Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  3
  4#include <linux/errno.h>
  5#include <linux/kernel.h>
  6#include <linux/mm.h>
  7#include <linux/smp.h>
  8#include <linux/prctl.h>
  9#include <linux/slab.h>
 10#include <linux/sched.h>
 11#include <linux/sched/idle.h>
 12#include <linux/sched/debug.h>
 13#include <linux/sched/task.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/init.h>
 16#include <linux/export.h>
 17#include <linux/pm.h>
 18#include <linux/tick.h>
 19#include <linux/random.h>
 20#include <linux/user-return-notifier.h>
 21#include <linux/dmi.h>
 22#include <linux/utsname.h>
 23#include <linux/stackprotector.h>
 24#include <linux/cpuidle.h>
 25#include <linux/acpi.h>
 26#include <linux/elf-randomize.h>
 27#include <trace/events/power.h>
 28#include <linux/hw_breakpoint.h>
 29#include <asm/cpu.h>
 30#include <asm/apic.h>
 31#include <asm/syscalls.h>
 32#include <linux/uaccess.h>
 33#include <asm/mwait.h>
 34#include <asm/fpu/internal.h>
 
 
 35#include <asm/debugreg.h>
 36#include <asm/nmi.h>
 37#include <asm/tlbflush.h>
 38#include <asm/mce.h>
 39#include <asm/vm86.h>
 40#include <asm/switch_to.h>
 41#include <asm/desc.h>
 42#include <asm/prctl.h>
 43#include <asm/spec-ctrl.h>
 
 44#include <asm/proto.h>
 
 
 
 45
 46#include "process.h"
 47
 48/*
 49 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 50 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 51 * so they are allowed to end up in the .data..cacheline_aligned
 52 * section. Since TSS's are completely CPU-local, we want them
 53 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 54 */
 55__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
 56	.x86_tss = {
 57		/*
 58		 * .sp0 is only used when entering ring 0 from a lower
 59		 * privilege level.  Since the init task never runs anything
 60		 * but ring 0 code, there is no need for a valid value here.
 61		 * Poison it.
 62		 */
 63		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
 64
 65		/*
 66		 * .sp1 is cpu_current_top_of_stack.  The init task never
 67		 * runs user code, but cpu_current_top_of_stack should still
 68		 * be well defined before the first context switch.
 69		 */
 70		.sp1 = TOP_OF_INIT_STACK,
 71
 72#ifdef CONFIG_X86_32
 73		.ss0 = __KERNEL_DS,
 74		.ss1 = __KERNEL_CS,
 75		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
 76#endif
 
 77	 },
 78#ifdef CONFIG_X86_32
 79	 /*
 80	  * Note that the .io_bitmap member must be extra-big. This is because
 81	  * the CPU will access an additional byte beyond the end of the IO
 82	  * permission bitmap. The extra byte must be all 1 bits, and must
 83	  * be within the limit.
 84	  */
 85	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
 86#endif
 87};
 88EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
 89
 90DEFINE_PER_CPU(bool, __tss_limit_invalid);
 91EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
 92
 93/*
 94 * this gets called so that we can store lazy state into memory and copy the
 95 * current task into the new thread.
 96 */
 97int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 98{
 99	memcpy(dst, src, arch_task_struct_size);
100#ifdef CONFIG_VM86
101	dst->thread.vm86 = NULL;
102#endif
 
 
103
104	return fpu__copy(dst, src);
105}
106
 
 
 
 
 
 
 
 
107/*
108 * Free current thread data structures etc..
109 */
110void exit_thread(struct task_struct *tsk)
111{
112	struct thread_struct *t = &tsk->thread;
113	unsigned long *bp = t->io_bitmap_ptr;
114	struct fpu *fpu = &t->fpu;
115
116	if (bp) {
117		struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
118
119		t->io_bitmap_ptr = NULL;
120		clear_thread_flag(TIF_IO_BITMAP);
121		/*
122		 * Careful, clear this in the TSS too:
123		 */
124		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
125		t->io_bitmap_max = 0;
126		put_cpu();
127		kfree(bp);
128	}
129
130	free_vm86(t);
131
132	fpu__drop(fpu);
133}
134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135void flush_thread(void)
136{
137	struct task_struct *tsk = current;
138
139	flush_ptrace_hw_breakpoint(tsk);
140	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
141
142	fpu__clear(&tsk->thread.fpu);
 
143}
144
145void disable_TSC(void)
146{
147	preempt_disable();
148	if (!test_and_set_thread_flag(TIF_NOTSC))
149		/*
150		 * Must flip the CPU state synchronously with
151		 * TIF_NOTSC in the current running context.
152		 */
153		cr4_set_bits(X86_CR4_TSD);
154	preempt_enable();
155}
156
157static void enable_TSC(void)
158{
159	preempt_disable();
160	if (test_and_clear_thread_flag(TIF_NOTSC))
161		/*
162		 * Must flip the CPU state synchronously with
163		 * TIF_NOTSC in the current running context.
164		 */
165		cr4_clear_bits(X86_CR4_TSD);
166	preempt_enable();
167}
168
169int get_tsc_mode(unsigned long adr)
170{
171	unsigned int val;
172
173	if (test_thread_flag(TIF_NOTSC))
174		val = PR_TSC_SIGSEGV;
175	else
176		val = PR_TSC_ENABLE;
177
178	return put_user(val, (unsigned int __user *)adr);
179}
180
181int set_tsc_mode(unsigned int val)
182{
183	if (val == PR_TSC_SIGSEGV)
184		disable_TSC();
185	else if (val == PR_TSC_ENABLE)
186		enable_TSC();
187	else
188		return -EINVAL;
189
190	return 0;
191}
192
193DEFINE_PER_CPU(u64, msr_misc_features_shadow);
194
195static void set_cpuid_faulting(bool on)
196{
197	u64 msrval;
198
199	msrval = this_cpu_read(msr_misc_features_shadow);
200	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
201	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
202	this_cpu_write(msr_misc_features_shadow, msrval);
203	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
204}
205
206static void disable_cpuid(void)
207{
208	preempt_disable();
209	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
210		/*
211		 * Must flip the CPU state synchronously with
212		 * TIF_NOCPUID in the current running context.
213		 */
214		set_cpuid_faulting(true);
215	}
216	preempt_enable();
217}
218
219static void enable_cpuid(void)
220{
221	preempt_disable();
222	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
223		/*
224		 * Must flip the CPU state synchronously with
225		 * TIF_NOCPUID in the current running context.
226		 */
227		set_cpuid_faulting(false);
228	}
229	preempt_enable();
230}
231
232static int get_cpuid_mode(void)
233{
234	return !test_thread_flag(TIF_NOCPUID);
235}
236
237static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
238{
239	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
240		return -ENODEV;
241
242	if (cpuid_enabled)
243		enable_cpuid();
244	else
245		disable_cpuid();
246
247	return 0;
248}
249
250/*
251 * Called immediately after a successful exec.
252 */
253void arch_setup_new_exec(void)
254{
255	/* If cpuid was previously disabled for this task, re-enable it. */
256	if (test_thread_flag(TIF_NOCPUID))
257		enable_cpuid();
258
259	/*
260	 * Don't inherit TIF_SSBD across exec boundary when
261	 * PR_SPEC_DISABLE_NOEXEC is used.
262	 */
263	if (test_thread_flag(TIF_SSBD) &&
264	    task_spec_ssb_noexec(current)) {
265		clear_thread_flag(TIF_SSBD);
266		task_clear_spec_ssb_disable(current);
267		task_clear_spec_ssb_noexec(current);
268		speculation_ctrl_update(task_thread_info(current)->flags);
269	}
270}
271
272static inline void switch_to_bitmap(struct thread_struct *prev,
273				    struct thread_struct *next,
274				    unsigned long tifp, unsigned long tifn)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
275{
276	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
 
 
 
 
 
 
 
 
 
 
 
 
277
278	if (tifn & _TIF_IO_BITMAP) {
279		/*
280		 * Copy the relevant range of the IO bitmap.
281		 * Normally this is 128 bytes or less:
282		 */
283		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
284		       max(prev->io_bitmap_max, next->io_bitmap_max));
285		/*
286		 * Make sure that the TSS limit is correct for the CPU
287		 * to notice the IO bitmap.
288		 */
289		refresh_tss_limit();
290	} else if (tifp & _TIF_IO_BITMAP) {
291		/*
292		 * Clear any possible leftover bits:
 
293		 */
294		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
 
 
 
 
295	}
 
 
 
 
 
 
 
 
296}
 
 
 
297
298#ifdef CONFIG_SMP
299
300struct ssb_state {
301	struct ssb_state	*shared_state;
302	raw_spinlock_t		lock;
303	unsigned int		disable_state;
304	unsigned long		local_state;
305};
306
307#define LSTATE_SSB	0
308
309static DEFINE_PER_CPU(struct ssb_state, ssb_state);
310
311void speculative_store_bypass_ht_init(void)
312{
313	struct ssb_state *st = this_cpu_ptr(&ssb_state);
314	unsigned int this_cpu = smp_processor_id();
315	unsigned int cpu;
316
317	st->local_state = 0;
318
319	/*
320	 * Shared state setup happens once on the first bringup
321	 * of the CPU. It's not destroyed on CPU hotunplug.
322	 */
323	if (st->shared_state)
324		return;
325
326	raw_spin_lock_init(&st->lock);
327
328	/*
329	 * Go over HT siblings and check whether one of them has set up the
330	 * shared state pointer already.
331	 */
332	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
333		if (cpu == this_cpu)
334			continue;
335
336		if (!per_cpu(ssb_state, cpu).shared_state)
337			continue;
338
339		/* Link it to the state of the sibling: */
340		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
341		return;
342	}
343
344	/*
345	 * First HT sibling to come up on the core.  Link shared state of
346	 * the first HT sibling to itself. The siblings on the same core
347	 * which come up later will see the shared state pointer and link
348	 * themself to the state of this CPU.
349	 */
350	st->shared_state = st;
351}
352
353/*
354 * Logic is: First HT sibling enables SSBD for both siblings in the core
355 * and last sibling to disable it, disables it for the whole core. This how
356 * MSR_SPEC_CTRL works in "hardware":
357 *
358 *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
359 */
360static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
361{
362	struct ssb_state *st = this_cpu_ptr(&ssb_state);
363	u64 msr = x86_amd_ls_cfg_base;
364
365	if (!static_cpu_has(X86_FEATURE_ZEN)) {
366		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
367		wrmsrl(MSR_AMD64_LS_CFG, msr);
368		return;
369	}
370
371	if (tifn & _TIF_SSBD) {
372		/*
373		 * Since this can race with prctl(), block reentry on the
374		 * same CPU.
375		 */
376		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
377			return;
378
379		msr |= x86_amd_ls_cfg_ssbd_mask;
380
381		raw_spin_lock(&st->shared_state->lock);
382		/* First sibling enables SSBD: */
383		if (!st->shared_state->disable_state)
384			wrmsrl(MSR_AMD64_LS_CFG, msr);
385		st->shared_state->disable_state++;
386		raw_spin_unlock(&st->shared_state->lock);
387	} else {
388		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
389			return;
390
391		raw_spin_lock(&st->shared_state->lock);
392		st->shared_state->disable_state--;
393		if (!st->shared_state->disable_state)
394			wrmsrl(MSR_AMD64_LS_CFG, msr);
395		raw_spin_unlock(&st->shared_state->lock);
396	}
397}
398#else
399static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
400{
401	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
402
403	wrmsrl(MSR_AMD64_LS_CFG, msr);
404}
405#endif
406
407static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
408{
409	/*
410	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
411	 * so ssbd_tif_to_spec_ctrl() just works.
412	 */
413	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
414}
415
416/*
417 * Update the MSRs managing speculation control, during context switch.
418 *
419 * tifp: Previous task's thread flags
420 * tifn: Next task's thread flags
421 */
422static __always_inline void __speculation_ctrl_update(unsigned long tifp,
423						      unsigned long tifn)
424{
425	unsigned long tif_diff = tifp ^ tifn;
426	u64 msr = x86_spec_ctrl_base;
427	bool updmsr = false;
428
429	lockdep_assert_irqs_disabled();
430
431	/*
432	 * If TIF_SSBD is different, select the proper mitigation
433	 * method. Note that if SSBD mitigation is disabled or permanentely
434	 * enabled this branch can't be taken because nothing can set
435	 * TIF_SSBD.
436	 */
437	if (tif_diff & _TIF_SSBD) {
438		if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
439			amd_set_ssb_virt_state(tifn);
440		} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
 
441			amd_set_core_ssb_state(tifn);
442		} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
443			   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
444			msr |= ssbd_tif_to_spec_ctrl(tifn);
445			updmsr  = true;
446		}
447	}
448
449	/*
450	 * Only evaluate TIF_SPEC_IB if conditional STIBP is enabled,
451	 * otherwise avoid the MSR write.
452	 */
453	if (IS_ENABLED(CONFIG_SMP) &&
454	    static_branch_unlikely(&switch_to_cond_stibp)) {
455		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
456		msr |= stibp_tif_to_spec_ctrl(tifn);
457	}
458
459	if (updmsr)
460		wrmsrl(MSR_IA32_SPEC_CTRL, msr);
461}
462
463static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
464{
465	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
466		if (task_spec_ssb_disable(tsk))
467			set_tsk_thread_flag(tsk, TIF_SSBD);
468		else
469			clear_tsk_thread_flag(tsk, TIF_SSBD);
470
471		if (task_spec_ib_disable(tsk))
472			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
473		else
474			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
475	}
476	/* Return the updated threadinfo flags*/
477	return task_thread_info(tsk)->flags;
478}
479
480void speculation_ctrl_update(unsigned long tif)
481{
482	unsigned long flags;
483
484	/* Forced update. Make sure all relevant TIF flags are different */
485	local_irq_save(flags);
486	__speculation_ctrl_update(~tif, tif);
487	local_irq_restore(flags);
488}
489
490/* Called from seccomp/prctl update */
491void speculation_ctrl_update_current(void)
492{
493	preempt_disable();
494	speculation_ctrl_update(speculation_ctrl_update_tif(current));
495	preempt_enable();
496}
497
 
 
 
 
 
 
 
 
 
 
 
498void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
499{
500	struct thread_struct *prev, *next;
501	unsigned long tifp, tifn;
502
503	prev = &prev_p->thread;
504	next = &next_p->thread;
505
506	tifn = READ_ONCE(task_thread_info(next_p)->flags);
507	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
508	switch_to_bitmap(prev, next, tifp, tifn);
509
510	propagate_user_return_notify(prev_p, next_p);
511
512	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
513	    arch_has_block_step()) {
514		unsigned long debugctl, msk;
515
516		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
517		debugctl &= ~DEBUGCTLMSR_BTF;
518		msk = tifn & _TIF_BLOCKSTEP;
519		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
520		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
521	}
522
523	if ((tifp ^ tifn) & _TIF_NOTSC)
524		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
525
526	if ((tifp ^ tifn) & _TIF_NOCPUID)
527		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
528
529	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
530		__speculation_ctrl_update(tifp, tifn);
531	} else {
532		speculation_ctrl_update_tif(prev_p);
533		tifn = speculation_ctrl_update_tif(next_p);
534
535		/* Enforce MSR update to ensure consistent state */
536		__speculation_ctrl_update(~tifn, tifn);
537	}
538}
539
540/*
541 * Idle related variables and functions
542 */
543unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
544EXPORT_SYMBOL(boot_option_idle_override);
545
546static void (*x86_idle)(void);
547
548#ifndef CONFIG_SMP
549static inline void play_dead(void)
550{
551	BUG();
552}
553#endif
554
555void arch_cpu_idle_enter(void)
556{
557	tsc_verify_tsc_adjust(false);
558	local_touch_nmi();
559}
560
561void arch_cpu_idle_dead(void)
562{
563	play_dead();
564}
565
566/*
567 * Called from the generic idle code.
568 */
569void arch_cpu_idle(void)
570{
571	x86_idle();
572}
573
574/*
575 * We use this if we don't have any better idle routine..
576 */
577void __cpuidle default_idle(void)
578{
579	trace_cpu_idle_rcuidle(1, smp_processor_id());
580	safe_halt();
581	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
582}
583#if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
584EXPORT_SYMBOL(default_idle);
585#endif
586
587#ifdef CONFIG_XEN
588bool xen_set_default_idle(void)
589{
590	bool ret = !!x86_idle;
591
592	x86_idle = default_idle;
593
594	return ret;
595}
596#endif
597
598void stop_this_cpu(void *dummy)
599{
600	local_irq_disable();
601	/*
602	 * Remove this CPU:
603	 */
604	set_cpu_online(smp_processor_id(), false);
605	disable_local_APIC();
606	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
607
608	/*
609	 * Use wbinvd on processors that support SME. This provides support
610	 * for performing a successful kexec when going from SME inactive
611	 * to SME active (or vice-versa). The cache must be cleared so that
612	 * if there are entries with the same physical address, both with and
613	 * without the encryption bit, they don't race each other when flushed
614	 * and potentially end up with the wrong entry being committed to
615	 * memory.
 
 
 
616	 */
617	if (boot_cpu_has(X86_FEATURE_SME))
618		native_wbinvd();
619	for (;;) {
620		/*
621		 * Use native_halt() so that memory contents don't change
622		 * (stack usage and variables) after possibly issuing the
623		 * native_wbinvd() above.
624		 */
625		native_halt();
626	}
627}
628
629/*
630 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
631 * states (local apic timer and TSC stop).
 
 
632 */
633static void amd_e400_idle(void)
634{
635	/*
636	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
637	 * gets set after static_cpu_has() places have been converted via
638	 * alternatives.
639	 */
640	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
641		default_idle();
642		return;
643	}
644
645	tick_broadcast_enter();
646
647	default_idle();
648
649	/*
650	 * The switch back from broadcast mode needs to be called with
651	 * interrupts disabled.
652	 */
653	local_irq_disable();
654	tick_broadcast_exit();
655	local_irq_enable();
656}
657
658/*
659 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
660 * We can't rely on cpuidle installing MWAIT, because it will not load
661 * on systems that support only C1 -- so the boot default must be MWAIT.
662 *
663 * Some AMD machines are the opposite, they depend on using HALT.
664 *
665 * So for default C1, which is used during boot until cpuidle loads,
666 * use MWAIT-C1 on Intel HW that has it, else use HALT.
667 */
668static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
669{
670	if (c->x86_vendor != X86_VENDOR_INTEL)
 
 
 
 
 
 
 
671		return 0;
672
673	if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
 
674		return 0;
675
676	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
677}
678
679/*
680 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
681 * with interrupts enabled and no flags, which is backwards compatible with the
682 * original MWAIT implementation.
683 */
684static __cpuidle void mwait_idle(void)
685{
686	if (!current_set_polling_and_test()) {
687		trace_cpu_idle_rcuidle(1, smp_processor_id());
688		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
689			mb(); /* quirk */
690			clflush((void *)&current_thread_info()->flags);
691			mb(); /* quirk */
692		}
693
694		__monitor((void *)&current_thread_info()->flags, 0, 0);
695		if (!need_resched())
696			__sti_mwait(0, 0);
697		else
698			local_irq_enable();
699		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
700	} else {
701		local_irq_enable();
702	}
703	__current_clr_polling();
704}
705
706void select_idle_routine(const struct cpuinfo_x86 *c)
707{
708#ifdef CONFIG_SMP
709	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
710		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
711#endif
712	if (x86_idle || boot_option_idle_override == IDLE_POLL)
713		return;
714
715	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
716		pr_info("using AMD E400 aware idle routine\n");
717		x86_idle = amd_e400_idle;
718	} else if (prefer_mwait_c1_over_halt(c)) {
719		pr_info("using mwait in idle threads\n");
720		x86_idle = mwait_idle;
 
 
 
721	} else
722		x86_idle = default_idle;
723}
724
725void amd_e400_c1e_apic_setup(void)
726{
727	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
728		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
729		local_irq_disable();
730		tick_broadcast_force();
731		local_irq_enable();
732	}
733}
734
735void __init arch_post_acpi_subsys_init(void)
736{
737	u32 lo, hi;
738
739	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
740		return;
741
742	/*
743	 * AMD E400 detection needs to happen after ACPI has been enabled. If
744	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
745	 * MSR_K8_INT_PENDING_MSG.
746	 */
747	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
748	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
749		return;
750
751	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
752
753	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
754		mark_tsc_unstable("TSC halt in AMD C1E");
755	pr_info("System has AMD C1E enabled\n");
756}
757
758static int __init idle_setup(char *str)
759{
760	if (!str)
761		return -EINVAL;
762
763	if (!strcmp(str, "poll")) {
764		pr_info("using polling idle threads\n");
765		boot_option_idle_override = IDLE_POLL;
766		cpu_idle_poll_ctrl(true);
767	} else if (!strcmp(str, "halt")) {
768		/*
769		 * When the boot option of idle=halt is added, halt is
770		 * forced to be used for CPU idle. In such case CPU C2/C3
771		 * won't be used again.
772		 * To continue to load the CPU idle driver, don't touch
773		 * the boot_option_idle_override.
774		 */
775		x86_idle = default_idle;
776		boot_option_idle_override = IDLE_HALT;
777	} else if (!strcmp(str, "nomwait")) {
778		/*
779		 * If the boot option of "idle=nomwait" is added,
780		 * it means that mwait will be disabled for CPU C2/C3
781		 * states. In such case it won't touch the variable
782		 * of boot_option_idle_override.
783		 */
784		boot_option_idle_override = IDLE_NOMWAIT;
785	} else
786		return -1;
787
788	return 0;
789}
790early_param("idle", idle_setup);
791
792unsigned long arch_align_stack(unsigned long sp)
793{
794	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
795		sp -= get_random_int() % 8192;
796	return sp & ~0xf;
797}
798
799unsigned long arch_randomize_brk(struct mm_struct *mm)
800{
801	return randomize_page(mm->brk, 0x02000000);
802}
803
804/*
805 * Called from fs/proc with a reference on @p to find the function
806 * which called into schedule(). This needs to be done carefully
807 * because the task might wake up and we might look at a stack
808 * changing under us.
809 */
810unsigned long get_wchan(struct task_struct *p)
811{
812	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
813	int count = 0;
814
815	if (p == current || p->state == TASK_RUNNING)
816		return 0;
817
818	if (!try_get_task_stack(p))
819		return 0;
820
821	start = (unsigned long)task_stack_page(p);
822	if (!start)
823		goto out;
824
825	/*
826	 * Layout of the stack page:
827	 *
828	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
829	 * PADDING
830	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
831	 * stack
832	 * ----------- bottom = start
833	 *
834	 * The tasks stack pointer points at the location where the
835	 * framepointer is stored. The data on the stack is:
836	 * ... IP FP ... IP FP
837	 *
838	 * We need to read FP and IP, so we need to adjust the upper
839	 * bound by another unsigned long.
840	 */
841	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
842	top -= 2 * sizeof(unsigned long);
843	bottom = start;
844
845	sp = READ_ONCE(p->thread.sp);
846	if (sp < bottom || sp > top)
847		goto out;
848
849	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
850	do {
851		if (fp < bottom || fp > top)
852			goto out;
853		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
854		if (!in_sched_functions(ip)) {
855			ret = ip;
856			goto out;
857		}
858		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
859	} while (count++ < 16 && p->state != TASK_RUNNING);
860
861out:
862	put_task_stack(p);
863	return ret;
 
864}
865
866long do_arch_prctl_common(struct task_struct *task, int option,
867			  unsigned long cpuid_enabled)
868{
869	switch (option) {
870	case ARCH_GET_CPUID:
871		return get_cpuid_mode();
872	case ARCH_SET_CPUID:
873		return set_cpuid_mode(task, cpuid_enabled);
 
 
 
 
 
 
874	}
875
876	return -EINVAL;
877}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   3
   4#include <linux/errno.h>
   5#include <linux/kernel.h>
   6#include <linux/mm.h>
   7#include <linux/smp.h>
   8#include <linux/prctl.h>
   9#include <linux/slab.h>
  10#include <linux/sched.h>
  11#include <linux/sched/idle.h>
  12#include <linux/sched/debug.h>
  13#include <linux/sched/task.h>
  14#include <linux/sched/task_stack.h>
  15#include <linux/init.h>
  16#include <linux/export.h>
  17#include <linux/pm.h>
  18#include <linux/tick.h>
  19#include <linux/random.h>
  20#include <linux/user-return-notifier.h>
  21#include <linux/dmi.h>
  22#include <linux/utsname.h>
  23#include <linux/stackprotector.h>
  24#include <linux/cpuidle.h>
  25#include <linux/acpi.h>
  26#include <linux/elf-randomize.h>
  27#include <trace/events/power.h>
  28#include <linux/hw_breakpoint.h>
  29#include <asm/cpu.h>
  30#include <asm/apic.h>
 
  31#include <linux/uaccess.h>
  32#include <asm/mwait.h>
  33#include <asm/fpu/api.h>
  34#include <asm/fpu/sched.h>
  35#include <asm/fpu/xstate.h>
  36#include <asm/debugreg.h>
  37#include <asm/nmi.h>
  38#include <asm/tlbflush.h>
  39#include <asm/mce.h>
  40#include <asm/vm86.h>
  41#include <asm/switch_to.h>
  42#include <asm/desc.h>
  43#include <asm/prctl.h>
  44#include <asm/spec-ctrl.h>
  45#include <asm/io_bitmap.h>
  46#include <asm/proto.h>
  47#include <asm/frame.h>
  48#include <asm/unwind.h>
  49#include <asm/tdx.h>
  50
  51#include "process.h"
  52
  53/*
  54 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  55 * no more per-task TSS's. The TSS size is kept cacheline-aligned
  56 * so they are allowed to end up in the .data..cacheline_aligned
  57 * section. Since TSS's are completely CPU-local, we want them
  58 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  59 */
  60__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
  61	.x86_tss = {
  62		/*
  63		 * .sp0 is only used when entering ring 0 from a lower
  64		 * privilege level.  Since the init task never runs anything
  65		 * but ring 0 code, there is no need for a valid value here.
  66		 * Poison it.
  67		 */
  68		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
  69
  70#ifdef CONFIG_X86_32
 
 
 
 
  71		.sp1 = TOP_OF_INIT_STACK,
  72
 
  73		.ss0 = __KERNEL_DS,
  74		.ss1 = __KERNEL_CS,
 
  75#endif
  76		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
  77	 },
 
 
 
 
 
 
 
 
 
  78};
  79EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
  80
  81DEFINE_PER_CPU(bool, __tss_limit_invalid);
  82EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
  83
  84/*
  85 * this gets called so that we can store lazy state into memory and copy the
  86 * current task into the new thread.
  87 */
  88int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  89{
  90	memcpy(dst, src, arch_task_struct_size);
  91#ifdef CONFIG_VM86
  92	dst->thread.vm86 = NULL;
  93#endif
  94	/* Drop the copied pointer to current's fpstate */
  95	dst->thread.fpu.fpstate = NULL;
  96
  97	return 0;
  98}
  99
 100#ifdef CONFIG_X86_64
 101void arch_release_task_struct(struct task_struct *tsk)
 102{
 103	if (fpu_state_size_dynamic())
 104		fpstate_free(&tsk->thread.fpu);
 105}
 106#endif
 107
 108/*
 109 * Free thread data structures etc..
 110 */
 111void exit_thread(struct task_struct *tsk)
 112{
 113	struct thread_struct *t = &tsk->thread;
 
 114	struct fpu *fpu = &t->fpu;
 115
 116	if (test_thread_flag(TIF_IO_BITMAP))
 117		io_bitmap_exit(tsk);
 
 
 
 
 
 
 
 
 
 
 
 118
 119	free_vm86(t);
 120
 121	fpu__drop(fpu);
 122}
 123
 124static int set_new_tls(struct task_struct *p, unsigned long tls)
 125{
 126	struct user_desc __user *utls = (struct user_desc __user *)tls;
 127
 128	if (in_ia32_syscall())
 129		return do_set_thread_area(p, -1, utls, 0);
 130	else
 131		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
 132}
 133
 134int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
 135{
 136	unsigned long clone_flags = args->flags;
 137	unsigned long sp = args->stack;
 138	unsigned long tls = args->tls;
 139	struct inactive_task_frame *frame;
 140	struct fork_frame *fork_frame;
 141	struct pt_regs *childregs;
 142	int ret = 0;
 143
 144	childregs = task_pt_regs(p);
 145	fork_frame = container_of(childregs, struct fork_frame, regs);
 146	frame = &fork_frame->frame;
 147
 148	frame->bp = encode_frame_pointer(childregs);
 149	frame->ret_addr = (unsigned long) ret_from_fork;
 150	p->thread.sp = (unsigned long) fork_frame;
 151	p->thread.io_bitmap = NULL;
 152	p->thread.iopl_warn = 0;
 153	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
 154
 155#ifdef CONFIG_X86_64
 156	current_save_fsgs();
 157	p->thread.fsindex = current->thread.fsindex;
 158	p->thread.fsbase = current->thread.fsbase;
 159	p->thread.gsindex = current->thread.gsindex;
 160	p->thread.gsbase = current->thread.gsbase;
 161
 162	savesegment(es, p->thread.es);
 163	savesegment(ds, p->thread.ds);
 164#else
 165	p->thread.sp0 = (unsigned long) (childregs + 1);
 166	savesegment(gs, p->thread.gs);
 167	/*
 168	 * Clear all status flags including IF and set fixed bit. 64bit
 169	 * does not have this initialization as the frame does not contain
 170	 * flags. The flags consistency (especially vs. AC) is there
 171	 * ensured via objtool, which lacks 32bit support.
 172	 */
 173	frame->flags = X86_EFLAGS_FIXED;
 174#endif
 175
 176	fpu_clone(p, clone_flags, args->fn);
 177
 178	/* Kernel thread ? */
 179	if (unlikely(p->flags & PF_KTHREAD)) {
 180		p->thread.pkru = pkru_get_init_value();
 181		memset(childregs, 0, sizeof(struct pt_regs));
 182		kthread_frame_init(frame, args->fn, args->fn_arg);
 183		return 0;
 184	}
 185
 186	/*
 187	 * Clone current's PKRU value from hardware. tsk->thread.pkru
 188	 * is only valid when scheduled out.
 189	 */
 190	p->thread.pkru = read_pkru();
 191
 192	frame->bx = 0;
 193	*childregs = *current_pt_regs();
 194	childregs->ax = 0;
 195	if (sp)
 196		childregs->sp = sp;
 197
 198	if (unlikely(args->fn)) {
 199		/*
 200		 * A user space thread, but it doesn't return to
 201		 * ret_after_fork().
 202		 *
 203		 * In order to indicate that to tools like gdb,
 204		 * we reset the stack and instruction pointers.
 205		 *
 206		 * It does the same kernel frame setup to return to a kernel
 207		 * function that a kernel thread does.
 208		 */
 209		childregs->sp = 0;
 210		childregs->ip = 0;
 211		kthread_frame_init(frame, args->fn, args->fn_arg);
 212		return 0;
 213	}
 214
 215	/* Set a new TLS for the child thread? */
 216	if (clone_flags & CLONE_SETTLS)
 217		ret = set_new_tls(p, tls);
 218
 219	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
 220		io_bitmap_share(p);
 221
 222	return ret;
 223}
 224
 225static void pkru_flush_thread(void)
 226{
 227	/*
 228	 * If PKRU is enabled the default PKRU value has to be loaded into
 229	 * the hardware right here (similar to context switch).
 230	 */
 231	pkru_write_default();
 232}
 233
 234void flush_thread(void)
 235{
 236	struct task_struct *tsk = current;
 237
 238	flush_ptrace_hw_breakpoint(tsk);
 239	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
 240
 241	fpu_flush_thread();
 242	pkru_flush_thread();
 243}
 244
 245void disable_TSC(void)
 246{
 247	preempt_disable();
 248	if (!test_and_set_thread_flag(TIF_NOTSC))
 249		/*
 250		 * Must flip the CPU state synchronously with
 251		 * TIF_NOTSC in the current running context.
 252		 */
 253		cr4_set_bits(X86_CR4_TSD);
 254	preempt_enable();
 255}
 256
 257static void enable_TSC(void)
 258{
 259	preempt_disable();
 260	if (test_and_clear_thread_flag(TIF_NOTSC))
 261		/*
 262		 * Must flip the CPU state synchronously with
 263		 * TIF_NOTSC in the current running context.
 264		 */
 265		cr4_clear_bits(X86_CR4_TSD);
 266	preempt_enable();
 267}
 268
 269int get_tsc_mode(unsigned long adr)
 270{
 271	unsigned int val;
 272
 273	if (test_thread_flag(TIF_NOTSC))
 274		val = PR_TSC_SIGSEGV;
 275	else
 276		val = PR_TSC_ENABLE;
 277
 278	return put_user(val, (unsigned int __user *)adr);
 279}
 280
 281int set_tsc_mode(unsigned int val)
 282{
 283	if (val == PR_TSC_SIGSEGV)
 284		disable_TSC();
 285	else if (val == PR_TSC_ENABLE)
 286		enable_TSC();
 287	else
 288		return -EINVAL;
 289
 290	return 0;
 291}
 292
 293DEFINE_PER_CPU(u64, msr_misc_features_shadow);
 294
 295static void set_cpuid_faulting(bool on)
 296{
 297	u64 msrval;
 298
 299	msrval = this_cpu_read(msr_misc_features_shadow);
 300	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
 301	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
 302	this_cpu_write(msr_misc_features_shadow, msrval);
 303	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
 304}
 305
 306static void disable_cpuid(void)
 307{
 308	preempt_disable();
 309	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
 310		/*
 311		 * Must flip the CPU state synchronously with
 312		 * TIF_NOCPUID in the current running context.
 313		 */
 314		set_cpuid_faulting(true);
 315	}
 316	preempt_enable();
 317}
 318
 319static void enable_cpuid(void)
 320{
 321	preempt_disable();
 322	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
 323		/*
 324		 * Must flip the CPU state synchronously with
 325		 * TIF_NOCPUID in the current running context.
 326		 */
 327		set_cpuid_faulting(false);
 328	}
 329	preempt_enable();
 330}
 331
 332static int get_cpuid_mode(void)
 333{
 334	return !test_thread_flag(TIF_NOCPUID);
 335}
 336
 337static int set_cpuid_mode(unsigned long cpuid_enabled)
 338{
 339	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
 340		return -ENODEV;
 341
 342	if (cpuid_enabled)
 343		enable_cpuid();
 344	else
 345		disable_cpuid();
 346
 347	return 0;
 348}
 349
 350/*
 351 * Called immediately after a successful exec.
 352 */
 353void arch_setup_new_exec(void)
 354{
 355	/* If cpuid was previously disabled for this task, re-enable it. */
 356	if (test_thread_flag(TIF_NOCPUID))
 357		enable_cpuid();
 358
 359	/*
 360	 * Don't inherit TIF_SSBD across exec boundary when
 361	 * PR_SPEC_DISABLE_NOEXEC is used.
 362	 */
 363	if (test_thread_flag(TIF_SSBD) &&
 364	    task_spec_ssb_noexec(current)) {
 365		clear_thread_flag(TIF_SSBD);
 366		task_clear_spec_ssb_disable(current);
 367		task_clear_spec_ssb_noexec(current);
 368		speculation_ctrl_update(read_thread_flags());
 369	}
 370}
 371
 372#ifdef CONFIG_X86_IOPL_IOPERM
 373static inline void switch_to_bitmap(unsigned long tifp)
 374{
 375	/*
 376	 * Invalidate I/O bitmap if the previous task used it. This prevents
 377	 * any possible leakage of an active I/O bitmap.
 378	 *
 379	 * If the next task has an I/O bitmap it will handle it on exit to
 380	 * user mode.
 381	 */
 382	if (tifp & _TIF_IO_BITMAP)
 383		tss_invalidate_io_bitmap();
 384}
 385
 386static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
 387{
 388	/*
 389	 * Copy at least the byte range of the incoming tasks bitmap which
 390	 * covers the permitted I/O ports.
 391	 *
 392	 * If the previous task which used an I/O bitmap had more bits
 393	 * permitted, then the copy needs to cover those as well so they
 394	 * get turned off.
 395	 */
 396	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
 397	       max(tss->io_bitmap.prev_max, iobm->max));
 398
 399	/*
 400	 * Store the new max and the sequence number of this bitmap
 401	 * and a pointer to the bitmap itself.
 402	 */
 403	tss->io_bitmap.prev_max = iobm->max;
 404	tss->io_bitmap.prev_sequence = iobm->sequence;
 405}
 406
 407/**
 408 * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode
 409 */
 410void native_tss_update_io_bitmap(void)
 411{
 412	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
 413	struct thread_struct *t = &current->thread;
 414	u16 *base = &tss->x86_tss.io_bitmap_base;
 415
 416	if (!test_thread_flag(TIF_IO_BITMAP)) {
 417		native_tss_invalidate_io_bitmap();
 418		return;
 419	}
 420
 421	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
 422		*base = IO_BITMAP_OFFSET_VALID_ALL;
 423	} else {
 424		struct io_bitmap *iobm = t->io_bitmap;
 425
 
 
 
 
 
 
 
 
 
 
 
 
 
 426		/*
 427		 * Only copy bitmap data when the sequence number differs. The
 428		 * update time is accounted to the incoming task.
 429		 */
 430		if (tss->io_bitmap.prev_sequence != iobm->sequence)
 431			tss_copy_io_bitmap(tss, iobm);
 432
 433		/* Enable the bitmap */
 434		*base = IO_BITMAP_OFFSET_VALID_MAP;
 435	}
 436
 437	/*
 438	 * Make sure that the TSS limit is covering the IO bitmap. It might have
 439	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
 440	 * access from user space to trigger a #GP because tbe bitmap is outside
 441	 * the TSS limit.
 442	 */
 443	refresh_tss_limit();
 444}
 445#else /* CONFIG_X86_IOPL_IOPERM */
 446static inline void switch_to_bitmap(unsigned long tifp) { }
 447#endif
 448
 449#ifdef CONFIG_SMP
 450
 451struct ssb_state {
 452	struct ssb_state	*shared_state;
 453	raw_spinlock_t		lock;
 454	unsigned int		disable_state;
 455	unsigned long		local_state;
 456};
 457
 458#define LSTATE_SSB	0
 459
 460static DEFINE_PER_CPU(struct ssb_state, ssb_state);
 461
 462void speculative_store_bypass_ht_init(void)
 463{
 464	struct ssb_state *st = this_cpu_ptr(&ssb_state);
 465	unsigned int this_cpu = smp_processor_id();
 466	unsigned int cpu;
 467
 468	st->local_state = 0;
 469
 470	/*
 471	 * Shared state setup happens once on the first bringup
 472	 * of the CPU. It's not destroyed on CPU hotunplug.
 473	 */
 474	if (st->shared_state)
 475		return;
 476
 477	raw_spin_lock_init(&st->lock);
 478
 479	/*
 480	 * Go over HT siblings and check whether one of them has set up the
 481	 * shared state pointer already.
 482	 */
 483	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
 484		if (cpu == this_cpu)
 485			continue;
 486
 487		if (!per_cpu(ssb_state, cpu).shared_state)
 488			continue;
 489
 490		/* Link it to the state of the sibling: */
 491		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
 492		return;
 493	}
 494
 495	/*
 496	 * First HT sibling to come up on the core.  Link shared state of
 497	 * the first HT sibling to itself. The siblings on the same core
 498	 * which come up later will see the shared state pointer and link
 499	 * themselves to the state of this CPU.
 500	 */
 501	st->shared_state = st;
 502}
 503
 504/*
 505 * Logic is: First HT sibling enables SSBD for both siblings in the core
 506 * and last sibling to disable it, disables it for the whole core. This how
 507 * MSR_SPEC_CTRL works in "hardware":
 508 *
 509 *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
 510 */
 511static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
 512{
 513	struct ssb_state *st = this_cpu_ptr(&ssb_state);
 514	u64 msr = x86_amd_ls_cfg_base;
 515
 516	if (!static_cpu_has(X86_FEATURE_ZEN)) {
 517		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
 518		wrmsrl(MSR_AMD64_LS_CFG, msr);
 519		return;
 520	}
 521
 522	if (tifn & _TIF_SSBD) {
 523		/*
 524		 * Since this can race with prctl(), block reentry on the
 525		 * same CPU.
 526		 */
 527		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
 528			return;
 529
 530		msr |= x86_amd_ls_cfg_ssbd_mask;
 531
 532		raw_spin_lock(&st->shared_state->lock);
 533		/* First sibling enables SSBD: */
 534		if (!st->shared_state->disable_state)
 535			wrmsrl(MSR_AMD64_LS_CFG, msr);
 536		st->shared_state->disable_state++;
 537		raw_spin_unlock(&st->shared_state->lock);
 538	} else {
 539		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
 540			return;
 541
 542		raw_spin_lock(&st->shared_state->lock);
 543		st->shared_state->disable_state--;
 544		if (!st->shared_state->disable_state)
 545			wrmsrl(MSR_AMD64_LS_CFG, msr);
 546		raw_spin_unlock(&st->shared_state->lock);
 547	}
 548}
 549#else
 550static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
 551{
 552	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
 553
 554	wrmsrl(MSR_AMD64_LS_CFG, msr);
 555}
 556#endif
 557
 558static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
 559{
 560	/*
 561	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
 562	 * so ssbd_tif_to_spec_ctrl() just works.
 563	 */
 564	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
 565}
 566
 567/*
 568 * Update the MSRs managing speculation control, during context switch.
 569 *
 570 * tifp: Previous task's thread flags
 571 * tifn: Next task's thread flags
 572 */
 573static __always_inline void __speculation_ctrl_update(unsigned long tifp,
 574						      unsigned long tifn)
 575{
 576	unsigned long tif_diff = tifp ^ tifn;
 577	u64 msr = x86_spec_ctrl_base;
 578	bool updmsr = false;
 579
 580	lockdep_assert_irqs_disabled();
 581
 582	/* Handle change of TIF_SSBD depending on the mitigation method. */
 583	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
 584		if (tif_diff & _TIF_SSBD)
 
 
 
 
 
 585			amd_set_ssb_virt_state(tifn);
 586	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
 587		if (tif_diff & _TIF_SSBD)
 588			amd_set_core_ssb_state(tifn);
 589	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
 590		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
 591		updmsr |= !!(tif_diff & _TIF_SSBD);
 592		msr |= ssbd_tif_to_spec_ctrl(tifn);
 
 593	}
 594
 595	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
 
 
 
 596	if (IS_ENABLED(CONFIG_SMP) &&
 597	    static_branch_unlikely(&switch_to_cond_stibp)) {
 598		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
 599		msr |= stibp_tif_to_spec_ctrl(tifn);
 600	}
 601
 602	if (updmsr)
 603		update_spec_ctrl_cond(msr);
 604}
 605
 606static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
 607{
 608	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
 609		if (task_spec_ssb_disable(tsk))
 610			set_tsk_thread_flag(tsk, TIF_SSBD);
 611		else
 612			clear_tsk_thread_flag(tsk, TIF_SSBD);
 613
 614		if (task_spec_ib_disable(tsk))
 615			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
 616		else
 617			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
 618	}
 619	/* Return the updated threadinfo flags*/
 620	return read_task_thread_flags(tsk);
 621}
 622
 623void speculation_ctrl_update(unsigned long tif)
 624{
 625	unsigned long flags;
 626
 627	/* Forced update. Make sure all relevant TIF flags are different */
 628	local_irq_save(flags);
 629	__speculation_ctrl_update(~tif, tif);
 630	local_irq_restore(flags);
 631}
 632
 633/* Called from seccomp/prctl update */
 634void speculation_ctrl_update_current(void)
 635{
 636	preempt_disable();
 637	speculation_ctrl_update(speculation_ctrl_update_tif(current));
 638	preempt_enable();
 639}
 640
 641static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
 642{
 643	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
 644
 645	newval = cr4 ^ mask;
 646	if (newval != cr4) {
 647		this_cpu_write(cpu_tlbstate.cr4, newval);
 648		__write_cr4(newval);
 649	}
 650}
 651
 652void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
 653{
 
 654	unsigned long tifp, tifn;
 655
 656	tifn = read_task_thread_flags(next_p);
 657	tifp = read_task_thread_flags(prev_p);
 658
 659	switch_to_bitmap(tifp);
 
 
 660
 661	propagate_user_return_notify(prev_p, next_p);
 662
 663	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
 664	    arch_has_block_step()) {
 665		unsigned long debugctl, msk;
 666
 667		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 668		debugctl &= ~DEBUGCTLMSR_BTF;
 669		msk = tifn & _TIF_BLOCKSTEP;
 670		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
 671		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 672	}
 673
 674	if ((tifp ^ tifn) & _TIF_NOTSC)
 675		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
 676
 677	if ((tifp ^ tifn) & _TIF_NOCPUID)
 678		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
 679
 680	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
 681		__speculation_ctrl_update(tifp, tifn);
 682	} else {
 683		speculation_ctrl_update_tif(prev_p);
 684		tifn = speculation_ctrl_update_tif(next_p);
 685
 686		/* Enforce MSR update to ensure consistent state */
 687		__speculation_ctrl_update(~tifn, tifn);
 688	}
 689}
 690
 691/*
 692 * Idle related variables and functions
 693 */
 694unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
 695EXPORT_SYMBOL(boot_option_idle_override);
 696
 697static void (*x86_idle)(void);
 698
 699#ifndef CONFIG_SMP
 700static inline void play_dead(void)
 701{
 702	BUG();
 703}
 704#endif
 705
 706void arch_cpu_idle_enter(void)
 707{
 708	tsc_verify_tsc_adjust(false);
 709	local_touch_nmi();
 710}
 711
 712void arch_cpu_idle_dead(void)
 713{
 714	play_dead();
 715}
 716
 717/*
 718 * Called from the generic idle code.
 719 */
 720void arch_cpu_idle(void)
 721{
 722	x86_idle();
 723}
 724
 725/*
 726 * We use this if we don't have any better idle routine..
 727 */
 728void __cpuidle default_idle(void)
 729{
 730	raw_safe_halt();
 
 
 731}
 732#if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
 733EXPORT_SYMBOL(default_idle);
 734#endif
 735
 736#ifdef CONFIG_XEN
 737bool xen_set_default_idle(void)
 738{
 739	bool ret = !!x86_idle;
 740
 741	x86_idle = default_idle;
 742
 743	return ret;
 744}
 745#endif
 746
 747void __noreturn stop_this_cpu(void *dummy)
 748{
 749	local_irq_disable();
 750	/*
 751	 * Remove this CPU:
 752	 */
 753	set_cpu_online(smp_processor_id(), false);
 754	disable_local_APIC();
 755	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
 756
 757	/*
 758	 * Use wbinvd on processors that support SME. This provides support
 759	 * for performing a successful kexec when going from SME inactive
 760	 * to SME active (or vice-versa). The cache must be cleared so that
 761	 * if there are entries with the same physical address, both with and
 762	 * without the encryption bit, they don't race each other when flushed
 763	 * and potentially end up with the wrong entry being committed to
 764	 * memory.
 765	 *
 766	 * Test the CPUID bit directly because the machine might've cleared
 767	 * X86_FEATURE_SME due to cmdline options.
 768	 */
 769	if (cpuid_eax(0x8000001f) & BIT(0))
 770		native_wbinvd();
 771	for (;;) {
 772		/*
 773		 * Use native_halt() so that memory contents don't change
 774		 * (stack usage and variables) after possibly issuing the
 775		 * native_wbinvd() above.
 776		 */
 777		native_halt();
 778	}
 779}
 780
 781/*
 782 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
 783 * states (local apic timer and TSC stop).
 784 *
 785 * XXX this function is completely buggered vs RCU and tracing.
 786 */
 787static void amd_e400_idle(void)
 788{
 789	/*
 790	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
 791	 * gets set after static_cpu_has() places have been converted via
 792	 * alternatives.
 793	 */
 794	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
 795		default_idle();
 796		return;
 797	}
 798
 799	tick_broadcast_enter();
 800
 801	default_idle();
 802
 803	/*
 804	 * The switch back from broadcast mode needs to be called with
 805	 * interrupts disabled.
 806	 */
 807	raw_local_irq_disable();
 808	tick_broadcast_exit();
 809	raw_local_irq_enable();
 810}
 811
 812/*
 813 * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf
 814 * exists and whenever MONITOR/MWAIT extensions are present there is at
 815 * least one C1 substate.
 816 *
 817 * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait
 818 * is passed to kernel commandline parameter.
 
 
 819 */
 820static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
 821{
 822	u32 eax, ebx, ecx, edx;
 823
 824	/* User has disallowed the use of MWAIT. Fallback to HALT */
 825	if (boot_option_idle_override == IDLE_NOMWAIT)
 826		return 0;
 827
 828	/* MWAIT is not supported on this platform. Fallback to HALT */
 829	if (!cpu_has(c, X86_FEATURE_MWAIT))
 830		return 0;
 831
 832	/* Monitor has a bug. Fallback to HALT */
 833	if (boot_cpu_has_bug(X86_BUG_MONITOR))
 834		return 0;
 835
 836	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
 837
 838	/*
 839	 * If MWAIT extensions are not available, it is safe to use MWAIT
 840	 * with EAX=0, ECX=0.
 841	 */
 842	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED))
 843		return 1;
 844
 845	/*
 846	 * If MWAIT extensions are available, there should be at least one
 847	 * MWAIT C1 substate present.
 848	 */
 849	return (edx & MWAIT_C1_SUBSTATE_MASK);
 850}
 851
 852/*
 853 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
 854 * with interrupts enabled and no flags, which is backwards compatible with the
 855 * original MWAIT implementation.
 856 */
 857static __cpuidle void mwait_idle(void)
 858{
 859	if (!current_set_polling_and_test()) {
 
 860		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
 861			mb(); /* quirk */
 862			clflush((void *)&current_thread_info()->flags);
 863			mb(); /* quirk */
 864		}
 865
 866		__monitor((void *)&current_thread_info()->flags, 0, 0);
 867		if (!need_resched())
 868			__sti_mwait(0, 0);
 869		else
 870			raw_local_irq_enable();
 
 871	} else {
 872		raw_local_irq_enable();
 873	}
 874	__current_clr_polling();
 875}
 876
 877void select_idle_routine(const struct cpuinfo_x86 *c)
 878{
 879#ifdef CONFIG_SMP
 880	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
 881		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
 882#endif
 883	if (x86_idle || boot_option_idle_override == IDLE_POLL)
 884		return;
 885
 886	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
 887		pr_info("using AMD E400 aware idle routine\n");
 888		x86_idle = amd_e400_idle;
 889	} else if (prefer_mwait_c1_over_halt(c)) {
 890		pr_info("using mwait in idle threads\n");
 891		x86_idle = mwait_idle;
 892	} else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
 893		pr_info("using TDX aware idle routine\n");
 894		x86_idle = tdx_safe_halt;
 895	} else
 896		x86_idle = default_idle;
 897}
 898
 899void amd_e400_c1e_apic_setup(void)
 900{
 901	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
 902		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
 903		local_irq_disable();
 904		tick_broadcast_force();
 905		local_irq_enable();
 906	}
 907}
 908
 909void __init arch_post_acpi_subsys_init(void)
 910{
 911	u32 lo, hi;
 912
 913	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
 914		return;
 915
 916	/*
 917	 * AMD E400 detection needs to happen after ACPI has been enabled. If
 918	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
 919	 * MSR_K8_INT_PENDING_MSG.
 920	 */
 921	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
 922	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
 923		return;
 924
 925	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
 926
 927	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 928		mark_tsc_unstable("TSC halt in AMD C1E");
 929	pr_info("System has AMD C1E enabled\n");
 930}
 931
 932static int __init idle_setup(char *str)
 933{
 934	if (!str)
 935		return -EINVAL;
 936
 937	if (!strcmp(str, "poll")) {
 938		pr_info("using polling idle threads\n");
 939		boot_option_idle_override = IDLE_POLL;
 940		cpu_idle_poll_ctrl(true);
 941	} else if (!strcmp(str, "halt")) {
 942		/*
 943		 * When the boot option of idle=halt is added, halt is
 944		 * forced to be used for CPU idle. In such case CPU C2/C3
 945		 * won't be used again.
 946		 * To continue to load the CPU idle driver, don't touch
 947		 * the boot_option_idle_override.
 948		 */
 949		x86_idle = default_idle;
 950		boot_option_idle_override = IDLE_HALT;
 951	} else if (!strcmp(str, "nomwait")) {
 952		/*
 953		 * If the boot option of "idle=nomwait" is added,
 954		 * it means that mwait will be disabled for CPU C1/C2/C3
 955		 * states.
 
 956		 */
 957		boot_option_idle_override = IDLE_NOMWAIT;
 958	} else
 959		return -1;
 960
 961	return 0;
 962}
 963early_param("idle", idle_setup);
 964
 965unsigned long arch_align_stack(unsigned long sp)
 966{
 967	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 968		sp -= get_random_u32_below(8192);
 969	return sp & ~0xf;
 970}
 971
 972unsigned long arch_randomize_brk(struct mm_struct *mm)
 973{
 974	return randomize_page(mm->brk, 0x02000000);
 975}
 976
 977/*
 978 * Called from fs/proc with a reference on @p to find the function
 979 * which called into schedule(). This needs to be done carefully
 980 * because the task might wake up and we might look at a stack
 981 * changing under us.
 982 */
 983unsigned long __get_wchan(struct task_struct *p)
 984{
 985	struct unwind_state state;
 986	unsigned long addr = 0;
 
 
 
 987
 988	if (!try_get_task_stack(p))
 989		return 0;
 990
 991	for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
 992	     unwind_next_frame(&state)) {
 993		addr = unwind_get_return_address(&state);
 994		if (!addr)
 995			break;
 996		if (in_sched_functions(addr))
 997			continue;
 998		break;
 999	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1000
 
1001	put_task_stack(p);
1002
1003	return addr;
1004}
1005
1006long do_arch_prctl_common(int option, unsigned long arg2)
 
1007{
1008	switch (option) {
1009	case ARCH_GET_CPUID:
1010		return get_cpuid_mode();
1011	case ARCH_SET_CPUID:
1012		return set_cpuid_mode(arg2);
1013	case ARCH_GET_XCOMP_SUPP:
1014	case ARCH_GET_XCOMP_PERM:
1015	case ARCH_REQ_XCOMP_PERM:
1016	case ARCH_GET_XCOMP_GUEST_PERM:
1017	case ARCH_REQ_XCOMP_GUEST_PERM:
1018		return fpu_xstate_prctl(option, arg2);
1019	}
1020
1021	return -EINVAL;
1022}