Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/arch/arm/mm/fault-armv.c
  4 *
  5 *  Copyright (C) 1995  Linus Torvalds
  6 *  Modifications for ARM processor (c) 1995-2002 Russell King
  7 */
  8#include <linux/sched.h>
  9#include <linux/kernel.h>
 10#include <linux/mm.h>
 11#include <linux/bitops.h>
 12#include <linux/vmalloc.h>
 13#include <linux/init.h>
 14#include <linux/pagemap.h>
 15#include <linux/gfp.h>
 16
 17#include <asm/bugs.h>
 18#include <asm/cacheflush.h>
 19#include <asm/cachetype.h>
 20#include <asm/pgtable.h>
 21#include <asm/tlbflush.h>
 22
 23#include "mm.h"
 24
 25static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE;
 26
 27#if __LINUX_ARM_ARCH__ < 6
 28/*
 29 * We take the easy way out of this problem - we make the
 30 * PTE uncacheable.  However, we leave the write buffer on.
 31 *
 32 * Note that the pte lock held when calling update_mmu_cache must also
 33 * guard the pte (somewhere else in the same mm) that we modify here.
 34 * Therefore those configurations which might call adjust_pte (those
 35 * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
 36 */
 37static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
 38	unsigned long pfn, pte_t *ptep)
 39{
 40	pte_t entry = *ptep;
 41	int ret;
 42
 43	/*
 44	 * If this page is present, it's actually being shared.
 45	 */
 46	ret = pte_present(entry);
 47
 48	/*
 49	 * If this page isn't present, or is already setup to
 50	 * fault (ie, is old), we can safely ignore any issues.
 51	 */
 52	if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
 53		flush_cache_page(vma, address, pfn);
 54		outer_flush_range((pfn << PAGE_SHIFT),
 55				  (pfn << PAGE_SHIFT) + PAGE_SIZE);
 56		pte_val(entry) &= ~L_PTE_MT_MASK;
 57		pte_val(entry) |= shared_pte_mask;
 58		set_pte_at(vma->vm_mm, address, ptep, entry);
 59		flush_tlb_page(vma, address);
 60	}
 61
 62	return ret;
 63}
 64
 65#if USE_SPLIT_PTE_PTLOCKS
 66/*
 67 * If we are using split PTE locks, then we need to take the page
 68 * lock here.  Otherwise we are using shared mm->page_table_lock
 69 * which is already locked, thus cannot take it.
 70 */
 71static inline void do_pte_lock(spinlock_t *ptl)
 72{
 73	/*
 74	 * Use nested version here to indicate that we are already
 75	 * holding one similar spinlock.
 76	 */
 77	spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
 78}
 79
 80static inline void do_pte_unlock(spinlock_t *ptl)
 81{
 82	spin_unlock(ptl);
 83}
 84#else /* !USE_SPLIT_PTE_PTLOCKS */
 85static inline void do_pte_lock(spinlock_t *ptl) {}
 86static inline void do_pte_unlock(spinlock_t *ptl) {}
 87#endif /* USE_SPLIT_PTE_PTLOCKS */
 88
 89static int adjust_pte(struct vm_area_struct *vma, unsigned long address,
 90	unsigned long pfn)
 91{
 92	spinlock_t *ptl;
 93	pgd_t *pgd;
 
 94	pud_t *pud;
 95	pmd_t *pmd;
 96	pte_t *pte;
 97	int ret;
 98
 99	pgd = pgd_offset(vma->vm_mm, address);
100	if (pgd_none_or_clear_bad(pgd))
101		return 0;
102
103	pud = pud_offset(pgd, address);
 
 
 
 
104	if (pud_none_or_clear_bad(pud))
105		return 0;
106
107	pmd = pmd_offset(pud, address);
108	if (pmd_none_or_clear_bad(pmd))
109		return 0;
110
111	/*
112	 * This is called while another page table is mapped, so we
113	 * must use the nested version.  This also means we need to
114	 * open-code the spin-locking.
115	 */
116	ptl = pte_lockptr(vma->vm_mm, pmd);
117	pte = pte_offset_map(pmd, address);
118	do_pte_lock(ptl);
119
120	ret = do_adjust_pte(vma, address, pfn, pte);
121
122	do_pte_unlock(ptl);
123	pte_unmap(pte);
124
125	return ret;
126}
127
128static void
129make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
130	unsigned long addr, pte_t *ptep, unsigned long pfn)
131{
132	struct mm_struct *mm = vma->vm_mm;
133	struct vm_area_struct *mpnt;
134	unsigned long offset;
135	pgoff_t pgoff;
136	int aliases = 0;
137
138	pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
139
140	/*
141	 * If we have any shared mappings that are in the same mm
142	 * space, then we need to handle them specially to maintain
143	 * cache coherency.
144	 */
145	flush_dcache_mmap_lock(mapping);
146	vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
147		/*
148		 * If this VMA is not in our MM, we can ignore it.
149		 * Note that we intentionally mask out the VMA
150		 * that we are fixing up.
151		 */
152		if (mpnt->vm_mm != mm || mpnt == vma)
153			continue;
154		if (!(mpnt->vm_flags & VM_MAYSHARE))
155			continue;
156		offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
157		aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn);
158	}
159	flush_dcache_mmap_unlock(mapping);
160	if (aliases)
161		do_adjust_pte(vma, addr, pfn, ptep);
162}
163
164/*
165 * Take care of architecture specific things when placing a new PTE into
166 * a page table, or changing an existing PTE.  Basically, there are two
167 * things that we need to take care of:
168 *
169 *  1. If PG_dcache_clean is not set for the page, we need to ensure
170 *     that any cache entries for the kernels virtual memory
171 *     range are written back to the page.
172 *  2. If we have multiple shared mappings of the same space in
173 *     an object, we need to deal with the cache aliasing issues.
174 *
175 * Note that the pte lock will be held.
176 */
177void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
178	pte_t *ptep)
179{
180	unsigned long pfn = pte_pfn(*ptep);
181	struct address_space *mapping;
182	struct page *page;
183
184	if (!pfn_valid(pfn))
185		return;
186
187	/*
188	 * The zero page is never written to, so never has any dirty
189	 * cache lines, and therefore never needs to be flushed.
190	 */
191	page = pfn_to_page(pfn);
192	if (page == ZERO_PAGE(0))
193		return;
194
195	mapping = page_mapping_file(page);
196	if (!test_and_set_bit(PG_dcache_clean, &page->flags))
197		__flush_dcache_page(mapping, page);
198	if (mapping) {
199		if (cache_is_vivt())
200			make_coherent(mapping, vma, addr, ptep, pfn);
201		else if (vma->vm_flags & VM_EXEC)
202			__flush_icache_all();
203	}
204}
205#endif	/* __LINUX_ARM_ARCH__ < 6 */
206
207/*
208 * Check whether the write buffer has physical address aliasing
209 * issues.  If it has, we need to avoid them for the case where
210 * we have several shared mappings of the same object in user
211 * space.
212 */
213static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
214{
215	register unsigned long zero = 0, one = 1, val;
216
217	local_irq_disable();
218	mb();
219	*p1 = one;
220	mb();
221	*p2 = zero;
222	mb();
223	val = *p1;
224	mb();
225	local_irq_enable();
226	return val != zero;
227}
228
229void __init check_writebuffer_bugs(void)
230{
231	struct page *page;
232	const char *reason;
233	unsigned long v = 1;
234
235	pr_info("CPU: Testing write buffer coherency: ");
236
237	page = alloc_page(GFP_KERNEL);
238	if (page) {
239		unsigned long *p1, *p2;
240		pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
241					L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
242
243		p1 = vmap(&page, 1, VM_IOREMAP, prot);
244		p2 = vmap(&page, 1, VM_IOREMAP, prot);
245
246		if (p1 && p2) {
247			v = check_writebuffer(p1, p2);
248			reason = "enabling work-around";
249		} else {
250			reason = "unable to map memory\n";
251		}
252
253		vunmap(p1);
254		vunmap(p2);
255		put_page(page);
256	} else {
257		reason = "unable to grab page\n";
258	}
259
260	if (v) {
261		pr_cont("failed, %s\n", reason);
262		shared_pte_mask = L_PTE_MT_UNCACHED;
263	} else {
264		pr_cont("ok\n");
265	}
266}
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/arch/arm/mm/fault-armv.c
  4 *
  5 *  Copyright (C) 1995  Linus Torvalds
  6 *  Modifications for ARM processor (c) 1995-2002 Russell King
  7 */
  8#include <linux/sched.h>
  9#include <linux/kernel.h>
 10#include <linux/mm.h>
 11#include <linux/bitops.h>
 12#include <linux/vmalloc.h>
 13#include <linux/init.h>
 14#include <linux/pagemap.h>
 15#include <linux/gfp.h>
 16
 17#include <asm/bugs.h>
 18#include <asm/cacheflush.h>
 19#include <asm/cachetype.h>
 
 20#include <asm/tlbflush.h>
 21
 22#include "mm.h"
 23
 24static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE;
 25
 26#if __LINUX_ARM_ARCH__ < 6
 27/*
 28 * We take the easy way out of this problem - we make the
 29 * PTE uncacheable.  However, we leave the write buffer on.
 30 *
 31 * Note that the pte lock held when calling update_mmu_cache must also
 32 * guard the pte (somewhere else in the same mm) that we modify here.
 33 * Therefore those configurations which might call adjust_pte (those
 34 * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
 35 */
 36static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
 37	unsigned long pfn, pte_t *ptep)
 38{
 39	pte_t entry = *ptep;
 40	int ret;
 41
 42	/*
 43	 * If this page is present, it's actually being shared.
 44	 */
 45	ret = pte_present(entry);
 46
 47	/*
 48	 * If this page isn't present, or is already setup to
 49	 * fault (ie, is old), we can safely ignore any issues.
 50	 */
 51	if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
 52		flush_cache_page(vma, address, pfn);
 53		outer_flush_range((pfn << PAGE_SHIFT),
 54				  (pfn << PAGE_SHIFT) + PAGE_SIZE);
 55		pte_val(entry) &= ~L_PTE_MT_MASK;
 56		pte_val(entry) |= shared_pte_mask;
 57		set_pte_at(vma->vm_mm, address, ptep, entry);
 58		flush_tlb_page(vma, address);
 59	}
 60
 61	return ret;
 62}
 63
 64#if USE_SPLIT_PTE_PTLOCKS
 65/*
 66 * If we are using split PTE locks, then we need to take the page
 67 * lock here.  Otherwise we are using shared mm->page_table_lock
 68 * which is already locked, thus cannot take it.
 69 */
 70static inline void do_pte_lock(spinlock_t *ptl)
 71{
 72	/*
 73	 * Use nested version here to indicate that we are already
 74	 * holding one similar spinlock.
 75	 */
 76	spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
 77}
 78
 79static inline void do_pte_unlock(spinlock_t *ptl)
 80{
 81	spin_unlock(ptl);
 82}
 83#else /* !USE_SPLIT_PTE_PTLOCKS */
 84static inline void do_pte_lock(spinlock_t *ptl) {}
 85static inline void do_pte_unlock(spinlock_t *ptl) {}
 86#endif /* USE_SPLIT_PTE_PTLOCKS */
 87
 88static int adjust_pte(struct vm_area_struct *vma, unsigned long address,
 89	unsigned long pfn)
 90{
 91	spinlock_t *ptl;
 92	pgd_t *pgd;
 93	p4d_t *p4d;
 94	pud_t *pud;
 95	pmd_t *pmd;
 96	pte_t *pte;
 97	int ret;
 98
 99	pgd = pgd_offset(vma->vm_mm, address);
100	if (pgd_none_or_clear_bad(pgd))
101		return 0;
102
103	p4d = p4d_offset(pgd, address);
104	if (p4d_none_or_clear_bad(p4d))
105		return 0;
106
107	pud = pud_offset(p4d, address);
108	if (pud_none_or_clear_bad(pud))
109		return 0;
110
111	pmd = pmd_offset(pud, address);
112	if (pmd_none_or_clear_bad(pmd))
113		return 0;
114
115	/*
116	 * This is called while another page table is mapped, so we
117	 * must use the nested version.  This also means we need to
118	 * open-code the spin-locking.
119	 */
120	ptl = pte_lockptr(vma->vm_mm, pmd);
121	pte = pte_offset_map(pmd, address);
122	do_pte_lock(ptl);
123
124	ret = do_adjust_pte(vma, address, pfn, pte);
125
126	do_pte_unlock(ptl);
127	pte_unmap(pte);
128
129	return ret;
130}
131
132static void
133make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
134	unsigned long addr, pte_t *ptep, unsigned long pfn)
135{
136	struct mm_struct *mm = vma->vm_mm;
137	struct vm_area_struct *mpnt;
138	unsigned long offset;
139	pgoff_t pgoff;
140	int aliases = 0;
141
142	pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
143
144	/*
145	 * If we have any shared mappings that are in the same mm
146	 * space, then we need to handle them specially to maintain
147	 * cache coherency.
148	 */
149	flush_dcache_mmap_lock(mapping);
150	vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
151		/*
152		 * If this VMA is not in our MM, we can ignore it.
153		 * Note that we intentionally mask out the VMA
154		 * that we are fixing up.
155		 */
156		if (mpnt->vm_mm != mm || mpnt == vma)
157			continue;
158		if (!(mpnt->vm_flags & VM_MAYSHARE))
159			continue;
160		offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
161		aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn);
162	}
163	flush_dcache_mmap_unlock(mapping);
164	if (aliases)
165		do_adjust_pte(vma, addr, pfn, ptep);
166}
167
168/*
169 * Take care of architecture specific things when placing a new PTE into
170 * a page table, or changing an existing PTE.  Basically, there are two
171 * things that we need to take care of:
172 *
173 *  1. If PG_dcache_clean is not set for the page, we need to ensure
174 *     that any cache entries for the kernels virtual memory
175 *     range are written back to the page.
176 *  2. If we have multiple shared mappings of the same space in
177 *     an object, we need to deal with the cache aliasing issues.
178 *
179 * Note that the pte lock will be held.
180 */
181void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
182	pte_t *ptep)
183{
184	unsigned long pfn = pte_pfn(*ptep);
185	struct address_space *mapping;
186	struct page *page;
187
188	if (!pfn_valid(pfn))
189		return;
190
191	/*
192	 * The zero page is never written to, so never has any dirty
193	 * cache lines, and therefore never needs to be flushed.
194	 */
195	page = pfn_to_page(pfn);
196	if (page == ZERO_PAGE(0))
197		return;
198
199	mapping = page_mapping_file(page);
200	if (!test_and_set_bit(PG_dcache_clean, &page->flags))
201		__flush_dcache_page(mapping, page);
202	if (mapping) {
203		if (cache_is_vivt())
204			make_coherent(mapping, vma, addr, ptep, pfn);
205		else if (vma->vm_flags & VM_EXEC)
206			__flush_icache_all();
207	}
208}
209#endif	/* __LINUX_ARM_ARCH__ < 6 */
210
211/*
212 * Check whether the write buffer has physical address aliasing
213 * issues.  If it has, we need to avoid them for the case where
214 * we have several shared mappings of the same object in user
215 * space.
216 */
217static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
218{
219	register unsigned long zero = 0, one = 1, val;
220
221	local_irq_disable();
222	mb();
223	*p1 = one;
224	mb();
225	*p2 = zero;
226	mb();
227	val = *p1;
228	mb();
229	local_irq_enable();
230	return val != zero;
231}
232
233void __init check_writebuffer_bugs(void)
234{
235	struct page *page;
236	const char *reason;
237	unsigned long v = 1;
238
239	pr_info("CPU: Testing write buffer coherency: ");
240
241	page = alloc_page(GFP_KERNEL);
242	if (page) {
243		unsigned long *p1, *p2;
244		pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
245					L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
246
247		p1 = vmap(&page, 1, VM_IOREMAP, prot);
248		p2 = vmap(&page, 1, VM_IOREMAP, prot);
249
250		if (p1 && p2) {
251			v = check_writebuffer(p1, p2);
252			reason = "enabling work-around";
253		} else {
254			reason = "unable to map memory\n";
255		}
256
257		vunmap(p1);
258		vunmap(p2);
259		put_page(page);
260	} else {
261		reason = "unable to grab page\n";
262	}
263
264	if (v) {
265		pr_cont("failed, %s\n", reason);
266		shared_pte_mask = L_PTE_MT_UNCACHED;
267	} else {
268		pr_cont("ok\n");
269	}
270}