Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/* cpu_feature_enabled() cannot be used this early */
3#define USE_EARLY_PGTABLE_L5
4
5#include <linux/memblock.h>
6#include <linux/linkage.h>
7#include <linux/bitops.h>
8#include <linux/kernel.h>
9#include <linux/export.h>
10#include <linux/percpu.h>
11#include <linux/string.h>
12#include <linux/ctype.h>
13#include <linux/delay.h>
14#include <linux/sched/mm.h>
15#include <linux/sched/clock.h>
16#include <linux/sched/task.h>
17#include <linux/init.h>
18#include <linux/kprobes.h>
19#include <linux/kgdb.h>
20#include <linux/smp.h>
21#include <linux/io.h>
22#include <linux/syscore_ops.h>
23
24#include <asm/stackprotector.h>
25#include <asm/perf_event.h>
26#include <asm/mmu_context.h>
27#include <asm/archrandom.h>
28#include <asm/hypervisor.h>
29#include <asm/processor.h>
30#include <asm/tlbflush.h>
31#include <asm/debugreg.h>
32#include <asm/sections.h>
33#include <asm/vsyscall.h>
34#include <linux/topology.h>
35#include <linux/cpumask.h>
36#include <asm/pgtable.h>
37#include <linux/atomic.h>
38#include <asm/proto.h>
39#include <asm/setup.h>
40#include <asm/apic.h>
41#include <asm/desc.h>
42#include <asm/fpu/internal.h>
43#include <asm/mtrr.h>
44#include <asm/hwcap2.h>
45#include <linux/numa.h>
46#include <asm/asm.h>
47#include <asm/bugs.h>
48#include <asm/cpu.h>
49#include <asm/mce.h>
50#include <asm/msr.h>
51#include <asm/pat.h>
52#include <asm/microcode.h>
53#include <asm/microcode_intel.h>
54#include <asm/intel-family.h>
55#include <asm/cpu_device_id.h>
56
57#ifdef CONFIG_X86_LOCAL_APIC
58#include <asm/uv/uv.h>
59#endif
60
61#include "cpu.h"
62
63u32 elf_hwcap2 __read_mostly;
64
65/* all of these masks are initialized in setup_cpu_local_masks() */
66cpumask_var_t cpu_initialized_mask;
67cpumask_var_t cpu_callout_mask;
68cpumask_var_t cpu_callin_mask;
69
70/* representing cpus for which sibling maps can be computed */
71cpumask_var_t cpu_sibling_setup_mask;
72
73/* Number of siblings per CPU package */
74int smp_num_siblings = 1;
75EXPORT_SYMBOL(smp_num_siblings);
76
77/* Last level cache ID of each logical CPU */
78DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
79
80/* correctly size the local cpu masks */
81void __init setup_cpu_local_masks(void)
82{
83 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
84 alloc_bootmem_cpumask_var(&cpu_callin_mask);
85 alloc_bootmem_cpumask_var(&cpu_callout_mask);
86 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
87}
88
89static void default_init(struct cpuinfo_x86 *c)
90{
91#ifdef CONFIG_X86_64
92 cpu_detect_cache_sizes(c);
93#else
94 /* Not much we can do here... */
95 /* Check if at least it has cpuid */
96 if (c->cpuid_level == -1) {
97 /* No cpuid. It must be an ancient CPU */
98 if (c->x86 == 4)
99 strcpy(c->x86_model_id, "486");
100 else if (c->x86 == 3)
101 strcpy(c->x86_model_id, "386");
102 }
103#endif
104}
105
106static const struct cpu_dev default_cpu = {
107 .c_init = default_init,
108 .c_vendor = "Unknown",
109 .c_x86_vendor = X86_VENDOR_UNKNOWN,
110};
111
112static const struct cpu_dev *this_cpu = &default_cpu;
113
114DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
115#ifdef CONFIG_X86_64
116 /*
117 * We need valid kernel segments for data and code in long mode too
118 * IRET will check the segment types kkeil 2000/10/28
119 * Also sysret mandates a special GDT layout
120 *
121 * TLS descriptors are currently at a different place compared to i386.
122 * Hopefully nobody expects them at a fixed place (Wine?)
123 */
124 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
125 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
126 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
127 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
128 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
129 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
130#else
131 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
132 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
133 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
134 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
135 /*
136 * Segments used for calling PnP BIOS have byte granularity.
137 * They code segments and data segments have fixed 64k limits,
138 * the transfer segment sizes are set at run time.
139 */
140 /* 32-bit code */
141 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
142 /* 16-bit code */
143 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
144 /* 16-bit data */
145 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
146 /* 16-bit data */
147 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
148 /* 16-bit data */
149 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
150 /*
151 * The APM segments have byte granularity and their bases
152 * are set at run time. All have 64k limits.
153 */
154 /* 32-bit code */
155 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
156 /* 16-bit code */
157 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
158 /* data */
159 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
160
161 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
162 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
163 GDT_STACK_CANARY_INIT
164#endif
165} };
166EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
167
168static int __init x86_mpx_setup(char *s)
169{
170 /* require an exact match without trailing characters */
171 if (strlen(s))
172 return 0;
173
174 /* do not emit a message if the feature is not present */
175 if (!boot_cpu_has(X86_FEATURE_MPX))
176 return 1;
177
178 setup_clear_cpu_cap(X86_FEATURE_MPX);
179 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
180 return 1;
181}
182__setup("nompx", x86_mpx_setup);
183
184#ifdef CONFIG_X86_64
185static int __init x86_nopcid_setup(char *s)
186{
187 /* nopcid doesn't accept parameters */
188 if (s)
189 return -EINVAL;
190
191 /* do not emit a message if the feature is not present */
192 if (!boot_cpu_has(X86_FEATURE_PCID))
193 return 0;
194
195 setup_clear_cpu_cap(X86_FEATURE_PCID);
196 pr_info("nopcid: PCID feature disabled\n");
197 return 0;
198}
199early_param("nopcid", x86_nopcid_setup);
200#endif
201
202static int __init x86_noinvpcid_setup(char *s)
203{
204 /* noinvpcid doesn't accept parameters */
205 if (s)
206 return -EINVAL;
207
208 /* do not emit a message if the feature is not present */
209 if (!boot_cpu_has(X86_FEATURE_INVPCID))
210 return 0;
211
212 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
213 pr_info("noinvpcid: INVPCID feature disabled\n");
214 return 0;
215}
216early_param("noinvpcid", x86_noinvpcid_setup);
217
218#ifdef CONFIG_X86_32
219static int cachesize_override = -1;
220static int disable_x86_serial_nr = 1;
221
222static int __init cachesize_setup(char *str)
223{
224 get_option(&str, &cachesize_override);
225 return 1;
226}
227__setup("cachesize=", cachesize_setup);
228
229static int __init x86_sep_setup(char *s)
230{
231 setup_clear_cpu_cap(X86_FEATURE_SEP);
232 return 1;
233}
234__setup("nosep", x86_sep_setup);
235
236/* Standard macro to see if a specific flag is changeable */
237static inline int flag_is_changeable_p(u32 flag)
238{
239 u32 f1, f2;
240
241 /*
242 * Cyrix and IDT cpus allow disabling of CPUID
243 * so the code below may return different results
244 * when it is executed before and after enabling
245 * the CPUID. Add "volatile" to not allow gcc to
246 * optimize the subsequent calls to this function.
247 */
248 asm volatile ("pushfl \n\t"
249 "pushfl \n\t"
250 "popl %0 \n\t"
251 "movl %0, %1 \n\t"
252 "xorl %2, %0 \n\t"
253 "pushl %0 \n\t"
254 "popfl \n\t"
255 "pushfl \n\t"
256 "popl %0 \n\t"
257 "popfl \n\t"
258
259 : "=&r" (f1), "=&r" (f2)
260 : "ir" (flag));
261
262 return ((f1^f2) & flag) != 0;
263}
264
265/* Probe for the CPUID instruction */
266int have_cpuid_p(void)
267{
268 return flag_is_changeable_p(X86_EFLAGS_ID);
269}
270
271static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
272{
273 unsigned long lo, hi;
274
275 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
276 return;
277
278 /* Disable processor serial number: */
279
280 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
281 lo |= 0x200000;
282 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
283
284 pr_notice("CPU serial number disabled.\n");
285 clear_cpu_cap(c, X86_FEATURE_PN);
286
287 /* Disabling the serial number may affect the cpuid level */
288 c->cpuid_level = cpuid_eax(0);
289}
290
291static int __init x86_serial_nr_setup(char *s)
292{
293 disable_x86_serial_nr = 0;
294 return 1;
295}
296__setup("serialnumber", x86_serial_nr_setup);
297#else
298static inline int flag_is_changeable_p(u32 flag)
299{
300 return 1;
301}
302static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
303{
304}
305#endif
306
307static __init int setup_disable_smep(char *arg)
308{
309 setup_clear_cpu_cap(X86_FEATURE_SMEP);
310 /* Check for things that depend on SMEP being enabled: */
311 check_mpx_erratum(&boot_cpu_data);
312 return 1;
313}
314__setup("nosmep", setup_disable_smep);
315
316static __always_inline void setup_smep(struct cpuinfo_x86 *c)
317{
318 if (cpu_has(c, X86_FEATURE_SMEP))
319 cr4_set_bits(X86_CR4_SMEP);
320}
321
322static __init int setup_disable_smap(char *arg)
323{
324 setup_clear_cpu_cap(X86_FEATURE_SMAP);
325 return 1;
326}
327__setup("nosmap", setup_disable_smap);
328
329static __always_inline void setup_smap(struct cpuinfo_x86 *c)
330{
331 unsigned long eflags = native_save_fl();
332
333 /* This should have been cleared long ago */
334 BUG_ON(eflags & X86_EFLAGS_AC);
335
336 if (cpu_has(c, X86_FEATURE_SMAP)) {
337#ifdef CONFIG_X86_SMAP
338 cr4_set_bits(X86_CR4_SMAP);
339#else
340 cr4_clear_bits(X86_CR4_SMAP);
341#endif
342 }
343}
344
345static __always_inline void setup_umip(struct cpuinfo_x86 *c)
346{
347 /* Check the boot processor, plus build option for UMIP. */
348 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
349 goto out;
350
351 /* Check the current processor's cpuid bits. */
352 if (!cpu_has(c, X86_FEATURE_UMIP))
353 goto out;
354
355 cr4_set_bits(X86_CR4_UMIP);
356
357 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
358
359 return;
360
361out:
362 /*
363 * Make sure UMIP is disabled in case it was enabled in a
364 * previous boot (e.g., via kexec).
365 */
366 cr4_clear_bits(X86_CR4_UMIP);
367}
368
369static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
370static unsigned long cr4_pinned_bits __ro_after_init;
371
372void native_write_cr0(unsigned long val)
373{
374 unsigned long bits_missing = 0;
375
376set_register:
377 asm volatile("mov %0,%%cr0": "+r" (val), "+m" (__force_order));
378
379 if (static_branch_likely(&cr_pinning)) {
380 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
381 bits_missing = X86_CR0_WP;
382 val |= bits_missing;
383 goto set_register;
384 }
385 /* Warn after we've set the missing bits. */
386 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
387 }
388}
389EXPORT_SYMBOL(native_write_cr0);
390
391void native_write_cr4(unsigned long val)
392{
393 unsigned long bits_missing = 0;
394
395set_register:
396 asm volatile("mov %0,%%cr4": "+r" (val), "+m" (cr4_pinned_bits));
397
398 if (static_branch_likely(&cr_pinning)) {
399 if (unlikely((val & cr4_pinned_bits) != cr4_pinned_bits)) {
400 bits_missing = ~val & cr4_pinned_bits;
401 val |= bits_missing;
402 goto set_register;
403 }
404 /* Warn after we've set the missing bits. */
405 WARN_ONCE(bits_missing, "CR4 bits went missing: %lx!?\n",
406 bits_missing);
407 }
408}
409EXPORT_SYMBOL(native_write_cr4);
410
411void cr4_init(void)
412{
413 unsigned long cr4 = __read_cr4();
414
415 if (boot_cpu_has(X86_FEATURE_PCID))
416 cr4 |= X86_CR4_PCIDE;
417 if (static_branch_likely(&cr_pinning))
418 cr4 |= cr4_pinned_bits;
419
420 __write_cr4(cr4);
421
422 /* Initialize cr4 shadow for this CPU. */
423 this_cpu_write(cpu_tlbstate.cr4, cr4);
424}
425
426/*
427 * Once CPU feature detection is finished (and boot params have been
428 * parsed), record any of the sensitive CR bits that are set, and
429 * enable CR pinning.
430 */
431static void __init setup_cr_pinning(void)
432{
433 unsigned long mask;
434
435 mask = (X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP);
436 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & mask;
437 static_key_enable(&cr_pinning.key);
438}
439
440/*
441 * Protection Keys are not available in 32-bit mode.
442 */
443static bool pku_disabled;
444
445static __always_inline void setup_pku(struct cpuinfo_x86 *c)
446{
447 struct pkru_state *pk;
448
449 /* check the boot processor, plus compile options for PKU: */
450 if (!cpu_feature_enabled(X86_FEATURE_PKU))
451 return;
452 /* checks the actual processor's cpuid bits: */
453 if (!cpu_has(c, X86_FEATURE_PKU))
454 return;
455 if (pku_disabled)
456 return;
457
458 cr4_set_bits(X86_CR4_PKE);
459 pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
460 if (pk)
461 pk->pkru = init_pkru_value;
462 /*
463 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
464 * cpuid bit to be set. We need to ensure that we
465 * update that bit in this CPU's "cpu_info".
466 */
467 get_cpu_cap(c);
468}
469
470#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
471static __init int setup_disable_pku(char *arg)
472{
473 /*
474 * Do not clear the X86_FEATURE_PKU bit. All of the
475 * runtime checks are against OSPKE so clearing the
476 * bit does nothing.
477 *
478 * This way, we will see "pku" in cpuinfo, but not
479 * "ospke", which is exactly what we want. It shows
480 * that the CPU has PKU, but the OS has not enabled it.
481 * This happens to be exactly how a system would look
482 * if we disabled the config option.
483 */
484 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
485 pku_disabled = true;
486 return 1;
487}
488__setup("nopku", setup_disable_pku);
489#endif /* CONFIG_X86_64 */
490
491/*
492 * Some CPU features depend on higher CPUID levels, which may not always
493 * be available due to CPUID level capping or broken virtualization
494 * software. Add those features to this table to auto-disable them.
495 */
496struct cpuid_dependent_feature {
497 u32 feature;
498 u32 level;
499};
500
501static const struct cpuid_dependent_feature
502cpuid_dependent_features[] = {
503 { X86_FEATURE_MWAIT, 0x00000005 },
504 { X86_FEATURE_DCA, 0x00000009 },
505 { X86_FEATURE_XSAVE, 0x0000000d },
506 { 0, 0 }
507};
508
509static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
510{
511 const struct cpuid_dependent_feature *df;
512
513 for (df = cpuid_dependent_features; df->feature; df++) {
514
515 if (!cpu_has(c, df->feature))
516 continue;
517 /*
518 * Note: cpuid_level is set to -1 if unavailable, but
519 * extended_extended_level is set to 0 if unavailable
520 * and the legitimate extended levels are all negative
521 * when signed; hence the weird messing around with
522 * signs here...
523 */
524 if (!((s32)df->level < 0 ?
525 (u32)df->level > (u32)c->extended_cpuid_level :
526 (s32)df->level > (s32)c->cpuid_level))
527 continue;
528
529 clear_cpu_cap(c, df->feature);
530 if (!warn)
531 continue;
532
533 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
534 x86_cap_flag(df->feature), df->level);
535 }
536}
537
538/*
539 * Naming convention should be: <Name> [(<Codename>)]
540 * This table only is used unless init_<vendor>() below doesn't set it;
541 * in particular, if CPUID levels 0x80000002..4 are supported, this
542 * isn't used
543 */
544
545/* Look up CPU names by table lookup. */
546static const char *table_lookup_model(struct cpuinfo_x86 *c)
547{
548#ifdef CONFIG_X86_32
549 const struct legacy_cpu_model_info *info;
550
551 if (c->x86_model >= 16)
552 return NULL; /* Range check */
553
554 if (!this_cpu)
555 return NULL;
556
557 info = this_cpu->legacy_models;
558
559 while (info->family) {
560 if (info->family == c->x86)
561 return info->model_names[c->x86_model];
562 info++;
563 }
564#endif
565 return NULL; /* Not found */
566}
567
568__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
569__u32 cpu_caps_set[NCAPINTS + NBUGINTS];
570
571void load_percpu_segment(int cpu)
572{
573#ifdef CONFIG_X86_32
574 loadsegment(fs, __KERNEL_PERCPU);
575#else
576 __loadsegment_simple(gs, 0);
577 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
578#endif
579 load_stack_canary_segment();
580}
581
582#ifdef CONFIG_X86_32
583/* The 32-bit entry code needs to find cpu_entry_area. */
584DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
585#endif
586
587/* Load the original GDT from the per-cpu structure */
588void load_direct_gdt(int cpu)
589{
590 struct desc_ptr gdt_descr;
591
592 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
593 gdt_descr.size = GDT_SIZE - 1;
594 load_gdt(&gdt_descr);
595}
596EXPORT_SYMBOL_GPL(load_direct_gdt);
597
598/* Load a fixmap remapping of the per-cpu GDT */
599void load_fixmap_gdt(int cpu)
600{
601 struct desc_ptr gdt_descr;
602
603 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
604 gdt_descr.size = GDT_SIZE - 1;
605 load_gdt(&gdt_descr);
606}
607EXPORT_SYMBOL_GPL(load_fixmap_gdt);
608
609/*
610 * Current gdt points %fs at the "master" per-cpu area: after this,
611 * it's on the real one.
612 */
613void switch_to_new_gdt(int cpu)
614{
615 /* Load the original GDT */
616 load_direct_gdt(cpu);
617 /* Reload the per-cpu base */
618 load_percpu_segment(cpu);
619}
620
621static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
622
623static void get_model_name(struct cpuinfo_x86 *c)
624{
625 unsigned int *v;
626 char *p, *q, *s;
627
628 if (c->extended_cpuid_level < 0x80000004)
629 return;
630
631 v = (unsigned int *)c->x86_model_id;
632 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
633 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
634 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
635 c->x86_model_id[48] = 0;
636
637 /* Trim whitespace */
638 p = q = s = &c->x86_model_id[0];
639
640 while (*p == ' ')
641 p++;
642
643 while (*p) {
644 /* Note the last non-whitespace index */
645 if (!isspace(*p))
646 s = q;
647
648 *q++ = *p++;
649 }
650
651 *(s + 1) = '\0';
652}
653
654void detect_num_cpu_cores(struct cpuinfo_x86 *c)
655{
656 unsigned int eax, ebx, ecx, edx;
657
658 c->x86_max_cores = 1;
659 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
660 return;
661
662 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
663 if (eax & 0x1f)
664 c->x86_max_cores = (eax >> 26) + 1;
665}
666
667void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
668{
669 unsigned int n, dummy, ebx, ecx, edx, l2size;
670
671 n = c->extended_cpuid_level;
672
673 if (n >= 0x80000005) {
674 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
675 c->x86_cache_size = (ecx>>24) + (edx>>24);
676#ifdef CONFIG_X86_64
677 /* On K8 L1 TLB is inclusive, so don't count it */
678 c->x86_tlbsize = 0;
679#endif
680 }
681
682 if (n < 0x80000006) /* Some chips just has a large L1. */
683 return;
684
685 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
686 l2size = ecx >> 16;
687
688#ifdef CONFIG_X86_64
689 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
690#else
691 /* do processor-specific cache resizing */
692 if (this_cpu->legacy_cache_size)
693 l2size = this_cpu->legacy_cache_size(c, l2size);
694
695 /* Allow user to override all this if necessary. */
696 if (cachesize_override != -1)
697 l2size = cachesize_override;
698
699 if (l2size == 0)
700 return; /* Again, no L2 cache is possible */
701#endif
702
703 c->x86_cache_size = l2size;
704}
705
706u16 __read_mostly tlb_lli_4k[NR_INFO];
707u16 __read_mostly tlb_lli_2m[NR_INFO];
708u16 __read_mostly tlb_lli_4m[NR_INFO];
709u16 __read_mostly tlb_lld_4k[NR_INFO];
710u16 __read_mostly tlb_lld_2m[NR_INFO];
711u16 __read_mostly tlb_lld_4m[NR_INFO];
712u16 __read_mostly tlb_lld_1g[NR_INFO];
713
714static void cpu_detect_tlb(struct cpuinfo_x86 *c)
715{
716 if (this_cpu->c_detect_tlb)
717 this_cpu->c_detect_tlb(c);
718
719 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
720 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
721 tlb_lli_4m[ENTRIES]);
722
723 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
724 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
725 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
726}
727
728int detect_ht_early(struct cpuinfo_x86 *c)
729{
730#ifdef CONFIG_SMP
731 u32 eax, ebx, ecx, edx;
732
733 if (!cpu_has(c, X86_FEATURE_HT))
734 return -1;
735
736 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
737 return -1;
738
739 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
740 return -1;
741
742 cpuid(1, &eax, &ebx, &ecx, &edx);
743
744 smp_num_siblings = (ebx & 0xff0000) >> 16;
745 if (smp_num_siblings == 1)
746 pr_info_once("CPU0: Hyper-Threading is disabled\n");
747#endif
748 return 0;
749}
750
751void detect_ht(struct cpuinfo_x86 *c)
752{
753#ifdef CONFIG_SMP
754 int index_msb, core_bits;
755
756 if (detect_ht_early(c) < 0)
757 return;
758
759 index_msb = get_count_order(smp_num_siblings);
760 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
761
762 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
763
764 index_msb = get_count_order(smp_num_siblings);
765
766 core_bits = get_count_order(c->x86_max_cores);
767
768 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
769 ((1 << core_bits) - 1);
770#endif
771}
772
773static void get_cpu_vendor(struct cpuinfo_x86 *c)
774{
775 char *v = c->x86_vendor_id;
776 int i;
777
778 for (i = 0; i < X86_VENDOR_NUM; i++) {
779 if (!cpu_devs[i])
780 break;
781
782 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
783 (cpu_devs[i]->c_ident[1] &&
784 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
785
786 this_cpu = cpu_devs[i];
787 c->x86_vendor = this_cpu->c_x86_vendor;
788 return;
789 }
790 }
791
792 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
793 "CPU: Your system may be unstable.\n", v);
794
795 c->x86_vendor = X86_VENDOR_UNKNOWN;
796 this_cpu = &default_cpu;
797}
798
799void cpu_detect(struct cpuinfo_x86 *c)
800{
801 /* Get vendor name */
802 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
803 (unsigned int *)&c->x86_vendor_id[0],
804 (unsigned int *)&c->x86_vendor_id[8],
805 (unsigned int *)&c->x86_vendor_id[4]);
806
807 c->x86 = 4;
808 /* Intel-defined flags: level 0x00000001 */
809 if (c->cpuid_level >= 0x00000001) {
810 u32 junk, tfms, cap0, misc;
811
812 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
813 c->x86 = x86_family(tfms);
814 c->x86_model = x86_model(tfms);
815 c->x86_stepping = x86_stepping(tfms);
816
817 if (cap0 & (1<<19)) {
818 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
819 c->x86_cache_alignment = c->x86_clflush_size;
820 }
821 }
822}
823
824static void apply_forced_caps(struct cpuinfo_x86 *c)
825{
826 int i;
827
828 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
829 c->x86_capability[i] &= ~cpu_caps_cleared[i];
830 c->x86_capability[i] |= cpu_caps_set[i];
831 }
832}
833
834static void init_speculation_control(struct cpuinfo_x86 *c)
835{
836 /*
837 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
838 * and they also have a different bit for STIBP support. Also,
839 * a hypervisor might have set the individual AMD bits even on
840 * Intel CPUs, for finer-grained selection of what's available.
841 */
842 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
843 set_cpu_cap(c, X86_FEATURE_IBRS);
844 set_cpu_cap(c, X86_FEATURE_IBPB);
845 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
846 }
847
848 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
849 set_cpu_cap(c, X86_FEATURE_STIBP);
850
851 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
852 cpu_has(c, X86_FEATURE_VIRT_SSBD))
853 set_cpu_cap(c, X86_FEATURE_SSBD);
854
855 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
856 set_cpu_cap(c, X86_FEATURE_IBRS);
857 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
858 }
859
860 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
861 set_cpu_cap(c, X86_FEATURE_IBPB);
862
863 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
864 set_cpu_cap(c, X86_FEATURE_STIBP);
865 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
866 }
867
868 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
869 set_cpu_cap(c, X86_FEATURE_SSBD);
870 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
871 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
872 }
873}
874
875static void init_cqm(struct cpuinfo_x86 *c)
876{
877 if (!cpu_has(c, X86_FEATURE_CQM_LLC)) {
878 c->x86_cache_max_rmid = -1;
879 c->x86_cache_occ_scale = -1;
880 return;
881 }
882
883 /* will be overridden if occupancy monitoring exists */
884 c->x86_cache_max_rmid = cpuid_ebx(0xf);
885
886 if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC) ||
887 cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL) ||
888 cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)) {
889 u32 eax, ebx, ecx, edx;
890
891 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
892 cpuid_count(0xf, 1, &eax, &ebx, &ecx, &edx);
893
894 c->x86_cache_max_rmid = ecx;
895 c->x86_cache_occ_scale = ebx;
896 }
897}
898
899void get_cpu_cap(struct cpuinfo_x86 *c)
900{
901 u32 eax, ebx, ecx, edx;
902
903 /* Intel-defined flags: level 0x00000001 */
904 if (c->cpuid_level >= 0x00000001) {
905 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
906
907 c->x86_capability[CPUID_1_ECX] = ecx;
908 c->x86_capability[CPUID_1_EDX] = edx;
909 }
910
911 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
912 if (c->cpuid_level >= 0x00000006)
913 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
914
915 /* Additional Intel-defined flags: level 0x00000007 */
916 if (c->cpuid_level >= 0x00000007) {
917 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
918 c->x86_capability[CPUID_7_0_EBX] = ebx;
919 c->x86_capability[CPUID_7_ECX] = ecx;
920 c->x86_capability[CPUID_7_EDX] = edx;
921
922 /* Check valid sub-leaf index before accessing it */
923 if (eax >= 1) {
924 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
925 c->x86_capability[CPUID_7_1_EAX] = eax;
926 }
927 }
928
929 /* Extended state features: level 0x0000000d */
930 if (c->cpuid_level >= 0x0000000d) {
931 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
932
933 c->x86_capability[CPUID_D_1_EAX] = eax;
934 }
935
936 /* AMD-defined flags: level 0x80000001 */
937 eax = cpuid_eax(0x80000000);
938 c->extended_cpuid_level = eax;
939
940 if ((eax & 0xffff0000) == 0x80000000) {
941 if (eax >= 0x80000001) {
942 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
943
944 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
945 c->x86_capability[CPUID_8000_0001_EDX] = edx;
946 }
947 }
948
949 if (c->extended_cpuid_level >= 0x80000007) {
950 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
951
952 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
953 c->x86_power = edx;
954 }
955
956 if (c->extended_cpuid_level >= 0x80000008) {
957 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
958 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
959 }
960
961 if (c->extended_cpuid_level >= 0x8000000a)
962 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
963
964 init_scattered_cpuid_features(c);
965 init_speculation_control(c);
966 init_cqm(c);
967
968 /*
969 * Clear/Set all flags overridden by options, after probe.
970 * This needs to happen each time we re-probe, which may happen
971 * several times during CPU initialization.
972 */
973 apply_forced_caps(c);
974}
975
976void get_cpu_address_sizes(struct cpuinfo_x86 *c)
977{
978 u32 eax, ebx, ecx, edx;
979
980 if (c->extended_cpuid_level >= 0x80000008) {
981 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
982
983 c->x86_virt_bits = (eax >> 8) & 0xff;
984 c->x86_phys_bits = eax & 0xff;
985 }
986#ifdef CONFIG_X86_32
987 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
988 c->x86_phys_bits = 36;
989#endif
990 c->x86_cache_bits = c->x86_phys_bits;
991}
992
993static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
994{
995#ifdef CONFIG_X86_32
996 int i;
997
998 /*
999 * First of all, decide if this is a 486 or higher
1000 * It's a 486 if we can modify the AC flag
1001 */
1002 if (flag_is_changeable_p(X86_EFLAGS_AC))
1003 c->x86 = 4;
1004 else
1005 c->x86 = 3;
1006
1007 for (i = 0; i < X86_VENDOR_NUM; i++)
1008 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1009 c->x86_vendor_id[0] = 0;
1010 cpu_devs[i]->c_identify(c);
1011 if (c->x86_vendor_id[0]) {
1012 get_cpu_vendor(c);
1013 break;
1014 }
1015 }
1016#endif
1017}
1018
1019#define NO_SPECULATION BIT(0)
1020#define NO_MELTDOWN BIT(1)
1021#define NO_SSB BIT(2)
1022#define NO_L1TF BIT(3)
1023#define NO_MDS BIT(4)
1024#define MSBDS_ONLY BIT(5)
1025#define NO_SWAPGS BIT(6)
1026#define NO_ITLB_MULTIHIT BIT(7)
1027
1028#define VULNWL(_vendor, _family, _model, _whitelist) \
1029 { X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
1030
1031#define VULNWL_INTEL(model, whitelist) \
1032 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1033
1034#define VULNWL_AMD(family, whitelist) \
1035 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1036
1037#define VULNWL_HYGON(family, whitelist) \
1038 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1039
1040static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1041 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1042 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1043 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1044 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1045
1046 /* Intel Family 6 */
1047 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1048 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1049 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1050 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1051 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1052
1053 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1054 VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1055 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1056 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1057 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1058 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1059
1060 VULNWL_INTEL(CORE_YONAH, NO_SSB),
1061
1062 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1063 VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1064
1065 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1066 VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1067 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1068
1069 /*
1070 * Technically, swapgs isn't serializing on AMD (despite it previously
1071 * being documented as such in the APM). But according to AMD, %gs is
1072 * updated non-speculatively, and the issuing of %gs-relative memory
1073 * operands will be blocked until the %gs update completes, which is
1074 * good enough for our purposes.
1075 */
1076
1077 VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT),
1078
1079 /* AMD Family 0xf - 0x12 */
1080 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1081 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1082 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1083 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1084
1085 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1086 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1087 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1088 {}
1089};
1090
1091static bool __init cpu_matches(unsigned long which)
1092{
1093 const struct x86_cpu_id *m = x86_match_cpu(cpu_vuln_whitelist);
1094
1095 return m && !!(m->driver_data & which);
1096}
1097
1098u64 x86_read_arch_cap_msr(void)
1099{
1100 u64 ia32_cap = 0;
1101
1102 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1103 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1104
1105 return ia32_cap;
1106}
1107
1108static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1109{
1110 u64 ia32_cap = x86_read_arch_cap_msr();
1111
1112 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1113 if (!cpu_matches(NO_ITLB_MULTIHIT) && !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1114 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1115
1116 if (cpu_matches(NO_SPECULATION))
1117 return;
1118
1119 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1120 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1121
1122 if (!cpu_matches(NO_SSB) && !(ia32_cap & ARCH_CAP_SSB_NO) &&
1123 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1124 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1125
1126 if (ia32_cap & ARCH_CAP_IBRS_ALL)
1127 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1128
1129 if (!cpu_matches(NO_MDS) && !(ia32_cap & ARCH_CAP_MDS_NO)) {
1130 setup_force_cpu_bug(X86_BUG_MDS);
1131 if (cpu_matches(MSBDS_ONLY))
1132 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1133 }
1134
1135 if (!cpu_matches(NO_SWAPGS))
1136 setup_force_cpu_bug(X86_BUG_SWAPGS);
1137
1138 /*
1139 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1140 * - TSX is supported or
1141 * - TSX_CTRL is present
1142 *
1143 * TSX_CTRL check is needed for cases when TSX could be disabled before
1144 * the kernel boot e.g. kexec.
1145 * TSX_CTRL check alone is not sufficient for cases when the microcode
1146 * update is not present or running as guest that don't get TSX_CTRL.
1147 */
1148 if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1149 (cpu_has(c, X86_FEATURE_RTM) ||
1150 (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1151 setup_force_cpu_bug(X86_BUG_TAA);
1152
1153 if (cpu_matches(NO_MELTDOWN))
1154 return;
1155
1156 /* Rogue Data Cache Load? No! */
1157 if (ia32_cap & ARCH_CAP_RDCL_NO)
1158 return;
1159
1160 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1161
1162 if (cpu_matches(NO_L1TF))
1163 return;
1164
1165 setup_force_cpu_bug(X86_BUG_L1TF);
1166}
1167
1168/*
1169 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1170 * unfortunately, that's not true in practice because of early VIA
1171 * chips and (more importantly) broken virtualizers that are not easy
1172 * to detect. In the latter case it doesn't even *fail* reliably, so
1173 * probing for it doesn't even work. Disable it completely on 32-bit
1174 * unless we can find a reliable way to detect all the broken cases.
1175 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1176 */
1177static void detect_nopl(void)
1178{
1179#ifdef CONFIG_X86_32
1180 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1181#else
1182 setup_force_cpu_cap(X86_FEATURE_NOPL);
1183#endif
1184}
1185
1186/*
1187 * Do minimum CPU detection early.
1188 * Fields really needed: vendor, cpuid_level, family, model, mask,
1189 * cache alignment.
1190 * The others are not touched to avoid unwanted side effects.
1191 *
1192 * WARNING: this function is only called on the boot CPU. Don't add code
1193 * here that is supposed to run on all CPUs.
1194 */
1195static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1196{
1197#ifdef CONFIG_X86_64
1198 c->x86_clflush_size = 64;
1199 c->x86_phys_bits = 36;
1200 c->x86_virt_bits = 48;
1201#else
1202 c->x86_clflush_size = 32;
1203 c->x86_phys_bits = 32;
1204 c->x86_virt_bits = 32;
1205#endif
1206 c->x86_cache_alignment = c->x86_clflush_size;
1207
1208 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1209 c->extended_cpuid_level = 0;
1210
1211 if (!have_cpuid_p())
1212 identify_cpu_without_cpuid(c);
1213
1214 /* cyrix could have cpuid enabled via c_identify()*/
1215 if (have_cpuid_p()) {
1216 cpu_detect(c);
1217 get_cpu_vendor(c);
1218 get_cpu_cap(c);
1219 get_cpu_address_sizes(c);
1220 setup_force_cpu_cap(X86_FEATURE_CPUID);
1221
1222 if (this_cpu->c_early_init)
1223 this_cpu->c_early_init(c);
1224
1225 c->cpu_index = 0;
1226 filter_cpuid_features(c, false);
1227
1228 if (this_cpu->c_bsp_init)
1229 this_cpu->c_bsp_init(c);
1230 } else {
1231 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1232 }
1233
1234 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1235
1236 cpu_set_bug_bits(c);
1237
1238 fpu__init_system(c);
1239
1240#ifdef CONFIG_X86_32
1241 /*
1242 * Regardless of whether PCID is enumerated, the SDM says
1243 * that it can't be enabled in 32-bit mode.
1244 */
1245 setup_clear_cpu_cap(X86_FEATURE_PCID);
1246#endif
1247
1248 /*
1249 * Later in the boot process pgtable_l5_enabled() relies on
1250 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1251 * enabled by this point we need to clear the feature bit to avoid
1252 * false-positives at the later stage.
1253 *
1254 * pgtable_l5_enabled() can be false here for several reasons:
1255 * - 5-level paging is disabled compile-time;
1256 * - it's 32-bit kernel;
1257 * - machine doesn't support 5-level paging;
1258 * - user specified 'no5lvl' in kernel command line.
1259 */
1260 if (!pgtable_l5_enabled())
1261 setup_clear_cpu_cap(X86_FEATURE_LA57);
1262
1263 detect_nopl();
1264}
1265
1266void __init early_cpu_init(void)
1267{
1268 const struct cpu_dev *const *cdev;
1269 int count = 0;
1270
1271#ifdef CONFIG_PROCESSOR_SELECT
1272 pr_info("KERNEL supported cpus:\n");
1273#endif
1274
1275 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1276 const struct cpu_dev *cpudev = *cdev;
1277
1278 if (count >= X86_VENDOR_NUM)
1279 break;
1280 cpu_devs[count] = cpudev;
1281 count++;
1282
1283#ifdef CONFIG_PROCESSOR_SELECT
1284 {
1285 unsigned int j;
1286
1287 for (j = 0; j < 2; j++) {
1288 if (!cpudev->c_ident[j])
1289 continue;
1290 pr_info(" %s %s\n", cpudev->c_vendor,
1291 cpudev->c_ident[j]);
1292 }
1293 }
1294#endif
1295 }
1296 early_identify_cpu(&boot_cpu_data);
1297}
1298
1299static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1300{
1301#ifdef CONFIG_X86_64
1302 /*
1303 * Empirically, writing zero to a segment selector on AMD does
1304 * not clear the base, whereas writing zero to a segment
1305 * selector on Intel does clear the base. Intel's behavior
1306 * allows slightly faster context switches in the common case
1307 * where GS is unused by the prev and next threads.
1308 *
1309 * Since neither vendor documents this anywhere that I can see,
1310 * detect it directly instead of hardcoding the choice by
1311 * vendor.
1312 *
1313 * I've designated AMD's behavior as the "bug" because it's
1314 * counterintuitive and less friendly.
1315 */
1316
1317 unsigned long old_base, tmp;
1318 rdmsrl(MSR_FS_BASE, old_base);
1319 wrmsrl(MSR_FS_BASE, 1);
1320 loadsegment(fs, 0);
1321 rdmsrl(MSR_FS_BASE, tmp);
1322 if (tmp != 0)
1323 set_cpu_bug(c, X86_BUG_NULL_SEG);
1324 wrmsrl(MSR_FS_BASE, old_base);
1325#endif
1326}
1327
1328static void generic_identify(struct cpuinfo_x86 *c)
1329{
1330 c->extended_cpuid_level = 0;
1331
1332 if (!have_cpuid_p())
1333 identify_cpu_without_cpuid(c);
1334
1335 /* cyrix could have cpuid enabled via c_identify()*/
1336 if (!have_cpuid_p())
1337 return;
1338
1339 cpu_detect(c);
1340
1341 get_cpu_vendor(c);
1342
1343 get_cpu_cap(c);
1344
1345 get_cpu_address_sizes(c);
1346
1347 if (c->cpuid_level >= 0x00000001) {
1348 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1349#ifdef CONFIG_X86_32
1350# ifdef CONFIG_SMP
1351 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1352# else
1353 c->apicid = c->initial_apicid;
1354# endif
1355#endif
1356 c->phys_proc_id = c->initial_apicid;
1357 }
1358
1359 get_model_name(c); /* Default name */
1360
1361 detect_null_seg_behavior(c);
1362
1363 /*
1364 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1365 * systems that run Linux at CPL > 0 may or may not have the
1366 * issue, but, even if they have the issue, there's absolutely
1367 * nothing we can do about it because we can't use the real IRET
1368 * instruction.
1369 *
1370 * NB: For the time being, only 32-bit kernels support
1371 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1372 * whether to apply espfix using paravirt hooks. If any
1373 * non-paravirt system ever shows up that does *not* have the
1374 * ESPFIX issue, we can change this.
1375 */
1376#ifdef CONFIG_X86_32
1377# ifdef CONFIG_PARAVIRT_XXL
1378 do {
1379 extern void native_iret(void);
1380 if (pv_ops.cpu.iret == native_iret)
1381 set_cpu_bug(c, X86_BUG_ESPFIX);
1382 } while (0);
1383# else
1384 set_cpu_bug(c, X86_BUG_ESPFIX);
1385# endif
1386#endif
1387}
1388
1389static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1390{
1391 /*
1392 * The heavy lifting of max_rmid and cache_occ_scale are handled
1393 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1394 * in case CQM bits really aren't there in this CPU.
1395 */
1396 if (c != &boot_cpu_data) {
1397 boot_cpu_data.x86_cache_max_rmid =
1398 min(boot_cpu_data.x86_cache_max_rmid,
1399 c->x86_cache_max_rmid);
1400 }
1401}
1402
1403/*
1404 * Validate that ACPI/mptables have the same information about the
1405 * effective APIC id and update the package map.
1406 */
1407static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1408{
1409#ifdef CONFIG_SMP
1410 unsigned int apicid, cpu = smp_processor_id();
1411
1412 apicid = apic->cpu_present_to_apicid(cpu);
1413
1414 if (apicid != c->apicid) {
1415 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1416 cpu, apicid, c->initial_apicid);
1417 }
1418 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1419 BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1420#else
1421 c->logical_proc_id = 0;
1422#endif
1423}
1424
1425/*
1426 * This does the hard work of actually picking apart the CPU stuff...
1427 */
1428static void identify_cpu(struct cpuinfo_x86 *c)
1429{
1430 int i;
1431
1432 c->loops_per_jiffy = loops_per_jiffy;
1433 c->x86_cache_size = 0;
1434 c->x86_vendor = X86_VENDOR_UNKNOWN;
1435 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1436 c->x86_vendor_id[0] = '\0'; /* Unset */
1437 c->x86_model_id[0] = '\0'; /* Unset */
1438 c->x86_max_cores = 1;
1439 c->x86_coreid_bits = 0;
1440 c->cu_id = 0xff;
1441#ifdef CONFIG_X86_64
1442 c->x86_clflush_size = 64;
1443 c->x86_phys_bits = 36;
1444 c->x86_virt_bits = 48;
1445#else
1446 c->cpuid_level = -1; /* CPUID not detected */
1447 c->x86_clflush_size = 32;
1448 c->x86_phys_bits = 32;
1449 c->x86_virt_bits = 32;
1450#endif
1451 c->x86_cache_alignment = c->x86_clflush_size;
1452 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1453
1454 generic_identify(c);
1455
1456 if (this_cpu->c_identify)
1457 this_cpu->c_identify(c);
1458
1459 /* Clear/Set all flags overridden by options, after probe */
1460 apply_forced_caps(c);
1461
1462#ifdef CONFIG_X86_64
1463 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1464#endif
1465
1466 /*
1467 * Vendor-specific initialization. In this section we
1468 * canonicalize the feature flags, meaning if there are
1469 * features a certain CPU supports which CPUID doesn't
1470 * tell us, CPUID claiming incorrect flags, or other bugs,
1471 * we handle them here.
1472 *
1473 * At the end of this section, c->x86_capability better
1474 * indicate the features this CPU genuinely supports!
1475 */
1476 if (this_cpu->c_init)
1477 this_cpu->c_init(c);
1478
1479 /* Disable the PN if appropriate */
1480 squash_the_stupid_serial_number(c);
1481
1482 /* Set up SMEP/SMAP/UMIP */
1483 setup_smep(c);
1484 setup_smap(c);
1485 setup_umip(c);
1486
1487 /*
1488 * The vendor-specific functions might have changed features.
1489 * Now we do "generic changes."
1490 */
1491
1492 /* Filter out anything that depends on CPUID levels we don't have */
1493 filter_cpuid_features(c, true);
1494
1495 /* If the model name is still unset, do table lookup. */
1496 if (!c->x86_model_id[0]) {
1497 const char *p;
1498 p = table_lookup_model(c);
1499 if (p)
1500 strcpy(c->x86_model_id, p);
1501 else
1502 /* Last resort... */
1503 sprintf(c->x86_model_id, "%02x/%02x",
1504 c->x86, c->x86_model);
1505 }
1506
1507#ifdef CONFIG_X86_64
1508 detect_ht(c);
1509#endif
1510
1511 x86_init_rdrand(c);
1512 x86_init_cache_qos(c);
1513 setup_pku(c);
1514
1515 /*
1516 * Clear/Set all flags overridden by options, need do it
1517 * before following smp all cpus cap AND.
1518 */
1519 apply_forced_caps(c);
1520
1521 /*
1522 * On SMP, boot_cpu_data holds the common feature set between
1523 * all CPUs; so make sure that we indicate which features are
1524 * common between the CPUs. The first time this routine gets
1525 * executed, c == &boot_cpu_data.
1526 */
1527 if (c != &boot_cpu_data) {
1528 /* AND the already accumulated flags with these */
1529 for (i = 0; i < NCAPINTS; i++)
1530 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1531
1532 /* OR, i.e. replicate the bug flags */
1533 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1534 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1535 }
1536
1537 /* Init Machine Check Exception if available. */
1538 mcheck_cpu_init(c);
1539
1540 select_idle_routine(c);
1541
1542#ifdef CONFIG_NUMA
1543 numa_add_cpu(smp_processor_id());
1544#endif
1545}
1546
1547/*
1548 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1549 * on 32-bit kernels:
1550 */
1551#ifdef CONFIG_X86_32
1552void enable_sep_cpu(void)
1553{
1554 struct tss_struct *tss;
1555 int cpu;
1556
1557 if (!boot_cpu_has(X86_FEATURE_SEP))
1558 return;
1559
1560 cpu = get_cpu();
1561 tss = &per_cpu(cpu_tss_rw, cpu);
1562
1563 /*
1564 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1565 * see the big comment in struct x86_hw_tss's definition.
1566 */
1567
1568 tss->x86_tss.ss1 = __KERNEL_CS;
1569 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1570 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1571 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1572
1573 put_cpu();
1574}
1575#endif
1576
1577void __init identify_boot_cpu(void)
1578{
1579 identify_cpu(&boot_cpu_data);
1580#ifdef CONFIG_X86_32
1581 sysenter_setup();
1582 enable_sep_cpu();
1583#endif
1584 cpu_detect_tlb(&boot_cpu_data);
1585 setup_cr_pinning();
1586
1587 tsx_init();
1588}
1589
1590void identify_secondary_cpu(struct cpuinfo_x86 *c)
1591{
1592 BUG_ON(c == &boot_cpu_data);
1593 identify_cpu(c);
1594#ifdef CONFIG_X86_32
1595 enable_sep_cpu();
1596#endif
1597 mtrr_ap_init();
1598 validate_apic_and_package_id(c);
1599 x86_spec_ctrl_setup_ap();
1600}
1601
1602static __init int setup_noclflush(char *arg)
1603{
1604 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1605 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1606 return 1;
1607}
1608__setup("noclflush", setup_noclflush);
1609
1610void print_cpu_info(struct cpuinfo_x86 *c)
1611{
1612 const char *vendor = NULL;
1613
1614 if (c->x86_vendor < X86_VENDOR_NUM) {
1615 vendor = this_cpu->c_vendor;
1616 } else {
1617 if (c->cpuid_level >= 0)
1618 vendor = c->x86_vendor_id;
1619 }
1620
1621 if (vendor && !strstr(c->x86_model_id, vendor))
1622 pr_cont("%s ", vendor);
1623
1624 if (c->x86_model_id[0])
1625 pr_cont("%s", c->x86_model_id);
1626 else
1627 pr_cont("%d86", c->x86);
1628
1629 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1630
1631 if (c->x86_stepping || c->cpuid_level >= 0)
1632 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1633 else
1634 pr_cont(")\n");
1635}
1636
1637/*
1638 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1639 * But we need to keep a dummy __setup around otherwise it would
1640 * show up as an environment variable for init.
1641 */
1642static __init int setup_clearcpuid(char *arg)
1643{
1644 return 1;
1645}
1646__setup("clearcpuid=", setup_clearcpuid);
1647
1648#ifdef CONFIG_X86_64
1649DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1650 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1651EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1652
1653/*
1654 * The following percpu variables are hot. Align current_task to
1655 * cacheline size such that they fall in the same cacheline.
1656 */
1657DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1658 &init_task;
1659EXPORT_PER_CPU_SYMBOL(current_task);
1660
1661DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
1662DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1663
1664DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1665EXPORT_PER_CPU_SYMBOL(__preempt_count);
1666
1667/* May not be marked __init: used by software suspend */
1668void syscall_init(void)
1669{
1670 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1671 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1672
1673#ifdef CONFIG_IA32_EMULATION
1674 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1675 /*
1676 * This only works on Intel CPUs.
1677 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1678 * This does not cause SYSENTER to jump to the wrong location, because
1679 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1680 */
1681 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1682 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1683 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1684 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1685#else
1686 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1687 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1688 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1689 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1690#endif
1691
1692 /* Flags to clear on syscall */
1693 wrmsrl(MSR_SYSCALL_MASK,
1694 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1695 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1696}
1697
1698DEFINE_PER_CPU(int, debug_stack_usage);
1699DEFINE_PER_CPU(u32, debug_idt_ctr);
1700
1701void debug_stack_set_zero(void)
1702{
1703 this_cpu_inc(debug_idt_ctr);
1704 load_current_idt();
1705}
1706NOKPROBE_SYMBOL(debug_stack_set_zero);
1707
1708void debug_stack_reset(void)
1709{
1710 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1711 return;
1712 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1713 load_current_idt();
1714}
1715NOKPROBE_SYMBOL(debug_stack_reset);
1716
1717#else /* CONFIG_X86_64 */
1718
1719DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1720EXPORT_PER_CPU_SYMBOL(current_task);
1721DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1722EXPORT_PER_CPU_SYMBOL(__preempt_count);
1723
1724/*
1725 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1726 * the top of the kernel stack. Use an extra percpu variable to track the
1727 * top of the kernel stack directly.
1728 */
1729DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1730 (unsigned long)&init_thread_union + THREAD_SIZE;
1731EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1732
1733#ifdef CONFIG_STACKPROTECTOR
1734DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1735#endif
1736
1737#endif /* CONFIG_X86_64 */
1738
1739/*
1740 * Clear all 6 debug registers:
1741 */
1742static void clear_all_debug_regs(void)
1743{
1744 int i;
1745
1746 for (i = 0; i < 8; i++) {
1747 /* Ignore db4, db5 */
1748 if ((i == 4) || (i == 5))
1749 continue;
1750
1751 set_debugreg(0, i);
1752 }
1753}
1754
1755#ifdef CONFIG_KGDB
1756/*
1757 * Restore debug regs if using kgdbwait and you have a kernel debugger
1758 * connection established.
1759 */
1760static void dbg_restore_debug_regs(void)
1761{
1762 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1763 arch_kgdb_ops.correct_hw_break();
1764}
1765#else /* ! CONFIG_KGDB */
1766#define dbg_restore_debug_regs()
1767#endif /* ! CONFIG_KGDB */
1768
1769static void wait_for_master_cpu(int cpu)
1770{
1771#ifdef CONFIG_SMP
1772 /*
1773 * wait for ACK from master CPU before continuing
1774 * with AP initialization
1775 */
1776 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1777 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1778 cpu_relax();
1779#endif
1780}
1781
1782#ifdef CONFIG_X86_64
1783static void setup_getcpu(int cpu)
1784{
1785 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1786 struct desc_struct d = { };
1787
1788 if (boot_cpu_has(X86_FEATURE_RDTSCP))
1789 write_rdtscp_aux(cpudata);
1790
1791 /* Store CPU and node number in limit. */
1792 d.limit0 = cpudata;
1793 d.limit1 = cpudata >> 16;
1794
1795 d.type = 5; /* RO data, expand down, accessed */
1796 d.dpl = 3; /* Visible to user code */
1797 d.s = 1; /* Not a system segment */
1798 d.p = 1; /* Present */
1799 d.d = 1; /* 32-bit */
1800
1801 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1802}
1803#endif
1804
1805/*
1806 * cpu_init() initializes state that is per-CPU. Some data is already
1807 * initialized (naturally) in the bootstrap process, such as the GDT
1808 * and IDT. We reload them nevertheless, this function acts as a
1809 * 'CPU state barrier', nothing should get across.
1810 */
1811#ifdef CONFIG_X86_64
1812
1813void cpu_init(void)
1814{
1815 int cpu = raw_smp_processor_id();
1816 struct task_struct *me;
1817 struct tss_struct *t;
1818 int i;
1819
1820 wait_for_master_cpu(cpu);
1821
1822 if (cpu)
1823 load_ucode_ap();
1824
1825 t = &per_cpu(cpu_tss_rw, cpu);
1826
1827#ifdef CONFIG_NUMA
1828 if (this_cpu_read(numa_node) == 0 &&
1829 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1830 set_numa_node(early_cpu_to_node(cpu));
1831#endif
1832 setup_getcpu(cpu);
1833
1834 me = current;
1835
1836 pr_debug("Initializing CPU#%d\n", cpu);
1837
1838 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1839
1840 /*
1841 * Initialize the per-CPU GDT with the boot GDT,
1842 * and set up the GDT descriptor:
1843 */
1844
1845 switch_to_new_gdt(cpu);
1846 loadsegment(fs, 0);
1847
1848 load_current_idt();
1849
1850 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1851 syscall_init();
1852
1853 wrmsrl(MSR_FS_BASE, 0);
1854 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1855 barrier();
1856
1857 x86_configure_nx();
1858 x2apic_setup();
1859
1860 /*
1861 * set up and load the per-CPU TSS
1862 */
1863 if (!t->x86_tss.ist[0]) {
1864 t->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1865 t->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1866 t->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1867 t->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1868 }
1869
1870 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1871
1872 /*
1873 * <= is required because the CPU will access up to
1874 * 8 bits beyond the end of the IO permission bitmap.
1875 */
1876 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1877 t->io_bitmap[i] = ~0UL;
1878
1879 mmgrab(&init_mm);
1880 me->active_mm = &init_mm;
1881 BUG_ON(me->mm);
1882 initialize_tlbstate_and_flush();
1883 enter_lazy_tlb(&init_mm, me);
1884
1885 /*
1886 * Initialize the TSS. sp0 points to the entry trampoline stack
1887 * regardless of what task is running.
1888 */
1889 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1890 load_TR_desc();
1891 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1892
1893 load_mm_ldt(&init_mm);
1894
1895 clear_all_debug_regs();
1896 dbg_restore_debug_regs();
1897
1898 fpu__init_cpu();
1899
1900 if (is_uv_system())
1901 uv_cpu_init();
1902
1903 load_fixmap_gdt(cpu);
1904}
1905
1906#else
1907
1908void cpu_init(void)
1909{
1910 int cpu = smp_processor_id();
1911 struct task_struct *curr = current;
1912 struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1913
1914 wait_for_master_cpu(cpu);
1915
1916 show_ucode_info_early();
1917
1918 pr_info("Initializing CPU#%d\n", cpu);
1919
1920 if (cpu_feature_enabled(X86_FEATURE_VME) ||
1921 boot_cpu_has(X86_FEATURE_TSC) ||
1922 boot_cpu_has(X86_FEATURE_DE))
1923 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1924
1925 load_current_idt();
1926 switch_to_new_gdt(cpu);
1927
1928 /*
1929 * Set up and load the per-CPU TSS and LDT
1930 */
1931 mmgrab(&init_mm);
1932 curr->active_mm = &init_mm;
1933 BUG_ON(curr->mm);
1934 initialize_tlbstate_and_flush();
1935 enter_lazy_tlb(&init_mm, curr);
1936
1937 /*
1938 * Initialize the TSS. sp0 points to the entry trampoline stack
1939 * regardless of what task is running.
1940 */
1941 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1942 load_TR_desc();
1943 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1944
1945 load_mm_ldt(&init_mm);
1946
1947 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1948
1949#ifdef CONFIG_DOUBLEFAULT
1950 /* Set up doublefault TSS pointer in the GDT */
1951 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1952#endif
1953
1954 clear_all_debug_regs();
1955 dbg_restore_debug_regs();
1956
1957 fpu__init_cpu();
1958
1959 load_fixmap_gdt(cpu);
1960}
1961#endif
1962
1963/*
1964 * The microcode loader calls this upon late microcode load to recheck features,
1965 * only when microcode has been updated. Caller holds microcode_mutex and CPU
1966 * hotplug lock.
1967 */
1968void microcode_check(void)
1969{
1970 struct cpuinfo_x86 info;
1971
1972 perf_check_microcode();
1973
1974 /* Reload CPUID max function as it might've changed. */
1975 info.cpuid_level = cpuid_eax(0);
1976
1977 /*
1978 * Copy all capability leafs to pick up the synthetic ones so that
1979 * memcmp() below doesn't fail on that. The ones coming from CPUID will
1980 * get overwritten in get_cpu_cap().
1981 */
1982 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1983
1984 get_cpu_cap(&info);
1985
1986 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1987 return;
1988
1989 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1990 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1991}
1992
1993/*
1994 * Invoked from core CPU hotplug code after hotplug operations
1995 */
1996void arch_smt_update(void)
1997{
1998 /* Handle the speculative execution misfeatures */
1999 cpu_bugs_smt_update();
2000 /* Check whether IPI broadcasting can be enabled */
2001 apic_smt_update();
2002}
1// SPDX-License-Identifier: GPL-2.0-only
2/* cpu_feature_enabled() cannot be used this early */
3#define USE_EARLY_PGTABLE_L5
4
5#include <linux/memblock.h>
6#include <linux/linkage.h>
7#include <linux/bitops.h>
8#include <linux/kernel.h>
9#include <linux/export.h>
10#include <linux/percpu.h>
11#include <linux/string.h>
12#include <linux/ctype.h>
13#include <linux/delay.h>
14#include <linux/sched/mm.h>
15#include <linux/sched/clock.h>
16#include <linux/sched/task.h>
17#include <linux/sched/smt.h>
18#include <linux/init.h>
19#include <linux/kprobes.h>
20#include <linux/kgdb.h>
21#include <linux/smp.h>
22#include <linux/io.h>
23#include <linux/syscore_ops.h>
24#include <linux/pgtable.h>
25#include <linux/stackprotector.h>
26
27#include <asm/cmdline.h>
28#include <asm/perf_event.h>
29#include <asm/mmu_context.h>
30#include <asm/doublefault.h>
31#include <asm/archrandom.h>
32#include <asm/hypervisor.h>
33#include <asm/processor.h>
34#include <asm/tlbflush.h>
35#include <asm/debugreg.h>
36#include <asm/sections.h>
37#include <asm/vsyscall.h>
38#include <linux/topology.h>
39#include <linux/cpumask.h>
40#include <linux/atomic.h>
41#include <asm/proto.h>
42#include <asm/setup.h>
43#include <asm/apic.h>
44#include <asm/desc.h>
45#include <asm/fpu/api.h>
46#include <asm/mtrr.h>
47#include <asm/hwcap2.h>
48#include <linux/numa.h>
49#include <asm/numa.h>
50#include <asm/asm.h>
51#include <asm/bugs.h>
52#include <asm/cpu.h>
53#include <asm/mce.h>
54#include <asm/msr.h>
55#include <asm/cacheinfo.h>
56#include <asm/memtype.h>
57#include <asm/microcode.h>
58#include <asm/microcode_intel.h>
59#include <asm/intel-family.h>
60#include <asm/cpu_device_id.h>
61#include <asm/uv/uv.h>
62#include <asm/sigframe.h>
63#include <asm/traps.h>
64#include <asm/sev.h>
65
66#include "cpu.h"
67
68u32 elf_hwcap2 __read_mostly;
69
70/* all of these masks are initialized in setup_cpu_local_masks() */
71cpumask_var_t cpu_initialized_mask;
72cpumask_var_t cpu_callout_mask;
73cpumask_var_t cpu_callin_mask;
74
75/* representing cpus for which sibling maps can be computed */
76cpumask_var_t cpu_sibling_setup_mask;
77
78/* Number of siblings per CPU package */
79int smp_num_siblings = 1;
80EXPORT_SYMBOL(smp_num_siblings);
81
82/* Last level cache ID of each logical CPU */
83DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
84
85u16 get_llc_id(unsigned int cpu)
86{
87 return per_cpu(cpu_llc_id, cpu);
88}
89EXPORT_SYMBOL_GPL(get_llc_id);
90
91/* L2 cache ID of each logical CPU */
92DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_l2c_id) = BAD_APICID;
93
94static struct ppin_info {
95 int feature;
96 int msr_ppin_ctl;
97 int msr_ppin;
98} ppin_info[] = {
99 [X86_VENDOR_INTEL] = {
100 .feature = X86_FEATURE_INTEL_PPIN,
101 .msr_ppin_ctl = MSR_PPIN_CTL,
102 .msr_ppin = MSR_PPIN
103 },
104 [X86_VENDOR_AMD] = {
105 .feature = X86_FEATURE_AMD_PPIN,
106 .msr_ppin_ctl = MSR_AMD_PPIN_CTL,
107 .msr_ppin = MSR_AMD_PPIN
108 },
109};
110
111static const struct x86_cpu_id ppin_cpuids[] = {
112 X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
113 X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
114
115 /* Legacy models without CPUID enumeration */
116 X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
117 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
118 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
119 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
120 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
121 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
122 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
123 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
124 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
125 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
126
127 {}
128};
129
130static void ppin_init(struct cpuinfo_x86 *c)
131{
132 const struct x86_cpu_id *id;
133 unsigned long long val;
134 struct ppin_info *info;
135
136 id = x86_match_cpu(ppin_cpuids);
137 if (!id)
138 return;
139
140 /*
141 * Testing the presence of the MSR is not enough. Need to check
142 * that the PPIN_CTL allows reading of the PPIN.
143 */
144 info = (struct ppin_info *)id->driver_data;
145
146 if (rdmsrl_safe(info->msr_ppin_ctl, &val))
147 goto clear_ppin;
148
149 if ((val & 3UL) == 1UL) {
150 /* PPIN locked in disabled mode */
151 goto clear_ppin;
152 }
153
154 /* If PPIN is disabled, try to enable */
155 if (!(val & 2UL)) {
156 wrmsrl_safe(info->msr_ppin_ctl, val | 2UL);
157 rdmsrl_safe(info->msr_ppin_ctl, &val);
158 }
159
160 /* Is the enable bit set? */
161 if (val & 2UL) {
162 c->ppin = __rdmsr(info->msr_ppin);
163 set_cpu_cap(c, info->feature);
164 return;
165 }
166
167clear_ppin:
168 clear_cpu_cap(c, info->feature);
169}
170
171/* correctly size the local cpu masks */
172void __init setup_cpu_local_masks(void)
173{
174 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
175 alloc_bootmem_cpumask_var(&cpu_callin_mask);
176 alloc_bootmem_cpumask_var(&cpu_callout_mask);
177 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
178}
179
180static void default_init(struct cpuinfo_x86 *c)
181{
182#ifdef CONFIG_X86_64
183 cpu_detect_cache_sizes(c);
184#else
185 /* Not much we can do here... */
186 /* Check if at least it has cpuid */
187 if (c->cpuid_level == -1) {
188 /* No cpuid. It must be an ancient CPU */
189 if (c->x86 == 4)
190 strcpy(c->x86_model_id, "486");
191 else if (c->x86 == 3)
192 strcpy(c->x86_model_id, "386");
193 }
194#endif
195}
196
197static const struct cpu_dev default_cpu = {
198 .c_init = default_init,
199 .c_vendor = "Unknown",
200 .c_x86_vendor = X86_VENDOR_UNKNOWN,
201};
202
203static const struct cpu_dev *this_cpu = &default_cpu;
204
205DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
206#ifdef CONFIG_X86_64
207 /*
208 * We need valid kernel segments for data and code in long mode too
209 * IRET will check the segment types kkeil 2000/10/28
210 * Also sysret mandates a special GDT layout
211 *
212 * TLS descriptors are currently at a different place compared to i386.
213 * Hopefully nobody expects them at a fixed place (Wine?)
214 */
215 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
216 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
217 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
218 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
219 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
220 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
221#else
222 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
223 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
224 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
225 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
226 /*
227 * Segments used for calling PnP BIOS have byte granularity.
228 * They code segments and data segments have fixed 64k limits,
229 * the transfer segment sizes are set at run time.
230 */
231 /* 32-bit code */
232 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
233 /* 16-bit code */
234 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
235 /* 16-bit data */
236 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
237 /* 16-bit data */
238 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
239 /* 16-bit data */
240 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
241 /*
242 * The APM segments have byte granularity and their bases
243 * are set at run time. All have 64k limits.
244 */
245 /* 32-bit code */
246 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
247 /* 16-bit code */
248 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
249 /* data */
250 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
251
252 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
253 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
254#endif
255} };
256EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
257
258#ifdef CONFIG_X86_64
259static int __init x86_nopcid_setup(char *s)
260{
261 /* nopcid doesn't accept parameters */
262 if (s)
263 return -EINVAL;
264
265 /* do not emit a message if the feature is not present */
266 if (!boot_cpu_has(X86_FEATURE_PCID))
267 return 0;
268
269 setup_clear_cpu_cap(X86_FEATURE_PCID);
270 pr_info("nopcid: PCID feature disabled\n");
271 return 0;
272}
273early_param("nopcid", x86_nopcid_setup);
274#endif
275
276static int __init x86_noinvpcid_setup(char *s)
277{
278 /* noinvpcid doesn't accept parameters */
279 if (s)
280 return -EINVAL;
281
282 /* do not emit a message if the feature is not present */
283 if (!boot_cpu_has(X86_FEATURE_INVPCID))
284 return 0;
285
286 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
287 pr_info("noinvpcid: INVPCID feature disabled\n");
288 return 0;
289}
290early_param("noinvpcid", x86_noinvpcid_setup);
291
292#ifdef CONFIG_X86_32
293static int cachesize_override = -1;
294static int disable_x86_serial_nr = 1;
295
296static int __init cachesize_setup(char *str)
297{
298 get_option(&str, &cachesize_override);
299 return 1;
300}
301__setup("cachesize=", cachesize_setup);
302
303/* Standard macro to see if a specific flag is changeable */
304static inline int flag_is_changeable_p(u32 flag)
305{
306 u32 f1, f2;
307
308 /*
309 * Cyrix and IDT cpus allow disabling of CPUID
310 * so the code below may return different results
311 * when it is executed before and after enabling
312 * the CPUID. Add "volatile" to not allow gcc to
313 * optimize the subsequent calls to this function.
314 */
315 asm volatile ("pushfl \n\t"
316 "pushfl \n\t"
317 "popl %0 \n\t"
318 "movl %0, %1 \n\t"
319 "xorl %2, %0 \n\t"
320 "pushl %0 \n\t"
321 "popfl \n\t"
322 "pushfl \n\t"
323 "popl %0 \n\t"
324 "popfl \n\t"
325
326 : "=&r" (f1), "=&r" (f2)
327 : "ir" (flag));
328
329 return ((f1^f2) & flag) != 0;
330}
331
332/* Probe for the CPUID instruction */
333int have_cpuid_p(void)
334{
335 return flag_is_changeable_p(X86_EFLAGS_ID);
336}
337
338static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
339{
340 unsigned long lo, hi;
341
342 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
343 return;
344
345 /* Disable processor serial number: */
346
347 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
348 lo |= 0x200000;
349 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
350
351 pr_notice("CPU serial number disabled.\n");
352 clear_cpu_cap(c, X86_FEATURE_PN);
353
354 /* Disabling the serial number may affect the cpuid level */
355 c->cpuid_level = cpuid_eax(0);
356}
357
358static int __init x86_serial_nr_setup(char *s)
359{
360 disable_x86_serial_nr = 0;
361 return 1;
362}
363__setup("serialnumber", x86_serial_nr_setup);
364#else
365static inline int flag_is_changeable_p(u32 flag)
366{
367 return 1;
368}
369static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
370{
371}
372#endif
373
374static __always_inline void setup_smep(struct cpuinfo_x86 *c)
375{
376 if (cpu_has(c, X86_FEATURE_SMEP))
377 cr4_set_bits(X86_CR4_SMEP);
378}
379
380static __always_inline void setup_smap(struct cpuinfo_x86 *c)
381{
382 unsigned long eflags = native_save_fl();
383
384 /* This should have been cleared long ago */
385 BUG_ON(eflags & X86_EFLAGS_AC);
386
387 if (cpu_has(c, X86_FEATURE_SMAP))
388 cr4_set_bits(X86_CR4_SMAP);
389}
390
391static __always_inline void setup_umip(struct cpuinfo_x86 *c)
392{
393 /* Check the boot processor, plus build option for UMIP. */
394 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
395 goto out;
396
397 /* Check the current processor's cpuid bits. */
398 if (!cpu_has(c, X86_FEATURE_UMIP))
399 goto out;
400
401 cr4_set_bits(X86_CR4_UMIP);
402
403 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
404
405 return;
406
407out:
408 /*
409 * Make sure UMIP is disabled in case it was enabled in a
410 * previous boot (e.g., via kexec).
411 */
412 cr4_clear_bits(X86_CR4_UMIP);
413}
414
415/* These bits should not change their value after CPU init is finished. */
416static const unsigned long cr4_pinned_mask =
417 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
418 X86_CR4_FSGSBASE | X86_CR4_CET;
419static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
420static unsigned long cr4_pinned_bits __ro_after_init;
421
422void native_write_cr0(unsigned long val)
423{
424 unsigned long bits_missing = 0;
425
426set_register:
427 asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
428
429 if (static_branch_likely(&cr_pinning)) {
430 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
431 bits_missing = X86_CR0_WP;
432 val |= bits_missing;
433 goto set_register;
434 }
435 /* Warn after we've set the missing bits. */
436 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
437 }
438}
439EXPORT_SYMBOL(native_write_cr0);
440
441void __no_profile native_write_cr4(unsigned long val)
442{
443 unsigned long bits_changed = 0;
444
445set_register:
446 asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
447
448 if (static_branch_likely(&cr_pinning)) {
449 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
450 bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
451 val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
452 goto set_register;
453 }
454 /* Warn after we've corrected the changed bits. */
455 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
456 bits_changed);
457 }
458}
459#if IS_MODULE(CONFIG_LKDTM)
460EXPORT_SYMBOL_GPL(native_write_cr4);
461#endif
462
463void cr4_update_irqsoff(unsigned long set, unsigned long clear)
464{
465 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
466
467 lockdep_assert_irqs_disabled();
468
469 newval = (cr4 & ~clear) | set;
470 if (newval != cr4) {
471 this_cpu_write(cpu_tlbstate.cr4, newval);
472 __write_cr4(newval);
473 }
474}
475EXPORT_SYMBOL(cr4_update_irqsoff);
476
477/* Read the CR4 shadow. */
478unsigned long cr4_read_shadow(void)
479{
480 return this_cpu_read(cpu_tlbstate.cr4);
481}
482EXPORT_SYMBOL_GPL(cr4_read_shadow);
483
484void cr4_init(void)
485{
486 unsigned long cr4 = __read_cr4();
487
488 if (boot_cpu_has(X86_FEATURE_PCID))
489 cr4 |= X86_CR4_PCIDE;
490 if (static_branch_likely(&cr_pinning))
491 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
492
493 __write_cr4(cr4);
494
495 /* Initialize cr4 shadow for this CPU. */
496 this_cpu_write(cpu_tlbstate.cr4, cr4);
497}
498
499/*
500 * Once CPU feature detection is finished (and boot params have been
501 * parsed), record any of the sensitive CR bits that are set, and
502 * enable CR pinning.
503 */
504static void __init setup_cr_pinning(void)
505{
506 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
507 static_key_enable(&cr_pinning.key);
508}
509
510static __init int x86_nofsgsbase_setup(char *arg)
511{
512 /* Require an exact match without trailing characters. */
513 if (strlen(arg))
514 return 0;
515
516 /* Do not emit a message if the feature is not present. */
517 if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
518 return 1;
519
520 setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
521 pr_info("FSGSBASE disabled via kernel command line\n");
522 return 1;
523}
524__setup("nofsgsbase", x86_nofsgsbase_setup);
525
526/*
527 * Protection Keys are not available in 32-bit mode.
528 */
529static bool pku_disabled;
530
531static __always_inline void setup_pku(struct cpuinfo_x86 *c)
532{
533 if (c == &boot_cpu_data) {
534 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
535 return;
536 /*
537 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
538 * bit to be set. Enforce it.
539 */
540 setup_force_cpu_cap(X86_FEATURE_OSPKE);
541
542 } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
543 return;
544 }
545
546 cr4_set_bits(X86_CR4_PKE);
547 /* Load the default PKRU value */
548 pkru_write_default();
549}
550
551#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
552static __init int setup_disable_pku(char *arg)
553{
554 /*
555 * Do not clear the X86_FEATURE_PKU bit. All of the
556 * runtime checks are against OSPKE so clearing the
557 * bit does nothing.
558 *
559 * This way, we will see "pku" in cpuinfo, but not
560 * "ospke", which is exactly what we want. It shows
561 * that the CPU has PKU, but the OS has not enabled it.
562 * This happens to be exactly how a system would look
563 * if we disabled the config option.
564 */
565 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
566 pku_disabled = true;
567 return 1;
568}
569__setup("nopku", setup_disable_pku);
570#endif /* CONFIG_X86_64 */
571
572#ifdef CONFIG_X86_KERNEL_IBT
573
574__noendbr u64 ibt_save(void)
575{
576 u64 msr = 0;
577
578 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
579 rdmsrl(MSR_IA32_S_CET, msr);
580 wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
581 }
582
583 return msr;
584}
585
586__noendbr void ibt_restore(u64 save)
587{
588 u64 msr;
589
590 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
591 rdmsrl(MSR_IA32_S_CET, msr);
592 msr &= ~CET_ENDBR_EN;
593 msr |= (save & CET_ENDBR_EN);
594 wrmsrl(MSR_IA32_S_CET, msr);
595 }
596}
597
598#endif
599
600static __always_inline void setup_cet(struct cpuinfo_x86 *c)
601{
602 u64 msr = CET_ENDBR_EN;
603
604 if (!HAS_KERNEL_IBT ||
605 !cpu_feature_enabled(X86_FEATURE_IBT))
606 return;
607
608 wrmsrl(MSR_IA32_S_CET, msr);
609 cr4_set_bits(X86_CR4_CET);
610
611 if (!ibt_selftest()) {
612 pr_err("IBT selftest: Failed!\n");
613 wrmsrl(MSR_IA32_S_CET, 0);
614 setup_clear_cpu_cap(X86_FEATURE_IBT);
615 return;
616 }
617}
618
619__noendbr void cet_disable(void)
620{
621 if (cpu_feature_enabled(X86_FEATURE_IBT))
622 wrmsrl(MSR_IA32_S_CET, 0);
623}
624
625/*
626 * Some CPU features depend on higher CPUID levels, which may not always
627 * be available due to CPUID level capping or broken virtualization
628 * software. Add those features to this table to auto-disable them.
629 */
630struct cpuid_dependent_feature {
631 u32 feature;
632 u32 level;
633};
634
635static const struct cpuid_dependent_feature
636cpuid_dependent_features[] = {
637 { X86_FEATURE_MWAIT, 0x00000005 },
638 { X86_FEATURE_DCA, 0x00000009 },
639 { X86_FEATURE_XSAVE, 0x0000000d },
640 { 0, 0 }
641};
642
643static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
644{
645 const struct cpuid_dependent_feature *df;
646
647 for (df = cpuid_dependent_features; df->feature; df++) {
648
649 if (!cpu_has(c, df->feature))
650 continue;
651 /*
652 * Note: cpuid_level is set to -1 if unavailable, but
653 * extended_extended_level is set to 0 if unavailable
654 * and the legitimate extended levels are all negative
655 * when signed; hence the weird messing around with
656 * signs here...
657 */
658 if (!((s32)df->level < 0 ?
659 (u32)df->level > (u32)c->extended_cpuid_level :
660 (s32)df->level > (s32)c->cpuid_level))
661 continue;
662
663 clear_cpu_cap(c, df->feature);
664 if (!warn)
665 continue;
666
667 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
668 x86_cap_flag(df->feature), df->level);
669 }
670}
671
672/*
673 * Naming convention should be: <Name> [(<Codename>)]
674 * This table only is used unless init_<vendor>() below doesn't set it;
675 * in particular, if CPUID levels 0x80000002..4 are supported, this
676 * isn't used
677 */
678
679/* Look up CPU names by table lookup. */
680static const char *table_lookup_model(struct cpuinfo_x86 *c)
681{
682#ifdef CONFIG_X86_32
683 const struct legacy_cpu_model_info *info;
684
685 if (c->x86_model >= 16)
686 return NULL; /* Range check */
687
688 if (!this_cpu)
689 return NULL;
690
691 info = this_cpu->legacy_models;
692
693 while (info->family) {
694 if (info->family == c->x86)
695 return info->model_names[c->x86_model];
696 info++;
697 }
698#endif
699 return NULL; /* Not found */
700}
701
702/* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
703__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
704__u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
705
706#ifdef CONFIG_X86_32
707/* The 32-bit entry code needs to find cpu_entry_area. */
708DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
709#endif
710
711/* Load the original GDT from the per-cpu structure */
712void load_direct_gdt(int cpu)
713{
714 struct desc_ptr gdt_descr;
715
716 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
717 gdt_descr.size = GDT_SIZE - 1;
718 load_gdt(&gdt_descr);
719}
720EXPORT_SYMBOL_GPL(load_direct_gdt);
721
722/* Load a fixmap remapping of the per-cpu GDT */
723void load_fixmap_gdt(int cpu)
724{
725 struct desc_ptr gdt_descr;
726
727 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
728 gdt_descr.size = GDT_SIZE - 1;
729 load_gdt(&gdt_descr);
730}
731EXPORT_SYMBOL_GPL(load_fixmap_gdt);
732
733/**
734 * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
735 * @cpu: The CPU number for which this is invoked
736 *
737 * Invoked during early boot to switch from early GDT and early per CPU to
738 * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
739 * switch is implicit by loading the direct GDT. On 64bit this requires
740 * to update GSBASE.
741 */
742void __init switch_gdt_and_percpu_base(int cpu)
743{
744 load_direct_gdt(cpu);
745
746#ifdef CONFIG_X86_64
747 /*
748 * No need to load %gs. It is already correct.
749 *
750 * Writing %gs on 64bit would zero GSBASE which would make any per
751 * CPU operation up to the point of the wrmsrl() fault.
752 *
753 * Set GSBASE to the new offset. Until the wrmsrl() happens the
754 * early mapping is still valid. That means the GSBASE update will
755 * lose any prior per CPU data which was not copied over in
756 * setup_per_cpu_areas().
757 *
758 * This works even with stackprotector enabled because the
759 * per CPU stack canary is 0 in both per CPU areas.
760 */
761 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
762#else
763 /*
764 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
765 * it is required to load FS again so that the 'hidden' part is
766 * updated from the new GDT. Up to this point the early per CPU
767 * translation is active. Any content of the early per CPU data
768 * which was not copied over in setup_per_cpu_areas() is lost.
769 */
770 loadsegment(fs, __KERNEL_PERCPU);
771#endif
772}
773
774static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
775
776static void get_model_name(struct cpuinfo_x86 *c)
777{
778 unsigned int *v;
779 char *p, *q, *s;
780
781 if (c->extended_cpuid_level < 0x80000004)
782 return;
783
784 v = (unsigned int *)c->x86_model_id;
785 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
786 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
787 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
788 c->x86_model_id[48] = 0;
789
790 /* Trim whitespace */
791 p = q = s = &c->x86_model_id[0];
792
793 while (*p == ' ')
794 p++;
795
796 while (*p) {
797 /* Note the last non-whitespace index */
798 if (!isspace(*p))
799 s = q;
800
801 *q++ = *p++;
802 }
803
804 *(s + 1) = '\0';
805}
806
807void detect_num_cpu_cores(struct cpuinfo_x86 *c)
808{
809 unsigned int eax, ebx, ecx, edx;
810
811 c->x86_max_cores = 1;
812 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
813 return;
814
815 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
816 if (eax & 0x1f)
817 c->x86_max_cores = (eax >> 26) + 1;
818}
819
820void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
821{
822 unsigned int n, dummy, ebx, ecx, edx, l2size;
823
824 n = c->extended_cpuid_level;
825
826 if (n >= 0x80000005) {
827 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
828 c->x86_cache_size = (ecx>>24) + (edx>>24);
829#ifdef CONFIG_X86_64
830 /* On K8 L1 TLB is inclusive, so don't count it */
831 c->x86_tlbsize = 0;
832#endif
833 }
834
835 if (n < 0x80000006) /* Some chips just has a large L1. */
836 return;
837
838 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
839 l2size = ecx >> 16;
840
841#ifdef CONFIG_X86_64
842 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
843#else
844 /* do processor-specific cache resizing */
845 if (this_cpu->legacy_cache_size)
846 l2size = this_cpu->legacy_cache_size(c, l2size);
847
848 /* Allow user to override all this if necessary. */
849 if (cachesize_override != -1)
850 l2size = cachesize_override;
851
852 if (l2size == 0)
853 return; /* Again, no L2 cache is possible */
854#endif
855
856 c->x86_cache_size = l2size;
857}
858
859u16 __read_mostly tlb_lli_4k[NR_INFO];
860u16 __read_mostly tlb_lli_2m[NR_INFO];
861u16 __read_mostly tlb_lli_4m[NR_INFO];
862u16 __read_mostly tlb_lld_4k[NR_INFO];
863u16 __read_mostly tlb_lld_2m[NR_INFO];
864u16 __read_mostly tlb_lld_4m[NR_INFO];
865u16 __read_mostly tlb_lld_1g[NR_INFO];
866
867static void cpu_detect_tlb(struct cpuinfo_x86 *c)
868{
869 if (this_cpu->c_detect_tlb)
870 this_cpu->c_detect_tlb(c);
871
872 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
873 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
874 tlb_lli_4m[ENTRIES]);
875
876 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
877 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
878 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
879}
880
881int detect_ht_early(struct cpuinfo_x86 *c)
882{
883#ifdef CONFIG_SMP
884 u32 eax, ebx, ecx, edx;
885
886 if (!cpu_has(c, X86_FEATURE_HT))
887 return -1;
888
889 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
890 return -1;
891
892 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
893 return -1;
894
895 cpuid(1, &eax, &ebx, &ecx, &edx);
896
897 smp_num_siblings = (ebx & 0xff0000) >> 16;
898 if (smp_num_siblings == 1)
899 pr_info_once("CPU0: Hyper-Threading is disabled\n");
900#endif
901 return 0;
902}
903
904void detect_ht(struct cpuinfo_x86 *c)
905{
906#ifdef CONFIG_SMP
907 int index_msb, core_bits;
908
909 if (detect_ht_early(c) < 0)
910 return;
911
912 index_msb = get_count_order(smp_num_siblings);
913 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
914
915 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
916
917 index_msb = get_count_order(smp_num_siblings);
918
919 core_bits = get_count_order(c->x86_max_cores);
920
921 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
922 ((1 << core_bits) - 1);
923#endif
924}
925
926static void get_cpu_vendor(struct cpuinfo_x86 *c)
927{
928 char *v = c->x86_vendor_id;
929 int i;
930
931 for (i = 0; i < X86_VENDOR_NUM; i++) {
932 if (!cpu_devs[i])
933 break;
934
935 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
936 (cpu_devs[i]->c_ident[1] &&
937 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
938
939 this_cpu = cpu_devs[i];
940 c->x86_vendor = this_cpu->c_x86_vendor;
941 return;
942 }
943 }
944
945 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
946 "CPU: Your system may be unstable.\n", v);
947
948 c->x86_vendor = X86_VENDOR_UNKNOWN;
949 this_cpu = &default_cpu;
950}
951
952void cpu_detect(struct cpuinfo_x86 *c)
953{
954 /* Get vendor name */
955 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
956 (unsigned int *)&c->x86_vendor_id[0],
957 (unsigned int *)&c->x86_vendor_id[8],
958 (unsigned int *)&c->x86_vendor_id[4]);
959
960 c->x86 = 4;
961 /* Intel-defined flags: level 0x00000001 */
962 if (c->cpuid_level >= 0x00000001) {
963 u32 junk, tfms, cap0, misc;
964
965 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
966 c->x86 = x86_family(tfms);
967 c->x86_model = x86_model(tfms);
968 c->x86_stepping = x86_stepping(tfms);
969
970 if (cap0 & (1<<19)) {
971 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
972 c->x86_cache_alignment = c->x86_clflush_size;
973 }
974 }
975}
976
977static void apply_forced_caps(struct cpuinfo_x86 *c)
978{
979 int i;
980
981 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
982 c->x86_capability[i] &= ~cpu_caps_cleared[i];
983 c->x86_capability[i] |= cpu_caps_set[i];
984 }
985}
986
987static void init_speculation_control(struct cpuinfo_x86 *c)
988{
989 /*
990 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
991 * and they also have a different bit for STIBP support. Also,
992 * a hypervisor might have set the individual AMD bits even on
993 * Intel CPUs, for finer-grained selection of what's available.
994 */
995 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
996 set_cpu_cap(c, X86_FEATURE_IBRS);
997 set_cpu_cap(c, X86_FEATURE_IBPB);
998 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
999 }
1000
1001 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
1002 set_cpu_cap(c, X86_FEATURE_STIBP);
1003
1004 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
1005 cpu_has(c, X86_FEATURE_VIRT_SSBD))
1006 set_cpu_cap(c, X86_FEATURE_SSBD);
1007
1008 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
1009 set_cpu_cap(c, X86_FEATURE_IBRS);
1010 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1011 }
1012
1013 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
1014 set_cpu_cap(c, X86_FEATURE_IBPB);
1015
1016 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
1017 set_cpu_cap(c, X86_FEATURE_STIBP);
1018 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1019 }
1020
1021 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
1022 set_cpu_cap(c, X86_FEATURE_SSBD);
1023 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1024 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
1025 }
1026}
1027
1028void get_cpu_cap(struct cpuinfo_x86 *c)
1029{
1030 u32 eax, ebx, ecx, edx;
1031
1032 /* Intel-defined flags: level 0x00000001 */
1033 if (c->cpuid_level >= 0x00000001) {
1034 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
1035
1036 c->x86_capability[CPUID_1_ECX] = ecx;
1037 c->x86_capability[CPUID_1_EDX] = edx;
1038 }
1039
1040 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
1041 if (c->cpuid_level >= 0x00000006)
1042 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
1043
1044 /* Additional Intel-defined flags: level 0x00000007 */
1045 if (c->cpuid_level >= 0x00000007) {
1046 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
1047 c->x86_capability[CPUID_7_0_EBX] = ebx;
1048 c->x86_capability[CPUID_7_ECX] = ecx;
1049 c->x86_capability[CPUID_7_EDX] = edx;
1050
1051 /* Check valid sub-leaf index before accessing it */
1052 if (eax >= 1) {
1053 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
1054 c->x86_capability[CPUID_7_1_EAX] = eax;
1055 }
1056 }
1057
1058 /* Extended state features: level 0x0000000d */
1059 if (c->cpuid_level >= 0x0000000d) {
1060 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1061
1062 c->x86_capability[CPUID_D_1_EAX] = eax;
1063 }
1064
1065 /* AMD-defined flags: level 0x80000001 */
1066 eax = cpuid_eax(0x80000000);
1067 c->extended_cpuid_level = eax;
1068
1069 if ((eax & 0xffff0000) == 0x80000000) {
1070 if (eax >= 0x80000001) {
1071 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1072
1073 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1074 c->x86_capability[CPUID_8000_0001_EDX] = edx;
1075 }
1076 }
1077
1078 if (c->extended_cpuid_level >= 0x80000007) {
1079 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1080
1081 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1082 c->x86_power = edx;
1083 }
1084
1085 if (c->extended_cpuid_level >= 0x80000008) {
1086 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1087 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1088 }
1089
1090 if (c->extended_cpuid_level >= 0x8000000a)
1091 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1092
1093 if (c->extended_cpuid_level >= 0x8000001f)
1094 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1095
1096 init_scattered_cpuid_features(c);
1097 init_speculation_control(c);
1098
1099 /*
1100 * Clear/Set all flags overridden by options, after probe.
1101 * This needs to happen each time we re-probe, which may happen
1102 * several times during CPU initialization.
1103 */
1104 apply_forced_caps(c);
1105}
1106
1107void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1108{
1109 u32 eax, ebx, ecx, edx;
1110
1111 if (c->extended_cpuid_level >= 0x80000008) {
1112 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1113
1114 c->x86_virt_bits = (eax >> 8) & 0xff;
1115 c->x86_phys_bits = eax & 0xff;
1116 }
1117#ifdef CONFIG_X86_32
1118 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
1119 c->x86_phys_bits = 36;
1120#endif
1121 c->x86_cache_bits = c->x86_phys_bits;
1122}
1123
1124static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1125{
1126#ifdef CONFIG_X86_32
1127 int i;
1128
1129 /*
1130 * First of all, decide if this is a 486 or higher
1131 * It's a 486 if we can modify the AC flag
1132 */
1133 if (flag_is_changeable_p(X86_EFLAGS_AC))
1134 c->x86 = 4;
1135 else
1136 c->x86 = 3;
1137
1138 for (i = 0; i < X86_VENDOR_NUM; i++)
1139 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1140 c->x86_vendor_id[0] = 0;
1141 cpu_devs[i]->c_identify(c);
1142 if (c->x86_vendor_id[0]) {
1143 get_cpu_vendor(c);
1144 break;
1145 }
1146 }
1147#endif
1148}
1149
1150#define NO_SPECULATION BIT(0)
1151#define NO_MELTDOWN BIT(1)
1152#define NO_SSB BIT(2)
1153#define NO_L1TF BIT(3)
1154#define NO_MDS BIT(4)
1155#define MSBDS_ONLY BIT(5)
1156#define NO_SWAPGS BIT(6)
1157#define NO_ITLB_MULTIHIT BIT(7)
1158#define NO_SPECTRE_V2 BIT(8)
1159#define NO_MMIO BIT(9)
1160#define NO_EIBRS_PBRSB BIT(10)
1161
1162#define VULNWL(vendor, family, model, whitelist) \
1163 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1164
1165#define VULNWL_INTEL(model, whitelist) \
1166 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1167
1168#define VULNWL_AMD(family, whitelist) \
1169 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1170
1171#define VULNWL_HYGON(family, whitelist) \
1172 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1173
1174static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1175 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1176 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1177 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1178 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1179 VULNWL(VORTEX, 5, X86_MODEL_ANY, NO_SPECULATION),
1180 VULNWL(VORTEX, 6, X86_MODEL_ANY, NO_SPECULATION),
1181
1182 /* Intel Family 6 */
1183 VULNWL_INTEL(TIGERLAKE, NO_MMIO),
1184 VULNWL_INTEL(TIGERLAKE_L, NO_MMIO),
1185 VULNWL_INTEL(ALDERLAKE, NO_MMIO),
1186 VULNWL_INTEL(ALDERLAKE_L, NO_MMIO),
1187
1188 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1189 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1190 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1191 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1192 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1193
1194 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1195 VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1196 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1197 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1198 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1199 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1200
1201 VULNWL_INTEL(CORE_YONAH, NO_SSB),
1202
1203 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1204 VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1205
1206 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1207 VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1208 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1209
1210 /*
1211 * Technically, swapgs isn't serializing on AMD (despite it previously
1212 * being documented as such in the APM). But according to AMD, %gs is
1213 * updated non-speculatively, and the issuing of %gs-relative memory
1214 * operands will be blocked until the %gs update completes, which is
1215 * good enough for our purposes.
1216 */
1217
1218 VULNWL_INTEL(ATOM_TREMONT, NO_EIBRS_PBRSB),
1219 VULNWL_INTEL(ATOM_TREMONT_L, NO_EIBRS_PBRSB),
1220 VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1221
1222 /* AMD Family 0xf - 0x12 */
1223 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1224 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1225 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1226 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1227
1228 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1229 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1230 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1231
1232 /* Zhaoxin Family 7 */
1233 VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1234 VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1235 {}
1236};
1237
1238#define VULNBL(vendor, family, model, blacklist) \
1239 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1240
1241#define VULNBL_INTEL_STEPPINGS(model, steppings, issues) \
1242 X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6, \
1243 INTEL_FAM6_##model, steppings, \
1244 X86_FEATURE_ANY, issues)
1245
1246#define VULNBL_AMD(family, blacklist) \
1247 VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1248
1249#define VULNBL_HYGON(family, blacklist) \
1250 VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1251
1252#define SRBDS BIT(0)
1253/* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1254#define MMIO BIT(1)
1255/* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1256#define MMIO_SBDS BIT(2)
1257/* CPU is affected by RETbleed, speculating where you would not expect it */
1258#define RETBLEED BIT(3)
1259/* CPU is affected by SMT (cross-thread) return predictions */
1260#define SMT_RSB BIT(4)
1261
1262static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1263 VULNBL_INTEL_STEPPINGS(IVYBRIDGE, X86_STEPPING_ANY, SRBDS),
1264 VULNBL_INTEL_STEPPINGS(HASWELL, X86_STEPPING_ANY, SRBDS),
1265 VULNBL_INTEL_STEPPINGS(HASWELL_L, X86_STEPPING_ANY, SRBDS),
1266 VULNBL_INTEL_STEPPINGS(HASWELL_G, X86_STEPPING_ANY, SRBDS),
1267 VULNBL_INTEL_STEPPINGS(HASWELL_X, X86_STEPPING_ANY, MMIO),
1268 VULNBL_INTEL_STEPPINGS(BROADWELL_D, X86_STEPPING_ANY, MMIO),
1269 VULNBL_INTEL_STEPPINGS(BROADWELL_G, X86_STEPPING_ANY, SRBDS),
1270 VULNBL_INTEL_STEPPINGS(BROADWELL_X, X86_STEPPING_ANY, MMIO),
1271 VULNBL_INTEL_STEPPINGS(BROADWELL, X86_STEPPING_ANY, SRBDS),
1272 VULNBL_INTEL_STEPPINGS(SKYLAKE_L, X86_STEPPING_ANY, SRBDS | MMIO | RETBLEED),
1273 VULNBL_INTEL_STEPPINGS(SKYLAKE_X, X86_STEPPING_ANY, MMIO | RETBLEED),
1274 VULNBL_INTEL_STEPPINGS(SKYLAKE, X86_STEPPING_ANY, SRBDS | MMIO | RETBLEED),
1275 VULNBL_INTEL_STEPPINGS(KABYLAKE_L, X86_STEPPING_ANY, SRBDS | MMIO | RETBLEED),
1276 VULNBL_INTEL_STEPPINGS(KABYLAKE, X86_STEPPING_ANY, SRBDS | MMIO | RETBLEED),
1277 VULNBL_INTEL_STEPPINGS(CANNONLAKE_L, X86_STEPPING_ANY, RETBLEED),
1278 VULNBL_INTEL_STEPPINGS(ICELAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1279 VULNBL_INTEL_STEPPINGS(ICELAKE_D, X86_STEPPING_ANY, MMIO),
1280 VULNBL_INTEL_STEPPINGS(ICELAKE_X, X86_STEPPING_ANY, MMIO),
1281 VULNBL_INTEL_STEPPINGS(COMETLAKE, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1282 VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPINGS(0x0, 0x0), MMIO | RETBLEED),
1283 VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1284 VULNBL_INTEL_STEPPINGS(LAKEFIELD, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1285 VULNBL_INTEL_STEPPINGS(ROCKETLAKE, X86_STEPPING_ANY, MMIO | RETBLEED),
1286 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT, X86_STEPPING_ANY, MMIO | MMIO_SBDS),
1287 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D, X86_STEPPING_ANY, MMIO),
1288 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS),
1289
1290 VULNBL_AMD(0x15, RETBLEED),
1291 VULNBL_AMD(0x16, RETBLEED),
1292 VULNBL_AMD(0x17, RETBLEED | SMT_RSB),
1293 VULNBL_HYGON(0x18, RETBLEED | SMT_RSB),
1294 {}
1295};
1296
1297static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1298{
1299 const struct x86_cpu_id *m = x86_match_cpu(table);
1300
1301 return m && !!(m->driver_data & which);
1302}
1303
1304u64 x86_read_arch_cap_msr(void)
1305{
1306 u64 ia32_cap = 0;
1307
1308 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1309 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1310
1311 return ia32_cap;
1312}
1313
1314static bool arch_cap_mmio_immune(u64 ia32_cap)
1315{
1316 return (ia32_cap & ARCH_CAP_FBSDP_NO &&
1317 ia32_cap & ARCH_CAP_PSDP_NO &&
1318 ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
1319}
1320
1321static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1322{
1323 u64 ia32_cap = x86_read_arch_cap_msr();
1324
1325 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1326 if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1327 !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1328 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1329
1330 if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1331 return;
1332
1333 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1334
1335 if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1336 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1337
1338 if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1339 !(ia32_cap & ARCH_CAP_SSB_NO) &&
1340 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1341 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1342
1343 if (ia32_cap & ARCH_CAP_IBRS_ALL)
1344 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1345
1346 if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1347 !(ia32_cap & ARCH_CAP_MDS_NO)) {
1348 setup_force_cpu_bug(X86_BUG_MDS);
1349 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1350 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1351 }
1352
1353 if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1354 setup_force_cpu_bug(X86_BUG_SWAPGS);
1355
1356 /*
1357 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1358 * - TSX is supported or
1359 * - TSX_CTRL is present
1360 *
1361 * TSX_CTRL check is needed for cases when TSX could be disabled before
1362 * the kernel boot e.g. kexec.
1363 * TSX_CTRL check alone is not sufficient for cases when the microcode
1364 * update is not present or running as guest that don't get TSX_CTRL.
1365 */
1366 if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1367 (cpu_has(c, X86_FEATURE_RTM) ||
1368 (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1369 setup_force_cpu_bug(X86_BUG_TAA);
1370
1371 /*
1372 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1373 * in the vulnerability blacklist.
1374 *
1375 * Some of the implications and mitigation of Shared Buffers Data
1376 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1377 * SRBDS.
1378 */
1379 if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1380 cpu_has(c, X86_FEATURE_RDSEED)) &&
1381 cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1382 setup_force_cpu_bug(X86_BUG_SRBDS);
1383
1384 /*
1385 * Processor MMIO Stale Data bug enumeration
1386 *
1387 * Affected CPU list is generally enough to enumerate the vulnerability,
1388 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1389 * not want the guest to enumerate the bug.
1390 *
1391 * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1392 * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1393 */
1394 if (!arch_cap_mmio_immune(ia32_cap)) {
1395 if (cpu_matches(cpu_vuln_blacklist, MMIO))
1396 setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1397 else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1398 setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1399 }
1400
1401 if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1402 if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
1403 setup_force_cpu_bug(X86_BUG_RETBLEED);
1404 }
1405
1406 if (cpu_has(c, X86_FEATURE_IBRS_ENHANCED) &&
1407 !cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1408 !(ia32_cap & ARCH_CAP_PBRSB_NO))
1409 setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1410
1411 if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1412 setup_force_cpu_bug(X86_BUG_SMT_RSB);
1413
1414 if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1415 return;
1416
1417 /* Rogue Data Cache Load? No! */
1418 if (ia32_cap & ARCH_CAP_RDCL_NO)
1419 return;
1420
1421 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1422
1423 if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1424 return;
1425
1426 setup_force_cpu_bug(X86_BUG_L1TF);
1427}
1428
1429/*
1430 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1431 * unfortunately, that's not true in practice because of early VIA
1432 * chips and (more importantly) broken virtualizers that are not easy
1433 * to detect. In the latter case it doesn't even *fail* reliably, so
1434 * probing for it doesn't even work. Disable it completely on 32-bit
1435 * unless we can find a reliable way to detect all the broken cases.
1436 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1437 */
1438static void detect_nopl(void)
1439{
1440#ifdef CONFIG_X86_32
1441 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1442#else
1443 setup_force_cpu_cap(X86_FEATURE_NOPL);
1444#endif
1445}
1446
1447/*
1448 * We parse cpu parameters early because fpu__init_system() is executed
1449 * before parse_early_param().
1450 */
1451static void __init cpu_parse_early_param(void)
1452{
1453 char arg[128];
1454 char *argptr = arg, *opt;
1455 int arglen, taint = 0;
1456
1457#ifdef CONFIG_X86_32
1458 if (cmdline_find_option_bool(boot_command_line, "no387"))
1459#ifdef CONFIG_MATH_EMULATION
1460 setup_clear_cpu_cap(X86_FEATURE_FPU);
1461#else
1462 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1463#endif
1464
1465 if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1466 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1467#endif
1468
1469 if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1470 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1471
1472 if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1473 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1474
1475 if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1476 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1477
1478 arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1479 if (arglen <= 0)
1480 return;
1481
1482 pr_info("Clearing CPUID bits:");
1483
1484 while (argptr) {
1485 bool found __maybe_unused = false;
1486 unsigned int bit;
1487
1488 opt = strsep(&argptr, ",");
1489
1490 /*
1491 * Handle naked numbers first for feature flags which don't
1492 * have names.
1493 */
1494 if (!kstrtouint(opt, 10, &bit)) {
1495 if (bit < NCAPINTS * 32) {
1496
1497#ifdef CONFIG_X86_FEATURE_NAMES
1498 /* empty-string, i.e., ""-defined feature flags */
1499 if (!x86_cap_flags[bit])
1500 pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1501 else
1502#endif
1503 pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1504
1505 setup_clear_cpu_cap(bit);
1506 taint++;
1507 }
1508 /*
1509 * The assumption is that there are no feature names with only
1510 * numbers in the name thus go to the next argument.
1511 */
1512 continue;
1513 }
1514
1515#ifdef CONFIG_X86_FEATURE_NAMES
1516 for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1517 if (!x86_cap_flag(bit))
1518 continue;
1519
1520 if (strcmp(x86_cap_flag(bit), opt))
1521 continue;
1522
1523 pr_cont(" %s", opt);
1524 setup_clear_cpu_cap(bit);
1525 taint++;
1526 found = true;
1527 break;
1528 }
1529
1530 if (!found)
1531 pr_cont(" (unknown: %s)", opt);
1532#endif
1533 }
1534 pr_cont("\n");
1535
1536 if (taint)
1537 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1538}
1539
1540/*
1541 * Do minimum CPU detection early.
1542 * Fields really needed: vendor, cpuid_level, family, model, mask,
1543 * cache alignment.
1544 * The others are not touched to avoid unwanted side effects.
1545 *
1546 * WARNING: this function is only called on the boot CPU. Don't add code
1547 * here that is supposed to run on all CPUs.
1548 */
1549static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1550{
1551#ifdef CONFIG_X86_64
1552 c->x86_clflush_size = 64;
1553 c->x86_phys_bits = 36;
1554 c->x86_virt_bits = 48;
1555#else
1556 c->x86_clflush_size = 32;
1557 c->x86_phys_bits = 32;
1558 c->x86_virt_bits = 32;
1559#endif
1560 c->x86_cache_alignment = c->x86_clflush_size;
1561
1562 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1563 c->extended_cpuid_level = 0;
1564
1565 if (!have_cpuid_p())
1566 identify_cpu_without_cpuid(c);
1567
1568 /* cyrix could have cpuid enabled via c_identify()*/
1569 if (have_cpuid_p()) {
1570 cpu_detect(c);
1571 get_cpu_vendor(c);
1572 get_cpu_cap(c);
1573 get_cpu_address_sizes(c);
1574 setup_force_cpu_cap(X86_FEATURE_CPUID);
1575 cpu_parse_early_param();
1576
1577 if (this_cpu->c_early_init)
1578 this_cpu->c_early_init(c);
1579
1580 c->cpu_index = 0;
1581 filter_cpuid_features(c, false);
1582
1583 if (this_cpu->c_bsp_init)
1584 this_cpu->c_bsp_init(c);
1585 } else {
1586 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1587 }
1588
1589 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1590
1591 cpu_set_bug_bits(c);
1592
1593 sld_setup(c);
1594
1595 fpu__init_system(c);
1596
1597 init_sigframe_size();
1598
1599#ifdef CONFIG_X86_32
1600 /*
1601 * Regardless of whether PCID is enumerated, the SDM says
1602 * that it can't be enabled in 32-bit mode.
1603 */
1604 setup_clear_cpu_cap(X86_FEATURE_PCID);
1605#endif
1606
1607 /*
1608 * Later in the boot process pgtable_l5_enabled() relies on
1609 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1610 * enabled by this point we need to clear the feature bit to avoid
1611 * false-positives at the later stage.
1612 *
1613 * pgtable_l5_enabled() can be false here for several reasons:
1614 * - 5-level paging is disabled compile-time;
1615 * - it's 32-bit kernel;
1616 * - machine doesn't support 5-level paging;
1617 * - user specified 'no5lvl' in kernel command line.
1618 */
1619 if (!pgtable_l5_enabled())
1620 setup_clear_cpu_cap(X86_FEATURE_LA57);
1621
1622 detect_nopl();
1623}
1624
1625void __init early_cpu_init(void)
1626{
1627 const struct cpu_dev *const *cdev;
1628 int count = 0;
1629
1630#ifdef CONFIG_PROCESSOR_SELECT
1631 pr_info("KERNEL supported cpus:\n");
1632#endif
1633
1634 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1635 const struct cpu_dev *cpudev = *cdev;
1636
1637 if (count >= X86_VENDOR_NUM)
1638 break;
1639 cpu_devs[count] = cpudev;
1640 count++;
1641
1642#ifdef CONFIG_PROCESSOR_SELECT
1643 {
1644 unsigned int j;
1645
1646 for (j = 0; j < 2; j++) {
1647 if (!cpudev->c_ident[j])
1648 continue;
1649 pr_info(" %s %s\n", cpudev->c_vendor,
1650 cpudev->c_ident[j]);
1651 }
1652 }
1653#endif
1654 }
1655 early_identify_cpu(&boot_cpu_data);
1656}
1657
1658static bool detect_null_seg_behavior(void)
1659{
1660 /*
1661 * Empirically, writing zero to a segment selector on AMD does
1662 * not clear the base, whereas writing zero to a segment
1663 * selector on Intel does clear the base. Intel's behavior
1664 * allows slightly faster context switches in the common case
1665 * where GS is unused by the prev and next threads.
1666 *
1667 * Since neither vendor documents this anywhere that I can see,
1668 * detect it directly instead of hard-coding the choice by
1669 * vendor.
1670 *
1671 * I've designated AMD's behavior as the "bug" because it's
1672 * counterintuitive and less friendly.
1673 */
1674
1675 unsigned long old_base, tmp;
1676 rdmsrl(MSR_FS_BASE, old_base);
1677 wrmsrl(MSR_FS_BASE, 1);
1678 loadsegment(fs, 0);
1679 rdmsrl(MSR_FS_BASE, tmp);
1680 wrmsrl(MSR_FS_BASE, old_base);
1681 return tmp == 0;
1682}
1683
1684void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1685{
1686 /* BUG_NULL_SEG is only relevant with 64bit userspace */
1687 if (!IS_ENABLED(CONFIG_X86_64))
1688 return;
1689
1690 /* Zen3 CPUs advertise Null Selector Clears Base in CPUID. */
1691 if (c->extended_cpuid_level >= 0x80000021 &&
1692 cpuid_eax(0x80000021) & BIT(6))
1693 return;
1694
1695 /*
1696 * CPUID bit above wasn't set. If this kernel is still running
1697 * as a HV guest, then the HV has decided not to advertize
1698 * that CPUID bit for whatever reason. For example, one
1699 * member of the migration pool might be vulnerable. Which
1700 * means, the bug is present: set the BUG flag and return.
1701 */
1702 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1703 set_cpu_bug(c, X86_BUG_NULL_SEG);
1704 return;
1705 }
1706
1707 /*
1708 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1709 * 0x18 is the respective family for Hygon.
1710 */
1711 if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1712 detect_null_seg_behavior())
1713 return;
1714
1715 /* All the remaining ones are affected */
1716 set_cpu_bug(c, X86_BUG_NULL_SEG);
1717}
1718
1719static void generic_identify(struct cpuinfo_x86 *c)
1720{
1721 c->extended_cpuid_level = 0;
1722
1723 if (!have_cpuid_p())
1724 identify_cpu_without_cpuid(c);
1725
1726 /* cyrix could have cpuid enabled via c_identify()*/
1727 if (!have_cpuid_p())
1728 return;
1729
1730 cpu_detect(c);
1731
1732 get_cpu_vendor(c);
1733
1734 get_cpu_cap(c);
1735
1736 get_cpu_address_sizes(c);
1737
1738 if (c->cpuid_level >= 0x00000001) {
1739 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1740#ifdef CONFIG_X86_32
1741# ifdef CONFIG_SMP
1742 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1743# else
1744 c->apicid = c->initial_apicid;
1745# endif
1746#endif
1747 c->phys_proc_id = c->initial_apicid;
1748 }
1749
1750 get_model_name(c); /* Default name */
1751
1752 /*
1753 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1754 * systems that run Linux at CPL > 0 may or may not have the
1755 * issue, but, even if they have the issue, there's absolutely
1756 * nothing we can do about it because we can't use the real IRET
1757 * instruction.
1758 *
1759 * NB: For the time being, only 32-bit kernels support
1760 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1761 * whether to apply espfix using paravirt hooks. If any
1762 * non-paravirt system ever shows up that does *not* have the
1763 * ESPFIX issue, we can change this.
1764 */
1765#ifdef CONFIG_X86_32
1766 set_cpu_bug(c, X86_BUG_ESPFIX);
1767#endif
1768}
1769
1770/*
1771 * Validate that ACPI/mptables have the same information about the
1772 * effective APIC id and update the package map.
1773 */
1774static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1775{
1776#ifdef CONFIG_SMP
1777 unsigned int apicid, cpu = smp_processor_id();
1778
1779 apicid = apic->cpu_present_to_apicid(cpu);
1780
1781 if (apicid != c->apicid) {
1782 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1783 cpu, apicid, c->initial_apicid);
1784 }
1785 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1786 BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1787#else
1788 c->logical_proc_id = 0;
1789#endif
1790}
1791
1792/*
1793 * This does the hard work of actually picking apart the CPU stuff...
1794 */
1795static void identify_cpu(struct cpuinfo_x86 *c)
1796{
1797 int i;
1798
1799 c->loops_per_jiffy = loops_per_jiffy;
1800 c->x86_cache_size = 0;
1801 c->x86_vendor = X86_VENDOR_UNKNOWN;
1802 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1803 c->x86_vendor_id[0] = '\0'; /* Unset */
1804 c->x86_model_id[0] = '\0'; /* Unset */
1805 c->x86_max_cores = 1;
1806 c->x86_coreid_bits = 0;
1807 c->cu_id = 0xff;
1808#ifdef CONFIG_X86_64
1809 c->x86_clflush_size = 64;
1810 c->x86_phys_bits = 36;
1811 c->x86_virt_bits = 48;
1812#else
1813 c->cpuid_level = -1; /* CPUID not detected */
1814 c->x86_clflush_size = 32;
1815 c->x86_phys_bits = 32;
1816 c->x86_virt_bits = 32;
1817#endif
1818 c->x86_cache_alignment = c->x86_clflush_size;
1819 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1820#ifdef CONFIG_X86_VMX_FEATURE_NAMES
1821 memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1822#endif
1823
1824 generic_identify(c);
1825
1826 if (this_cpu->c_identify)
1827 this_cpu->c_identify(c);
1828
1829 /* Clear/Set all flags overridden by options, after probe */
1830 apply_forced_caps(c);
1831
1832#ifdef CONFIG_X86_64
1833 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1834#endif
1835
1836 /*
1837 * Vendor-specific initialization. In this section we
1838 * canonicalize the feature flags, meaning if there are
1839 * features a certain CPU supports which CPUID doesn't
1840 * tell us, CPUID claiming incorrect flags, or other bugs,
1841 * we handle them here.
1842 *
1843 * At the end of this section, c->x86_capability better
1844 * indicate the features this CPU genuinely supports!
1845 */
1846 if (this_cpu->c_init)
1847 this_cpu->c_init(c);
1848
1849 /* Disable the PN if appropriate */
1850 squash_the_stupid_serial_number(c);
1851
1852 /* Set up SMEP/SMAP/UMIP */
1853 setup_smep(c);
1854 setup_smap(c);
1855 setup_umip(c);
1856
1857 /* Enable FSGSBASE instructions if available. */
1858 if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1859 cr4_set_bits(X86_CR4_FSGSBASE);
1860 elf_hwcap2 |= HWCAP2_FSGSBASE;
1861 }
1862
1863 /*
1864 * The vendor-specific functions might have changed features.
1865 * Now we do "generic changes."
1866 */
1867
1868 /* Filter out anything that depends on CPUID levels we don't have */
1869 filter_cpuid_features(c, true);
1870
1871 /* If the model name is still unset, do table lookup. */
1872 if (!c->x86_model_id[0]) {
1873 const char *p;
1874 p = table_lookup_model(c);
1875 if (p)
1876 strcpy(c->x86_model_id, p);
1877 else
1878 /* Last resort... */
1879 sprintf(c->x86_model_id, "%02x/%02x",
1880 c->x86, c->x86_model);
1881 }
1882
1883#ifdef CONFIG_X86_64
1884 detect_ht(c);
1885#endif
1886
1887 x86_init_rdrand(c);
1888 setup_pku(c);
1889 setup_cet(c);
1890
1891 /*
1892 * Clear/Set all flags overridden by options, need do it
1893 * before following smp all cpus cap AND.
1894 */
1895 apply_forced_caps(c);
1896
1897 /*
1898 * On SMP, boot_cpu_data holds the common feature set between
1899 * all CPUs; so make sure that we indicate which features are
1900 * common between the CPUs. The first time this routine gets
1901 * executed, c == &boot_cpu_data.
1902 */
1903 if (c != &boot_cpu_data) {
1904 /* AND the already accumulated flags with these */
1905 for (i = 0; i < NCAPINTS; i++)
1906 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1907
1908 /* OR, i.e. replicate the bug flags */
1909 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1910 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1911 }
1912
1913 ppin_init(c);
1914
1915 /* Init Machine Check Exception if available. */
1916 mcheck_cpu_init(c);
1917
1918 select_idle_routine(c);
1919
1920#ifdef CONFIG_NUMA
1921 numa_add_cpu(smp_processor_id());
1922#endif
1923}
1924
1925/*
1926 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1927 * on 32-bit kernels:
1928 */
1929#ifdef CONFIG_X86_32
1930void enable_sep_cpu(void)
1931{
1932 struct tss_struct *tss;
1933 int cpu;
1934
1935 if (!boot_cpu_has(X86_FEATURE_SEP))
1936 return;
1937
1938 cpu = get_cpu();
1939 tss = &per_cpu(cpu_tss_rw, cpu);
1940
1941 /*
1942 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1943 * see the big comment in struct x86_hw_tss's definition.
1944 */
1945
1946 tss->x86_tss.ss1 = __KERNEL_CS;
1947 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1948 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1949 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1950
1951 put_cpu();
1952}
1953#endif
1954
1955void __init identify_boot_cpu(void)
1956{
1957 identify_cpu(&boot_cpu_data);
1958 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1959 pr_info("CET detected: Indirect Branch Tracking enabled\n");
1960#ifdef CONFIG_X86_32
1961 sysenter_setup();
1962 enable_sep_cpu();
1963#endif
1964 cpu_detect_tlb(&boot_cpu_data);
1965 setup_cr_pinning();
1966
1967 tsx_init();
1968}
1969
1970void identify_secondary_cpu(struct cpuinfo_x86 *c)
1971{
1972 BUG_ON(c == &boot_cpu_data);
1973 identify_cpu(c);
1974#ifdef CONFIG_X86_32
1975 enable_sep_cpu();
1976#endif
1977 validate_apic_and_package_id(c);
1978 x86_spec_ctrl_setup_ap();
1979 update_srbds_msr();
1980
1981 tsx_ap_init();
1982}
1983
1984void print_cpu_info(struct cpuinfo_x86 *c)
1985{
1986 const char *vendor = NULL;
1987
1988 if (c->x86_vendor < X86_VENDOR_NUM) {
1989 vendor = this_cpu->c_vendor;
1990 } else {
1991 if (c->cpuid_level >= 0)
1992 vendor = c->x86_vendor_id;
1993 }
1994
1995 if (vendor && !strstr(c->x86_model_id, vendor))
1996 pr_cont("%s ", vendor);
1997
1998 if (c->x86_model_id[0])
1999 pr_cont("%s", c->x86_model_id);
2000 else
2001 pr_cont("%d86", c->x86);
2002
2003 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
2004
2005 if (c->x86_stepping || c->cpuid_level >= 0)
2006 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
2007 else
2008 pr_cont(")\n");
2009}
2010
2011/*
2012 * clearcpuid= was already parsed in cpu_parse_early_param(). This dummy
2013 * function prevents it from becoming an environment variable for init.
2014 */
2015static __init int setup_clearcpuid(char *arg)
2016{
2017 return 1;
2018}
2019__setup("clearcpuid=", setup_clearcpuid);
2020
2021DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2022 .current_task = &init_task,
2023 .preempt_count = INIT_PREEMPT_COUNT,
2024 .top_of_stack = TOP_OF_INIT_STACK,
2025};
2026EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2027
2028#ifdef CONFIG_X86_64
2029DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2030 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2031EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2032
2033static void wrmsrl_cstar(unsigned long val)
2034{
2035 /*
2036 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2037 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2038 * guest. Avoid the pointless write on all Intel CPUs.
2039 */
2040 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2041 wrmsrl(MSR_CSTAR, val);
2042}
2043
2044/* May not be marked __init: used by software suspend */
2045void syscall_init(void)
2046{
2047 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2048 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2049
2050#ifdef CONFIG_IA32_EMULATION
2051 wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2052 /*
2053 * This only works on Intel CPUs.
2054 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2055 * This does not cause SYSENTER to jump to the wrong location, because
2056 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2057 */
2058 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2059 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2060 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2061 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2062#else
2063 wrmsrl_cstar((unsigned long)ignore_sysret);
2064 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2065 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2066 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2067#endif
2068
2069 /*
2070 * Flags to clear on syscall; clear as much as possible
2071 * to minimize user space-kernel interference.
2072 */
2073 wrmsrl(MSR_SYSCALL_MASK,
2074 X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2075 X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2076 X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2077 X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2078 X86_EFLAGS_AC|X86_EFLAGS_ID);
2079}
2080
2081#else /* CONFIG_X86_64 */
2082
2083#ifdef CONFIG_STACKPROTECTOR
2084DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2085EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2086#endif
2087
2088#endif /* CONFIG_X86_64 */
2089
2090/*
2091 * Clear all 6 debug registers:
2092 */
2093static void clear_all_debug_regs(void)
2094{
2095 int i;
2096
2097 for (i = 0; i < 8; i++) {
2098 /* Ignore db4, db5 */
2099 if ((i == 4) || (i == 5))
2100 continue;
2101
2102 set_debugreg(0, i);
2103 }
2104}
2105
2106#ifdef CONFIG_KGDB
2107/*
2108 * Restore debug regs if using kgdbwait and you have a kernel debugger
2109 * connection established.
2110 */
2111static void dbg_restore_debug_regs(void)
2112{
2113 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2114 arch_kgdb_ops.correct_hw_break();
2115}
2116#else /* ! CONFIG_KGDB */
2117#define dbg_restore_debug_regs()
2118#endif /* ! CONFIG_KGDB */
2119
2120static void wait_for_master_cpu(int cpu)
2121{
2122#ifdef CONFIG_SMP
2123 /*
2124 * wait for ACK from master CPU before continuing
2125 * with AP initialization
2126 */
2127 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
2128 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
2129 cpu_relax();
2130#endif
2131}
2132
2133#ifdef CONFIG_X86_64
2134static inline void setup_getcpu(int cpu)
2135{
2136 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2137 struct desc_struct d = { };
2138
2139 if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2140 wrmsr(MSR_TSC_AUX, cpudata, 0);
2141
2142 /* Store CPU and node number in limit. */
2143 d.limit0 = cpudata;
2144 d.limit1 = cpudata >> 16;
2145
2146 d.type = 5; /* RO data, expand down, accessed */
2147 d.dpl = 3; /* Visible to user code */
2148 d.s = 1; /* Not a system segment */
2149 d.p = 1; /* Present */
2150 d.d = 1; /* 32-bit */
2151
2152 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2153}
2154
2155static inline void ucode_cpu_init(int cpu)
2156{
2157 if (cpu)
2158 load_ucode_ap();
2159}
2160
2161static inline void tss_setup_ist(struct tss_struct *tss)
2162{
2163 /* Set up the per-CPU TSS IST stacks */
2164 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2165 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2166 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2167 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2168 /* Only mapped when SEV-ES is active */
2169 tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2170}
2171
2172#else /* CONFIG_X86_64 */
2173
2174static inline void setup_getcpu(int cpu) { }
2175
2176static inline void ucode_cpu_init(int cpu)
2177{
2178 show_ucode_info_early();
2179}
2180
2181static inline void tss_setup_ist(struct tss_struct *tss) { }
2182
2183#endif /* !CONFIG_X86_64 */
2184
2185static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2186{
2187 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2188
2189#ifdef CONFIG_X86_IOPL_IOPERM
2190 tss->io_bitmap.prev_max = 0;
2191 tss->io_bitmap.prev_sequence = 0;
2192 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2193 /*
2194 * Invalidate the extra array entry past the end of the all
2195 * permission bitmap as required by the hardware.
2196 */
2197 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2198#endif
2199}
2200
2201/*
2202 * Setup everything needed to handle exceptions from the IDT, including the IST
2203 * exceptions which use paranoid_entry().
2204 */
2205void cpu_init_exception_handling(void)
2206{
2207 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2208 int cpu = raw_smp_processor_id();
2209
2210 /* paranoid_entry() gets the CPU number from the GDT */
2211 setup_getcpu(cpu);
2212
2213 /* IST vectors need TSS to be set up. */
2214 tss_setup_ist(tss);
2215 tss_setup_io_bitmap(tss);
2216 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2217
2218 load_TR_desc();
2219
2220 /* GHCB needs to be setup to handle #VC. */
2221 setup_ghcb();
2222
2223 /* Finally load the IDT */
2224 load_current_idt();
2225}
2226
2227/*
2228 * cpu_init() initializes state that is per-CPU. Some data is already
2229 * initialized (naturally) in the bootstrap process, such as the GDT. We
2230 * reload it nevertheless, this function acts as a 'CPU state barrier',
2231 * nothing should get across.
2232 */
2233void cpu_init(void)
2234{
2235 struct task_struct *cur = current;
2236 int cpu = raw_smp_processor_id();
2237
2238 wait_for_master_cpu(cpu);
2239
2240 ucode_cpu_init(cpu);
2241
2242#ifdef CONFIG_NUMA
2243 if (this_cpu_read(numa_node) == 0 &&
2244 early_cpu_to_node(cpu) != NUMA_NO_NODE)
2245 set_numa_node(early_cpu_to_node(cpu));
2246#endif
2247 pr_debug("Initializing CPU#%d\n", cpu);
2248
2249 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2250 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2251 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2252
2253 if (IS_ENABLED(CONFIG_X86_64)) {
2254 loadsegment(fs, 0);
2255 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2256 syscall_init();
2257
2258 wrmsrl(MSR_FS_BASE, 0);
2259 wrmsrl(MSR_KERNEL_GS_BASE, 0);
2260 barrier();
2261
2262 x2apic_setup();
2263 }
2264
2265 mmgrab(&init_mm);
2266 cur->active_mm = &init_mm;
2267 BUG_ON(cur->mm);
2268 initialize_tlbstate_and_flush();
2269 enter_lazy_tlb(&init_mm, cur);
2270
2271 /*
2272 * sp0 points to the entry trampoline stack regardless of what task
2273 * is running.
2274 */
2275 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2276
2277 load_mm_ldt(&init_mm);
2278
2279 clear_all_debug_regs();
2280 dbg_restore_debug_regs();
2281
2282 doublefault_init_cpu_tss();
2283
2284 fpu__init_cpu();
2285
2286 if (is_uv_system())
2287 uv_cpu_init();
2288
2289 load_fixmap_gdt(cpu);
2290}
2291
2292#ifdef CONFIG_SMP
2293void cpu_init_secondary(void)
2294{
2295 /*
2296 * Relies on the BP having set-up the IDT tables, which are loaded
2297 * on this CPU in cpu_init_exception_handling().
2298 */
2299 cpu_init_exception_handling();
2300 cpu_init();
2301}
2302#endif
2303
2304#ifdef CONFIG_MICROCODE_LATE_LOADING
2305/*
2306 * The microcode loader calls this upon late microcode load to recheck features,
2307 * only when microcode has been updated. Caller holds microcode_mutex and CPU
2308 * hotplug lock.
2309 */
2310void microcode_check(void)
2311{
2312 struct cpuinfo_x86 info;
2313
2314 perf_check_microcode();
2315
2316 /* Reload CPUID max function as it might've changed. */
2317 info.cpuid_level = cpuid_eax(0);
2318
2319 /*
2320 * Copy all capability leafs to pick up the synthetic ones so that
2321 * memcmp() below doesn't fail on that. The ones coming from CPUID will
2322 * get overwritten in get_cpu_cap().
2323 */
2324 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2325
2326 get_cpu_cap(&info);
2327
2328 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2329 return;
2330
2331 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2332 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2333}
2334#endif
2335
2336/*
2337 * Invoked from core CPU hotplug code after hotplug operations
2338 */
2339void arch_smt_update(void)
2340{
2341 /* Handle the speculative execution misfeatures */
2342 cpu_bugs_smt_update();
2343 /* Check whether IPI broadcasting can be enabled */
2344 apic_smt_update();
2345}