Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2012,2013 - ARM Ltd
  4 * Author: Marc Zyngier <marc.zyngier@arm.com>
  5 *
  6 * Derived from arch/arm/kvm/guest.c:
  7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  8 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
  9 */
 10
 11#include <linux/bits.h>
 12#include <linux/errno.h>
 13#include <linux/err.h>
 14#include <linux/nospec.h>
 15#include <linux/kvm_host.h>
 16#include <linux/module.h>
 17#include <linux/stddef.h>
 18#include <linux/string.h>
 19#include <linux/vmalloc.h>
 20#include <linux/fs.h>
 21#include <kvm/arm_psci.h>
 22#include <asm/cputype.h>
 23#include <linux/uaccess.h>
 24#include <asm/fpsimd.h>
 25#include <asm/kvm.h>
 26#include <asm/kvm_emulate.h>
 27#include <asm/kvm_coproc.h>
 28#include <asm/kvm_host.h>
 29#include <asm/sigcontext.h>
 30
 31#include "trace.h"
 32
 33#define VM_STAT(x) { #x, offsetof(struct kvm, stat.x), KVM_STAT_VM }
 34#define VCPU_STAT(x) { #x, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU }
 
 35
 36struct kvm_stats_debugfs_item debugfs_entries[] = {
 37	VCPU_STAT(hvc_exit_stat),
 38	VCPU_STAT(wfe_exit_stat),
 39	VCPU_STAT(wfi_exit_stat),
 40	VCPU_STAT(mmio_exit_user),
 41	VCPU_STAT(mmio_exit_kernel),
 42	VCPU_STAT(exits),
 43	{ NULL }
 44};
 45
 46int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
 47{
 48	return 0;
 49}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 50
 51static bool core_reg_offset_is_vreg(u64 off)
 52{
 53	return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
 54		off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
 55}
 56
 57static u64 core_reg_offset_from_id(u64 id)
 58{
 59	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
 60}
 61
 62static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
 63{
 64	int size;
 65
 66	switch (off) {
 67	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
 68	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
 69	case KVM_REG_ARM_CORE_REG(regs.sp):
 70	case KVM_REG_ARM_CORE_REG(regs.pc):
 71	case KVM_REG_ARM_CORE_REG(regs.pstate):
 72	case KVM_REG_ARM_CORE_REG(sp_el1):
 73	case KVM_REG_ARM_CORE_REG(elr_el1):
 74	case KVM_REG_ARM_CORE_REG(spsr[0]) ...
 75	     KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
 76		size = sizeof(__u64);
 77		break;
 78
 79	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
 80	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
 81		size = sizeof(__uint128_t);
 82		break;
 83
 84	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
 85	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
 86		size = sizeof(__u32);
 87		break;
 88
 89	default:
 90		return -EINVAL;
 91	}
 92
 93	if (!IS_ALIGNED(off, size / sizeof(__u32)))
 94		return -EINVAL;
 95
 96	/*
 97	 * The KVM_REG_ARM64_SVE regs must be used instead of
 98	 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
 99	 * SVE-enabled vcpus:
100	 */
101	if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
102		return -EINVAL;
103
104	return size;
105}
106
107static int validate_core_offset(const struct kvm_vcpu *vcpu,
108				const struct kvm_one_reg *reg)
109{
110	u64 off = core_reg_offset_from_id(reg->id);
111	int size = core_reg_size_from_offset(vcpu, off);
112
113	if (size < 0)
114		return -EINVAL;
115
116	if (KVM_REG_SIZE(reg->id) != size)
117		return -EINVAL;
118
119	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120}
121
122static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
123{
124	/*
125	 * Because the kvm_regs structure is a mix of 32, 64 and
126	 * 128bit fields, we index it as if it was a 32bit
127	 * array. Hence below, nr_regs is the number of entries, and
128	 * off the index in the "array".
129	 */
130	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
131	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
132	int nr_regs = sizeof(*regs) / sizeof(__u32);
133	u32 off;
134
135	/* Our ID is an index into the kvm_regs struct. */
136	off = core_reg_offset_from_id(reg->id);
137	if (off >= nr_regs ||
138	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
139		return -ENOENT;
140
141	if (validate_core_offset(vcpu, reg))
 
142		return -EINVAL;
143
144	if (copy_to_user(uaddr, ((u32 *)regs) + off, KVM_REG_SIZE(reg->id)))
145		return -EFAULT;
146
147	return 0;
148}
149
150static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
151{
152	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
153	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
154	int nr_regs = sizeof(*regs) / sizeof(__u32);
155	__uint128_t tmp;
156	void *valp = &tmp;
157	u64 off;
158	int err = 0;
159
160	/* Our ID is an index into the kvm_regs struct. */
161	off = core_reg_offset_from_id(reg->id);
162	if (off >= nr_regs ||
163	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
164		return -ENOENT;
165
166	if (validate_core_offset(vcpu, reg))
 
167		return -EINVAL;
168
169	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
170		return -EINVAL;
171
172	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
173		err = -EFAULT;
174		goto out;
175	}
176
177	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
178		u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
179		switch (mode) {
180		case PSR_AA32_MODE_USR:
181			if (!system_supports_32bit_el0())
182				return -EINVAL;
183			break;
184		case PSR_AA32_MODE_FIQ:
185		case PSR_AA32_MODE_IRQ:
186		case PSR_AA32_MODE_SVC:
187		case PSR_AA32_MODE_ABT:
188		case PSR_AA32_MODE_UND:
189			if (!vcpu_el1_is_32bit(vcpu))
190				return -EINVAL;
191			break;
192		case PSR_MODE_EL0t:
193		case PSR_MODE_EL1t:
194		case PSR_MODE_EL1h:
195			if (vcpu_el1_is_32bit(vcpu))
196				return -EINVAL;
197			break;
198		default:
199			err = -EINVAL;
200			goto out;
201		}
202	}
203
204	memcpy((u32 *)regs + off, valp, KVM_REG_SIZE(reg->id));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205out:
206	return err;
207}
208
209#define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
210#define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
211#define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
212
213static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
214{
215	unsigned int max_vq, vq;
216	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
217
218	if (!vcpu_has_sve(vcpu))
219		return -ENOENT;
220
221	if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
222		return -EINVAL;
223
224	memset(vqs, 0, sizeof(vqs));
225
226	max_vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
227	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
228		if (sve_vq_available(vq))
229			vqs[vq_word(vq)] |= vq_mask(vq);
230
231	if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
232		return -EFAULT;
233
234	return 0;
235}
236
237static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
238{
239	unsigned int max_vq, vq;
240	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
241
242	if (!vcpu_has_sve(vcpu))
243		return -ENOENT;
244
245	if (kvm_arm_vcpu_sve_finalized(vcpu))
246		return -EPERM; /* too late! */
247
248	if (WARN_ON(vcpu->arch.sve_state))
249		return -EINVAL;
250
251	if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
252		return -EFAULT;
253
254	max_vq = 0;
255	for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
256		if (vq_present(vqs, vq))
257			max_vq = vq;
258
259	if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
260		return -EINVAL;
261
262	/*
263	 * Vector lengths supported by the host can't currently be
264	 * hidden from the guest individually: instead we can only set a
265	 * maxmium via ZCR_EL2.LEN.  So, make sure the available vector
266	 * lengths match the set requested exactly up to the requested
267	 * maximum:
268	 */
269	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
270		if (vq_present(vqs, vq) != sve_vq_available(vq))
271			return -EINVAL;
272
273	/* Can't run with no vector lengths at all: */
274	if (max_vq < SVE_VQ_MIN)
275		return -EINVAL;
276
277	/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
278	vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
279
280	return 0;
281}
282
283#define SVE_REG_SLICE_SHIFT	0
284#define SVE_REG_SLICE_BITS	5
285#define SVE_REG_ID_SHIFT	(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
286#define SVE_REG_ID_BITS		5
287
288#define SVE_REG_SLICE_MASK					\
289	GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1,	\
290		SVE_REG_SLICE_SHIFT)
291#define SVE_REG_ID_MASK							\
292	GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
293
294#define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
295
296#define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
297#define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
298
299/*
300 * Number of register slices required to cover each whole SVE register.
301 * NOTE: Only the first slice every exists, for now.
302 * If you are tempted to modify this, you must also rework sve_reg_to_region()
303 * to match:
304 */
305#define vcpu_sve_slices(vcpu) 1
306
307/* Bounds of a single SVE register slice within vcpu->arch.sve_state */
308struct sve_state_reg_region {
309	unsigned int koffset;	/* offset into sve_state in kernel memory */
310	unsigned int klen;	/* length in kernel memory */
311	unsigned int upad;	/* extra trailing padding in user memory */
312};
313
314/*
315 * Validate SVE register ID and get sanitised bounds for user/kernel SVE
316 * register copy
317 */
318static int sve_reg_to_region(struct sve_state_reg_region *region,
319			     struct kvm_vcpu *vcpu,
320			     const struct kvm_one_reg *reg)
321{
322	/* reg ID ranges for Z- registers */
323	const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
324	const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
325						       SVE_NUM_SLICES - 1);
326
327	/* reg ID ranges for P- registers and FFR (which are contiguous) */
328	const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
329	const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
330
331	unsigned int vq;
332	unsigned int reg_num;
333
334	unsigned int reqoffset, reqlen; /* User-requested offset and length */
335	unsigned int maxlen; /* Maxmimum permitted length */
336
337	size_t sve_state_size;
338
339	const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
340							SVE_NUM_SLICES - 1);
341
342	/* Verify that the P-regs and FFR really do have contiguous IDs: */
343	BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
344
345	/* Verify that we match the UAPI header: */
346	BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
347
348	reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
349
350	if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
351		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
352			return -ENOENT;
353
354		vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
355
356		reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
357				SVE_SIG_REGS_OFFSET;
358		reqlen = KVM_SVE_ZREG_SIZE;
359		maxlen = SVE_SIG_ZREG_SIZE(vq);
360	} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
361		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
362			return -ENOENT;
363
364		vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
365
366		reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
367				SVE_SIG_REGS_OFFSET;
368		reqlen = KVM_SVE_PREG_SIZE;
369		maxlen = SVE_SIG_PREG_SIZE(vq);
370	} else {
371		return -EINVAL;
372	}
373
374	sve_state_size = vcpu_sve_state_size(vcpu);
375	if (WARN_ON(!sve_state_size))
376		return -EINVAL;
377
378	region->koffset = array_index_nospec(reqoffset, sve_state_size);
379	region->klen = min(maxlen, reqlen);
380	region->upad = reqlen - region->klen;
381
382	return 0;
383}
384
385static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
386{
387	int ret;
388	struct sve_state_reg_region region;
389	char __user *uptr = (char __user *)reg->addr;
390
391	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
392	if (reg->id == KVM_REG_ARM64_SVE_VLS)
393		return get_sve_vls(vcpu, reg);
394
395	/* Try to interpret reg ID as an architectural SVE register... */
396	ret = sve_reg_to_region(&region, vcpu, reg);
397	if (ret)
398		return ret;
399
400	if (!kvm_arm_vcpu_sve_finalized(vcpu))
401		return -EPERM;
402
403	if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
404			 region.klen) ||
405	    clear_user(uptr + region.klen, region.upad))
406		return -EFAULT;
407
408	return 0;
409}
410
411static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
412{
413	int ret;
414	struct sve_state_reg_region region;
415	const char __user *uptr = (const char __user *)reg->addr;
416
417	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
418	if (reg->id == KVM_REG_ARM64_SVE_VLS)
419		return set_sve_vls(vcpu, reg);
420
421	/* Try to interpret reg ID as an architectural SVE register... */
422	ret = sve_reg_to_region(&region, vcpu, reg);
423	if (ret)
424		return ret;
425
426	if (!kvm_arm_vcpu_sve_finalized(vcpu))
427		return -EPERM;
428
429	if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
430			   region.klen))
431		return -EFAULT;
432
433	return 0;
434}
435
436int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
437{
438	return -EINVAL;
439}
440
441int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
442{
443	return -EINVAL;
444}
445
446static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
447				 u64 __user *uindices)
448{
449	unsigned int i;
450	int n = 0;
451
452	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
453		u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
454		int size = core_reg_size_from_offset(vcpu, i);
455
456		if (size < 0)
457			continue;
458
459		switch (size) {
460		case sizeof(__u32):
461			reg |= KVM_REG_SIZE_U32;
462			break;
463
464		case sizeof(__u64):
465			reg |= KVM_REG_SIZE_U64;
466			break;
467
468		case sizeof(__uint128_t):
469			reg |= KVM_REG_SIZE_U128;
470			break;
471
472		default:
473			WARN_ON(1);
474			continue;
475		}
476
477		if (uindices) {
478			if (put_user(reg, uindices))
479				return -EFAULT;
480			uindices++;
481		}
482
483		n++;
484	}
485
486	return n;
487}
488
489static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
490{
491	return copy_core_reg_indices(vcpu, NULL);
492}
493
494/**
495 * ARM64 versions of the TIMER registers, always available on arm64
496 */
497
498#define NUM_TIMER_REGS 3
499
500static bool is_timer_reg(u64 index)
501{
502	switch (index) {
503	case KVM_REG_ARM_TIMER_CTL:
504	case KVM_REG_ARM_TIMER_CNT:
505	case KVM_REG_ARM_TIMER_CVAL:
506		return true;
507	}
508	return false;
509}
510
511static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
512{
513	if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
514		return -EFAULT;
515	uindices++;
516	if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
517		return -EFAULT;
518	uindices++;
519	if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
520		return -EFAULT;
521
522	return 0;
523}
524
525static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
526{
527	void __user *uaddr = (void __user *)(long)reg->addr;
528	u64 val;
529	int ret;
530
531	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
532	if (ret != 0)
533		return -EFAULT;
534
535	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
536}
537
538static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
539{
540	void __user *uaddr = (void __user *)(long)reg->addr;
541	u64 val;
542
543	val = kvm_arm_timer_get_reg(vcpu, reg->id);
544	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
545}
546
547static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
548{
549	const unsigned int slices = vcpu_sve_slices(vcpu);
550
551	if (!vcpu_has_sve(vcpu))
552		return 0;
553
554	/* Policed by KVM_GET_REG_LIST: */
555	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
556
557	return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
558		+ 1; /* KVM_REG_ARM64_SVE_VLS */
559}
560
561static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
562				u64 __user *uindices)
563{
564	const unsigned int slices = vcpu_sve_slices(vcpu);
565	u64 reg;
566	unsigned int i, n;
567	int num_regs = 0;
568
569	if (!vcpu_has_sve(vcpu))
570		return 0;
571
572	/* Policed by KVM_GET_REG_LIST: */
573	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
574
575	/*
576	 * Enumerate this first, so that userspace can save/restore in
577	 * the order reported by KVM_GET_REG_LIST:
578	 */
579	reg = KVM_REG_ARM64_SVE_VLS;
580	if (put_user(reg, uindices++))
581		return -EFAULT;
582	++num_regs;
583
584	for (i = 0; i < slices; i++) {
585		for (n = 0; n < SVE_NUM_ZREGS; n++) {
586			reg = KVM_REG_ARM64_SVE_ZREG(n, i);
587			if (put_user(reg, uindices++))
588				return -EFAULT;
589			num_regs++;
590		}
591
592		for (n = 0; n < SVE_NUM_PREGS; n++) {
593			reg = KVM_REG_ARM64_SVE_PREG(n, i);
594			if (put_user(reg, uindices++))
595				return -EFAULT;
596			num_regs++;
597		}
598
599		reg = KVM_REG_ARM64_SVE_FFR(i);
600		if (put_user(reg, uindices++))
601			return -EFAULT;
602		num_regs++;
603	}
604
605	return num_regs;
606}
607
608/**
609 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
610 *
611 * This is for all registers.
612 */
613unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
614{
615	unsigned long res = 0;
616
617	res += num_core_regs(vcpu);
618	res += num_sve_regs(vcpu);
619	res += kvm_arm_num_sys_reg_descs(vcpu);
620	res += kvm_arm_get_fw_num_regs(vcpu);
621	res += NUM_TIMER_REGS;
622
623	return res;
624}
625
626/**
627 * kvm_arm_copy_reg_indices - get indices of all registers.
628 *
629 * We do core registers right here, then we append system regs.
630 */
631int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
632{
633	int ret;
634
635	ret = copy_core_reg_indices(vcpu, uindices);
636	if (ret < 0)
637		return ret;
638	uindices += ret;
639
640	ret = copy_sve_reg_indices(vcpu, uindices);
641	if (ret < 0)
642		return ret;
643	uindices += ret;
644
645	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
646	if (ret < 0)
647		return ret;
648	uindices += kvm_arm_get_fw_num_regs(vcpu);
649
650	ret = copy_timer_indices(vcpu, uindices);
651	if (ret < 0)
652		return ret;
653	uindices += NUM_TIMER_REGS;
654
655	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
656}
657
658int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
659{
660	/* We currently use nothing arch-specific in upper 32 bits */
661	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
662		return -EINVAL;
663
664	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
665	case KVM_REG_ARM_CORE:	return get_core_reg(vcpu, reg);
666	case KVM_REG_ARM_FW:	return kvm_arm_get_fw_reg(vcpu, reg);
 
 
667	case KVM_REG_ARM64_SVE:	return get_sve_reg(vcpu, reg);
668	}
669
670	if (is_timer_reg(reg->id))
671		return get_timer_reg(vcpu, reg);
672
673	return kvm_arm_sys_reg_get_reg(vcpu, reg);
674}
675
676int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
677{
678	/* We currently use nothing arch-specific in upper 32 bits */
679	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
680		return -EINVAL;
681
682	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
683	case KVM_REG_ARM_CORE:	return set_core_reg(vcpu, reg);
684	case KVM_REG_ARM_FW:	return kvm_arm_set_fw_reg(vcpu, reg);
 
 
685	case KVM_REG_ARM64_SVE:	return set_sve_reg(vcpu, reg);
686	}
687
688	if (is_timer_reg(reg->id))
689		return set_timer_reg(vcpu, reg);
690
691	return kvm_arm_sys_reg_set_reg(vcpu, reg);
692}
693
694int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
695				  struct kvm_sregs *sregs)
696{
697	return -EINVAL;
698}
699
700int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
701				  struct kvm_sregs *sregs)
702{
703	return -EINVAL;
704}
705
706int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
707			      struct kvm_vcpu_events *events)
708{
709	events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
710	events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
711
712	if (events->exception.serror_pending && events->exception.serror_has_esr)
713		events->exception.serror_esr = vcpu_get_vsesr(vcpu);
714
 
 
 
 
 
 
715	return 0;
716}
717
718int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
719			      struct kvm_vcpu_events *events)
720{
721	bool serror_pending = events->exception.serror_pending;
722	bool has_esr = events->exception.serror_has_esr;
 
723
724	if (serror_pending && has_esr) {
725		if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
726			return -EINVAL;
727
728		if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
729			kvm_set_sei_esr(vcpu, events->exception.serror_esr);
730		else
731			return -EINVAL;
732	} else if (serror_pending) {
733		kvm_inject_vabt(vcpu);
734	}
735
 
 
 
736	return 0;
737}
738
739int __attribute_const__ kvm_target_cpu(void)
740{
741	unsigned long implementor = read_cpuid_implementor();
742	unsigned long part_number = read_cpuid_part_number();
743
744	switch (implementor) {
745	case ARM_CPU_IMP_ARM:
746		switch (part_number) {
747		case ARM_CPU_PART_AEM_V8:
748			return KVM_ARM_TARGET_AEM_V8;
749		case ARM_CPU_PART_FOUNDATION:
750			return KVM_ARM_TARGET_FOUNDATION_V8;
751		case ARM_CPU_PART_CORTEX_A53:
752			return KVM_ARM_TARGET_CORTEX_A53;
753		case ARM_CPU_PART_CORTEX_A57:
754			return KVM_ARM_TARGET_CORTEX_A57;
755		}
756		break;
757	case ARM_CPU_IMP_APM:
758		switch (part_number) {
759		case APM_CPU_PART_POTENZA:
760			return KVM_ARM_TARGET_XGENE_POTENZA;
761		}
762		break;
763	}
764
765	/* Return a default generic target */
766	return KVM_ARM_TARGET_GENERIC_V8;
767}
768
769int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
770{
771	int target = kvm_target_cpu();
772
773	if (target < 0)
774		return -ENODEV;
775
776	memset(init, 0, sizeof(*init));
777
778	/*
779	 * For now, we don't return any features.
780	 * In future, we might use features to return target
781	 * specific features available for the preferred
782	 * target type.
783	 */
784	init->target = (__u32)target;
785
786	return 0;
787}
788
789int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
790{
791	return -EINVAL;
792}
793
794int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
795{
796	return -EINVAL;
797}
798
799int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
800				  struct kvm_translation *tr)
801{
802	return -EINVAL;
803}
804
805#define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE |    \
806			    KVM_GUESTDBG_USE_SW_BP | \
807			    KVM_GUESTDBG_USE_HW | \
808			    KVM_GUESTDBG_SINGLESTEP)
809
810/**
811 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
812 * @kvm:	pointer to the KVM struct
813 * @kvm_guest_debug: the ioctl data buffer
814 *
815 * This sets up and enables the VM for guest debugging. Userspace
816 * passes in a control flag to enable different debug types and
817 * potentially other architecture specific information in the rest of
818 * the structure.
819 */
820int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
821					struct kvm_guest_debug *dbg)
822{
823	int ret = 0;
824
825	trace_kvm_set_guest_debug(vcpu, dbg->control);
826
827	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
828		ret = -EINVAL;
829		goto out;
830	}
831
832	if (dbg->control & KVM_GUESTDBG_ENABLE) {
833		vcpu->guest_debug = dbg->control;
834
835		/* Hardware assisted Break and Watch points */
836		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
837			vcpu->arch.external_debug_state = dbg->arch;
838		}
839
840	} else {
841		/* If not enabled clear all flags */
842		vcpu->guest_debug = 0;
 
843	}
844
845out:
846	return ret;
847}
848
849int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
850			       struct kvm_device_attr *attr)
851{
852	int ret;
853
854	switch (attr->group) {
855	case KVM_ARM_VCPU_PMU_V3_CTRL:
856		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
857		break;
858	case KVM_ARM_VCPU_TIMER_CTRL:
859		ret = kvm_arm_timer_set_attr(vcpu, attr);
860		break;
 
 
 
861	default:
862		ret = -ENXIO;
863		break;
864	}
865
866	return ret;
867}
868
869int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
870			       struct kvm_device_attr *attr)
871{
872	int ret;
873
874	switch (attr->group) {
875	case KVM_ARM_VCPU_PMU_V3_CTRL:
876		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
877		break;
878	case KVM_ARM_VCPU_TIMER_CTRL:
879		ret = kvm_arm_timer_get_attr(vcpu, attr);
880		break;
 
 
 
881	default:
882		ret = -ENXIO;
883		break;
884	}
885
886	return ret;
887}
888
889int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
890			       struct kvm_device_attr *attr)
891{
892	int ret;
893
894	switch (attr->group) {
895	case KVM_ARM_VCPU_PMU_V3_CTRL:
896		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
897		break;
898	case KVM_ARM_VCPU_TIMER_CTRL:
899		ret = kvm_arm_timer_has_attr(vcpu, attr);
900		break;
 
 
 
901	default:
902		ret = -ENXIO;
903		break;
904	}
905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
906	return ret;
907}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012,2013 - ARM Ltd
   4 * Author: Marc Zyngier <marc.zyngier@arm.com>
   5 *
   6 * Derived from arch/arm/kvm/guest.c:
   7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   8 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
   9 */
  10
  11#include <linux/bits.h>
  12#include <linux/errno.h>
  13#include <linux/err.h>
  14#include <linux/nospec.h>
  15#include <linux/kvm_host.h>
  16#include <linux/module.h>
  17#include <linux/stddef.h>
  18#include <linux/string.h>
  19#include <linux/vmalloc.h>
  20#include <linux/fs.h>
  21#include <kvm/arm_hypercalls.h>
  22#include <asm/cputype.h>
  23#include <linux/uaccess.h>
  24#include <asm/fpsimd.h>
  25#include <asm/kvm.h>
  26#include <asm/kvm_emulate.h>
 
 
  27#include <asm/sigcontext.h>
  28
  29#include "trace.h"
  30
  31const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
  32	KVM_GENERIC_VM_STATS()
  33};
  34
  35const struct kvm_stats_header kvm_vm_stats_header = {
  36	.name_size = KVM_STATS_NAME_SIZE,
  37	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
  38	.id_offset =  sizeof(struct kvm_stats_header),
  39	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
  40	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
  41		       sizeof(kvm_vm_stats_desc),
 
  42};
  43
  44const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
  45	KVM_GENERIC_VCPU_STATS(),
  46	STATS_DESC_COUNTER(VCPU, hvc_exit_stat),
  47	STATS_DESC_COUNTER(VCPU, wfe_exit_stat),
  48	STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
  49	STATS_DESC_COUNTER(VCPU, mmio_exit_user),
  50	STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
  51	STATS_DESC_COUNTER(VCPU, signal_exits),
  52	STATS_DESC_COUNTER(VCPU, exits)
  53};
  54
  55const struct kvm_stats_header kvm_vcpu_stats_header = {
  56	.name_size = KVM_STATS_NAME_SIZE,
  57	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
  58	.id_offset = sizeof(struct kvm_stats_header),
  59	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
  60	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
  61		       sizeof(kvm_vcpu_stats_desc),
  62};
  63
  64static bool core_reg_offset_is_vreg(u64 off)
  65{
  66	return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
  67		off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
  68}
  69
  70static u64 core_reg_offset_from_id(u64 id)
  71{
  72	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
  73}
  74
  75static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
  76{
  77	int size;
  78
  79	switch (off) {
  80	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
  81	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
  82	case KVM_REG_ARM_CORE_REG(regs.sp):
  83	case KVM_REG_ARM_CORE_REG(regs.pc):
  84	case KVM_REG_ARM_CORE_REG(regs.pstate):
  85	case KVM_REG_ARM_CORE_REG(sp_el1):
  86	case KVM_REG_ARM_CORE_REG(elr_el1):
  87	case KVM_REG_ARM_CORE_REG(spsr[0]) ...
  88	     KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
  89		size = sizeof(__u64);
  90		break;
  91
  92	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
  93	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
  94		size = sizeof(__uint128_t);
  95		break;
  96
  97	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
  98	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
  99		size = sizeof(__u32);
 100		break;
 101
 102	default:
 103		return -EINVAL;
 104	}
 105
 106	if (!IS_ALIGNED(off, size / sizeof(__u32)))
 107		return -EINVAL;
 108
 109	/*
 110	 * The KVM_REG_ARM64_SVE regs must be used instead of
 111	 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
 112	 * SVE-enabled vcpus:
 113	 */
 114	if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
 115		return -EINVAL;
 116
 117	return size;
 118}
 119
 120static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 
 121{
 122	u64 off = core_reg_offset_from_id(reg->id);
 123	int size = core_reg_size_from_offset(vcpu, off);
 124
 125	if (size < 0)
 126		return NULL;
 127
 128	if (KVM_REG_SIZE(reg->id) != size)
 129		return NULL;
 130
 131	switch (off) {
 132	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
 133	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
 134		off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
 135		off /= 2;
 136		return &vcpu->arch.ctxt.regs.regs[off];
 137
 138	case KVM_REG_ARM_CORE_REG(regs.sp):
 139		return &vcpu->arch.ctxt.regs.sp;
 140
 141	case KVM_REG_ARM_CORE_REG(regs.pc):
 142		return &vcpu->arch.ctxt.regs.pc;
 143
 144	case KVM_REG_ARM_CORE_REG(regs.pstate):
 145		return &vcpu->arch.ctxt.regs.pstate;
 146
 147	case KVM_REG_ARM_CORE_REG(sp_el1):
 148		return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
 149
 150	case KVM_REG_ARM_CORE_REG(elr_el1):
 151		return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
 152
 153	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
 154		return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
 155
 156	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
 157		return &vcpu->arch.ctxt.spsr_abt;
 158
 159	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
 160		return &vcpu->arch.ctxt.spsr_und;
 161
 162	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
 163		return &vcpu->arch.ctxt.spsr_irq;
 164
 165	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
 166		return &vcpu->arch.ctxt.spsr_fiq;
 167
 168	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
 169	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
 170		off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
 171		off /= 4;
 172		return &vcpu->arch.ctxt.fp_regs.vregs[off];
 173
 174	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
 175		return &vcpu->arch.ctxt.fp_regs.fpsr;
 176
 177	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
 178		return &vcpu->arch.ctxt.fp_regs.fpcr;
 179
 180	default:
 181		return NULL;
 182	}
 183}
 184
 185static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 186{
 187	/*
 188	 * Because the kvm_regs structure is a mix of 32, 64 and
 189	 * 128bit fields, we index it as if it was a 32bit
 190	 * array. Hence below, nr_regs is the number of entries, and
 191	 * off the index in the "array".
 192	 */
 193	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
 194	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
 195	void *addr;
 196	u32 off;
 197
 198	/* Our ID is an index into the kvm_regs struct. */
 199	off = core_reg_offset_from_id(reg->id);
 200	if (off >= nr_regs ||
 201	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
 202		return -ENOENT;
 203
 204	addr = core_reg_addr(vcpu, reg);
 205	if (!addr)
 206		return -EINVAL;
 207
 208	if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
 209		return -EFAULT;
 210
 211	return 0;
 212}
 213
 214static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 215{
 216	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
 217	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
 
 218	__uint128_t tmp;
 219	void *valp = &tmp, *addr;
 220	u64 off;
 221	int err = 0;
 222
 223	/* Our ID is an index into the kvm_regs struct. */
 224	off = core_reg_offset_from_id(reg->id);
 225	if (off >= nr_regs ||
 226	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
 227		return -ENOENT;
 228
 229	addr = core_reg_addr(vcpu, reg);
 230	if (!addr)
 231		return -EINVAL;
 232
 233	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
 234		return -EINVAL;
 235
 236	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
 237		err = -EFAULT;
 238		goto out;
 239	}
 240
 241	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
 242		u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
 243		switch (mode) {
 244		case PSR_AA32_MODE_USR:
 245			if (!kvm_supports_32bit_el0())
 246				return -EINVAL;
 247			break;
 248		case PSR_AA32_MODE_FIQ:
 249		case PSR_AA32_MODE_IRQ:
 250		case PSR_AA32_MODE_SVC:
 251		case PSR_AA32_MODE_ABT:
 252		case PSR_AA32_MODE_UND:
 253			if (!vcpu_el1_is_32bit(vcpu))
 254				return -EINVAL;
 255			break;
 256		case PSR_MODE_EL0t:
 257		case PSR_MODE_EL1t:
 258		case PSR_MODE_EL1h:
 259			if (vcpu_el1_is_32bit(vcpu))
 260				return -EINVAL;
 261			break;
 262		default:
 263			err = -EINVAL;
 264			goto out;
 265		}
 266	}
 267
 268	memcpy(addr, valp, KVM_REG_SIZE(reg->id));
 269
 270	if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
 271		int i, nr_reg;
 272
 273		switch (*vcpu_cpsr(vcpu)) {
 274		/*
 275		 * Either we are dealing with user mode, and only the
 276		 * first 15 registers (+ PC) must be narrowed to 32bit.
 277		 * AArch32 r0-r14 conveniently map to AArch64 x0-x14.
 278		 */
 279		case PSR_AA32_MODE_USR:
 280		case PSR_AA32_MODE_SYS:
 281			nr_reg = 15;
 282			break;
 283
 284		/*
 285		 * Otherwise, this is a privileged mode, and *all* the
 286		 * registers must be narrowed to 32bit.
 287		 */
 288		default:
 289			nr_reg = 31;
 290			break;
 291		}
 292
 293		for (i = 0; i < nr_reg; i++)
 294			vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i));
 295
 296		*vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu);
 297	}
 298out:
 299	return err;
 300}
 301
 302#define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
 303#define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
 304#define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
 305
 306static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 307{
 308	unsigned int max_vq, vq;
 309	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
 310
 311	if (!vcpu_has_sve(vcpu))
 312		return -ENOENT;
 313
 314	if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
 315		return -EINVAL;
 316
 317	memset(vqs, 0, sizeof(vqs));
 318
 319	max_vq = vcpu_sve_max_vq(vcpu);
 320	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
 321		if (sve_vq_available(vq))
 322			vqs[vq_word(vq)] |= vq_mask(vq);
 323
 324	if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
 325		return -EFAULT;
 326
 327	return 0;
 328}
 329
 330static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 331{
 332	unsigned int max_vq, vq;
 333	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
 334
 335	if (!vcpu_has_sve(vcpu))
 336		return -ENOENT;
 337
 338	if (kvm_arm_vcpu_sve_finalized(vcpu))
 339		return -EPERM; /* too late! */
 340
 341	if (WARN_ON(vcpu->arch.sve_state))
 342		return -EINVAL;
 343
 344	if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
 345		return -EFAULT;
 346
 347	max_vq = 0;
 348	for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
 349		if (vq_present(vqs, vq))
 350			max_vq = vq;
 351
 352	if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
 353		return -EINVAL;
 354
 355	/*
 356	 * Vector lengths supported by the host can't currently be
 357	 * hidden from the guest individually: instead we can only set a
 358	 * maximum via ZCR_EL2.LEN.  So, make sure the available vector
 359	 * lengths match the set requested exactly up to the requested
 360	 * maximum:
 361	 */
 362	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
 363		if (vq_present(vqs, vq) != sve_vq_available(vq))
 364			return -EINVAL;
 365
 366	/* Can't run with no vector lengths at all: */
 367	if (max_vq < SVE_VQ_MIN)
 368		return -EINVAL;
 369
 370	/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
 371	vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
 372
 373	return 0;
 374}
 375
 376#define SVE_REG_SLICE_SHIFT	0
 377#define SVE_REG_SLICE_BITS	5
 378#define SVE_REG_ID_SHIFT	(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
 379#define SVE_REG_ID_BITS		5
 380
 381#define SVE_REG_SLICE_MASK					\
 382	GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1,	\
 383		SVE_REG_SLICE_SHIFT)
 384#define SVE_REG_ID_MASK							\
 385	GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
 386
 387#define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
 388
 389#define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
 390#define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
 391
 392/*
 393 * Number of register slices required to cover each whole SVE register.
 394 * NOTE: Only the first slice every exists, for now.
 395 * If you are tempted to modify this, you must also rework sve_reg_to_region()
 396 * to match:
 397 */
 398#define vcpu_sve_slices(vcpu) 1
 399
 400/* Bounds of a single SVE register slice within vcpu->arch.sve_state */
 401struct sve_state_reg_region {
 402	unsigned int koffset;	/* offset into sve_state in kernel memory */
 403	unsigned int klen;	/* length in kernel memory */
 404	unsigned int upad;	/* extra trailing padding in user memory */
 405};
 406
 407/*
 408 * Validate SVE register ID and get sanitised bounds for user/kernel SVE
 409 * register copy
 410 */
 411static int sve_reg_to_region(struct sve_state_reg_region *region,
 412			     struct kvm_vcpu *vcpu,
 413			     const struct kvm_one_reg *reg)
 414{
 415	/* reg ID ranges for Z- registers */
 416	const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
 417	const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
 418						       SVE_NUM_SLICES - 1);
 419
 420	/* reg ID ranges for P- registers and FFR (which are contiguous) */
 421	const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
 422	const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
 423
 424	unsigned int vq;
 425	unsigned int reg_num;
 426
 427	unsigned int reqoffset, reqlen; /* User-requested offset and length */
 428	unsigned int maxlen; /* Maximum permitted length */
 429
 430	size_t sve_state_size;
 431
 432	const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
 433							SVE_NUM_SLICES - 1);
 434
 435	/* Verify that the P-regs and FFR really do have contiguous IDs: */
 436	BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
 437
 438	/* Verify that we match the UAPI header: */
 439	BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
 440
 441	reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
 442
 443	if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
 444		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
 445			return -ENOENT;
 446
 447		vq = vcpu_sve_max_vq(vcpu);
 448
 449		reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
 450				SVE_SIG_REGS_OFFSET;
 451		reqlen = KVM_SVE_ZREG_SIZE;
 452		maxlen = SVE_SIG_ZREG_SIZE(vq);
 453	} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
 454		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
 455			return -ENOENT;
 456
 457		vq = vcpu_sve_max_vq(vcpu);
 458
 459		reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
 460				SVE_SIG_REGS_OFFSET;
 461		reqlen = KVM_SVE_PREG_SIZE;
 462		maxlen = SVE_SIG_PREG_SIZE(vq);
 463	} else {
 464		return -EINVAL;
 465	}
 466
 467	sve_state_size = vcpu_sve_state_size(vcpu);
 468	if (WARN_ON(!sve_state_size))
 469		return -EINVAL;
 470
 471	region->koffset = array_index_nospec(reqoffset, sve_state_size);
 472	region->klen = min(maxlen, reqlen);
 473	region->upad = reqlen - region->klen;
 474
 475	return 0;
 476}
 477
 478static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 479{
 480	int ret;
 481	struct sve_state_reg_region region;
 482	char __user *uptr = (char __user *)reg->addr;
 483
 484	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
 485	if (reg->id == KVM_REG_ARM64_SVE_VLS)
 486		return get_sve_vls(vcpu, reg);
 487
 488	/* Try to interpret reg ID as an architectural SVE register... */
 489	ret = sve_reg_to_region(&region, vcpu, reg);
 490	if (ret)
 491		return ret;
 492
 493	if (!kvm_arm_vcpu_sve_finalized(vcpu))
 494		return -EPERM;
 495
 496	if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
 497			 region.klen) ||
 498	    clear_user(uptr + region.klen, region.upad))
 499		return -EFAULT;
 500
 501	return 0;
 502}
 503
 504static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 505{
 506	int ret;
 507	struct sve_state_reg_region region;
 508	const char __user *uptr = (const char __user *)reg->addr;
 509
 510	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
 511	if (reg->id == KVM_REG_ARM64_SVE_VLS)
 512		return set_sve_vls(vcpu, reg);
 513
 514	/* Try to interpret reg ID as an architectural SVE register... */
 515	ret = sve_reg_to_region(&region, vcpu, reg);
 516	if (ret)
 517		return ret;
 518
 519	if (!kvm_arm_vcpu_sve_finalized(vcpu))
 520		return -EPERM;
 521
 522	if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
 523			   region.klen))
 524		return -EFAULT;
 525
 526	return 0;
 527}
 528
 529int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
 530{
 531	return -EINVAL;
 532}
 533
 534int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
 535{
 536	return -EINVAL;
 537}
 538
 539static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
 540				 u64 __user *uindices)
 541{
 542	unsigned int i;
 543	int n = 0;
 544
 545	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
 546		u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
 547		int size = core_reg_size_from_offset(vcpu, i);
 548
 549		if (size < 0)
 550			continue;
 551
 552		switch (size) {
 553		case sizeof(__u32):
 554			reg |= KVM_REG_SIZE_U32;
 555			break;
 556
 557		case sizeof(__u64):
 558			reg |= KVM_REG_SIZE_U64;
 559			break;
 560
 561		case sizeof(__uint128_t):
 562			reg |= KVM_REG_SIZE_U128;
 563			break;
 564
 565		default:
 566			WARN_ON(1);
 567			continue;
 568		}
 569
 570		if (uindices) {
 571			if (put_user(reg, uindices))
 572				return -EFAULT;
 573			uindices++;
 574		}
 575
 576		n++;
 577	}
 578
 579	return n;
 580}
 581
 582static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
 583{
 584	return copy_core_reg_indices(vcpu, NULL);
 585}
 586
 587/**
 588 * ARM64 versions of the TIMER registers, always available on arm64
 589 */
 590
 591#define NUM_TIMER_REGS 3
 592
 593static bool is_timer_reg(u64 index)
 594{
 595	switch (index) {
 596	case KVM_REG_ARM_TIMER_CTL:
 597	case KVM_REG_ARM_TIMER_CNT:
 598	case KVM_REG_ARM_TIMER_CVAL:
 599		return true;
 600	}
 601	return false;
 602}
 603
 604static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
 605{
 606	if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
 607		return -EFAULT;
 608	uindices++;
 609	if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
 610		return -EFAULT;
 611	uindices++;
 612	if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
 613		return -EFAULT;
 614
 615	return 0;
 616}
 617
 618static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 619{
 620	void __user *uaddr = (void __user *)(long)reg->addr;
 621	u64 val;
 622	int ret;
 623
 624	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
 625	if (ret != 0)
 626		return -EFAULT;
 627
 628	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
 629}
 630
 631static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 632{
 633	void __user *uaddr = (void __user *)(long)reg->addr;
 634	u64 val;
 635
 636	val = kvm_arm_timer_get_reg(vcpu, reg->id);
 637	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
 638}
 639
 640static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
 641{
 642	const unsigned int slices = vcpu_sve_slices(vcpu);
 643
 644	if (!vcpu_has_sve(vcpu))
 645		return 0;
 646
 647	/* Policed by KVM_GET_REG_LIST: */
 648	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
 649
 650	return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
 651		+ 1; /* KVM_REG_ARM64_SVE_VLS */
 652}
 653
 654static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
 655				u64 __user *uindices)
 656{
 657	const unsigned int slices = vcpu_sve_slices(vcpu);
 658	u64 reg;
 659	unsigned int i, n;
 660	int num_regs = 0;
 661
 662	if (!vcpu_has_sve(vcpu))
 663		return 0;
 664
 665	/* Policed by KVM_GET_REG_LIST: */
 666	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
 667
 668	/*
 669	 * Enumerate this first, so that userspace can save/restore in
 670	 * the order reported by KVM_GET_REG_LIST:
 671	 */
 672	reg = KVM_REG_ARM64_SVE_VLS;
 673	if (put_user(reg, uindices++))
 674		return -EFAULT;
 675	++num_regs;
 676
 677	for (i = 0; i < slices; i++) {
 678		for (n = 0; n < SVE_NUM_ZREGS; n++) {
 679			reg = KVM_REG_ARM64_SVE_ZREG(n, i);
 680			if (put_user(reg, uindices++))
 681				return -EFAULT;
 682			num_regs++;
 683		}
 684
 685		for (n = 0; n < SVE_NUM_PREGS; n++) {
 686			reg = KVM_REG_ARM64_SVE_PREG(n, i);
 687			if (put_user(reg, uindices++))
 688				return -EFAULT;
 689			num_regs++;
 690		}
 691
 692		reg = KVM_REG_ARM64_SVE_FFR(i);
 693		if (put_user(reg, uindices++))
 694			return -EFAULT;
 695		num_regs++;
 696	}
 697
 698	return num_regs;
 699}
 700
 701/**
 702 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
 703 *
 704 * This is for all registers.
 705 */
 706unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
 707{
 708	unsigned long res = 0;
 709
 710	res += num_core_regs(vcpu);
 711	res += num_sve_regs(vcpu);
 712	res += kvm_arm_num_sys_reg_descs(vcpu);
 713	res += kvm_arm_get_fw_num_regs(vcpu);
 714	res += NUM_TIMER_REGS;
 715
 716	return res;
 717}
 718
 719/**
 720 * kvm_arm_copy_reg_indices - get indices of all registers.
 721 *
 722 * We do core registers right here, then we append system regs.
 723 */
 724int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
 725{
 726	int ret;
 727
 728	ret = copy_core_reg_indices(vcpu, uindices);
 729	if (ret < 0)
 730		return ret;
 731	uindices += ret;
 732
 733	ret = copy_sve_reg_indices(vcpu, uindices);
 734	if (ret < 0)
 735		return ret;
 736	uindices += ret;
 737
 738	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
 739	if (ret < 0)
 740		return ret;
 741	uindices += kvm_arm_get_fw_num_regs(vcpu);
 742
 743	ret = copy_timer_indices(vcpu, uindices);
 744	if (ret < 0)
 745		return ret;
 746	uindices += NUM_TIMER_REGS;
 747
 748	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
 749}
 750
 751int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 752{
 753	/* We currently use nothing arch-specific in upper 32 bits */
 754	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
 755		return -EINVAL;
 756
 757	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
 758	case KVM_REG_ARM_CORE:	return get_core_reg(vcpu, reg);
 759	case KVM_REG_ARM_FW:
 760	case KVM_REG_ARM_FW_FEAT_BMAP:
 761		return kvm_arm_get_fw_reg(vcpu, reg);
 762	case KVM_REG_ARM64_SVE:	return get_sve_reg(vcpu, reg);
 763	}
 764
 765	if (is_timer_reg(reg->id))
 766		return get_timer_reg(vcpu, reg);
 767
 768	return kvm_arm_sys_reg_get_reg(vcpu, reg);
 769}
 770
 771int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 772{
 773	/* We currently use nothing arch-specific in upper 32 bits */
 774	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
 775		return -EINVAL;
 776
 777	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
 778	case KVM_REG_ARM_CORE:	return set_core_reg(vcpu, reg);
 779	case KVM_REG_ARM_FW:
 780	case KVM_REG_ARM_FW_FEAT_BMAP:
 781		return kvm_arm_set_fw_reg(vcpu, reg);
 782	case KVM_REG_ARM64_SVE:	return set_sve_reg(vcpu, reg);
 783	}
 784
 785	if (is_timer_reg(reg->id))
 786		return set_timer_reg(vcpu, reg);
 787
 788	return kvm_arm_sys_reg_set_reg(vcpu, reg);
 789}
 790
 791int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
 792				  struct kvm_sregs *sregs)
 793{
 794	return -EINVAL;
 795}
 796
 797int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
 798				  struct kvm_sregs *sregs)
 799{
 800	return -EINVAL;
 801}
 802
 803int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
 804			      struct kvm_vcpu_events *events)
 805{
 806	events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
 807	events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
 808
 809	if (events->exception.serror_pending && events->exception.serror_has_esr)
 810		events->exception.serror_esr = vcpu_get_vsesr(vcpu);
 811
 812	/*
 813	 * We never return a pending ext_dabt here because we deliver it to
 814	 * the virtual CPU directly when setting the event and it's no longer
 815	 * 'pending' at this point.
 816	 */
 817
 818	return 0;
 819}
 820
 821int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
 822			      struct kvm_vcpu_events *events)
 823{
 824	bool serror_pending = events->exception.serror_pending;
 825	bool has_esr = events->exception.serror_has_esr;
 826	bool ext_dabt_pending = events->exception.ext_dabt_pending;
 827
 828	if (serror_pending && has_esr) {
 829		if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
 830			return -EINVAL;
 831
 832		if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
 833			kvm_set_sei_esr(vcpu, events->exception.serror_esr);
 834		else
 835			return -EINVAL;
 836	} else if (serror_pending) {
 837		kvm_inject_vabt(vcpu);
 838	}
 839
 840	if (ext_dabt_pending)
 841		kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
 842
 843	return 0;
 844}
 845
 846u32 __attribute_const__ kvm_target_cpu(void)
 847{
 848	unsigned long implementor = read_cpuid_implementor();
 849	unsigned long part_number = read_cpuid_part_number();
 850
 851	switch (implementor) {
 852	case ARM_CPU_IMP_ARM:
 853		switch (part_number) {
 854		case ARM_CPU_PART_AEM_V8:
 855			return KVM_ARM_TARGET_AEM_V8;
 856		case ARM_CPU_PART_FOUNDATION:
 857			return KVM_ARM_TARGET_FOUNDATION_V8;
 858		case ARM_CPU_PART_CORTEX_A53:
 859			return KVM_ARM_TARGET_CORTEX_A53;
 860		case ARM_CPU_PART_CORTEX_A57:
 861			return KVM_ARM_TARGET_CORTEX_A57;
 862		}
 863		break;
 864	case ARM_CPU_IMP_APM:
 865		switch (part_number) {
 866		case APM_CPU_PART_POTENZA:
 867			return KVM_ARM_TARGET_XGENE_POTENZA;
 868		}
 869		break;
 870	}
 871
 872	/* Return a default generic target */
 873	return KVM_ARM_TARGET_GENERIC_V8;
 874}
 875
 876void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
 877{
 878	u32 target = kvm_target_cpu();
 
 
 
 879
 880	memset(init, 0, sizeof(*init));
 881
 882	/*
 883	 * For now, we don't return any features.
 884	 * In future, we might use features to return target
 885	 * specific features available for the preferred
 886	 * target type.
 887	 */
 888	init->target = (__u32)target;
 
 
 889}
 890
 891int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
 892{
 893	return -EINVAL;
 894}
 895
 896int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
 897{
 898	return -EINVAL;
 899}
 900
 901int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
 902				  struct kvm_translation *tr)
 903{
 904	return -EINVAL;
 905}
 906
 
 
 
 
 
 907/**
 908 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
 909 * @kvm:	pointer to the KVM struct
 910 * @kvm_guest_debug: the ioctl data buffer
 911 *
 912 * This sets up and enables the VM for guest debugging. Userspace
 913 * passes in a control flag to enable different debug types and
 914 * potentially other architecture specific information in the rest of
 915 * the structure.
 916 */
 917int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
 918					struct kvm_guest_debug *dbg)
 919{
 920	int ret = 0;
 921
 922	trace_kvm_set_guest_debug(vcpu, dbg->control);
 923
 924	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
 925		ret = -EINVAL;
 926		goto out;
 927	}
 928
 929	if (dbg->control & KVM_GUESTDBG_ENABLE) {
 930		vcpu->guest_debug = dbg->control;
 931
 932		/* Hardware assisted Break and Watch points */
 933		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
 934			vcpu->arch.external_debug_state = dbg->arch;
 935		}
 936
 937	} else {
 938		/* If not enabled clear all flags */
 939		vcpu->guest_debug = 0;
 940		vcpu_clear_flag(vcpu, DBG_SS_ACTIVE_PENDING);
 941	}
 942
 943out:
 944	return ret;
 945}
 946
 947int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
 948			       struct kvm_device_attr *attr)
 949{
 950	int ret;
 951
 952	switch (attr->group) {
 953	case KVM_ARM_VCPU_PMU_V3_CTRL:
 954		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
 955		break;
 956	case KVM_ARM_VCPU_TIMER_CTRL:
 957		ret = kvm_arm_timer_set_attr(vcpu, attr);
 958		break;
 959	case KVM_ARM_VCPU_PVTIME_CTRL:
 960		ret = kvm_arm_pvtime_set_attr(vcpu, attr);
 961		break;
 962	default:
 963		ret = -ENXIO;
 964		break;
 965	}
 966
 967	return ret;
 968}
 969
 970int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
 971			       struct kvm_device_attr *attr)
 972{
 973	int ret;
 974
 975	switch (attr->group) {
 976	case KVM_ARM_VCPU_PMU_V3_CTRL:
 977		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
 978		break;
 979	case KVM_ARM_VCPU_TIMER_CTRL:
 980		ret = kvm_arm_timer_get_attr(vcpu, attr);
 981		break;
 982	case KVM_ARM_VCPU_PVTIME_CTRL:
 983		ret = kvm_arm_pvtime_get_attr(vcpu, attr);
 984		break;
 985	default:
 986		ret = -ENXIO;
 987		break;
 988	}
 989
 990	return ret;
 991}
 992
 993int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
 994			       struct kvm_device_attr *attr)
 995{
 996	int ret;
 997
 998	switch (attr->group) {
 999	case KVM_ARM_VCPU_PMU_V3_CTRL:
1000		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
1001		break;
1002	case KVM_ARM_VCPU_TIMER_CTRL:
1003		ret = kvm_arm_timer_has_attr(vcpu, attr);
1004		break;
1005	case KVM_ARM_VCPU_PVTIME_CTRL:
1006		ret = kvm_arm_pvtime_has_attr(vcpu, attr);
1007		break;
1008	default:
1009		ret = -ENXIO;
1010		break;
1011	}
1012
1013	return ret;
1014}
1015
1016long kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1017				struct kvm_arm_copy_mte_tags *copy_tags)
1018{
1019	gpa_t guest_ipa = copy_tags->guest_ipa;
1020	size_t length = copy_tags->length;
1021	void __user *tags = copy_tags->addr;
1022	gpa_t gfn;
1023	bool write = !(copy_tags->flags & KVM_ARM_TAGS_FROM_GUEST);
1024	int ret = 0;
1025
1026	if (!kvm_has_mte(kvm))
1027		return -EINVAL;
1028
1029	if (copy_tags->reserved[0] || copy_tags->reserved[1])
1030		return -EINVAL;
1031
1032	if (copy_tags->flags & ~KVM_ARM_TAGS_FROM_GUEST)
1033		return -EINVAL;
1034
1035	if (length & ~PAGE_MASK || guest_ipa & ~PAGE_MASK)
1036		return -EINVAL;
1037
1038	gfn = gpa_to_gfn(guest_ipa);
1039
1040	mutex_lock(&kvm->slots_lock);
1041
1042	while (length > 0) {
1043		kvm_pfn_t pfn = gfn_to_pfn_prot(kvm, gfn, write, NULL);
1044		void *maddr;
1045		unsigned long num_tags;
1046		struct page *page;
1047
1048		if (is_error_noslot_pfn(pfn)) {
1049			ret = -EFAULT;
1050			goto out;
1051		}
1052
1053		page = pfn_to_online_page(pfn);
1054		if (!page) {
1055			/* Reject ZONE_DEVICE memory */
1056			ret = -EFAULT;
1057			goto out;
1058		}
1059		maddr = page_address(page);
1060
1061		if (!write) {
1062			if (page_mte_tagged(page))
1063				num_tags = mte_copy_tags_to_user(tags, maddr,
1064							MTE_GRANULES_PER_PAGE);
1065			else
1066				/* No tags in memory, so write zeros */
1067				num_tags = MTE_GRANULES_PER_PAGE -
1068					clear_user(tags, MTE_GRANULES_PER_PAGE);
1069			kvm_release_pfn_clean(pfn);
1070		} else {
1071			/*
1072			 * Only locking to serialise with a concurrent
1073			 * set_pte_at() in the VMM but still overriding the
1074			 * tags, hence ignoring the return value.
1075			 */
1076			try_page_mte_tagging(page);
1077			num_tags = mte_copy_tags_from_user(maddr, tags,
1078							MTE_GRANULES_PER_PAGE);
1079
1080			/* uaccess failed, don't leave stale tags */
1081			if (num_tags != MTE_GRANULES_PER_PAGE)
1082				mte_clear_page_tags(maddr);
1083			set_page_mte_tagged(page);
1084
1085			kvm_release_pfn_dirty(pfn);
1086		}
1087
1088		if (num_tags != MTE_GRANULES_PER_PAGE) {
1089			ret = -EFAULT;
1090			goto out;
1091		}
1092
1093		gfn++;
1094		tags += num_tags;
1095		length -= PAGE_SIZE;
1096	}
1097
1098out:
1099	mutex_unlock(&kvm->slots_lock);
1100	/* If some data has been copied report the number of bytes copied */
1101	if (length != copy_tags->length)
1102		return copy_tags->length - length;
1103	return ret;
1104}