Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  3
  4#include <linux/errno.h>
  5#include <linux/kernel.h>
  6#include <linux/mm.h>
  7#include <linux/smp.h>
  8#include <linux/prctl.h>
  9#include <linux/slab.h>
 10#include <linux/sched.h>
 11#include <linux/sched/idle.h>
 12#include <linux/sched/debug.h>
 13#include <linux/sched/task.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/init.h>
 16#include <linux/export.h>
 17#include <linux/pm.h>
 18#include <linux/tick.h>
 19#include <linux/random.h>
 20#include <linux/user-return-notifier.h>
 21#include <linux/dmi.h>
 22#include <linux/utsname.h>
 23#include <linux/stackprotector.h>
 
 24#include <linux/cpuidle.h>
 25#include <linux/acpi.h>
 26#include <linux/elf-randomize.h>
 27#include <trace/events/power.h>
 28#include <linux/hw_breakpoint.h>
 29#include <asm/cpu.h>
 30#include <asm/apic.h>
 31#include <asm/syscalls.h>
 32#include <linux/uaccess.h>
 
 33#include <asm/mwait.h>
 34#include <asm/fpu/internal.h>
 35#include <asm/debugreg.h>
 36#include <asm/nmi.h>
 37#include <asm/tlbflush.h>
 38#include <asm/mce.h>
 39#include <asm/vm86.h>
 40#include <asm/switch_to.h>
 41#include <asm/desc.h>
 42#include <asm/prctl.h>
 43#include <asm/spec-ctrl.h>
 44#include <asm/proto.h>
 45
 46#include "process.h"
 47
 48/*
 49 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 50 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 51 * so they are allowed to end up in the .data..cacheline_aligned
 52 * section. Since TSS's are completely CPU-local, we want them
 53 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 54 */
 55__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
 56	.x86_tss = {
 57		/*
 58		 * .sp0 is only used when entering ring 0 from a lower
 59		 * privilege level.  Since the init task never runs anything
 60		 * but ring 0 code, there is no need for a valid value here.
 61		 * Poison it.
 62		 */
 63		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
 64
 65		/*
 66		 * .sp1 is cpu_current_top_of_stack.  The init task never
 67		 * runs user code, but cpu_current_top_of_stack should still
 68		 * be well defined before the first context switch.
 69		 */
 70		.sp1 = TOP_OF_INIT_STACK,
 71
 72#ifdef CONFIG_X86_32
 73		.ss0 = __KERNEL_DS,
 74		.ss1 = __KERNEL_CS,
 75		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
 76#endif
 77	 },
 78#ifdef CONFIG_X86_32
 79	 /*
 80	  * Note that the .io_bitmap member must be extra-big. This is because
 81	  * the CPU will access an additional byte beyond the end of the IO
 82	  * permission bitmap. The extra byte must be all 1 bits, and must
 83	  * be within the limit.
 84	  */
 85	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
 86#endif
 
 
 
 87};
 88EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
 89
 90DEFINE_PER_CPU(bool, __tss_limit_invalid);
 91EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 92
 93/*
 94 * this gets called so that we can store lazy state into memory and copy the
 95 * current task into the new thread.
 96 */
 97int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 98{
 99	memcpy(dst, src, arch_task_struct_size);
100#ifdef CONFIG_VM86
101	dst->thread.vm86 = NULL;
102#endif
103
104	return fpu__copy(dst, src);
105}
106
107/*
108 * Free current thread data structures etc..
109 */
110void exit_thread(struct task_struct *tsk)
111{
112	struct thread_struct *t = &tsk->thread;
 
113	unsigned long *bp = t->io_bitmap_ptr;
114	struct fpu *fpu = &t->fpu;
115
116	if (bp) {
117		struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
118
119		t->io_bitmap_ptr = NULL;
120		clear_thread_flag(TIF_IO_BITMAP);
121		/*
122		 * Careful, clear this in the TSS too:
123		 */
124		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
125		t->io_bitmap_max = 0;
126		put_cpu();
127		kfree(bp);
128	}
129
130	free_vm86(t);
131
132	fpu__drop(fpu);
133}
134
135void flush_thread(void)
136{
137	struct task_struct *tsk = current;
138
139	flush_ptrace_hw_breakpoint(tsk);
140	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
141
142	fpu__clear(&tsk->thread.fpu);
143}
144
 
 
 
 
 
145void disable_TSC(void)
146{
147	preempt_disable();
148	if (!test_and_set_thread_flag(TIF_NOTSC))
149		/*
150		 * Must flip the CPU state synchronously with
151		 * TIF_NOTSC in the current running context.
152		 */
153		cr4_set_bits(X86_CR4_TSD);
154	preempt_enable();
155}
156
 
 
 
 
 
157static void enable_TSC(void)
158{
159	preempt_disable();
160	if (test_and_clear_thread_flag(TIF_NOTSC))
161		/*
162		 * Must flip the CPU state synchronously with
163		 * TIF_NOTSC in the current running context.
164		 */
165		cr4_clear_bits(X86_CR4_TSD);
166	preempt_enable();
167}
168
169int get_tsc_mode(unsigned long adr)
170{
171	unsigned int val;
172
173	if (test_thread_flag(TIF_NOTSC))
174		val = PR_TSC_SIGSEGV;
175	else
176		val = PR_TSC_ENABLE;
177
178	return put_user(val, (unsigned int __user *)adr);
179}
180
181int set_tsc_mode(unsigned int val)
182{
183	if (val == PR_TSC_SIGSEGV)
184		disable_TSC();
185	else if (val == PR_TSC_ENABLE)
186		enable_TSC();
187	else
188		return -EINVAL;
189
190	return 0;
191}
192
193DEFINE_PER_CPU(u64, msr_misc_features_shadow);
194
195static void set_cpuid_faulting(bool on)
196{
197	u64 msrval;
198
199	msrval = this_cpu_read(msr_misc_features_shadow);
200	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
201	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
202	this_cpu_write(msr_misc_features_shadow, msrval);
203	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
204}
205
206static void disable_cpuid(void)
207{
208	preempt_disable();
209	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
210		/*
211		 * Must flip the CPU state synchronously with
212		 * TIF_NOCPUID in the current running context.
213		 */
214		set_cpuid_faulting(true);
215	}
216	preempt_enable();
217}
218
219static void enable_cpuid(void)
220{
221	preempt_disable();
222	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
223		/*
224		 * Must flip the CPU state synchronously with
225		 * TIF_NOCPUID in the current running context.
226		 */
227		set_cpuid_faulting(false);
228	}
229	preempt_enable();
230}
231
232static int get_cpuid_mode(void)
233{
234	return !test_thread_flag(TIF_NOCPUID);
235}
236
237static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
238{
239	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
240		return -ENODEV;
241
242	if (cpuid_enabled)
243		enable_cpuid();
244	else
245		disable_cpuid();
246
247	return 0;
248}
249
250/*
251 * Called immediately after a successful exec.
252 */
253void arch_setup_new_exec(void)
254{
255	/* If cpuid was previously disabled for this task, re-enable it. */
256	if (test_thread_flag(TIF_NOCPUID))
257		enable_cpuid();
258
259	/*
260	 * Don't inherit TIF_SSBD across exec boundary when
261	 * PR_SPEC_DISABLE_NOEXEC is used.
262	 */
263	if (test_thread_flag(TIF_SSBD) &&
264	    task_spec_ssb_noexec(current)) {
265		clear_thread_flag(TIF_SSBD);
266		task_clear_spec_ssb_disable(current);
267		task_clear_spec_ssb_noexec(current);
268		speculation_ctrl_update(task_thread_info(current)->flags);
269	}
270}
271
272static inline void switch_to_bitmap(struct thread_struct *prev,
273				    struct thread_struct *next,
274				    unsigned long tifp, unsigned long tifn)
275{
276	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
 
 
 
277
278	if (tifn & _TIF_IO_BITMAP) {
279		/*
280		 * Copy the relevant range of the IO bitmap.
281		 * Normally this is 128 bytes or less:
282		 */
283		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
284		       max(prev->io_bitmap_max, next->io_bitmap_max));
285		/*
286		 * Make sure that the TSS limit is correct for the CPU
287		 * to notice the IO bitmap.
288		 */
289		refresh_tss_limit();
290	} else if (tifp & _TIF_IO_BITMAP) {
291		/*
292		 * Clear any possible leftover bits:
293		 */
294		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
295	}
296}
297
298#ifdef CONFIG_SMP
299
300struct ssb_state {
301	struct ssb_state	*shared_state;
302	raw_spinlock_t		lock;
303	unsigned int		disable_state;
304	unsigned long		local_state;
305};
306
307#define LSTATE_SSB	0
308
309static DEFINE_PER_CPU(struct ssb_state, ssb_state);
310
311void speculative_store_bypass_ht_init(void)
312{
313	struct ssb_state *st = this_cpu_ptr(&ssb_state);
314	unsigned int this_cpu = smp_processor_id();
315	unsigned int cpu;
316
317	st->local_state = 0;
318
319	/*
320	 * Shared state setup happens once on the first bringup
321	 * of the CPU. It's not destroyed on CPU hotunplug.
322	 */
323	if (st->shared_state)
324		return;
325
326	raw_spin_lock_init(&st->lock);
327
328	/*
329	 * Go over HT siblings and check whether one of them has set up the
330	 * shared state pointer already.
331	 */
332	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
333		if (cpu == this_cpu)
334			continue;
335
336		if (!per_cpu(ssb_state, cpu).shared_state)
337			continue;
338
339		/* Link it to the state of the sibling: */
340		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
341		return;
342	}
343
344	/*
345	 * First HT sibling to come up on the core.  Link shared state of
346	 * the first HT sibling to itself. The siblings on the same core
347	 * which come up later will see the shared state pointer and link
348	 * themself to the state of this CPU.
349	 */
350	st->shared_state = st;
351}
352
353/*
354 * Logic is: First HT sibling enables SSBD for both siblings in the core
355 * and last sibling to disable it, disables it for the whole core. This how
356 * MSR_SPEC_CTRL works in "hardware":
357 *
358 *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
359 */
360static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
361{
362	struct ssb_state *st = this_cpu_ptr(&ssb_state);
363	u64 msr = x86_amd_ls_cfg_base;
364
365	if (!static_cpu_has(X86_FEATURE_ZEN)) {
366		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
367		wrmsrl(MSR_AMD64_LS_CFG, msr);
368		return;
369	}
370
371	if (tifn & _TIF_SSBD) {
372		/*
373		 * Since this can race with prctl(), block reentry on the
374		 * same CPU.
375		 */
376		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
377			return;
378
379		msr |= x86_amd_ls_cfg_ssbd_mask;
380
381		raw_spin_lock(&st->shared_state->lock);
382		/* First sibling enables SSBD: */
383		if (!st->shared_state->disable_state)
384			wrmsrl(MSR_AMD64_LS_CFG, msr);
385		st->shared_state->disable_state++;
386		raw_spin_unlock(&st->shared_state->lock);
387	} else {
388		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
389			return;
390
391		raw_spin_lock(&st->shared_state->lock);
392		st->shared_state->disable_state--;
393		if (!st->shared_state->disable_state)
394			wrmsrl(MSR_AMD64_LS_CFG, msr);
395		raw_spin_unlock(&st->shared_state->lock);
396	}
397}
398#else
399static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
400{
401	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
402
403	wrmsrl(MSR_AMD64_LS_CFG, msr);
404}
405#endif
406
407static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
408{
409	/*
410	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
411	 * so ssbd_tif_to_spec_ctrl() just works.
412	 */
413	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
414}
415
416/*
417 * Update the MSRs managing speculation control, during context switch.
418 *
419 * tifp: Previous task's thread flags
420 * tifn: Next task's thread flags
421 */
422static __always_inline void __speculation_ctrl_update(unsigned long tifp,
423						      unsigned long tifn)
424{
425	unsigned long tif_diff = tifp ^ tifn;
426	u64 msr = x86_spec_ctrl_base;
427	bool updmsr = false;
428
429	lockdep_assert_irqs_disabled();
430
431	/*
432	 * If TIF_SSBD is different, select the proper mitigation
433	 * method. Note that if SSBD mitigation is disabled or permanentely
434	 * enabled this branch can't be taken because nothing can set
435	 * TIF_SSBD.
436	 */
437	if (tif_diff & _TIF_SSBD) {
438		if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
439			amd_set_ssb_virt_state(tifn);
440		} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
441			amd_set_core_ssb_state(tifn);
442		} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
443			   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
444			msr |= ssbd_tif_to_spec_ctrl(tifn);
445			updmsr  = true;
446		}
447	}
448
449	/*
450	 * Only evaluate TIF_SPEC_IB if conditional STIBP is enabled,
451	 * otherwise avoid the MSR write.
452	 */
453	if (IS_ENABLED(CONFIG_SMP) &&
454	    static_branch_unlikely(&switch_to_cond_stibp)) {
455		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
456		msr |= stibp_tif_to_spec_ctrl(tifn);
457	}
458
459	if (updmsr)
460		wrmsrl(MSR_IA32_SPEC_CTRL, msr);
461}
462
463static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
464{
465	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
466		if (task_spec_ssb_disable(tsk))
467			set_tsk_thread_flag(tsk, TIF_SSBD);
468		else
469			clear_tsk_thread_flag(tsk, TIF_SSBD);
470
471		if (task_spec_ib_disable(tsk))
472			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
473		else
474			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
475	}
476	/* Return the updated threadinfo flags*/
477	return task_thread_info(tsk)->flags;
478}
479
480void speculation_ctrl_update(unsigned long tif)
481{
482	unsigned long flags;
483
484	/* Forced update. Make sure all relevant TIF flags are different */
485	local_irq_save(flags);
486	__speculation_ctrl_update(~tif, tif);
487	local_irq_restore(flags);
488}
489
490/* Called from seccomp/prctl update */
491void speculation_ctrl_update_current(void)
492{
493	preempt_disable();
494	speculation_ctrl_update(speculation_ctrl_update_tif(current));
495	preempt_enable();
496}
497
498void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
499{
500	struct thread_struct *prev, *next;
501	unsigned long tifp, tifn;
502
503	prev = &prev_p->thread;
504	next = &next_p->thread;
505
506	tifn = READ_ONCE(task_thread_info(next_p)->flags);
507	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
508	switch_to_bitmap(prev, next, tifp, tifn);
509
510	propagate_user_return_notify(prev_p, next_p);
511
512	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
513	    arch_has_block_step()) {
514		unsigned long debugctl, msk;
515
516		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
517		debugctl &= ~DEBUGCTLMSR_BTF;
518		msk = tifn & _TIF_BLOCKSTEP;
519		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
520		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
521	}
522
523	if ((tifp ^ tifn) & _TIF_NOTSC)
524		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
525
526	if ((tifp ^ tifn) & _TIF_NOCPUID)
527		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
528
529	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
530		__speculation_ctrl_update(tifp, tifn);
531	} else {
532		speculation_ctrl_update_tif(prev_p);
533		tifn = speculation_ctrl_update_tif(next_p);
534
535		/* Enforce MSR update to ensure consistent state */
536		__speculation_ctrl_update(~tifn, tifn);
537	}
538}
539
540/*
541 * Idle related variables and functions
542 */
543unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
544EXPORT_SYMBOL(boot_option_idle_override);
545
546static void (*x86_idle)(void);
547
548#ifndef CONFIG_SMP
549static inline void play_dead(void)
550{
551	BUG();
 
 
 
552}
553#endif
554
555void arch_cpu_idle_enter(void)
556{
557	tsc_verify_tsc_adjust(false);
558	local_touch_nmi();
 
 
 
 
 
 
559}
560
561void arch_cpu_idle_dead(void)
562{
563	play_dead();
564}
565
566/*
567 * Called from the generic idle code.
568 */
569void arch_cpu_idle(void)
570{
571	x86_idle();
572}
573
574/*
575 * We use this if we don't have any better idle routine..
576 */
577void __cpuidle default_idle(void)
578{
579	trace_cpu_idle_rcuidle(1, smp_processor_id());
580	safe_halt();
581	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
582}
583#if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
584EXPORT_SYMBOL(default_idle);
585#endif
586
587#ifdef CONFIG_XEN
588bool xen_set_default_idle(void)
589{
590	bool ret = !!x86_idle;
591
592	x86_idle = default_idle;
593
594	return ret;
595}
596#endif
597
598void stop_this_cpu(void *dummy)
599{
600	local_irq_disable();
601	/*
602	 * Remove this CPU:
603	 */
604	set_cpu_online(smp_processor_id(), false);
605	disable_local_APIC();
606	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
607
608	/*
609	 * Use wbinvd on processors that support SME. This provides support
610	 * for performing a successful kexec when going from SME inactive
611	 * to SME active (or vice-versa). The cache must be cleared so that
612	 * if there are entries with the same physical address, both with and
613	 * without the encryption bit, they don't race each other when flushed
614	 * and potentially end up with the wrong entry being committed to
615	 * memory.
616	 */
617	if (boot_cpu_has(X86_FEATURE_SME))
618		native_wbinvd();
619	for (;;) {
620		/*
621		 * Use native_halt() so that memory contents don't change
622		 * (stack usage and variables) after possibly issuing the
623		 * native_wbinvd() above.
624		 */
625		native_halt();
626	}
627}
628
629/*
630 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
631 * states (local apic timer and TSC stop).
 
632 */
633static void amd_e400_idle(void)
634{
635	/*
636	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
637	 * gets set after static_cpu_has() places have been converted via
638	 * alternatives.
639	 */
640	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
641		default_idle();
642		return;
 
 
 
643	}
644
645	tick_broadcast_enter();
 
646
647	default_idle();
 
 
 
 
 
 
648
649	/*
650	 * The switch back from broadcast mode needs to be called with
651	 * interrupts disabled.
652	 */
653	local_irq_disable();
654	tick_broadcast_exit();
655	local_irq_enable();
 
 
 
 
656}
657
658/*
659 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
660 * We can't rely on cpuidle installing MWAIT, because it will not load
661 * on systems that support only C1 -- so the boot default must be MWAIT.
662 *
663 * Some AMD machines are the opposite, they depend on using HALT.
664 *
665 * So for default C1, which is used during boot until cpuidle loads,
666 * use MWAIT-C1 on Intel HW that has it, else use HALT.
667 */
668static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
669{
670	if (c->x86_vendor != X86_VENDOR_INTEL)
671		return 0;
672
673	if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
674		return 0;
675
676	return 1;
677}
678
679/*
680 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
681 * with interrupts enabled and no flags, which is backwards compatible with the
682 * original MWAIT implementation.
683 */
684static __cpuidle void mwait_idle(void)
685{
686	if (!current_set_polling_and_test()) {
687		trace_cpu_idle_rcuidle(1, smp_processor_id());
688		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
689			mb(); /* quirk */
690			clflush((void *)&current_thread_info()->flags);
691			mb(); /* quirk */
692		}
693
694		__monitor((void *)&current_thread_info()->flags, 0, 0);
695		if (!need_resched())
696			__sti_mwait(0, 0);
697		else
698			local_irq_enable();
699		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
700	} else {
701		local_irq_enable();
702	}
703	__current_clr_polling();
704}
705
706void select_idle_routine(const struct cpuinfo_x86 *c)
707{
708#ifdef CONFIG_SMP
709	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
710		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
711#endif
712	if (x86_idle || boot_option_idle_override == IDLE_POLL)
713		return;
714
715	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
 
716		pr_info("using AMD E400 aware idle routine\n");
717		x86_idle = amd_e400_idle;
718	} else if (prefer_mwait_c1_over_halt(c)) {
719		pr_info("using mwait in idle threads\n");
720		x86_idle = mwait_idle;
721	} else
722		x86_idle = default_idle;
723}
724
725void amd_e400_c1e_apic_setup(void)
726{
727	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
728		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
729		local_irq_disable();
730		tick_broadcast_force();
731		local_irq_enable();
732	}
733}
734
735void __init arch_post_acpi_subsys_init(void)
736{
737	u32 lo, hi;
738
739	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
740		return;
741
742	/*
743	 * AMD E400 detection needs to happen after ACPI has been enabled. If
744	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
745	 * MSR_K8_INT_PENDING_MSG.
746	 */
747	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
748	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
749		return;
750
751	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
752
753	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
754		mark_tsc_unstable("TSC halt in AMD C1E");
755	pr_info("System has AMD C1E enabled\n");
756}
757
758static int __init idle_setup(char *str)
759{
760	if (!str)
761		return -EINVAL;
762
763	if (!strcmp(str, "poll")) {
764		pr_info("using polling idle threads\n");
765		boot_option_idle_override = IDLE_POLL;
766		cpu_idle_poll_ctrl(true);
767	} else if (!strcmp(str, "halt")) {
768		/*
769		 * When the boot option of idle=halt is added, halt is
770		 * forced to be used for CPU idle. In such case CPU C2/C3
771		 * won't be used again.
772		 * To continue to load the CPU idle driver, don't touch
773		 * the boot_option_idle_override.
774		 */
775		x86_idle = default_idle;
776		boot_option_idle_override = IDLE_HALT;
777	} else if (!strcmp(str, "nomwait")) {
778		/*
779		 * If the boot option of "idle=nomwait" is added,
780		 * it means that mwait will be disabled for CPU C2/C3
781		 * states. In such case it won't touch the variable
782		 * of boot_option_idle_override.
783		 */
784		boot_option_idle_override = IDLE_NOMWAIT;
785	} else
786		return -1;
787
788	return 0;
789}
790early_param("idle", idle_setup);
791
792unsigned long arch_align_stack(unsigned long sp)
793{
794	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
795		sp -= get_random_int() % 8192;
796	return sp & ~0xf;
797}
798
799unsigned long arch_randomize_brk(struct mm_struct *mm)
800{
801	return randomize_page(mm->brk, 0x02000000);
 
802}
803
804/*
805 * Called from fs/proc with a reference on @p to find the function
806 * which called into schedule(). This needs to be done carefully
807 * because the task might wake up and we might look at a stack
808 * changing under us.
809 */
810unsigned long get_wchan(struct task_struct *p)
811{
812	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
813	int count = 0;
814
815	if (p == current || p->state == TASK_RUNNING)
816		return 0;
817
818	if (!try_get_task_stack(p))
819		return 0;
820
821	start = (unsigned long)task_stack_page(p);
822	if (!start)
823		goto out;
824
825	/*
826	 * Layout of the stack page:
827	 *
828	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
829	 * PADDING
830	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
831	 * stack
832	 * ----------- bottom = start
 
 
833	 *
834	 * The tasks stack pointer points at the location where the
835	 * framepointer is stored. The data on the stack is:
836	 * ... IP FP ... IP FP
837	 *
838	 * We need to read FP and IP, so we need to adjust the upper
839	 * bound by another unsigned long.
840	 */
841	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
842	top -= 2 * sizeof(unsigned long);
843	bottom = start;
844
845	sp = READ_ONCE(p->thread.sp);
846	if (sp < bottom || sp > top)
847		goto out;
848
849	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
850	do {
851		if (fp < bottom || fp > top)
852			goto out;
853		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
854		if (!in_sched_functions(ip)) {
855			ret = ip;
856			goto out;
857		}
858		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
859	} while (count++ < 16 && p->state != TASK_RUNNING);
860
861out:
862	put_task_stack(p);
863	return ret;
864}
865
866long do_arch_prctl_common(struct task_struct *task, int option,
867			  unsigned long cpuid_enabled)
868{
869	switch (option) {
870	case ARCH_GET_CPUID:
871		return get_cpuid_mode();
872	case ARCH_SET_CPUID:
873		return set_cpuid_mode(task, cpuid_enabled);
874	}
875
876	return -EINVAL;
877}
v4.6
 
  1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2
  3#include <linux/errno.h>
  4#include <linux/kernel.h>
  5#include <linux/mm.h>
  6#include <linux/smp.h>
  7#include <linux/prctl.h>
  8#include <linux/slab.h>
  9#include <linux/sched.h>
 10#include <linux/module.h>
 
 
 
 
 
 11#include <linux/pm.h>
 12#include <linux/tick.h>
 13#include <linux/random.h>
 14#include <linux/user-return-notifier.h>
 15#include <linux/dmi.h>
 16#include <linux/utsname.h>
 17#include <linux/stackprotector.h>
 18#include <linux/tick.h>
 19#include <linux/cpuidle.h>
 
 
 20#include <trace/events/power.h>
 21#include <linux/hw_breakpoint.h>
 22#include <asm/cpu.h>
 23#include <asm/apic.h>
 24#include <asm/syscalls.h>
 25#include <asm/idle.h>
 26#include <asm/uaccess.h>
 27#include <asm/mwait.h>
 28#include <asm/fpu/internal.h>
 29#include <asm/debugreg.h>
 30#include <asm/nmi.h>
 31#include <asm/tlbflush.h>
 32#include <asm/mce.h>
 33#include <asm/vm86.h>
 
 
 
 
 
 
 
 34
 35/*
 36 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 37 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 38 * so they are allowed to end up in the .data..cacheline_aligned
 39 * section. Since TSS's are completely CPU-local, we want them
 40 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 41 */
 42__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
 43	.x86_tss = {
 44		.sp0 = TOP_OF_INIT_STACK,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 45#ifdef CONFIG_X86_32
 46		.ss0 = __KERNEL_DS,
 47		.ss1 = __KERNEL_CS,
 48		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
 49#endif
 50	 },
 51#ifdef CONFIG_X86_32
 52	 /*
 53	  * Note that the .io_bitmap member must be extra-big. This is because
 54	  * the CPU will access an additional byte beyond the end of the IO
 55	  * permission bitmap. The extra byte must be all 1 bits, and must
 56	  * be within the limit.
 57	  */
 58	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
 59#endif
 60#ifdef CONFIG_X86_32
 61	.SYSENTER_stack_canary	= STACK_END_MAGIC,
 62#endif
 63};
 64EXPORT_PER_CPU_SYMBOL(cpu_tss);
 65
 66#ifdef CONFIG_X86_64
 67static DEFINE_PER_CPU(unsigned char, is_idle);
 68static ATOMIC_NOTIFIER_HEAD(idle_notifier);
 69
 70void idle_notifier_register(struct notifier_block *n)
 71{
 72	atomic_notifier_chain_register(&idle_notifier, n);
 73}
 74EXPORT_SYMBOL_GPL(idle_notifier_register);
 75
 76void idle_notifier_unregister(struct notifier_block *n)
 77{
 78	atomic_notifier_chain_unregister(&idle_notifier, n);
 79}
 80EXPORT_SYMBOL_GPL(idle_notifier_unregister);
 81#endif
 82
 83/*
 84 * this gets called so that we can store lazy state into memory and copy the
 85 * current task into the new thread.
 86 */
 87int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 88{
 89	memcpy(dst, src, arch_task_struct_size);
 90#ifdef CONFIG_VM86
 91	dst->thread.vm86 = NULL;
 92#endif
 93
 94	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
 95}
 96
 97/*
 98 * Free current thread data structures etc..
 99 */
100void exit_thread(void)
101{
102	struct task_struct *me = current;
103	struct thread_struct *t = &me->thread;
104	unsigned long *bp = t->io_bitmap_ptr;
105	struct fpu *fpu = &t->fpu;
106
107	if (bp) {
108		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
109
110		t->io_bitmap_ptr = NULL;
111		clear_thread_flag(TIF_IO_BITMAP);
112		/*
113		 * Careful, clear this in the TSS too:
114		 */
115		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
116		t->io_bitmap_max = 0;
117		put_cpu();
118		kfree(bp);
119	}
120
121	free_vm86(t);
122
123	fpu__drop(fpu);
124}
125
126void flush_thread(void)
127{
128	struct task_struct *tsk = current;
129
130	flush_ptrace_hw_breakpoint(tsk);
131	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
132
133	fpu__clear(&tsk->thread.fpu);
134}
135
136static void hard_disable_TSC(void)
137{
138	cr4_set_bits(X86_CR4_TSD);
139}
140
141void disable_TSC(void)
142{
143	preempt_disable();
144	if (!test_and_set_thread_flag(TIF_NOTSC))
145		/*
146		 * Must flip the CPU state synchronously with
147		 * TIF_NOTSC in the current running context.
148		 */
149		hard_disable_TSC();
150	preempt_enable();
151}
152
153static void hard_enable_TSC(void)
154{
155	cr4_clear_bits(X86_CR4_TSD);
156}
157
158static void enable_TSC(void)
159{
160	preempt_disable();
161	if (test_and_clear_thread_flag(TIF_NOTSC))
162		/*
163		 * Must flip the CPU state synchronously with
164		 * TIF_NOTSC in the current running context.
165		 */
166		hard_enable_TSC();
167	preempt_enable();
168}
169
170int get_tsc_mode(unsigned long adr)
171{
172	unsigned int val;
173
174	if (test_thread_flag(TIF_NOTSC))
175		val = PR_TSC_SIGSEGV;
176	else
177		val = PR_TSC_ENABLE;
178
179	return put_user(val, (unsigned int __user *)adr);
180}
181
182int set_tsc_mode(unsigned int val)
183{
184	if (val == PR_TSC_SIGSEGV)
185		disable_TSC();
186	else if (val == PR_TSC_ENABLE)
187		enable_TSC();
188	else
189		return -EINVAL;
190
191	return 0;
192}
193
194void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
195		      struct tss_struct *tss)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196{
197	struct thread_struct *prev, *next;
 
198
199	prev = &prev_p->thread;
200	next = &next_p->thread;
 
 
201
202	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
203	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
204		unsigned long debugctl = get_debugctlmsr();
 
205
206		debugctl &= ~DEBUGCTLMSR_BTF;
207		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
208			debugctl |= DEBUGCTLMSR_BTF;
 
 
 
 
 
 
 
 
209
210		update_debugctlmsr(debugctl);
 
 
 
 
 
 
 
 
 
211	}
 
212
213	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
214	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
215		/* prev and next are different */
216		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
217			hard_disable_TSC();
218		else
219			hard_enable_TSC();
220	}
221
222	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
223		/*
224		 * Copy the relevant range of the IO bitmap.
225		 * Normally this is 128 bytes or less:
226		 */
227		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
228		       max(prev->io_bitmap_max, next->io_bitmap_max));
229	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
 
 
 
 
 
230		/*
231		 * Clear any possible leftover bits:
232		 */
233		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
234	}
235	propagate_user_return_notify(prev_p, next_p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236}
237
238/*
239 * Idle related variables and functions
 
 
 
 
240 */
241unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
242EXPORT_SYMBOL(boot_option_idle_override);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243
244static void (*x86_idle)(void);
 
 
 
 
 
 
 
 
245
246#ifndef CONFIG_SMP
247static inline void play_dead(void)
 
 
 
 
 
 
 
248{
249	BUG();
 
 
250}
251#endif
252
253#ifdef CONFIG_X86_64
254void enter_idle(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
255{
256	this_cpu_write(is_idle, 1);
257	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
 
 
 
 
 
 
 
 
 
 
 
258}
259
260static void __exit_idle(void)
261{
262	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
263		return;
264	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265}
266
267/* Called from interrupts to signify idle end */
268void exit_idle(void)
 
 
 
 
 
 
 
 
269{
270	/* idle loop has pid 0 */
271	if (current->pid)
272		return;
273	__exit_idle();
274}
275#endif
276
277void arch_cpu_idle_enter(void)
278{
 
279	local_touch_nmi();
280	enter_idle();
281}
282
283void arch_cpu_idle_exit(void)
284{
285	__exit_idle();
286}
287
288void arch_cpu_idle_dead(void)
289{
290	play_dead();
291}
292
293/*
294 * Called from the generic idle code.
295 */
296void arch_cpu_idle(void)
297{
298	x86_idle();
299}
300
301/*
302 * We use this if we don't have any better idle routine..
303 */
304void default_idle(void)
305{
306	trace_cpu_idle_rcuidle(1, smp_processor_id());
307	safe_halt();
308	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
309}
310#ifdef CONFIG_APM_MODULE
311EXPORT_SYMBOL(default_idle);
312#endif
313
314#ifdef CONFIG_XEN
315bool xen_set_default_idle(void)
316{
317	bool ret = !!x86_idle;
318
319	x86_idle = default_idle;
320
321	return ret;
322}
323#endif
 
324void stop_this_cpu(void *dummy)
325{
326	local_irq_disable();
327	/*
328	 * Remove this CPU:
329	 */
330	set_cpu_online(smp_processor_id(), false);
331	disable_local_APIC();
332	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
333
334	for (;;)
335		halt();
336}
337
338bool amd_e400_c1e_detected;
339EXPORT_SYMBOL(amd_e400_c1e_detected);
340
341static cpumask_var_t amd_e400_c1e_mask;
342
343void amd_e400_remove_cpu(int cpu)
344{
345	if (amd_e400_c1e_mask != NULL)
346		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
 
 
 
 
 
 
347}
348
349/*
350 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
351 * pending message MSR. If we detect C1E, then we handle it the same
352 * way as C3 power states (local apic timer and TSC stop)
353 */
354static void amd_e400_idle(void)
355{
356	if (!amd_e400_c1e_detected) {
357		u32 lo, hi;
358
359		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
360
361		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
362			amd_e400_c1e_detected = true;
363			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
364				mark_tsc_unstable("TSC halt in AMD C1E");
365			pr_info("System has AMD C1E enabled\n");
366		}
367	}
368
369	if (amd_e400_c1e_detected) {
370		int cpu = smp_processor_id();
371
372		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
373			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
374			/* Force broadcast so ACPI can not interfere. */
375			tick_broadcast_force();
376			pr_info("Switch to broadcast mode on CPU%d\n", cpu);
377		}
378		tick_broadcast_enter();
379
380		default_idle();
381
382		/*
383		 * The switch back from broadcast mode needs to be
384		 * called with interrupts disabled.
385		 */
386		local_irq_disable();
387		tick_broadcast_exit();
388		local_irq_enable();
389	} else
390		default_idle();
391}
392
393/*
394 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
395 * We can't rely on cpuidle installing MWAIT, because it will not load
396 * on systems that support only C1 -- so the boot default must be MWAIT.
397 *
398 * Some AMD machines are the opposite, they depend on using HALT.
399 *
400 * So for default C1, which is used during boot until cpuidle loads,
401 * use MWAIT-C1 on Intel HW that has it, else use HALT.
402 */
403static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
404{
405	if (c->x86_vendor != X86_VENDOR_INTEL)
406		return 0;
407
408	if (!cpu_has(c, X86_FEATURE_MWAIT))
409		return 0;
410
411	return 1;
412}
413
414/*
415 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
416 * with interrupts enabled and no flags, which is backwards compatible with the
417 * original MWAIT implementation.
418 */
419static void mwait_idle(void)
420{
421	if (!current_set_polling_and_test()) {
422		trace_cpu_idle_rcuidle(1, smp_processor_id());
423		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
424			mb(); /* quirk */
425			clflush((void *)&current_thread_info()->flags);
426			mb(); /* quirk */
427		}
428
429		__monitor((void *)&current_thread_info()->flags, 0, 0);
430		if (!need_resched())
431			__sti_mwait(0, 0);
432		else
433			local_irq_enable();
434		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
435	} else {
436		local_irq_enable();
437	}
438	__current_clr_polling();
439}
440
441void select_idle_routine(const struct cpuinfo_x86 *c)
442{
443#ifdef CONFIG_SMP
444	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
445		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
446#endif
447	if (x86_idle || boot_option_idle_override == IDLE_POLL)
448		return;
449
450	if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
451		/* E400: APIC timer interrupt does not wake up CPU from C1e */
452		pr_info("using AMD E400 aware idle routine\n");
453		x86_idle = amd_e400_idle;
454	} else if (prefer_mwait_c1_over_halt(c)) {
455		pr_info("using mwait in idle threads\n");
456		x86_idle = mwait_idle;
457	} else
458		x86_idle = default_idle;
459}
460
461void __init init_amd_e400_c1e_mask(void)
462{
463	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
464	if (x86_idle == amd_e400_idle)
465		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
466}
467
468static int __init idle_setup(char *str)
469{
470	if (!str)
471		return -EINVAL;
472
473	if (!strcmp(str, "poll")) {
474		pr_info("using polling idle threads\n");
475		boot_option_idle_override = IDLE_POLL;
476		cpu_idle_poll_ctrl(true);
477	} else if (!strcmp(str, "halt")) {
478		/*
479		 * When the boot option of idle=halt is added, halt is
480		 * forced to be used for CPU idle. In such case CPU C2/C3
481		 * won't be used again.
482		 * To continue to load the CPU idle driver, don't touch
483		 * the boot_option_idle_override.
484		 */
485		x86_idle = default_idle;
486		boot_option_idle_override = IDLE_HALT;
487	} else if (!strcmp(str, "nomwait")) {
488		/*
489		 * If the boot option of "idle=nomwait" is added,
490		 * it means that mwait will be disabled for CPU C2/C3
491		 * states. In such case it won't touch the variable
492		 * of boot_option_idle_override.
493		 */
494		boot_option_idle_override = IDLE_NOMWAIT;
495	} else
496		return -1;
497
498	return 0;
499}
500early_param("idle", idle_setup);
501
502unsigned long arch_align_stack(unsigned long sp)
503{
504	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
505		sp -= get_random_int() % 8192;
506	return sp & ~0xf;
507}
508
509unsigned long arch_randomize_brk(struct mm_struct *mm)
510{
511	unsigned long range_end = mm->brk + 0x02000000;
512	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
513}
514
515/*
516 * Called from fs/proc with a reference on @p to find the function
517 * which called into schedule(). This needs to be done carefully
518 * because the task might wake up and we might look at a stack
519 * changing under us.
520 */
521unsigned long get_wchan(struct task_struct *p)
522{
523	unsigned long start, bottom, top, sp, fp, ip;
524	int count = 0;
525
526	if (!p || p == current || p->state == TASK_RUNNING)
 
 
 
527		return 0;
528
529	start = (unsigned long)task_stack_page(p);
530	if (!start)
531		return 0;
532
533	/*
534	 * Layout of the stack page:
535	 *
536	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
537	 * PADDING
538	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
539	 * stack
540	 * ----------- bottom = start + sizeof(thread_info)
541	 * thread_info
542	 * ----------- start
543	 *
544	 * The tasks stack pointer points at the location where the
545	 * framepointer is stored. The data on the stack is:
546	 * ... IP FP ... IP FP
547	 *
548	 * We need to read FP and IP, so we need to adjust the upper
549	 * bound by another unsigned long.
550	 */
551	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
552	top -= 2 * sizeof(unsigned long);
553	bottom = start + sizeof(struct thread_info);
554
555	sp = READ_ONCE(p->thread.sp);
556	if (sp < bottom || sp > top)
557		return 0;
558
559	fp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
560	do {
561		if (fp < bottom || fp > top)
562			return 0;
563		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
564		if (!in_sched_functions(ip))
565			return ip;
 
 
566		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
567	} while (count++ < 16 && p->state != TASK_RUNNING);
568	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
569}