Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/* cpu_feature_enabled() cannot be used this early */
3#define USE_EARLY_PGTABLE_L5
4
5#include <linux/memblock.h>
6#include <linux/linkage.h>
7#include <linux/bitops.h>
8#include <linux/kernel.h>
9#include <linux/export.h>
10#include <linux/percpu.h>
11#include <linux/string.h>
12#include <linux/ctype.h>
13#include <linux/delay.h>
14#include <linux/sched/mm.h>
15#include <linux/sched/clock.h>
16#include <linux/sched/task.h>
17#include <linux/init.h>
18#include <linux/kprobes.h>
19#include <linux/kgdb.h>
20#include <linux/smp.h>
21#include <linux/io.h>
22#include <linux/syscore_ops.h>
23
24#include <asm/stackprotector.h>
25#include <asm/perf_event.h>
26#include <asm/mmu_context.h>
27#include <asm/archrandom.h>
28#include <asm/hypervisor.h>
29#include <asm/processor.h>
30#include <asm/tlbflush.h>
31#include <asm/debugreg.h>
32#include <asm/sections.h>
33#include <asm/vsyscall.h>
34#include <linux/topology.h>
35#include <linux/cpumask.h>
36#include <asm/pgtable.h>
37#include <linux/atomic.h>
38#include <asm/proto.h>
39#include <asm/setup.h>
40#include <asm/apic.h>
41#include <asm/desc.h>
42#include <asm/fpu/internal.h>
43#include <asm/mtrr.h>
44#include <asm/hwcap2.h>
45#include <linux/numa.h>
46#include <asm/asm.h>
47#include <asm/bugs.h>
48#include <asm/cpu.h>
49#include <asm/mce.h>
50#include <asm/msr.h>
51#include <asm/pat.h>
52#include <asm/microcode.h>
53#include <asm/microcode_intel.h>
54#include <asm/intel-family.h>
55#include <asm/cpu_device_id.h>
56
57#ifdef CONFIG_X86_LOCAL_APIC
58#include <asm/uv/uv.h>
59#endif
60
61#include "cpu.h"
62
63u32 elf_hwcap2 __read_mostly;
64
65/* all of these masks are initialized in setup_cpu_local_masks() */
66cpumask_var_t cpu_initialized_mask;
67cpumask_var_t cpu_callout_mask;
68cpumask_var_t cpu_callin_mask;
69
70/* representing cpus for which sibling maps can be computed */
71cpumask_var_t cpu_sibling_setup_mask;
72
73/* Number of siblings per CPU package */
74int smp_num_siblings = 1;
75EXPORT_SYMBOL(smp_num_siblings);
76
77/* Last level cache ID of each logical CPU */
78DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
79
80/* correctly size the local cpu masks */
81void __init setup_cpu_local_masks(void)
82{
83 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
84 alloc_bootmem_cpumask_var(&cpu_callin_mask);
85 alloc_bootmem_cpumask_var(&cpu_callout_mask);
86 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
87}
88
89static void default_init(struct cpuinfo_x86 *c)
90{
91#ifdef CONFIG_X86_64
92 cpu_detect_cache_sizes(c);
93#else
94 /* Not much we can do here... */
95 /* Check if at least it has cpuid */
96 if (c->cpuid_level == -1) {
97 /* No cpuid. It must be an ancient CPU */
98 if (c->x86 == 4)
99 strcpy(c->x86_model_id, "486");
100 else if (c->x86 == 3)
101 strcpy(c->x86_model_id, "386");
102 }
103#endif
104}
105
106static const struct cpu_dev default_cpu = {
107 .c_init = default_init,
108 .c_vendor = "Unknown",
109 .c_x86_vendor = X86_VENDOR_UNKNOWN,
110};
111
112static const struct cpu_dev *this_cpu = &default_cpu;
113
114DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
115#ifdef CONFIG_X86_64
116 /*
117 * We need valid kernel segments for data and code in long mode too
118 * IRET will check the segment types kkeil 2000/10/28
119 * Also sysret mandates a special GDT layout
120 *
121 * TLS descriptors are currently at a different place compared to i386.
122 * Hopefully nobody expects them at a fixed place (Wine?)
123 */
124 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
125 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
126 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
127 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
128 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
129 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
130#else
131 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
132 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
133 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
134 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
135 /*
136 * Segments used for calling PnP BIOS have byte granularity.
137 * They code segments and data segments have fixed 64k limits,
138 * the transfer segment sizes are set at run time.
139 */
140 /* 32-bit code */
141 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
142 /* 16-bit code */
143 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
144 /* 16-bit data */
145 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
146 /* 16-bit data */
147 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
148 /* 16-bit data */
149 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
150 /*
151 * The APM segments have byte granularity and their bases
152 * are set at run time. All have 64k limits.
153 */
154 /* 32-bit code */
155 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
156 /* 16-bit code */
157 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
158 /* data */
159 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
160
161 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
162 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
163 GDT_STACK_CANARY_INIT
164#endif
165} };
166EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
167
168static int __init x86_mpx_setup(char *s)
169{
170 /* require an exact match without trailing characters */
171 if (strlen(s))
172 return 0;
173
174 /* do not emit a message if the feature is not present */
175 if (!boot_cpu_has(X86_FEATURE_MPX))
176 return 1;
177
178 setup_clear_cpu_cap(X86_FEATURE_MPX);
179 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
180 return 1;
181}
182__setup("nompx", x86_mpx_setup);
183
184#ifdef CONFIG_X86_64
185static int __init x86_nopcid_setup(char *s)
186{
187 /* nopcid doesn't accept parameters */
188 if (s)
189 return -EINVAL;
190
191 /* do not emit a message if the feature is not present */
192 if (!boot_cpu_has(X86_FEATURE_PCID))
193 return 0;
194
195 setup_clear_cpu_cap(X86_FEATURE_PCID);
196 pr_info("nopcid: PCID feature disabled\n");
197 return 0;
198}
199early_param("nopcid", x86_nopcid_setup);
200#endif
201
202static int __init x86_noinvpcid_setup(char *s)
203{
204 /* noinvpcid doesn't accept parameters */
205 if (s)
206 return -EINVAL;
207
208 /* do not emit a message if the feature is not present */
209 if (!boot_cpu_has(X86_FEATURE_INVPCID))
210 return 0;
211
212 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
213 pr_info("noinvpcid: INVPCID feature disabled\n");
214 return 0;
215}
216early_param("noinvpcid", x86_noinvpcid_setup);
217
218#ifdef CONFIG_X86_32
219static int cachesize_override = -1;
220static int disable_x86_serial_nr = 1;
221
222static int __init cachesize_setup(char *str)
223{
224 get_option(&str, &cachesize_override);
225 return 1;
226}
227__setup("cachesize=", cachesize_setup);
228
229static int __init x86_sep_setup(char *s)
230{
231 setup_clear_cpu_cap(X86_FEATURE_SEP);
232 return 1;
233}
234__setup("nosep", x86_sep_setup);
235
236/* Standard macro to see if a specific flag is changeable */
237static inline int flag_is_changeable_p(u32 flag)
238{
239 u32 f1, f2;
240
241 /*
242 * Cyrix and IDT cpus allow disabling of CPUID
243 * so the code below may return different results
244 * when it is executed before and after enabling
245 * the CPUID. Add "volatile" to not allow gcc to
246 * optimize the subsequent calls to this function.
247 */
248 asm volatile ("pushfl \n\t"
249 "pushfl \n\t"
250 "popl %0 \n\t"
251 "movl %0, %1 \n\t"
252 "xorl %2, %0 \n\t"
253 "pushl %0 \n\t"
254 "popfl \n\t"
255 "pushfl \n\t"
256 "popl %0 \n\t"
257 "popfl \n\t"
258
259 : "=&r" (f1), "=&r" (f2)
260 : "ir" (flag));
261
262 return ((f1^f2) & flag) != 0;
263}
264
265/* Probe for the CPUID instruction */
266int have_cpuid_p(void)
267{
268 return flag_is_changeable_p(X86_EFLAGS_ID);
269}
270
271static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
272{
273 unsigned long lo, hi;
274
275 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
276 return;
277
278 /* Disable processor serial number: */
279
280 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
281 lo |= 0x200000;
282 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
283
284 pr_notice("CPU serial number disabled.\n");
285 clear_cpu_cap(c, X86_FEATURE_PN);
286
287 /* Disabling the serial number may affect the cpuid level */
288 c->cpuid_level = cpuid_eax(0);
289}
290
291static int __init x86_serial_nr_setup(char *s)
292{
293 disable_x86_serial_nr = 0;
294 return 1;
295}
296__setup("serialnumber", x86_serial_nr_setup);
297#else
298static inline int flag_is_changeable_p(u32 flag)
299{
300 return 1;
301}
302static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
303{
304}
305#endif
306
307static __init int setup_disable_smep(char *arg)
308{
309 setup_clear_cpu_cap(X86_FEATURE_SMEP);
310 /* Check for things that depend on SMEP being enabled: */
311 check_mpx_erratum(&boot_cpu_data);
312 return 1;
313}
314__setup("nosmep", setup_disable_smep);
315
316static __always_inline void setup_smep(struct cpuinfo_x86 *c)
317{
318 if (cpu_has(c, X86_FEATURE_SMEP))
319 cr4_set_bits(X86_CR4_SMEP);
320}
321
322static __init int setup_disable_smap(char *arg)
323{
324 setup_clear_cpu_cap(X86_FEATURE_SMAP);
325 return 1;
326}
327__setup("nosmap", setup_disable_smap);
328
329static __always_inline void setup_smap(struct cpuinfo_x86 *c)
330{
331 unsigned long eflags = native_save_fl();
332
333 /* This should have been cleared long ago */
334 BUG_ON(eflags & X86_EFLAGS_AC);
335
336 if (cpu_has(c, X86_FEATURE_SMAP)) {
337#ifdef CONFIG_X86_SMAP
338 cr4_set_bits(X86_CR4_SMAP);
339#else
340 cr4_clear_bits(X86_CR4_SMAP);
341#endif
342 }
343}
344
345static __always_inline void setup_umip(struct cpuinfo_x86 *c)
346{
347 /* Check the boot processor, plus build option for UMIP. */
348 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
349 goto out;
350
351 /* Check the current processor's cpuid bits. */
352 if (!cpu_has(c, X86_FEATURE_UMIP))
353 goto out;
354
355 cr4_set_bits(X86_CR4_UMIP);
356
357 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
358
359 return;
360
361out:
362 /*
363 * Make sure UMIP is disabled in case it was enabled in a
364 * previous boot (e.g., via kexec).
365 */
366 cr4_clear_bits(X86_CR4_UMIP);
367}
368
369static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
370static unsigned long cr4_pinned_bits __ro_after_init;
371
372void native_write_cr0(unsigned long val)
373{
374 unsigned long bits_missing = 0;
375
376set_register:
377 asm volatile("mov %0,%%cr0": "+r" (val), "+m" (__force_order));
378
379 if (static_branch_likely(&cr_pinning)) {
380 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
381 bits_missing = X86_CR0_WP;
382 val |= bits_missing;
383 goto set_register;
384 }
385 /* Warn after we've set the missing bits. */
386 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
387 }
388}
389EXPORT_SYMBOL(native_write_cr0);
390
391void native_write_cr4(unsigned long val)
392{
393 unsigned long bits_missing = 0;
394
395set_register:
396 asm volatile("mov %0,%%cr4": "+r" (val), "+m" (cr4_pinned_bits));
397
398 if (static_branch_likely(&cr_pinning)) {
399 if (unlikely((val & cr4_pinned_bits) != cr4_pinned_bits)) {
400 bits_missing = ~val & cr4_pinned_bits;
401 val |= bits_missing;
402 goto set_register;
403 }
404 /* Warn after we've set the missing bits. */
405 WARN_ONCE(bits_missing, "CR4 bits went missing: %lx!?\n",
406 bits_missing);
407 }
408}
409EXPORT_SYMBOL(native_write_cr4);
410
411void cr4_init(void)
412{
413 unsigned long cr4 = __read_cr4();
414
415 if (boot_cpu_has(X86_FEATURE_PCID))
416 cr4 |= X86_CR4_PCIDE;
417 if (static_branch_likely(&cr_pinning))
418 cr4 |= cr4_pinned_bits;
419
420 __write_cr4(cr4);
421
422 /* Initialize cr4 shadow for this CPU. */
423 this_cpu_write(cpu_tlbstate.cr4, cr4);
424}
425
426/*
427 * Once CPU feature detection is finished (and boot params have been
428 * parsed), record any of the sensitive CR bits that are set, and
429 * enable CR pinning.
430 */
431static void __init setup_cr_pinning(void)
432{
433 unsigned long mask;
434
435 mask = (X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP);
436 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & mask;
437 static_key_enable(&cr_pinning.key);
438}
439
440/*
441 * Protection Keys are not available in 32-bit mode.
442 */
443static bool pku_disabled;
444
445static __always_inline void setup_pku(struct cpuinfo_x86 *c)
446{
447 struct pkru_state *pk;
448
449 /* check the boot processor, plus compile options for PKU: */
450 if (!cpu_feature_enabled(X86_FEATURE_PKU))
451 return;
452 /* checks the actual processor's cpuid bits: */
453 if (!cpu_has(c, X86_FEATURE_PKU))
454 return;
455 if (pku_disabled)
456 return;
457
458 cr4_set_bits(X86_CR4_PKE);
459 pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
460 if (pk)
461 pk->pkru = init_pkru_value;
462 /*
463 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
464 * cpuid bit to be set. We need to ensure that we
465 * update that bit in this CPU's "cpu_info".
466 */
467 get_cpu_cap(c);
468}
469
470#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
471static __init int setup_disable_pku(char *arg)
472{
473 /*
474 * Do not clear the X86_FEATURE_PKU bit. All of the
475 * runtime checks are against OSPKE so clearing the
476 * bit does nothing.
477 *
478 * This way, we will see "pku" in cpuinfo, but not
479 * "ospke", which is exactly what we want. It shows
480 * that the CPU has PKU, but the OS has not enabled it.
481 * This happens to be exactly how a system would look
482 * if we disabled the config option.
483 */
484 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
485 pku_disabled = true;
486 return 1;
487}
488__setup("nopku", setup_disable_pku);
489#endif /* CONFIG_X86_64 */
490
491/*
492 * Some CPU features depend on higher CPUID levels, which may not always
493 * be available due to CPUID level capping or broken virtualization
494 * software. Add those features to this table to auto-disable them.
495 */
496struct cpuid_dependent_feature {
497 u32 feature;
498 u32 level;
499};
500
501static const struct cpuid_dependent_feature
502cpuid_dependent_features[] = {
503 { X86_FEATURE_MWAIT, 0x00000005 },
504 { X86_FEATURE_DCA, 0x00000009 },
505 { X86_FEATURE_XSAVE, 0x0000000d },
506 { 0, 0 }
507};
508
509static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
510{
511 const struct cpuid_dependent_feature *df;
512
513 for (df = cpuid_dependent_features; df->feature; df++) {
514
515 if (!cpu_has(c, df->feature))
516 continue;
517 /*
518 * Note: cpuid_level is set to -1 if unavailable, but
519 * extended_extended_level is set to 0 if unavailable
520 * and the legitimate extended levels are all negative
521 * when signed; hence the weird messing around with
522 * signs here...
523 */
524 if (!((s32)df->level < 0 ?
525 (u32)df->level > (u32)c->extended_cpuid_level :
526 (s32)df->level > (s32)c->cpuid_level))
527 continue;
528
529 clear_cpu_cap(c, df->feature);
530 if (!warn)
531 continue;
532
533 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
534 x86_cap_flag(df->feature), df->level);
535 }
536}
537
538/*
539 * Naming convention should be: <Name> [(<Codename>)]
540 * This table only is used unless init_<vendor>() below doesn't set it;
541 * in particular, if CPUID levels 0x80000002..4 are supported, this
542 * isn't used
543 */
544
545/* Look up CPU names by table lookup. */
546static const char *table_lookup_model(struct cpuinfo_x86 *c)
547{
548#ifdef CONFIG_X86_32
549 const struct legacy_cpu_model_info *info;
550
551 if (c->x86_model >= 16)
552 return NULL; /* Range check */
553
554 if (!this_cpu)
555 return NULL;
556
557 info = this_cpu->legacy_models;
558
559 while (info->family) {
560 if (info->family == c->x86)
561 return info->model_names[c->x86_model];
562 info++;
563 }
564#endif
565 return NULL; /* Not found */
566}
567
568__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
569__u32 cpu_caps_set[NCAPINTS + NBUGINTS];
570
571void load_percpu_segment(int cpu)
572{
573#ifdef CONFIG_X86_32
574 loadsegment(fs, __KERNEL_PERCPU);
575#else
576 __loadsegment_simple(gs, 0);
577 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
578#endif
579 load_stack_canary_segment();
580}
581
582#ifdef CONFIG_X86_32
583/* The 32-bit entry code needs to find cpu_entry_area. */
584DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
585#endif
586
587/* Load the original GDT from the per-cpu structure */
588void load_direct_gdt(int cpu)
589{
590 struct desc_ptr gdt_descr;
591
592 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
593 gdt_descr.size = GDT_SIZE - 1;
594 load_gdt(&gdt_descr);
595}
596EXPORT_SYMBOL_GPL(load_direct_gdt);
597
598/* Load a fixmap remapping of the per-cpu GDT */
599void load_fixmap_gdt(int cpu)
600{
601 struct desc_ptr gdt_descr;
602
603 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
604 gdt_descr.size = GDT_SIZE - 1;
605 load_gdt(&gdt_descr);
606}
607EXPORT_SYMBOL_GPL(load_fixmap_gdt);
608
609/*
610 * Current gdt points %fs at the "master" per-cpu area: after this,
611 * it's on the real one.
612 */
613void switch_to_new_gdt(int cpu)
614{
615 /* Load the original GDT */
616 load_direct_gdt(cpu);
617 /* Reload the per-cpu base */
618 load_percpu_segment(cpu);
619}
620
621static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
622
623static void get_model_name(struct cpuinfo_x86 *c)
624{
625 unsigned int *v;
626 char *p, *q, *s;
627
628 if (c->extended_cpuid_level < 0x80000004)
629 return;
630
631 v = (unsigned int *)c->x86_model_id;
632 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
633 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
634 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
635 c->x86_model_id[48] = 0;
636
637 /* Trim whitespace */
638 p = q = s = &c->x86_model_id[0];
639
640 while (*p == ' ')
641 p++;
642
643 while (*p) {
644 /* Note the last non-whitespace index */
645 if (!isspace(*p))
646 s = q;
647
648 *q++ = *p++;
649 }
650
651 *(s + 1) = '\0';
652}
653
654void detect_num_cpu_cores(struct cpuinfo_x86 *c)
655{
656 unsigned int eax, ebx, ecx, edx;
657
658 c->x86_max_cores = 1;
659 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
660 return;
661
662 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
663 if (eax & 0x1f)
664 c->x86_max_cores = (eax >> 26) + 1;
665}
666
667void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
668{
669 unsigned int n, dummy, ebx, ecx, edx, l2size;
670
671 n = c->extended_cpuid_level;
672
673 if (n >= 0x80000005) {
674 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
675 c->x86_cache_size = (ecx>>24) + (edx>>24);
676#ifdef CONFIG_X86_64
677 /* On K8 L1 TLB is inclusive, so don't count it */
678 c->x86_tlbsize = 0;
679#endif
680 }
681
682 if (n < 0x80000006) /* Some chips just has a large L1. */
683 return;
684
685 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
686 l2size = ecx >> 16;
687
688#ifdef CONFIG_X86_64
689 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
690#else
691 /* do processor-specific cache resizing */
692 if (this_cpu->legacy_cache_size)
693 l2size = this_cpu->legacy_cache_size(c, l2size);
694
695 /* Allow user to override all this if necessary. */
696 if (cachesize_override != -1)
697 l2size = cachesize_override;
698
699 if (l2size == 0)
700 return; /* Again, no L2 cache is possible */
701#endif
702
703 c->x86_cache_size = l2size;
704}
705
706u16 __read_mostly tlb_lli_4k[NR_INFO];
707u16 __read_mostly tlb_lli_2m[NR_INFO];
708u16 __read_mostly tlb_lli_4m[NR_INFO];
709u16 __read_mostly tlb_lld_4k[NR_INFO];
710u16 __read_mostly tlb_lld_2m[NR_INFO];
711u16 __read_mostly tlb_lld_4m[NR_INFO];
712u16 __read_mostly tlb_lld_1g[NR_INFO];
713
714static void cpu_detect_tlb(struct cpuinfo_x86 *c)
715{
716 if (this_cpu->c_detect_tlb)
717 this_cpu->c_detect_tlb(c);
718
719 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
720 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
721 tlb_lli_4m[ENTRIES]);
722
723 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
724 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
725 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
726}
727
728int detect_ht_early(struct cpuinfo_x86 *c)
729{
730#ifdef CONFIG_SMP
731 u32 eax, ebx, ecx, edx;
732
733 if (!cpu_has(c, X86_FEATURE_HT))
734 return -1;
735
736 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
737 return -1;
738
739 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
740 return -1;
741
742 cpuid(1, &eax, &ebx, &ecx, &edx);
743
744 smp_num_siblings = (ebx & 0xff0000) >> 16;
745 if (smp_num_siblings == 1)
746 pr_info_once("CPU0: Hyper-Threading is disabled\n");
747#endif
748 return 0;
749}
750
751void detect_ht(struct cpuinfo_x86 *c)
752{
753#ifdef CONFIG_SMP
754 int index_msb, core_bits;
755
756 if (detect_ht_early(c) < 0)
757 return;
758
759 index_msb = get_count_order(smp_num_siblings);
760 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
761
762 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
763
764 index_msb = get_count_order(smp_num_siblings);
765
766 core_bits = get_count_order(c->x86_max_cores);
767
768 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
769 ((1 << core_bits) - 1);
770#endif
771}
772
773static void get_cpu_vendor(struct cpuinfo_x86 *c)
774{
775 char *v = c->x86_vendor_id;
776 int i;
777
778 for (i = 0; i < X86_VENDOR_NUM; i++) {
779 if (!cpu_devs[i])
780 break;
781
782 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
783 (cpu_devs[i]->c_ident[1] &&
784 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
785
786 this_cpu = cpu_devs[i];
787 c->x86_vendor = this_cpu->c_x86_vendor;
788 return;
789 }
790 }
791
792 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
793 "CPU: Your system may be unstable.\n", v);
794
795 c->x86_vendor = X86_VENDOR_UNKNOWN;
796 this_cpu = &default_cpu;
797}
798
799void cpu_detect(struct cpuinfo_x86 *c)
800{
801 /* Get vendor name */
802 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
803 (unsigned int *)&c->x86_vendor_id[0],
804 (unsigned int *)&c->x86_vendor_id[8],
805 (unsigned int *)&c->x86_vendor_id[4]);
806
807 c->x86 = 4;
808 /* Intel-defined flags: level 0x00000001 */
809 if (c->cpuid_level >= 0x00000001) {
810 u32 junk, tfms, cap0, misc;
811
812 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
813 c->x86 = x86_family(tfms);
814 c->x86_model = x86_model(tfms);
815 c->x86_stepping = x86_stepping(tfms);
816
817 if (cap0 & (1<<19)) {
818 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
819 c->x86_cache_alignment = c->x86_clflush_size;
820 }
821 }
822}
823
824static void apply_forced_caps(struct cpuinfo_x86 *c)
825{
826 int i;
827
828 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
829 c->x86_capability[i] &= ~cpu_caps_cleared[i];
830 c->x86_capability[i] |= cpu_caps_set[i];
831 }
832}
833
834static void init_speculation_control(struct cpuinfo_x86 *c)
835{
836 /*
837 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
838 * and they also have a different bit for STIBP support. Also,
839 * a hypervisor might have set the individual AMD bits even on
840 * Intel CPUs, for finer-grained selection of what's available.
841 */
842 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
843 set_cpu_cap(c, X86_FEATURE_IBRS);
844 set_cpu_cap(c, X86_FEATURE_IBPB);
845 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
846 }
847
848 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
849 set_cpu_cap(c, X86_FEATURE_STIBP);
850
851 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
852 cpu_has(c, X86_FEATURE_VIRT_SSBD))
853 set_cpu_cap(c, X86_FEATURE_SSBD);
854
855 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
856 set_cpu_cap(c, X86_FEATURE_IBRS);
857 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
858 }
859
860 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
861 set_cpu_cap(c, X86_FEATURE_IBPB);
862
863 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
864 set_cpu_cap(c, X86_FEATURE_STIBP);
865 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
866 }
867
868 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
869 set_cpu_cap(c, X86_FEATURE_SSBD);
870 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
871 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
872 }
873}
874
875static void init_cqm(struct cpuinfo_x86 *c)
876{
877 if (!cpu_has(c, X86_FEATURE_CQM_LLC)) {
878 c->x86_cache_max_rmid = -1;
879 c->x86_cache_occ_scale = -1;
880 return;
881 }
882
883 /* will be overridden if occupancy monitoring exists */
884 c->x86_cache_max_rmid = cpuid_ebx(0xf);
885
886 if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC) ||
887 cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL) ||
888 cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)) {
889 u32 eax, ebx, ecx, edx;
890
891 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
892 cpuid_count(0xf, 1, &eax, &ebx, &ecx, &edx);
893
894 c->x86_cache_max_rmid = ecx;
895 c->x86_cache_occ_scale = ebx;
896 }
897}
898
899void get_cpu_cap(struct cpuinfo_x86 *c)
900{
901 u32 eax, ebx, ecx, edx;
902
903 /* Intel-defined flags: level 0x00000001 */
904 if (c->cpuid_level >= 0x00000001) {
905 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
906
907 c->x86_capability[CPUID_1_ECX] = ecx;
908 c->x86_capability[CPUID_1_EDX] = edx;
909 }
910
911 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
912 if (c->cpuid_level >= 0x00000006)
913 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
914
915 /* Additional Intel-defined flags: level 0x00000007 */
916 if (c->cpuid_level >= 0x00000007) {
917 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
918 c->x86_capability[CPUID_7_0_EBX] = ebx;
919 c->x86_capability[CPUID_7_ECX] = ecx;
920 c->x86_capability[CPUID_7_EDX] = edx;
921
922 /* Check valid sub-leaf index before accessing it */
923 if (eax >= 1) {
924 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
925 c->x86_capability[CPUID_7_1_EAX] = eax;
926 }
927 }
928
929 /* Extended state features: level 0x0000000d */
930 if (c->cpuid_level >= 0x0000000d) {
931 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
932
933 c->x86_capability[CPUID_D_1_EAX] = eax;
934 }
935
936 /* AMD-defined flags: level 0x80000001 */
937 eax = cpuid_eax(0x80000000);
938 c->extended_cpuid_level = eax;
939
940 if ((eax & 0xffff0000) == 0x80000000) {
941 if (eax >= 0x80000001) {
942 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
943
944 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
945 c->x86_capability[CPUID_8000_0001_EDX] = edx;
946 }
947 }
948
949 if (c->extended_cpuid_level >= 0x80000007) {
950 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
951
952 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
953 c->x86_power = edx;
954 }
955
956 if (c->extended_cpuid_level >= 0x80000008) {
957 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
958 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
959 }
960
961 if (c->extended_cpuid_level >= 0x8000000a)
962 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
963
964 init_scattered_cpuid_features(c);
965 init_speculation_control(c);
966 init_cqm(c);
967
968 /*
969 * Clear/Set all flags overridden by options, after probe.
970 * This needs to happen each time we re-probe, which may happen
971 * several times during CPU initialization.
972 */
973 apply_forced_caps(c);
974}
975
976void get_cpu_address_sizes(struct cpuinfo_x86 *c)
977{
978 u32 eax, ebx, ecx, edx;
979
980 if (c->extended_cpuid_level >= 0x80000008) {
981 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
982
983 c->x86_virt_bits = (eax >> 8) & 0xff;
984 c->x86_phys_bits = eax & 0xff;
985 }
986#ifdef CONFIG_X86_32
987 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
988 c->x86_phys_bits = 36;
989#endif
990 c->x86_cache_bits = c->x86_phys_bits;
991}
992
993static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
994{
995#ifdef CONFIG_X86_32
996 int i;
997
998 /*
999 * First of all, decide if this is a 486 or higher
1000 * It's a 486 if we can modify the AC flag
1001 */
1002 if (flag_is_changeable_p(X86_EFLAGS_AC))
1003 c->x86 = 4;
1004 else
1005 c->x86 = 3;
1006
1007 for (i = 0; i < X86_VENDOR_NUM; i++)
1008 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1009 c->x86_vendor_id[0] = 0;
1010 cpu_devs[i]->c_identify(c);
1011 if (c->x86_vendor_id[0]) {
1012 get_cpu_vendor(c);
1013 break;
1014 }
1015 }
1016#endif
1017}
1018
1019#define NO_SPECULATION BIT(0)
1020#define NO_MELTDOWN BIT(1)
1021#define NO_SSB BIT(2)
1022#define NO_L1TF BIT(3)
1023#define NO_MDS BIT(4)
1024#define MSBDS_ONLY BIT(5)
1025#define NO_SWAPGS BIT(6)
1026#define NO_ITLB_MULTIHIT BIT(7)
1027
1028#define VULNWL(_vendor, _family, _model, _whitelist) \
1029 { X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
1030
1031#define VULNWL_INTEL(model, whitelist) \
1032 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1033
1034#define VULNWL_AMD(family, whitelist) \
1035 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1036
1037#define VULNWL_HYGON(family, whitelist) \
1038 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1039
1040static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1041 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1042 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1043 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1044 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1045
1046 /* Intel Family 6 */
1047 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1048 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1049 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1050 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1051 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1052
1053 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1054 VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1055 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1056 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1057 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1058 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1059
1060 VULNWL_INTEL(CORE_YONAH, NO_SSB),
1061
1062 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1063 VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1064
1065 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1066 VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1067 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1068
1069 /*
1070 * Technically, swapgs isn't serializing on AMD (despite it previously
1071 * being documented as such in the APM). But according to AMD, %gs is
1072 * updated non-speculatively, and the issuing of %gs-relative memory
1073 * operands will be blocked until the %gs update completes, which is
1074 * good enough for our purposes.
1075 */
1076
1077 VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT),
1078
1079 /* AMD Family 0xf - 0x12 */
1080 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1081 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1082 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1083 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1084
1085 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1086 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1087 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1088 {}
1089};
1090
1091static bool __init cpu_matches(unsigned long which)
1092{
1093 const struct x86_cpu_id *m = x86_match_cpu(cpu_vuln_whitelist);
1094
1095 return m && !!(m->driver_data & which);
1096}
1097
1098u64 x86_read_arch_cap_msr(void)
1099{
1100 u64 ia32_cap = 0;
1101
1102 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1103 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1104
1105 return ia32_cap;
1106}
1107
1108static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1109{
1110 u64 ia32_cap = x86_read_arch_cap_msr();
1111
1112 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1113 if (!cpu_matches(NO_ITLB_MULTIHIT) && !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1114 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1115
1116 if (cpu_matches(NO_SPECULATION))
1117 return;
1118
1119 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1120 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1121
1122 if (!cpu_matches(NO_SSB) && !(ia32_cap & ARCH_CAP_SSB_NO) &&
1123 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1124 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1125
1126 if (ia32_cap & ARCH_CAP_IBRS_ALL)
1127 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1128
1129 if (!cpu_matches(NO_MDS) && !(ia32_cap & ARCH_CAP_MDS_NO)) {
1130 setup_force_cpu_bug(X86_BUG_MDS);
1131 if (cpu_matches(MSBDS_ONLY))
1132 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1133 }
1134
1135 if (!cpu_matches(NO_SWAPGS))
1136 setup_force_cpu_bug(X86_BUG_SWAPGS);
1137
1138 /*
1139 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1140 * - TSX is supported or
1141 * - TSX_CTRL is present
1142 *
1143 * TSX_CTRL check is needed for cases when TSX could be disabled before
1144 * the kernel boot e.g. kexec.
1145 * TSX_CTRL check alone is not sufficient for cases when the microcode
1146 * update is not present or running as guest that don't get TSX_CTRL.
1147 */
1148 if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1149 (cpu_has(c, X86_FEATURE_RTM) ||
1150 (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1151 setup_force_cpu_bug(X86_BUG_TAA);
1152
1153 if (cpu_matches(NO_MELTDOWN))
1154 return;
1155
1156 /* Rogue Data Cache Load? No! */
1157 if (ia32_cap & ARCH_CAP_RDCL_NO)
1158 return;
1159
1160 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1161
1162 if (cpu_matches(NO_L1TF))
1163 return;
1164
1165 setup_force_cpu_bug(X86_BUG_L1TF);
1166}
1167
1168/*
1169 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1170 * unfortunately, that's not true in practice because of early VIA
1171 * chips and (more importantly) broken virtualizers that are not easy
1172 * to detect. In the latter case it doesn't even *fail* reliably, so
1173 * probing for it doesn't even work. Disable it completely on 32-bit
1174 * unless we can find a reliable way to detect all the broken cases.
1175 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1176 */
1177static void detect_nopl(void)
1178{
1179#ifdef CONFIG_X86_32
1180 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1181#else
1182 setup_force_cpu_cap(X86_FEATURE_NOPL);
1183#endif
1184}
1185
1186/*
1187 * Do minimum CPU detection early.
1188 * Fields really needed: vendor, cpuid_level, family, model, mask,
1189 * cache alignment.
1190 * The others are not touched to avoid unwanted side effects.
1191 *
1192 * WARNING: this function is only called on the boot CPU. Don't add code
1193 * here that is supposed to run on all CPUs.
1194 */
1195static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1196{
1197#ifdef CONFIG_X86_64
1198 c->x86_clflush_size = 64;
1199 c->x86_phys_bits = 36;
1200 c->x86_virt_bits = 48;
1201#else
1202 c->x86_clflush_size = 32;
1203 c->x86_phys_bits = 32;
1204 c->x86_virt_bits = 32;
1205#endif
1206 c->x86_cache_alignment = c->x86_clflush_size;
1207
1208 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1209 c->extended_cpuid_level = 0;
1210
1211 if (!have_cpuid_p())
1212 identify_cpu_without_cpuid(c);
1213
1214 /* cyrix could have cpuid enabled via c_identify()*/
1215 if (have_cpuid_p()) {
1216 cpu_detect(c);
1217 get_cpu_vendor(c);
1218 get_cpu_cap(c);
1219 get_cpu_address_sizes(c);
1220 setup_force_cpu_cap(X86_FEATURE_CPUID);
1221
1222 if (this_cpu->c_early_init)
1223 this_cpu->c_early_init(c);
1224
1225 c->cpu_index = 0;
1226 filter_cpuid_features(c, false);
1227
1228 if (this_cpu->c_bsp_init)
1229 this_cpu->c_bsp_init(c);
1230 } else {
1231 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1232 }
1233
1234 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1235
1236 cpu_set_bug_bits(c);
1237
1238 fpu__init_system(c);
1239
1240#ifdef CONFIG_X86_32
1241 /*
1242 * Regardless of whether PCID is enumerated, the SDM says
1243 * that it can't be enabled in 32-bit mode.
1244 */
1245 setup_clear_cpu_cap(X86_FEATURE_PCID);
1246#endif
1247
1248 /*
1249 * Later in the boot process pgtable_l5_enabled() relies on
1250 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1251 * enabled by this point we need to clear the feature bit to avoid
1252 * false-positives at the later stage.
1253 *
1254 * pgtable_l5_enabled() can be false here for several reasons:
1255 * - 5-level paging is disabled compile-time;
1256 * - it's 32-bit kernel;
1257 * - machine doesn't support 5-level paging;
1258 * - user specified 'no5lvl' in kernel command line.
1259 */
1260 if (!pgtable_l5_enabled())
1261 setup_clear_cpu_cap(X86_FEATURE_LA57);
1262
1263 detect_nopl();
1264}
1265
1266void __init early_cpu_init(void)
1267{
1268 const struct cpu_dev *const *cdev;
1269 int count = 0;
1270
1271#ifdef CONFIG_PROCESSOR_SELECT
1272 pr_info("KERNEL supported cpus:\n");
1273#endif
1274
1275 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1276 const struct cpu_dev *cpudev = *cdev;
1277
1278 if (count >= X86_VENDOR_NUM)
1279 break;
1280 cpu_devs[count] = cpudev;
1281 count++;
1282
1283#ifdef CONFIG_PROCESSOR_SELECT
1284 {
1285 unsigned int j;
1286
1287 for (j = 0; j < 2; j++) {
1288 if (!cpudev->c_ident[j])
1289 continue;
1290 pr_info(" %s %s\n", cpudev->c_vendor,
1291 cpudev->c_ident[j]);
1292 }
1293 }
1294#endif
1295 }
1296 early_identify_cpu(&boot_cpu_data);
1297}
1298
1299static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1300{
1301#ifdef CONFIG_X86_64
1302 /*
1303 * Empirically, writing zero to a segment selector on AMD does
1304 * not clear the base, whereas writing zero to a segment
1305 * selector on Intel does clear the base. Intel's behavior
1306 * allows slightly faster context switches in the common case
1307 * where GS is unused by the prev and next threads.
1308 *
1309 * Since neither vendor documents this anywhere that I can see,
1310 * detect it directly instead of hardcoding the choice by
1311 * vendor.
1312 *
1313 * I've designated AMD's behavior as the "bug" because it's
1314 * counterintuitive and less friendly.
1315 */
1316
1317 unsigned long old_base, tmp;
1318 rdmsrl(MSR_FS_BASE, old_base);
1319 wrmsrl(MSR_FS_BASE, 1);
1320 loadsegment(fs, 0);
1321 rdmsrl(MSR_FS_BASE, tmp);
1322 if (tmp != 0)
1323 set_cpu_bug(c, X86_BUG_NULL_SEG);
1324 wrmsrl(MSR_FS_BASE, old_base);
1325#endif
1326}
1327
1328static void generic_identify(struct cpuinfo_x86 *c)
1329{
1330 c->extended_cpuid_level = 0;
1331
1332 if (!have_cpuid_p())
1333 identify_cpu_without_cpuid(c);
1334
1335 /* cyrix could have cpuid enabled via c_identify()*/
1336 if (!have_cpuid_p())
1337 return;
1338
1339 cpu_detect(c);
1340
1341 get_cpu_vendor(c);
1342
1343 get_cpu_cap(c);
1344
1345 get_cpu_address_sizes(c);
1346
1347 if (c->cpuid_level >= 0x00000001) {
1348 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1349#ifdef CONFIG_X86_32
1350# ifdef CONFIG_SMP
1351 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1352# else
1353 c->apicid = c->initial_apicid;
1354# endif
1355#endif
1356 c->phys_proc_id = c->initial_apicid;
1357 }
1358
1359 get_model_name(c); /* Default name */
1360
1361 detect_null_seg_behavior(c);
1362
1363 /*
1364 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1365 * systems that run Linux at CPL > 0 may or may not have the
1366 * issue, but, even if they have the issue, there's absolutely
1367 * nothing we can do about it because we can't use the real IRET
1368 * instruction.
1369 *
1370 * NB: For the time being, only 32-bit kernels support
1371 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1372 * whether to apply espfix using paravirt hooks. If any
1373 * non-paravirt system ever shows up that does *not* have the
1374 * ESPFIX issue, we can change this.
1375 */
1376#ifdef CONFIG_X86_32
1377# ifdef CONFIG_PARAVIRT_XXL
1378 do {
1379 extern void native_iret(void);
1380 if (pv_ops.cpu.iret == native_iret)
1381 set_cpu_bug(c, X86_BUG_ESPFIX);
1382 } while (0);
1383# else
1384 set_cpu_bug(c, X86_BUG_ESPFIX);
1385# endif
1386#endif
1387}
1388
1389static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1390{
1391 /*
1392 * The heavy lifting of max_rmid and cache_occ_scale are handled
1393 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1394 * in case CQM bits really aren't there in this CPU.
1395 */
1396 if (c != &boot_cpu_data) {
1397 boot_cpu_data.x86_cache_max_rmid =
1398 min(boot_cpu_data.x86_cache_max_rmid,
1399 c->x86_cache_max_rmid);
1400 }
1401}
1402
1403/*
1404 * Validate that ACPI/mptables have the same information about the
1405 * effective APIC id and update the package map.
1406 */
1407static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1408{
1409#ifdef CONFIG_SMP
1410 unsigned int apicid, cpu = smp_processor_id();
1411
1412 apicid = apic->cpu_present_to_apicid(cpu);
1413
1414 if (apicid != c->apicid) {
1415 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1416 cpu, apicid, c->initial_apicid);
1417 }
1418 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1419 BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1420#else
1421 c->logical_proc_id = 0;
1422#endif
1423}
1424
1425/*
1426 * This does the hard work of actually picking apart the CPU stuff...
1427 */
1428static void identify_cpu(struct cpuinfo_x86 *c)
1429{
1430 int i;
1431
1432 c->loops_per_jiffy = loops_per_jiffy;
1433 c->x86_cache_size = 0;
1434 c->x86_vendor = X86_VENDOR_UNKNOWN;
1435 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1436 c->x86_vendor_id[0] = '\0'; /* Unset */
1437 c->x86_model_id[0] = '\0'; /* Unset */
1438 c->x86_max_cores = 1;
1439 c->x86_coreid_bits = 0;
1440 c->cu_id = 0xff;
1441#ifdef CONFIG_X86_64
1442 c->x86_clflush_size = 64;
1443 c->x86_phys_bits = 36;
1444 c->x86_virt_bits = 48;
1445#else
1446 c->cpuid_level = -1; /* CPUID not detected */
1447 c->x86_clflush_size = 32;
1448 c->x86_phys_bits = 32;
1449 c->x86_virt_bits = 32;
1450#endif
1451 c->x86_cache_alignment = c->x86_clflush_size;
1452 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1453
1454 generic_identify(c);
1455
1456 if (this_cpu->c_identify)
1457 this_cpu->c_identify(c);
1458
1459 /* Clear/Set all flags overridden by options, after probe */
1460 apply_forced_caps(c);
1461
1462#ifdef CONFIG_X86_64
1463 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1464#endif
1465
1466 /*
1467 * Vendor-specific initialization. In this section we
1468 * canonicalize the feature flags, meaning if there are
1469 * features a certain CPU supports which CPUID doesn't
1470 * tell us, CPUID claiming incorrect flags, or other bugs,
1471 * we handle them here.
1472 *
1473 * At the end of this section, c->x86_capability better
1474 * indicate the features this CPU genuinely supports!
1475 */
1476 if (this_cpu->c_init)
1477 this_cpu->c_init(c);
1478
1479 /* Disable the PN if appropriate */
1480 squash_the_stupid_serial_number(c);
1481
1482 /* Set up SMEP/SMAP/UMIP */
1483 setup_smep(c);
1484 setup_smap(c);
1485 setup_umip(c);
1486
1487 /*
1488 * The vendor-specific functions might have changed features.
1489 * Now we do "generic changes."
1490 */
1491
1492 /* Filter out anything that depends on CPUID levels we don't have */
1493 filter_cpuid_features(c, true);
1494
1495 /* If the model name is still unset, do table lookup. */
1496 if (!c->x86_model_id[0]) {
1497 const char *p;
1498 p = table_lookup_model(c);
1499 if (p)
1500 strcpy(c->x86_model_id, p);
1501 else
1502 /* Last resort... */
1503 sprintf(c->x86_model_id, "%02x/%02x",
1504 c->x86, c->x86_model);
1505 }
1506
1507#ifdef CONFIG_X86_64
1508 detect_ht(c);
1509#endif
1510
1511 x86_init_rdrand(c);
1512 x86_init_cache_qos(c);
1513 setup_pku(c);
1514
1515 /*
1516 * Clear/Set all flags overridden by options, need do it
1517 * before following smp all cpus cap AND.
1518 */
1519 apply_forced_caps(c);
1520
1521 /*
1522 * On SMP, boot_cpu_data holds the common feature set between
1523 * all CPUs; so make sure that we indicate which features are
1524 * common between the CPUs. The first time this routine gets
1525 * executed, c == &boot_cpu_data.
1526 */
1527 if (c != &boot_cpu_data) {
1528 /* AND the already accumulated flags with these */
1529 for (i = 0; i < NCAPINTS; i++)
1530 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1531
1532 /* OR, i.e. replicate the bug flags */
1533 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1534 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1535 }
1536
1537 /* Init Machine Check Exception if available. */
1538 mcheck_cpu_init(c);
1539
1540 select_idle_routine(c);
1541
1542#ifdef CONFIG_NUMA
1543 numa_add_cpu(smp_processor_id());
1544#endif
1545}
1546
1547/*
1548 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1549 * on 32-bit kernels:
1550 */
1551#ifdef CONFIG_X86_32
1552void enable_sep_cpu(void)
1553{
1554 struct tss_struct *tss;
1555 int cpu;
1556
1557 if (!boot_cpu_has(X86_FEATURE_SEP))
1558 return;
1559
1560 cpu = get_cpu();
1561 tss = &per_cpu(cpu_tss_rw, cpu);
1562
1563 /*
1564 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1565 * see the big comment in struct x86_hw_tss's definition.
1566 */
1567
1568 tss->x86_tss.ss1 = __KERNEL_CS;
1569 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1570 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1571 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1572
1573 put_cpu();
1574}
1575#endif
1576
1577void __init identify_boot_cpu(void)
1578{
1579 identify_cpu(&boot_cpu_data);
1580#ifdef CONFIG_X86_32
1581 sysenter_setup();
1582 enable_sep_cpu();
1583#endif
1584 cpu_detect_tlb(&boot_cpu_data);
1585 setup_cr_pinning();
1586
1587 tsx_init();
1588}
1589
1590void identify_secondary_cpu(struct cpuinfo_x86 *c)
1591{
1592 BUG_ON(c == &boot_cpu_data);
1593 identify_cpu(c);
1594#ifdef CONFIG_X86_32
1595 enable_sep_cpu();
1596#endif
1597 mtrr_ap_init();
1598 validate_apic_and_package_id(c);
1599 x86_spec_ctrl_setup_ap();
1600}
1601
1602static __init int setup_noclflush(char *arg)
1603{
1604 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1605 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1606 return 1;
1607}
1608__setup("noclflush", setup_noclflush);
1609
1610void print_cpu_info(struct cpuinfo_x86 *c)
1611{
1612 const char *vendor = NULL;
1613
1614 if (c->x86_vendor < X86_VENDOR_NUM) {
1615 vendor = this_cpu->c_vendor;
1616 } else {
1617 if (c->cpuid_level >= 0)
1618 vendor = c->x86_vendor_id;
1619 }
1620
1621 if (vendor && !strstr(c->x86_model_id, vendor))
1622 pr_cont("%s ", vendor);
1623
1624 if (c->x86_model_id[0])
1625 pr_cont("%s", c->x86_model_id);
1626 else
1627 pr_cont("%d86", c->x86);
1628
1629 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1630
1631 if (c->x86_stepping || c->cpuid_level >= 0)
1632 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1633 else
1634 pr_cont(")\n");
1635}
1636
1637/*
1638 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1639 * But we need to keep a dummy __setup around otherwise it would
1640 * show up as an environment variable for init.
1641 */
1642static __init int setup_clearcpuid(char *arg)
1643{
1644 return 1;
1645}
1646__setup("clearcpuid=", setup_clearcpuid);
1647
1648#ifdef CONFIG_X86_64
1649DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1650 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1651EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1652
1653/*
1654 * The following percpu variables are hot. Align current_task to
1655 * cacheline size such that they fall in the same cacheline.
1656 */
1657DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1658 &init_task;
1659EXPORT_PER_CPU_SYMBOL(current_task);
1660
1661DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
1662DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1663
1664DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1665EXPORT_PER_CPU_SYMBOL(__preempt_count);
1666
1667/* May not be marked __init: used by software suspend */
1668void syscall_init(void)
1669{
1670 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1671 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1672
1673#ifdef CONFIG_IA32_EMULATION
1674 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1675 /*
1676 * This only works on Intel CPUs.
1677 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1678 * This does not cause SYSENTER to jump to the wrong location, because
1679 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1680 */
1681 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1682 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1683 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1684 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1685#else
1686 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1687 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1688 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1689 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1690#endif
1691
1692 /* Flags to clear on syscall */
1693 wrmsrl(MSR_SYSCALL_MASK,
1694 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1695 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1696}
1697
1698DEFINE_PER_CPU(int, debug_stack_usage);
1699DEFINE_PER_CPU(u32, debug_idt_ctr);
1700
1701void debug_stack_set_zero(void)
1702{
1703 this_cpu_inc(debug_idt_ctr);
1704 load_current_idt();
1705}
1706NOKPROBE_SYMBOL(debug_stack_set_zero);
1707
1708void debug_stack_reset(void)
1709{
1710 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1711 return;
1712 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1713 load_current_idt();
1714}
1715NOKPROBE_SYMBOL(debug_stack_reset);
1716
1717#else /* CONFIG_X86_64 */
1718
1719DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1720EXPORT_PER_CPU_SYMBOL(current_task);
1721DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1722EXPORT_PER_CPU_SYMBOL(__preempt_count);
1723
1724/*
1725 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1726 * the top of the kernel stack. Use an extra percpu variable to track the
1727 * top of the kernel stack directly.
1728 */
1729DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1730 (unsigned long)&init_thread_union + THREAD_SIZE;
1731EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1732
1733#ifdef CONFIG_STACKPROTECTOR
1734DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1735#endif
1736
1737#endif /* CONFIG_X86_64 */
1738
1739/*
1740 * Clear all 6 debug registers:
1741 */
1742static void clear_all_debug_regs(void)
1743{
1744 int i;
1745
1746 for (i = 0; i < 8; i++) {
1747 /* Ignore db4, db5 */
1748 if ((i == 4) || (i == 5))
1749 continue;
1750
1751 set_debugreg(0, i);
1752 }
1753}
1754
1755#ifdef CONFIG_KGDB
1756/*
1757 * Restore debug regs if using kgdbwait and you have a kernel debugger
1758 * connection established.
1759 */
1760static void dbg_restore_debug_regs(void)
1761{
1762 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1763 arch_kgdb_ops.correct_hw_break();
1764}
1765#else /* ! CONFIG_KGDB */
1766#define dbg_restore_debug_regs()
1767#endif /* ! CONFIG_KGDB */
1768
1769static void wait_for_master_cpu(int cpu)
1770{
1771#ifdef CONFIG_SMP
1772 /*
1773 * wait for ACK from master CPU before continuing
1774 * with AP initialization
1775 */
1776 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1777 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1778 cpu_relax();
1779#endif
1780}
1781
1782#ifdef CONFIG_X86_64
1783static void setup_getcpu(int cpu)
1784{
1785 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1786 struct desc_struct d = { };
1787
1788 if (boot_cpu_has(X86_FEATURE_RDTSCP))
1789 write_rdtscp_aux(cpudata);
1790
1791 /* Store CPU and node number in limit. */
1792 d.limit0 = cpudata;
1793 d.limit1 = cpudata >> 16;
1794
1795 d.type = 5; /* RO data, expand down, accessed */
1796 d.dpl = 3; /* Visible to user code */
1797 d.s = 1; /* Not a system segment */
1798 d.p = 1; /* Present */
1799 d.d = 1; /* 32-bit */
1800
1801 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1802}
1803#endif
1804
1805/*
1806 * cpu_init() initializes state that is per-CPU. Some data is already
1807 * initialized (naturally) in the bootstrap process, such as the GDT
1808 * and IDT. We reload them nevertheless, this function acts as a
1809 * 'CPU state barrier', nothing should get across.
1810 */
1811#ifdef CONFIG_X86_64
1812
1813void cpu_init(void)
1814{
1815 int cpu = raw_smp_processor_id();
1816 struct task_struct *me;
1817 struct tss_struct *t;
1818 int i;
1819
1820 wait_for_master_cpu(cpu);
1821
1822 if (cpu)
1823 load_ucode_ap();
1824
1825 t = &per_cpu(cpu_tss_rw, cpu);
1826
1827#ifdef CONFIG_NUMA
1828 if (this_cpu_read(numa_node) == 0 &&
1829 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1830 set_numa_node(early_cpu_to_node(cpu));
1831#endif
1832 setup_getcpu(cpu);
1833
1834 me = current;
1835
1836 pr_debug("Initializing CPU#%d\n", cpu);
1837
1838 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1839
1840 /*
1841 * Initialize the per-CPU GDT with the boot GDT,
1842 * and set up the GDT descriptor:
1843 */
1844
1845 switch_to_new_gdt(cpu);
1846 loadsegment(fs, 0);
1847
1848 load_current_idt();
1849
1850 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1851 syscall_init();
1852
1853 wrmsrl(MSR_FS_BASE, 0);
1854 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1855 barrier();
1856
1857 x86_configure_nx();
1858 x2apic_setup();
1859
1860 /*
1861 * set up and load the per-CPU TSS
1862 */
1863 if (!t->x86_tss.ist[0]) {
1864 t->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1865 t->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1866 t->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1867 t->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1868 }
1869
1870 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1871
1872 /*
1873 * <= is required because the CPU will access up to
1874 * 8 bits beyond the end of the IO permission bitmap.
1875 */
1876 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1877 t->io_bitmap[i] = ~0UL;
1878
1879 mmgrab(&init_mm);
1880 me->active_mm = &init_mm;
1881 BUG_ON(me->mm);
1882 initialize_tlbstate_and_flush();
1883 enter_lazy_tlb(&init_mm, me);
1884
1885 /*
1886 * Initialize the TSS. sp0 points to the entry trampoline stack
1887 * regardless of what task is running.
1888 */
1889 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1890 load_TR_desc();
1891 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1892
1893 load_mm_ldt(&init_mm);
1894
1895 clear_all_debug_regs();
1896 dbg_restore_debug_regs();
1897
1898 fpu__init_cpu();
1899
1900 if (is_uv_system())
1901 uv_cpu_init();
1902
1903 load_fixmap_gdt(cpu);
1904}
1905
1906#else
1907
1908void cpu_init(void)
1909{
1910 int cpu = smp_processor_id();
1911 struct task_struct *curr = current;
1912 struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1913
1914 wait_for_master_cpu(cpu);
1915
1916 show_ucode_info_early();
1917
1918 pr_info("Initializing CPU#%d\n", cpu);
1919
1920 if (cpu_feature_enabled(X86_FEATURE_VME) ||
1921 boot_cpu_has(X86_FEATURE_TSC) ||
1922 boot_cpu_has(X86_FEATURE_DE))
1923 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1924
1925 load_current_idt();
1926 switch_to_new_gdt(cpu);
1927
1928 /*
1929 * Set up and load the per-CPU TSS and LDT
1930 */
1931 mmgrab(&init_mm);
1932 curr->active_mm = &init_mm;
1933 BUG_ON(curr->mm);
1934 initialize_tlbstate_and_flush();
1935 enter_lazy_tlb(&init_mm, curr);
1936
1937 /*
1938 * Initialize the TSS. sp0 points to the entry trampoline stack
1939 * regardless of what task is running.
1940 */
1941 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1942 load_TR_desc();
1943 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1944
1945 load_mm_ldt(&init_mm);
1946
1947 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1948
1949#ifdef CONFIG_DOUBLEFAULT
1950 /* Set up doublefault TSS pointer in the GDT */
1951 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1952#endif
1953
1954 clear_all_debug_regs();
1955 dbg_restore_debug_regs();
1956
1957 fpu__init_cpu();
1958
1959 load_fixmap_gdt(cpu);
1960}
1961#endif
1962
1963/*
1964 * The microcode loader calls this upon late microcode load to recheck features,
1965 * only when microcode has been updated. Caller holds microcode_mutex and CPU
1966 * hotplug lock.
1967 */
1968void microcode_check(void)
1969{
1970 struct cpuinfo_x86 info;
1971
1972 perf_check_microcode();
1973
1974 /* Reload CPUID max function as it might've changed. */
1975 info.cpuid_level = cpuid_eax(0);
1976
1977 /*
1978 * Copy all capability leafs to pick up the synthetic ones so that
1979 * memcmp() below doesn't fail on that. The ones coming from CPUID will
1980 * get overwritten in get_cpu_cap().
1981 */
1982 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1983
1984 get_cpu_cap(&info);
1985
1986 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1987 return;
1988
1989 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1990 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1991}
1992
1993/*
1994 * Invoked from core CPU hotplug code after hotplug operations
1995 */
1996void arch_smt_update(void)
1997{
1998 /* Handle the speculative execution misfeatures */
1999 cpu_bugs_smt_update();
2000 /* Check whether IPI broadcasting can be enabled */
2001 apic_smt_update();
2002}
1#include <linux/bootmem.h>
2#include <linux/linkage.h>
3#include <linux/bitops.h>
4#include <linux/kernel.h>
5#include <linux/module.h>
6#include <linux/percpu.h>
7#include <linux/string.h>
8#include <linux/delay.h>
9#include <linux/sched.h>
10#include <linux/init.h>
11#include <linux/kgdb.h>
12#include <linux/smp.h>
13#include <linux/io.h>
14
15#include <asm/stackprotector.h>
16#include <asm/perf_event.h>
17#include <asm/mmu_context.h>
18#include <asm/hypervisor.h>
19#include <asm/processor.h>
20#include <asm/sections.h>
21#include <linux/topology.h>
22#include <linux/cpumask.h>
23#include <asm/pgtable.h>
24#include <linux/atomic.h>
25#include <asm/proto.h>
26#include <asm/setup.h>
27#include <asm/apic.h>
28#include <asm/desc.h>
29#include <asm/i387.h>
30#include <asm/mtrr.h>
31#include <linux/numa.h>
32#include <asm/asm.h>
33#include <asm/cpu.h>
34#include <asm/mce.h>
35#include <asm/msr.h>
36#include <asm/pat.h>
37
38#ifdef CONFIG_X86_LOCAL_APIC
39#include <asm/uv/uv.h>
40#endif
41
42#include "cpu.h"
43
44/* all of these masks are initialized in setup_cpu_local_masks() */
45cpumask_var_t cpu_initialized_mask;
46cpumask_var_t cpu_callout_mask;
47cpumask_var_t cpu_callin_mask;
48
49/* representing cpus for which sibling maps can be computed */
50cpumask_var_t cpu_sibling_setup_mask;
51
52/* correctly size the local cpu masks */
53void __init setup_cpu_local_masks(void)
54{
55 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
56 alloc_bootmem_cpumask_var(&cpu_callin_mask);
57 alloc_bootmem_cpumask_var(&cpu_callout_mask);
58 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
59}
60
61static void __cpuinit default_init(struct cpuinfo_x86 *c)
62{
63#ifdef CONFIG_X86_64
64 cpu_detect_cache_sizes(c);
65#else
66 /* Not much we can do here... */
67 /* Check if at least it has cpuid */
68 if (c->cpuid_level == -1) {
69 /* No cpuid. It must be an ancient CPU */
70 if (c->x86 == 4)
71 strcpy(c->x86_model_id, "486");
72 else if (c->x86 == 3)
73 strcpy(c->x86_model_id, "386");
74 }
75#endif
76}
77
78static const struct cpu_dev __cpuinitconst default_cpu = {
79 .c_init = default_init,
80 .c_vendor = "Unknown",
81 .c_x86_vendor = X86_VENDOR_UNKNOWN,
82};
83
84static const struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
85
86DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
87#ifdef CONFIG_X86_64
88 /*
89 * We need valid kernel segments for data and code in long mode too
90 * IRET will check the segment types kkeil 2000/10/28
91 * Also sysret mandates a special GDT layout
92 *
93 * TLS descriptors are currently at a different place compared to i386.
94 * Hopefully nobody expects them at a fixed place (Wine?)
95 */
96 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
97 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
98 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
99 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
100 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
101 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
102#else
103 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
104 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
105 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
106 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
107 /*
108 * Segments used for calling PnP BIOS have byte granularity.
109 * They code segments and data segments have fixed 64k limits,
110 * the transfer segment sizes are set at run time.
111 */
112 /* 32-bit code */
113 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
114 /* 16-bit code */
115 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
116 /* 16-bit data */
117 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
118 /* 16-bit data */
119 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
120 /* 16-bit data */
121 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
122 /*
123 * The APM segments have byte granularity and their bases
124 * are set at run time. All have 64k limits.
125 */
126 /* 32-bit code */
127 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
128 /* 16-bit code */
129 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
130 /* data */
131 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
132
133 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
134 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
135 GDT_STACK_CANARY_INIT
136#endif
137} };
138EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
139
140static int __init x86_xsave_setup(char *s)
141{
142 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
143 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
144 return 1;
145}
146__setup("noxsave", x86_xsave_setup);
147
148static int __init x86_xsaveopt_setup(char *s)
149{
150 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
151 return 1;
152}
153__setup("noxsaveopt", x86_xsaveopt_setup);
154
155#ifdef CONFIG_X86_32
156static int cachesize_override __cpuinitdata = -1;
157static int disable_x86_serial_nr __cpuinitdata = 1;
158
159static int __init cachesize_setup(char *str)
160{
161 get_option(&str, &cachesize_override);
162 return 1;
163}
164__setup("cachesize=", cachesize_setup);
165
166static int __init x86_fxsr_setup(char *s)
167{
168 setup_clear_cpu_cap(X86_FEATURE_FXSR);
169 setup_clear_cpu_cap(X86_FEATURE_XMM);
170 return 1;
171}
172__setup("nofxsr", x86_fxsr_setup);
173
174static int __init x86_sep_setup(char *s)
175{
176 setup_clear_cpu_cap(X86_FEATURE_SEP);
177 return 1;
178}
179__setup("nosep", x86_sep_setup);
180
181/* Standard macro to see if a specific flag is changeable */
182static inline int flag_is_changeable_p(u32 flag)
183{
184 u32 f1, f2;
185
186 /*
187 * Cyrix and IDT cpus allow disabling of CPUID
188 * so the code below may return different results
189 * when it is executed before and after enabling
190 * the CPUID. Add "volatile" to not allow gcc to
191 * optimize the subsequent calls to this function.
192 */
193 asm volatile ("pushfl \n\t"
194 "pushfl \n\t"
195 "popl %0 \n\t"
196 "movl %0, %1 \n\t"
197 "xorl %2, %0 \n\t"
198 "pushl %0 \n\t"
199 "popfl \n\t"
200 "pushfl \n\t"
201 "popl %0 \n\t"
202 "popfl \n\t"
203
204 : "=&r" (f1), "=&r" (f2)
205 : "ir" (flag));
206
207 return ((f1^f2) & flag) != 0;
208}
209
210/* Probe for the CPUID instruction */
211static int __cpuinit have_cpuid_p(void)
212{
213 return flag_is_changeable_p(X86_EFLAGS_ID);
214}
215
216static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
217{
218 unsigned long lo, hi;
219
220 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
221 return;
222
223 /* Disable processor serial number: */
224
225 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
226 lo |= 0x200000;
227 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
228
229 printk(KERN_NOTICE "CPU serial number disabled.\n");
230 clear_cpu_cap(c, X86_FEATURE_PN);
231
232 /* Disabling the serial number may affect the cpuid level */
233 c->cpuid_level = cpuid_eax(0);
234}
235
236static int __init x86_serial_nr_setup(char *s)
237{
238 disable_x86_serial_nr = 0;
239 return 1;
240}
241__setup("serialnumber", x86_serial_nr_setup);
242#else
243static inline int flag_is_changeable_p(u32 flag)
244{
245 return 1;
246}
247/* Probe for the CPUID instruction */
248static inline int have_cpuid_p(void)
249{
250 return 1;
251}
252static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
253{
254}
255#endif
256
257static int disable_smep __cpuinitdata;
258static __init int setup_disable_smep(char *arg)
259{
260 disable_smep = 1;
261 return 1;
262}
263__setup("nosmep", setup_disable_smep);
264
265static __cpuinit void setup_smep(struct cpuinfo_x86 *c)
266{
267 if (cpu_has(c, X86_FEATURE_SMEP)) {
268 if (unlikely(disable_smep)) {
269 setup_clear_cpu_cap(X86_FEATURE_SMEP);
270 clear_in_cr4(X86_CR4_SMEP);
271 } else
272 set_in_cr4(X86_CR4_SMEP);
273 }
274}
275
276/*
277 * Some CPU features depend on higher CPUID levels, which may not always
278 * be available due to CPUID level capping or broken virtualization
279 * software. Add those features to this table to auto-disable them.
280 */
281struct cpuid_dependent_feature {
282 u32 feature;
283 u32 level;
284};
285
286static const struct cpuid_dependent_feature __cpuinitconst
287cpuid_dependent_features[] = {
288 { X86_FEATURE_MWAIT, 0x00000005 },
289 { X86_FEATURE_DCA, 0x00000009 },
290 { X86_FEATURE_XSAVE, 0x0000000d },
291 { 0, 0 }
292};
293
294static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
295{
296 const struct cpuid_dependent_feature *df;
297
298 for (df = cpuid_dependent_features; df->feature; df++) {
299
300 if (!cpu_has(c, df->feature))
301 continue;
302 /*
303 * Note: cpuid_level is set to -1 if unavailable, but
304 * extended_extended_level is set to 0 if unavailable
305 * and the legitimate extended levels are all negative
306 * when signed; hence the weird messing around with
307 * signs here...
308 */
309 if (!((s32)df->level < 0 ?
310 (u32)df->level > (u32)c->extended_cpuid_level :
311 (s32)df->level > (s32)c->cpuid_level))
312 continue;
313
314 clear_cpu_cap(c, df->feature);
315 if (!warn)
316 continue;
317
318 printk(KERN_WARNING
319 "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
320 x86_cap_flags[df->feature], df->level);
321 }
322}
323
324/*
325 * Naming convention should be: <Name> [(<Codename>)]
326 * This table only is used unless init_<vendor>() below doesn't set it;
327 * in particular, if CPUID levels 0x80000002..4 are supported, this
328 * isn't used
329 */
330
331/* Look up CPU names by table lookup. */
332static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
333{
334 const struct cpu_model_info *info;
335
336 if (c->x86_model >= 16)
337 return NULL; /* Range check */
338
339 if (!this_cpu)
340 return NULL;
341
342 info = this_cpu->c_models;
343
344 while (info && info->family) {
345 if (info->family == c->x86)
346 return info->model_names[c->x86_model];
347 info++;
348 }
349 return NULL; /* Not found */
350}
351
352__u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata;
353__u32 cpu_caps_set[NCAPINTS] __cpuinitdata;
354
355void load_percpu_segment(int cpu)
356{
357#ifdef CONFIG_X86_32
358 loadsegment(fs, __KERNEL_PERCPU);
359#else
360 loadsegment(gs, 0);
361 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
362#endif
363 load_stack_canary_segment();
364}
365
366/*
367 * Current gdt points %fs at the "master" per-cpu area: after this,
368 * it's on the real one.
369 */
370void switch_to_new_gdt(int cpu)
371{
372 struct desc_ptr gdt_descr;
373
374 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
375 gdt_descr.size = GDT_SIZE - 1;
376 load_gdt(&gdt_descr);
377 /* Reload the per-cpu base */
378
379 load_percpu_segment(cpu);
380}
381
382static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
383
384static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
385{
386 unsigned int *v;
387 char *p, *q;
388
389 if (c->extended_cpuid_level < 0x80000004)
390 return;
391
392 v = (unsigned int *)c->x86_model_id;
393 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
394 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
395 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
396 c->x86_model_id[48] = 0;
397
398 /*
399 * Intel chips right-justify this string for some dumb reason;
400 * undo that brain damage:
401 */
402 p = q = &c->x86_model_id[0];
403 while (*p == ' ')
404 p++;
405 if (p != q) {
406 while (*p)
407 *q++ = *p++;
408 while (q <= &c->x86_model_id[48])
409 *q++ = '\0'; /* Zero-pad the rest */
410 }
411}
412
413void __cpuinit cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
414{
415 unsigned int n, dummy, ebx, ecx, edx, l2size;
416
417 n = c->extended_cpuid_level;
418
419 if (n >= 0x80000005) {
420 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
421 c->x86_cache_size = (ecx>>24) + (edx>>24);
422#ifdef CONFIG_X86_64
423 /* On K8 L1 TLB is inclusive, so don't count it */
424 c->x86_tlbsize = 0;
425#endif
426 }
427
428 if (n < 0x80000006) /* Some chips just has a large L1. */
429 return;
430
431 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
432 l2size = ecx >> 16;
433
434#ifdef CONFIG_X86_64
435 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
436#else
437 /* do processor-specific cache resizing */
438 if (this_cpu->c_size_cache)
439 l2size = this_cpu->c_size_cache(c, l2size);
440
441 /* Allow user to override all this if necessary. */
442 if (cachesize_override != -1)
443 l2size = cachesize_override;
444
445 if (l2size == 0)
446 return; /* Again, no L2 cache is possible */
447#endif
448
449 c->x86_cache_size = l2size;
450}
451
452void __cpuinit detect_ht(struct cpuinfo_x86 *c)
453{
454#ifdef CONFIG_X86_HT
455 u32 eax, ebx, ecx, edx;
456 int index_msb, core_bits;
457 static bool printed;
458
459 if (!cpu_has(c, X86_FEATURE_HT))
460 return;
461
462 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
463 goto out;
464
465 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
466 return;
467
468 cpuid(1, &eax, &ebx, &ecx, &edx);
469
470 smp_num_siblings = (ebx & 0xff0000) >> 16;
471
472 if (smp_num_siblings == 1) {
473 printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
474 goto out;
475 }
476
477 if (smp_num_siblings <= 1)
478 goto out;
479
480 index_msb = get_count_order(smp_num_siblings);
481 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
482
483 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
484
485 index_msb = get_count_order(smp_num_siblings);
486
487 core_bits = get_count_order(c->x86_max_cores);
488
489 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
490 ((1 << core_bits) - 1);
491
492out:
493 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
494 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
495 c->phys_proc_id);
496 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
497 c->cpu_core_id);
498 printed = 1;
499 }
500#endif
501}
502
503static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
504{
505 char *v = c->x86_vendor_id;
506 int i;
507
508 for (i = 0; i < X86_VENDOR_NUM; i++) {
509 if (!cpu_devs[i])
510 break;
511
512 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
513 (cpu_devs[i]->c_ident[1] &&
514 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
515
516 this_cpu = cpu_devs[i];
517 c->x86_vendor = this_cpu->c_x86_vendor;
518 return;
519 }
520 }
521
522 printk_once(KERN_ERR
523 "CPU: vendor_id '%s' unknown, using generic init.\n" \
524 "CPU: Your system may be unstable.\n", v);
525
526 c->x86_vendor = X86_VENDOR_UNKNOWN;
527 this_cpu = &default_cpu;
528}
529
530void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
531{
532 /* Get vendor name */
533 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
534 (unsigned int *)&c->x86_vendor_id[0],
535 (unsigned int *)&c->x86_vendor_id[8],
536 (unsigned int *)&c->x86_vendor_id[4]);
537
538 c->x86 = 4;
539 /* Intel-defined flags: level 0x00000001 */
540 if (c->cpuid_level >= 0x00000001) {
541 u32 junk, tfms, cap0, misc;
542
543 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
544 c->x86 = (tfms >> 8) & 0xf;
545 c->x86_model = (tfms >> 4) & 0xf;
546 c->x86_mask = tfms & 0xf;
547
548 if (c->x86 == 0xf)
549 c->x86 += (tfms >> 20) & 0xff;
550 if (c->x86 >= 0x6)
551 c->x86_model += ((tfms >> 16) & 0xf) << 4;
552
553 if (cap0 & (1<<19)) {
554 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
555 c->x86_cache_alignment = c->x86_clflush_size;
556 }
557 }
558}
559
560void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
561{
562 u32 tfms, xlvl;
563 u32 ebx;
564
565 /* Intel-defined flags: level 0x00000001 */
566 if (c->cpuid_level >= 0x00000001) {
567 u32 capability, excap;
568
569 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
570 c->x86_capability[0] = capability;
571 c->x86_capability[4] = excap;
572 }
573
574 /* Additional Intel-defined flags: level 0x00000007 */
575 if (c->cpuid_level >= 0x00000007) {
576 u32 eax, ebx, ecx, edx;
577
578 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
579
580 c->x86_capability[9] = ebx;
581 }
582
583 /* AMD-defined flags: level 0x80000001 */
584 xlvl = cpuid_eax(0x80000000);
585 c->extended_cpuid_level = xlvl;
586
587 if ((xlvl & 0xffff0000) == 0x80000000) {
588 if (xlvl >= 0x80000001) {
589 c->x86_capability[1] = cpuid_edx(0x80000001);
590 c->x86_capability[6] = cpuid_ecx(0x80000001);
591 }
592 }
593
594 if (c->extended_cpuid_level >= 0x80000008) {
595 u32 eax = cpuid_eax(0x80000008);
596
597 c->x86_virt_bits = (eax >> 8) & 0xff;
598 c->x86_phys_bits = eax & 0xff;
599 }
600#ifdef CONFIG_X86_32
601 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
602 c->x86_phys_bits = 36;
603#endif
604
605 if (c->extended_cpuid_level >= 0x80000007)
606 c->x86_power = cpuid_edx(0x80000007);
607
608 init_scattered_cpuid_features(c);
609}
610
611static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
612{
613#ifdef CONFIG_X86_32
614 int i;
615
616 /*
617 * First of all, decide if this is a 486 or higher
618 * It's a 486 if we can modify the AC flag
619 */
620 if (flag_is_changeable_p(X86_EFLAGS_AC))
621 c->x86 = 4;
622 else
623 c->x86 = 3;
624
625 for (i = 0; i < X86_VENDOR_NUM; i++)
626 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
627 c->x86_vendor_id[0] = 0;
628 cpu_devs[i]->c_identify(c);
629 if (c->x86_vendor_id[0]) {
630 get_cpu_vendor(c);
631 break;
632 }
633 }
634#endif
635}
636
637/*
638 * Do minimum CPU detection early.
639 * Fields really needed: vendor, cpuid_level, family, model, mask,
640 * cache alignment.
641 * The others are not touched to avoid unwanted side effects.
642 *
643 * WARNING: this function is only called on the BP. Don't add code here
644 * that is supposed to run on all CPUs.
645 */
646static void __init early_identify_cpu(struct cpuinfo_x86 *c)
647{
648#ifdef CONFIG_X86_64
649 c->x86_clflush_size = 64;
650 c->x86_phys_bits = 36;
651 c->x86_virt_bits = 48;
652#else
653 c->x86_clflush_size = 32;
654 c->x86_phys_bits = 32;
655 c->x86_virt_bits = 32;
656#endif
657 c->x86_cache_alignment = c->x86_clflush_size;
658
659 memset(&c->x86_capability, 0, sizeof c->x86_capability);
660 c->extended_cpuid_level = 0;
661
662 if (!have_cpuid_p())
663 identify_cpu_without_cpuid(c);
664
665 /* cyrix could have cpuid enabled via c_identify()*/
666 if (!have_cpuid_p())
667 return;
668
669 cpu_detect(c);
670
671 get_cpu_vendor(c);
672
673 get_cpu_cap(c);
674
675 if (this_cpu->c_early_init)
676 this_cpu->c_early_init(c);
677
678#ifdef CONFIG_SMP
679 c->cpu_index = 0;
680#endif
681 filter_cpuid_features(c, false);
682
683 setup_smep(c);
684}
685
686void __init early_cpu_init(void)
687{
688 const struct cpu_dev *const *cdev;
689 int count = 0;
690
691#ifdef CONFIG_PROCESSOR_SELECT
692 printk(KERN_INFO "KERNEL supported cpus:\n");
693#endif
694
695 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
696 const struct cpu_dev *cpudev = *cdev;
697
698 if (count >= X86_VENDOR_NUM)
699 break;
700 cpu_devs[count] = cpudev;
701 count++;
702
703#ifdef CONFIG_PROCESSOR_SELECT
704 {
705 unsigned int j;
706
707 for (j = 0; j < 2; j++) {
708 if (!cpudev->c_ident[j])
709 continue;
710 printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
711 cpudev->c_ident[j]);
712 }
713 }
714#endif
715 }
716 early_identify_cpu(&boot_cpu_data);
717}
718
719/*
720 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
721 * unfortunately, that's not true in practice because of early VIA
722 * chips and (more importantly) broken virtualizers that are not easy
723 * to detect. In the latter case it doesn't even *fail* reliably, so
724 * probing for it doesn't even work. Disable it completely on 32-bit
725 * unless we can find a reliable way to detect all the broken cases.
726 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
727 */
728static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
729{
730#ifdef CONFIG_X86_32
731 clear_cpu_cap(c, X86_FEATURE_NOPL);
732#else
733 set_cpu_cap(c, X86_FEATURE_NOPL);
734#endif
735}
736
737static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
738{
739 c->extended_cpuid_level = 0;
740
741 if (!have_cpuid_p())
742 identify_cpu_without_cpuid(c);
743
744 /* cyrix could have cpuid enabled via c_identify()*/
745 if (!have_cpuid_p())
746 return;
747
748 cpu_detect(c);
749
750 get_cpu_vendor(c);
751
752 get_cpu_cap(c);
753
754 if (c->cpuid_level >= 0x00000001) {
755 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
756#ifdef CONFIG_X86_32
757# ifdef CONFIG_X86_HT
758 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
759# else
760 c->apicid = c->initial_apicid;
761# endif
762#endif
763
764#ifdef CONFIG_X86_HT
765 c->phys_proc_id = c->initial_apicid;
766#endif
767 }
768
769 setup_smep(c);
770
771 get_model_name(c); /* Default name */
772
773 detect_nopl(c);
774}
775
776/*
777 * This does the hard work of actually picking apart the CPU stuff...
778 */
779static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
780{
781 int i;
782
783 c->loops_per_jiffy = loops_per_jiffy;
784 c->x86_cache_size = -1;
785 c->x86_vendor = X86_VENDOR_UNKNOWN;
786 c->x86_model = c->x86_mask = 0; /* So far unknown... */
787 c->x86_vendor_id[0] = '\0'; /* Unset */
788 c->x86_model_id[0] = '\0'; /* Unset */
789 c->x86_max_cores = 1;
790 c->x86_coreid_bits = 0;
791#ifdef CONFIG_X86_64
792 c->x86_clflush_size = 64;
793 c->x86_phys_bits = 36;
794 c->x86_virt_bits = 48;
795#else
796 c->cpuid_level = -1; /* CPUID not detected */
797 c->x86_clflush_size = 32;
798 c->x86_phys_bits = 32;
799 c->x86_virt_bits = 32;
800#endif
801 c->x86_cache_alignment = c->x86_clflush_size;
802 memset(&c->x86_capability, 0, sizeof c->x86_capability);
803
804 generic_identify(c);
805
806 if (this_cpu->c_identify)
807 this_cpu->c_identify(c);
808
809 /* Clear/Set all flags overriden by options, after probe */
810 for (i = 0; i < NCAPINTS; i++) {
811 c->x86_capability[i] &= ~cpu_caps_cleared[i];
812 c->x86_capability[i] |= cpu_caps_set[i];
813 }
814
815#ifdef CONFIG_X86_64
816 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
817#endif
818
819 /*
820 * Vendor-specific initialization. In this section we
821 * canonicalize the feature flags, meaning if there are
822 * features a certain CPU supports which CPUID doesn't
823 * tell us, CPUID claiming incorrect flags, or other bugs,
824 * we handle them here.
825 *
826 * At the end of this section, c->x86_capability better
827 * indicate the features this CPU genuinely supports!
828 */
829 if (this_cpu->c_init)
830 this_cpu->c_init(c);
831
832 /* Disable the PN if appropriate */
833 squash_the_stupid_serial_number(c);
834
835 /*
836 * The vendor-specific functions might have changed features.
837 * Now we do "generic changes."
838 */
839
840 /* Filter out anything that depends on CPUID levels we don't have */
841 filter_cpuid_features(c, true);
842
843 /* If the model name is still unset, do table lookup. */
844 if (!c->x86_model_id[0]) {
845 const char *p;
846 p = table_lookup_model(c);
847 if (p)
848 strcpy(c->x86_model_id, p);
849 else
850 /* Last resort... */
851 sprintf(c->x86_model_id, "%02x/%02x",
852 c->x86, c->x86_model);
853 }
854
855#ifdef CONFIG_X86_64
856 detect_ht(c);
857#endif
858
859 init_hypervisor(c);
860
861 /*
862 * Clear/Set all flags overriden by options, need do it
863 * before following smp all cpus cap AND.
864 */
865 for (i = 0; i < NCAPINTS; i++) {
866 c->x86_capability[i] &= ~cpu_caps_cleared[i];
867 c->x86_capability[i] |= cpu_caps_set[i];
868 }
869
870 /*
871 * On SMP, boot_cpu_data holds the common feature set between
872 * all CPUs; so make sure that we indicate which features are
873 * common between the CPUs. The first time this routine gets
874 * executed, c == &boot_cpu_data.
875 */
876 if (c != &boot_cpu_data) {
877 /* AND the already accumulated flags with these */
878 for (i = 0; i < NCAPINTS; i++)
879 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
880 }
881
882 /* Init Machine Check Exception if available. */
883 mcheck_cpu_init(c);
884
885 select_idle_routine(c);
886
887#ifdef CONFIG_NUMA
888 numa_add_cpu(smp_processor_id());
889#endif
890}
891
892#ifdef CONFIG_X86_64
893static void vgetcpu_set_mode(void)
894{
895 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
896 vgetcpu_mode = VGETCPU_RDTSCP;
897 else
898 vgetcpu_mode = VGETCPU_LSL;
899}
900#endif
901
902void __init identify_boot_cpu(void)
903{
904 identify_cpu(&boot_cpu_data);
905 init_amd_e400_c1e_mask();
906#ifdef CONFIG_X86_32
907 sysenter_setup();
908 enable_sep_cpu();
909#else
910 vgetcpu_set_mode();
911#endif
912}
913
914void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
915{
916 BUG_ON(c == &boot_cpu_data);
917 identify_cpu(c);
918#ifdef CONFIG_X86_32
919 enable_sep_cpu();
920#endif
921 mtrr_ap_init();
922}
923
924struct msr_range {
925 unsigned min;
926 unsigned max;
927};
928
929static const struct msr_range msr_range_array[] __cpuinitconst = {
930 { 0x00000000, 0x00000418},
931 { 0xc0000000, 0xc000040b},
932 { 0xc0010000, 0xc0010142},
933 { 0xc0011000, 0xc001103b},
934};
935
936static void __cpuinit print_cpu_msr(void)
937{
938 unsigned index_min, index_max;
939 unsigned index;
940 u64 val;
941 int i;
942
943 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
944 index_min = msr_range_array[i].min;
945 index_max = msr_range_array[i].max;
946
947 for (index = index_min; index < index_max; index++) {
948 if (rdmsrl_amd_safe(index, &val))
949 continue;
950 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
951 }
952 }
953}
954
955static int show_msr __cpuinitdata;
956
957static __init int setup_show_msr(char *arg)
958{
959 int num;
960
961 get_option(&arg, &num);
962
963 if (num > 0)
964 show_msr = num;
965 return 1;
966}
967__setup("show_msr=", setup_show_msr);
968
969static __init int setup_noclflush(char *arg)
970{
971 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
972 return 1;
973}
974__setup("noclflush", setup_noclflush);
975
976void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
977{
978 const char *vendor = NULL;
979
980 if (c->x86_vendor < X86_VENDOR_NUM) {
981 vendor = this_cpu->c_vendor;
982 } else {
983 if (c->cpuid_level >= 0)
984 vendor = c->x86_vendor_id;
985 }
986
987 if (vendor && !strstr(c->x86_model_id, vendor))
988 printk(KERN_CONT "%s ", vendor);
989
990 if (c->x86_model_id[0])
991 printk(KERN_CONT "%s", c->x86_model_id);
992 else
993 printk(KERN_CONT "%d86", c->x86);
994
995 if (c->x86_mask || c->cpuid_level >= 0)
996 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
997 else
998 printk(KERN_CONT "\n");
999
1000#ifdef CONFIG_SMP
1001 if (c->cpu_index < show_msr)
1002 print_cpu_msr();
1003#else
1004 if (show_msr)
1005 print_cpu_msr();
1006#endif
1007}
1008
1009static __init int setup_disablecpuid(char *arg)
1010{
1011 int bit;
1012
1013 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1014 setup_clear_cpu_cap(bit);
1015 else
1016 return 0;
1017
1018 return 1;
1019}
1020__setup("clearcpuid=", setup_disablecpuid);
1021
1022#ifdef CONFIG_X86_64
1023struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1024
1025DEFINE_PER_CPU_FIRST(union irq_stack_union,
1026 irq_stack_union) __aligned(PAGE_SIZE);
1027
1028/*
1029 * The following four percpu variables are hot. Align current_task to
1030 * cacheline size such that all four fall in the same cacheline.
1031 */
1032DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1033 &init_task;
1034EXPORT_PER_CPU_SYMBOL(current_task);
1035
1036DEFINE_PER_CPU(unsigned long, kernel_stack) =
1037 (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
1038EXPORT_PER_CPU_SYMBOL(kernel_stack);
1039
1040DEFINE_PER_CPU(char *, irq_stack_ptr) =
1041 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1042
1043DEFINE_PER_CPU(unsigned int, irq_count) = -1;
1044
1045/*
1046 * Special IST stacks which the CPU switches to when it calls
1047 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1048 * limit), all of them are 4K, except the debug stack which
1049 * is 8K.
1050 */
1051static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1052 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1053 [DEBUG_STACK - 1] = DEBUG_STKSZ
1054};
1055
1056static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1057 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1058
1059/* May not be marked __init: used by software suspend */
1060void syscall_init(void)
1061{
1062 /*
1063 * LSTAR and STAR live in a bit strange symbiosis.
1064 * They both write to the same internal register. STAR allows to
1065 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1066 */
1067 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
1068 wrmsrl(MSR_LSTAR, system_call);
1069 wrmsrl(MSR_CSTAR, ignore_sysret);
1070
1071#ifdef CONFIG_IA32_EMULATION
1072 syscall32_cpu_init();
1073#endif
1074
1075 /* Flags to clear on syscall */
1076 wrmsrl(MSR_SYSCALL_MASK,
1077 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
1078}
1079
1080unsigned long kernel_eflags;
1081
1082/*
1083 * Copies of the original ist values from the tss are only accessed during
1084 * debugging, no special alignment required.
1085 */
1086DEFINE_PER_CPU(struct orig_ist, orig_ist);
1087
1088#else /* CONFIG_X86_64 */
1089
1090DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1091EXPORT_PER_CPU_SYMBOL(current_task);
1092
1093#ifdef CONFIG_CC_STACKPROTECTOR
1094DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1095#endif
1096
1097/* Make sure %fs and %gs are initialized properly in idle threads */
1098struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
1099{
1100 memset(regs, 0, sizeof(struct pt_regs));
1101 regs->fs = __KERNEL_PERCPU;
1102 regs->gs = __KERNEL_STACK_CANARY;
1103
1104 return regs;
1105}
1106#endif /* CONFIG_X86_64 */
1107
1108/*
1109 * Clear all 6 debug registers:
1110 */
1111static void clear_all_debug_regs(void)
1112{
1113 int i;
1114
1115 for (i = 0; i < 8; i++) {
1116 /* Ignore db4, db5 */
1117 if ((i == 4) || (i == 5))
1118 continue;
1119
1120 set_debugreg(0, i);
1121 }
1122}
1123
1124#ifdef CONFIG_KGDB
1125/*
1126 * Restore debug regs if using kgdbwait and you have a kernel debugger
1127 * connection established.
1128 */
1129static void dbg_restore_debug_regs(void)
1130{
1131 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1132 arch_kgdb_ops.correct_hw_break();
1133}
1134#else /* ! CONFIG_KGDB */
1135#define dbg_restore_debug_regs()
1136#endif /* ! CONFIG_KGDB */
1137
1138/*
1139 * cpu_init() initializes state that is per-CPU. Some data is already
1140 * initialized (naturally) in the bootstrap process, such as the GDT
1141 * and IDT. We reload them nevertheless, this function acts as a
1142 * 'CPU state barrier', nothing should get across.
1143 * A lot of state is already set up in PDA init for 64 bit
1144 */
1145#ifdef CONFIG_X86_64
1146
1147void __cpuinit cpu_init(void)
1148{
1149 struct orig_ist *oist;
1150 struct task_struct *me;
1151 struct tss_struct *t;
1152 unsigned long v;
1153 int cpu;
1154 int i;
1155
1156 cpu = stack_smp_processor_id();
1157 t = &per_cpu(init_tss, cpu);
1158 oist = &per_cpu(orig_ist, cpu);
1159
1160#ifdef CONFIG_NUMA
1161 if (cpu != 0 && percpu_read(numa_node) == 0 &&
1162 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1163 set_numa_node(early_cpu_to_node(cpu));
1164#endif
1165
1166 me = current;
1167
1168 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1169 panic("CPU#%d already initialized!\n", cpu);
1170
1171 pr_debug("Initializing CPU#%d\n", cpu);
1172
1173 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1174
1175 /*
1176 * Initialize the per-CPU GDT with the boot GDT,
1177 * and set up the GDT descriptor:
1178 */
1179
1180 switch_to_new_gdt(cpu);
1181 loadsegment(fs, 0);
1182
1183 load_idt((const struct desc_ptr *)&idt_descr);
1184
1185 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1186 syscall_init();
1187
1188 wrmsrl(MSR_FS_BASE, 0);
1189 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1190 barrier();
1191
1192 x86_configure_nx();
1193 if (cpu != 0)
1194 enable_x2apic();
1195
1196 /*
1197 * set up and load the per-CPU TSS
1198 */
1199 if (!oist->ist[0]) {
1200 char *estacks = per_cpu(exception_stacks, cpu);
1201
1202 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1203 estacks += exception_stack_sizes[v];
1204 oist->ist[v] = t->x86_tss.ist[v] =
1205 (unsigned long)estacks;
1206 }
1207 }
1208
1209 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1210
1211 /*
1212 * <= is required because the CPU will access up to
1213 * 8 bits beyond the end of the IO permission bitmap.
1214 */
1215 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1216 t->io_bitmap[i] = ~0UL;
1217
1218 atomic_inc(&init_mm.mm_count);
1219 me->active_mm = &init_mm;
1220 BUG_ON(me->mm);
1221 enter_lazy_tlb(&init_mm, me);
1222
1223 load_sp0(t, ¤t->thread);
1224 set_tss_desc(cpu, t);
1225 load_TR_desc();
1226 load_LDT(&init_mm.context);
1227
1228 clear_all_debug_regs();
1229 dbg_restore_debug_regs();
1230
1231 fpu_init();
1232 xsave_init();
1233
1234 raw_local_save_flags(kernel_eflags);
1235
1236 if (is_uv_system())
1237 uv_cpu_init();
1238}
1239
1240#else
1241
1242void __cpuinit cpu_init(void)
1243{
1244 int cpu = smp_processor_id();
1245 struct task_struct *curr = current;
1246 struct tss_struct *t = &per_cpu(init_tss, cpu);
1247 struct thread_struct *thread = &curr->thread;
1248
1249 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1250 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1251 for (;;)
1252 local_irq_enable();
1253 }
1254
1255 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1256
1257 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1258 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1259
1260 load_idt(&idt_descr);
1261 switch_to_new_gdt(cpu);
1262
1263 /*
1264 * Set up and load the per-CPU TSS and LDT
1265 */
1266 atomic_inc(&init_mm.mm_count);
1267 curr->active_mm = &init_mm;
1268 BUG_ON(curr->mm);
1269 enter_lazy_tlb(&init_mm, curr);
1270
1271 load_sp0(t, thread);
1272 set_tss_desc(cpu, t);
1273 load_TR_desc();
1274 load_LDT(&init_mm.context);
1275
1276 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1277
1278#ifdef CONFIG_DOUBLEFAULT
1279 /* Set up doublefault TSS pointer in the GDT */
1280 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1281#endif
1282
1283 clear_all_debug_regs();
1284 dbg_restore_debug_regs();
1285
1286 fpu_init();
1287 xsave_init();
1288}
1289#endif