Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * numa.c
4 *
5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
6 */
7
8#include <inttypes.h>
9/* For the CLR_() macros */
10#include <pthread.h>
11
12#include <subcmd/parse-options.h>
13#include "../util/cloexec.h"
14
15#include "bench.h"
16
17#include <errno.h>
18#include <sched.h>
19#include <stdio.h>
20#include <assert.h>
21#include <malloc.h>
22#include <signal.h>
23#include <stdlib.h>
24#include <string.h>
25#include <unistd.h>
26#include <sys/mman.h>
27#include <sys/time.h>
28#include <sys/resource.h>
29#include <sys/wait.h>
30#include <sys/prctl.h>
31#include <sys/types.h>
32#include <linux/kernel.h>
33#include <linux/time64.h>
34#include <linux/numa.h>
35#include <linux/zalloc.h>
36
37#include <numa.h>
38#include <numaif.h>
39
40#ifndef RUSAGE_THREAD
41# define RUSAGE_THREAD 1
42#endif
43
44/*
45 * Regular printout to the terminal, supressed if -q is specified:
46 */
47#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
48
49/*
50 * Debug printf:
51 */
52#undef dprintf
53#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
54
55struct thread_data {
56 int curr_cpu;
57 cpu_set_t bind_cpumask;
58 int bind_node;
59 u8 *process_data;
60 int process_nr;
61 int thread_nr;
62 int task_nr;
63 unsigned int loops_done;
64 u64 val;
65 u64 runtime_ns;
66 u64 system_time_ns;
67 u64 user_time_ns;
68 double speed_gbs;
69 pthread_mutex_t *process_lock;
70};
71
72/* Parameters set by options: */
73
74struct params {
75 /* Startup synchronization: */
76 bool serialize_startup;
77
78 /* Task hierarchy: */
79 int nr_proc;
80 int nr_threads;
81
82 /* Working set sizes: */
83 const char *mb_global_str;
84 const char *mb_proc_str;
85 const char *mb_proc_locked_str;
86 const char *mb_thread_str;
87
88 double mb_global;
89 double mb_proc;
90 double mb_proc_locked;
91 double mb_thread;
92
93 /* Access patterns to the working set: */
94 bool data_reads;
95 bool data_writes;
96 bool data_backwards;
97 bool data_zero_memset;
98 bool data_rand_walk;
99 u32 nr_loops;
100 u32 nr_secs;
101 u32 sleep_usecs;
102
103 /* Working set initialization: */
104 bool init_zero;
105 bool init_random;
106 bool init_cpu0;
107
108 /* Misc options: */
109 int show_details;
110 int run_all;
111 int thp;
112
113 long bytes_global;
114 long bytes_process;
115 long bytes_process_locked;
116 long bytes_thread;
117
118 int nr_tasks;
119 bool show_quiet;
120
121 bool show_convergence;
122 bool measure_convergence;
123
124 int perturb_secs;
125 int nr_cpus;
126 int nr_nodes;
127
128 /* Affinity options -C and -N: */
129 char *cpu_list_str;
130 char *node_list_str;
131};
132
133
134/* Global, read-writable area, accessible to all processes and threads: */
135
136struct global_info {
137 u8 *data;
138
139 pthread_mutex_t startup_mutex;
140 int nr_tasks_started;
141
142 pthread_mutex_t startup_done_mutex;
143
144 pthread_mutex_t start_work_mutex;
145 int nr_tasks_working;
146
147 pthread_mutex_t stop_work_mutex;
148 u64 bytes_done;
149
150 struct thread_data *threads;
151
152 /* Convergence latency measurement: */
153 bool all_converged;
154 bool stop_work;
155
156 int print_once;
157
158 struct params p;
159};
160
161static struct global_info *g = NULL;
162
163static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
164static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
165
166struct params p0;
167
168static const struct option options[] = {
169 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"),
170 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"),
171
172 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"),
173 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"),
174 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
175 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"),
176
177 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"),
178 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"),
179 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"),
180
181 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via reads (can be mixed with -W)"),
182 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"),
183 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"),
184 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
185 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"),
186
187
188 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"),
189 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"),
190 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"),
191 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"),
192
193 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"),
194 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"),
195 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
196 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
197 "convergence is reached when each process (all its threads) is running on a single NUMA node."),
198 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
199 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"),
200 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
201
202 /* Special option string parsing callbacks: */
203 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
204 "bind the first N tasks to these specific cpus (the rest is unbound)",
205 parse_cpus_opt),
206 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
207 "bind the first N tasks to these specific memory nodes (the rest is unbound)",
208 parse_nodes_opt),
209 OPT_END()
210};
211
212static const char * const bench_numa_usage[] = {
213 "perf bench numa <options>",
214 NULL
215};
216
217static const char * const numa_usage[] = {
218 "perf bench numa mem [<options>]",
219 NULL
220};
221
222/*
223 * To get number of numa nodes present.
224 */
225static int nr_numa_nodes(void)
226{
227 int i, nr_nodes = 0;
228
229 for (i = 0; i < g->p.nr_nodes; i++) {
230 if (numa_bitmask_isbitset(numa_nodes_ptr, i))
231 nr_nodes++;
232 }
233
234 return nr_nodes;
235}
236
237/*
238 * To check if given numa node is present.
239 */
240static int is_node_present(int node)
241{
242 return numa_bitmask_isbitset(numa_nodes_ptr, node);
243}
244
245/*
246 * To check given numa node has cpus.
247 */
248static bool node_has_cpus(int node)
249{
250 struct bitmask *cpu = numa_allocate_cpumask();
251 unsigned int i;
252
253 if (cpu && !numa_node_to_cpus(node, cpu)) {
254 for (i = 0; i < cpu->size; i++) {
255 if (numa_bitmask_isbitset(cpu, i))
256 return true;
257 }
258 }
259
260 return false; /* lets fall back to nocpus safely */
261}
262
263static cpu_set_t bind_to_cpu(int target_cpu)
264{
265 cpu_set_t orig_mask, mask;
266 int ret;
267
268 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
269 BUG_ON(ret);
270
271 CPU_ZERO(&mask);
272
273 if (target_cpu == -1) {
274 int cpu;
275
276 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
277 CPU_SET(cpu, &mask);
278 } else {
279 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
280 CPU_SET(target_cpu, &mask);
281 }
282
283 ret = sched_setaffinity(0, sizeof(mask), &mask);
284 BUG_ON(ret);
285
286 return orig_mask;
287}
288
289static cpu_set_t bind_to_node(int target_node)
290{
291 int cpus_per_node = g->p.nr_cpus / nr_numa_nodes();
292 cpu_set_t orig_mask, mask;
293 int cpu;
294 int ret;
295
296 BUG_ON(cpus_per_node * nr_numa_nodes() != g->p.nr_cpus);
297 BUG_ON(!cpus_per_node);
298
299 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
300 BUG_ON(ret);
301
302 CPU_ZERO(&mask);
303
304 if (target_node == NUMA_NO_NODE) {
305 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
306 CPU_SET(cpu, &mask);
307 } else {
308 int cpu_start = (target_node + 0) * cpus_per_node;
309 int cpu_stop = (target_node + 1) * cpus_per_node;
310
311 BUG_ON(cpu_stop > g->p.nr_cpus);
312
313 for (cpu = cpu_start; cpu < cpu_stop; cpu++)
314 CPU_SET(cpu, &mask);
315 }
316
317 ret = sched_setaffinity(0, sizeof(mask), &mask);
318 BUG_ON(ret);
319
320 return orig_mask;
321}
322
323static void bind_to_cpumask(cpu_set_t mask)
324{
325 int ret;
326
327 ret = sched_setaffinity(0, sizeof(mask), &mask);
328 BUG_ON(ret);
329}
330
331static void mempol_restore(void)
332{
333 int ret;
334
335 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
336
337 BUG_ON(ret);
338}
339
340static void bind_to_memnode(int node)
341{
342 unsigned long nodemask;
343 int ret;
344
345 if (node == NUMA_NO_NODE)
346 return;
347
348 BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
349 nodemask = 1L << node;
350
351 ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
352 dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
353
354 BUG_ON(ret);
355}
356
357#define HPSIZE (2*1024*1024)
358
359#define set_taskname(fmt...) \
360do { \
361 char name[20]; \
362 \
363 snprintf(name, 20, fmt); \
364 prctl(PR_SET_NAME, name); \
365} while (0)
366
367static u8 *alloc_data(ssize_t bytes0, int map_flags,
368 int init_zero, int init_cpu0, int thp, int init_random)
369{
370 cpu_set_t orig_mask;
371 ssize_t bytes;
372 u8 *buf;
373 int ret;
374
375 if (!bytes0)
376 return NULL;
377
378 /* Allocate and initialize all memory on CPU#0: */
379 if (init_cpu0) {
380 int node = numa_node_of_cpu(0);
381
382 orig_mask = bind_to_node(node);
383 bind_to_memnode(node);
384 }
385
386 bytes = bytes0 + HPSIZE;
387
388 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
389 BUG_ON(buf == (void *)-1);
390
391 if (map_flags == MAP_PRIVATE) {
392 if (thp > 0) {
393 ret = madvise(buf, bytes, MADV_HUGEPAGE);
394 if (ret && !g->print_once) {
395 g->print_once = 1;
396 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
397 }
398 }
399 if (thp < 0) {
400 ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
401 if (ret && !g->print_once) {
402 g->print_once = 1;
403 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
404 }
405 }
406 }
407
408 if (init_zero) {
409 bzero(buf, bytes);
410 } else {
411 /* Initialize random contents, different in each word: */
412 if (init_random) {
413 u64 *wbuf = (void *)buf;
414 long off = rand();
415 long i;
416
417 for (i = 0; i < bytes/8; i++)
418 wbuf[i] = i + off;
419 }
420 }
421
422 /* Align to 2MB boundary: */
423 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
424
425 /* Restore affinity: */
426 if (init_cpu0) {
427 bind_to_cpumask(orig_mask);
428 mempol_restore();
429 }
430
431 return buf;
432}
433
434static void free_data(void *data, ssize_t bytes)
435{
436 int ret;
437
438 if (!data)
439 return;
440
441 ret = munmap(data, bytes);
442 BUG_ON(ret);
443}
444
445/*
446 * Create a shared memory buffer that can be shared between processes, zeroed:
447 */
448static void * zalloc_shared_data(ssize_t bytes)
449{
450 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random);
451}
452
453/*
454 * Create a shared memory buffer that can be shared between processes:
455 */
456static void * setup_shared_data(ssize_t bytes)
457{
458 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
459}
460
461/*
462 * Allocate process-local memory - this will either be shared between
463 * threads of this process, or only be accessed by this thread:
464 */
465static void * setup_private_data(ssize_t bytes)
466{
467 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
468}
469
470/*
471 * Return a process-shared (global) mutex:
472 */
473static void init_global_mutex(pthread_mutex_t *mutex)
474{
475 pthread_mutexattr_t attr;
476
477 pthread_mutexattr_init(&attr);
478 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
479 pthread_mutex_init(mutex, &attr);
480}
481
482static int parse_cpu_list(const char *arg)
483{
484 p0.cpu_list_str = strdup(arg);
485
486 dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
487
488 return 0;
489}
490
491static int parse_setup_cpu_list(void)
492{
493 struct thread_data *td;
494 char *str0, *str;
495 int t;
496
497 if (!g->p.cpu_list_str)
498 return 0;
499
500 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
501
502 str0 = str = strdup(g->p.cpu_list_str);
503 t = 0;
504
505 BUG_ON(!str);
506
507 tprintf("# binding tasks to CPUs:\n");
508 tprintf("# ");
509
510 while (true) {
511 int bind_cpu, bind_cpu_0, bind_cpu_1;
512 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
513 int bind_len;
514 int step;
515 int mul;
516
517 tok = strsep(&str, ",");
518 if (!tok)
519 break;
520
521 tok_end = strstr(tok, "-");
522
523 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
524 if (!tok_end) {
525 /* Single CPU specified: */
526 bind_cpu_0 = bind_cpu_1 = atol(tok);
527 } else {
528 /* CPU range specified (for example: "5-11"): */
529 bind_cpu_0 = atol(tok);
530 bind_cpu_1 = atol(tok_end + 1);
531 }
532
533 step = 1;
534 tok_step = strstr(tok, "#");
535 if (tok_step) {
536 step = atol(tok_step + 1);
537 BUG_ON(step <= 0 || step >= g->p.nr_cpus);
538 }
539
540 /*
541 * Mask length.
542 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
543 * where the _4 means the next 4 CPUs are allowed.
544 */
545 bind_len = 1;
546 tok_len = strstr(tok, "_");
547 if (tok_len) {
548 bind_len = atol(tok_len + 1);
549 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
550 }
551
552 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
553 mul = 1;
554 tok_mul = strstr(tok, "x");
555 if (tok_mul) {
556 mul = atol(tok_mul + 1);
557 BUG_ON(mul <= 0);
558 }
559
560 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
561
562 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
563 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
564 return -1;
565 }
566
567 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
568 BUG_ON(bind_cpu_0 > bind_cpu_1);
569
570 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
571 int i;
572
573 for (i = 0; i < mul; i++) {
574 int cpu;
575
576 if (t >= g->p.nr_tasks) {
577 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
578 goto out;
579 }
580 td = g->threads + t;
581
582 if (t)
583 tprintf(",");
584 if (bind_len > 1) {
585 tprintf("%2d/%d", bind_cpu, bind_len);
586 } else {
587 tprintf("%2d", bind_cpu);
588 }
589
590 CPU_ZERO(&td->bind_cpumask);
591 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
592 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
593 CPU_SET(cpu, &td->bind_cpumask);
594 }
595 t++;
596 }
597 }
598 }
599out:
600
601 tprintf("\n");
602
603 if (t < g->p.nr_tasks)
604 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
605
606 free(str0);
607 return 0;
608}
609
610static int parse_cpus_opt(const struct option *opt __maybe_unused,
611 const char *arg, int unset __maybe_unused)
612{
613 if (!arg)
614 return -1;
615
616 return parse_cpu_list(arg);
617}
618
619static int parse_node_list(const char *arg)
620{
621 p0.node_list_str = strdup(arg);
622
623 dprintf("got NODE list: {%s}\n", p0.node_list_str);
624
625 return 0;
626}
627
628static int parse_setup_node_list(void)
629{
630 struct thread_data *td;
631 char *str0, *str;
632 int t;
633
634 if (!g->p.node_list_str)
635 return 0;
636
637 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
638
639 str0 = str = strdup(g->p.node_list_str);
640 t = 0;
641
642 BUG_ON(!str);
643
644 tprintf("# binding tasks to NODEs:\n");
645 tprintf("# ");
646
647 while (true) {
648 int bind_node, bind_node_0, bind_node_1;
649 char *tok, *tok_end, *tok_step, *tok_mul;
650 int step;
651 int mul;
652
653 tok = strsep(&str, ",");
654 if (!tok)
655 break;
656
657 tok_end = strstr(tok, "-");
658
659 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
660 if (!tok_end) {
661 /* Single NODE specified: */
662 bind_node_0 = bind_node_1 = atol(tok);
663 } else {
664 /* NODE range specified (for example: "5-11"): */
665 bind_node_0 = atol(tok);
666 bind_node_1 = atol(tok_end + 1);
667 }
668
669 step = 1;
670 tok_step = strstr(tok, "#");
671 if (tok_step) {
672 step = atol(tok_step + 1);
673 BUG_ON(step <= 0 || step >= g->p.nr_nodes);
674 }
675
676 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
677 mul = 1;
678 tok_mul = strstr(tok, "x");
679 if (tok_mul) {
680 mul = atol(tok_mul + 1);
681 BUG_ON(mul <= 0);
682 }
683
684 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
685
686 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
687 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
688 return -1;
689 }
690
691 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
692 BUG_ON(bind_node_0 > bind_node_1);
693
694 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
695 int i;
696
697 for (i = 0; i < mul; i++) {
698 if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
699 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
700 goto out;
701 }
702 td = g->threads + t;
703
704 if (!t)
705 tprintf(" %2d", bind_node);
706 else
707 tprintf(",%2d", bind_node);
708
709 td->bind_node = bind_node;
710 t++;
711 }
712 }
713 }
714out:
715
716 tprintf("\n");
717
718 if (t < g->p.nr_tasks)
719 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
720
721 free(str0);
722 return 0;
723}
724
725static int parse_nodes_opt(const struct option *opt __maybe_unused,
726 const char *arg, int unset __maybe_unused)
727{
728 if (!arg)
729 return -1;
730
731 return parse_node_list(arg);
732
733 return 0;
734}
735
736#define BIT(x) (1ul << x)
737
738static inline uint32_t lfsr_32(uint32_t lfsr)
739{
740 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
741 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
742}
743
744/*
745 * Make sure there's real data dependency to RAM (when read
746 * accesses are enabled), so the compiler, the CPU and the
747 * kernel (KSM, zero page, etc.) cannot optimize away RAM
748 * accesses:
749 */
750static inline u64 access_data(u64 *data, u64 val)
751{
752 if (g->p.data_reads)
753 val += *data;
754 if (g->p.data_writes)
755 *data = val + 1;
756 return val;
757}
758
759/*
760 * The worker process does two types of work, a forwards going
761 * loop and a backwards going loop.
762 *
763 * We do this so that on multiprocessor systems we do not create
764 * a 'train' of processing, with highly synchronized processes,
765 * skewing the whole benchmark.
766 */
767static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
768{
769 long words = bytes/sizeof(u64);
770 u64 *data = (void *)__data;
771 long chunk_0, chunk_1;
772 u64 *d0, *d, *d1;
773 long off;
774 long i;
775
776 BUG_ON(!data && words);
777 BUG_ON(data && !words);
778
779 if (!data)
780 return val;
781
782 /* Very simple memset() work variant: */
783 if (g->p.data_zero_memset && !g->p.data_rand_walk) {
784 bzero(data, bytes);
785 return val;
786 }
787
788 /* Spread out by PID/TID nr and by loop nr: */
789 chunk_0 = words/nr_max;
790 chunk_1 = words/g->p.nr_loops;
791 off = nr*chunk_0 + loop*chunk_1;
792
793 while (off >= words)
794 off -= words;
795
796 if (g->p.data_rand_walk) {
797 u32 lfsr = nr + loop + val;
798 int j;
799
800 for (i = 0; i < words/1024; i++) {
801 long start, end;
802
803 lfsr = lfsr_32(lfsr);
804
805 start = lfsr % words;
806 end = min(start + 1024, words-1);
807
808 if (g->p.data_zero_memset) {
809 bzero(data + start, (end-start) * sizeof(u64));
810 } else {
811 for (j = start; j < end; j++)
812 val = access_data(data + j, val);
813 }
814 }
815 } else if (!g->p.data_backwards || (nr + loop) & 1) {
816
817 d0 = data + off;
818 d = data + off + 1;
819 d1 = data + words;
820
821 /* Process data forwards: */
822 for (;;) {
823 if (unlikely(d >= d1))
824 d = data;
825 if (unlikely(d == d0))
826 break;
827
828 val = access_data(d, val);
829
830 d++;
831 }
832 } else {
833 /* Process data backwards: */
834
835 d0 = data + off;
836 d = data + off - 1;
837 d1 = data + words;
838
839 /* Process data forwards: */
840 for (;;) {
841 if (unlikely(d < data))
842 d = data + words-1;
843 if (unlikely(d == d0))
844 break;
845
846 val = access_data(d, val);
847
848 d--;
849 }
850 }
851
852 return val;
853}
854
855static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
856{
857 unsigned int cpu;
858
859 cpu = sched_getcpu();
860
861 g->threads[task_nr].curr_cpu = cpu;
862 prctl(0, bytes_worked);
863}
864
865#define MAX_NR_NODES 64
866
867/*
868 * Count the number of nodes a process's threads
869 * are spread out on.
870 *
871 * A count of 1 means that the process is compressed
872 * to a single node. A count of g->p.nr_nodes means it's
873 * spread out on the whole system.
874 */
875static int count_process_nodes(int process_nr)
876{
877 char node_present[MAX_NR_NODES] = { 0, };
878 int nodes;
879 int n, t;
880
881 for (t = 0; t < g->p.nr_threads; t++) {
882 struct thread_data *td;
883 int task_nr;
884 int node;
885
886 task_nr = process_nr*g->p.nr_threads + t;
887 td = g->threads + task_nr;
888
889 node = numa_node_of_cpu(td->curr_cpu);
890 if (node < 0) /* curr_cpu was likely still -1 */
891 return 0;
892
893 node_present[node] = 1;
894 }
895
896 nodes = 0;
897
898 for (n = 0; n < MAX_NR_NODES; n++)
899 nodes += node_present[n];
900
901 return nodes;
902}
903
904/*
905 * Count the number of distinct process-threads a node contains.
906 *
907 * A count of 1 means that the node contains only a single
908 * process. If all nodes on the system contain at most one
909 * process then we are well-converged.
910 */
911static int count_node_processes(int node)
912{
913 int processes = 0;
914 int t, p;
915
916 for (p = 0; p < g->p.nr_proc; p++) {
917 for (t = 0; t < g->p.nr_threads; t++) {
918 struct thread_data *td;
919 int task_nr;
920 int n;
921
922 task_nr = p*g->p.nr_threads + t;
923 td = g->threads + task_nr;
924
925 n = numa_node_of_cpu(td->curr_cpu);
926 if (n == node) {
927 processes++;
928 break;
929 }
930 }
931 }
932
933 return processes;
934}
935
936static void calc_convergence_compression(int *strong)
937{
938 unsigned int nodes_min, nodes_max;
939 int p;
940
941 nodes_min = -1;
942 nodes_max = 0;
943
944 for (p = 0; p < g->p.nr_proc; p++) {
945 unsigned int nodes = count_process_nodes(p);
946
947 if (!nodes) {
948 *strong = 0;
949 return;
950 }
951
952 nodes_min = min(nodes, nodes_min);
953 nodes_max = max(nodes, nodes_max);
954 }
955
956 /* Strong convergence: all threads compress on a single node: */
957 if (nodes_min == 1 && nodes_max == 1) {
958 *strong = 1;
959 } else {
960 *strong = 0;
961 tprintf(" {%d-%d}", nodes_min, nodes_max);
962 }
963}
964
965static void calc_convergence(double runtime_ns_max, double *convergence)
966{
967 unsigned int loops_done_min, loops_done_max;
968 int process_groups;
969 int nodes[MAX_NR_NODES];
970 int distance;
971 int nr_min;
972 int nr_max;
973 int strong;
974 int sum;
975 int nr;
976 int node;
977 int cpu;
978 int t;
979
980 if (!g->p.show_convergence && !g->p.measure_convergence)
981 return;
982
983 for (node = 0; node < g->p.nr_nodes; node++)
984 nodes[node] = 0;
985
986 loops_done_min = -1;
987 loops_done_max = 0;
988
989 for (t = 0; t < g->p.nr_tasks; t++) {
990 struct thread_data *td = g->threads + t;
991 unsigned int loops_done;
992
993 cpu = td->curr_cpu;
994
995 /* Not all threads have written it yet: */
996 if (cpu < 0)
997 continue;
998
999 node = numa_node_of_cpu(cpu);
1000
1001 nodes[node]++;
1002
1003 loops_done = td->loops_done;
1004 loops_done_min = min(loops_done, loops_done_min);
1005 loops_done_max = max(loops_done, loops_done_max);
1006 }
1007
1008 nr_max = 0;
1009 nr_min = g->p.nr_tasks;
1010 sum = 0;
1011
1012 for (node = 0; node < g->p.nr_nodes; node++) {
1013 if (!is_node_present(node))
1014 continue;
1015 nr = nodes[node];
1016 nr_min = min(nr, nr_min);
1017 nr_max = max(nr, nr_max);
1018 sum += nr;
1019 }
1020 BUG_ON(nr_min > nr_max);
1021
1022 BUG_ON(sum > g->p.nr_tasks);
1023
1024 if (0 && (sum < g->p.nr_tasks))
1025 return;
1026
1027 /*
1028 * Count the number of distinct process groups present
1029 * on nodes - when we are converged this will decrease
1030 * to g->p.nr_proc:
1031 */
1032 process_groups = 0;
1033
1034 for (node = 0; node < g->p.nr_nodes; node++) {
1035 int processes;
1036
1037 if (!is_node_present(node))
1038 continue;
1039 processes = count_node_processes(node);
1040 nr = nodes[node];
1041 tprintf(" %2d/%-2d", nr, processes);
1042
1043 process_groups += processes;
1044 }
1045
1046 distance = nr_max - nr_min;
1047
1048 tprintf(" [%2d/%-2d]", distance, process_groups);
1049
1050 tprintf(" l:%3d-%-3d (%3d)",
1051 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1052
1053 if (loops_done_min && loops_done_max) {
1054 double skew = 1.0 - (double)loops_done_min/loops_done_max;
1055
1056 tprintf(" [%4.1f%%]", skew * 100.0);
1057 }
1058
1059 calc_convergence_compression(&strong);
1060
1061 if (strong && process_groups == g->p.nr_proc) {
1062 if (!*convergence) {
1063 *convergence = runtime_ns_max;
1064 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1065 if (g->p.measure_convergence) {
1066 g->all_converged = true;
1067 g->stop_work = true;
1068 }
1069 }
1070 } else {
1071 if (*convergence) {
1072 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1073 *convergence = 0;
1074 }
1075 tprintf("\n");
1076 }
1077}
1078
1079static void show_summary(double runtime_ns_max, int l, double *convergence)
1080{
1081 tprintf("\r # %5.1f%% [%.1f mins]",
1082 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1083
1084 calc_convergence(runtime_ns_max, convergence);
1085
1086 if (g->p.show_details >= 0)
1087 fflush(stdout);
1088}
1089
1090static void *worker_thread(void *__tdata)
1091{
1092 struct thread_data *td = __tdata;
1093 struct timeval start0, start, stop, diff;
1094 int process_nr = td->process_nr;
1095 int thread_nr = td->thread_nr;
1096 unsigned long last_perturbance;
1097 int task_nr = td->task_nr;
1098 int details = g->p.show_details;
1099 int first_task, last_task;
1100 double convergence = 0;
1101 u64 val = td->val;
1102 double runtime_ns_max;
1103 u8 *global_data;
1104 u8 *process_data;
1105 u8 *thread_data;
1106 u64 bytes_done, secs;
1107 long work_done;
1108 u32 l;
1109 struct rusage rusage;
1110
1111 bind_to_cpumask(td->bind_cpumask);
1112 bind_to_memnode(td->bind_node);
1113
1114 set_taskname("thread %d/%d", process_nr, thread_nr);
1115
1116 global_data = g->data;
1117 process_data = td->process_data;
1118 thread_data = setup_private_data(g->p.bytes_thread);
1119
1120 bytes_done = 0;
1121
1122 last_task = 0;
1123 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1124 last_task = 1;
1125
1126 first_task = 0;
1127 if (process_nr == 0 && thread_nr == 0)
1128 first_task = 1;
1129
1130 if (details >= 2) {
1131 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1132 process_nr, thread_nr, global_data, process_data, thread_data);
1133 }
1134
1135 if (g->p.serialize_startup) {
1136 pthread_mutex_lock(&g->startup_mutex);
1137 g->nr_tasks_started++;
1138 pthread_mutex_unlock(&g->startup_mutex);
1139
1140 /* Here we will wait for the main process to start us all at once: */
1141 pthread_mutex_lock(&g->start_work_mutex);
1142 g->nr_tasks_working++;
1143
1144 /* Last one wake the main process: */
1145 if (g->nr_tasks_working == g->p.nr_tasks)
1146 pthread_mutex_unlock(&g->startup_done_mutex);
1147
1148 pthread_mutex_unlock(&g->start_work_mutex);
1149 }
1150
1151 gettimeofday(&start0, NULL);
1152
1153 start = stop = start0;
1154 last_perturbance = start.tv_sec;
1155
1156 for (l = 0; l < g->p.nr_loops; l++) {
1157 start = stop;
1158
1159 if (g->stop_work)
1160 break;
1161
1162 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val);
1163 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val);
1164 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val);
1165
1166 if (g->p.sleep_usecs) {
1167 pthread_mutex_lock(td->process_lock);
1168 usleep(g->p.sleep_usecs);
1169 pthread_mutex_unlock(td->process_lock);
1170 }
1171 /*
1172 * Amount of work to be done under a process-global lock:
1173 */
1174 if (g->p.bytes_process_locked) {
1175 pthread_mutex_lock(td->process_lock);
1176 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val);
1177 pthread_mutex_unlock(td->process_lock);
1178 }
1179
1180 work_done = g->p.bytes_global + g->p.bytes_process +
1181 g->p.bytes_process_locked + g->p.bytes_thread;
1182
1183 update_curr_cpu(task_nr, work_done);
1184 bytes_done += work_done;
1185
1186 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1187 continue;
1188
1189 td->loops_done = l;
1190
1191 gettimeofday(&stop, NULL);
1192
1193 /* Check whether our max runtime timed out: */
1194 if (g->p.nr_secs) {
1195 timersub(&stop, &start0, &diff);
1196 if ((u32)diff.tv_sec >= g->p.nr_secs) {
1197 g->stop_work = true;
1198 break;
1199 }
1200 }
1201
1202 /* Update the summary at most once per second: */
1203 if (start.tv_sec == stop.tv_sec)
1204 continue;
1205
1206 /*
1207 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1208 * by migrating to CPU#0:
1209 */
1210 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1211 cpu_set_t orig_mask;
1212 int target_cpu;
1213 int this_cpu;
1214
1215 last_perturbance = stop.tv_sec;
1216
1217 /*
1218 * Depending on where we are running, move into
1219 * the other half of the system, to create some
1220 * real disturbance:
1221 */
1222 this_cpu = g->threads[task_nr].curr_cpu;
1223 if (this_cpu < g->p.nr_cpus/2)
1224 target_cpu = g->p.nr_cpus-1;
1225 else
1226 target_cpu = 0;
1227
1228 orig_mask = bind_to_cpu(target_cpu);
1229
1230 /* Here we are running on the target CPU already */
1231 if (details >= 1)
1232 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1233
1234 bind_to_cpumask(orig_mask);
1235 }
1236
1237 if (details >= 3) {
1238 timersub(&stop, &start, &diff);
1239 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1240 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1241
1242 if (details >= 0) {
1243 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1244 process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1245 }
1246 fflush(stdout);
1247 }
1248 if (!last_task)
1249 continue;
1250
1251 timersub(&stop, &start0, &diff);
1252 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1253 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1254
1255 show_summary(runtime_ns_max, l, &convergence);
1256 }
1257
1258 gettimeofday(&stop, NULL);
1259 timersub(&stop, &start0, &diff);
1260 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1261 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1262 secs = td->runtime_ns / NSEC_PER_SEC;
1263 td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1264
1265 getrusage(RUSAGE_THREAD, &rusage);
1266 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1267 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1268 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1269 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1270
1271 free_data(thread_data, g->p.bytes_thread);
1272
1273 pthread_mutex_lock(&g->stop_work_mutex);
1274 g->bytes_done += bytes_done;
1275 pthread_mutex_unlock(&g->stop_work_mutex);
1276
1277 return NULL;
1278}
1279
1280/*
1281 * A worker process starts a couple of threads:
1282 */
1283static void worker_process(int process_nr)
1284{
1285 pthread_mutex_t process_lock;
1286 struct thread_data *td;
1287 pthread_t *pthreads;
1288 u8 *process_data;
1289 int task_nr;
1290 int ret;
1291 int t;
1292
1293 pthread_mutex_init(&process_lock, NULL);
1294 set_taskname("process %d", process_nr);
1295
1296 /*
1297 * Pick up the memory policy and the CPU binding of our first thread,
1298 * so that we initialize memory accordingly:
1299 */
1300 task_nr = process_nr*g->p.nr_threads;
1301 td = g->threads + task_nr;
1302
1303 bind_to_memnode(td->bind_node);
1304 bind_to_cpumask(td->bind_cpumask);
1305
1306 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1307 process_data = setup_private_data(g->p.bytes_process);
1308
1309 if (g->p.show_details >= 3) {
1310 printf(" # process %2d global mem: %p, process mem: %p\n",
1311 process_nr, g->data, process_data);
1312 }
1313
1314 for (t = 0; t < g->p.nr_threads; t++) {
1315 task_nr = process_nr*g->p.nr_threads + t;
1316 td = g->threads + task_nr;
1317
1318 td->process_data = process_data;
1319 td->process_nr = process_nr;
1320 td->thread_nr = t;
1321 td->task_nr = task_nr;
1322 td->val = rand();
1323 td->curr_cpu = -1;
1324 td->process_lock = &process_lock;
1325
1326 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1327 BUG_ON(ret);
1328 }
1329
1330 for (t = 0; t < g->p.nr_threads; t++) {
1331 ret = pthread_join(pthreads[t], NULL);
1332 BUG_ON(ret);
1333 }
1334
1335 free_data(process_data, g->p.bytes_process);
1336 free(pthreads);
1337}
1338
1339static void print_summary(void)
1340{
1341 if (g->p.show_details < 0)
1342 return;
1343
1344 printf("\n ###\n");
1345 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1346 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1347 printf(" # %5dx %5ldMB global shared mem operations\n",
1348 g->p.nr_loops, g->p.bytes_global/1024/1024);
1349 printf(" # %5dx %5ldMB process shared mem operations\n",
1350 g->p.nr_loops, g->p.bytes_process/1024/1024);
1351 printf(" # %5dx %5ldMB thread local mem operations\n",
1352 g->p.nr_loops, g->p.bytes_thread/1024/1024);
1353
1354 printf(" ###\n");
1355
1356 printf("\n ###\n"); fflush(stdout);
1357}
1358
1359static void init_thread_data(void)
1360{
1361 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1362 int t;
1363
1364 g->threads = zalloc_shared_data(size);
1365
1366 for (t = 0; t < g->p.nr_tasks; t++) {
1367 struct thread_data *td = g->threads + t;
1368 int cpu;
1369
1370 /* Allow all nodes by default: */
1371 td->bind_node = NUMA_NO_NODE;
1372
1373 /* Allow all CPUs by default: */
1374 CPU_ZERO(&td->bind_cpumask);
1375 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1376 CPU_SET(cpu, &td->bind_cpumask);
1377 }
1378}
1379
1380static void deinit_thread_data(void)
1381{
1382 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1383
1384 free_data(g->threads, size);
1385}
1386
1387static int init(void)
1388{
1389 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1390
1391 /* Copy over options: */
1392 g->p = p0;
1393
1394 g->p.nr_cpus = numa_num_configured_cpus();
1395
1396 g->p.nr_nodes = numa_max_node() + 1;
1397
1398 /* char array in count_process_nodes(): */
1399 BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1400
1401 if (g->p.show_quiet && !g->p.show_details)
1402 g->p.show_details = -1;
1403
1404 /* Some memory should be specified: */
1405 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1406 return -1;
1407
1408 if (g->p.mb_global_str) {
1409 g->p.mb_global = atof(g->p.mb_global_str);
1410 BUG_ON(g->p.mb_global < 0);
1411 }
1412
1413 if (g->p.mb_proc_str) {
1414 g->p.mb_proc = atof(g->p.mb_proc_str);
1415 BUG_ON(g->p.mb_proc < 0);
1416 }
1417
1418 if (g->p.mb_proc_locked_str) {
1419 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1420 BUG_ON(g->p.mb_proc_locked < 0);
1421 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1422 }
1423
1424 if (g->p.mb_thread_str) {
1425 g->p.mb_thread = atof(g->p.mb_thread_str);
1426 BUG_ON(g->p.mb_thread < 0);
1427 }
1428
1429 BUG_ON(g->p.nr_threads <= 0);
1430 BUG_ON(g->p.nr_proc <= 0);
1431
1432 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1433
1434 g->p.bytes_global = g->p.mb_global *1024L*1024L;
1435 g->p.bytes_process = g->p.mb_proc *1024L*1024L;
1436 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L;
1437 g->p.bytes_thread = g->p.mb_thread *1024L*1024L;
1438
1439 g->data = setup_shared_data(g->p.bytes_global);
1440
1441 /* Startup serialization: */
1442 init_global_mutex(&g->start_work_mutex);
1443 init_global_mutex(&g->startup_mutex);
1444 init_global_mutex(&g->startup_done_mutex);
1445 init_global_mutex(&g->stop_work_mutex);
1446
1447 init_thread_data();
1448
1449 tprintf("#\n");
1450 if (parse_setup_cpu_list() || parse_setup_node_list())
1451 return -1;
1452 tprintf("#\n");
1453
1454 print_summary();
1455
1456 return 0;
1457}
1458
1459static void deinit(void)
1460{
1461 free_data(g->data, g->p.bytes_global);
1462 g->data = NULL;
1463
1464 deinit_thread_data();
1465
1466 free_data(g, sizeof(*g));
1467 g = NULL;
1468}
1469
1470/*
1471 * Print a short or long result, depending on the verbosity setting:
1472 */
1473static void print_res(const char *name, double val,
1474 const char *txt_unit, const char *txt_short, const char *txt_long)
1475{
1476 if (!name)
1477 name = "main,";
1478
1479 if (!g->p.show_quiet)
1480 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1481 else
1482 printf(" %14.3f %s\n", val, txt_long);
1483}
1484
1485static int __bench_numa(const char *name)
1486{
1487 struct timeval start, stop, diff;
1488 u64 runtime_ns_min, runtime_ns_sum;
1489 pid_t *pids, pid, wpid;
1490 double delta_runtime;
1491 double runtime_avg;
1492 double runtime_sec_max;
1493 double runtime_sec_min;
1494 int wait_stat;
1495 double bytes;
1496 int i, t, p;
1497
1498 if (init())
1499 return -1;
1500
1501 pids = zalloc(g->p.nr_proc * sizeof(*pids));
1502 pid = -1;
1503
1504 /* All threads try to acquire it, this way we can wait for them to start up: */
1505 pthread_mutex_lock(&g->start_work_mutex);
1506
1507 if (g->p.serialize_startup) {
1508 tprintf(" #\n");
1509 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1510 }
1511
1512 gettimeofday(&start, NULL);
1513
1514 for (i = 0; i < g->p.nr_proc; i++) {
1515 pid = fork();
1516 dprintf(" # process %2d: PID %d\n", i, pid);
1517
1518 BUG_ON(pid < 0);
1519 if (!pid) {
1520 /* Child process: */
1521 worker_process(i);
1522
1523 exit(0);
1524 }
1525 pids[i] = pid;
1526
1527 }
1528 /* Wait for all the threads to start up: */
1529 while (g->nr_tasks_started != g->p.nr_tasks)
1530 usleep(USEC_PER_MSEC);
1531
1532 BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1533
1534 if (g->p.serialize_startup) {
1535 double startup_sec;
1536
1537 pthread_mutex_lock(&g->startup_done_mutex);
1538
1539 /* This will start all threads: */
1540 pthread_mutex_unlock(&g->start_work_mutex);
1541
1542 /* This mutex is locked - the last started thread will wake us: */
1543 pthread_mutex_lock(&g->startup_done_mutex);
1544
1545 gettimeofday(&stop, NULL);
1546
1547 timersub(&stop, &start, &diff);
1548
1549 startup_sec = diff.tv_sec * NSEC_PER_SEC;
1550 startup_sec += diff.tv_usec * NSEC_PER_USEC;
1551 startup_sec /= NSEC_PER_SEC;
1552
1553 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1554 tprintf(" #\n");
1555
1556 start = stop;
1557 pthread_mutex_unlock(&g->startup_done_mutex);
1558 } else {
1559 gettimeofday(&start, NULL);
1560 }
1561
1562 /* Parent process: */
1563
1564
1565 for (i = 0; i < g->p.nr_proc; i++) {
1566 wpid = waitpid(pids[i], &wait_stat, 0);
1567 BUG_ON(wpid < 0);
1568 BUG_ON(!WIFEXITED(wait_stat));
1569
1570 }
1571
1572 runtime_ns_sum = 0;
1573 runtime_ns_min = -1LL;
1574
1575 for (t = 0; t < g->p.nr_tasks; t++) {
1576 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1577
1578 runtime_ns_sum += thread_runtime_ns;
1579 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1580 }
1581
1582 gettimeofday(&stop, NULL);
1583 timersub(&stop, &start, &diff);
1584
1585 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1586
1587 tprintf("\n ###\n");
1588 tprintf("\n");
1589
1590 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1591 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1592 runtime_sec_max /= NSEC_PER_SEC;
1593
1594 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1595
1596 bytes = g->bytes_done;
1597 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1598
1599 if (g->p.measure_convergence) {
1600 print_res(name, runtime_sec_max,
1601 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1602 }
1603
1604 print_res(name, runtime_sec_max,
1605 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
1606
1607 print_res(name, runtime_sec_min,
1608 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
1609
1610 print_res(name, runtime_avg,
1611 "secs,", "runtime-avg/thread", "secs average thread-runtime");
1612
1613 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1614 print_res(name, delta_runtime / runtime_sec_max * 100.0,
1615 "%,", "spread-runtime/thread", "% difference between max/avg runtime");
1616
1617 print_res(name, bytes / g->p.nr_tasks / 1e9,
1618 "GB,", "data/thread", "GB data processed, per thread");
1619
1620 print_res(name, bytes / 1e9,
1621 "GB,", "data-total", "GB data processed, total");
1622
1623 print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1624 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1625
1626 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1627 "GB/sec,", "thread-speed", "GB/sec/thread speed");
1628
1629 print_res(name, bytes / runtime_sec_max / 1e9,
1630 "GB/sec,", "total-speed", "GB/sec total speed");
1631
1632 if (g->p.show_details >= 2) {
1633 char tname[14 + 2 * 10 + 1];
1634 struct thread_data *td;
1635 for (p = 0; p < g->p.nr_proc; p++) {
1636 for (t = 0; t < g->p.nr_threads; t++) {
1637 memset(tname, 0, sizeof(tname));
1638 td = g->threads + p*g->p.nr_threads + t;
1639 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1640 print_res(tname, td->speed_gbs,
1641 "GB/sec", "thread-speed", "GB/sec/thread speed");
1642 print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1643 "secs", "thread-system-time", "system CPU time/thread");
1644 print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1645 "secs", "thread-user-time", "user CPU time/thread");
1646 }
1647 }
1648 }
1649
1650 free(pids);
1651
1652 deinit();
1653
1654 return 0;
1655}
1656
1657#define MAX_ARGS 50
1658
1659static int command_size(const char **argv)
1660{
1661 int size = 0;
1662
1663 while (*argv) {
1664 size++;
1665 argv++;
1666 }
1667
1668 BUG_ON(size >= MAX_ARGS);
1669
1670 return size;
1671}
1672
1673static void init_params(struct params *p, const char *name, int argc, const char **argv)
1674{
1675 int i;
1676
1677 printf("\n # Running %s \"perf bench numa", name);
1678
1679 for (i = 0; i < argc; i++)
1680 printf(" %s", argv[i]);
1681
1682 printf("\"\n");
1683
1684 memset(p, 0, sizeof(*p));
1685
1686 /* Initialize nonzero defaults: */
1687
1688 p->serialize_startup = 1;
1689 p->data_reads = true;
1690 p->data_writes = true;
1691 p->data_backwards = true;
1692 p->data_rand_walk = true;
1693 p->nr_loops = -1;
1694 p->init_random = true;
1695 p->mb_global_str = "1";
1696 p->nr_proc = 1;
1697 p->nr_threads = 1;
1698 p->nr_secs = 5;
1699 p->run_all = argc == 1;
1700}
1701
1702static int run_bench_numa(const char *name, const char **argv)
1703{
1704 int argc = command_size(argv);
1705
1706 init_params(&p0, name, argc, argv);
1707 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1708 if (argc)
1709 goto err;
1710
1711 if (__bench_numa(name))
1712 goto err;
1713
1714 return 0;
1715
1716err:
1717 return -1;
1718}
1719
1720#define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
1721#define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
1722
1723#define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
1724#define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
1725
1726#define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
1727#define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
1728
1729/*
1730 * The built-in test-suite executed by "perf bench numa -a".
1731 *
1732 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1733 */
1734static const char *tests[][MAX_ARGS] = {
1735 /* Basic single-stream NUMA bandwidth measurements: */
1736 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1737 "-C" , "0", "-M", "0", OPT_BW_RAM },
1738 { "RAM-bw-local-NOTHP,",
1739 "mem", "-p", "1", "-t", "1", "-P", "1024",
1740 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP },
1741 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1742 "-C" , "0", "-M", "1", OPT_BW_RAM },
1743
1744 /* 2-stream NUMA bandwidth measurements: */
1745 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1746 "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1747 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1748 "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1749
1750 /* Cross-stream NUMA bandwidth measurement: */
1751 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1752 "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1753
1754 /* Convergence latency measurements: */
1755 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV },
1756 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV },
1757 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV },
1758 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1759 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1760 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV },
1761 { " 4x4-convergence-NOTHP,",
1762 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1763 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV },
1764 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV },
1765 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV },
1766 { " 8x4-convergence-NOTHP,",
1767 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1768 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV },
1769 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV },
1770 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV },
1771 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV },
1772 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV },
1773
1774 /* Various NUMA process/thread layout bandwidth measurements: */
1775 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW },
1776 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW },
1777 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW },
1778 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW },
1779 { " 8x1-bw-process-NOTHP,",
1780 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP },
1781 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW },
1782
1783 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW },
1784 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW },
1785 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW },
1786 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW },
1787
1788 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW },
1789 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW },
1790 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW },
1791 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW },
1792 { " 4x8-bw-thread-NOTHP,",
1793 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP },
1794 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW },
1795 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW },
1796
1797 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW },
1798 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW },
1799
1800 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW },
1801 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP },
1802 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW },
1803 { "numa01-bw-thread-NOTHP,",
1804 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP },
1805};
1806
1807static int bench_all(void)
1808{
1809 int nr = ARRAY_SIZE(tests);
1810 int ret;
1811 int i;
1812
1813 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1814 BUG_ON(ret < 0);
1815
1816 for (i = 0; i < nr; i++) {
1817 run_bench_numa(tests[i][0], tests[i] + 1);
1818 }
1819
1820 printf("\n");
1821
1822 return 0;
1823}
1824
1825int bench_numa(int argc, const char **argv)
1826{
1827 init_params(&p0, "main,", argc, argv);
1828 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1829 if (argc)
1830 goto err;
1831
1832 if (p0.run_all)
1833 return bench_all();
1834
1835 if (__bench_numa(NULL))
1836 goto err;
1837
1838 return 0;
1839
1840err:
1841 usage_with_options(numa_usage, options);
1842 return -1;
1843}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * numa.c
4 *
5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
6 */
7
8#include <inttypes.h>
9/* For the CLR_() macros */
10#include <pthread.h>
11
12#include <subcmd/parse-options.h>
13#include "../util/cloexec.h"
14
15#include "bench.h"
16
17#include <errno.h>
18#include <sched.h>
19#include <stdio.h>
20#include <assert.h>
21#include <malloc.h>
22#include <signal.h>
23#include <stdlib.h>
24#include <string.h>
25#include <unistd.h>
26#include <sys/mman.h>
27#include <sys/time.h>
28#include <sys/resource.h>
29#include <sys/wait.h>
30#include <sys/prctl.h>
31#include <sys/types.h>
32#include <linux/kernel.h>
33#include <linux/time64.h>
34#include <linux/numa.h>
35#include <linux/zalloc.h>
36
37#include <numa.h>
38#include <numaif.h>
39
40#ifndef RUSAGE_THREAD
41# define RUSAGE_THREAD 1
42#endif
43
44/*
45 * Regular printout to the terminal, supressed if -q is specified:
46 */
47#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
48
49/*
50 * Debug printf:
51 */
52#undef dprintf
53#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
54
55struct thread_data {
56 int curr_cpu;
57 cpu_set_t bind_cpumask;
58 int bind_node;
59 u8 *process_data;
60 int process_nr;
61 int thread_nr;
62 int task_nr;
63 unsigned int loops_done;
64 u64 val;
65 u64 runtime_ns;
66 u64 system_time_ns;
67 u64 user_time_ns;
68 double speed_gbs;
69 pthread_mutex_t *process_lock;
70};
71
72/* Parameters set by options: */
73
74struct params {
75 /* Startup synchronization: */
76 bool serialize_startup;
77
78 /* Task hierarchy: */
79 int nr_proc;
80 int nr_threads;
81
82 /* Working set sizes: */
83 const char *mb_global_str;
84 const char *mb_proc_str;
85 const char *mb_proc_locked_str;
86 const char *mb_thread_str;
87
88 double mb_global;
89 double mb_proc;
90 double mb_proc_locked;
91 double mb_thread;
92
93 /* Access patterns to the working set: */
94 bool data_reads;
95 bool data_writes;
96 bool data_backwards;
97 bool data_zero_memset;
98 bool data_rand_walk;
99 u32 nr_loops;
100 u32 nr_secs;
101 u32 sleep_usecs;
102
103 /* Working set initialization: */
104 bool init_zero;
105 bool init_random;
106 bool init_cpu0;
107
108 /* Misc options: */
109 int show_details;
110 int run_all;
111 int thp;
112
113 long bytes_global;
114 long bytes_process;
115 long bytes_process_locked;
116 long bytes_thread;
117
118 int nr_tasks;
119 bool show_quiet;
120
121 bool show_convergence;
122 bool measure_convergence;
123
124 int perturb_secs;
125 int nr_cpus;
126 int nr_nodes;
127
128 /* Affinity options -C and -N: */
129 char *cpu_list_str;
130 char *node_list_str;
131};
132
133
134/* Global, read-writable area, accessible to all processes and threads: */
135
136struct global_info {
137 u8 *data;
138
139 pthread_mutex_t startup_mutex;
140 int nr_tasks_started;
141
142 pthread_mutex_t startup_done_mutex;
143
144 pthread_mutex_t start_work_mutex;
145 int nr_tasks_working;
146
147 pthread_mutex_t stop_work_mutex;
148 u64 bytes_done;
149
150 struct thread_data *threads;
151
152 /* Convergence latency measurement: */
153 bool all_converged;
154 bool stop_work;
155
156 int print_once;
157
158 struct params p;
159};
160
161static struct global_info *g = NULL;
162
163static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
164static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
165
166struct params p0;
167
168static const struct option options[] = {
169 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"),
170 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"),
171
172 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"),
173 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"),
174 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
175 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"),
176
177 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"),
178 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"),
179 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"),
180
181 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via reads (can be mixed with -W)"),
182 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"),
183 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"),
184 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
185 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"),
186
187
188 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"),
189 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"),
190 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"),
191 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"),
192
193 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"),
194 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"),
195 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
196 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
197 "convergence is reached when each process (all its threads) is running on a single NUMA node."),
198 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
199 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"),
200 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
201
202 /* Special option string parsing callbacks: */
203 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
204 "bind the first N tasks to these specific cpus (the rest is unbound)",
205 parse_cpus_opt),
206 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
207 "bind the first N tasks to these specific memory nodes (the rest is unbound)",
208 parse_nodes_opt),
209 OPT_END()
210};
211
212static const char * const bench_numa_usage[] = {
213 "perf bench numa <options>",
214 NULL
215};
216
217static const char * const numa_usage[] = {
218 "perf bench numa mem [<options>]",
219 NULL
220};
221
222/*
223 * To get number of numa nodes present.
224 */
225static int nr_numa_nodes(void)
226{
227 int i, nr_nodes = 0;
228
229 for (i = 0; i < g->p.nr_nodes; i++) {
230 if (numa_bitmask_isbitset(numa_nodes_ptr, i))
231 nr_nodes++;
232 }
233
234 return nr_nodes;
235}
236
237/*
238 * To check if given numa node is present.
239 */
240static int is_node_present(int node)
241{
242 return numa_bitmask_isbitset(numa_nodes_ptr, node);
243}
244
245/*
246 * To check given numa node has cpus.
247 */
248static bool node_has_cpus(int node)
249{
250 struct bitmask *cpumask = numa_allocate_cpumask();
251 bool ret = false; /* fall back to nocpus */
252 int cpu;
253
254 BUG_ON(!cpumask);
255 if (!numa_node_to_cpus(node, cpumask)) {
256 for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
257 if (numa_bitmask_isbitset(cpumask, cpu)) {
258 ret = true;
259 break;
260 }
261 }
262 }
263 numa_free_cpumask(cpumask);
264
265 return ret;
266}
267
268static cpu_set_t bind_to_cpu(int target_cpu)
269{
270 cpu_set_t orig_mask, mask;
271 int ret;
272
273 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
274 BUG_ON(ret);
275
276 CPU_ZERO(&mask);
277
278 if (target_cpu == -1) {
279 int cpu;
280
281 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
282 CPU_SET(cpu, &mask);
283 } else {
284 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
285 CPU_SET(target_cpu, &mask);
286 }
287
288 ret = sched_setaffinity(0, sizeof(mask), &mask);
289 BUG_ON(ret);
290
291 return orig_mask;
292}
293
294static cpu_set_t bind_to_node(int target_node)
295{
296 cpu_set_t orig_mask, mask;
297 int cpu;
298 int ret;
299
300 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
301 BUG_ON(ret);
302
303 CPU_ZERO(&mask);
304
305 if (target_node == NUMA_NO_NODE) {
306 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
307 CPU_SET(cpu, &mask);
308 } else {
309 struct bitmask *cpumask = numa_allocate_cpumask();
310
311 BUG_ON(!cpumask);
312 if (!numa_node_to_cpus(target_node, cpumask)) {
313 for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
314 if (numa_bitmask_isbitset(cpumask, cpu))
315 CPU_SET(cpu, &mask);
316 }
317 }
318 numa_free_cpumask(cpumask);
319 }
320
321 ret = sched_setaffinity(0, sizeof(mask), &mask);
322 BUG_ON(ret);
323
324 return orig_mask;
325}
326
327static void bind_to_cpumask(cpu_set_t mask)
328{
329 int ret;
330
331 ret = sched_setaffinity(0, sizeof(mask), &mask);
332 BUG_ON(ret);
333}
334
335static void mempol_restore(void)
336{
337 int ret;
338
339 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
340
341 BUG_ON(ret);
342}
343
344static void bind_to_memnode(int node)
345{
346 unsigned long nodemask;
347 int ret;
348
349 if (node == NUMA_NO_NODE)
350 return;
351
352 BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
353 nodemask = 1L << node;
354
355 ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
356 dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
357
358 BUG_ON(ret);
359}
360
361#define HPSIZE (2*1024*1024)
362
363#define set_taskname(fmt...) \
364do { \
365 char name[20]; \
366 \
367 snprintf(name, 20, fmt); \
368 prctl(PR_SET_NAME, name); \
369} while (0)
370
371static u8 *alloc_data(ssize_t bytes0, int map_flags,
372 int init_zero, int init_cpu0, int thp, int init_random)
373{
374 cpu_set_t orig_mask;
375 ssize_t bytes;
376 u8 *buf;
377 int ret;
378
379 if (!bytes0)
380 return NULL;
381
382 /* Allocate and initialize all memory on CPU#0: */
383 if (init_cpu0) {
384 int node = numa_node_of_cpu(0);
385
386 orig_mask = bind_to_node(node);
387 bind_to_memnode(node);
388 }
389
390 bytes = bytes0 + HPSIZE;
391
392 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
393 BUG_ON(buf == (void *)-1);
394
395 if (map_flags == MAP_PRIVATE) {
396 if (thp > 0) {
397 ret = madvise(buf, bytes, MADV_HUGEPAGE);
398 if (ret && !g->print_once) {
399 g->print_once = 1;
400 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
401 }
402 }
403 if (thp < 0) {
404 ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
405 if (ret && !g->print_once) {
406 g->print_once = 1;
407 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
408 }
409 }
410 }
411
412 if (init_zero) {
413 bzero(buf, bytes);
414 } else {
415 /* Initialize random contents, different in each word: */
416 if (init_random) {
417 u64 *wbuf = (void *)buf;
418 long off = rand();
419 long i;
420
421 for (i = 0; i < bytes/8; i++)
422 wbuf[i] = i + off;
423 }
424 }
425
426 /* Align to 2MB boundary: */
427 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
428
429 /* Restore affinity: */
430 if (init_cpu0) {
431 bind_to_cpumask(orig_mask);
432 mempol_restore();
433 }
434
435 return buf;
436}
437
438static void free_data(void *data, ssize_t bytes)
439{
440 int ret;
441
442 if (!data)
443 return;
444
445 ret = munmap(data, bytes);
446 BUG_ON(ret);
447}
448
449/*
450 * Create a shared memory buffer that can be shared between processes, zeroed:
451 */
452static void * zalloc_shared_data(ssize_t bytes)
453{
454 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random);
455}
456
457/*
458 * Create a shared memory buffer that can be shared between processes:
459 */
460static void * setup_shared_data(ssize_t bytes)
461{
462 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
463}
464
465/*
466 * Allocate process-local memory - this will either be shared between
467 * threads of this process, or only be accessed by this thread:
468 */
469static void * setup_private_data(ssize_t bytes)
470{
471 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
472}
473
474/*
475 * Return a process-shared (global) mutex:
476 */
477static void init_global_mutex(pthread_mutex_t *mutex)
478{
479 pthread_mutexattr_t attr;
480
481 pthread_mutexattr_init(&attr);
482 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
483 pthread_mutex_init(mutex, &attr);
484}
485
486static int parse_cpu_list(const char *arg)
487{
488 p0.cpu_list_str = strdup(arg);
489
490 dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
491
492 return 0;
493}
494
495static int parse_setup_cpu_list(void)
496{
497 struct thread_data *td;
498 char *str0, *str;
499 int t;
500
501 if (!g->p.cpu_list_str)
502 return 0;
503
504 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
505
506 str0 = str = strdup(g->p.cpu_list_str);
507 t = 0;
508
509 BUG_ON(!str);
510
511 tprintf("# binding tasks to CPUs:\n");
512 tprintf("# ");
513
514 while (true) {
515 int bind_cpu, bind_cpu_0, bind_cpu_1;
516 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
517 int bind_len;
518 int step;
519 int mul;
520
521 tok = strsep(&str, ",");
522 if (!tok)
523 break;
524
525 tok_end = strstr(tok, "-");
526
527 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
528 if (!tok_end) {
529 /* Single CPU specified: */
530 bind_cpu_0 = bind_cpu_1 = atol(tok);
531 } else {
532 /* CPU range specified (for example: "5-11"): */
533 bind_cpu_0 = atol(tok);
534 bind_cpu_1 = atol(tok_end + 1);
535 }
536
537 step = 1;
538 tok_step = strstr(tok, "#");
539 if (tok_step) {
540 step = atol(tok_step + 1);
541 BUG_ON(step <= 0 || step >= g->p.nr_cpus);
542 }
543
544 /*
545 * Mask length.
546 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
547 * where the _4 means the next 4 CPUs are allowed.
548 */
549 bind_len = 1;
550 tok_len = strstr(tok, "_");
551 if (tok_len) {
552 bind_len = atol(tok_len + 1);
553 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
554 }
555
556 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
557 mul = 1;
558 tok_mul = strstr(tok, "x");
559 if (tok_mul) {
560 mul = atol(tok_mul + 1);
561 BUG_ON(mul <= 0);
562 }
563
564 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
565
566 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
567 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
568 return -1;
569 }
570
571 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
572 BUG_ON(bind_cpu_0 > bind_cpu_1);
573
574 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
575 int i;
576
577 for (i = 0; i < mul; i++) {
578 int cpu;
579
580 if (t >= g->p.nr_tasks) {
581 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
582 goto out;
583 }
584 td = g->threads + t;
585
586 if (t)
587 tprintf(",");
588 if (bind_len > 1) {
589 tprintf("%2d/%d", bind_cpu, bind_len);
590 } else {
591 tprintf("%2d", bind_cpu);
592 }
593
594 CPU_ZERO(&td->bind_cpumask);
595 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
596 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
597 CPU_SET(cpu, &td->bind_cpumask);
598 }
599 t++;
600 }
601 }
602 }
603out:
604
605 tprintf("\n");
606
607 if (t < g->p.nr_tasks)
608 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
609
610 free(str0);
611 return 0;
612}
613
614static int parse_cpus_opt(const struct option *opt __maybe_unused,
615 const char *arg, int unset __maybe_unused)
616{
617 if (!arg)
618 return -1;
619
620 return parse_cpu_list(arg);
621}
622
623static int parse_node_list(const char *arg)
624{
625 p0.node_list_str = strdup(arg);
626
627 dprintf("got NODE list: {%s}\n", p0.node_list_str);
628
629 return 0;
630}
631
632static int parse_setup_node_list(void)
633{
634 struct thread_data *td;
635 char *str0, *str;
636 int t;
637
638 if (!g->p.node_list_str)
639 return 0;
640
641 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
642
643 str0 = str = strdup(g->p.node_list_str);
644 t = 0;
645
646 BUG_ON(!str);
647
648 tprintf("# binding tasks to NODEs:\n");
649 tprintf("# ");
650
651 while (true) {
652 int bind_node, bind_node_0, bind_node_1;
653 char *tok, *tok_end, *tok_step, *tok_mul;
654 int step;
655 int mul;
656
657 tok = strsep(&str, ",");
658 if (!tok)
659 break;
660
661 tok_end = strstr(tok, "-");
662
663 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
664 if (!tok_end) {
665 /* Single NODE specified: */
666 bind_node_0 = bind_node_1 = atol(tok);
667 } else {
668 /* NODE range specified (for example: "5-11"): */
669 bind_node_0 = atol(tok);
670 bind_node_1 = atol(tok_end + 1);
671 }
672
673 step = 1;
674 tok_step = strstr(tok, "#");
675 if (tok_step) {
676 step = atol(tok_step + 1);
677 BUG_ON(step <= 0 || step >= g->p.nr_nodes);
678 }
679
680 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
681 mul = 1;
682 tok_mul = strstr(tok, "x");
683 if (tok_mul) {
684 mul = atol(tok_mul + 1);
685 BUG_ON(mul <= 0);
686 }
687
688 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
689
690 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
691 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
692 return -1;
693 }
694
695 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
696 BUG_ON(bind_node_0 > bind_node_1);
697
698 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
699 int i;
700
701 for (i = 0; i < mul; i++) {
702 if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
703 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
704 goto out;
705 }
706 td = g->threads + t;
707
708 if (!t)
709 tprintf(" %2d", bind_node);
710 else
711 tprintf(",%2d", bind_node);
712
713 td->bind_node = bind_node;
714 t++;
715 }
716 }
717 }
718out:
719
720 tprintf("\n");
721
722 if (t < g->p.nr_tasks)
723 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
724
725 free(str0);
726 return 0;
727}
728
729static int parse_nodes_opt(const struct option *opt __maybe_unused,
730 const char *arg, int unset __maybe_unused)
731{
732 if (!arg)
733 return -1;
734
735 return parse_node_list(arg);
736}
737
738#define BIT(x) (1ul << x)
739
740static inline uint32_t lfsr_32(uint32_t lfsr)
741{
742 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
743 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
744}
745
746/*
747 * Make sure there's real data dependency to RAM (when read
748 * accesses are enabled), so the compiler, the CPU and the
749 * kernel (KSM, zero page, etc.) cannot optimize away RAM
750 * accesses:
751 */
752static inline u64 access_data(u64 *data, u64 val)
753{
754 if (g->p.data_reads)
755 val += *data;
756 if (g->p.data_writes)
757 *data = val + 1;
758 return val;
759}
760
761/*
762 * The worker process does two types of work, a forwards going
763 * loop and a backwards going loop.
764 *
765 * We do this so that on multiprocessor systems we do not create
766 * a 'train' of processing, with highly synchronized processes,
767 * skewing the whole benchmark.
768 */
769static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
770{
771 long words = bytes/sizeof(u64);
772 u64 *data = (void *)__data;
773 long chunk_0, chunk_1;
774 u64 *d0, *d, *d1;
775 long off;
776 long i;
777
778 BUG_ON(!data && words);
779 BUG_ON(data && !words);
780
781 if (!data)
782 return val;
783
784 /* Very simple memset() work variant: */
785 if (g->p.data_zero_memset && !g->p.data_rand_walk) {
786 bzero(data, bytes);
787 return val;
788 }
789
790 /* Spread out by PID/TID nr and by loop nr: */
791 chunk_0 = words/nr_max;
792 chunk_1 = words/g->p.nr_loops;
793 off = nr*chunk_0 + loop*chunk_1;
794
795 while (off >= words)
796 off -= words;
797
798 if (g->p.data_rand_walk) {
799 u32 lfsr = nr + loop + val;
800 int j;
801
802 for (i = 0; i < words/1024; i++) {
803 long start, end;
804
805 lfsr = lfsr_32(lfsr);
806
807 start = lfsr % words;
808 end = min(start + 1024, words-1);
809
810 if (g->p.data_zero_memset) {
811 bzero(data + start, (end-start) * sizeof(u64));
812 } else {
813 for (j = start; j < end; j++)
814 val = access_data(data + j, val);
815 }
816 }
817 } else if (!g->p.data_backwards || (nr + loop) & 1) {
818 /* Process data forwards: */
819
820 d0 = data + off;
821 d = data + off + 1;
822 d1 = data + words;
823
824 for (;;) {
825 if (unlikely(d >= d1))
826 d = data;
827 if (unlikely(d == d0))
828 break;
829
830 val = access_data(d, val);
831
832 d++;
833 }
834 } else {
835 /* Process data backwards: */
836
837 d0 = data + off;
838 d = data + off - 1;
839 d1 = data + words;
840
841 for (;;) {
842 if (unlikely(d < data))
843 d = data + words-1;
844 if (unlikely(d == d0))
845 break;
846
847 val = access_data(d, val);
848
849 d--;
850 }
851 }
852
853 return val;
854}
855
856static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
857{
858 unsigned int cpu;
859
860 cpu = sched_getcpu();
861
862 g->threads[task_nr].curr_cpu = cpu;
863 prctl(0, bytes_worked);
864}
865
866#define MAX_NR_NODES 64
867
868/*
869 * Count the number of nodes a process's threads
870 * are spread out on.
871 *
872 * A count of 1 means that the process is compressed
873 * to a single node. A count of g->p.nr_nodes means it's
874 * spread out on the whole system.
875 */
876static int count_process_nodes(int process_nr)
877{
878 char node_present[MAX_NR_NODES] = { 0, };
879 int nodes;
880 int n, t;
881
882 for (t = 0; t < g->p.nr_threads; t++) {
883 struct thread_data *td;
884 int task_nr;
885 int node;
886
887 task_nr = process_nr*g->p.nr_threads + t;
888 td = g->threads + task_nr;
889
890 node = numa_node_of_cpu(td->curr_cpu);
891 if (node < 0) /* curr_cpu was likely still -1 */
892 return 0;
893
894 node_present[node] = 1;
895 }
896
897 nodes = 0;
898
899 for (n = 0; n < MAX_NR_NODES; n++)
900 nodes += node_present[n];
901
902 return nodes;
903}
904
905/*
906 * Count the number of distinct process-threads a node contains.
907 *
908 * A count of 1 means that the node contains only a single
909 * process. If all nodes on the system contain at most one
910 * process then we are well-converged.
911 */
912static int count_node_processes(int node)
913{
914 int processes = 0;
915 int t, p;
916
917 for (p = 0; p < g->p.nr_proc; p++) {
918 for (t = 0; t < g->p.nr_threads; t++) {
919 struct thread_data *td;
920 int task_nr;
921 int n;
922
923 task_nr = p*g->p.nr_threads + t;
924 td = g->threads + task_nr;
925
926 n = numa_node_of_cpu(td->curr_cpu);
927 if (n == node) {
928 processes++;
929 break;
930 }
931 }
932 }
933
934 return processes;
935}
936
937static void calc_convergence_compression(int *strong)
938{
939 unsigned int nodes_min, nodes_max;
940 int p;
941
942 nodes_min = -1;
943 nodes_max = 0;
944
945 for (p = 0; p < g->p.nr_proc; p++) {
946 unsigned int nodes = count_process_nodes(p);
947
948 if (!nodes) {
949 *strong = 0;
950 return;
951 }
952
953 nodes_min = min(nodes, nodes_min);
954 nodes_max = max(nodes, nodes_max);
955 }
956
957 /* Strong convergence: all threads compress on a single node: */
958 if (nodes_min == 1 && nodes_max == 1) {
959 *strong = 1;
960 } else {
961 *strong = 0;
962 tprintf(" {%d-%d}", nodes_min, nodes_max);
963 }
964}
965
966static void calc_convergence(double runtime_ns_max, double *convergence)
967{
968 unsigned int loops_done_min, loops_done_max;
969 int process_groups;
970 int nodes[MAX_NR_NODES];
971 int distance;
972 int nr_min;
973 int nr_max;
974 int strong;
975 int sum;
976 int nr;
977 int node;
978 int cpu;
979 int t;
980
981 if (!g->p.show_convergence && !g->p.measure_convergence)
982 return;
983
984 for (node = 0; node < g->p.nr_nodes; node++)
985 nodes[node] = 0;
986
987 loops_done_min = -1;
988 loops_done_max = 0;
989
990 for (t = 0; t < g->p.nr_tasks; t++) {
991 struct thread_data *td = g->threads + t;
992 unsigned int loops_done;
993
994 cpu = td->curr_cpu;
995
996 /* Not all threads have written it yet: */
997 if (cpu < 0)
998 continue;
999
1000 node = numa_node_of_cpu(cpu);
1001
1002 nodes[node]++;
1003
1004 loops_done = td->loops_done;
1005 loops_done_min = min(loops_done, loops_done_min);
1006 loops_done_max = max(loops_done, loops_done_max);
1007 }
1008
1009 nr_max = 0;
1010 nr_min = g->p.nr_tasks;
1011 sum = 0;
1012
1013 for (node = 0; node < g->p.nr_nodes; node++) {
1014 if (!is_node_present(node))
1015 continue;
1016 nr = nodes[node];
1017 nr_min = min(nr, nr_min);
1018 nr_max = max(nr, nr_max);
1019 sum += nr;
1020 }
1021 BUG_ON(nr_min > nr_max);
1022
1023 BUG_ON(sum > g->p.nr_tasks);
1024
1025 if (0 && (sum < g->p.nr_tasks))
1026 return;
1027
1028 /*
1029 * Count the number of distinct process groups present
1030 * on nodes - when we are converged this will decrease
1031 * to g->p.nr_proc:
1032 */
1033 process_groups = 0;
1034
1035 for (node = 0; node < g->p.nr_nodes; node++) {
1036 int processes;
1037
1038 if (!is_node_present(node))
1039 continue;
1040 processes = count_node_processes(node);
1041 nr = nodes[node];
1042 tprintf(" %2d/%-2d", nr, processes);
1043
1044 process_groups += processes;
1045 }
1046
1047 distance = nr_max - nr_min;
1048
1049 tprintf(" [%2d/%-2d]", distance, process_groups);
1050
1051 tprintf(" l:%3d-%-3d (%3d)",
1052 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1053
1054 if (loops_done_min && loops_done_max) {
1055 double skew = 1.0 - (double)loops_done_min/loops_done_max;
1056
1057 tprintf(" [%4.1f%%]", skew * 100.0);
1058 }
1059
1060 calc_convergence_compression(&strong);
1061
1062 if (strong && process_groups == g->p.nr_proc) {
1063 if (!*convergence) {
1064 *convergence = runtime_ns_max;
1065 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1066 if (g->p.measure_convergence) {
1067 g->all_converged = true;
1068 g->stop_work = true;
1069 }
1070 }
1071 } else {
1072 if (*convergence) {
1073 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1074 *convergence = 0;
1075 }
1076 tprintf("\n");
1077 }
1078}
1079
1080static void show_summary(double runtime_ns_max, int l, double *convergence)
1081{
1082 tprintf("\r # %5.1f%% [%.1f mins]",
1083 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1084
1085 calc_convergence(runtime_ns_max, convergence);
1086
1087 if (g->p.show_details >= 0)
1088 fflush(stdout);
1089}
1090
1091static void *worker_thread(void *__tdata)
1092{
1093 struct thread_data *td = __tdata;
1094 struct timeval start0, start, stop, diff;
1095 int process_nr = td->process_nr;
1096 int thread_nr = td->thread_nr;
1097 unsigned long last_perturbance;
1098 int task_nr = td->task_nr;
1099 int details = g->p.show_details;
1100 int first_task, last_task;
1101 double convergence = 0;
1102 u64 val = td->val;
1103 double runtime_ns_max;
1104 u8 *global_data;
1105 u8 *process_data;
1106 u8 *thread_data;
1107 u64 bytes_done, secs;
1108 long work_done;
1109 u32 l;
1110 struct rusage rusage;
1111
1112 bind_to_cpumask(td->bind_cpumask);
1113 bind_to_memnode(td->bind_node);
1114
1115 set_taskname("thread %d/%d", process_nr, thread_nr);
1116
1117 global_data = g->data;
1118 process_data = td->process_data;
1119 thread_data = setup_private_data(g->p.bytes_thread);
1120
1121 bytes_done = 0;
1122
1123 last_task = 0;
1124 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1125 last_task = 1;
1126
1127 first_task = 0;
1128 if (process_nr == 0 && thread_nr == 0)
1129 first_task = 1;
1130
1131 if (details >= 2) {
1132 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1133 process_nr, thread_nr, global_data, process_data, thread_data);
1134 }
1135
1136 if (g->p.serialize_startup) {
1137 pthread_mutex_lock(&g->startup_mutex);
1138 g->nr_tasks_started++;
1139 pthread_mutex_unlock(&g->startup_mutex);
1140
1141 /* Here we will wait for the main process to start us all at once: */
1142 pthread_mutex_lock(&g->start_work_mutex);
1143 g->nr_tasks_working++;
1144
1145 /* Last one wake the main process: */
1146 if (g->nr_tasks_working == g->p.nr_tasks)
1147 pthread_mutex_unlock(&g->startup_done_mutex);
1148
1149 pthread_mutex_unlock(&g->start_work_mutex);
1150 }
1151
1152 gettimeofday(&start0, NULL);
1153
1154 start = stop = start0;
1155 last_perturbance = start.tv_sec;
1156
1157 for (l = 0; l < g->p.nr_loops; l++) {
1158 start = stop;
1159
1160 if (g->stop_work)
1161 break;
1162
1163 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val);
1164 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val);
1165 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val);
1166
1167 if (g->p.sleep_usecs) {
1168 pthread_mutex_lock(td->process_lock);
1169 usleep(g->p.sleep_usecs);
1170 pthread_mutex_unlock(td->process_lock);
1171 }
1172 /*
1173 * Amount of work to be done under a process-global lock:
1174 */
1175 if (g->p.bytes_process_locked) {
1176 pthread_mutex_lock(td->process_lock);
1177 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val);
1178 pthread_mutex_unlock(td->process_lock);
1179 }
1180
1181 work_done = g->p.bytes_global + g->p.bytes_process +
1182 g->p.bytes_process_locked + g->p.bytes_thread;
1183
1184 update_curr_cpu(task_nr, work_done);
1185 bytes_done += work_done;
1186
1187 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1188 continue;
1189
1190 td->loops_done = l;
1191
1192 gettimeofday(&stop, NULL);
1193
1194 /* Check whether our max runtime timed out: */
1195 if (g->p.nr_secs) {
1196 timersub(&stop, &start0, &diff);
1197 if ((u32)diff.tv_sec >= g->p.nr_secs) {
1198 g->stop_work = true;
1199 break;
1200 }
1201 }
1202
1203 /* Update the summary at most once per second: */
1204 if (start.tv_sec == stop.tv_sec)
1205 continue;
1206
1207 /*
1208 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1209 * by migrating to CPU#0:
1210 */
1211 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1212 cpu_set_t orig_mask;
1213 int target_cpu;
1214 int this_cpu;
1215
1216 last_perturbance = stop.tv_sec;
1217
1218 /*
1219 * Depending on where we are running, move into
1220 * the other half of the system, to create some
1221 * real disturbance:
1222 */
1223 this_cpu = g->threads[task_nr].curr_cpu;
1224 if (this_cpu < g->p.nr_cpus/2)
1225 target_cpu = g->p.nr_cpus-1;
1226 else
1227 target_cpu = 0;
1228
1229 orig_mask = bind_to_cpu(target_cpu);
1230
1231 /* Here we are running on the target CPU already */
1232 if (details >= 1)
1233 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1234
1235 bind_to_cpumask(orig_mask);
1236 }
1237
1238 if (details >= 3) {
1239 timersub(&stop, &start, &diff);
1240 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1241 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1242
1243 if (details >= 0) {
1244 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1245 process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1246 }
1247 fflush(stdout);
1248 }
1249 if (!last_task)
1250 continue;
1251
1252 timersub(&stop, &start0, &diff);
1253 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1254 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1255
1256 show_summary(runtime_ns_max, l, &convergence);
1257 }
1258
1259 gettimeofday(&stop, NULL);
1260 timersub(&stop, &start0, &diff);
1261 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1262 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1263 secs = td->runtime_ns / NSEC_PER_SEC;
1264 td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1265
1266 getrusage(RUSAGE_THREAD, &rusage);
1267 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1268 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1269 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1270 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1271
1272 free_data(thread_data, g->p.bytes_thread);
1273
1274 pthread_mutex_lock(&g->stop_work_mutex);
1275 g->bytes_done += bytes_done;
1276 pthread_mutex_unlock(&g->stop_work_mutex);
1277
1278 return NULL;
1279}
1280
1281/*
1282 * A worker process starts a couple of threads:
1283 */
1284static void worker_process(int process_nr)
1285{
1286 pthread_mutex_t process_lock;
1287 struct thread_data *td;
1288 pthread_t *pthreads;
1289 u8 *process_data;
1290 int task_nr;
1291 int ret;
1292 int t;
1293
1294 pthread_mutex_init(&process_lock, NULL);
1295 set_taskname("process %d", process_nr);
1296
1297 /*
1298 * Pick up the memory policy and the CPU binding of our first thread,
1299 * so that we initialize memory accordingly:
1300 */
1301 task_nr = process_nr*g->p.nr_threads;
1302 td = g->threads + task_nr;
1303
1304 bind_to_memnode(td->bind_node);
1305 bind_to_cpumask(td->bind_cpumask);
1306
1307 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1308 process_data = setup_private_data(g->p.bytes_process);
1309
1310 if (g->p.show_details >= 3) {
1311 printf(" # process %2d global mem: %p, process mem: %p\n",
1312 process_nr, g->data, process_data);
1313 }
1314
1315 for (t = 0; t < g->p.nr_threads; t++) {
1316 task_nr = process_nr*g->p.nr_threads + t;
1317 td = g->threads + task_nr;
1318
1319 td->process_data = process_data;
1320 td->process_nr = process_nr;
1321 td->thread_nr = t;
1322 td->task_nr = task_nr;
1323 td->val = rand();
1324 td->curr_cpu = -1;
1325 td->process_lock = &process_lock;
1326
1327 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1328 BUG_ON(ret);
1329 }
1330
1331 for (t = 0; t < g->p.nr_threads; t++) {
1332 ret = pthread_join(pthreads[t], NULL);
1333 BUG_ON(ret);
1334 }
1335
1336 free_data(process_data, g->p.bytes_process);
1337 free(pthreads);
1338}
1339
1340static void print_summary(void)
1341{
1342 if (g->p.show_details < 0)
1343 return;
1344
1345 printf("\n ###\n");
1346 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1347 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1348 printf(" # %5dx %5ldMB global shared mem operations\n",
1349 g->p.nr_loops, g->p.bytes_global/1024/1024);
1350 printf(" # %5dx %5ldMB process shared mem operations\n",
1351 g->p.nr_loops, g->p.bytes_process/1024/1024);
1352 printf(" # %5dx %5ldMB thread local mem operations\n",
1353 g->p.nr_loops, g->p.bytes_thread/1024/1024);
1354
1355 printf(" ###\n");
1356
1357 printf("\n ###\n"); fflush(stdout);
1358}
1359
1360static void init_thread_data(void)
1361{
1362 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1363 int t;
1364
1365 g->threads = zalloc_shared_data(size);
1366
1367 for (t = 0; t < g->p.nr_tasks; t++) {
1368 struct thread_data *td = g->threads + t;
1369 int cpu;
1370
1371 /* Allow all nodes by default: */
1372 td->bind_node = NUMA_NO_NODE;
1373
1374 /* Allow all CPUs by default: */
1375 CPU_ZERO(&td->bind_cpumask);
1376 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1377 CPU_SET(cpu, &td->bind_cpumask);
1378 }
1379}
1380
1381static void deinit_thread_data(void)
1382{
1383 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1384
1385 free_data(g->threads, size);
1386}
1387
1388static int init(void)
1389{
1390 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1391
1392 /* Copy over options: */
1393 g->p = p0;
1394
1395 g->p.nr_cpus = numa_num_configured_cpus();
1396
1397 g->p.nr_nodes = numa_max_node() + 1;
1398
1399 /* char array in count_process_nodes(): */
1400 BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1401
1402 if (g->p.show_quiet && !g->p.show_details)
1403 g->p.show_details = -1;
1404
1405 /* Some memory should be specified: */
1406 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1407 return -1;
1408
1409 if (g->p.mb_global_str) {
1410 g->p.mb_global = atof(g->p.mb_global_str);
1411 BUG_ON(g->p.mb_global < 0);
1412 }
1413
1414 if (g->p.mb_proc_str) {
1415 g->p.mb_proc = atof(g->p.mb_proc_str);
1416 BUG_ON(g->p.mb_proc < 0);
1417 }
1418
1419 if (g->p.mb_proc_locked_str) {
1420 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1421 BUG_ON(g->p.mb_proc_locked < 0);
1422 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1423 }
1424
1425 if (g->p.mb_thread_str) {
1426 g->p.mb_thread = atof(g->p.mb_thread_str);
1427 BUG_ON(g->p.mb_thread < 0);
1428 }
1429
1430 BUG_ON(g->p.nr_threads <= 0);
1431 BUG_ON(g->p.nr_proc <= 0);
1432
1433 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1434
1435 g->p.bytes_global = g->p.mb_global *1024L*1024L;
1436 g->p.bytes_process = g->p.mb_proc *1024L*1024L;
1437 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L;
1438 g->p.bytes_thread = g->p.mb_thread *1024L*1024L;
1439
1440 g->data = setup_shared_data(g->p.bytes_global);
1441
1442 /* Startup serialization: */
1443 init_global_mutex(&g->start_work_mutex);
1444 init_global_mutex(&g->startup_mutex);
1445 init_global_mutex(&g->startup_done_mutex);
1446 init_global_mutex(&g->stop_work_mutex);
1447
1448 init_thread_data();
1449
1450 tprintf("#\n");
1451 if (parse_setup_cpu_list() || parse_setup_node_list())
1452 return -1;
1453 tprintf("#\n");
1454
1455 print_summary();
1456
1457 return 0;
1458}
1459
1460static void deinit(void)
1461{
1462 free_data(g->data, g->p.bytes_global);
1463 g->data = NULL;
1464
1465 deinit_thread_data();
1466
1467 free_data(g, sizeof(*g));
1468 g = NULL;
1469}
1470
1471/*
1472 * Print a short or long result, depending on the verbosity setting:
1473 */
1474static void print_res(const char *name, double val,
1475 const char *txt_unit, const char *txt_short, const char *txt_long)
1476{
1477 if (!name)
1478 name = "main,";
1479
1480 if (!g->p.show_quiet)
1481 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1482 else
1483 printf(" %14.3f %s\n", val, txt_long);
1484}
1485
1486static int __bench_numa(const char *name)
1487{
1488 struct timeval start, stop, diff;
1489 u64 runtime_ns_min, runtime_ns_sum;
1490 pid_t *pids, pid, wpid;
1491 double delta_runtime;
1492 double runtime_avg;
1493 double runtime_sec_max;
1494 double runtime_sec_min;
1495 int wait_stat;
1496 double bytes;
1497 int i, t, p;
1498
1499 if (init())
1500 return -1;
1501
1502 pids = zalloc(g->p.nr_proc * sizeof(*pids));
1503 pid = -1;
1504
1505 /* All threads try to acquire it, this way we can wait for them to start up: */
1506 pthread_mutex_lock(&g->start_work_mutex);
1507
1508 if (g->p.serialize_startup) {
1509 tprintf(" #\n");
1510 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1511 }
1512
1513 gettimeofday(&start, NULL);
1514
1515 for (i = 0; i < g->p.nr_proc; i++) {
1516 pid = fork();
1517 dprintf(" # process %2d: PID %d\n", i, pid);
1518
1519 BUG_ON(pid < 0);
1520 if (!pid) {
1521 /* Child process: */
1522 worker_process(i);
1523
1524 exit(0);
1525 }
1526 pids[i] = pid;
1527
1528 }
1529 /* Wait for all the threads to start up: */
1530 while (g->nr_tasks_started != g->p.nr_tasks)
1531 usleep(USEC_PER_MSEC);
1532
1533 BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1534
1535 if (g->p.serialize_startup) {
1536 double startup_sec;
1537
1538 pthread_mutex_lock(&g->startup_done_mutex);
1539
1540 /* This will start all threads: */
1541 pthread_mutex_unlock(&g->start_work_mutex);
1542
1543 /* This mutex is locked - the last started thread will wake us: */
1544 pthread_mutex_lock(&g->startup_done_mutex);
1545
1546 gettimeofday(&stop, NULL);
1547
1548 timersub(&stop, &start, &diff);
1549
1550 startup_sec = diff.tv_sec * NSEC_PER_SEC;
1551 startup_sec += diff.tv_usec * NSEC_PER_USEC;
1552 startup_sec /= NSEC_PER_SEC;
1553
1554 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1555 tprintf(" #\n");
1556
1557 start = stop;
1558 pthread_mutex_unlock(&g->startup_done_mutex);
1559 } else {
1560 gettimeofday(&start, NULL);
1561 }
1562
1563 /* Parent process: */
1564
1565
1566 for (i = 0; i < g->p.nr_proc; i++) {
1567 wpid = waitpid(pids[i], &wait_stat, 0);
1568 BUG_ON(wpid < 0);
1569 BUG_ON(!WIFEXITED(wait_stat));
1570
1571 }
1572
1573 runtime_ns_sum = 0;
1574 runtime_ns_min = -1LL;
1575
1576 for (t = 0; t < g->p.nr_tasks; t++) {
1577 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1578
1579 runtime_ns_sum += thread_runtime_ns;
1580 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1581 }
1582
1583 gettimeofday(&stop, NULL);
1584 timersub(&stop, &start, &diff);
1585
1586 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1587
1588 tprintf("\n ###\n");
1589 tprintf("\n");
1590
1591 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1592 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1593 runtime_sec_max /= NSEC_PER_SEC;
1594
1595 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1596
1597 bytes = g->bytes_done;
1598 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1599
1600 if (g->p.measure_convergence) {
1601 print_res(name, runtime_sec_max,
1602 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1603 }
1604
1605 print_res(name, runtime_sec_max,
1606 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
1607
1608 print_res(name, runtime_sec_min,
1609 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
1610
1611 print_res(name, runtime_avg,
1612 "secs,", "runtime-avg/thread", "secs average thread-runtime");
1613
1614 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1615 print_res(name, delta_runtime / runtime_sec_max * 100.0,
1616 "%,", "spread-runtime/thread", "% difference between max/avg runtime");
1617
1618 print_res(name, bytes / g->p.nr_tasks / 1e9,
1619 "GB,", "data/thread", "GB data processed, per thread");
1620
1621 print_res(name, bytes / 1e9,
1622 "GB,", "data-total", "GB data processed, total");
1623
1624 print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1625 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1626
1627 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1628 "GB/sec,", "thread-speed", "GB/sec/thread speed");
1629
1630 print_res(name, bytes / runtime_sec_max / 1e9,
1631 "GB/sec,", "total-speed", "GB/sec total speed");
1632
1633 if (g->p.show_details >= 2) {
1634 char tname[14 + 2 * 10 + 1];
1635 struct thread_data *td;
1636 for (p = 0; p < g->p.nr_proc; p++) {
1637 for (t = 0; t < g->p.nr_threads; t++) {
1638 memset(tname, 0, sizeof(tname));
1639 td = g->threads + p*g->p.nr_threads + t;
1640 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1641 print_res(tname, td->speed_gbs,
1642 "GB/sec", "thread-speed", "GB/sec/thread speed");
1643 print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1644 "secs", "thread-system-time", "system CPU time/thread");
1645 print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1646 "secs", "thread-user-time", "user CPU time/thread");
1647 }
1648 }
1649 }
1650
1651 free(pids);
1652
1653 deinit();
1654
1655 return 0;
1656}
1657
1658#define MAX_ARGS 50
1659
1660static int command_size(const char **argv)
1661{
1662 int size = 0;
1663
1664 while (*argv) {
1665 size++;
1666 argv++;
1667 }
1668
1669 BUG_ON(size >= MAX_ARGS);
1670
1671 return size;
1672}
1673
1674static void init_params(struct params *p, const char *name, int argc, const char **argv)
1675{
1676 int i;
1677
1678 printf("\n # Running %s \"perf bench numa", name);
1679
1680 for (i = 0; i < argc; i++)
1681 printf(" %s", argv[i]);
1682
1683 printf("\"\n");
1684
1685 memset(p, 0, sizeof(*p));
1686
1687 /* Initialize nonzero defaults: */
1688
1689 p->serialize_startup = 1;
1690 p->data_reads = true;
1691 p->data_writes = true;
1692 p->data_backwards = true;
1693 p->data_rand_walk = true;
1694 p->nr_loops = -1;
1695 p->init_random = true;
1696 p->mb_global_str = "1";
1697 p->nr_proc = 1;
1698 p->nr_threads = 1;
1699 p->nr_secs = 5;
1700 p->run_all = argc == 1;
1701}
1702
1703static int run_bench_numa(const char *name, const char **argv)
1704{
1705 int argc = command_size(argv);
1706
1707 init_params(&p0, name, argc, argv);
1708 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1709 if (argc)
1710 goto err;
1711
1712 if (__bench_numa(name))
1713 goto err;
1714
1715 return 0;
1716
1717err:
1718 return -1;
1719}
1720
1721#define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
1722#define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
1723
1724#define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
1725#define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
1726
1727#define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
1728#define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
1729
1730/*
1731 * The built-in test-suite executed by "perf bench numa -a".
1732 *
1733 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1734 */
1735static const char *tests[][MAX_ARGS] = {
1736 /* Basic single-stream NUMA bandwidth measurements: */
1737 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1738 "-C" , "0", "-M", "0", OPT_BW_RAM },
1739 { "RAM-bw-local-NOTHP,",
1740 "mem", "-p", "1", "-t", "1", "-P", "1024",
1741 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP },
1742 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1743 "-C" , "0", "-M", "1", OPT_BW_RAM },
1744
1745 /* 2-stream NUMA bandwidth measurements: */
1746 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1747 "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1748 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1749 "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1750
1751 /* Cross-stream NUMA bandwidth measurement: */
1752 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1753 "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1754
1755 /* Convergence latency measurements: */
1756 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV },
1757 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV },
1758 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV },
1759 { " 2x3-convergence,", "mem", "-p", "2", "-t", "3", "-P", "1020", OPT_CONV },
1760 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1761 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV },
1762 { " 4x4-convergence-NOTHP,",
1763 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1764 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV },
1765 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV },
1766 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV },
1767 { " 8x4-convergence-NOTHP,",
1768 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1769 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV },
1770 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV },
1771 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV },
1772 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV },
1773 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV },
1774
1775 /* Various NUMA process/thread layout bandwidth measurements: */
1776 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW },
1777 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW },
1778 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW },
1779 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW },
1780 { " 8x1-bw-process-NOTHP,",
1781 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP },
1782 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW },
1783
1784 { " 1x4-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW },
1785 { " 1x8-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW },
1786 { "1x16-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW },
1787 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW },
1788
1789 { " 2x3-bw-process,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW },
1790 { " 4x4-bw-process,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW },
1791 { " 4x6-bw-process,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW },
1792 { " 4x8-bw-process,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW },
1793 { " 4x8-bw-process-NOTHP,",
1794 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP },
1795 { " 3x3-bw-process,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW },
1796 { " 5x5-bw-process,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW },
1797
1798 { "2x16-bw-process,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW },
1799 { "1x32-bw-process,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW },
1800
1801 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW },
1802 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP },
1803 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW },
1804 { "numa01-bw-thread-NOTHP,",
1805 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP },
1806};
1807
1808static int bench_all(void)
1809{
1810 int nr = ARRAY_SIZE(tests);
1811 int ret;
1812 int i;
1813
1814 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1815 BUG_ON(ret < 0);
1816
1817 for (i = 0; i < nr; i++) {
1818 run_bench_numa(tests[i][0], tests[i] + 1);
1819 }
1820
1821 printf("\n");
1822
1823 return 0;
1824}
1825
1826int bench_numa(int argc, const char **argv)
1827{
1828 init_params(&p0, "main,", argc, argv);
1829 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1830 if (argc)
1831 goto err;
1832
1833 if (p0.run_all)
1834 return bench_all();
1835
1836 if (__bench_numa(NULL))
1837 goto err;
1838
1839 return 0;
1840
1841err:
1842 usage_with_options(numa_usage, options);
1843 return -1;
1844}