Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * numa.c
   4 *
   5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
   6 */
   7
   8#include <inttypes.h>
   9/* For the CLR_() macros */
  10#include <pthread.h>
  11
  12#include <subcmd/parse-options.h>
  13#include "../util/cloexec.h"
  14
  15#include "bench.h"
  16
  17#include <errno.h>
  18#include <sched.h>
  19#include <stdio.h>
  20#include <assert.h>
 
  21#include <malloc.h>
  22#include <signal.h>
  23#include <stdlib.h>
  24#include <string.h>
  25#include <unistd.h>
  26#include <sys/mman.h>
  27#include <sys/time.h>
  28#include <sys/resource.h>
  29#include <sys/wait.h>
  30#include <sys/prctl.h>
  31#include <sys/types.h>
  32#include <linux/kernel.h>
  33#include <linux/time64.h>
  34#include <linux/numa.h>
  35#include <linux/zalloc.h>
  36
 
 
  37#include <numa.h>
  38#include <numaif.h>
  39
  40#ifndef RUSAGE_THREAD
  41# define RUSAGE_THREAD 1
  42#endif
  43
  44/*
  45 * Regular printout to the terminal, supressed if -q is specified:
  46 */
  47#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
  48
  49/*
  50 * Debug printf:
  51 */
  52#undef dprintf
  53#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
  54
  55struct thread_data {
  56	int			curr_cpu;
  57	cpu_set_t		bind_cpumask;
  58	int			bind_node;
  59	u8			*process_data;
  60	int			process_nr;
  61	int			thread_nr;
  62	int			task_nr;
  63	unsigned int		loops_done;
  64	u64			val;
  65	u64			runtime_ns;
  66	u64			system_time_ns;
  67	u64			user_time_ns;
  68	double			speed_gbs;
  69	pthread_mutex_t		*process_lock;
  70};
  71
  72/* Parameters set by options: */
  73
  74struct params {
  75	/* Startup synchronization: */
  76	bool			serialize_startup;
  77
  78	/* Task hierarchy: */
  79	int			nr_proc;
  80	int			nr_threads;
  81
  82	/* Working set sizes: */
  83	const char		*mb_global_str;
  84	const char		*mb_proc_str;
  85	const char		*mb_proc_locked_str;
  86	const char		*mb_thread_str;
  87
  88	double			mb_global;
  89	double			mb_proc;
  90	double			mb_proc_locked;
  91	double			mb_thread;
  92
  93	/* Access patterns to the working set: */
  94	bool			data_reads;
  95	bool			data_writes;
  96	bool			data_backwards;
  97	bool			data_zero_memset;
  98	bool			data_rand_walk;
  99	u32			nr_loops;
 100	u32			nr_secs;
 101	u32			sleep_usecs;
 102
 103	/* Working set initialization: */
 104	bool			init_zero;
 105	bool			init_random;
 106	bool			init_cpu0;
 107
 108	/* Misc options: */
 109	int			show_details;
 110	int			run_all;
 111	int			thp;
 112
 113	long			bytes_global;
 114	long			bytes_process;
 115	long			bytes_process_locked;
 116	long			bytes_thread;
 117
 118	int			nr_tasks;
 119	bool			show_quiet;
 120
 121	bool			show_convergence;
 122	bool			measure_convergence;
 123
 124	int			perturb_secs;
 125	int			nr_cpus;
 126	int			nr_nodes;
 127
 128	/* Affinity options -C and -N: */
 129	char			*cpu_list_str;
 130	char			*node_list_str;
 131};
 132
 133
 134/* Global, read-writable area, accessible to all processes and threads: */
 135
 136struct global_info {
 137	u8			*data;
 138
 139	pthread_mutex_t		startup_mutex;
 
 140	int			nr_tasks_started;
 141
 142	pthread_mutex_t		startup_done_mutex;
 143
 144	pthread_mutex_t		start_work_mutex;
 145	int			nr_tasks_working;
 
 146
 147	pthread_mutex_t		stop_work_mutex;
 148	u64			bytes_done;
 149
 150	struct thread_data	*threads;
 151
 152	/* Convergence latency measurement: */
 153	bool			all_converged;
 154	bool			stop_work;
 155
 156	int			print_once;
 157
 158	struct params		p;
 159};
 160
 161static struct global_info	*g = NULL;
 162
 163static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
 164static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
 165
 166struct params p0;
 167
 168static const struct option options[] = {
 169	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
 170	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
 171
 172	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
 173	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
 174	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
 175	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
 176
 177	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run (default: unlimited)"),
 178	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run (default: 5 secs)"),
 179	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
 180
 181	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via reads (can be mixed with -W)"),
 182	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
 183	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
 184	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
 185	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
 186
 187
 188	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
 189	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
 190	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
 191	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
 192
 193	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
 194	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
 195	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
 196	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
 197		    "convergence is reached when each process (all its threads) is running on a single NUMA node."),
 198	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
 199	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"quiet mode"),
 
 200	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
 201
 202	/* Special option string parsing callbacks: */
 203        OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
 204			"bind the first N tasks to these specific cpus (the rest is unbound)",
 205			parse_cpus_opt),
 206        OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
 207			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
 208			parse_nodes_opt),
 209	OPT_END()
 210};
 211
 212static const char * const bench_numa_usage[] = {
 213	"perf bench numa <options>",
 214	NULL
 215};
 216
 217static const char * const numa_usage[] = {
 218	"perf bench numa mem [<options>]",
 219	NULL
 220};
 221
 222/*
 223 * To get number of numa nodes present.
 224 */
 225static int nr_numa_nodes(void)
 226{
 227	int i, nr_nodes = 0;
 228
 229	for (i = 0; i < g->p.nr_nodes; i++) {
 230		if (numa_bitmask_isbitset(numa_nodes_ptr, i))
 231			nr_nodes++;
 232	}
 233
 234	return nr_nodes;
 235}
 236
 237/*
 238 * To check if given numa node is present.
 239 */
 240static int is_node_present(int node)
 241{
 242	return numa_bitmask_isbitset(numa_nodes_ptr, node);
 243}
 244
 245/*
 246 * To check given numa node has cpus.
 247 */
 248static bool node_has_cpus(int node)
 249{
 250	struct bitmask *cpu = numa_allocate_cpumask();
 251	unsigned int i;
 
 252
 253	if (cpu && !numa_node_to_cpus(node, cpu)) {
 254		for (i = 0; i < cpu->size; i++) {
 255			if (numa_bitmask_isbitset(cpu, i))
 256				return true;
 
 
 
 257		}
 258	}
 
 259
 260	return false; /* lets fall back to nocpus safely */
 261}
 262
 263static cpu_set_t bind_to_cpu(int target_cpu)
 264{
 265	cpu_set_t orig_mask, mask;
 266	int ret;
 
 267
 268	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 269	BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 270
 271	CPU_ZERO(&mask);
 272
 273	if (target_cpu == -1) {
 274		int cpu;
 275
 276		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 277			CPU_SET(cpu, &mask);
 278	} else {
 279		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
 280		CPU_SET(target_cpu, &mask);
 
 
 281	}
 282
 283	ret = sched_setaffinity(0, sizeof(mask), &mask);
 284	BUG_ON(ret);
 285
 286	return orig_mask;
 
 
 
 
 
 
 
 
 
 287}
 288
 289static cpu_set_t bind_to_node(int target_node)
 290{
 291	int cpus_per_node = g->p.nr_cpus / nr_numa_nodes();
 292	cpu_set_t orig_mask, mask;
 
 293	int cpu;
 294	int ret;
 295
 296	BUG_ON(cpus_per_node * nr_numa_nodes() != g->p.nr_cpus);
 297	BUG_ON(!cpus_per_node);
 
 
 
 
 
 
 
 
 
 298
 299	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 300	BUG_ON(ret);
 301
 302	CPU_ZERO(&mask);
 303
 304	if (target_node == NUMA_NO_NODE) {
 305		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 306			CPU_SET(cpu, &mask);
 307	} else {
 308		int cpu_start = (target_node + 0) * cpus_per_node;
 309		int cpu_stop  = (target_node + 1) * cpus_per_node;
 310
 311		BUG_ON(cpu_stop > g->p.nr_cpus);
 
 312
 313		for (cpu = cpu_start; cpu < cpu_stop; cpu++)
 314			CPU_SET(cpu, &mask);
 
 
 
 
 
 315	}
 316
 317	ret = sched_setaffinity(0, sizeof(mask), &mask);
 318	BUG_ON(ret);
 319
 320	return orig_mask;
 
 
 
 
 
 
 
 
 
 321}
 322
 323static void bind_to_cpumask(cpu_set_t mask)
 324{
 325	int ret;
 
 326
 327	ret = sched_setaffinity(0, sizeof(mask), &mask);
 328	BUG_ON(ret);
 
 
 
 329}
 330
 331static void mempol_restore(void)
 332{
 333	int ret;
 334
 335	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
 336
 337	BUG_ON(ret);
 338}
 339
 340static void bind_to_memnode(int node)
 341{
 342	unsigned long nodemask;
 343	int ret;
 344
 345	if (node == NUMA_NO_NODE)
 346		return;
 347
 348	BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
 349	nodemask = 1L << node;
 
 
 
 350
 351	ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
 352	dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
 353
 
 354	BUG_ON(ret);
 355}
 356
 357#define HPSIZE (2*1024*1024)
 358
 359#define set_taskname(fmt...)				\
 360do {							\
 361	char name[20];					\
 362							\
 363	snprintf(name, 20, fmt);			\
 364	prctl(PR_SET_NAME, name);			\
 365} while (0)
 366
 367static u8 *alloc_data(ssize_t bytes0, int map_flags,
 368		      int init_zero, int init_cpu0, int thp, int init_random)
 369{
 370	cpu_set_t orig_mask;
 371	ssize_t bytes;
 372	u8 *buf;
 373	int ret;
 374
 375	if (!bytes0)
 376		return NULL;
 377
 378	/* Allocate and initialize all memory on CPU#0: */
 379	if (init_cpu0) {
 380		int node = numa_node_of_cpu(0);
 381
 382		orig_mask = bind_to_node(node);
 383		bind_to_memnode(node);
 384	}
 385
 386	bytes = bytes0 + HPSIZE;
 387
 388	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
 389	BUG_ON(buf == (void *)-1);
 390
 391	if (map_flags == MAP_PRIVATE) {
 392		if (thp > 0) {
 393			ret = madvise(buf, bytes, MADV_HUGEPAGE);
 394			if (ret && !g->print_once) {
 395				g->print_once = 1;
 396				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
 397			}
 398		}
 399		if (thp < 0) {
 400			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
 401			if (ret && !g->print_once) {
 402				g->print_once = 1;
 403				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
 404			}
 405		}
 406	}
 407
 408	if (init_zero) {
 409		bzero(buf, bytes);
 410	} else {
 411		/* Initialize random contents, different in each word: */
 412		if (init_random) {
 413			u64 *wbuf = (void *)buf;
 414			long off = rand();
 415			long i;
 416
 417			for (i = 0; i < bytes/8; i++)
 418				wbuf[i] = i + off;
 419		}
 420	}
 421
 422	/* Align to 2MB boundary: */
 423	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
 424
 425	/* Restore affinity: */
 426	if (init_cpu0) {
 427		bind_to_cpumask(orig_mask);
 
 428		mempol_restore();
 429	}
 430
 431	return buf;
 432}
 433
 434static void free_data(void *data, ssize_t bytes)
 435{
 436	int ret;
 437
 438	if (!data)
 439		return;
 440
 441	ret = munmap(data, bytes);
 442	BUG_ON(ret);
 443}
 444
 445/*
 446 * Create a shared memory buffer that can be shared between processes, zeroed:
 447 */
 448static void * zalloc_shared_data(ssize_t bytes)
 449{
 450	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 451}
 452
 453/*
 454 * Create a shared memory buffer that can be shared between processes:
 455 */
 456static void * setup_shared_data(ssize_t bytes)
 457{
 458	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 459}
 460
 461/*
 462 * Allocate process-local memory - this will either be shared between
 463 * threads of this process, or only be accessed by this thread:
 464 */
 465static void * setup_private_data(ssize_t bytes)
 466{
 467	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 468}
 469
 470/*
 471 * Return a process-shared (global) mutex:
 472 */
 473static void init_global_mutex(pthread_mutex_t *mutex)
 474{
 475	pthread_mutexattr_t attr;
 476
 477	pthread_mutexattr_init(&attr);
 478	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
 479	pthread_mutex_init(mutex, &attr);
 480}
 481
 482static int parse_cpu_list(const char *arg)
 483{
 484	p0.cpu_list_str = strdup(arg);
 485
 486	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
 487
 488	return 0;
 489}
 490
 491static int parse_setup_cpu_list(void)
 492{
 493	struct thread_data *td;
 494	char *str0, *str;
 495	int t;
 496
 497	if (!g->p.cpu_list_str)
 498		return 0;
 499
 500	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 501
 502	str0 = str = strdup(g->p.cpu_list_str);
 503	t = 0;
 504
 505	BUG_ON(!str);
 506
 507	tprintf("# binding tasks to CPUs:\n");
 508	tprintf("#  ");
 509
 510	while (true) {
 511		int bind_cpu, bind_cpu_0, bind_cpu_1;
 512		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
 513		int bind_len;
 514		int step;
 515		int mul;
 516
 517		tok = strsep(&str, ",");
 518		if (!tok)
 519			break;
 520
 521		tok_end = strstr(tok, "-");
 522
 523		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 524		if (!tok_end) {
 525			/* Single CPU specified: */
 526			bind_cpu_0 = bind_cpu_1 = atol(tok);
 527		} else {
 528			/* CPU range specified (for example: "5-11"): */
 529			bind_cpu_0 = atol(tok);
 530			bind_cpu_1 = atol(tok_end + 1);
 531		}
 532
 533		step = 1;
 534		tok_step = strstr(tok, "#");
 535		if (tok_step) {
 536			step = atol(tok_step + 1);
 537			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
 538		}
 539
 540		/*
 541		 * Mask length.
 542		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
 543		 * where the _4 means the next 4 CPUs are allowed.
 544		 */
 545		bind_len = 1;
 546		tok_len = strstr(tok, "_");
 547		if (tok_len) {
 548			bind_len = atol(tok_len + 1);
 549			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
 550		}
 551
 552		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 553		mul = 1;
 554		tok_mul = strstr(tok, "x");
 555		if (tok_mul) {
 556			mul = atol(tok_mul + 1);
 557			BUG_ON(mul <= 0);
 558		}
 559
 560		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
 561
 562		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
 563			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
 564			return -1;
 565		}
 566
 
 
 
 
 
 567		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
 568		BUG_ON(bind_cpu_0 > bind_cpu_1);
 569
 570		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
 
 571			int i;
 572
 573			for (i = 0; i < mul; i++) {
 574				int cpu;
 575
 576				if (t >= g->p.nr_tasks) {
 577					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
 578					goto out;
 579				}
 580				td = g->threads + t;
 581
 582				if (t)
 583					tprintf(",");
 584				if (bind_len > 1) {
 585					tprintf("%2d/%d", bind_cpu, bind_len);
 586				} else {
 587					tprintf("%2d", bind_cpu);
 588				}
 589
 590				CPU_ZERO(&td->bind_cpumask);
 
 
 591				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
 592					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
 593					CPU_SET(cpu, &td->bind_cpumask);
 
 
 
 594				}
 595				t++;
 596			}
 597		}
 598	}
 599out:
 600
 601	tprintf("\n");
 602
 603	if (t < g->p.nr_tasks)
 604		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 605
 606	free(str0);
 607	return 0;
 608}
 609
 610static int parse_cpus_opt(const struct option *opt __maybe_unused,
 611			  const char *arg, int unset __maybe_unused)
 612{
 613	if (!arg)
 614		return -1;
 615
 616	return parse_cpu_list(arg);
 617}
 618
 619static int parse_node_list(const char *arg)
 620{
 621	p0.node_list_str = strdup(arg);
 622
 623	dprintf("got NODE list: {%s}\n", p0.node_list_str);
 624
 625	return 0;
 626}
 627
 628static int parse_setup_node_list(void)
 629{
 630	struct thread_data *td;
 631	char *str0, *str;
 632	int t;
 633
 634	if (!g->p.node_list_str)
 635		return 0;
 636
 637	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 638
 639	str0 = str = strdup(g->p.node_list_str);
 640	t = 0;
 641
 642	BUG_ON(!str);
 643
 644	tprintf("# binding tasks to NODEs:\n");
 645	tprintf("# ");
 646
 647	while (true) {
 648		int bind_node, bind_node_0, bind_node_1;
 649		char *tok, *tok_end, *tok_step, *tok_mul;
 650		int step;
 651		int mul;
 652
 653		tok = strsep(&str, ",");
 654		if (!tok)
 655			break;
 656
 657		tok_end = strstr(tok, "-");
 658
 659		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 660		if (!tok_end) {
 661			/* Single NODE specified: */
 662			bind_node_0 = bind_node_1 = atol(tok);
 663		} else {
 664			/* NODE range specified (for example: "5-11"): */
 665			bind_node_0 = atol(tok);
 666			bind_node_1 = atol(tok_end + 1);
 667		}
 668
 669		step = 1;
 670		tok_step = strstr(tok, "#");
 671		if (tok_step) {
 672			step = atol(tok_step + 1);
 673			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
 674		}
 675
 676		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 677		mul = 1;
 678		tok_mul = strstr(tok, "x");
 679		if (tok_mul) {
 680			mul = atol(tok_mul + 1);
 681			BUG_ON(mul <= 0);
 682		}
 683
 684		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
 685
 686		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
 687			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
 688			return -1;
 689		}
 690
 691		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
 692		BUG_ON(bind_node_0 > bind_node_1);
 693
 694		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
 695			int i;
 696
 697			for (i = 0; i < mul; i++) {
 698				if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
 699					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
 700					goto out;
 701				}
 702				td = g->threads + t;
 703
 704				if (!t)
 705					tprintf(" %2d", bind_node);
 706				else
 707					tprintf(",%2d", bind_node);
 708
 709				td->bind_node = bind_node;
 710				t++;
 711			}
 712		}
 713	}
 714out:
 715
 716	tprintf("\n");
 717
 718	if (t < g->p.nr_tasks)
 719		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 720
 721	free(str0);
 722	return 0;
 723}
 724
 725static int parse_nodes_opt(const struct option *opt __maybe_unused,
 726			  const char *arg, int unset __maybe_unused)
 727{
 728	if (!arg)
 729		return -1;
 730
 731	return parse_node_list(arg);
 732
 733	return 0;
 734}
 735
 736#define BIT(x) (1ul << x)
 737
 738static inline uint32_t lfsr_32(uint32_t lfsr)
 739{
 740	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
 741	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
 742}
 743
 744/*
 745 * Make sure there's real data dependency to RAM (when read
 746 * accesses are enabled), so the compiler, the CPU and the
 747 * kernel (KSM, zero page, etc.) cannot optimize away RAM
 748 * accesses:
 749 */
 750static inline u64 access_data(u64 *data, u64 val)
 751{
 752	if (g->p.data_reads)
 753		val += *data;
 754	if (g->p.data_writes)
 755		*data = val + 1;
 756	return val;
 757}
 758
 759/*
 760 * The worker process does two types of work, a forwards going
 761 * loop and a backwards going loop.
 762 *
 763 * We do this so that on multiprocessor systems we do not create
 764 * a 'train' of processing, with highly synchronized processes,
 765 * skewing the whole benchmark.
 766 */
 767static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
 768{
 769	long words = bytes/sizeof(u64);
 770	u64 *data = (void *)__data;
 771	long chunk_0, chunk_1;
 772	u64 *d0, *d, *d1;
 773	long off;
 774	long i;
 775
 776	BUG_ON(!data && words);
 777	BUG_ON(data && !words);
 778
 779	if (!data)
 780		return val;
 781
 782	/* Very simple memset() work variant: */
 783	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
 784		bzero(data, bytes);
 785		return val;
 786	}
 787
 788	/* Spread out by PID/TID nr and by loop nr: */
 789	chunk_0 = words/nr_max;
 790	chunk_1 = words/g->p.nr_loops;
 791	off = nr*chunk_0 + loop*chunk_1;
 792
 793	while (off >= words)
 794		off -= words;
 795
 796	if (g->p.data_rand_walk) {
 797		u32 lfsr = nr + loop + val;
 798		int j;
 799
 800		for (i = 0; i < words/1024; i++) {
 801			long start, end;
 802
 803			lfsr = lfsr_32(lfsr);
 804
 805			start = lfsr % words;
 806			end = min(start + 1024, words-1);
 807
 808			if (g->p.data_zero_memset) {
 809				bzero(data + start, (end-start) * sizeof(u64));
 810			} else {
 811				for (j = start; j < end; j++)
 812					val = access_data(data + j, val);
 813			}
 814		}
 815	} else if (!g->p.data_backwards || (nr + loop) & 1) {
 
 816
 817		d0 = data + off;
 818		d  = data + off + 1;
 819		d1 = data + words;
 820
 821		/* Process data forwards: */
 822		for (;;) {
 823			if (unlikely(d >= d1))
 824				d = data;
 825			if (unlikely(d == d0))
 826				break;
 827
 828			val = access_data(d, val);
 829
 830			d++;
 831		}
 832	} else {
 833		/* Process data backwards: */
 834
 835		d0 = data + off;
 836		d  = data + off - 1;
 837		d1 = data + words;
 838
 839		/* Process data forwards: */
 840		for (;;) {
 841			if (unlikely(d < data))
 842				d = data + words-1;
 843			if (unlikely(d == d0))
 844				break;
 845
 846			val = access_data(d, val);
 847
 848			d--;
 849		}
 850	}
 851
 852	return val;
 853}
 854
 855static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
 856{
 857	unsigned int cpu;
 858
 859	cpu = sched_getcpu();
 860
 861	g->threads[task_nr].curr_cpu = cpu;
 862	prctl(0, bytes_worked);
 863}
 864
 865#define MAX_NR_NODES	64
 866
 867/*
 868 * Count the number of nodes a process's threads
 869 * are spread out on.
 870 *
 871 * A count of 1 means that the process is compressed
 872 * to a single node. A count of g->p.nr_nodes means it's
 873 * spread out on the whole system.
 874 */
 875static int count_process_nodes(int process_nr)
 876{
 877	char node_present[MAX_NR_NODES] = { 0, };
 878	int nodes;
 879	int n, t;
 880
 
 
 
 
 
 881	for (t = 0; t < g->p.nr_threads; t++) {
 882		struct thread_data *td;
 883		int task_nr;
 884		int node;
 885
 886		task_nr = process_nr*g->p.nr_threads + t;
 887		td = g->threads + task_nr;
 888
 889		node = numa_node_of_cpu(td->curr_cpu);
 890		if (node < 0) /* curr_cpu was likely still -1 */
 
 891			return 0;
 
 892
 893		node_present[node] = 1;
 894	}
 895
 896	nodes = 0;
 897
 898	for (n = 0; n < MAX_NR_NODES; n++)
 899		nodes += node_present[n];
 900
 
 901	return nodes;
 902}
 903
 904/*
 905 * Count the number of distinct process-threads a node contains.
 906 *
 907 * A count of 1 means that the node contains only a single
 908 * process. If all nodes on the system contain at most one
 909 * process then we are well-converged.
 910 */
 911static int count_node_processes(int node)
 912{
 913	int processes = 0;
 914	int t, p;
 915
 916	for (p = 0; p < g->p.nr_proc; p++) {
 917		for (t = 0; t < g->p.nr_threads; t++) {
 918			struct thread_data *td;
 919			int task_nr;
 920			int n;
 921
 922			task_nr = p*g->p.nr_threads + t;
 923			td = g->threads + task_nr;
 924
 925			n = numa_node_of_cpu(td->curr_cpu);
 926			if (n == node) {
 927				processes++;
 928				break;
 929			}
 930		}
 931	}
 932
 933	return processes;
 934}
 935
 936static void calc_convergence_compression(int *strong)
 937{
 938	unsigned int nodes_min, nodes_max;
 939	int p;
 940
 941	nodes_min = -1;
 942	nodes_max =  0;
 943
 944	for (p = 0; p < g->p.nr_proc; p++) {
 945		unsigned int nodes = count_process_nodes(p);
 946
 947		if (!nodes) {
 948			*strong = 0;
 949			return;
 950		}
 951
 952		nodes_min = min(nodes, nodes_min);
 953		nodes_max = max(nodes, nodes_max);
 954	}
 955
 956	/* Strong convergence: all threads compress on a single node: */
 957	if (nodes_min == 1 && nodes_max == 1) {
 958		*strong = 1;
 959	} else {
 960		*strong = 0;
 961		tprintf(" {%d-%d}", nodes_min, nodes_max);
 962	}
 963}
 964
 965static void calc_convergence(double runtime_ns_max, double *convergence)
 966{
 967	unsigned int loops_done_min, loops_done_max;
 968	int process_groups;
 969	int nodes[MAX_NR_NODES];
 970	int distance;
 971	int nr_min;
 972	int nr_max;
 973	int strong;
 974	int sum;
 975	int nr;
 976	int node;
 977	int cpu;
 978	int t;
 979
 980	if (!g->p.show_convergence && !g->p.measure_convergence)
 981		return;
 982
 
 
 983	for (node = 0; node < g->p.nr_nodes; node++)
 984		nodes[node] = 0;
 985
 986	loops_done_min = -1;
 987	loops_done_max = 0;
 988
 989	for (t = 0; t < g->p.nr_tasks; t++) {
 990		struct thread_data *td = g->threads + t;
 991		unsigned int loops_done;
 992
 993		cpu = td->curr_cpu;
 994
 995		/* Not all threads have written it yet: */
 996		if (cpu < 0)
 997			continue;
 998
 999		node = numa_node_of_cpu(cpu);
1000
1001		nodes[node]++;
1002
1003		loops_done = td->loops_done;
1004		loops_done_min = min(loops_done, loops_done_min);
1005		loops_done_max = max(loops_done, loops_done_max);
1006	}
1007
1008	nr_max = 0;
1009	nr_min = g->p.nr_tasks;
1010	sum = 0;
1011
1012	for (node = 0; node < g->p.nr_nodes; node++) {
1013		if (!is_node_present(node))
1014			continue;
1015		nr = nodes[node];
1016		nr_min = min(nr, nr_min);
1017		nr_max = max(nr, nr_max);
1018		sum += nr;
1019	}
1020	BUG_ON(nr_min > nr_max);
1021
1022	BUG_ON(sum > g->p.nr_tasks);
1023
1024	if (0 && (sum < g->p.nr_tasks))
 
1025		return;
 
1026
1027	/*
1028	 * Count the number of distinct process groups present
1029	 * on nodes - when we are converged this will decrease
1030	 * to g->p.nr_proc:
1031	 */
1032	process_groups = 0;
1033
1034	for (node = 0; node < g->p.nr_nodes; node++) {
1035		int processes;
1036
1037		if (!is_node_present(node))
1038			continue;
1039		processes = count_node_processes(node);
1040		nr = nodes[node];
1041		tprintf(" %2d/%-2d", nr, processes);
1042
1043		process_groups += processes;
1044	}
1045
1046	distance = nr_max - nr_min;
1047
1048	tprintf(" [%2d/%-2d]", distance, process_groups);
1049
1050	tprintf(" l:%3d-%-3d (%3d)",
1051		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1052
1053	if (loops_done_min && loops_done_max) {
1054		double skew = 1.0 - (double)loops_done_min/loops_done_max;
1055
1056		tprintf(" [%4.1f%%]", skew * 100.0);
1057	}
1058
1059	calc_convergence_compression(&strong);
1060
1061	if (strong && process_groups == g->p.nr_proc) {
1062		if (!*convergence) {
1063			*convergence = runtime_ns_max;
1064			tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1065			if (g->p.measure_convergence) {
1066				g->all_converged = true;
1067				g->stop_work = true;
1068			}
1069		}
1070	} else {
1071		if (*convergence) {
1072			tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1073			*convergence = 0;
1074		}
1075		tprintf("\n");
1076	}
 
 
1077}
1078
1079static void show_summary(double runtime_ns_max, int l, double *convergence)
1080{
1081	tprintf("\r #  %5.1f%%  [%.1f mins]",
1082		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1083
1084	calc_convergence(runtime_ns_max, convergence);
1085
1086	if (g->p.show_details >= 0)
1087		fflush(stdout);
1088}
1089
1090static void *worker_thread(void *__tdata)
1091{
1092	struct thread_data *td = __tdata;
1093	struct timeval start0, start, stop, diff;
1094	int process_nr = td->process_nr;
1095	int thread_nr = td->thread_nr;
1096	unsigned long last_perturbance;
1097	int task_nr = td->task_nr;
1098	int details = g->p.show_details;
1099	int first_task, last_task;
1100	double convergence = 0;
1101	u64 val = td->val;
1102	double runtime_ns_max;
1103	u8 *global_data;
1104	u8 *process_data;
1105	u8 *thread_data;
1106	u64 bytes_done, secs;
1107	long work_done;
1108	u32 l;
1109	struct rusage rusage;
1110
1111	bind_to_cpumask(td->bind_cpumask);
1112	bind_to_memnode(td->bind_node);
1113
1114	set_taskname("thread %d/%d", process_nr, thread_nr);
1115
1116	global_data = g->data;
1117	process_data = td->process_data;
1118	thread_data = setup_private_data(g->p.bytes_thread);
1119
1120	bytes_done = 0;
1121
1122	last_task = 0;
1123	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1124		last_task = 1;
1125
1126	first_task = 0;
1127	if (process_nr == 0 && thread_nr == 0)
1128		first_task = 1;
1129
1130	if (details >= 2) {
1131		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1132			process_nr, thread_nr, global_data, process_data, thread_data);
1133	}
1134
1135	if (g->p.serialize_startup) {
1136		pthread_mutex_lock(&g->startup_mutex);
1137		g->nr_tasks_started++;
1138		pthread_mutex_unlock(&g->startup_mutex);
 
 
 
 
1139
1140		/* Here we will wait for the main process to start us all at once: */
1141		pthread_mutex_lock(&g->start_work_mutex);
 
1142		g->nr_tasks_working++;
 
 
1143
1144		/* Last one wake the main process: */
1145		if (g->nr_tasks_working == g->p.nr_tasks)
1146			pthread_mutex_unlock(&g->startup_done_mutex);
1147
1148		pthread_mutex_unlock(&g->start_work_mutex);
1149	}
1150
1151	gettimeofday(&start0, NULL);
1152
1153	start = stop = start0;
1154	last_perturbance = start.tv_sec;
1155
1156	for (l = 0; l < g->p.nr_loops; l++) {
1157		start = stop;
1158
1159		if (g->stop_work)
1160			break;
1161
1162		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
1163		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
1164		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
1165
1166		if (g->p.sleep_usecs) {
1167			pthread_mutex_lock(td->process_lock);
1168			usleep(g->p.sleep_usecs);
1169			pthread_mutex_unlock(td->process_lock);
1170		}
1171		/*
1172		 * Amount of work to be done under a process-global lock:
1173		 */
1174		if (g->p.bytes_process_locked) {
1175			pthread_mutex_lock(td->process_lock);
1176			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
1177			pthread_mutex_unlock(td->process_lock);
1178		}
1179
1180		work_done = g->p.bytes_global + g->p.bytes_process +
1181			    g->p.bytes_process_locked + g->p.bytes_thread;
1182
1183		update_curr_cpu(task_nr, work_done);
1184		bytes_done += work_done;
1185
1186		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1187			continue;
1188
1189		td->loops_done = l;
1190
1191		gettimeofday(&stop, NULL);
1192
1193		/* Check whether our max runtime timed out: */
1194		if (g->p.nr_secs) {
1195			timersub(&stop, &start0, &diff);
1196			if ((u32)diff.tv_sec >= g->p.nr_secs) {
1197				g->stop_work = true;
1198				break;
1199			}
1200		}
1201
1202		/* Update the summary at most once per second: */
1203		if (start.tv_sec == stop.tv_sec)
1204			continue;
1205
1206		/*
1207		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1208		 * by migrating to CPU#0:
1209		 */
1210		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1211			cpu_set_t orig_mask;
1212			int target_cpu;
1213			int this_cpu;
1214
1215			last_perturbance = stop.tv_sec;
1216
1217			/*
1218			 * Depending on where we are running, move into
1219			 * the other half of the system, to create some
1220			 * real disturbance:
1221			 */
1222			this_cpu = g->threads[task_nr].curr_cpu;
1223			if (this_cpu < g->p.nr_cpus/2)
1224				target_cpu = g->p.nr_cpus-1;
1225			else
1226				target_cpu = 0;
1227
1228			orig_mask = bind_to_cpu(target_cpu);
1229
1230			/* Here we are running on the target CPU already */
1231			if (details >= 1)
1232				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1233
1234			bind_to_cpumask(orig_mask);
 
1235		}
1236
1237		if (details >= 3) {
1238			timersub(&stop, &start, &diff);
1239			runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1240			runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1241
1242			if (details >= 0) {
1243				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1244					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1245			}
1246			fflush(stdout);
1247		}
1248		if (!last_task)
1249			continue;
1250
1251		timersub(&stop, &start0, &diff);
1252		runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1253		runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1254
1255		show_summary(runtime_ns_max, l, &convergence);
1256	}
1257
1258	gettimeofday(&stop, NULL);
1259	timersub(&stop, &start0, &diff);
1260	td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1261	td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1262	secs = td->runtime_ns / NSEC_PER_SEC;
1263	td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1264
1265	getrusage(RUSAGE_THREAD, &rusage);
1266	td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1267	td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1268	td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1269	td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1270
1271	free_data(thread_data, g->p.bytes_thread);
1272
1273	pthread_mutex_lock(&g->stop_work_mutex);
1274	g->bytes_done += bytes_done;
1275	pthread_mutex_unlock(&g->stop_work_mutex);
1276
1277	return NULL;
1278}
1279
1280/*
1281 * A worker process starts a couple of threads:
1282 */
1283static void worker_process(int process_nr)
1284{
1285	pthread_mutex_t process_lock;
1286	struct thread_data *td;
1287	pthread_t *pthreads;
1288	u8 *process_data;
1289	int task_nr;
1290	int ret;
1291	int t;
1292
1293	pthread_mutex_init(&process_lock, NULL);
1294	set_taskname("process %d", process_nr);
1295
1296	/*
1297	 * Pick up the memory policy and the CPU binding of our first thread,
1298	 * so that we initialize memory accordingly:
1299	 */
1300	task_nr = process_nr*g->p.nr_threads;
1301	td = g->threads + task_nr;
1302
1303	bind_to_memnode(td->bind_node);
1304	bind_to_cpumask(td->bind_cpumask);
1305
1306	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1307	process_data = setup_private_data(g->p.bytes_process);
1308
1309	if (g->p.show_details >= 3) {
1310		printf(" # process %2d global mem: %p, process mem: %p\n",
1311			process_nr, g->data, process_data);
1312	}
1313
1314	for (t = 0; t < g->p.nr_threads; t++) {
1315		task_nr = process_nr*g->p.nr_threads + t;
1316		td = g->threads + task_nr;
1317
1318		td->process_data = process_data;
1319		td->process_nr   = process_nr;
1320		td->thread_nr    = t;
1321		td->task_nr	 = task_nr;
1322		td->val          = rand();
1323		td->curr_cpu	 = -1;
1324		td->process_lock = &process_lock;
1325
1326		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1327		BUG_ON(ret);
1328	}
1329
1330	for (t = 0; t < g->p.nr_threads; t++) {
1331                ret = pthread_join(pthreads[t], NULL);
1332		BUG_ON(ret);
1333	}
1334
1335	free_data(process_data, g->p.bytes_process);
1336	free(pthreads);
1337}
1338
1339static void print_summary(void)
1340{
1341	if (g->p.show_details < 0)
1342		return;
1343
1344	printf("\n ###\n");
1345	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1346		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1347	printf(" #      %5dx %5ldMB global  shared mem operations\n",
1348			g->p.nr_loops, g->p.bytes_global/1024/1024);
1349	printf(" #      %5dx %5ldMB process shared mem operations\n",
1350			g->p.nr_loops, g->p.bytes_process/1024/1024);
1351	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1352			g->p.nr_loops, g->p.bytes_thread/1024/1024);
1353
1354	printf(" ###\n");
1355
1356	printf("\n ###\n"); fflush(stdout);
1357}
1358
1359static void init_thread_data(void)
1360{
1361	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1362	int t;
1363
1364	g->threads = zalloc_shared_data(size);
1365
1366	for (t = 0; t < g->p.nr_tasks; t++) {
1367		struct thread_data *td = g->threads + t;
 
1368		int cpu;
1369
1370		/* Allow all nodes by default: */
1371		td->bind_node = NUMA_NO_NODE;
1372
1373		/* Allow all CPUs by default: */
1374		CPU_ZERO(&td->bind_cpumask);
 
 
1375		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1376			CPU_SET(cpu, &td->bind_cpumask);
1377	}
1378}
1379
1380static void deinit_thread_data(void)
1381{
1382	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
 
 
 
 
 
 
 
1383
1384	free_data(g->threads, size);
1385}
1386
1387static int init(void)
1388{
1389	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1390
1391	/* Copy over options: */
1392	g->p = p0;
1393
1394	g->p.nr_cpus = numa_num_configured_cpus();
1395
1396	g->p.nr_nodes = numa_max_node() + 1;
1397
1398	/* char array in count_process_nodes(): */
1399	BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1400
1401	if (g->p.show_quiet && !g->p.show_details)
1402		g->p.show_details = -1;
1403
1404	/* Some memory should be specified: */
1405	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1406		return -1;
1407
1408	if (g->p.mb_global_str) {
1409		g->p.mb_global = atof(g->p.mb_global_str);
1410		BUG_ON(g->p.mb_global < 0);
1411	}
1412
1413	if (g->p.mb_proc_str) {
1414		g->p.mb_proc = atof(g->p.mb_proc_str);
1415		BUG_ON(g->p.mb_proc < 0);
1416	}
1417
1418	if (g->p.mb_proc_locked_str) {
1419		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1420		BUG_ON(g->p.mb_proc_locked < 0);
1421		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1422	}
1423
1424	if (g->p.mb_thread_str) {
1425		g->p.mb_thread = atof(g->p.mb_thread_str);
1426		BUG_ON(g->p.mb_thread < 0);
1427	}
1428
1429	BUG_ON(g->p.nr_threads <= 0);
1430	BUG_ON(g->p.nr_proc <= 0);
1431
1432	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1433
1434	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
1435	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
1436	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
1437	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
1438
1439	g->data = setup_shared_data(g->p.bytes_global);
1440
1441	/* Startup serialization: */
1442	init_global_mutex(&g->start_work_mutex);
1443	init_global_mutex(&g->startup_mutex);
1444	init_global_mutex(&g->startup_done_mutex);
1445	init_global_mutex(&g->stop_work_mutex);
 
1446
1447	init_thread_data();
1448
1449	tprintf("#\n");
1450	if (parse_setup_cpu_list() || parse_setup_node_list())
1451		return -1;
1452	tprintf("#\n");
1453
1454	print_summary();
1455
1456	return 0;
1457}
1458
1459static void deinit(void)
1460{
1461	free_data(g->data, g->p.bytes_global);
1462	g->data = NULL;
1463
1464	deinit_thread_data();
1465
1466	free_data(g, sizeof(*g));
1467	g = NULL;
1468}
1469
1470/*
1471 * Print a short or long result, depending on the verbosity setting:
1472 */
1473static void print_res(const char *name, double val,
1474		      const char *txt_unit, const char *txt_short, const char *txt_long)
1475{
1476	if (!name)
1477		name = "main,";
1478
1479	if (!g->p.show_quiet)
1480		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1481	else
1482		printf(" %14.3f %s\n", val, txt_long);
1483}
1484
1485static int __bench_numa(const char *name)
1486{
1487	struct timeval start, stop, diff;
1488	u64 runtime_ns_min, runtime_ns_sum;
1489	pid_t *pids, pid, wpid;
1490	double delta_runtime;
1491	double runtime_avg;
1492	double runtime_sec_max;
1493	double runtime_sec_min;
1494	int wait_stat;
1495	double bytes;
1496	int i, t, p;
1497
1498	if (init())
1499		return -1;
1500
1501	pids = zalloc(g->p.nr_proc * sizeof(*pids));
1502	pid = -1;
1503
1504	/* All threads try to acquire it, this way we can wait for them to start up: */
1505	pthread_mutex_lock(&g->start_work_mutex);
1506
1507	if (g->p.serialize_startup) {
1508		tprintf(" #\n");
1509		tprintf(" # Startup synchronization: ..."); fflush(stdout);
1510	}
1511
1512	gettimeofday(&start, NULL);
1513
1514	for (i = 0; i < g->p.nr_proc; i++) {
1515		pid = fork();
1516		dprintf(" # process %2d: PID %d\n", i, pid);
1517
1518		BUG_ON(pid < 0);
1519		if (!pid) {
1520			/* Child process: */
1521			worker_process(i);
1522
1523			exit(0);
1524		}
1525		pids[i] = pid;
1526
1527	}
1528	/* Wait for all the threads to start up: */
1529	while (g->nr_tasks_started != g->p.nr_tasks)
1530		usleep(USEC_PER_MSEC);
1531
1532	BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1533
1534	if (g->p.serialize_startup) {
 
1535		double startup_sec;
1536
1537		pthread_mutex_lock(&g->startup_done_mutex);
1538
1539		/* This will start all threads: */
1540		pthread_mutex_unlock(&g->start_work_mutex);
1541
1542		/* This mutex is locked - the last started thread will wake us: */
1543		pthread_mutex_lock(&g->startup_done_mutex);
 
 
 
 
 
 
 
 
 
 
 
1544
1545		gettimeofday(&stop, NULL);
1546
1547		timersub(&stop, &start, &diff);
1548
1549		startup_sec = diff.tv_sec * NSEC_PER_SEC;
1550		startup_sec += diff.tv_usec * NSEC_PER_USEC;
1551		startup_sec /= NSEC_PER_SEC;
1552
1553		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1554		tprintf(" #\n");
1555
1556		start = stop;
1557		pthread_mutex_unlock(&g->startup_done_mutex);
 
 
 
 
1558	} else {
1559		gettimeofday(&start, NULL);
1560	}
1561
1562	/* Parent process: */
1563
1564
1565	for (i = 0; i < g->p.nr_proc; i++) {
1566		wpid = waitpid(pids[i], &wait_stat, 0);
1567		BUG_ON(wpid < 0);
1568		BUG_ON(!WIFEXITED(wait_stat));
1569
1570	}
1571
1572	runtime_ns_sum = 0;
1573	runtime_ns_min = -1LL;
1574
1575	for (t = 0; t < g->p.nr_tasks; t++) {
1576		u64 thread_runtime_ns = g->threads[t].runtime_ns;
1577
1578		runtime_ns_sum += thread_runtime_ns;
1579		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1580	}
1581
1582	gettimeofday(&stop, NULL);
1583	timersub(&stop, &start, &diff);
1584
1585	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1586
1587	tprintf("\n ###\n");
1588	tprintf("\n");
1589
1590	runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1591	runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1592	runtime_sec_max /= NSEC_PER_SEC;
1593
1594	runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1595
1596	bytes = g->bytes_done;
1597	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1598
1599	if (g->p.measure_convergence) {
1600		print_res(name, runtime_sec_max,
1601			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1602	}
1603
1604	print_res(name, runtime_sec_max,
1605		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
1606
1607	print_res(name, runtime_sec_min,
1608		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
1609
1610	print_res(name, runtime_avg,
1611		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
1612
1613	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1614	print_res(name, delta_runtime / runtime_sec_max * 100.0,
1615		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
1616
1617	print_res(name, bytes / g->p.nr_tasks / 1e9,
1618		"GB,", "data/thread",		"GB data processed, per thread");
1619
1620	print_res(name, bytes / 1e9,
1621		"GB,", "data-total",		"GB data processed, total");
1622
1623	print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1624		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1625
1626	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1627		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
1628
1629	print_res(name, bytes / runtime_sec_max / 1e9,
1630		"GB/sec,", "total-speed",	"GB/sec total speed");
1631
1632	if (g->p.show_details >= 2) {
1633		char tname[14 + 2 * 10 + 1];
1634		struct thread_data *td;
1635		for (p = 0; p < g->p.nr_proc; p++) {
1636			for (t = 0; t < g->p.nr_threads; t++) {
1637				memset(tname, 0, sizeof(tname));
1638				td = g->threads + p*g->p.nr_threads + t;
1639				snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1640				print_res(tname, td->speed_gbs,
1641					"GB/sec",	"thread-speed", "GB/sec/thread speed");
1642				print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1643					"secs",	"thread-system-time", "system CPU time/thread");
1644				print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1645					"secs",	"thread-user-time", "user CPU time/thread");
1646			}
1647		}
1648	}
1649
1650	free(pids);
1651
1652	deinit();
1653
1654	return 0;
1655}
1656
1657#define MAX_ARGS 50
1658
1659static int command_size(const char **argv)
1660{
1661	int size = 0;
1662
1663	while (*argv) {
1664		size++;
1665		argv++;
1666	}
1667
1668	BUG_ON(size >= MAX_ARGS);
1669
1670	return size;
1671}
1672
1673static void init_params(struct params *p, const char *name, int argc, const char **argv)
1674{
1675	int i;
1676
1677	printf("\n # Running %s \"perf bench numa", name);
1678
1679	for (i = 0; i < argc; i++)
1680		printf(" %s", argv[i]);
1681
1682	printf("\"\n");
1683
1684	memset(p, 0, sizeof(*p));
1685
1686	/* Initialize nonzero defaults: */
1687
1688	p->serialize_startup		= 1;
1689	p->data_reads			= true;
1690	p->data_writes			= true;
1691	p->data_backwards		= true;
1692	p->data_rand_walk		= true;
1693	p->nr_loops			= -1;
1694	p->init_random			= true;
1695	p->mb_global_str		= "1";
1696	p->nr_proc			= 1;
1697	p->nr_threads			= 1;
1698	p->nr_secs			= 5;
1699	p->run_all			= argc == 1;
1700}
1701
1702static int run_bench_numa(const char *name, const char **argv)
1703{
1704	int argc = command_size(argv);
1705
1706	init_params(&p0, name, argc, argv);
1707	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1708	if (argc)
1709		goto err;
1710
1711	if (__bench_numa(name))
1712		goto err;
1713
1714	return 0;
1715
1716err:
1717	return -1;
1718}
1719
1720#define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1721#define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
1722
1723#define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
1724#define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
1725
1726#define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
1727#define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
1728
1729/*
1730 * The built-in test-suite executed by "perf bench numa -a".
1731 *
1732 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1733 */
1734static const char *tests[][MAX_ARGS] = {
1735   /* Basic single-stream NUMA bandwidth measurements: */
1736   { "RAM-bw-local,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1737			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1738   { "RAM-bw-local-NOTHP,",
1739			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1740			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1741   { "RAM-bw-remote,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1742			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1743
1744   /* 2-stream NUMA bandwidth measurements: */
1745   { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1746			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1747   { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1748		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1749
1750   /* Cross-stream NUMA bandwidth measurement: */
1751   { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1752		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1753
1754   /* Convergence latency measurements: */
1755   { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1756   { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1757   { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1758   { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1759   { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1760   { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1761   { " 4x4-convergence-NOTHP,",
1762			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1763   { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1764   { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1765   { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1766   { " 8x4-convergence-NOTHP,",
1767			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1768   { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1769   { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1770   { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1771   { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1772   { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1773
1774   /* Various NUMA process/thread layout bandwidth measurements: */
1775   { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1776   { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1777   { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1778   { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1779   { " 8x1-bw-process-NOTHP,",
1780			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1781   { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1782
1783   { " 4x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1784   { " 8x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1785   { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1786   { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1787
1788   { " 2x3-bw-thread,",	  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1789   { " 4x4-bw-thread,",	  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1790   { " 4x6-bw-thread,",	  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1791   { " 4x8-bw-thread,",	  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1792   { " 4x8-bw-thread-NOTHP,",
1793			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1794   { " 3x3-bw-thread,",	  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1795   { " 5x5-bw-thread,",	  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1796
1797   { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1798   { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1799
1800   { "numa02-bw,",	  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1801   { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1802   { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1803   { "numa01-bw-thread-NOTHP,",
1804			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1805};
1806
1807static int bench_all(void)
1808{
1809	int nr = ARRAY_SIZE(tests);
1810	int ret;
1811	int i;
1812
1813	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1814	BUG_ON(ret < 0);
1815
1816	for (i = 0; i < nr; i++) {
1817		run_bench_numa(tests[i][0], tests[i] + 1);
1818	}
1819
1820	printf("\n");
1821
1822	return 0;
1823}
1824
1825int bench_numa(int argc, const char **argv)
1826{
1827	init_params(&p0, "main,", argc, argv);
1828	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1829	if (argc)
1830		goto err;
1831
1832	if (p0.run_all)
1833		return bench_all();
1834
1835	if (__bench_numa(NULL))
1836		goto err;
1837
1838	return 0;
1839
1840err:
1841	usage_with_options(numa_usage, options);
1842	return -1;
1843}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * numa.c
   4 *
   5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
   6 */
   7
   8#include <inttypes.h>
 
 
   9
  10#include <subcmd/parse-options.h>
  11#include "../util/cloexec.h"
  12
  13#include "bench.h"
  14
  15#include <errno.h>
  16#include <sched.h>
  17#include <stdio.h>
  18#include <assert.h>
  19#include <debug.h>
  20#include <malloc.h>
  21#include <signal.h>
  22#include <stdlib.h>
  23#include <string.h>
  24#include <unistd.h>
  25#include <sys/mman.h>
  26#include <sys/time.h>
  27#include <sys/resource.h>
  28#include <sys/wait.h>
  29#include <sys/prctl.h>
  30#include <sys/types.h>
  31#include <linux/kernel.h>
  32#include <linux/time64.h>
  33#include <linux/numa.h>
  34#include <linux/zalloc.h>
  35
  36#include "../util/header.h"
  37#include "../util/mutex.h"
  38#include <numa.h>
  39#include <numaif.h>
  40
  41#ifndef RUSAGE_THREAD
  42# define RUSAGE_THREAD 1
  43#endif
  44
  45/*
  46 * Regular printout to the terminal, suppressed if -q is specified:
  47 */
  48#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
  49
  50/*
  51 * Debug printf:
  52 */
  53#undef dprintf
  54#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
  55
  56struct thread_data {
  57	int			curr_cpu;
  58	cpu_set_t		*bind_cpumask;
  59	int			bind_node;
  60	u8			*process_data;
  61	int			process_nr;
  62	int			thread_nr;
  63	int			task_nr;
  64	unsigned int		loops_done;
  65	u64			val;
  66	u64			runtime_ns;
  67	u64			system_time_ns;
  68	u64			user_time_ns;
  69	double			speed_gbs;
  70	struct mutex		*process_lock;
  71};
  72
  73/* Parameters set by options: */
  74
  75struct params {
  76	/* Startup synchronization: */
  77	bool			serialize_startup;
  78
  79	/* Task hierarchy: */
  80	int			nr_proc;
  81	int			nr_threads;
  82
  83	/* Working set sizes: */
  84	const char		*mb_global_str;
  85	const char		*mb_proc_str;
  86	const char		*mb_proc_locked_str;
  87	const char		*mb_thread_str;
  88
  89	double			mb_global;
  90	double			mb_proc;
  91	double			mb_proc_locked;
  92	double			mb_thread;
  93
  94	/* Access patterns to the working set: */
  95	bool			data_reads;
  96	bool			data_writes;
  97	bool			data_backwards;
  98	bool			data_zero_memset;
  99	bool			data_rand_walk;
 100	u32			nr_loops;
 101	u32			nr_secs;
 102	u32			sleep_usecs;
 103
 104	/* Working set initialization: */
 105	bool			init_zero;
 106	bool			init_random;
 107	bool			init_cpu0;
 108
 109	/* Misc options: */
 110	int			show_details;
 111	int			run_all;
 112	int			thp;
 113
 114	long			bytes_global;
 115	long			bytes_process;
 116	long			bytes_process_locked;
 117	long			bytes_thread;
 118
 119	int			nr_tasks;
 
 120
 121	bool			show_convergence;
 122	bool			measure_convergence;
 123
 124	int			perturb_secs;
 125	int			nr_cpus;
 126	int			nr_nodes;
 127
 128	/* Affinity options -C and -N: */
 129	char			*cpu_list_str;
 130	char			*node_list_str;
 131};
 132
 133
 134/* Global, read-writable area, accessible to all processes and threads: */
 135
 136struct global_info {
 137	u8			*data;
 138
 139	struct mutex		startup_mutex;
 140	struct cond		startup_cond;
 141	int			nr_tasks_started;
 142
 143	struct mutex		start_work_mutex;
 144	struct cond		start_work_cond;
 
 145	int			nr_tasks_working;
 146	bool			start_work;
 147
 148	struct mutex		stop_work_mutex;
 149	u64			bytes_done;
 150
 151	struct thread_data	*threads;
 152
 153	/* Convergence latency measurement: */
 154	bool			all_converged;
 155	bool			stop_work;
 156
 157	int			print_once;
 158
 159	struct params		p;
 160};
 161
 162static struct global_info	*g = NULL;
 163
 164static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
 165static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
 166
 167struct params p0;
 168
 169static const struct option options[] = {
 170	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
 171	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
 172
 173	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
 174	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
 175	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
 176	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
 177
 178	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run (default: unlimited)"),
 179	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run (default: 5 secs)"),
 180	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
 181
 182	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via reads (can be mixed with -W)"),
 183	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
 184	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
 185	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
 186	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
 187
 188
 189	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
 190	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
 191	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
 192	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
 193
 194	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
 195	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
 196	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
 197	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
 198		    "convergence is reached when each process (all its threads) is running on a single NUMA node."),
 199	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
 200	OPT_BOOLEAN('q', "quiet"	, &quiet,
 201		    "quiet mode (do not show any warnings or messages)"),
 202	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
 203
 204	/* Special option string parsing callbacks: */
 205        OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
 206			"bind the first N tasks to these specific cpus (the rest is unbound)",
 207			parse_cpus_opt),
 208        OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
 209			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
 210			parse_nodes_opt),
 211	OPT_END()
 212};
 213
 214static const char * const bench_numa_usage[] = {
 215	"perf bench numa <options>",
 216	NULL
 217};
 218
 219static const char * const numa_usage[] = {
 220	"perf bench numa mem [<options>]",
 221	NULL
 222};
 223
 224/*
 225 * To get number of numa nodes present.
 226 */
 227static int nr_numa_nodes(void)
 228{
 229	int i, nr_nodes = 0;
 230
 231	for (i = 0; i < g->p.nr_nodes; i++) {
 232		if (numa_bitmask_isbitset(numa_nodes_ptr, i))
 233			nr_nodes++;
 234	}
 235
 236	return nr_nodes;
 237}
 238
 239/*
 240 * To check if given numa node is present.
 241 */
 242static int is_node_present(int node)
 243{
 244	return numa_bitmask_isbitset(numa_nodes_ptr, node);
 245}
 246
 247/*
 248 * To check given numa node has cpus.
 249 */
 250static bool node_has_cpus(int node)
 251{
 252	struct bitmask *cpumask = numa_allocate_cpumask();
 253	bool ret = false; /* fall back to nocpus */
 254	int cpu;
 255
 256	BUG_ON(!cpumask);
 257	if (!numa_node_to_cpus(node, cpumask)) {
 258		for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
 259			if (numa_bitmask_isbitset(cpumask, cpu)) {
 260				ret = true;
 261				break;
 262			}
 263		}
 264	}
 265	numa_free_cpumask(cpumask);
 266
 267	return ret;
 268}
 269
 270static cpu_set_t *bind_to_cpu(int target_cpu)
 271{
 272	int nrcpus = numa_num_possible_cpus();
 273	cpu_set_t *orig_mask, *mask;
 274	size_t size;
 275
 276	orig_mask = CPU_ALLOC(nrcpus);
 277	BUG_ON(!orig_mask);
 278	size = CPU_ALLOC_SIZE(nrcpus);
 279	CPU_ZERO_S(size, orig_mask);
 280
 281	if (sched_getaffinity(0, size, orig_mask))
 282		goto err_out;
 283
 284	mask = CPU_ALLOC(nrcpus);
 285	if (!mask)
 286		goto err_out;
 287
 288	CPU_ZERO_S(size, mask);
 289
 290	if (target_cpu == -1) {
 291		int cpu;
 292
 293		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 294			CPU_SET_S(cpu, size, mask);
 295	} else {
 296		if (target_cpu < 0 || target_cpu >= g->p.nr_cpus)
 297			goto err;
 298
 299		CPU_SET_S(target_cpu, size, mask);
 300	}
 301
 302	if (sched_setaffinity(0, size, mask))
 303		goto err;
 304
 305	return orig_mask;
 306
 307err:
 308	CPU_FREE(mask);
 309err_out:
 310	CPU_FREE(orig_mask);
 311
 312	/* BUG_ON due to failure in allocation of orig_mask/mask */
 313	BUG_ON(-1);
 314	return NULL;
 315}
 316
 317static cpu_set_t *bind_to_node(int target_node)
 318{
 319	int nrcpus = numa_num_possible_cpus();
 320	size_t size;
 321	cpu_set_t *orig_mask, *mask;
 322	int cpu;
 
 323
 324	orig_mask = CPU_ALLOC(nrcpus);
 325	BUG_ON(!orig_mask);
 326	size = CPU_ALLOC_SIZE(nrcpus);
 327	CPU_ZERO_S(size, orig_mask);
 328
 329	if (sched_getaffinity(0, size, orig_mask))
 330		goto err_out;
 331
 332	mask = CPU_ALLOC(nrcpus);
 333	if (!mask)
 334		goto err_out;
 335
 336	CPU_ZERO_S(size, mask);
 
 
 
 337
 338	if (target_node == NUMA_NO_NODE) {
 339		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 340			CPU_SET_S(cpu, size, mask);
 341	} else {
 342		struct bitmask *cpumask = numa_allocate_cpumask();
 
 343
 344		if (!cpumask)
 345			goto err;
 346
 347		if (!numa_node_to_cpus(target_node, cpumask)) {
 348			for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
 349				if (numa_bitmask_isbitset(cpumask, cpu))
 350					CPU_SET_S(cpu, size, mask);
 351			}
 352		}
 353		numa_free_cpumask(cpumask);
 354	}
 355
 356	if (sched_setaffinity(0, size, mask))
 357		goto err;
 358
 359	return orig_mask;
 360
 361err:
 362	CPU_FREE(mask);
 363err_out:
 364	CPU_FREE(orig_mask);
 365
 366	/* BUG_ON due to failure in allocation of orig_mask/mask */
 367	BUG_ON(-1);
 368	return NULL;
 369}
 370
 371static void bind_to_cpumask(cpu_set_t *mask)
 372{
 373	int ret;
 374	size_t size = CPU_ALLOC_SIZE(numa_num_possible_cpus());
 375
 376	ret = sched_setaffinity(0, size, mask);
 377	if (ret) {
 378		CPU_FREE(mask);
 379		BUG_ON(ret);
 380	}
 381}
 382
 383static void mempol_restore(void)
 384{
 385	int ret;
 386
 387	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
 388
 389	BUG_ON(ret);
 390}
 391
 392static void bind_to_memnode(int node)
 393{
 394	struct bitmask *node_mask;
 395	int ret;
 396
 397	if (node == NUMA_NO_NODE)
 398		return;
 399
 400	node_mask = numa_allocate_nodemask();
 401	BUG_ON(!node_mask);
 402
 403	numa_bitmask_clearall(node_mask);
 404	numa_bitmask_setbit(node_mask, node);
 405
 406	ret = set_mempolicy(MPOL_BIND, node_mask->maskp, node_mask->size + 1);
 407	dprintf("binding to node %d, mask: %016lx => %d\n", node, *node_mask->maskp, ret);
 408
 409	numa_bitmask_free(node_mask);
 410	BUG_ON(ret);
 411}
 412
 413#define HPSIZE (2*1024*1024)
 414
 415#define set_taskname(fmt...)				\
 416do {							\
 417	char name[20];					\
 418							\
 419	snprintf(name, 20, fmt);			\
 420	prctl(PR_SET_NAME, name);			\
 421} while (0)
 422
 423static u8 *alloc_data(ssize_t bytes0, int map_flags,
 424		      int init_zero, int init_cpu0, int thp, int init_random)
 425{
 426	cpu_set_t *orig_mask = NULL;
 427	ssize_t bytes;
 428	u8 *buf;
 429	int ret;
 430
 431	if (!bytes0)
 432		return NULL;
 433
 434	/* Allocate and initialize all memory on CPU#0: */
 435	if (init_cpu0) {
 436		int node = numa_node_of_cpu(0);
 437
 438		orig_mask = bind_to_node(node);
 439		bind_to_memnode(node);
 440	}
 441
 442	bytes = bytes0 + HPSIZE;
 443
 444	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
 445	BUG_ON(buf == (void *)-1);
 446
 447	if (map_flags == MAP_PRIVATE) {
 448		if (thp > 0) {
 449			ret = madvise(buf, bytes, MADV_HUGEPAGE);
 450			if (ret && !g->print_once) {
 451				g->print_once = 1;
 452				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
 453			}
 454		}
 455		if (thp < 0) {
 456			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
 457			if (ret && !g->print_once) {
 458				g->print_once = 1;
 459				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
 460			}
 461		}
 462	}
 463
 464	if (init_zero) {
 465		bzero(buf, bytes);
 466	} else {
 467		/* Initialize random contents, different in each word: */
 468		if (init_random) {
 469			u64 *wbuf = (void *)buf;
 470			long off = rand();
 471			long i;
 472
 473			for (i = 0; i < bytes/8; i++)
 474				wbuf[i] = i + off;
 475		}
 476	}
 477
 478	/* Align to 2MB boundary: */
 479	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
 480
 481	/* Restore affinity: */
 482	if (init_cpu0) {
 483		bind_to_cpumask(orig_mask);
 484		CPU_FREE(orig_mask);
 485		mempol_restore();
 486	}
 487
 488	return buf;
 489}
 490
 491static void free_data(void *data, ssize_t bytes)
 492{
 493	int ret;
 494
 495	if (!data)
 496		return;
 497
 498	ret = munmap(data, bytes);
 499	BUG_ON(ret);
 500}
 501
 502/*
 503 * Create a shared memory buffer that can be shared between processes, zeroed:
 504 */
 505static void * zalloc_shared_data(ssize_t bytes)
 506{
 507	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 508}
 509
 510/*
 511 * Create a shared memory buffer that can be shared between processes:
 512 */
 513static void * setup_shared_data(ssize_t bytes)
 514{
 515	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 516}
 517
 518/*
 519 * Allocate process-local memory - this will either be shared between
 520 * threads of this process, or only be accessed by this thread:
 521 */
 522static void * setup_private_data(ssize_t bytes)
 523{
 524	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 525}
 526
 
 
 
 
 
 
 
 
 
 
 
 
 527static int parse_cpu_list(const char *arg)
 528{
 529	p0.cpu_list_str = strdup(arg);
 530
 531	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
 532
 533	return 0;
 534}
 535
 536static int parse_setup_cpu_list(void)
 537{
 538	struct thread_data *td;
 539	char *str0, *str;
 540	int t;
 541
 542	if (!g->p.cpu_list_str)
 543		return 0;
 544
 545	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 546
 547	str0 = str = strdup(g->p.cpu_list_str);
 548	t = 0;
 549
 550	BUG_ON(!str);
 551
 552	tprintf("# binding tasks to CPUs:\n");
 553	tprintf("#  ");
 554
 555	while (true) {
 556		int bind_cpu, bind_cpu_0, bind_cpu_1;
 557		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
 558		int bind_len;
 559		int step;
 560		int mul;
 561
 562		tok = strsep(&str, ",");
 563		if (!tok)
 564			break;
 565
 566		tok_end = strstr(tok, "-");
 567
 568		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 569		if (!tok_end) {
 570			/* Single CPU specified: */
 571			bind_cpu_0 = bind_cpu_1 = atol(tok);
 572		} else {
 573			/* CPU range specified (for example: "5-11"): */
 574			bind_cpu_0 = atol(tok);
 575			bind_cpu_1 = atol(tok_end + 1);
 576		}
 577
 578		step = 1;
 579		tok_step = strstr(tok, "#");
 580		if (tok_step) {
 581			step = atol(tok_step + 1);
 582			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
 583		}
 584
 585		/*
 586		 * Mask length.
 587		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
 588		 * where the _4 means the next 4 CPUs are allowed.
 589		 */
 590		bind_len = 1;
 591		tok_len = strstr(tok, "_");
 592		if (tok_len) {
 593			bind_len = atol(tok_len + 1);
 594			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
 595		}
 596
 597		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 598		mul = 1;
 599		tok_mul = strstr(tok, "x");
 600		if (tok_mul) {
 601			mul = atol(tok_mul + 1);
 602			BUG_ON(mul <= 0);
 603		}
 604
 605		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
 606
 607		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
 608			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
 609			return -1;
 610		}
 611
 612		if (is_cpu_online(bind_cpu_0) != 1 || is_cpu_online(bind_cpu_1) != 1) {
 613			printf("\nTest not applicable, bind_cpu_0 or bind_cpu_1 is offline\n");
 614			return -1;
 615		}
 616
 617		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
 618		BUG_ON(bind_cpu_0 > bind_cpu_1);
 619
 620		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
 621			size_t size = CPU_ALLOC_SIZE(g->p.nr_cpus);
 622			int i;
 623
 624			for (i = 0; i < mul; i++) {
 625				int cpu;
 626
 627				if (t >= g->p.nr_tasks) {
 628					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
 629					goto out;
 630				}
 631				td = g->threads + t;
 632
 633				if (t)
 634					tprintf(",");
 635				if (bind_len > 1) {
 636					tprintf("%2d/%d", bind_cpu, bind_len);
 637				} else {
 638					tprintf("%2d", bind_cpu);
 639				}
 640
 641				td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus);
 642				BUG_ON(!td->bind_cpumask);
 643				CPU_ZERO_S(size, td->bind_cpumask);
 644				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
 645					if (cpu < 0 || cpu >= g->p.nr_cpus) {
 646						CPU_FREE(td->bind_cpumask);
 647						BUG_ON(-1);
 648					}
 649					CPU_SET_S(cpu, size, td->bind_cpumask);
 650				}
 651				t++;
 652			}
 653		}
 654	}
 655out:
 656
 657	tprintf("\n");
 658
 659	if (t < g->p.nr_tasks)
 660		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 661
 662	free(str0);
 663	return 0;
 664}
 665
 666static int parse_cpus_opt(const struct option *opt __maybe_unused,
 667			  const char *arg, int unset __maybe_unused)
 668{
 669	if (!arg)
 670		return -1;
 671
 672	return parse_cpu_list(arg);
 673}
 674
 675static int parse_node_list(const char *arg)
 676{
 677	p0.node_list_str = strdup(arg);
 678
 679	dprintf("got NODE list: {%s}\n", p0.node_list_str);
 680
 681	return 0;
 682}
 683
 684static int parse_setup_node_list(void)
 685{
 686	struct thread_data *td;
 687	char *str0, *str;
 688	int t;
 689
 690	if (!g->p.node_list_str)
 691		return 0;
 692
 693	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 694
 695	str0 = str = strdup(g->p.node_list_str);
 696	t = 0;
 697
 698	BUG_ON(!str);
 699
 700	tprintf("# binding tasks to NODEs:\n");
 701	tprintf("# ");
 702
 703	while (true) {
 704		int bind_node, bind_node_0, bind_node_1;
 705		char *tok, *tok_end, *tok_step, *tok_mul;
 706		int step;
 707		int mul;
 708
 709		tok = strsep(&str, ",");
 710		if (!tok)
 711			break;
 712
 713		tok_end = strstr(tok, "-");
 714
 715		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 716		if (!tok_end) {
 717			/* Single NODE specified: */
 718			bind_node_0 = bind_node_1 = atol(tok);
 719		} else {
 720			/* NODE range specified (for example: "5-11"): */
 721			bind_node_0 = atol(tok);
 722			bind_node_1 = atol(tok_end + 1);
 723		}
 724
 725		step = 1;
 726		tok_step = strstr(tok, "#");
 727		if (tok_step) {
 728			step = atol(tok_step + 1);
 729			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
 730		}
 731
 732		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 733		mul = 1;
 734		tok_mul = strstr(tok, "x");
 735		if (tok_mul) {
 736			mul = atol(tok_mul + 1);
 737			BUG_ON(mul <= 0);
 738		}
 739
 740		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
 741
 742		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
 743			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
 744			return -1;
 745		}
 746
 747		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
 748		BUG_ON(bind_node_0 > bind_node_1);
 749
 750		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
 751			int i;
 752
 753			for (i = 0; i < mul; i++) {
 754				if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
 755					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
 756					goto out;
 757				}
 758				td = g->threads + t;
 759
 760				if (!t)
 761					tprintf(" %2d", bind_node);
 762				else
 763					tprintf(",%2d", bind_node);
 764
 765				td->bind_node = bind_node;
 766				t++;
 767			}
 768		}
 769	}
 770out:
 771
 772	tprintf("\n");
 773
 774	if (t < g->p.nr_tasks)
 775		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 776
 777	free(str0);
 778	return 0;
 779}
 780
 781static int parse_nodes_opt(const struct option *opt __maybe_unused,
 782			  const char *arg, int unset __maybe_unused)
 783{
 784	if (!arg)
 785		return -1;
 786
 787	return parse_node_list(arg);
 
 
 788}
 789
 
 
 790static inline uint32_t lfsr_32(uint32_t lfsr)
 791{
 792	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
 793	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
 794}
 795
 796/*
 797 * Make sure there's real data dependency to RAM (when read
 798 * accesses are enabled), so the compiler, the CPU and the
 799 * kernel (KSM, zero page, etc.) cannot optimize away RAM
 800 * accesses:
 801 */
 802static inline u64 access_data(u64 *data, u64 val)
 803{
 804	if (g->p.data_reads)
 805		val += *data;
 806	if (g->p.data_writes)
 807		*data = val + 1;
 808	return val;
 809}
 810
 811/*
 812 * The worker process does two types of work, a forwards going
 813 * loop and a backwards going loop.
 814 *
 815 * We do this so that on multiprocessor systems we do not create
 816 * a 'train' of processing, with highly synchronized processes,
 817 * skewing the whole benchmark.
 818 */
 819static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
 820{
 821	long words = bytes/sizeof(u64);
 822	u64 *data = (void *)__data;
 823	long chunk_0, chunk_1;
 824	u64 *d0, *d, *d1;
 825	long off;
 826	long i;
 827
 828	BUG_ON(!data && words);
 829	BUG_ON(data && !words);
 830
 831	if (!data)
 832		return val;
 833
 834	/* Very simple memset() work variant: */
 835	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
 836		bzero(data, bytes);
 837		return val;
 838	}
 839
 840	/* Spread out by PID/TID nr and by loop nr: */
 841	chunk_0 = words/nr_max;
 842	chunk_1 = words/g->p.nr_loops;
 843	off = nr*chunk_0 + loop*chunk_1;
 844
 845	while (off >= words)
 846		off -= words;
 847
 848	if (g->p.data_rand_walk) {
 849		u32 lfsr = nr + loop + val;
 850		int j;
 851
 852		for (i = 0; i < words/1024; i++) {
 853			long start, end;
 854
 855			lfsr = lfsr_32(lfsr);
 856
 857			start = lfsr % words;
 858			end = min(start + 1024, words-1);
 859
 860			if (g->p.data_zero_memset) {
 861				bzero(data + start, (end-start) * sizeof(u64));
 862			} else {
 863				for (j = start; j < end; j++)
 864					val = access_data(data + j, val);
 865			}
 866		}
 867	} else if (!g->p.data_backwards || (nr + loop) & 1) {
 868		/* Process data forwards: */
 869
 870		d0 = data + off;
 871		d  = data + off + 1;
 872		d1 = data + words;
 873
 
 874		for (;;) {
 875			if (unlikely(d >= d1))
 876				d = data;
 877			if (unlikely(d == d0))
 878				break;
 879
 880			val = access_data(d, val);
 881
 882			d++;
 883		}
 884	} else {
 885		/* Process data backwards: */
 886
 887		d0 = data + off;
 888		d  = data + off - 1;
 889		d1 = data + words;
 890
 
 891		for (;;) {
 892			if (unlikely(d < data))
 893				d = data + words-1;
 894			if (unlikely(d == d0))
 895				break;
 896
 897			val = access_data(d, val);
 898
 899			d--;
 900		}
 901	}
 902
 903	return val;
 904}
 905
 906static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
 907{
 908	unsigned int cpu;
 909
 910	cpu = sched_getcpu();
 911
 912	g->threads[task_nr].curr_cpu = cpu;
 913	prctl(0, bytes_worked);
 914}
 915
 
 
 916/*
 917 * Count the number of nodes a process's threads
 918 * are spread out on.
 919 *
 920 * A count of 1 means that the process is compressed
 921 * to a single node. A count of g->p.nr_nodes means it's
 922 * spread out on the whole system.
 923 */
 924static int count_process_nodes(int process_nr)
 925{
 926	char *node_present;
 927	int nodes;
 928	int n, t;
 929
 930	node_present = (char *)malloc(g->p.nr_nodes * sizeof(char));
 931	BUG_ON(!node_present);
 932	for (nodes = 0; nodes < g->p.nr_nodes; nodes++)
 933		node_present[nodes] = 0;
 934
 935	for (t = 0; t < g->p.nr_threads; t++) {
 936		struct thread_data *td;
 937		int task_nr;
 938		int node;
 939
 940		task_nr = process_nr*g->p.nr_threads + t;
 941		td = g->threads + task_nr;
 942
 943		node = numa_node_of_cpu(td->curr_cpu);
 944		if (node < 0) /* curr_cpu was likely still -1 */ {
 945			free(node_present);
 946			return 0;
 947		}
 948
 949		node_present[node] = 1;
 950	}
 951
 952	nodes = 0;
 953
 954	for (n = 0; n < g->p.nr_nodes; n++)
 955		nodes += node_present[n];
 956
 957	free(node_present);
 958	return nodes;
 959}
 960
 961/*
 962 * Count the number of distinct process-threads a node contains.
 963 *
 964 * A count of 1 means that the node contains only a single
 965 * process. If all nodes on the system contain at most one
 966 * process then we are well-converged.
 967 */
 968static int count_node_processes(int node)
 969{
 970	int processes = 0;
 971	int t, p;
 972
 973	for (p = 0; p < g->p.nr_proc; p++) {
 974		for (t = 0; t < g->p.nr_threads; t++) {
 975			struct thread_data *td;
 976			int task_nr;
 977			int n;
 978
 979			task_nr = p*g->p.nr_threads + t;
 980			td = g->threads + task_nr;
 981
 982			n = numa_node_of_cpu(td->curr_cpu);
 983			if (n == node) {
 984				processes++;
 985				break;
 986			}
 987		}
 988	}
 989
 990	return processes;
 991}
 992
 993static void calc_convergence_compression(int *strong)
 994{
 995	unsigned int nodes_min, nodes_max;
 996	int p;
 997
 998	nodes_min = -1;
 999	nodes_max =  0;
1000
1001	for (p = 0; p < g->p.nr_proc; p++) {
1002		unsigned int nodes = count_process_nodes(p);
1003
1004		if (!nodes) {
1005			*strong = 0;
1006			return;
1007		}
1008
1009		nodes_min = min(nodes, nodes_min);
1010		nodes_max = max(nodes, nodes_max);
1011	}
1012
1013	/* Strong convergence: all threads compress on a single node: */
1014	if (nodes_min == 1 && nodes_max == 1) {
1015		*strong = 1;
1016	} else {
1017		*strong = 0;
1018		tprintf(" {%d-%d}", nodes_min, nodes_max);
1019	}
1020}
1021
1022static void calc_convergence(double runtime_ns_max, double *convergence)
1023{
1024	unsigned int loops_done_min, loops_done_max;
1025	int process_groups;
1026	int *nodes;
1027	int distance;
1028	int nr_min;
1029	int nr_max;
1030	int strong;
1031	int sum;
1032	int nr;
1033	int node;
1034	int cpu;
1035	int t;
1036
1037	if (!g->p.show_convergence && !g->p.measure_convergence)
1038		return;
1039
1040	nodes = (int *)malloc(g->p.nr_nodes * sizeof(int));
1041	BUG_ON(!nodes);
1042	for (node = 0; node < g->p.nr_nodes; node++)
1043		nodes[node] = 0;
1044
1045	loops_done_min = -1;
1046	loops_done_max = 0;
1047
1048	for (t = 0; t < g->p.nr_tasks; t++) {
1049		struct thread_data *td = g->threads + t;
1050		unsigned int loops_done;
1051
1052		cpu = td->curr_cpu;
1053
1054		/* Not all threads have written it yet: */
1055		if (cpu < 0)
1056			continue;
1057
1058		node = numa_node_of_cpu(cpu);
1059
1060		nodes[node]++;
1061
1062		loops_done = td->loops_done;
1063		loops_done_min = min(loops_done, loops_done_min);
1064		loops_done_max = max(loops_done, loops_done_max);
1065	}
1066
1067	nr_max = 0;
1068	nr_min = g->p.nr_tasks;
1069	sum = 0;
1070
1071	for (node = 0; node < g->p.nr_nodes; node++) {
1072		if (!is_node_present(node))
1073			continue;
1074		nr = nodes[node];
1075		nr_min = min(nr, nr_min);
1076		nr_max = max(nr, nr_max);
1077		sum += nr;
1078	}
1079	BUG_ON(nr_min > nr_max);
1080
1081	BUG_ON(sum > g->p.nr_tasks);
1082
1083	if (0 && (sum < g->p.nr_tasks)) {
1084		free(nodes);
1085		return;
1086	}
1087
1088	/*
1089	 * Count the number of distinct process groups present
1090	 * on nodes - when we are converged this will decrease
1091	 * to g->p.nr_proc:
1092	 */
1093	process_groups = 0;
1094
1095	for (node = 0; node < g->p.nr_nodes; node++) {
1096		int processes;
1097
1098		if (!is_node_present(node))
1099			continue;
1100		processes = count_node_processes(node);
1101		nr = nodes[node];
1102		tprintf(" %2d/%-2d", nr, processes);
1103
1104		process_groups += processes;
1105	}
1106
1107	distance = nr_max - nr_min;
1108
1109	tprintf(" [%2d/%-2d]", distance, process_groups);
1110
1111	tprintf(" l:%3d-%-3d (%3d)",
1112		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1113
1114	if (loops_done_min && loops_done_max) {
1115		double skew = 1.0 - (double)loops_done_min/loops_done_max;
1116
1117		tprintf(" [%4.1f%%]", skew * 100.0);
1118	}
1119
1120	calc_convergence_compression(&strong);
1121
1122	if (strong && process_groups == g->p.nr_proc) {
1123		if (!*convergence) {
1124			*convergence = runtime_ns_max;
1125			tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1126			if (g->p.measure_convergence) {
1127				g->all_converged = true;
1128				g->stop_work = true;
1129			}
1130		}
1131	} else {
1132		if (*convergence) {
1133			tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1134			*convergence = 0;
1135		}
1136		tprintf("\n");
1137	}
1138
1139	free(nodes);
1140}
1141
1142static void show_summary(double runtime_ns_max, int l, double *convergence)
1143{
1144	tprintf("\r #  %5.1f%%  [%.1f mins]",
1145		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1146
1147	calc_convergence(runtime_ns_max, convergence);
1148
1149	if (g->p.show_details >= 0)
1150		fflush(stdout);
1151}
1152
1153static void *worker_thread(void *__tdata)
1154{
1155	struct thread_data *td = __tdata;
1156	struct timeval start0, start, stop, diff;
1157	int process_nr = td->process_nr;
1158	int thread_nr = td->thread_nr;
1159	unsigned long last_perturbance;
1160	int task_nr = td->task_nr;
1161	int details = g->p.show_details;
1162	int first_task, last_task;
1163	double convergence = 0;
1164	u64 val = td->val;
1165	double runtime_ns_max;
1166	u8 *global_data;
1167	u8 *process_data;
1168	u8 *thread_data;
1169	u64 bytes_done, secs;
1170	long work_done;
1171	u32 l;
1172	struct rusage rusage;
1173
1174	bind_to_cpumask(td->bind_cpumask);
1175	bind_to_memnode(td->bind_node);
1176
1177	set_taskname("thread %d/%d", process_nr, thread_nr);
1178
1179	global_data = g->data;
1180	process_data = td->process_data;
1181	thread_data = setup_private_data(g->p.bytes_thread);
1182
1183	bytes_done = 0;
1184
1185	last_task = 0;
1186	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1187		last_task = 1;
1188
1189	first_task = 0;
1190	if (process_nr == 0 && thread_nr == 0)
1191		first_task = 1;
1192
1193	if (details >= 2) {
1194		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1195			process_nr, thread_nr, global_data, process_data, thread_data);
1196	}
1197
1198	if (g->p.serialize_startup) {
1199		mutex_lock(&g->startup_mutex);
1200		g->nr_tasks_started++;
1201		/* The last thread wakes the main process. */
1202		if (g->nr_tasks_started == g->p.nr_tasks)
1203			cond_signal(&g->startup_cond);
1204
1205		mutex_unlock(&g->startup_mutex);
1206
1207		/* Here we will wait for the main process to start us all at once: */
1208		mutex_lock(&g->start_work_mutex);
1209		g->start_work = false;
1210		g->nr_tasks_working++;
1211		while (!g->start_work)
1212			cond_wait(&g->start_work_cond, &g->start_work_mutex);
1213
1214		mutex_unlock(&g->start_work_mutex);
 
 
 
 
1215	}
1216
1217	gettimeofday(&start0, NULL);
1218
1219	start = stop = start0;
1220	last_perturbance = start.tv_sec;
1221
1222	for (l = 0; l < g->p.nr_loops; l++) {
1223		start = stop;
1224
1225		if (g->stop_work)
1226			break;
1227
1228		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
1229		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
1230		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
1231
1232		if (g->p.sleep_usecs) {
1233			mutex_lock(td->process_lock);
1234			usleep(g->p.sleep_usecs);
1235			mutex_unlock(td->process_lock);
1236		}
1237		/*
1238		 * Amount of work to be done under a process-global lock:
1239		 */
1240		if (g->p.bytes_process_locked) {
1241			mutex_lock(td->process_lock);
1242			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
1243			mutex_unlock(td->process_lock);
1244		}
1245
1246		work_done = g->p.bytes_global + g->p.bytes_process +
1247			    g->p.bytes_process_locked + g->p.bytes_thread;
1248
1249		update_curr_cpu(task_nr, work_done);
1250		bytes_done += work_done;
1251
1252		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1253			continue;
1254
1255		td->loops_done = l;
1256
1257		gettimeofday(&stop, NULL);
1258
1259		/* Check whether our max runtime timed out: */
1260		if (g->p.nr_secs) {
1261			timersub(&stop, &start0, &diff);
1262			if ((u32)diff.tv_sec >= g->p.nr_secs) {
1263				g->stop_work = true;
1264				break;
1265			}
1266		}
1267
1268		/* Update the summary at most once per second: */
1269		if (start.tv_sec == stop.tv_sec)
1270			continue;
1271
1272		/*
1273		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1274		 * by migrating to CPU#0:
1275		 */
1276		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1277			cpu_set_t *orig_mask;
1278			int target_cpu;
1279			int this_cpu;
1280
1281			last_perturbance = stop.tv_sec;
1282
1283			/*
1284			 * Depending on where we are running, move into
1285			 * the other half of the system, to create some
1286			 * real disturbance:
1287			 */
1288			this_cpu = g->threads[task_nr].curr_cpu;
1289			if (this_cpu < g->p.nr_cpus/2)
1290				target_cpu = g->p.nr_cpus-1;
1291			else
1292				target_cpu = 0;
1293
1294			orig_mask = bind_to_cpu(target_cpu);
1295
1296			/* Here we are running on the target CPU already */
1297			if (details >= 1)
1298				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1299
1300			bind_to_cpumask(orig_mask);
1301			CPU_FREE(orig_mask);
1302		}
1303
1304		if (details >= 3) {
1305			timersub(&stop, &start, &diff);
1306			runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1307			runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1308
1309			if (details >= 0) {
1310				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1311					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1312			}
1313			fflush(stdout);
1314		}
1315		if (!last_task)
1316			continue;
1317
1318		timersub(&stop, &start0, &diff);
1319		runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1320		runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1321
1322		show_summary(runtime_ns_max, l, &convergence);
1323	}
1324
1325	gettimeofday(&stop, NULL);
1326	timersub(&stop, &start0, &diff);
1327	td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1328	td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1329	secs = td->runtime_ns / NSEC_PER_SEC;
1330	td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1331
1332	getrusage(RUSAGE_THREAD, &rusage);
1333	td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1334	td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1335	td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1336	td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1337
1338	free_data(thread_data, g->p.bytes_thread);
1339
1340	mutex_lock(&g->stop_work_mutex);
1341	g->bytes_done += bytes_done;
1342	mutex_unlock(&g->stop_work_mutex);
1343
1344	return NULL;
1345}
1346
1347/*
1348 * A worker process starts a couple of threads:
1349 */
1350static void worker_process(int process_nr)
1351{
1352	struct mutex process_lock;
1353	struct thread_data *td;
1354	pthread_t *pthreads;
1355	u8 *process_data;
1356	int task_nr;
1357	int ret;
1358	int t;
1359
1360	mutex_init(&process_lock);
1361	set_taskname("process %d", process_nr);
1362
1363	/*
1364	 * Pick up the memory policy and the CPU binding of our first thread,
1365	 * so that we initialize memory accordingly:
1366	 */
1367	task_nr = process_nr*g->p.nr_threads;
1368	td = g->threads + task_nr;
1369
1370	bind_to_memnode(td->bind_node);
1371	bind_to_cpumask(td->bind_cpumask);
1372
1373	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1374	process_data = setup_private_data(g->p.bytes_process);
1375
1376	if (g->p.show_details >= 3) {
1377		printf(" # process %2d global mem: %p, process mem: %p\n",
1378			process_nr, g->data, process_data);
1379	}
1380
1381	for (t = 0; t < g->p.nr_threads; t++) {
1382		task_nr = process_nr*g->p.nr_threads + t;
1383		td = g->threads + task_nr;
1384
1385		td->process_data = process_data;
1386		td->process_nr   = process_nr;
1387		td->thread_nr    = t;
1388		td->task_nr	 = task_nr;
1389		td->val          = rand();
1390		td->curr_cpu	 = -1;
1391		td->process_lock = &process_lock;
1392
1393		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1394		BUG_ON(ret);
1395	}
1396
1397	for (t = 0; t < g->p.nr_threads; t++) {
1398                ret = pthread_join(pthreads[t], NULL);
1399		BUG_ON(ret);
1400	}
1401
1402	free_data(process_data, g->p.bytes_process);
1403	free(pthreads);
1404}
1405
1406static void print_summary(void)
1407{
1408	if (g->p.show_details < 0)
1409		return;
1410
1411	printf("\n ###\n");
1412	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1413		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1414	printf(" #      %5dx %5ldMB global  shared mem operations\n",
1415			g->p.nr_loops, g->p.bytes_global/1024/1024);
1416	printf(" #      %5dx %5ldMB process shared mem operations\n",
1417			g->p.nr_loops, g->p.bytes_process/1024/1024);
1418	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1419			g->p.nr_loops, g->p.bytes_thread/1024/1024);
1420
1421	printf(" ###\n");
1422
1423	printf("\n ###\n"); fflush(stdout);
1424}
1425
1426static void init_thread_data(void)
1427{
1428	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1429	int t;
1430
1431	g->threads = zalloc_shared_data(size);
1432
1433	for (t = 0; t < g->p.nr_tasks; t++) {
1434		struct thread_data *td = g->threads + t;
1435		size_t cpuset_size = CPU_ALLOC_SIZE(g->p.nr_cpus);
1436		int cpu;
1437
1438		/* Allow all nodes by default: */
1439		td->bind_node = NUMA_NO_NODE;
1440
1441		/* Allow all CPUs by default: */
1442		td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus);
1443		BUG_ON(!td->bind_cpumask);
1444		CPU_ZERO_S(cpuset_size, td->bind_cpumask);
1445		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1446			CPU_SET_S(cpu, cpuset_size, td->bind_cpumask);
1447	}
1448}
1449
1450static void deinit_thread_data(void)
1451{
1452	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1453	int t;
1454
1455	/* Free the bind_cpumask allocated for thread_data */
1456	for (t = 0; t < g->p.nr_tasks; t++) {
1457		struct thread_data *td = g->threads + t;
1458		CPU_FREE(td->bind_cpumask);
1459	}
1460
1461	free_data(g->threads, size);
1462}
1463
1464static int init(void)
1465{
1466	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1467
1468	/* Copy over options: */
1469	g->p = p0;
1470
1471	g->p.nr_cpus = numa_num_configured_cpus();
1472
1473	g->p.nr_nodes = numa_max_node() + 1;
1474
1475	/* char array in count_process_nodes(): */
1476	BUG_ON(g->p.nr_nodes < 0);
1477
1478	if (quiet && !g->p.show_details)
1479		g->p.show_details = -1;
1480
1481	/* Some memory should be specified: */
1482	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1483		return -1;
1484
1485	if (g->p.mb_global_str) {
1486		g->p.mb_global = atof(g->p.mb_global_str);
1487		BUG_ON(g->p.mb_global < 0);
1488	}
1489
1490	if (g->p.mb_proc_str) {
1491		g->p.mb_proc = atof(g->p.mb_proc_str);
1492		BUG_ON(g->p.mb_proc < 0);
1493	}
1494
1495	if (g->p.mb_proc_locked_str) {
1496		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1497		BUG_ON(g->p.mb_proc_locked < 0);
1498		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1499	}
1500
1501	if (g->p.mb_thread_str) {
1502		g->p.mb_thread = atof(g->p.mb_thread_str);
1503		BUG_ON(g->p.mb_thread < 0);
1504	}
1505
1506	BUG_ON(g->p.nr_threads <= 0);
1507	BUG_ON(g->p.nr_proc <= 0);
1508
1509	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1510
1511	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
1512	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
1513	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
1514	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
1515
1516	g->data = setup_shared_data(g->p.bytes_global);
1517
1518	/* Startup serialization: */
1519	mutex_init_pshared(&g->start_work_mutex);
1520	cond_init_pshared(&g->start_work_cond);
1521	mutex_init_pshared(&g->startup_mutex);
1522	cond_init_pshared(&g->startup_cond);
1523	mutex_init_pshared(&g->stop_work_mutex);
1524
1525	init_thread_data();
1526
1527	tprintf("#\n");
1528	if (parse_setup_cpu_list() || parse_setup_node_list())
1529		return -1;
1530	tprintf("#\n");
1531
1532	print_summary();
1533
1534	return 0;
1535}
1536
1537static void deinit(void)
1538{
1539	free_data(g->data, g->p.bytes_global);
1540	g->data = NULL;
1541
1542	deinit_thread_data();
1543
1544	free_data(g, sizeof(*g));
1545	g = NULL;
1546}
1547
1548/*
1549 * Print a short or long result, depending on the verbosity setting:
1550 */
1551static void print_res(const char *name, double val,
1552		      const char *txt_unit, const char *txt_short, const char *txt_long)
1553{
1554	if (!name)
1555		name = "main,";
1556
1557	if (!quiet)
1558		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1559	else
1560		printf(" %14.3f %s\n", val, txt_long);
1561}
1562
1563static int __bench_numa(const char *name)
1564{
1565	struct timeval start, stop, diff;
1566	u64 runtime_ns_min, runtime_ns_sum;
1567	pid_t *pids, pid, wpid;
1568	double delta_runtime;
1569	double runtime_avg;
1570	double runtime_sec_max;
1571	double runtime_sec_min;
1572	int wait_stat;
1573	double bytes;
1574	int i, t, p;
1575
1576	if (init())
1577		return -1;
1578
1579	pids = zalloc(g->p.nr_proc * sizeof(*pids));
1580	pid = -1;
1581
 
 
 
1582	if (g->p.serialize_startup) {
1583		tprintf(" #\n");
1584		tprintf(" # Startup synchronization: ..."); fflush(stdout);
1585	}
1586
1587	gettimeofday(&start, NULL);
1588
1589	for (i = 0; i < g->p.nr_proc; i++) {
1590		pid = fork();
1591		dprintf(" # process %2d: PID %d\n", i, pid);
1592
1593		BUG_ON(pid < 0);
1594		if (!pid) {
1595			/* Child process: */
1596			worker_process(i);
1597
1598			exit(0);
1599		}
1600		pids[i] = pid;
1601
1602	}
 
 
 
 
 
1603
1604	if (g->p.serialize_startup) {
1605		bool threads_ready = false;
1606		double startup_sec;
1607
1608		/*
1609		 * Wait for all the threads to start up. The last thread will
1610		 * signal this process.
1611		 */
1612		mutex_lock(&g->startup_mutex);
1613		while (g->nr_tasks_started != g->p.nr_tasks)
1614			cond_wait(&g->startup_cond, &g->startup_mutex);
1615
1616		mutex_unlock(&g->startup_mutex);
1617
1618		/* Wait for all threads to be at the start_work_cond. */
1619		while (!threads_ready) {
1620			mutex_lock(&g->start_work_mutex);
1621			threads_ready = (g->nr_tasks_working == g->p.nr_tasks);
1622			mutex_unlock(&g->start_work_mutex);
1623			if (!threads_ready)
1624				usleep(1);
1625		}
1626
1627		gettimeofday(&stop, NULL);
1628
1629		timersub(&stop, &start, &diff);
1630
1631		startup_sec = diff.tv_sec * NSEC_PER_SEC;
1632		startup_sec += diff.tv_usec * NSEC_PER_USEC;
1633		startup_sec /= NSEC_PER_SEC;
1634
1635		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1636		tprintf(" #\n");
1637
1638		start = stop;
1639		/* Start all threads running. */
1640		mutex_lock(&g->start_work_mutex);
1641		g->start_work = true;
1642		mutex_unlock(&g->start_work_mutex);
1643		cond_broadcast(&g->start_work_cond);
1644	} else {
1645		gettimeofday(&start, NULL);
1646	}
1647
1648	/* Parent process: */
1649
1650
1651	for (i = 0; i < g->p.nr_proc; i++) {
1652		wpid = waitpid(pids[i], &wait_stat, 0);
1653		BUG_ON(wpid < 0);
1654		BUG_ON(!WIFEXITED(wait_stat));
1655
1656	}
1657
1658	runtime_ns_sum = 0;
1659	runtime_ns_min = -1LL;
1660
1661	for (t = 0; t < g->p.nr_tasks; t++) {
1662		u64 thread_runtime_ns = g->threads[t].runtime_ns;
1663
1664		runtime_ns_sum += thread_runtime_ns;
1665		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1666	}
1667
1668	gettimeofday(&stop, NULL);
1669	timersub(&stop, &start, &diff);
1670
1671	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1672
1673	tprintf("\n ###\n");
1674	tprintf("\n");
1675
1676	runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1677	runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1678	runtime_sec_max /= NSEC_PER_SEC;
1679
1680	runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1681
1682	bytes = g->bytes_done;
1683	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1684
1685	if (g->p.measure_convergence) {
1686		print_res(name, runtime_sec_max,
1687			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1688	}
1689
1690	print_res(name, runtime_sec_max,
1691		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
1692
1693	print_res(name, runtime_sec_min,
1694		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
1695
1696	print_res(name, runtime_avg,
1697		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
1698
1699	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1700	print_res(name, delta_runtime / runtime_sec_max * 100.0,
1701		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
1702
1703	print_res(name, bytes / g->p.nr_tasks / 1e9,
1704		"GB,", "data/thread",		"GB data processed, per thread");
1705
1706	print_res(name, bytes / 1e9,
1707		"GB,", "data-total",		"GB data processed, total");
1708
1709	print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1710		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1711
1712	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1713		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
1714
1715	print_res(name, bytes / runtime_sec_max / 1e9,
1716		"GB/sec,", "total-speed",	"GB/sec total speed");
1717
1718	if (g->p.show_details >= 2) {
1719		char tname[14 + 2 * 11 + 1];
1720		struct thread_data *td;
1721		for (p = 0; p < g->p.nr_proc; p++) {
1722			for (t = 0; t < g->p.nr_threads; t++) {
1723				memset(tname, 0, sizeof(tname));
1724				td = g->threads + p*g->p.nr_threads + t;
1725				snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1726				print_res(tname, td->speed_gbs,
1727					"GB/sec",	"thread-speed", "GB/sec/thread speed");
1728				print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1729					"secs",	"thread-system-time", "system CPU time/thread");
1730				print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1731					"secs",	"thread-user-time", "user CPU time/thread");
1732			}
1733		}
1734	}
1735
1736	free(pids);
1737
1738	deinit();
1739
1740	return 0;
1741}
1742
1743#define MAX_ARGS 50
1744
1745static int command_size(const char **argv)
1746{
1747	int size = 0;
1748
1749	while (*argv) {
1750		size++;
1751		argv++;
1752	}
1753
1754	BUG_ON(size >= MAX_ARGS);
1755
1756	return size;
1757}
1758
1759static void init_params(struct params *p, const char *name, int argc, const char **argv)
1760{
1761	int i;
1762
1763	printf("\n # Running %s \"perf bench numa", name);
1764
1765	for (i = 0; i < argc; i++)
1766		printf(" %s", argv[i]);
1767
1768	printf("\"\n");
1769
1770	memset(p, 0, sizeof(*p));
1771
1772	/* Initialize nonzero defaults: */
1773
1774	p->serialize_startup		= 1;
1775	p->data_reads			= true;
1776	p->data_writes			= true;
1777	p->data_backwards		= true;
1778	p->data_rand_walk		= true;
1779	p->nr_loops			= -1;
1780	p->init_random			= true;
1781	p->mb_global_str		= "1";
1782	p->nr_proc			= 1;
1783	p->nr_threads			= 1;
1784	p->nr_secs			= 5;
1785	p->run_all			= argc == 1;
1786}
1787
1788static int run_bench_numa(const char *name, const char **argv)
1789{
1790	int argc = command_size(argv);
1791
1792	init_params(&p0, name, argc, argv);
1793	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1794	if (argc)
1795		goto err;
1796
1797	if (__bench_numa(name))
1798		goto err;
1799
1800	return 0;
1801
1802err:
1803	return -1;
1804}
1805
1806#define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1807#define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
1808
1809#define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
1810#define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
1811
1812#define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
1813#define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
1814
1815/*
1816 * The built-in test-suite executed by "perf bench numa -a".
1817 *
1818 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1819 */
1820static const char *tests[][MAX_ARGS] = {
1821   /* Basic single-stream NUMA bandwidth measurements: */
1822   { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1823			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1824   { "RAM-bw-local-NOTHP,",
1825			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1826			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1827   { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1828			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1829
1830   /* 2-stream NUMA bandwidth measurements: */
1831   { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1832			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1833   { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1834		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1835
1836   /* Cross-stream NUMA bandwidth measurement: */
1837   { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1838		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1839
1840   /* Convergence latency measurements: */
1841   { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1842   { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1843   { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1844   { " 2x3-convergence,", "mem",  "-p",  "2", "-t",  "3", "-P", "1020", OPT_CONV },
1845   { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1846   { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1847   { " 4x4-convergence-NOTHP,",
1848			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1849   { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1850   { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1851   { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1852   { " 8x4-convergence-NOTHP,",
1853			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1854   { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1855   { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1856   { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1857   { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1858   { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1859
1860   /* Various NUMA process/thread layout bandwidth measurements: */
1861   { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1862   { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1863   { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1864   { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1865   { " 8x1-bw-process-NOTHP,",
1866			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1867   { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1868
1869   { " 1x4-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1870   { " 1x8-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1871   { "1x16-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1872   { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1873
1874   { " 2x3-bw-process,",  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1875   { " 4x4-bw-process,",  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1876   { " 4x6-bw-process,",  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1877   { " 4x8-bw-process,",  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1878   { " 4x8-bw-process-NOTHP,",
1879			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1880   { " 3x3-bw-process,",  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1881   { " 5x5-bw-process,",  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1882
1883   { "2x16-bw-process,",  "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1884   { "1x32-bw-process,",  "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1885
1886   { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1887   { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1888   { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1889   { "numa01-bw-thread-NOTHP,",
1890			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1891};
1892
1893static int bench_all(void)
1894{
1895	int nr = ARRAY_SIZE(tests);
1896	int ret;
1897	int i;
1898
1899	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1900	BUG_ON(ret < 0);
1901
1902	for (i = 0; i < nr; i++) {
1903		run_bench_numa(tests[i][0], tests[i] + 1);
1904	}
1905
1906	printf("\n");
1907
1908	return 0;
1909}
1910
1911int bench_numa(int argc, const char **argv)
1912{
1913	init_params(&p0, "main,", argc, argv);
1914	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1915	if (argc)
1916		goto err;
1917
1918	if (p0.run_all)
1919		return bench_all();
1920
1921	if (__bench_numa(NULL))
1922		goto err;
1923
1924	return 0;
1925
1926err:
1927	usage_with_options(numa_usage, options);
1928	return -1;
1929}