Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This file is part of STM32 ADC driver
  4 *
  5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
  6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
  7 *
  8 * Inspired from: fsl-imx25-tsadc
  9 *
 10 */
 11
 
 12#include <linux/clk.h>
 13#include <linux/interrupt.h>
 14#include <linux/irqchip/chained_irq.h>
 15#include <linux/irqdesc.h>
 16#include <linux/irqdomain.h>
 17#include <linux/mfd/syscon.h>
 18#include <linux/module.h>
 19#include <linux/of_device.h>
 20#include <linux/pm_runtime.h>
 21#include <linux/regmap.h>
 22#include <linux/regulator/consumer.h>
 23#include <linux/slab.h>
 
 24
 25#include "stm32-adc-core.h"
 26
 27#define STM32_ADC_CORE_SLEEP_DELAY_MS	2000
 28
 29/* SYSCFG registers */
 30#define STM32MP1_SYSCFG_PMCSETR		0x04
 31#define STM32MP1_SYSCFG_PMCCLRR		0x44
 32
 33/* SYSCFG bit fields */
 34#define STM32MP1_SYSCFG_ANASWVDD_MASK	BIT(9)
 35
 36/* SYSCFG capability flags */
 37#define HAS_VBOOSTER		BIT(0)
 38#define HAS_ANASWVDD		BIT(1)
 39
 40/**
 41 * stm32_adc_common_regs - stm32 common registers, compatible dependent data
 42 * @csr:	common status register offset
 43 * @ccr:	common control register offset
 44 * @eoc1:	adc1 end of conversion flag in @csr
 45 * @eoc2:	adc2 end of conversion flag in @csr
 46 * @eoc3:	adc3 end of conversion flag in @csr
 47 * @ier:	interrupt enable register offset for each adc
 48 * @eocie_msk:	end of conversion interrupt enable mask in @ier
 49 */
 50struct stm32_adc_common_regs {
 51	u32 csr;
 52	u32 ccr;
 53	u32 eoc1_msk;
 54	u32 eoc2_msk;
 55	u32 eoc3_msk;
 56	u32 ier;
 57	u32 eocie_msk;
 58};
 59
 60struct stm32_adc_priv;
 61
 62/**
 63 * stm32_adc_priv_cfg - stm32 core compatible configuration data
 64 * @regs:	common registers for all instances
 65 * @clk_sel:	clock selection routine
 66 * @max_clk_rate_hz: maximum analog clock rate (Hz, from datasheet)
 
 67 * @has_syscfg: SYSCFG capability flags
 
 
 68 */
 69struct stm32_adc_priv_cfg {
 70	const struct stm32_adc_common_regs *regs;
 71	int (*clk_sel)(struct platform_device *, struct stm32_adc_priv *);
 72	u32 max_clk_rate_hz;
 
 73	unsigned int has_syscfg;
 
 
 74};
 75
 76/**
 77 * struct stm32_adc_priv - stm32 ADC core private data
 78 * @irq:		irq(s) for ADC block
 
 79 * @domain:		irq domain reference
 80 * @aclk:		clock reference for the analog circuitry
 81 * @bclk:		bus clock common for all ADCs, depends on part used
 
 82 * @booster:		booster supply reference
 83 * @vdd:		vdd supply reference
 84 * @vdda:		vdda analog supply reference
 85 * @vref:		regulator reference
 86 * @vdd_uv:		vdd supply voltage (microvolts)
 87 * @vdda_uv:		vdda supply voltage (microvolts)
 88 * @cfg:		compatible configuration data
 89 * @common:		common data for all ADC instances
 90 * @ccr_bak:		backup CCR in low power mode
 91 * @syscfg:		reference to syscon, system control registers
 92 */
 93struct stm32_adc_priv {
 94	int				irq[STM32_ADC_MAX_ADCS];
 
 95	struct irq_domain		*domain;
 96	struct clk			*aclk;
 97	struct clk			*bclk;
 
 98	struct regulator		*booster;
 99	struct regulator		*vdd;
100	struct regulator		*vdda;
101	struct regulator		*vref;
102	int				vdd_uv;
103	int				vdda_uv;
104	const struct stm32_adc_priv_cfg	*cfg;
105	struct stm32_adc_common		common;
106	u32				ccr_bak;
107	struct regmap			*syscfg;
108};
109
110static struct stm32_adc_priv *to_stm32_adc_priv(struct stm32_adc_common *com)
111{
112	return container_of(com, struct stm32_adc_priv, common);
113}
114
115/* STM32F4 ADC internal common clock prescaler division ratios */
116static int stm32f4_pclk_div[] = {2, 4, 6, 8};
117
118/**
119 * stm32f4_adc_clk_sel() - Select stm32f4 ADC common clock prescaler
 
120 * @priv: stm32 ADC core private data
121 * Select clock prescaler used for analog conversions, before using ADC.
122 */
123static int stm32f4_adc_clk_sel(struct platform_device *pdev,
124			       struct stm32_adc_priv *priv)
125{
126	unsigned long rate;
127	u32 val;
128	int i;
129
130	/* stm32f4 has one clk input for analog (mandatory), enforce it here */
131	if (!priv->aclk) {
132		dev_err(&pdev->dev, "No 'adc' clock found\n");
133		return -ENOENT;
134	}
135
136	rate = clk_get_rate(priv->aclk);
137	if (!rate) {
138		dev_err(&pdev->dev, "Invalid clock rate: 0\n");
139		return -EINVAL;
140	}
141
142	for (i = 0; i < ARRAY_SIZE(stm32f4_pclk_div); i++) {
143		if ((rate / stm32f4_pclk_div[i]) <= priv->cfg->max_clk_rate_hz)
144			break;
145	}
146	if (i >= ARRAY_SIZE(stm32f4_pclk_div)) {
147		dev_err(&pdev->dev, "adc clk selection failed\n");
148		return -EINVAL;
149	}
150
151	priv->common.rate = rate / stm32f4_pclk_div[i];
152	val = readl_relaxed(priv->common.base + STM32F4_ADC_CCR);
153	val &= ~STM32F4_ADC_ADCPRE_MASK;
154	val |= i << STM32F4_ADC_ADCPRE_SHIFT;
155	writel_relaxed(val, priv->common.base + STM32F4_ADC_CCR);
156
157	dev_dbg(&pdev->dev, "Using analog clock source at %ld kHz\n",
158		priv->common.rate / 1000);
159
160	return 0;
161}
162
163/**
164 * struct stm32h7_adc_ck_spec - specification for stm32h7 adc clock
165 * @ckmode: ADC clock mode, Async or sync with prescaler.
166 * @presc: prescaler bitfield for async clock mode
167 * @div: prescaler division ratio
168 */
169struct stm32h7_adc_ck_spec {
170	u32 ckmode;
171	u32 presc;
172	int div;
173};
174
175static const struct stm32h7_adc_ck_spec stm32h7_adc_ckmodes_spec[] = {
176	/* 00: CK_ADC[1..3]: Asynchronous clock modes */
177	{ 0, 0, 1 },
178	{ 0, 1, 2 },
179	{ 0, 2, 4 },
180	{ 0, 3, 6 },
181	{ 0, 4, 8 },
182	{ 0, 5, 10 },
183	{ 0, 6, 12 },
184	{ 0, 7, 16 },
185	{ 0, 8, 32 },
186	{ 0, 9, 64 },
187	{ 0, 10, 128 },
188	{ 0, 11, 256 },
189	/* HCLK used: Synchronous clock modes (1, 2 or 4 prescaler) */
190	{ 1, 0, 1 },
191	{ 2, 0, 2 },
192	{ 3, 0, 4 },
193};
194
195static int stm32h7_adc_clk_sel(struct platform_device *pdev,
196			       struct stm32_adc_priv *priv)
197{
198	u32 ckmode, presc, val;
199	unsigned long rate;
200	int i, div;
201
202	/* stm32h7 bus clock is common for all ADC instances (mandatory) */
203	if (!priv->bclk) {
204		dev_err(&pdev->dev, "No 'bus' clock found\n");
205		return -ENOENT;
206	}
207
208	/*
209	 * stm32h7 can use either 'bus' or 'adc' clock for analog circuitry.
210	 * So, choice is to have bus clock mandatory and adc clock optional.
211	 * If optional 'adc' clock has been found, then try to use it first.
212	 */
213	if (priv->aclk) {
214		/*
215		 * Asynchronous clock modes (e.g. ckmode == 0)
216		 * From spec: PLL output musn't exceed max rate
217		 */
218		rate = clk_get_rate(priv->aclk);
219		if (!rate) {
220			dev_err(&pdev->dev, "Invalid adc clock rate: 0\n");
221			return -EINVAL;
222		}
223
 
 
 
 
 
224		for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) {
225			ckmode = stm32h7_adc_ckmodes_spec[i].ckmode;
226			presc = stm32h7_adc_ckmodes_spec[i].presc;
227			div = stm32h7_adc_ckmodes_spec[i].div;
228
229			if (ckmode)
230				continue;
231
232			if ((rate / div) <= priv->cfg->max_clk_rate_hz)
 
 
 
 
 
 
 
233				goto out;
234		}
235	}
236
237	/* Synchronous clock modes (e.g. ckmode is 1, 2 or 3) */
238	rate = clk_get_rate(priv->bclk);
239	if (!rate) {
240		dev_err(&pdev->dev, "Invalid bus clock rate: 0\n");
241		return -EINVAL;
242	}
243
 
 
 
 
244	for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) {
245		ckmode = stm32h7_adc_ckmodes_spec[i].ckmode;
246		presc = stm32h7_adc_ckmodes_spec[i].presc;
247		div = stm32h7_adc_ckmodes_spec[i].div;
248
249		if (!ckmode)
250			continue;
251
252		if ((rate / div) <= priv->cfg->max_clk_rate_hz)
 
 
 
253			goto out;
254	}
255
256	dev_err(&pdev->dev, "adc clk selection failed\n");
257	return -EINVAL;
258
259out:
260	/* rate used later by each ADC instance to control BOOST mode */
261	priv->common.rate = rate / div;
262
263	/* Set common clock mode and prescaler */
264	val = readl_relaxed(priv->common.base + STM32H7_ADC_CCR);
265	val &= ~(STM32H7_CKMODE_MASK | STM32H7_PRESC_MASK);
266	val |= ckmode << STM32H7_CKMODE_SHIFT;
267	val |= presc << STM32H7_PRESC_SHIFT;
268	writel_relaxed(val, priv->common.base + STM32H7_ADC_CCR);
269
270	dev_dbg(&pdev->dev, "Using %s clock/%d source at %ld kHz\n",
271		ckmode ? "bus" : "adc", div, priv->common.rate / 1000);
272
273	return 0;
274}
275
276/* STM32F4 common registers definitions */
277static const struct stm32_adc_common_regs stm32f4_adc_common_regs = {
278	.csr = STM32F4_ADC_CSR,
279	.ccr = STM32F4_ADC_CCR,
280	.eoc1_msk = STM32F4_EOC1,
281	.eoc2_msk = STM32F4_EOC2,
282	.eoc3_msk = STM32F4_EOC3,
283	.ier = STM32F4_ADC_CR1,
284	.eocie_msk = STM32F4_EOCIE,
285};
286
287/* STM32H7 common registers definitions */
288static const struct stm32_adc_common_regs stm32h7_adc_common_regs = {
289	.csr = STM32H7_ADC_CSR,
290	.ccr = STM32H7_ADC_CCR,
291	.eoc1_msk = STM32H7_EOC_MST,
292	.eoc2_msk = STM32H7_EOC_SLV,
 
 
 
 
 
 
 
 
 
 
293	.ier = STM32H7_ADC_IER,
294	.eocie_msk = STM32H7_EOCIE,
295};
296
297static const unsigned int stm32_adc_offset[STM32_ADC_MAX_ADCS] = {
298	0, STM32_ADC_OFFSET, STM32_ADC_OFFSET * 2,
299};
300
301static unsigned int stm32_adc_eoc_enabled(struct stm32_adc_priv *priv,
302					  unsigned int adc)
303{
304	u32 ier, offset = stm32_adc_offset[adc];
305
306	ier = readl_relaxed(priv->common.base + offset + priv->cfg->regs->ier);
307
308	return ier & priv->cfg->regs->eocie_msk;
309}
310
311/* ADC common interrupt for all instances */
312static void stm32_adc_irq_handler(struct irq_desc *desc)
313{
314	struct stm32_adc_priv *priv = irq_desc_get_handler_data(desc);
315	struct irq_chip *chip = irq_desc_get_chip(desc);
 
316	u32 status;
317
318	chained_irq_enter(chip, desc);
319	status = readl_relaxed(priv->common.base + priv->cfg->regs->csr);
320
321	/*
322	 * End of conversion may be handled by using IRQ or DMA. There may be a
323	 * race here when two conversions complete at the same time on several
324	 * ADCs. EOC may be read 'set' for several ADCs, with:
325	 * - an ADC configured to use DMA (EOC triggers the DMA request, and
326	 *   is then automatically cleared by DR read in hardware)
327	 * - an ADC configured to use IRQs (EOCIE bit is set. The handler must
328	 *   be called in this case)
329	 * So both EOC status bit in CSR and EOCIE control bit must be checked
330	 * before invoking the interrupt handler (e.g. call ISR only for
331	 * IRQ-enabled ADCs).
332	 */
333	if (status & priv->cfg->regs->eoc1_msk &&
334	    stm32_adc_eoc_enabled(priv, 0))
335		generic_handle_irq(irq_find_mapping(priv->domain, 0));
336
337	if (status & priv->cfg->regs->eoc2_msk &&
338	    stm32_adc_eoc_enabled(priv, 1))
339		generic_handle_irq(irq_find_mapping(priv->domain, 1));
340
341	if (status & priv->cfg->regs->eoc3_msk &&
342	    stm32_adc_eoc_enabled(priv, 2))
343		generic_handle_irq(irq_find_mapping(priv->domain, 2));
344
345	chained_irq_exit(chip, desc);
346};
347
348static int stm32_adc_domain_map(struct irq_domain *d, unsigned int irq,
349				irq_hw_number_t hwirq)
350{
351	irq_set_chip_data(irq, d->host_data);
352	irq_set_chip_and_handler(irq, &dummy_irq_chip, handle_level_irq);
353
354	return 0;
355}
356
357static void stm32_adc_domain_unmap(struct irq_domain *d, unsigned int irq)
358{
359	irq_set_chip_and_handler(irq, NULL, NULL);
360	irq_set_chip_data(irq, NULL);
361}
362
363static const struct irq_domain_ops stm32_adc_domain_ops = {
364	.map = stm32_adc_domain_map,
365	.unmap  = stm32_adc_domain_unmap,
366	.xlate = irq_domain_xlate_onecell,
367};
368
369static int stm32_adc_irq_probe(struct platform_device *pdev,
370			       struct stm32_adc_priv *priv)
371{
372	struct device_node *np = pdev->dev.of_node;
373	unsigned int i;
374
375	for (i = 0; i < STM32_ADC_MAX_ADCS; i++) {
 
 
 
 
 
376		priv->irq[i] = platform_get_irq(pdev, i);
377		if (priv->irq[i] < 0) {
378			/*
379			 * At least one interrupt must be provided, make others
380			 * optional:
381			 * - stm32f4/h7 shares a common interrupt.
382			 * - stm32mp1, has one line per ADC (either for ADC1,
383			 *   ADC2 or both).
384			 */
385			if (i && priv->irq[i] == -ENXIO)
386				continue;
387
388			return priv->irq[i];
389		}
390	}
391
392	priv->domain = irq_domain_add_simple(np, STM32_ADC_MAX_ADCS, 0,
393					     &stm32_adc_domain_ops,
394					     priv);
395	if (!priv->domain) {
396		dev_err(&pdev->dev, "Failed to add irq domain\n");
397		return -ENOMEM;
398	}
399
400	for (i = 0; i < STM32_ADC_MAX_ADCS; i++) {
401		if (priv->irq[i] < 0)
402			continue;
403		irq_set_chained_handler(priv->irq[i], stm32_adc_irq_handler);
404		irq_set_handler_data(priv->irq[i], priv);
405	}
406
407	return 0;
408}
409
410static void stm32_adc_irq_remove(struct platform_device *pdev,
411				 struct stm32_adc_priv *priv)
412{
413	int hwirq;
414	unsigned int i;
415
416	for (hwirq = 0; hwirq < STM32_ADC_MAX_ADCS; hwirq++)
417		irq_dispose_mapping(irq_find_mapping(priv->domain, hwirq));
418	irq_domain_remove(priv->domain);
419
420	for (i = 0; i < STM32_ADC_MAX_ADCS; i++) {
421		if (priv->irq[i] < 0)
422			continue;
423		irq_set_chained_handler(priv->irq[i], NULL);
424	}
425}
426
427static int stm32_adc_core_switches_supply_en(struct stm32_adc_priv *priv,
428					     struct device *dev)
429{
430	int ret;
431
432	/*
433	 * On STM32H7 and STM32MP1, the ADC inputs are multiplexed with analog
434	 * switches (via PCSEL) which have reduced performances when their
435	 * supply is below 2.7V (vdda by default):
436	 * - Voltage booster can be used, to get full ADC performances
437	 *   (increases power consumption).
438	 * - Vdd can be used to supply them, if above 2.7V (STM32MP1 only).
439	 *
440	 * Recommended settings for ANASWVDD and EN_BOOSTER:
441	 * - vdda < 2.7V but vdd > 2.7V: ANASWVDD = 1, EN_BOOSTER = 0 (stm32mp1)
442	 * - vdda < 2.7V and vdd < 2.7V: ANASWVDD = 0, EN_BOOSTER = 1
443	 * - vdda >= 2.7V:               ANASWVDD = 0, EN_BOOSTER = 0 (default)
444	 */
445	if (priv->vdda_uv < 2700000) {
446		if (priv->syscfg && priv->vdd_uv > 2700000) {
447			ret = regulator_enable(priv->vdd);
448			if (ret < 0) {
449				dev_err(dev, "vdd enable failed %d\n", ret);
450				return ret;
451			}
452
453			ret = regmap_write(priv->syscfg,
454					   STM32MP1_SYSCFG_PMCSETR,
455					   STM32MP1_SYSCFG_ANASWVDD_MASK);
456			if (ret < 0) {
457				regulator_disable(priv->vdd);
458				dev_err(dev, "vdd select failed, %d\n", ret);
459				return ret;
460			}
461			dev_dbg(dev, "analog switches supplied by vdd\n");
462
463			return 0;
464		}
465
466		if (priv->booster) {
467			/*
468			 * This is optional, as this is a trade-off between
469			 * analog performance and power consumption.
470			 */
471			ret = regulator_enable(priv->booster);
472			if (ret < 0) {
473				dev_err(dev, "booster enable failed %d\n", ret);
474				return ret;
475			}
476			dev_dbg(dev, "analog switches supplied by booster\n");
477
478			return 0;
479		}
480	}
481
482	/* Fallback using vdda (default), nothing to do */
483	dev_dbg(dev, "analog switches supplied by vdda (%d uV)\n",
484		priv->vdda_uv);
485
486	return 0;
487}
488
489static void stm32_adc_core_switches_supply_dis(struct stm32_adc_priv *priv)
490{
491	if (priv->vdda_uv < 2700000) {
492		if (priv->syscfg && priv->vdd_uv > 2700000) {
493			regmap_write(priv->syscfg, STM32MP1_SYSCFG_PMCCLRR,
494				     STM32MP1_SYSCFG_ANASWVDD_MASK);
495			regulator_disable(priv->vdd);
496			return;
497		}
498		if (priv->booster)
499			regulator_disable(priv->booster);
500	}
501}
502
503static int stm32_adc_core_hw_start(struct device *dev)
504{
505	struct stm32_adc_common *common = dev_get_drvdata(dev);
506	struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
507	int ret;
508
509	ret = regulator_enable(priv->vdda);
510	if (ret < 0) {
511		dev_err(dev, "vdda enable failed %d\n", ret);
512		return ret;
513	}
514
515	ret = regulator_get_voltage(priv->vdda);
516	if (ret < 0) {
517		dev_err(dev, "vdda get voltage failed, %d\n", ret);
518		goto err_vdda_disable;
519	}
520	priv->vdda_uv = ret;
521
522	ret = stm32_adc_core_switches_supply_en(priv, dev);
523	if (ret < 0)
524		goto err_vdda_disable;
525
526	ret = regulator_enable(priv->vref);
527	if (ret < 0) {
528		dev_err(dev, "vref enable failed\n");
529		goto err_switches_dis;
530	}
531
532	if (priv->bclk) {
533		ret = clk_prepare_enable(priv->bclk);
534		if (ret < 0) {
535			dev_err(dev, "bus clk enable failed\n");
536			goto err_regulator_disable;
537		}
538	}
539
540	if (priv->aclk) {
541		ret = clk_prepare_enable(priv->aclk);
542		if (ret < 0) {
543			dev_err(dev, "adc clk enable failed\n");
544			goto err_bclk_disable;
545		}
546	}
547
548	writel_relaxed(priv->ccr_bak, priv->common.base + priv->cfg->regs->ccr);
549
550	return 0;
551
552err_bclk_disable:
553	if (priv->bclk)
554		clk_disable_unprepare(priv->bclk);
555err_regulator_disable:
556	regulator_disable(priv->vref);
557err_switches_dis:
558	stm32_adc_core_switches_supply_dis(priv);
559err_vdda_disable:
560	regulator_disable(priv->vdda);
561
562	return ret;
563}
564
565static void stm32_adc_core_hw_stop(struct device *dev)
566{
567	struct stm32_adc_common *common = dev_get_drvdata(dev);
568	struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
569
570	/* Backup CCR that may be lost (depends on power state to achieve) */
571	priv->ccr_bak = readl_relaxed(priv->common.base + priv->cfg->regs->ccr);
572	if (priv->aclk)
573		clk_disable_unprepare(priv->aclk);
574	if (priv->bclk)
575		clk_disable_unprepare(priv->bclk);
576	regulator_disable(priv->vref);
577	stm32_adc_core_switches_supply_dis(priv);
578	regulator_disable(priv->vdda);
579}
580
581static int stm32_adc_core_switches_probe(struct device *dev,
582					 struct stm32_adc_priv *priv)
583{
584	struct device_node *np = dev->of_node;
585	int ret;
586
587	/* Analog switches supply can be controlled by syscfg (optional) */
588	priv->syscfg = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
589	if (IS_ERR(priv->syscfg)) {
590		ret = PTR_ERR(priv->syscfg);
591		if (ret != -ENODEV) {
592			if (ret != -EPROBE_DEFER)
593				dev_err(dev, "Can't probe syscfg: %d\n", ret);
594			return ret;
595		}
596		priv->syscfg = NULL;
597	}
598
599	/* Booster can be used to supply analog switches (optional) */
600	if (priv->cfg->has_syscfg & HAS_VBOOSTER &&
601	    of_property_read_bool(np, "booster-supply")) {
602		priv->booster = devm_regulator_get_optional(dev, "booster");
603		if (IS_ERR(priv->booster)) {
604			ret = PTR_ERR(priv->booster);
605			if (ret != -ENODEV) {
606				if (ret != -EPROBE_DEFER)
607					dev_err(dev, "can't get booster %d\n",
608						ret);
609				return ret;
610			}
611			priv->booster = NULL;
612		}
613	}
614
615	/* Vdd can be used to supply analog switches (optional) */
616	if (priv->cfg->has_syscfg & HAS_ANASWVDD &&
617	    of_property_read_bool(np, "vdd-supply")) {
618		priv->vdd = devm_regulator_get_optional(dev, "vdd");
619		if (IS_ERR(priv->vdd)) {
620			ret = PTR_ERR(priv->vdd);
621			if (ret != -ENODEV) {
622				if (ret != -EPROBE_DEFER)
623					dev_err(dev, "can't get vdd %d\n", ret);
624				return ret;
625			}
626			priv->vdd = NULL;
627		}
628	}
629
630	if (priv->vdd) {
631		ret = regulator_enable(priv->vdd);
632		if (ret < 0) {
633			dev_err(dev, "vdd enable failed %d\n", ret);
634			return ret;
635		}
636
637		ret = regulator_get_voltage(priv->vdd);
638		if (ret < 0) {
639			dev_err(dev, "vdd get voltage failed %d\n", ret);
640			regulator_disable(priv->vdd);
641			return ret;
642		}
643		priv->vdd_uv = ret;
644
645		regulator_disable(priv->vdd);
646	}
647
648	return 0;
649}
650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
651static int stm32_adc_probe(struct platform_device *pdev)
652{
653	struct stm32_adc_priv *priv;
654	struct device *dev = &pdev->dev;
655	struct device_node *np = pdev->dev.of_node;
656	struct resource *res;
 
657	int ret;
658
659	if (!pdev->dev.of_node)
660		return -ENODEV;
661
662	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
663	if (!priv)
664		return -ENOMEM;
665	platform_set_drvdata(pdev, &priv->common);
666
667	priv->cfg = (const struct stm32_adc_priv_cfg *)
668		of_match_device(dev->driver->of_match_table, dev)->data;
 
 
669
670	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
671	priv->common.base = devm_ioremap_resource(&pdev->dev, res);
672	if (IS_ERR(priv->common.base))
673		return PTR_ERR(priv->common.base);
674	priv->common.phys_base = res->start;
675
676	priv->vdda = devm_regulator_get(&pdev->dev, "vdda");
677	if (IS_ERR(priv->vdda)) {
678		ret = PTR_ERR(priv->vdda);
679		if (ret != -EPROBE_DEFER)
680			dev_err(&pdev->dev, "vdda get failed, %d\n", ret);
681		return ret;
682	}
683
684	priv->vref = devm_regulator_get(&pdev->dev, "vref");
685	if (IS_ERR(priv->vref)) {
686		ret = PTR_ERR(priv->vref);
687		dev_err(&pdev->dev, "vref get failed, %d\n", ret);
688		return ret;
689	}
690
691	priv->aclk = devm_clk_get(&pdev->dev, "adc");
692	if (IS_ERR(priv->aclk)) {
693		ret = PTR_ERR(priv->aclk);
694		if (ret != -ENOENT) {
695			dev_err(&pdev->dev, "Can't get 'adc' clock\n");
696			return ret;
697		}
698		priv->aclk = NULL;
699	}
700
701	priv->bclk = devm_clk_get(&pdev->dev, "bus");
702	if (IS_ERR(priv->bclk)) {
703		ret = PTR_ERR(priv->bclk);
704		if (ret != -ENOENT) {
705			dev_err(&pdev->dev, "Can't get 'bus' clock\n");
706			return ret;
707		}
708		priv->bclk = NULL;
709	}
710
711	ret = stm32_adc_core_switches_probe(dev, priv);
712	if (ret)
713		return ret;
714
715	pm_runtime_get_noresume(dev);
716	pm_runtime_set_active(dev);
717	pm_runtime_set_autosuspend_delay(dev, STM32_ADC_CORE_SLEEP_DELAY_MS);
718	pm_runtime_use_autosuspend(dev);
719	pm_runtime_enable(dev);
720
721	ret = stm32_adc_core_hw_start(dev);
722	if (ret)
723		goto err_pm_stop;
724
 
 
 
 
725	ret = regulator_get_voltage(priv->vref);
726	if (ret < 0) {
727		dev_err(&pdev->dev, "vref get voltage failed, %d\n", ret);
728		goto err_hw_stop;
729	}
730	priv->common.vref_mv = ret / 1000;
731	dev_dbg(&pdev->dev, "vref+=%dmV\n", priv->common.vref_mv);
732
 
 
 
 
 
 
 
733	ret = priv->cfg->clk_sel(pdev, priv);
734	if (ret < 0)
735		goto err_hw_stop;
736
737	ret = stm32_adc_irq_probe(pdev, priv);
738	if (ret < 0)
739		goto err_hw_stop;
740
741	ret = of_platform_populate(np, NULL, NULL, &pdev->dev);
742	if (ret < 0) {
743		dev_err(&pdev->dev, "failed to populate DT children\n");
744		goto err_irq_remove;
745	}
746
747	pm_runtime_mark_last_busy(dev);
748	pm_runtime_put_autosuspend(dev);
749
750	return 0;
751
752err_irq_remove:
753	stm32_adc_irq_remove(pdev, priv);
754err_hw_stop:
755	stm32_adc_core_hw_stop(dev);
756err_pm_stop:
757	pm_runtime_disable(dev);
758	pm_runtime_set_suspended(dev);
759	pm_runtime_put_noidle(dev);
760
761	return ret;
762}
763
764static int stm32_adc_remove(struct platform_device *pdev)
765{
766	struct stm32_adc_common *common = platform_get_drvdata(pdev);
767	struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
768
769	pm_runtime_get_sync(&pdev->dev);
770	of_platform_depopulate(&pdev->dev);
771	stm32_adc_irq_remove(pdev, priv);
772	stm32_adc_core_hw_stop(&pdev->dev);
773	pm_runtime_disable(&pdev->dev);
774	pm_runtime_set_suspended(&pdev->dev);
775	pm_runtime_put_noidle(&pdev->dev);
776
777	return 0;
778}
779
780#if defined(CONFIG_PM)
781static int stm32_adc_core_runtime_suspend(struct device *dev)
782{
783	stm32_adc_core_hw_stop(dev);
784
785	return 0;
786}
787
788static int stm32_adc_core_runtime_resume(struct device *dev)
789{
790	return stm32_adc_core_hw_start(dev);
791}
792#endif
793
794static const struct dev_pm_ops stm32_adc_core_pm_ops = {
795	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
796				pm_runtime_force_resume)
797	SET_RUNTIME_PM_OPS(stm32_adc_core_runtime_suspend,
798			   stm32_adc_core_runtime_resume,
799			   NULL)
800};
 
 
 
 
801
802static const struct stm32_adc_priv_cfg stm32f4_adc_priv_cfg = {
803	.regs = &stm32f4_adc_common_regs,
804	.clk_sel = stm32f4_adc_clk_sel,
805	.max_clk_rate_hz = 36000000,
 
 
806};
807
808static const struct stm32_adc_priv_cfg stm32h7_adc_priv_cfg = {
809	.regs = &stm32h7_adc_common_regs,
810	.clk_sel = stm32h7_adc_clk_sel,
811	.max_clk_rate_hz = 36000000,
812	.has_syscfg = HAS_VBOOSTER,
 
 
813};
814
815static const struct stm32_adc_priv_cfg stm32mp1_adc_priv_cfg = {
816	.regs = &stm32h7_adc_common_regs,
817	.clk_sel = stm32h7_adc_clk_sel,
818	.max_clk_rate_hz = 40000000,
819	.has_syscfg = HAS_VBOOSTER | HAS_ANASWVDD,
 
 
 
 
 
 
 
 
 
 
820};
821
822static const struct of_device_id stm32_adc_of_match[] = {
823	{
824		.compatible = "st,stm32f4-adc-core",
825		.data = (void *)&stm32f4_adc_priv_cfg
826	}, {
827		.compatible = "st,stm32h7-adc-core",
828		.data = (void *)&stm32h7_adc_priv_cfg
829	}, {
830		.compatible = "st,stm32mp1-adc-core",
831		.data = (void *)&stm32mp1_adc_priv_cfg
832	}, {
 
 
 
833	},
834};
835MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
836
837static struct platform_driver stm32_adc_driver = {
838	.probe = stm32_adc_probe,
839	.remove = stm32_adc_remove,
840	.driver = {
841		.name = "stm32-adc-core",
842		.of_match_table = stm32_adc_of_match,
843		.pm = &stm32_adc_core_pm_ops,
844	},
845};
846module_platform_driver(stm32_adc_driver);
847
848MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
849MODULE_DESCRIPTION("STMicroelectronics STM32 ADC core driver");
850MODULE_LICENSE("GPL v2");
851MODULE_ALIAS("platform:stm32-adc-core");
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This file is part of STM32 ADC driver
  4 *
  5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
  6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
  7 *
  8 * Inspired from: fsl-imx25-tsadc
  9 *
 10 */
 11
 12#include <linux/bitfield.h>
 13#include <linux/clk.h>
 14#include <linux/interrupt.h>
 15#include <linux/irqchip/chained_irq.h>
 16#include <linux/irqdesc.h>
 17#include <linux/irqdomain.h>
 18#include <linux/mfd/syscon.h>
 19#include <linux/module.h>
 20#include <linux/of_device.h>
 21#include <linux/pm_runtime.h>
 22#include <linux/regmap.h>
 23#include <linux/regulator/consumer.h>
 24#include <linux/slab.h>
 25#include <linux/units.h>
 26
 27#include "stm32-adc-core.h"
 28
 29#define STM32_ADC_CORE_SLEEP_DELAY_MS	2000
 30
 31/* SYSCFG registers */
 32#define STM32MP1_SYSCFG_PMCSETR		0x04
 33#define STM32MP1_SYSCFG_PMCCLRR		0x44
 34
 35/* SYSCFG bit fields */
 36#define STM32MP1_SYSCFG_ANASWVDD_MASK	BIT(9)
 37
 38/* SYSCFG capability flags */
 39#define HAS_VBOOSTER		BIT(0)
 40#define HAS_ANASWVDD		BIT(1)
 41
 42/**
 43 * struct stm32_adc_common_regs - stm32 common registers
 44 * @csr:	common status register offset
 45 * @ccr:	common control register offset
 46 * @eoc_msk:    array of eoc (end of conversion flag) masks in csr for adc1..n
 47 * @ovr_msk:    array of ovr (overrun flag) masks in csr for adc1..n
 
 48 * @ier:	interrupt enable register offset for each adc
 49 * @eocie_msk:	end of conversion interrupt enable mask in @ier
 50 */
 51struct stm32_adc_common_regs {
 52	u32 csr;
 53	u32 ccr;
 54	u32 eoc_msk[STM32_ADC_MAX_ADCS];
 55	u32 ovr_msk[STM32_ADC_MAX_ADCS];
 
 56	u32 ier;
 57	u32 eocie_msk;
 58};
 59
 60struct stm32_adc_priv;
 61
 62/**
 63 * struct stm32_adc_priv_cfg - stm32 core compatible configuration data
 64 * @regs:	common registers for all instances
 65 * @clk_sel:	clock selection routine
 66 * @max_clk_rate_hz: maximum analog clock rate (Hz, from datasheet)
 67 * @ipid:	adc identification number
 68 * @has_syscfg: SYSCFG capability flags
 69 * @num_irqs:	number of interrupt lines
 70 * @num_adcs:   maximum number of ADC instances in the common registers
 71 */
 72struct stm32_adc_priv_cfg {
 73	const struct stm32_adc_common_regs *regs;
 74	int (*clk_sel)(struct platform_device *, struct stm32_adc_priv *);
 75	u32 max_clk_rate_hz;
 76	u32 ipid;
 77	unsigned int has_syscfg;
 78	unsigned int num_irqs;
 79	unsigned int num_adcs;
 80};
 81
 82/**
 83 * struct stm32_adc_priv - stm32 ADC core private data
 84 * @irq:		irq(s) for ADC block
 85 * @nb_adc_max:		actual maximum number of instance per ADC block
 86 * @domain:		irq domain reference
 87 * @aclk:		clock reference for the analog circuitry
 88 * @bclk:		bus clock common for all ADCs, depends on part used
 89 * @max_clk_rate:	desired maximum clock rate
 90 * @booster:		booster supply reference
 91 * @vdd:		vdd supply reference
 92 * @vdda:		vdda analog supply reference
 93 * @vref:		regulator reference
 94 * @vdd_uv:		vdd supply voltage (microvolts)
 95 * @vdda_uv:		vdda supply voltage (microvolts)
 96 * @cfg:		compatible configuration data
 97 * @common:		common data for all ADC instances
 98 * @ccr_bak:		backup CCR in low power mode
 99 * @syscfg:		reference to syscon, system control registers
100 */
101struct stm32_adc_priv {
102	int				irq[STM32_ADC_MAX_ADCS];
103	unsigned int			nb_adc_max;
104	struct irq_domain		*domain;
105	struct clk			*aclk;
106	struct clk			*bclk;
107	u32				max_clk_rate;
108	struct regulator		*booster;
109	struct regulator		*vdd;
110	struct regulator		*vdda;
111	struct regulator		*vref;
112	int				vdd_uv;
113	int				vdda_uv;
114	const struct stm32_adc_priv_cfg	*cfg;
115	struct stm32_adc_common		common;
116	u32				ccr_bak;
117	struct regmap			*syscfg;
118};
119
120static struct stm32_adc_priv *to_stm32_adc_priv(struct stm32_adc_common *com)
121{
122	return container_of(com, struct stm32_adc_priv, common);
123}
124
125/* STM32F4 ADC internal common clock prescaler division ratios */
126static int stm32f4_pclk_div[] = {2, 4, 6, 8};
127
128/**
129 * stm32f4_adc_clk_sel() - Select stm32f4 ADC common clock prescaler
130 * @pdev: platform device
131 * @priv: stm32 ADC core private data
132 * Select clock prescaler used for analog conversions, before using ADC.
133 */
134static int stm32f4_adc_clk_sel(struct platform_device *pdev,
135			       struct stm32_adc_priv *priv)
136{
137	unsigned long rate;
138	u32 val;
139	int i;
140
141	/* stm32f4 has one clk input for analog (mandatory), enforce it here */
142	if (!priv->aclk) {
143		dev_err(&pdev->dev, "No 'adc' clock found\n");
144		return -ENOENT;
145	}
146
147	rate = clk_get_rate(priv->aclk);
148	if (!rate) {
149		dev_err(&pdev->dev, "Invalid clock rate: 0\n");
150		return -EINVAL;
151	}
152
153	for (i = 0; i < ARRAY_SIZE(stm32f4_pclk_div); i++) {
154		if ((rate / stm32f4_pclk_div[i]) <= priv->max_clk_rate)
155			break;
156	}
157	if (i >= ARRAY_SIZE(stm32f4_pclk_div)) {
158		dev_err(&pdev->dev, "adc clk selection failed\n");
159		return -EINVAL;
160	}
161
162	priv->common.rate = rate / stm32f4_pclk_div[i];
163	val = readl_relaxed(priv->common.base + STM32F4_ADC_CCR);
164	val &= ~STM32F4_ADC_ADCPRE_MASK;
165	val |= i << STM32F4_ADC_ADCPRE_SHIFT;
166	writel_relaxed(val, priv->common.base + STM32F4_ADC_CCR);
167
168	dev_dbg(&pdev->dev, "Using analog clock source at %ld kHz\n",
169		priv->common.rate / 1000);
170
171	return 0;
172}
173
174/**
175 * struct stm32h7_adc_ck_spec - specification for stm32h7 adc clock
176 * @ckmode: ADC clock mode, Async or sync with prescaler.
177 * @presc: prescaler bitfield for async clock mode
178 * @div: prescaler division ratio
179 */
180struct stm32h7_adc_ck_spec {
181	u32 ckmode;
182	u32 presc;
183	int div;
184};
185
186static const struct stm32h7_adc_ck_spec stm32h7_adc_ckmodes_spec[] = {
187	/* 00: CK_ADC[1..3]: Asynchronous clock modes */
188	{ 0, 0, 1 },
189	{ 0, 1, 2 },
190	{ 0, 2, 4 },
191	{ 0, 3, 6 },
192	{ 0, 4, 8 },
193	{ 0, 5, 10 },
194	{ 0, 6, 12 },
195	{ 0, 7, 16 },
196	{ 0, 8, 32 },
197	{ 0, 9, 64 },
198	{ 0, 10, 128 },
199	{ 0, 11, 256 },
200	/* HCLK used: Synchronous clock modes (1, 2 or 4 prescaler) */
201	{ 1, 0, 1 },
202	{ 2, 0, 2 },
203	{ 3, 0, 4 },
204};
205
206static int stm32h7_adc_clk_sel(struct platform_device *pdev,
207			       struct stm32_adc_priv *priv)
208{
209	u32 ckmode, presc, val;
210	unsigned long rate;
211	int i, div, duty;
212
213	/* stm32h7 bus clock is common for all ADC instances (mandatory) */
214	if (!priv->bclk) {
215		dev_err(&pdev->dev, "No 'bus' clock found\n");
216		return -ENOENT;
217	}
218
219	/*
220	 * stm32h7 can use either 'bus' or 'adc' clock for analog circuitry.
221	 * So, choice is to have bus clock mandatory and adc clock optional.
222	 * If optional 'adc' clock has been found, then try to use it first.
223	 */
224	if (priv->aclk) {
225		/*
226		 * Asynchronous clock modes (e.g. ckmode == 0)
227		 * From spec: PLL output musn't exceed max rate
228		 */
229		rate = clk_get_rate(priv->aclk);
230		if (!rate) {
231			dev_err(&pdev->dev, "Invalid adc clock rate: 0\n");
232			return -EINVAL;
233		}
234
235		/* If duty is an error, kindly use at least /2 divider */
236		duty = clk_get_scaled_duty_cycle(priv->aclk, 100);
237		if (duty < 0)
238			dev_warn(&pdev->dev, "adc clock duty: %d\n", duty);
239
240		for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) {
241			ckmode = stm32h7_adc_ckmodes_spec[i].ckmode;
242			presc = stm32h7_adc_ckmodes_spec[i].presc;
243			div = stm32h7_adc_ckmodes_spec[i].div;
244
245			if (ckmode)
246				continue;
247
248			/*
249			 * For proper operation, clock duty cycle range is 49%
250			 * to 51%. Apply at least /2 prescaler otherwise.
251			 */
252			if (div == 1 && (duty < 49 || duty > 51))
253				continue;
254
255			if ((rate / div) <= priv->max_clk_rate)
256				goto out;
257		}
258	}
259
260	/* Synchronous clock modes (e.g. ckmode is 1, 2 or 3) */
261	rate = clk_get_rate(priv->bclk);
262	if (!rate) {
263		dev_err(&pdev->dev, "Invalid bus clock rate: 0\n");
264		return -EINVAL;
265	}
266
267	duty = clk_get_scaled_duty_cycle(priv->bclk, 100);
268	if (duty < 0)
269		dev_warn(&pdev->dev, "bus clock duty: %d\n", duty);
270
271	for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) {
272		ckmode = stm32h7_adc_ckmodes_spec[i].ckmode;
273		presc = stm32h7_adc_ckmodes_spec[i].presc;
274		div = stm32h7_adc_ckmodes_spec[i].div;
275
276		if (!ckmode)
277			continue;
278
279		if (div == 1 && (duty < 49 || duty > 51))
280			continue;
281
282		if ((rate / div) <= priv->max_clk_rate)
283			goto out;
284	}
285
286	dev_err(&pdev->dev, "adc clk selection failed\n");
287	return -EINVAL;
288
289out:
290	/* rate used later by each ADC instance to control BOOST mode */
291	priv->common.rate = rate / div;
292
293	/* Set common clock mode and prescaler */
294	val = readl_relaxed(priv->common.base + STM32H7_ADC_CCR);
295	val &= ~(STM32H7_CKMODE_MASK | STM32H7_PRESC_MASK);
296	val |= ckmode << STM32H7_CKMODE_SHIFT;
297	val |= presc << STM32H7_PRESC_SHIFT;
298	writel_relaxed(val, priv->common.base + STM32H7_ADC_CCR);
299
300	dev_dbg(&pdev->dev, "Using %s clock/%d source at %ld kHz\n",
301		ckmode ? "bus" : "adc", div, priv->common.rate / 1000);
302
303	return 0;
304}
305
306/* STM32F4 common registers definitions */
307static const struct stm32_adc_common_regs stm32f4_adc_common_regs = {
308	.csr = STM32F4_ADC_CSR,
309	.ccr = STM32F4_ADC_CCR,
310	.eoc_msk = { STM32F4_EOC1, STM32F4_EOC2, STM32F4_EOC3 },
311	.ovr_msk = { STM32F4_OVR1, STM32F4_OVR2, STM32F4_OVR3 },
 
312	.ier = STM32F4_ADC_CR1,
313	.eocie_msk = STM32F4_EOCIE,
314};
315
316/* STM32H7 common registers definitions */
317static const struct stm32_adc_common_regs stm32h7_adc_common_regs = {
318	.csr = STM32H7_ADC_CSR,
319	.ccr = STM32H7_ADC_CCR,
320	.eoc_msk = { STM32H7_EOC_MST, STM32H7_EOC_SLV },
321	.ovr_msk = { STM32H7_OVR_MST, STM32H7_OVR_SLV },
322	.ier = STM32H7_ADC_IER,
323	.eocie_msk = STM32H7_EOCIE,
324};
325
326/* STM32MP13 common registers definitions */
327static const struct stm32_adc_common_regs stm32mp13_adc_common_regs = {
328	.csr = STM32H7_ADC_CSR,
329	.ccr = STM32H7_ADC_CCR,
330	.eoc_msk = { STM32H7_EOC_MST },
331	.ovr_msk = { STM32H7_OVR_MST },
332	.ier = STM32H7_ADC_IER,
333	.eocie_msk = STM32H7_EOCIE,
334};
335
336static const unsigned int stm32_adc_offset[STM32_ADC_MAX_ADCS] = {
337	0, STM32_ADC_OFFSET, STM32_ADC_OFFSET * 2,
338};
339
340static unsigned int stm32_adc_eoc_enabled(struct stm32_adc_priv *priv,
341					  unsigned int adc)
342{
343	u32 ier, offset = stm32_adc_offset[adc];
344
345	ier = readl_relaxed(priv->common.base + offset + priv->cfg->regs->ier);
346
347	return ier & priv->cfg->regs->eocie_msk;
348}
349
350/* ADC common interrupt for all instances */
351static void stm32_adc_irq_handler(struct irq_desc *desc)
352{
353	struct stm32_adc_priv *priv = irq_desc_get_handler_data(desc);
354	struct irq_chip *chip = irq_desc_get_chip(desc);
355	int i;
356	u32 status;
357
358	chained_irq_enter(chip, desc);
359	status = readl_relaxed(priv->common.base + priv->cfg->regs->csr);
360
361	/*
362	 * End of conversion may be handled by using IRQ or DMA. There may be a
363	 * race here when two conversions complete at the same time on several
364	 * ADCs. EOC may be read 'set' for several ADCs, with:
365	 * - an ADC configured to use DMA (EOC triggers the DMA request, and
366	 *   is then automatically cleared by DR read in hardware)
367	 * - an ADC configured to use IRQs (EOCIE bit is set. The handler must
368	 *   be called in this case)
369	 * So both EOC status bit in CSR and EOCIE control bit must be checked
370	 * before invoking the interrupt handler (e.g. call ISR only for
371	 * IRQ-enabled ADCs).
372	 */
373	for (i = 0; i < priv->nb_adc_max; i++) {
374		if ((status & priv->cfg->regs->eoc_msk[i] &&
375		     stm32_adc_eoc_enabled(priv, i)) ||
376		     (status & priv->cfg->regs->ovr_msk[i]))
377			generic_handle_domain_irq(priv->domain, i);
378	}
 
 
 
 
 
379
380	chained_irq_exit(chip, desc);
381};
382
383static int stm32_adc_domain_map(struct irq_domain *d, unsigned int irq,
384				irq_hw_number_t hwirq)
385{
386	irq_set_chip_data(irq, d->host_data);
387	irq_set_chip_and_handler(irq, &dummy_irq_chip, handle_level_irq);
388
389	return 0;
390}
391
392static void stm32_adc_domain_unmap(struct irq_domain *d, unsigned int irq)
393{
394	irq_set_chip_and_handler(irq, NULL, NULL);
395	irq_set_chip_data(irq, NULL);
396}
397
398static const struct irq_domain_ops stm32_adc_domain_ops = {
399	.map = stm32_adc_domain_map,
400	.unmap  = stm32_adc_domain_unmap,
401	.xlate = irq_domain_xlate_onecell,
402};
403
404static int stm32_adc_irq_probe(struct platform_device *pdev,
405			       struct stm32_adc_priv *priv)
406{
407	struct device_node *np = pdev->dev.of_node;
408	unsigned int i;
409
410	/*
411	 * Interrupt(s) must be provided, depending on the compatible:
412	 * - stm32f4/h7 shares a common interrupt line.
413	 * - stm32mp1, has one line per ADC
414	 */
415	for (i = 0; i < priv->cfg->num_irqs; i++) {
416		priv->irq[i] = platform_get_irq(pdev, i);
417		if (priv->irq[i] < 0)
 
 
 
 
 
 
 
 
 
 
418			return priv->irq[i];
 
419	}
420
421	priv->domain = irq_domain_add_simple(np, STM32_ADC_MAX_ADCS, 0,
422					     &stm32_adc_domain_ops,
423					     priv);
424	if (!priv->domain) {
425		dev_err(&pdev->dev, "Failed to add irq domain\n");
426		return -ENOMEM;
427	}
428
429	for (i = 0; i < priv->cfg->num_irqs; i++) {
 
 
430		irq_set_chained_handler(priv->irq[i], stm32_adc_irq_handler);
431		irq_set_handler_data(priv->irq[i], priv);
432	}
433
434	return 0;
435}
436
437static void stm32_adc_irq_remove(struct platform_device *pdev,
438				 struct stm32_adc_priv *priv)
439{
440	int hwirq;
441	unsigned int i;
442
443	for (hwirq = 0; hwirq < priv->nb_adc_max; hwirq++)
444		irq_dispose_mapping(irq_find_mapping(priv->domain, hwirq));
445	irq_domain_remove(priv->domain);
446
447	for (i = 0; i < priv->cfg->num_irqs; i++)
 
 
448		irq_set_chained_handler(priv->irq[i], NULL);
 
449}
450
451static int stm32_adc_core_switches_supply_en(struct stm32_adc_priv *priv,
452					     struct device *dev)
453{
454	int ret;
455
456	/*
457	 * On STM32H7 and STM32MP1, the ADC inputs are multiplexed with analog
458	 * switches (via PCSEL) which have reduced performances when their
459	 * supply is below 2.7V (vdda by default):
460	 * - Voltage booster can be used, to get full ADC performances
461	 *   (increases power consumption).
462	 * - Vdd can be used to supply them, if above 2.7V (STM32MP1 only).
463	 *
464	 * Recommended settings for ANASWVDD and EN_BOOSTER:
465	 * - vdda < 2.7V but vdd > 2.7V: ANASWVDD = 1, EN_BOOSTER = 0 (stm32mp1)
466	 * - vdda < 2.7V and vdd < 2.7V: ANASWVDD = 0, EN_BOOSTER = 1
467	 * - vdda >= 2.7V:               ANASWVDD = 0, EN_BOOSTER = 0 (default)
468	 */
469	if (priv->vdda_uv < 2700000) {
470		if (priv->syscfg && priv->vdd_uv > 2700000) {
471			ret = regulator_enable(priv->vdd);
472			if (ret < 0) {
473				dev_err(dev, "vdd enable failed %d\n", ret);
474				return ret;
475			}
476
477			ret = regmap_write(priv->syscfg,
478					   STM32MP1_SYSCFG_PMCSETR,
479					   STM32MP1_SYSCFG_ANASWVDD_MASK);
480			if (ret < 0) {
481				regulator_disable(priv->vdd);
482				dev_err(dev, "vdd select failed, %d\n", ret);
483				return ret;
484			}
485			dev_dbg(dev, "analog switches supplied by vdd\n");
486
487			return 0;
488		}
489
490		if (priv->booster) {
491			/*
492			 * This is optional, as this is a trade-off between
493			 * analog performance and power consumption.
494			 */
495			ret = regulator_enable(priv->booster);
496			if (ret < 0) {
497				dev_err(dev, "booster enable failed %d\n", ret);
498				return ret;
499			}
500			dev_dbg(dev, "analog switches supplied by booster\n");
501
502			return 0;
503		}
504	}
505
506	/* Fallback using vdda (default), nothing to do */
507	dev_dbg(dev, "analog switches supplied by vdda (%d uV)\n",
508		priv->vdda_uv);
509
510	return 0;
511}
512
513static void stm32_adc_core_switches_supply_dis(struct stm32_adc_priv *priv)
514{
515	if (priv->vdda_uv < 2700000) {
516		if (priv->syscfg && priv->vdd_uv > 2700000) {
517			regmap_write(priv->syscfg, STM32MP1_SYSCFG_PMCCLRR,
518				     STM32MP1_SYSCFG_ANASWVDD_MASK);
519			regulator_disable(priv->vdd);
520			return;
521		}
522		if (priv->booster)
523			regulator_disable(priv->booster);
524	}
525}
526
527static int stm32_adc_core_hw_start(struct device *dev)
528{
529	struct stm32_adc_common *common = dev_get_drvdata(dev);
530	struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
531	int ret;
532
533	ret = regulator_enable(priv->vdda);
534	if (ret < 0) {
535		dev_err(dev, "vdda enable failed %d\n", ret);
536		return ret;
537	}
538
539	ret = regulator_get_voltage(priv->vdda);
540	if (ret < 0) {
541		dev_err(dev, "vdda get voltage failed, %d\n", ret);
542		goto err_vdda_disable;
543	}
544	priv->vdda_uv = ret;
545
546	ret = stm32_adc_core_switches_supply_en(priv, dev);
547	if (ret < 0)
548		goto err_vdda_disable;
549
550	ret = regulator_enable(priv->vref);
551	if (ret < 0) {
552		dev_err(dev, "vref enable failed\n");
553		goto err_switches_dis;
554	}
555
556	ret = clk_prepare_enable(priv->bclk);
557	if (ret < 0) {
558		dev_err(dev, "bus clk enable failed\n");
559		goto err_regulator_disable;
 
 
560	}
561
562	ret = clk_prepare_enable(priv->aclk);
563	if (ret < 0) {
564		dev_err(dev, "adc clk enable failed\n");
565		goto err_bclk_disable;
 
 
566	}
567
568	writel_relaxed(priv->ccr_bak, priv->common.base + priv->cfg->regs->ccr);
569
570	return 0;
571
572err_bclk_disable:
573	clk_disable_unprepare(priv->bclk);
 
574err_regulator_disable:
575	regulator_disable(priv->vref);
576err_switches_dis:
577	stm32_adc_core_switches_supply_dis(priv);
578err_vdda_disable:
579	regulator_disable(priv->vdda);
580
581	return ret;
582}
583
584static void stm32_adc_core_hw_stop(struct device *dev)
585{
586	struct stm32_adc_common *common = dev_get_drvdata(dev);
587	struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
588
589	/* Backup CCR that may be lost (depends on power state to achieve) */
590	priv->ccr_bak = readl_relaxed(priv->common.base + priv->cfg->regs->ccr);
591	clk_disable_unprepare(priv->aclk);
592	clk_disable_unprepare(priv->bclk);
 
 
593	regulator_disable(priv->vref);
594	stm32_adc_core_switches_supply_dis(priv);
595	regulator_disable(priv->vdda);
596}
597
598static int stm32_adc_core_switches_probe(struct device *dev,
599					 struct stm32_adc_priv *priv)
600{
601	struct device_node *np = dev->of_node;
602	int ret;
603
604	/* Analog switches supply can be controlled by syscfg (optional) */
605	priv->syscfg = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
606	if (IS_ERR(priv->syscfg)) {
607		ret = PTR_ERR(priv->syscfg);
608		if (ret != -ENODEV)
609			return dev_err_probe(dev, ret, "Can't probe syscfg\n");
610
 
 
611		priv->syscfg = NULL;
612	}
613
614	/* Booster can be used to supply analog switches (optional) */
615	if (priv->cfg->has_syscfg & HAS_VBOOSTER &&
616	    of_property_read_bool(np, "booster-supply")) {
617		priv->booster = devm_regulator_get_optional(dev, "booster");
618		if (IS_ERR(priv->booster)) {
619			ret = PTR_ERR(priv->booster);
620			if (ret != -ENODEV)
621				return dev_err_probe(dev, ret, "can't get booster\n");
622
 
 
 
623			priv->booster = NULL;
624		}
625	}
626
627	/* Vdd can be used to supply analog switches (optional) */
628	if (priv->cfg->has_syscfg & HAS_ANASWVDD &&
629	    of_property_read_bool(np, "vdd-supply")) {
630		priv->vdd = devm_regulator_get_optional(dev, "vdd");
631		if (IS_ERR(priv->vdd)) {
632			ret = PTR_ERR(priv->vdd);
633			if (ret != -ENODEV)
634				return dev_err_probe(dev, ret, "can't get vdd\n");
635
 
 
636			priv->vdd = NULL;
637		}
638	}
639
640	if (priv->vdd) {
641		ret = regulator_enable(priv->vdd);
642		if (ret < 0) {
643			dev_err(dev, "vdd enable failed %d\n", ret);
644			return ret;
645		}
646
647		ret = regulator_get_voltage(priv->vdd);
648		if (ret < 0) {
649			dev_err(dev, "vdd get voltage failed %d\n", ret);
650			regulator_disable(priv->vdd);
651			return ret;
652		}
653		priv->vdd_uv = ret;
654
655		regulator_disable(priv->vdd);
656	}
657
658	return 0;
659}
660
661static int stm32_adc_probe_identification(struct platform_device *pdev,
662					  struct stm32_adc_priv *priv)
663{
664	struct device_node *np = pdev->dev.of_node;
665	struct device_node *child;
666	const char *compat;
667	int ret, count = 0;
668	u32 id, val;
669
670	if (!priv->cfg->ipid)
671		return 0;
672
673	id = FIELD_GET(STM32MP1_IPIDR_MASK,
674		       readl_relaxed(priv->common.base + STM32MP1_ADC_IPDR));
675	if (id != priv->cfg->ipid) {
676		dev_err(&pdev->dev, "Unexpected IP version: 0x%x", id);
677		return -EINVAL;
678	}
679
680	for_each_child_of_node(np, child) {
681		ret = of_property_read_string(child, "compatible", &compat);
682		if (ret)
683			continue;
684		/* Count child nodes with stm32 adc compatible */
685		if (strstr(compat, "st,stm32") && strstr(compat, "adc"))
686			count++;
687	}
688
689	val = readl_relaxed(priv->common.base + STM32MP1_ADC_HWCFGR0);
690	priv->nb_adc_max = FIELD_GET(STM32MP1_ADCNUM_MASK, val);
691	if (count > priv->nb_adc_max) {
692		dev_err(&pdev->dev, "Unexpected child number: %d", count);
693		return -EINVAL;
694	}
695
696	val = readl_relaxed(priv->common.base + STM32MP1_ADC_VERR);
697	dev_dbg(&pdev->dev, "ADC version: %lu.%lu\n",
698		FIELD_GET(STM32MP1_MAJREV_MASK, val),
699		FIELD_GET(STM32MP1_MINREV_MASK, val));
700
701	return 0;
702}
703
704static int stm32_adc_probe(struct platform_device *pdev)
705{
706	struct stm32_adc_priv *priv;
707	struct device *dev = &pdev->dev;
708	struct device_node *np = pdev->dev.of_node;
709	struct resource *res;
710	u32 max_rate;
711	int ret;
712
713	if (!pdev->dev.of_node)
714		return -ENODEV;
715
716	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
717	if (!priv)
718		return -ENOMEM;
719	platform_set_drvdata(pdev, &priv->common);
720
721	priv->cfg = (const struct stm32_adc_priv_cfg *)
722		of_match_device(dev->driver->of_match_table, dev)->data;
723	priv->nb_adc_max = priv->cfg->num_adcs;
724	spin_lock_init(&priv->common.lock);
725
726	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
727	priv->common.base = devm_ioremap_resource(&pdev->dev, res);
728	if (IS_ERR(priv->common.base))
729		return PTR_ERR(priv->common.base);
730	priv->common.phys_base = res->start;
731
732	priv->vdda = devm_regulator_get(&pdev->dev, "vdda");
733	if (IS_ERR(priv->vdda))
734		return dev_err_probe(&pdev->dev, PTR_ERR(priv->vdda),
735				     "vdda get failed\n");
 
 
 
736
737	priv->vref = devm_regulator_get(&pdev->dev, "vref");
738	if (IS_ERR(priv->vref))
739		return dev_err_probe(&pdev->dev, PTR_ERR(priv->vref),
740				     "vref get failed\n");
741
742	priv->aclk = devm_clk_get_optional(&pdev->dev, "adc");
743	if (IS_ERR(priv->aclk))
744		return dev_err_probe(&pdev->dev, PTR_ERR(priv->aclk),
745				     "Can't get 'adc' clock\n");
746
747	priv->bclk = devm_clk_get_optional(&pdev->dev, "bus");
748	if (IS_ERR(priv->bclk))
749		return dev_err_probe(&pdev->dev, PTR_ERR(priv->bclk),
750				     "Can't get 'bus' clock\n");
 
 
 
 
 
 
 
 
 
 
 
 
751
752	ret = stm32_adc_core_switches_probe(dev, priv);
753	if (ret)
754		return ret;
755
756	pm_runtime_get_noresume(dev);
757	pm_runtime_set_active(dev);
758	pm_runtime_set_autosuspend_delay(dev, STM32_ADC_CORE_SLEEP_DELAY_MS);
759	pm_runtime_use_autosuspend(dev);
760	pm_runtime_enable(dev);
761
762	ret = stm32_adc_core_hw_start(dev);
763	if (ret)
764		goto err_pm_stop;
765
766	ret = stm32_adc_probe_identification(pdev, priv);
767	if (ret < 0)
768		goto err_hw_stop;
769
770	ret = regulator_get_voltage(priv->vref);
771	if (ret < 0) {
772		dev_err(&pdev->dev, "vref get voltage failed, %d\n", ret);
773		goto err_hw_stop;
774	}
775	priv->common.vref_mv = ret / 1000;
776	dev_dbg(&pdev->dev, "vref+=%dmV\n", priv->common.vref_mv);
777
778	ret = of_property_read_u32(pdev->dev.of_node, "st,max-clk-rate-hz",
779				   &max_rate);
780	if (!ret)
781		priv->max_clk_rate = min(max_rate, priv->cfg->max_clk_rate_hz);
782	else
783		priv->max_clk_rate = priv->cfg->max_clk_rate_hz;
784
785	ret = priv->cfg->clk_sel(pdev, priv);
786	if (ret < 0)
787		goto err_hw_stop;
788
789	ret = stm32_adc_irq_probe(pdev, priv);
790	if (ret < 0)
791		goto err_hw_stop;
792
793	ret = of_platform_populate(np, NULL, NULL, &pdev->dev);
794	if (ret < 0) {
795		dev_err(&pdev->dev, "failed to populate DT children\n");
796		goto err_irq_remove;
797	}
798
799	pm_runtime_mark_last_busy(dev);
800	pm_runtime_put_autosuspend(dev);
801
802	return 0;
803
804err_irq_remove:
805	stm32_adc_irq_remove(pdev, priv);
806err_hw_stop:
807	stm32_adc_core_hw_stop(dev);
808err_pm_stop:
809	pm_runtime_disable(dev);
810	pm_runtime_set_suspended(dev);
811	pm_runtime_put_noidle(dev);
812
813	return ret;
814}
815
816static int stm32_adc_remove(struct platform_device *pdev)
817{
818	struct stm32_adc_common *common = platform_get_drvdata(pdev);
819	struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
820
821	pm_runtime_get_sync(&pdev->dev);
822	of_platform_depopulate(&pdev->dev);
823	stm32_adc_irq_remove(pdev, priv);
824	stm32_adc_core_hw_stop(&pdev->dev);
825	pm_runtime_disable(&pdev->dev);
826	pm_runtime_set_suspended(&pdev->dev);
827	pm_runtime_put_noidle(&pdev->dev);
828
829	return 0;
830}
831
 
832static int stm32_adc_core_runtime_suspend(struct device *dev)
833{
834	stm32_adc_core_hw_stop(dev);
835
836	return 0;
837}
838
839static int stm32_adc_core_runtime_resume(struct device *dev)
840{
841	return stm32_adc_core_hw_start(dev);
842}
 
843
844static int stm32_adc_core_runtime_idle(struct device *dev)
845{
846	pm_runtime_mark_last_busy(dev);
847
848	return 0;
849}
850
851static DEFINE_RUNTIME_DEV_PM_OPS(stm32_adc_core_pm_ops,
852				stm32_adc_core_runtime_suspend,
853				stm32_adc_core_runtime_resume,
854				stm32_adc_core_runtime_idle);
855
856static const struct stm32_adc_priv_cfg stm32f4_adc_priv_cfg = {
857	.regs = &stm32f4_adc_common_regs,
858	.clk_sel = stm32f4_adc_clk_sel,
859	.max_clk_rate_hz = 36000000,
860	.num_irqs = 1,
861	.num_adcs = 3,
862};
863
864static const struct stm32_adc_priv_cfg stm32h7_adc_priv_cfg = {
865	.regs = &stm32h7_adc_common_regs,
866	.clk_sel = stm32h7_adc_clk_sel,
867	.max_clk_rate_hz = 36000000,
868	.has_syscfg = HAS_VBOOSTER,
869	.num_irqs = 1,
870	.num_adcs = 2,
871};
872
873static const struct stm32_adc_priv_cfg stm32mp1_adc_priv_cfg = {
874	.regs = &stm32h7_adc_common_regs,
875	.clk_sel = stm32h7_adc_clk_sel,
876	.max_clk_rate_hz = 36000000,
877	.has_syscfg = HAS_VBOOSTER | HAS_ANASWVDD,
878	.ipid = STM32MP15_IPIDR_NUMBER,
879	.num_irqs = 2,
880};
881
882static const struct stm32_adc_priv_cfg stm32mp13_adc_priv_cfg = {
883	.regs = &stm32mp13_adc_common_regs,
884	.clk_sel = stm32h7_adc_clk_sel,
885	.max_clk_rate_hz = 75 * HZ_PER_MHZ,
886	.ipid = STM32MP13_IPIDR_NUMBER,
887	.num_irqs = 1,
888};
889
890static const struct of_device_id stm32_adc_of_match[] = {
891	{
892		.compatible = "st,stm32f4-adc-core",
893		.data = (void *)&stm32f4_adc_priv_cfg
894	}, {
895		.compatible = "st,stm32h7-adc-core",
896		.data = (void *)&stm32h7_adc_priv_cfg
897	}, {
898		.compatible = "st,stm32mp1-adc-core",
899		.data = (void *)&stm32mp1_adc_priv_cfg
900	}, {
901		.compatible = "st,stm32mp13-adc-core",
902		.data = (void *)&stm32mp13_adc_priv_cfg
903	}, {
904	},
905};
906MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
907
908static struct platform_driver stm32_adc_driver = {
909	.probe = stm32_adc_probe,
910	.remove = stm32_adc_remove,
911	.driver = {
912		.name = "stm32-adc-core",
913		.of_match_table = stm32_adc_of_match,
914		.pm = pm_ptr(&stm32_adc_core_pm_ops),
915	},
916};
917module_platform_driver(stm32_adc_driver);
918
919MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
920MODULE_DESCRIPTION("STMicroelectronics STM32 ADC core driver");
921MODULE_LICENSE("GPL v2");
922MODULE_ALIAS("platform:stm32-adc-core");