Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2012,2013 - ARM Ltd
  4 * Author: Marc Zyngier <marc.zyngier@arm.com>
  5 *
  6 * Derived from arch/arm/kvm/guest.c:
  7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  8 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 
 
 
 
 
 
 
 
 
 
 
 
  9 */
 10
 11#include <linux/bits.h>
 12#include <linux/errno.h>
 13#include <linux/err.h>
 14#include <linux/nospec.h>
 15#include <linux/kvm_host.h>
 16#include <linux/module.h>
 17#include <linux/stddef.h>
 18#include <linux/string.h>
 19#include <linux/vmalloc.h>
 20#include <linux/fs.h>
 21#include <kvm/arm_psci.h>
 22#include <asm/cputype.h>
 23#include <linux/uaccess.h>
 24#include <asm/fpsimd.h>
 25#include <asm/kvm.h>
 26#include <asm/kvm_emulate.h>
 27#include <asm/kvm_coproc.h>
 28#include <asm/kvm_host.h>
 29#include <asm/sigcontext.h>
 30
 31#include "trace.h"
 32
 33#define VM_STAT(x) { #x, offsetof(struct kvm, stat.x), KVM_STAT_VM }
 34#define VCPU_STAT(x) { #x, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU }
 35
 36struct kvm_stats_debugfs_item debugfs_entries[] = {
 37	VCPU_STAT(hvc_exit_stat),
 38	VCPU_STAT(wfe_exit_stat),
 39	VCPU_STAT(wfi_exit_stat),
 40	VCPU_STAT(mmio_exit_user),
 41	VCPU_STAT(mmio_exit_kernel),
 42	VCPU_STAT(exits),
 43	{ NULL }
 44};
 45
 46int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
 47{
 48	return 0;
 49}
 50
 51static bool core_reg_offset_is_vreg(u64 off)
 52{
 53	return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
 54		off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
 55}
 56
 57static u64 core_reg_offset_from_id(u64 id)
 58{
 59	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
 60}
 61
 62static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
 63{
 64	int size;
 65
 66	switch (off) {
 67	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
 68	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
 69	case KVM_REG_ARM_CORE_REG(regs.sp):
 70	case KVM_REG_ARM_CORE_REG(regs.pc):
 71	case KVM_REG_ARM_CORE_REG(regs.pstate):
 72	case KVM_REG_ARM_CORE_REG(sp_el1):
 73	case KVM_REG_ARM_CORE_REG(elr_el1):
 74	case KVM_REG_ARM_CORE_REG(spsr[0]) ...
 75	     KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
 76		size = sizeof(__u64);
 77		break;
 78
 79	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
 80	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
 81		size = sizeof(__uint128_t);
 82		break;
 83
 84	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
 85	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
 86		size = sizeof(__u32);
 87		break;
 88
 89	default:
 90		return -EINVAL;
 91	}
 92
 93	if (!IS_ALIGNED(off, size / sizeof(__u32)))
 94		return -EINVAL;
 95
 96	/*
 97	 * The KVM_REG_ARM64_SVE regs must be used instead of
 98	 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
 99	 * SVE-enabled vcpus:
100	 */
101	if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
102		return -EINVAL;
103
104	return size;
105}
106
107static int validate_core_offset(const struct kvm_vcpu *vcpu,
108				const struct kvm_one_reg *reg)
109{
110	u64 off = core_reg_offset_from_id(reg->id);
111	int size = core_reg_size_from_offset(vcpu, off);
112
113	if (size < 0)
114		return -EINVAL;
115
116	if (KVM_REG_SIZE(reg->id) != size)
117		return -EINVAL;
118
119	return 0;
120}
121
122static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
123{
124	/*
125	 * Because the kvm_regs structure is a mix of 32, 64 and
126	 * 128bit fields, we index it as if it was a 32bit
127	 * array. Hence below, nr_regs is the number of entries, and
128	 * off the index in the "array".
129	 */
130	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
131	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
132	int nr_regs = sizeof(*regs) / sizeof(__u32);
133	u32 off;
134
135	/* Our ID is an index into the kvm_regs struct. */
136	off = core_reg_offset_from_id(reg->id);
137	if (off >= nr_regs ||
138	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
139		return -ENOENT;
140
141	if (validate_core_offset(vcpu, reg))
142		return -EINVAL;
143
144	if (copy_to_user(uaddr, ((u32 *)regs) + off, KVM_REG_SIZE(reg->id)))
145		return -EFAULT;
146
147	return 0;
148}
149
150static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
151{
152	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
153	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
154	int nr_regs = sizeof(*regs) / sizeof(__u32);
155	__uint128_t tmp;
156	void *valp = &tmp;
157	u64 off;
158	int err = 0;
159
160	/* Our ID is an index into the kvm_regs struct. */
161	off = core_reg_offset_from_id(reg->id);
162	if (off >= nr_regs ||
163	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
164		return -ENOENT;
165
166	if (validate_core_offset(vcpu, reg))
167		return -EINVAL;
168
169	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
170		return -EINVAL;
171
172	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
173		err = -EFAULT;
174		goto out;
175	}
176
177	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
178		u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
179		switch (mode) {
180		case PSR_AA32_MODE_USR:
181			if (!system_supports_32bit_el0())
182				return -EINVAL;
183			break;
184		case PSR_AA32_MODE_FIQ:
185		case PSR_AA32_MODE_IRQ:
186		case PSR_AA32_MODE_SVC:
187		case PSR_AA32_MODE_ABT:
188		case PSR_AA32_MODE_UND:
189			if (!vcpu_el1_is_32bit(vcpu))
190				return -EINVAL;
191			break;
192		case PSR_MODE_EL0t:
193		case PSR_MODE_EL1t:
194		case PSR_MODE_EL1h:
195			if (vcpu_el1_is_32bit(vcpu))
196				return -EINVAL;
197			break;
198		default:
199			err = -EINVAL;
200			goto out;
201		}
202	}
203
204	memcpy((u32 *)regs + off, valp, KVM_REG_SIZE(reg->id));
205out:
206	return err;
207}
208
209#define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
210#define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
211#define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
212
213static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
214{
215	unsigned int max_vq, vq;
216	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
217
218	if (!vcpu_has_sve(vcpu))
219		return -ENOENT;
220
221	if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
222		return -EINVAL;
223
224	memset(vqs, 0, sizeof(vqs));
225
226	max_vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
227	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
228		if (sve_vq_available(vq))
229			vqs[vq_word(vq)] |= vq_mask(vq);
230
231	if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
232		return -EFAULT;
233
234	return 0;
235}
236
237static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
238{
239	unsigned int max_vq, vq;
240	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
241
242	if (!vcpu_has_sve(vcpu))
243		return -ENOENT;
244
245	if (kvm_arm_vcpu_sve_finalized(vcpu))
246		return -EPERM; /* too late! */
247
248	if (WARN_ON(vcpu->arch.sve_state))
249		return -EINVAL;
250
251	if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
252		return -EFAULT;
253
254	max_vq = 0;
255	for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
256		if (vq_present(vqs, vq))
257			max_vq = vq;
258
259	if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
260		return -EINVAL;
261
262	/*
263	 * Vector lengths supported by the host can't currently be
264	 * hidden from the guest individually: instead we can only set a
265	 * maxmium via ZCR_EL2.LEN.  So, make sure the available vector
266	 * lengths match the set requested exactly up to the requested
267	 * maximum:
268	 */
269	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
270		if (vq_present(vqs, vq) != sve_vq_available(vq))
271			return -EINVAL;
272
273	/* Can't run with no vector lengths at all: */
274	if (max_vq < SVE_VQ_MIN)
275		return -EINVAL;
276
277	/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
278	vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
279
280	return 0;
281}
282
283#define SVE_REG_SLICE_SHIFT	0
284#define SVE_REG_SLICE_BITS	5
285#define SVE_REG_ID_SHIFT	(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
286#define SVE_REG_ID_BITS		5
287
288#define SVE_REG_SLICE_MASK					\
289	GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1,	\
290		SVE_REG_SLICE_SHIFT)
291#define SVE_REG_ID_MASK							\
292	GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
293
294#define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
295
296#define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
297#define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
298
299/*
300 * Number of register slices required to cover each whole SVE register.
301 * NOTE: Only the first slice every exists, for now.
302 * If you are tempted to modify this, you must also rework sve_reg_to_region()
303 * to match:
304 */
305#define vcpu_sve_slices(vcpu) 1
306
307/* Bounds of a single SVE register slice within vcpu->arch.sve_state */
308struct sve_state_reg_region {
309	unsigned int koffset;	/* offset into sve_state in kernel memory */
310	unsigned int klen;	/* length in kernel memory */
311	unsigned int upad;	/* extra trailing padding in user memory */
312};
313
314/*
315 * Validate SVE register ID and get sanitised bounds for user/kernel SVE
316 * register copy
317 */
318static int sve_reg_to_region(struct sve_state_reg_region *region,
319			     struct kvm_vcpu *vcpu,
320			     const struct kvm_one_reg *reg)
321{
322	/* reg ID ranges for Z- registers */
323	const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
324	const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
325						       SVE_NUM_SLICES - 1);
326
327	/* reg ID ranges for P- registers and FFR (which are contiguous) */
328	const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
329	const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
330
331	unsigned int vq;
332	unsigned int reg_num;
333
334	unsigned int reqoffset, reqlen; /* User-requested offset and length */
335	unsigned int maxlen; /* Maxmimum permitted length */
336
337	size_t sve_state_size;
338
339	const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
340							SVE_NUM_SLICES - 1);
341
342	/* Verify that the P-regs and FFR really do have contiguous IDs: */
343	BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
344
345	/* Verify that we match the UAPI header: */
346	BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
347
348	reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
349
350	if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
351		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
352			return -ENOENT;
353
354		vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
355
356		reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
357				SVE_SIG_REGS_OFFSET;
358		reqlen = KVM_SVE_ZREG_SIZE;
359		maxlen = SVE_SIG_ZREG_SIZE(vq);
360	} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
361		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
362			return -ENOENT;
363
364		vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
365
366		reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
367				SVE_SIG_REGS_OFFSET;
368		reqlen = KVM_SVE_PREG_SIZE;
369		maxlen = SVE_SIG_PREG_SIZE(vq);
370	} else {
371		return -EINVAL;
372	}
373
374	sve_state_size = vcpu_sve_state_size(vcpu);
375	if (WARN_ON(!sve_state_size))
376		return -EINVAL;
377
378	region->koffset = array_index_nospec(reqoffset, sve_state_size);
379	region->klen = min(maxlen, reqlen);
380	region->upad = reqlen - region->klen;
381
382	return 0;
383}
384
385static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
386{
387	int ret;
388	struct sve_state_reg_region region;
389	char __user *uptr = (char __user *)reg->addr;
390
391	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
392	if (reg->id == KVM_REG_ARM64_SVE_VLS)
393		return get_sve_vls(vcpu, reg);
394
395	/* Try to interpret reg ID as an architectural SVE register... */
396	ret = sve_reg_to_region(&region, vcpu, reg);
397	if (ret)
398		return ret;
399
400	if (!kvm_arm_vcpu_sve_finalized(vcpu))
401		return -EPERM;
402
403	if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
404			 region.klen) ||
405	    clear_user(uptr + region.klen, region.upad))
406		return -EFAULT;
407
408	return 0;
409}
410
411static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
412{
413	int ret;
414	struct sve_state_reg_region region;
415	const char __user *uptr = (const char __user *)reg->addr;
416
417	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
418	if (reg->id == KVM_REG_ARM64_SVE_VLS)
419		return set_sve_vls(vcpu, reg);
420
421	/* Try to interpret reg ID as an architectural SVE register... */
422	ret = sve_reg_to_region(&region, vcpu, reg);
423	if (ret)
424		return ret;
425
426	if (!kvm_arm_vcpu_sve_finalized(vcpu))
427		return -EPERM;
428
429	if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
430			   region.klen))
431		return -EFAULT;
432
433	return 0;
434}
435
436int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
437{
438	return -EINVAL;
439}
440
441int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
442{
443	return -EINVAL;
444}
445
446static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
447				 u64 __user *uindices)
448{
449	unsigned int i;
450	int n = 0;
451
452	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
453		u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
454		int size = core_reg_size_from_offset(vcpu, i);
455
456		if (size < 0)
457			continue;
458
459		switch (size) {
460		case sizeof(__u32):
461			reg |= KVM_REG_SIZE_U32;
462			break;
463
464		case sizeof(__u64):
465			reg |= KVM_REG_SIZE_U64;
466			break;
467
468		case sizeof(__uint128_t):
469			reg |= KVM_REG_SIZE_U128;
470			break;
471
472		default:
473			WARN_ON(1);
474			continue;
475		}
476
477		if (uindices) {
478			if (put_user(reg, uindices))
479				return -EFAULT;
480			uindices++;
481		}
482
483		n++;
484	}
485
486	return n;
487}
488
489static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
490{
491	return copy_core_reg_indices(vcpu, NULL);
492}
493
494/**
495 * ARM64 versions of the TIMER registers, always available on arm64
496 */
497
498#define NUM_TIMER_REGS 3
499
500static bool is_timer_reg(u64 index)
501{
502	switch (index) {
503	case KVM_REG_ARM_TIMER_CTL:
504	case KVM_REG_ARM_TIMER_CNT:
505	case KVM_REG_ARM_TIMER_CVAL:
506		return true;
507	}
508	return false;
509}
510
511static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
512{
513	if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
514		return -EFAULT;
515	uindices++;
516	if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
517		return -EFAULT;
518	uindices++;
519	if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
520		return -EFAULT;
521
522	return 0;
523}
524
525static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
526{
527	void __user *uaddr = (void __user *)(long)reg->addr;
528	u64 val;
529	int ret;
530
531	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
532	if (ret != 0)
533		return -EFAULT;
534
535	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
536}
537
538static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
539{
540	void __user *uaddr = (void __user *)(long)reg->addr;
541	u64 val;
542
543	val = kvm_arm_timer_get_reg(vcpu, reg->id);
544	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
545}
546
547static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
548{
549	const unsigned int slices = vcpu_sve_slices(vcpu);
550
551	if (!vcpu_has_sve(vcpu))
552		return 0;
553
554	/* Policed by KVM_GET_REG_LIST: */
555	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
556
557	return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
558		+ 1; /* KVM_REG_ARM64_SVE_VLS */
559}
560
561static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
562				u64 __user *uindices)
563{
564	const unsigned int slices = vcpu_sve_slices(vcpu);
565	u64 reg;
566	unsigned int i, n;
567	int num_regs = 0;
568
569	if (!vcpu_has_sve(vcpu))
570		return 0;
571
572	/* Policed by KVM_GET_REG_LIST: */
573	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
574
575	/*
576	 * Enumerate this first, so that userspace can save/restore in
577	 * the order reported by KVM_GET_REG_LIST:
578	 */
579	reg = KVM_REG_ARM64_SVE_VLS;
580	if (put_user(reg, uindices++))
581		return -EFAULT;
582	++num_regs;
583
584	for (i = 0; i < slices; i++) {
585		for (n = 0; n < SVE_NUM_ZREGS; n++) {
586			reg = KVM_REG_ARM64_SVE_ZREG(n, i);
587			if (put_user(reg, uindices++))
588				return -EFAULT;
589			num_regs++;
590		}
591
592		for (n = 0; n < SVE_NUM_PREGS; n++) {
593			reg = KVM_REG_ARM64_SVE_PREG(n, i);
594			if (put_user(reg, uindices++))
595				return -EFAULT;
596			num_regs++;
597		}
598
599		reg = KVM_REG_ARM64_SVE_FFR(i);
600		if (put_user(reg, uindices++))
601			return -EFAULT;
602		num_regs++;
603	}
604
605	return num_regs;
606}
607
608/**
609 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
610 *
611 * This is for all registers.
612 */
613unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
614{
615	unsigned long res = 0;
616
617	res += num_core_regs(vcpu);
618	res += num_sve_regs(vcpu);
619	res += kvm_arm_num_sys_reg_descs(vcpu);
620	res += kvm_arm_get_fw_num_regs(vcpu);
621	res += NUM_TIMER_REGS;
622
623	return res;
624}
625
626/**
627 * kvm_arm_copy_reg_indices - get indices of all registers.
628 *
629 * We do core registers right here, then we append system regs.
630 */
631int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
632{
 
 
633	int ret;
634
635	ret = copy_core_reg_indices(vcpu, uindices);
636	if (ret < 0)
637		return ret;
638	uindices += ret;
639
640	ret = copy_sve_reg_indices(vcpu, uindices);
641	if (ret < 0)
642		return ret;
643	uindices += ret;
644
645	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
646	if (ret < 0)
647		return ret;
648	uindices += kvm_arm_get_fw_num_regs(vcpu);
649
650	ret = copy_timer_indices(vcpu, uindices);
651	if (ret < 0)
652		return ret;
653	uindices += NUM_TIMER_REGS;
654
655	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
656}
657
658int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
659{
660	/* We currently use nothing arch-specific in upper 32 bits */
661	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
662		return -EINVAL;
663
664	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
665	case KVM_REG_ARM_CORE:	return get_core_reg(vcpu, reg);
666	case KVM_REG_ARM_FW:	return kvm_arm_get_fw_reg(vcpu, reg);
667	case KVM_REG_ARM64_SVE:	return get_sve_reg(vcpu, reg);
668	}
669
670	if (is_timer_reg(reg->id))
671		return get_timer_reg(vcpu, reg);
672
673	return kvm_arm_sys_reg_get_reg(vcpu, reg);
674}
675
676int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
677{
678	/* We currently use nothing arch-specific in upper 32 bits */
679	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
680		return -EINVAL;
681
682	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
683	case KVM_REG_ARM_CORE:	return set_core_reg(vcpu, reg);
684	case KVM_REG_ARM_FW:	return kvm_arm_set_fw_reg(vcpu, reg);
685	case KVM_REG_ARM64_SVE:	return set_sve_reg(vcpu, reg);
686	}
687
688	if (is_timer_reg(reg->id))
689		return set_timer_reg(vcpu, reg);
690
691	return kvm_arm_sys_reg_set_reg(vcpu, reg);
692}
693
694int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
695				  struct kvm_sregs *sregs)
696{
697	return -EINVAL;
698}
699
700int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
701				  struct kvm_sregs *sregs)
702{
703	return -EINVAL;
704}
705
706int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
707			      struct kvm_vcpu_events *events)
708{
709	events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
710	events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
711
712	if (events->exception.serror_pending && events->exception.serror_has_esr)
713		events->exception.serror_esr = vcpu_get_vsesr(vcpu);
714
715	return 0;
716}
717
718int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
719			      struct kvm_vcpu_events *events)
720{
721	bool serror_pending = events->exception.serror_pending;
722	bool has_esr = events->exception.serror_has_esr;
723
724	if (serror_pending && has_esr) {
725		if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
726			return -EINVAL;
727
728		if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
729			kvm_set_sei_esr(vcpu, events->exception.serror_esr);
730		else
731			return -EINVAL;
732	} else if (serror_pending) {
733		kvm_inject_vabt(vcpu);
734	}
735
736	return 0;
737}
738
739int __attribute_const__ kvm_target_cpu(void)
740{
741	unsigned long implementor = read_cpuid_implementor();
742	unsigned long part_number = read_cpuid_part_number();
743
744	switch (implementor) {
745	case ARM_CPU_IMP_ARM:
746		switch (part_number) {
747		case ARM_CPU_PART_AEM_V8:
748			return KVM_ARM_TARGET_AEM_V8;
749		case ARM_CPU_PART_FOUNDATION:
750			return KVM_ARM_TARGET_FOUNDATION_V8;
751		case ARM_CPU_PART_CORTEX_A53:
752			return KVM_ARM_TARGET_CORTEX_A53;
753		case ARM_CPU_PART_CORTEX_A57:
754			return KVM_ARM_TARGET_CORTEX_A57;
755		}
756		break;
757	case ARM_CPU_IMP_APM:
758		switch (part_number) {
759		case APM_CPU_PART_POTENZA:
760			return KVM_ARM_TARGET_XGENE_POTENZA;
761		}
762		break;
763	}
764
765	/* Return a default generic target */
766	return KVM_ARM_TARGET_GENERIC_V8;
767}
768
769int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
770{
771	int target = kvm_target_cpu();
772
773	if (target < 0)
774		return -ENODEV;
775
776	memset(init, 0, sizeof(*init));
777
778	/*
779	 * For now, we don't return any features.
780	 * In future, we might use features to return target
781	 * specific features available for the preferred
782	 * target type.
783	 */
784	init->target = (__u32)target;
785
786	return 0;
787}
788
789int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
790{
791	return -EINVAL;
792}
793
794int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
795{
796	return -EINVAL;
797}
798
799int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
800				  struct kvm_translation *tr)
801{
802	return -EINVAL;
803}
804
805#define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE |    \
806			    KVM_GUESTDBG_USE_SW_BP | \
807			    KVM_GUESTDBG_USE_HW | \
808			    KVM_GUESTDBG_SINGLESTEP)
809
810/**
811 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
812 * @kvm:	pointer to the KVM struct
813 * @kvm_guest_debug: the ioctl data buffer
814 *
815 * This sets up and enables the VM for guest debugging. Userspace
816 * passes in a control flag to enable different debug types and
817 * potentially other architecture specific information in the rest of
818 * the structure.
819 */
820int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
821					struct kvm_guest_debug *dbg)
822{
823	int ret = 0;
824
825	trace_kvm_set_guest_debug(vcpu, dbg->control);
826
827	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
828		ret = -EINVAL;
829		goto out;
830	}
831
832	if (dbg->control & KVM_GUESTDBG_ENABLE) {
833		vcpu->guest_debug = dbg->control;
834
835		/* Hardware assisted Break and Watch points */
836		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
837			vcpu->arch.external_debug_state = dbg->arch;
838		}
839
840	} else {
841		/* If not enabled clear all flags */
842		vcpu->guest_debug = 0;
843	}
844
845out:
846	return ret;
847}
848
849int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
850			       struct kvm_device_attr *attr)
851{
852	int ret;
853
854	switch (attr->group) {
855	case KVM_ARM_VCPU_PMU_V3_CTRL:
856		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
857		break;
858	case KVM_ARM_VCPU_TIMER_CTRL:
859		ret = kvm_arm_timer_set_attr(vcpu, attr);
860		break;
861	default:
862		ret = -ENXIO;
863		break;
864	}
865
866	return ret;
867}
868
869int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
870			       struct kvm_device_attr *attr)
871{
872	int ret;
873
874	switch (attr->group) {
875	case KVM_ARM_VCPU_PMU_V3_CTRL:
876		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
877		break;
878	case KVM_ARM_VCPU_TIMER_CTRL:
879		ret = kvm_arm_timer_get_attr(vcpu, attr);
880		break;
881	default:
882		ret = -ENXIO;
883		break;
884	}
885
886	return ret;
887}
888
889int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
890			       struct kvm_device_attr *attr)
891{
892	int ret;
893
894	switch (attr->group) {
895	case KVM_ARM_VCPU_PMU_V3_CTRL:
896		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
897		break;
898	case KVM_ARM_VCPU_TIMER_CTRL:
899		ret = kvm_arm_timer_has_attr(vcpu, attr);
900		break;
901	default:
902		ret = -ENXIO;
903		break;
904	}
905
906	return ret;
907}
v4.6
 
  1/*
  2 * Copyright (C) 2012,2013 - ARM Ltd
  3 * Author: Marc Zyngier <marc.zyngier@arm.com>
  4 *
  5 * Derived from arch/arm/kvm/guest.c:
  6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  7 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License version 2 as
 11 * published by the Free Software Foundation.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 20 */
 21
 
 22#include <linux/errno.h>
 23#include <linux/err.h>
 
 24#include <linux/kvm_host.h>
 25#include <linux/module.h>
 
 
 26#include <linux/vmalloc.h>
 27#include <linux/fs.h>
 
 28#include <asm/cputype.h>
 29#include <asm/uaccess.h>
 
 30#include <asm/kvm.h>
 31#include <asm/kvm_emulate.h>
 32#include <asm/kvm_coproc.h>
 
 
 33
 34#include "trace.h"
 35
 36#define VM_STAT(x) { #x, offsetof(struct kvm, stat.x), KVM_STAT_VM }
 37#define VCPU_STAT(x) { #x, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU }
 38
 39struct kvm_stats_debugfs_item debugfs_entries[] = {
 40	VCPU_STAT(hvc_exit_stat),
 41	VCPU_STAT(wfe_exit_stat),
 42	VCPU_STAT(wfi_exit_stat),
 43	VCPU_STAT(mmio_exit_user),
 44	VCPU_STAT(mmio_exit_kernel),
 45	VCPU_STAT(exits),
 46	{ NULL }
 47};
 48
 49int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
 50{
 51	return 0;
 52}
 53
 
 
 
 
 
 
 54static u64 core_reg_offset_from_id(u64 id)
 55{
 56	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
 57}
 58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 59static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 60{
 61	/*
 62	 * Because the kvm_regs structure is a mix of 32, 64 and
 63	 * 128bit fields, we index it as if it was a 32bit
 64	 * array. Hence below, nr_regs is the number of entries, and
 65	 * off the index in the "array".
 66	 */
 67	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
 68	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
 69	int nr_regs = sizeof(*regs) / sizeof(__u32);
 70	u32 off;
 71
 72	/* Our ID is an index into the kvm_regs struct. */
 73	off = core_reg_offset_from_id(reg->id);
 74	if (off >= nr_regs ||
 75	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
 76		return -ENOENT;
 77
 
 
 
 78	if (copy_to_user(uaddr, ((u32 *)regs) + off, KVM_REG_SIZE(reg->id)))
 79		return -EFAULT;
 80
 81	return 0;
 82}
 83
 84static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 85{
 86	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
 87	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
 88	int nr_regs = sizeof(*regs) / sizeof(__u32);
 89	__uint128_t tmp;
 90	void *valp = &tmp;
 91	u64 off;
 92	int err = 0;
 93
 94	/* Our ID is an index into the kvm_regs struct. */
 95	off = core_reg_offset_from_id(reg->id);
 96	if (off >= nr_regs ||
 97	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
 98		return -ENOENT;
 99
 
 
 
100	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
101		return -EINVAL;
102
103	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
104		err = -EFAULT;
105		goto out;
106	}
107
108	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
109		u32 mode = (*(u32 *)valp) & COMPAT_PSR_MODE_MASK;
110		switch (mode) {
111		case COMPAT_PSR_MODE_USR:
112		case COMPAT_PSR_MODE_FIQ:
113		case COMPAT_PSR_MODE_IRQ:
114		case COMPAT_PSR_MODE_SVC:
115		case COMPAT_PSR_MODE_ABT:
116		case COMPAT_PSR_MODE_UND:
 
 
 
 
 
 
117		case PSR_MODE_EL0t:
118		case PSR_MODE_EL1t:
119		case PSR_MODE_EL1h:
 
 
120			break;
121		default:
122			err = -EINVAL;
123			goto out;
124		}
125	}
126
127	memcpy((u32 *)regs + off, valp, KVM_REG_SIZE(reg->id));
128out:
129	return err;
130}
131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
133{
134	return -EINVAL;
135}
136
137int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
138{
139	return -EINVAL;
140}
141
142static unsigned long num_core_regs(void)
 
143{
144	return sizeof(struct kvm_regs) / sizeof(__u32);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145}
146
147/**
148 * ARM64 versions of the TIMER registers, always available on arm64
149 */
150
151#define NUM_TIMER_REGS 3
152
153static bool is_timer_reg(u64 index)
154{
155	switch (index) {
156	case KVM_REG_ARM_TIMER_CTL:
157	case KVM_REG_ARM_TIMER_CNT:
158	case KVM_REG_ARM_TIMER_CVAL:
159		return true;
160	}
161	return false;
162}
163
164static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
165{
166	if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
167		return -EFAULT;
168	uindices++;
169	if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
170		return -EFAULT;
171	uindices++;
172	if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
173		return -EFAULT;
174
175	return 0;
176}
177
178static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
179{
180	void __user *uaddr = (void __user *)(long)reg->addr;
181	u64 val;
182	int ret;
183
184	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
185	if (ret != 0)
186		return -EFAULT;
187
188	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
189}
190
191static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
192{
193	void __user *uaddr = (void __user *)(long)reg->addr;
194	u64 val;
195
196	val = kvm_arm_timer_get_reg(vcpu, reg->id);
197	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
198}
199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200/**
201 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
202 *
203 * This is for all registers.
204 */
205unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
206{
207	return num_core_regs() + kvm_arm_num_sys_reg_descs(vcpu)
208                + NUM_TIMER_REGS;
 
 
 
 
 
 
 
209}
210
211/**
212 * kvm_arm_copy_reg_indices - get indices of all registers.
213 *
214 * We do core registers right here, then we apppend system regs.
215 */
216int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
217{
218	unsigned int i;
219	const u64 core_reg = KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE;
220	int ret;
221
222	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
223		if (put_user(core_reg | i, uindices))
224			return -EFAULT;
225		uindices++;
226	}
 
 
 
 
 
 
 
 
 
227
228	ret = copy_timer_indices(vcpu, uindices);
229	if (ret)
230		return ret;
231	uindices += NUM_TIMER_REGS;
232
233	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
234}
235
236int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
237{
238	/* We currently use nothing arch-specific in upper 32 bits */
239	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
240		return -EINVAL;
241
242	/* Register group 16 means we want a core register. */
243	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_CORE)
244		return get_core_reg(vcpu, reg);
 
 
245
246	if (is_timer_reg(reg->id))
247		return get_timer_reg(vcpu, reg);
248
249	return kvm_arm_sys_reg_get_reg(vcpu, reg);
250}
251
252int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
253{
254	/* We currently use nothing arch-specific in upper 32 bits */
255	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
256		return -EINVAL;
257
258	/* Register group 16 means we set a core register. */
259	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_CORE)
260		return set_core_reg(vcpu, reg);
 
 
261
262	if (is_timer_reg(reg->id))
263		return set_timer_reg(vcpu, reg);
264
265	return kvm_arm_sys_reg_set_reg(vcpu, reg);
266}
267
268int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
269				  struct kvm_sregs *sregs)
270{
271	return -EINVAL;
272}
273
274int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
275				  struct kvm_sregs *sregs)
276{
277	return -EINVAL;
278}
279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280int __attribute_const__ kvm_target_cpu(void)
281{
282	unsigned long implementor = read_cpuid_implementor();
283	unsigned long part_number = read_cpuid_part_number();
284
285	switch (implementor) {
286	case ARM_CPU_IMP_ARM:
287		switch (part_number) {
288		case ARM_CPU_PART_AEM_V8:
289			return KVM_ARM_TARGET_AEM_V8;
290		case ARM_CPU_PART_FOUNDATION:
291			return KVM_ARM_TARGET_FOUNDATION_V8;
292		case ARM_CPU_PART_CORTEX_A53:
293			return KVM_ARM_TARGET_CORTEX_A53;
294		case ARM_CPU_PART_CORTEX_A57:
295			return KVM_ARM_TARGET_CORTEX_A57;
296		};
297		break;
298	case ARM_CPU_IMP_APM:
299		switch (part_number) {
300		case APM_CPU_PART_POTENZA:
301			return KVM_ARM_TARGET_XGENE_POTENZA;
302		};
303		break;
304	};
305
306	/* Return a default generic target */
307	return KVM_ARM_TARGET_GENERIC_V8;
308}
309
310int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
311{
312	int target = kvm_target_cpu();
313
314	if (target < 0)
315		return -ENODEV;
316
317	memset(init, 0, sizeof(*init));
318
319	/*
320	 * For now, we don't return any features.
321	 * In future, we might use features to return target
322	 * specific features available for the preferred
323	 * target type.
324	 */
325	init->target = (__u32)target;
326
327	return 0;
328}
329
330int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
331{
332	return -EINVAL;
333}
334
335int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
336{
337	return -EINVAL;
338}
339
340int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
341				  struct kvm_translation *tr)
342{
343	return -EINVAL;
344}
345
346#define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE |    \
347			    KVM_GUESTDBG_USE_SW_BP | \
348			    KVM_GUESTDBG_USE_HW | \
349			    KVM_GUESTDBG_SINGLESTEP)
350
351/**
352 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
353 * @kvm:	pointer to the KVM struct
354 * @kvm_guest_debug: the ioctl data buffer
355 *
356 * This sets up and enables the VM for guest debugging. Userspace
357 * passes in a control flag to enable different debug types and
358 * potentially other architecture specific information in the rest of
359 * the structure.
360 */
361int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
362					struct kvm_guest_debug *dbg)
363{
 
 
364	trace_kvm_set_guest_debug(vcpu, dbg->control);
365
366	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK)
367		return -EINVAL;
 
 
368
369	if (dbg->control & KVM_GUESTDBG_ENABLE) {
370		vcpu->guest_debug = dbg->control;
371
372		/* Hardware assisted Break and Watch points */
373		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
374			vcpu->arch.external_debug_state = dbg->arch;
375		}
376
377	} else {
378		/* If not enabled clear all flags */
379		vcpu->guest_debug = 0;
380	}
381	return 0;
 
 
382}
383
384int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
385			       struct kvm_device_attr *attr)
386{
387	int ret;
388
389	switch (attr->group) {
390	case KVM_ARM_VCPU_PMU_V3_CTRL:
391		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
392		break;
 
 
 
393	default:
394		ret = -ENXIO;
395		break;
396	}
397
398	return ret;
399}
400
401int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
402			       struct kvm_device_attr *attr)
403{
404	int ret;
405
406	switch (attr->group) {
407	case KVM_ARM_VCPU_PMU_V3_CTRL:
408		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
409		break;
 
 
 
410	default:
411		ret = -ENXIO;
412		break;
413	}
414
415	return ret;
416}
417
418int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
419			       struct kvm_device_attr *attr)
420{
421	int ret;
422
423	switch (attr->group) {
424	case KVM_ARM_VCPU_PMU_V3_CTRL:
425		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
 
 
 
426		break;
427	default:
428		ret = -ENXIO;
429		break;
430	}
431
432	return ret;
433}