Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2012,2013 - ARM Ltd
  4 * Author: Marc Zyngier <marc.zyngier@arm.com>
  5 *
  6 * Derived from arch/arm/kvm/guest.c:
  7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  8 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
  9 */
 10
 11#include <linux/bits.h>
 12#include <linux/errno.h>
 13#include <linux/err.h>
 14#include <linux/nospec.h>
 15#include <linux/kvm_host.h>
 16#include <linux/module.h>
 17#include <linux/stddef.h>
 18#include <linux/string.h>
 19#include <linux/vmalloc.h>
 20#include <linux/fs.h>
 21#include <kvm/arm_psci.h>
 22#include <asm/cputype.h>
 23#include <linux/uaccess.h>
 24#include <asm/fpsimd.h>
 25#include <asm/kvm.h>
 26#include <asm/kvm_emulate.h>
 27#include <asm/kvm_coproc.h>
 28#include <asm/kvm_host.h>
 29#include <asm/sigcontext.h>
 30
 31#include "trace.h"
 32
 33#define VM_STAT(x) { #x, offsetof(struct kvm, stat.x), KVM_STAT_VM }
 34#define VCPU_STAT(x) { #x, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU }
 
 35
 36struct kvm_stats_debugfs_item debugfs_entries[] = {
 37	VCPU_STAT(hvc_exit_stat),
 38	VCPU_STAT(wfe_exit_stat),
 39	VCPU_STAT(wfi_exit_stat),
 40	VCPU_STAT(mmio_exit_user),
 41	VCPU_STAT(mmio_exit_kernel),
 42	VCPU_STAT(exits),
 43	{ NULL }
 44};
 45
 46int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
 47{
 48	return 0;
 49}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 50
 51static bool core_reg_offset_is_vreg(u64 off)
 52{
 53	return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
 54		off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
 55}
 56
 57static u64 core_reg_offset_from_id(u64 id)
 58{
 59	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
 60}
 61
 62static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
 63{
 64	int size;
 65
 66	switch (off) {
 67	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
 68	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
 69	case KVM_REG_ARM_CORE_REG(regs.sp):
 70	case KVM_REG_ARM_CORE_REG(regs.pc):
 71	case KVM_REG_ARM_CORE_REG(regs.pstate):
 72	case KVM_REG_ARM_CORE_REG(sp_el1):
 73	case KVM_REG_ARM_CORE_REG(elr_el1):
 74	case KVM_REG_ARM_CORE_REG(spsr[0]) ...
 75	     KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
 76		size = sizeof(__u64);
 77		break;
 78
 79	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
 80	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
 81		size = sizeof(__uint128_t);
 82		break;
 83
 84	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
 85	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
 86		size = sizeof(__u32);
 87		break;
 88
 89	default:
 90		return -EINVAL;
 91	}
 92
 93	if (!IS_ALIGNED(off, size / sizeof(__u32)))
 94		return -EINVAL;
 95
 96	/*
 97	 * The KVM_REG_ARM64_SVE regs must be used instead of
 98	 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
 99	 * SVE-enabled vcpus:
100	 */
101	if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
102		return -EINVAL;
103
104	return size;
105}
106
107static int validate_core_offset(const struct kvm_vcpu *vcpu,
108				const struct kvm_one_reg *reg)
109{
110	u64 off = core_reg_offset_from_id(reg->id);
111	int size = core_reg_size_from_offset(vcpu, off);
112
113	if (size < 0)
114		return -EINVAL;
115
116	if (KVM_REG_SIZE(reg->id) != size)
117		return -EINVAL;
118
119	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120}
121
122static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
123{
124	/*
125	 * Because the kvm_regs structure is a mix of 32, 64 and
126	 * 128bit fields, we index it as if it was a 32bit
127	 * array. Hence below, nr_regs is the number of entries, and
128	 * off the index in the "array".
129	 */
130	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
131	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
132	int nr_regs = sizeof(*regs) / sizeof(__u32);
133	u32 off;
134
135	/* Our ID is an index into the kvm_regs struct. */
136	off = core_reg_offset_from_id(reg->id);
137	if (off >= nr_regs ||
138	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
139		return -ENOENT;
140
141	if (validate_core_offset(vcpu, reg))
 
142		return -EINVAL;
143
144	if (copy_to_user(uaddr, ((u32 *)regs) + off, KVM_REG_SIZE(reg->id)))
145		return -EFAULT;
146
147	return 0;
148}
149
150static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
151{
152	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
153	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
154	int nr_regs = sizeof(*regs) / sizeof(__u32);
155	__uint128_t tmp;
156	void *valp = &tmp;
157	u64 off;
158	int err = 0;
159
160	/* Our ID is an index into the kvm_regs struct. */
161	off = core_reg_offset_from_id(reg->id);
162	if (off >= nr_regs ||
163	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
164		return -ENOENT;
165
166	if (validate_core_offset(vcpu, reg))
 
167		return -EINVAL;
168
169	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
170		return -EINVAL;
171
172	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
173		err = -EFAULT;
174		goto out;
175	}
176
177	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
178		u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
179		switch (mode) {
180		case PSR_AA32_MODE_USR:
181			if (!system_supports_32bit_el0())
182				return -EINVAL;
183			break;
184		case PSR_AA32_MODE_FIQ:
185		case PSR_AA32_MODE_IRQ:
186		case PSR_AA32_MODE_SVC:
187		case PSR_AA32_MODE_ABT:
188		case PSR_AA32_MODE_UND:
189			if (!vcpu_el1_is_32bit(vcpu))
190				return -EINVAL;
191			break;
 
 
 
 
 
192		case PSR_MODE_EL0t:
193		case PSR_MODE_EL1t:
194		case PSR_MODE_EL1h:
195			if (vcpu_el1_is_32bit(vcpu))
196				return -EINVAL;
197			break;
198		default:
199			err = -EINVAL;
200			goto out;
201		}
202	}
203
204	memcpy((u32 *)regs + off, valp, KVM_REG_SIZE(reg->id));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205out:
206	return err;
207}
208
209#define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
210#define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
211#define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
212
213static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
214{
215	unsigned int max_vq, vq;
216	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
217
218	if (!vcpu_has_sve(vcpu))
219		return -ENOENT;
220
221	if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
222		return -EINVAL;
223
224	memset(vqs, 0, sizeof(vqs));
225
226	max_vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
227	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
228		if (sve_vq_available(vq))
229			vqs[vq_word(vq)] |= vq_mask(vq);
230
231	if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
232		return -EFAULT;
233
234	return 0;
235}
236
237static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
238{
239	unsigned int max_vq, vq;
240	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
241
242	if (!vcpu_has_sve(vcpu))
243		return -ENOENT;
244
245	if (kvm_arm_vcpu_sve_finalized(vcpu))
246		return -EPERM; /* too late! */
247
248	if (WARN_ON(vcpu->arch.sve_state))
249		return -EINVAL;
250
251	if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
252		return -EFAULT;
253
254	max_vq = 0;
255	for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
256		if (vq_present(vqs, vq))
257			max_vq = vq;
258
259	if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
260		return -EINVAL;
261
262	/*
263	 * Vector lengths supported by the host can't currently be
264	 * hidden from the guest individually: instead we can only set a
265	 * maxmium via ZCR_EL2.LEN.  So, make sure the available vector
266	 * lengths match the set requested exactly up to the requested
267	 * maximum:
268	 */
269	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
270		if (vq_present(vqs, vq) != sve_vq_available(vq))
271			return -EINVAL;
272
273	/* Can't run with no vector lengths at all: */
274	if (max_vq < SVE_VQ_MIN)
275		return -EINVAL;
276
277	/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
278	vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
279
280	return 0;
281}
282
283#define SVE_REG_SLICE_SHIFT	0
284#define SVE_REG_SLICE_BITS	5
285#define SVE_REG_ID_SHIFT	(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
286#define SVE_REG_ID_BITS		5
287
288#define SVE_REG_SLICE_MASK					\
289	GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1,	\
290		SVE_REG_SLICE_SHIFT)
291#define SVE_REG_ID_MASK							\
292	GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
293
294#define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
295
296#define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
297#define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
298
299/*
300 * Number of register slices required to cover each whole SVE register.
301 * NOTE: Only the first slice every exists, for now.
302 * If you are tempted to modify this, you must also rework sve_reg_to_region()
303 * to match:
304 */
305#define vcpu_sve_slices(vcpu) 1
306
307/* Bounds of a single SVE register slice within vcpu->arch.sve_state */
308struct sve_state_reg_region {
309	unsigned int koffset;	/* offset into sve_state in kernel memory */
310	unsigned int klen;	/* length in kernel memory */
311	unsigned int upad;	/* extra trailing padding in user memory */
312};
313
314/*
315 * Validate SVE register ID and get sanitised bounds for user/kernel SVE
316 * register copy
317 */
318static int sve_reg_to_region(struct sve_state_reg_region *region,
319			     struct kvm_vcpu *vcpu,
320			     const struct kvm_one_reg *reg)
321{
322	/* reg ID ranges for Z- registers */
323	const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
324	const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
325						       SVE_NUM_SLICES - 1);
326
327	/* reg ID ranges for P- registers and FFR (which are contiguous) */
328	const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
329	const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
330
331	unsigned int vq;
332	unsigned int reg_num;
333
334	unsigned int reqoffset, reqlen; /* User-requested offset and length */
335	unsigned int maxlen; /* Maxmimum permitted length */
336
337	size_t sve_state_size;
338
339	const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
340							SVE_NUM_SLICES - 1);
341
342	/* Verify that the P-regs and FFR really do have contiguous IDs: */
343	BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
344
345	/* Verify that we match the UAPI header: */
346	BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
347
348	reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
349
350	if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
351		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
352			return -ENOENT;
353
354		vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
355
356		reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
357				SVE_SIG_REGS_OFFSET;
358		reqlen = KVM_SVE_ZREG_SIZE;
359		maxlen = SVE_SIG_ZREG_SIZE(vq);
360	} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
361		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
362			return -ENOENT;
363
364		vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
365
366		reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
367				SVE_SIG_REGS_OFFSET;
368		reqlen = KVM_SVE_PREG_SIZE;
369		maxlen = SVE_SIG_PREG_SIZE(vq);
370	} else {
371		return -EINVAL;
372	}
373
374	sve_state_size = vcpu_sve_state_size(vcpu);
375	if (WARN_ON(!sve_state_size))
376		return -EINVAL;
377
378	region->koffset = array_index_nospec(reqoffset, sve_state_size);
379	region->klen = min(maxlen, reqlen);
380	region->upad = reqlen - region->klen;
381
382	return 0;
383}
384
385static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
386{
387	int ret;
388	struct sve_state_reg_region region;
389	char __user *uptr = (char __user *)reg->addr;
390
391	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
392	if (reg->id == KVM_REG_ARM64_SVE_VLS)
393		return get_sve_vls(vcpu, reg);
394
395	/* Try to interpret reg ID as an architectural SVE register... */
396	ret = sve_reg_to_region(&region, vcpu, reg);
397	if (ret)
398		return ret;
399
400	if (!kvm_arm_vcpu_sve_finalized(vcpu))
401		return -EPERM;
402
403	if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
404			 region.klen) ||
405	    clear_user(uptr + region.klen, region.upad))
406		return -EFAULT;
407
408	return 0;
409}
410
411static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
412{
413	int ret;
414	struct sve_state_reg_region region;
415	const char __user *uptr = (const char __user *)reg->addr;
416
417	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
418	if (reg->id == KVM_REG_ARM64_SVE_VLS)
419		return set_sve_vls(vcpu, reg);
420
421	/* Try to interpret reg ID as an architectural SVE register... */
422	ret = sve_reg_to_region(&region, vcpu, reg);
423	if (ret)
424		return ret;
425
426	if (!kvm_arm_vcpu_sve_finalized(vcpu))
427		return -EPERM;
428
429	if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
430			   region.klen))
431		return -EFAULT;
432
433	return 0;
434}
435
436int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
437{
438	return -EINVAL;
439}
440
441int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
442{
443	return -EINVAL;
444}
445
446static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
447				 u64 __user *uindices)
448{
449	unsigned int i;
450	int n = 0;
451
452	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
453		u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
454		int size = core_reg_size_from_offset(vcpu, i);
455
456		if (size < 0)
457			continue;
458
459		switch (size) {
460		case sizeof(__u32):
461			reg |= KVM_REG_SIZE_U32;
462			break;
463
464		case sizeof(__u64):
465			reg |= KVM_REG_SIZE_U64;
466			break;
467
468		case sizeof(__uint128_t):
469			reg |= KVM_REG_SIZE_U128;
470			break;
471
472		default:
473			WARN_ON(1);
474			continue;
475		}
476
477		if (uindices) {
478			if (put_user(reg, uindices))
479				return -EFAULT;
480			uindices++;
481		}
482
483		n++;
484	}
485
486	return n;
487}
488
489static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
490{
491	return copy_core_reg_indices(vcpu, NULL);
492}
493
494/**
495 * ARM64 versions of the TIMER registers, always available on arm64
496 */
 
 
 
 
 
497
498#define NUM_TIMER_REGS 3
499
500static bool is_timer_reg(u64 index)
501{
502	switch (index) {
503	case KVM_REG_ARM_TIMER_CTL:
504	case KVM_REG_ARM_TIMER_CNT:
505	case KVM_REG_ARM_TIMER_CVAL:
 
 
 
506		return true;
507	}
508	return false;
509}
510
511static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
512{
513	if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
514		return -EFAULT;
515	uindices++;
516	if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
517		return -EFAULT;
518	uindices++;
519	if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
520		return -EFAULT;
521
522	return 0;
523}
524
525static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
526{
527	void __user *uaddr = (void __user *)(long)reg->addr;
528	u64 val;
529	int ret;
530
531	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
532	if (ret != 0)
533		return -EFAULT;
534
535	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
536}
537
538static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
539{
540	void __user *uaddr = (void __user *)(long)reg->addr;
541	u64 val;
542
543	val = kvm_arm_timer_get_reg(vcpu, reg->id);
544	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
545}
546
547static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
548{
549	const unsigned int slices = vcpu_sve_slices(vcpu);
550
551	if (!vcpu_has_sve(vcpu))
552		return 0;
553
554	/* Policed by KVM_GET_REG_LIST: */
555	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
556
557	return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
558		+ 1; /* KVM_REG_ARM64_SVE_VLS */
559}
560
561static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
562				u64 __user *uindices)
563{
564	const unsigned int slices = vcpu_sve_slices(vcpu);
565	u64 reg;
566	unsigned int i, n;
567	int num_regs = 0;
568
569	if (!vcpu_has_sve(vcpu))
570		return 0;
571
572	/* Policed by KVM_GET_REG_LIST: */
573	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
574
575	/*
576	 * Enumerate this first, so that userspace can save/restore in
577	 * the order reported by KVM_GET_REG_LIST:
578	 */
579	reg = KVM_REG_ARM64_SVE_VLS;
580	if (put_user(reg, uindices++))
581		return -EFAULT;
582	++num_regs;
583
584	for (i = 0; i < slices; i++) {
585		for (n = 0; n < SVE_NUM_ZREGS; n++) {
586			reg = KVM_REG_ARM64_SVE_ZREG(n, i);
587			if (put_user(reg, uindices++))
588				return -EFAULT;
589			num_regs++;
590		}
591
592		for (n = 0; n < SVE_NUM_PREGS; n++) {
593			reg = KVM_REG_ARM64_SVE_PREG(n, i);
594			if (put_user(reg, uindices++))
595				return -EFAULT;
596			num_regs++;
597		}
598
599		reg = KVM_REG_ARM64_SVE_FFR(i);
600		if (put_user(reg, uindices++))
601			return -EFAULT;
602		num_regs++;
603	}
604
605	return num_regs;
606}
607
608/**
609 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
610 *
611 * This is for all registers.
612 */
613unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
614{
615	unsigned long res = 0;
616
617	res += num_core_regs(vcpu);
618	res += num_sve_regs(vcpu);
619	res += kvm_arm_num_sys_reg_descs(vcpu);
620	res += kvm_arm_get_fw_num_regs(vcpu);
621	res += NUM_TIMER_REGS;
622
623	return res;
624}
625
626/**
627 * kvm_arm_copy_reg_indices - get indices of all registers.
628 *
629 * We do core registers right here, then we append system regs.
630 */
631int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
632{
633	int ret;
634
635	ret = copy_core_reg_indices(vcpu, uindices);
636	if (ret < 0)
637		return ret;
638	uindices += ret;
639
640	ret = copy_sve_reg_indices(vcpu, uindices);
641	if (ret < 0)
642		return ret;
643	uindices += ret;
644
645	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
646	if (ret < 0)
647		return ret;
648	uindices += kvm_arm_get_fw_num_regs(vcpu);
649
650	ret = copy_timer_indices(vcpu, uindices);
651	if (ret < 0)
652		return ret;
653	uindices += NUM_TIMER_REGS;
654
655	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
656}
657
658int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
659{
660	/* We currently use nothing arch-specific in upper 32 bits */
661	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
662		return -EINVAL;
663
664	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
665	case KVM_REG_ARM_CORE:	return get_core_reg(vcpu, reg);
666	case KVM_REG_ARM_FW:	return kvm_arm_get_fw_reg(vcpu, reg);
 
 
667	case KVM_REG_ARM64_SVE:	return get_sve_reg(vcpu, reg);
668	}
669
670	if (is_timer_reg(reg->id))
671		return get_timer_reg(vcpu, reg);
672
673	return kvm_arm_sys_reg_get_reg(vcpu, reg);
674}
675
676int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
677{
678	/* We currently use nothing arch-specific in upper 32 bits */
679	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
680		return -EINVAL;
681
682	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
683	case KVM_REG_ARM_CORE:	return set_core_reg(vcpu, reg);
684	case KVM_REG_ARM_FW:	return kvm_arm_set_fw_reg(vcpu, reg);
 
 
685	case KVM_REG_ARM64_SVE:	return set_sve_reg(vcpu, reg);
686	}
687
688	if (is_timer_reg(reg->id))
689		return set_timer_reg(vcpu, reg);
690
691	return kvm_arm_sys_reg_set_reg(vcpu, reg);
692}
693
694int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
695				  struct kvm_sregs *sregs)
696{
697	return -EINVAL;
698}
699
700int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
701				  struct kvm_sregs *sregs)
702{
703	return -EINVAL;
704}
705
706int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
707			      struct kvm_vcpu_events *events)
708{
709	events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
710	events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
711
712	if (events->exception.serror_pending && events->exception.serror_has_esr)
713		events->exception.serror_esr = vcpu_get_vsesr(vcpu);
714
 
 
 
 
 
 
715	return 0;
716}
717
718int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
719			      struct kvm_vcpu_events *events)
720{
721	bool serror_pending = events->exception.serror_pending;
722	bool has_esr = events->exception.serror_has_esr;
 
723
724	if (serror_pending && has_esr) {
725		if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
726			return -EINVAL;
727
728		if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
729			kvm_set_sei_esr(vcpu, events->exception.serror_esr);
730		else
731			return -EINVAL;
732	} else if (serror_pending) {
733		kvm_inject_vabt(vcpu);
734	}
735
 
 
 
736	return 0;
737}
738
739int __attribute_const__ kvm_target_cpu(void)
740{
741	unsigned long implementor = read_cpuid_implementor();
742	unsigned long part_number = read_cpuid_part_number();
743
744	switch (implementor) {
745	case ARM_CPU_IMP_ARM:
746		switch (part_number) {
747		case ARM_CPU_PART_AEM_V8:
748			return KVM_ARM_TARGET_AEM_V8;
749		case ARM_CPU_PART_FOUNDATION:
750			return KVM_ARM_TARGET_FOUNDATION_V8;
751		case ARM_CPU_PART_CORTEX_A53:
752			return KVM_ARM_TARGET_CORTEX_A53;
753		case ARM_CPU_PART_CORTEX_A57:
754			return KVM_ARM_TARGET_CORTEX_A57;
755		}
756		break;
757	case ARM_CPU_IMP_APM:
758		switch (part_number) {
759		case APM_CPU_PART_POTENZA:
760			return KVM_ARM_TARGET_XGENE_POTENZA;
761		}
762		break;
763	}
764
765	/* Return a default generic target */
766	return KVM_ARM_TARGET_GENERIC_V8;
767}
768
769int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
770{
771	int target = kvm_target_cpu();
772
773	if (target < 0)
774		return -ENODEV;
775
776	memset(init, 0, sizeof(*init));
777
778	/*
779	 * For now, we don't return any features.
780	 * In future, we might use features to return target
781	 * specific features available for the preferred
782	 * target type.
783	 */
784	init->target = (__u32)target;
785
786	return 0;
787}
788
789int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
790{
791	return -EINVAL;
792}
793
794int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
795{
796	return -EINVAL;
797}
798
799int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
800				  struct kvm_translation *tr)
801{
802	return -EINVAL;
803}
804
805#define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE |    \
806			    KVM_GUESTDBG_USE_SW_BP | \
807			    KVM_GUESTDBG_USE_HW | \
808			    KVM_GUESTDBG_SINGLESTEP)
809
810/**
811 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
812 * @kvm:	pointer to the KVM struct
813 * @kvm_guest_debug: the ioctl data buffer
814 *
815 * This sets up and enables the VM for guest debugging. Userspace
816 * passes in a control flag to enable different debug types and
817 * potentially other architecture specific information in the rest of
818 * the structure.
819 */
820int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
821					struct kvm_guest_debug *dbg)
822{
823	int ret = 0;
824
825	trace_kvm_set_guest_debug(vcpu, dbg->control);
826
827	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
828		ret = -EINVAL;
829		goto out;
830	}
831
832	if (dbg->control & KVM_GUESTDBG_ENABLE) {
833		vcpu->guest_debug = dbg->control;
834
835		/* Hardware assisted Break and Watch points */
836		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
837			vcpu->arch.external_debug_state = dbg->arch;
838		}
839
840	} else {
841		/* If not enabled clear all flags */
842		vcpu->guest_debug = 0;
 
843	}
844
845out:
846	return ret;
847}
848
849int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
850			       struct kvm_device_attr *attr)
851{
852	int ret;
853
854	switch (attr->group) {
855	case KVM_ARM_VCPU_PMU_V3_CTRL:
 
856		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
 
857		break;
858	case KVM_ARM_VCPU_TIMER_CTRL:
859		ret = kvm_arm_timer_set_attr(vcpu, attr);
860		break;
 
 
 
861	default:
862		ret = -ENXIO;
863		break;
864	}
865
866	return ret;
867}
868
869int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
870			       struct kvm_device_attr *attr)
871{
872	int ret;
873
874	switch (attr->group) {
875	case KVM_ARM_VCPU_PMU_V3_CTRL:
876		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
877		break;
878	case KVM_ARM_VCPU_TIMER_CTRL:
879		ret = kvm_arm_timer_get_attr(vcpu, attr);
880		break;
 
 
 
881	default:
882		ret = -ENXIO;
883		break;
884	}
885
886	return ret;
887}
888
889int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
890			       struct kvm_device_attr *attr)
891{
892	int ret;
893
894	switch (attr->group) {
895	case KVM_ARM_VCPU_PMU_V3_CTRL:
896		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
897		break;
898	case KVM_ARM_VCPU_TIMER_CTRL:
899		ret = kvm_arm_timer_has_attr(vcpu, attr);
900		break;
 
 
 
901	default:
902		ret = -ENXIO;
903		break;
904	}
905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
906	return ret;
907}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012,2013 - ARM Ltd
   4 * Author: Marc Zyngier <marc.zyngier@arm.com>
   5 *
   6 * Derived from arch/arm/kvm/guest.c:
   7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   8 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
   9 */
  10
  11#include <linux/bits.h>
  12#include <linux/errno.h>
  13#include <linux/err.h>
  14#include <linux/nospec.h>
  15#include <linux/kvm_host.h>
  16#include <linux/module.h>
  17#include <linux/stddef.h>
  18#include <linux/string.h>
  19#include <linux/vmalloc.h>
  20#include <linux/fs.h>
  21#include <kvm/arm_hypercalls.h>
  22#include <asm/cputype.h>
  23#include <linux/uaccess.h>
  24#include <asm/fpsimd.h>
  25#include <asm/kvm.h>
  26#include <asm/kvm_emulate.h>
  27#include <asm/kvm_nested.h>
 
  28#include <asm/sigcontext.h>
  29
  30#include "trace.h"
  31
  32const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
  33	KVM_GENERIC_VM_STATS()
  34};
  35
  36const struct kvm_stats_header kvm_vm_stats_header = {
  37	.name_size = KVM_STATS_NAME_SIZE,
  38	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
  39	.id_offset =  sizeof(struct kvm_stats_header),
  40	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
  41	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
  42		       sizeof(kvm_vm_stats_desc),
 
  43};
  44
  45const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
  46	KVM_GENERIC_VCPU_STATS(),
  47	STATS_DESC_COUNTER(VCPU, hvc_exit_stat),
  48	STATS_DESC_COUNTER(VCPU, wfe_exit_stat),
  49	STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
  50	STATS_DESC_COUNTER(VCPU, mmio_exit_user),
  51	STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
  52	STATS_DESC_COUNTER(VCPU, signal_exits),
  53	STATS_DESC_COUNTER(VCPU, exits)
  54};
  55
  56const struct kvm_stats_header kvm_vcpu_stats_header = {
  57	.name_size = KVM_STATS_NAME_SIZE,
  58	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
  59	.id_offset = sizeof(struct kvm_stats_header),
  60	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
  61	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
  62		       sizeof(kvm_vcpu_stats_desc),
  63};
  64
  65static bool core_reg_offset_is_vreg(u64 off)
  66{
  67	return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
  68		off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
  69}
  70
  71static u64 core_reg_offset_from_id(u64 id)
  72{
  73	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
  74}
  75
  76static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
  77{
  78	int size;
  79
  80	switch (off) {
  81	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
  82	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
  83	case KVM_REG_ARM_CORE_REG(regs.sp):
  84	case KVM_REG_ARM_CORE_REG(regs.pc):
  85	case KVM_REG_ARM_CORE_REG(regs.pstate):
  86	case KVM_REG_ARM_CORE_REG(sp_el1):
  87	case KVM_REG_ARM_CORE_REG(elr_el1):
  88	case KVM_REG_ARM_CORE_REG(spsr[0]) ...
  89	     KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
  90		size = sizeof(__u64);
  91		break;
  92
  93	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
  94	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
  95		size = sizeof(__uint128_t);
  96		break;
  97
  98	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
  99	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
 100		size = sizeof(__u32);
 101		break;
 102
 103	default:
 104		return -EINVAL;
 105	}
 106
 107	if (!IS_ALIGNED(off, size / sizeof(__u32)))
 108		return -EINVAL;
 109
 110	/*
 111	 * The KVM_REG_ARM64_SVE regs must be used instead of
 112	 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
 113	 * SVE-enabled vcpus:
 114	 */
 115	if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
 116		return -EINVAL;
 117
 118	return size;
 119}
 120
 121static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 
 122{
 123	u64 off = core_reg_offset_from_id(reg->id);
 124	int size = core_reg_size_from_offset(vcpu, off);
 125
 126	if (size < 0)
 127		return NULL;
 128
 129	if (KVM_REG_SIZE(reg->id) != size)
 130		return NULL;
 131
 132	switch (off) {
 133	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
 134	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
 135		off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
 136		off /= 2;
 137		return &vcpu->arch.ctxt.regs.regs[off];
 138
 139	case KVM_REG_ARM_CORE_REG(regs.sp):
 140		return &vcpu->arch.ctxt.regs.sp;
 141
 142	case KVM_REG_ARM_CORE_REG(regs.pc):
 143		return &vcpu->arch.ctxt.regs.pc;
 144
 145	case KVM_REG_ARM_CORE_REG(regs.pstate):
 146		return &vcpu->arch.ctxt.regs.pstate;
 147
 148	case KVM_REG_ARM_CORE_REG(sp_el1):
 149		return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
 150
 151	case KVM_REG_ARM_CORE_REG(elr_el1):
 152		return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
 153
 154	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
 155		return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
 156
 157	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
 158		return &vcpu->arch.ctxt.spsr_abt;
 159
 160	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
 161		return &vcpu->arch.ctxt.spsr_und;
 162
 163	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
 164		return &vcpu->arch.ctxt.spsr_irq;
 165
 166	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
 167		return &vcpu->arch.ctxt.spsr_fiq;
 168
 169	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
 170	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
 171		off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
 172		off /= 4;
 173		return &vcpu->arch.ctxt.fp_regs.vregs[off];
 174
 175	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
 176		return &vcpu->arch.ctxt.fp_regs.fpsr;
 177
 178	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
 179		return &vcpu->arch.ctxt.fp_regs.fpcr;
 180
 181	default:
 182		return NULL;
 183	}
 184}
 185
 186static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 187{
 188	/*
 189	 * Because the kvm_regs structure is a mix of 32, 64 and
 190	 * 128bit fields, we index it as if it was a 32bit
 191	 * array. Hence below, nr_regs is the number of entries, and
 192	 * off the index in the "array".
 193	 */
 194	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
 195	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
 196	void *addr;
 197	u32 off;
 198
 199	/* Our ID is an index into the kvm_regs struct. */
 200	off = core_reg_offset_from_id(reg->id);
 201	if (off >= nr_regs ||
 202	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
 203		return -ENOENT;
 204
 205	addr = core_reg_addr(vcpu, reg);
 206	if (!addr)
 207		return -EINVAL;
 208
 209	if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
 210		return -EFAULT;
 211
 212	return 0;
 213}
 214
 215static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 216{
 217	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
 218	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
 
 219	__uint128_t tmp;
 220	void *valp = &tmp, *addr;
 221	u64 off;
 222	int err = 0;
 223
 224	/* Our ID is an index into the kvm_regs struct. */
 225	off = core_reg_offset_from_id(reg->id);
 226	if (off >= nr_regs ||
 227	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
 228		return -ENOENT;
 229
 230	addr = core_reg_addr(vcpu, reg);
 231	if (!addr)
 232		return -EINVAL;
 233
 234	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
 235		return -EINVAL;
 236
 237	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
 238		err = -EFAULT;
 239		goto out;
 240	}
 241
 242	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
 243		u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
 244		switch (mode) {
 245		case PSR_AA32_MODE_USR:
 246			if (!kvm_supports_32bit_el0())
 247				return -EINVAL;
 248			break;
 249		case PSR_AA32_MODE_FIQ:
 250		case PSR_AA32_MODE_IRQ:
 251		case PSR_AA32_MODE_SVC:
 252		case PSR_AA32_MODE_ABT:
 253		case PSR_AA32_MODE_UND:
 254			if (!vcpu_el1_is_32bit(vcpu))
 255				return -EINVAL;
 256			break;
 257		case PSR_MODE_EL2h:
 258		case PSR_MODE_EL2t:
 259			if (!vcpu_has_nv(vcpu))
 260				return -EINVAL;
 261			fallthrough;
 262		case PSR_MODE_EL0t:
 263		case PSR_MODE_EL1t:
 264		case PSR_MODE_EL1h:
 265			if (vcpu_el1_is_32bit(vcpu))
 266				return -EINVAL;
 267			break;
 268		default:
 269			err = -EINVAL;
 270			goto out;
 271		}
 272	}
 273
 274	memcpy(addr, valp, KVM_REG_SIZE(reg->id));
 275
 276	if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
 277		int i, nr_reg;
 278
 279		switch (*vcpu_cpsr(vcpu)) {
 280		/*
 281		 * Either we are dealing with user mode, and only the
 282		 * first 15 registers (+ PC) must be narrowed to 32bit.
 283		 * AArch32 r0-r14 conveniently map to AArch64 x0-x14.
 284		 */
 285		case PSR_AA32_MODE_USR:
 286		case PSR_AA32_MODE_SYS:
 287			nr_reg = 15;
 288			break;
 289
 290		/*
 291		 * Otherwise, this is a privileged mode, and *all* the
 292		 * registers must be narrowed to 32bit.
 293		 */
 294		default:
 295			nr_reg = 31;
 296			break;
 297		}
 298
 299		for (i = 0; i < nr_reg; i++)
 300			vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i));
 301
 302		*vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu);
 303	}
 304out:
 305	return err;
 306}
 307
 308#define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
 309#define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
 310#define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
 311
 312static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 313{
 314	unsigned int max_vq, vq;
 315	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
 316
 317	if (!vcpu_has_sve(vcpu))
 318		return -ENOENT;
 319
 320	if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
 321		return -EINVAL;
 322
 323	memset(vqs, 0, sizeof(vqs));
 324
 325	max_vq = vcpu_sve_max_vq(vcpu);
 326	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
 327		if (sve_vq_available(vq))
 328			vqs[vq_word(vq)] |= vq_mask(vq);
 329
 330	if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
 331		return -EFAULT;
 332
 333	return 0;
 334}
 335
 336static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 337{
 338	unsigned int max_vq, vq;
 339	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
 340
 341	if (!vcpu_has_sve(vcpu))
 342		return -ENOENT;
 343
 344	if (kvm_arm_vcpu_sve_finalized(vcpu))
 345		return -EPERM; /* too late! */
 346
 347	if (WARN_ON(vcpu->arch.sve_state))
 348		return -EINVAL;
 349
 350	if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
 351		return -EFAULT;
 352
 353	max_vq = 0;
 354	for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
 355		if (vq_present(vqs, vq))
 356			max_vq = vq;
 357
 358	if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
 359		return -EINVAL;
 360
 361	/*
 362	 * Vector lengths supported by the host can't currently be
 363	 * hidden from the guest individually: instead we can only set a
 364	 * maximum via ZCR_EL2.LEN.  So, make sure the available vector
 365	 * lengths match the set requested exactly up to the requested
 366	 * maximum:
 367	 */
 368	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
 369		if (vq_present(vqs, vq) != sve_vq_available(vq))
 370			return -EINVAL;
 371
 372	/* Can't run with no vector lengths at all: */
 373	if (max_vq < SVE_VQ_MIN)
 374		return -EINVAL;
 375
 376	/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
 377	vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
 378
 379	return 0;
 380}
 381
 382#define SVE_REG_SLICE_SHIFT	0
 383#define SVE_REG_SLICE_BITS	5
 384#define SVE_REG_ID_SHIFT	(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
 385#define SVE_REG_ID_BITS		5
 386
 387#define SVE_REG_SLICE_MASK					\
 388	GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1,	\
 389		SVE_REG_SLICE_SHIFT)
 390#define SVE_REG_ID_MASK							\
 391	GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
 392
 393#define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
 394
 395#define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
 396#define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
 397
 398/*
 399 * Number of register slices required to cover each whole SVE register.
 400 * NOTE: Only the first slice every exists, for now.
 401 * If you are tempted to modify this, you must also rework sve_reg_to_region()
 402 * to match:
 403 */
 404#define vcpu_sve_slices(vcpu) 1
 405
 406/* Bounds of a single SVE register slice within vcpu->arch.sve_state */
 407struct sve_state_reg_region {
 408	unsigned int koffset;	/* offset into sve_state in kernel memory */
 409	unsigned int klen;	/* length in kernel memory */
 410	unsigned int upad;	/* extra trailing padding in user memory */
 411};
 412
 413/*
 414 * Validate SVE register ID and get sanitised bounds for user/kernel SVE
 415 * register copy
 416 */
 417static int sve_reg_to_region(struct sve_state_reg_region *region,
 418			     struct kvm_vcpu *vcpu,
 419			     const struct kvm_one_reg *reg)
 420{
 421	/* reg ID ranges for Z- registers */
 422	const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
 423	const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
 424						       SVE_NUM_SLICES - 1);
 425
 426	/* reg ID ranges for P- registers and FFR (which are contiguous) */
 427	const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
 428	const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
 429
 430	unsigned int vq;
 431	unsigned int reg_num;
 432
 433	unsigned int reqoffset, reqlen; /* User-requested offset and length */
 434	unsigned int maxlen; /* Maximum permitted length */
 435
 436	size_t sve_state_size;
 437
 438	const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
 439							SVE_NUM_SLICES - 1);
 440
 441	/* Verify that the P-regs and FFR really do have contiguous IDs: */
 442	BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
 443
 444	/* Verify that we match the UAPI header: */
 445	BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
 446
 447	reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
 448
 449	if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
 450		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
 451			return -ENOENT;
 452
 453		vq = vcpu_sve_max_vq(vcpu);
 454
 455		reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
 456				SVE_SIG_REGS_OFFSET;
 457		reqlen = KVM_SVE_ZREG_SIZE;
 458		maxlen = SVE_SIG_ZREG_SIZE(vq);
 459	} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
 460		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
 461			return -ENOENT;
 462
 463		vq = vcpu_sve_max_vq(vcpu);
 464
 465		reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
 466				SVE_SIG_REGS_OFFSET;
 467		reqlen = KVM_SVE_PREG_SIZE;
 468		maxlen = SVE_SIG_PREG_SIZE(vq);
 469	} else {
 470		return -EINVAL;
 471	}
 472
 473	sve_state_size = vcpu_sve_state_size(vcpu);
 474	if (WARN_ON(!sve_state_size))
 475		return -EINVAL;
 476
 477	region->koffset = array_index_nospec(reqoffset, sve_state_size);
 478	region->klen = min(maxlen, reqlen);
 479	region->upad = reqlen - region->klen;
 480
 481	return 0;
 482}
 483
 484static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 485{
 486	int ret;
 487	struct sve_state_reg_region region;
 488	char __user *uptr = (char __user *)reg->addr;
 489
 490	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
 491	if (reg->id == KVM_REG_ARM64_SVE_VLS)
 492		return get_sve_vls(vcpu, reg);
 493
 494	/* Try to interpret reg ID as an architectural SVE register... */
 495	ret = sve_reg_to_region(&region, vcpu, reg);
 496	if (ret)
 497		return ret;
 498
 499	if (!kvm_arm_vcpu_sve_finalized(vcpu))
 500		return -EPERM;
 501
 502	if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
 503			 region.klen) ||
 504	    clear_user(uptr + region.klen, region.upad))
 505		return -EFAULT;
 506
 507	return 0;
 508}
 509
 510static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 511{
 512	int ret;
 513	struct sve_state_reg_region region;
 514	const char __user *uptr = (const char __user *)reg->addr;
 515
 516	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
 517	if (reg->id == KVM_REG_ARM64_SVE_VLS)
 518		return set_sve_vls(vcpu, reg);
 519
 520	/* Try to interpret reg ID as an architectural SVE register... */
 521	ret = sve_reg_to_region(&region, vcpu, reg);
 522	if (ret)
 523		return ret;
 524
 525	if (!kvm_arm_vcpu_sve_finalized(vcpu))
 526		return -EPERM;
 527
 528	if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
 529			   region.klen))
 530		return -EFAULT;
 531
 532	return 0;
 533}
 534
 535int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
 536{
 537	return -EINVAL;
 538}
 539
 540int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
 541{
 542	return -EINVAL;
 543}
 544
 545static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
 546				 u64 __user *uindices)
 547{
 548	unsigned int i;
 549	int n = 0;
 550
 551	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
 552		u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
 553		int size = core_reg_size_from_offset(vcpu, i);
 554
 555		if (size < 0)
 556			continue;
 557
 558		switch (size) {
 559		case sizeof(__u32):
 560			reg |= KVM_REG_SIZE_U32;
 561			break;
 562
 563		case sizeof(__u64):
 564			reg |= KVM_REG_SIZE_U64;
 565			break;
 566
 567		case sizeof(__uint128_t):
 568			reg |= KVM_REG_SIZE_U128;
 569			break;
 570
 571		default:
 572			WARN_ON(1);
 573			continue;
 574		}
 575
 576		if (uindices) {
 577			if (put_user(reg, uindices))
 578				return -EFAULT;
 579			uindices++;
 580		}
 581
 582		n++;
 583	}
 584
 585	return n;
 586}
 587
 588static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
 589{
 590	return copy_core_reg_indices(vcpu, NULL);
 591}
 592
 593static const u64 timer_reg_list[] = {
 594	KVM_REG_ARM_TIMER_CTL,
 595	KVM_REG_ARM_TIMER_CNT,
 596	KVM_REG_ARM_TIMER_CVAL,
 597	KVM_REG_ARM_PTIMER_CTL,
 598	KVM_REG_ARM_PTIMER_CNT,
 599	KVM_REG_ARM_PTIMER_CVAL,
 600};
 601
 602#define NUM_TIMER_REGS ARRAY_SIZE(timer_reg_list)
 603
 604static bool is_timer_reg(u64 index)
 605{
 606	switch (index) {
 607	case KVM_REG_ARM_TIMER_CTL:
 608	case KVM_REG_ARM_TIMER_CNT:
 609	case KVM_REG_ARM_TIMER_CVAL:
 610	case KVM_REG_ARM_PTIMER_CTL:
 611	case KVM_REG_ARM_PTIMER_CNT:
 612	case KVM_REG_ARM_PTIMER_CVAL:
 613		return true;
 614	}
 615	return false;
 616}
 617
 618static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
 619{
 620	for (int i = 0; i < NUM_TIMER_REGS; i++) {
 621		if (put_user(timer_reg_list[i], uindices))
 622			return -EFAULT;
 623		uindices++;
 624	}
 
 
 
 625
 626	return 0;
 627}
 628
 629static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 630{
 631	void __user *uaddr = (void __user *)(long)reg->addr;
 632	u64 val;
 633	int ret;
 634
 635	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
 636	if (ret != 0)
 637		return -EFAULT;
 638
 639	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
 640}
 641
 642static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 643{
 644	void __user *uaddr = (void __user *)(long)reg->addr;
 645	u64 val;
 646
 647	val = kvm_arm_timer_get_reg(vcpu, reg->id);
 648	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
 649}
 650
 651static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
 652{
 653	const unsigned int slices = vcpu_sve_slices(vcpu);
 654
 655	if (!vcpu_has_sve(vcpu))
 656		return 0;
 657
 658	/* Policed by KVM_GET_REG_LIST: */
 659	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
 660
 661	return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
 662		+ 1; /* KVM_REG_ARM64_SVE_VLS */
 663}
 664
 665static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
 666				u64 __user *uindices)
 667{
 668	const unsigned int slices = vcpu_sve_slices(vcpu);
 669	u64 reg;
 670	unsigned int i, n;
 671	int num_regs = 0;
 672
 673	if (!vcpu_has_sve(vcpu))
 674		return 0;
 675
 676	/* Policed by KVM_GET_REG_LIST: */
 677	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
 678
 679	/*
 680	 * Enumerate this first, so that userspace can save/restore in
 681	 * the order reported by KVM_GET_REG_LIST:
 682	 */
 683	reg = KVM_REG_ARM64_SVE_VLS;
 684	if (put_user(reg, uindices++))
 685		return -EFAULT;
 686	++num_regs;
 687
 688	for (i = 0; i < slices; i++) {
 689		for (n = 0; n < SVE_NUM_ZREGS; n++) {
 690			reg = KVM_REG_ARM64_SVE_ZREG(n, i);
 691			if (put_user(reg, uindices++))
 692				return -EFAULT;
 693			num_regs++;
 694		}
 695
 696		for (n = 0; n < SVE_NUM_PREGS; n++) {
 697			reg = KVM_REG_ARM64_SVE_PREG(n, i);
 698			if (put_user(reg, uindices++))
 699				return -EFAULT;
 700			num_regs++;
 701		}
 702
 703		reg = KVM_REG_ARM64_SVE_FFR(i);
 704		if (put_user(reg, uindices++))
 705			return -EFAULT;
 706		num_regs++;
 707	}
 708
 709	return num_regs;
 710}
 711
 712/**
 713 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
 714 *
 715 * This is for all registers.
 716 */
 717unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
 718{
 719	unsigned long res = 0;
 720
 721	res += num_core_regs(vcpu);
 722	res += num_sve_regs(vcpu);
 723	res += kvm_arm_num_sys_reg_descs(vcpu);
 724	res += kvm_arm_get_fw_num_regs(vcpu);
 725	res += NUM_TIMER_REGS;
 726
 727	return res;
 728}
 729
 730/**
 731 * kvm_arm_copy_reg_indices - get indices of all registers.
 732 *
 733 * We do core registers right here, then we append system regs.
 734 */
 735int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
 736{
 737	int ret;
 738
 739	ret = copy_core_reg_indices(vcpu, uindices);
 740	if (ret < 0)
 741		return ret;
 742	uindices += ret;
 743
 744	ret = copy_sve_reg_indices(vcpu, uindices);
 745	if (ret < 0)
 746		return ret;
 747	uindices += ret;
 748
 749	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
 750	if (ret < 0)
 751		return ret;
 752	uindices += kvm_arm_get_fw_num_regs(vcpu);
 753
 754	ret = copy_timer_indices(vcpu, uindices);
 755	if (ret < 0)
 756		return ret;
 757	uindices += NUM_TIMER_REGS;
 758
 759	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
 760}
 761
 762int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 763{
 764	/* We currently use nothing arch-specific in upper 32 bits */
 765	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
 766		return -EINVAL;
 767
 768	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
 769	case KVM_REG_ARM_CORE:	return get_core_reg(vcpu, reg);
 770	case KVM_REG_ARM_FW:
 771	case KVM_REG_ARM_FW_FEAT_BMAP:
 772		return kvm_arm_get_fw_reg(vcpu, reg);
 773	case KVM_REG_ARM64_SVE:	return get_sve_reg(vcpu, reg);
 774	}
 775
 776	if (is_timer_reg(reg->id))
 777		return get_timer_reg(vcpu, reg);
 778
 779	return kvm_arm_sys_reg_get_reg(vcpu, reg);
 780}
 781
 782int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 783{
 784	/* We currently use nothing arch-specific in upper 32 bits */
 785	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
 786		return -EINVAL;
 787
 788	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
 789	case KVM_REG_ARM_CORE:	return set_core_reg(vcpu, reg);
 790	case KVM_REG_ARM_FW:
 791	case KVM_REG_ARM_FW_FEAT_BMAP:
 792		return kvm_arm_set_fw_reg(vcpu, reg);
 793	case KVM_REG_ARM64_SVE:	return set_sve_reg(vcpu, reg);
 794	}
 795
 796	if (is_timer_reg(reg->id))
 797		return set_timer_reg(vcpu, reg);
 798
 799	return kvm_arm_sys_reg_set_reg(vcpu, reg);
 800}
 801
 802int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
 803				  struct kvm_sregs *sregs)
 804{
 805	return -EINVAL;
 806}
 807
 808int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
 809				  struct kvm_sregs *sregs)
 810{
 811	return -EINVAL;
 812}
 813
 814int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
 815			      struct kvm_vcpu_events *events)
 816{
 817	events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
 818	events->exception.serror_has_esr = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
 819
 820	if (events->exception.serror_pending && events->exception.serror_has_esr)
 821		events->exception.serror_esr = vcpu_get_vsesr(vcpu);
 822
 823	/*
 824	 * We never return a pending ext_dabt here because we deliver it to
 825	 * the virtual CPU directly when setting the event and it's no longer
 826	 * 'pending' at this point.
 827	 */
 828
 829	return 0;
 830}
 831
 832int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
 833			      struct kvm_vcpu_events *events)
 834{
 835	bool serror_pending = events->exception.serror_pending;
 836	bool has_esr = events->exception.serror_has_esr;
 837	bool ext_dabt_pending = events->exception.ext_dabt_pending;
 838
 839	if (serror_pending && has_esr) {
 840		if (!cpus_have_final_cap(ARM64_HAS_RAS_EXTN))
 841			return -EINVAL;
 842
 843		if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
 844			kvm_set_sei_esr(vcpu, events->exception.serror_esr);
 845		else
 846			return -EINVAL;
 847	} else if (serror_pending) {
 848		kvm_inject_vabt(vcpu);
 849	}
 850
 851	if (ext_dabt_pending)
 852		kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
 853
 854	return 0;
 855}
 856
 857u32 __attribute_const__ kvm_target_cpu(void)
 858{
 859	unsigned long implementor = read_cpuid_implementor();
 860	unsigned long part_number = read_cpuid_part_number();
 861
 862	switch (implementor) {
 863	case ARM_CPU_IMP_ARM:
 864		switch (part_number) {
 865		case ARM_CPU_PART_AEM_V8:
 866			return KVM_ARM_TARGET_AEM_V8;
 867		case ARM_CPU_PART_FOUNDATION:
 868			return KVM_ARM_TARGET_FOUNDATION_V8;
 869		case ARM_CPU_PART_CORTEX_A53:
 870			return KVM_ARM_TARGET_CORTEX_A53;
 871		case ARM_CPU_PART_CORTEX_A57:
 872			return KVM_ARM_TARGET_CORTEX_A57;
 873		}
 874		break;
 875	case ARM_CPU_IMP_APM:
 876		switch (part_number) {
 877		case APM_CPU_PART_XGENE:
 878			return KVM_ARM_TARGET_XGENE_POTENZA;
 879		}
 880		break;
 881	}
 882
 883	/* Return a default generic target */
 884	return KVM_ARM_TARGET_GENERIC_V8;
 885}
 886
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 887int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
 888{
 889	return -EINVAL;
 890}
 891
 892int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
 893{
 894	return -EINVAL;
 895}
 896
 897int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
 898				  struct kvm_translation *tr)
 899{
 900	return -EINVAL;
 901}
 902
 
 
 
 
 
 903/**
 904 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
 905 * @kvm:	pointer to the KVM struct
 906 * @kvm_guest_debug: the ioctl data buffer
 907 *
 908 * This sets up and enables the VM for guest debugging. Userspace
 909 * passes in a control flag to enable different debug types and
 910 * potentially other architecture specific information in the rest of
 911 * the structure.
 912 */
 913int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
 914					struct kvm_guest_debug *dbg)
 915{
 916	int ret = 0;
 917
 918	trace_kvm_set_guest_debug(vcpu, dbg->control);
 919
 920	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
 921		ret = -EINVAL;
 922		goto out;
 923	}
 924
 925	if (dbg->control & KVM_GUESTDBG_ENABLE) {
 926		vcpu->guest_debug = dbg->control;
 927
 928		/* Hardware assisted Break and Watch points */
 929		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
 930			vcpu->arch.external_debug_state = dbg->arch;
 931		}
 932
 933	} else {
 934		/* If not enabled clear all flags */
 935		vcpu->guest_debug = 0;
 936		vcpu_clear_flag(vcpu, DBG_SS_ACTIVE_PENDING);
 937	}
 938
 939out:
 940	return ret;
 941}
 942
 943int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
 944			       struct kvm_device_attr *attr)
 945{
 946	int ret;
 947
 948	switch (attr->group) {
 949	case KVM_ARM_VCPU_PMU_V3_CTRL:
 950		mutex_lock(&vcpu->kvm->arch.config_lock);
 951		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
 952		mutex_unlock(&vcpu->kvm->arch.config_lock);
 953		break;
 954	case KVM_ARM_VCPU_TIMER_CTRL:
 955		ret = kvm_arm_timer_set_attr(vcpu, attr);
 956		break;
 957	case KVM_ARM_VCPU_PVTIME_CTRL:
 958		ret = kvm_arm_pvtime_set_attr(vcpu, attr);
 959		break;
 960	default:
 961		ret = -ENXIO;
 962		break;
 963	}
 964
 965	return ret;
 966}
 967
 968int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
 969			       struct kvm_device_attr *attr)
 970{
 971	int ret;
 972
 973	switch (attr->group) {
 974	case KVM_ARM_VCPU_PMU_V3_CTRL:
 975		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
 976		break;
 977	case KVM_ARM_VCPU_TIMER_CTRL:
 978		ret = kvm_arm_timer_get_attr(vcpu, attr);
 979		break;
 980	case KVM_ARM_VCPU_PVTIME_CTRL:
 981		ret = kvm_arm_pvtime_get_attr(vcpu, attr);
 982		break;
 983	default:
 984		ret = -ENXIO;
 985		break;
 986	}
 987
 988	return ret;
 989}
 990
 991int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
 992			       struct kvm_device_attr *attr)
 993{
 994	int ret;
 995
 996	switch (attr->group) {
 997	case KVM_ARM_VCPU_PMU_V3_CTRL:
 998		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
 999		break;
1000	case KVM_ARM_VCPU_TIMER_CTRL:
1001		ret = kvm_arm_timer_has_attr(vcpu, attr);
1002		break;
1003	case KVM_ARM_VCPU_PVTIME_CTRL:
1004		ret = kvm_arm_pvtime_has_attr(vcpu, attr);
1005		break;
1006	default:
1007		ret = -ENXIO;
1008		break;
1009	}
1010
1011	return ret;
1012}
1013
1014int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1015			       struct kvm_arm_copy_mte_tags *copy_tags)
1016{
1017	gpa_t guest_ipa = copy_tags->guest_ipa;
1018	size_t length = copy_tags->length;
1019	void __user *tags = copy_tags->addr;
1020	gpa_t gfn;
1021	bool write = !(copy_tags->flags & KVM_ARM_TAGS_FROM_GUEST);
1022	int ret = 0;
1023
1024	if (!kvm_has_mte(kvm))
1025		return -EINVAL;
1026
1027	if (copy_tags->reserved[0] || copy_tags->reserved[1])
1028		return -EINVAL;
1029
1030	if (copy_tags->flags & ~KVM_ARM_TAGS_FROM_GUEST)
1031		return -EINVAL;
1032
1033	if (length & ~PAGE_MASK || guest_ipa & ~PAGE_MASK)
1034		return -EINVAL;
1035
1036	/* Lengths above INT_MAX cannot be represented in the return value */
1037	if (length > INT_MAX)
1038		return -EINVAL;
1039
1040	gfn = gpa_to_gfn(guest_ipa);
1041
1042	mutex_lock(&kvm->slots_lock);
1043
1044	while (length > 0) {
1045		kvm_pfn_t pfn = gfn_to_pfn_prot(kvm, gfn, write, NULL);
1046		void *maddr;
1047		unsigned long num_tags;
1048		struct page *page;
1049
1050		if (is_error_noslot_pfn(pfn)) {
1051			ret = -EFAULT;
1052			goto out;
1053		}
1054
1055		page = pfn_to_online_page(pfn);
1056		if (!page) {
1057			/* Reject ZONE_DEVICE memory */
1058			ret = -EFAULT;
1059			goto out;
1060		}
1061		maddr = page_address(page);
1062
1063		if (!write) {
1064			if (page_mte_tagged(page))
1065				num_tags = mte_copy_tags_to_user(tags, maddr,
1066							MTE_GRANULES_PER_PAGE);
1067			else
1068				/* No tags in memory, so write zeros */
1069				num_tags = MTE_GRANULES_PER_PAGE -
1070					clear_user(tags, MTE_GRANULES_PER_PAGE);
1071			kvm_release_pfn_clean(pfn);
1072		} else {
1073			/*
1074			 * Only locking to serialise with a concurrent
1075			 * set_pte_at() in the VMM but still overriding the
1076			 * tags, hence ignoring the return value.
1077			 */
1078			try_page_mte_tagging(page);
1079			num_tags = mte_copy_tags_from_user(maddr, tags,
1080							MTE_GRANULES_PER_PAGE);
1081
1082			/* uaccess failed, don't leave stale tags */
1083			if (num_tags != MTE_GRANULES_PER_PAGE)
1084				mte_clear_page_tags(maddr);
1085			set_page_mte_tagged(page);
1086
1087			kvm_release_pfn_dirty(pfn);
1088		}
1089
1090		if (num_tags != MTE_GRANULES_PER_PAGE) {
1091			ret = -EFAULT;
1092			goto out;
1093		}
1094
1095		gfn++;
1096		tags += num_tags;
1097		length -= PAGE_SIZE;
1098	}
1099
1100out:
1101	mutex_unlock(&kvm->slots_lock);
1102	/* If some data has been copied report the number of bytes copied */
1103	if (length != copy_tags->length)
1104		return copy_tags->length - length;
1105	return ret;
1106}