Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This file is part of STM32 ADC driver
  4 *
  5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
  6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
  7 *
  8 * Inspired from: fsl-imx25-tsadc
  9 *
 10 */
 11
 12#include <linux/clk.h>
 13#include <linux/interrupt.h>
 14#include <linux/irqchip/chained_irq.h>
 15#include <linux/irqdesc.h>
 16#include <linux/irqdomain.h>
 17#include <linux/mfd/syscon.h>
 18#include <linux/module.h>
 19#include <linux/of_device.h>
 20#include <linux/pm_runtime.h>
 21#include <linux/regmap.h>
 22#include <linux/regulator/consumer.h>
 23#include <linux/slab.h>
 24
 25#include "stm32-adc-core.h"
 26
 27#define STM32_ADC_CORE_SLEEP_DELAY_MS	2000
 28
 29/* SYSCFG registers */
 30#define STM32MP1_SYSCFG_PMCSETR		0x04
 31#define STM32MP1_SYSCFG_PMCCLRR		0x44
 32
 33/* SYSCFG bit fields */
 34#define STM32MP1_SYSCFG_ANASWVDD_MASK	BIT(9)
 35
 36/* SYSCFG capability flags */
 37#define HAS_VBOOSTER		BIT(0)
 38#define HAS_ANASWVDD		BIT(1)
 39
 40/**
 41 * stm32_adc_common_regs - stm32 common registers, compatible dependent data
 42 * @csr:	common status register offset
 43 * @ccr:	common control register offset
 44 * @eoc1:	adc1 end of conversion flag in @csr
 45 * @eoc2:	adc2 end of conversion flag in @csr
 46 * @eoc3:	adc3 end of conversion flag in @csr
 47 * @ier:	interrupt enable register offset for each adc
 48 * @eocie_msk:	end of conversion interrupt enable mask in @ier
 49 */
 50struct stm32_adc_common_regs {
 51	u32 csr;
 52	u32 ccr;
 53	u32 eoc1_msk;
 54	u32 eoc2_msk;
 55	u32 eoc3_msk;
 56	u32 ier;
 57	u32 eocie_msk;
 58};
 59
 60struct stm32_adc_priv;
 61
 62/**
 63 * stm32_adc_priv_cfg - stm32 core compatible configuration data
 64 * @regs:	common registers for all instances
 65 * @clk_sel:	clock selection routine
 66 * @max_clk_rate_hz: maximum analog clock rate (Hz, from datasheet)
 67 * @has_syscfg: SYSCFG capability flags
 
 68 */
 69struct stm32_adc_priv_cfg {
 70	const struct stm32_adc_common_regs *regs;
 71	int (*clk_sel)(struct platform_device *, struct stm32_adc_priv *);
 72	u32 max_clk_rate_hz;
 73	unsigned int has_syscfg;
 
 74};
 75
 76/**
 77 * struct stm32_adc_priv - stm32 ADC core private data
 78 * @irq:		irq(s) for ADC block
 79 * @domain:		irq domain reference
 80 * @aclk:		clock reference for the analog circuitry
 81 * @bclk:		bus clock common for all ADCs, depends on part used
 
 82 * @booster:		booster supply reference
 83 * @vdd:		vdd supply reference
 84 * @vdda:		vdda analog supply reference
 85 * @vref:		regulator reference
 86 * @vdd_uv:		vdd supply voltage (microvolts)
 87 * @vdda_uv:		vdda supply voltage (microvolts)
 88 * @cfg:		compatible configuration data
 89 * @common:		common data for all ADC instances
 90 * @ccr_bak:		backup CCR in low power mode
 91 * @syscfg:		reference to syscon, system control registers
 92 */
 93struct stm32_adc_priv {
 94	int				irq[STM32_ADC_MAX_ADCS];
 95	struct irq_domain		*domain;
 96	struct clk			*aclk;
 97	struct clk			*bclk;
 
 98	struct regulator		*booster;
 99	struct regulator		*vdd;
100	struct regulator		*vdda;
101	struct regulator		*vref;
102	int				vdd_uv;
103	int				vdda_uv;
104	const struct stm32_adc_priv_cfg	*cfg;
105	struct stm32_adc_common		common;
106	u32				ccr_bak;
107	struct regmap			*syscfg;
108};
109
110static struct stm32_adc_priv *to_stm32_adc_priv(struct stm32_adc_common *com)
111{
112	return container_of(com, struct stm32_adc_priv, common);
113}
114
115/* STM32F4 ADC internal common clock prescaler division ratios */
116static int stm32f4_pclk_div[] = {2, 4, 6, 8};
117
118/**
119 * stm32f4_adc_clk_sel() - Select stm32f4 ADC common clock prescaler
 
120 * @priv: stm32 ADC core private data
121 * Select clock prescaler used for analog conversions, before using ADC.
122 */
123static int stm32f4_adc_clk_sel(struct platform_device *pdev,
124			       struct stm32_adc_priv *priv)
125{
126	unsigned long rate;
127	u32 val;
128	int i;
129
130	/* stm32f4 has one clk input for analog (mandatory), enforce it here */
131	if (!priv->aclk) {
132		dev_err(&pdev->dev, "No 'adc' clock found\n");
133		return -ENOENT;
134	}
135
136	rate = clk_get_rate(priv->aclk);
137	if (!rate) {
138		dev_err(&pdev->dev, "Invalid clock rate: 0\n");
139		return -EINVAL;
140	}
141
142	for (i = 0; i < ARRAY_SIZE(stm32f4_pclk_div); i++) {
143		if ((rate / stm32f4_pclk_div[i]) <= priv->cfg->max_clk_rate_hz)
144			break;
145	}
146	if (i >= ARRAY_SIZE(stm32f4_pclk_div)) {
147		dev_err(&pdev->dev, "adc clk selection failed\n");
148		return -EINVAL;
149	}
150
151	priv->common.rate = rate / stm32f4_pclk_div[i];
152	val = readl_relaxed(priv->common.base + STM32F4_ADC_CCR);
153	val &= ~STM32F4_ADC_ADCPRE_MASK;
154	val |= i << STM32F4_ADC_ADCPRE_SHIFT;
155	writel_relaxed(val, priv->common.base + STM32F4_ADC_CCR);
156
157	dev_dbg(&pdev->dev, "Using analog clock source at %ld kHz\n",
158		priv->common.rate / 1000);
159
160	return 0;
161}
162
163/**
164 * struct stm32h7_adc_ck_spec - specification for stm32h7 adc clock
165 * @ckmode: ADC clock mode, Async or sync with prescaler.
166 * @presc: prescaler bitfield for async clock mode
167 * @div: prescaler division ratio
168 */
169struct stm32h7_adc_ck_spec {
170	u32 ckmode;
171	u32 presc;
172	int div;
173};
174
175static const struct stm32h7_adc_ck_spec stm32h7_adc_ckmodes_spec[] = {
176	/* 00: CK_ADC[1..3]: Asynchronous clock modes */
177	{ 0, 0, 1 },
178	{ 0, 1, 2 },
179	{ 0, 2, 4 },
180	{ 0, 3, 6 },
181	{ 0, 4, 8 },
182	{ 0, 5, 10 },
183	{ 0, 6, 12 },
184	{ 0, 7, 16 },
185	{ 0, 8, 32 },
186	{ 0, 9, 64 },
187	{ 0, 10, 128 },
188	{ 0, 11, 256 },
189	/* HCLK used: Synchronous clock modes (1, 2 or 4 prescaler) */
190	{ 1, 0, 1 },
191	{ 2, 0, 2 },
192	{ 3, 0, 4 },
193};
194
195static int stm32h7_adc_clk_sel(struct platform_device *pdev,
196			       struct stm32_adc_priv *priv)
197{
198	u32 ckmode, presc, val;
199	unsigned long rate;
200	int i, div;
201
202	/* stm32h7 bus clock is common for all ADC instances (mandatory) */
203	if (!priv->bclk) {
204		dev_err(&pdev->dev, "No 'bus' clock found\n");
205		return -ENOENT;
206	}
207
208	/*
209	 * stm32h7 can use either 'bus' or 'adc' clock for analog circuitry.
210	 * So, choice is to have bus clock mandatory and adc clock optional.
211	 * If optional 'adc' clock has been found, then try to use it first.
212	 */
213	if (priv->aclk) {
214		/*
215		 * Asynchronous clock modes (e.g. ckmode == 0)
216		 * From spec: PLL output musn't exceed max rate
217		 */
218		rate = clk_get_rate(priv->aclk);
219		if (!rate) {
220			dev_err(&pdev->dev, "Invalid adc clock rate: 0\n");
221			return -EINVAL;
222		}
223
 
 
 
 
 
224		for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) {
225			ckmode = stm32h7_adc_ckmodes_spec[i].ckmode;
226			presc = stm32h7_adc_ckmodes_spec[i].presc;
227			div = stm32h7_adc_ckmodes_spec[i].div;
228
229			if (ckmode)
230				continue;
231
232			if ((rate / div) <= priv->cfg->max_clk_rate_hz)
 
 
 
 
 
 
 
233				goto out;
234		}
235	}
236
237	/* Synchronous clock modes (e.g. ckmode is 1, 2 or 3) */
238	rate = clk_get_rate(priv->bclk);
239	if (!rate) {
240		dev_err(&pdev->dev, "Invalid bus clock rate: 0\n");
241		return -EINVAL;
242	}
243
 
 
 
 
244	for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) {
245		ckmode = stm32h7_adc_ckmodes_spec[i].ckmode;
246		presc = stm32h7_adc_ckmodes_spec[i].presc;
247		div = stm32h7_adc_ckmodes_spec[i].div;
248
249		if (!ckmode)
250			continue;
251
252		if ((rate / div) <= priv->cfg->max_clk_rate_hz)
 
 
 
253			goto out;
254	}
255
256	dev_err(&pdev->dev, "adc clk selection failed\n");
257	return -EINVAL;
258
259out:
260	/* rate used later by each ADC instance to control BOOST mode */
261	priv->common.rate = rate / div;
262
263	/* Set common clock mode and prescaler */
264	val = readl_relaxed(priv->common.base + STM32H7_ADC_CCR);
265	val &= ~(STM32H7_CKMODE_MASK | STM32H7_PRESC_MASK);
266	val |= ckmode << STM32H7_CKMODE_SHIFT;
267	val |= presc << STM32H7_PRESC_SHIFT;
268	writel_relaxed(val, priv->common.base + STM32H7_ADC_CCR);
269
270	dev_dbg(&pdev->dev, "Using %s clock/%d source at %ld kHz\n",
271		ckmode ? "bus" : "adc", div, priv->common.rate / 1000);
272
273	return 0;
274}
275
276/* STM32F4 common registers definitions */
277static const struct stm32_adc_common_regs stm32f4_adc_common_regs = {
278	.csr = STM32F4_ADC_CSR,
279	.ccr = STM32F4_ADC_CCR,
280	.eoc1_msk = STM32F4_EOC1,
281	.eoc2_msk = STM32F4_EOC2,
282	.eoc3_msk = STM32F4_EOC3,
283	.ier = STM32F4_ADC_CR1,
284	.eocie_msk = STM32F4_EOCIE,
285};
286
287/* STM32H7 common registers definitions */
288static const struct stm32_adc_common_regs stm32h7_adc_common_regs = {
289	.csr = STM32H7_ADC_CSR,
290	.ccr = STM32H7_ADC_CCR,
291	.eoc1_msk = STM32H7_EOC_MST,
292	.eoc2_msk = STM32H7_EOC_SLV,
293	.ier = STM32H7_ADC_IER,
294	.eocie_msk = STM32H7_EOCIE,
295};
296
297static const unsigned int stm32_adc_offset[STM32_ADC_MAX_ADCS] = {
298	0, STM32_ADC_OFFSET, STM32_ADC_OFFSET * 2,
299};
300
301static unsigned int stm32_adc_eoc_enabled(struct stm32_adc_priv *priv,
302					  unsigned int adc)
303{
304	u32 ier, offset = stm32_adc_offset[adc];
305
306	ier = readl_relaxed(priv->common.base + offset + priv->cfg->regs->ier);
307
308	return ier & priv->cfg->regs->eocie_msk;
309}
310
311/* ADC common interrupt for all instances */
312static void stm32_adc_irq_handler(struct irq_desc *desc)
313{
314	struct stm32_adc_priv *priv = irq_desc_get_handler_data(desc);
315	struct irq_chip *chip = irq_desc_get_chip(desc);
 
316	u32 status;
317
318	chained_irq_enter(chip, desc);
319	status = readl_relaxed(priv->common.base + priv->cfg->regs->csr);
320
321	/*
322	 * End of conversion may be handled by using IRQ or DMA. There may be a
323	 * race here when two conversions complete at the same time on several
324	 * ADCs. EOC may be read 'set' for several ADCs, with:
325	 * - an ADC configured to use DMA (EOC triggers the DMA request, and
326	 *   is then automatically cleared by DR read in hardware)
327	 * - an ADC configured to use IRQs (EOCIE bit is set. The handler must
328	 *   be called in this case)
329	 * So both EOC status bit in CSR and EOCIE control bit must be checked
330	 * before invoking the interrupt handler (e.g. call ISR only for
331	 * IRQ-enabled ADCs).
332	 */
333	if (status & priv->cfg->regs->eoc1_msk &&
334	    stm32_adc_eoc_enabled(priv, 0))
335		generic_handle_irq(irq_find_mapping(priv->domain, 0));
336
337	if (status & priv->cfg->regs->eoc2_msk &&
338	    stm32_adc_eoc_enabled(priv, 1))
339		generic_handle_irq(irq_find_mapping(priv->domain, 1));
340
341	if (status & priv->cfg->regs->eoc3_msk &&
342	    stm32_adc_eoc_enabled(priv, 2))
343		generic_handle_irq(irq_find_mapping(priv->domain, 2));
344
345	chained_irq_exit(chip, desc);
346};
347
348static int stm32_adc_domain_map(struct irq_domain *d, unsigned int irq,
349				irq_hw_number_t hwirq)
350{
351	irq_set_chip_data(irq, d->host_data);
352	irq_set_chip_and_handler(irq, &dummy_irq_chip, handle_level_irq);
353
354	return 0;
355}
356
357static void stm32_adc_domain_unmap(struct irq_domain *d, unsigned int irq)
358{
359	irq_set_chip_and_handler(irq, NULL, NULL);
360	irq_set_chip_data(irq, NULL);
361}
362
363static const struct irq_domain_ops stm32_adc_domain_ops = {
364	.map = stm32_adc_domain_map,
365	.unmap  = stm32_adc_domain_unmap,
366	.xlate = irq_domain_xlate_onecell,
367};
368
369static int stm32_adc_irq_probe(struct platform_device *pdev,
370			       struct stm32_adc_priv *priv)
371{
372	struct device_node *np = pdev->dev.of_node;
373	unsigned int i;
374
375	for (i = 0; i < STM32_ADC_MAX_ADCS; i++) {
 
 
 
 
 
376		priv->irq[i] = platform_get_irq(pdev, i);
377		if (priv->irq[i] < 0) {
378			/*
379			 * At least one interrupt must be provided, make others
380			 * optional:
381			 * - stm32f4/h7 shares a common interrupt.
382			 * - stm32mp1, has one line per ADC (either for ADC1,
383			 *   ADC2 or both).
384			 */
385			if (i && priv->irq[i] == -ENXIO)
386				continue;
387
388			return priv->irq[i];
389		}
390	}
391
392	priv->domain = irq_domain_add_simple(np, STM32_ADC_MAX_ADCS, 0,
393					     &stm32_adc_domain_ops,
394					     priv);
395	if (!priv->domain) {
396		dev_err(&pdev->dev, "Failed to add irq domain\n");
397		return -ENOMEM;
398	}
399
400	for (i = 0; i < STM32_ADC_MAX_ADCS; i++) {
401		if (priv->irq[i] < 0)
402			continue;
403		irq_set_chained_handler(priv->irq[i], stm32_adc_irq_handler);
404		irq_set_handler_data(priv->irq[i], priv);
405	}
406
407	return 0;
408}
409
410static void stm32_adc_irq_remove(struct platform_device *pdev,
411				 struct stm32_adc_priv *priv)
412{
413	int hwirq;
414	unsigned int i;
415
416	for (hwirq = 0; hwirq < STM32_ADC_MAX_ADCS; hwirq++)
417		irq_dispose_mapping(irq_find_mapping(priv->domain, hwirq));
418	irq_domain_remove(priv->domain);
419
420	for (i = 0; i < STM32_ADC_MAX_ADCS; i++) {
421		if (priv->irq[i] < 0)
422			continue;
423		irq_set_chained_handler(priv->irq[i], NULL);
424	}
425}
426
427static int stm32_adc_core_switches_supply_en(struct stm32_adc_priv *priv,
428					     struct device *dev)
429{
430	int ret;
431
432	/*
433	 * On STM32H7 and STM32MP1, the ADC inputs are multiplexed with analog
434	 * switches (via PCSEL) which have reduced performances when their
435	 * supply is below 2.7V (vdda by default):
436	 * - Voltage booster can be used, to get full ADC performances
437	 *   (increases power consumption).
438	 * - Vdd can be used to supply them, if above 2.7V (STM32MP1 only).
439	 *
440	 * Recommended settings for ANASWVDD and EN_BOOSTER:
441	 * - vdda < 2.7V but vdd > 2.7V: ANASWVDD = 1, EN_BOOSTER = 0 (stm32mp1)
442	 * - vdda < 2.7V and vdd < 2.7V: ANASWVDD = 0, EN_BOOSTER = 1
443	 * - vdda >= 2.7V:               ANASWVDD = 0, EN_BOOSTER = 0 (default)
444	 */
445	if (priv->vdda_uv < 2700000) {
446		if (priv->syscfg && priv->vdd_uv > 2700000) {
447			ret = regulator_enable(priv->vdd);
448			if (ret < 0) {
449				dev_err(dev, "vdd enable failed %d\n", ret);
450				return ret;
451			}
452
453			ret = regmap_write(priv->syscfg,
454					   STM32MP1_SYSCFG_PMCSETR,
455					   STM32MP1_SYSCFG_ANASWVDD_MASK);
456			if (ret < 0) {
457				regulator_disable(priv->vdd);
458				dev_err(dev, "vdd select failed, %d\n", ret);
459				return ret;
460			}
461			dev_dbg(dev, "analog switches supplied by vdd\n");
462
463			return 0;
464		}
465
466		if (priv->booster) {
467			/*
468			 * This is optional, as this is a trade-off between
469			 * analog performance and power consumption.
470			 */
471			ret = regulator_enable(priv->booster);
472			if (ret < 0) {
473				dev_err(dev, "booster enable failed %d\n", ret);
474				return ret;
475			}
476			dev_dbg(dev, "analog switches supplied by booster\n");
477
478			return 0;
479		}
480	}
481
482	/* Fallback using vdda (default), nothing to do */
483	dev_dbg(dev, "analog switches supplied by vdda (%d uV)\n",
484		priv->vdda_uv);
485
486	return 0;
487}
488
489static void stm32_adc_core_switches_supply_dis(struct stm32_adc_priv *priv)
490{
491	if (priv->vdda_uv < 2700000) {
492		if (priv->syscfg && priv->vdd_uv > 2700000) {
493			regmap_write(priv->syscfg, STM32MP1_SYSCFG_PMCCLRR,
494				     STM32MP1_SYSCFG_ANASWVDD_MASK);
495			regulator_disable(priv->vdd);
496			return;
497		}
498		if (priv->booster)
499			regulator_disable(priv->booster);
500	}
501}
502
503static int stm32_adc_core_hw_start(struct device *dev)
504{
505	struct stm32_adc_common *common = dev_get_drvdata(dev);
506	struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
507	int ret;
508
509	ret = regulator_enable(priv->vdda);
510	if (ret < 0) {
511		dev_err(dev, "vdda enable failed %d\n", ret);
512		return ret;
513	}
514
515	ret = regulator_get_voltage(priv->vdda);
516	if (ret < 0) {
517		dev_err(dev, "vdda get voltage failed, %d\n", ret);
518		goto err_vdda_disable;
519	}
520	priv->vdda_uv = ret;
521
522	ret = stm32_adc_core_switches_supply_en(priv, dev);
523	if (ret < 0)
524		goto err_vdda_disable;
525
526	ret = regulator_enable(priv->vref);
527	if (ret < 0) {
528		dev_err(dev, "vref enable failed\n");
529		goto err_switches_dis;
530	}
531
532	if (priv->bclk) {
533		ret = clk_prepare_enable(priv->bclk);
534		if (ret < 0) {
535			dev_err(dev, "bus clk enable failed\n");
536			goto err_regulator_disable;
537		}
538	}
539
540	if (priv->aclk) {
541		ret = clk_prepare_enable(priv->aclk);
542		if (ret < 0) {
543			dev_err(dev, "adc clk enable failed\n");
544			goto err_bclk_disable;
545		}
546	}
547
548	writel_relaxed(priv->ccr_bak, priv->common.base + priv->cfg->regs->ccr);
549
550	return 0;
551
552err_bclk_disable:
553	if (priv->bclk)
554		clk_disable_unprepare(priv->bclk);
555err_regulator_disable:
556	regulator_disable(priv->vref);
557err_switches_dis:
558	stm32_adc_core_switches_supply_dis(priv);
559err_vdda_disable:
560	regulator_disable(priv->vdda);
561
562	return ret;
563}
564
565static void stm32_adc_core_hw_stop(struct device *dev)
566{
567	struct stm32_adc_common *common = dev_get_drvdata(dev);
568	struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
569
570	/* Backup CCR that may be lost (depends on power state to achieve) */
571	priv->ccr_bak = readl_relaxed(priv->common.base + priv->cfg->regs->ccr);
572	if (priv->aclk)
573		clk_disable_unprepare(priv->aclk);
574	if (priv->bclk)
575		clk_disable_unprepare(priv->bclk);
576	regulator_disable(priv->vref);
577	stm32_adc_core_switches_supply_dis(priv);
578	regulator_disable(priv->vdda);
579}
580
581static int stm32_adc_core_switches_probe(struct device *dev,
582					 struct stm32_adc_priv *priv)
583{
584	struct device_node *np = dev->of_node;
585	int ret;
586
587	/* Analog switches supply can be controlled by syscfg (optional) */
588	priv->syscfg = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
589	if (IS_ERR(priv->syscfg)) {
590		ret = PTR_ERR(priv->syscfg);
591		if (ret != -ENODEV) {
592			if (ret != -EPROBE_DEFER)
593				dev_err(dev, "Can't probe syscfg: %d\n", ret);
594			return ret;
595		}
596		priv->syscfg = NULL;
597	}
598
599	/* Booster can be used to supply analog switches (optional) */
600	if (priv->cfg->has_syscfg & HAS_VBOOSTER &&
601	    of_property_read_bool(np, "booster-supply")) {
602		priv->booster = devm_regulator_get_optional(dev, "booster");
603		if (IS_ERR(priv->booster)) {
604			ret = PTR_ERR(priv->booster);
605			if (ret != -ENODEV) {
606				if (ret != -EPROBE_DEFER)
607					dev_err(dev, "can't get booster %d\n",
608						ret);
609				return ret;
610			}
611			priv->booster = NULL;
612		}
613	}
614
615	/* Vdd can be used to supply analog switches (optional) */
616	if (priv->cfg->has_syscfg & HAS_ANASWVDD &&
617	    of_property_read_bool(np, "vdd-supply")) {
618		priv->vdd = devm_regulator_get_optional(dev, "vdd");
619		if (IS_ERR(priv->vdd)) {
620			ret = PTR_ERR(priv->vdd);
621			if (ret != -ENODEV) {
622				if (ret != -EPROBE_DEFER)
623					dev_err(dev, "can't get vdd %d\n", ret);
624				return ret;
625			}
626			priv->vdd = NULL;
627		}
628	}
629
630	if (priv->vdd) {
631		ret = regulator_enable(priv->vdd);
632		if (ret < 0) {
633			dev_err(dev, "vdd enable failed %d\n", ret);
634			return ret;
635		}
636
637		ret = regulator_get_voltage(priv->vdd);
638		if (ret < 0) {
639			dev_err(dev, "vdd get voltage failed %d\n", ret);
640			regulator_disable(priv->vdd);
641			return ret;
642		}
643		priv->vdd_uv = ret;
644
645		regulator_disable(priv->vdd);
646	}
647
648	return 0;
649}
650
651static int stm32_adc_probe(struct platform_device *pdev)
652{
653	struct stm32_adc_priv *priv;
654	struct device *dev = &pdev->dev;
655	struct device_node *np = pdev->dev.of_node;
656	struct resource *res;
 
657	int ret;
658
659	if (!pdev->dev.of_node)
660		return -ENODEV;
661
662	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
663	if (!priv)
664		return -ENOMEM;
665	platform_set_drvdata(pdev, &priv->common);
666
667	priv->cfg = (const struct stm32_adc_priv_cfg *)
668		of_match_device(dev->driver->of_match_table, dev)->data;
669
670	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
671	priv->common.base = devm_ioremap_resource(&pdev->dev, res);
672	if (IS_ERR(priv->common.base))
673		return PTR_ERR(priv->common.base);
674	priv->common.phys_base = res->start;
675
676	priv->vdda = devm_regulator_get(&pdev->dev, "vdda");
677	if (IS_ERR(priv->vdda)) {
678		ret = PTR_ERR(priv->vdda);
679		if (ret != -EPROBE_DEFER)
680			dev_err(&pdev->dev, "vdda get failed, %d\n", ret);
681		return ret;
682	}
683
684	priv->vref = devm_regulator_get(&pdev->dev, "vref");
685	if (IS_ERR(priv->vref)) {
686		ret = PTR_ERR(priv->vref);
687		dev_err(&pdev->dev, "vref get failed, %d\n", ret);
688		return ret;
689	}
690
691	priv->aclk = devm_clk_get(&pdev->dev, "adc");
692	if (IS_ERR(priv->aclk)) {
693		ret = PTR_ERR(priv->aclk);
694		if (ret != -ENOENT) {
695			dev_err(&pdev->dev, "Can't get 'adc' clock\n");
696			return ret;
697		}
698		priv->aclk = NULL;
699	}
700
701	priv->bclk = devm_clk_get(&pdev->dev, "bus");
702	if (IS_ERR(priv->bclk)) {
703		ret = PTR_ERR(priv->bclk);
704		if (ret != -ENOENT) {
705			dev_err(&pdev->dev, "Can't get 'bus' clock\n");
706			return ret;
707		}
708		priv->bclk = NULL;
709	}
710
711	ret = stm32_adc_core_switches_probe(dev, priv);
712	if (ret)
713		return ret;
714
715	pm_runtime_get_noresume(dev);
716	pm_runtime_set_active(dev);
717	pm_runtime_set_autosuspend_delay(dev, STM32_ADC_CORE_SLEEP_DELAY_MS);
718	pm_runtime_use_autosuspend(dev);
719	pm_runtime_enable(dev);
720
721	ret = stm32_adc_core_hw_start(dev);
722	if (ret)
723		goto err_pm_stop;
724
725	ret = regulator_get_voltage(priv->vref);
726	if (ret < 0) {
727		dev_err(&pdev->dev, "vref get voltage failed, %d\n", ret);
728		goto err_hw_stop;
729	}
730	priv->common.vref_mv = ret / 1000;
731	dev_dbg(&pdev->dev, "vref+=%dmV\n", priv->common.vref_mv);
732
 
 
 
 
 
 
 
733	ret = priv->cfg->clk_sel(pdev, priv);
734	if (ret < 0)
735		goto err_hw_stop;
736
737	ret = stm32_adc_irq_probe(pdev, priv);
738	if (ret < 0)
739		goto err_hw_stop;
740
741	ret = of_platform_populate(np, NULL, NULL, &pdev->dev);
742	if (ret < 0) {
743		dev_err(&pdev->dev, "failed to populate DT children\n");
744		goto err_irq_remove;
745	}
746
747	pm_runtime_mark_last_busy(dev);
748	pm_runtime_put_autosuspend(dev);
749
750	return 0;
751
752err_irq_remove:
753	stm32_adc_irq_remove(pdev, priv);
754err_hw_stop:
755	stm32_adc_core_hw_stop(dev);
756err_pm_stop:
757	pm_runtime_disable(dev);
758	pm_runtime_set_suspended(dev);
759	pm_runtime_put_noidle(dev);
760
761	return ret;
762}
763
764static int stm32_adc_remove(struct platform_device *pdev)
765{
766	struct stm32_adc_common *common = platform_get_drvdata(pdev);
767	struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
768
769	pm_runtime_get_sync(&pdev->dev);
770	of_platform_depopulate(&pdev->dev);
771	stm32_adc_irq_remove(pdev, priv);
772	stm32_adc_core_hw_stop(&pdev->dev);
773	pm_runtime_disable(&pdev->dev);
774	pm_runtime_set_suspended(&pdev->dev);
775	pm_runtime_put_noidle(&pdev->dev);
776
777	return 0;
778}
779
780#if defined(CONFIG_PM)
781static int stm32_adc_core_runtime_suspend(struct device *dev)
782{
783	stm32_adc_core_hw_stop(dev);
784
785	return 0;
786}
787
788static int stm32_adc_core_runtime_resume(struct device *dev)
789{
790	return stm32_adc_core_hw_start(dev);
791}
 
 
 
 
 
 
 
792#endif
793
794static const struct dev_pm_ops stm32_adc_core_pm_ops = {
795	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
796				pm_runtime_force_resume)
797	SET_RUNTIME_PM_OPS(stm32_adc_core_runtime_suspend,
798			   stm32_adc_core_runtime_resume,
799			   NULL)
800};
801
802static const struct stm32_adc_priv_cfg stm32f4_adc_priv_cfg = {
803	.regs = &stm32f4_adc_common_regs,
804	.clk_sel = stm32f4_adc_clk_sel,
805	.max_clk_rate_hz = 36000000,
 
806};
807
808static const struct stm32_adc_priv_cfg stm32h7_adc_priv_cfg = {
809	.regs = &stm32h7_adc_common_regs,
810	.clk_sel = stm32h7_adc_clk_sel,
811	.max_clk_rate_hz = 36000000,
812	.has_syscfg = HAS_VBOOSTER,
 
813};
814
815static const struct stm32_adc_priv_cfg stm32mp1_adc_priv_cfg = {
816	.regs = &stm32h7_adc_common_regs,
817	.clk_sel = stm32h7_adc_clk_sel,
818	.max_clk_rate_hz = 40000000,
819	.has_syscfg = HAS_VBOOSTER | HAS_ANASWVDD,
 
820};
821
822static const struct of_device_id stm32_adc_of_match[] = {
823	{
824		.compatible = "st,stm32f4-adc-core",
825		.data = (void *)&stm32f4_adc_priv_cfg
826	}, {
827		.compatible = "st,stm32h7-adc-core",
828		.data = (void *)&stm32h7_adc_priv_cfg
829	}, {
830		.compatible = "st,stm32mp1-adc-core",
831		.data = (void *)&stm32mp1_adc_priv_cfg
832	}, {
833	},
834};
835MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
836
837static struct platform_driver stm32_adc_driver = {
838	.probe = stm32_adc_probe,
839	.remove = stm32_adc_remove,
840	.driver = {
841		.name = "stm32-adc-core",
842		.of_match_table = stm32_adc_of_match,
843		.pm = &stm32_adc_core_pm_ops,
844	},
845};
846module_platform_driver(stm32_adc_driver);
847
848MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
849MODULE_DESCRIPTION("STMicroelectronics STM32 ADC core driver");
850MODULE_LICENSE("GPL v2");
851MODULE_ALIAS("platform:stm32-adc-core");
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This file is part of STM32 ADC driver
  4 *
  5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
  6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
  7 *
  8 * Inspired from: fsl-imx25-tsadc
  9 *
 10 */
 11
 12#include <linux/clk.h>
 13#include <linux/interrupt.h>
 14#include <linux/irqchip/chained_irq.h>
 15#include <linux/irqdesc.h>
 16#include <linux/irqdomain.h>
 17#include <linux/mfd/syscon.h>
 18#include <linux/module.h>
 19#include <linux/of_device.h>
 20#include <linux/pm_runtime.h>
 21#include <linux/regmap.h>
 22#include <linux/regulator/consumer.h>
 23#include <linux/slab.h>
 24
 25#include "stm32-adc-core.h"
 26
 27#define STM32_ADC_CORE_SLEEP_DELAY_MS	2000
 28
 29/* SYSCFG registers */
 30#define STM32MP1_SYSCFG_PMCSETR		0x04
 31#define STM32MP1_SYSCFG_PMCCLRR		0x44
 32
 33/* SYSCFG bit fields */
 34#define STM32MP1_SYSCFG_ANASWVDD_MASK	BIT(9)
 35
 36/* SYSCFG capability flags */
 37#define HAS_VBOOSTER		BIT(0)
 38#define HAS_ANASWVDD		BIT(1)
 39
 40/**
 41 * struct stm32_adc_common_regs - stm32 common registers
 42 * @csr:	common status register offset
 43 * @ccr:	common control register offset
 44 * @eoc_msk:    array of eoc (end of conversion flag) masks in csr for adc1..n
 45 * @ovr_msk:    array of ovr (overrun flag) masks in csr for adc1..n
 
 46 * @ier:	interrupt enable register offset for each adc
 47 * @eocie_msk:	end of conversion interrupt enable mask in @ier
 48 */
 49struct stm32_adc_common_regs {
 50	u32 csr;
 51	u32 ccr;
 52	u32 eoc_msk[STM32_ADC_MAX_ADCS];
 53	u32 ovr_msk[STM32_ADC_MAX_ADCS];
 
 54	u32 ier;
 55	u32 eocie_msk;
 56};
 57
 58struct stm32_adc_priv;
 59
 60/**
 61 * struct stm32_adc_priv_cfg - stm32 core compatible configuration data
 62 * @regs:	common registers for all instances
 63 * @clk_sel:	clock selection routine
 64 * @max_clk_rate_hz: maximum analog clock rate (Hz, from datasheet)
 65 * @has_syscfg: SYSCFG capability flags
 66 * @num_irqs:	number of interrupt lines
 67 */
 68struct stm32_adc_priv_cfg {
 69	const struct stm32_adc_common_regs *regs;
 70	int (*clk_sel)(struct platform_device *, struct stm32_adc_priv *);
 71	u32 max_clk_rate_hz;
 72	unsigned int has_syscfg;
 73	unsigned int num_irqs;
 74};
 75
 76/**
 77 * struct stm32_adc_priv - stm32 ADC core private data
 78 * @irq:		irq(s) for ADC block
 79 * @domain:		irq domain reference
 80 * @aclk:		clock reference for the analog circuitry
 81 * @bclk:		bus clock common for all ADCs, depends on part used
 82 * @max_clk_rate:	desired maximum clock rate
 83 * @booster:		booster supply reference
 84 * @vdd:		vdd supply reference
 85 * @vdda:		vdda analog supply reference
 86 * @vref:		regulator reference
 87 * @vdd_uv:		vdd supply voltage (microvolts)
 88 * @vdda_uv:		vdda supply voltage (microvolts)
 89 * @cfg:		compatible configuration data
 90 * @common:		common data for all ADC instances
 91 * @ccr_bak:		backup CCR in low power mode
 92 * @syscfg:		reference to syscon, system control registers
 93 */
 94struct stm32_adc_priv {
 95	int				irq[STM32_ADC_MAX_ADCS];
 96	struct irq_domain		*domain;
 97	struct clk			*aclk;
 98	struct clk			*bclk;
 99	u32				max_clk_rate;
100	struct regulator		*booster;
101	struct regulator		*vdd;
102	struct regulator		*vdda;
103	struct regulator		*vref;
104	int				vdd_uv;
105	int				vdda_uv;
106	const struct stm32_adc_priv_cfg	*cfg;
107	struct stm32_adc_common		common;
108	u32				ccr_bak;
109	struct regmap			*syscfg;
110};
111
112static struct stm32_adc_priv *to_stm32_adc_priv(struct stm32_adc_common *com)
113{
114	return container_of(com, struct stm32_adc_priv, common);
115}
116
117/* STM32F4 ADC internal common clock prescaler division ratios */
118static int stm32f4_pclk_div[] = {2, 4, 6, 8};
119
120/**
121 * stm32f4_adc_clk_sel() - Select stm32f4 ADC common clock prescaler
122 * @pdev: platform device
123 * @priv: stm32 ADC core private data
124 * Select clock prescaler used for analog conversions, before using ADC.
125 */
126static int stm32f4_adc_clk_sel(struct platform_device *pdev,
127			       struct stm32_adc_priv *priv)
128{
129	unsigned long rate;
130	u32 val;
131	int i;
132
133	/* stm32f4 has one clk input for analog (mandatory), enforce it here */
134	if (!priv->aclk) {
135		dev_err(&pdev->dev, "No 'adc' clock found\n");
136		return -ENOENT;
137	}
138
139	rate = clk_get_rate(priv->aclk);
140	if (!rate) {
141		dev_err(&pdev->dev, "Invalid clock rate: 0\n");
142		return -EINVAL;
143	}
144
145	for (i = 0; i < ARRAY_SIZE(stm32f4_pclk_div); i++) {
146		if ((rate / stm32f4_pclk_div[i]) <= priv->max_clk_rate)
147			break;
148	}
149	if (i >= ARRAY_SIZE(stm32f4_pclk_div)) {
150		dev_err(&pdev->dev, "adc clk selection failed\n");
151		return -EINVAL;
152	}
153
154	priv->common.rate = rate / stm32f4_pclk_div[i];
155	val = readl_relaxed(priv->common.base + STM32F4_ADC_CCR);
156	val &= ~STM32F4_ADC_ADCPRE_MASK;
157	val |= i << STM32F4_ADC_ADCPRE_SHIFT;
158	writel_relaxed(val, priv->common.base + STM32F4_ADC_CCR);
159
160	dev_dbg(&pdev->dev, "Using analog clock source at %ld kHz\n",
161		priv->common.rate / 1000);
162
163	return 0;
164}
165
166/**
167 * struct stm32h7_adc_ck_spec - specification for stm32h7 adc clock
168 * @ckmode: ADC clock mode, Async or sync with prescaler.
169 * @presc: prescaler bitfield for async clock mode
170 * @div: prescaler division ratio
171 */
172struct stm32h7_adc_ck_spec {
173	u32 ckmode;
174	u32 presc;
175	int div;
176};
177
178static const struct stm32h7_adc_ck_spec stm32h7_adc_ckmodes_spec[] = {
179	/* 00: CK_ADC[1..3]: Asynchronous clock modes */
180	{ 0, 0, 1 },
181	{ 0, 1, 2 },
182	{ 0, 2, 4 },
183	{ 0, 3, 6 },
184	{ 0, 4, 8 },
185	{ 0, 5, 10 },
186	{ 0, 6, 12 },
187	{ 0, 7, 16 },
188	{ 0, 8, 32 },
189	{ 0, 9, 64 },
190	{ 0, 10, 128 },
191	{ 0, 11, 256 },
192	/* HCLK used: Synchronous clock modes (1, 2 or 4 prescaler) */
193	{ 1, 0, 1 },
194	{ 2, 0, 2 },
195	{ 3, 0, 4 },
196};
197
198static int stm32h7_adc_clk_sel(struct platform_device *pdev,
199			       struct stm32_adc_priv *priv)
200{
201	u32 ckmode, presc, val;
202	unsigned long rate;
203	int i, div, duty;
204
205	/* stm32h7 bus clock is common for all ADC instances (mandatory) */
206	if (!priv->bclk) {
207		dev_err(&pdev->dev, "No 'bus' clock found\n");
208		return -ENOENT;
209	}
210
211	/*
212	 * stm32h7 can use either 'bus' or 'adc' clock for analog circuitry.
213	 * So, choice is to have bus clock mandatory and adc clock optional.
214	 * If optional 'adc' clock has been found, then try to use it first.
215	 */
216	if (priv->aclk) {
217		/*
218		 * Asynchronous clock modes (e.g. ckmode == 0)
219		 * From spec: PLL output musn't exceed max rate
220		 */
221		rate = clk_get_rate(priv->aclk);
222		if (!rate) {
223			dev_err(&pdev->dev, "Invalid adc clock rate: 0\n");
224			return -EINVAL;
225		}
226
227		/* If duty is an error, kindly use at least /2 divider */
228		duty = clk_get_scaled_duty_cycle(priv->aclk, 100);
229		if (duty < 0)
230			dev_warn(&pdev->dev, "adc clock duty: %d\n", duty);
231
232		for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) {
233			ckmode = stm32h7_adc_ckmodes_spec[i].ckmode;
234			presc = stm32h7_adc_ckmodes_spec[i].presc;
235			div = stm32h7_adc_ckmodes_spec[i].div;
236
237			if (ckmode)
238				continue;
239
240			/*
241			 * For proper operation, clock duty cycle range is 49%
242			 * to 51%. Apply at least /2 prescaler otherwise.
243			 */
244			if (div == 1 && (duty < 49 || duty > 51))
245				continue;
246
247			if ((rate / div) <= priv->max_clk_rate)
248				goto out;
249		}
250	}
251
252	/* Synchronous clock modes (e.g. ckmode is 1, 2 or 3) */
253	rate = clk_get_rate(priv->bclk);
254	if (!rate) {
255		dev_err(&pdev->dev, "Invalid bus clock rate: 0\n");
256		return -EINVAL;
257	}
258
259	duty = clk_get_scaled_duty_cycle(priv->bclk, 100);
260	if (duty < 0)
261		dev_warn(&pdev->dev, "bus clock duty: %d\n", duty);
262
263	for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) {
264		ckmode = stm32h7_adc_ckmodes_spec[i].ckmode;
265		presc = stm32h7_adc_ckmodes_spec[i].presc;
266		div = stm32h7_adc_ckmodes_spec[i].div;
267
268		if (!ckmode)
269			continue;
270
271		if (div == 1 && (duty < 49 || duty > 51))
272			continue;
273
274		if ((rate / div) <= priv->max_clk_rate)
275			goto out;
276	}
277
278	dev_err(&pdev->dev, "adc clk selection failed\n");
279	return -EINVAL;
280
281out:
282	/* rate used later by each ADC instance to control BOOST mode */
283	priv->common.rate = rate / div;
284
285	/* Set common clock mode and prescaler */
286	val = readl_relaxed(priv->common.base + STM32H7_ADC_CCR);
287	val &= ~(STM32H7_CKMODE_MASK | STM32H7_PRESC_MASK);
288	val |= ckmode << STM32H7_CKMODE_SHIFT;
289	val |= presc << STM32H7_PRESC_SHIFT;
290	writel_relaxed(val, priv->common.base + STM32H7_ADC_CCR);
291
292	dev_dbg(&pdev->dev, "Using %s clock/%d source at %ld kHz\n",
293		ckmode ? "bus" : "adc", div, priv->common.rate / 1000);
294
295	return 0;
296}
297
298/* STM32F4 common registers definitions */
299static const struct stm32_adc_common_regs stm32f4_adc_common_regs = {
300	.csr = STM32F4_ADC_CSR,
301	.ccr = STM32F4_ADC_CCR,
302	.eoc_msk = { STM32F4_EOC1, STM32F4_EOC2, STM32F4_EOC3},
303	.ovr_msk = { STM32F4_OVR1, STM32F4_OVR2, STM32F4_OVR3},
 
304	.ier = STM32F4_ADC_CR1,
305	.eocie_msk = STM32F4_EOCIE,
306};
307
308/* STM32H7 common registers definitions */
309static const struct stm32_adc_common_regs stm32h7_adc_common_regs = {
310	.csr = STM32H7_ADC_CSR,
311	.ccr = STM32H7_ADC_CCR,
312	.eoc_msk = { STM32H7_EOC_MST, STM32H7_EOC_SLV},
313	.ovr_msk = { STM32H7_OVR_MST, STM32H7_OVR_SLV},
314	.ier = STM32H7_ADC_IER,
315	.eocie_msk = STM32H7_EOCIE,
316};
317
318static const unsigned int stm32_adc_offset[STM32_ADC_MAX_ADCS] = {
319	0, STM32_ADC_OFFSET, STM32_ADC_OFFSET * 2,
320};
321
322static unsigned int stm32_adc_eoc_enabled(struct stm32_adc_priv *priv,
323					  unsigned int adc)
324{
325	u32 ier, offset = stm32_adc_offset[adc];
326
327	ier = readl_relaxed(priv->common.base + offset + priv->cfg->regs->ier);
328
329	return ier & priv->cfg->regs->eocie_msk;
330}
331
332/* ADC common interrupt for all instances */
333static void stm32_adc_irq_handler(struct irq_desc *desc)
334{
335	struct stm32_adc_priv *priv = irq_desc_get_handler_data(desc);
336	struct irq_chip *chip = irq_desc_get_chip(desc);
337	int i;
338	u32 status;
339
340	chained_irq_enter(chip, desc);
341	status = readl_relaxed(priv->common.base + priv->cfg->regs->csr);
342
343	/*
344	 * End of conversion may be handled by using IRQ or DMA. There may be a
345	 * race here when two conversions complete at the same time on several
346	 * ADCs. EOC may be read 'set' for several ADCs, with:
347	 * - an ADC configured to use DMA (EOC triggers the DMA request, and
348	 *   is then automatically cleared by DR read in hardware)
349	 * - an ADC configured to use IRQs (EOCIE bit is set. The handler must
350	 *   be called in this case)
351	 * So both EOC status bit in CSR and EOCIE control bit must be checked
352	 * before invoking the interrupt handler (e.g. call ISR only for
353	 * IRQ-enabled ADCs).
354	 */
355	for (i = 0; i < priv->cfg->num_irqs; i++) {
356		if ((status & priv->cfg->regs->eoc_msk[i] &&
357		     stm32_adc_eoc_enabled(priv, i)) ||
358		     (status & priv->cfg->regs->ovr_msk[i]))
359			generic_handle_irq(irq_find_mapping(priv->domain, i));
360	}
 
 
 
 
 
361
362	chained_irq_exit(chip, desc);
363};
364
365static int stm32_adc_domain_map(struct irq_domain *d, unsigned int irq,
366				irq_hw_number_t hwirq)
367{
368	irq_set_chip_data(irq, d->host_data);
369	irq_set_chip_and_handler(irq, &dummy_irq_chip, handle_level_irq);
370
371	return 0;
372}
373
374static void stm32_adc_domain_unmap(struct irq_domain *d, unsigned int irq)
375{
376	irq_set_chip_and_handler(irq, NULL, NULL);
377	irq_set_chip_data(irq, NULL);
378}
379
380static const struct irq_domain_ops stm32_adc_domain_ops = {
381	.map = stm32_adc_domain_map,
382	.unmap  = stm32_adc_domain_unmap,
383	.xlate = irq_domain_xlate_onecell,
384};
385
386static int stm32_adc_irq_probe(struct platform_device *pdev,
387			       struct stm32_adc_priv *priv)
388{
389	struct device_node *np = pdev->dev.of_node;
390	unsigned int i;
391
392	/*
393	 * Interrupt(s) must be provided, depending on the compatible:
394	 * - stm32f4/h7 shares a common interrupt line.
395	 * - stm32mp1, has one line per ADC
396	 */
397	for (i = 0; i < priv->cfg->num_irqs; i++) {
398		priv->irq[i] = platform_get_irq(pdev, i);
399		if (priv->irq[i] < 0)
 
 
 
 
 
 
 
 
 
 
400			return priv->irq[i];
 
401	}
402
403	priv->domain = irq_domain_add_simple(np, STM32_ADC_MAX_ADCS, 0,
404					     &stm32_adc_domain_ops,
405					     priv);
406	if (!priv->domain) {
407		dev_err(&pdev->dev, "Failed to add irq domain\n");
408		return -ENOMEM;
409	}
410
411	for (i = 0; i < priv->cfg->num_irqs; i++) {
 
 
412		irq_set_chained_handler(priv->irq[i], stm32_adc_irq_handler);
413		irq_set_handler_data(priv->irq[i], priv);
414	}
415
416	return 0;
417}
418
419static void stm32_adc_irq_remove(struct platform_device *pdev,
420				 struct stm32_adc_priv *priv)
421{
422	int hwirq;
423	unsigned int i;
424
425	for (hwirq = 0; hwirq < STM32_ADC_MAX_ADCS; hwirq++)
426		irq_dispose_mapping(irq_find_mapping(priv->domain, hwirq));
427	irq_domain_remove(priv->domain);
428
429	for (i = 0; i < priv->cfg->num_irqs; i++)
 
 
430		irq_set_chained_handler(priv->irq[i], NULL);
 
431}
432
433static int stm32_adc_core_switches_supply_en(struct stm32_adc_priv *priv,
434					     struct device *dev)
435{
436	int ret;
437
438	/*
439	 * On STM32H7 and STM32MP1, the ADC inputs are multiplexed with analog
440	 * switches (via PCSEL) which have reduced performances when their
441	 * supply is below 2.7V (vdda by default):
442	 * - Voltage booster can be used, to get full ADC performances
443	 *   (increases power consumption).
444	 * - Vdd can be used to supply them, if above 2.7V (STM32MP1 only).
445	 *
446	 * Recommended settings for ANASWVDD and EN_BOOSTER:
447	 * - vdda < 2.7V but vdd > 2.7V: ANASWVDD = 1, EN_BOOSTER = 0 (stm32mp1)
448	 * - vdda < 2.7V and vdd < 2.7V: ANASWVDD = 0, EN_BOOSTER = 1
449	 * - vdda >= 2.7V:               ANASWVDD = 0, EN_BOOSTER = 0 (default)
450	 */
451	if (priv->vdda_uv < 2700000) {
452		if (priv->syscfg && priv->vdd_uv > 2700000) {
453			ret = regulator_enable(priv->vdd);
454			if (ret < 0) {
455				dev_err(dev, "vdd enable failed %d\n", ret);
456				return ret;
457			}
458
459			ret = regmap_write(priv->syscfg,
460					   STM32MP1_SYSCFG_PMCSETR,
461					   STM32MP1_SYSCFG_ANASWVDD_MASK);
462			if (ret < 0) {
463				regulator_disable(priv->vdd);
464				dev_err(dev, "vdd select failed, %d\n", ret);
465				return ret;
466			}
467			dev_dbg(dev, "analog switches supplied by vdd\n");
468
469			return 0;
470		}
471
472		if (priv->booster) {
473			/*
474			 * This is optional, as this is a trade-off between
475			 * analog performance and power consumption.
476			 */
477			ret = regulator_enable(priv->booster);
478			if (ret < 0) {
479				dev_err(dev, "booster enable failed %d\n", ret);
480				return ret;
481			}
482			dev_dbg(dev, "analog switches supplied by booster\n");
483
484			return 0;
485		}
486	}
487
488	/* Fallback using vdda (default), nothing to do */
489	dev_dbg(dev, "analog switches supplied by vdda (%d uV)\n",
490		priv->vdda_uv);
491
492	return 0;
493}
494
495static void stm32_adc_core_switches_supply_dis(struct stm32_adc_priv *priv)
496{
497	if (priv->vdda_uv < 2700000) {
498		if (priv->syscfg && priv->vdd_uv > 2700000) {
499			regmap_write(priv->syscfg, STM32MP1_SYSCFG_PMCCLRR,
500				     STM32MP1_SYSCFG_ANASWVDD_MASK);
501			regulator_disable(priv->vdd);
502			return;
503		}
504		if (priv->booster)
505			regulator_disable(priv->booster);
506	}
507}
508
509static int stm32_adc_core_hw_start(struct device *dev)
510{
511	struct stm32_adc_common *common = dev_get_drvdata(dev);
512	struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
513	int ret;
514
515	ret = regulator_enable(priv->vdda);
516	if (ret < 0) {
517		dev_err(dev, "vdda enable failed %d\n", ret);
518		return ret;
519	}
520
521	ret = regulator_get_voltage(priv->vdda);
522	if (ret < 0) {
523		dev_err(dev, "vdda get voltage failed, %d\n", ret);
524		goto err_vdda_disable;
525	}
526	priv->vdda_uv = ret;
527
528	ret = stm32_adc_core_switches_supply_en(priv, dev);
529	if (ret < 0)
530		goto err_vdda_disable;
531
532	ret = regulator_enable(priv->vref);
533	if (ret < 0) {
534		dev_err(dev, "vref enable failed\n");
535		goto err_switches_dis;
536	}
537
538	ret = clk_prepare_enable(priv->bclk);
539	if (ret < 0) {
540		dev_err(dev, "bus clk enable failed\n");
541		goto err_regulator_disable;
 
 
542	}
543
544	ret = clk_prepare_enable(priv->aclk);
545	if (ret < 0) {
546		dev_err(dev, "adc clk enable failed\n");
547		goto err_bclk_disable;
 
 
548	}
549
550	writel_relaxed(priv->ccr_bak, priv->common.base + priv->cfg->regs->ccr);
551
552	return 0;
553
554err_bclk_disable:
555	clk_disable_unprepare(priv->bclk);
 
556err_regulator_disable:
557	regulator_disable(priv->vref);
558err_switches_dis:
559	stm32_adc_core_switches_supply_dis(priv);
560err_vdda_disable:
561	regulator_disable(priv->vdda);
562
563	return ret;
564}
565
566static void stm32_adc_core_hw_stop(struct device *dev)
567{
568	struct stm32_adc_common *common = dev_get_drvdata(dev);
569	struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
570
571	/* Backup CCR that may be lost (depends on power state to achieve) */
572	priv->ccr_bak = readl_relaxed(priv->common.base + priv->cfg->regs->ccr);
573	clk_disable_unprepare(priv->aclk);
574	clk_disable_unprepare(priv->bclk);
 
 
575	regulator_disable(priv->vref);
576	stm32_adc_core_switches_supply_dis(priv);
577	regulator_disable(priv->vdda);
578}
579
580static int stm32_adc_core_switches_probe(struct device *dev,
581					 struct stm32_adc_priv *priv)
582{
583	struct device_node *np = dev->of_node;
584	int ret;
585
586	/* Analog switches supply can be controlled by syscfg (optional) */
587	priv->syscfg = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
588	if (IS_ERR(priv->syscfg)) {
589		ret = PTR_ERR(priv->syscfg);
590		if (ret != -ENODEV)
591			return dev_err_probe(dev, ret, "Can't probe syscfg\n");
592
 
 
593		priv->syscfg = NULL;
594	}
595
596	/* Booster can be used to supply analog switches (optional) */
597	if (priv->cfg->has_syscfg & HAS_VBOOSTER &&
598	    of_property_read_bool(np, "booster-supply")) {
599		priv->booster = devm_regulator_get_optional(dev, "booster");
600		if (IS_ERR(priv->booster)) {
601			ret = PTR_ERR(priv->booster);
602			if (ret != -ENODEV)
603				return dev_err_probe(dev, ret, "can't get booster\n");
604
 
 
 
605			priv->booster = NULL;
606		}
607	}
608
609	/* Vdd can be used to supply analog switches (optional) */
610	if (priv->cfg->has_syscfg & HAS_ANASWVDD &&
611	    of_property_read_bool(np, "vdd-supply")) {
612		priv->vdd = devm_regulator_get_optional(dev, "vdd");
613		if (IS_ERR(priv->vdd)) {
614			ret = PTR_ERR(priv->vdd);
615			if (ret != -ENODEV)
616				return dev_err_probe(dev, ret, "can't get vdd\n");
617
 
 
618			priv->vdd = NULL;
619		}
620	}
621
622	if (priv->vdd) {
623		ret = regulator_enable(priv->vdd);
624		if (ret < 0) {
625			dev_err(dev, "vdd enable failed %d\n", ret);
626			return ret;
627		}
628
629		ret = regulator_get_voltage(priv->vdd);
630		if (ret < 0) {
631			dev_err(dev, "vdd get voltage failed %d\n", ret);
632			regulator_disable(priv->vdd);
633			return ret;
634		}
635		priv->vdd_uv = ret;
636
637		regulator_disable(priv->vdd);
638	}
639
640	return 0;
641}
642
643static int stm32_adc_probe(struct platform_device *pdev)
644{
645	struct stm32_adc_priv *priv;
646	struct device *dev = &pdev->dev;
647	struct device_node *np = pdev->dev.of_node;
648	struct resource *res;
649	u32 max_rate;
650	int ret;
651
652	if (!pdev->dev.of_node)
653		return -ENODEV;
654
655	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
656	if (!priv)
657		return -ENOMEM;
658	platform_set_drvdata(pdev, &priv->common);
659
660	priv->cfg = (const struct stm32_adc_priv_cfg *)
661		of_match_device(dev->driver->of_match_table, dev)->data;
662
663	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
664	priv->common.base = devm_ioremap_resource(&pdev->dev, res);
665	if (IS_ERR(priv->common.base))
666		return PTR_ERR(priv->common.base);
667	priv->common.phys_base = res->start;
668
669	priv->vdda = devm_regulator_get(&pdev->dev, "vdda");
670	if (IS_ERR(priv->vdda))
671		return dev_err_probe(&pdev->dev, PTR_ERR(priv->vdda),
672				     "vdda get failed\n");
 
 
 
673
674	priv->vref = devm_regulator_get(&pdev->dev, "vref");
675	if (IS_ERR(priv->vref))
676		return dev_err_probe(&pdev->dev, PTR_ERR(priv->vref),
677				     "vref get failed\n");
678
679	priv->aclk = devm_clk_get_optional(&pdev->dev, "adc");
680	if (IS_ERR(priv->aclk))
681		return dev_err_probe(&pdev->dev, PTR_ERR(priv->aclk),
682				     "Can't get 'adc' clock\n");
683
684	priv->bclk = devm_clk_get_optional(&pdev->dev, "bus");
685	if (IS_ERR(priv->bclk))
686		return dev_err_probe(&pdev->dev, PTR_ERR(priv->bclk),
687				     "Can't get 'bus' clock\n");
 
 
 
 
 
 
 
 
 
 
 
 
688
689	ret = stm32_adc_core_switches_probe(dev, priv);
690	if (ret)
691		return ret;
692
693	pm_runtime_get_noresume(dev);
694	pm_runtime_set_active(dev);
695	pm_runtime_set_autosuspend_delay(dev, STM32_ADC_CORE_SLEEP_DELAY_MS);
696	pm_runtime_use_autosuspend(dev);
697	pm_runtime_enable(dev);
698
699	ret = stm32_adc_core_hw_start(dev);
700	if (ret)
701		goto err_pm_stop;
702
703	ret = regulator_get_voltage(priv->vref);
704	if (ret < 0) {
705		dev_err(&pdev->dev, "vref get voltage failed, %d\n", ret);
706		goto err_hw_stop;
707	}
708	priv->common.vref_mv = ret / 1000;
709	dev_dbg(&pdev->dev, "vref+=%dmV\n", priv->common.vref_mv);
710
711	ret = of_property_read_u32(pdev->dev.of_node, "st,max-clk-rate-hz",
712				   &max_rate);
713	if (!ret)
714		priv->max_clk_rate = min(max_rate, priv->cfg->max_clk_rate_hz);
715	else
716		priv->max_clk_rate = priv->cfg->max_clk_rate_hz;
717
718	ret = priv->cfg->clk_sel(pdev, priv);
719	if (ret < 0)
720		goto err_hw_stop;
721
722	ret = stm32_adc_irq_probe(pdev, priv);
723	if (ret < 0)
724		goto err_hw_stop;
725
726	ret = of_platform_populate(np, NULL, NULL, &pdev->dev);
727	if (ret < 0) {
728		dev_err(&pdev->dev, "failed to populate DT children\n");
729		goto err_irq_remove;
730	}
731
732	pm_runtime_mark_last_busy(dev);
733	pm_runtime_put_autosuspend(dev);
734
735	return 0;
736
737err_irq_remove:
738	stm32_adc_irq_remove(pdev, priv);
739err_hw_stop:
740	stm32_adc_core_hw_stop(dev);
741err_pm_stop:
742	pm_runtime_disable(dev);
743	pm_runtime_set_suspended(dev);
744	pm_runtime_put_noidle(dev);
745
746	return ret;
747}
748
749static int stm32_adc_remove(struct platform_device *pdev)
750{
751	struct stm32_adc_common *common = platform_get_drvdata(pdev);
752	struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
753
754	pm_runtime_get_sync(&pdev->dev);
755	of_platform_depopulate(&pdev->dev);
756	stm32_adc_irq_remove(pdev, priv);
757	stm32_adc_core_hw_stop(&pdev->dev);
758	pm_runtime_disable(&pdev->dev);
759	pm_runtime_set_suspended(&pdev->dev);
760	pm_runtime_put_noidle(&pdev->dev);
761
762	return 0;
763}
764
765#if defined(CONFIG_PM)
766static int stm32_adc_core_runtime_suspend(struct device *dev)
767{
768	stm32_adc_core_hw_stop(dev);
769
770	return 0;
771}
772
773static int stm32_adc_core_runtime_resume(struct device *dev)
774{
775	return stm32_adc_core_hw_start(dev);
776}
777
778static int stm32_adc_core_runtime_idle(struct device *dev)
779{
780	pm_runtime_mark_last_busy(dev);
781
782	return 0;
783}
784#endif
785
786static const struct dev_pm_ops stm32_adc_core_pm_ops = {
787	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
788				pm_runtime_force_resume)
789	SET_RUNTIME_PM_OPS(stm32_adc_core_runtime_suspend,
790			   stm32_adc_core_runtime_resume,
791			   stm32_adc_core_runtime_idle)
792};
793
794static const struct stm32_adc_priv_cfg stm32f4_adc_priv_cfg = {
795	.regs = &stm32f4_adc_common_regs,
796	.clk_sel = stm32f4_adc_clk_sel,
797	.max_clk_rate_hz = 36000000,
798	.num_irqs = 1,
799};
800
801static const struct stm32_adc_priv_cfg stm32h7_adc_priv_cfg = {
802	.regs = &stm32h7_adc_common_regs,
803	.clk_sel = stm32h7_adc_clk_sel,
804	.max_clk_rate_hz = 36000000,
805	.has_syscfg = HAS_VBOOSTER,
806	.num_irqs = 1,
807};
808
809static const struct stm32_adc_priv_cfg stm32mp1_adc_priv_cfg = {
810	.regs = &stm32h7_adc_common_regs,
811	.clk_sel = stm32h7_adc_clk_sel,
812	.max_clk_rate_hz = 40000000,
813	.has_syscfg = HAS_VBOOSTER | HAS_ANASWVDD,
814	.num_irqs = 2,
815};
816
817static const struct of_device_id stm32_adc_of_match[] = {
818	{
819		.compatible = "st,stm32f4-adc-core",
820		.data = (void *)&stm32f4_adc_priv_cfg
821	}, {
822		.compatible = "st,stm32h7-adc-core",
823		.data = (void *)&stm32h7_adc_priv_cfg
824	}, {
825		.compatible = "st,stm32mp1-adc-core",
826		.data = (void *)&stm32mp1_adc_priv_cfg
827	}, {
828	},
829};
830MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
831
832static struct platform_driver stm32_adc_driver = {
833	.probe = stm32_adc_probe,
834	.remove = stm32_adc_remove,
835	.driver = {
836		.name = "stm32-adc-core",
837		.of_match_table = stm32_adc_of_match,
838		.pm = &stm32_adc_core_pm_ops,
839	},
840};
841module_platform_driver(stm32_adc_driver);
842
843MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
844MODULE_DESCRIPTION("STMicroelectronics STM32 ADC core driver");
845MODULE_LICENSE("GPL v2");
846MODULE_ALIAS("platform:stm32-adc-core");