Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * numa.c
   4 *
   5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
   6 */
   7
   8#include <inttypes.h>
   9/* For the CLR_() macros */
  10#include <pthread.h>
  11
  12#include <subcmd/parse-options.h>
  13#include "../util/cloexec.h"
  14
  15#include "bench.h"
  16
  17#include <errno.h>
  18#include <sched.h>
  19#include <stdio.h>
  20#include <assert.h>
  21#include <malloc.h>
  22#include <signal.h>
  23#include <stdlib.h>
  24#include <string.h>
  25#include <unistd.h>
 
  26#include <sys/mman.h>
  27#include <sys/time.h>
  28#include <sys/resource.h>
  29#include <sys/wait.h>
  30#include <sys/prctl.h>
  31#include <sys/types.h>
  32#include <linux/kernel.h>
  33#include <linux/time64.h>
  34#include <linux/numa.h>
  35#include <linux/zalloc.h>
  36
  37#include <numa.h>
  38#include <numaif.h>
  39
  40#ifndef RUSAGE_THREAD
  41# define RUSAGE_THREAD 1
  42#endif
  43
  44/*
  45 * Regular printout to the terminal, supressed if -q is specified:
  46 */
  47#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
  48
  49/*
  50 * Debug printf:
  51 */
  52#undef dprintf
  53#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
  54
  55struct thread_data {
  56	int			curr_cpu;
  57	cpu_set_t		bind_cpumask;
  58	int			bind_node;
  59	u8			*process_data;
  60	int			process_nr;
  61	int			thread_nr;
  62	int			task_nr;
  63	unsigned int		loops_done;
  64	u64			val;
  65	u64			runtime_ns;
  66	u64			system_time_ns;
  67	u64			user_time_ns;
  68	double			speed_gbs;
  69	pthread_mutex_t		*process_lock;
  70};
  71
  72/* Parameters set by options: */
  73
  74struct params {
  75	/* Startup synchronization: */
  76	bool			serialize_startup;
  77
  78	/* Task hierarchy: */
  79	int			nr_proc;
  80	int			nr_threads;
  81
  82	/* Working set sizes: */
  83	const char		*mb_global_str;
  84	const char		*mb_proc_str;
  85	const char		*mb_proc_locked_str;
  86	const char		*mb_thread_str;
  87
  88	double			mb_global;
  89	double			mb_proc;
  90	double			mb_proc_locked;
  91	double			mb_thread;
  92
  93	/* Access patterns to the working set: */
  94	bool			data_reads;
  95	bool			data_writes;
  96	bool			data_backwards;
  97	bool			data_zero_memset;
  98	bool			data_rand_walk;
  99	u32			nr_loops;
 100	u32			nr_secs;
 101	u32			sleep_usecs;
 102
 103	/* Working set initialization: */
 104	bool			init_zero;
 105	bool			init_random;
 106	bool			init_cpu0;
 107
 108	/* Misc options: */
 109	int			show_details;
 110	int			run_all;
 111	int			thp;
 112
 113	long			bytes_global;
 114	long			bytes_process;
 115	long			bytes_process_locked;
 116	long			bytes_thread;
 117
 118	int			nr_tasks;
 119	bool			show_quiet;
 120
 121	bool			show_convergence;
 122	bool			measure_convergence;
 123
 124	int			perturb_secs;
 125	int			nr_cpus;
 126	int			nr_nodes;
 127
 128	/* Affinity options -C and -N: */
 129	char			*cpu_list_str;
 130	char			*node_list_str;
 131};
 132
 133
 134/* Global, read-writable area, accessible to all processes and threads: */
 135
 136struct global_info {
 137	u8			*data;
 138
 139	pthread_mutex_t		startup_mutex;
 140	int			nr_tasks_started;
 141
 142	pthread_mutex_t		startup_done_mutex;
 143
 144	pthread_mutex_t		start_work_mutex;
 145	int			nr_tasks_working;
 146
 147	pthread_mutex_t		stop_work_mutex;
 148	u64			bytes_done;
 149
 150	struct thread_data	*threads;
 151
 152	/* Convergence latency measurement: */
 153	bool			all_converged;
 154	bool			stop_work;
 155
 156	int			print_once;
 157
 158	struct params		p;
 159};
 160
 161static struct global_info	*g = NULL;
 162
 163static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
 164static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
 165
 166struct params p0;
 167
 168static const struct option options[] = {
 169	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
 170	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
 171
 172	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
 173	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
 174	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
 175	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
 176
 177	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run (default: unlimited)"),
 178	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run (default: 5 secs)"),
 179	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
 180
 181	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via reads (can be mixed with -W)"),
 182	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
 183	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
 184	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
 185	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
 186
 187
 188	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
 189	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
 190	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
 191	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
 192
 193	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
 194	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
 195	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
 196	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
 197		    "convergence is reached when each process (all its threads) is running on a single NUMA node."),
 198	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
 199	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"quiet mode"),
 200	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
 201
 202	/* Special option string parsing callbacks: */
 203        OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
 204			"bind the first N tasks to these specific cpus (the rest is unbound)",
 205			parse_cpus_opt),
 206        OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
 207			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
 208			parse_nodes_opt),
 209	OPT_END()
 210};
 211
 212static const char * const bench_numa_usage[] = {
 213	"perf bench numa <options>",
 214	NULL
 215};
 216
 217static const char * const numa_usage[] = {
 218	"perf bench numa mem [<options>]",
 219	NULL
 220};
 221
 222/*
 223 * To get number of numa nodes present.
 224 */
 225static int nr_numa_nodes(void)
 226{
 227	int i, nr_nodes = 0;
 228
 229	for (i = 0; i < g->p.nr_nodes; i++) {
 230		if (numa_bitmask_isbitset(numa_nodes_ptr, i))
 231			nr_nodes++;
 232	}
 233
 234	return nr_nodes;
 235}
 236
 237/*
 238 * To check if given numa node is present.
 239 */
 240static int is_node_present(int node)
 241{
 242	return numa_bitmask_isbitset(numa_nodes_ptr, node);
 243}
 244
 245/*
 246 * To check given numa node has cpus.
 247 */
 248static bool node_has_cpus(int node)
 249{
 250	struct bitmask *cpu = numa_allocate_cpumask();
 251	unsigned int i;
 252
 253	if (cpu && !numa_node_to_cpus(node, cpu)) {
 254		for (i = 0; i < cpu->size; i++) {
 255			if (numa_bitmask_isbitset(cpu, i))
 256				return true;
 257		}
 258	}
 259
 260	return false; /* lets fall back to nocpus safely */
 261}
 262
 263static cpu_set_t bind_to_cpu(int target_cpu)
 264{
 265	cpu_set_t orig_mask, mask;
 266	int ret;
 267
 268	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 269	BUG_ON(ret);
 270
 271	CPU_ZERO(&mask);
 272
 273	if (target_cpu == -1) {
 274		int cpu;
 275
 276		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 277			CPU_SET(cpu, &mask);
 278	} else {
 279		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
 280		CPU_SET(target_cpu, &mask);
 281	}
 282
 283	ret = sched_setaffinity(0, sizeof(mask), &mask);
 284	BUG_ON(ret);
 285
 286	return orig_mask;
 287}
 288
 289static cpu_set_t bind_to_node(int target_node)
 290{
 291	int cpus_per_node = g->p.nr_cpus / nr_numa_nodes();
 292	cpu_set_t orig_mask, mask;
 293	int cpu;
 294	int ret;
 295
 296	BUG_ON(cpus_per_node * nr_numa_nodes() != g->p.nr_cpus);
 297	BUG_ON(!cpus_per_node);
 298
 299	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 300	BUG_ON(ret);
 301
 302	CPU_ZERO(&mask);
 303
 304	if (target_node == NUMA_NO_NODE) {
 305		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 306			CPU_SET(cpu, &mask);
 307	} else {
 308		int cpu_start = (target_node + 0) * cpus_per_node;
 309		int cpu_stop  = (target_node + 1) * cpus_per_node;
 310
 311		BUG_ON(cpu_stop > g->p.nr_cpus);
 312
 313		for (cpu = cpu_start; cpu < cpu_stop; cpu++)
 314			CPU_SET(cpu, &mask);
 315	}
 316
 317	ret = sched_setaffinity(0, sizeof(mask), &mask);
 318	BUG_ON(ret);
 319
 320	return orig_mask;
 321}
 322
 323static void bind_to_cpumask(cpu_set_t mask)
 324{
 325	int ret;
 326
 327	ret = sched_setaffinity(0, sizeof(mask), &mask);
 328	BUG_ON(ret);
 329}
 330
 331static void mempol_restore(void)
 332{
 333	int ret;
 334
 335	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
 336
 337	BUG_ON(ret);
 338}
 339
 340static void bind_to_memnode(int node)
 341{
 342	unsigned long nodemask;
 343	int ret;
 344
 345	if (node == NUMA_NO_NODE)
 346		return;
 347
 348	BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
 349	nodemask = 1L << node;
 350
 351	ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
 352	dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
 353
 354	BUG_ON(ret);
 355}
 356
 357#define HPSIZE (2*1024*1024)
 358
 359#define set_taskname(fmt...)				\
 360do {							\
 361	char name[20];					\
 362							\
 363	snprintf(name, 20, fmt);			\
 364	prctl(PR_SET_NAME, name);			\
 365} while (0)
 366
 367static u8 *alloc_data(ssize_t bytes0, int map_flags,
 368		      int init_zero, int init_cpu0, int thp, int init_random)
 369{
 370	cpu_set_t orig_mask;
 371	ssize_t bytes;
 372	u8 *buf;
 373	int ret;
 374
 375	if (!bytes0)
 376		return NULL;
 377
 378	/* Allocate and initialize all memory on CPU#0: */
 379	if (init_cpu0) {
 380		int node = numa_node_of_cpu(0);
 381
 382		orig_mask = bind_to_node(node);
 383		bind_to_memnode(node);
 384	}
 385
 386	bytes = bytes0 + HPSIZE;
 387
 388	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
 389	BUG_ON(buf == (void *)-1);
 390
 391	if (map_flags == MAP_PRIVATE) {
 392		if (thp > 0) {
 393			ret = madvise(buf, bytes, MADV_HUGEPAGE);
 394			if (ret && !g->print_once) {
 395				g->print_once = 1;
 396				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
 397			}
 398		}
 399		if (thp < 0) {
 400			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
 401			if (ret && !g->print_once) {
 402				g->print_once = 1;
 403				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
 404			}
 405		}
 406	}
 407
 408	if (init_zero) {
 409		bzero(buf, bytes);
 410	} else {
 411		/* Initialize random contents, different in each word: */
 412		if (init_random) {
 413			u64 *wbuf = (void *)buf;
 414			long off = rand();
 415			long i;
 416
 417			for (i = 0; i < bytes/8; i++)
 418				wbuf[i] = i + off;
 419		}
 420	}
 421
 422	/* Align to 2MB boundary: */
 423	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
 424
 425	/* Restore affinity: */
 426	if (init_cpu0) {
 427		bind_to_cpumask(orig_mask);
 428		mempol_restore();
 429	}
 430
 431	return buf;
 432}
 433
 434static void free_data(void *data, ssize_t bytes)
 435{
 436	int ret;
 437
 438	if (!data)
 439		return;
 440
 441	ret = munmap(data, bytes);
 442	BUG_ON(ret);
 443}
 444
 445/*
 446 * Create a shared memory buffer that can be shared between processes, zeroed:
 447 */
 448static void * zalloc_shared_data(ssize_t bytes)
 449{
 450	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 451}
 452
 453/*
 454 * Create a shared memory buffer that can be shared between processes:
 455 */
 456static void * setup_shared_data(ssize_t bytes)
 457{
 458	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 459}
 460
 461/*
 462 * Allocate process-local memory - this will either be shared between
 463 * threads of this process, or only be accessed by this thread:
 464 */
 465static void * setup_private_data(ssize_t bytes)
 466{
 467	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 468}
 469
 470/*
 471 * Return a process-shared (global) mutex:
 472 */
 473static void init_global_mutex(pthread_mutex_t *mutex)
 474{
 475	pthread_mutexattr_t attr;
 476
 477	pthread_mutexattr_init(&attr);
 478	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
 479	pthread_mutex_init(mutex, &attr);
 480}
 481
 482static int parse_cpu_list(const char *arg)
 483{
 484	p0.cpu_list_str = strdup(arg);
 485
 486	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
 487
 488	return 0;
 489}
 490
 491static int parse_setup_cpu_list(void)
 492{
 493	struct thread_data *td;
 494	char *str0, *str;
 495	int t;
 496
 497	if (!g->p.cpu_list_str)
 498		return 0;
 499
 500	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 501
 502	str0 = str = strdup(g->p.cpu_list_str);
 503	t = 0;
 504
 505	BUG_ON(!str);
 506
 507	tprintf("# binding tasks to CPUs:\n");
 508	tprintf("#  ");
 509
 510	while (true) {
 511		int bind_cpu, bind_cpu_0, bind_cpu_1;
 512		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
 513		int bind_len;
 514		int step;
 515		int mul;
 516
 517		tok = strsep(&str, ",");
 518		if (!tok)
 519			break;
 520
 521		tok_end = strstr(tok, "-");
 522
 523		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 524		if (!tok_end) {
 525			/* Single CPU specified: */
 526			bind_cpu_0 = bind_cpu_1 = atol(tok);
 527		} else {
 528			/* CPU range specified (for example: "5-11"): */
 529			bind_cpu_0 = atol(tok);
 530			bind_cpu_1 = atol(tok_end + 1);
 531		}
 532
 533		step = 1;
 534		tok_step = strstr(tok, "#");
 535		if (tok_step) {
 536			step = atol(tok_step + 1);
 537			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
 538		}
 539
 540		/*
 541		 * Mask length.
 542		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
 543		 * where the _4 means the next 4 CPUs are allowed.
 544		 */
 545		bind_len = 1;
 546		tok_len = strstr(tok, "_");
 547		if (tok_len) {
 548			bind_len = atol(tok_len + 1);
 549			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
 550		}
 551
 552		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 553		mul = 1;
 554		tok_mul = strstr(tok, "x");
 555		if (tok_mul) {
 556			mul = atol(tok_mul + 1);
 557			BUG_ON(mul <= 0);
 558		}
 559
 560		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
 561
 562		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
 563			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
 564			return -1;
 565		}
 566
 567		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
 568		BUG_ON(bind_cpu_0 > bind_cpu_1);
 569
 570		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
 571			int i;
 572
 573			for (i = 0; i < mul; i++) {
 574				int cpu;
 575
 576				if (t >= g->p.nr_tasks) {
 577					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
 578					goto out;
 579				}
 580				td = g->threads + t;
 581
 582				if (t)
 583					tprintf(",");
 584				if (bind_len > 1) {
 585					tprintf("%2d/%d", bind_cpu, bind_len);
 586				} else {
 587					tprintf("%2d", bind_cpu);
 588				}
 589
 590				CPU_ZERO(&td->bind_cpumask);
 591				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
 592					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
 593					CPU_SET(cpu, &td->bind_cpumask);
 594				}
 595				t++;
 596			}
 597		}
 598	}
 599out:
 600
 601	tprintf("\n");
 602
 603	if (t < g->p.nr_tasks)
 604		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 605
 606	free(str0);
 607	return 0;
 608}
 609
 610static int parse_cpus_opt(const struct option *opt __maybe_unused,
 611			  const char *arg, int unset __maybe_unused)
 612{
 613	if (!arg)
 614		return -1;
 615
 616	return parse_cpu_list(arg);
 617}
 618
 619static int parse_node_list(const char *arg)
 620{
 621	p0.node_list_str = strdup(arg);
 622
 623	dprintf("got NODE list: {%s}\n", p0.node_list_str);
 624
 625	return 0;
 626}
 627
 628static int parse_setup_node_list(void)
 629{
 630	struct thread_data *td;
 631	char *str0, *str;
 632	int t;
 633
 634	if (!g->p.node_list_str)
 635		return 0;
 636
 637	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 638
 639	str0 = str = strdup(g->p.node_list_str);
 640	t = 0;
 641
 642	BUG_ON(!str);
 643
 644	tprintf("# binding tasks to NODEs:\n");
 645	tprintf("# ");
 646
 647	while (true) {
 648		int bind_node, bind_node_0, bind_node_1;
 649		char *tok, *tok_end, *tok_step, *tok_mul;
 650		int step;
 651		int mul;
 652
 653		tok = strsep(&str, ",");
 654		if (!tok)
 655			break;
 656
 657		tok_end = strstr(tok, "-");
 658
 659		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 660		if (!tok_end) {
 661			/* Single NODE specified: */
 662			bind_node_0 = bind_node_1 = atol(tok);
 663		} else {
 664			/* NODE range specified (for example: "5-11"): */
 665			bind_node_0 = atol(tok);
 666			bind_node_1 = atol(tok_end + 1);
 667		}
 668
 669		step = 1;
 670		tok_step = strstr(tok, "#");
 671		if (tok_step) {
 672			step = atol(tok_step + 1);
 673			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
 674		}
 675
 676		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 677		mul = 1;
 678		tok_mul = strstr(tok, "x");
 679		if (tok_mul) {
 680			mul = atol(tok_mul + 1);
 681			BUG_ON(mul <= 0);
 682		}
 683
 684		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
 685
 686		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
 687			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
 688			return -1;
 689		}
 690
 691		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
 692		BUG_ON(bind_node_0 > bind_node_1);
 693
 694		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
 695			int i;
 696
 697			for (i = 0; i < mul; i++) {
 698				if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
 699					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
 700					goto out;
 701				}
 702				td = g->threads + t;
 703
 704				if (!t)
 705					tprintf(" %2d", bind_node);
 706				else
 707					tprintf(",%2d", bind_node);
 708
 709				td->bind_node = bind_node;
 710				t++;
 711			}
 712		}
 713	}
 714out:
 715
 716	tprintf("\n");
 717
 718	if (t < g->p.nr_tasks)
 719		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 720
 721	free(str0);
 722	return 0;
 723}
 724
 725static int parse_nodes_opt(const struct option *opt __maybe_unused,
 726			  const char *arg, int unset __maybe_unused)
 727{
 728	if (!arg)
 729		return -1;
 730
 731	return parse_node_list(arg);
 732
 733	return 0;
 734}
 735
 736#define BIT(x) (1ul << x)
 737
 738static inline uint32_t lfsr_32(uint32_t lfsr)
 739{
 740	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
 741	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
 742}
 743
 744/*
 745 * Make sure there's real data dependency to RAM (when read
 746 * accesses are enabled), so the compiler, the CPU and the
 747 * kernel (KSM, zero page, etc.) cannot optimize away RAM
 748 * accesses:
 749 */
 750static inline u64 access_data(u64 *data, u64 val)
 751{
 752	if (g->p.data_reads)
 753		val += *data;
 754	if (g->p.data_writes)
 755		*data = val + 1;
 756	return val;
 757}
 758
 759/*
 760 * The worker process does two types of work, a forwards going
 761 * loop and a backwards going loop.
 762 *
 763 * We do this so that on multiprocessor systems we do not create
 764 * a 'train' of processing, with highly synchronized processes,
 765 * skewing the whole benchmark.
 766 */
 767static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
 768{
 769	long words = bytes/sizeof(u64);
 770	u64 *data = (void *)__data;
 771	long chunk_0, chunk_1;
 772	u64 *d0, *d, *d1;
 773	long off;
 774	long i;
 775
 776	BUG_ON(!data && words);
 777	BUG_ON(data && !words);
 778
 779	if (!data)
 780		return val;
 781
 782	/* Very simple memset() work variant: */
 783	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
 784		bzero(data, bytes);
 785		return val;
 786	}
 787
 788	/* Spread out by PID/TID nr and by loop nr: */
 789	chunk_0 = words/nr_max;
 790	chunk_1 = words/g->p.nr_loops;
 791	off = nr*chunk_0 + loop*chunk_1;
 792
 793	while (off >= words)
 794		off -= words;
 795
 796	if (g->p.data_rand_walk) {
 797		u32 lfsr = nr + loop + val;
 798		int j;
 799
 800		for (i = 0; i < words/1024; i++) {
 801			long start, end;
 802
 803			lfsr = lfsr_32(lfsr);
 804
 805			start = lfsr % words;
 806			end = min(start + 1024, words-1);
 807
 808			if (g->p.data_zero_memset) {
 809				bzero(data + start, (end-start) * sizeof(u64));
 810			} else {
 811				for (j = start; j < end; j++)
 812					val = access_data(data + j, val);
 813			}
 814		}
 815	} else if (!g->p.data_backwards || (nr + loop) & 1) {
 816
 817		d0 = data + off;
 818		d  = data + off + 1;
 819		d1 = data + words;
 820
 821		/* Process data forwards: */
 822		for (;;) {
 823			if (unlikely(d >= d1))
 824				d = data;
 825			if (unlikely(d == d0))
 826				break;
 827
 828			val = access_data(d, val);
 829
 830			d++;
 831		}
 832	} else {
 833		/* Process data backwards: */
 834
 835		d0 = data + off;
 836		d  = data + off - 1;
 837		d1 = data + words;
 838
 839		/* Process data forwards: */
 840		for (;;) {
 841			if (unlikely(d < data))
 842				d = data + words-1;
 843			if (unlikely(d == d0))
 844				break;
 845
 846			val = access_data(d, val);
 847
 848			d--;
 849		}
 850	}
 851
 852	return val;
 853}
 854
 855static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
 856{
 857	unsigned int cpu;
 858
 859	cpu = sched_getcpu();
 860
 861	g->threads[task_nr].curr_cpu = cpu;
 862	prctl(0, bytes_worked);
 863}
 864
 865#define MAX_NR_NODES	64
 866
 867/*
 868 * Count the number of nodes a process's threads
 869 * are spread out on.
 870 *
 871 * A count of 1 means that the process is compressed
 872 * to a single node. A count of g->p.nr_nodes means it's
 873 * spread out on the whole system.
 874 */
 875static int count_process_nodes(int process_nr)
 876{
 877	char node_present[MAX_NR_NODES] = { 0, };
 878	int nodes;
 879	int n, t;
 880
 881	for (t = 0; t < g->p.nr_threads; t++) {
 882		struct thread_data *td;
 883		int task_nr;
 884		int node;
 885
 886		task_nr = process_nr*g->p.nr_threads + t;
 887		td = g->threads + task_nr;
 888
 889		node = numa_node_of_cpu(td->curr_cpu);
 890		if (node < 0) /* curr_cpu was likely still -1 */
 891			return 0;
 892
 893		node_present[node] = 1;
 894	}
 895
 896	nodes = 0;
 897
 898	for (n = 0; n < MAX_NR_NODES; n++)
 899		nodes += node_present[n];
 900
 901	return nodes;
 902}
 903
 904/*
 905 * Count the number of distinct process-threads a node contains.
 906 *
 907 * A count of 1 means that the node contains only a single
 908 * process. If all nodes on the system contain at most one
 909 * process then we are well-converged.
 910 */
 911static int count_node_processes(int node)
 912{
 913	int processes = 0;
 914	int t, p;
 915
 916	for (p = 0; p < g->p.nr_proc; p++) {
 917		for (t = 0; t < g->p.nr_threads; t++) {
 918			struct thread_data *td;
 919			int task_nr;
 920			int n;
 921
 922			task_nr = p*g->p.nr_threads + t;
 923			td = g->threads + task_nr;
 924
 925			n = numa_node_of_cpu(td->curr_cpu);
 926			if (n == node) {
 927				processes++;
 928				break;
 929			}
 930		}
 931	}
 932
 933	return processes;
 934}
 935
 936static void calc_convergence_compression(int *strong)
 937{
 938	unsigned int nodes_min, nodes_max;
 939	int p;
 940
 941	nodes_min = -1;
 942	nodes_max =  0;
 943
 944	for (p = 0; p < g->p.nr_proc; p++) {
 945		unsigned int nodes = count_process_nodes(p);
 946
 947		if (!nodes) {
 948			*strong = 0;
 949			return;
 950		}
 951
 952		nodes_min = min(nodes, nodes_min);
 953		nodes_max = max(nodes, nodes_max);
 954	}
 955
 956	/* Strong convergence: all threads compress on a single node: */
 957	if (nodes_min == 1 && nodes_max == 1) {
 958		*strong = 1;
 959	} else {
 960		*strong = 0;
 961		tprintf(" {%d-%d}", nodes_min, nodes_max);
 962	}
 963}
 964
 965static void calc_convergence(double runtime_ns_max, double *convergence)
 966{
 967	unsigned int loops_done_min, loops_done_max;
 968	int process_groups;
 969	int nodes[MAX_NR_NODES];
 970	int distance;
 971	int nr_min;
 972	int nr_max;
 973	int strong;
 974	int sum;
 975	int nr;
 976	int node;
 977	int cpu;
 978	int t;
 979
 980	if (!g->p.show_convergence && !g->p.measure_convergence)
 981		return;
 982
 983	for (node = 0; node < g->p.nr_nodes; node++)
 984		nodes[node] = 0;
 985
 986	loops_done_min = -1;
 987	loops_done_max = 0;
 988
 989	for (t = 0; t < g->p.nr_tasks; t++) {
 990		struct thread_data *td = g->threads + t;
 991		unsigned int loops_done;
 992
 993		cpu = td->curr_cpu;
 994
 995		/* Not all threads have written it yet: */
 996		if (cpu < 0)
 997			continue;
 998
 999		node = numa_node_of_cpu(cpu);
1000
1001		nodes[node]++;
1002
1003		loops_done = td->loops_done;
1004		loops_done_min = min(loops_done, loops_done_min);
1005		loops_done_max = max(loops_done, loops_done_max);
1006	}
1007
1008	nr_max = 0;
1009	nr_min = g->p.nr_tasks;
1010	sum = 0;
1011
1012	for (node = 0; node < g->p.nr_nodes; node++) {
1013		if (!is_node_present(node))
1014			continue;
1015		nr = nodes[node];
1016		nr_min = min(nr, nr_min);
1017		nr_max = max(nr, nr_max);
1018		sum += nr;
1019	}
1020	BUG_ON(nr_min > nr_max);
1021
1022	BUG_ON(sum > g->p.nr_tasks);
1023
1024	if (0 && (sum < g->p.nr_tasks))
1025		return;
1026
1027	/*
1028	 * Count the number of distinct process groups present
1029	 * on nodes - when we are converged this will decrease
1030	 * to g->p.nr_proc:
1031	 */
1032	process_groups = 0;
1033
1034	for (node = 0; node < g->p.nr_nodes; node++) {
1035		int processes;
1036
1037		if (!is_node_present(node))
1038			continue;
1039		processes = count_node_processes(node);
1040		nr = nodes[node];
1041		tprintf(" %2d/%-2d", nr, processes);
1042
1043		process_groups += processes;
1044	}
1045
1046	distance = nr_max - nr_min;
1047
1048	tprintf(" [%2d/%-2d]", distance, process_groups);
1049
1050	tprintf(" l:%3d-%-3d (%3d)",
1051		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1052
1053	if (loops_done_min && loops_done_max) {
1054		double skew = 1.0 - (double)loops_done_min/loops_done_max;
1055
1056		tprintf(" [%4.1f%%]", skew * 100.0);
1057	}
1058
1059	calc_convergence_compression(&strong);
1060
1061	if (strong && process_groups == g->p.nr_proc) {
1062		if (!*convergence) {
1063			*convergence = runtime_ns_max;
1064			tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1065			if (g->p.measure_convergence) {
1066				g->all_converged = true;
1067				g->stop_work = true;
1068			}
1069		}
1070	} else {
1071		if (*convergence) {
1072			tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1073			*convergence = 0;
1074		}
1075		tprintf("\n");
1076	}
1077}
1078
1079static void show_summary(double runtime_ns_max, int l, double *convergence)
1080{
1081	tprintf("\r #  %5.1f%%  [%.1f mins]",
1082		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1083
1084	calc_convergence(runtime_ns_max, convergence);
1085
1086	if (g->p.show_details >= 0)
1087		fflush(stdout);
1088}
1089
1090static void *worker_thread(void *__tdata)
1091{
1092	struct thread_data *td = __tdata;
1093	struct timeval start0, start, stop, diff;
1094	int process_nr = td->process_nr;
1095	int thread_nr = td->thread_nr;
1096	unsigned long last_perturbance;
1097	int task_nr = td->task_nr;
1098	int details = g->p.show_details;
1099	int first_task, last_task;
1100	double convergence = 0;
1101	u64 val = td->val;
1102	double runtime_ns_max;
1103	u8 *global_data;
1104	u8 *process_data;
1105	u8 *thread_data;
1106	u64 bytes_done, secs;
1107	long work_done;
1108	u32 l;
1109	struct rusage rusage;
1110
1111	bind_to_cpumask(td->bind_cpumask);
1112	bind_to_memnode(td->bind_node);
1113
1114	set_taskname("thread %d/%d", process_nr, thread_nr);
1115
1116	global_data = g->data;
1117	process_data = td->process_data;
1118	thread_data = setup_private_data(g->p.bytes_thread);
1119
1120	bytes_done = 0;
1121
1122	last_task = 0;
1123	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1124		last_task = 1;
1125
1126	first_task = 0;
1127	if (process_nr == 0 && thread_nr == 0)
1128		first_task = 1;
1129
1130	if (details >= 2) {
1131		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1132			process_nr, thread_nr, global_data, process_data, thread_data);
1133	}
1134
1135	if (g->p.serialize_startup) {
1136		pthread_mutex_lock(&g->startup_mutex);
1137		g->nr_tasks_started++;
1138		pthread_mutex_unlock(&g->startup_mutex);
1139
1140		/* Here we will wait for the main process to start us all at once: */
1141		pthread_mutex_lock(&g->start_work_mutex);
1142		g->nr_tasks_working++;
1143
1144		/* Last one wake the main process: */
1145		if (g->nr_tasks_working == g->p.nr_tasks)
1146			pthread_mutex_unlock(&g->startup_done_mutex);
1147
1148		pthread_mutex_unlock(&g->start_work_mutex);
1149	}
1150
1151	gettimeofday(&start0, NULL);
1152
1153	start = stop = start0;
1154	last_perturbance = start.tv_sec;
1155
1156	for (l = 0; l < g->p.nr_loops; l++) {
1157		start = stop;
1158
1159		if (g->stop_work)
1160			break;
1161
1162		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
1163		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
1164		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
1165
1166		if (g->p.sleep_usecs) {
1167			pthread_mutex_lock(td->process_lock);
1168			usleep(g->p.sleep_usecs);
1169			pthread_mutex_unlock(td->process_lock);
1170		}
1171		/*
1172		 * Amount of work to be done under a process-global lock:
1173		 */
1174		if (g->p.bytes_process_locked) {
1175			pthread_mutex_lock(td->process_lock);
1176			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
1177			pthread_mutex_unlock(td->process_lock);
1178		}
1179
1180		work_done = g->p.bytes_global + g->p.bytes_process +
1181			    g->p.bytes_process_locked + g->p.bytes_thread;
1182
1183		update_curr_cpu(task_nr, work_done);
1184		bytes_done += work_done;
1185
1186		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1187			continue;
1188
1189		td->loops_done = l;
1190
1191		gettimeofday(&stop, NULL);
1192
1193		/* Check whether our max runtime timed out: */
1194		if (g->p.nr_secs) {
1195			timersub(&stop, &start0, &diff);
1196			if ((u32)diff.tv_sec >= g->p.nr_secs) {
1197				g->stop_work = true;
1198				break;
1199			}
1200		}
1201
1202		/* Update the summary at most once per second: */
1203		if (start.tv_sec == stop.tv_sec)
1204			continue;
1205
1206		/*
1207		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1208		 * by migrating to CPU#0:
1209		 */
1210		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1211			cpu_set_t orig_mask;
1212			int target_cpu;
1213			int this_cpu;
1214
1215			last_perturbance = stop.tv_sec;
1216
1217			/*
1218			 * Depending on where we are running, move into
1219			 * the other half of the system, to create some
1220			 * real disturbance:
1221			 */
1222			this_cpu = g->threads[task_nr].curr_cpu;
1223			if (this_cpu < g->p.nr_cpus/2)
1224				target_cpu = g->p.nr_cpus-1;
1225			else
1226				target_cpu = 0;
1227
1228			orig_mask = bind_to_cpu(target_cpu);
1229
1230			/* Here we are running on the target CPU already */
1231			if (details >= 1)
1232				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1233
1234			bind_to_cpumask(orig_mask);
1235		}
1236
1237		if (details >= 3) {
1238			timersub(&stop, &start, &diff);
1239			runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1240			runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1241
1242			if (details >= 0) {
1243				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1244					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1245			}
1246			fflush(stdout);
1247		}
1248		if (!last_task)
1249			continue;
1250
1251		timersub(&stop, &start0, &diff);
1252		runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1253		runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1254
1255		show_summary(runtime_ns_max, l, &convergence);
1256	}
1257
1258	gettimeofday(&stop, NULL);
1259	timersub(&stop, &start0, &diff);
1260	td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1261	td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1262	secs = td->runtime_ns / NSEC_PER_SEC;
1263	td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1264
1265	getrusage(RUSAGE_THREAD, &rusage);
1266	td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1267	td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1268	td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1269	td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1270
1271	free_data(thread_data, g->p.bytes_thread);
1272
1273	pthread_mutex_lock(&g->stop_work_mutex);
1274	g->bytes_done += bytes_done;
1275	pthread_mutex_unlock(&g->stop_work_mutex);
1276
1277	return NULL;
1278}
1279
1280/*
1281 * A worker process starts a couple of threads:
1282 */
1283static void worker_process(int process_nr)
1284{
1285	pthread_mutex_t process_lock;
1286	struct thread_data *td;
1287	pthread_t *pthreads;
1288	u8 *process_data;
1289	int task_nr;
1290	int ret;
1291	int t;
1292
1293	pthread_mutex_init(&process_lock, NULL);
1294	set_taskname("process %d", process_nr);
1295
1296	/*
1297	 * Pick up the memory policy and the CPU binding of our first thread,
1298	 * so that we initialize memory accordingly:
1299	 */
1300	task_nr = process_nr*g->p.nr_threads;
1301	td = g->threads + task_nr;
1302
1303	bind_to_memnode(td->bind_node);
1304	bind_to_cpumask(td->bind_cpumask);
1305
1306	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1307	process_data = setup_private_data(g->p.bytes_process);
1308
1309	if (g->p.show_details >= 3) {
1310		printf(" # process %2d global mem: %p, process mem: %p\n",
1311			process_nr, g->data, process_data);
1312	}
1313
1314	for (t = 0; t < g->p.nr_threads; t++) {
1315		task_nr = process_nr*g->p.nr_threads + t;
1316		td = g->threads + task_nr;
1317
1318		td->process_data = process_data;
1319		td->process_nr   = process_nr;
1320		td->thread_nr    = t;
1321		td->task_nr	 = task_nr;
1322		td->val          = rand();
1323		td->curr_cpu	 = -1;
1324		td->process_lock = &process_lock;
1325
1326		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1327		BUG_ON(ret);
1328	}
1329
1330	for (t = 0; t < g->p.nr_threads; t++) {
1331                ret = pthread_join(pthreads[t], NULL);
1332		BUG_ON(ret);
1333	}
1334
1335	free_data(process_data, g->p.bytes_process);
1336	free(pthreads);
1337}
1338
1339static void print_summary(void)
1340{
1341	if (g->p.show_details < 0)
1342		return;
1343
1344	printf("\n ###\n");
1345	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1346		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1347	printf(" #      %5dx %5ldMB global  shared mem operations\n",
1348			g->p.nr_loops, g->p.bytes_global/1024/1024);
1349	printf(" #      %5dx %5ldMB process shared mem operations\n",
1350			g->p.nr_loops, g->p.bytes_process/1024/1024);
1351	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1352			g->p.nr_loops, g->p.bytes_thread/1024/1024);
1353
1354	printf(" ###\n");
1355
1356	printf("\n ###\n"); fflush(stdout);
1357}
1358
1359static void init_thread_data(void)
1360{
1361	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1362	int t;
1363
1364	g->threads = zalloc_shared_data(size);
1365
1366	for (t = 0; t < g->p.nr_tasks; t++) {
1367		struct thread_data *td = g->threads + t;
1368		int cpu;
1369
1370		/* Allow all nodes by default: */
1371		td->bind_node = NUMA_NO_NODE;
1372
1373		/* Allow all CPUs by default: */
1374		CPU_ZERO(&td->bind_cpumask);
1375		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1376			CPU_SET(cpu, &td->bind_cpumask);
1377	}
1378}
1379
1380static void deinit_thread_data(void)
1381{
1382	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1383
1384	free_data(g->threads, size);
1385}
1386
1387static int init(void)
1388{
1389	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1390
1391	/* Copy over options: */
1392	g->p = p0;
1393
1394	g->p.nr_cpus = numa_num_configured_cpus();
1395
1396	g->p.nr_nodes = numa_max_node() + 1;
1397
1398	/* char array in count_process_nodes(): */
1399	BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1400
1401	if (g->p.show_quiet && !g->p.show_details)
1402		g->p.show_details = -1;
1403
1404	/* Some memory should be specified: */
1405	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1406		return -1;
1407
1408	if (g->p.mb_global_str) {
1409		g->p.mb_global = atof(g->p.mb_global_str);
1410		BUG_ON(g->p.mb_global < 0);
1411	}
1412
1413	if (g->p.mb_proc_str) {
1414		g->p.mb_proc = atof(g->p.mb_proc_str);
1415		BUG_ON(g->p.mb_proc < 0);
1416	}
1417
1418	if (g->p.mb_proc_locked_str) {
1419		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1420		BUG_ON(g->p.mb_proc_locked < 0);
1421		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1422	}
1423
1424	if (g->p.mb_thread_str) {
1425		g->p.mb_thread = atof(g->p.mb_thread_str);
1426		BUG_ON(g->p.mb_thread < 0);
1427	}
1428
1429	BUG_ON(g->p.nr_threads <= 0);
1430	BUG_ON(g->p.nr_proc <= 0);
1431
1432	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1433
1434	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
1435	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
1436	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
1437	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
1438
1439	g->data = setup_shared_data(g->p.bytes_global);
1440
1441	/* Startup serialization: */
1442	init_global_mutex(&g->start_work_mutex);
1443	init_global_mutex(&g->startup_mutex);
1444	init_global_mutex(&g->startup_done_mutex);
1445	init_global_mutex(&g->stop_work_mutex);
1446
1447	init_thread_data();
1448
1449	tprintf("#\n");
1450	if (parse_setup_cpu_list() || parse_setup_node_list())
1451		return -1;
1452	tprintf("#\n");
1453
1454	print_summary();
1455
1456	return 0;
1457}
1458
1459static void deinit(void)
1460{
1461	free_data(g->data, g->p.bytes_global);
1462	g->data = NULL;
1463
1464	deinit_thread_data();
1465
1466	free_data(g, sizeof(*g));
1467	g = NULL;
1468}
1469
1470/*
1471 * Print a short or long result, depending on the verbosity setting:
1472 */
1473static void print_res(const char *name, double val,
1474		      const char *txt_unit, const char *txt_short, const char *txt_long)
1475{
1476	if (!name)
1477		name = "main,";
1478
1479	if (!g->p.show_quiet)
1480		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1481	else
1482		printf(" %14.3f %s\n", val, txt_long);
1483}
1484
1485static int __bench_numa(const char *name)
1486{
1487	struct timeval start, stop, diff;
1488	u64 runtime_ns_min, runtime_ns_sum;
1489	pid_t *pids, pid, wpid;
1490	double delta_runtime;
1491	double runtime_avg;
1492	double runtime_sec_max;
1493	double runtime_sec_min;
1494	int wait_stat;
1495	double bytes;
1496	int i, t, p;
1497
1498	if (init())
1499		return -1;
1500
1501	pids = zalloc(g->p.nr_proc * sizeof(*pids));
1502	pid = -1;
1503
1504	/* All threads try to acquire it, this way we can wait for them to start up: */
1505	pthread_mutex_lock(&g->start_work_mutex);
1506
1507	if (g->p.serialize_startup) {
1508		tprintf(" #\n");
1509		tprintf(" # Startup synchronization: ..."); fflush(stdout);
1510	}
1511
1512	gettimeofday(&start, NULL);
1513
1514	for (i = 0; i < g->p.nr_proc; i++) {
1515		pid = fork();
1516		dprintf(" # process %2d: PID %d\n", i, pid);
1517
1518		BUG_ON(pid < 0);
1519		if (!pid) {
1520			/* Child process: */
1521			worker_process(i);
1522
1523			exit(0);
1524		}
1525		pids[i] = pid;
1526
1527	}
1528	/* Wait for all the threads to start up: */
1529	while (g->nr_tasks_started != g->p.nr_tasks)
1530		usleep(USEC_PER_MSEC);
1531
1532	BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1533
1534	if (g->p.serialize_startup) {
1535		double startup_sec;
1536
1537		pthread_mutex_lock(&g->startup_done_mutex);
1538
1539		/* This will start all threads: */
1540		pthread_mutex_unlock(&g->start_work_mutex);
1541
1542		/* This mutex is locked - the last started thread will wake us: */
1543		pthread_mutex_lock(&g->startup_done_mutex);
1544
1545		gettimeofday(&stop, NULL);
1546
1547		timersub(&stop, &start, &diff);
1548
1549		startup_sec = diff.tv_sec * NSEC_PER_SEC;
1550		startup_sec += diff.tv_usec * NSEC_PER_USEC;
1551		startup_sec /= NSEC_PER_SEC;
1552
1553		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1554		tprintf(" #\n");
1555
1556		start = stop;
1557		pthread_mutex_unlock(&g->startup_done_mutex);
1558	} else {
1559		gettimeofday(&start, NULL);
1560	}
1561
1562	/* Parent process: */
1563
1564
1565	for (i = 0; i < g->p.nr_proc; i++) {
1566		wpid = waitpid(pids[i], &wait_stat, 0);
1567		BUG_ON(wpid < 0);
1568		BUG_ON(!WIFEXITED(wait_stat));
1569
1570	}
1571
1572	runtime_ns_sum = 0;
1573	runtime_ns_min = -1LL;
1574
1575	for (t = 0; t < g->p.nr_tasks; t++) {
1576		u64 thread_runtime_ns = g->threads[t].runtime_ns;
1577
1578		runtime_ns_sum += thread_runtime_ns;
1579		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1580	}
1581
1582	gettimeofday(&stop, NULL);
1583	timersub(&stop, &start, &diff);
1584
1585	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1586
1587	tprintf("\n ###\n");
1588	tprintf("\n");
1589
1590	runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1591	runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1592	runtime_sec_max /= NSEC_PER_SEC;
1593
1594	runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1595
1596	bytes = g->bytes_done;
1597	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1598
1599	if (g->p.measure_convergence) {
1600		print_res(name, runtime_sec_max,
1601			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1602	}
1603
1604	print_res(name, runtime_sec_max,
1605		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
1606
1607	print_res(name, runtime_sec_min,
1608		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
1609
1610	print_res(name, runtime_avg,
1611		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
1612
1613	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1614	print_res(name, delta_runtime / runtime_sec_max * 100.0,
1615		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
1616
1617	print_res(name, bytes / g->p.nr_tasks / 1e9,
1618		"GB,", "data/thread",		"GB data processed, per thread");
1619
1620	print_res(name, bytes / 1e9,
1621		"GB,", "data-total",		"GB data processed, total");
1622
1623	print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1624		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1625
1626	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1627		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
1628
1629	print_res(name, bytes / runtime_sec_max / 1e9,
1630		"GB/sec,", "total-speed",	"GB/sec total speed");
1631
1632	if (g->p.show_details >= 2) {
1633		char tname[14 + 2 * 10 + 1];
1634		struct thread_data *td;
1635		for (p = 0; p < g->p.nr_proc; p++) {
1636			for (t = 0; t < g->p.nr_threads; t++) {
1637				memset(tname, 0, sizeof(tname));
1638				td = g->threads + p*g->p.nr_threads + t;
1639				snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1640				print_res(tname, td->speed_gbs,
1641					"GB/sec",	"thread-speed", "GB/sec/thread speed");
1642				print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1643					"secs",	"thread-system-time", "system CPU time/thread");
1644				print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1645					"secs",	"thread-user-time", "user CPU time/thread");
1646			}
1647		}
1648	}
1649
1650	free(pids);
1651
1652	deinit();
1653
1654	return 0;
1655}
1656
1657#define MAX_ARGS 50
1658
1659static int command_size(const char **argv)
1660{
1661	int size = 0;
1662
1663	while (*argv) {
1664		size++;
1665		argv++;
1666	}
1667
1668	BUG_ON(size >= MAX_ARGS);
1669
1670	return size;
1671}
1672
1673static void init_params(struct params *p, const char *name, int argc, const char **argv)
1674{
1675	int i;
1676
1677	printf("\n # Running %s \"perf bench numa", name);
1678
1679	for (i = 0; i < argc; i++)
1680		printf(" %s", argv[i]);
1681
1682	printf("\"\n");
1683
1684	memset(p, 0, sizeof(*p));
1685
1686	/* Initialize nonzero defaults: */
1687
1688	p->serialize_startup		= 1;
1689	p->data_reads			= true;
1690	p->data_writes			= true;
1691	p->data_backwards		= true;
1692	p->data_rand_walk		= true;
1693	p->nr_loops			= -1;
1694	p->init_random			= true;
1695	p->mb_global_str		= "1";
1696	p->nr_proc			= 1;
1697	p->nr_threads			= 1;
1698	p->nr_secs			= 5;
1699	p->run_all			= argc == 1;
1700}
1701
1702static int run_bench_numa(const char *name, const char **argv)
1703{
1704	int argc = command_size(argv);
1705
1706	init_params(&p0, name, argc, argv);
1707	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1708	if (argc)
1709		goto err;
1710
1711	if (__bench_numa(name))
1712		goto err;
1713
1714	return 0;
1715
1716err:
1717	return -1;
1718}
1719
1720#define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1721#define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
1722
1723#define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
1724#define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
1725
1726#define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
1727#define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
1728
1729/*
1730 * The built-in test-suite executed by "perf bench numa -a".
1731 *
1732 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1733 */
1734static const char *tests[][MAX_ARGS] = {
1735   /* Basic single-stream NUMA bandwidth measurements: */
1736   { "RAM-bw-local,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1737			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1738   { "RAM-bw-local-NOTHP,",
1739			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1740			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1741   { "RAM-bw-remote,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1742			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1743
1744   /* 2-stream NUMA bandwidth measurements: */
1745   { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1746			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1747   { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1748		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1749
1750   /* Cross-stream NUMA bandwidth measurement: */
1751   { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1752		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1753
1754   /* Convergence latency measurements: */
1755   { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1756   { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1757   { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1758   { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1759   { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1760   { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1761   { " 4x4-convergence-NOTHP,",
1762			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1763   { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1764   { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1765   { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1766   { " 8x4-convergence-NOTHP,",
1767			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1768   { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1769   { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1770   { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1771   { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1772   { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1773
1774   /* Various NUMA process/thread layout bandwidth measurements: */
1775   { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1776   { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1777   { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1778   { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1779   { " 8x1-bw-process-NOTHP,",
1780			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1781   { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1782
1783   { " 4x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1784   { " 8x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1785   { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1786   { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1787
1788   { " 2x3-bw-thread,",	  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1789   { " 4x4-bw-thread,",	  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1790   { " 4x6-bw-thread,",	  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1791   { " 4x8-bw-thread,",	  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1792   { " 4x8-bw-thread-NOTHP,",
1793			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1794   { " 3x3-bw-thread,",	  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1795   { " 5x5-bw-thread,",	  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1796
1797   { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1798   { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1799
1800   { "numa02-bw,",	  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1801   { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1802   { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1803   { "numa01-bw-thread-NOTHP,",
1804			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1805};
1806
1807static int bench_all(void)
1808{
1809	int nr = ARRAY_SIZE(tests);
1810	int ret;
1811	int i;
1812
1813	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1814	BUG_ON(ret < 0);
1815
1816	for (i = 0; i < nr; i++) {
1817		run_bench_numa(tests[i][0], tests[i] + 1);
1818	}
1819
1820	printf("\n");
1821
1822	return 0;
1823}
1824
1825int bench_numa(int argc, const char **argv)
1826{
1827	init_params(&p0, "main,", argc, argv);
1828	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1829	if (argc)
1830		goto err;
1831
1832	if (p0.run_all)
1833		return bench_all();
1834
1835	if (__bench_numa(NULL))
1836		goto err;
1837
1838	return 0;
1839
1840err:
1841	usage_with_options(numa_usage, options);
1842	return -1;
1843}
v4.6
 
   1/*
   2 * numa.c
   3 *
   4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
   5 */
   6
   7#include "../perf.h"
   8#include "../builtin.h"
   9#include "../util/util.h"
 
  10#include <subcmd/parse-options.h>
  11#include "../util/cloexec.h"
  12
  13#include "bench.h"
  14
  15#include <errno.h>
  16#include <sched.h>
  17#include <stdio.h>
  18#include <assert.h>
  19#include <malloc.h>
  20#include <signal.h>
  21#include <stdlib.h>
  22#include <string.h>
  23#include <unistd.h>
  24#include <pthread.h>
  25#include <sys/mman.h>
  26#include <sys/time.h>
  27#include <sys/resource.h>
  28#include <sys/wait.h>
  29#include <sys/prctl.h>
  30#include <sys/types.h>
 
 
 
 
  31
  32#include <numa.h>
  33#include <numaif.h>
  34
 
 
 
 
  35/*
  36 * Regular printout to the terminal, supressed if -q is specified:
  37 */
  38#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
  39
  40/*
  41 * Debug printf:
  42 */
 
  43#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
  44
  45struct thread_data {
  46	int			curr_cpu;
  47	cpu_set_t		bind_cpumask;
  48	int			bind_node;
  49	u8			*process_data;
  50	int			process_nr;
  51	int			thread_nr;
  52	int			task_nr;
  53	unsigned int		loops_done;
  54	u64			val;
  55	u64			runtime_ns;
  56	u64			system_time_ns;
  57	u64			user_time_ns;
  58	double			speed_gbs;
  59	pthread_mutex_t		*process_lock;
  60};
  61
  62/* Parameters set by options: */
  63
  64struct params {
  65	/* Startup synchronization: */
  66	bool			serialize_startup;
  67
  68	/* Task hierarchy: */
  69	int			nr_proc;
  70	int			nr_threads;
  71
  72	/* Working set sizes: */
  73	const char		*mb_global_str;
  74	const char		*mb_proc_str;
  75	const char		*mb_proc_locked_str;
  76	const char		*mb_thread_str;
  77
  78	double			mb_global;
  79	double			mb_proc;
  80	double			mb_proc_locked;
  81	double			mb_thread;
  82
  83	/* Access patterns to the working set: */
  84	bool			data_reads;
  85	bool			data_writes;
  86	bool			data_backwards;
  87	bool			data_zero_memset;
  88	bool			data_rand_walk;
  89	u32			nr_loops;
  90	u32			nr_secs;
  91	u32			sleep_usecs;
  92
  93	/* Working set initialization: */
  94	bool			init_zero;
  95	bool			init_random;
  96	bool			init_cpu0;
  97
  98	/* Misc options: */
  99	int			show_details;
 100	int			run_all;
 101	int			thp;
 102
 103	long			bytes_global;
 104	long			bytes_process;
 105	long			bytes_process_locked;
 106	long			bytes_thread;
 107
 108	int			nr_tasks;
 109	bool			show_quiet;
 110
 111	bool			show_convergence;
 112	bool			measure_convergence;
 113
 114	int			perturb_secs;
 115	int			nr_cpus;
 116	int			nr_nodes;
 117
 118	/* Affinity options -C and -N: */
 119	char			*cpu_list_str;
 120	char			*node_list_str;
 121};
 122
 123
 124/* Global, read-writable area, accessible to all processes and threads: */
 125
 126struct global_info {
 127	u8			*data;
 128
 129	pthread_mutex_t		startup_mutex;
 130	int			nr_tasks_started;
 131
 132	pthread_mutex_t		startup_done_mutex;
 133
 134	pthread_mutex_t		start_work_mutex;
 135	int			nr_tasks_working;
 136
 137	pthread_mutex_t		stop_work_mutex;
 138	u64			bytes_done;
 139
 140	struct thread_data	*threads;
 141
 142	/* Convergence latency measurement: */
 143	bool			all_converged;
 144	bool			stop_work;
 145
 146	int			print_once;
 147
 148	struct params		p;
 149};
 150
 151static struct global_info	*g = NULL;
 152
 153static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
 154static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
 155
 156struct params p0;
 157
 158static const struct option options[] = {
 159	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
 160	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
 161
 162	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
 163	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
 164	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
 165	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
 166
 167	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run (default: unlimited)"),
 168	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run (default: 5 secs)"),
 169	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
 170
 171	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via writes (can be mixed with -W)"),
 172	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
 173	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
 174	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
 175	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
 176
 177
 178	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
 179	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
 180	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
 181	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
 182
 183	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
 184	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
 185	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
 186	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
 
 187	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
 188	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"quiet mode"),
 189	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
 190
 191	/* Special option string parsing callbacks: */
 192        OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
 193			"bind the first N tasks to these specific cpus (the rest is unbound)",
 194			parse_cpus_opt),
 195        OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
 196			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
 197			parse_nodes_opt),
 198	OPT_END()
 199};
 200
 201static const char * const bench_numa_usage[] = {
 202	"perf bench numa <options>",
 203	NULL
 204};
 205
 206static const char * const numa_usage[] = {
 207	"perf bench numa mem [<options>]",
 208	NULL
 209};
 210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 211static cpu_set_t bind_to_cpu(int target_cpu)
 212{
 213	cpu_set_t orig_mask, mask;
 214	int ret;
 215
 216	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 217	BUG_ON(ret);
 218
 219	CPU_ZERO(&mask);
 220
 221	if (target_cpu == -1) {
 222		int cpu;
 223
 224		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 225			CPU_SET(cpu, &mask);
 226	} else {
 227		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
 228		CPU_SET(target_cpu, &mask);
 229	}
 230
 231	ret = sched_setaffinity(0, sizeof(mask), &mask);
 232	BUG_ON(ret);
 233
 234	return orig_mask;
 235}
 236
 237static cpu_set_t bind_to_node(int target_node)
 238{
 239	int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
 240	cpu_set_t orig_mask, mask;
 241	int cpu;
 242	int ret;
 243
 244	BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
 245	BUG_ON(!cpus_per_node);
 246
 247	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 248	BUG_ON(ret);
 249
 250	CPU_ZERO(&mask);
 251
 252	if (target_node == -1) {
 253		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 254			CPU_SET(cpu, &mask);
 255	} else {
 256		int cpu_start = (target_node + 0) * cpus_per_node;
 257		int cpu_stop  = (target_node + 1) * cpus_per_node;
 258
 259		BUG_ON(cpu_stop > g->p.nr_cpus);
 260
 261		for (cpu = cpu_start; cpu < cpu_stop; cpu++)
 262			CPU_SET(cpu, &mask);
 263	}
 264
 265	ret = sched_setaffinity(0, sizeof(mask), &mask);
 266	BUG_ON(ret);
 267
 268	return orig_mask;
 269}
 270
 271static void bind_to_cpumask(cpu_set_t mask)
 272{
 273	int ret;
 274
 275	ret = sched_setaffinity(0, sizeof(mask), &mask);
 276	BUG_ON(ret);
 277}
 278
 279static void mempol_restore(void)
 280{
 281	int ret;
 282
 283	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
 284
 285	BUG_ON(ret);
 286}
 287
 288static void bind_to_memnode(int node)
 289{
 290	unsigned long nodemask;
 291	int ret;
 292
 293	if (node == -1)
 294		return;
 295
 296	BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
 297	nodemask = 1L << node;
 298
 299	ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
 300	dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
 301
 302	BUG_ON(ret);
 303}
 304
 305#define HPSIZE (2*1024*1024)
 306
 307#define set_taskname(fmt...)				\
 308do {							\
 309	char name[20];					\
 310							\
 311	snprintf(name, 20, fmt);			\
 312	prctl(PR_SET_NAME, name);			\
 313} while (0)
 314
 315static u8 *alloc_data(ssize_t bytes0, int map_flags,
 316		      int init_zero, int init_cpu0, int thp, int init_random)
 317{
 318	cpu_set_t orig_mask;
 319	ssize_t bytes;
 320	u8 *buf;
 321	int ret;
 322
 323	if (!bytes0)
 324		return NULL;
 325
 326	/* Allocate and initialize all memory on CPU#0: */
 327	if (init_cpu0) {
 328		orig_mask = bind_to_node(0);
 329		bind_to_memnode(0);
 
 
 330	}
 331
 332	bytes = bytes0 + HPSIZE;
 333
 334	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
 335	BUG_ON(buf == (void *)-1);
 336
 337	if (map_flags == MAP_PRIVATE) {
 338		if (thp > 0) {
 339			ret = madvise(buf, bytes, MADV_HUGEPAGE);
 340			if (ret && !g->print_once) {
 341				g->print_once = 1;
 342				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
 343			}
 344		}
 345		if (thp < 0) {
 346			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
 347			if (ret && !g->print_once) {
 348				g->print_once = 1;
 349				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
 350			}
 351		}
 352	}
 353
 354	if (init_zero) {
 355		bzero(buf, bytes);
 356	} else {
 357		/* Initialize random contents, different in each word: */
 358		if (init_random) {
 359			u64 *wbuf = (void *)buf;
 360			long off = rand();
 361			long i;
 362
 363			for (i = 0; i < bytes/8; i++)
 364				wbuf[i] = i + off;
 365		}
 366	}
 367
 368	/* Align to 2MB boundary: */
 369	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
 370
 371	/* Restore affinity: */
 372	if (init_cpu0) {
 373		bind_to_cpumask(orig_mask);
 374		mempol_restore();
 375	}
 376
 377	return buf;
 378}
 379
 380static void free_data(void *data, ssize_t bytes)
 381{
 382	int ret;
 383
 384	if (!data)
 385		return;
 386
 387	ret = munmap(data, bytes);
 388	BUG_ON(ret);
 389}
 390
 391/*
 392 * Create a shared memory buffer that can be shared between processes, zeroed:
 393 */
 394static void * zalloc_shared_data(ssize_t bytes)
 395{
 396	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 397}
 398
 399/*
 400 * Create a shared memory buffer that can be shared between processes:
 401 */
 402static void * setup_shared_data(ssize_t bytes)
 403{
 404	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 405}
 406
 407/*
 408 * Allocate process-local memory - this will either be shared between
 409 * threads of this process, or only be accessed by this thread:
 410 */
 411static void * setup_private_data(ssize_t bytes)
 412{
 413	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 414}
 415
 416/*
 417 * Return a process-shared (global) mutex:
 418 */
 419static void init_global_mutex(pthread_mutex_t *mutex)
 420{
 421	pthread_mutexattr_t attr;
 422
 423	pthread_mutexattr_init(&attr);
 424	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
 425	pthread_mutex_init(mutex, &attr);
 426}
 427
 428static int parse_cpu_list(const char *arg)
 429{
 430	p0.cpu_list_str = strdup(arg);
 431
 432	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
 433
 434	return 0;
 435}
 436
 437static int parse_setup_cpu_list(void)
 438{
 439	struct thread_data *td;
 440	char *str0, *str;
 441	int t;
 442
 443	if (!g->p.cpu_list_str)
 444		return 0;
 445
 446	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 447
 448	str0 = str = strdup(g->p.cpu_list_str);
 449	t = 0;
 450
 451	BUG_ON(!str);
 452
 453	tprintf("# binding tasks to CPUs:\n");
 454	tprintf("#  ");
 455
 456	while (true) {
 457		int bind_cpu, bind_cpu_0, bind_cpu_1;
 458		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
 459		int bind_len;
 460		int step;
 461		int mul;
 462
 463		tok = strsep(&str, ",");
 464		if (!tok)
 465			break;
 466
 467		tok_end = strstr(tok, "-");
 468
 469		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 470		if (!tok_end) {
 471			/* Single CPU specified: */
 472			bind_cpu_0 = bind_cpu_1 = atol(tok);
 473		} else {
 474			/* CPU range specified (for example: "5-11"): */
 475			bind_cpu_0 = atol(tok);
 476			bind_cpu_1 = atol(tok_end + 1);
 477		}
 478
 479		step = 1;
 480		tok_step = strstr(tok, "#");
 481		if (tok_step) {
 482			step = atol(tok_step + 1);
 483			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
 484		}
 485
 486		/*
 487		 * Mask length.
 488		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
 489		 * where the _4 means the next 4 CPUs are allowed.
 490		 */
 491		bind_len = 1;
 492		tok_len = strstr(tok, "_");
 493		if (tok_len) {
 494			bind_len = atol(tok_len + 1);
 495			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
 496		}
 497
 498		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 499		mul = 1;
 500		tok_mul = strstr(tok, "x");
 501		if (tok_mul) {
 502			mul = atol(tok_mul + 1);
 503			BUG_ON(mul <= 0);
 504		}
 505
 506		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
 507
 508		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
 509			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
 510			return -1;
 511		}
 512
 513		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
 514		BUG_ON(bind_cpu_0 > bind_cpu_1);
 515
 516		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
 517			int i;
 518
 519			for (i = 0; i < mul; i++) {
 520				int cpu;
 521
 522				if (t >= g->p.nr_tasks) {
 523					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
 524					goto out;
 525				}
 526				td = g->threads + t;
 527
 528				if (t)
 529					tprintf(",");
 530				if (bind_len > 1) {
 531					tprintf("%2d/%d", bind_cpu, bind_len);
 532				} else {
 533					tprintf("%2d", bind_cpu);
 534				}
 535
 536				CPU_ZERO(&td->bind_cpumask);
 537				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
 538					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
 539					CPU_SET(cpu, &td->bind_cpumask);
 540				}
 541				t++;
 542			}
 543		}
 544	}
 545out:
 546
 547	tprintf("\n");
 548
 549	if (t < g->p.nr_tasks)
 550		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 551
 552	free(str0);
 553	return 0;
 554}
 555
 556static int parse_cpus_opt(const struct option *opt __maybe_unused,
 557			  const char *arg, int unset __maybe_unused)
 558{
 559	if (!arg)
 560		return -1;
 561
 562	return parse_cpu_list(arg);
 563}
 564
 565static int parse_node_list(const char *arg)
 566{
 567	p0.node_list_str = strdup(arg);
 568
 569	dprintf("got NODE list: {%s}\n", p0.node_list_str);
 570
 571	return 0;
 572}
 573
 574static int parse_setup_node_list(void)
 575{
 576	struct thread_data *td;
 577	char *str0, *str;
 578	int t;
 579
 580	if (!g->p.node_list_str)
 581		return 0;
 582
 583	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 584
 585	str0 = str = strdup(g->p.node_list_str);
 586	t = 0;
 587
 588	BUG_ON(!str);
 589
 590	tprintf("# binding tasks to NODEs:\n");
 591	tprintf("# ");
 592
 593	while (true) {
 594		int bind_node, bind_node_0, bind_node_1;
 595		char *tok, *tok_end, *tok_step, *tok_mul;
 596		int step;
 597		int mul;
 598
 599		tok = strsep(&str, ",");
 600		if (!tok)
 601			break;
 602
 603		tok_end = strstr(tok, "-");
 604
 605		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 606		if (!tok_end) {
 607			/* Single NODE specified: */
 608			bind_node_0 = bind_node_1 = atol(tok);
 609		} else {
 610			/* NODE range specified (for example: "5-11"): */
 611			bind_node_0 = atol(tok);
 612			bind_node_1 = atol(tok_end + 1);
 613		}
 614
 615		step = 1;
 616		tok_step = strstr(tok, "#");
 617		if (tok_step) {
 618			step = atol(tok_step + 1);
 619			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
 620		}
 621
 622		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 623		mul = 1;
 624		tok_mul = strstr(tok, "x");
 625		if (tok_mul) {
 626			mul = atol(tok_mul + 1);
 627			BUG_ON(mul <= 0);
 628		}
 629
 630		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
 631
 632		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
 633			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
 634			return -1;
 635		}
 636
 637		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
 638		BUG_ON(bind_node_0 > bind_node_1);
 639
 640		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
 641			int i;
 642
 643			for (i = 0; i < mul; i++) {
 644				if (t >= g->p.nr_tasks) {
 645					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
 646					goto out;
 647				}
 648				td = g->threads + t;
 649
 650				if (!t)
 651					tprintf(" %2d", bind_node);
 652				else
 653					tprintf(",%2d", bind_node);
 654
 655				td->bind_node = bind_node;
 656				t++;
 657			}
 658		}
 659	}
 660out:
 661
 662	tprintf("\n");
 663
 664	if (t < g->p.nr_tasks)
 665		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 666
 667	free(str0);
 668	return 0;
 669}
 670
 671static int parse_nodes_opt(const struct option *opt __maybe_unused,
 672			  const char *arg, int unset __maybe_unused)
 673{
 674	if (!arg)
 675		return -1;
 676
 677	return parse_node_list(arg);
 678
 679	return 0;
 680}
 681
 682#define BIT(x) (1ul << x)
 683
 684static inline uint32_t lfsr_32(uint32_t lfsr)
 685{
 686	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
 687	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
 688}
 689
 690/*
 691 * Make sure there's real data dependency to RAM (when read
 692 * accesses are enabled), so the compiler, the CPU and the
 693 * kernel (KSM, zero page, etc.) cannot optimize away RAM
 694 * accesses:
 695 */
 696static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
 697{
 698	if (g->p.data_reads)
 699		val += *data;
 700	if (g->p.data_writes)
 701		*data = val + 1;
 702	return val;
 703}
 704
 705/*
 706 * The worker process does two types of work, a forwards going
 707 * loop and a backwards going loop.
 708 *
 709 * We do this so that on multiprocessor systems we do not create
 710 * a 'train' of processing, with highly synchronized processes,
 711 * skewing the whole benchmark.
 712 */
 713static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
 714{
 715	long words = bytes/sizeof(u64);
 716	u64 *data = (void *)__data;
 717	long chunk_0, chunk_1;
 718	u64 *d0, *d, *d1;
 719	long off;
 720	long i;
 721
 722	BUG_ON(!data && words);
 723	BUG_ON(data && !words);
 724
 725	if (!data)
 726		return val;
 727
 728	/* Very simple memset() work variant: */
 729	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
 730		bzero(data, bytes);
 731		return val;
 732	}
 733
 734	/* Spread out by PID/TID nr and by loop nr: */
 735	chunk_0 = words/nr_max;
 736	chunk_1 = words/g->p.nr_loops;
 737	off = nr*chunk_0 + loop*chunk_1;
 738
 739	while (off >= words)
 740		off -= words;
 741
 742	if (g->p.data_rand_walk) {
 743		u32 lfsr = nr + loop + val;
 744		int j;
 745
 746		for (i = 0; i < words/1024; i++) {
 747			long start, end;
 748
 749			lfsr = lfsr_32(lfsr);
 750
 751			start = lfsr % words;
 752			end = min(start + 1024, words-1);
 753
 754			if (g->p.data_zero_memset) {
 755				bzero(data + start, (end-start) * sizeof(u64));
 756			} else {
 757				for (j = start; j < end; j++)
 758					val = access_data(data + j, val);
 759			}
 760		}
 761	} else if (!g->p.data_backwards || (nr + loop) & 1) {
 762
 763		d0 = data + off;
 764		d  = data + off + 1;
 765		d1 = data + words;
 766
 767		/* Process data forwards: */
 768		for (;;) {
 769			if (unlikely(d >= d1))
 770				d = data;
 771			if (unlikely(d == d0))
 772				break;
 773
 774			val = access_data(d, val);
 775
 776			d++;
 777		}
 778	} else {
 779		/* Process data backwards: */
 780
 781		d0 = data + off;
 782		d  = data + off - 1;
 783		d1 = data + words;
 784
 785		/* Process data forwards: */
 786		for (;;) {
 787			if (unlikely(d < data))
 788				d = data + words-1;
 789			if (unlikely(d == d0))
 790				break;
 791
 792			val = access_data(d, val);
 793
 794			d--;
 795		}
 796	}
 797
 798	return val;
 799}
 800
 801static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
 802{
 803	unsigned int cpu;
 804
 805	cpu = sched_getcpu();
 806
 807	g->threads[task_nr].curr_cpu = cpu;
 808	prctl(0, bytes_worked);
 809}
 810
 811#define MAX_NR_NODES	64
 812
 813/*
 814 * Count the number of nodes a process's threads
 815 * are spread out on.
 816 *
 817 * A count of 1 means that the process is compressed
 818 * to a single node. A count of g->p.nr_nodes means it's
 819 * spread out on the whole system.
 820 */
 821static int count_process_nodes(int process_nr)
 822{
 823	char node_present[MAX_NR_NODES] = { 0, };
 824	int nodes;
 825	int n, t;
 826
 827	for (t = 0; t < g->p.nr_threads; t++) {
 828		struct thread_data *td;
 829		int task_nr;
 830		int node;
 831
 832		task_nr = process_nr*g->p.nr_threads + t;
 833		td = g->threads + task_nr;
 834
 835		node = numa_node_of_cpu(td->curr_cpu);
 836		if (node < 0) /* curr_cpu was likely still -1 */
 837			return 0;
 838
 839		node_present[node] = 1;
 840	}
 841
 842	nodes = 0;
 843
 844	for (n = 0; n < MAX_NR_NODES; n++)
 845		nodes += node_present[n];
 846
 847	return nodes;
 848}
 849
 850/*
 851 * Count the number of distinct process-threads a node contains.
 852 *
 853 * A count of 1 means that the node contains only a single
 854 * process. If all nodes on the system contain at most one
 855 * process then we are well-converged.
 856 */
 857static int count_node_processes(int node)
 858{
 859	int processes = 0;
 860	int t, p;
 861
 862	for (p = 0; p < g->p.nr_proc; p++) {
 863		for (t = 0; t < g->p.nr_threads; t++) {
 864			struct thread_data *td;
 865			int task_nr;
 866			int n;
 867
 868			task_nr = p*g->p.nr_threads + t;
 869			td = g->threads + task_nr;
 870
 871			n = numa_node_of_cpu(td->curr_cpu);
 872			if (n == node) {
 873				processes++;
 874				break;
 875			}
 876		}
 877	}
 878
 879	return processes;
 880}
 881
 882static void calc_convergence_compression(int *strong)
 883{
 884	unsigned int nodes_min, nodes_max;
 885	int p;
 886
 887	nodes_min = -1;
 888	nodes_max =  0;
 889
 890	for (p = 0; p < g->p.nr_proc; p++) {
 891		unsigned int nodes = count_process_nodes(p);
 892
 893		if (!nodes) {
 894			*strong = 0;
 895			return;
 896		}
 897
 898		nodes_min = min(nodes, nodes_min);
 899		nodes_max = max(nodes, nodes_max);
 900	}
 901
 902	/* Strong convergence: all threads compress on a single node: */
 903	if (nodes_min == 1 && nodes_max == 1) {
 904		*strong = 1;
 905	} else {
 906		*strong = 0;
 907		tprintf(" {%d-%d}", nodes_min, nodes_max);
 908	}
 909}
 910
 911static void calc_convergence(double runtime_ns_max, double *convergence)
 912{
 913	unsigned int loops_done_min, loops_done_max;
 914	int process_groups;
 915	int nodes[MAX_NR_NODES];
 916	int distance;
 917	int nr_min;
 918	int nr_max;
 919	int strong;
 920	int sum;
 921	int nr;
 922	int node;
 923	int cpu;
 924	int t;
 925
 926	if (!g->p.show_convergence && !g->p.measure_convergence)
 927		return;
 928
 929	for (node = 0; node < g->p.nr_nodes; node++)
 930		nodes[node] = 0;
 931
 932	loops_done_min = -1;
 933	loops_done_max = 0;
 934
 935	for (t = 0; t < g->p.nr_tasks; t++) {
 936		struct thread_data *td = g->threads + t;
 937		unsigned int loops_done;
 938
 939		cpu = td->curr_cpu;
 940
 941		/* Not all threads have written it yet: */
 942		if (cpu < 0)
 943			continue;
 944
 945		node = numa_node_of_cpu(cpu);
 946
 947		nodes[node]++;
 948
 949		loops_done = td->loops_done;
 950		loops_done_min = min(loops_done, loops_done_min);
 951		loops_done_max = max(loops_done, loops_done_max);
 952	}
 953
 954	nr_max = 0;
 955	nr_min = g->p.nr_tasks;
 956	sum = 0;
 957
 958	for (node = 0; node < g->p.nr_nodes; node++) {
 
 
 959		nr = nodes[node];
 960		nr_min = min(nr, nr_min);
 961		nr_max = max(nr, nr_max);
 962		sum += nr;
 963	}
 964	BUG_ON(nr_min > nr_max);
 965
 966	BUG_ON(sum > g->p.nr_tasks);
 967
 968	if (0 && (sum < g->p.nr_tasks))
 969		return;
 970
 971	/*
 972	 * Count the number of distinct process groups present
 973	 * on nodes - when we are converged this will decrease
 974	 * to g->p.nr_proc:
 975	 */
 976	process_groups = 0;
 977
 978	for (node = 0; node < g->p.nr_nodes; node++) {
 979		int processes = count_node_processes(node);
 980
 
 
 
 981		nr = nodes[node];
 982		tprintf(" %2d/%-2d", nr, processes);
 983
 984		process_groups += processes;
 985	}
 986
 987	distance = nr_max - nr_min;
 988
 989	tprintf(" [%2d/%-2d]", distance, process_groups);
 990
 991	tprintf(" l:%3d-%-3d (%3d)",
 992		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
 993
 994	if (loops_done_min && loops_done_max) {
 995		double skew = 1.0 - (double)loops_done_min/loops_done_max;
 996
 997		tprintf(" [%4.1f%%]", skew * 100.0);
 998	}
 999
1000	calc_convergence_compression(&strong);
1001
1002	if (strong && process_groups == g->p.nr_proc) {
1003		if (!*convergence) {
1004			*convergence = runtime_ns_max;
1005			tprintf(" (%6.1fs converged)\n", *convergence/1e9);
1006			if (g->p.measure_convergence) {
1007				g->all_converged = true;
1008				g->stop_work = true;
1009			}
1010		}
1011	} else {
1012		if (*convergence) {
1013			tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9);
1014			*convergence = 0;
1015		}
1016		tprintf("\n");
1017	}
1018}
1019
1020static void show_summary(double runtime_ns_max, int l, double *convergence)
1021{
1022	tprintf("\r #  %5.1f%%  [%.1f mins]",
1023		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0);
1024
1025	calc_convergence(runtime_ns_max, convergence);
1026
1027	if (g->p.show_details >= 0)
1028		fflush(stdout);
1029}
1030
1031static void *worker_thread(void *__tdata)
1032{
1033	struct thread_data *td = __tdata;
1034	struct timeval start0, start, stop, diff;
1035	int process_nr = td->process_nr;
1036	int thread_nr = td->thread_nr;
1037	unsigned long last_perturbance;
1038	int task_nr = td->task_nr;
1039	int details = g->p.show_details;
1040	int first_task, last_task;
1041	double convergence = 0;
1042	u64 val = td->val;
1043	double runtime_ns_max;
1044	u8 *global_data;
1045	u8 *process_data;
1046	u8 *thread_data;
1047	u64 bytes_done;
1048	long work_done;
1049	u32 l;
1050	struct rusage rusage;
1051
1052	bind_to_cpumask(td->bind_cpumask);
1053	bind_to_memnode(td->bind_node);
1054
1055	set_taskname("thread %d/%d", process_nr, thread_nr);
1056
1057	global_data = g->data;
1058	process_data = td->process_data;
1059	thread_data = setup_private_data(g->p.bytes_thread);
1060
1061	bytes_done = 0;
1062
1063	last_task = 0;
1064	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1065		last_task = 1;
1066
1067	first_task = 0;
1068	if (process_nr == 0 && thread_nr == 0)
1069		first_task = 1;
1070
1071	if (details >= 2) {
1072		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1073			process_nr, thread_nr, global_data, process_data, thread_data);
1074	}
1075
1076	if (g->p.serialize_startup) {
1077		pthread_mutex_lock(&g->startup_mutex);
1078		g->nr_tasks_started++;
1079		pthread_mutex_unlock(&g->startup_mutex);
1080
1081		/* Here we will wait for the main process to start us all at once: */
1082		pthread_mutex_lock(&g->start_work_mutex);
1083		g->nr_tasks_working++;
1084
1085		/* Last one wake the main process: */
1086		if (g->nr_tasks_working == g->p.nr_tasks)
1087			pthread_mutex_unlock(&g->startup_done_mutex);
1088
1089		pthread_mutex_unlock(&g->start_work_mutex);
1090	}
1091
1092	gettimeofday(&start0, NULL);
1093
1094	start = stop = start0;
1095	last_perturbance = start.tv_sec;
1096
1097	for (l = 0; l < g->p.nr_loops; l++) {
1098		start = stop;
1099
1100		if (g->stop_work)
1101			break;
1102
1103		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
1104		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
1105		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
1106
1107		if (g->p.sleep_usecs) {
1108			pthread_mutex_lock(td->process_lock);
1109			usleep(g->p.sleep_usecs);
1110			pthread_mutex_unlock(td->process_lock);
1111		}
1112		/*
1113		 * Amount of work to be done under a process-global lock:
1114		 */
1115		if (g->p.bytes_process_locked) {
1116			pthread_mutex_lock(td->process_lock);
1117			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
1118			pthread_mutex_unlock(td->process_lock);
1119		}
1120
1121		work_done = g->p.bytes_global + g->p.bytes_process +
1122			    g->p.bytes_process_locked + g->p.bytes_thread;
1123
1124		update_curr_cpu(task_nr, work_done);
1125		bytes_done += work_done;
1126
1127		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1128			continue;
1129
1130		td->loops_done = l;
1131
1132		gettimeofday(&stop, NULL);
1133
1134		/* Check whether our max runtime timed out: */
1135		if (g->p.nr_secs) {
1136			timersub(&stop, &start0, &diff);
1137			if ((u32)diff.tv_sec >= g->p.nr_secs) {
1138				g->stop_work = true;
1139				break;
1140			}
1141		}
1142
1143		/* Update the summary at most once per second: */
1144		if (start.tv_sec == stop.tv_sec)
1145			continue;
1146
1147		/*
1148		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1149		 * by migrating to CPU#0:
1150		 */
1151		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1152			cpu_set_t orig_mask;
1153			int target_cpu;
1154			int this_cpu;
1155
1156			last_perturbance = stop.tv_sec;
1157
1158			/*
1159			 * Depending on where we are running, move into
1160			 * the other half of the system, to create some
1161			 * real disturbance:
1162			 */
1163			this_cpu = g->threads[task_nr].curr_cpu;
1164			if (this_cpu < g->p.nr_cpus/2)
1165				target_cpu = g->p.nr_cpus-1;
1166			else
1167				target_cpu = 0;
1168
1169			orig_mask = bind_to_cpu(target_cpu);
1170
1171			/* Here we are running on the target CPU already */
1172			if (details >= 1)
1173				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1174
1175			bind_to_cpumask(orig_mask);
1176		}
1177
1178		if (details >= 3) {
1179			timersub(&stop, &start, &diff);
1180			runtime_ns_max = diff.tv_sec * 1000000000;
1181			runtime_ns_max += diff.tv_usec * 1000;
1182
1183			if (details >= 0) {
1184				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1185					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1186			}
1187			fflush(stdout);
1188		}
1189		if (!last_task)
1190			continue;
1191
1192		timersub(&stop, &start0, &diff);
1193		runtime_ns_max = diff.tv_sec * 1000000000ULL;
1194		runtime_ns_max += diff.tv_usec * 1000ULL;
1195
1196		show_summary(runtime_ns_max, l, &convergence);
1197	}
1198
1199	gettimeofday(&stop, NULL);
1200	timersub(&stop, &start0, &diff);
1201	td->runtime_ns = diff.tv_sec * 1000000000ULL;
1202	td->runtime_ns += diff.tv_usec * 1000ULL;
1203	td->speed_gbs = bytes_done / (td->runtime_ns / 1e9) / 1e9;
 
1204
1205	getrusage(RUSAGE_THREAD, &rusage);
1206	td->system_time_ns = rusage.ru_stime.tv_sec * 1000000000ULL;
1207	td->system_time_ns += rusage.ru_stime.tv_usec * 1000ULL;
1208	td->user_time_ns = rusage.ru_utime.tv_sec * 1000000000ULL;
1209	td->user_time_ns += rusage.ru_utime.tv_usec * 1000ULL;
1210
1211	free_data(thread_data, g->p.bytes_thread);
1212
1213	pthread_mutex_lock(&g->stop_work_mutex);
1214	g->bytes_done += bytes_done;
1215	pthread_mutex_unlock(&g->stop_work_mutex);
1216
1217	return NULL;
1218}
1219
1220/*
1221 * A worker process starts a couple of threads:
1222 */
1223static void worker_process(int process_nr)
1224{
1225	pthread_mutex_t process_lock;
1226	struct thread_data *td;
1227	pthread_t *pthreads;
1228	u8 *process_data;
1229	int task_nr;
1230	int ret;
1231	int t;
1232
1233	pthread_mutex_init(&process_lock, NULL);
1234	set_taskname("process %d", process_nr);
1235
1236	/*
1237	 * Pick up the memory policy and the CPU binding of our first thread,
1238	 * so that we initialize memory accordingly:
1239	 */
1240	task_nr = process_nr*g->p.nr_threads;
1241	td = g->threads + task_nr;
1242
1243	bind_to_memnode(td->bind_node);
1244	bind_to_cpumask(td->bind_cpumask);
1245
1246	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1247	process_data = setup_private_data(g->p.bytes_process);
1248
1249	if (g->p.show_details >= 3) {
1250		printf(" # process %2d global mem: %p, process mem: %p\n",
1251			process_nr, g->data, process_data);
1252	}
1253
1254	for (t = 0; t < g->p.nr_threads; t++) {
1255		task_nr = process_nr*g->p.nr_threads + t;
1256		td = g->threads + task_nr;
1257
1258		td->process_data = process_data;
1259		td->process_nr   = process_nr;
1260		td->thread_nr    = t;
1261		td->task_nr	 = task_nr;
1262		td->val          = rand();
1263		td->curr_cpu	 = -1;
1264		td->process_lock = &process_lock;
1265
1266		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1267		BUG_ON(ret);
1268	}
1269
1270	for (t = 0; t < g->p.nr_threads; t++) {
1271                ret = pthread_join(pthreads[t], NULL);
1272		BUG_ON(ret);
1273	}
1274
1275	free_data(process_data, g->p.bytes_process);
1276	free(pthreads);
1277}
1278
1279static void print_summary(void)
1280{
1281	if (g->p.show_details < 0)
1282		return;
1283
1284	printf("\n ###\n");
1285	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1286		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
1287	printf(" #      %5dx %5ldMB global  shared mem operations\n",
1288			g->p.nr_loops, g->p.bytes_global/1024/1024);
1289	printf(" #      %5dx %5ldMB process shared mem operations\n",
1290			g->p.nr_loops, g->p.bytes_process/1024/1024);
1291	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1292			g->p.nr_loops, g->p.bytes_thread/1024/1024);
1293
1294	printf(" ###\n");
1295
1296	printf("\n ###\n"); fflush(stdout);
1297}
1298
1299static void init_thread_data(void)
1300{
1301	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1302	int t;
1303
1304	g->threads = zalloc_shared_data(size);
1305
1306	for (t = 0; t < g->p.nr_tasks; t++) {
1307		struct thread_data *td = g->threads + t;
1308		int cpu;
1309
1310		/* Allow all nodes by default: */
1311		td->bind_node = -1;
1312
1313		/* Allow all CPUs by default: */
1314		CPU_ZERO(&td->bind_cpumask);
1315		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1316			CPU_SET(cpu, &td->bind_cpumask);
1317	}
1318}
1319
1320static void deinit_thread_data(void)
1321{
1322	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1323
1324	free_data(g->threads, size);
1325}
1326
1327static int init(void)
1328{
1329	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1330
1331	/* Copy over options: */
1332	g->p = p0;
1333
1334	g->p.nr_cpus = numa_num_configured_cpus();
1335
1336	g->p.nr_nodes = numa_max_node() + 1;
1337
1338	/* char array in count_process_nodes(): */
1339	BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1340
1341	if (g->p.show_quiet && !g->p.show_details)
1342		g->p.show_details = -1;
1343
1344	/* Some memory should be specified: */
1345	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1346		return -1;
1347
1348	if (g->p.mb_global_str) {
1349		g->p.mb_global = atof(g->p.mb_global_str);
1350		BUG_ON(g->p.mb_global < 0);
1351	}
1352
1353	if (g->p.mb_proc_str) {
1354		g->p.mb_proc = atof(g->p.mb_proc_str);
1355		BUG_ON(g->p.mb_proc < 0);
1356	}
1357
1358	if (g->p.mb_proc_locked_str) {
1359		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1360		BUG_ON(g->p.mb_proc_locked < 0);
1361		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1362	}
1363
1364	if (g->p.mb_thread_str) {
1365		g->p.mb_thread = atof(g->p.mb_thread_str);
1366		BUG_ON(g->p.mb_thread < 0);
1367	}
1368
1369	BUG_ON(g->p.nr_threads <= 0);
1370	BUG_ON(g->p.nr_proc <= 0);
1371
1372	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1373
1374	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
1375	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
1376	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
1377	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
1378
1379	g->data = setup_shared_data(g->p.bytes_global);
1380
1381	/* Startup serialization: */
1382	init_global_mutex(&g->start_work_mutex);
1383	init_global_mutex(&g->startup_mutex);
1384	init_global_mutex(&g->startup_done_mutex);
1385	init_global_mutex(&g->stop_work_mutex);
1386
1387	init_thread_data();
1388
1389	tprintf("#\n");
1390	if (parse_setup_cpu_list() || parse_setup_node_list())
1391		return -1;
1392	tprintf("#\n");
1393
1394	print_summary();
1395
1396	return 0;
1397}
1398
1399static void deinit(void)
1400{
1401	free_data(g->data, g->p.bytes_global);
1402	g->data = NULL;
1403
1404	deinit_thread_data();
1405
1406	free_data(g, sizeof(*g));
1407	g = NULL;
1408}
1409
1410/*
1411 * Print a short or long result, depending on the verbosity setting:
1412 */
1413static void print_res(const char *name, double val,
1414		      const char *txt_unit, const char *txt_short, const char *txt_long)
1415{
1416	if (!name)
1417		name = "main,";
1418
1419	if (!g->p.show_quiet)
1420		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1421	else
1422		printf(" %14.3f %s\n", val, txt_long);
1423}
1424
1425static int __bench_numa(const char *name)
1426{
1427	struct timeval start, stop, diff;
1428	u64 runtime_ns_min, runtime_ns_sum;
1429	pid_t *pids, pid, wpid;
1430	double delta_runtime;
1431	double runtime_avg;
1432	double runtime_sec_max;
1433	double runtime_sec_min;
1434	int wait_stat;
1435	double bytes;
1436	int i, t, p;
1437
1438	if (init())
1439		return -1;
1440
1441	pids = zalloc(g->p.nr_proc * sizeof(*pids));
1442	pid = -1;
1443
1444	/* All threads try to acquire it, this way we can wait for them to start up: */
1445	pthread_mutex_lock(&g->start_work_mutex);
1446
1447	if (g->p.serialize_startup) {
1448		tprintf(" #\n");
1449		tprintf(" # Startup synchronization: ..."); fflush(stdout);
1450	}
1451
1452	gettimeofday(&start, NULL);
1453
1454	for (i = 0; i < g->p.nr_proc; i++) {
1455		pid = fork();
1456		dprintf(" # process %2d: PID %d\n", i, pid);
1457
1458		BUG_ON(pid < 0);
1459		if (!pid) {
1460			/* Child process: */
1461			worker_process(i);
1462
1463			exit(0);
1464		}
1465		pids[i] = pid;
1466
1467	}
1468	/* Wait for all the threads to start up: */
1469	while (g->nr_tasks_started != g->p.nr_tasks)
1470		usleep(1000);
1471
1472	BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1473
1474	if (g->p.serialize_startup) {
1475		double startup_sec;
1476
1477		pthread_mutex_lock(&g->startup_done_mutex);
1478
1479		/* This will start all threads: */
1480		pthread_mutex_unlock(&g->start_work_mutex);
1481
1482		/* This mutex is locked - the last started thread will wake us: */
1483		pthread_mutex_lock(&g->startup_done_mutex);
1484
1485		gettimeofday(&stop, NULL);
1486
1487		timersub(&stop, &start, &diff);
1488
1489		startup_sec = diff.tv_sec * 1000000000.0;
1490		startup_sec += diff.tv_usec * 1000.0;
1491		startup_sec /= 1e9;
1492
1493		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1494		tprintf(" #\n");
1495
1496		start = stop;
1497		pthread_mutex_unlock(&g->startup_done_mutex);
1498	} else {
1499		gettimeofday(&start, NULL);
1500	}
1501
1502	/* Parent process: */
1503
1504
1505	for (i = 0; i < g->p.nr_proc; i++) {
1506		wpid = waitpid(pids[i], &wait_stat, 0);
1507		BUG_ON(wpid < 0);
1508		BUG_ON(!WIFEXITED(wait_stat));
1509
1510	}
1511
1512	runtime_ns_sum = 0;
1513	runtime_ns_min = -1LL;
1514
1515	for (t = 0; t < g->p.nr_tasks; t++) {
1516		u64 thread_runtime_ns = g->threads[t].runtime_ns;
1517
1518		runtime_ns_sum += thread_runtime_ns;
1519		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1520	}
1521
1522	gettimeofday(&stop, NULL);
1523	timersub(&stop, &start, &diff);
1524
1525	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1526
1527	tprintf("\n ###\n");
1528	tprintf("\n");
1529
1530	runtime_sec_max = diff.tv_sec * 1000000000.0;
1531	runtime_sec_max += diff.tv_usec * 1000.0;
1532	runtime_sec_max /= 1e9;
1533
1534	runtime_sec_min = runtime_ns_min/1e9;
1535
1536	bytes = g->bytes_done;
1537	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9;
1538
1539	if (g->p.measure_convergence) {
1540		print_res(name, runtime_sec_max,
1541			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1542	}
1543
1544	print_res(name, runtime_sec_max,
1545		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
1546
1547	print_res(name, runtime_sec_min,
1548		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
1549
1550	print_res(name, runtime_avg,
1551		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
1552
1553	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1554	print_res(name, delta_runtime / runtime_sec_max * 100.0,
1555		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
1556
1557	print_res(name, bytes / g->p.nr_tasks / 1e9,
1558		"GB,", "data/thread",		"GB data processed, per thread");
1559
1560	print_res(name, bytes / 1e9,
1561		"GB,", "data-total",		"GB data processed, total");
1562
1563	print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks),
1564		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1565
1566	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1567		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
1568
1569	print_res(name, bytes / runtime_sec_max / 1e9,
1570		"GB/sec,", "total-speed",	"GB/sec total speed");
1571
1572	if (g->p.show_details >= 2) {
1573		char tname[32];
1574		struct thread_data *td;
1575		for (p = 0; p < g->p.nr_proc; p++) {
1576			for (t = 0; t < g->p.nr_threads; t++) {
1577				memset(tname, 0, 32);
1578				td = g->threads + p*g->p.nr_threads + t;
1579				snprintf(tname, 32, "process%d:thread%d", p, t);
1580				print_res(tname, td->speed_gbs,
1581					"GB/sec",	"thread-speed", "GB/sec/thread speed");
1582				print_res(tname, td->system_time_ns / 1e9,
1583					"secs",	"thread-system-time", "system CPU time/thread");
1584				print_res(tname, td->user_time_ns / 1e9,
1585					"secs",	"thread-user-time", "user CPU time/thread");
1586			}
1587		}
1588	}
1589
1590	free(pids);
1591
1592	deinit();
1593
1594	return 0;
1595}
1596
1597#define MAX_ARGS 50
1598
1599static int command_size(const char **argv)
1600{
1601	int size = 0;
1602
1603	while (*argv) {
1604		size++;
1605		argv++;
1606	}
1607
1608	BUG_ON(size >= MAX_ARGS);
1609
1610	return size;
1611}
1612
1613static void init_params(struct params *p, const char *name, int argc, const char **argv)
1614{
1615	int i;
1616
1617	printf("\n # Running %s \"perf bench numa", name);
1618
1619	for (i = 0; i < argc; i++)
1620		printf(" %s", argv[i]);
1621
1622	printf("\"\n");
1623
1624	memset(p, 0, sizeof(*p));
1625
1626	/* Initialize nonzero defaults: */
1627
1628	p->serialize_startup		= 1;
1629	p->data_reads			= true;
1630	p->data_writes			= true;
1631	p->data_backwards		= true;
1632	p->data_rand_walk		= true;
1633	p->nr_loops			= -1;
1634	p->init_random			= true;
1635	p->mb_global_str		= "1";
1636	p->nr_proc			= 1;
1637	p->nr_threads			= 1;
1638	p->nr_secs			= 5;
1639	p->run_all			= argc == 1;
1640}
1641
1642static int run_bench_numa(const char *name, const char **argv)
1643{
1644	int argc = command_size(argv);
1645
1646	init_params(&p0, name, argc, argv);
1647	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1648	if (argc)
1649		goto err;
1650
1651	if (__bench_numa(name))
1652		goto err;
1653
1654	return 0;
1655
1656err:
1657	return -1;
1658}
1659
1660#define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1661#define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
1662
1663#define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
1664#define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
1665
1666#define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
1667#define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
1668
1669/*
1670 * The built-in test-suite executed by "perf bench numa -a".
1671 *
1672 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1673 */
1674static const char *tests[][MAX_ARGS] = {
1675   /* Basic single-stream NUMA bandwidth measurements: */
1676   { "RAM-bw-local,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1677			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1678   { "RAM-bw-local-NOTHP,",
1679			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1680			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1681   { "RAM-bw-remote,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1682			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1683
1684   /* 2-stream NUMA bandwidth measurements: */
1685   { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1686			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1687   { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1688		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1689
1690   /* Cross-stream NUMA bandwidth measurement: */
1691   { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1692		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1693
1694   /* Convergence latency measurements: */
1695   { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1696   { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1697   { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1698   { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1699   { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1700   { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1701   { " 4x4-convergence-NOTHP,",
1702			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1703   { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1704   { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1705   { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1706   { " 8x4-convergence-NOTHP,",
1707			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1708   { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1709   { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1710   { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1711   { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1712   { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1713
1714   /* Various NUMA process/thread layout bandwidth measurements: */
1715   { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1716   { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1717   { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1718   { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1719   { " 8x1-bw-process-NOTHP,",
1720			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1721   { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1722
1723   { " 4x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1724   { " 8x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1725   { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1726   { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1727
1728   { " 2x3-bw-thread,",	  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1729   { " 4x4-bw-thread,",	  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1730   { " 4x6-bw-thread,",	  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1731   { " 4x8-bw-thread,",	  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1732   { " 4x8-bw-thread-NOTHP,",
1733			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1734   { " 3x3-bw-thread,",	  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1735   { " 5x5-bw-thread,",	  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1736
1737   { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1738   { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1739
1740   { "numa02-bw,",	  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1741   { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1742   { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1743   { "numa01-bw-thread-NOTHP,",
1744			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1745};
1746
1747static int bench_all(void)
1748{
1749	int nr = ARRAY_SIZE(tests);
1750	int ret;
1751	int i;
1752
1753	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1754	BUG_ON(ret < 0);
1755
1756	for (i = 0; i < nr; i++) {
1757		run_bench_numa(tests[i][0], tests[i] + 1);
1758	}
1759
1760	printf("\n");
1761
1762	return 0;
1763}
1764
1765int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
1766{
1767	init_params(&p0, "main,", argc, argv);
1768	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1769	if (argc)
1770		goto err;
1771
1772	if (p0.run_all)
1773		return bench_all();
1774
1775	if (__bench_numa(NULL))
1776		goto err;
1777
1778	return 0;
1779
1780err:
1781	usage_with_options(numa_usage, options);
1782	return -1;
1783}