 1;
6234	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6235	if (bridge)
6236		bridge->ignore_hotplug = 1;
6237}
6238EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6239
6240/**
6241 * pci_real_dma_dev - Get PCI DMA device for PCI device
6242 * @dev: the PCI device that may have a PCI DMA alias
6243 *
6244 * Permits the platform to provide architecture-specific functionality to
6245 * devices needing to alias DMA to another PCI device on another PCI bus. If
6246 * the PCI device is on the same bus, it is recommended to use
6247 * pci_add_dma_alias(). This is the default implementation. Architecture
6248 * implementations can override this.
6249 */
6250struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6251{
6252	return dev;
6253}
6254
6255resource_size_t __weak pcibios_default_alignment(void)
6256{
6257	return 0;
6258}
6259
6260/*
6261 * Arches that don't want to expose struct resource to userland as-is in
6262 * sysfs and /proc can implement their own pci_resource_to_user().
6263 */
6264void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6265				 const struct resource *rsrc,
6266				 resource_size_t *start, resource_size_t *end)
6267{
6268	*start = rsrc->start;
6269	*end = rsrc->end;
6270}
6271
6272static char *resource_alignment_param;
6273static DEFINE_SPINLOCK(resource_alignment_lock);
6274
6275/**
6276 * pci_specified_resource_alignment - get resource alignment specified by user.
6277 * @dev: the PCI device to get
6278 * @resize: whether or not to change resources' size when reassigning alignment
6279 *
6280 * RETURNS: Resource alignment if it is specified.
6281 *          Zero if it is not specified.
6282 */
6283static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6284							bool *resize)
6285{
6286	int align_order, count;
6287	resource_size_t align = pcibios_default_alignment();
6288	const char *p;
6289	int ret;
6290
6291	spin_lock(&resource_alignment_lock);
6292	p = resource_alignment_param;
6293	if (!p || !*p)
6294		goto out;
6295	if (pci_has_flag(PCI_PROBE_ONLY)) {
6296		align = 0;
6297		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6298		goto out;
6299	}
6300
6301	while (*p) {
6302		count = 0;
6303		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6304		    p[count] == '@') {
6305			p += count + 1;
6306			if (align_order > 63) {
6307				pr_err("PCI: Invalid requested alignment (order %d)\n",
6308				       align_order);
6309				align_order = PAGE_SHIFT;
6310			}
6311		} else {
6312			align_order = PAGE_SHIFT;
6313		}
6314
6315		ret = pci_dev_str_match(dev, p, &p);
6316		if (ret == 1) {
6317			*resize = true;
6318			align = 1ULL << align_order;
 
 
 
6319			break;
6320		} else if (ret < 0) {
6321			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6322			       p);
6323			break;
6324		}
6325
6326		if (*p != ';' && *p != ',') {
6327			/* End of param or invalid format */
6328			break;
6329		}
6330		p++;
6331	}
6332out:
6333	spin_unlock(&resource_alignment_lock);
6334	return align;
6335}
6336
6337static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6338					   resource_size_t align, bool resize)
6339{
6340	struct resource *r = &dev->resource[bar];
6341	resource_size_t size;
6342
6343	if (!(r->flags & IORESOURCE_MEM))
6344		return;
6345
6346	if (r->flags & IORESOURCE_PCI_FIXED) {
6347		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6348			 bar, r, (unsigned long long)align);
6349		return;
6350	}
6351
6352	size = resource_size(r);
6353	if (size >= align)
6354		return;
6355
6356	/*
6357	 * Increase the alignment of the resource.  There are two ways we
6358	 * can do this:
6359	 *
6360	 * 1) Increase the size of the resource.  BARs are aligned on their
6361	 *    size, so when we reallocate space for this resource, we'll
6362	 *    allocate it with the larger alignment.  This also prevents
6363	 *    assignment of any other BARs inside the alignment region, so
6364	 *    if we're requesting page alignment, this means no other BARs
6365	 *    will share the page.
6366	 *
6367	 *    The disadvantage is that this makes the resource larger than
6368	 *    the hardware BAR, which may break drivers that compute things
6369	 *    based on the resource size, e.g., to find registers at a
6370	 *    fixed offset before the end of the BAR.
6371	 *
6372	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6373	 *    set r->start to the desired alignment.  By itself this
6374	 *    doesn't prevent other BARs being put inside the alignment
6375	 *    region, but if we realign *every* resource of every device in
6376	 *    the system, none of them will share an alignment region.
6377	 *
6378	 * When the user has requested alignment for only some devices via
6379	 * the "pci=resource_alignment" argument, "resize" is true and we
6380	 * use the first method.  Otherwise we assume we're aligning all
6381	 * devices and we use the second.
6382	 */
6383
6384	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6385		 bar, r, (unsigned long long)align);
6386
6387	if (resize) {
6388		r->start = 0;
6389		r->end = align - 1;
6390	} else {
6391		r->flags &= ~IORESOURCE_SIZEALIGN;
6392		r->flags |= IORESOURCE_STARTALIGN;
6393		r->start = align;
6394		r->end = r->start + size - 1;
6395	}
6396	r->flags |= IORESOURCE_UNSET;
6397}
6398
6399/*
6400 * This function disables memory decoding and releases memory resources
6401 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6402 * It also rounds up size to specified alignment.
6403 * Later on, the kernel will assign page-aligned memory resource back
6404 * to the device.
6405 */
6406void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6407{
6408	int i;
6409	struct resource *r;
6410	resource_size_t align;
6411	u16 command;
6412	bool resize = false;
6413
6414	/*
6415	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6416	 * 3.4.1.11.  Their resources are allocated from the space
6417	 * described by the VF BARx register in the PF's SR-IOV capability.
6418	 * We can't influence their alignment here.
6419	 */
6420	if (dev->is_virtfn)
6421		return;
6422
6423	/* check if specified PCI is target device to reassign */
6424	align = pci_specified_resource_alignment(dev, &resize);
6425	if (!align)
6426		return;
6427
6428	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6429	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6430		pci_warn(dev, "Can't reassign resources to host bridge\n");
6431		return;
6432	}
6433
6434	pci_read_config_word(dev, PCI_COMMAND, &command);
6435	command &= ~PCI_COMMAND_MEMORY;
6436	pci_write_config_word(dev, PCI_COMMAND, command);
6437
6438	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6439		pci_request_resource_alignment(dev, i, align, resize);
6440
6441	/*
6442	 * Need to disable bridge's resource window,
6443	 * to enable the kernel to reassign new resource
6444	 * window later on.
6445	 */
6446	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6447		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6448			r = &dev->resource[i];
6449			if (!(r->flags & IORESOURCE_MEM))
6450				continue;
6451			r->flags |= IORESOURCE_UNSET;
6452			r->end = resource_size(r) - 1;
6453			r->start = 0;
6454		}
6455		pci_disable_bridge_window(dev);
6456	}
6457}
6458
6459static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6460{
6461	size_t count = 0;
6462
6463	spin_lock(&resource_alignment_lock);
6464	if (resource_alignment_param)
6465		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6466	spin_unlock(&resource_alignment_lock);
6467
 
 
 
 
 
 
 
 
 
 
6468	return count;
6469}
6470
6471static ssize_t resource_alignment_store(struct bus_type *bus,
6472					const char *buf, size_t count)
6473{
6474	char *param, *old, *end;
6475
6476	if (count >= (PAGE_SIZE - 1))
6477		return -EINVAL;
6478
6479	param = kstrndup(buf, count, GFP_KERNEL);
6480	if (!param)
6481		return -ENOMEM;
6482
6483	end = strchr(param, '\n');
6484	if (end)
6485		*end = '\0';
6486
6487	spin_lock(&resource_alignment_lock);
6488	old = resource_alignment_param;
6489	if (strlen(param)) {
6490		resource_alignment_param = param;
6491	} else {
6492		kfree(param);
6493		resource_alignment_param = NULL;
6494	}
6495	spin_unlock(&resource_alignment_lock);
6496
6497	kfree(old);
6498
6499	return count;
6500}
6501
6502static BUS_ATTR_RW(resource_alignment);
6503
6504static int __init pci_resource_alignment_sysfs_init(void)
6505{
6506	return bus_create_file(&pci_bus_type,
6507					&bus_attr_resource_alignment);
6508}
6509late_initcall(pci_resource_alignment_sysfs_init);
6510
6511static void pci_no_domains(void)
6512{
6513#ifdef CONFIG_PCI_DOMAINS
6514	pci_domains_supported = 0;
6515#endif
6516}
6517
6518#ifdef CONFIG_PCI_DOMAINS_GENERIC
6519static atomic_t __domain_nr = ATOMIC_INIT(-1);
6520
6521static int pci_get_new_domain_nr(void)
6522{
6523	return atomic_inc_return(&__domain_nr);
6524}
6525
6526static int of_pci_bus_find_domain_nr(struct device *parent)
6527{
6528	static int use_dt_domains = -1;
6529	int domain = -1;
6530
6531	if (parent)
6532		domain = of_get_pci_domain_nr(parent->of_node);
6533
6534	/*
6535	 * Check DT domain and use_dt_domains values.
6536	 *
6537	 * If DT domain property is valid (domain >= 0) and
6538	 * use_dt_domains != 0, the DT assignment is valid since this means
6539	 * we have not previously allocated a domain number by using
6540	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6541	 * 1, to indicate that we have just assigned a domain number from
6542	 * DT.
6543	 *
6544	 * If DT domain property value is not valid (ie domain < 0), and we
6545	 * have not previously assigned a domain number from DT
6546	 * (use_dt_domains != 1) we should assign a domain number by
6547	 * using the:
6548	 *
6549	 * pci_get_new_domain_nr()
6550	 *
6551	 * API and update the use_dt_domains value to keep track of method we
6552	 * are using to assign domain numbers (use_dt_domains = 0).
6553	 *
6554	 * All other combinations imply we have a platform that is trying
6555	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6556	 * which is a recipe for domain mishandling and it is prevented by
6557	 * invalidating the domain value (domain = -1) and printing a
6558	 * corresponding error.
6559	 */
6560	if (domain >= 0 && use_dt_domains) {
6561		use_dt_domains = 1;
6562	} else if (domain < 0 && use_dt_domains != 1) {
6563		use_dt_domains = 0;
6564		domain = pci_get_new_domain_nr();
6565	} else {
6566		if (parent)
6567			pr_err("Node %pOF has ", parent->of_node);
6568		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6569		domain = -1;
6570	}
6571
6572	return domain;
6573}
6574
6575int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6576{
6577	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6578			       acpi_pci_bus_find_domain_nr(bus);
6579}
6580#endif
6581
6582/**
6583 * pci_ext_cfg_avail - can we access extended PCI config space?
6584 *
6585 * Returns 1 if we can access PCI extended config space (offsets
6586 * greater than 0xff). This is the default implementation. Architecture
6587 * implementations can override this.
6588 */
6589int __weak pci_ext_cfg_avail(void)
6590{
6591	return 1;
6592}
6593
6594void __weak pci_fixup_cardbus(struct pci_bus *bus)
6595{
6596}
6597EXPORT_SYMBOL(pci_fixup_cardbus);
6598
6599static int __init pci_setup(char *str)
6600{
6601	while (str) {
6602		char *k = strchr(str, ',');
6603		if (k)
6604			*k++ = 0;
6605		if (*str && (str = pcibios_setup(str)) && *str) {
6606			if (!strcmp(str, "nomsi")) {
6607				pci_no_msi();
6608			} else if (!strncmp(str, "noats", 5)) {
6609				pr_info("PCIe: ATS is disabled\n");
6610				pcie_ats_disabled = true;
6611			} else if (!strcmp(str, "noaer")) {
6612				pci_no_aer();
6613			} else if (!strcmp(str, "earlydump")) {
6614				pci_early_dump = true;
6615			} else if (!strncmp(str, "realloc=", 8)) {
6616				pci_realloc_get_opt(str + 8);
6617			} else if (!strncmp(str, "realloc", 7)) {
6618				pci_realloc_get_opt("on");
6619			} else if (!strcmp(str, "nodomains")) {
6620				pci_no_domains();
6621			} else if (!strncmp(str, "noari", 5)) {
6622				pcie_ari_disabled = true;
6623			} else if (!strncmp(str, "cbiosize=", 9)) {
6624				pci_cardbus_io_size = memparse(str + 9, &str);
6625			} else if (!strncmp(str, "cbmemsize=", 10)) {
6626				pci_cardbus_mem_size = memparse(str + 10, &str);
6627			} else if (!strncmp(str, "resource_alignment=", 19)) {
6628				resource_alignment_param = str + 19;
6629			} else if (!strncmp(str, "ecrc=", 5)) {
6630				pcie_ecrc_get_policy(str + 5);
6631			} else if (!strncmp(str, "hpiosize=", 9)) {
6632				pci_hotplug_io_size = memparse(str + 9, &str);
6633			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6634				pci_hotplug_mmio_size = memparse(str + 11, &str);
6635			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6636				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6637			} else if (!strncmp(str, "hpmemsize=", 10)) {
6638				pci_hotplug_mmio_size = memparse(str + 10, &str);
6639				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6640			} else if (!strncmp(str, "hpbussize=", 10)) {
6641				pci_hotplug_bus_size =
6642					simple_strtoul(str + 10, &str, 0);
6643				if (pci_hotplug_bus_size > 0xff)
6644					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6645			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6646				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6647			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6648				pcie_bus_config = PCIE_BUS_SAFE;
6649			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6650				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6651			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6652				pcie_bus_config = PCIE_BUS_PEER2PEER;
6653			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6654				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6655			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6656				disable_acs_redir_param = str + 18;
6657			} else {
6658				pr_err("PCI: Unknown option `%s'\n", str);
6659			}
6660		}
6661		str = k;
6662	}
6663	return 0;
6664}
6665early_param("pci", pci_setup);
6666
6667/*
6668 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6669 * in pci_setup(), above, to point to data in the __initdata section which
6670 * will be freed after the init sequence is complete. We can't allocate memory
6671 * in pci_setup() because some architectures do not have any memory allocation
6672 * service available during an early_param() call. So we allocate memory and
6673 * copy the variable here before the init section is freed.
6674 *
6675 */
6676static int __init pci_realloc_setup_params(void)
6677{
6678	resource_alignment_param = kstrdup(resource_alignment_param,
6679					   GFP_KERNEL);
6680	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6681
6682	return 0;
6683}
6684pure_initcall(pci_realloc_setup_params);