Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This file is part of STM32 ADC driver
4 *
5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
7 *
8 * Inspired from: fsl-imx25-tsadc
9 *
10 */
11
12#include <linux/clk.h>
13#include <linux/interrupt.h>
14#include <linux/irqchip/chained_irq.h>
15#include <linux/irqdesc.h>
16#include <linux/irqdomain.h>
17#include <linux/mfd/syscon.h>
18#include <linux/module.h>
19#include <linux/of_device.h>
20#include <linux/pm_runtime.h>
21#include <linux/regmap.h>
22#include <linux/regulator/consumer.h>
23#include <linux/slab.h>
24
25#include "stm32-adc-core.h"
26
27#define STM32_ADC_CORE_SLEEP_DELAY_MS 2000
28
29/* SYSCFG registers */
30#define STM32MP1_SYSCFG_PMCSETR 0x04
31#define STM32MP1_SYSCFG_PMCCLRR 0x44
32
33/* SYSCFG bit fields */
34#define STM32MP1_SYSCFG_ANASWVDD_MASK BIT(9)
35
36/* SYSCFG capability flags */
37#define HAS_VBOOSTER BIT(0)
38#define HAS_ANASWVDD BIT(1)
39
40/**
41 * stm32_adc_common_regs - stm32 common registers, compatible dependent data
42 * @csr: common status register offset
43 * @ccr: common control register offset
44 * @eoc1: adc1 end of conversion flag in @csr
45 * @eoc2: adc2 end of conversion flag in @csr
46 * @eoc3: adc3 end of conversion flag in @csr
47 * @ier: interrupt enable register offset for each adc
48 * @eocie_msk: end of conversion interrupt enable mask in @ier
49 */
50struct stm32_adc_common_regs {
51 u32 csr;
52 u32 ccr;
53 u32 eoc1_msk;
54 u32 eoc2_msk;
55 u32 eoc3_msk;
56 u32 ier;
57 u32 eocie_msk;
58};
59
60struct stm32_adc_priv;
61
62/**
63 * stm32_adc_priv_cfg - stm32 core compatible configuration data
64 * @regs: common registers for all instances
65 * @clk_sel: clock selection routine
66 * @max_clk_rate_hz: maximum analog clock rate (Hz, from datasheet)
67 * @has_syscfg: SYSCFG capability flags
68 */
69struct stm32_adc_priv_cfg {
70 const struct stm32_adc_common_regs *regs;
71 int (*clk_sel)(struct platform_device *, struct stm32_adc_priv *);
72 u32 max_clk_rate_hz;
73 unsigned int has_syscfg;
74};
75
76/**
77 * struct stm32_adc_priv - stm32 ADC core private data
78 * @irq: irq(s) for ADC block
79 * @domain: irq domain reference
80 * @aclk: clock reference for the analog circuitry
81 * @bclk: bus clock common for all ADCs, depends on part used
82 * @booster: booster supply reference
83 * @vdd: vdd supply reference
84 * @vdda: vdda analog supply reference
85 * @vref: regulator reference
86 * @vdd_uv: vdd supply voltage (microvolts)
87 * @vdda_uv: vdda supply voltage (microvolts)
88 * @cfg: compatible configuration data
89 * @common: common data for all ADC instances
90 * @ccr_bak: backup CCR in low power mode
91 * @syscfg: reference to syscon, system control registers
92 */
93struct stm32_adc_priv {
94 int irq[STM32_ADC_MAX_ADCS];
95 struct irq_domain *domain;
96 struct clk *aclk;
97 struct clk *bclk;
98 struct regulator *booster;
99 struct regulator *vdd;
100 struct regulator *vdda;
101 struct regulator *vref;
102 int vdd_uv;
103 int vdda_uv;
104 const struct stm32_adc_priv_cfg *cfg;
105 struct stm32_adc_common common;
106 u32 ccr_bak;
107 struct regmap *syscfg;
108};
109
110static struct stm32_adc_priv *to_stm32_adc_priv(struct stm32_adc_common *com)
111{
112 return container_of(com, struct stm32_adc_priv, common);
113}
114
115/* STM32F4 ADC internal common clock prescaler division ratios */
116static int stm32f4_pclk_div[] = {2, 4, 6, 8};
117
118/**
119 * stm32f4_adc_clk_sel() - Select stm32f4 ADC common clock prescaler
120 * @priv: stm32 ADC core private data
121 * Select clock prescaler used for analog conversions, before using ADC.
122 */
123static int stm32f4_adc_clk_sel(struct platform_device *pdev,
124 struct stm32_adc_priv *priv)
125{
126 unsigned long rate;
127 u32 val;
128 int i;
129
130 /* stm32f4 has one clk input for analog (mandatory), enforce it here */
131 if (!priv->aclk) {
132 dev_err(&pdev->dev, "No 'adc' clock found\n");
133 return -ENOENT;
134 }
135
136 rate = clk_get_rate(priv->aclk);
137 if (!rate) {
138 dev_err(&pdev->dev, "Invalid clock rate: 0\n");
139 return -EINVAL;
140 }
141
142 for (i = 0; i < ARRAY_SIZE(stm32f4_pclk_div); i++) {
143 if ((rate / stm32f4_pclk_div[i]) <= priv->cfg->max_clk_rate_hz)
144 break;
145 }
146 if (i >= ARRAY_SIZE(stm32f4_pclk_div)) {
147 dev_err(&pdev->dev, "adc clk selection failed\n");
148 return -EINVAL;
149 }
150
151 priv->common.rate = rate / stm32f4_pclk_div[i];
152 val = readl_relaxed(priv->common.base + STM32F4_ADC_CCR);
153 val &= ~STM32F4_ADC_ADCPRE_MASK;
154 val |= i << STM32F4_ADC_ADCPRE_SHIFT;
155 writel_relaxed(val, priv->common.base + STM32F4_ADC_CCR);
156
157 dev_dbg(&pdev->dev, "Using analog clock source at %ld kHz\n",
158 priv->common.rate / 1000);
159
160 return 0;
161}
162
163/**
164 * struct stm32h7_adc_ck_spec - specification for stm32h7 adc clock
165 * @ckmode: ADC clock mode, Async or sync with prescaler.
166 * @presc: prescaler bitfield for async clock mode
167 * @div: prescaler division ratio
168 */
169struct stm32h7_adc_ck_spec {
170 u32 ckmode;
171 u32 presc;
172 int div;
173};
174
175static const struct stm32h7_adc_ck_spec stm32h7_adc_ckmodes_spec[] = {
176 /* 00: CK_ADC[1..3]: Asynchronous clock modes */
177 { 0, 0, 1 },
178 { 0, 1, 2 },
179 { 0, 2, 4 },
180 { 0, 3, 6 },
181 { 0, 4, 8 },
182 { 0, 5, 10 },
183 { 0, 6, 12 },
184 { 0, 7, 16 },
185 { 0, 8, 32 },
186 { 0, 9, 64 },
187 { 0, 10, 128 },
188 { 0, 11, 256 },
189 /* HCLK used: Synchronous clock modes (1, 2 or 4 prescaler) */
190 { 1, 0, 1 },
191 { 2, 0, 2 },
192 { 3, 0, 4 },
193};
194
195static int stm32h7_adc_clk_sel(struct platform_device *pdev,
196 struct stm32_adc_priv *priv)
197{
198 u32 ckmode, presc, val;
199 unsigned long rate;
200 int i, div;
201
202 /* stm32h7 bus clock is common for all ADC instances (mandatory) */
203 if (!priv->bclk) {
204 dev_err(&pdev->dev, "No 'bus' clock found\n");
205 return -ENOENT;
206 }
207
208 /*
209 * stm32h7 can use either 'bus' or 'adc' clock for analog circuitry.
210 * So, choice is to have bus clock mandatory and adc clock optional.
211 * If optional 'adc' clock has been found, then try to use it first.
212 */
213 if (priv->aclk) {
214 /*
215 * Asynchronous clock modes (e.g. ckmode == 0)
216 * From spec: PLL output musn't exceed max rate
217 */
218 rate = clk_get_rate(priv->aclk);
219 if (!rate) {
220 dev_err(&pdev->dev, "Invalid adc clock rate: 0\n");
221 return -EINVAL;
222 }
223
224 for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) {
225 ckmode = stm32h7_adc_ckmodes_spec[i].ckmode;
226 presc = stm32h7_adc_ckmodes_spec[i].presc;
227 div = stm32h7_adc_ckmodes_spec[i].div;
228
229 if (ckmode)
230 continue;
231
232 if ((rate / div) <= priv->cfg->max_clk_rate_hz)
233 goto out;
234 }
235 }
236
237 /* Synchronous clock modes (e.g. ckmode is 1, 2 or 3) */
238 rate = clk_get_rate(priv->bclk);
239 if (!rate) {
240 dev_err(&pdev->dev, "Invalid bus clock rate: 0\n");
241 return -EINVAL;
242 }
243
244 for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) {
245 ckmode = stm32h7_adc_ckmodes_spec[i].ckmode;
246 presc = stm32h7_adc_ckmodes_spec[i].presc;
247 div = stm32h7_adc_ckmodes_spec[i].div;
248
249 if (!ckmode)
250 continue;
251
252 if ((rate / div) <= priv->cfg->max_clk_rate_hz)
253 goto out;
254 }
255
256 dev_err(&pdev->dev, "adc clk selection failed\n");
257 return -EINVAL;
258
259out:
260 /* rate used later by each ADC instance to control BOOST mode */
261 priv->common.rate = rate / div;
262
263 /* Set common clock mode and prescaler */
264 val = readl_relaxed(priv->common.base + STM32H7_ADC_CCR);
265 val &= ~(STM32H7_CKMODE_MASK | STM32H7_PRESC_MASK);
266 val |= ckmode << STM32H7_CKMODE_SHIFT;
267 val |= presc << STM32H7_PRESC_SHIFT;
268 writel_relaxed(val, priv->common.base + STM32H7_ADC_CCR);
269
270 dev_dbg(&pdev->dev, "Using %s clock/%d source at %ld kHz\n",
271 ckmode ? "bus" : "adc", div, priv->common.rate / 1000);
272
273 return 0;
274}
275
276/* STM32F4 common registers definitions */
277static const struct stm32_adc_common_regs stm32f4_adc_common_regs = {
278 .csr = STM32F4_ADC_CSR,
279 .ccr = STM32F4_ADC_CCR,
280 .eoc1_msk = STM32F4_EOC1,
281 .eoc2_msk = STM32F4_EOC2,
282 .eoc3_msk = STM32F4_EOC3,
283 .ier = STM32F4_ADC_CR1,
284 .eocie_msk = STM32F4_EOCIE,
285};
286
287/* STM32H7 common registers definitions */
288static const struct stm32_adc_common_regs stm32h7_adc_common_regs = {
289 .csr = STM32H7_ADC_CSR,
290 .ccr = STM32H7_ADC_CCR,
291 .eoc1_msk = STM32H7_EOC_MST,
292 .eoc2_msk = STM32H7_EOC_SLV,
293 .ier = STM32H7_ADC_IER,
294 .eocie_msk = STM32H7_EOCIE,
295};
296
297static const unsigned int stm32_adc_offset[STM32_ADC_MAX_ADCS] = {
298 0, STM32_ADC_OFFSET, STM32_ADC_OFFSET * 2,
299};
300
301static unsigned int stm32_adc_eoc_enabled(struct stm32_adc_priv *priv,
302 unsigned int adc)
303{
304 u32 ier, offset = stm32_adc_offset[adc];
305
306 ier = readl_relaxed(priv->common.base + offset + priv->cfg->regs->ier);
307
308 return ier & priv->cfg->regs->eocie_msk;
309}
310
311/* ADC common interrupt for all instances */
312static void stm32_adc_irq_handler(struct irq_desc *desc)
313{
314 struct stm32_adc_priv *priv = irq_desc_get_handler_data(desc);
315 struct irq_chip *chip = irq_desc_get_chip(desc);
316 u32 status;
317
318 chained_irq_enter(chip, desc);
319 status = readl_relaxed(priv->common.base + priv->cfg->regs->csr);
320
321 /*
322 * End of conversion may be handled by using IRQ or DMA. There may be a
323 * race here when two conversions complete at the same time on several
324 * ADCs. EOC may be read 'set' for several ADCs, with:
325 * - an ADC configured to use DMA (EOC triggers the DMA request, and
326 * is then automatically cleared by DR read in hardware)
327 * - an ADC configured to use IRQs (EOCIE bit is set. The handler must
328 * be called in this case)
329 * So both EOC status bit in CSR and EOCIE control bit must be checked
330 * before invoking the interrupt handler (e.g. call ISR only for
331 * IRQ-enabled ADCs).
332 */
333 if (status & priv->cfg->regs->eoc1_msk &&
334 stm32_adc_eoc_enabled(priv, 0))
335 generic_handle_irq(irq_find_mapping(priv->domain, 0));
336
337 if (status & priv->cfg->regs->eoc2_msk &&
338 stm32_adc_eoc_enabled(priv, 1))
339 generic_handle_irq(irq_find_mapping(priv->domain, 1));
340
341 if (status & priv->cfg->regs->eoc3_msk &&
342 stm32_adc_eoc_enabled(priv, 2))
343 generic_handle_irq(irq_find_mapping(priv->domain, 2));
344
345 chained_irq_exit(chip, desc);
346};
347
348static int stm32_adc_domain_map(struct irq_domain *d, unsigned int irq,
349 irq_hw_number_t hwirq)
350{
351 irq_set_chip_data(irq, d->host_data);
352 irq_set_chip_and_handler(irq, &dummy_irq_chip, handle_level_irq);
353
354 return 0;
355}
356
357static void stm32_adc_domain_unmap(struct irq_domain *d, unsigned int irq)
358{
359 irq_set_chip_and_handler(irq, NULL, NULL);
360 irq_set_chip_data(irq, NULL);
361}
362
363static const struct irq_domain_ops stm32_adc_domain_ops = {
364 .map = stm32_adc_domain_map,
365 .unmap = stm32_adc_domain_unmap,
366 .xlate = irq_domain_xlate_onecell,
367};
368
369static int stm32_adc_irq_probe(struct platform_device *pdev,
370 struct stm32_adc_priv *priv)
371{
372 struct device_node *np = pdev->dev.of_node;
373 unsigned int i;
374
375 for (i = 0; i < STM32_ADC_MAX_ADCS; i++) {
376 priv->irq[i] = platform_get_irq(pdev, i);
377 if (priv->irq[i] < 0) {
378 /*
379 * At least one interrupt must be provided, make others
380 * optional:
381 * - stm32f4/h7 shares a common interrupt.
382 * - stm32mp1, has one line per ADC (either for ADC1,
383 * ADC2 or both).
384 */
385 if (i && priv->irq[i] == -ENXIO)
386 continue;
387
388 return priv->irq[i];
389 }
390 }
391
392 priv->domain = irq_domain_add_simple(np, STM32_ADC_MAX_ADCS, 0,
393 &stm32_adc_domain_ops,
394 priv);
395 if (!priv->domain) {
396 dev_err(&pdev->dev, "Failed to add irq domain\n");
397 return -ENOMEM;
398 }
399
400 for (i = 0; i < STM32_ADC_MAX_ADCS; i++) {
401 if (priv->irq[i] < 0)
402 continue;
403 irq_set_chained_handler(priv->irq[i], stm32_adc_irq_handler);
404 irq_set_handler_data(priv->irq[i], priv);
405 }
406
407 return 0;
408}
409
410static void stm32_adc_irq_remove(struct platform_device *pdev,
411 struct stm32_adc_priv *priv)
412{
413 int hwirq;
414 unsigned int i;
415
416 for (hwirq = 0; hwirq < STM32_ADC_MAX_ADCS; hwirq++)
417 irq_dispose_mapping(irq_find_mapping(priv->domain, hwirq));
418 irq_domain_remove(priv->domain);
419
420 for (i = 0; i < STM32_ADC_MAX_ADCS; i++) {
421 if (priv->irq[i] < 0)
422 continue;
423 irq_set_chained_handler(priv->irq[i], NULL);
424 }
425}
426
427static int stm32_adc_core_switches_supply_en(struct stm32_adc_priv *priv,
428 struct device *dev)
429{
430 int ret;
431
432 /*
433 * On STM32H7 and STM32MP1, the ADC inputs are multiplexed with analog
434 * switches (via PCSEL) which have reduced performances when their
435 * supply is below 2.7V (vdda by default):
436 * - Voltage booster can be used, to get full ADC performances
437 * (increases power consumption).
438 * - Vdd can be used to supply them, if above 2.7V (STM32MP1 only).
439 *
440 * Recommended settings for ANASWVDD and EN_BOOSTER:
441 * - vdda < 2.7V but vdd > 2.7V: ANASWVDD = 1, EN_BOOSTER = 0 (stm32mp1)
442 * - vdda < 2.7V and vdd < 2.7V: ANASWVDD = 0, EN_BOOSTER = 1
443 * - vdda >= 2.7V: ANASWVDD = 0, EN_BOOSTER = 0 (default)
444 */
445 if (priv->vdda_uv < 2700000) {
446 if (priv->syscfg && priv->vdd_uv > 2700000) {
447 ret = regulator_enable(priv->vdd);
448 if (ret < 0) {
449 dev_err(dev, "vdd enable failed %d\n", ret);
450 return ret;
451 }
452
453 ret = regmap_write(priv->syscfg,
454 STM32MP1_SYSCFG_PMCSETR,
455 STM32MP1_SYSCFG_ANASWVDD_MASK);
456 if (ret < 0) {
457 regulator_disable(priv->vdd);
458 dev_err(dev, "vdd select failed, %d\n", ret);
459 return ret;
460 }
461 dev_dbg(dev, "analog switches supplied by vdd\n");
462
463 return 0;
464 }
465
466 if (priv->booster) {
467 /*
468 * This is optional, as this is a trade-off between
469 * analog performance and power consumption.
470 */
471 ret = regulator_enable(priv->booster);
472 if (ret < 0) {
473 dev_err(dev, "booster enable failed %d\n", ret);
474 return ret;
475 }
476 dev_dbg(dev, "analog switches supplied by booster\n");
477
478 return 0;
479 }
480 }
481
482 /* Fallback using vdda (default), nothing to do */
483 dev_dbg(dev, "analog switches supplied by vdda (%d uV)\n",
484 priv->vdda_uv);
485
486 return 0;
487}
488
489static void stm32_adc_core_switches_supply_dis(struct stm32_adc_priv *priv)
490{
491 if (priv->vdda_uv < 2700000) {
492 if (priv->syscfg && priv->vdd_uv > 2700000) {
493 regmap_write(priv->syscfg, STM32MP1_SYSCFG_PMCCLRR,
494 STM32MP1_SYSCFG_ANASWVDD_MASK);
495 regulator_disable(priv->vdd);
496 return;
497 }
498 if (priv->booster)
499 regulator_disable(priv->booster);
500 }
501}
502
503static int stm32_adc_core_hw_start(struct device *dev)
504{
505 struct stm32_adc_common *common = dev_get_drvdata(dev);
506 struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
507 int ret;
508
509 ret = regulator_enable(priv->vdda);
510 if (ret < 0) {
511 dev_err(dev, "vdda enable failed %d\n", ret);
512 return ret;
513 }
514
515 ret = regulator_get_voltage(priv->vdda);
516 if (ret < 0) {
517 dev_err(dev, "vdda get voltage failed, %d\n", ret);
518 goto err_vdda_disable;
519 }
520 priv->vdda_uv = ret;
521
522 ret = stm32_adc_core_switches_supply_en(priv, dev);
523 if (ret < 0)
524 goto err_vdda_disable;
525
526 ret = regulator_enable(priv->vref);
527 if (ret < 0) {
528 dev_err(dev, "vref enable failed\n");
529 goto err_switches_dis;
530 }
531
532 if (priv->bclk) {
533 ret = clk_prepare_enable(priv->bclk);
534 if (ret < 0) {
535 dev_err(dev, "bus clk enable failed\n");
536 goto err_regulator_disable;
537 }
538 }
539
540 if (priv->aclk) {
541 ret = clk_prepare_enable(priv->aclk);
542 if (ret < 0) {
543 dev_err(dev, "adc clk enable failed\n");
544 goto err_bclk_disable;
545 }
546 }
547
548 writel_relaxed(priv->ccr_bak, priv->common.base + priv->cfg->regs->ccr);
549
550 return 0;
551
552err_bclk_disable:
553 if (priv->bclk)
554 clk_disable_unprepare(priv->bclk);
555err_regulator_disable:
556 regulator_disable(priv->vref);
557err_switches_dis:
558 stm32_adc_core_switches_supply_dis(priv);
559err_vdda_disable:
560 regulator_disable(priv->vdda);
561
562 return ret;
563}
564
565static void stm32_adc_core_hw_stop(struct device *dev)
566{
567 struct stm32_adc_common *common = dev_get_drvdata(dev);
568 struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
569
570 /* Backup CCR that may be lost (depends on power state to achieve) */
571 priv->ccr_bak = readl_relaxed(priv->common.base + priv->cfg->regs->ccr);
572 if (priv->aclk)
573 clk_disable_unprepare(priv->aclk);
574 if (priv->bclk)
575 clk_disable_unprepare(priv->bclk);
576 regulator_disable(priv->vref);
577 stm32_adc_core_switches_supply_dis(priv);
578 regulator_disable(priv->vdda);
579}
580
581static int stm32_adc_core_switches_probe(struct device *dev,
582 struct stm32_adc_priv *priv)
583{
584 struct device_node *np = dev->of_node;
585 int ret;
586
587 /* Analog switches supply can be controlled by syscfg (optional) */
588 priv->syscfg = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
589 if (IS_ERR(priv->syscfg)) {
590 ret = PTR_ERR(priv->syscfg);
591 if (ret != -ENODEV) {
592 if (ret != -EPROBE_DEFER)
593 dev_err(dev, "Can't probe syscfg: %d\n", ret);
594 return ret;
595 }
596 priv->syscfg = NULL;
597 }
598
599 /* Booster can be used to supply analog switches (optional) */
600 if (priv->cfg->has_syscfg & HAS_VBOOSTER &&
601 of_property_read_bool(np, "booster-supply")) {
602 priv->booster = devm_regulator_get_optional(dev, "booster");
603 if (IS_ERR(priv->booster)) {
604 ret = PTR_ERR(priv->booster);
605 if (ret != -ENODEV) {
606 if (ret != -EPROBE_DEFER)
607 dev_err(dev, "can't get booster %d\n",
608 ret);
609 return ret;
610 }
611 priv->booster = NULL;
612 }
613 }
614
615 /* Vdd can be used to supply analog switches (optional) */
616 if (priv->cfg->has_syscfg & HAS_ANASWVDD &&
617 of_property_read_bool(np, "vdd-supply")) {
618 priv->vdd = devm_regulator_get_optional(dev, "vdd");
619 if (IS_ERR(priv->vdd)) {
620 ret = PTR_ERR(priv->vdd);
621 if (ret != -ENODEV) {
622 if (ret != -EPROBE_DEFER)
623 dev_err(dev, "can't get vdd %d\n", ret);
624 return ret;
625 }
626 priv->vdd = NULL;
627 }
628 }
629
630 if (priv->vdd) {
631 ret = regulator_enable(priv->vdd);
632 if (ret < 0) {
633 dev_err(dev, "vdd enable failed %d\n", ret);
634 return ret;
635 }
636
637 ret = regulator_get_voltage(priv->vdd);
638 if (ret < 0) {
639 dev_err(dev, "vdd get voltage failed %d\n", ret);
640 regulator_disable(priv->vdd);
641 return ret;
642 }
643 priv->vdd_uv = ret;
644
645 regulator_disable(priv->vdd);
646 }
647
648 return 0;
649}
650
651static int stm32_adc_probe(struct platform_device *pdev)
652{
653 struct stm32_adc_priv *priv;
654 struct device *dev = &pdev->dev;
655 struct device_node *np = pdev->dev.of_node;
656 struct resource *res;
657 int ret;
658
659 if (!pdev->dev.of_node)
660 return -ENODEV;
661
662 priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
663 if (!priv)
664 return -ENOMEM;
665 platform_set_drvdata(pdev, &priv->common);
666
667 priv->cfg = (const struct stm32_adc_priv_cfg *)
668 of_match_device(dev->driver->of_match_table, dev)->data;
669
670 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
671 priv->common.base = devm_ioremap_resource(&pdev->dev, res);
672 if (IS_ERR(priv->common.base))
673 return PTR_ERR(priv->common.base);
674 priv->common.phys_base = res->start;
675
676 priv->vdda = devm_regulator_get(&pdev->dev, "vdda");
677 if (IS_ERR(priv->vdda)) {
678 ret = PTR_ERR(priv->vdda);
679 if (ret != -EPROBE_DEFER)
680 dev_err(&pdev->dev, "vdda get failed, %d\n", ret);
681 return ret;
682 }
683
684 priv->vref = devm_regulator_get(&pdev->dev, "vref");
685 if (IS_ERR(priv->vref)) {
686 ret = PTR_ERR(priv->vref);
687 dev_err(&pdev->dev, "vref get failed, %d\n", ret);
688 return ret;
689 }
690
691 priv->aclk = devm_clk_get(&pdev->dev, "adc");
692 if (IS_ERR(priv->aclk)) {
693 ret = PTR_ERR(priv->aclk);
694 if (ret != -ENOENT) {
695 dev_err(&pdev->dev, "Can't get 'adc' clock\n");
696 return ret;
697 }
698 priv->aclk = NULL;
699 }
700
701 priv->bclk = devm_clk_get(&pdev->dev, "bus");
702 if (IS_ERR(priv->bclk)) {
703 ret = PTR_ERR(priv->bclk);
704 if (ret != -ENOENT) {
705 dev_err(&pdev->dev, "Can't get 'bus' clock\n");
706 return ret;
707 }
708 priv->bclk = NULL;
709 }
710
711 ret = stm32_adc_core_switches_probe(dev, priv);
712 if (ret)
713 return ret;
714
715 pm_runtime_get_noresume(dev);
716 pm_runtime_set_active(dev);
717 pm_runtime_set_autosuspend_delay(dev, STM32_ADC_CORE_SLEEP_DELAY_MS);
718 pm_runtime_use_autosuspend(dev);
719 pm_runtime_enable(dev);
720
721 ret = stm32_adc_core_hw_start(dev);
722 if (ret)
723 goto err_pm_stop;
724
725 ret = regulator_get_voltage(priv->vref);
726 if (ret < 0) {
727 dev_err(&pdev->dev, "vref get voltage failed, %d\n", ret);
728 goto err_hw_stop;
729 }
730 priv->common.vref_mv = ret / 1000;
731 dev_dbg(&pdev->dev, "vref+=%dmV\n", priv->common.vref_mv);
732
733 ret = priv->cfg->clk_sel(pdev, priv);
734 if (ret < 0)
735 goto err_hw_stop;
736
737 ret = stm32_adc_irq_probe(pdev, priv);
738 if (ret < 0)
739 goto err_hw_stop;
740
741 ret = of_platform_populate(np, NULL, NULL, &pdev->dev);
742 if (ret < 0) {
743 dev_err(&pdev->dev, "failed to populate DT children\n");
744 goto err_irq_remove;
745 }
746
747 pm_runtime_mark_last_busy(dev);
748 pm_runtime_put_autosuspend(dev);
749
750 return 0;
751
752err_irq_remove:
753 stm32_adc_irq_remove(pdev, priv);
754err_hw_stop:
755 stm32_adc_core_hw_stop(dev);
756err_pm_stop:
757 pm_runtime_disable(dev);
758 pm_runtime_set_suspended(dev);
759 pm_runtime_put_noidle(dev);
760
761 return ret;
762}
763
764static int stm32_adc_remove(struct platform_device *pdev)
765{
766 struct stm32_adc_common *common = platform_get_drvdata(pdev);
767 struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
768
769 pm_runtime_get_sync(&pdev->dev);
770 of_platform_depopulate(&pdev->dev);
771 stm32_adc_irq_remove(pdev, priv);
772 stm32_adc_core_hw_stop(&pdev->dev);
773 pm_runtime_disable(&pdev->dev);
774 pm_runtime_set_suspended(&pdev->dev);
775 pm_runtime_put_noidle(&pdev->dev);
776
777 return 0;
778}
779
780#if defined(CONFIG_PM)
781static int stm32_adc_core_runtime_suspend(struct device *dev)
782{
783 stm32_adc_core_hw_stop(dev);
784
785 return 0;
786}
787
788static int stm32_adc_core_runtime_resume(struct device *dev)
789{
790 return stm32_adc_core_hw_start(dev);
791}
792#endif
793
794static const struct dev_pm_ops stm32_adc_core_pm_ops = {
795 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
796 pm_runtime_force_resume)
797 SET_RUNTIME_PM_OPS(stm32_adc_core_runtime_suspend,
798 stm32_adc_core_runtime_resume,
799 NULL)
800};
801
802static const struct stm32_adc_priv_cfg stm32f4_adc_priv_cfg = {
803 .regs = &stm32f4_adc_common_regs,
804 .clk_sel = stm32f4_adc_clk_sel,
805 .max_clk_rate_hz = 36000000,
806};
807
808static const struct stm32_adc_priv_cfg stm32h7_adc_priv_cfg = {
809 .regs = &stm32h7_adc_common_regs,
810 .clk_sel = stm32h7_adc_clk_sel,
811 .max_clk_rate_hz = 36000000,
812 .has_syscfg = HAS_VBOOSTER,
813};
814
815static const struct stm32_adc_priv_cfg stm32mp1_adc_priv_cfg = {
816 .regs = &stm32h7_adc_common_regs,
817 .clk_sel = stm32h7_adc_clk_sel,
818 .max_clk_rate_hz = 40000000,
819 .has_syscfg = HAS_VBOOSTER | HAS_ANASWVDD,
820};
821
822static const struct of_device_id stm32_adc_of_match[] = {
823 {
824 .compatible = "st,stm32f4-adc-core",
825 .data = (void *)&stm32f4_adc_priv_cfg
826 }, {
827 .compatible = "st,stm32h7-adc-core",
828 .data = (void *)&stm32h7_adc_priv_cfg
829 }, {
830 .compatible = "st,stm32mp1-adc-core",
831 .data = (void *)&stm32mp1_adc_priv_cfg
832 }, {
833 },
834};
835MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
836
837static struct platform_driver stm32_adc_driver = {
838 .probe = stm32_adc_probe,
839 .remove = stm32_adc_remove,
840 .driver = {
841 .name = "stm32-adc-core",
842 .of_match_table = stm32_adc_of_match,
843 .pm = &stm32_adc_core_pm_ops,
844 },
845};
846module_platform_driver(stm32_adc_driver);
847
848MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
849MODULE_DESCRIPTION("STMicroelectronics STM32 ADC core driver");
850MODULE_LICENSE("GPL v2");
851MODULE_ALIAS("platform:stm32-adc-core");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This file is part of STM32 ADC driver
4 *
5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
7 *
8 * Inspired from: fsl-imx25-tsadc
9 *
10 */
11
12#include <linux/bitfield.h>
13#include <linux/clk.h>
14#include <linux/interrupt.h>
15#include <linux/irqchip/chained_irq.h>
16#include <linux/irqdesc.h>
17#include <linux/irqdomain.h>
18#include <linux/mfd/syscon.h>
19#include <linux/module.h>
20#include <linux/of_device.h>
21#include <linux/pm_runtime.h>
22#include <linux/regmap.h>
23#include <linux/regulator/consumer.h>
24#include <linux/slab.h>
25#include <linux/units.h>
26
27#include "stm32-adc-core.h"
28
29#define STM32_ADC_CORE_SLEEP_DELAY_MS 2000
30
31/* SYSCFG registers */
32#define STM32MP1_SYSCFG_PMCSETR 0x04
33#define STM32MP1_SYSCFG_PMCCLRR 0x44
34
35/* SYSCFG bit fields */
36#define STM32MP1_SYSCFG_ANASWVDD_MASK BIT(9)
37
38/* SYSCFG capability flags */
39#define HAS_VBOOSTER BIT(0)
40#define HAS_ANASWVDD BIT(1)
41
42/**
43 * struct stm32_adc_common_regs - stm32 common registers
44 * @csr: common status register offset
45 * @ccr: common control register offset
46 * @eoc_msk: array of eoc (end of conversion flag) masks in csr for adc1..n
47 * @ovr_msk: array of ovr (overrun flag) masks in csr for adc1..n
48 * @ier: interrupt enable register offset for each adc
49 * @eocie_msk: end of conversion interrupt enable mask in @ier
50 */
51struct stm32_adc_common_regs {
52 u32 csr;
53 u32 ccr;
54 u32 eoc_msk[STM32_ADC_MAX_ADCS];
55 u32 ovr_msk[STM32_ADC_MAX_ADCS];
56 u32 ier;
57 u32 eocie_msk;
58};
59
60struct stm32_adc_priv;
61
62/**
63 * struct stm32_adc_priv_cfg - stm32 core compatible configuration data
64 * @regs: common registers for all instances
65 * @clk_sel: clock selection routine
66 * @max_clk_rate_hz: maximum analog clock rate (Hz, from datasheet)
67 * @ipid: adc identification number
68 * @has_syscfg: SYSCFG capability flags
69 * @num_irqs: number of interrupt lines
70 * @num_adcs: maximum number of ADC instances in the common registers
71 */
72struct stm32_adc_priv_cfg {
73 const struct stm32_adc_common_regs *regs;
74 int (*clk_sel)(struct platform_device *, struct stm32_adc_priv *);
75 u32 max_clk_rate_hz;
76 u32 ipid;
77 unsigned int has_syscfg;
78 unsigned int num_irqs;
79 unsigned int num_adcs;
80};
81
82/**
83 * struct stm32_adc_priv - stm32 ADC core private data
84 * @irq: irq(s) for ADC block
85 * @nb_adc_max: actual maximum number of instance per ADC block
86 * @domain: irq domain reference
87 * @aclk: clock reference for the analog circuitry
88 * @bclk: bus clock common for all ADCs, depends on part used
89 * @max_clk_rate: desired maximum clock rate
90 * @booster: booster supply reference
91 * @vdd: vdd supply reference
92 * @vdda: vdda analog supply reference
93 * @vref: regulator reference
94 * @vdd_uv: vdd supply voltage (microvolts)
95 * @vdda_uv: vdda supply voltage (microvolts)
96 * @cfg: compatible configuration data
97 * @common: common data for all ADC instances
98 * @ccr_bak: backup CCR in low power mode
99 * @syscfg: reference to syscon, system control registers
100 */
101struct stm32_adc_priv {
102 int irq[STM32_ADC_MAX_ADCS];
103 unsigned int nb_adc_max;
104 struct irq_domain *domain;
105 struct clk *aclk;
106 struct clk *bclk;
107 u32 max_clk_rate;
108 struct regulator *booster;
109 struct regulator *vdd;
110 struct regulator *vdda;
111 struct regulator *vref;
112 int vdd_uv;
113 int vdda_uv;
114 const struct stm32_adc_priv_cfg *cfg;
115 struct stm32_adc_common common;
116 u32 ccr_bak;
117 struct regmap *syscfg;
118};
119
120static struct stm32_adc_priv *to_stm32_adc_priv(struct stm32_adc_common *com)
121{
122 return container_of(com, struct stm32_adc_priv, common);
123}
124
125/* STM32F4 ADC internal common clock prescaler division ratios */
126static int stm32f4_pclk_div[] = {2, 4, 6, 8};
127
128/**
129 * stm32f4_adc_clk_sel() - Select stm32f4 ADC common clock prescaler
130 * @pdev: platform device
131 * @priv: stm32 ADC core private data
132 * Select clock prescaler used for analog conversions, before using ADC.
133 */
134static int stm32f4_adc_clk_sel(struct platform_device *pdev,
135 struct stm32_adc_priv *priv)
136{
137 unsigned long rate;
138 u32 val;
139 int i;
140
141 /* stm32f4 has one clk input for analog (mandatory), enforce it here */
142 if (!priv->aclk) {
143 dev_err(&pdev->dev, "No 'adc' clock found\n");
144 return -ENOENT;
145 }
146
147 rate = clk_get_rate(priv->aclk);
148 if (!rate) {
149 dev_err(&pdev->dev, "Invalid clock rate: 0\n");
150 return -EINVAL;
151 }
152
153 for (i = 0; i < ARRAY_SIZE(stm32f4_pclk_div); i++) {
154 if ((rate / stm32f4_pclk_div[i]) <= priv->max_clk_rate)
155 break;
156 }
157 if (i >= ARRAY_SIZE(stm32f4_pclk_div)) {
158 dev_err(&pdev->dev, "adc clk selection failed\n");
159 return -EINVAL;
160 }
161
162 priv->common.rate = rate / stm32f4_pclk_div[i];
163 val = readl_relaxed(priv->common.base + STM32F4_ADC_CCR);
164 val &= ~STM32F4_ADC_ADCPRE_MASK;
165 val |= i << STM32F4_ADC_ADCPRE_SHIFT;
166 writel_relaxed(val, priv->common.base + STM32F4_ADC_CCR);
167
168 dev_dbg(&pdev->dev, "Using analog clock source at %ld kHz\n",
169 priv->common.rate / 1000);
170
171 return 0;
172}
173
174/**
175 * struct stm32h7_adc_ck_spec - specification for stm32h7 adc clock
176 * @ckmode: ADC clock mode, Async or sync with prescaler.
177 * @presc: prescaler bitfield for async clock mode
178 * @div: prescaler division ratio
179 */
180struct stm32h7_adc_ck_spec {
181 u32 ckmode;
182 u32 presc;
183 int div;
184};
185
186static const struct stm32h7_adc_ck_spec stm32h7_adc_ckmodes_spec[] = {
187 /* 00: CK_ADC[1..3]: Asynchronous clock modes */
188 { 0, 0, 1 },
189 { 0, 1, 2 },
190 { 0, 2, 4 },
191 { 0, 3, 6 },
192 { 0, 4, 8 },
193 { 0, 5, 10 },
194 { 0, 6, 12 },
195 { 0, 7, 16 },
196 { 0, 8, 32 },
197 { 0, 9, 64 },
198 { 0, 10, 128 },
199 { 0, 11, 256 },
200 /* HCLK used: Synchronous clock modes (1, 2 or 4 prescaler) */
201 { 1, 0, 1 },
202 { 2, 0, 2 },
203 { 3, 0, 4 },
204};
205
206static int stm32h7_adc_clk_sel(struct platform_device *pdev,
207 struct stm32_adc_priv *priv)
208{
209 u32 ckmode, presc, val;
210 unsigned long rate;
211 int i, div, duty;
212
213 /* stm32h7 bus clock is common for all ADC instances (mandatory) */
214 if (!priv->bclk) {
215 dev_err(&pdev->dev, "No 'bus' clock found\n");
216 return -ENOENT;
217 }
218
219 /*
220 * stm32h7 can use either 'bus' or 'adc' clock for analog circuitry.
221 * So, choice is to have bus clock mandatory and adc clock optional.
222 * If optional 'adc' clock has been found, then try to use it first.
223 */
224 if (priv->aclk) {
225 /*
226 * Asynchronous clock modes (e.g. ckmode == 0)
227 * From spec: PLL output musn't exceed max rate
228 */
229 rate = clk_get_rate(priv->aclk);
230 if (!rate) {
231 dev_err(&pdev->dev, "Invalid adc clock rate: 0\n");
232 return -EINVAL;
233 }
234
235 /* If duty is an error, kindly use at least /2 divider */
236 duty = clk_get_scaled_duty_cycle(priv->aclk, 100);
237 if (duty < 0)
238 dev_warn(&pdev->dev, "adc clock duty: %d\n", duty);
239
240 for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) {
241 ckmode = stm32h7_adc_ckmodes_spec[i].ckmode;
242 presc = stm32h7_adc_ckmodes_spec[i].presc;
243 div = stm32h7_adc_ckmodes_spec[i].div;
244
245 if (ckmode)
246 continue;
247
248 /*
249 * For proper operation, clock duty cycle range is 49%
250 * to 51%. Apply at least /2 prescaler otherwise.
251 */
252 if (div == 1 && (duty < 49 || duty > 51))
253 continue;
254
255 if ((rate / div) <= priv->max_clk_rate)
256 goto out;
257 }
258 }
259
260 /* Synchronous clock modes (e.g. ckmode is 1, 2 or 3) */
261 rate = clk_get_rate(priv->bclk);
262 if (!rate) {
263 dev_err(&pdev->dev, "Invalid bus clock rate: 0\n");
264 return -EINVAL;
265 }
266
267 duty = clk_get_scaled_duty_cycle(priv->bclk, 100);
268 if (duty < 0)
269 dev_warn(&pdev->dev, "bus clock duty: %d\n", duty);
270
271 for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) {
272 ckmode = stm32h7_adc_ckmodes_spec[i].ckmode;
273 presc = stm32h7_adc_ckmodes_spec[i].presc;
274 div = stm32h7_adc_ckmodes_spec[i].div;
275
276 if (!ckmode)
277 continue;
278
279 if (div == 1 && (duty < 49 || duty > 51))
280 continue;
281
282 if ((rate / div) <= priv->max_clk_rate)
283 goto out;
284 }
285
286 dev_err(&pdev->dev, "adc clk selection failed\n");
287 return -EINVAL;
288
289out:
290 /* rate used later by each ADC instance to control BOOST mode */
291 priv->common.rate = rate / div;
292
293 /* Set common clock mode and prescaler */
294 val = readl_relaxed(priv->common.base + STM32H7_ADC_CCR);
295 val &= ~(STM32H7_CKMODE_MASK | STM32H7_PRESC_MASK);
296 val |= ckmode << STM32H7_CKMODE_SHIFT;
297 val |= presc << STM32H7_PRESC_SHIFT;
298 writel_relaxed(val, priv->common.base + STM32H7_ADC_CCR);
299
300 dev_dbg(&pdev->dev, "Using %s clock/%d source at %ld kHz\n",
301 ckmode ? "bus" : "adc", div, priv->common.rate / 1000);
302
303 return 0;
304}
305
306/* STM32F4 common registers definitions */
307static const struct stm32_adc_common_regs stm32f4_adc_common_regs = {
308 .csr = STM32F4_ADC_CSR,
309 .ccr = STM32F4_ADC_CCR,
310 .eoc_msk = { STM32F4_EOC1, STM32F4_EOC2, STM32F4_EOC3 },
311 .ovr_msk = { STM32F4_OVR1, STM32F4_OVR2, STM32F4_OVR3 },
312 .ier = STM32F4_ADC_CR1,
313 .eocie_msk = STM32F4_EOCIE,
314};
315
316/* STM32H7 common registers definitions */
317static const struct stm32_adc_common_regs stm32h7_adc_common_regs = {
318 .csr = STM32H7_ADC_CSR,
319 .ccr = STM32H7_ADC_CCR,
320 .eoc_msk = { STM32H7_EOC_MST, STM32H7_EOC_SLV },
321 .ovr_msk = { STM32H7_OVR_MST, STM32H7_OVR_SLV },
322 .ier = STM32H7_ADC_IER,
323 .eocie_msk = STM32H7_EOCIE,
324};
325
326/* STM32MP13 common registers definitions */
327static const struct stm32_adc_common_regs stm32mp13_adc_common_regs = {
328 .csr = STM32H7_ADC_CSR,
329 .ccr = STM32H7_ADC_CCR,
330 .eoc_msk = { STM32H7_EOC_MST },
331 .ovr_msk = { STM32H7_OVR_MST },
332 .ier = STM32H7_ADC_IER,
333 .eocie_msk = STM32H7_EOCIE,
334};
335
336static const unsigned int stm32_adc_offset[STM32_ADC_MAX_ADCS] = {
337 0, STM32_ADC_OFFSET, STM32_ADC_OFFSET * 2,
338};
339
340static unsigned int stm32_adc_eoc_enabled(struct stm32_adc_priv *priv,
341 unsigned int adc)
342{
343 u32 ier, offset = stm32_adc_offset[adc];
344
345 ier = readl_relaxed(priv->common.base + offset + priv->cfg->regs->ier);
346
347 return ier & priv->cfg->regs->eocie_msk;
348}
349
350/* ADC common interrupt for all instances */
351static void stm32_adc_irq_handler(struct irq_desc *desc)
352{
353 struct stm32_adc_priv *priv = irq_desc_get_handler_data(desc);
354 struct irq_chip *chip = irq_desc_get_chip(desc);
355 int i;
356 u32 status;
357
358 chained_irq_enter(chip, desc);
359 status = readl_relaxed(priv->common.base + priv->cfg->regs->csr);
360
361 /*
362 * End of conversion may be handled by using IRQ or DMA. There may be a
363 * race here when two conversions complete at the same time on several
364 * ADCs. EOC may be read 'set' for several ADCs, with:
365 * - an ADC configured to use DMA (EOC triggers the DMA request, and
366 * is then automatically cleared by DR read in hardware)
367 * - an ADC configured to use IRQs (EOCIE bit is set. The handler must
368 * be called in this case)
369 * So both EOC status bit in CSR and EOCIE control bit must be checked
370 * before invoking the interrupt handler (e.g. call ISR only for
371 * IRQ-enabled ADCs).
372 */
373 for (i = 0; i < priv->nb_adc_max; i++) {
374 if ((status & priv->cfg->regs->eoc_msk[i] &&
375 stm32_adc_eoc_enabled(priv, i)) ||
376 (status & priv->cfg->regs->ovr_msk[i]))
377 generic_handle_domain_irq(priv->domain, i);
378 }
379
380 chained_irq_exit(chip, desc);
381};
382
383static int stm32_adc_domain_map(struct irq_domain *d, unsigned int irq,
384 irq_hw_number_t hwirq)
385{
386 irq_set_chip_data(irq, d->host_data);
387 irq_set_chip_and_handler(irq, &dummy_irq_chip, handle_level_irq);
388
389 return 0;
390}
391
392static void stm32_adc_domain_unmap(struct irq_domain *d, unsigned int irq)
393{
394 irq_set_chip_and_handler(irq, NULL, NULL);
395 irq_set_chip_data(irq, NULL);
396}
397
398static const struct irq_domain_ops stm32_adc_domain_ops = {
399 .map = stm32_adc_domain_map,
400 .unmap = stm32_adc_domain_unmap,
401 .xlate = irq_domain_xlate_onecell,
402};
403
404static int stm32_adc_irq_probe(struct platform_device *pdev,
405 struct stm32_adc_priv *priv)
406{
407 struct device_node *np = pdev->dev.of_node;
408 unsigned int i;
409
410 /*
411 * Interrupt(s) must be provided, depending on the compatible:
412 * - stm32f4/h7 shares a common interrupt line.
413 * - stm32mp1, has one line per ADC
414 */
415 for (i = 0; i < priv->cfg->num_irqs; i++) {
416 priv->irq[i] = platform_get_irq(pdev, i);
417 if (priv->irq[i] < 0)
418 return priv->irq[i];
419 }
420
421 priv->domain = irq_domain_add_simple(np, STM32_ADC_MAX_ADCS, 0,
422 &stm32_adc_domain_ops,
423 priv);
424 if (!priv->domain) {
425 dev_err(&pdev->dev, "Failed to add irq domain\n");
426 return -ENOMEM;
427 }
428
429 for (i = 0; i < priv->cfg->num_irqs; i++) {
430 irq_set_chained_handler(priv->irq[i], stm32_adc_irq_handler);
431 irq_set_handler_data(priv->irq[i], priv);
432 }
433
434 return 0;
435}
436
437static void stm32_adc_irq_remove(struct platform_device *pdev,
438 struct stm32_adc_priv *priv)
439{
440 int hwirq;
441 unsigned int i;
442
443 for (hwirq = 0; hwirq < priv->nb_adc_max; hwirq++)
444 irq_dispose_mapping(irq_find_mapping(priv->domain, hwirq));
445 irq_domain_remove(priv->domain);
446
447 for (i = 0; i < priv->cfg->num_irqs; i++)
448 irq_set_chained_handler(priv->irq[i], NULL);
449}
450
451static int stm32_adc_core_switches_supply_en(struct stm32_adc_priv *priv,
452 struct device *dev)
453{
454 int ret;
455
456 /*
457 * On STM32H7 and STM32MP1, the ADC inputs are multiplexed with analog
458 * switches (via PCSEL) which have reduced performances when their
459 * supply is below 2.7V (vdda by default):
460 * - Voltage booster can be used, to get full ADC performances
461 * (increases power consumption).
462 * - Vdd can be used to supply them, if above 2.7V (STM32MP1 only).
463 *
464 * Recommended settings for ANASWVDD and EN_BOOSTER:
465 * - vdda < 2.7V but vdd > 2.7V: ANASWVDD = 1, EN_BOOSTER = 0 (stm32mp1)
466 * - vdda < 2.7V and vdd < 2.7V: ANASWVDD = 0, EN_BOOSTER = 1
467 * - vdda >= 2.7V: ANASWVDD = 0, EN_BOOSTER = 0 (default)
468 */
469 if (priv->vdda_uv < 2700000) {
470 if (priv->syscfg && priv->vdd_uv > 2700000) {
471 ret = regulator_enable(priv->vdd);
472 if (ret < 0) {
473 dev_err(dev, "vdd enable failed %d\n", ret);
474 return ret;
475 }
476
477 ret = regmap_write(priv->syscfg,
478 STM32MP1_SYSCFG_PMCSETR,
479 STM32MP1_SYSCFG_ANASWVDD_MASK);
480 if (ret < 0) {
481 regulator_disable(priv->vdd);
482 dev_err(dev, "vdd select failed, %d\n", ret);
483 return ret;
484 }
485 dev_dbg(dev, "analog switches supplied by vdd\n");
486
487 return 0;
488 }
489
490 if (priv->booster) {
491 /*
492 * This is optional, as this is a trade-off between
493 * analog performance and power consumption.
494 */
495 ret = regulator_enable(priv->booster);
496 if (ret < 0) {
497 dev_err(dev, "booster enable failed %d\n", ret);
498 return ret;
499 }
500 dev_dbg(dev, "analog switches supplied by booster\n");
501
502 return 0;
503 }
504 }
505
506 /* Fallback using vdda (default), nothing to do */
507 dev_dbg(dev, "analog switches supplied by vdda (%d uV)\n",
508 priv->vdda_uv);
509
510 return 0;
511}
512
513static void stm32_adc_core_switches_supply_dis(struct stm32_adc_priv *priv)
514{
515 if (priv->vdda_uv < 2700000) {
516 if (priv->syscfg && priv->vdd_uv > 2700000) {
517 regmap_write(priv->syscfg, STM32MP1_SYSCFG_PMCCLRR,
518 STM32MP1_SYSCFG_ANASWVDD_MASK);
519 regulator_disable(priv->vdd);
520 return;
521 }
522 if (priv->booster)
523 regulator_disable(priv->booster);
524 }
525}
526
527static int stm32_adc_core_hw_start(struct device *dev)
528{
529 struct stm32_adc_common *common = dev_get_drvdata(dev);
530 struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
531 int ret;
532
533 ret = regulator_enable(priv->vdda);
534 if (ret < 0) {
535 dev_err(dev, "vdda enable failed %d\n", ret);
536 return ret;
537 }
538
539 ret = regulator_get_voltage(priv->vdda);
540 if (ret < 0) {
541 dev_err(dev, "vdda get voltage failed, %d\n", ret);
542 goto err_vdda_disable;
543 }
544 priv->vdda_uv = ret;
545
546 ret = stm32_adc_core_switches_supply_en(priv, dev);
547 if (ret < 0)
548 goto err_vdda_disable;
549
550 ret = regulator_enable(priv->vref);
551 if (ret < 0) {
552 dev_err(dev, "vref enable failed\n");
553 goto err_switches_dis;
554 }
555
556 ret = clk_prepare_enable(priv->bclk);
557 if (ret < 0) {
558 dev_err(dev, "bus clk enable failed\n");
559 goto err_regulator_disable;
560 }
561
562 ret = clk_prepare_enable(priv->aclk);
563 if (ret < 0) {
564 dev_err(dev, "adc clk enable failed\n");
565 goto err_bclk_disable;
566 }
567
568 writel_relaxed(priv->ccr_bak, priv->common.base + priv->cfg->regs->ccr);
569
570 return 0;
571
572err_bclk_disable:
573 clk_disable_unprepare(priv->bclk);
574err_regulator_disable:
575 regulator_disable(priv->vref);
576err_switches_dis:
577 stm32_adc_core_switches_supply_dis(priv);
578err_vdda_disable:
579 regulator_disable(priv->vdda);
580
581 return ret;
582}
583
584static void stm32_adc_core_hw_stop(struct device *dev)
585{
586 struct stm32_adc_common *common = dev_get_drvdata(dev);
587 struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
588
589 /* Backup CCR that may be lost (depends on power state to achieve) */
590 priv->ccr_bak = readl_relaxed(priv->common.base + priv->cfg->regs->ccr);
591 clk_disable_unprepare(priv->aclk);
592 clk_disable_unprepare(priv->bclk);
593 regulator_disable(priv->vref);
594 stm32_adc_core_switches_supply_dis(priv);
595 regulator_disable(priv->vdda);
596}
597
598static int stm32_adc_core_switches_probe(struct device *dev,
599 struct stm32_adc_priv *priv)
600{
601 struct device_node *np = dev->of_node;
602 int ret;
603
604 /* Analog switches supply can be controlled by syscfg (optional) */
605 priv->syscfg = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
606 if (IS_ERR(priv->syscfg)) {
607 ret = PTR_ERR(priv->syscfg);
608 if (ret != -ENODEV)
609 return dev_err_probe(dev, ret, "Can't probe syscfg\n");
610
611 priv->syscfg = NULL;
612 }
613
614 /* Booster can be used to supply analog switches (optional) */
615 if (priv->cfg->has_syscfg & HAS_VBOOSTER &&
616 of_property_read_bool(np, "booster-supply")) {
617 priv->booster = devm_regulator_get_optional(dev, "booster");
618 if (IS_ERR(priv->booster)) {
619 ret = PTR_ERR(priv->booster);
620 if (ret != -ENODEV)
621 return dev_err_probe(dev, ret, "can't get booster\n");
622
623 priv->booster = NULL;
624 }
625 }
626
627 /* Vdd can be used to supply analog switches (optional) */
628 if (priv->cfg->has_syscfg & HAS_ANASWVDD &&
629 of_property_read_bool(np, "vdd-supply")) {
630 priv->vdd = devm_regulator_get_optional(dev, "vdd");
631 if (IS_ERR(priv->vdd)) {
632 ret = PTR_ERR(priv->vdd);
633 if (ret != -ENODEV)
634 return dev_err_probe(dev, ret, "can't get vdd\n");
635
636 priv->vdd = NULL;
637 }
638 }
639
640 if (priv->vdd) {
641 ret = regulator_enable(priv->vdd);
642 if (ret < 0) {
643 dev_err(dev, "vdd enable failed %d\n", ret);
644 return ret;
645 }
646
647 ret = regulator_get_voltage(priv->vdd);
648 if (ret < 0) {
649 dev_err(dev, "vdd get voltage failed %d\n", ret);
650 regulator_disable(priv->vdd);
651 return ret;
652 }
653 priv->vdd_uv = ret;
654
655 regulator_disable(priv->vdd);
656 }
657
658 return 0;
659}
660
661static int stm32_adc_probe_identification(struct platform_device *pdev,
662 struct stm32_adc_priv *priv)
663{
664 struct device_node *np = pdev->dev.of_node;
665 struct device_node *child;
666 const char *compat;
667 int ret, count = 0;
668 u32 id, val;
669
670 if (!priv->cfg->ipid)
671 return 0;
672
673 id = FIELD_GET(STM32MP1_IPIDR_MASK,
674 readl_relaxed(priv->common.base + STM32MP1_ADC_IPDR));
675 if (id != priv->cfg->ipid) {
676 dev_err(&pdev->dev, "Unexpected IP version: 0x%x", id);
677 return -EINVAL;
678 }
679
680 for_each_child_of_node(np, child) {
681 ret = of_property_read_string(child, "compatible", &compat);
682 if (ret)
683 continue;
684 /* Count child nodes with stm32 adc compatible */
685 if (strstr(compat, "st,stm32") && strstr(compat, "adc"))
686 count++;
687 }
688
689 val = readl_relaxed(priv->common.base + STM32MP1_ADC_HWCFGR0);
690 priv->nb_adc_max = FIELD_GET(STM32MP1_ADCNUM_MASK, val);
691 if (count > priv->nb_adc_max) {
692 dev_err(&pdev->dev, "Unexpected child number: %d", count);
693 return -EINVAL;
694 }
695
696 val = readl_relaxed(priv->common.base + STM32MP1_ADC_VERR);
697 dev_dbg(&pdev->dev, "ADC version: %lu.%lu\n",
698 FIELD_GET(STM32MP1_MAJREV_MASK, val),
699 FIELD_GET(STM32MP1_MINREV_MASK, val));
700
701 return 0;
702}
703
704static int stm32_adc_probe(struct platform_device *pdev)
705{
706 struct stm32_adc_priv *priv;
707 struct device *dev = &pdev->dev;
708 struct device_node *np = pdev->dev.of_node;
709 struct resource *res;
710 u32 max_rate;
711 int ret;
712
713 if (!pdev->dev.of_node)
714 return -ENODEV;
715
716 priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
717 if (!priv)
718 return -ENOMEM;
719 platform_set_drvdata(pdev, &priv->common);
720
721 priv->cfg = (const struct stm32_adc_priv_cfg *)
722 of_match_device(dev->driver->of_match_table, dev)->data;
723 priv->nb_adc_max = priv->cfg->num_adcs;
724 spin_lock_init(&priv->common.lock);
725
726 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
727 priv->common.base = devm_ioremap_resource(&pdev->dev, res);
728 if (IS_ERR(priv->common.base))
729 return PTR_ERR(priv->common.base);
730 priv->common.phys_base = res->start;
731
732 priv->vdda = devm_regulator_get(&pdev->dev, "vdda");
733 if (IS_ERR(priv->vdda))
734 return dev_err_probe(&pdev->dev, PTR_ERR(priv->vdda),
735 "vdda get failed\n");
736
737 priv->vref = devm_regulator_get(&pdev->dev, "vref");
738 if (IS_ERR(priv->vref))
739 return dev_err_probe(&pdev->dev, PTR_ERR(priv->vref),
740 "vref get failed\n");
741
742 priv->aclk = devm_clk_get_optional(&pdev->dev, "adc");
743 if (IS_ERR(priv->aclk))
744 return dev_err_probe(&pdev->dev, PTR_ERR(priv->aclk),
745 "Can't get 'adc' clock\n");
746
747 priv->bclk = devm_clk_get_optional(&pdev->dev, "bus");
748 if (IS_ERR(priv->bclk))
749 return dev_err_probe(&pdev->dev, PTR_ERR(priv->bclk),
750 "Can't get 'bus' clock\n");
751
752 ret = stm32_adc_core_switches_probe(dev, priv);
753 if (ret)
754 return ret;
755
756 pm_runtime_get_noresume(dev);
757 pm_runtime_set_active(dev);
758 pm_runtime_set_autosuspend_delay(dev, STM32_ADC_CORE_SLEEP_DELAY_MS);
759 pm_runtime_use_autosuspend(dev);
760 pm_runtime_enable(dev);
761
762 ret = stm32_adc_core_hw_start(dev);
763 if (ret)
764 goto err_pm_stop;
765
766 ret = stm32_adc_probe_identification(pdev, priv);
767 if (ret < 0)
768 goto err_hw_stop;
769
770 ret = regulator_get_voltage(priv->vref);
771 if (ret < 0) {
772 dev_err(&pdev->dev, "vref get voltage failed, %d\n", ret);
773 goto err_hw_stop;
774 }
775 priv->common.vref_mv = ret / 1000;
776 dev_dbg(&pdev->dev, "vref+=%dmV\n", priv->common.vref_mv);
777
778 ret = of_property_read_u32(pdev->dev.of_node, "st,max-clk-rate-hz",
779 &max_rate);
780 if (!ret)
781 priv->max_clk_rate = min(max_rate, priv->cfg->max_clk_rate_hz);
782 else
783 priv->max_clk_rate = priv->cfg->max_clk_rate_hz;
784
785 ret = priv->cfg->clk_sel(pdev, priv);
786 if (ret < 0)
787 goto err_hw_stop;
788
789 ret = stm32_adc_irq_probe(pdev, priv);
790 if (ret < 0)
791 goto err_hw_stop;
792
793 ret = of_platform_populate(np, NULL, NULL, &pdev->dev);
794 if (ret < 0) {
795 dev_err(&pdev->dev, "failed to populate DT children\n");
796 goto err_irq_remove;
797 }
798
799 pm_runtime_mark_last_busy(dev);
800 pm_runtime_put_autosuspend(dev);
801
802 return 0;
803
804err_irq_remove:
805 stm32_adc_irq_remove(pdev, priv);
806err_hw_stop:
807 stm32_adc_core_hw_stop(dev);
808err_pm_stop:
809 pm_runtime_disable(dev);
810 pm_runtime_set_suspended(dev);
811 pm_runtime_put_noidle(dev);
812
813 return ret;
814}
815
816static int stm32_adc_remove(struct platform_device *pdev)
817{
818 struct stm32_adc_common *common = platform_get_drvdata(pdev);
819 struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
820
821 pm_runtime_get_sync(&pdev->dev);
822 of_platform_depopulate(&pdev->dev);
823 stm32_adc_irq_remove(pdev, priv);
824 stm32_adc_core_hw_stop(&pdev->dev);
825 pm_runtime_disable(&pdev->dev);
826 pm_runtime_set_suspended(&pdev->dev);
827 pm_runtime_put_noidle(&pdev->dev);
828
829 return 0;
830}
831
832static int stm32_adc_core_runtime_suspend(struct device *dev)
833{
834 stm32_adc_core_hw_stop(dev);
835
836 return 0;
837}
838
839static int stm32_adc_core_runtime_resume(struct device *dev)
840{
841 return stm32_adc_core_hw_start(dev);
842}
843
844static int stm32_adc_core_runtime_idle(struct device *dev)
845{
846 pm_runtime_mark_last_busy(dev);
847
848 return 0;
849}
850
851static DEFINE_RUNTIME_DEV_PM_OPS(stm32_adc_core_pm_ops,
852 stm32_adc_core_runtime_suspend,
853 stm32_adc_core_runtime_resume,
854 stm32_adc_core_runtime_idle);
855
856static const struct stm32_adc_priv_cfg stm32f4_adc_priv_cfg = {
857 .regs = &stm32f4_adc_common_regs,
858 .clk_sel = stm32f4_adc_clk_sel,
859 .max_clk_rate_hz = 36000000,
860 .num_irqs = 1,
861 .num_adcs = 3,
862};
863
864static const struct stm32_adc_priv_cfg stm32h7_adc_priv_cfg = {
865 .regs = &stm32h7_adc_common_regs,
866 .clk_sel = stm32h7_adc_clk_sel,
867 .max_clk_rate_hz = 36000000,
868 .has_syscfg = HAS_VBOOSTER,
869 .num_irqs = 1,
870 .num_adcs = 2,
871};
872
873static const struct stm32_adc_priv_cfg stm32mp1_adc_priv_cfg = {
874 .regs = &stm32h7_adc_common_regs,
875 .clk_sel = stm32h7_adc_clk_sel,
876 .max_clk_rate_hz = 36000000,
877 .has_syscfg = HAS_VBOOSTER | HAS_ANASWVDD,
878 .ipid = STM32MP15_IPIDR_NUMBER,
879 .num_irqs = 2,
880};
881
882static const struct stm32_adc_priv_cfg stm32mp13_adc_priv_cfg = {
883 .regs = &stm32mp13_adc_common_regs,
884 .clk_sel = stm32h7_adc_clk_sel,
885 .max_clk_rate_hz = 75 * HZ_PER_MHZ,
886 .ipid = STM32MP13_IPIDR_NUMBER,
887 .num_irqs = 1,
888};
889
890static const struct of_device_id stm32_adc_of_match[] = {
891 {
892 .compatible = "st,stm32f4-adc-core",
893 .data = (void *)&stm32f4_adc_priv_cfg
894 }, {
895 .compatible = "st,stm32h7-adc-core",
896 .data = (void *)&stm32h7_adc_priv_cfg
897 }, {
898 .compatible = "st,stm32mp1-adc-core",
899 .data = (void *)&stm32mp1_adc_priv_cfg
900 }, {
901 .compatible = "st,stm32mp13-adc-core",
902 .data = (void *)&stm32mp13_adc_priv_cfg
903 }, {
904 },
905};
906MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
907
908static struct platform_driver stm32_adc_driver = {
909 .probe = stm32_adc_probe,
910 .remove = stm32_adc_remove,
911 .driver = {
912 .name = "stm32-adc-core",
913 .of_match_table = stm32_adc_of_match,
914 .pm = pm_ptr(&stm32_adc_core_pm_ops),
915 },
916};
917module_platform_driver(stm32_adc_driver);
918
919MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
920MODULE_DESCRIPTION("STMicroelectronics STM32 ADC core driver");
921MODULE_LICENSE("GPL v2");
922MODULE_ALIAS("platform:stm32-adc-core");