Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11#include <linux/acpi.h>
12#include <linux/kernel.h>
13#include <linux/delay.h>
14#include <linux/dmi.h>
15#include <linux/init.h>
16#include <linux/of.h>
17#include <linux/of_pci.h>
18#include <linux/pci.h>
19#include <linux/pm.h>
20#include <linux/slab.h>
21#include <linux/module.h>
22#include <linux/spinlock.h>
23#include <linux/string.h>
24#include <linux/log2.h>
25#include <linux/logic_pio.h>
26#include <linux/pm_wakeup.h>
27#include <linux/interrupt.h>
28#include <linux/device.h>
29#include <linux/pm_runtime.h>
30#include <linux/pci_hotplug.h>
31#include <linux/vmalloc.h>
32#include <linux/pci-ats.h>
33#include <asm/setup.h>
34#include <asm/dma.h>
35#include <linux/aer.h>
36#include "pci.h"
37
38DEFINE_MUTEX(pci_slot_mutex);
39
40const char *pci_power_names[] = {
41 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
42};
43EXPORT_SYMBOL_GPL(pci_power_names);
44
45int isa_dma_bridge_buggy;
46EXPORT_SYMBOL(isa_dma_bridge_buggy);
47
48int pci_pci_problems;
49EXPORT_SYMBOL(pci_pci_problems);
50
51unsigned int pci_pm_d3_delay;
52
53static void pci_pme_list_scan(struct work_struct *work);
54
55static LIST_HEAD(pci_pme_list);
56static DEFINE_MUTEX(pci_pme_list_mutex);
57static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58
59struct pci_pme_device {
60 struct list_head list;
61 struct pci_dev *dev;
62};
63
64#define PME_TIMEOUT 1000 /* How long between PME checks */
65
66static void pci_dev_d3_sleep(struct pci_dev *dev)
67{
68 unsigned int delay = dev->d3_delay;
69
70 if (delay < pci_pm_d3_delay)
71 delay = pci_pm_d3_delay;
72
73 if (delay)
74 msleep(delay);
75}
76
77#ifdef CONFIG_PCI_DOMAINS
78int pci_domains_supported = 1;
79#endif
80
81#define DEFAULT_CARDBUS_IO_SIZE (256)
82#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
83/* pci=cbmemsize=nnM,cbiosize=nn can override this */
84unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
85unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
86
87#define DEFAULT_HOTPLUG_IO_SIZE (256)
88#define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
89/* pci=hpmemsize=nnM,hpiosize=nn can override this */
90unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
91unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
92
93#define DEFAULT_HOTPLUG_BUS_SIZE 1
94unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
95
96enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
97
98/*
99 * The default CLS is used if arch didn't set CLS explicitly and not
100 * all pci devices agree on the same value. Arch can override either
101 * the dfl or actual value as it sees fit. Don't forget this is
102 * measured in 32-bit words, not bytes.
103 */
104u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
105u8 pci_cache_line_size;
106
107/*
108 * If we set up a device for bus mastering, we need to check the latency
109 * timer as certain BIOSes forget to set it properly.
110 */
111unsigned int pcibios_max_latency = 255;
112
113/* If set, the PCIe ARI capability will not be used. */
114static bool pcie_ari_disabled;
115
116/* If set, the PCIe ATS capability will not be used. */
117static bool pcie_ats_disabled;
118
119/* If set, the PCI config space of each device is printed during boot. */
120bool pci_early_dump;
121
122bool pci_ats_disabled(void)
123{
124 return pcie_ats_disabled;
125}
126
127/* Disable bridge_d3 for all PCIe ports */
128static bool pci_bridge_d3_disable;
129/* Force bridge_d3 for all PCIe ports */
130static bool pci_bridge_d3_force;
131
132static int __init pcie_port_pm_setup(char *str)
133{
134 if (!strcmp(str, "off"))
135 pci_bridge_d3_disable = true;
136 else if (!strcmp(str, "force"))
137 pci_bridge_d3_force = true;
138 return 1;
139}
140__setup("pcie_port_pm=", pcie_port_pm_setup);
141
142/* Time to wait after a reset for device to become responsive */
143#define PCIE_RESET_READY_POLL_MS 60000
144
145/**
146 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
147 * @bus: pointer to PCI bus structure to search
148 *
149 * Given a PCI bus, returns the highest PCI bus number present in the set
150 * including the given PCI bus and its list of child PCI buses.
151 */
152unsigned char pci_bus_max_busnr(struct pci_bus *bus)
153{
154 struct pci_bus *tmp;
155 unsigned char max, n;
156
157 max = bus->busn_res.end;
158 list_for_each_entry(tmp, &bus->children, node) {
159 n = pci_bus_max_busnr(tmp);
160 if (n > max)
161 max = n;
162 }
163 return max;
164}
165EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
166
167#ifdef CONFIG_HAS_IOMEM
168void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
169{
170 struct resource *res = &pdev->resource[bar];
171
172 /*
173 * Make sure the BAR is actually a memory resource, not an IO resource
174 */
175 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
176 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
177 return NULL;
178 }
179 return ioremap_nocache(res->start, resource_size(res));
180}
181EXPORT_SYMBOL_GPL(pci_ioremap_bar);
182
183void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
184{
185 /*
186 * Make sure the BAR is actually a memory resource, not an IO resource
187 */
188 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
189 WARN_ON(1);
190 return NULL;
191 }
192 return ioremap_wc(pci_resource_start(pdev, bar),
193 pci_resource_len(pdev, bar));
194}
195EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
196#endif
197
198/**
199 * pci_dev_str_match_path - test if a path string matches a device
200 * @dev: the PCI device to test
201 * @path: string to match the device against
202 * @endptr: pointer to the string after the match
203 *
204 * Test if a string (typically from a kernel parameter) formatted as a
205 * path of device/function addresses matches a PCI device. The string must
206 * be of the form:
207 *
208 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
209 *
210 * A path for a device can be obtained using 'lspci -t'. Using a path
211 * is more robust against bus renumbering than using only a single bus,
212 * device and function address.
213 *
214 * Returns 1 if the string matches the device, 0 if it does not and
215 * a negative error code if it fails to parse the string.
216 */
217static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
218 const char **endptr)
219{
220 int ret;
221 int seg, bus, slot, func;
222 char *wpath, *p;
223 char end;
224
225 *endptr = strchrnul(path, ';');
226
227 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
228 if (!wpath)
229 return -ENOMEM;
230
231 while (1) {
232 p = strrchr(wpath, '/');
233 if (!p)
234 break;
235 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
236 if (ret != 2) {
237 ret = -EINVAL;
238 goto free_and_exit;
239 }
240
241 if (dev->devfn != PCI_DEVFN(slot, func)) {
242 ret = 0;
243 goto free_and_exit;
244 }
245
246 /*
247 * Note: we don't need to get a reference to the upstream
248 * bridge because we hold a reference to the top level
249 * device which should hold a reference to the bridge,
250 * and so on.
251 */
252 dev = pci_upstream_bridge(dev);
253 if (!dev) {
254 ret = 0;
255 goto free_and_exit;
256 }
257
258 *p = 0;
259 }
260
261 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
262 &func, &end);
263 if (ret != 4) {
264 seg = 0;
265 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
266 if (ret != 3) {
267 ret = -EINVAL;
268 goto free_and_exit;
269 }
270 }
271
272 ret = (seg == pci_domain_nr(dev->bus) &&
273 bus == dev->bus->number &&
274 dev->devfn == PCI_DEVFN(slot, func));
275
276free_and_exit:
277 kfree(wpath);
278 return ret;
279}
280
281/**
282 * pci_dev_str_match - test if a string matches a device
283 * @dev: the PCI device to test
284 * @p: string to match the device against
285 * @endptr: pointer to the string after the match
286 *
287 * Test if a string (typically from a kernel parameter) matches a specified
288 * PCI device. The string may be of one of the following formats:
289 *
290 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
291 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
292 *
293 * The first format specifies a PCI bus/device/function address which
294 * may change if new hardware is inserted, if motherboard firmware changes,
295 * or due to changes caused in kernel parameters. If the domain is
296 * left unspecified, it is taken to be 0. In order to be robust against
297 * bus renumbering issues, a path of PCI device/function numbers may be used
298 * to address the specific device. The path for a device can be determined
299 * through the use of 'lspci -t'.
300 *
301 * The second format matches devices using IDs in the configuration
302 * space which may match multiple devices in the system. A value of 0
303 * for any field will match all devices. (Note: this differs from
304 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
305 * legacy reasons and convenience so users don't have to specify
306 * FFFFFFFFs on the command line.)
307 *
308 * Returns 1 if the string matches the device, 0 if it does not and
309 * a negative error code if the string cannot be parsed.
310 */
311static int pci_dev_str_match(struct pci_dev *dev, const char *p,
312 const char **endptr)
313{
314 int ret;
315 int count;
316 unsigned short vendor, device, subsystem_vendor, subsystem_device;
317
318 if (strncmp(p, "pci:", 4) == 0) {
319 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
320 p += 4;
321 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
322 &subsystem_vendor, &subsystem_device, &count);
323 if (ret != 4) {
324 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
325 if (ret != 2)
326 return -EINVAL;
327
328 subsystem_vendor = 0;
329 subsystem_device = 0;
330 }
331
332 p += count;
333
334 if ((!vendor || vendor == dev->vendor) &&
335 (!device || device == dev->device) &&
336 (!subsystem_vendor ||
337 subsystem_vendor == dev->subsystem_vendor) &&
338 (!subsystem_device ||
339 subsystem_device == dev->subsystem_device))
340 goto found;
341 } else {
342 /*
343 * PCI Bus, Device, Function IDs are specified
344 * (optionally, may include a path of devfns following it)
345 */
346 ret = pci_dev_str_match_path(dev, p, &p);
347 if (ret < 0)
348 return ret;
349 else if (ret)
350 goto found;
351 }
352
353 *endptr = p;
354 return 0;
355
356found:
357 *endptr = p;
358 return 1;
359}
360
361static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
362 u8 pos, int cap, int *ttl)
363{
364 u8 id;
365 u16 ent;
366
367 pci_bus_read_config_byte(bus, devfn, pos, &pos);
368
369 while ((*ttl)--) {
370 if (pos < 0x40)
371 break;
372 pos &= ~3;
373 pci_bus_read_config_word(bus, devfn, pos, &ent);
374
375 id = ent & 0xff;
376 if (id == 0xff)
377 break;
378 if (id == cap)
379 return pos;
380 pos = (ent >> 8);
381 }
382 return 0;
383}
384
385static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
386 u8 pos, int cap)
387{
388 int ttl = PCI_FIND_CAP_TTL;
389
390 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
391}
392
393int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
394{
395 return __pci_find_next_cap(dev->bus, dev->devfn,
396 pos + PCI_CAP_LIST_NEXT, cap);
397}
398EXPORT_SYMBOL_GPL(pci_find_next_capability);
399
400static int __pci_bus_find_cap_start(struct pci_bus *bus,
401 unsigned int devfn, u8 hdr_type)
402{
403 u16 status;
404
405 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
406 if (!(status & PCI_STATUS_CAP_LIST))
407 return 0;
408
409 switch (hdr_type) {
410 case PCI_HEADER_TYPE_NORMAL:
411 case PCI_HEADER_TYPE_BRIDGE:
412 return PCI_CAPABILITY_LIST;
413 case PCI_HEADER_TYPE_CARDBUS:
414 return PCI_CB_CAPABILITY_LIST;
415 }
416
417 return 0;
418}
419
420/**
421 * pci_find_capability - query for devices' capabilities
422 * @dev: PCI device to query
423 * @cap: capability code
424 *
425 * Tell if a device supports a given PCI capability.
426 * Returns the address of the requested capability structure within the
427 * device's PCI configuration space or 0 in case the device does not
428 * support it. Possible values for @cap include:
429 *
430 * %PCI_CAP_ID_PM Power Management
431 * %PCI_CAP_ID_AGP Accelerated Graphics Port
432 * %PCI_CAP_ID_VPD Vital Product Data
433 * %PCI_CAP_ID_SLOTID Slot Identification
434 * %PCI_CAP_ID_MSI Message Signalled Interrupts
435 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
436 * %PCI_CAP_ID_PCIX PCI-X
437 * %PCI_CAP_ID_EXP PCI Express
438 */
439int pci_find_capability(struct pci_dev *dev, int cap)
440{
441 int pos;
442
443 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
444 if (pos)
445 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
446
447 return pos;
448}
449EXPORT_SYMBOL(pci_find_capability);
450
451/**
452 * pci_bus_find_capability - query for devices' capabilities
453 * @bus: the PCI bus to query
454 * @devfn: PCI device to query
455 * @cap: capability code
456 *
457 * Like pci_find_capability() but works for PCI devices that do not have a
458 * pci_dev structure set up yet.
459 *
460 * Returns the address of the requested capability structure within the
461 * device's PCI configuration space or 0 in case the device does not
462 * support it.
463 */
464int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
465{
466 int pos;
467 u8 hdr_type;
468
469 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
470
471 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
472 if (pos)
473 pos = __pci_find_next_cap(bus, devfn, pos, cap);
474
475 return pos;
476}
477EXPORT_SYMBOL(pci_bus_find_capability);
478
479/**
480 * pci_find_next_ext_capability - Find an extended capability
481 * @dev: PCI device to query
482 * @start: address at which to start looking (0 to start at beginning of list)
483 * @cap: capability code
484 *
485 * Returns the address of the next matching extended capability structure
486 * within the device's PCI configuration space or 0 if the device does
487 * not support it. Some capabilities can occur several times, e.g., the
488 * vendor-specific capability, and this provides a way to find them all.
489 */
490int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
491{
492 u32 header;
493 int ttl;
494 int pos = PCI_CFG_SPACE_SIZE;
495
496 /* minimum 8 bytes per capability */
497 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
498
499 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
500 return 0;
501
502 if (start)
503 pos = start;
504
505 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
506 return 0;
507
508 /*
509 * If we have no capabilities, this is indicated by cap ID,
510 * cap version and next pointer all being 0.
511 */
512 if (header == 0)
513 return 0;
514
515 while (ttl-- > 0) {
516 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
517 return pos;
518
519 pos = PCI_EXT_CAP_NEXT(header);
520 if (pos < PCI_CFG_SPACE_SIZE)
521 break;
522
523 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
524 break;
525 }
526
527 return 0;
528}
529EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
530
531/**
532 * pci_find_ext_capability - Find an extended capability
533 * @dev: PCI device to query
534 * @cap: capability code
535 *
536 * Returns the address of the requested extended capability structure
537 * within the device's PCI configuration space or 0 if the device does
538 * not support it. Possible values for @cap include:
539 *
540 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
541 * %PCI_EXT_CAP_ID_VC Virtual Channel
542 * %PCI_EXT_CAP_ID_DSN Device Serial Number
543 * %PCI_EXT_CAP_ID_PWR Power Budgeting
544 */
545int pci_find_ext_capability(struct pci_dev *dev, int cap)
546{
547 return pci_find_next_ext_capability(dev, 0, cap);
548}
549EXPORT_SYMBOL_GPL(pci_find_ext_capability);
550
551static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
552{
553 int rc, ttl = PCI_FIND_CAP_TTL;
554 u8 cap, mask;
555
556 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
557 mask = HT_3BIT_CAP_MASK;
558 else
559 mask = HT_5BIT_CAP_MASK;
560
561 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
562 PCI_CAP_ID_HT, &ttl);
563 while (pos) {
564 rc = pci_read_config_byte(dev, pos + 3, &cap);
565 if (rc != PCIBIOS_SUCCESSFUL)
566 return 0;
567
568 if ((cap & mask) == ht_cap)
569 return pos;
570
571 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
572 pos + PCI_CAP_LIST_NEXT,
573 PCI_CAP_ID_HT, &ttl);
574 }
575
576 return 0;
577}
578/**
579 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
580 * @dev: PCI device to query
581 * @pos: Position from which to continue searching
582 * @ht_cap: Hypertransport capability code
583 *
584 * To be used in conjunction with pci_find_ht_capability() to search for
585 * all capabilities matching @ht_cap. @pos should always be a value returned
586 * from pci_find_ht_capability().
587 *
588 * NB. To be 100% safe against broken PCI devices, the caller should take
589 * steps to avoid an infinite loop.
590 */
591int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
592{
593 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
594}
595EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
596
597/**
598 * pci_find_ht_capability - query a device's Hypertransport capabilities
599 * @dev: PCI device to query
600 * @ht_cap: Hypertransport capability code
601 *
602 * Tell if a device supports a given Hypertransport capability.
603 * Returns an address within the device's PCI configuration space
604 * or 0 in case the device does not support the request capability.
605 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
606 * which has a Hypertransport capability matching @ht_cap.
607 */
608int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
609{
610 int pos;
611
612 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
613 if (pos)
614 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
615
616 return pos;
617}
618EXPORT_SYMBOL_GPL(pci_find_ht_capability);
619
620/**
621 * pci_find_parent_resource - return resource region of parent bus of given
622 * region
623 * @dev: PCI device structure contains resources to be searched
624 * @res: child resource record for which parent is sought
625 *
626 * For given resource region of given device, return the resource region of
627 * parent bus the given region is contained in.
628 */
629struct resource *pci_find_parent_resource(const struct pci_dev *dev,
630 struct resource *res)
631{
632 const struct pci_bus *bus = dev->bus;
633 struct resource *r;
634 int i;
635
636 pci_bus_for_each_resource(bus, r, i) {
637 if (!r)
638 continue;
639 if (resource_contains(r, res)) {
640
641 /*
642 * If the window is prefetchable but the BAR is
643 * not, the allocator made a mistake.
644 */
645 if (r->flags & IORESOURCE_PREFETCH &&
646 !(res->flags & IORESOURCE_PREFETCH))
647 return NULL;
648
649 /*
650 * If we're below a transparent bridge, there may
651 * be both a positively-decoded aperture and a
652 * subtractively-decoded region that contain the BAR.
653 * We want the positively-decoded one, so this depends
654 * on pci_bus_for_each_resource() giving us those
655 * first.
656 */
657 return r;
658 }
659 }
660 return NULL;
661}
662EXPORT_SYMBOL(pci_find_parent_resource);
663
664/**
665 * pci_find_resource - Return matching PCI device resource
666 * @dev: PCI device to query
667 * @res: Resource to look for
668 *
669 * Goes over standard PCI resources (BARs) and checks if the given resource
670 * is partially or fully contained in any of them. In that case the
671 * matching resource is returned, %NULL otherwise.
672 */
673struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
674{
675 int i;
676
677 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
678 struct resource *r = &dev->resource[i];
679
680 if (r->start && resource_contains(r, res))
681 return r;
682 }
683
684 return NULL;
685}
686EXPORT_SYMBOL(pci_find_resource);
687
688/**
689 * pci_find_pcie_root_port - return PCIe Root Port
690 * @dev: PCI device to query
691 *
692 * Traverse up the parent chain and return the PCIe Root Port PCI Device
693 * for a given PCI Device.
694 */
695struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
696{
697 struct pci_dev *bridge, *highest_pcie_bridge = dev;
698
699 bridge = pci_upstream_bridge(dev);
700 while (bridge && pci_is_pcie(bridge)) {
701 highest_pcie_bridge = bridge;
702 bridge = pci_upstream_bridge(bridge);
703 }
704
705 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
706 return NULL;
707
708 return highest_pcie_bridge;
709}
710EXPORT_SYMBOL(pci_find_pcie_root_port);
711
712/**
713 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
714 * @dev: the PCI device to operate on
715 * @pos: config space offset of status word
716 * @mask: mask of bit(s) to care about in status word
717 *
718 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
719 */
720int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
721{
722 int i;
723
724 /* Wait for Transaction Pending bit clean */
725 for (i = 0; i < 4; i++) {
726 u16 status;
727 if (i)
728 msleep((1 << (i - 1)) * 100);
729
730 pci_read_config_word(dev, pos, &status);
731 if (!(status & mask))
732 return 1;
733 }
734
735 return 0;
736}
737
738/**
739 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
740 * @dev: PCI device to have its BARs restored
741 *
742 * Restore the BAR values for a given device, so as to make it
743 * accessible by its driver.
744 */
745static void pci_restore_bars(struct pci_dev *dev)
746{
747 int i;
748
749 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
750 pci_update_resource(dev, i);
751}
752
753static const struct pci_platform_pm_ops *pci_platform_pm;
754
755int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
756{
757 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
758 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
759 return -EINVAL;
760 pci_platform_pm = ops;
761 return 0;
762}
763
764static inline bool platform_pci_power_manageable(struct pci_dev *dev)
765{
766 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
767}
768
769static inline int platform_pci_set_power_state(struct pci_dev *dev,
770 pci_power_t t)
771{
772 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
773}
774
775static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
776{
777 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
778}
779
780static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
781{
782 if (pci_platform_pm && pci_platform_pm->refresh_state)
783 pci_platform_pm->refresh_state(dev);
784}
785
786static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
787{
788 return pci_platform_pm ?
789 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
790}
791
792static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
793{
794 return pci_platform_pm ?
795 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
796}
797
798static inline bool platform_pci_need_resume(struct pci_dev *dev)
799{
800 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
801}
802
803static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
804{
805 return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false;
806}
807
808/**
809 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
810 * given PCI device
811 * @dev: PCI device to handle.
812 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
813 *
814 * RETURN VALUE:
815 * -EINVAL if the requested state is invalid.
816 * -EIO if device does not support PCI PM or its PM capabilities register has a
817 * wrong version, or device doesn't support the requested state.
818 * 0 if device already is in the requested state.
819 * 0 if device's power state has been successfully changed.
820 */
821static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
822{
823 u16 pmcsr;
824 bool need_restore = false;
825
826 /* Check if we're already there */
827 if (dev->current_state == state)
828 return 0;
829
830 if (!dev->pm_cap)
831 return -EIO;
832
833 if (state < PCI_D0 || state > PCI_D3hot)
834 return -EINVAL;
835
836 /*
837 * Validate current state:
838 * Can enter D0 from any state, but if we can only go deeper
839 * to sleep if we're already in a low power state
840 */
841 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
842 && dev->current_state > state) {
843 pci_err(dev, "invalid power transition (from state %d to %d)\n",
844 dev->current_state, state);
845 return -EINVAL;
846 }
847
848 /* Check if this device supports the desired state */
849 if ((state == PCI_D1 && !dev->d1_support)
850 || (state == PCI_D2 && !dev->d2_support))
851 return -EIO;
852
853 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
854
855 /*
856 * If we're (effectively) in D3, force entire word to 0.
857 * This doesn't affect PME_Status, disables PME_En, and
858 * sets PowerState to 0.
859 */
860 switch (dev->current_state) {
861 case PCI_D0:
862 case PCI_D1:
863 case PCI_D2:
864 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
865 pmcsr |= state;
866 break;
867 case PCI_D3hot:
868 case PCI_D3cold:
869 case PCI_UNKNOWN: /* Boot-up */
870 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
871 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
872 need_restore = true;
873 /* Fall-through - force to D0 */
874 default:
875 pmcsr = 0;
876 break;
877 }
878
879 /* Enter specified state */
880 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
881
882 /*
883 * Mandatory power management transition delays; see PCI PM 1.1
884 * 5.6.1 table 18
885 */
886 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
887 pci_dev_d3_sleep(dev);
888 else if (state == PCI_D2 || dev->current_state == PCI_D2)
889 udelay(PCI_PM_D2_DELAY);
890
891 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
892 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
893 if (dev->current_state != state)
894 pci_info_ratelimited(dev, "Refused to change power state, currently in D%d\n",
895 dev->current_state);
896
897 /*
898 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
899 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
900 * from D3hot to D0 _may_ perform an internal reset, thereby
901 * going to "D0 Uninitialized" rather than "D0 Initialized".
902 * For example, at least some versions of the 3c905B and the
903 * 3c556B exhibit this behaviour.
904 *
905 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
906 * devices in a D3hot state at boot. Consequently, we need to
907 * restore at least the BARs so that the device will be
908 * accessible to its driver.
909 */
910 if (need_restore)
911 pci_restore_bars(dev);
912
913 if (dev->bus->self)
914 pcie_aspm_pm_state_change(dev->bus->self);
915
916 return 0;
917}
918
919/**
920 * pci_update_current_state - Read power state of given device and cache it
921 * @dev: PCI device to handle.
922 * @state: State to cache in case the device doesn't have the PM capability
923 *
924 * The power state is read from the PMCSR register, which however is
925 * inaccessible in D3cold. The platform firmware is therefore queried first
926 * to detect accessibility of the register. In case the platform firmware
927 * reports an incorrect state or the device isn't power manageable by the
928 * platform at all, we try to detect D3cold by testing accessibility of the
929 * vendor ID in config space.
930 */
931void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
932{
933 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
934 !pci_device_is_present(dev)) {
935 dev->current_state = PCI_D3cold;
936 } else if (dev->pm_cap) {
937 u16 pmcsr;
938
939 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
940 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
941 } else {
942 dev->current_state = state;
943 }
944}
945
946/**
947 * pci_refresh_power_state - Refresh the given device's power state data
948 * @dev: Target PCI device.
949 *
950 * Ask the platform to refresh the devices power state information and invoke
951 * pci_update_current_state() to update its current PCI power state.
952 */
953void pci_refresh_power_state(struct pci_dev *dev)
954{
955 if (platform_pci_power_manageable(dev))
956 platform_pci_refresh_power_state(dev);
957
958 pci_update_current_state(dev, dev->current_state);
959}
960
961/**
962 * pci_platform_power_transition - Use platform to change device power state
963 * @dev: PCI device to handle.
964 * @state: State to put the device into.
965 */
966static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
967{
968 int error;
969
970 if (platform_pci_power_manageable(dev)) {
971 error = platform_pci_set_power_state(dev, state);
972 if (!error)
973 pci_update_current_state(dev, state);
974 } else
975 error = -ENODEV;
976
977 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
978 dev->current_state = PCI_D0;
979
980 return error;
981}
982
983/**
984 * pci_wakeup - Wake up a PCI device
985 * @pci_dev: Device to handle.
986 * @ign: ignored parameter
987 */
988static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
989{
990 pci_wakeup_event(pci_dev);
991 pm_request_resume(&pci_dev->dev);
992 return 0;
993}
994
995/**
996 * pci_wakeup_bus - Walk given bus and wake up devices on it
997 * @bus: Top bus of the subtree to walk.
998 */
999void pci_wakeup_bus(struct pci_bus *bus)
1000{
1001 if (bus)
1002 pci_walk_bus(bus, pci_wakeup, NULL);
1003}
1004
1005/**
1006 * __pci_start_power_transition - Start power transition of a PCI device
1007 * @dev: PCI device to handle.
1008 * @state: State to put the device into.
1009 */
1010static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
1011{
1012 if (state == PCI_D0) {
1013 pci_platform_power_transition(dev, PCI_D0);
1014 /*
1015 * Mandatory power management transition delays, see
1016 * PCI Express Base Specification Revision 2.0 Section
1017 * 6.6.1: Conventional Reset. Do not delay for
1018 * devices powered on/off by corresponding bridge,
1019 * because have already delayed for the bridge.
1020 */
1021 if (dev->runtime_d3cold) {
1022 if (dev->d3cold_delay && !dev->imm_ready)
1023 msleep(dev->d3cold_delay);
1024 /*
1025 * When powering on a bridge from D3cold, the
1026 * whole hierarchy may be powered on into
1027 * D0uninitialized state, resume them to give
1028 * them a chance to suspend again
1029 */
1030 pci_wakeup_bus(dev->subordinate);
1031 }
1032 }
1033}
1034
1035/**
1036 * __pci_dev_set_current_state - Set current state of a PCI device
1037 * @dev: Device to handle
1038 * @data: pointer to state to be set
1039 */
1040static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1041{
1042 pci_power_t state = *(pci_power_t *)data;
1043
1044 dev->current_state = state;
1045 return 0;
1046}
1047
1048/**
1049 * pci_bus_set_current_state - Walk given bus and set current state of devices
1050 * @bus: Top bus of the subtree to walk.
1051 * @state: state to be set
1052 */
1053void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1054{
1055 if (bus)
1056 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1057}
1058
1059/**
1060 * __pci_complete_power_transition - Complete power transition of a PCI device
1061 * @dev: PCI device to handle.
1062 * @state: State to put the device into.
1063 *
1064 * This function should not be called directly by device drivers.
1065 */
1066int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
1067{
1068 int ret;
1069
1070 if (state <= PCI_D0)
1071 return -EINVAL;
1072 ret = pci_platform_power_transition(dev, state);
1073 /* Power off the bridge may power off the whole hierarchy */
1074 if (!ret && state == PCI_D3cold)
1075 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1076 return ret;
1077}
1078EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
1079
1080/**
1081 * pci_set_power_state - Set the power state of a PCI device
1082 * @dev: PCI device to handle.
1083 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1084 *
1085 * Transition a device to a new power state, using the platform firmware and/or
1086 * the device's PCI PM registers.
1087 *
1088 * RETURN VALUE:
1089 * -EINVAL if the requested state is invalid.
1090 * -EIO if device does not support PCI PM or its PM capabilities register has a
1091 * wrong version, or device doesn't support the requested state.
1092 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1093 * 0 if device already is in the requested state.
1094 * 0 if the transition is to D3 but D3 is not supported.
1095 * 0 if device's power state has been successfully changed.
1096 */
1097int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1098{
1099 int error;
1100
1101 /* Bound the state we're entering */
1102 if (state > PCI_D3cold)
1103 state = PCI_D3cold;
1104 else if (state < PCI_D0)
1105 state = PCI_D0;
1106 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1107
1108 /*
1109 * If the device or the parent bridge do not support PCI
1110 * PM, ignore the request if we're doing anything other
1111 * than putting it into D0 (which would only happen on
1112 * boot).
1113 */
1114 return 0;
1115
1116 /* Check if we're already there */
1117 if (dev->current_state == state)
1118 return 0;
1119
1120 __pci_start_power_transition(dev, state);
1121
1122 /*
1123 * This device is quirked not to be put into D3, so don't put it in
1124 * D3
1125 */
1126 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1127 return 0;
1128
1129 /*
1130 * To put device in D3cold, we put device into D3hot in native
1131 * way, then put device into D3cold with platform ops
1132 */
1133 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1134 PCI_D3hot : state);
1135
1136 if (!__pci_complete_power_transition(dev, state))
1137 error = 0;
1138
1139 return error;
1140}
1141EXPORT_SYMBOL(pci_set_power_state);
1142
1143/**
1144 * pci_power_up - Put the given device into D0 forcibly
1145 * @dev: PCI device to power up
1146 */
1147void pci_power_up(struct pci_dev *dev)
1148{
1149 __pci_start_power_transition(dev, PCI_D0);
1150 pci_raw_set_power_state(dev, PCI_D0);
1151 pci_update_current_state(dev, PCI_D0);
1152}
1153
1154/**
1155 * pci_choose_state - Choose the power state of a PCI device
1156 * @dev: PCI device to be suspended
1157 * @state: target sleep state for the whole system. This is the value
1158 * that is passed to suspend() function.
1159 *
1160 * Returns PCI power state suitable for given device and given system
1161 * message.
1162 */
1163pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1164{
1165 pci_power_t ret;
1166
1167 if (!dev->pm_cap)
1168 return PCI_D0;
1169
1170 ret = platform_pci_choose_state(dev);
1171 if (ret != PCI_POWER_ERROR)
1172 return ret;
1173
1174 switch (state.event) {
1175 case PM_EVENT_ON:
1176 return PCI_D0;
1177 case PM_EVENT_FREEZE:
1178 case PM_EVENT_PRETHAW:
1179 /* REVISIT both freeze and pre-thaw "should" use D0 */
1180 case PM_EVENT_SUSPEND:
1181 case PM_EVENT_HIBERNATE:
1182 return PCI_D3hot;
1183 default:
1184 pci_info(dev, "unrecognized suspend event %d\n",
1185 state.event);
1186 BUG();
1187 }
1188 return PCI_D0;
1189}
1190EXPORT_SYMBOL(pci_choose_state);
1191
1192#define PCI_EXP_SAVE_REGS 7
1193
1194static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1195 u16 cap, bool extended)
1196{
1197 struct pci_cap_saved_state *tmp;
1198
1199 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1200 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1201 return tmp;
1202 }
1203 return NULL;
1204}
1205
1206struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1207{
1208 return _pci_find_saved_cap(dev, cap, false);
1209}
1210
1211struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1212{
1213 return _pci_find_saved_cap(dev, cap, true);
1214}
1215
1216static int pci_save_pcie_state(struct pci_dev *dev)
1217{
1218 int i = 0;
1219 struct pci_cap_saved_state *save_state;
1220 u16 *cap;
1221
1222 if (!pci_is_pcie(dev))
1223 return 0;
1224
1225 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1226 if (!save_state) {
1227 pci_err(dev, "buffer not found in %s\n", __func__);
1228 return -ENOMEM;
1229 }
1230
1231 cap = (u16 *)&save_state->cap.data[0];
1232 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1233 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1234 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1235 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1236 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1237 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1238 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1239
1240 return 0;
1241}
1242
1243static void pci_restore_pcie_state(struct pci_dev *dev)
1244{
1245 int i = 0;
1246 struct pci_cap_saved_state *save_state;
1247 u16 *cap;
1248
1249 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1250 if (!save_state)
1251 return;
1252
1253 cap = (u16 *)&save_state->cap.data[0];
1254 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1255 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1256 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1257 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1258 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1259 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1260 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1261}
1262
1263static int pci_save_pcix_state(struct pci_dev *dev)
1264{
1265 int pos;
1266 struct pci_cap_saved_state *save_state;
1267
1268 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1269 if (!pos)
1270 return 0;
1271
1272 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1273 if (!save_state) {
1274 pci_err(dev, "buffer not found in %s\n", __func__);
1275 return -ENOMEM;
1276 }
1277
1278 pci_read_config_word(dev, pos + PCI_X_CMD,
1279 (u16 *)save_state->cap.data);
1280
1281 return 0;
1282}
1283
1284static void pci_restore_pcix_state(struct pci_dev *dev)
1285{
1286 int i = 0, pos;
1287 struct pci_cap_saved_state *save_state;
1288 u16 *cap;
1289
1290 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1291 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1292 if (!save_state || !pos)
1293 return;
1294 cap = (u16 *)&save_state->cap.data[0];
1295
1296 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1297}
1298
1299static void pci_save_ltr_state(struct pci_dev *dev)
1300{
1301 int ltr;
1302 struct pci_cap_saved_state *save_state;
1303 u16 *cap;
1304
1305 if (!pci_is_pcie(dev))
1306 return;
1307
1308 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1309 if (!ltr)
1310 return;
1311
1312 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1313 if (!save_state) {
1314 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1315 return;
1316 }
1317
1318 cap = (u16 *)&save_state->cap.data[0];
1319 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1320 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1321}
1322
1323static void pci_restore_ltr_state(struct pci_dev *dev)
1324{
1325 struct pci_cap_saved_state *save_state;
1326 int ltr;
1327 u16 *cap;
1328
1329 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1330 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1331 if (!save_state || !ltr)
1332 return;
1333
1334 cap = (u16 *)&save_state->cap.data[0];
1335 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1336 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1337}
1338
1339/**
1340 * pci_save_state - save the PCI configuration space of a device before
1341 * suspending
1342 * @dev: PCI device that we're dealing with
1343 */
1344int pci_save_state(struct pci_dev *dev)
1345{
1346 int i;
1347 /* XXX: 100% dword access ok here? */
1348 for (i = 0; i < 16; i++)
1349 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1350 dev->state_saved = true;
1351
1352 i = pci_save_pcie_state(dev);
1353 if (i != 0)
1354 return i;
1355
1356 i = pci_save_pcix_state(dev);
1357 if (i != 0)
1358 return i;
1359
1360 pci_save_ltr_state(dev);
1361 pci_save_dpc_state(dev);
1362 return pci_save_vc_state(dev);
1363}
1364EXPORT_SYMBOL(pci_save_state);
1365
1366static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1367 u32 saved_val, int retry, bool force)
1368{
1369 u32 val;
1370
1371 pci_read_config_dword(pdev, offset, &val);
1372 if (!force && val == saved_val)
1373 return;
1374
1375 for (;;) {
1376 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1377 offset, val, saved_val);
1378 pci_write_config_dword(pdev, offset, saved_val);
1379 if (retry-- <= 0)
1380 return;
1381
1382 pci_read_config_dword(pdev, offset, &val);
1383 if (val == saved_val)
1384 return;
1385
1386 mdelay(1);
1387 }
1388}
1389
1390static void pci_restore_config_space_range(struct pci_dev *pdev,
1391 int start, int end, int retry,
1392 bool force)
1393{
1394 int index;
1395
1396 for (index = end; index >= start; index--)
1397 pci_restore_config_dword(pdev, 4 * index,
1398 pdev->saved_config_space[index],
1399 retry, force);
1400}
1401
1402static void pci_restore_config_space(struct pci_dev *pdev)
1403{
1404 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1405 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1406 /* Restore BARs before the command register. */
1407 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1408 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1409 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1410 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1411
1412 /*
1413 * Force rewriting of prefetch registers to avoid S3 resume
1414 * issues on Intel PCI bridges that occur when these
1415 * registers are not explicitly written.
1416 */
1417 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1418 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1419 } else {
1420 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1421 }
1422}
1423
1424static void pci_restore_rebar_state(struct pci_dev *pdev)
1425{
1426 unsigned int pos, nbars, i;
1427 u32 ctrl;
1428
1429 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1430 if (!pos)
1431 return;
1432
1433 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1434 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1435 PCI_REBAR_CTRL_NBAR_SHIFT;
1436
1437 for (i = 0; i < nbars; i++, pos += 8) {
1438 struct resource *res;
1439 int bar_idx, size;
1440
1441 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1442 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1443 res = pdev->resource + bar_idx;
1444 size = ilog2(resource_size(res)) - 20;
1445 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1446 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1447 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1448 }
1449}
1450
1451/**
1452 * pci_restore_state - Restore the saved state of a PCI device
1453 * @dev: PCI device that we're dealing with
1454 */
1455void pci_restore_state(struct pci_dev *dev)
1456{
1457 if (!dev->state_saved)
1458 return;
1459
1460 /*
1461 * Restore max latencies (in the LTR capability) before enabling
1462 * LTR itself (in the PCIe capability).
1463 */
1464 pci_restore_ltr_state(dev);
1465
1466 pci_restore_pcie_state(dev);
1467 pci_restore_pasid_state(dev);
1468 pci_restore_pri_state(dev);
1469 pci_restore_ats_state(dev);
1470 pci_restore_vc_state(dev);
1471 pci_restore_rebar_state(dev);
1472 pci_restore_dpc_state(dev);
1473
1474 pci_cleanup_aer_error_status_regs(dev);
1475
1476 pci_restore_config_space(dev);
1477
1478 pci_restore_pcix_state(dev);
1479 pci_restore_msi_state(dev);
1480
1481 /* Restore ACS and IOV configuration state */
1482 pci_enable_acs(dev);
1483 pci_restore_iov_state(dev);
1484
1485 dev->state_saved = false;
1486}
1487EXPORT_SYMBOL(pci_restore_state);
1488
1489struct pci_saved_state {
1490 u32 config_space[16];
1491 struct pci_cap_saved_data cap[0];
1492};
1493
1494/**
1495 * pci_store_saved_state - Allocate and return an opaque struct containing
1496 * the device saved state.
1497 * @dev: PCI device that we're dealing with
1498 *
1499 * Return NULL if no state or error.
1500 */
1501struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1502{
1503 struct pci_saved_state *state;
1504 struct pci_cap_saved_state *tmp;
1505 struct pci_cap_saved_data *cap;
1506 size_t size;
1507
1508 if (!dev->state_saved)
1509 return NULL;
1510
1511 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1512
1513 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1514 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1515
1516 state = kzalloc(size, GFP_KERNEL);
1517 if (!state)
1518 return NULL;
1519
1520 memcpy(state->config_space, dev->saved_config_space,
1521 sizeof(state->config_space));
1522
1523 cap = state->cap;
1524 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1525 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1526 memcpy(cap, &tmp->cap, len);
1527 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1528 }
1529 /* Empty cap_save terminates list */
1530
1531 return state;
1532}
1533EXPORT_SYMBOL_GPL(pci_store_saved_state);
1534
1535/**
1536 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1537 * @dev: PCI device that we're dealing with
1538 * @state: Saved state returned from pci_store_saved_state()
1539 */
1540int pci_load_saved_state(struct pci_dev *dev,
1541 struct pci_saved_state *state)
1542{
1543 struct pci_cap_saved_data *cap;
1544
1545 dev->state_saved = false;
1546
1547 if (!state)
1548 return 0;
1549
1550 memcpy(dev->saved_config_space, state->config_space,
1551 sizeof(state->config_space));
1552
1553 cap = state->cap;
1554 while (cap->size) {
1555 struct pci_cap_saved_state *tmp;
1556
1557 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1558 if (!tmp || tmp->cap.size != cap->size)
1559 return -EINVAL;
1560
1561 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1562 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1563 sizeof(struct pci_cap_saved_data) + cap->size);
1564 }
1565
1566 dev->state_saved = true;
1567 return 0;
1568}
1569EXPORT_SYMBOL_GPL(pci_load_saved_state);
1570
1571/**
1572 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1573 * and free the memory allocated for it.
1574 * @dev: PCI device that we're dealing with
1575 * @state: Pointer to saved state returned from pci_store_saved_state()
1576 */
1577int pci_load_and_free_saved_state(struct pci_dev *dev,
1578 struct pci_saved_state **state)
1579{
1580 int ret = pci_load_saved_state(dev, *state);
1581 kfree(*state);
1582 *state = NULL;
1583 return ret;
1584}
1585EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1586
1587int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1588{
1589 return pci_enable_resources(dev, bars);
1590}
1591
1592static int do_pci_enable_device(struct pci_dev *dev, int bars)
1593{
1594 int err;
1595 struct pci_dev *bridge;
1596 u16 cmd;
1597 u8 pin;
1598
1599 err = pci_set_power_state(dev, PCI_D0);
1600 if (err < 0 && err != -EIO)
1601 return err;
1602
1603 bridge = pci_upstream_bridge(dev);
1604 if (bridge)
1605 pcie_aspm_powersave_config_link(bridge);
1606
1607 err = pcibios_enable_device(dev, bars);
1608 if (err < 0)
1609 return err;
1610 pci_fixup_device(pci_fixup_enable, dev);
1611
1612 if (dev->msi_enabled || dev->msix_enabled)
1613 return 0;
1614
1615 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1616 if (pin) {
1617 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1618 if (cmd & PCI_COMMAND_INTX_DISABLE)
1619 pci_write_config_word(dev, PCI_COMMAND,
1620 cmd & ~PCI_COMMAND_INTX_DISABLE);
1621 }
1622
1623 return 0;
1624}
1625
1626/**
1627 * pci_reenable_device - Resume abandoned device
1628 * @dev: PCI device to be resumed
1629 *
1630 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1631 * to be called by normal code, write proper resume handler and use it instead.
1632 */
1633int pci_reenable_device(struct pci_dev *dev)
1634{
1635 if (pci_is_enabled(dev))
1636 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1637 return 0;
1638}
1639EXPORT_SYMBOL(pci_reenable_device);
1640
1641static void pci_enable_bridge(struct pci_dev *dev)
1642{
1643 struct pci_dev *bridge;
1644 int retval;
1645
1646 bridge = pci_upstream_bridge(dev);
1647 if (bridge)
1648 pci_enable_bridge(bridge);
1649
1650 if (pci_is_enabled(dev)) {
1651 if (!dev->is_busmaster)
1652 pci_set_master(dev);
1653 return;
1654 }
1655
1656 retval = pci_enable_device(dev);
1657 if (retval)
1658 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1659 retval);
1660 pci_set_master(dev);
1661}
1662
1663static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1664{
1665 struct pci_dev *bridge;
1666 int err;
1667 int i, bars = 0;
1668
1669 /*
1670 * Power state could be unknown at this point, either due to a fresh
1671 * boot or a device removal call. So get the current power state
1672 * so that things like MSI message writing will behave as expected
1673 * (e.g. if the device really is in D0 at enable time).
1674 */
1675 if (dev->pm_cap) {
1676 u16 pmcsr;
1677 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1678 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1679 }
1680
1681 if (atomic_inc_return(&dev->enable_cnt) > 1)
1682 return 0; /* already enabled */
1683
1684 bridge = pci_upstream_bridge(dev);
1685 if (bridge)
1686 pci_enable_bridge(bridge);
1687
1688 /* only skip sriov related */
1689 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1690 if (dev->resource[i].flags & flags)
1691 bars |= (1 << i);
1692 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1693 if (dev->resource[i].flags & flags)
1694 bars |= (1 << i);
1695
1696 err = do_pci_enable_device(dev, bars);
1697 if (err < 0)
1698 atomic_dec(&dev->enable_cnt);
1699 return err;
1700}
1701
1702/**
1703 * pci_enable_device_io - Initialize a device for use with IO space
1704 * @dev: PCI device to be initialized
1705 *
1706 * Initialize device before it's used by a driver. Ask low-level code
1707 * to enable I/O resources. Wake up the device if it was suspended.
1708 * Beware, this function can fail.
1709 */
1710int pci_enable_device_io(struct pci_dev *dev)
1711{
1712 return pci_enable_device_flags(dev, IORESOURCE_IO);
1713}
1714EXPORT_SYMBOL(pci_enable_device_io);
1715
1716/**
1717 * pci_enable_device_mem - Initialize a device for use with Memory space
1718 * @dev: PCI device to be initialized
1719 *
1720 * Initialize device before it's used by a driver. Ask low-level code
1721 * to enable Memory resources. Wake up the device if it was suspended.
1722 * Beware, this function can fail.
1723 */
1724int pci_enable_device_mem(struct pci_dev *dev)
1725{
1726 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1727}
1728EXPORT_SYMBOL(pci_enable_device_mem);
1729
1730/**
1731 * pci_enable_device - Initialize device before it's used by a driver.
1732 * @dev: PCI device to be initialized
1733 *
1734 * Initialize device before it's used by a driver. Ask low-level code
1735 * to enable I/O and memory. Wake up the device if it was suspended.
1736 * Beware, this function can fail.
1737 *
1738 * Note we don't actually enable the device many times if we call
1739 * this function repeatedly (we just increment the count).
1740 */
1741int pci_enable_device(struct pci_dev *dev)
1742{
1743 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1744}
1745EXPORT_SYMBOL(pci_enable_device);
1746
1747/*
1748 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1749 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
1750 * there's no need to track it separately. pci_devres is initialized
1751 * when a device is enabled using managed PCI device enable interface.
1752 */
1753struct pci_devres {
1754 unsigned int enabled:1;
1755 unsigned int pinned:1;
1756 unsigned int orig_intx:1;
1757 unsigned int restore_intx:1;
1758 unsigned int mwi:1;
1759 u32 region_mask;
1760};
1761
1762static void pcim_release(struct device *gendev, void *res)
1763{
1764 struct pci_dev *dev = to_pci_dev(gendev);
1765 struct pci_devres *this = res;
1766 int i;
1767
1768 if (dev->msi_enabled)
1769 pci_disable_msi(dev);
1770 if (dev->msix_enabled)
1771 pci_disable_msix(dev);
1772
1773 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1774 if (this->region_mask & (1 << i))
1775 pci_release_region(dev, i);
1776
1777 if (this->mwi)
1778 pci_clear_mwi(dev);
1779
1780 if (this->restore_intx)
1781 pci_intx(dev, this->orig_intx);
1782
1783 if (this->enabled && !this->pinned)
1784 pci_disable_device(dev);
1785}
1786
1787static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1788{
1789 struct pci_devres *dr, *new_dr;
1790
1791 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1792 if (dr)
1793 return dr;
1794
1795 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1796 if (!new_dr)
1797 return NULL;
1798 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1799}
1800
1801static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1802{
1803 if (pci_is_managed(pdev))
1804 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1805 return NULL;
1806}
1807
1808/**
1809 * pcim_enable_device - Managed pci_enable_device()
1810 * @pdev: PCI device to be initialized
1811 *
1812 * Managed pci_enable_device().
1813 */
1814int pcim_enable_device(struct pci_dev *pdev)
1815{
1816 struct pci_devres *dr;
1817 int rc;
1818
1819 dr = get_pci_dr(pdev);
1820 if (unlikely(!dr))
1821 return -ENOMEM;
1822 if (dr->enabled)
1823 return 0;
1824
1825 rc = pci_enable_device(pdev);
1826 if (!rc) {
1827 pdev->is_managed = 1;
1828 dr->enabled = 1;
1829 }
1830 return rc;
1831}
1832EXPORT_SYMBOL(pcim_enable_device);
1833
1834/**
1835 * pcim_pin_device - Pin managed PCI device
1836 * @pdev: PCI device to pin
1837 *
1838 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1839 * driver detach. @pdev must have been enabled with
1840 * pcim_enable_device().
1841 */
1842void pcim_pin_device(struct pci_dev *pdev)
1843{
1844 struct pci_devres *dr;
1845
1846 dr = find_pci_dr(pdev);
1847 WARN_ON(!dr || !dr->enabled);
1848 if (dr)
1849 dr->pinned = 1;
1850}
1851EXPORT_SYMBOL(pcim_pin_device);
1852
1853/*
1854 * pcibios_add_device - provide arch specific hooks when adding device dev
1855 * @dev: the PCI device being added
1856 *
1857 * Permits the platform to provide architecture specific functionality when
1858 * devices are added. This is the default implementation. Architecture
1859 * implementations can override this.
1860 */
1861int __weak pcibios_add_device(struct pci_dev *dev)
1862{
1863 return 0;
1864}
1865
1866/**
1867 * pcibios_release_device - provide arch specific hooks when releasing
1868 * device dev
1869 * @dev: the PCI device being released
1870 *
1871 * Permits the platform to provide architecture specific functionality when
1872 * devices are released. This is the default implementation. Architecture
1873 * implementations can override this.
1874 */
1875void __weak pcibios_release_device(struct pci_dev *dev) {}
1876
1877/**
1878 * pcibios_disable_device - disable arch specific PCI resources for device dev
1879 * @dev: the PCI device to disable
1880 *
1881 * Disables architecture specific PCI resources for the device. This
1882 * is the default implementation. Architecture implementations can
1883 * override this.
1884 */
1885void __weak pcibios_disable_device(struct pci_dev *dev) {}
1886
1887/**
1888 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1889 * @irq: ISA IRQ to penalize
1890 * @active: IRQ active or not
1891 *
1892 * Permits the platform to provide architecture-specific functionality when
1893 * penalizing ISA IRQs. This is the default implementation. Architecture
1894 * implementations can override this.
1895 */
1896void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1897
1898static void do_pci_disable_device(struct pci_dev *dev)
1899{
1900 u16 pci_command;
1901
1902 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1903 if (pci_command & PCI_COMMAND_MASTER) {
1904 pci_command &= ~PCI_COMMAND_MASTER;
1905 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1906 }
1907
1908 pcibios_disable_device(dev);
1909}
1910
1911/**
1912 * pci_disable_enabled_device - Disable device without updating enable_cnt
1913 * @dev: PCI device to disable
1914 *
1915 * NOTE: This function is a backend of PCI power management routines and is
1916 * not supposed to be called drivers.
1917 */
1918void pci_disable_enabled_device(struct pci_dev *dev)
1919{
1920 if (pci_is_enabled(dev))
1921 do_pci_disable_device(dev);
1922}
1923
1924/**
1925 * pci_disable_device - Disable PCI device after use
1926 * @dev: PCI device to be disabled
1927 *
1928 * Signal to the system that the PCI device is not in use by the system
1929 * anymore. This only involves disabling PCI bus-mastering, if active.
1930 *
1931 * Note we don't actually disable the device until all callers of
1932 * pci_enable_device() have called pci_disable_device().
1933 */
1934void pci_disable_device(struct pci_dev *dev)
1935{
1936 struct pci_devres *dr;
1937
1938 dr = find_pci_dr(dev);
1939 if (dr)
1940 dr->enabled = 0;
1941
1942 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1943 "disabling already-disabled device");
1944
1945 if (atomic_dec_return(&dev->enable_cnt) != 0)
1946 return;
1947
1948 do_pci_disable_device(dev);
1949
1950 dev->is_busmaster = 0;
1951}
1952EXPORT_SYMBOL(pci_disable_device);
1953
1954/**
1955 * pcibios_set_pcie_reset_state - set reset state for device dev
1956 * @dev: the PCIe device reset
1957 * @state: Reset state to enter into
1958 *
1959 * Set the PCIe reset state for the device. This is the default
1960 * implementation. Architecture implementations can override this.
1961 */
1962int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1963 enum pcie_reset_state state)
1964{
1965 return -EINVAL;
1966}
1967
1968/**
1969 * pci_set_pcie_reset_state - set reset state for device dev
1970 * @dev: the PCIe device reset
1971 * @state: Reset state to enter into
1972 *
1973 * Sets the PCI reset state for the device.
1974 */
1975int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1976{
1977 return pcibios_set_pcie_reset_state(dev, state);
1978}
1979EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1980
1981/**
1982 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1983 * @dev: PCIe root port or event collector.
1984 */
1985void pcie_clear_root_pme_status(struct pci_dev *dev)
1986{
1987 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1988}
1989
1990/**
1991 * pci_check_pme_status - Check if given device has generated PME.
1992 * @dev: Device to check.
1993 *
1994 * Check the PME status of the device and if set, clear it and clear PME enable
1995 * (if set). Return 'true' if PME status and PME enable were both set or
1996 * 'false' otherwise.
1997 */
1998bool pci_check_pme_status(struct pci_dev *dev)
1999{
2000 int pmcsr_pos;
2001 u16 pmcsr;
2002 bool ret = false;
2003
2004 if (!dev->pm_cap)
2005 return false;
2006
2007 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2008 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2009 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2010 return false;
2011
2012 /* Clear PME status. */
2013 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2014 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2015 /* Disable PME to avoid interrupt flood. */
2016 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2017 ret = true;
2018 }
2019
2020 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2021
2022 return ret;
2023}
2024
2025/**
2026 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2027 * @dev: Device to handle.
2028 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2029 *
2030 * Check if @dev has generated PME and queue a resume request for it in that
2031 * case.
2032 */
2033static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2034{
2035 if (pme_poll_reset && dev->pme_poll)
2036 dev->pme_poll = false;
2037
2038 if (pci_check_pme_status(dev)) {
2039 pci_wakeup_event(dev);
2040 pm_request_resume(&dev->dev);
2041 }
2042 return 0;
2043}
2044
2045/**
2046 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2047 * @bus: Top bus of the subtree to walk.
2048 */
2049void pci_pme_wakeup_bus(struct pci_bus *bus)
2050{
2051 if (bus)
2052 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2053}
2054
2055
2056/**
2057 * pci_pme_capable - check the capability of PCI device to generate PME#
2058 * @dev: PCI device to handle.
2059 * @state: PCI state from which device will issue PME#.
2060 */
2061bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2062{
2063 if (!dev->pm_cap)
2064 return false;
2065
2066 return !!(dev->pme_support & (1 << state));
2067}
2068EXPORT_SYMBOL(pci_pme_capable);
2069
2070static void pci_pme_list_scan(struct work_struct *work)
2071{
2072 struct pci_pme_device *pme_dev, *n;
2073
2074 mutex_lock(&pci_pme_list_mutex);
2075 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2076 if (pme_dev->dev->pme_poll) {
2077 struct pci_dev *bridge;
2078
2079 bridge = pme_dev->dev->bus->self;
2080 /*
2081 * If bridge is in low power state, the
2082 * configuration space of subordinate devices
2083 * may be not accessible
2084 */
2085 if (bridge && bridge->current_state != PCI_D0)
2086 continue;
2087 /*
2088 * If the device is in D3cold it should not be
2089 * polled either.
2090 */
2091 if (pme_dev->dev->current_state == PCI_D3cold)
2092 continue;
2093
2094 pci_pme_wakeup(pme_dev->dev, NULL);
2095 } else {
2096 list_del(&pme_dev->list);
2097 kfree(pme_dev);
2098 }
2099 }
2100 if (!list_empty(&pci_pme_list))
2101 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2102 msecs_to_jiffies(PME_TIMEOUT));
2103 mutex_unlock(&pci_pme_list_mutex);
2104}
2105
2106static void __pci_pme_active(struct pci_dev *dev, bool enable)
2107{
2108 u16 pmcsr;
2109
2110 if (!dev->pme_support)
2111 return;
2112
2113 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2114 /* Clear PME_Status by writing 1 to it and enable PME# */
2115 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2116 if (!enable)
2117 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2118
2119 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2120}
2121
2122/**
2123 * pci_pme_restore - Restore PME configuration after config space restore.
2124 * @dev: PCI device to update.
2125 */
2126void pci_pme_restore(struct pci_dev *dev)
2127{
2128 u16 pmcsr;
2129
2130 if (!dev->pme_support)
2131 return;
2132
2133 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2134 if (dev->wakeup_prepared) {
2135 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2136 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2137 } else {
2138 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2139 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2140 }
2141 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2142}
2143
2144/**
2145 * pci_pme_active - enable or disable PCI device's PME# function
2146 * @dev: PCI device to handle.
2147 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2148 *
2149 * The caller must verify that the device is capable of generating PME# before
2150 * calling this function with @enable equal to 'true'.
2151 */
2152void pci_pme_active(struct pci_dev *dev, bool enable)
2153{
2154 __pci_pme_active(dev, enable);
2155
2156 /*
2157 * PCI (as opposed to PCIe) PME requires that the device have
2158 * its PME# line hooked up correctly. Not all hardware vendors
2159 * do this, so the PME never gets delivered and the device
2160 * remains asleep. The easiest way around this is to
2161 * periodically walk the list of suspended devices and check
2162 * whether any have their PME flag set. The assumption is that
2163 * we'll wake up often enough anyway that this won't be a huge
2164 * hit, and the power savings from the devices will still be a
2165 * win.
2166 *
2167 * Although PCIe uses in-band PME message instead of PME# line
2168 * to report PME, PME does not work for some PCIe devices in
2169 * reality. For example, there are devices that set their PME
2170 * status bits, but don't really bother to send a PME message;
2171 * there are PCI Express Root Ports that don't bother to
2172 * trigger interrupts when they receive PME messages from the
2173 * devices below. So PME poll is used for PCIe devices too.
2174 */
2175
2176 if (dev->pme_poll) {
2177 struct pci_pme_device *pme_dev;
2178 if (enable) {
2179 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2180 GFP_KERNEL);
2181 if (!pme_dev) {
2182 pci_warn(dev, "can't enable PME#\n");
2183 return;
2184 }
2185 pme_dev->dev = dev;
2186 mutex_lock(&pci_pme_list_mutex);
2187 list_add(&pme_dev->list, &pci_pme_list);
2188 if (list_is_singular(&pci_pme_list))
2189 queue_delayed_work(system_freezable_wq,
2190 &pci_pme_work,
2191 msecs_to_jiffies(PME_TIMEOUT));
2192 mutex_unlock(&pci_pme_list_mutex);
2193 } else {
2194 mutex_lock(&pci_pme_list_mutex);
2195 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2196 if (pme_dev->dev == dev) {
2197 list_del(&pme_dev->list);
2198 kfree(pme_dev);
2199 break;
2200 }
2201 }
2202 mutex_unlock(&pci_pme_list_mutex);
2203 }
2204 }
2205
2206 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2207}
2208EXPORT_SYMBOL(pci_pme_active);
2209
2210/**
2211 * __pci_enable_wake - enable PCI device as wakeup event source
2212 * @dev: PCI device affected
2213 * @state: PCI state from which device will issue wakeup events
2214 * @enable: True to enable event generation; false to disable
2215 *
2216 * This enables the device as a wakeup event source, or disables it.
2217 * When such events involves platform-specific hooks, those hooks are
2218 * called automatically by this routine.
2219 *
2220 * Devices with legacy power management (no standard PCI PM capabilities)
2221 * always require such platform hooks.
2222 *
2223 * RETURN VALUE:
2224 * 0 is returned on success
2225 * -EINVAL is returned if device is not supposed to wake up the system
2226 * Error code depending on the platform is returned if both the platform and
2227 * the native mechanism fail to enable the generation of wake-up events
2228 */
2229static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2230{
2231 int ret = 0;
2232
2233 /*
2234 * Bridges that are not power-manageable directly only signal
2235 * wakeup on behalf of subordinate devices which is set up
2236 * elsewhere, so skip them. However, bridges that are
2237 * power-manageable may signal wakeup for themselves (for example,
2238 * on a hotplug event) and they need to be covered here.
2239 */
2240 if (!pci_power_manageable(dev))
2241 return 0;
2242
2243 /* Don't do the same thing twice in a row for one device. */
2244 if (!!enable == !!dev->wakeup_prepared)
2245 return 0;
2246
2247 /*
2248 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2249 * Anderson we should be doing PME# wake enable followed by ACPI wake
2250 * enable. To disable wake-up we call the platform first, for symmetry.
2251 */
2252
2253 if (enable) {
2254 int error;
2255
2256 if (pci_pme_capable(dev, state))
2257 pci_pme_active(dev, true);
2258 else
2259 ret = 1;
2260 error = platform_pci_set_wakeup(dev, true);
2261 if (ret)
2262 ret = error;
2263 if (!ret)
2264 dev->wakeup_prepared = true;
2265 } else {
2266 platform_pci_set_wakeup(dev, false);
2267 pci_pme_active(dev, false);
2268 dev->wakeup_prepared = false;
2269 }
2270
2271 return ret;
2272}
2273
2274/**
2275 * pci_enable_wake - change wakeup settings for a PCI device
2276 * @pci_dev: Target device
2277 * @state: PCI state from which device will issue wakeup events
2278 * @enable: Whether or not to enable event generation
2279 *
2280 * If @enable is set, check device_may_wakeup() for the device before calling
2281 * __pci_enable_wake() for it.
2282 */
2283int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2284{
2285 if (enable && !device_may_wakeup(&pci_dev->dev))
2286 return -EINVAL;
2287
2288 return __pci_enable_wake(pci_dev, state, enable);
2289}
2290EXPORT_SYMBOL(pci_enable_wake);
2291
2292/**
2293 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2294 * @dev: PCI device to prepare
2295 * @enable: True to enable wake-up event generation; false to disable
2296 *
2297 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2298 * and this function allows them to set that up cleanly - pci_enable_wake()
2299 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2300 * ordering constraints.
2301 *
2302 * This function only returns error code if the device is not allowed to wake
2303 * up the system from sleep or it is not capable of generating PME# from both
2304 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2305 */
2306int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2307{
2308 return pci_pme_capable(dev, PCI_D3cold) ?
2309 pci_enable_wake(dev, PCI_D3cold, enable) :
2310 pci_enable_wake(dev, PCI_D3hot, enable);
2311}
2312EXPORT_SYMBOL(pci_wake_from_d3);
2313
2314/**
2315 * pci_target_state - find an appropriate low power state for a given PCI dev
2316 * @dev: PCI device
2317 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2318 *
2319 * Use underlying platform code to find a supported low power state for @dev.
2320 * If the platform can't manage @dev, return the deepest state from which it
2321 * can generate wake events, based on any available PME info.
2322 */
2323static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2324{
2325 pci_power_t target_state = PCI_D3hot;
2326
2327 if (platform_pci_power_manageable(dev)) {
2328 /*
2329 * Call the platform to find the target state for the device.
2330 */
2331 pci_power_t state = platform_pci_choose_state(dev);
2332
2333 switch (state) {
2334 case PCI_POWER_ERROR:
2335 case PCI_UNKNOWN:
2336 break;
2337 case PCI_D1:
2338 case PCI_D2:
2339 if (pci_no_d1d2(dev))
2340 break;
2341 /* else, fall through */
2342 default:
2343 target_state = state;
2344 }
2345
2346 return target_state;
2347 }
2348
2349 if (!dev->pm_cap)
2350 target_state = PCI_D0;
2351
2352 /*
2353 * If the device is in D3cold even though it's not power-manageable by
2354 * the platform, it may have been powered down by non-standard means.
2355 * Best to let it slumber.
2356 */
2357 if (dev->current_state == PCI_D3cold)
2358 target_state = PCI_D3cold;
2359
2360 if (wakeup) {
2361 /*
2362 * Find the deepest state from which the device can generate
2363 * PME#.
2364 */
2365 if (dev->pme_support) {
2366 while (target_state
2367 && !(dev->pme_support & (1 << target_state)))
2368 target_state--;
2369 }
2370 }
2371
2372 return target_state;
2373}
2374
2375/**
2376 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2377 * into a sleep state
2378 * @dev: Device to handle.
2379 *
2380 * Choose the power state appropriate for the device depending on whether
2381 * it can wake up the system and/or is power manageable by the platform
2382 * (PCI_D3hot is the default) and put the device into that state.
2383 */
2384int pci_prepare_to_sleep(struct pci_dev *dev)
2385{
2386 bool wakeup = device_may_wakeup(&dev->dev);
2387 pci_power_t target_state = pci_target_state(dev, wakeup);
2388 int error;
2389
2390 if (target_state == PCI_POWER_ERROR)
2391 return -EIO;
2392
2393 pci_enable_wake(dev, target_state, wakeup);
2394
2395 error = pci_set_power_state(dev, target_state);
2396
2397 if (error)
2398 pci_enable_wake(dev, target_state, false);
2399
2400 return error;
2401}
2402EXPORT_SYMBOL(pci_prepare_to_sleep);
2403
2404/**
2405 * pci_back_from_sleep - turn PCI device on during system-wide transition
2406 * into working state
2407 * @dev: Device to handle.
2408 *
2409 * Disable device's system wake-up capability and put it into D0.
2410 */
2411int pci_back_from_sleep(struct pci_dev *dev)
2412{
2413 pci_enable_wake(dev, PCI_D0, false);
2414 return pci_set_power_state(dev, PCI_D0);
2415}
2416EXPORT_SYMBOL(pci_back_from_sleep);
2417
2418/**
2419 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2420 * @dev: PCI device being suspended.
2421 *
2422 * Prepare @dev to generate wake-up events at run time and put it into a low
2423 * power state.
2424 */
2425int pci_finish_runtime_suspend(struct pci_dev *dev)
2426{
2427 pci_power_t target_state;
2428 int error;
2429
2430 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2431 if (target_state == PCI_POWER_ERROR)
2432 return -EIO;
2433
2434 dev->runtime_d3cold = target_state == PCI_D3cold;
2435
2436 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2437
2438 error = pci_set_power_state(dev, target_state);
2439
2440 if (error) {
2441 pci_enable_wake(dev, target_state, false);
2442 dev->runtime_d3cold = false;
2443 }
2444
2445 return error;
2446}
2447
2448/**
2449 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2450 * @dev: Device to check.
2451 *
2452 * Return true if the device itself is capable of generating wake-up events
2453 * (through the platform or using the native PCIe PME) or if the device supports
2454 * PME and one of its upstream bridges can generate wake-up events.
2455 */
2456bool pci_dev_run_wake(struct pci_dev *dev)
2457{
2458 struct pci_bus *bus = dev->bus;
2459
2460 if (!dev->pme_support)
2461 return false;
2462
2463 /* PME-capable in principle, but not from the target power state */
2464 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2465 return false;
2466
2467 if (device_can_wakeup(&dev->dev))
2468 return true;
2469
2470 while (bus->parent) {
2471 struct pci_dev *bridge = bus->self;
2472
2473 if (device_can_wakeup(&bridge->dev))
2474 return true;
2475
2476 bus = bus->parent;
2477 }
2478
2479 /* We have reached the root bus. */
2480 if (bus->bridge)
2481 return device_can_wakeup(bus->bridge);
2482
2483 return false;
2484}
2485EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2486
2487/**
2488 * pci_dev_need_resume - Check if it is necessary to resume the device.
2489 * @pci_dev: Device to check.
2490 *
2491 * Return 'true' if the device is not runtime-suspended or it has to be
2492 * reconfigured due to wakeup settings difference between system and runtime
2493 * suspend, or the current power state of it is not suitable for the upcoming
2494 * (system-wide) transition.
2495 */
2496bool pci_dev_need_resume(struct pci_dev *pci_dev)
2497{
2498 struct device *dev = &pci_dev->dev;
2499 pci_power_t target_state;
2500
2501 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2502 return true;
2503
2504 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2505
2506 /*
2507 * If the earlier platform check has not triggered, D3cold is just power
2508 * removal on top of D3hot, so no need to resume the device in that
2509 * case.
2510 */
2511 return target_state != pci_dev->current_state &&
2512 target_state != PCI_D3cold &&
2513 pci_dev->current_state != PCI_D3hot;
2514}
2515
2516/**
2517 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2518 * @pci_dev: Device to check.
2519 *
2520 * If the device is suspended and it is not configured for system wakeup,
2521 * disable PME for it to prevent it from waking up the system unnecessarily.
2522 *
2523 * Note that if the device's power state is D3cold and the platform check in
2524 * pci_dev_need_resume() has not triggered, the device's configuration need not
2525 * be changed.
2526 */
2527void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2528{
2529 struct device *dev = &pci_dev->dev;
2530
2531 spin_lock_irq(&dev->power.lock);
2532
2533 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2534 pci_dev->current_state < PCI_D3cold)
2535 __pci_pme_active(pci_dev, false);
2536
2537 spin_unlock_irq(&dev->power.lock);
2538}
2539
2540/**
2541 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2542 * @pci_dev: Device to handle.
2543 *
2544 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2545 * it might have been disabled during the prepare phase of system suspend if
2546 * the device was not configured for system wakeup.
2547 */
2548void pci_dev_complete_resume(struct pci_dev *pci_dev)
2549{
2550 struct device *dev = &pci_dev->dev;
2551
2552 if (!pci_dev_run_wake(pci_dev))
2553 return;
2554
2555 spin_lock_irq(&dev->power.lock);
2556
2557 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2558 __pci_pme_active(pci_dev, true);
2559
2560 spin_unlock_irq(&dev->power.lock);
2561}
2562
2563void pci_config_pm_runtime_get(struct pci_dev *pdev)
2564{
2565 struct device *dev = &pdev->dev;
2566 struct device *parent = dev->parent;
2567
2568 if (parent)
2569 pm_runtime_get_sync(parent);
2570 pm_runtime_get_noresume(dev);
2571 /*
2572 * pdev->current_state is set to PCI_D3cold during suspending,
2573 * so wait until suspending completes
2574 */
2575 pm_runtime_barrier(dev);
2576 /*
2577 * Only need to resume devices in D3cold, because config
2578 * registers are still accessible for devices suspended but
2579 * not in D3cold.
2580 */
2581 if (pdev->current_state == PCI_D3cold)
2582 pm_runtime_resume(dev);
2583}
2584
2585void pci_config_pm_runtime_put(struct pci_dev *pdev)
2586{
2587 struct device *dev = &pdev->dev;
2588 struct device *parent = dev->parent;
2589
2590 pm_runtime_put(dev);
2591 if (parent)
2592 pm_runtime_put_sync(parent);
2593}
2594
2595static const struct dmi_system_id bridge_d3_blacklist[] = {
2596#ifdef CONFIG_X86
2597 {
2598 /*
2599 * Gigabyte X299 root port is not marked as hotplug capable
2600 * which allows Linux to power manage it. However, this
2601 * confuses the BIOS SMI handler so don't power manage root
2602 * ports on that system.
2603 */
2604 .ident = "X299 DESIGNARE EX-CF",
2605 .matches = {
2606 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2607 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2608 },
2609 },
2610#endif
2611 { }
2612};
2613
2614/**
2615 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2616 * @bridge: Bridge to check
2617 *
2618 * This function checks if it is possible to move the bridge to D3.
2619 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2620 */
2621bool pci_bridge_d3_possible(struct pci_dev *bridge)
2622{
2623 if (!pci_is_pcie(bridge))
2624 return false;
2625
2626 switch (pci_pcie_type(bridge)) {
2627 case PCI_EXP_TYPE_ROOT_PORT:
2628 case PCI_EXP_TYPE_UPSTREAM:
2629 case PCI_EXP_TYPE_DOWNSTREAM:
2630 if (pci_bridge_d3_disable)
2631 return false;
2632
2633 /*
2634 * Hotplug ports handled by firmware in System Management Mode
2635 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2636 */
2637 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2638 return false;
2639
2640 if (pci_bridge_d3_force)
2641 return true;
2642
2643 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2644 if (bridge->is_thunderbolt)
2645 return true;
2646
2647 /* Platform might know better if the bridge supports D3 */
2648 if (platform_pci_bridge_d3(bridge))
2649 return true;
2650
2651 /*
2652 * Hotplug ports handled natively by the OS were not validated
2653 * by vendors for runtime D3 at least until 2018 because there
2654 * was no OS support.
2655 */
2656 if (bridge->is_hotplug_bridge)
2657 return false;
2658
2659 if (dmi_check_system(bridge_d3_blacklist))
2660 return false;
2661
2662 /*
2663 * It should be safe to put PCIe ports from 2015 or newer
2664 * to D3.
2665 */
2666 if (dmi_get_bios_year() >= 2015)
2667 return true;
2668 break;
2669 }
2670
2671 return false;
2672}
2673
2674static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2675{
2676 bool *d3cold_ok = data;
2677
2678 if (/* The device needs to be allowed to go D3cold ... */
2679 dev->no_d3cold || !dev->d3cold_allowed ||
2680
2681 /* ... and if it is wakeup capable to do so from D3cold. */
2682 (device_may_wakeup(&dev->dev) &&
2683 !pci_pme_capable(dev, PCI_D3cold)) ||
2684
2685 /* If it is a bridge it must be allowed to go to D3. */
2686 !pci_power_manageable(dev))
2687
2688 *d3cold_ok = false;
2689
2690 return !*d3cold_ok;
2691}
2692
2693/*
2694 * pci_bridge_d3_update - Update bridge D3 capabilities
2695 * @dev: PCI device which is changed
2696 *
2697 * Update upstream bridge PM capabilities accordingly depending on if the
2698 * device PM configuration was changed or the device is being removed. The
2699 * change is also propagated upstream.
2700 */
2701void pci_bridge_d3_update(struct pci_dev *dev)
2702{
2703 bool remove = !device_is_registered(&dev->dev);
2704 struct pci_dev *bridge;
2705 bool d3cold_ok = true;
2706
2707 bridge = pci_upstream_bridge(dev);
2708 if (!bridge || !pci_bridge_d3_possible(bridge))
2709 return;
2710
2711 /*
2712 * If D3 is currently allowed for the bridge, removing one of its
2713 * children won't change that.
2714 */
2715 if (remove && bridge->bridge_d3)
2716 return;
2717
2718 /*
2719 * If D3 is currently allowed for the bridge and a child is added or
2720 * changed, disallowance of D3 can only be caused by that child, so
2721 * we only need to check that single device, not any of its siblings.
2722 *
2723 * If D3 is currently not allowed for the bridge, checking the device
2724 * first may allow us to skip checking its siblings.
2725 */
2726 if (!remove)
2727 pci_dev_check_d3cold(dev, &d3cold_ok);
2728
2729 /*
2730 * If D3 is currently not allowed for the bridge, this may be caused
2731 * either by the device being changed/removed or any of its siblings,
2732 * so we need to go through all children to find out if one of them
2733 * continues to block D3.
2734 */
2735 if (d3cold_ok && !bridge->bridge_d3)
2736 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2737 &d3cold_ok);
2738
2739 if (bridge->bridge_d3 != d3cold_ok) {
2740 bridge->bridge_d3 = d3cold_ok;
2741 /* Propagate change to upstream bridges */
2742 pci_bridge_d3_update(bridge);
2743 }
2744}
2745
2746/**
2747 * pci_d3cold_enable - Enable D3cold for device
2748 * @dev: PCI device to handle
2749 *
2750 * This function can be used in drivers to enable D3cold from the device
2751 * they handle. It also updates upstream PCI bridge PM capabilities
2752 * accordingly.
2753 */
2754void pci_d3cold_enable(struct pci_dev *dev)
2755{
2756 if (dev->no_d3cold) {
2757 dev->no_d3cold = false;
2758 pci_bridge_d3_update(dev);
2759 }
2760}
2761EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2762
2763/**
2764 * pci_d3cold_disable - Disable D3cold for device
2765 * @dev: PCI device to handle
2766 *
2767 * This function can be used in drivers to disable D3cold from the device
2768 * they handle. It also updates upstream PCI bridge PM capabilities
2769 * accordingly.
2770 */
2771void pci_d3cold_disable(struct pci_dev *dev)
2772{
2773 if (!dev->no_d3cold) {
2774 dev->no_d3cold = true;
2775 pci_bridge_d3_update(dev);
2776 }
2777}
2778EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2779
2780/**
2781 * pci_pm_init - Initialize PM functions of given PCI device
2782 * @dev: PCI device to handle.
2783 */
2784void pci_pm_init(struct pci_dev *dev)
2785{
2786 int pm;
2787 u16 status;
2788 u16 pmc;
2789
2790 pm_runtime_forbid(&dev->dev);
2791 pm_runtime_set_active(&dev->dev);
2792 pm_runtime_enable(&dev->dev);
2793 device_enable_async_suspend(&dev->dev);
2794 dev->wakeup_prepared = false;
2795
2796 dev->pm_cap = 0;
2797 dev->pme_support = 0;
2798
2799 /* find PCI PM capability in list */
2800 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2801 if (!pm)
2802 return;
2803 /* Check device's ability to generate PME# */
2804 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2805
2806 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2807 pci_err(dev, "unsupported PM cap regs version (%u)\n",
2808 pmc & PCI_PM_CAP_VER_MASK);
2809 return;
2810 }
2811
2812 dev->pm_cap = pm;
2813 dev->d3_delay = PCI_PM_D3_WAIT;
2814 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2815 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2816 dev->d3cold_allowed = true;
2817
2818 dev->d1_support = false;
2819 dev->d2_support = false;
2820 if (!pci_no_d1d2(dev)) {
2821 if (pmc & PCI_PM_CAP_D1)
2822 dev->d1_support = true;
2823 if (pmc & PCI_PM_CAP_D2)
2824 dev->d2_support = true;
2825
2826 if (dev->d1_support || dev->d2_support)
2827 pci_info(dev, "supports%s%s\n",
2828 dev->d1_support ? " D1" : "",
2829 dev->d2_support ? " D2" : "");
2830 }
2831
2832 pmc &= PCI_PM_CAP_PME_MASK;
2833 if (pmc) {
2834 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
2835 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2836 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2837 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2838 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2839 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2840 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2841 dev->pme_poll = true;
2842 /*
2843 * Make device's PM flags reflect the wake-up capability, but
2844 * let the user space enable it to wake up the system as needed.
2845 */
2846 device_set_wakeup_capable(&dev->dev, true);
2847 /* Disable the PME# generation functionality */
2848 pci_pme_active(dev, false);
2849 }
2850
2851 pci_read_config_word(dev, PCI_STATUS, &status);
2852 if (status & PCI_STATUS_IMM_READY)
2853 dev->imm_ready = 1;
2854}
2855
2856static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2857{
2858 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2859
2860 switch (prop) {
2861 case PCI_EA_P_MEM:
2862 case PCI_EA_P_VF_MEM:
2863 flags |= IORESOURCE_MEM;
2864 break;
2865 case PCI_EA_P_MEM_PREFETCH:
2866 case PCI_EA_P_VF_MEM_PREFETCH:
2867 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2868 break;
2869 case PCI_EA_P_IO:
2870 flags |= IORESOURCE_IO;
2871 break;
2872 default:
2873 return 0;
2874 }
2875
2876 return flags;
2877}
2878
2879static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2880 u8 prop)
2881{
2882 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2883 return &dev->resource[bei];
2884#ifdef CONFIG_PCI_IOV
2885 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2886 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2887 return &dev->resource[PCI_IOV_RESOURCES +
2888 bei - PCI_EA_BEI_VF_BAR0];
2889#endif
2890 else if (bei == PCI_EA_BEI_ROM)
2891 return &dev->resource[PCI_ROM_RESOURCE];
2892 else
2893 return NULL;
2894}
2895
2896/* Read an Enhanced Allocation (EA) entry */
2897static int pci_ea_read(struct pci_dev *dev, int offset)
2898{
2899 struct resource *res;
2900 int ent_size, ent_offset = offset;
2901 resource_size_t start, end;
2902 unsigned long flags;
2903 u32 dw0, bei, base, max_offset;
2904 u8 prop;
2905 bool support_64 = (sizeof(resource_size_t) >= 8);
2906
2907 pci_read_config_dword(dev, ent_offset, &dw0);
2908 ent_offset += 4;
2909
2910 /* Entry size field indicates DWORDs after 1st */
2911 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2912
2913 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2914 goto out;
2915
2916 bei = (dw0 & PCI_EA_BEI) >> 4;
2917 prop = (dw0 & PCI_EA_PP) >> 8;
2918
2919 /*
2920 * If the Property is in the reserved range, try the Secondary
2921 * Property instead.
2922 */
2923 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2924 prop = (dw0 & PCI_EA_SP) >> 16;
2925 if (prop > PCI_EA_P_BRIDGE_IO)
2926 goto out;
2927
2928 res = pci_ea_get_resource(dev, bei, prop);
2929 if (!res) {
2930 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2931 goto out;
2932 }
2933
2934 flags = pci_ea_flags(dev, prop);
2935 if (!flags) {
2936 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2937 goto out;
2938 }
2939
2940 /* Read Base */
2941 pci_read_config_dword(dev, ent_offset, &base);
2942 start = (base & PCI_EA_FIELD_MASK);
2943 ent_offset += 4;
2944
2945 /* Read MaxOffset */
2946 pci_read_config_dword(dev, ent_offset, &max_offset);
2947 ent_offset += 4;
2948
2949 /* Read Base MSBs (if 64-bit entry) */
2950 if (base & PCI_EA_IS_64) {
2951 u32 base_upper;
2952
2953 pci_read_config_dword(dev, ent_offset, &base_upper);
2954 ent_offset += 4;
2955
2956 flags |= IORESOURCE_MEM_64;
2957
2958 /* entry starts above 32-bit boundary, can't use */
2959 if (!support_64 && base_upper)
2960 goto out;
2961
2962 if (support_64)
2963 start |= ((u64)base_upper << 32);
2964 }
2965
2966 end = start + (max_offset | 0x03);
2967
2968 /* Read MaxOffset MSBs (if 64-bit entry) */
2969 if (max_offset & PCI_EA_IS_64) {
2970 u32 max_offset_upper;
2971
2972 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2973 ent_offset += 4;
2974
2975 flags |= IORESOURCE_MEM_64;
2976
2977 /* entry too big, can't use */
2978 if (!support_64 && max_offset_upper)
2979 goto out;
2980
2981 if (support_64)
2982 end += ((u64)max_offset_upper << 32);
2983 }
2984
2985 if (end < start) {
2986 pci_err(dev, "EA Entry crosses address boundary\n");
2987 goto out;
2988 }
2989
2990 if (ent_size != ent_offset - offset) {
2991 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2992 ent_size, ent_offset - offset);
2993 goto out;
2994 }
2995
2996 res->name = pci_name(dev);
2997 res->start = start;
2998 res->end = end;
2999 res->flags = flags;
3000
3001 if (bei <= PCI_EA_BEI_BAR5)
3002 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3003 bei, res, prop);
3004 else if (bei == PCI_EA_BEI_ROM)
3005 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3006 res, prop);
3007 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3008 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3009 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3010 else
3011 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3012 bei, res, prop);
3013
3014out:
3015 return offset + ent_size;
3016}
3017
3018/* Enhanced Allocation Initialization */
3019void pci_ea_init(struct pci_dev *dev)
3020{
3021 int ea;
3022 u8 num_ent;
3023 int offset;
3024 int i;
3025
3026 /* find PCI EA capability in list */
3027 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3028 if (!ea)
3029 return;
3030
3031 /* determine the number of entries */
3032 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3033 &num_ent);
3034 num_ent &= PCI_EA_NUM_ENT_MASK;
3035
3036 offset = ea + PCI_EA_FIRST_ENT;
3037
3038 /* Skip DWORD 2 for type 1 functions */
3039 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3040 offset += 4;
3041
3042 /* parse each EA entry */
3043 for (i = 0; i < num_ent; ++i)
3044 offset = pci_ea_read(dev, offset);
3045}
3046
3047static void pci_add_saved_cap(struct pci_dev *pci_dev,
3048 struct pci_cap_saved_state *new_cap)
3049{
3050 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3051}
3052
3053/**
3054 * _pci_add_cap_save_buffer - allocate buffer for saving given
3055 * capability registers
3056 * @dev: the PCI device
3057 * @cap: the capability to allocate the buffer for
3058 * @extended: Standard or Extended capability ID
3059 * @size: requested size of the buffer
3060 */
3061static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3062 bool extended, unsigned int size)
3063{
3064 int pos;
3065 struct pci_cap_saved_state *save_state;
3066
3067 if (extended)
3068 pos = pci_find_ext_capability(dev, cap);
3069 else
3070 pos = pci_find_capability(dev, cap);
3071
3072 if (!pos)
3073 return 0;
3074
3075 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3076 if (!save_state)
3077 return -ENOMEM;
3078
3079 save_state->cap.cap_nr = cap;
3080 save_state->cap.cap_extended = extended;
3081 save_state->cap.size = size;
3082 pci_add_saved_cap(dev, save_state);
3083
3084 return 0;
3085}
3086
3087int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3088{
3089 return _pci_add_cap_save_buffer(dev, cap, false, size);
3090}
3091
3092int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3093{
3094 return _pci_add_cap_save_buffer(dev, cap, true, size);
3095}
3096
3097/**
3098 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3099 * @dev: the PCI device
3100 */
3101void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3102{
3103 int error;
3104
3105 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3106 PCI_EXP_SAVE_REGS * sizeof(u16));
3107 if (error)
3108 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3109
3110 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3111 if (error)
3112 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3113
3114 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3115 2 * sizeof(u16));
3116 if (error)
3117 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3118
3119 pci_allocate_vc_save_buffers(dev);
3120}
3121
3122void pci_free_cap_save_buffers(struct pci_dev *dev)
3123{
3124 struct pci_cap_saved_state *tmp;
3125 struct hlist_node *n;
3126
3127 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3128 kfree(tmp);
3129}
3130
3131/**
3132 * pci_configure_ari - enable or disable ARI forwarding
3133 * @dev: the PCI device
3134 *
3135 * If @dev and its upstream bridge both support ARI, enable ARI in the
3136 * bridge. Otherwise, disable ARI in the bridge.
3137 */
3138void pci_configure_ari(struct pci_dev *dev)
3139{
3140 u32 cap;
3141 struct pci_dev *bridge;
3142
3143 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3144 return;
3145
3146 bridge = dev->bus->self;
3147 if (!bridge)
3148 return;
3149
3150 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3151 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3152 return;
3153
3154 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3155 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3156 PCI_EXP_DEVCTL2_ARI);
3157 bridge->ari_enabled = 1;
3158 } else {
3159 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3160 PCI_EXP_DEVCTL2_ARI);
3161 bridge->ari_enabled = 0;
3162 }
3163}
3164
3165static int pci_acs_enable;
3166
3167/**
3168 * pci_request_acs - ask for ACS to be enabled if supported
3169 */
3170void pci_request_acs(void)
3171{
3172 pci_acs_enable = 1;
3173}
3174
3175static const char *disable_acs_redir_param;
3176
3177/**
3178 * pci_disable_acs_redir - disable ACS redirect capabilities
3179 * @dev: the PCI device
3180 *
3181 * For only devices specified in the disable_acs_redir parameter.
3182 */
3183static void pci_disable_acs_redir(struct pci_dev *dev)
3184{
3185 int ret = 0;
3186 const char *p;
3187 int pos;
3188 u16 ctrl;
3189
3190 if (!disable_acs_redir_param)
3191 return;
3192
3193 p = disable_acs_redir_param;
3194 while (*p) {
3195 ret = pci_dev_str_match(dev, p, &p);
3196 if (ret < 0) {
3197 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3198 disable_acs_redir_param);
3199
3200 break;
3201 } else if (ret == 1) {
3202 /* Found a match */
3203 break;
3204 }
3205
3206 if (*p != ';' && *p != ',') {
3207 /* End of param or invalid format */
3208 break;
3209 }
3210 p++;
3211 }
3212
3213 if (ret != 1)
3214 return;
3215
3216 if (!pci_dev_specific_disable_acs_redir(dev))
3217 return;
3218
3219 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3220 if (!pos) {
3221 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3222 return;
3223 }
3224
3225 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3226
3227 /* P2P Request & Completion Redirect */
3228 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3229
3230 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3231
3232 pci_info(dev, "disabled ACS redirect\n");
3233}
3234
3235/**
3236 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
3237 * @dev: the PCI device
3238 */
3239static void pci_std_enable_acs(struct pci_dev *dev)
3240{
3241 int pos;
3242 u16 cap;
3243 u16 ctrl;
3244
3245 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3246 if (!pos)
3247 return;
3248
3249 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3250 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3251
3252 /* Source Validation */
3253 ctrl |= (cap & PCI_ACS_SV);
3254
3255 /* P2P Request Redirect */
3256 ctrl |= (cap & PCI_ACS_RR);
3257
3258 /* P2P Completion Redirect */
3259 ctrl |= (cap & PCI_ACS_CR);
3260
3261 /* Upstream Forwarding */
3262 ctrl |= (cap & PCI_ACS_UF);
3263
3264 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3265}
3266
3267/**
3268 * pci_enable_acs - enable ACS if hardware support it
3269 * @dev: the PCI device
3270 */
3271void pci_enable_acs(struct pci_dev *dev)
3272{
3273 if (!pci_acs_enable)
3274 goto disable_acs_redir;
3275
3276 if (!pci_dev_specific_enable_acs(dev))
3277 goto disable_acs_redir;
3278
3279 pci_std_enable_acs(dev);
3280
3281disable_acs_redir:
3282 /*
3283 * Note: pci_disable_acs_redir() must be called even if ACS was not
3284 * enabled by the kernel because it may have been enabled by
3285 * platform firmware. So if we are told to disable it, we should
3286 * always disable it after setting the kernel's default
3287 * preferences.
3288 */
3289 pci_disable_acs_redir(dev);
3290}
3291
3292static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3293{
3294 int pos;
3295 u16 cap, ctrl;
3296
3297 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3298 if (!pos)
3299 return false;
3300
3301 /*
3302 * Except for egress control, capabilities are either required
3303 * or only required if controllable. Features missing from the
3304 * capability field can therefore be assumed as hard-wired enabled.
3305 */
3306 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3307 acs_flags &= (cap | PCI_ACS_EC);
3308
3309 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3310 return (ctrl & acs_flags) == acs_flags;
3311}
3312
3313/**
3314 * pci_acs_enabled - test ACS against required flags for a given device
3315 * @pdev: device to test
3316 * @acs_flags: required PCI ACS flags
3317 *
3318 * Return true if the device supports the provided flags. Automatically
3319 * filters out flags that are not implemented on multifunction devices.
3320 *
3321 * Note that this interface checks the effective ACS capabilities of the
3322 * device rather than the actual capabilities. For instance, most single
3323 * function endpoints are not required to support ACS because they have no
3324 * opportunity for peer-to-peer access. We therefore return 'true'
3325 * regardless of whether the device exposes an ACS capability. This makes
3326 * it much easier for callers of this function to ignore the actual type
3327 * or topology of the device when testing ACS support.
3328 */
3329bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3330{
3331 int ret;
3332
3333 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3334 if (ret >= 0)
3335 return ret > 0;
3336
3337 /*
3338 * Conventional PCI and PCI-X devices never support ACS, either
3339 * effectively or actually. The shared bus topology implies that
3340 * any device on the bus can receive or snoop DMA.
3341 */
3342 if (!pci_is_pcie(pdev))
3343 return false;
3344
3345 switch (pci_pcie_type(pdev)) {
3346 /*
3347 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3348 * but since their primary interface is PCI/X, we conservatively
3349 * handle them as we would a non-PCIe device.
3350 */
3351 case PCI_EXP_TYPE_PCIE_BRIDGE:
3352 /*
3353 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3354 * applicable... must never implement an ACS Extended Capability...".
3355 * This seems arbitrary, but we take a conservative interpretation
3356 * of this statement.
3357 */
3358 case PCI_EXP_TYPE_PCI_BRIDGE:
3359 case PCI_EXP_TYPE_RC_EC:
3360 return false;
3361 /*
3362 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3363 * implement ACS in order to indicate their peer-to-peer capabilities,
3364 * regardless of whether they are single- or multi-function devices.
3365 */
3366 case PCI_EXP_TYPE_DOWNSTREAM:
3367 case PCI_EXP_TYPE_ROOT_PORT:
3368 return pci_acs_flags_enabled(pdev, acs_flags);
3369 /*
3370 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3371 * implemented by the remaining PCIe types to indicate peer-to-peer
3372 * capabilities, but only when they are part of a multifunction
3373 * device. The footnote for section 6.12 indicates the specific
3374 * PCIe types included here.
3375 */
3376 case PCI_EXP_TYPE_ENDPOINT:
3377 case PCI_EXP_TYPE_UPSTREAM:
3378 case PCI_EXP_TYPE_LEG_END:
3379 case PCI_EXP_TYPE_RC_END:
3380 if (!pdev->multifunction)
3381 break;
3382
3383 return pci_acs_flags_enabled(pdev, acs_flags);
3384 }
3385
3386 /*
3387 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3388 * to single function devices with the exception of downstream ports.
3389 */
3390 return true;
3391}
3392
3393/**
3394 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3395 * @start: starting downstream device
3396 * @end: ending upstream device or NULL to search to the root bus
3397 * @acs_flags: required flags
3398 *
3399 * Walk up a device tree from start to end testing PCI ACS support. If
3400 * any step along the way does not support the required flags, return false.
3401 */
3402bool pci_acs_path_enabled(struct pci_dev *start,
3403 struct pci_dev *end, u16 acs_flags)
3404{
3405 struct pci_dev *pdev, *parent = start;
3406
3407 do {
3408 pdev = parent;
3409
3410 if (!pci_acs_enabled(pdev, acs_flags))
3411 return false;
3412
3413 if (pci_is_root_bus(pdev->bus))
3414 return (end == NULL);
3415
3416 parent = pdev->bus->self;
3417 } while (pdev != end);
3418
3419 return true;
3420}
3421
3422/**
3423 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3424 * @pdev: PCI device
3425 * @bar: BAR to find
3426 *
3427 * Helper to find the position of the ctrl register for a BAR.
3428 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3429 * Returns -ENOENT if no ctrl register for the BAR could be found.
3430 */
3431static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3432{
3433 unsigned int pos, nbars, i;
3434 u32 ctrl;
3435
3436 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3437 if (!pos)
3438 return -ENOTSUPP;
3439
3440 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3441 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3442 PCI_REBAR_CTRL_NBAR_SHIFT;
3443
3444 for (i = 0; i < nbars; i++, pos += 8) {
3445 int bar_idx;
3446
3447 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3448 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3449 if (bar_idx == bar)
3450 return pos;
3451 }
3452
3453 return -ENOENT;
3454}
3455
3456/**
3457 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3458 * @pdev: PCI device
3459 * @bar: BAR to query
3460 *
3461 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3462 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3463 */
3464u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3465{
3466 int pos;
3467 u32 cap;
3468
3469 pos = pci_rebar_find_pos(pdev, bar);
3470 if (pos < 0)
3471 return 0;
3472
3473 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3474 return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3475}
3476
3477/**
3478 * pci_rebar_get_current_size - get the current size of a BAR
3479 * @pdev: PCI device
3480 * @bar: BAR to set size to
3481 *
3482 * Read the size of a BAR from the resizable BAR config.
3483 * Returns size if found or negative error code.
3484 */
3485int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3486{
3487 int pos;
3488 u32 ctrl;
3489
3490 pos = pci_rebar_find_pos(pdev, bar);
3491 if (pos < 0)
3492 return pos;
3493
3494 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3495 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3496}
3497
3498/**
3499 * pci_rebar_set_size - set a new size for a BAR
3500 * @pdev: PCI device
3501 * @bar: BAR to set size to
3502 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3503 *
3504 * Set the new size of a BAR as defined in the spec.
3505 * Returns zero if resizing was successful, error code otherwise.
3506 */
3507int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3508{
3509 int pos;
3510 u32 ctrl;
3511
3512 pos = pci_rebar_find_pos(pdev, bar);
3513 if (pos < 0)
3514 return pos;
3515
3516 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3517 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3518 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3519 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3520 return 0;
3521}
3522
3523/**
3524 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3525 * @dev: the PCI device
3526 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3527 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3528 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3529 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3530 *
3531 * Return 0 if all upstream bridges support AtomicOp routing, egress
3532 * blocking is disabled on all upstream ports, and the root port supports
3533 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3534 * AtomicOp completion), or negative otherwise.
3535 */
3536int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3537{
3538 struct pci_bus *bus = dev->bus;
3539 struct pci_dev *bridge;
3540 u32 cap, ctl2;
3541
3542 if (!pci_is_pcie(dev))
3543 return -EINVAL;
3544
3545 /*
3546 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3547 * AtomicOp requesters. For now, we only support endpoints as
3548 * requesters and root ports as completers. No endpoints as
3549 * completers, and no peer-to-peer.
3550 */
3551
3552 switch (pci_pcie_type(dev)) {
3553 case PCI_EXP_TYPE_ENDPOINT:
3554 case PCI_EXP_TYPE_LEG_END:
3555 case PCI_EXP_TYPE_RC_END:
3556 break;
3557 default:
3558 return -EINVAL;
3559 }
3560
3561 while (bus->parent) {
3562 bridge = bus->self;
3563
3564 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3565
3566 switch (pci_pcie_type(bridge)) {
3567 /* Ensure switch ports support AtomicOp routing */
3568 case PCI_EXP_TYPE_UPSTREAM:
3569 case PCI_EXP_TYPE_DOWNSTREAM:
3570 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3571 return -EINVAL;
3572 break;
3573
3574 /* Ensure root port supports all the sizes we care about */
3575 case PCI_EXP_TYPE_ROOT_PORT:
3576 if ((cap & cap_mask) != cap_mask)
3577 return -EINVAL;
3578 break;
3579 }
3580
3581 /* Ensure upstream ports don't block AtomicOps on egress */
3582 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3583 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3584 &ctl2);
3585 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3586 return -EINVAL;
3587 }
3588
3589 bus = bus->parent;
3590 }
3591
3592 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3593 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3594 return 0;
3595}
3596EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3597
3598/**
3599 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3600 * @dev: the PCI device
3601 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3602 *
3603 * Perform INTx swizzling for a device behind one level of bridge. This is
3604 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3605 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3606 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3607 * the PCI Express Base Specification, Revision 2.1)
3608 */
3609u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3610{
3611 int slot;
3612
3613 if (pci_ari_enabled(dev->bus))
3614 slot = 0;
3615 else
3616 slot = PCI_SLOT(dev->devfn);
3617
3618 return (((pin - 1) + slot) % 4) + 1;
3619}
3620
3621int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3622{
3623 u8 pin;
3624
3625 pin = dev->pin;
3626 if (!pin)
3627 return -1;
3628
3629 while (!pci_is_root_bus(dev->bus)) {
3630 pin = pci_swizzle_interrupt_pin(dev, pin);
3631 dev = dev->bus->self;
3632 }
3633 *bridge = dev;
3634 return pin;
3635}
3636
3637/**
3638 * pci_common_swizzle - swizzle INTx all the way to root bridge
3639 * @dev: the PCI device
3640 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3641 *
3642 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3643 * bridges all the way up to a PCI root bus.
3644 */
3645u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3646{
3647 u8 pin = *pinp;
3648
3649 while (!pci_is_root_bus(dev->bus)) {
3650 pin = pci_swizzle_interrupt_pin(dev, pin);
3651 dev = dev->bus->self;
3652 }
3653 *pinp = pin;
3654 return PCI_SLOT(dev->devfn);
3655}
3656EXPORT_SYMBOL_GPL(pci_common_swizzle);
3657
3658/**
3659 * pci_release_region - Release a PCI bar
3660 * @pdev: PCI device whose resources were previously reserved by
3661 * pci_request_region()
3662 * @bar: BAR to release
3663 *
3664 * Releases the PCI I/O and memory resources previously reserved by a
3665 * successful call to pci_request_region(). Call this function only
3666 * after all use of the PCI regions has ceased.
3667 */
3668void pci_release_region(struct pci_dev *pdev, int bar)
3669{
3670 struct pci_devres *dr;
3671
3672 if (pci_resource_len(pdev, bar) == 0)
3673 return;
3674 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3675 release_region(pci_resource_start(pdev, bar),
3676 pci_resource_len(pdev, bar));
3677 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3678 release_mem_region(pci_resource_start(pdev, bar),
3679 pci_resource_len(pdev, bar));
3680
3681 dr = find_pci_dr(pdev);
3682 if (dr)
3683 dr->region_mask &= ~(1 << bar);
3684}
3685EXPORT_SYMBOL(pci_release_region);
3686
3687/**
3688 * __pci_request_region - Reserved PCI I/O and memory resource
3689 * @pdev: PCI device whose resources are to be reserved
3690 * @bar: BAR to be reserved
3691 * @res_name: Name to be associated with resource.
3692 * @exclusive: whether the region access is exclusive or not
3693 *
3694 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3695 * being reserved by owner @res_name. Do not access any
3696 * address inside the PCI regions unless this call returns
3697 * successfully.
3698 *
3699 * If @exclusive is set, then the region is marked so that userspace
3700 * is explicitly not allowed to map the resource via /dev/mem or
3701 * sysfs MMIO access.
3702 *
3703 * Returns 0 on success, or %EBUSY on error. A warning
3704 * message is also printed on failure.
3705 */
3706static int __pci_request_region(struct pci_dev *pdev, int bar,
3707 const char *res_name, int exclusive)
3708{
3709 struct pci_devres *dr;
3710
3711 if (pci_resource_len(pdev, bar) == 0)
3712 return 0;
3713
3714 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3715 if (!request_region(pci_resource_start(pdev, bar),
3716 pci_resource_len(pdev, bar), res_name))
3717 goto err_out;
3718 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3719 if (!__request_mem_region(pci_resource_start(pdev, bar),
3720 pci_resource_len(pdev, bar), res_name,
3721 exclusive))
3722 goto err_out;
3723 }
3724
3725 dr = find_pci_dr(pdev);
3726 if (dr)
3727 dr->region_mask |= 1 << bar;
3728
3729 return 0;
3730
3731err_out:
3732 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3733 &pdev->resource[bar]);
3734 return -EBUSY;
3735}
3736
3737/**
3738 * pci_request_region - Reserve PCI I/O and memory resource
3739 * @pdev: PCI device whose resources are to be reserved
3740 * @bar: BAR to be reserved
3741 * @res_name: Name to be associated with resource
3742 *
3743 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3744 * being reserved by owner @res_name. Do not access any
3745 * address inside the PCI regions unless this call returns
3746 * successfully.
3747 *
3748 * Returns 0 on success, or %EBUSY on error. A warning
3749 * message is also printed on failure.
3750 */
3751int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3752{
3753 return __pci_request_region(pdev, bar, res_name, 0);
3754}
3755EXPORT_SYMBOL(pci_request_region);
3756
3757/**
3758 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3759 * @pdev: PCI device whose resources were previously reserved
3760 * @bars: Bitmask of BARs to be released
3761 *
3762 * Release selected PCI I/O and memory resources previously reserved.
3763 * Call this function only after all use of the PCI regions has ceased.
3764 */
3765void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3766{
3767 int i;
3768
3769 for (i = 0; i < 6; i++)
3770 if (bars & (1 << i))
3771 pci_release_region(pdev, i);
3772}
3773EXPORT_SYMBOL(pci_release_selected_regions);
3774
3775static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3776 const char *res_name, int excl)
3777{
3778 int i;
3779
3780 for (i = 0; i < 6; i++)
3781 if (bars & (1 << i))
3782 if (__pci_request_region(pdev, i, res_name, excl))
3783 goto err_out;
3784 return 0;
3785
3786err_out:
3787 while (--i >= 0)
3788 if (bars & (1 << i))
3789 pci_release_region(pdev, i);
3790
3791 return -EBUSY;
3792}
3793
3794
3795/**
3796 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3797 * @pdev: PCI device whose resources are to be reserved
3798 * @bars: Bitmask of BARs to be requested
3799 * @res_name: Name to be associated with resource
3800 */
3801int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3802 const char *res_name)
3803{
3804 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3805}
3806EXPORT_SYMBOL(pci_request_selected_regions);
3807
3808int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3809 const char *res_name)
3810{
3811 return __pci_request_selected_regions(pdev, bars, res_name,
3812 IORESOURCE_EXCLUSIVE);
3813}
3814EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3815
3816/**
3817 * pci_release_regions - Release reserved PCI I/O and memory resources
3818 * @pdev: PCI device whose resources were previously reserved by
3819 * pci_request_regions()
3820 *
3821 * Releases all PCI I/O and memory resources previously reserved by a
3822 * successful call to pci_request_regions(). Call this function only
3823 * after all use of the PCI regions has ceased.
3824 */
3825
3826void pci_release_regions(struct pci_dev *pdev)
3827{
3828 pci_release_selected_regions(pdev, (1 << 6) - 1);
3829}
3830EXPORT_SYMBOL(pci_release_regions);
3831
3832/**
3833 * pci_request_regions - Reserve PCI I/O and memory resources
3834 * @pdev: PCI device whose resources are to be reserved
3835 * @res_name: Name to be associated with resource.
3836 *
3837 * Mark all PCI regions associated with PCI device @pdev as
3838 * being reserved by owner @res_name. Do not access any
3839 * address inside the PCI regions unless this call returns
3840 * successfully.
3841 *
3842 * Returns 0 on success, or %EBUSY on error. A warning
3843 * message is also printed on failure.
3844 */
3845int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3846{
3847 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3848}
3849EXPORT_SYMBOL(pci_request_regions);
3850
3851/**
3852 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3853 * @pdev: PCI device whose resources are to be reserved
3854 * @res_name: Name to be associated with resource.
3855 *
3856 * Mark all PCI regions associated with PCI device @pdev as being reserved
3857 * by owner @res_name. Do not access any address inside the PCI regions
3858 * unless this call returns successfully.
3859 *
3860 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3861 * and the sysfs MMIO access will not be allowed.
3862 *
3863 * Returns 0 on success, or %EBUSY on error. A warning message is also
3864 * printed on failure.
3865 */
3866int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3867{
3868 return pci_request_selected_regions_exclusive(pdev,
3869 ((1 << 6) - 1), res_name);
3870}
3871EXPORT_SYMBOL(pci_request_regions_exclusive);
3872
3873/*
3874 * Record the PCI IO range (expressed as CPU physical address + size).
3875 * Return a negative value if an error has occurred, zero otherwise
3876 */
3877int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3878 resource_size_t size)
3879{
3880 int ret = 0;
3881#ifdef PCI_IOBASE
3882 struct logic_pio_hwaddr *range;
3883
3884 if (!size || addr + size < addr)
3885 return -EINVAL;
3886
3887 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3888 if (!range)
3889 return -ENOMEM;
3890
3891 range->fwnode = fwnode;
3892 range->size = size;
3893 range->hw_start = addr;
3894 range->flags = LOGIC_PIO_CPU_MMIO;
3895
3896 ret = logic_pio_register_range(range);
3897 if (ret)
3898 kfree(range);
3899#endif
3900
3901 return ret;
3902}
3903
3904phys_addr_t pci_pio_to_address(unsigned long pio)
3905{
3906 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3907
3908#ifdef PCI_IOBASE
3909 if (pio >= MMIO_UPPER_LIMIT)
3910 return address;
3911
3912 address = logic_pio_to_hwaddr(pio);
3913#endif
3914
3915 return address;
3916}
3917
3918unsigned long __weak pci_address_to_pio(phys_addr_t address)
3919{
3920#ifdef PCI_IOBASE
3921 return logic_pio_trans_cpuaddr(address);
3922#else
3923 if (address > IO_SPACE_LIMIT)
3924 return (unsigned long)-1;
3925
3926 return (unsigned long) address;
3927#endif
3928}
3929
3930/**
3931 * pci_remap_iospace - Remap the memory mapped I/O space
3932 * @res: Resource describing the I/O space
3933 * @phys_addr: physical address of range to be mapped
3934 *
3935 * Remap the memory mapped I/O space described by the @res and the CPU
3936 * physical address @phys_addr into virtual address space. Only
3937 * architectures that have memory mapped IO functions defined (and the
3938 * PCI_IOBASE value defined) should call this function.
3939 */
3940int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3941{
3942#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3943 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3944
3945 if (!(res->flags & IORESOURCE_IO))
3946 return -EINVAL;
3947
3948 if (res->end > IO_SPACE_LIMIT)
3949 return -EINVAL;
3950
3951 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3952 pgprot_device(PAGE_KERNEL));
3953#else
3954 /*
3955 * This architecture does not have memory mapped I/O space,
3956 * so this function should never be called
3957 */
3958 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3959 return -ENODEV;
3960#endif
3961}
3962EXPORT_SYMBOL(pci_remap_iospace);
3963
3964/**
3965 * pci_unmap_iospace - Unmap the memory mapped I/O space
3966 * @res: resource to be unmapped
3967 *
3968 * Unmap the CPU virtual address @res from virtual address space. Only
3969 * architectures that have memory mapped IO functions defined (and the
3970 * PCI_IOBASE value defined) should call this function.
3971 */
3972void pci_unmap_iospace(struct resource *res)
3973{
3974#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3975 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3976
3977 unmap_kernel_range(vaddr, resource_size(res));
3978#endif
3979}
3980EXPORT_SYMBOL(pci_unmap_iospace);
3981
3982static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
3983{
3984 struct resource **res = ptr;
3985
3986 pci_unmap_iospace(*res);
3987}
3988
3989/**
3990 * devm_pci_remap_iospace - Managed pci_remap_iospace()
3991 * @dev: Generic device to remap IO address for
3992 * @res: Resource describing the I/O space
3993 * @phys_addr: physical address of range to be mapped
3994 *
3995 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
3996 * detach.
3997 */
3998int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
3999 phys_addr_t phys_addr)
4000{
4001 const struct resource **ptr;
4002 int error;
4003
4004 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4005 if (!ptr)
4006 return -ENOMEM;
4007
4008 error = pci_remap_iospace(res, phys_addr);
4009 if (error) {
4010 devres_free(ptr);
4011 } else {
4012 *ptr = res;
4013 devres_add(dev, ptr);
4014 }
4015
4016 return error;
4017}
4018EXPORT_SYMBOL(devm_pci_remap_iospace);
4019
4020/**
4021 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4022 * @dev: Generic device to remap IO address for
4023 * @offset: Resource address to map
4024 * @size: Size of map
4025 *
4026 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4027 * detach.
4028 */
4029void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4030 resource_size_t offset,
4031 resource_size_t size)
4032{
4033 void __iomem **ptr, *addr;
4034
4035 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4036 if (!ptr)
4037 return NULL;
4038
4039 addr = pci_remap_cfgspace(offset, size);
4040 if (addr) {
4041 *ptr = addr;
4042 devres_add(dev, ptr);
4043 } else
4044 devres_free(ptr);
4045
4046 return addr;
4047}
4048EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4049
4050/**
4051 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4052 * @dev: generic device to handle the resource for
4053 * @res: configuration space resource to be handled
4054 *
4055 * Checks that a resource is a valid memory region, requests the memory
4056 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4057 * proper PCI configuration space memory attributes are guaranteed.
4058 *
4059 * All operations are managed and will be undone on driver detach.
4060 *
4061 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4062 * on failure. Usage example::
4063 *
4064 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4065 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4066 * if (IS_ERR(base))
4067 * return PTR_ERR(base);
4068 */
4069void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4070 struct resource *res)
4071{
4072 resource_size_t size;
4073 const char *name;
4074 void __iomem *dest_ptr;
4075
4076 BUG_ON(!dev);
4077
4078 if (!res || resource_type(res) != IORESOURCE_MEM) {
4079 dev_err(dev, "invalid resource\n");
4080 return IOMEM_ERR_PTR(-EINVAL);
4081 }
4082
4083 size = resource_size(res);
4084 name = res->name ?: dev_name(dev);
4085
4086 if (!devm_request_mem_region(dev, res->start, size, name)) {
4087 dev_err(dev, "can't request region for resource %pR\n", res);
4088 return IOMEM_ERR_PTR(-EBUSY);
4089 }
4090
4091 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4092 if (!dest_ptr) {
4093 dev_err(dev, "ioremap failed for resource %pR\n", res);
4094 devm_release_mem_region(dev, res->start, size);
4095 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4096 }
4097
4098 return dest_ptr;
4099}
4100EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4101
4102static void __pci_set_master(struct pci_dev *dev, bool enable)
4103{
4104 u16 old_cmd, cmd;
4105
4106 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4107 if (enable)
4108 cmd = old_cmd | PCI_COMMAND_MASTER;
4109 else
4110 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4111 if (cmd != old_cmd) {
4112 pci_dbg(dev, "%s bus mastering\n",
4113 enable ? "enabling" : "disabling");
4114 pci_write_config_word(dev, PCI_COMMAND, cmd);
4115 }
4116 dev->is_busmaster = enable;
4117}
4118
4119/**
4120 * pcibios_setup - process "pci=" kernel boot arguments
4121 * @str: string used to pass in "pci=" kernel boot arguments
4122 *
4123 * Process kernel boot arguments. This is the default implementation.
4124 * Architecture specific implementations can override this as necessary.
4125 */
4126char * __weak __init pcibios_setup(char *str)
4127{
4128 return str;
4129}
4130
4131/**
4132 * pcibios_set_master - enable PCI bus-mastering for device dev
4133 * @dev: the PCI device to enable
4134 *
4135 * Enables PCI bus-mastering for the device. This is the default
4136 * implementation. Architecture specific implementations can override
4137 * this if necessary.
4138 */
4139void __weak pcibios_set_master(struct pci_dev *dev)
4140{
4141 u8 lat;
4142
4143 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4144 if (pci_is_pcie(dev))
4145 return;
4146
4147 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4148 if (lat < 16)
4149 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4150 else if (lat > pcibios_max_latency)
4151 lat = pcibios_max_latency;
4152 else
4153 return;
4154
4155 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4156}
4157
4158/**
4159 * pci_set_master - enables bus-mastering for device dev
4160 * @dev: the PCI device to enable
4161 *
4162 * Enables bus-mastering on the device and calls pcibios_set_master()
4163 * to do the needed arch specific settings.
4164 */
4165void pci_set_master(struct pci_dev *dev)
4166{
4167 __pci_set_master(dev, true);
4168 pcibios_set_master(dev);
4169}
4170EXPORT_SYMBOL(pci_set_master);
4171
4172/**
4173 * pci_clear_master - disables bus-mastering for device dev
4174 * @dev: the PCI device to disable
4175 */
4176void pci_clear_master(struct pci_dev *dev)
4177{
4178 __pci_set_master(dev, false);
4179}
4180EXPORT_SYMBOL(pci_clear_master);
4181
4182/**
4183 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4184 * @dev: the PCI device for which MWI is to be enabled
4185 *
4186 * Helper function for pci_set_mwi.
4187 * Originally copied from drivers/net/acenic.c.
4188 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4189 *
4190 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4191 */
4192int pci_set_cacheline_size(struct pci_dev *dev)
4193{
4194 u8 cacheline_size;
4195
4196 if (!pci_cache_line_size)
4197 return -EINVAL;
4198
4199 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4200 equal to or multiple of the right value. */
4201 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4202 if (cacheline_size >= pci_cache_line_size &&
4203 (cacheline_size % pci_cache_line_size) == 0)
4204 return 0;
4205
4206 /* Write the correct value. */
4207 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4208 /* Read it back. */
4209 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4210 if (cacheline_size == pci_cache_line_size)
4211 return 0;
4212
4213 pci_info(dev, "cache line size of %d is not supported\n",
4214 pci_cache_line_size << 2);
4215
4216 return -EINVAL;
4217}
4218EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4219
4220/**
4221 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4222 * @dev: the PCI device for which MWI is enabled
4223 *
4224 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4225 *
4226 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4227 */
4228int pci_set_mwi(struct pci_dev *dev)
4229{
4230#ifdef PCI_DISABLE_MWI
4231 return 0;
4232#else
4233 int rc;
4234 u16 cmd;
4235
4236 rc = pci_set_cacheline_size(dev);
4237 if (rc)
4238 return rc;
4239
4240 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4241 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4242 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4243 cmd |= PCI_COMMAND_INVALIDATE;
4244 pci_write_config_word(dev, PCI_COMMAND, cmd);
4245 }
4246 return 0;
4247#endif
4248}
4249EXPORT_SYMBOL(pci_set_mwi);
4250
4251/**
4252 * pcim_set_mwi - a device-managed pci_set_mwi()
4253 * @dev: the PCI device for which MWI is enabled
4254 *
4255 * Managed pci_set_mwi().
4256 *
4257 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4258 */
4259int pcim_set_mwi(struct pci_dev *dev)
4260{
4261 struct pci_devres *dr;
4262
4263 dr = find_pci_dr(dev);
4264 if (!dr)
4265 return -ENOMEM;
4266
4267 dr->mwi = 1;
4268 return pci_set_mwi(dev);
4269}
4270EXPORT_SYMBOL(pcim_set_mwi);
4271
4272/**
4273 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4274 * @dev: the PCI device for which MWI is enabled
4275 *
4276 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4277 * Callers are not required to check the return value.
4278 *
4279 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4280 */
4281int pci_try_set_mwi(struct pci_dev *dev)
4282{
4283#ifdef PCI_DISABLE_MWI
4284 return 0;
4285#else
4286 return pci_set_mwi(dev);
4287#endif
4288}
4289EXPORT_SYMBOL(pci_try_set_mwi);
4290
4291/**
4292 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4293 * @dev: the PCI device to disable
4294 *
4295 * Disables PCI Memory-Write-Invalidate transaction on the device
4296 */
4297void pci_clear_mwi(struct pci_dev *dev)
4298{
4299#ifndef PCI_DISABLE_MWI
4300 u16 cmd;
4301
4302 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4303 if (cmd & PCI_COMMAND_INVALIDATE) {
4304 cmd &= ~PCI_COMMAND_INVALIDATE;
4305 pci_write_config_word(dev, PCI_COMMAND, cmd);
4306 }
4307#endif
4308}
4309EXPORT_SYMBOL(pci_clear_mwi);
4310
4311/**
4312 * pci_intx - enables/disables PCI INTx for device dev
4313 * @pdev: the PCI device to operate on
4314 * @enable: boolean: whether to enable or disable PCI INTx
4315 *
4316 * Enables/disables PCI INTx for device @pdev
4317 */
4318void pci_intx(struct pci_dev *pdev, int enable)
4319{
4320 u16 pci_command, new;
4321
4322 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4323
4324 if (enable)
4325 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4326 else
4327 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4328
4329 if (new != pci_command) {
4330 struct pci_devres *dr;
4331
4332 pci_write_config_word(pdev, PCI_COMMAND, new);
4333
4334 dr = find_pci_dr(pdev);
4335 if (dr && !dr->restore_intx) {
4336 dr->restore_intx = 1;
4337 dr->orig_intx = !enable;
4338 }
4339 }
4340}
4341EXPORT_SYMBOL_GPL(pci_intx);
4342
4343static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4344{
4345 struct pci_bus *bus = dev->bus;
4346 bool mask_updated = true;
4347 u32 cmd_status_dword;
4348 u16 origcmd, newcmd;
4349 unsigned long flags;
4350 bool irq_pending;
4351
4352 /*
4353 * We do a single dword read to retrieve both command and status.
4354 * Document assumptions that make this possible.
4355 */
4356 BUILD_BUG_ON(PCI_COMMAND % 4);
4357 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4358
4359 raw_spin_lock_irqsave(&pci_lock, flags);
4360
4361 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4362
4363 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4364
4365 /*
4366 * Check interrupt status register to see whether our device
4367 * triggered the interrupt (when masking) or the next IRQ is
4368 * already pending (when unmasking).
4369 */
4370 if (mask != irq_pending) {
4371 mask_updated = false;
4372 goto done;
4373 }
4374
4375 origcmd = cmd_status_dword;
4376 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4377 if (mask)
4378 newcmd |= PCI_COMMAND_INTX_DISABLE;
4379 if (newcmd != origcmd)
4380 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4381
4382done:
4383 raw_spin_unlock_irqrestore(&pci_lock, flags);
4384
4385 return mask_updated;
4386}
4387
4388/**
4389 * pci_check_and_mask_intx - mask INTx on pending interrupt
4390 * @dev: the PCI device to operate on
4391 *
4392 * Check if the device dev has its INTx line asserted, mask it and return
4393 * true in that case. False is returned if no interrupt was pending.
4394 */
4395bool pci_check_and_mask_intx(struct pci_dev *dev)
4396{
4397 return pci_check_and_set_intx_mask(dev, true);
4398}
4399EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4400
4401/**
4402 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4403 * @dev: the PCI device to operate on
4404 *
4405 * Check if the device dev has its INTx line asserted, unmask it if not and
4406 * return true. False is returned and the mask remains active if there was
4407 * still an interrupt pending.
4408 */
4409bool pci_check_and_unmask_intx(struct pci_dev *dev)
4410{
4411 return pci_check_and_set_intx_mask(dev, false);
4412}
4413EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4414
4415/**
4416 * pci_wait_for_pending_transaction - wait for pending transaction
4417 * @dev: the PCI device to operate on
4418 *
4419 * Return 0 if transaction is pending 1 otherwise.
4420 */
4421int pci_wait_for_pending_transaction(struct pci_dev *dev)
4422{
4423 if (!pci_is_pcie(dev))
4424 return 1;
4425
4426 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4427 PCI_EXP_DEVSTA_TRPND);
4428}
4429EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4430
4431static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
4432{
4433 int delay = 1;
4434 u32 id;
4435
4436 /*
4437 * After reset, the device should not silently discard config
4438 * requests, but it may still indicate that it needs more time by
4439 * responding to them with CRS completions. The Root Port will
4440 * generally synthesize ~0 data to complete the read (except when
4441 * CRS SV is enabled and the read was for the Vendor ID; in that
4442 * case it synthesizes 0x0001 data).
4443 *
4444 * Wait for the device to return a non-CRS completion. Read the
4445 * Command register instead of Vendor ID so we don't have to
4446 * contend with the CRS SV value.
4447 */
4448 pci_read_config_dword(dev, PCI_COMMAND, &id);
4449 while (id == ~0) {
4450 if (delay > timeout) {
4451 pci_warn(dev, "not ready %dms after %s; giving up\n",
4452 delay - 1, reset_type);
4453 return -ENOTTY;
4454 }
4455
4456 if (delay > 1000)
4457 pci_info(dev, "not ready %dms after %s; waiting\n",
4458 delay - 1, reset_type);
4459
4460 msleep(delay);
4461 delay *= 2;
4462 pci_read_config_dword(dev, PCI_COMMAND, &id);
4463 }
4464
4465 if (delay > 1000)
4466 pci_info(dev, "ready %dms after %s\n", delay - 1,
4467 reset_type);
4468
4469 return 0;
4470}
4471
4472/**
4473 * pcie_has_flr - check if a device supports function level resets
4474 * @dev: device to check
4475 *
4476 * Returns true if the device advertises support for PCIe function level
4477 * resets.
4478 */
4479bool pcie_has_flr(struct pci_dev *dev)
4480{
4481 u32 cap;
4482
4483 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4484 return false;
4485
4486 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4487 return cap & PCI_EXP_DEVCAP_FLR;
4488}
4489EXPORT_SYMBOL_GPL(pcie_has_flr);
4490
4491/**
4492 * pcie_flr - initiate a PCIe function level reset
4493 * @dev: device to reset
4494 *
4495 * Initiate a function level reset on @dev. The caller should ensure the
4496 * device supports FLR before calling this function, e.g. by using the
4497 * pcie_has_flr() helper.
4498 */
4499int pcie_flr(struct pci_dev *dev)
4500{
4501 if (!pci_wait_for_pending_transaction(dev))
4502 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4503
4504 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4505
4506 if (dev->imm_ready)
4507 return 0;
4508
4509 /*
4510 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4511 * 100ms, but may silently discard requests while the FLR is in
4512 * progress. Wait 100ms before trying to access the device.
4513 */
4514 msleep(100);
4515
4516 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4517}
4518EXPORT_SYMBOL_GPL(pcie_flr);
4519
4520static int pci_af_flr(struct pci_dev *dev, int probe)
4521{
4522 int pos;
4523 u8 cap;
4524
4525 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4526 if (!pos)
4527 return -ENOTTY;
4528
4529 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4530 return -ENOTTY;
4531
4532 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4533 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4534 return -ENOTTY;
4535
4536 if (probe)
4537 return 0;
4538
4539 /*
4540 * Wait for Transaction Pending bit to clear. A word-aligned test
4541 * is used, so we use the control offset rather than status and shift
4542 * the test bit to match.
4543 */
4544 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4545 PCI_AF_STATUS_TP << 8))
4546 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4547
4548 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4549
4550 if (dev->imm_ready)
4551 return 0;
4552
4553 /*
4554 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4555 * updated 27 July 2006; a device must complete an FLR within
4556 * 100ms, but may silently discard requests while the FLR is in
4557 * progress. Wait 100ms before trying to access the device.
4558 */
4559 msleep(100);
4560
4561 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4562}
4563
4564/**
4565 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4566 * @dev: Device to reset.
4567 * @probe: If set, only check if the device can be reset this way.
4568 *
4569 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4570 * unset, it will be reinitialized internally when going from PCI_D3hot to
4571 * PCI_D0. If that's the case and the device is not in a low-power state
4572 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4573 *
4574 * NOTE: This causes the caller to sleep for twice the device power transition
4575 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4576 * by default (i.e. unless the @dev's d3_delay field has a different value).
4577 * Moreover, only devices in D0 can be reset by this function.
4578 */
4579static int pci_pm_reset(struct pci_dev *dev, int probe)
4580{
4581 u16 csr;
4582
4583 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4584 return -ENOTTY;
4585
4586 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4587 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4588 return -ENOTTY;
4589
4590 if (probe)
4591 return 0;
4592
4593 if (dev->current_state != PCI_D0)
4594 return -EINVAL;
4595
4596 csr &= ~PCI_PM_CTRL_STATE_MASK;
4597 csr |= PCI_D3hot;
4598 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4599 pci_dev_d3_sleep(dev);
4600
4601 csr &= ~PCI_PM_CTRL_STATE_MASK;
4602 csr |= PCI_D0;
4603 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4604 pci_dev_d3_sleep(dev);
4605
4606 return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
4607}
4608/**
4609 * pcie_wait_for_link - Wait until link is active or inactive
4610 * @pdev: Bridge device
4611 * @active: waiting for active or inactive?
4612 *
4613 * Use this to wait till link becomes active or inactive.
4614 */
4615bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4616{
4617 int timeout = 1000;
4618 bool ret;
4619 u16 lnk_status;
4620
4621 /*
4622 * Some controllers might not implement link active reporting. In this
4623 * case, we wait for 1000 + 100 ms.
4624 */
4625 if (!pdev->link_active_reporting) {
4626 msleep(1100);
4627 return true;
4628 }
4629
4630 /*
4631 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4632 * after which we should expect an link active if the reset was
4633 * successful. If so, software must wait a minimum 100ms before sending
4634 * configuration requests to devices downstream this port.
4635 *
4636 * If the link fails to activate, either the device was physically
4637 * removed or the link is permanently failed.
4638 */
4639 if (active)
4640 msleep(20);
4641 for (;;) {
4642 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4643 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4644 if (ret == active)
4645 break;
4646 if (timeout <= 0)
4647 break;
4648 msleep(10);
4649 timeout -= 10;
4650 }
4651 if (active && ret)
4652 msleep(100);
4653 else if (ret != active)
4654 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4655 active ? "set" : "cleared");
4656 return ret == active;
4657}
4658
4659void pci_reset_secondary_bus(struct pci_dev *dev)
4660{
4661 u16 ctrl;
4662
4663 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4664 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4665 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4666
4667 /*
4668 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4669 * this to 2ms to ensure that we meet the minimum requirement.
4670 */
4671 msleep(2);
4672
4673 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4674 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4675
4676 /*
4677 * Trhfa for conventional PCI is 2^25 clock cycles.
4678 * Assuming a minimum 33MHz clock this results in a 1s
4679 * delay before we can consider subordinate devices to
4680 * be re-initialized. PCIe has some ways to shorten this,
4681 * but we don't make use of them yet.
4682 */
4683 ssleep(1);
4684}
4685
4686void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4687{
4688 pci_reset_secondary_bus(dev);
4689}
4690
4691/**
4692 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4693 * @dev: Bridge device
4694 *
4695 * Use the bridge control register to assert reset on the secondary bus.
4696 * Devices on the secondary bus are left in power-on state.
4697 */
4698int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4699{
4700 pcibios_reset_secondary_bus(dev);
4701
4702 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4703}
4704EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4705
4706static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4707{
4708 struct pci_dev *pdev;
4709
4710 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4711 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4712 return -ENOTTY;
4713
4714 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4715 if (pdev != dev)
4716 return -ENOTTY;
4717
4718 if (probe)
4719 return 0;
4720
4721 return pci_bridge_secondary_bus_reset(dev->bus->self);
4722}
4723
4724static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4725{
4726 int rc = -ENOTTY;
4727
4728 if (!hotplug || !try_module_get(hotplug->owner))
4729 return rc;
4730
4731 if (hotplug->ops->reset_slot)
4732 rc = hotplug->ops->reset_slot(hotplug, probe);
4733
4734 module_put(hotplug->owner);
4735
4736 return rc;
4737}
4738
4739static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4740{
4741 struct pci_dev *pdev;
4742
4743 if (dev->subordinate || !dev->slot ||
4744 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4745 return -ENOTTY;
4746
4747 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4748 if (pdev != dev && pdev->slot == dev->slot)
4749 return -ENOTTY;
4750
4751 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4752}
4753
4754static void pci_dev_lock(struct pci_dev *dev)
4755{
4756 pci_cfg_access_lock(dev);
4757 /* block PM suspend, driver probe, etc. */
4758 device_lock(&dev->dev);
4759}
4760
4761/* Return 1 on successful lock, 0 on contention */
4762static int pci_dev_trylock(struct pci_dev *dev)
4763{
4764 if (pci_cfg_access_trylock(dev)) {
4765 if (device_trylock(&dev->dev))
4766 return 1;
4767 pci_cfg_access_unlock(dev);
4768 }
4769
4770 return 0;
4771}
4772
4773static void pci_dev_unlock(struct pci_dev *dev)
4774{
4775 device_unlock(&dev->dev);
4776 pci_cfg_access_unlock(dev);
4777}
4778
4779static void pci_dev_save_and_disable(struct pci_dev *dev)
4780{
4781 const struct pci_error_handlers *err_handler =
4782 dev->driver ? dev->driver->err_handler : NULL;
4783
4784 /*
4785 * dev->driver->err_handler->reset_prepare() is protected against
4786 * races with ->remove() by the device lock, which must be held by
4787 * the caller.
4788 */
4789 if (err_handler && err_handler->reset_prepare)
4790 err_handler->reset_prepare(dev);
4791
4792 /*
4793 * Wake-up device prior to save. PM registers default to D0 after
4794 * reset and a simple register restore doesn't reliably return
4795 * to a non-D0 state anyway.
4796 */
4797 pci_set_power_state(dev, PCI_D0);
4798
4799 pci_save_state(dev);
4800 /*
4801 * Disable the device by clearing the Command register, except for
4802 * INTx-disable which is set. This not only disables MMIO and I/O port
4803 * BARs, but also prevents the device from being Bus Master, preventing
4804 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4805 * compliant devices, INTx-disable prevents legacy interrupts.
4806 */
4807 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4808}
4809
4810static void pci_dev_restore(struct pci_dev *dev)
4811{
4812 const struct pci_error_handlers *err_handler =
4813 dev->driver ? dev->driver->err_handler : NULL;
4814
4815 pci_restore_state(dev);
4816
4817 /*
4818 * dev->driver->err_handler->reset_done() is protected against
4819 * races with ->remove() by the device lock, which must be held by
4820 * the caller.
4821 */
4822 if (err_handler && err_handler->reset_done)
4823 err_handler->reset_done(dev);
4824}
4825
4826/**
4827 * __pci_reset_function_locked - reset a PCI device function while holding
4828 * the @dev mutex lock.
4829 * @dev: PCI device to reset
4830 *
4831 * Some devices allow an individual function to be reset without affecting
4832 * other functions in the same device. The PCI device must be responsive
4833 * to PCI config space in order to use this function.
4834 *
4835 * The device function is presumed to be unused and the caller is holding
4836 * the device mutex lock when this function is called.
4837 *
4838 * Resetting the device will make the contents of PCI configuration space
4839 * random, so any caller of this must be prepared to reinitialise the
4840 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4841 * etc.
4842 *
4843 * Returns 0 if the device function was successfully reset or negative if the
4844 * device doesn't support resetting a single function.
4845 */
4846int __pci_reset_function_locked(struct pci_dev *dev)
4847{
4848 int rc;
4849
4850 might_sleep();
4851
4852 /*
4853 * A reset method returns -ENOTTY if it doesn't support this device
4854 * and we should try the next method.
4855 *
4856 * If it returns 0 (success), we're finished. If it returns any
4857 * other error, we're also finished: this indicates that further
4858 * reset mechanisms might be broken on the device.
4859 */
4860 rc = pci_dev_specific_reset(dev, 0);
4861 if (rc != -ENOTTY)
4862 return rc;
4863 if (pcie_has_flr(dev)) {
4864 rc = pcie_flr(dev);
4865 if (rc != -ENOTTY)
4866 return rc;
4867 }
4868 rc = pci_af_flr(dev, 0);
4869 if (rc != -ENOTTY)
4870 return rc;
4871 rc = pci_pm_reset(dev, 0);
4872 if (rc != -ENOTTY)
4873 return rc;
4874 rc = pci_dev_reset_slot_function(dev, 0);
4875 if (rc != -ENOTTY)
4876 return rc;
4877 return pci_parent_bus_reset(dev, 0);
4878}
4879EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4880
4881/**
4882 * pci_probe_reset_function - check whether the device can be safely reset
4883 * @dev: PCI device to reset
4884 *
4885 * Some devices allow an individual function to be reset without affecting
4886 * other functions in the same device. The PCI device must be responsive
4887 * to PCI config space in order to use this function.
4888 *
4889 * Returns 0 if the device function can be reset or negative if the
4890 * device doesn't support resetting a single function.
4891 */
4892int pci_probe_reset_function(struct pci_dev *dev)
4893{
4894 int rc;
4895
4896 might_sleep();
4897
4898 rc = pci_dev_specific_reset(dev, 1);
4899 if (rc != -ENOTTY)
4900 return rc;
4901 if (pcie_has_flr(dev))
4902 return 0;
4903 rc = pci_af_flr(dev, 1);
4904 if (rc != -ENOTTY)
4905 return rc;
4906 rc = pci_pm_reset(dev, 1);
4907 if (rc != -ENOTTY)
4908 return rc;
4909 rc = pci_dev_reset_slot_function(dev, 1);
4910 if (rc != -ENOTTY)
4911 return rc;
4912
4913 return pci_parent_bus_reset(dev, 1);
4914}
4915
4916/**
4917 * pci_reset_function - quiesce and reset a PCI device function
4918 * @dev: PCI device to reset
4919 *
4920 * Some devices allow an individual function to be reset without affecting
4921 * other functions in the same device. The PCI device must be responsive
4922 * to PCI config space in order to use this function.
4923 *
4924 * This function does not just reset the PCI portion of a device, but
4925 * clears all the state associated with the device. This function differs
4926 * from __pci_reset_function_locked() in that it saves and restores device state
4927 * over the reset and takes the PCI device lock.
4928 *
4929 * Returns 0 if the device function was successfully reset or negative if the
4930 * device doesn't support resetting a single function.
4931 */
4932int pci_reset_function(struct pci_dev *dev)
4933{
4934 int rc;
4935
4936 if (!dev->reset_fn)
4937 return -ENOTTY;
4938
4939 pci_dev_lock(dev);
4940 pci_dev_save_and_disable(dev);
4941
4942 rc = __pci_reset_function_locked(dev);
4943
4944 pci_dev_restore(dev);
4945 pci_dev_unlock(dev);
4946
4947 return rc;
4948}
4949EXPORT_SYMBOL_GPL(pci_reset_function);
4950
4951/**
4952 * pci_reset_function_locked - quiesce and reset a PCI device function
4953 * @dev: PCI device to reset
4954 *
4955 * Some devices allow an individual function to be reset without affecting
4956 * other functions in the same device. The PCI device must be responsive
4957 * to PCI config space in order to use this function.
4958 *
4959 * This function does not just reset the PCI portion of a device, but
4960 * clears all the state associated with the device. This function differs
4961 * from __pci_reset_function_locked() in that it saves and restores device state
4962 * over the reset. It also differs from pci_reset_function() in that it
4963 * requires the PCI device lock to be held.
4964 *
4965 * Returns 0 if the device function was successfully reset or negative if the
4966 * device doesn't support resetting a single function.
4967 */
4968int pci_reset_function_locked(struct pci_dev *dev)
4969{
4970 int rc;
4971
4972 if (!dev->reset_fn)
4973 return -ENOTTY;
4974
4975 pci_dev_save_and_disable(dev);
4976
4977 rc = __pci_reset_function_locked(dev);
4978
4979 pci_dev_restore(dev);
4980
4981 return rc;
4982}
4983EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4984
4985/**
4986 * pci_try_reset_function - quiesce and reset a PCI device function
4987 * @dev: PCI device to reset
4988 *
4989 * Same as above, except return -EAGAIN if unable to lock device.
4990 */
4991int pci_try_reset_function(struct pci_dev *dev)
4992{
4993 int rc;
4994
4995 if (!dev->reset_fn)
4996 return -ENOTTY;
4997
4998 if (!pci_dev_trylock(dev))
4999 return -EAGAIN;
5000
5001 pci_dev_save_and_disable(dev);
5002 rc = __pci_reset_function_locked(dev);
5003 pci_dev_restore(dev);
5004 pci_dev_unlock(dev);
5005
5006 return rc;
5007}
5008EXPORT_SYMBOL_GPL(pci_try_reset_function);
5009
5010/* Do any devices on or below this bus prevent a bus reset? */
5011static bool pci_bus_resetable(struct pci_bus *bus)
5012{
5013 struct pci_dev *dev;
5014
5015
5016 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5017 return false;
5018
5019 list_for_each_entry(dev, &bus->devices, bus_list) {
5020 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5021 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5022 return false;
5023 }
5024
5025 return true;
5026}
5027
5028/* Lock devices from the top of the tree down */
5029static void pci_bus_lock(struct pci_bus *bus)
5030{
5031 struct pci_dev *dev;
5032
5033 list_for_each_entry(dev, &bus->devices, bus_list) {
5034 pci_dev_lock(dev);
5035 if (dev->subordinate)
5036 pci_bus_lock(dev->subordinate);
5037 }
5038}
5039
5040/* Unlock devices from the bottom of the tree up */
5041static void pci_bus_unlock(struct pci_bus *bus)
5042{
5043 struct pci_dev *dev;
5044
5045 list_for_each_entry(dev, &bus->devices, bus_list) {
5046 if (dev->subordinate)
5047 pci_bus_unlock(dev->subordinate);
5048 pci_dev_unlock(dev);
5049 }
5050}
5051
5052/* Return 1 on successful lock, 0 on contention */
5053static int pci_bus_trylock(struct pci_bus *bus)
5054{
5055 struct pci_dev *dev;
5056
5057 list_for_each_entry(dev, &bus->devices, bus_list) {
5058 if (!pci_dev_trylock(dev))
5059 goto unlock;
5060 if (dev->subordinate) {
5061 if (!pci_bus_trylock(dev->subordinate)) {
5062 pci_dev_unlock(dev);
5063 goto unlock;
5064 }
5065 }
5066 }
5067 return 1;
5068
5069unlock:
5070 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5071 if (dev->subordinate)
5072 pci_bus_unlock(dev->subordinate);
5073 pci_dev_unlock(dev);
5074 }
5075 return 0;
5076}
5077
5078/* Do any devices on or below this slot prevent a bus reset? */
5079static bool pci_slot_resetable(struct pci_slot *slot)
5080{
5081 struct pci_dev *dev;
5082
5083 if (slot->bus->self &&
5084 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5085 return false;
5086
5087 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5088 if (!dev->slot || dev->slot != slot)
5089 continue;
5090 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5091 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5092 return false;
5093 }
5094
5095 return true;
5096}
5097
5098/* Lock devices from the top of the tree down */
5099static void pci_slot_lock(struct pci_slot *slot)
5100{
5101 struct pci_dev *dev;
5102
5103 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5104 if (!dev->slot || dev->slot != slot)
5105 continue;
5106 pci_dev_lock(dev);
5107 if (dev->subordinate)
5108 pci_bus_lock(dev->subordinate);
5109 }
5110}
5111
5112/* Unlock devices from the bottom of the tree up */
5113static void pci_slot_unlock(struct pci_slot *slot)
5114{
5115 struct pci_dev *dev;
5116
5117 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5118 if (!dev->slot || dev->slot != slot)
5119 continue;
5120 if (dev->subordinate)
5121 pci_bus_unlock(dev->subordinate);
5122 pci_dev_unlock(dev);
5123 }
5124}
5125
5126/* Return 1 on successful lock, 0 on contention */
5127static int pci_slot_trylock(struct pci_slot *slot)
5128{
5129 struct pci_dev *dev;
5130
5131 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5132 if (!dev->slot || dev->slot != slot)
5133 continue;
5134 if (!pci_dev_trylock(dev))
5135 goto unlock;
5136 if (dev->subordinate) {
5137 if (!pci_bus_trylock(dev->subordinate)) {
5138 pci_dev_unlock(dev);
5139 goto unlock;
5140 }
5141 }
5142 }
5143 return 1;
5144
5145unlock:
5146 list_for_each_entry_continue_reverse(dev,
5147 &slot->bus->devices, bus_list) {
5148 if (!dev->slot || dev->slot != slot)
5149 continue;
5150 if (dev->subordinate)
5151 pci_bus_unlock(dev->subordinate);
5152 pci_dev_unlock(dev);
5153 }
5154 return 0;
5155}
5156
5157/*
5158 * Save and disable devices from the top of the tree down while holding
5159 * the @dev mutex lock for the entire tree.
5160 */
5161static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5162{
5163 struct pci_dev *dev;
5164
5165 list_for_each_entry(dev, &bus->devices, bus_list) {
5166 pci_dev_save_and_disable(dev);
5167 if (dev->subordinate)
5168 pci_bus_save_and_disable_locked(dev->subordinate);
5169 }
5170}
5171
5172/*
5173 * Restore devices from top of the tree down while holding @dev mutex lock
5174 * for the entire tree. Parent bridges need to be restored before we can
5175 * get to subordinate devices.
5176 */
5177static void pci_bus_restore_locked(struct pci_bus *bus)
5178{
5179 struct pci_dev *dev;
5180
5181 list_for_each_entry(dev, &bus->devices, bus_list) {
5182 pci_dev_restore(dev);
5183 if (dev->subordinate)
5184 pci_bus_restore_locked(dev->subordinate);
5185 }
5186}
5187
5188/*
5189 * Save and disable devices from the top of the tree down while holding
5190 * the @dev mutex lock for the entire tree.
5191 */
5192static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5193{
5194 struct pci_dev *dev;
5195
5196 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5197 if (!dev->slot || dev->slot != slot)
5198 continue;
5199 pci_dev_save_and_disable(dev);
5200 if (dev->subordinate)
5201 pci_bus_save_and_disable_locked(dev->subordinate);
5202 }
5203}
5204
5205/*
5206 * Restore devices from top of the tree down while holding @dev mutex lock
5207 * for the entire tree. Parent bridges need to be restored before we can
5208 * get to subordinate devices.
5209 */
5210static void pci_slot_restore_locked(struct pci_slot *slot)
5211{
5212 struct pci_dev *dev;
5213
5214 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5215 if (!dev->slot || dev->slot != slot)
5216 continue;
5217 pci_dev_restore(dev);
5218 if (dev->subordinate)
5219 pci_bus_restore_locked(dev->subordinate);
5220 }
5221}
5222
5223static int pci_slot_reset(struct pci_slot *slot, int probe)
5224{
5225 int rc;
5226
5227 if (!slot || !pci_slot_resetable(slot))
5228 return -ENOTTY;
5229
5230 if (!probe)
5231 pci_slot_lock(slot);
5232
5233 might_sleep();
5234
5235 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5236
5237 if (!probe)
5238 pci_slot_unlock(slot);
5239
5240 return rc;
5241}
5242
5243/**
5244 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5245 * @slot: PCI slot to probe
5246 *
5247 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5248 */
5249int pci_probe_reset_slot(struct pci_slot *slot)
5250{
5251 return pci_slot_reset(slot, 1);
5252}
5253EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5254
5255/**
5256 * __pci_reset_slot - Try to reset a PCI slot
5257 * @slot: PCI slot to reset
5258 *
5259 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5260 * independent of other slots. For instance, some slots may support slot power
5261 * control. In the case of a 1:1 bus to slot architecture, this function may
5262 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5263 * Generally a slot reset should be attempted before a bus reset. All of the
5264 * function of the slot and any subordinate buses behind the slot are reset
5265 * through this function. PCI config space of all devices in the slot and
5266 * behind the slot is saved before and restored after reset.
5267 *
5268 * Same as above except return -EAGAIN if the slot cannot be locked
5269 */
5270static int __pci_reset_slot(struct pci_slot *slot)
5271{
5272 int rc;
5273
5274 rc = pci_slot_reset(slot, 1);
5275 if (rc)
5276 return rc;
5277
5278 if (pci_slot_trylock(slot)) {
5279 pci_slot_save_and_disable_locked(slot);
5280 might_sleep();
5281 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5282 pci_slot_restore_locked(slot);
5283 pci_slot_unlock(slot);
5284 } else
5285 rc = -EAGAIN;
5286
5287 return rc;
5288}
5289
5290static int pci_bus_reset(struct pci_bus *bus, int probe)
5291{
5292 int ret;
5293
5294 if (!bus->self || !pci_bus_resetable(bus))
5295 return -ENOTTY;
5296
5297 if (probe)
5298 return 0;
5299
5300 pci_bus_lock(bus);
5301
5302 might_sleep();
5303
5304 ret = pci_bridge_secondary_bus_reset(bus->self);
5305
5306 pci_bus_unlock(bus);
5307
5308 return ret;
5309}
5310
5311/**
5312 * pci_bus_error_reset - reset the bridge's subordinate bus
5313 * @bridge: The parent device that connects to the bus to reset
5314 *
5315 * This function will first try to reset the slots on this bus if the method is
5316 * available. If slot reset fails or is not available, this will fall back to a
5317 * secondary bus reset.
5318 */
5319int pci_bus_error_reset(struct pci_dev *bridge)
5320{
5321 struct pci_bus *bus = bridge->subordinate;
5322 struct pci_slot *slot;
5323
5324 if (!bus)
5325 return -ENOTTY;
5326
5327 mutex_lock(&pci_slot_mutex);
5328 if (list_empty(&bus->slots))
5329 goto bus_reset;
5330
5331 list_for_each_entry(slot, &bus->slots, list)
5332 if (pci_probe_reset_slot(slot))
5333 goto bus_reset;
5334
5335 list_for_each_entry(slot, &bus->slots, list)
5336 if (pci_slot_reset(slot, 0))
5337 goto bus_reset;
5338
5339 mutex_unlock(&pci_slot_mutex);
5340 return 0;
5341bus_reset:
5342 mutex_unlock(&pci_slot_mutex);
5343 return pci_bus_reset(bridge->subordinate, 0);
5344}
5345
5346/**
5347 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5348 * @bus: PCI bus to probe
5349 *
5350 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5351 */
5352int pci_probe_reset_bus(struct pci_bus *bus)
5353{
5354 return pci_bus_reset(bus, 1);
5355}
5356EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5357
5358/**
5359 * __pci_reset_bus - Try to reset a PCI bus
5360 * @bus: top level PCI bus to reset
5361 *
5362 * Same as above except return -EAGAIN if the bus cannot be locked
5363 */
5364static int __pci_reset_bus(struct pci_bus *bus)
5365{
5366 int rc;
5367
5368 rc = pci_bus_reset(bus, 1);
5369 if (rc)
5370 return rc;
5371
5372 if (pci_bus_trylock(bus)) {
5373 pci_bus_save_and_disable_locked(bus);
5374 might_sleep();
5375 rc = pci_bridge_secondary_bus_reset(bus->self);
5376 pci_bus_restore_locked(bus);
5377 pci_bus_unlock(bus);
5378 } else
5379 rc = -EAGAIN;
5380
5381 return rc;
5382}
5383
5384/**
5385 * pci_reset_bus - Try to reset a PCI bus
5386 * @pdev: top level PCI device to reset via slot/bus
5387 *
5388 * Same as above except return -EAGAIN if the bus cannot be locked
5389 */
5390int pci_reset_bus(struct pci_dev *pdev)
5391{
5392 return (!pci_probe_reset_slot(pdev->slot)) ?
5393 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5394}
5395EXPORT_SYMBOL_GPL(pci_reset_bus);
5396
5397/**
5398 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5399 * @dev: PCI device to query
5400 *
5401 * Returns mmrbc: maximum designed memory read count in bytes or
5402 * appropriate error value.
5403 */
5404int pcix_get_max_mmrbc(struct pci_dev *dev)
5405{
5406 int cap;
5407 u32 stat;
5408
5409 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5410 if (!cap)
5411 return -EINVAL;
5412
5413 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5414 return -EINVAL;
5415
5416 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5417}
5418EXPORT_SYMBOL(pcix_get_max_mmrbc);
5419
5420/**
5421 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5422 * @dev: PCI device to query
5423 *
5424 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5425 * value.
5426 */
5427int pcix_get_mmrbc(struct pci_dev *dev)
5428{
5429 int cap;
5430 u16 cmd;
5431
5432 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5433 if (!cap)
5434 return -EINVAL;
5435
5436 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5437 return -EINVAL;
5438
5439 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5440}
5441EXPORT_SYMBOL(pcix_get_mmrbc);
5442
5443/**
5444 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5445 * @dev: PCI device to query
5446 * @mmrbc: maximum memory read count in bytes
5447 * valid values are 512, 1024, 2048, 4096
5448 *
5449 * If possible sets maximum memory read byte count, some bridges have errata
5450 * that prevent this.
5451 */
5452int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5453{
5454 int cap;
5455 u32 stat, v, o;
5456 u16 cmd;
5457
5458 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5459 return -EINVAL;
5460
5461 v = ffs(mmrbc) - 10;
5462
5463 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5464 if (!cap)
5465 return -EINVAL;
5466
5467 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5468 return -EINVAL;
5469
5470 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5471 return -E2BIG;
5472
5473 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5474 return -EINVAL;
5475
5476 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5477 if (o != v) {
5478 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5479 return -EIO;
5480
5481 cmd &= ~PCI_X_CMD_MAX_READ;
5482 cmd |= v << 2;
5483 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5484 return -EIO;
5485 }
5486 return 0;
5487}
5488EXPORT_SYMBOL(pcix_set_mmrbc);
5489
5490/**
5491 * pcie_get_readrq - get PCI Express read request size
5492 * @dev: PCI device to query
5493 *
5494 * Returns maximum memory read request in bytes or appropriate error value.
5495 */
5496int pcie_get_readrq(struct pci_dev *dev)
5497{
5498 u16 ctl;
5499
5500 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5501
5502 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5503}
5504EXPORT_SYMBOL(pcie_get_readrq);
5505
5506/**
5507 * pcie_set_readrq - set PCI Express maximum memory read request
5508 * @dev: PCI device to query
5509 * @rq: maximum memory read count in bytes
5510 * valid values are 128, 256, 512, 1024, 2048, 4096
5511 *
5512 * If possible sets maximum memory read request in bytes
5513 */
5514int pcie_set_readrq(struct pci_dev *dev, int rq)
5515{
5516 u16 v;
5517
5518 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5519 return -EINVAL;
5520
5521 /*
5522 * If using the "performance" PCIe config, we clamp the read rq
5523 * size to the max packet size to keep the host bridge from
5524 * generating requests larger than we can cope with.
5525 */
5526 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5527 int mps = pcie_get_mps(dev);
5528
5529 if (mps < rq)
5530 rq = mps;
5531 }
5532
5533 v = (ffs(rq) - 8) << 12;
5534
5535 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5536 PCI_EXP_DEVCTL_READRQ, v);
5537}
5538EXPORT_SYMBOL(pcie_set_readrq);
5539
5540/**
5541 * pcie_get_mps - get PCI Express maximum payload size
5542 * @dev: PCI device to query
5543 *
5544 * Returns maximum payload size in bytes
5545 */
5546int pcie_get_mps(struct pci_dev *dev)
5547{
5548 u16 ctl;
5549
5550 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5551
5552 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5553}
5554EXPORT_SYMBOL(pcie_get_mps);
5555
5556/**
5557 * pcie_set_mps - set PCI Express maximum payload size
5558 * @dev: PCI device to query
5559 * @mps: maximum payload size in bytes
5560 * valid values are 128, 256, 512, 1024, 2048, 4096
5561 *
5562 * If possible sets maximum payload size
5563 */
5564int pcie_set_mps(struct pci_dev *dev, int mps)
5565{
5566 u16 v;
5567
5568 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5569 return -EINVAL;
5570
5571 v = ffs(mps) - 8;
5572 if (v > dev->pcie_mpss)
5573 return -EINVAL;
5574 v <<= 5;
5575
5576 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5577 PCI_EXP_DEVCTL_PAYLOAD, v);
5578}
5579EXPORT_SYMBOL(pcie_set_mps);
5580
5581/**
5582 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5583 * device and its bandwidth limitation
5584 * @dev: PCI device to query
5585 * @limiting_dev: storage for device causing the bandwidth limitation
5586 * @speed: storage for speed of limiting device
5587 * @width: storage for width of limiting device
5588 *
5589 * Walk up the PCI device chain and find the point where the minimum
5590 * bandwidth is available. Return the bandwidth available there and (if
5591 * limiting_dev, speed, and width pointers are supplied) information about
5592 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5593 * raw bandwidth.
5594 */
5595u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5596 enum pci_bus_speed *speed,
5597 enum pcie_link_width *width)
5598{
5599 u16 lnksta;
5600 enum pci_bus_speed next_speed;
5601 enum pcie_link_width next_width;
5602 u32 bw, next_bw;
5603
5604 if (speed)
5605 *speed = PCI_SPEED_UNKNOWN;
5606 if (width)
5607 *width = PCIE_LNK_WIDTH_UNKNOWN;
5608
5609 bw = 0;
5610
5611 while (dev) {
5612 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5613
5614 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5615 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5616 PCI_EXP_LNKSTA_NLW_SHIFT;
5617
5618 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5619
5620 /* Check if current device limits the total bandwidth */
5621 if (!bw || next_bw <= bw) {
5622 bw = next_bw;
5623
5624 if (limiting_dev)
5625 *limiting_dev = dev;
5626 if (speed)
5627 *speed = next_speed;
5628 if (width)
5629 *width = next_width;
5630 }
5631
5632 dev = pci_upstream_bridge(dev);
5633 }
5634
5635 return bw;
5636}
5637EXPORT_SYMBOL(pcie_bandwidth_available);
5638
5639/**
5640 * pcie_get_speed_cap - query for the PCI device's link speed capability
5641 * @dev: PCI device to query
5642 *
5643 * Query the PCI device speed capability. Return the maximum link speed
5644 * supported by the device.
5645 */
5646enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5647{
5648 u32 lnkcap2, lnkcap;
5649
5650 /*
5651 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5652 * implementation note there recommends using the Supported Link
5653 * Speeds Vector in Link Capabilities 2 when supported.
5654 *
5655 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5656 * should use the Supported Link Speeds field in Link Capabilities,
5657 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5658 */
5659 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5660 if (lnkcap2) { /* PCIe r3.0-compliant */
5661 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_32_0GB)
5662 return PCIE_SPEED_32_0GT;
5663 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5664 return PCIE_SPEED_16_0GT;
5665 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5666 return PCIE_SPEED_8_0GT;
5667 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5668 return PCIE_SPEED_5_0GT;
5669 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5670 return PCIE_SPEED_2_5GT;
5671 return PCI_SPEED_UNKNOWN;
5672 }
5673
5674 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5675 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5676 return PCIE_SPEED_5_0GT;
5677 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5678 return PCIE_SPEED_2_5GT;
5679
5680 return PCI_SPEED_UNKNOWN;
5681}
5682EXPORT_SYMBOL(pcie_get_speed_cap);
5683
5684/**
5685 * pcie_get_width_cap - query for the PCI device's link width capability
5686 * @dev: PCI device to query
5687 *
5688 * Query the PCI device width capability. Return the maximum link width
5689 * supported by the device.
5690 */
5691enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5692{
5693 u32 lnkcap;
5694
5695 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5696 if (lnkcap)
5697 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5698
5699 return PCIE_LNK_WIDTH_UNKNOWN;
5700}
5701EXPORT_SYMBOL(pcie_get_width_cap);
5702
5703/**
5704 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5705 * @dev: PCI device
5706 * @speed: storage for link speed
5707 * @width: storage for link width
5708 *
5709 * Calculate a PCI device's link bandwidth by querying for its link speed
5710 * and width, multiplying them, and applying encoding overhead. The result
5711 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5712 */
5713u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5714 enum pcie_link_width *width)
5715{
5716 *speed = pcie_get_speed_cap(dev);
5717 *width = pcie_get_width_cap(dev);
5718
5719 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5720 return 0;
5721
5722 return *width * PCIE_SPEED2MBS_ENC(*speed);
5723}
5724
5725/**
5726 * __pcie_print_link_status - Report the PCI device's link speed and width
5727 * @dev: PCI device to query
5728 * @verbose: Print info even when enough bandwidth is available
5729 *
5730 * If the available bandwidth at the device is less than the device is
5731 * capable of, report the device's maximum possible bandwidth and the
5732 * upstream link that limits its performance. If @verbose, always print
5733 * the available bandwidth, even if the device isn't constrained.
5734 */
5735void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5736{
5737 enum pcie_link_width width, width_cap;
5738 enum pci_bus_speed speed, speed_cap;
5739 struct pci_dev *limiting_dev = NULL;
5740 u32 bw_avail, bw_cap;
5741
5742 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5743 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5744
5745 if (bw_avail >= bw_cap && verbose)
5746 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5747 bw_cap / 1000, bw_cap % 1000,
5748 PCIE_SPEED2STR(speed_cap), width_cap);
5749 else if (bw_avail < bw_cap)
5750 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5751 bw_avail / 1000, bw_avail % 1000,
5752 PCIE_SPEED2STR(speed), width,
5753 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5754 bw_cap / 1000, bw_cap % 1000,
5755 PCIE_SPEED2STR(speed_cap), width_cap);
5756}
5757
5758/**
5759 * pcie_print_link_status - Report the PCI device's link speed and width
5760 * @dev: PCI device to query
5761 *
5762 * Report the available bandwidth at the device.
5763 */
5764void pcie_print_link_status(struct pci_dev *dev)
5765{
5766 __pcie_print_link_status(dev, true);
5767}
5768EXPORT_SYMBOL(pcie_print_link_status);
5769
5770/**
5771 * pci_select_bars - Make BAR mask from the type of resource
5772 * @dev: the PCI device for which BAR mask is made
5773 * @flags: resource type mask to be selected
5774 *
5775 * This helper routine makes bar mask from the type of resource.
5776 */
5777int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5778{
5779 int i, bars = 0;
5780 for (i = 0; i < PCI_NUM_RESOURCES; i++)
5781 if (pci_resource_flags(dev, i) & flags)
5782 bars |= (1 << i);
5783 return bars;
5784}
5785EXPORT_SYMBOL(pci_select_bars);
5786
5787/* Some architectures require additional programming to enable VGA */
5788static arch_set_vga_state_t arch_set_vga_state;
5789
5790void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5791{
5792 arch_set_vga_state = func; /* NULL disables */
5793}
5794
5795static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5796 unsigned int command_bits, u32 flags)
5797{
5798 if (arch_set_vga_state)
5799 return arch_set_vga_state(dev, decode, command_bits,
5800 flags);
5801 return 0;
5802}
5803
5804/**
5805 * pci_set_vga_state - set VGA decode state on device and parents if requested
5806 * @dev: the PCI device
5807 * @decode: true = enable decoding, false = disable decoding
5808 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5809 * @flags: traverse ancestors and change bridges
5810 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5811 */
5812int pci_set_vga_state(struct pci_dev *dev, bool decode,
5813 unsigned int command_bits, u32 flags)
5814{
5815 struct pci_bus *bus;
5816 struct pci_dev *bridge;
5817 u16 cmd;
5818 int rc;
5819
5820 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5821
5822 /* ARCH specific VGA enables */
5823 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5824 if (rc)
5825 return rc;
5826
5827 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5828 pci_read_config_word(dev, PCI_COMMAND, &cmd);
5829 if (decode == true)
5830 cmd |= command_bits;
5831 else
5832 cmd &= ~command_bits;
5833 pci_write_config_word(dev, PCI_COMMAND, cmd);
5834 }
5835
5836 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5837 return 0;
5838
5839 bus = dev->bus;
5840 while (bus) {
5841 bridge = bus->self;
5842 if (bridge) {
5843 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5844 &cmd);
5845 if (decode == true)
5846 cmd |= PCI_BRIDGE_CTL_VGA;
5847 else
5848 cmd &= ~PCI_BRIDGE_CTL_VGA;
5849 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5850 cmd);
5851 }
5852 bus = bus->parent;
5853 }
5854 return 0;
5855}
5856
5857/**
5858 * pci_add_dma_alias - Add a DMA devfn alias for a device
5859 * @dev: the PCI device for which alias is added
5860 * @devfn: alias slot and function
5861 *
5862 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
5863 * which is used to program permissible bus-devfn source addresses for DMA
5864 * requests in an IOMMU. These aliases factor into IOMMU group creation
5865 * and are useful for devices generating DMA requests beyond or different
5866 * from their logical bus-devfn. Examples include device quirks where the
5867 * device simply uses the wrong devfn, as well as non-transparent bridges
5868 * where the alias may be a proxy for devices in another domain.
5869 *
5870 * IOMMU group creation is performed during device discovery or addition,
5871 * prior to any potential DMA mapping and therefore prior to driver probing
5872 * (especially for userspace assigned devices where IOMMU group definition
5873 * cannot be left as a userspace activity). DMA aliases should therefore
5874 * be configured via quirks, such as the PCI fixup header quirk.
5875 */
5876void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5877{
5878 if (!dev->dma_alias_mask)
5879 dev->dma_alias_mask = bitmap_zalloc(U8_MAX, GFP_KERNEL);
5880 if (!dev->dma_alias_mask) {
5881 pci_warn(dev, "Unable to allocate DMA alias mask\n");
5882 return;
5883 }
5884
5885 set_bit(devfn, dev->dma_alias_mask);
5886 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5887 PCI_SLOT(devfn), PCI_FUNC(devfn));
5888}
5889
5890bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5891{
5892 return (dev1->dma_alias_mask &&
5893 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5894 (dev2->dma_alias_mask &&
5895 test_bit(dev1->devfn, dev2->dma_alias_mask));
5896}
5897
5898bool pci_device_is_present(struct pci_dev *pdev)
5899{
5900 u32 v;
5901
5902 if (pci_dev_is_disconnected(pdev))
5903 return false;
5904 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5905}
5906EXPORT_SYMBOL_GPL(pci_device_is_present);
5907
5908void pci_ignore_hotplug(struct pci_dev *dev)
5909{
5910 struct pci_dev *bridge = dev->bus->self;
5911
5912 dev->ignore_hotplug = 1;
5913 /* Propagate the "ignore hotplug" setting to the parent bridge. */
5914 if (bridge)
5915 bridge->ignore_hotplug = 1;
5916}
5917EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5918
5919resource_size_t __weak pcibios_default_alignment(void)
5920{
5921 return 0;
5922}
5923
5924/*
5925 * Arches that don't want to expose struct resource to userland as-is in
5926 * sysfs and /proc can implement their own pci_resource_to_user().
5927 */
5928void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
5929 const struct resource *rsrc,
5930 resource_size_t *start, resource_size_t *end)
5931{
5932 *start = rsrc->start;
5933 *end = rsrc->end;
5934}
5935
5936static char *resource_alignment_param;
5937static DEFINE_SPINLOCK(resource_alignment_lock);
5938
5939/**
5940 * pci_specified_resource_alignment - get resource alignment specified by user.
5941 * @dev: the PCI device to get
5942 * @resize: whether or not to change resources' size when reassigning alignment
5943 *
5944 * RETURNS: Resource alignment if it is specified.
5945 * Zero if it is not specified.
5946 */
5947static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5948 bool *resize)
5949{
5950 int align_order, count;
5951 resource_size_t align = pcibios_default_alignment();
5952 const char *p;
5953 int ret;
5954
5955 spin_lock(&resource_alignment_lock);
5956 p = resource_alignment_param;
5957 if (!p || !*p)
5958 goto out;
5959 if (pci_has_flag(PCI_PROBE_ONLY)) {
5960 align = 0;
5961 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5962 goto out;
5963 }
5964
5965 while (*p) {
5966 count = 0;
5967 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5968 p[count] == '@') {
5969 p += count + 1;
5970 } else {
5971 align_order = -1;
5972 }
5973
5974 ret = pci_dev_str_match(dev, p, &p);
5975 if (ret == 1) {
5976 *resize = true;
5977 if (align_order == -1)
5978 align = PAGE_SIZE;
5979 else
5980 align = 1 << align_order;
5981 break;
5982 } else if (ret < 0) {
5983 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
5984 p);
5985 break;
5986 }
5987
5988 if (*p != ';' && *p != ',') {
5989 /* End of param or invalid format */
5990 break;
5991 }
5992 p++;
5993 }
5994out:
5995 spin_unlock(&resource_alignment_lock);
5996 return align;
5997}
5998
5999static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6000 resource_size_t align, bool resize)
6001{
6002 struct resource *r = &dev->resource[bar];
6003 resource_size_t size;
6004
6005 if (!(r->flags & IORESOURCE_MEM))
6006 return;
6007
6008 if (r->flags & IORESOURCE_PCI_FIXED) {
6009 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6010 bar, r, (unsigned long long)align);
6011 return;
6012 }
6013
6014 size = resource_size(r);
6015 if (size >= align)
6016 return;
6017
6018 /*
6019 * Increase the alignment of the resource. There are two ways we
6020 * can do this:
6021 *
6022 * 1) Increase the size of the resource. BARs are aligned on their
6023 * size, so when we reallocate space for this resource, we'll
6024 * allocate it with the larger alignment. This also prevents
6025 * assignment of any other BARs inside the alignment region, so
6026 * if we're requesting page alignment, this means no other BARs
6027 * will share the page.
6028 *
6029 * The disadvantage is that this makes the resource larger than
6030 * the hardware BAR, which may break drivers that compute things
6031 * based on the resource size, e.g., to find registers at a
6032 * fixed offset before the end of the BAR.
6033 *
6034 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6035 * set r->start to the desired alignment. By itself this
6036 * doesn't prevent other BARs being put inside the alignment
6037 * region, but if we realign *every* resource of every device in
6038 * the system, none of them will share an alignment region.
6039 *
6040 * When the user has requested alignment for only some devices via
6041 * the "pci=resource_alignment" argument, "resize" is true and we
6042 * use the first method. Otherwise we assume we're aligning all
6043 * devices and we use the second.
6044 */
6045
6046 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6047 bar, r, (unsigned long long)align);
6048
6049 if (resize) {
6050 r->start = 0;
6051 r->end = align - 1;
6052 } else {
6053 r->flags &= ~IORESOURCE_SIZEALIGN;
6054 r->flags |= IORESOURCE_STARTALIGN;
6055 r->start = align;
6056 r->end = r->start + size - 1;
6057 }
6058 r->flags |= IORESOURCE_UNSET;
6059}
6060
6061/*
6062 * This function disables memory decoding and releases memory resources
6063 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6064 * It also rounds up size to specified alignment.
6065 * Later on, the kernel will assign page-aligned memory resource back
6066 * to the device.
6067 */
6068void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6069{
6070 int i;
6071 struct resource *r;
6072 resource_size_t align;
6073 u16 command;
6074 bool resize = false;
6075
6076 /*
6077 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6078 * 3.4.1.11. Their resources are allocated from the space
6079 * described by the VF BARx register in the PF's SR-IOV capability.
6080 * We can't influence their alignment here.
6081 */
6082 if (dev->is_virtfn)
6083 return;
6084
6085 /* check if specified PCI is target device to reassign */
6086 align = pci_specified_resource_alignment(dev, &resize);
6087 if (!align)
6088 return;
6089
6090 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6091 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6092 pci_warn(dev, "Can't reassign resources to host bridge\n");
6093 return;
6094 }
6095
6096 pci_read_config_word(dev, PCI_COMMAND, &command);
6097 command &= ~PCI_COMMAND_MEMORY;
6098 pci_write_config_word(dev, PCI_COMMAND, command);
6099
6100 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6101 pci_request_resource_alignment(dev, i, align, resize);
6102
6103 /*
6104 * Need to disable bridge's resource window,
6105 * to enable the kernel to reassign new resource
6106 * window later on.
6107 */
6108 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6109 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6110 r = &dev->resource[i];
6111 if (!(r->flags & IORESOURCE_MEM))
6112 continue;
6113 r->flags |= IORESOURCE_UNSET;
6114 r->end = resource_size(r) - 1;
6115 r->start = 0;
6116 }
6117 pci_disable_bridge_window(dev);
6118 }
6119}
6120
6121static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6122{
6123 size_t count = 0;
6124
6125 spin_lock(&resource_alignment_lock);
6126 if (resource_alignment_param)
6127 count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6128 spin_unlock(&resource_alignment_lock);
6129
6130 /*
6131 * When set by the command line, resource_alignment_param will not
6132 * have a trailing line feed, which is ugly. So conditionally add
6133 * it here.
6134 */
6135 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6136 buf[count - 1] = '\n';
6137 buf[count++] = 0;
6138 }
6139
6140 return count;
6141}
6142
6143static ssize_t resource_alignment_store(struct bus_type *bus,
6144 const char *buf, size_t count)
6145{
6146 char *param = kstrndup(buf, count, GFP_KERNEL);
6147
6148 if (!param)
6149 return -ENOMEM;
6150
6151 spin_lock(&resource_alignment_lock);
6152 kfree(resource_alignment_param);
6153 resource_alignment_param = param;
6154 spin_unlock(&resource_alignment_lock);
6155 return count;
6156}
6157
6158static BUS_ATTR_RW(resource_alignment);
6159
6160static int __init pci_resource_alignment_sysfs_init(void)
6161{
6162 return bus_create_file(&pci_bus_type,
6163 &bus_attr_resource_alignment);
6164}
6165late_initcall(pci_resource_alignment_sysfs_init);
6166
6167static void pci_no_domains(void)
6168{
6169#ifdef CONFIG_PCI_DOMAINS
6170 pci_domains_supported = 0;
6171#endif
6172}
6173
6174#ifdef CONFIG_PCI_DOMAINS_GENERIC
6175static atomic_t __domain_nr = ATOMIC_INIT(-1);
6176
6177static int pci_get_new_domain_nr(void)
6178{
6179 return atomic_inc_return(&__domain_nr);
6180}
6181
6182static int of_pci_bus_find_domain_nr(struct device *parent)
6183{
6184 static int use_dt_domains = -1;
6185 int domain = -1;
6186
6187 if (parent)
6188 domain = of_get_pci_domain_nr(parent->of_node);
6189
6190 /*
6191 * Check DT domain and use_dt_domains values.
6192 *
6193 * If DT domain property is valid (domain >= 0) and
6194 * use_dt_domains != 0, the DT assignment is valid since this means
6195 * we have not previously allocated a domain number by using
6196 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6197 * 1, to indicate that we have just assigned a domain number from
6198 * DT.
6199 *
6200 * If DT domain property value is not valid (ie domain < 0), and we
6201 * have not previously assigned a domain number from DT
6202 * (use_dt_domains != 1) we should assign a domain number by
6203 * using the:
6204 *
6205 * pci_get_new_domain_nr()
6206 *
6207 * API and update the use_dt_domains value to keep track of method we
6208 * are using to assign domain numbers (use_dt_domains = 0).
6209 *
6210 * All other combinations imply we have a platform that is trying
6211 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6212 * which is a recipe for domain mishandling and it is prevented by
6213 * invalidating the domain value (domain = -1) and printing a
6214 * corresponding error.
6215 */
6216 if (domain >= 0 && use_dt_domains) {
6217 use_dt_domains = 1;
6218 } else if (domain < 0 && use_dt_domains != 1) {
6219 use_dt_domains = 0;
6220 domain = pci_get_new_domain_nr();
6221 } else {
6222 if (parent)
6223 pr_err("Node %pOF has ", parent->of_node);
6224 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6225 domain = -1;
6226 }
6227
6228 return domain;
6229}
6230
6231int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6232{
6233 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6234 acpi_pci_bus_find_domain_nr(bus);
6235}
6236#endif
6237
6238/**
6239 * pci_ext_cfg_avail - can we access extended PCI config space?
6240 *
6241 * Returns 1 if we can access PCI extended config space (offsets
6242 * greater than 0xff). This is the default implementation. Architecture
6243 * implementations can override this.
6244 */
6245int __weak pci_ext_cfg_avail(void)
6246{
6247 return 1;
6248}
6249
6250void __weak pci_fixup_cardbus(struct pci_bus *bus)
6251{
6252}
6253EXPORT_SYMBOL(pci_fixup_cardbus);
6254
6255static int __init pci_setup(char *str)
6256{
6257 while (str) {
6258 char *k = strchr(str, ',');
6259 if (k)
6260 *k++ = 0;
6261 if (*str && (str = pcibios_setup(str)) && *str) {
6262 if (!strcmp(str, "nomsi")) {
6263 pci_no_msi();
6264 } else if (!strncmp(str, "noats", 5)) {
6265 pr_info("PCIe: ATS is disabled\n");
6266 pcie_ats_disabled = true;
6267 } else if (!strcmp(str, "noaer")) {
6268 pci_no_aer();
6269 } else if (!strcmp(str, "earlydump")) {
6270 pci_early_dump = true;
6271 } else if (!strncmp(str, "realloc=", 8)) {
6272 pci_realloc_get_opt(str + 8);
6273 } else if (!strncmp(str, "realloc", 7)) {
6274 pci_realloc_get_opt("on");
6275 } else if (!strcmp(str, "nodomains")) {
6276 pci_no_domains();
6277 } else if (!strncmp(str, "noari", 5)) {
6278 pcie_ari_disabled = true;
6279 } else if (!strncmp(str, "cbiosize=", 9)) {
6280 pci_cardbus_io_size = memparse(str + 9, &str);
6281 } else if (!strncmp(str, "cbmemsize=", 10)) {
6282 pci_cardbus_mem_size = memparse(str + 10, &str);
6283 } else if (!strncmp(str, "resource_alignment=", 19)) {
6284 resource_alignment_param = str + 19;
6285 } else if (!strncmp(str, "ecrc=", 5)) {
6286 pcie_ecrc_get_policy(str + 5);
6287 } else if (!strncmp(str, "hpiosize=", 9)) {
6288 pci_hotplug_io_size = memparse(str + 9, &str);
6289 } else if (!strncmp(str, "hpmemsize=", 10)) {
6290 pci_hotplug_mem_size = memparse(str + 10, &str);
6291 } else if (!strncmp(str, "hpbussize=", 10)) {
6292 pci_hotplug_bus_size =
6293 simple_strtoul(str + 10, &str, 0);
6294 if (pci_hotplug_bus_size > 0xff)
6295 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6296 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6297 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6298 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6299 pcie_bus_config = PCIE_BUS_SAFE;
6300 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6301 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6302 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6303 pcie_bus_config = PCIE_BUS_PEER2PEER;
6304 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6305 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6306 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6307 disable_acs_redir_param = str + 18;
6308 } else {
6309 pr_err("PCI: Unknown option `%s'\n", str);
6310 }
6311 }
6312 str = k;
6313 }
6314 return 0;
6315}
6316early_param("pci", pci_setup);
6317
6318/*
6319 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6320 * in pci_setup(), above, to point to data in the __initdata section which
6321 * will be freed after the init sequence is complete. We can't allocate memory
6322 * in pci_setup() because some architectures do not have any memory allocation
6323 * service available during an early_param() call. So we allocate memory and
6324 * copy the variable here before the init section is freed.
6325 *
6326 */
6327static int __init pci_realloc_setup_params(void)
6328{
6329 resource_alignment_param = kstrdup(resource_alignment_param,
6330 GFP_KERNEL);
6331 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6332
6333 return 0;
6334}
6335pure_initcall(pci_realloc_setup_params);
1/*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10#include <linux/kernel.h>
11#include <linux/delay.h>
12#include <linux/init.h>
13#include <linux/pci.h>
14#include <linux/pm.h>
15#include <linux/slab.h>
16#include <linux/module.h>
17#include <linux/spinlock.h>
18#include <linux/string.h>
19#include <linux/log2.h>
20#include <linux/pci-aspm.h>
21#include <linux/pm_wakeup.h>
22#include <linux/interrupt.h>
23#include <linux/device.h>
24#include <linux/pm_runtime.h>
25#include <asm/setup.h>
26#include "pci.h"
27
28const char *pci_power_names[] = {
29 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
30};
31EXPORT_SYMBOL_GPL(pci_power_names);
32
33int isa_dma_bridge_buggy;
34EXPORT_SYMBOL(isa_dma_bridge_buggy);
35
36int pci_pci_problems;
37EXPORT_SYMBOL(pci_pci_problems);
38
39unsigned int pci_pm_d3_delay;
40
41static void pci_pme_list_scan(struct work_struct *work);
42
43static LIST_HEAD(pci_pme_list);
44static DEFINE_MUTEX(pci_pme_list_mutex);
45static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
46
47struct pci_pme_device {
48 struct list_head list;
49 struct pci_dev *dev;
50};
51
52#define PME_TIMEOUT 1000 /* How long between PME checks */
53
54static void pci_dev_d3_sleep(struct pci_dev *dev)
55{
56 unsigned int delay = dev->d3_delay;
57
58 if (delay < pci_pm_d3_delay)
59 delay = pci_pm_d3_delay;
60
61 msleep(delay);
62}
63
64#ifdef CONFIG_PCI_DOMAINS
65int pci_domains_supported = 1;
66#endif
67
68#define DEFAULT_CARDBUS_IO_SIZE (256)
69#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
70/* pci=cbmemsize=nnM,cbiosize=nn can override this */
71unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
72unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
73
74#define DEFAULT_HOTPLUG_IO_SIZE (256)
75#define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
76/* pci=hpmemsize=nnM,hpiosize=nn can override this */
77unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
78unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
79
80enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
81
82/*
83 * The default CLS is used if arch didn't set CLS explicitly and not
84 * all pci devices agree on the same value. Arch can override either
85 * the dfl or actual value as it sees fit. Don't forget this is
86 * measured in 32-bit words, not bytes.
87 */
88u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
89u8 pci_cache_line_size;
90
91/**
92 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
93 * @bus: pointer to PCI bus structure to search
94 *
95 * Given a PCI bus, returns the highest PCI bus number present in the set
96 * including the given PCI bus and its list of child PCI buses.
97 */
98unsigned char pci_bus_max_busnr(struct pci_bus* bus)
99{
100 struct list_head *tmp;
101 unsigned char max, n;
102
103 max = bus->subordinate;
104 list_for_each(tmp, &bus->children) {
105 n = pci_bus_max_busnr(pci_bus_b(tmp));
106 if(n > max)
107 max = n;
108 }
109 return max;
110}
111EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
112
113#ifdef CONFIG_HAS_IOMEM
114void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
115{
116 /*
117 * Make sure the BAR is actually a memory resource, not an IO resource
118 */
119 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
120 WARN_ON(1);
121 return NULL;
122 }
123 return ioremap_nocache(pci_resource_start(pdev, bar),
124 pci_resource_len(pdev, bar));
125}
126EXPORT_SYMBOL_GPL(pci_ioremap_bar);
127#endif
128
129#if 0
130/**
131 * pci_max_busnr - returns maximum PCI bus number
132 *
133 * Returns the highest PCI bus number present in the system global list of
134 * PCI buses.
135 */
136unsigned char __devinit
137pci_max_busnr(void)
138{
139 struct pci_bus *bus = NULL;
140 unsigned char max, n;
141
142 max = 0;
143 while ((bus = pci_find_next_bus(bus)) != NULL) {
144 n = pci_bus_max_busnr(bus);
145 if(n > max)
146 max = n;
147 }
148 return max;
149}
150
151#endif /* 0 */
152
153#define PCI_FIND_CAP_TTL 48
154
155static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
156 u8 pos, int cap, int *ttl)
157{
158 u8 id;
159
160 while ((*ttl)--) {
161 pci_bus_read_config_byte(bus, devfn, pos, &pos);
162 if (pos < 0x40)
163 break;
164 pos &= ~3;
165 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
166 &id);
167 if (id == 0xff)
168 break;
169 if (id == cap)
170 return pos;
171 pos += PCI_CAP_LIST_NEXT;
172 }
173 return 0;
174}
175
176static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
177 u8 pos, int cap)
178{
179 int ttl = PCI_FIND_CAP_TTL;
180
181 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
182}
183
184int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
185{
186 return __pci_find_next_cap(dev->bus, dev->devfn,
187 pos + PCI_CAP_LIST_NEXT, cap);
188}
189EXPORT_SYMBOL_GPL(pci_find_next_capability);
190
191static int __pci_bus_find_cap_start(struct pci_bus *bus,
192 unsigned int devfn, u8 hdr_type)
193{
194 u16 status;
195
196 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
197 if (!(status & PCI_STATUS_CAP_LIST))
198 return 0;
199
200 switch (hdr_type) {
201 case PCI_HEADER_TYPE_NORMAL:
202 case PCI_HEADER_TYPE_BRIDGE:
203 return PCI_CAPABILITY_LIST;
204 case PCI_HEADER_TYPE_CARDBUS:
205 return PCI_CB_CAPABILITY_LIST;
206 default:
207 return 0;
208 }
209
210 return 0;
211}
212
213/**
214 * pci_find_capability - query for devices' capabilities
215 * @dev: PCI device to query
216 * @cap: capability code
217 *
218 * Tell if a device supports a given PCI capability.
219 * Returns the address of the requested capability structure within the
220 * device's PCI configuration space or 0 in case the device does not
221 * support it. Possible values for @cap:
222 *
223 * %PCI_CAP_ID_PM Power Management
224 * %PCI_CAP_ID_AGP Accelerated Graphics Port
225 * %PCI_CAP_ID_VPD Vital Product Data
226 * %PCI_CAP_ID_SLOTID Slot Identification
227 * %PCI_CAP_ID_MSI Message Signalled Interrupts
228 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
229 * %PCI_CAP_ID_PCIX PCI-X
230 * %PCI_CAP_ID_EXP PCI Express
231 */
232int pci_find_capability(struct pci_dev *dev, int cap)
233{
234 int pos;
235
236 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
237 if (pos)
238 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
239
240 return pos;
241}
242
243/**
244 * pci_bus_find_capability - query for devices' capabilities
245 * @bus: the PCI bus to query
246 * @devfn: PCI device to query
247 * @cap: capability code
248 *
249 * Like pci_find_capability() but works for pci devices that do not have a
250 * pci_dev structure set up yet.
251 *
252 * Returns the address of the requested capability structure within the
253 * device's PCI configuration space or 0 in case the device does not
254 * support it.
255 */
256int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
257{
258 int pos;
259 u8 hdr_type;
260
261 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
262
263 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
264 if (pos)
265 pos = __pci_find_next_cap(bus, devfn, pos, cap);
266
267 return pos;
268}
269
270/**
271 * pci_find_ext_capability - Find an extended capability
272 * @dev: PCI device to query
273 * @cap: capability code
274 *
275 * Returns the address of the requested extended capability structure
276 * within the device's PCI configuration space or 0 if the device does
277 * not support it. Possible values for @cap:
278 *
279 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
280 * %PCI_EXT_CAP_ID_VC Virtual Channel
281 * %PCI_EXT_CAP_ID_DSN Device Serial Number
282 * %PCI_EXT_CAP_ID_PWR Power Budgeting
283 */
284int pci_find_ext_capability(struct pci_dev *dev, int cap)
285{
286 u32 header;
287 int ttl;
288 int pos = PCI_CFG_SPACE_SIZE;
289
290 /* minimum 8 bytes per capability */
291 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
292
293 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
294 return 0;
295
296 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
297 return 0;
298
299 /*
300 * If we have no capabilities, this is indicated by cap ID,
301 * cap version and next pointer all being 0.
302 */
303 if (header == 0)
304 return 0;
305
306 while (ttl-- > 0) {
307 if (PCI_EXT_CAP_ID(header) == cap)
308 return pos;
309
310 pos = PCI_EXT_CAP_NEXT(header);
311 if (pos < PCI_CFG_SPACE_SIZE)
312 break;
313
314 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
315 break;
316 }
317
318 return 0;
319}
320EXPORT_SYMBOL_GPL(pci_find_ext_capability);
321
322/**
323 * pci_bus_find_ext_capability - find an extended capability
324 * @bus: the PCI bus to query
325 * @devfn: PCI device to query
326 * @cap: capability code
327 *
328 * Like pci_find_ext_capability() but works for pci devices that do not have a
329 * pci_dev structure set up yet.
330 *
331 * Returns the address of the requested capability structure within the
332 * device's PCI configuration space or 0 in case the device does not
333 * support it.
334 */
335int pci_bus_find_ext_capability(struct pci_bus *bus, unsigned int devfn,
336 int cap)
337{
338 u32 header;
339 int ttl;
340 int pos = PCI_CFG_SPACE_SIZE;
341
342 /* minimum 8 bytes per capability */
343 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
344
345 if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
346 return 0;
347 if (header == 0xffffffff || header == 0)
348 return 0;
349
350 while (ttl-- > 0) {
351 if (PCI_EXT_CAP_ID(header) == cap)
352 return pos;
353
354 pos = PCI_EXT_CAP_NEXT(header);
355 if (pos < PCI_CFG_SPACE_SIZE)
356 break;
357
358 if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
359 break;
360 }
361
362 return 0;
363}
364
365static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
366{
367 int rc, ttl = PCI_FIND_CAP_TTL;
368 u8 cap, mask;
369
370 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
371 mask = HT_3BIT_CAP_MASK;
372 else
373 mask = HT_5BIT_CAP_MASK;
374
375 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
376 PCI_CAP_ID_HT, &ttl);
377 while (pos) {
378 rc = pci_read_config_byte(dev, pos + 3, &cap);
379 if (rc != PCIBIOS_SUCCESSFUL)
380 return 0;
381
382 if ((cap & mask) == ht_cap)
383 return pos;
384
385 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
386 pos + PCI_CAP_LIST_NEXT,
387 PCI_CAP_ID_HT, &ttl);
388 }
389
390 return 0;
391}
392/**
393 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
394 * @dev: PCI device to query
395 * @pos: Position from which to continue searching
396 * @ht_cap: Hypertransport capability code
397 *
398 * To be used in conjunction with pci_find_ht_capability() to search for
399 * all capabilities matching @ht_cap. @pos should always be a value returned
400 * from pci_find_ht_capability().
401 *
402 * NB. To be 100% safe against broken PCI devices, the caller should take
403 * steps to avoid an infinite loop.
404 */
405int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
406{
407 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
408}
409EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
410
411/**
412 * pci_find_ht_capability - query a device's Hypertransport capabilities
413 * @dev: PCI device to query
414 * @ht_cap: Hypertransport capability code
415 *
416 * Tell if a device supports a given Hypertransport capability.
417 * Returns an address within the device's PCI configuration space
418 * or 0 in case the device does not support the request capability.
419 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
420 * which has a Hypertransport capability matching @ht_cap.
421 */
422int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
423{
424 int pos;
425
426 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
427 if (pos)
428 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
429
430 return pos;
431}
432EXPORT_SYMBOL_GPL(pci_find_ht_capability);
433
434/**
435 * pci_find_parent_resource - return resource region of parent bus of given region
436 * @dev: PCI device structure contains resources to be searched
437 * @res: child resource record for which parent is sought
438 *
439 * For given resource region of given device, return the resource
440 * region of parent bus the given region is contained in or where
441 * it should be allocated from.
442 */
443struct resource *
444pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
445{
446 const struct pci_bus *bus = dev->bus;
447 int i;
448 struct resource *best = NULL, *r;
449
450 pci_bus_for_each_resource(bus, r, i) {
451 if (!r)
452 continue;
453 if (res->start && !(res->start >= r->start && res->end <= r->end))
454 continue; /* Not contained */
455 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
456 continue; /* Wrong type */
457 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
458 return r; /* Exact match */
459 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
460 if (r->flags & IORESOURCE_PREFETCH)
461 continue;
462 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
463 if (!best)
464 best = r;
465 }
466 return best;
467}
468
469/**
470 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
471 * @dev: PCI device to have its BARs restored
472 *
473 * Restore the BAR values for a given device, so as to make it
474 * accessible by its driver.
475 */
476static void
477pci_restore_bars(struct pci_dev *dev)
478{
479 int i;
480
481 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
482 pci_update_resource(dev, i);
483}
484
485static struct pci_platform_pm_ops *pci_platform_pm;
486
487int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
488{
489 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
490 || !ops->sleep_wake || !ops->can_wakeup)
491 return -EINVAL;
492 pci_platform_pm = ops;
493 return 0;
494}
495
496static inline bool platform_pci_power_manageable(struct pci_dev *dev)
497{
498 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
499}
500
501static inline int platform_pci_set_power_state(struct pci_dev *dev,
502 pci_power_t t)
503{
504 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
505}
506
507static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
508{
509 return pci_platform_pm ?
510 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
511}
512
513static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
514{
515 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
516}
517
518static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
519{
520 return pci_platform_pm ?
521 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
522}
523
524static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
525{
526 return pci_platform_pm ?
527 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
528}
529
530/**
531 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
532 * given PCI device
533 * @dev: PCI device to handle.
534 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
535 *
536 * RETURN VALUE:
537 * -EINVAL if the requested state is invalid.
538 * -EIO if device does not support PCI PM or its PM capabilities register has a
539 * wrong version, or device doesn't support the requested state.
540 * 0 if device already is in the requested state.
541 * 0 if device's power state has been successfully changed.
542 */
543static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
544{
545 u16 pmcsr;
546 bool need_restore = false;
547
548 /* Check if we're already there */
549 if (dev->current_state == state)
550 return 0;
551
552 if (!dev->pm_cap)
553 return -EIO;
554
555 if (state < PCI_D0 || state > PCI_D3hot)
556 return -EINVAL;
557
558 /* Validate current state:
559 * Can enter D0 from any state, but if we can only go deeper
560 * to sleep if we're already in a low power state
561 */
562 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
563 && dev->current_state > state) {
564 dev_err(&dev->dev, "invalid power transition "
565 "(from state %d to %d)\n", dev->current_state, state);
566 return -EINVAL;
567 }
568
569 /* check if this device supports the desired state */
570 if ((state == PCI_D1 && !dev->d1_support)
571 || (state == PCI_D2 && !dev->d2_support))
572 return -EIO;
573
574 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
575
576 /* If we're (effectively) in D3, force entire word to 0.
577 * This doesn't affect PME_Status, disables PME_En, and
578 * sets PowerState to 0.
579 */
580 switch (dev->current_state) {
581 case PCI_D0:
582 case PCI_D1:
583 case PCI_D2:
584 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
585 pmcsr |= state;
586 break;
587 case PCI_D3hot:
588 case PCI_D3cold:
589 case PCI_UNKNOWN: /* Boot-up */
590 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
591 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
592 need_restore = true;
593 /* Fall-through: force to D0 */
594 default:
595 pmcsr = 0;
596 break;
597 }
598
599 /* enter specified state */
600 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
601
602 /* Mandatory power management transition delays */
603 /* see PCI PM 1.1 5.6.1 table 18 */
604 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
605 pci_dev_d3_sleep(dev);
606 else if (state == PCI_D2 || dev->current_state == PCI_D2)
607 udelay(PCI_PM_D2_DELAY);
608
609 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
610 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
611 if (dev->current_state != state && printk_ratelimit())
612 dev_info(&dev->dev, "Refused to change power state, "
613 "currently in D%d\n", dev->current_state);
614
615 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
616 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
617 * from D3hot to D0 _may_ perform an internal reset, thereby
618 * going to "D0 Uninitialized" rather than "D0 Initialized".
619 * For example, at least some versions of the 3c905B and the
620 * 3c556B exhibit this behaviour.
621 *
622 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
623 * devices in a D3hot state at boot. Consequently, we need to
624 * restore at least the BARs so that the device will be
625 * accessible to its driver.
626 */
627 if (need_restore)
628 pci_restore_bars(dev);
629
630 if (dev->bus->self)
631 pcie_aspm_pm_state_change(dev->bus->self);
632
633 return 0;
634}
635
636/**
637 * pci_update_current_state - Read PCI power state of given device from its
638 * PCI PM registers and cache it
639 * @dev: PCI device to handle.
640 * @state: State to cache in case the device doesn't have the PM capability
641 */
642void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
643{
644 if (dev->pm_cap) {
645 u16 pmcsr;
646
647 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
648 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
649 } else {
650 dev->current_state = state;
651 }
652}
653
654/**
655 * pci_platform_power_transition - Use platform to change device power state
656 * @dev: PCI device to handle.
657 * @state: State to put the device into.
658 */
659static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
660{
661 int error;
662
663 if (platform_pci_power_manageable(dev)) {
664 error = platform_pci_set_power_state(dev, state);
665 if (!error)
666 pci_update_current_state(dev, state);
667 } else {
668 error = -ENODEV;
669 /* Fall back to PCI_D0 if native PM is not supported */
670 if (!dev->pm_cap)
671 dev->current_state = PCI_D0;
672 }
673
674 return error;
675}
676
677/**
678 * __pci_start_power_transition - Start power transition of a PCI device
679 * @dev: PCI device to handle.
680 * @state: State to put the device into.
681 */
682static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
683{
684 if (state == PCI_D0)
685 pci_platform_power_transition(dev, PCI_D0);
686}
687
688/**
689 * __pci_complete_power_transition - Complete power transition of a PCI device
690 * @dev: PCI device to handle.
691 * @state: State to put the device into.
692 *
693 * This function should not be called directly by device drivers.
694 */
695int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
696{
697 return state >= PCI_D0 ?
698 pci_platform_power_transition(dev, state) : -EINVAL;
699}
700EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
701
702/**
703 * pci_set_power_state - Set the power state of a PCI device
704 * @dev: PCI device to handle.
705 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
706 *
707 * Transition a device to a new power state, using the platform firmware and/or
708 * the device's PCI PM registers.
709 *
710 * RETURN VALUE:
711 * -EINVAL if the requested state is invalid.
712 * -EIO if device does not support PCI PM or its PM capabilities register has a
713 * wrong version, or device doesn't support the requested state.
714 * 0 if device already is in the requested state.
715 * 0 if device's power state has been successfully changed.
716 */
717int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
718{
719 int error;
720
721 /* bound the state we're entering */
722 if (state > PCI_D3hot)
723 state = PCI_D3hot;
724 else if (state < PCI_D0)
725 state = PCI_D0;
726 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
727 /*
728 * If the device or the parent bridge do not support PCI PM,
729 * ignore the request if we're doing anything other than putting
730 * it into D0 (which would only happen on boot).
731 */
732 return 0;
733
734 __pci_start_power_transition(dev, state);
735
736 /* This device is quirked not to be put into D3, so
737 don't put it in D3 */
738 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
739 return 0;
740
741 error = pci_raw_set_power_state(dev, state);
742
743 if (!__pci_complete_power_transition(dev, state))
744 error = 0;
745 /*
746 * When aspm_policy is "powersave" this call ensures
747 * that ASPM is configured.
748 */
749 if (!error && dev->bus->self)
750 pcie_aspm_powersave_config_link(dev->bus->self);
751
752 return error;
753}
754
755/**
756 * pci_choose_state - Choose the power state of a PCI device
757 * @dev: PCI device to be suspended
758 * @state: target sleep state for the whole system. This is the value
759 * that is passed to suspend() function.
760 *
761 * Returns PCI power state suitable for given device and given system
762 * message.
763 */
764
765pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
766{
767 pci_power_t ret;
768
769 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
770 return PCI_D0;
771
772 ret = platform_pci_choose_state(dev);
773 if (ret != PCI_POWER_ERROR)
774 return ret;
775
776 switch (state.event) {
777 case PM_EVENT_ON:
778 return PCI_D0;
779 case PM_EVENT_FREEZE:
780 case PM_EVENT_PRETHAW:
781 /* REVISIT both freeze and pre-thaw "should" use D0 */
782 case PM_EVENT_SUSPEND:
783 case PM_EVENT_HIBERNATE:
784 return PCI_D3hot;
785 default:
786 dev_info(&dev->dev, "unrecognized suspend event %d\n",
787 state.event);
788 BUG();
789 }
790 return PCI_D0;
791}
792
793EXPORT_SYMBOL(pci_choose_state);
794
795#define PCI_EXP_SAVE_REGS 7
796
797#define pcie_cap_has_devctl(type, flags) 1
798#define pcie_cap_has_lnkctl(type, flags) \
799 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
800 (type == PCI_EXP_TYPE_ROOT_PORT || \
801 type == PCI_EXP_TYPE_ENDPOINT || \
802 type == PCI_EXP_TYPE_LEG_END))
803#define pcie_cap_has_sltctl(type, flags) \
804 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
805 ((type == PCI_EXP_TYPE_ROOT_PORT) || \
806 (type == PCI_EXP_TYPE_DOWNSTREAM && \
807 (flags & PCI_EXP_FLAGS_SLOT))))
808#define pcie_cap_has_rtctl(type, flags) \
809 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
810 (type == PCI_EXP_TYPE_ROOT_PORT || \
811 type == PCI_EXP_TYPE_RC_EC))
812#define pcie_cap_has_devctl2(type, flags) \
813 ((flags & PCI_EXP_FLAGS_VERS) > 1)
814#define pcie_cap_has_lnkctl2(type, flags) \
815 ((flags & PCI_EXP_FLAGS_VERS) > 1)
816#define pcie_cap_has_sltctl2(type, flags) \
817 ((flags & PCI_EXP_FLAGS_VERS) > 1)
818
819static int pci_save_pcie_state(struct pci_dev *dev)
820{
821 int pos, i = 0;
822 struct pci_cap_saved_state *save_state;
823 u16 *cap;
824 u16 flags;
825
826 pos = pci_pcie_cap(dev);
827 if (!pos)
828 return 0;
829
830 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
831 if (!save_state) {
832 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
833 return -ENOMEM;
834 }
835 cap = (u16 *)&save_state->cap.data[0];
836
837 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
838
839 if (pcie_cap_has_devctl(dev->pcie_type, flags))
840 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
841 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
842 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
843 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
844 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
845 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
846 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
847 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
848 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
849 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
850 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
851 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
852 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
853
854 return 0;
855}
856
857static void pci_restore_pcie_state(struct pci_dev *dev)
858{
859 int i = 0, pos;
860 struct pci_cap_saved_state *save_state;
861 u16 *cap;
862 u16 flags;
863
864 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
865 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
866 if (!save_state || pos <= 0)
867 return;
868 cap = (u16 *)&save_state->cap.data[0];
869
870 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
871
872 if (pcie_cap_has_devctl(dev->pcie_type, flags))
873 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
874 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
875 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
876 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
877 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
878 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
879 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
880 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
881 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
882 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
883 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
884 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
885 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
886}
887
888
889static int pci_save_pcix_state(struct pci_dev *dev)
890{
891 int pos;
892 struct pci_cap_saved_state *save_state;
893
894 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
895 if (pos <= 0)
896 return 0;
897
898 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
899 if (!save_state) {
900 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
901 return -ENOMEM;
902 }
903
904 pci_read_config_word(dev, pos + PCI_X_CMD,
905 (u16 *)save_state->cap.data);
906
907 return 0;
908}
909
910static void pci_restore_pcix_state(struct pci_dev *dev)
911{
912 int i = 0, pos;
913 struct pci_cap_saved_state *save_state;
914 u16 *cap;
915
916 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
917 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
918 if (!save_state || pos <= 0)
919 return;
920 cap = (u16 *)&save_state->cap.data[0];
921
922 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
923}
924
925
926/**
927 * pci_save_state - save the PCI configuration space of a device before suspending
928 * @dev: - PCI device that we're dealing with
929 */
930int
931pci_save_state(struct pci_dev *dev)
932{
933 int i;
934 /* XXX: 100% dword access ok here? */
935 for (i = 0; i < 16; i++)
936 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
937 dev->state_saved = true;
938 if ((i = pci_save_pcie_state(dev)) != 0)
939 return i;
940 if ((i = pci_save_pcix_state(dev)) != 0)
941 return i;
942 return 0;
943}
944
945/**
946 * pci_restore_state - Restore the saved state of a PCI device
947 * @dev: - PCI device that we're dealing with
948 */
949void pci_restore_state(struct pci_dev *dev)
950{
951 int i;
952 u32 val;
953
954 if (!dev->state_saved)
955 return;
956
957 /* PCI Express register must be restored first */
958 pci_restore_pcie_state(dev);
959
960 /*
961 * The Base Address register should be programmed before the command
962 * register(s)
963 */
964 for (i = 15; i >= 0; i--) {
965 pci_read_config_dword(dev, i * 4, &val);
966 if (val != dev->saved_config_space[i]) {
967 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
968 "space at offset %#x (was %#x, writing %#x)\n",
969 i, val, (int)dev->saved_config_space[i]);
970 pci_write_config_dword(dev,i * 4,
971 dev->saved_config_space[i]);
972 }
973 }
974 pci_restore_pcix_state(dev);
975 pci_restore_msi_state(dev);
976 pci_restore_iov_state(dev);
977
978 dev->state_saved = false;
979}
980
981struct pci_saved_state {
982 u32 config_space[16];
983 struct pci_cap_saved_data cap[0];
984};
985
986/**
987 * pci_store_saved_state - Allocate and return an opaque struct containing
988 * the device saved state.
989 * @dev: PCI device that we're dealing with
990 *
991 * Rerturn NULL if no state or error.
992 */
993struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
994{
995 struct pci_saved_state *state;
996 struct pci_cap_saved_state *tmp;
997 struct pci_cap_saved_data *cap;
998 struct hlist_node *pos;
999 size_t size;
1000
1001 if (!dev->state_saved)
1002 return NULL;
1003
1004 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1005
1006 hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next)
1007 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1008
1009 state = kzalloc(size, GFP_KERNEL);
1010 if (!state)
1011 return NULL;
1012
1013 memcpy(state->config_space, dev->saved_config_space,
1014 sizeof(state->config_space));
1015
1016 cap = state->cap;
1017 hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next) {
1018 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1019 memcpy(cap, &tmp->cap, len);
1020 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1021 }
1022 /* Empty cap_save terminates list */
1023
1024 return state;
1025}
1026EXPORT_SYMBOL_GPL(pci_store_saved_state);
1027
1028/**
1029 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1030 * @dev: PCI device that we're dealing with
1031 * @state: Saved state returned from pci_store_saved_state()
1032 */
1033int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1034{
1035 struct pci_cap_saved_data *cap;
1036
1037 dev->state_saved = false;
1038
1039 if (!state)
1040 return 0;
1041
1042 memcpy(dev->saved_config_space, state->config_space,
1043 sizeof(state->config_space));
1044
1045 cap = state->cap;
1046 while (cap->size) {
1047 struct pci_cap_saved_state *tmp;
1048
1049 tmp = pci_find_saved_cap(dev, cap->cap_nr);
1050 if (!tmp || tmp->cap.size != cap->size)
1051 return -EINVAL;
1052
1053 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1054 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1055 sizeof(struct pci_cap_saved_data) + cap->size);
1056 }
1057
1058 dev->state_saved = true;
1059 return 0;
1060}
1061EXPORT_SYMBOL_GPL(pci_load_saved_state);
1062
1063/**
1064 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1065 * and free the memory allocated for it.
1066 * @dev: PCI device that we're dealing with
1067 * @state: Pointer to saved state returned from pci_store_saved_state()
1068 */
1069int pci_load_and_free_saved_state(struct pci_dev *dev,
1070 struct pci_saved_state **state)
1071{
1072 int ret = pci_load_saved_state(dev, *state);
1073 kfree(*state);
1074 *state = NULL;
1075 return ret;
1076}
1077EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1078
1079static int do_pci_enable_device(struct pci_dev *dev, int bars)
1080{
1081 int err;
1082
1083 err = pci_set_power_state(dev, PCI_D0);
1084 if (err < 0 && err != -EIO)
1085 return err;
1086 err = pcibios_enable_device(dev, bars);
1087 if (err < 0)
1088 return err;
1089 pci_fixup_device(pci_fixup_enable, dev);
1090
1091 return 0;
1092}
1093
1094/**
1095 * pci_reenable_device - Resume abandoned device
1096 * @dev: PCI device to be resumed
1097 *
1098 * Note this function is a backend of pci_default_resume and is not supposed
1099 * to be called by normal code, write proper resume handler and use it instead.
1100 */
1101int pci_reenable_device(struct pci_dev *dev)
1102{
1103 if (pci_is_enabled(dev))
1104 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1105 return 0;
1106}
1107
1108static int __pci_enable_device_flags(struct pci_dev *dev,
1109 resource_size_t flags)
1110{
1111 int err;
1112 int i, bars = 0;
1113
1114 /*
1115 * Power state could be unknown at this point, either due to a fresh
1116 * boot or a device removal call. So get the current power state
1117 * so that things like MSI message writing will behave as expected
1118 * (e.g. if the device really is in D0 at enable time).
1119 */
1120 if (dev->pm_cap) {
1121 u16 pmcsr;
1122 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1123 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1124 }
1125
1126 if (atomic_add_return(1, &dev->enable_cnt) > 1)
1127 return 0; /* already enabled */
1128
1129 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1130 if (dev->resource[i].flags & flags)
1131 bars |= (1 << i);
1132
1133 err = do_pci_enable_device(dev, bars);
1134 if (err < 0)
1135 atomic_dec(&dev->enable_cnt);
1136 return err;
1137}
1138
1139/**
1140 * pci_enable_device_io - Initialize a device for use with IO space
1141 * @dev: PCI device to be initialized
1142 *
1143 * Initialize device before it's used by a driver. Ask low-level code
1144 * to enable I/O resources. Wake up the device if it was suspended.
1145 * Beware, this function can fail.
1146 */
1147int pci_enable_device_io(struct pci_dev *dev)
1148{
1149 return __pci_enable_device_flags(dev, IORESOURCE_IO);
1150}
1151
1152/**
1153 * pci_enable_device_mem - Initialize a device for use with Memory space
1154 * @dev: PCI device to be initialized
1155 *
1156 * Initialize device before it's used by a driver. Ask low-level code
1157 * to enable Memory resources. Wake up the device if it was suspended.
1158 * Beware, this function can fail.
1159 */
1160int pci_enable_device_mem(struct pci_dev *dev)
1161{
1162 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
1163}
1164
1165/**
1166 * pci_enable_device - Initialize device before it's used by a driver.
1167 * @dev: PCI device to be initialized
1168 *
1169 * Initialize device before it's used by a driver. Ask low-level code
1170 * to enable I/O and memory. Wake up the device if it was suspended.
1171 * Beware, this function can fail.
1172 *
1173 * Note we don't actually enable the device many times if we call
1174 * this function repeatedly (we just increment the count).
1175 */
1176int pci_enable_device(struct pci_dev *dev)
1177{
1178 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1179}
1180
1181/*
1182 * Managed PCI resources. This manages device on/off, intx/msi/msix
1183 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1184 * there's no need to track it separately. pci_devres is initialized
1185 * when a device is enabled using managed PCI device enable interface.
1186 */
1187struct pci_devres {
1188 unsigned int enabled:1;
1189 unsigned int pinned:1;
1190 unsigned int orig_intx:1;
1191 unsigned int restore_intx:1;
1192 u32 region_mask;
1193};
1194
1195static void pcim_release(struct device *gendev, void *res)
1196{
1197 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1198 struct pci_devres *this = res;
1199 int i;
1200
1201 if (dev->msi_enabled)
1202 pci_disable_msi(dev);
1203 if (dev->msix_enabled)
1204 pci_disable_msix(dev);
1205
1206 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1207 if (this->region_mask & (1 << i))
1208 pci_release_region(dev, i);
1209
1210 if (this->restore_intx)
1211 pci_intx(dev, this->orig_intx);
1212
1213 if (this->enabled && !this->pinned)
1214 pci_disable_device(dev);
1215}
1216
1217static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1218{
1219 struct pci_devres *dr, *new_dr;
1220
1221 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1222 if (dr)
1223 return dr;
1224
1225 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1226 if (!new_dr)
1227 return NULL;
1228 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1229}
1230
1231static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1232{
1233 if (pci_is_managed(pdev))
1234 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1235 return NULL;
1236}
1237
1238/**
1239 * pcim_enable_device - Managed pci_enable_device()
1240 * @pdev: PCI device to be initialized
1241 *
1242 * Managed pci_enable_device().
1243 */
1244int pcim_enable_device(struct pci_dev *pdev)
1245{
1246 struct pci_devres *dr;
1247 int rc;
1248
1249 dr = get_pci_dr(pdev);
1250 if (unlikely(!dr))
1251 return -ENOMEM;
1252 if (dr->enabled)
1253 return 0;
1254
1255 rc = pci_enable_device(pdev);
1256 if (!rc) {
1257 pdev->is_managed = 1;
1258 dr->enabled = 1;
1259 }
1260 return rc;
1261}
1262
1263/**
1264 * pcim_pin_device - Pin managed PCI device
1265 * @pdev: PCI device to pin
1266 *
1267 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1268 * driver detach. @pdev must have been enabled with
1269 * pcim_enable_device().
1270 */
1271void pcim_pin_device(struct pci_dev *pdev)
1272{
1273 struct pci_devres *dr;
1274
1275 dr = find_pci_dr(pdev);
1276 WARN_ON(!dr || !dr->enabled);
1277 if (dr)
1278 dr->pinned = 1;
1279}
1280
1281/**
1282 * pcibios_disable_device - disable arch specific PCI resources for device dev
1283 * @dev: the PCI device to disable
1284 *
1285 * Disables architecture specific PCI resources for the device. This
1286 * is the default implementation. Architecture implementations can
1287 * override this.
1288 */
1289void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1290
1291static void do_pci_disable_device(struct pci_dev *dev)
1292{
1293 u16 pci_command;
1294
1295 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1296 if (pci_command & PCI_COMMAND_MASTER) {
1297 pci_command &= ~PCI_COMMAND_MASTER;
1298 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1299 }
1300
1301 pcibios_disable_device(dev);
1302}
1303
1304/**
1305 * pci_disable_enabled_device - Disable device without updating enable_cnt
1306 * @dev: PCI device to disable
1307 *
1308 * NOTE: This function is a backend of PCI power management routines and is
1309 * not supposed to be called drivers.
1310 */
1311void pci_disable_enabled_device(struct pci_dev *dev)
1312{
1313 if (pci_is_enabled(dev))
1314 do_pci_disable_device(dev);
1315}
1316
1317/**
1318 * pci_disable_device - Disable PCI device after use
1319 * @dev: PCI device to be disabled
1320 *
1321 * Signal to the system that the PCI device is not in use by the system
1322 * anymore. This only involves disabling PCI bus-mastering, if active.
1323 *
1324 * Note we don't actually disable the device until all callers of
1325 * pci_enable_device() have called pci_disable_device().
1326 */
1327void
1328pci_disable_device(struct pci_dev *dev)
1329{
1330 struct pci_devres *dr;
1331
1332 dr = find_pci_dr(dev);
1333 if (dr)
1334 dr->enabled = 0;
1335
1336 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1337 return;
1338
1339 do_pci_disable_device(dev);
1340
1341 dev->is_busmaster = 0;
1342}
1343
1344/**
1345 * pcibios_set_pcie_reset_state - set reset state for device dev
1346 * @dev: the PCIe device reset
1347 * @state: Reset state to enter into
1348 *
1349 *
1350 * Sets the PCIe reset state for the device. This is the default
1351 * implementation. Architecture implementations can override this.
1352 */
1353int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1354 enum pcie_reset_state state)
1355{
1356 return -EINVAL;
1357}
1358
1359/**
1360 * pci_set_pcie_reset_state - set reset state for device dev
1361 * @dev: the PCIe device reset
1362 * @state: Reset state to enter into
1363 *
1364 *
1365 * Sets the PCI reset state for the device.
1366 */
1367int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1368{
1369 return pcibios_set_pcie_reset_state(dev, state);
1370}
1371
1372/**
1373 * pci_check_pme_status - Check if given device has generated PME.
1374 * @dev: Device to check.
1375 *
1376 * Check the PME status of the device and if set, clear it and clear PME enable
1377 * (if set). Return 'true' if PME status and PME enable were both set or
1378 * 'false' otherwise.
1379 */
1380bool pci_check_pme_status(struct pci_dev *dev)
1381{
1382 int pmcsr_pos;
1383 u16 pmcsr;
1384 bool ret = false;
1385
1386 if (!dev->pm_cap)
1387 return false;
1388
1389 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1390 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1391 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1392 return false;
1393
1394 /* Clear PME status. */
1395 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1396 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1397 /* Disable PME to avoid interrupt flood. */
1398 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1399 ret = true;
1400 }
1401
1402 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1403
1404 return ret;
1405}
1406
1407/**
1408 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1409 * @dev: Device to handle.
1410 * @ign: Ignored.
1411 *
1412 * Check if @dev has generated PME and queue a resume request for it in that
1413 * case.
1414 */
1415static int pci_pme_wakeup(struct pci_dev *dev, void *ign)
1416{
1417 if (pci_check_pme_status(dev)) {
1418 pci_wakeup_event(dev);
1419 pm_request_resume(&dev->dev);
1420 }
1421 return 0;
1422}
1423
1424/**
1425 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1426 * @bus: Top bus of the subtree to walk.
1427 */
1428void pci_pme_wakeup_bus(struct pci_bus *bus)
1429{
1430 if (bus)
1431 pci_walk_bus(bus, pci_pme_wakeup, NULL);
1432}
1433
1434/**
1435 * pci_pme_capable - check the capability of PCI device to generate PME#
1436 * @dev: PCI device to handle.
1437 * @state: PCI state from which device will issue PME#.
1438 */
1439bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1440{
1441 if (!dev->pm_cap)
1442 return false;
1443
1444 return !!(dev->pme_support & (1 << state));
1445}
1446
1447static void pci_pme_list_scan(struct work_struct *work)
1448{
1449 struct pci_pme_device *pme_dev;
1450
1451 mutex_lock(&pci_pme_list_mutex);
1452 if (!list_empty(&pci_pme_list)) {
1453 list_for_each_entry(pme_dev, &pci_pme_list, list)
1454 pci_pme_wakeup(pme_dev->dev, NULL);
1455 schedule_delayed_work(&pci_pme_work, msecs_to_jiffies(PME_TIMEOUT));
1456 }
1457 mutex_unlock(&pci_pme_list_mutex);
1458}
1459
1460/**
1461 * pci_external_pme - is a device an external PCI PME source?
1462 * @dev: PCI device to check
1463 *
1464 */
1465
1466static bool pci_external_pme(struct pci_dev *dev)
1467{
1468 if (pci_is_pcie(dev) || dev->bus->number == 0)
1469 return false;
1470 return true;
1471}
1472
1473/**
1474 * pci_pme_active - enable or disable PCI device's PME# function
1475 * @dev: PCI device to handle.
1476 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1477 *
1478 * The caller must verify that the device is capable of generating PME# before
1479 * calling this function with @enable equal to 'true'.
1480 */
1481void pci_pme_active(struct pci_dev *dev, bool enable)
1482{
1483 u16 pmcsr;
1484
1485 if (!dev->pm_cap)
1486 return;
1487
1488 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1489 /* Clear PME_Status by writing 1 to it and enable PME# */
1490 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1491 if (!enable)
1492 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1493
1494 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1495
1496 /* PCI (as opposed to PCIe) PME requires that the device have
1497 its PME# line hooked up correctly. Not all hardware vendors
1498 do this, so the PME never gets delivered and the device
1499 remains asleep. The easiest way around this is to
1500 periodically walk the list of suspended devices and check
1501 whether any have their PME flag set. The assumption is that
1502 we'll wake up often enough anyway that this won't be a huge
1503 hit, and the power savings from the devices will still be a
1504 win. */
1505
1506 if (pci_external_pme(dev)) {
1507 struct pci_pme_device *pme_dev;
1508 if (enable) {
1509 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1510 GFP_KERNEL);
1511 if (!pme_dev)
1512 goto out;
1513 pme_dev->dev = dev;
1514 mutex_lock(&pci_pme_list_mutex);
1515 list_add(&pme_dev->list, &pci_pme_list);
1516 if (list_is_singular(&pci_pme_list))
1517 schedule_delayed_work(&pci_pme_work,
1518 msecs_to_jiffies(PME_TIMEOUT));
1519 mutex_unlock(&pci_pme_list_mutex);
1520 } else {
1521 mutex_lock(&pci_pme_list_mutex);
1522 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1523 if (pme_dev->dev == dev) {
1524 list_del(&pme_dev->list);
1525 kfree(pme_dev);
1526 break;
1527 }
1528 }
1529 mutex_unlock(&pci_pme_list_mutex);
1530 }
1531 }
1532
1533out:
1534 dev_printk(KERN_DEBUG, &dev->dev, "PME# %s\n",
1535 enable ? "enabled" : "disabled");
1536}
1537
1538/**
1539 * __pci_enable_wake - enable PCI device as wakeup event source
1540 * @dev: PCI device affected
1541 * @state: PCI state from which device will issue wakeup events
1542 * @runtime: True if the events are to be generated at run time
1543 * @enable: True to enable event generation; false to disable
1544 *
1545 * This enables the device as a wakeup event source, or disables it.
1546 * When such events involves platform-specific hooks, those hooks are
1547 * called automatically by this routine.
1548 *
1549 * Devices with legacy power management (no standard PCI PM capabilities)
1550 * always require such platform hooks.
1551 *
1552 * RETURN VALUE:
1553 * 0 is returned on success
1554 * -EINVAL is returned if device is not supposed to wake up the system
1555 * Error code depending on the platform is returned if both the platform and
1556 * the native mechanism fail to enable the generation of wake-up events
1557 */
1558int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1559 bool runtime, bool enable)
1560{
1561 int ret = 0;
1562
1563 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1564 return -EINVAL;
1565
1566 /* Don't do the same thing twice in a row for one device. */
1567 if (!!enable == !!dev->wakeup_prepared)
1568 return 0;
1569
1570 /*
1571 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1572 * Anderson we should be doing PME# wake enable followed by ACPI wake
1573 * enable. To disable wake-up we call the platform first, for symmetry.
1574 */
1575
1576 if (enable) {
1577 int error;
1578
1579 if (pci_pme_capable(dev, state))
1580 pci_pme_active(dev, true);
1581 else
1582 ret = 1;
1583 error = runtime ? platform_pci_run_wake(dev, true) :
1584 platform_pci_sleep_wake(dev, true);
1585 if (ret)
1586 ret = error;
1587 if (!ret)
1588 dev->wakeup_prepared = true;
1589 } else {
1590 if (runtime)
1591 platform_pci_run_wake(dev, false);
1592 else
1593 platform_pci_sleep_wake(dev, false);
1594 pci_pme_active(dev, false);
1595 dev->wakeup_prepared = false;
1596 }
1597
1598 return ret;
1599}
1600EXPORT_SYMBOL(__pci_enable_wake);
1601
1602/**
1603 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1604 * @dev: PCI device to prepare
1605 * @enable: True to enable wake-up event generation; false to disable
1606 *
1607 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1608 * and this function allows them to set that up cleanly - pci_enable_wake()
1609 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1610 * ordering constraints.
1611 *
1612 * This function only returns error code if the device is not capable of
1613 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1614 * enable wake-up power for it.
1615 */
1616int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1617{
1618 return pci_pme_capable(dev, PCI_D3cold) ?
1619 pci_enable_wake(dev, PCI_D3cold, enable) :
1620 pci_enable_wake(dev, PCI_D3hot, enable);
1621}
1622
1623/**
1624 * pci_target_state - find an appropriate low power state for a given PCI dev
1625 * @dev: PCI device
1626 *
1627 * Use underlying platform code to find a supported low power state for @dev.
1628 * If the platform can't manage @dev, return the deepest state from which it
1629 * can generate wake events, based on any available PME info.
1630 */
1631pci_power_t pci_target_state(struct pci_dev *dev)
1632{
1633 pci_power_t target_state = PCI_D3hot;
1634
1635 if (platform_pci_power_manageable(dev)) {
1636 /*
1637 * Call the platform to choose the target state of the device
1638 * and enable wake-up from this state if supported.
1639 */
1640 pci_power_t state = platform_pci_choose_state(dev);
1641
1642 switch (state) {
1643 case PCI_POWER_ERROR:
1644 case PCI_UNKNOWN:
1645 break;
1646 case PCI_D1:
1647 case PCI_D2:
1648 if (pci_no_d1d2(dev))
1649 break;
1650 default:
1651 target_state = state;
1652 }
1653 } else if (!dev->pm_cap) {
1654 target_state = PCI_D0;
1655 } else if (device_may_wakeup(&dev->dev)) {
1656 /*
1657 * Find the deepest state from which the device can generate
1658 * wake-up events, make it the target state and enable device
1659 * to generate PME#.
1660 */
1661 if (dev->pme_support) {
1662 while (target_state
1663 && !(dev->pme_support & (1 << target_state)))
1664 target_state--;
1665 }
1666 }
1667
1668 return target_state;
1669}
1670
1671/**
1672 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1673 * @dev: Device to handle.
1674 *
1675 * Choose the power state appropriate for the device depending on whether
1676 * it can wake up the system and/or is power manageable by the platform
1677 * (PCI_D3hot is the default) and put the device into that state.
1678 */
1679int pci_prepare_to_sleep(struct pci_dev *dev)
1680{
1681 pci_power_t target_state = pci_target_state(dev);
1682 int error;
1683
1684 if (target_state == PCI_POWER_ERROR)
1685 return -EIO;
1686
1687 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1688
1689 error = pci_set_power_state(dev, target_state);
1690
1691 if (error)
1692 pci_enable_wake(dev, target_state, false);
1693
1694 return error;
1695}
1696
1697/**
1698 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1699 * @dev: Device to handle.
1700 *
1701 * Disable device's system wake-up capability and put it into D0.
1702 */
1703int pci_back_from_sleep(struct pci_dev *dev)
1704{
1705 pci_enable_wake(dev, PCI_D0, false);
1706 return pci_set_power_state(dev, PCI_D0);
1707}
1708
1709/**
1710 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1711 * @dev: PCI device being suspended.
1712 *
1713 * Prepare @dev to generate wake-up events at run time and put it into a low
1714 * power state.
1715 */
1716int pci_finish_runtime_suspend(struct pci_dev *dev)
1717{
1718 pci_power_t target_state = pci_target_state(dev);
1719 int error;
1720
1721 if (target_state == PCI_POWER_ERROR)
1722 return -EIO;
1723
1724 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1725
1726 error = pci_set_power_state(dev, target_state);
1727
1728 if (error)
1729 __pci_enable_wake(dev, target_state, true, false);
1730
1731 return error;
1732}
1733
1734/**
1735 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1736 * @dev: Device to check.
1737 *
1738 * Return true if the device itself is cabable of generating wake-up events
1739 * (through the platform or using the native PCIe PME) or if the device supports
1740 * PME and one of its upstream bridges can generate wake-up events.
1741 */
1742bool pci_dev_run_wake(struct pci_dev *dev)
1743{
1744 struct pci_bus *bus = dev->bus;
1745
1746 if (device_run_wake(&dev->dev))
1747 return true;
1748
1749 if (!dev->pme_support)
1750 return false;
1751
1752 while (bus->parent) {
1753 struct pci_dev *bridge = bus->self;
1754
1755 if (device_run_wake(&bridge->dev))
1756 return true;
1757
1758 bus = bus->parent;
1759 }
1760
1761 /* We have reached the root bus. */
1762 if (bus->bridge)
1763 return device_run_wake(bus->bridge);
1764
1765 return false;
1766}
1767EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1768
1769/**
1770 * pci_pm_init - Initialize PM functions of given PCI device
1771 * @dev: PCI device to handle.
1772 */
1773void pci_pm_init(struct pci_dev *dev)
1774{
1775 int pm;
1776 u16 pmc;
1777
1778 pm_runtime_forbid(&dev->dev);
1779 device_enable_async_suspend(&dev->dev);
1780 dev->wakeup_prepared = false;
1781
1782 dev->pm_cap = 0;
1783
1784 /* find PCI PM capability in list */
1785 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1786 if (!pm)
1787 return;
1788 /* Check device's ability to generate PME# */
1789 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1790
1791 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1792 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1793 pmc & PCI_PM_CAP_VER_MASK);
1794 return;
1795 }
1796
1797 dev->pm_cap = pm;
1798 dev->d3_delay = PCI_PM_D3_WAIT;
1799
1800 dev->d1_support = false;
1801 dev->d2_support = false;
1802 if (!pci_no_d1d2(dev)) {
1803 if (pmc & PCI_PM_CAP_D1)
1804 dev->d1_support = true;
1805 if (pmc & PCI_PM_CAP_D2)
1806 dev->d2_support = true;
1807
1808 if (dev->d1_support || dev->d2_support)
1809 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1810 dev->d1_support ? " D1" : "",
1811 dev->d2_support ? " D2" : "");
1812 }
1813
1814 pmc &= PCI_PM_CAP_PME_MASK;
1815 if (pmc) {
1816 dev_printk(KERN_DEBUG, &dev->dev,
1817 "PME# supported from%s%s%s%s%s\n",
1818 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1819 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1820 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1821 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1822 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1823 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1824 /*
1825 * Make device's PM flags reflect the wake-up capability, but
1826 * let the user space enable it to wake up the system as needed.
1827 */
1828 device_set_wakeup_capable(&dev->dev, true);
1829 /* Disable the PME# generation functionality */
1830 pci_pme_active(dev, false);
1831 } else {
1832 dev->pme_support = 0;
1833 }
1834}
1835
1836/**
1837 * platform_pci_wakeup_init - init platform wakeup if present
1838 * @dev: PCI device
1839 *
1840 * Some devices don't have PCI PM caps but can still generate wakeup
1841 * events through platform methods (like ACPI events). If @dev supports
1842 * platform wakeup events, set the device flag to indicate as much. This
1843 * may be redundant if the device also supports PCI PM caps, but double
1844 * initialization should be safe in that case.
1845 */
1846void platform_pci_wakeup_init(struct pci_dev *dev)
1847{
1848 if (!platform_pci_can_wakeup(dev))
1849 return;
1850
1851 device_set_wakeup_capable(&dev->dev, true);
1852 platform_pci_sleep_wake(dev, false);
1853}
1854
1855/**
1856 * pci_add_save_buffer - allocate buffer for saving given capability registers
1857 * @dev: the PCI device
1858 * @cap: the capability to allocate the buffer for
1859 * @size: requested size of the buffer
1860 */
1861static int pci_add_cap_save_buffer(
1862 struct pci_dev *dev, char cap, unsigned int size)
1863{
1864 int pos;
1865 struct pci_cap_saved_state *save_state;
1866
1867 pos = pci_find_capability(dev, cap);
1868 if (pos <= 0)
1869 return 0;
1870
1871 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1872 if (!save_state)
1873 return -ENOMEM;
1874
1875 save_state->cap.cap_nr = cap;
1876 save_state->cap.size = size;
1877 pci_add_saved_cap(dev, save_state);
1878
1879 return 0;
1880}
1881
1882/**
1883 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1884 * @dev: the PCI device
1885 */
1886void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1887{
1888 int error;
1889
1890 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1891 PCI_EXP_SAVE_REGS * sizeof(u16));
1892 if (error)
1893 dev_err(&dev->dev,
1894 "unable to preallocate PCI Express save buffer\n");
1895
1896 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1897 if (error)
1898 dev_err(&dev->dev,
1899 "unable to preallocate PCI-X save buffer\n");
1900}
1901
1902/**
1903 * pci_enable_ari - enable ARI forwarding if hardware support it
1904 * @dev: the PCI device
1905 */
1906void pci_enable_ari(struct pci_dev *dev)
1907{
1908 int pos;
1909 u32 cap;
1910 u16 flags, ctrl;
1911 struct pci_dev *bridge;
1912
1913 if (!pci_is_pcie(dev) || dev->devfn)
1914 return;
1915
1916 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1917 if (!pos)
1918 return;
1919
1920 bridge = dev->bus->self;
1921 if (!bridge || !pci_is_pcie(bridge))
1922 return;
1923
1924 pos = pci_pcie_cap(bridge);
1925 if (!pos)
1926 return;
1927
1928 /* ARI is a PCIe v2 feature */
1929 pci_read_config_word(bridge, pos + PCI_EXP_FLAGS, &flags);
1930 if ((flags & PCI_EXP_FLAGS_VERS) < 2)
1931 return;
1932
1933 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1934 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1935 return;
1936
1937 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1938 ctrl |= PCI_EXP_DEVCTL2_ARI;
1939 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1940
1941 bridge->ari_enabled = 1;
1942}
1943
1944/**
1945 * pci_enable_ido - enable ID-based ordering on a device
1946 * @dev: the PCI device
1947 * @type: which types of IDO to enable
1948 *
1949 * Enable ID-based ordering on @dev. @type can contain the bits
1950 * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
1951 * which types of transactions are allowed to be re-ordered.
1952 */
1953void pci_enable_ido(struct pci_dev *dev, unsigned long type)
1954{
1955 int pos;
1956 u16 ctrl;
1957
1958 pos = pci_pcie_cap(dev);
1959 if (!pos)
1960 return;
1961
1962 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
1963 if (type & PCI_EXP_IDO_REQUEST)
1964 ctrl |= PCI_EXP_IDO_REQ_EN;
1965 if (type & PCI_EXP_IDO_COMPLETION)
1966 ctrl |= PCI_EXP_IDO_CMP_EN;
1967 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
1968}
1969EXPORT_SYMBOL(pci_enable_ido);
1970
1971/**
1972 * pci_disable_ido - disable ID-based ordering on a device
1973 * @dev: the PCI device
1974 * @type: which types of IDO to disable
1975 */
1976void pci_disable_ido(struct pci_dev *dev, unsigned long type)
1977{
1978 int pos;
1979 u16 ctrl;
1980
1981 if (!pci_is_pcie(dev))
1982 return;
1983
1984 pos = pci_pcie_cap(dev);
1985 if (!pos)
1986 return;
1987
1988 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
1989 if (type & PCI_EXP_IDO_REQUEST)
1990 ctrl &= ~PCI_EXP_IDO_REQ_EN;
1991 if (type & PCI_EXP_IDO_COMPLETION)
1992 ctrl &= ~PCI_EXP_IDO_CMP_EN;
1993 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
1994}
1995EXPORT_SYMBOL(pci_disable_ido);
1996
1997/**
1998 * pci_enable_obff - enable optimized buffer flush/fill
1999 * @dev: PCI device
2000 * @type: type of signaling to use
2001 *
2002 * Try to enable @type OBFF signaling on @dev. It will try using WAKE#
2003 * signaling if possible, falling back to message signaling only if
2004 * WAKE# isn't supported. @type should indicate whether the PCIe link
2005 * be brought out of L0s or L1 to send the message. It should be either
2006 * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2007 *
2008 * If your device can benefit from receiving all messages, even at the
2009 * power cost of bringing the link back up from a low power state, use
2010 * %PCI_EXP_OBFF_SIGNAL_ALWAYS. Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2011 * preferred type).
2012 *
2013 * RETURNS:
2014 * Zero on success, appropriate error number on failure.
2015 */
2016int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2017{
2018 int pos;
2019 u32 cap;
2020 u16 ctrl;
2021 int ret;
2022
2023 if (!pci_is_pcie(dev))
2024 return -ENOTSUPP;
2025
2026 pos = pci_pcie_cap(dev);
2027 if (!pos)
2028 return -ENOTSUPP;
2029
2030 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2031 if (!(cap & PCI_EXP_OBFF_MASK))
2032 return -ENOTSUPP; /* no OBFF support at all */
2033
2034 /* Make sure the topology supports OBFF as well */
2035 if (dev->bus) {
2036 ret = pci_enable_obff(dev->bus->self, type);
2037 if (ret)
2038 return ret;
2039 }
2040
2041 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2042 if (cap & PCI_EXP_OBFF_WAKE)
2043 ctrl |= PCI_EXP_OBFF_WAKE_EN;
2044 else {
2045 switch (type) {
2046 case PCI_EXP_OBFF_SIGNAL_L0:
2047 if (!(ctrl & PCI_EXP_OBFF_WAKE_EN))
2048 ctrl |= PCI_EXP_OBFF_MSGA_EN;
2049 break;
2050 case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2051 ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2052 ctrl |= PCI_EXP_OBFF_MSGB_EN;
2053 break;
2054 default:
2055 WARN(1, "bad OBFF signal type\n");
2056 return -ENOTSUPP;
2057 }
2058 }
2059 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2060
2061 return 0;
2062}
2063EXPORT_SYMBOL(pci_enable_obff);
2064
2065/**
2066 * pci_disable_obff - disable optimized buffer flush/fill
2067 * @dev: PCI device
2068 *
2069 * Disable OBFF on @dev.
2070 */
2071void pci_disable_obff(struct pci_dev *dev)
2072{
2073 int pos;
2074 u16 ctrl;
2075
2076 if (!pci_is_pcie(dev))
2077 return;
2078
2079 pos = pci_pcie_cap(dev);
2080 if (!pos)
2081 return;
2082
2083 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2084 ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2085 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2086}
2087EXPORT_SYMBOL(pci_disable_obff);
2088
2089/**
2090 * pci_ltr_supported - check whether a device supports LTR
2091 * @dev: PCI device
2092 *
2093 * RETURNS:
2094 * True if @dev supports latency tolerance reporting, false otherwise.
2095 */
2096bool pci_ltr_supported(struct pci_dev *dev)
2097{
2098 int pos;
2099 u32 cap;
2100
2101 if (!pci_is_pcie(dev))
2102 return false;
2103
2104 pos = pci_pcie_cap(dev);
2105 if (!pos)
2106 return false;
2107
2108 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2109
2110 return cap & PCI_EXP_DEVCAP2_LTR;
2111}
2112EXPORT_SYMBOL(pci_ltr_supported);
2113
2114/**
2115 * pci_enable_ltr - enable latency tolerance reporting
2116 * @dev: PCI device
2117 *
2118 * Enable LTR on @dev if possible, which means enabling it first on
2119 * upstream ports.
2120 *
2121 * RETURNS:
2122 * Zero on success, errno on failure.
2123 */
2124int pci_enable_ltr(struct pci_dev *dev)
2125{
2126 int pos;
2127 u16 ctrl;
2128 int ret;
2129
2130 if (!pci_ltr_supported(dev))
2131 return -ENOTSUPP;
2132
2133 pos = pci_pcie_cap(dev);
2134 if (!pos)
2135 return -ENOTSUPP;
2136
2137 /* Only primary function can enable/disable LTR */
2138 if (PCI_FUNC(dev->devfn) != 0)
2139 return -EINVAL;
2140
2141 /* Enable upstream ports first */
2142 if (dev->bus) {
2143 ret = pci_enable_ltr(dev->bus->self);
2144 if (ret)
2145 return ret;
2146 }
2147
2148 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2149 ctrl |= PCI_EXP_LTR_EN;
2150 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2151
2152 return 0;
2153}
2154EXPORT_SYMBOL(pci_enable_ltr);
2155
2156/**
2157 * pci_disable_ltr - disable latency tolerance reporting
2158 * @dev: PCI device
2159 */
2160void pci_disable_ltr(struct pci_dev *dev)
2161{
2162 int pos;
2163 u16 ctrl;
2164
2165 if (!pci_ltr_supported(dev))
2166 return;
2167
2168 pos = pci_pcie_cap(dev);
2169 if (!pos)
2170 return;
2171
2172 /* Only primary function can enable/disable LTR */
2173 if (PCI_FUNC(dev->devfn) != 0)
2174 return;
2175
2176 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2177 ctrl &= ~PCI_EXP_LTR_EN;
2178 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2179}
2180EXPORT_SYMBOL(pci_disable_ltr);
2181
2182static int __pci_ltr_scale(int *val)
2183{
2184 int scale = 0;
2185
2186 while (*val > 1023) {
2187 *val = (*val + 31) / 32;
2188 scale++;
2189 }
2190 return scale;
2191}
2192
2193/**
2194 * pci_set_ltr - set LTR latency values
2195 * @dev: PCI device
2196 * @snoop_lat_ns: snoop latency in nanoseconds
2197 * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2198 *
2199 * Figure out the scale and set the LTR values accordingly.
2200 */
2201int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2202{
2203 int pos, ret, snoop_scale, nosnoop_scale;
2204 u16 val;
2205
2206 if (!pci_ltr_supported(dev))
2207 return -ENOTSUPP;
2208
2209 snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2210 nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2211
2212 if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2213 nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2214 return -EINVAL;
2215
2216 if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2217 (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2218 return -EINVAL;
2219
2220 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2221 if (!pos)
2222 return -ENOTSUPP;
2223
2224 val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2225 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2226 if (ret != 4)
2227 return -EIO;
2228
2229 val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2230 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2231 if (ret != 4)
2232 return -EIO;
2233
2234 return 0;
2235}
2236EXPORT_SYMBOL(pci_set_ltr);
2237
2238static int pci_acs_enable;
2239
2240/**
2241 * pci_request_acs - ask for ACS to be enabled if supported
2242 */
2243void pci_request_acs(void)
2244{
2245 pci_acs_enable = 1;
2246}
2247
2248/**
2249 * pci_enable_acs - enable ACS if hardware support it
2250 * @dev: the PCI device
2251 */
2252void pci_enable_acs(struct pci_dev *dev)
2253{
2254 int pos;
2255 u16 cap;
2256 u16 ctrl;
2257
2258 if (!pci_acs_enable)
2259 return;
2260
2261 if (!pci_is_pcie(dev))
2262 return;
2263
2264 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2265 if (!pos)
2266 return;
2267
2268 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2269 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2270
2271 /* Source Validation */
2272 ctrl |= (cap & PCI_ACS_SV);
2273
2274 /* P2P Request Redirect */
2275 ctrl |= (cap & PCI_ACS_RR);
2276
2277 /* P2P Completion Redirect */
2278 ctrl |= (cap & PCI_ACS_CR);
2279
2280 /* Upstream Forwarding */
2281 ctrl |= (cap & PCI_ACS_UF);
2282
2283 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2284}
2285
2286/**
2287 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2288 * @dev: the PCI device
2289 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2290 *
2291 * Perform INTx swizzling for a device behind one level of bridge. This is
2292 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2293 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2294 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2295 * the PCI Express Base Specification, Revision 2.1)
2296 */
2297u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
2298{
2299 int slot;
2300
2301 if (pci_ari_enabled(dev->bus))
2302 slot = 0;
2303 else
2304 slot = PCI_SLOT(dev->devfn);
2305
2306 return (((pin - 1) + slot) % 4) + 1;
2307}
2308
2309int
2310pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2311{
2312 u8 pin;
2313
2314 pin = dev->pin;
2315 if (!pin)
2316 return -1;
2317
2318 while (!pci_is_root_bus(dev->bus)) {
2319 pin = pci_swizzle_interrupt_pin(dev, pin);
2320 dev = dev->bus->self;
2321 }
2322 *bridge = dev;
2323 return pin;
2324}
2325
2326/**
2327 * pci_common_swizzle - swizzle INTx all the way to root bridge
2328 * @dev: the PCI device
2329 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2330 *
2331 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2332 * bridges all the way up to a PCI root bus.
2333 */
2334u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2335{
2336 u8 pin = *pinp;
2337
2338 while (!pci_is_root_bus(dev->bus)) {
2339 pin = pci_swizzle_interrupt_pin(dev, pin);
2340 dev = dev->bus->self;
2341 }
2342 *pinp = pin;
2343 return PCI_SLOT(dev->devfn);
2344}
2345
2346/**
2347 * pci_release_region - Release a PCI bar
2348 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2349 * @bar: BAR to release
2350 *
2351 * Releases the PCI I/O and memory resources previously reserved by a
2352 * successful call to pci_request_region. Call this function only
2353 * after all use of the PCI regions has ceased.
2354 */
2355void pci_release_region(struct pci_dev *pdev, int bar)
2356{
2357 struct pci_devres *dr;
2358
2359 if (pci_resource_len(pdev, bar) == 0)
2360 return;
2361 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2362 release_region(pci_resource_start(pdev, bar),
2363 pci_resource_len(pdev, bar));
2364 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2365 release_mem_region(pci_resource_start(pdev, bar),
2366 pci_resource_len(pdev, bar));
2367
2368 dr = find_pci_dr(pdev);
2369 if (dr)
2370 dr->region_mask &= ~(1 << bar);
2371}
2372
2373/**
2374 * __pci_request_region - Reserved PCI I/O and memory resource
2375 * @pdev: PCI device whose resources are to be reserved
2376 * @bar: BAR to be reserved
2377 * @res_name: Name to be associated with resource.
2378 * @exclusive: whether the region access is exclusive or not
2379 *
2380 * Mark the PCI region associated with PCI device @pdev BR @bar as
2381 * being reserved by owner @res_name. Do not access any
2382 * address inside the PCI regions unless this call returns
2383 * successfully.
2384 *
2385 * If @exclusive is set, then the region is marked so that userspace
2386 * is explicitly not allowed to map the resource via /dev/mem or
2387 * sysfs MMIO access.
2388 *
2389 * Returns 0 on success, or %EBUSY on error. A warning
2390 * message is also printed on failure.
2391 */
2392static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2393 int exclusive)
2394{
2395 struct pci_devres *dr;
2396
2397 if (pci_resource_len(pdev, bar) == 0)
2398 return 0;
2399
2400 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2401 if (!request_region(pci_resource_start(pdev, bar),
2402 pci_resource_len(pdev, bar), res_name))
2403 goto err_out;
2404 }
2405 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2406 if (!__request_mem_region(pci_resource_start(pdev, bar),
2407 pci_resource_len(pdev, bar), res_name,
2408 exclusive))
2409 goto err_out;
2410 }
2411
2412 dr = find_pci_dr(pdev);
2413 if (dr)
2414 dr->region_mask |= 1 << bar;
2415
2416 return 0;
2417
2418err_out:
2419 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2420 &pdev->resource[bar]);
2421 return -EBUSY;
2422}
2423
2424/**
2425 * pci_request_region - Reserve PCI I/O and memory resource
2426 * @pdev: PCI device whose resources are to be reserved
2427 * @bar: BAR to be reserved
2428 * @res_name: Name to be associated with resource
2429 *
2430 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2431 * being reserved by owner @res_name. Do not access any
2432 * address inside the PCI regions unless this call returns
2433 * successfully.
2434 *
2435 * Returns 0 on success, or %EBUSY on error. A warning
2436 * message is also printed on failure.
2437 */
2438int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2439{
2440 return __pci_request_region(pdev, bar, res_name, 0);
2441}
2442
2443/**
2444 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2445 * @pdev: PCI device whose resources are to be reserved
2446 * @bar: BAR to be reserved
2447 * @res_name: Name to be associated with resource.
2448 *
2449 * Mark the PCI region associated with PCI device @pdev BR @bar as
2450 * being reserved by owner @res_name. Do not access any
2451 * address inside the PCI regions unless this call returns
2452 * successfully.
2453 *
2454 * Returns 0 on success, or %EBUSY on error. A warning
2455 * message is also printed on failure.
2456 *
2457 * The key difference that _exclusive makes it that userspace is
2458 * explicitly not allowed to map the resource via /dev/mem or
2459 * sysfs.
2460 */
2461int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2462{
2463 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2464}
2465/**
2466 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2467 * @pdev: PCI device whose resources were previously reserved
2468 * @bars: Bitmask of BARs to be released
2469 *
2470 * Release selected PCI I/O and memory resources previously reserved.
2471 * Call this function only after all use of the PCI regions has ceased.
2472 */
2473void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2474{
2475 int i;
2476
2477 for (i = 0; i < 6; i++)
2478 if (bars & (1 << i))
2479 pci_release_region(pdev, i);
2480}
2481
2482int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2483 const char *res_name, int excl)
2484{
2485 int i;
2486
2487 for (i = 0; i < 6; i++)
2488 if (bars & (1 << i))
2489 if (__pci_request_region(pdev, i, res_name, excl))
2490 goto err_out;
2491 return 0;
2492
2493err_out:
2494 while(--i >= 0)
2495 if (bars & (1 << i))
2496 pci_release_region(pdev, i);
2497
2498 return -EBUSY;
2499}
2500
2501
2502/**
2503 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2504 * @pdev: PCI device whose resources are to be reserved
2505 * @bars: Bitmask of BARs to be requested
2506 * @res_name: Name to be associated with resource
2507 */
2508int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2509 const char *res_name)
2510{
2511 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2512}
2513
2514int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2515 int bars, const char *res_name)
2516{
2517 return __pci_request_selected_regions(pdev, bars, res_name,
2518 IORESOURCE_EXCLUSIVE);
2519}
2520
2521/**
2522 * pci_release_regions - Release reserved PCI I/O and memory resources
2523 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2524 *
2525 * Releases all PCI I/O and memory resources previously reserved by a
2526 * successful call to pci_request_regions. Call this function only
2527 * after all use of the PCI regions has ceased.
2528 */
2529
2530void pci_release_regions(struct pci_dev *pdev)
2531{
2532 pci_release_selected_regions(pdev, (1 << 6) - 1);
2533}
2534
2535/**
2536 * pci_request_regions - Reserved PCI I/O and memory resources
2537 * @pdev: PCI device whose resources are to be reserved
2538 * @res_name: Name to be associated with resource.
2539 *
2540 * Mark all PCI regions associated with PCI device @pdev as
2541 * being reserved by owner @res_name. Do not access any
2542 * address inside the PCI regions unless this call returns
2543 * successfully.
2544 *
2545 * Returns 0 on success, or %EBUSY on error. A warning
2546 * message is also printed on failure.
2547 */
2548int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2549{
2550 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2551}
2552
2553/**
2554 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2555 * @pdev: PCI device whose resources are to be reserved
2556 * @res_name: Name to be associated with resource.
2557 *
2558 * Mark all PCI regions associated with PCI device @pdev as
2559 * being reserved by owner @res_name. Do not access any
2560 * address inside the PCI regions unless this call returns
2561 * successfully.
2562 *
2563 * pci_request_regions_exclusive() will mark the region so that
2564 * /dev/mem and the sysfs MMIO access will not be allowed.
2565 *
2566 * Returns 0 on success, or %EBUSY on error. A warning
2567 * message is also printed on failure.
2568 */
2569int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2570{
2571 return pci_request_selected_regions_exclusive(pdev,
2572 ((1 << 6) - 1), res_name);
2573}
2574
2575static void __pci_set_master(struct pci_dev *dev, bool enable)
2576{
2577 u16 old_cmd, cmd;
2578
2579 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2580 if (enable)
2581 cmd = old_cmd | PCI_COMMAND_MASTER;
2582 else
2583 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2584 if (cmd != old_cmd) {
2585 dev_dbg(&dev->dev, "%s bus mastering\n",
2586 enable ? "enabling" : "disabling");
2587 pci_write_config_word(dev, PCI_COMMAND, cmd);
2588 }
2589 dev->is_busmaster = enable;
2590}
2591
2592/**
2593 * pci_set_master - enables bus-mastering for device dev
2594 * @dev: the PCI device to enable
2595 *
2596 * Enables bus-mastering on the device and calls pcibios_set_master()
2597 * to do the needed arch specific settings.
2598 */
2599void pci_set_master(struct pci_dev *dev)
2600{
2601 __pci_set_master(dev, true);
2602 pcibios_set_master(dev);
2603}
2604
2605/**
2606 * pci_clear_master - disables bus-mastering for device dev
2607 * @dev: the PCI device to disable
2608 */
2609void pci_clear_master(struct pci_dev *dev)
2610{
2611 __pci_set_master(dev, false);
2612}
2613
2614/**
2615 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2616 * @dev: the PCI device for which MWI is to be enabled
2617 *
2618 * Helper function for pci_set_mwi.
2619 * Originally copied from drivers/net/acenic.c.
2620 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2621 *
2622 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2623 */
2624int pci_set_cacheline_size(struct pci_dev *dev)
2625{
2626 u8 cacheline_size;
2627
2628 if (!pci_cache_line_size)
2629 return -EINVAL;
2630
2631 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2632 equal to or multiple of the right value. */
2633 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2634 if (cacheline_size >= pci_cache_line_size &&
2635 (cacheline_size % pci_cache_line_size) == 0)
2636 return 0;
2637
2638 /* Write the correct value. */
2639 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2640 /* Read it back. */
2641 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2642 if (cacheline_size == pci_cache_line_size)
2643 return 0;
2644
2645 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2646 "supported\n", pci_cache_line_size << 2);
2647
2648 return -EINVAL;
2649}
2650EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2651
2652#ifdef PCI_DISABLE_MWI
2653int pci_set_mwi(struct pci_dev *dev)
2654{
2655 return 0;
2656}
2657
2658int pci_try_set_mwi(struct pci_dev *dev)
2659{
2660 return 0;
2661}
2662
2663void pci_clear_mwi(struct pci_dev *dev)
2664{
2665}
2666
2667#else
2668
2669/**
2670 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2671 * @dev: the PCI device for which MWI is enabled
2672 *
2673 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2674 *
2675 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2676 */
2677int
2678pci_set_mwi(struct pci_dev *dev)
2679{
2680 int rc;
2681 u16 cmd;
2682
2683 rc = pci_set_cacheline_size(dev);
2684 if (rc)
2685 return rc;
2686
2687 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2688 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2689 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2690 cmd |= PCI_COMMAND_INVALIDATE;
2691 pci_write_config_word(dev, PCI_COMMAND, cmd);
2692 }
2693
2694 return 0;
2695}
2696
2697/**
2698 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2699 * @dev: the PCI device for which MWI is enabled
2700 *
2701 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2702 * Callers are not required to check the return value.
2703 *
2704 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2705 */
2706int pci_try_set_mwi(struct pci_dev *dev)
2707{
2708 int rc = pci_set_mwi(dev);
2709 return rc;
2710}
2711
2712/**
2713 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2714 * @dev: the PCI device to disable
2715 *
2716 * Disables PCI Memory-Write-Invalidate transaction on the device
2717 */
2718void
2719pci_clear_mwi(struct pci_dev *dev)
2720{
2721 u16 cmd;
2722
2723 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2724 if (cmd & PCI_COMMAND_INVALIDATE) {
2725 cmd &= ~PCI_COMMAND_INVALIDATE;
2726 pci_write_config_word(dev, PCI_COMMAND, cmd);
2727 }
2728}
2729#endif /* ! PCI_DISABLE_MWI */
2730
2731/**
2732 * pci_intx - enables/disables PCI INTx for device dev
2733 * @pdev: the PCI device to operate on
2734 * @enable: boolean: whether to enable or disable PCI INTx
2735 *
2736 * Enables/disables PCI INTx for device dev
2737 */
2738void
2739pci_intx(struct pci_dev *pdev, int enable)
2740{
2741 u16 pci_command, new;
2742
2743 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2744
2745 if (enable) {
2746 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2747 } else {
2748 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2749 }
2750
2751 if (new != pci_command) {
2752 struct pci_devres *dr;
2753
2754 pci_write_config_word(pdev, PCI_COMMAND, new);
2755
2756 dr = find_pci_dr(pdev);
2757 if (dr && !dr->restore_intx) {
2758 dr->restore_intx = 1;
2759 dr->orig_intx = !enable;
2760 }
2761 }
2762}
2763
2764/**
2765 * pci_msi_off - disables any msi or msix capabilities
2766 * @dev: the PCI device to operate on
2767 *
2768 * If you want to use msi see pci_enable_msi and friends.
2769 * This is a lower level primitive that allows us to disable
2770 * msi operation at the device level.
2771 */
2772void pci_msi_off(struct pci_dev *dev)
2773{
2774 int pos;
2775 u16 control;
2776
2777 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2778 if (pos) {
2779 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2780 control &= ~PCI_MSI_FLAGS_ENABLE;
2781 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2782 }
2783 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2784 if (pos) {
2785 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2786 control &= ~PCI_MSIX_FLAGS_ENABLE;
2787 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2788 }
2789}
2790EXPORT_SYMBOL_GPL(pci_msi_off);
2791
2792int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2793{
2794 return dma_set_max_seg_size(&dev->dev, size);
2795}
2796EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2797
2798int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2799{
2800 return dma_set_seg_boundary(&dev->dev, mask);
2801}
2802EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2803
2804static int pcie_flr(struct pci_dev *dev, int probe)
2805{
2806 int i;
2807 int pos;
2808 u32 cap;
2809 u16 status, control;
2810
2811 pos = pci_pcie_cap(dev);
2812 if (!pos)
2813 return -ENOTTY;
2814
2815 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
2816 if (!(cap & PCI_EXP_DEVCAP_FLR))
2817 return -ENOTTY;
2818
2819 if (probe)
2820 return 0;
2821
2822 /* Wait for Transaction Pending bit clean */
2823 for (i = 0; i < 4; i++) {
2824 if (i)
2825 msleep((1 << (i - 1)) * 100);
2826
2827 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
2828 if (!(status & PCI_EXP_DEVSTA_TRPND))
2829 goto clear;
2830 }
2831
2832 dev_err(&dev->dev, "transaction is not cleared; "
2833 "proceeding with reset anyway\n");
2834
2835clear:
2836 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control);
2837 control |= PCI_EXP_DEVCTL_BCR_FLR;
2838 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control);
2839
2840 msleep(100);
2841
2842 return 0;
2843}
2844
2845static int pci_af_flr(struct pci_dev *dev, int probe)
2846{
2847 int i;
2848 int pos;
2849 u8 cap;
2850 u8 status;
2851
2852 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
2853 if (!pos)
2854 return -ENOTTY;
2855
2856 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
2857 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2858 return -ENOTTY;
2859
2860 if (probe)
2861 return 0;
2862
2863 /* Wait for Transaction Pending bit clean */
2864 for (i = 0; i < 4; i++) {
2865 if (i)
2866 msleep((1 << (i - 1)) * 100);
2867
2868 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
2869 if (!(status & PCI_AF_STATUS_TP))
2870 goto clear;
2871 }
2872
2873 dev_err(&dev->dev, "transaction is not cleared; "
2874 "proceeding with reset anyway\n");
2875
2876clear:
2877 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2878 msleep(100);
2879
2880 return 0;
2881}
2882
2883/**
2884 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
2885 * @dev: Device to reset.
2886 * @probe: If set, only check if the device can be reset this way.
2887 *
2888 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
2889 * unset, it will be reinitialized internally when going from PCI_D3hot to
2890 * PCI_D0. If that's the case and the device is not in a low-power state
2891 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
2892 *
2893 * NOTE: This causes the caller to sleep for twice the device power transition
2894 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
2895 * by devault (i.e. unless the @dev's d3_delay field has a different value).
2896 * Moreover, only devices in D0 can be reset by this function.
2897 */
2898static int pci_pm_reset(struct pci_dev *dev, int probe)
2899{
2900 u16 csr;
2901
2902 if (!dev->pm_cap)
2903 return -ENOTTY;
2904
2905 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
2906 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
2907 return -ENOTTY;
2908
2909 if (probe)
2910 return 0;
2911
2912 if (dev->current_state != PCI_D0)
2913 return -EINVAL;
2914
2915 csr &= ~PCI_PM_CTRL_STATE_MASK;
2916 csr |= PCI_D3hot;
2917 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2918 pci_dev_d3_sleep(dev);
2919
2920 csr &= ~PCI_PM_CTRL_STATE_MASK;
2921 csr |= PCI_D0;
2922 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2923 pci_dev_d3_sleep(dev);
2924
2925 return 0;
2926}
2927
2928static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
2929{
2930 u16 ctrl;
2931 struct pci_dev *pdev;
2932
2933 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
2934 return -ENOTTY;
2935
2936 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
2937 if (pdev != dev)
2938 return -ENOTTY;
2939
2940 if (probe)
2941 return 0;
2942
2943 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
2944 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
2945 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2946 msleep(100);
2947
2948 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
2949 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2950 msleep(100);
2951
2952 return 0;
2953}
2954
2955static int pci_dev_reset(struct pci_dev *dev, int probe)
2956{
2957 int rc;
2958
2959 might_sleep();
2960
2961 if (!probe) {
2962 pci_block_user_cfg_access(dev);
2963 /* block PM suspend, driver probe, etc. */
2964 device_lock(&dev->dev);
2965 }
2966
2967 rc = pci_dev_specific_reset(dev, probe);
2968 if (rc != -ENOTTY)
2969 goto done;
2970
2971 rc = pcie_flr(dev, probe);
2972 if (rc != -ENOTTY)
2973 goto done;
2974
2975 rc = pci_af_flr(dev, probe);
2976 if (rc != -ENOTTY)
2977 goto done;
2978
2979 rc = pci_pm_reset(dev, probe);
2980 if (rc != -ENOTTY)
2981 goto done;
2982
2983 rc = pci_parent_bus_reset(dev, probe);
2984done:
2985 if (!probe) {
2986 device_unlock(&dev->dev);
2987 pci_unblock_user_cfg_access(dev);
2988 }
2989
2990 return rc;
2991}
2992
2993/**
2994 * __pci_reset_function - reset a PCI device function
2995 * @dev: PCI device to reset
2996 *
2997 * Some devices allow an individual function to be reset without affecting
2998 * other functions in the same device. The PCI device must be responsive
2999 * to PCI config space in order to use this function.
3000 *
3001 * The device function is presumed to be unused when this function is called.
3002 * Resetting the device will make the contents of PCI configuration space
3003 * random, so any caller of this must be prepared to reinitialise the
3004 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3005 * etc.
3006 *
3007 * Returns 0 if the device function was successfully reset or negative if the
3008 * device doesn't support resetting a single function.
3009 */
3010int __pci_reset_function(struct pci_dev *dev)
3011{
3012 return pci_dev_reset(dev, 0);
3013}
3014EXPORT_SYMBOL_GPL(__pci_reset_function);
3015
3016/**
3017 * pci_probe_reset_function - check whether the device can be safely reset
3018 * @dev: PCI device to reset
3019 *
3020 * Some devices allow an individual function to be reset without affecting
3021 * other functions in the same device. The PCI device must be responsive
3022 * to PCI config space in order to use this function.
3023 *
3024 * Returns 0 if the device function can be reset or negative if the
3025 * device doesn't support resetting a single function.
3026 */
3027int pci_probe_reset_function(struct pci_dev *dev)
3028{
3029 return pci_dev_reset(dev, 1);
3030}
3031
3032/**
3033 * pci_reset_function - quiesce and reset a PCI device function
3034 * @dev: PCI device to reset
3035 *
3036 * Some devices allow an individual function to be reset without affecting
3037 * other functions in the same device. The PCI device must be responsive
3038 * to PCI config space in order to use this function.
3039 *
3040 * This function does not just reset the PCI portion of a device, but
3041 * clears all the state associated with the device. This function differs
3042 * from __pci_reset_function in that it saves and restores device state
3043 * over the reset.
3044 *
3045 * Returns 0 if the device function was successfully reset or negative if the
3046 * device doesn't support resetting a single function.
3047 */
3048int pci_reset_function(struct pci_dev *dev)
3049{
3050 int rc;
3051
3052 rc = pci_dev_reset(dev, 1);
3053 if (rc)
3054 return rc;
3055
3056 pci_save_state(dev);
3057
3058 /*
3059 * both INTx and MSI are disabled after the Interrupt Disable bit
3060 * is set and the Bus Master bit is cleared.
3061 */
3062 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3063
3064 rc = pci_dev_reset(dev, 0);
3065
3066 pci_restore_state(dev);
3067
3068 return rc;
3069}
3070EXPORT_SYMBOL_GPL(pci_reset_function);
3071
3072/**
3073 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3074 * @dev: PCI device to query
3075 *
3076 * Returns mmrbc: maximum designed memory read count in bytes
3077 * or appropriate error value.
3078 */
3079int pcix_get_max_mmrbc(struct pci_dev *dev)
3080{
3081 int cap;
3082 u32 stat;
3083
3084 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3085 if (!cap)
3086 return -EINVAL;
3087
3088 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3089 return -EINVAL;
3090
3091 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3092}
3093EXPORT_SYMBOL(pcix_get_max_mmrbc);
3094
3095/**
3096 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3097 * @dev: PCI device to query
3098 *
3099 * Returns mmrbc: maximum memory read count in bytes
3100 * or appropriate error value.
3101 */
3102int pcix_get_mmrbc(struct pci_dev *dev)
3103{
3104 int cap;
3105 u16 cmd;
3106
3107 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3108 if (!cap)
3109 return -EINVAL;
3110
3111 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3112 return -EINVAL;
3113
3114 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3115}
3116EXPORT_SYMBOL(pcix_get_mmrbc);
3117
3118/**
3119 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3120 * @dev: PCI device to query
3121 * @mmrbc: maximum memory read count in bytes
3122 * valid values are 512, 1024, 2048, 4096
3123 *
3124 * If possible sets maximum memory read byte count, some bridges have erratas
3125 * that prevent this.
3126 */
3127int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3128{
3129 int cap;
3130 u32 stat, v, o;
3131 u16 cmd;
3132
3133 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3134 return -EINVAL;
3135
3136 v = ffs(mmrbc) - 10;
3137
3138 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3139 if (!cap)
3140 return -EINVAL;
3141
3142 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3143 return -EINVAL;
3144
3145 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3146 return -E2BIG;
3147
3148 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3149 return -EINVAL;
3150
3151 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3152 if (o != v) {
3153 if (v > o && dev->bus &&
3154 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3155 return -EIO;
3156
3157 cmd &= ~PCI_X_CMD_MAX_READ;
3158 cmd |= v << 2;
3159 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3160 return -EIO;
3161 }
3162 return 0;
3163}
3164EXPORT_SYMBOL(pcix_set_mmrbc);
3165
3166/**
3167 * pcie_get_readrq - get PCI Express read request size
3168 * @dev: PCI device to query
3169 *
3170 * Returns maximum memory read request in bytes
3171 * or appropriate error value.
3172 */
3173int pcie_get_readrq(struct pci_dev *dev)
3174{
3175 int ret, cap;
3176 u16 ctl;
3177
3178 cap = pci_pcie_cap(dev);
3179 if (!cap)
3180 return -EINVAL;
3181
3182 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3183 if (!ret)
3184 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3185
3186 return ret;
3187}
3188EXPORT_SYMBOL(pcie_get_readrq);
3189
3190/**
3191 * pcie_set_readrq - set PCI Express maximum memory read request
3192 * @dev: PCI device to query
3193 * @rq: maximum memory read count in bytes
3194 * valid values are 128, 256, 512, 1024, 2048, 4096
3195 *
3196 * If possible sets maximum memory read request in bytes
3197 */
3198int pcie_set_readrq(struct pci_dev *dev, int rq)
3199{
3200 int cap, err = -EINVAL;
3201 u16 ctl, v;
3202
3203 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3204 goto out;
3205
3206 v = (ffs(rq) - 8) << 12;
3207
3208 cap = pci_pcie_cap(dev);
3209 if (!cap)
3210 goto out;
3211
3212 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3213 if (err)
3214 goto out;
3215
3216 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
3217 ctl &= ~PCI_EXP_DEVCTL_READRQ;
3218 ctl |= v;
3219 err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3220 }
3221
3222out:
3223 return err;
3224}
3225EXPORT_SYMBOL(pcie_set_readrq);
3226
3227/**
3228 * pcie_get_mps - get PCI Express maximum payload size
3229 * @dev: PCI device to query
3230 *
3231 * Returns maximum payload size in bytes
3232 * or appropriate error value.
3233 */
3234int pcie_get_mps(struct pci_dev *dev)
3235{
3236 int ret, cap;
3237 u16 ctl;
3238
3239 cap = pci_pcie_cap(dev);
3240 if (!cap)
3241 return -EINVAL;
3242
3243 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3244 if (!ret)
3245 ret = 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3246
3247 return ret;
3248}
3249
3250/**
3251 * pcie_set_mps - set PCI Express maximum payload size
3252 * @dev: PCI device to query
3253 * @mps: maximum payload size in bytes
3254 * valid values are 128, 256, 512, 1024, 2048, 4096
3255 *
3256 * If possible sets maximum payload size
3257 */
3258int pcie_set_mps(struct pci_dev *dev, int mps)
3259{
3260 int cap, err = -EINVAL;
3261 u16 ctl, v;
3262
3263 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3264 goto out;
3265
3266 v = ffs(mps) - 8;
3267 if (v > dev->pcie_mpss)
3268 goto out;
3269 v <<= 5;
3270
3271 cap = pci_pcie_cap(dev);
3272 if (!cap)
3273 goto out;
3274
3275 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3276 if (err)
3277 goto out;
3278
3279 if ((ctl & PCI_EXP_DEVCTL_PAYLOAD) != v) {
3280 ctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
3281 ctl |= v;
3282 err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3283 }
3284out:
3285 return err;
3286}
3287
3288/**
3289 * pci_select_bars - Make BAR mask from the type of resource
3290 * @dev: the PCI device for which BAR mask is made
3291 * @flags: resource type mask to be selected
3292 *
3293 * This helper routine makes bar mask from the type of resource.
3294 */
3295int pci_select_bars(struct pci_dev *dev, unsigned long flags)
3296{
3297 int i, bars = 0;
3298 for (i = 0; i < PCI_NUM_RESOURCES; i++)
3299 if (pci_resource_flags(dev, i) & flags)
3300 bars |= (1 << i);
3301 return bars;
3302}
3303
3304/**
3305 * pci_resource_bar - get position of the BAR associated with a resource
3306 * @dev: the PCI device
3307 * @resno: the resource number
3308 * @type: the BAR type to be filled in
3309 *
3310 * Returns BAR position in config space, or 0 if the BAR is invalid.
3311 */
3312int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
3313{
3314 int reg;
3315
3316 if (resno < PCI_ROM_RESOURCE) {
3317 *type = pci_bar_unknown;
3318 return PCI_BASE_ADDRESS_0 + 4 * resno;
3319 } else if (resno == PCI_ROM_RESOURCE) {
3320 *type = pci_bar_mem32;
3321 return dev->rom_base_reg;
3322 } else if (resno < PCI_BRIDGE_RESOURCES) {
3323 /* device specific resource */
3324 reg = pci_iov_resource_bar(dev, resno, type);
3325 if (reg)
3326 return reg;
3327 }
3328
3329 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
3330 return 0;
3331}
3332
3333/* Some architectures require additional programming to enable VGA */
3334static arch_set_vga_state_t arch_set_vga_state;
3335
3336void __init pci_register_set_vga_state(arch_set_vga_state_t func)
3337{
3338 arch_set_vga_state = func; /* NULL disables */
3339}
3340
3341static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3342 unsigned int command_bits, u32 flags)
3343{
3344 if (arch_set_vga_state)
3345 return arch_set_vga_state(dev, decode, command_bits,
3346 flags);
3347 return 0;
3348}
3349
3350/**
3351 * pci_set_vga_state - set VGA decode state on device and parents if requested
3352 * @dev: the PCI device
3353 * @decode: true = enable decoding, false = disable decoding
3354 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3355 * @flags: traverse ancestors and change bridges
3356 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3357 */
3358int pci_set_vga_state(struct pci_dev *dev, bool decode,
3359 unsigned int command_bits, u32 flags)
3360{
3361 struct pci_bus *bus;
3362 struct pci_dev *bridge;
3363 u16 cmd;
3364 int rc;
3365
3366 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
3367
3368 /* ARCH specific VGA enables */
3369 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
3370 if (rc)
3371 return rc;
3372
3373 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
3374 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3375 if (decode == true)
3376 cmd |= command_bits;
3377 else
3378 cmd &= ~command_bits;
3379 pci_write_config_word(dev, PCI_COMMAND, cmd);
3380 }
3381
3382 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
3383 return 0;
3384
3385 bus = dev->bus;
3386 while (bus) {
3387 bridge = bus->self;
3388 if (bridge) {
3389 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
3390 &cmd);
3391 if (decode == true)
3392 cmd |= PCI_BRIDGE_CTL_VGA;
3393 else
3394 cmd &= ~PCI_BRIDGE_CTL_VGA;
3395 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
3396 cmd);
3397 }
3398 bus = bus->parent;
3399 }
3400 return 0;
3401}
3402
3403#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3404static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
3405static DEFINE_SPINLOCK(resource_alignment_lock);
3406
3407/**
3408 * pci_specified_resource_alignment - get resource alignment specified by user.
3409 * @dev: the PCI device to get
3410 *
3411 * RETURNS: Resource alignment if it is specified.
3412 * Zero if it is not specified.
3413 */
3414resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
3415{
3416 int seg, bus, slot, func, align_order, count;
3417 resource_size_t align = 0;
3418 char *p;
3419
3420 spin_lock(&resource_alignment_lock);
3421 p = resource_alignment_param;
3422 while (*p) {
3423 count = 0;
3424 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
3425 p[count] == '@') {
3426 p += count + 1;
3427 } else {
3428 align_order = -1;
3429 }
3430 if (sscanf(p, "%x:%x:%x.%x%n",
3431 &seg, &bus, &slot, &func, &count) != 4) {
3432 seg = 0;
3433 if (sscanf(p, "%x:%x.%x%n",
3434 &bus, &slot, &func, &count) != 3) {
3435 /* Invalid format */
3436 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
3437 p);
3438 break;
3439 }
3440 }
3441 p += count;
3442 if (seg == pci_domain_nr(dev->bus) &&
3443 bus == dev->bus->number &&
3444 slot == PCI_SLOT(dev->devfn) &&
3445 func == PCI_FUNC(dev->devfn)) {
3446 if (align_order == -1) {
3447 align = PAGE_SIZE;
3448 } else {
3449 align = 1 << align_order;
3450 }
3451 /* Found */
3452 break;
3453 }
3454 if (*p != ';' && *p != ',') {
3455 /* End of param or invalid format */
3456 break;
3457 }
3458 p++;
3459 }
3460 spin_unlock(&resource_alignment_lock);
3461 return align;
3462}
3463
3464/**
3465 * pci_is_reassigndev - check if specified PCI is target device to reassign
3466 * @dev: the PCI device to check
3467 *
3468 * RETURNS: non-zero for PCI device is a target device to reassign,
3469 * or zero is not.
3470 */
3471int pci_is_reassigndev(struct pci_dev *dev)
3472{
3473 return (pci_specified_resource_alignment(dev) != 0);
3474}
3475
3476ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
3477{
3478 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
3479 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3480 spin_lock(&resource_alignment_lock);
3481 strncpy(resource_alignment_param, buf, count);
3482 resource_alignment_param[count] = '\0';
3483 spin_unlock(&resource_alignment_lock);
3484 return count;
3485}
3486
3487ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3488{
3489 size_t count;
3490 spin_lock(&resource_alignment_lock);
3491 count = snprintf(buf, size, "%s", resource_alignment_param);
3492 spin_unlock(&resource_alignment_lock);
3493 return count;
3494}
3495
3496static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3497{
3498 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3499}
3500
3501static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3502 const char *buf, size_t count)
3503{
3504 return pci_set_resource_alignment_param(buf, count);
3505}
3506
3507BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3508 pci_resource_alignment_store);
3509
3510static int __init pci_resource_alignment_sysfs_init(void)
3511{
3512 return bus_create_file(&pci_bus_type,
3513 &bus_attr_resource_alignment);
3514}
3515
3516late_initcall(pci_resource_alignment_sysfs_init);
3517
3518static void __devinit pci_no_domains(void)
3519{
3520#ifdef CONFIG_PCI_DOMAINS
3521 pci_domains_supported = 0;
3522#endif
3523}
3524
3525/**
3526 * pci_ext_cfg_enabled - can we access extended PCI config space?
3527 * @dev: The PCI device of the root bridge.
3528 *
3529 * Returns 1 if we can access PCI extended config space (offsets
3530 * greater than 0xff). This is the default implementation. Architecture
3531 * implementations can override this.
3532 */
3533int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
3534{
3535 return 1;
3536}
3537
3538void __weak pci_fixup_cardbus(struct pci_bus *bus)
3539{
3540}
3541EXPORT_SYMBOL(pci_fixup_cardbus);
3542
3543static int __init pci_setup(char *str)
3544{
3545 while (str) {
3546 char *k = strchr(str, ',');
3547 if (k)
3548 *k++ = 0;
3549 if (*str && (str = pcibios_setup(str)) && *str) {
3550 if (!strcmp(str, "nomsi")) {
3551 pci_no_msi();
3552 } else if (!strcmp(str, "noaer")) {
3553 pci_no_aer();
3554 } else if (!strncmp(str, "realloc", 7)) {
3555 pci_realloc();
3556 } else if (!strcmp(str, "nodomains")) {
3557 pci_no_domains();
3558 } else if (!strncmp(str, "cbiosize=", 9)) {
3559 pci_cardbus_io_size = memparse(str + 9, &str);
3560 } else if (!strncmp(str, "cbmemsize=", 10)) {
3561 pci_cardbus_mem_size = memparse(str + 10, &str);
3562 } else if (!strncmp(str, "resource_alignment=", 19)) {
3563 pci_set_resource_alignment_param(str + 19,
3564 strlen(str + 19));
3565 } else if (!strncmp(str, "ecrc=", 5)) {
3566 pcie_ecrc_get_policy(str + 5);
3567 } else if (!strncmp(str, "hpiosize=", 9)) {
3568 pci_hotplug_io_size = memparse(str + 9, &str);
3569 } else if (!strncmp(str, "hpmemsize=", 10)) {
3570 pci_hotplug_mem_size = memparse(str + 10, &str);
3571 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
3572 pcie_bus_config = PCIE_BUS_TUNE_OFF;
3573 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
3574 pcie_bus_config = PCIE_BUS_SAFE;
3575 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
3576 pcie_bus_config = PCIE_BUS_PERFORMANCE;
3577 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
3578 pcie_bus_config = PCIE_BUS_PEER2PEER;
3579 } else {
3580 printk(KERN_ERR "PCI: Unknown option `%s'\n",
3581 str);
3582 }
3583 }
3584 str = k;
3585 }
3586 return 0;
3587}
3588early_param("pci", pci_setup);
3589
3590EXPORT_SYMBOL(pci_reenable_device);
3591EXPORT_SYMBOL(pci_enable_device_io);
3592EXPORT_SYMBOL(pci_enable_device_mem);
3593EXPORT_SYMBOL(pci_enable_device);
3594EXPORT_SYMBOL(pcim_enable_device);
3595EXPORT_SYMBOL(pcim_pin_device);
3596EXPORT_SYMBOL(pci_disable_device);
3597EXPORT_SYMBOL(pci_find_capability);
3598EXPORT_SYMBOL(pci_bus_find_capability);
3599EXPORT_SYMBOL(pci_release_regions);
3600EXPORT_SYMBOL(pci_request_regions);
3601EXPORT_SYMBOL(pci_request_regions_exclusive);
3602EXPORT_SYMBOL(pci_release_region);
3603EXPORT_SYMBOL(pci_request_region);
3604EXPORT_SYMBOL(pci_request_region_exclusive);
3605EXPORT_SYMBOL(pci_release_selected_regions);
3606EXPORT_SYMBOL(pci_request_selected_regions);
3607EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3608EXPORT_SYMBOL(pci_set_master);
3609EXPORT_SYMBOL(pci_clear_master);
3610EXPORT_SYMBOL(pci_set_mwi);
3611EXPORT_SYMBOL(pci_try_set_mwi);
3612EXPORT_SYMBOL(pci_clear_mwi);
3613EXPORT_SYMBOL_GPL(pci_intx);
3614EXPORT_SYMBOL(pci_assign_resource);
3615EXPORT_SYMBOL(pci_find_parent_resource);
3616EXPORT_SYMBOL(pci_select_bars);
3617
3618EXPORT_SYMBOL(pci_set_power_state);
3619EXPORT_SYMBOL(pci_save_state);
3620EXPORT_SYMBOL(pci_restore_state);
3621EXPORT_SYMBOL(pci_pme_capable);
3622EXPORT_SYMBOL(pci_pme_active);
3623EXPORT_SYMBOL(pci_wake_from_d3);
3624EXPORT_SYMBOL(pci_target_state);
3625EXPORT_SYMBOL(pci_prepare_to_sleep);
3626EXPORT_SYMBOL(pci_back_from_sleep);
3627EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);