Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  3
  4#include <linux/errno.h>
  5#include <linux/kernel.h>
  6#include <linux/mm.h>
  7#include <linux/smp.h>
  8#include <linux/prctl.h>
  9#include <linux/slab.h>
 10#include <linux/sched.h>
 11#include <linux/sched/idle.h>
 12#include <linux/sched/debug.h>
 13#include <linux/sched/task.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/init.h>
 16#include <linux/export.h>
 17#include <linux/pm.h>
 18#include <linux/tick.h>
 19#include <linux/random.h>
 20#include <linux/user-return-notifier.h>
 21#include <linux/dmi.h>
 22#include <linux/utsname.h>
 23#include <linux/stackprotector.h>
 24#include <linux/cpuidle.h>
 25#include <linux/acpi.h>
 26#include <linux/elf-randomize.h>
 27#include <trace/events/power.h>
 28#include <linux/hw_breakpoint.h>
 29#include <asm/cpu.h>
 
 30#include <asm/apic.h>
 31#include <asm/syscalls.h>
 32#include <linux/uaccess.h>
 33#include <asm/mwait.h>
 34#include <asm/fpu/internal.h>
 35#include <asm/debugreg.h>
 36#include <asm/nmi.h>
 37#include <asm/tlbflush.h>
 38#include <asm/mce.h>
 39#include <asm/vm86.h>
 40#include <asm/switch_to.h>
 41#include <asm/desc.h>
 42#include <asm/prctl.h>
 43#include <asm/spec-ctrl.h>
 44#include <asm/proto.h>
 45
 46#include "process.h"
 47
 48/*
 49 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 50 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 51 * so they are allowed to end up in the .data..cacheline_aligned
 52 * section. Since TSS's are completely CPU-local, we want them
 53 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 54 */
 55__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
 56	.x86_tss = {
 57		/*
 58		 * .sp0 is only used when entering ring 0 from a lower
 59		 * privilege level.  Since the init task never runs anything
 60		 * but ring 0 code, there is no need for a valid value here.
 61		 * Poison it.
 62		 */
 63		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
 64
 65		/*
 66		 * .sp1 is cpu_current_top_of_stack.  The init task never
 67		 * runs user code, but cpu_current_top_of_stack should still
 68		 * be well defined before the first context switch.
 69		 */
 70		.sp1 = TOP_OF_INIT_STACK,
 71
 72#ifdef CONFIG_X86_32
 73		.ss0 = __KERNEL_DS,
 74		.ss1 = __KERNEL_CS,
 75		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
 76#endif
 77	 },
 78#ifdef CONFIG_X86_32
 79	 /*
 80	  * Note that the .io_bitmap member must be extra-big. This is because
 81	  * the CPU will access an additional byte beyond the end of the IO
 82	  * permission bitmap. The extra byte must be all 1 bits, and must
 83	  * be within the limit.
 84	  */
 85	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
 86#endif
 87};
 88EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
 89
 90DEFINE_PER_CPU(bool, __tss_limit_invalid);
 91EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
 
 
 
 
 
 
 
 
 92
 93/*
 94 * this gets called so that we can store lazy state into memory and copy the
 95 * current task into the new thread.
 96 */
 97int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 98{
 99	memcpy(dst, src, arch_task_struct_size);
100#ifdef CONFIG_VM86
101	dst->thread.vm86 = NULL;
102#endif
103
104	return fpu__copy(dst, src);
 
 
 
 
 
 
 
 
 
 
 
105}
106
107/*
108 * Free current thread data structures etc..
109 */
110void exit_thread(struct task_struct *tsk)
111{
112	struct thread_struct *t = &tsk->thread;
 
113	unsigned long *bp = t->io_bitmap_ptr;
114	struct fpu *fpu = &t->fpu;
115
116	if (bp) {
117		struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
118
119		t->io_bitmap_ptr = NULL;
120		clear_thread_flag(TIF_IO_BITMAP);
121		/*
122		 * Careful, clear this in the TSS too:
123		 */
124		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
125		t->io_bitmap_max = 0;
126		put_cpu();
127		kfree(bp);
128	}
 
129
130	free_vm86(t);
 
 
 
 
131
132	fpu__drop(fpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133}
134
135void flush_thread(void)
136{
137	struct task_struct *tsk = current;
138
139	flush_ptrace_hw_breakpoint(tsk);
140	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
 
 
 
 
 
 
 
141
142	fpu__clear(&tsk->thread.fpu);
 
 
143}
144
145void disable_TSC(void)
146{
147	preempt_disable();
148	if (!test_and_set_thread_flag(TIF_NOTSC))
149		/*
150		 * Must flip the CPU state synchronously with
151		 * TIF_NOTSC in the current running context.
152		 */
153		cr4_set_bits(X86_CR4_TSD);
154	preempt_enable();
155}
156
 
 
 
 
 
157static void enable_TSC(void)
158{
159	preempt_disable();
160	if (test_and_clear_thread_flag(TIF_NOTSC))
161		/*
162		 * Must flip the CPU state synchronously with
163		 * TIF_NOTSC in the current running context.
164		 */
165		cr4_clear_bits(X86_CR4_TSD);
166	preempt_enable();
167}
168
169int get_tsc_mode(unsigned long adr)
170{
171	unsigned int val;
172
173	if (test_thread_flag(TIF_NOTSC))
174		val = PR_TSC_SIGSEGV;
175	else
176		val = PR_TSC_ENABLE;
177
178	return put_user(val, (unsigned int __user *)adr);
179}
180
181int set_tsc_mode(unsigned int val)
182{
183	if (val == PR_TSC_SIGSEGV)
184		disable_TSC();
185	else if (val == PR_TSC_ENABLE)
186		enable_TSC();
187	else
188		return -EINVAL;
189
190	return 0;
191}
192
193DEFINE_PER_CPU(u64, msr_misc_features_shadow);
194
195static void set_cpuid_faulting(bool on)
196{
197	u64 msrval;
198
199	msrval = this_cpu_read(msr_misc_features_shadow);
200	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
201	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
202	this_cpu_write(msr_misc_features_shadow, msrval);
203	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
204}
205
206static void disable_cpuid(void)
207{
208	preempt_disable();
209	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
210		/*
211		 * Must flip the CPU state synchronously with
212		 * TIF_NOCPUID in the current running context.
213		 */
214		set_cpuid_faulting(true);
215	}
216	preempt_enable();
217}
218
219static void enable_cpuid(void)
220{
221	preempt_disable();
222	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
223		/*
224		 * Must flip the CPU state synchronously with
225		 * TIF_NOCPUID in the current running context.
226		 */
227		set_cpuid_faulting(false);
228	}
229	preempt_enable();
230}
231
232static int get_cpuid_mode(void)
233{
234	return !test_thread_flag(TIF_NOCPUID);
235}
236
237static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
238{
239	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
240		return -ENODEV;
241
242	if (cpuid_enabled)
243		enable_cpuid();
244	else
245		disable_cpuid();
246
247	return 0;
248}
 
249
250/*
251 * Called immediately after a successful exec.
252 */
253void arch_setup_new_exec(void)
254{
255	/* If cpuid was previously disabled for this task, re-enable it. */
256	if (test_thread_flag(TIF_NOCPUID))
257		enable_cpuid();
258
259	/*
260	 * Don't inherit TIF_SSBD across exec boundary when
261	 * PR_SPEC_DISABLE_NOEXEC is used.
262	 */
263	if (test_thread_flag(TIF_SSBD) &&
264	    task_spec_ssb_noexec(current)) {
265		clear_thread_flag(TIF_SSBD);
266		task_clear_spec_ssb_disable(current);
267		task_clear_spec_ssb_noexec(current);
268		speculation_ctrl_update(task_thread_info(current)->flags);
269	}
270}
271
272static inline void switch_to_bitmap(struct thread_struct *prev,
273				    struct thread_struct *next,
274				    unsigned long tifp, unsigned long tifn)
275{
276	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
 
 
 
277
278	if (tifn & _TIF_IO_BITMAP) {
279		/*
280		 * Copy the relevant range of the IO bitmap.
281		 * Normally this is 128 bytes or less:
282		 */
283		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
284		       max(prev->io_bitmap_max, next->io_bitmap_max));
285		/*
286		 * Make sure that the TSS limit is correct for the CPU
287		 * to notice the IO bitmap.
288		 */
289		refresh_tss_limit();
290	} else if (tifp & _TIF_IO_BITMAP) {
291		/*
292		 * Clear any possible leftover bits:
293		 */
294		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
295	}
 
296}
297
298#ifdef CONFIG_SMP
299
300struct ssb_state {
301	struct ssb_state	*shared_state;
302	raw_spinlock_t		lock;
303	unsigned int		disable_state;
304	unsigned long		local_state;
305};
306
307#define LSTATE_SSB	0
308
309static DEFINE_PER_CPU(struct ssb_state, ssb_state);
310
311void speculative_store_bypass_ht_init(void)
312{
313	struct ssb_state *st = this_cpu_ptr(&ssb_state);
314	unsigned int this_cpu = smp_processor_id();
315	unsigned int cpu;
316
317	st->local_state = 0;
318
319	/*
320	 * Shared state setup happens once on the first bringup
321	 * of the CPU. It's not destroyed on CPU hotunplug.
322	 */
323	if (st->shared_state)
324		return;
325
326	raw_spin_lock_init(&st->lock);
327
328	/*
329	 * Go over HT siblings and check whether one of them has set up the
330	 * shared state pointer already.
331	 */
332	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
333		if (cpu == this_cpu)
334			continue;
335
336		if (!per_cpu(ssb_state, cpu).shared_state)
337			continue;
338
339		/* Link it to the state of the sibling: */
340		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
341		return;
342	}
343
344	/*
345	 * First HT sibling to come up on the core.  Link shared state of
346	 * the first HT sibling to itself. The siblings on the same core
347	 * which come up later will see the shared state pointer and link
348	 * themself to the state of this CPU.
349	 */
350	st->shared_state = st;
351}
352
353/*
354 * Logic is: First HT sibling enables SSBD for both siblings in the core
355 * and last sibling to disable it, disables it for the whole core. This how
356 * MSR_SPEC_CTRL works in "hardware":
357 *
358 *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
 
 
 
 
359 */
360static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
361{
362	struct ssb_state *st = this_cpu_ptr(&ssb_state);
363	u64 msr = x86_amd_ls_cfg_base;
364
365	if (!static_cpu_has(X86_FEATURE_ZEN)) {
366		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
367		wrmsrl(MSR_AMD64_LS_CFG, msr);
368		return;
369	}
370
371	if (tifn & _TIF_SSBD) {
372		/*
373		 * Since this can race with prctl(), block reentry on the
374		 * same CPU.
375		 */
376		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
377			return;
378
379		msr |= x86_amd_ls_cfg_ssbd_mask;
380
381		raw_spin_lock(&st->shared_state->lock);
382		/* First sibling enables SSBD: */
383		if (!st->shared_state->disable_state)
384			wrmsrl(MSR_AMD64_LS_CFG, msr);
385		st->shared_state->disable_state++;
386		raw_spin_unlock(&st->shared_state->lock);
387	} else {
388		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
389			return;
390
391		raw_spin_lock(&st->shared_state->lock);
392		st->shared_state->disable_state--;
393		if (!st->shared_state->disable_state)
394			wrmsrl(MSR_AMD64_LS_CFG, msr);
395		raw_spin_unlock(&st->shared_state->lock);
396	}
397}
398#else
399static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
400{
401	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
402
403	wrmsrl(MSR_AMD64_LS_CFG, msr);
404}
405#endif
406
407static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
 
 
408{
409	/*
410	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
411	 * so ssbd_tif_to_spec_ctrl() just works.
412	 */
413	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
414}
415
416/*
417 * Update the MSRs managing speculation control, during context switch.
418 *
419 * tifp: Previous task's thread flags
420 * tifn: Next task's thread flags
421 */
422static __always_inline void __speculation_ctrl_update(unsigned long tifp,
423						      unsigned long tifn)
424{
425	unsigned long tif_diff = tifp ^ tifn;
426	u64 msr = x86_spec_ctrl_base;
427	bool updmsr = false;
428
429	lockdep_assert_irqs_disabled();
430
431	/*
432	 * If TIF_SSBD is different, select the proper mitigation
433	 * method. Note that if SSBD mitigation is disabled or permanentely
434	 * enabled this branch can't be taken because nothing can set
435	 * TIF_SSBD.
436	 */
437	if (tif_diff & _TIF_SSBD) {
438		if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
439			amd_set_ssb_virt_state(tifn);
440		} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
441			amd_set_core_ssb_state(tifn);
442		} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
443			   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
444			msr |= ssbd_tif_to_spec_ctrl(tifn);
445			updmsr  = true;
446		}
447	}
448
449	/*
450	 * Only evaluate TIF_SPEC_IB if conditional STIBP is enabled,
451	 * otherwise avoid the MSR write.
452	 */
453	if (IS_ENABLED(CONFIG_SMP) &&
454	    static_branch_unlikely(&switch_to_cond_stibp)) {
455		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
456		msr |= stibp_tif_to_spec_ctrl(tifn);
457	}
458
459	if (updmsr)
460		wrmsrl(MSR_IA32_SPEC_CTRL, msr);
461}
462
463static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
464{
465	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
466		if (task_spec_ssb_disable(tsk))
467			set_tsk_thread_flag(tsk, TIF_SSBD);
468		else
469			clear_tsk_thread_flag(tsk, TIF_SSBD);
470
471		if (task_spec_ib_disable(tsk))
472			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
473		else
474			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
475	}
476	/* Return the updated threadinfo flags*/
477	return task_thread_info(tsk)->flags;
478}
479
480void speculation_ctrl_update(unsigned long tif)
481{
482	unsigned long flags;
483
484	/* Forced update. Make sure all relevant TIF flags are different */
485	local_irq_save(flags);
486	__speculation_ctrl_update(~tif, tif);
487	local_irq_restore(flags);
488}
 
 
 
489
490/* Called from seccomp/prctl update */
491void speculation_ctrl_update_current(void)
492{
493	preempt_disable();
494	speculation_ctrl_update(speculation_ctrl_update_tif(current));
495	preempt_enable();
 
496}
 
497
498void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
 
 
 
 
 
499{
500	struct thread_struct *prev, *next;
501	unsigned long tifp, tifn;
502
503	prev = &prev_p->thread;
504	next = &next_p->thread;
505
506	tifn = READ_ONCE(task_thread_info(next_p)->flags);
507	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
508	switch_to_bitmap(prev, next, tifp, tifn);
509
510	propagate_user_return_notify(prev_p, next_p);
 
 
 
 
511
512	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
513	    arch_has_block_step()) {
514		unsigned long debugctl, msk;
515
516		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
517		debugctl &= ~DEBUGCTLMSR_BTF;
518		msk = tifn & _TIF_BLOCKSTEP;
519		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
520		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
521	}
522
523	if ((tifp ^ tifn) & _TIF_NOTSC)
524		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
525
526	if ((tifp ^ tifn) & _TIF_NOCPUID)
527		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
528
529	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
530		__speculation_ctrl_update(tifp, tifn);
531	} else {
532		speculation_ctrl_update_tif(prev_p);
533		tifn = speculation_ctrl_update_tif(next_p);
534
535		/* Enforce MSR update to ensure consistent state */
536		__speculation_ctrl_update(~tifn, tifn);
537	}
538}
539
540/*
541 * Idle related variables and functions
542 */
543unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
544EXPORT_SYMBOL(boot_option_idle_override);
545
546static void (*x86_idle)(void);
547
548#ifndef CONFIG_SMP
549static inline void play_dead(void)
550{
551	BUG();
552}
553#endif
554
555void arch_cpu_idle_enter(void)
 
 
 
 
 
 
556{
557	tsc_verify_tsc_adjust(false);
558	local_touch_nmi();
559}
 
560
561void arch_cpu_idle_dead(void)
562{
563	play_dead();
564}
 
565
566/*
567 * Called from the generic idle code.
568 */
569void arch_cpu_idle(void)
570{
571	x86_idle();
572}
573
574/*
575 * We use this if we don't have any better idle routine..
576 */
577void __cpuidle default_idle(void)
578{
579	trace_cpu_idle_rcuidle(1, smp_processor_id());
580	safe_halt();
581	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
582}
583#if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
584EXPORT_SYMBOL(default_idle);
585#endif
586
587#ifdef CONFIG_XEN
588bool xen_set_default_idle(void)
 
 
 
589{
590	bool ret = !!x86_idle;
591
592	x86_idle = default_idle;
 
 
 
 
 
 
593
594	return ret;
 
 
 
 
 
 
 
 
 
 
 
595}
 
 
596#endif
597
598void stop_this_cpu(void *dummy)
599{
600	local_irq_disable();
601	/*
602	 * Remove this CPU:
603	 */
604	set_cpu_online(smp_processor_id(), false);
605	disable_local_APIC();
606	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
607
608	/*
609	 * Use wbinvd on processors that support SME. This provides support
610	 * for performing a successful kexec when going from SME inactive
611	 * to SME active (or vice-versa). The cache must be cleared so that
612	 * if there are entries with the same physical address, both with and
613	 * without the encryption bit, they don't race each other when flushed
614	 * and potentially end up with the wrong entry being committed to
615	 * memory.
616	 */
617	if (boot_cpu_has(X86_FEATURE_SME))
618		native_wbinvd();
619	for (;;) {
620		/*
621		 * Use native_halt() so that memory contents don't change
622		 * (stack usage and variables) after possibly issuing the
623		 * native_wbinvd() above.
624		 */
625		native_halt();
626	}
627}
628
 
 
 
 
629/*
630 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
631 * states (local apic timer and TSC stop).
 
 
 
 
632 */
633static void amd_e400_idle(void)
634{
635	/*
636	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
637	 * gets set after static_cpu_has() places have been converted via
638	 * alternatives.
639	 */
640	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
641		default_idle();
642		return;
643	}
644
645	tick_broadcast_enter();
 
 
 
 
 
 
 
646
647	default_idle();
 
 
 
 
 
 
 
 
 
 
648
649	/*
650	 * The switch back from broadcast mode needs to be called with
651	 * interrupts disabled.
652	 */
653	local_irq_disable();
654	tick_broadcast_exit();
 
 
 
655	local_irq_enable();
 
 
 
 
656}
657
658/*
659 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
660 * We can't rely on cpuidle installing MWAIT, because it will not load
661 * on systems that support only C1 -- so the boot default must be MWAIT.
662 *
663 * Some AMD machines are the opposite, they depend on using HALT.
 
 
 
 
 
664 *
665 * So for default C1, which is used during boot until cpuidle loads,
666 * use MWAIT-C1 on Intel HW that has it, else use HALT.
667 */
668static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
 
 
 
 
 
669{
670	if (c->x86_vendor != X86_VENDOR_INTEL)
671		return 0;
 
 
672
673	if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
674		return 0;
675
676	return 1;
 
 
 
 
 
 
 
 
 
677}
678
679/*
680 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
681 * with interrupts enabled and no flags, which is backwards compatible with the
682 * original MWAIT implementation.
683 */
684static __cpuidle void mwait_idle(void)
685{
686	if (!current_set_polling_and_test()) {
687		trace_cpu_idle_rcuidle(1, smp_processor_id());
688		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
689			mb(); /* quirk */
690			clflush((void *)&current_thread_info()->flags);
691			mb(); /* quirk */
692		}
693
694		__monitor((void *)&current_thread_info()->flags, 0, 0);
695		if (!need_resched())
696			__sti_mwait(0, 0);
697		else
698			local_irq_enable();
699		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
700	} else {
701		local_irq_enable();
702	}
703	__current_clr_polling();
704}
705
706void select_idle_routine(const struct cpuinfo_x86 *c)
 
 
 
 
 
707{
708#ifdef CONFIG_SMP
709	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
710		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
711#endif
712	if (x86_idle || boot_option_idle_override == IDLE_POLL)
713		return;
714
715	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
716		pr_info("using AMD E400 aware idle routine\n");
717		x86_idle = amd_e400_idle;
718	} else if (prefer_mwait_c1_over_halt(c)) {
719		pr_info("using mwait in idle threads\n");
720		x86_idle = mwait_idle;
721	} else
722		x86_idle = default_idle;
723}
724
725void amd_e400_c1e_apic_setup(void)
726{
727	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
728		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
729		local_irq_disable();
730		tick_broadcast_force();
731		local_irq_enable();
 
732	}
733}
734
735void __init arch_post_acpi_subsys_init(void)
736{
737	u32 lo, hi;
738
739	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
740		return;
 
 
 
 
 
 
 
 
 
741
742	/*
743	 * AMD E400 detection needs to happen after ACPI has been enabled. If
744	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
745	 * MSR_K8_INT_PENDING_MSG.
746	 */
747	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
748	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
749		return;
750
751	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
 
 
 
 
 
 
 
 
 
 
 
 
752
753	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
754		mark_tsc_unstable("TSC halt in AMD C1E");
755	pr_info("System has AMD C1E enabled\n");
 
 
756}
757
758static int __init idle_setup(char *str)
759{
760	if (!str)
761		return -EINVAL;
762
763	if (!strcmp(str, "poll")) {
764		pr_info("using polling idle threads\n");
 
765		boot_option_idle_override = IDLE_POLL;
766		cpu_idle_poll_ctrl(true);
 
 
767	} else if (!strcmp(str, "halt")) {
768		/*
769		 * When the boot option of idle=halt is added, halt is
770		 * forced to be used for CPU idle. In such case CPU C2/C3
771		 * won't be used again.
772		 * To continue to load the CPU idle driver, don't touch
773		 * the boot_option_idle_override.
774		 */
775		x86_idle = default_idle;
776		boot_option_idle_override = IDLE_HALT;
777	} else if (!strcmp(str, "nomwait")) {
778		/*
779		 * If the boot option of "idle=nomwait" is added,
780		 * it means that mwait will be disabled for CPU C2/C3
781		 * states. In such case it won't touch the variable
782		 * of boot_option_idle_override.
783		 */
784		boot_option_idle_override = IDLE_NOMWAIT;
785	} else
786		return -1;
787
788	return 0;
789}
790early_param("idle", idle_setup);
791
792unsigned long arch_align_stack(unsigned long sp)
793{
794	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
795		sp -= get_random_int() % 8192;
796	return sp & ~0xf;
797}
798
799unsigned long arch_randomize_brk(struct mm_struct *mm)
800{
801	return randomize_page(mm->brk, 0x02000000);
 
802}
803
804/*
805 * Called from fs/proc with a reference on @p to find the function
806 * which called into schedule(). This needs to be done carefully
807 * because the task might wake up and we might look at a stack
808 * changing under us.
809 */
810unsigned long get_wchan(struct task_struct *p)
811{
812	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
813	int count = 0;
814
815	if (p == current || p->state == TASK_RUNNING)
816		return 0;
817
818	if (!try_get_task_stack(p))
819		return 0;
820
821	start = (unsigned long)task_stack_page(p);
822	if (!start)
823		goto out;
824
825	/*
826	 * Layout of the stack page:
827	 *
828	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
829	 * PADDING
830	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
831	 * stack
832	 * ----------- bottom = start
833	 *
834	 * The tasks stack pointer points at the location where the
835	 * framepointer is stored. The data on the stack is:
836	 * ... IP FP ... IP FP
837	 *
838	 * We need to read FP and IP, so we need to adjust the upper
839	 * bound by another unsigned long.
840	 */
841	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
842	top -= 2 * sizeof(unsigned long);
843	bottom = start;
844
845	sp = READ_ONCE(p->thread.sp);
846	if (sp < bottom || sp > top)
847		goto out;
848
849	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
850	do {
851		if (fp < bottom || fp > top)
852			goto out;
853		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
854		if (!in_sched_functions(ip)) {
855			ret = ip;
856			goto out;
857		}
858		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
859	} while (count++ < 16 && p->state != TASK_RUNNING);
860
861out:
862	put_task_stack(p);
863	return ret;
864}
865
866long do_arch_prctl_common(struct task_struct *task, int option,
867			  unsigned long cpuid_enabled)
868{
869	switch (option) {
870	case ARCH_GET_CPUID:
871		return get_cpuid_mode();
872	case ARCH_SET_CPUID:
873		return set_cpuid_mode(task, cpuid_enabled);
874	}
875
876	return -EINVAL;
877}
v3.1
 
 
 
  1#include <linux/errno.h>
  2#include <linux/kernel.h>
  3#include <linux/mm.h>
  4#include <linux/smp.h>
  5#include <linux/prctl.h>
  6#include <linux/slab.h>
  7#include <linux/sched.h>
  8#include <linux/module.h>
 
 
 
 
 
  9#include <linux/pm.h>
 10#include <linux/clockchips.h>
 11#include <linux/random.h>
 12#include <linux/user-return-notifier.h>
 13#include <linux/dmi.h>
 14#include <linux/utsname.h>
 
 
 
 
 15#include <trace/events/power.h>
 16#include <linux/hw_breakpoint.h>
 17#include <asm/cpu.h>
 18#include <asm/system.h>
 19#include <asm/apic.h>
 20#include <asm/syscalls.h>
 21#include <asm/idle.h>
 22#include <asm/uaccess.h>
 23#include <asm/i387.h>
 24#include <asm/debugreg.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 25
 26struct kmem_cache *task_xstate_cachep;
 27EXPORT_SYMBOL_GPL(task_xstate_cachep);
 
 
 
 
 28
 29int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 30{
 31	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 32
 33	*dst = *src;
 34	if (fpu_allocated(&src->thread.fpu)) {
 35		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
 36		ret = fpu_alloc(&dst->thread.fpu);
 37		if (ret)
 38			return ret;
 39		fpu_copy(&dst->thread.fpu, &src->thread.fpu);
 40	}
 41	return 0;
 42}
 43
 44void free_thread_xstate(struct task_struct *tsk)
 
 
 
 
 45{
 46	fpu_free(&tsk->thread.fpu);
 47}
 
 
 48
 49void free_thread_info(struct thread_info *ti)
 50{
 51	free_thread_xstate(ti->task);
 52	free_pages((unsigned long)ti, get_order(THREAD_SIZE));
 53}
 54
 55void arch_task_cache_init(void)
 56{
 57        task_xstate_cachep =
 58        	kmem_cache_create("task_xstate", xstate_size,
 59				  __alignof__(union thread_xstate),
 60				  SLAB_PANIC | SLAB_NOTRACK, NULL);
 61}
 62
 63/*
 64 * Free current thread data structures etc..
 65 */
 66void exit_thread(void)
 67{
 68	struct task_struct *me = current;
 69	struct thread_struct *t = &me->thread;
 70	unsigned long *bp = t->io_bitmap_ptr;
 
 71
 72	if (bp) {
 73		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
 74
 75		t->io_bitmap_ptr = NULL;
 76		clear_thread_flag(TIF_IO_BITMAP);
 77		/*
 78		 * Careful, clear this in the TSS too:
 79		 */
 80		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
 81		t->io_bitmap_max = 0;
 82		put_cpu();
 83		kfree(bp);
 84	}
 85}
 86
 87void show_regs(struct pt_regs *regs)
 88{
 89	show_registers(regs);
 90	show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs), 0);
 91}
 92
 93void show_regs_common(void)
 94{
 95	const char *vendor, *product, *board;
 96
 97	vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 98	if (!vendor)
 99		vendor = "";
100	product = dmi_get_system_info(DMI_PRODUCT_NAME);
101	if (!product)
102		product = "";
103
104	/* Board Name is optional */
105	board = dmi_get_system_info(DMI_BOARD_NAME);
106
107	printk(KERN_CONT "\n");
108	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
109		current->pid, current->comm, print_tainted(),
110		init_utsname()->release,
111		(int)strcspn(init_utsname()->version, " "),
112		init_utsname()->version);
113	printk(KERN_CONT " %s %s", vendor, product);
114	if (board)
115		printk(KERN_CONT "/%s", board);
116	printk(KERN_CONT "\n");
117}
118
119void flush_thread(void)
120{
121	struct task_struct *tsk = current;
122
123	flush_ptrace_hw_breakpoint(tsk);
124	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
125	/*
126	 * Forget coprocessor state..
127	 */
128	tsk->fpu_counter = 0;
129	clear_fpu(tsk);
130	clear_used_math();
131}
132
133static void hard_disable_TSC(void)
134{
135	write_cr4(read_cr4() | X86_CR4_TSD);
136}
137
138void disable_TSC(void)
139{
140	preempt_disable();
141	if (!test_and_set_thread_flag(TIF_NOTSC))
142		/*
143		 * Must flip the CPU state synchronously with
144		 * TIF_NOTSC in the current running context.
145		 */
146		hard_disable_TSC();
147	preempt_enable();
148}
149
150static void hard_enable_TSC(void)
151{
152	write_cr4(read_cr4() & ~X86_CR4_TSD);
153}
154
155static void enable_TSC(void)
156{
157	preempt_disable();
158	if (test_and_clear_thread_flag(TIF_NOTSC))
159		/*
160		 * Must flip the CPU state synchronously with
161		 * TIF_NOTSC in the current running context.
162		 */
163		hard_enable_TSC();
164	preempt_enable();
165}
166
167int get_tsc_mode(unsigned long adr)
168{
169	unsigned int val;
170
171	if (test_thread_flag(TIF_NOTSC))
172		val = PR_TSC_SIGSEGV;
173	else
174		val = PR_TSC_ENABLE;
175
176	return put_user(val, (unsigned int __user *)adr);
177}
178
179int set_tsc_mode(unsigned int val)
180{
181	if (val == PR_TSC_SIGSEGV)
182		disable_TSC();
183	else if (val == PR_TSC_ENABLE)
184		enable_TSC();
185	else
186		return -EINVAL;
187
188	return 0;
189}
190
191void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
192		      struct tss_struct *tss)
 
 
 
 
 
 
 
 
 
 
 
 
193{
194	struct thread_struct *prev, *next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195
196	prev = &prev_p->thread;
197	next = &next_p->thread;
 
 
198
199	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
200	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
201		unsigned long debugctl = get_debugctlmsr();
202
203		debugctl &= ~DEBUGCTLMSR_BTF;
204		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
205			debugctl |= DEBUGCTLMSR_BTF;
 
 
 
 
 
206
207		update_debugctlmsr(debugctl);
 
 
 
 
 
 
 
 
 
208	}
 
209
210	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
211	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
212		/* prev and next are different */
213		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
214			hard_disable_TSC();
215		else
216			hard_enable_TSC();
217	}
218
219	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
220		/*
221		 * Copy the relevant range of the IO bitmap.
222		 * Normally this is 128 bytes or less:
223		 */
224		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
225		       max(prev->io_bitmap_max, next->io_bitmap_max));
226	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
 
 
 
 
 
227		/*
228		 * Clear any possible leftover bits:
229		 */
230		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
231	}
232	propagate_user_return_notify(prev_p, next_p);
233}
234
235int sys_fork(struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
 
 
236{
237	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238}
239
240/*
241 * This is trivial, and on the face of it looks like it
242 * could equally well be done in user mode.
 
243 *
244 * Not so, for quite unobvious reasons - register pressure.
245 * In user mode vfork() cannot have a stack frame, and if
246 * done by calling the "clone()" system call directly, you
247 * do not have enough call-clobbered registers to hold all
248 * the information you need.
249 */
250int sys_vfork(struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
251{
252	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
253		       NULL, NULL);
 
254}
 
255
256long
257sys_clone(unsigned long clone_flags, unsigned long newsp,
258	  void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
259{
260	if (!newsp)
261		newsp = regs->sp;
262	return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
 
 
263}
264
265/*
266 * This gets run with %si containing the
267 * function to call, and %di containing
268 * the "args".
 
269 */
270extern void kernel_thread_helper(void);
 
 
 
 
 
271
272/*
273 * Create a kernel thread
274 */
275int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
276{
277	struct pt_regs regs;
 
 
 
 
278
279	memset(&regs, 0, sizeof(regs));
 
 
 
 
 
 
 
280
281	regs.si = (unsigned long) fn;
282	regs.di = (unsigned long) arg;
 
283
284#ifdef CONFIG_X86_32
285	regs.ds = __USER_DS;
286	regs.es = __USER_DS;
287	regs.fs = __KERNEL_PERCPU;
288	regs.gs = __KERNEL_STACK_CANARY;
289#else
290	regs.ss = __KERNEL_DS;
291#endif
292
293	regs.orig_ax = -1;
294	regs.ip = (unsigned long) kernel_thread_helper;
295	regs.cs = __KERNEL_CS | get_kernel_rpl();
296	regs.flags = X86_EFLAGS_IF | 0x2;
297
298	/* Ok, create the new process.. */
299	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
300}
301EXPORT_SYMBOL(kernel_thread);
302
303/*
304 * sys_execve() executes a new program.
305 */
306long sys_execve(const char __user *name,
307		const char __user *const __user *argv,
308		const char __user *const __user *envp, struct pt_regs *regs)
309{
310	long error;
311	char *filename;
 
 
 
 
 
 
 
312
313	filename = getname(name);
314	error = PTR_ERR(filename);
315	if (IS_ERR(filename))
316		return error;
317	error = do_execve(filename, argv, envp, regs);
318
319#ifdef CONFIG_X86_32
320	if (error == 0) {
321		/* Make sure we don't return using sysenter.. */
322                set_thread_flag(TIF_IRET);
323        }
324#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325
326	putname(filename);
327	return error;
 
328}
329
330/*
331 * Idle related variables and functions
332 */
333unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
334EXPORT_SYMBOL(boot_option_idle_override);
335
336/*
337 * Powermanagement idle function, if any..
338 */
339void (*pm_idle)(void);
340#ifdef CONFIG_APM_MODULE
341EXPORT_SYMBOL(pm_idle);
 
342#endif
343
344#ifdef CONFIG_X86_32
345/*
346 * This halt magic was a workaround for ancient floppy DMA
347 * wreckage. It should be safe to remove.
348 */
349static int hlt_counter;
350void disable_hlt(void)
351{
352	hlt_counter++;
 
353}
354EXPORT_SYMBOL(disable_hlt);
355
356void enable_hlt(void)
357{
358	hlt_counter--;
359}
360EXPORT_SYMBOL(enable_hlt);
361
362static inline int hlt_use_halt(void)
 
 
 
363{
364	return (!hlt_counter && boot_cpu_data.hlt_works_ok);
365}
366#else
367static inline int hlt_use_halt(void)
 
 
 
368{
369	return 1;
 
 
370}
 
 
371#endif
372
373/*
374 * We use this if we don't have any better
375 * idle routine..
376 */
377void default_idle(void)
378{
379	if (hlt_use_halt()) {
380		trace_power_start(POWER_CSTATE, 1, smp_processor_id());
381		trace_cpu_idle(1, smp_processor_id());
382		current_thread_info()->status &= ~TS_POLLING;
383		/*
384		 * TS_POLLING-cleared state must be visible before we
385		 * test NEED_RESCHED:
386		 */
387		smp_mb();
388
389		if (!need_resched())
390			safe_halt();	/* enables interrupts racelessly */
391		else
392			local_irq_enable();
393		current_thread_info()->status |= TS_POLLING;
394		trace_power_end(smp_processor_id());
395		trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
396	} else {
397		local_irq_enable();
398		/* loop is done by the caller */
399		cpu_relax();
400	}
401}
402#ifdef CONFIG_APM_MODULE
403EXPORT_SYMBOL(default_idle);
404#endif
405
406void stop_this_cpu(void *dummy)
407{
408	local_irq_disable();
409	/*
410	 * Remove this CPU:
411	 */
412	set_cpu_online(smp_processor_id(), false);
413	disable_local_APIC();
 
414
 
 
 
 
 
 
 
 
 
 
 
415	for (;;) {
416		if (hlt_works(smp_processor_id()))
417			halt();
 
 
 
 
418	}
419}
420
421static void do_nothing(void *unused)
422{
423}
424
425/*
426 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
427 * pm_idle and update to new pm_idle value. Required while changing pm_idle
428 * handler on SMP systems.
429 *
430 * Caller must have changed pm_idle to the new value before the call. Old
431 * pm_idle value will not be used by any CPU after the return of this function.
432 */
433void cpu_idle_wait(void)
434{
435	smp_mb();
436	/* kick all the CPUs so that they exit out of pm_idle */
437	smp_call_function(do_nothing, NULL, 1);
438}
439EXPORT_SYMBOL_GPL(cpu_idle_wait);
 
 
 
 
440
441/* Default MONITOR/MWAIT with no hints, used for default C1 state */
442static void mwait_idle(void)
443{
444	if (!need_resched()) {
445		trace_power_start(POWER_CSTATE, 1, smp_processor_id());
446		trace_cpu_idle(1, smp_processor_id());
447		if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
448			clflush((void *)&current_thread_info()->flags);
449
450		__monitor((void *)&current_thread_info()->flags, 0, 0);
451		smp_mb();
452		if (!need_resched())
453			__sti_mwait(0, 0);
454		else
455			local_irq_enable();
456		trace_power_end(smp_processor_id());
457		trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
458	} else
459		local_irq_enable();
460}
461
462/*
463 * On SMP it's slightly faster (but much more power-consuming!)
464 * to poll the ->work.need_resched flag instead of waiting for the
465 * cross-CPU IPI to arrive. Use this option with caution.
466 */
467static void poll_idle(void)
468{
469	trace_power_start(POWER_CSTATE, 0, smp_processor_id());
470	trace_cpu_idle(0, smp_processor_id());
471	local_irq_enable();
472	while (!need_resched())
473		cpu_relax();
474	trace_power_end(smp_processor_id());
475	trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
476}
477
478/*
479 * mwait selection logic:
 
 
480 *
481 * It depends on the CPU. For AMD CPUs that support MWAIT this is
482 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
483 * then depend on a clock divisor and current Pstate of the core. If
484 * all cores of a processor are in halt state (C1) the processor can
485 * enter the C1E (C1 enhanced) state. If mwait is used this will never
486 * happen.
487 *
488 * idle=mwait overrides this decision and forces the usage of mwait.
 
489 */
490
491#define MWAIT_INFO			0x05
492#define MWAIT_ECX_EXTENDED_INFO		0x01
493#define MWAIT_EDX_C1			0xf0
494
495int mwait_usable(const struct cpuinfo_x86 *c)
496{
497	u32 eax, ebx, ecx, edx;
498
499	if (boot_option_idle_override == IDLE_FORCE_MWAIT)
500		return 1;
501
502	if (c->cpuid_level < MWAIT_INFO)
503		return 0;
504
505	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
506	/* Check, whether EDX has extended info about MWAIT */
507	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
508		return 1;
509
510	/*
511	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
512	 * C1  supports MWAIT
513	 */
514	return (edx & MWAIT_EDX_C1);
515}
516
517bool amd_e400_c1e_detected;
518EXPORT_SYMBOL(amd_e400_c1e_detected);
 
 
 
 
 
 
 
 
 
 
 
 
519
520static cpumask_var_t amd_e400_c1e_mask;
521
522void amd_e400_remove_cpu(int cpu)
523{
524	if (amd_e400_c1e_mask != NULL)
525		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
 
 
 
 
526}
527
528/*
529 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
530 * pending message MSR. If we detect C1E, then we handle it the same
531 * way as C3 power states (local apic timer and TSC stop)
532 */
533static void amd_e400_idle(void)
534{
535	if (need_resched())
 
 
 
 
536		return;
537
538	if (!amd_e400_c1e_detected) {
539		u32 lo, hi;
 
 
 
 
 
 
 
540
541		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
542
543		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
544			amd_e400_c1e_detected = true;
545			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
546				mark_tsc_unstable("TSC halt in AMD C1E");
547			printk(KERN_INFO "System has AMD C1E enabled\n");
548		}
549	}
 
550
551	if (amd_e400_c1e_detected) {
552		int cpu = smp_processor_id();
 
553
554		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
555			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
556			/*
557			 * Force broadcast so ACPI can not interfere.
558			 */
559			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
560					   &cpu);
561			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
562			       cpu);
563		}
564		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
565
566		default_idle();
567
568		/*
569		 * The switch back from broadcast mode needs to be
570		 * called with interrupts disabled.
571		 */
572		 local_irq_disable();
573		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
574		 local_irq_enable();
575	} else
576		default_idle();
577}
578
579void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
580{
581#ifdef CONFIG_SMP
582	if (pm_idle == poll_idle && smp_num_siblings > 1) {
583		printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
584			" performance may degrade.\n");
585	}
586#endif
587	if (pm_idle)
588		return;
589
590	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
591		/*
592		 * One CPU supports mwait => All CPUs supports mwait
593		 */
594		printk(KERN_INFO "using mwait in idle threads.\n");
595		pm_idle = mwait_idle;
596	} else if (cpu_has_amd_erratum(amd_erratum_400)) {
597		/* E400: APIC timer interrupt does not wake up CPU from C1e */
598		printk(KERN_INFO "using AMD E400 aware idle routine\n");
599		pm_idle = amd_e400_idle;
600	} else
601		pm_idle = default_idle;
602}
603
604void __init init_amd_e400_c1e_mask(void)
605{
606	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
607	if (pm_idle == amd_e400_idle)
608		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
609}
610
611static int __init idle_setup(char *str)
612{
613	if (!str)
614		return -EINVAL;
615
616	if (!strcmp(str, "poll")) {
617		printk("using polling idle threads.\n");
618		pm_idle = poll_idle;
619		boot_option_idle_override = IDLE_POLL;
620	} else if (!strcmp(str, "mwait")) {
621		boot_option_idle_override = IDLE_FORCE_MWAIT;
622		WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
623	} else if (!strcmp(str, "halt")) {
624		/*
625		 * When the boot option of idle=halt is added, halt is
626		 * forced to be used for CPU idle. In such case CPU C2/C3
627		 * won't be used again.
628		 * To continue to load the CPU idle driver, don't touch
629		 * the boot_option_idle_override.
630		 */
631		pm_idle = default_idle;
632		boot_option_idle_override = IDLE_HALT;
633	} else if (!strcmp(str, "nomwait")) {
634		/*
635		 * If the boot option of "idle=nomwait" is added,
636		 * it means that mwait will be disabled for CPU C2/C3
637		 * states. In such case it won't touch the variable
638		 * of boot_option_idle_override.
639		 */
640		boot_option_idle_override = IDLE_NOMWAIT;
641	} else
642		return -1;
643
644	return 0;
645}
646early_param("idle", idle_setup);
647
648unsigned long arch_align_stack(unsigned long sp)
649{
650	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
651		sp -= get_random_int() % 8192;
652	return sp & ~0xf;
653}
654
655unsigned long arch_randomize_brk(struct mm_struct *mm)
656{
657	unsigned long range_end = mm->brk + 0x02000000;
658	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
659}
660