Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/kvm/guest.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9 */
10
11#include <linux/bits.h>
12#include <linux/errno.h>
13#include <linux/err.h>
14#include <linux/nospec.h>
15#include <linux/kvm_host.h>
16#include <linux/module.h>
17#include <linux/stddef.h>
18#include <linux/string.h>
19#include <linux/vmalloc.h>
20#include <linux/fs.h>
21#include <kvm/arm_psci.h>
22#include <asm/cputype.h>
23#include <linux/uaccess.h>
24#include <asm/fpsimd.h>
25#include <asm/kvm.h>
26#include <asm/kvm_emulate.h>
27#include <asm/kvm_coproc.h>
28#include <asm/kvm_host.h>
29#include <asm/sigcontext.h>
30
31#include "trace.h"
32
33#define VM_STAT(x) { #x, offsetof(struct kvm, stat.x), KVM_STAT_VM }
34#define VCPU_STAT(x) { #x, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU }
35
36struct kvm_stats_debugfs_item debugfs_entries[] = {
37 VCPU_STAT(hvc_exit_stat),
38 VCPU_STAT(wfe_exit_stat),
39 VCPU_STAT(wfi_exit_stat),
40 VCPU_STAT(mmio_exit_user),
41 VCPU_STAT(mmio_exit_kernel),
42 VCPU_STAT(exits),
43 { NULL }
44};
45
46int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
47{
48 return 0;
49}
50
51static bool core_reg_offset_is_vreg(u64 off)
52{
53 return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
54 off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
55}
56
57static u64 core_reg_offset_from_id(u64 id)
58{
59 return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
60}
61
62static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
63{
64 int size;
65
66 switch (off) {
67 case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
68 KVM_REG_ARM_CORE_REG(regs.regs[30]):
69 case KVM_REG_ARM_CORE_REG(regs.sp):
70 case KVM_REG_ARM_CORE_REG(regs.pc):
71 case KVM_REG_ARM_CORE_REG(regs.pstate):
72 case KVM_REG_ARM_CORE_REG(sp_el1):
73 case KVM_REG_ARM_CORE_REG(elr_el1):
74 case KVM_REG_ARM_CORE_REG(spsr[0]) ...
75 KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
76 size = sizeof(__u64);
77 break;
78
79 case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
80 KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
81 size = sizeof(__uint128_t);
82 break;
83
84 case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
85 case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
86 size = sizeof(__u32);
87 break;
88
89 default:
90 return -EINVAL;
91 }
92
93 if (!IS_ALIGNED(off, size / sizeof(__u32)))
94 return -EINVAL;
95
96 /*
97 * The KVM_REG_ARM64_SVE regs must be used instead of
98 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
99 * SVE-enabled vcpus:
100 */
101 if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
102 return -EINVAL;
103
104 return size;
105}
106
107static int validate_core_offset(const struct kvm_vcpu *vcpu,
108 const struct kvm_one_reg *reg)
109{
110 u64 off = core_reg_offset_from_id(reg->id);
111 int size = core_reg_size_from_offset(vcpu, off);
112
113 if (size < 0)
114 return -EINVAL;
115
116 if (KVM_REG_SIZE(reg->id) != size)
117 return -EINVAL;
118
119 return 0;
120}
121
122static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
123{
124 /*
125 * Because the kvm_regs structure is a mix of 32, 64 and
126 * 128bit fields, we index it as if it was a 32bit
127 * array. Hence below, nr_regs is the number of entries, and
128 * off the index in the "array".
129 */
130 __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
131 struct kvm_regs *regs = vcpu_gp_regs(vcpu);
132 int nr_regs = sizeof(*regs) / sizeof(__u32);
133 u32 off;
134
135 /* Our ID is an index into the kvm_regs struct. */
136 off = core_reg_offset_from_id(reg->id);
137 if (off >= nr_regs ||
138 (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
139 return -ENOENT;
140
141 if (validate_core_offset(vcpu, reg))
142 return -EINVAL;
143
144 if (copy_to_user(uaddr, ((u32 *)regs) + off, KVM_REG_SIZE(reg->id)))
145 return -EFAULT;
146
147 return 0;
148}
149
150static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
151{
152 __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
153 struct kvm_regs *regs = vcpu_gp_regs(vcpu);
154 int nr_regs = sizeof(*regs) / sizeof(__u32);
155 __uint128_t tmp;
156 void *valp = &tmp;
157 u64 off;
158 int err = 0;
159
160 /* Our ID is an index into the kvm_regs struct. */
161 off = core_reg_offset_from_id(reg->id);
162 if (off >= nr_regs ||
163 (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
164 return -ENOENT;
165
166 if (validate_core_offset(vcpu, reg))
167 return -EINVAL;
168
169 if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
170 return -EINVAL;
171
172 if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
173 err = -EFAULT;
174 goto out;
175 }
176
177 if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
178 u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
179 switch (mode) {
180 case PSR_AA32_MODE_USR:
181 if (!system_supports_32bit_el0())
182 return -EINVAL;
183 break;
184 case PSR_AA32_MODE_FIQ:
185 case PSR_AA32_MODE_IRQ:
186 case PSR_AA32_MODE_SVC:
187 case PSR_AA32_MODE_ABT:
188 case PSR_AA32_MODE_UND:
189 if (!vcpu_el1_is_32bit(vcpu))
190 return -EINVAL;
191 break;
192 case PSR_MODE_EL0t:
193 case PSR_MODE_EL1t:
194 case PSR_MODE_EL1h:
195 if (vcpu_el1_is_32bit(vcpu))
196 return -EINVAL;
197 break;
198 default:
199 err = -EINVAL;
200 goto out;
201 }
202 }
203
204 memcpy((u32 *)regs + off, valp, KVM_REG_SIZE(reg->id));
205out:
206 return err;
207}
208
209#define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
210#define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
211#define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
212
213static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
214{
215 unsigned int max_vq, vq;
216 u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
217
218 if (!vcpu_has_sve(vcpu))
219 return -ENOENT;
220
221 if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
222 return -EINVAL;
223
224 memset(vqs, 0, sizeof(vqs));
225
226 max_vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
227 for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
228 if (sve_vq_available(vq))
229 vqs[vq_word(vq)] |= vq_mask(vq);
230
231 if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
232 return -EFAULT;
233
234 return 0;
235}
236
237static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
238{
239 unsigned int max_vq, vq;
240 u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
241
242 if (!vcpu_has_sve(vcpu))
243 return -ENOENT;
244
245 if (kvm_arm_vcpu_sve_finalized(vcpu))
246 return -EPERM; /* too late! */
247
248 if (WARN_ON(vcpu->arch.sve_state))
249 return -EINVAL;
250
251 if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
252 return -EFAULT;
253
254 max_vq = 0;
255 for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
256 if (vq_present(vqs, vq))
257 max_vq = vq;
258
259 if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
260 return -EINVAL;
261
262 /*
263 * Vector lengths supported by the host can't currently be
264 * hidden from the guest individually: instead we can only set a
265 * maxmium via ZCR_EL2.LEN. So, make sure the available vector
266 * lengths match the set requested exactly up to the requested
267 * maximum:
268 */
269 for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
270 if (vq_present(vqs, vq) != sve_vq_available(vq))
271 return -EINVAL;
272
273 /* Can't run with no vector lengths at all: */
274 if (max_vq < SVE_VQ_MIN)
275 return -EINVAL;
276
277 /* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
278 vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
279
280 return 0;
281}
282
283#define SVE_REG_SLICE_SHIFT 0
284#define SVE_REG_SLICE_BITS 5
285#define SVE_REG_ID_SHIFT (SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
286#define SVE_REG_ID_BITS 5
287
288#define SVE_REG_SLICE_MASK \
289 GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1, \
290 SVE_REG_SLICE_SHIFT)
291#define SVE_REG_ID_MASK \
292 GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
293
294#define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
295
296#define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
297#define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
298
299/*
300 * Number of register slices required to cover each whole SVE register.
301 * NOTE: Only the first slice every exists, for now.
302 * If you are tempted to modify this, you must also rework sve_reg_to_region()
303 * to match:
304 */
305#define vcpu_sve_slices(vcpu) 1
306
307/* Bounds of a single SVE register slice within vcpu->arch.sve_state */
308struct sve_state_reg_region {
309 unsigned int koffset; /* offset into sve_state in kernel memory */
310 unsigned int klen; /* length in kernel memory */
311 unsigned int upad; /* extra trailing padding in user memory */
312};
313
314/*
315 * Validate SVE register ID and get sanitised bounds for user/kernel SVE
316 * register copy
317 */
318static int sve_reg_to_region(struct sve_state_reg_region *region,
319 struct kvm_vcpu *vcpu,
320 const struct kvm_one_reg *reg)
321{
322 /* reg ID ranges for Z- registers */
323 const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
324 const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
325 SVE_NUM_SLICES - 1);
326
327 /* reg ID ranges for P- registers and FFR (which are contiguous) */
328 const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
329 const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
330
331 unsigned int vq;
332 unsigned int reg_num;
333
334 unsigned int reqoffset, reqlen; /* User-requested offset and length */
335 unsigned int maxlen; /* Maxmimum permitted length */
336
337 size_t sve_state_size;
338
339 const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
340 SVE_NUM_SLICES - 1);
341
342 /* Verify that the P-regs and FFR really do have contiguous IDs: */
343 BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
344
345 /* Verify that we match the UAPI header: */
346 BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
347
348 reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
349
350 if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
351 if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
352 return -ENOENT;
353
354 vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
355
356 reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
357 SVE_SIG_REGS_OFFSET;
358 reqlen = KVM_SVE_ZREG_SIZE;
359 maxlen = SVE_SIG_ZREG_SIZE(vq);
360 } else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
361 if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
362 return -ENOENT;
363
364 vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
365
366 reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
367 SVE_SIG_REGS_OFFSET;
368 reqlen = KVM_SVE_PREG_SIZE;
369 maxlen = SVE_SIG_PREG_SIZE(vq);
370 } else {
371 return -EINVAL;
372 }
373
374 sve_state_size = vcpu_sve_state_size(vcpu);
375 if (WARN_ON(!sve_state_size))
376 return -EINVAL;
377
378 region->koffset = array_index_nospec(reqoffset, sve_state_size);
379 region->klen = min(maxlen, reqlen);
380 region->upad = reqlen - region->klen;
381
382 return 0;
383}
384
385static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
386{
387 int ret;
388 struct sve_state_reg_region region;
389 char __user *uptr = (char __user *)reg->addr;
390
391 /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
392 if (reg->id == KVM_REG_ARM64_SVE_VLS)
393 return get_sve_vls(vcpu, reg);
394
395 /* Try to interpret reg ID as an architectural SVE register... */
396 ret = sve_reg_to_region(®ion, vcpu, reg);
397 if (ret)
398 return ret;
399
400 if (!kvm_arm_vcpu_sve_finalized(vcpu))
401 return -EPERM;
402
403 if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
404 region.klen) ||
405 clear_user(uptr + region.klen, region.upad))
406 return -EFAULT;
407
408 return 0;
409}
410
411static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
412{
413 int ret;
414 struct sve_state_reg_region region;
415 const char __user *uptr = (const char __user *)reg->addr;
416
417 /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
418 if (reg->id == KVM_REG_ARM64_SVE_VLS)
419 return set_sve_vls(vcpu, reg);
420
421 /* Try to interpret reg ID as an architectural SVE register... */
422 ret = sve_reg_to_region(®ion, vcpu, reg);
423 if (ret)
424 return ret;
425
426 if (!kvm_arm_vcpu_sve_finalized(vcpu))
427 return -EPERM;
428
429 if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
430 region.klen))
431 return -EFAULT;
432
433 return 0;
434}
435
436int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
437{
438 return -EINVAL;
439}
440
441int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
442{
443 return -EINVAL;
444}
445
446static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
447 u64 __user *uindices)
448{
449 unsigned int i;
450 int n = 0;
451
452 for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
453 u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
454 int size = core_reg_size_from_offset(vcpu, i);
455
456 if (size < 0)
457 continue;
458
459 switch (size) {
460 case sizeof(__u32):
461 reg |= KVM_REG_SIZE_U32;
462 break;
463
464 case sizeof(__u64):
465 reg |= KVM_REG_SIZE_U64;
466 break;
467
468 case sizeof(__uint128_t):
469 reg |= KVM_REG_SIZE_U128;
470 break;
471
472 default:
473 WARN_ON(1);
474 continue;
475 }
476
477 if (uindices) {
478 if (put_user(reg, uindices))
479 return -EFAULT;
480 uindices++;
481 }
482
483 n++;
484 }
485
486 return n;
487}
488
489static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
490{
491 return copy_core_reg_indices(vcpu, NULL);
492}
493
494/**
495 * ARM64 versions of the TIMER registers, always available on arm64
496 */
497
498#define NUM_TIMER_REGS 3
499
500static bool is_timer_reg(u64 index)
501{
502 switch (index) {
503 case KVM_REG_ARM_TIMER_CTL:
504 case KVM_REG_ARM_TIMER_CNT:
505 case KVM_REG_ARM_TIMER_CVAL:
506 return true;
507 }
508 return false;
509}
510
511static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
512{
513 if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
514 return -EFAULT;
515 uindices++;
516 if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
517 return -EFAULT;
518 uindices++;
519 if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
520 return -EFAULT;
521
522 return 0;
523}
524
525static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
526{
527 void __user *uaddr = (void __user *)(long)reg->addr;
528 u64 val;
529 int ret;
530
531 ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
532 if (ret != 0)
533 return -EFAULT;
534
535 return kvm_arm_timer_set_reg(vcpu, reg->id, val);
536}
537
538static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
539{
540 void __user *uaddr = (void __user *)(long)reg->addr;
541 u64 val;
542
543 val = kvm_arm_timer_get_reg(vcpu, reg->id);
544 return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
545}
546
547static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
548{
549 const unsigned int slices = vcpu_sve_slices(vcpu);
550
551 if (!vcpu_has_sve(vcpu))
552 return 0;
553
554 /* Policed by KVM_GET_REG_LIST: */
555 WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
556
557 return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
558 + 1; /* KVM_REG_ARM64_SVE_VLS */
559}
560
561static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
562 u64 __user *uindices)
563{
564 const unsigned int slices = vcpu_sve_slices(vcpu);
565 u64 reg;
566 unsigned int i, n;
567 int num_regs = 0;
568
569 if (!vcpu_has_sve(vcpu))
570 return 0;
571
572 /* Policed by KVM_GET_REG_LIST: */
573 WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
574
575 /*
576 * Enumerate this first, so that userspace can save/restore in
577 * the order reported by KVM_GET_REG_LIST:
578 */
579 reg = KVM_REG_ARM64_SVE_VLS;
580 if (put_user(reg, uindices++))
581 return -EFAULT;
582 ++num_regs;
583
584 for (i = 0; i < slices; i++) {
585 for (n = 0; n < SVE_NUM_ZREGS; n++) {
586 reg = KVM_REG_ARM64_SVE_ZREG(n, i);
587 if (put_user(reg, uindices++))
588 return -EFAULT;
589 num_regs++;
590 }
591
592 for (n = 0; n < SVE_NUM_PREGS; n++) {
593 reg = KVM_REG_ARM64_SVE_PREG(n, i);
594 if (put_user(reg, uindices++))
595 return -EFAULT;
596 num_regs++;
597 }
598
599 reg = KVM_REG_ARM64_SVE_FFR(i);
600 if (put_user(reg, uindices++))
601 return -EFAULT;
602 num_regs++;
603 }
604
605 return num_regs;
606}
607
608/**
609 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
610 *
611 * This is for all registers.
612 */
613unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
614{
615 unsigned long res = 0;
616
617 res += num_core_regs(vcpu);
618 res += num_sve_regs(vcpu);
619 res += kvm_arm_num_sys_reg_descs(vcpu);
620 res += kvm_arm_get_fw_num_regs(vcpu);
621 res += NUM_TIMER_REGS;
622
623 return res;
624}
625
626/**
627 * kvm_arm_copy_reg_indices - get indices of all registers.
628 *
629 * We do core registers right here, then we append system regs.
630 */
631int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
632{
633 int ret;
634
635 ret = copy_core_reg_indices(vcpu, uindices);
636 if (ret < 0)
637 return ret;
638 uindices += ret;
639
640 ret = copy_sve_reg_indices(vcpu, uindices);
641 if (ret < 0)
642 return ret;
643 uindices += ret;
644
645 ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
646 if (ret < 0)
647 return ret;
648 uindices += kvm_arm_get_fw_num_regs(vcpu);
649
650 ret = copy_timer_indices(vcpu, uindices);
651 if (ret < 0)
652 return ret;
653 uindices += NUM_TIMER_REGS;
654
655 return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
656}
657
658int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
659{
660 /* We currently use nothing arch-specific in upper 32 bits */
661 if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
662 return -EINVAL;
663
664 switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
665 case KVM_REG_ARM_CORE: return get_core_reg(vcpu, reg);
666 case KVM_REG_ARM_FW: return kvm_arm_get_fw_reg(vcpu, reg);
667 case KVM_REG_ARM64_SVE: return get_sve_reg(vcpu, reg);
668 }
669
670 if (is_timer_reg(reg->id))
671 return get_timer_reg(vcpu, reg);
672
673 return kvm_arm_sys_reg_get_reg(vcpu, reg);
674}
675
676int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
677{
678 /* We currently use nothing arch-specific in upper 32 bits */
679 if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
680 return -EINVAL;
681
682 switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
683 case KVM_REG_ARM_CORE: return set_core_reg(vcpu, reg);
684 case KVM_REG_ARM_FW: return kvm_arm_set_fw_reg(vcpu, reg);
685 case KVM_REG_ARM64_SVE: return set_sve_reg(vcpu, reg);
686 }
687
688 if (is_timer_reg(reg->id))
689 return set_timer_reg(vcpu, reg);
690
691 return kvm_arm_sys_reg_set_reg(vcpu, reg);
692}
693
694int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
695 struct kvm_sregs *sregs)
696{
697 return -EINVAL;
698}
699
700int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
701 struct kvm_sregs *sregs)
702{
703 return -EINVAL;
704}
705
706int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
707 struct kvm_vcpu_events *events)
708{
709 events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
710 events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
711
712 if (events->exception.serror_pending && events->exception.serror_has_esr)
713 events->exception.serror_esr = vcpu_get_vsesr(vcpu);
714
715 return 0;
716}
717
718int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
719 struct kvm_vcpu_events *events)
720{
721 bool serror_pending = events->exception.serror_pending;
722 bool has_esr = events->exception.serror_has_esr;
723
724 if (serror_pending && has_esr) {
725 if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
726 return -EINVAL;
727
728 if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
729 kvm_set_sei_esr(vcpu, events->exception.serror_esr);
730 else
731 return -EINVAL;
732 } else if (serror_pending) {
733 kvm_inject_vabt(vcpu);
734 }
735
736 return 0;
737}
738
739int __attribute_const__ kvm_target_cpu(void)
740{
741 unsigned long implementor = read_cpuid_implementor();
742 unsigned long part_number = read_cpuid_part_number();
743
744 switch (implementor) {
745 case ARM_CPU_IMP_ARM:
746 switch (part_number) {
747 case ARM_CPU_PART_AEM_V8:
748 return KVM_ARM_TARGET_AEM_V8;
749 case ARM_CPU_PART_FOUNDATION:
750 return KVM_ARM_TARGET_FOUNDATION_V8;
751 case ARM_CPU_PART_CORTEX_A53:
752 return KVM_ARM_TARGET_CORTEX_A53;
753 case ARM_CPU_PART_CORTEX_A57:
754 return KVM_ARM_TARGET_CORTEX_A57;
755 }
756 break;
757 case ARM_CPU_IMP_APM:
758 switch (part_number) {
759 case APM_CPU_PART_POTENZA:
760 return KVM_ARM_TARGET_XGENE_POTENZA;
761 }
762 break;
763 }
764
765 /* Return a default generic target */
766 return KVM_ARM_TARGET_GENERIC_V8;
767}
768
769int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
770{
771 int target = kvm_target_cpu();
772
773 if (target < 0)
774 return -ENODEV;
775
776 memset(init, 0, sizeof(*init));
777
778 /*
779 * For now, we don't return any features.
780 * In future, we might use features to return target
781 * specific features available for the preferred
782 * target type.
783 */
784 init->target = (__u32)target;
785
786 return 0;
787}
788
789int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
790{
791 return -EINVAL;
792}
793
794int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
795{
796 return -EINVAL;
797}
798
799int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
800 struct kvm_translation *tr)
801{
802 return -EINVAL;
803}
804
805#define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
806 KVM_GUESTDBG_USE_SW_BP | \
807 KVM_GUESTDBG_USE_HW | \
808 KVM_GUESTDBG_SINGLESTEP)
809
810/**
811 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
812 * @kvm: pointer to the KVM struct
813 * @kvm_guest_debug: the ioctl data buffer
814 *
815 * This sets up and enables the VM for guest debugging. Userspace
816 * passes in a control flag to enable different debug types and
817 * potentially other architecture specific information in the rest of
818 * the structure.
819 */
820int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
821 struct kvm_guest_debug *dbg)
822{
823 int ret = 0;
824
825 trace_kvm_set_guest_debug(vcpu, dbg->control);
826
827 if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
828 ret = -EINVAL;
829 goto out;
830 }
831
832 if (dbg->control & KVM_GUESTDBG_ENABLE) {
833 vcpu->guest_debug = dbg->control;
834
835 /* Hardware assisted Break and Watch points */
836 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
837 vcpu->arch.external_debug_state = dbg->arch;
838 }
839
840 } else {
841 /* If not enabled clear all flags */
842 vcpu->guest_debug = 0;
843 }
844
845out:
846 return ret;
847}
848
849int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
850 struct kvm_device_attr *attr)
851{
852 int ret;
853
854 switch (attr->group) {
855 case KVM_ARM_VCPU_PMU_V3_CTRL:
856 ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
857 break;
858 case KVM_ARM_VCPU_TIMER_CTRL:
859 ret = kvm_arm_timer_set_attr(vcpu, attr);
860 break;
861 default:
862 ret = -ENXIO;
863 break;
864 }
865
866 return ret;
867}
868
869int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
870 struct kvm_device_attr *attr)
871{
872 int ret;
873
874 switch (attr->group) {
875 case KVM_ARM_VCPU_PMU_V3_CTRL:
876 ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
877 break;
878 case KVM_ARM_VCPU_TIMER_CTRL:
879 ret = kvm_arm_timer_get_attr(vcpu, attr);
880 break;
881 default:
882 ret = -ENXIO;
883 break;
884 }
885
886 return ret;
887}
888
889int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
890 struct kvm_device_attr *attr)
891{
892 int ret;
893
894 switch (attr->group) {
895 case KVM_ARM_VCPU_PMU_V3_CTRL:
896 ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
897 break;
898 case KVM_ARM_VCPU_TIMER_CTRL:
899 ret = kvm_arm_timer_has_attr(vcpu, attr);
900 break;
901 default:
902 ret = -ENXIO;
903 break;
904 }
905
906 return ret;
907}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/kvm/guest.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9 */
10
11#include <linux/bits.h>
12#include <linux/errno.h>
13#include <linux/err.h>
14#include <linux/nospec.h>
15#include <linux/kvm_host.h>
16#include <linux/module.h>
17#include <linux/stddef.h>
18#include <linux/string.h>
19#include <linux/vmalloc.h>
20#include <linux/fs.h>
21#include <kvm/arm_hypercalls.h>
22#include <asm/cputype.h>
23#include <linux/uaccess.h>
24#include <asm/fpsimd.h>
25#include <asm/kvm.h>
26#include <asm/kvm_emulate.h>
27#include <asm/sigcontext.h>
28
29#include "trace.h"
30
31const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
32 KVM_GENERIC_VM_STATS()
33};
34
35const struct kvm_stats_header kvm_vm_stats_header = {
36 .name_size = KVM_STATS_NAME_SIZE,
37 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
38 .id_offset = sizeof(struct kvm_stats_header),
39 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
40 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
41 sizeof(kvm_vm_stats_desc),
42};
43
44const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
45 KVM_GENERIC_VCPU_STATS(),
46 STATS_DESC_COUNTER(VCPU, hvc_exit_stat),
47 STATS_DESC_COUNTER(VCPU, wfe_exit_stat),
48 STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
49 STATS_DESC_COUNTER(VCPU, mmio_exit_user),
50 STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
51 STATS_DESC_COUNTER(VCPU, signal_exits),
52 STATS_DESC_COUNTER(VCPU, exits)
53};
54
55const struct kvm_stats_header kvm_vcpu_stats_header = {
56 .name_size = KVM_STATS_NAME_SIZE,
57 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
58 .id_offset = sizeof(struct kvm_stats_header),
59 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
60 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
61 sizeof(kvm_vcpu_stats_desc),
62};
63
64static bool core_reg_offset_is_vreg(u64 off)
65{
66 return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
67 off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
68}
69
70static u64 core_reg_offset_from_id(u64 id)
71{
72 return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
73}
74
75static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
76{
77 int size;
78
79 switch (off) {
80 case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
81 KVM_REG_ARM_CORE_REG(regs.regs[30]):
82 case KVM_REG_ARM_CORE_REG(regs.sp):
83 case KVM_REG_ARM_CORE_REG(regs.pc):
84 case KVM_REG_ARM_CORE_REG(regs.pstate):
85 case KVM_REG_ARM_CORE_REG(sp_el1):
86 case KVM_REG_ARM_CORE_REG(elr_el1):
87 case KVM_REG_ARM_CORE_REG(spsr[0]) ...
88 KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
89 size = sizeof(__u64);
90 break;
91
92 case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
93 KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
94 size = sizeof(__uint128_t);
95 break;
96
97 case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
98 case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
99 size = sizeof(__u32);
100 break;
101
102 default:
103 return -EINVAL;
104 }
105
106 if (!IS_ALIGNED(off, size / sizeof(__u32)))
107 return -EINVAL;
108
109 /*
110 * The KVM_REG_ARM64_SVE regs must be used instead of
111 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
112 * SVE-enabled vcpus:
113 */
114 if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
115 return -EINVAL;
116
117 return size;
118}
119
120static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
121{
122 u64 off = core_reg_offset_from_id(reg->id);
123 int size = core_reg_size_from_offset(vcpu, off);
124
125 if (size < 0)
126 return NULL;
127
128 if (KVM_REG_SIZE(reg->id) != size)
129 return NULL;
130
131 switch (off) {
132 case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
133 KVM_REG_ARM_CORE_REG(regs.regs[30]):
134 off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
135 off /= 2;
136 return &vcpu->arch.ctxt.regs.regs[off];
137
138 case KVM_REG_ARM_CORE_REG(regs.sp):
139 return &vcpu->arch.ctxt.regs.sp;
140
141 case KVM_REG_ARM_CORE_REG(regs.pc):
142 return &vcpu->arch.ctxt.regs.pc;
143
144 case KVM_REG_ARM_CORE_REG(regs.pstate):
145 return &vcpu->arch.ctxt.regs.pstate;
146
147 case KVM_REG_ARM_CORE_REG(sp_el1):
148 return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
149
150 case KVM_REG_ARM_CORE_REG(elr_el1):
151 return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
152
153 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
154 return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
155
156 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
157 return &vcpu->arch.ctxt.spsr_abt;
158
159 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
160 return &vcpu->arch.ctxt.spsr_und;
161
162 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
163 return &vcpu->arch.ctxt.spsr_irq;
164
165 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
166 return &vcpu->arch.ctxt.spsr_fiq;
167
168 case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
169 KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
170 off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
171 off /= 4;
172 return &vcpu->arch.ctxt.fp_regs.vregs[off];
173
174 case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
175 return &vcpu->arch.ctxt.fp_regs.fpsr;
176
177 case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
178 return &vcpu->arch.ctxt.fp_regs.fpcr;
179
180 default:
181 return NULL;
182 }
183}
184
185static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
186{
187 /*
188 * Because the kvm_regs structure is a mix of 32, 64 and
189 * 128bit fields, we index it as if it was a 32bit
190 * array. Hence below, nr_regs is the number of entries, and
191 * off the index in the "array".
192 */
193 __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
194 int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
195 void *addr;
196 u32 off;
197
198 /* Our ID is an index into the kvm_regs struct. */
199 off = core_reg_offset_from_id(reg->id);
200 if (off >= nr_regs ||
201 (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
202 return -ENOENT;
203
204 addr = core_reg_addr(vcpu, reg);
205 if (!addr)
206 return -EINVAL;
207
208 if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
209 return -EFAULT;
210
211 return 0;
212}
213
214static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
215{
216 __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
217 int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
218 __uint128_t tmp;
219 void *valp = &tmp, *addr;
220 u64 off;
221 int err = 0;
222
223 /* Our ID is an index into the kvm_regs struct. */
224 off = core_reg_offset_from_id(reg->id);
225 if (off >= nr_regs ||
226 (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
227 return -ENOENT;
228
229 addr = core_reg_addr(vcpu, reg);
230 if (!addr)
231 return -EINVAL;
232
233 if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
234 return -EINVAL;
235
236 if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
237 err = -EFAULT;
238 goto out;
239 }
240
241 if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
242 u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
243 switch (mode) {
244 case PSR_AA32_MODE_USR:
245 if (!kvm_supports_32bit_el0())
246 return -EINVAL;
247 break;
248 case PSR_AA32_MODE_FIQ:
249 case PSR_AA32_MODE_IRQ:
250 case PSR_AA32_MODE_SVC:
251 case PSR_AA32_MODE_ABT:
252 case PSR_AA32_MODE_UND:
253 if (!vcpu_el1_is_32bit(vcpu))
254 return -EINVAL;
255 break;
256 case PSR_MODE_EL0t:
257 case PSR_MODE_EL1t:
258 case PSR_MODE_EL1h:
259 if (vcpu_el1_is_32bit(vcpu))
260 return -EINVAL;
261 break;
262 default:
263 err = -EINVAL;
264 goto out;
265 }
266 }
267
268 memcpy(addr, valp, KVM_REG_SIZE(reg->id));
269
270 if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
271 int i, nr_reg;
272
273 switch (*vcpu_cpsr(vcpu)) {
274 /*
275 * Either we are dealing with user mode, and only the
276 * first 15 registers (+ PC) must be narrowed to 32bit.
277 * AArch32 r0-r14 conveniently map to AArch64 x0-x14.
278 */
279 case PSR_AA32_MODE_USR:
280 case PSR_AA32_MODE_SYS:
281 nr_reg = 15;
282 break;
283
284 /*
285 * Otherwise, this is a privileged mode, and *all* the
286 * registers must be narrowed to 32bit.
287 */
288 default:
289 nr_reg = 31;
290 break;
291 }
292
293 for (i = 0; i < nr_reg; i++)
294 vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i));
295
296 *vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu);
297 }
298out:
299 return err;
300}
301
302#define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
303#define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
304#define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
305
306static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
307{
308 unsigned int max_vq, vq;
309 u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
310
311 if (!vcpu_has_sve(vcpu))
312 return -ENOENT;
313
314 if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
315 return -EINVAL;
316
317 memset(vqs, 0, sizeof(vqs));
318
319 max_vq = vcpu_sve_max_vq(vcpu);
320 for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
321 if (sve_vq_available(vq))
322 vqs[vq_word(vq)] |= vq_mask(vq);
323
324 if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
325 return -EFAULT;
326
327 return 0;
328}
329
330static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
331{
332 unsigned int max_vq, vq;
333 u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
334
335 if (!vcpu_has_sve(vcpu))
336 return -ENOENT;
337
338 if (kvm_arm_vcpu_sve_finalized(vcpu))
339 return -EPERM; /* too late! */
340
341 if (WARN_ON(vcpu->arch.sve_state))
342 return -EINVAL;
343
344 if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
345 return -EFAULT;
346
347 max_vq = 0;
348 for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
349 if (vq_present(vqs, vq))
350 max_vq = vq;
351
352 if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
353 return -EINVAL;
354
355 /*
356 * Vector lengths supported by the host can't currently be
357 * hidden from the guest individually: instead we can only set a
358 * maximum via ZCR_EL2.LEN. So, make sure the available vector
359 * lengths match the set requested exactly up to the requested
360 * maximum:
361 */
362 for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
363 if (vq_present(vqs, vq) != sve_vq_available(vq))
364 return -EINVAL;
365
366 /* Can't run with no vector lengths at all: */
367 if (max_vq < SVE_VQ_MIN)
368 return -EINVAL;
369
370 /* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
371 vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
372
373 return 0;
374}
375
376#define SVE_REG_SLICE_SHIFT 0
377#define SVE_REG_SLICE_BITS 5
378#define SVE_REG_ID_SHIFT (SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
379#define SVE_REG_ID_BITS 5
380
381#define SVE_REG_SLICE_MASK \
382 GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1, \
383 SVE_REG_SLICE_SHIFT)
384#define SVE_REG_ID_MASK \
385 GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
386
387#define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
388
389#define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
390#define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
391
392/*
393 * Number of register slices required to cover each whole SVE register.
394 * NOTE: Only the first slice every exists, for now.
395 * If you are tempted to modify this, you must also rework sve_reg_to_region()
396 * to match:
397 */
398#define vcpu_sve_slices(vcpu) 1
399
400/* Bounds of a single SVE register slice within vcpu->arch.sve_state */
401struct sve_state_reg_region {
402 unsigned int koffset; /* offset into sve_state in kernel memory */
403 unsigned int klen; /* length in kernel memory */
404 unsigned int upad; /* extra trailing padding in user memory */
405};
406
407/*
408 * Validate SVE register ID and get sanitised bounds for user/kernel SVE
409 * register copy
410 */
411static int sve_reg_to_region(struct sve_state_reg_region *region,
412 struct kvm_vcpu *vcpu,
413 const struct kvm_one_reg *reg)
414{
415 /* reg ID ranges for Z- registers */
416 const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
417 const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
418 SVE_NUM_SLICES - 1);
419
420 /* reg ID ranges for P- registers and FFR (which are contiguous) */
421 const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
422 const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
423
424 unsigned int vq;
425 unsigned int reg_num;
426
427 unsigned int reqoffset, reqlen; /* User-requested offset and length */
428 unsigned int maxlen; /* Maximum permitted length */
429
430 size_t sve_state_size;
431
432 const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
433 SVE_NUM_SLICES - 1);
434
435 /* Verify that the P-regs and FFR really do have contiguous IDs: */
436 BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
437
438 /* Verify that we match the UAPI header: */
439 BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
440
441 reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
442
443 if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
444 if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
445 return -ENOENT;
446
447 vq = vcpu_sve_max_vq(vcpu);
448
449 reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
450 SVE_SIG_REGS_OFFSET;
451 reqlen = KVM_SVE_ZREG_SIZE;
452 maxlen = SVE_SIG_ZREG_SIZE(vq);
453 } else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
454 if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
455 return -ENOENT;
456
457 vq = vcpu_sve_max_vq(vcpu);
458
459 reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
460 SVE_SIG_REGS_OFFSET;
461 reqlen = KVM_SVE_PREG_SIZE;
462 maxlen = SVE_SIG_PREG_SIZE(vq);
463 } else {
464 return -EINVAL;
465 }
466
467 sve_state_size = vcpu_sve_state_size(vcpu);
468 if (WARN_ON(!sve_state_size))
469 return -EINVAL;
470
471 region->koffset = array_index_nospec(reqoffset, sve_state_size);
472 region->klen = min(maxlen, reqlen);
473 region->upad = reqlen - region->klen;
474
475 return 0;
476}
477
478static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
479{
480 int ret;
481 struct sve_state_reg_region region;
482 char __user *uptr = (char __user *)reg->addr;
483
484 /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
485 if (reg->id == KVM_REG_ARM64_SVE_VLS)
486 return get_sve_vls(vcpu, reg);
487
488 /* Try to interpret reg ID as an architectural SVE register... */
489 ret = sve_reg_to_region(®ion, vcpu, reg);
490 if (ret)
491 return ret;
492
493 if (!kvm_arm_vcpu_sve_finalized(vcpu))
494 return -EPERM;
495
496 if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
497 region.klen) ||
498 clear_user(uptr + region.klen, region.upad))
499 return -EFAULT;
500
501 return 0;
502}
503
504static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
505{
506 int ret;
507 struct sve_state_reg_region region;
508 const char __user *uptr = (const char __user *)reg->addr;
509
510 /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
511 if (reg->id == KVM_REG_ARM64_SVE_VLS)
512 return set_sve_vls(vcpu, reg);
513
514 /* Try to interpret reg ID as an architectural SVE register... */
515 ret = sve_reg_to_region(®ion, vcpu, reg);
516 if (ret)
517 return ret;
518
519 if (!kvm_arm_vcpu_sve_finalized(vcpu))
520 return -EPERM;
521
522 if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
523 region.klen))
524 return -EFAULT;
525
526 return 0;
527}
528
529int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
530{
531 return -EINVAL;
532}
533
534int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
535{
536 return -EINVAL;
537}
538
539static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
540 u64 __user *uindices)
541{
542 unsigned int i;
543 int n = 0;
544
545 for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
546 u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
547 int size = core_reg_size_from_offset(vcpu, i);
548
549 if (size < 0)
550 continue;
551
552 switch (size) {
553 case sizeof(__u32):
554 reg |= KVM_REG_SIZE_U32;
555 break;
556
557 case sizeof(__u64):
558 reg |= KVM_REG_SIZE_U64;
559 break;
560
561 case sizeof(__uint128_t):
562 reg |= KVM_REG_SIZE_U128;
563 break;
564
565 default:
566 WARN_ON(1);
567 continue;
568 }
569
570 if (uindices) {
571 if (put_user(reg, uindices))
572 return -EFAULT;
573 uindices++;
574 }
575
576 n++;
577 }
578
579 return n;
580}
581
582static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
583{
584 return copy_core_reg_indices(vcpu, NULL);
585}
586
587/**
588 * ARM64 versions of the TIMER registers, always available on arm64
589 */
590
591#define NUM_TIMER_REGS 3
592
593static bool is_timer_reg(u64 index)
594{
595 switch (index) {
596 case KVM_REG_ARM_TIMER_CTL:
597 case KVM_REG_ARM_TIMER_CNT:
598 case KVM_REG_ARM_TIMER_CVAL:
599 return true;
600 }
601 return false;
602}
603
604static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
605{
606 if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
607 return -EFAULT;
608 uindices++;
609 if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
610 return -EFAULT;
611 uindices++;
612 if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
613 return -EFAULT;
614
615 return 0;
616}
617
618static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
619{
620 void __user *uaddr = (void __user *)(long)reg->addr;
621 u64 val;
622 int ret;
623
624 ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
625 if (ret != 0)
626 return -EFAULT;
627
628 return kvm_arm_timer_set_reg(vcpu, reg->id, val);
629}
630
631static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
632{
633 void __user *uaddr = (void __user *)(long)reg->addr;
634 u64 val;
635
636 val = kvm_arm_timer_get_reg(vcpu, reg->id);
637 return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
638}
639
640static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
641{
642 const unsigned int slices = vcpu_sve_slices(vcpu);
643
644 if (!vcpu_has_sve(vcpu))
645 return 0;
646
647 /* Policed by KVM_GET_REG_LIST: */
648 WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
649
650 return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
651 + 1; /* KVM_REG_ARM64_SVE_VLS */
652}
653
654static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
655 u64 __user *uindices)
656{
657 const unsigned int slices = vcpu_sve_slices(vcpu);
658 u64 reg;
659 unsigned int i, n;
660 int num_regs = 0;
661
662 if (!vcpu_has_sve(vcpu))
663 return 0;
664
665 /* Policed by KVM_GET_REG_LIST: */
666 WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
667
668 /*
669 * Enumerate this first, so that userspace can save/restore in
670 * the order reported by KVM_GET_REG_LIST:
671 */
672 reg = KVM_REG_ARM64_SVE_VLS;
673 if (put_user(reg, uindices++))
674 return -EFAULT;
675 ++num_regs;
676
677 for (i = 0; i < slices; i++) {
678 for (n = 0; n < SVE_NUM_ZREGS; n++) {
679 reg = KVM_REG_ARM64_SVE_ZREG(n, i);
680 if (put_user(reg, uindices++))
681 return -EFAULT;
682 num_regs++;
683 }
684
685 for (n = 0; n < SVE_NUM_PREGS; n++) {
686 reg = KVM_REG_ARM64_SVE_PREG(n, i);
687 if (put_user(reg, uindices++))
688 return -EFAULT;
689 num_regs++;
690 }
691
692 reg = KVM_REG_ARM64_SVE_FFR(i);
693 if (put_user(reg, uindices++))
694 return -EFAULT;
695 num_regs++;
696 }
697
698 return num_regs;
699}
700
701/**
702 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
703 *
704 * This is for all registers.
705 */
706unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
707{
708 unsigned long res = 0;
709
710 res += num_core_regs(vcpu);
711 res += num_sve_regs(vcpu);
712 res += kvm_arm_num_sys_reg_descs(vcpu);
713 res += kvm_arm_get_fw_num_regs(vcpu);
714 res += NUM_TIMER_REGS;
715
716 return res;
717}
718
719/**
720 * kvm_arm_copy_reg_indices - get indices of all registers.
721 *
722 * We do core registers right here, then we append system regs.
723 */
724int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
725{
726 int ret;
727
728 ret = copy_core_reg_indices(vcpu, uindices);
729 if (ret < 0)
730 return ret;
731 uindices += ret;
732
733 ret = copy_sve_reg_indices(vcpu, uindices);
734 if (ret < 0)
735 return ret;
736 uindices += ret;
737
738 ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
739 if (ret < 0)
740 return ret;
741 uindices += kvm_arm_get_fw_num_regs(vcpu);
742
743 ret = copy_timer_indices(vcpu, uindices);
744 if (ret < 0)
745 return ret;
746 uindices += NUM_TIMER_REGS;
747
748 return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
749}
750
751int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
752{
753 /* We currently use nothing arch-specific in upper 32 bits */
754 if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
755 return -EINVAL;
756
757 switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
758 case KVM_REG_ARM_CORE: return get_core_reg(vcpu, reg);
759 case KVM_REG_ARM_FW:
760 case KVM_REG_ARM_FW_FEAT_BMAP:
761 return kvm_arm_get_fw_reg(vcpu, reg);
762 case KVM_REG_ARM64_SVE: return get_sve_reg(vcpu, reg);
763 }
764
765 if (is_timer_reg(reg->id))
766 return get_timer_reg(vcpu, reg);
767
768 return kvm_arm_sys_reg_get_reg(vcpu, reg);
769}
770
771int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
772{
773 /* We currently use nothing arch-specific in upper 32 bits */
774 if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
775 return -EINVAL;
776
777 switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
778 case KVM_REG_ARM_CORE: return set_core_reg(vcpu, reg);
779 case KVM_REG_ARM_FW:
780 case KVM_REG_ARM_FW_FEAT_BMAP:
781 return kvm_arm_set_fw_reg(vcpu, reg);
782 case KVM_REG_ARM64_SVE: return set_sve_reg(vcpu, reg);
783 }
784
785 if (is_timer_reg(reg->id))
786 return set_timer_reg(vcpu, reg);
787
788 return kvm_arm_sys_reg_set_reg(vcpu, reg);
789}
790
791int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
792 struct kvm_sregs *sregs)
793{
794 return -EINVAL;
795}
796
797int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
798 struct kvm_sregs *sregs)
799{
800 return -EINVAL;
801}
802
803int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
804 struct kvm_vcpu_events *events)
805{
806 events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
807 events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
808
809 if (events->exception.serror_pending && events->exception.serror_has_esr)
810 events->exception.serror_esr = vcpu_get_vsesr(vcpu);
811
812 /*
813 * We never return a pending ext_dabt here because we deliver it to
814 * the virtual CPU directly when setting the event and it's no longer
815 * 'pending' at this point.
816 */
817
818 return 0;
819}
820
821int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
822 struct kvm_vcpu_events *events)
823{
824 bool serror_pending = events->exception.serror_pending;
825 bool has_esr = events->exception.serror_has_esr;
826 bool ext_dabt_pending = events->exception.ext_dabt_pending;
827
828 if (serror_pending && has_esr) {
829 if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
830 return -EINVAL;
831
832 if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
833 kvm_set_sei_esr(vcpu, events->exception.serror_esr);
834 else
835 return -EINVAL;
836 } else if (serror_pending) {
837 kvm_inject_vabt(vcpu);
838 }
839
840 if (ext_dabt_pending)
841 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
842
843 return 0;
844}
845
846u32 __attribute_const__ kvm_target_cpu(void)
847{
848 unsigned long implementor = read_cpuid_implementor();
849 unsigned long part_number = read_cpuid_part_number();
850
851 switch (implementor) {
852 case ARM_CPU_IMP_ARM:
853 switch (part_number) {
854 case ARM_CPU_PART_AEM_V8:
855 return KVM_ARM_TARGET_AEM_V8;
856 case ARM_CPU_PART_FOUNDATION:
857 return KVM_ARM_TARGET_FOUNDATION_V8;
858 case ARM_CPU_PART_CORTEX_A53:
859 return KVM_ARM_TARGET_CORTEX_A53;
860 case ARM_CPU_PART_CORTEX_A57:
861 return KVM_ARM_TARGET_CORTEX_A57;
862 }
863 break;
864 case ARM_CPU_IMP_APM:
865 switch (part_number) {
866 case APM_CPU_PART_POTENZA:
867 return KVM_ARM_TARGET_XGENE_POTENZA;
868 }
869 break;
870 }
871
872 /* Return a default generic target */
873 return KVM_ARM_TARGET_GENERIC_V8;
874}
875
876void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
877{
878 u32 target = kvm_target_cpu();
879
880 memset(init, 0, sizeof(*init));
881
882 /*
883 * For now, we don't return any features.
884 * In future, we might use features to return target
885 * specific features available for the preferred
886 * target type.
887 */
888 init->target = (__u32)target;
889}
890
891int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
892{
893 return -EINVAL;
894}
895
896int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
897{
898 return -EINVAL;
899}
900
901int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
902 struct kvm_translation *tr)
903{
904 return -EINVAL;
905}
906
907/**
908 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
909 * @kvm: pointer to the KVM struct
910 * @kvm_guest_debug: the ioctl data buffer
911 *
912 * This sets up and enables the VM for guest debugging. Userspace
913 * passes in a control flag to enable different debug types and
914 * potentially other architecture specific information in the rest of
915 * the structure.
916 */
917int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
918 struct kvm_guest_debug *dbg)
919{
920 int ret = 0;
921
922 trace_kvm_set_guest_debug(vcpu, dbg->control);
923
924 if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
925 ret = -EINVAL;
926 goto out;
927 }
928
929 if (dbg->control & KVM_GUESTDBG_ENABLE) {
930 vcpu->guest_debug = dbg->control;
931
932 /* Hardware assisted Break and Watch points */
933 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
934 vcpu->arch.external_debug_state = dbg->arch;
935 }
936
937 } else {
938 /* If not enabled clear all flags */
939 vcpu->guest_debug = 0;
940 vcpu_clear_flag(vcpu, DBG_SS_ACTIVE_PENDING);
941 }
942
943out:
944 return ret;
945}
946
947int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
948 struct kvm_device_attr *attr)
949{
950 int ret;
951
952 switch (attr->group) {
953 case KVM_ARM_VCPU_PMU_V3_CTRL:
954 ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
955 break;
956 case KVM_ARM_VCPU_TIMER_CTRL:
957 ret = kvm_arm_timer_set_attr(vcpu, attr);
958 break;
959 case KVM_ARM_VCPU_PVTIME_CTRL:
960 ret = kvm_arm_pvtime_set_attr(vcpu, attr);
961 break;
962 default:
963 ret = -ENXIO;
964 break;
965 }
966
967 return ret;
968}
969
970int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
971 struct kvm_device_attr *attr)
972{
973 int ret;
974
975 switch (attr->group) {
976 case KVM_ARM_VCPU_PMU_V3_CTRL:
977 ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
978 break;
979 case KVM_ARM_VCPU_TIMER_CTRL:
980 ret = kvm_arm_timer_get_attr(vcpu, attr);
981 break;
982 case KVM_ARM_VCPU_PVTIME_CTRL:
983 ret = kvm_arm_pvtime_get_attr(vcpu, attr);
984 break;
985 default:
986 ret = -ENXIO;
987 break;
988 }
989
990 return ret;
991}
992
993int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
994 struct kvm_device_attr *attr)
995{
996 int ret;
997
998 switch (attr->group) {
999 case KVM_ARM_VCPU_PMU_V3_CTRL:
1000 ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
1001 break;
1002 case KVM_ARM_VCPU_TIMER_CTRL:
1003 ret = kvm_arm_timer_has_attr(vcpu, attr);
1004 break;
1005 case KVM_ARM_VCPU_PVTIME_CTRL:
1006 ret = kvm_arm_pvtime_has_attr(vcpu, attr);
1007 break;
1008 default:
1009 ret = -ENXIO;
1010 break;
1011 }
1012
1013 return ret;
1014}
1015
1016long kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1017 struct kvm_arm_copy_mte_tags *copy_tags)
1018{
1019 gpa_t guest_ipa = copy_tags->guest_ipa;
1020 size_t length = copy_tags->length;
1021 void __user *tags = copy_tags->addr;
1022 gpa_t gfn;
1023 bool write = !(copy_tags->flags & KVM_ARM_TAGS_FROM_GUEST);
1024 int ret = 0;
1025
1026 if (!kvm_has_mte(kvm))
1027 return -EINVAL;
1028
1029 if (copy_tags->reserved[0] || copy_tags->reserved[1])
1030 return -EINVAL;
1031
1032 if (copy_tags->flags & ~KVM_ARM_TAGS_FROM_GUEST)
1033 return -EINVAL;
1034
1035 if (length & ~PAGE_MASK || guest_ipa & ~PAGE_MASK)
1036 return -EINVAL;
1037
1038 gfn = gpa_to_gfn(guest_ipa);
1039
1040 mutex_lock(&kvm->slots_lock);
1041
1042 while (length > 0) {
1043 kvm_pfn_t pfn = gfn_to_pfn_prot(kvm, gfn, write, NULL);
1044 void *maddr;
1045 unsigned long num_tags;
1046 struct page *page;
1047
1048 if (is_error_noslot_pfn(pfn)) {
1049 ret = -EFAULT;
1050 goto out;
1051 }
1052
1053 page = pfn_to_online_page(pfn);
1054 if (!page) {
1055 /* Reject ZONE_DEVICE memory */
1056 ret = -EFAULT;
1057 goto out;
1058 }
1059 maddr = page_address(page);
1060
1061 if (!write) {
1062 if (page_mte_tagged(page))
1063 num_tags = mte_copy_tags_to_user(tags, maddr,
1064 MTE_GRANULES_PER_PAGE);
1065 else
1066 /* No tags in memory, so write zeros */
1067 num_tags = MTE_GRANULES_PER_PAGE -
1068 clear_user(tags, MTE_GRANULES_PER_PAGE);
1069 kvm_release_pfn_clean(pfn);
1070 } else {
1071 /*
1072 * Only locking to serialise with a concurrent
1073 * set_pte_at() in the VMM but still overriding the
1074 * tags, hence ignoring the return value.
1075 */
1076 try_page_mte_tagging(page);
1077 num_tags = mte_copy_tags_from_user(maddr, tags,
1078 MTE_GRANULES_PER_PAGE);
1079
1080 /* uaccess failed, don't leave stale tags */
1081 if (num_tags != MTE_GRANULES_PER_PAGE)
1082 mte_clear_page_tags(maddr);
1083 set_page_mte_tagged(page);
1084
1085 kvm_release_pfn_dirty(pfn);
1086 }
1087
1088 if (num_tags != MTE_GRANULES_PER_PAGE) {
1089 ret = -EFAULT;
1090 goto out;
1091 }
1092
1093 gfn++;
1094 tags += num_tags;
1095 length -= PAGE_SIZE;
1096 }
1097
1098out:
1099 mutex_unlock(&kvm->slots_lock);
1100 /* If some data has been copied report the number of bytes copied */
1101 if (length != copy_tags->length)
1102 return copy_tags->length - length;
1103 return ret;
1104}