Linux Audio

Check our new training course

Loading...
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/namespace.c
   4 *
   5 * (C) Copyright Al Viro 2000, 2001
   6 *
   7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
   8 * Heavily rewritten.
   9 */
  10
  11#include <linux/syscalls.h>
  12#include <linux/export.h>
  13#include <linux/capability.h>
  14#include <linux/mnt_namespace.h>
  15#include <linux/user_namespace.h>
  16#include <linux/namei.h>
  17#include <linux/security.h>
  18#include <linux/cred.h>
  19#include <linux/idr.h>
  20#include <linux/init.h>		/* init_rootfs */
  21#include <linux/fs_struct.h>	/* get_fs_root et.al. */
  22#include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
  23#include <linux/file.h>
  24#include <linux/uaccess.h>
  25#include <linux/proc_ns.h>
  26#include <linux/magic.h>
  27#include <linux/memblock.h>
 
  28#include <linux/task_work.h>
  29#include <linux/sched/task.h>
  30#include <uapi/linux/mount.h>
  31#include <linux/fs_context.h>
  32#include <linux/shmem_fs.h>
 
  33
  34#include "pnode.h"
  35#include "internal.h"
  36
  37/* Maximum number of mounts in a mount namespace */
  38unsigned int sysctl_mount_max __read_mostly = 100000;
  39
  40static unsigned int m_hash_mask __read_mostly;
  41static unsigned int m_hash_shift __read_mostly;
  42static unsigned int mp_hash_mask __read_mostly;
  43static unsigned int mp_hash_shift __read_mostly;
  44
  45static __initdata unsigned long mhash_entries;
  46static int __init set_mhash_entries(char *str)
  47{
  48	if (!str)
  49		return 0;
  50	mhash_entries = simple_strtoul(str, &str, 0);
  51	return 1;
  52}
  53__setup("mhash_entries=", set_mhash_entries);
  54
  55static __initdata unsigned long mphash_entries;
  56static int __init set_mphash_entries(char *str)
  57{
  58	if (!str)
  59		return 0;
  60	mphash_entries = simple_strtoul(str, &str, 0);
  61	return 1;
  62}
  63__setup("mphash_entries=", set_mphash_entries);
  64
  65static u64 event;
  66static DEFINE_IDA(mnt_id_ida);
  67static DEFINE_IDA(mnt_group_ida);
  68
  69static struct hlist_head *mount_hashtable __read_mostly;
  70static struct hlist_head *mountpoint_hashtable __read_mostly;
  71static struct kmem_cache *mnt_cache __read_mostly;
  72static DECLARE_RWSEM(namespace_sem);
  73static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
  74static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
  75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76/* /sys/fs */
  77struct kobject *fs_kobj;
  78EXPORT_SYMBOL_GPL(fs_kobj);
  79
  80/*
  81 * vfsmount lock may be taken for read to prevent changes to the
  82 * vfsmount hash, ie. during mountpoint lookups or walking back
  83 * up the tree.
  84 *
  85 * It should be taken for write in all cases where the vfsmount
  86 * tree or hash is modified or when a vfsmount structure is modified.
  87 */
  88__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  89
 
 
 
 
 
 
 
 
 
 
  90static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  91{
  92	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  93	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  94	tmp = tmp + (tmp >> m_hash_shift);
  95	return &mount_hashtable[tmp & m_hash_mask];
  96}
  97
  98static inline struct hlist_head *mp_hash(struct dentry *dentry)
  99{
 100	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
 101	tmp = tmp + (tmp >> mp_hash_shift);
 102	return &mountpoint_hashtable[tmp & mp_hash_mask];
 103}
 104
 105static int mnt_alloc_id(struct mount *mnt)
 106{
 107	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
 108
 109	if (res < 0)
 110		return res;
 111	mnt->mnt_id = res;
 112	return 0;
 113}
 114
 115static void mnt_free_id(struct mount *mnt)
 116{
 117	ida_free(&mnt_id_ida, mnt->mnt_id);
 118}
 119
 120/*
 121 * Allocate a new peer group ID
 122 */
 123static int mnt_alloc_group_id(struct mount *mnt)
 124{
 125	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
 126
 127	if (res < 0)
 128		return res;
 129	mnt->mnt_group_id = res;
 130	return 0;
 131}
 132
 133/*
 134 * Release a peer group ID
 135 */
 136void mnt_release_group_id(struct mount *mnt)
 137{
 138	ida_free(&mnt_group_ida, mnt->mnt_group_id);
 139	mnt->mnt_group_id = 0;
 140}
 141
 142/*
 143 * vfsmount lock must be held for read
 144 */
 145static inline void mnt_add_count(struct mount *mnt, int n)
 146{
 147#ifdef CONFIG_SMP
 148	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
 149#else
 150	preempt_disable();
 151	mnt->mnt_count += n;
 152	preempt_enable();
 153#endif
 154}
 155
 156/*
 157 * vfsmount lock must be held for write
 158 */
 159unsigned int mnt_get_count(struct mount *mnt)
 160{
 161#ifdef CONFIG_SMP
 162	unsigned int count = 0;
 163	int cpu;
 164
 165	for_each_possible_cpu(cpu) {
 166		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
 167	}
 168
 169	return count;
 170#else
 171	return mnt->mnt_count;
 172#endif
 173}
 174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175static struct mount *alloc_vfsmnt(const char *name)
 176{
 177	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
 178	if (mnt) {
 179		int err;
 180
 181		err = mnt_alloc_id(mnt);
 182		if (err)
 183			goto out_free_cache;
 184
 185		if (name) {
 186			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
 
 187			if (!mnt->mnt_devname)
 188				goto out_free_id;
 189		}
 190
 191#ifdef CONFIG_SMP
 192		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
 193		if (!mnt->mnt_pcp)
 194			goto out_free_devname;
 195
 196		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
 197#else
 198		mnt->mnt_count = 1;
 199		mnt->mnt_writers = 0;
 200#endif
 201
 202		INIT_HLIST_NODE(&mnt->mnt_hash);
 203		INIT_LIST_HEAD(&mnt->mnt_child);
 204		INIT_LIST_HEAD(&mnt->mnt_mounts);
 205		INIT_LIST_HEAD(&mnt->mnt_list);
 206		INIT_LIST_HEAD(&mnt->mnt_expire);
 207		INIT_LIST_HEAD(&mnt->mnt_share);
 208		INIT_LIST_HEAD(&mnt->mnt_slave_list);
 209		INIT_LIST_HEAD(&mnt->mnt_slave);
 210		INIT_HLIST_NODE(&mnt->mnt_mp_list);
 211		INIT_LIST_HEAD(&mnt->mnt_umounting);
 212		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
 
 213	}
 214	return mnt;
 215
 216#ifdef CONFIG_SMP
 217out_free_devname:
 218	kfree_const(mnt->mnt_devname);
 219#endif
 220out_free_id:
 221	mnt_free_id(mnt);
 222out_free_cache:
 223	kmem_cache_free(mnt_cache, mnt);
 224	return NULL;
 225}
 226
 227/*
 228 * Most r/o checks on a fs are for operations that take
 229 * discrete amounts of time, like a write() or unlink().
 230 * We must keep track of when those operations start
 231 * (for permission checks) and when they end, so that
 232 * we can determine when writes are able to occur to
 233 * a filesystem.
 234 */
 235/*
 236 * __mnt_is_readonly: check whether a mount is read-only
 237 * @mnt: the mount to check for its write status
 238 *
 239 * This shouldn't be used directly ouside of the VFS.
 240 * It does not guarantee that the filesystem will stay
 241 * r/w, just that it is right *now*.  This can not and
 242 * should not be used in place of IS_RDONLY(inode).
 243 * mnt_want/drop_write() will _keep_ the filesystem
 244 * r/w.
 245 */
 246bool __mnt_is_readonly(struct vfsmount *mnt)
 247{
 248	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
 249}
 250EXPORT_SYMBOL_GPL(__mnt_is_readonly);
 251
 252static inline void mnt_inc_writers(struct mount *mnt)
 253{
 254#ifdef CONFIG_SMP
 255	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
 256#else
 257	mnt->mnt_writers++;
 258#endif
 259}
 260
 261static inline void mnt_dec_writers(struct mount *mnt)
 262{
 263#ifdef CONFIG_SMP
 264	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
 265#else
 266	mnt->mnt_writers--;
 267#endif
 268}
 269
 270static unsigned int mnt_get_writers(struct mount *mnt)
 271{
 272#ifdef CONFIG_SMP
 273	unsigned int count = 0;
 274	int cpu;
 275
 276	for_each_possible_cpu(cpu) {
 277		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
 278	}
 279
 280	return count;
 281#else
 282	return mnt->mnt_writers;
 283#endif
 284}
 285
 286static int mnt_is_readonly(struct vfsmount *mnt)
 287{
 288	if (mnt->mnt_sb->s_readonly_remount)
 289		return 1;
 290	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
 291	smp_rmb();
 292	return __mnt_is_readonly(mnt);
 293}
 294
 295/*
 296 * Most r/o & frozen checks on a fs are for operations that take discrete
 297 * amounts of time, like a write() or unlink().  We must keep track of when
 298 * those operations start (for permission checks) and when they end, so that we
 299 * can determine when writes are able to occur to a filesystem.
 300 */
 301/**
 302 * __mnt_want_write - get write access to a mount without freeze protection
 303 * @m: the mount on which to take a write
 304 *
 305 * This tells the low-level filesystem that a write is about to be performed to
 306 * it, and makes sure that writes are allowed (mnt it read-write) before
 307 * returning success. This operation does not protect against filesystem being
 308 * frozen. When the write operation is finished, __mnt_drop_write() must be
 309 * called. This is effectively a refcount.
 310 */
 311int __mnt_want_write(struct vfsmount *m)
 312{
 313	struct mount *mnt = real_mount(m);
 314	int ret = 0;
 315
 316	preempt_disable();
 317	mnt_inc_writers(mnt);
 318	/*
 319	 * The store to mnt_inc_writers must be visible before we pass
 320	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
 321	 * incremented count after it has set MNT_WRITE_HOLD.
 322	 */
 323	smp_mb();
 324	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
 325		cpu_relax();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 326	/*
 327	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
 328	 * be set to match its requirements. So we must not load that until
 329	 * MNT_WRITE_HOLD is cleared.
 330	 */
 331	smp_rmb();
 332	if (mnt_is_readonly(m)) {
 333		mnt_dec_writers(mnt);
 334		ret = -EROFS;
 335	}
 336	preempt_enable();
 337
 338	return ret;
 339}
 340
 341/**
 342 * mnt_want_write - get write access to a mount
 343 * @m: the mount on which to take a write
 344 *
 345 * This tells the low-level filesystem that a write is about to be performed to
 346 * it, and makes sure that writes are allowed (mount is read-write, filesystem
 347 * is not frozen) before returning success.  When the write operation is
 348 * finished, mnt_drop_write() must be called.  This is effectively a refcount.
 349 */
 350int mnt_want_write(struct vfsmount *m)
 351{
 352	int ret;
 353
 354	sb_start_write(m->mnt_sb);
 355	ret = __mnt_want_write(m);
 356	if (ret)
 357		sb_end_write(m->mnt_sb);
 358	return ret;
 359}
 360EXPORT_SYMBOL_GPL(mnt_want_write);
 361
 362/**
 363 * mnt_clone_write - get write access to a mount
 364 * @mnt: the mount on which to take a write
 365 *
 366 * This is effectively like mnt_want_write, except
 367 * it must only be used to take an extra write reference
 368 * on a mountpoint that we already know has a write reference
 369 * on it. This allows some optimisation.
 370 *
 371 * After finished, mnt_drop_write must be called as usual to
 372 * drop the reference.
 373 */
 374int mnt_clone_write(struct vfsmount *mnt)
 375{
 376	/* superblock may be r/o */
 377	if (__mnt_is_readonly(mnt))
 378		return -EROFS;
 379	preempt_disable();
 380	mnt_inc_writers(real_mount(mnt));
 381	preempt_enable();
 382	return 0;
 383}
 384EXPORT_SYMBOL_GPL(mnt_clone_write);
 385
 386/**
 387 * __mnt_want_write_file - get write access to a file's mount
 388 * @file: the file who's mount on which to take a write
 389 *
 390 * This is like __mnt_want_write, but it takes a file and can
 391 * do some optimisations if the file is open for write already
 
 
 392 */
 393int __mnt_want_write_file(struct file *file)
 394{
 395	if (!(file->f_mode & FMODE_WRITER))
 396		return __mnt_want_write(file->f_path.mnt);
 397	else
 398		return mnt_clone_write(file->f_path.mnt);
 
 
 
 
 
 
 399}
 400
 401/**
 402 * mnt_want_write_file - get write access to a file's mount
 403 * @file: the file who's mount on which to take a write
 404 *
 405 * This is like mnt_want_write, but it takes a file and can
 406 * do some optimisations if the file is open for write already
 
 
 407 */
 408int mnt_want_write_file(struct file *file)
 409{
 410	int ret;
 411
 412	sb_start_write(file_inode(file)->i_sb);
 413	ret = __mnt_want_write_file(file);
 414	if (ret)
 415		sb_end_write(file_inode(file)->i_sb);
 416	return ret;
 417}
 418EXPORT_SYMBOL_GPL(mnt_want_write_file);
 419
 420/**
 421 * __mnt_drop_write - give up write access to a mount
 422 * @mnt: the mount on which to give up write access
 423 *
 424 * Tells the low-level filesystem that we are done
 425 * performing writes to it.  Must be matched with
 426 * __mnt_want_write() call above.
 427 */
 428void __mnt_drop_write(struct vfsmount *mnt)
 429{
 430	preempt_disable();
 431	mnt_dec_writers(real_mount(mnt));
 432	preempt_enable();
 433}
 434
 435/**
 436 * mnt_drop_write - give up write access to a mount
 437 * @mnt: the mount on which to give up write access
 438 *
 439 * Tells the low-level filesystem that we are done performing writes to it and
 440 * also allows filesystem to be frozen again.  Must be matched with
 441 * mnt_want_write() call above.
 442 */
 443void mnt_drop_write(struct vfsmount *mnt)
 444{
 445	__mnt_drop_write(mnt);
 446	sb_end_write(mnt->mnt_sb);
 447}
 448EXPORT_SYMBOL_GPL(mnt_drop_write);
 449
 450void __mnt_drop_write_file(struct file *file)
 451{
 452	__mnt_drop_write(file->f_path.mnt);
 
 453}
 454
 455void mnt_drop_write_file(struct file *file)
 456{
 457	__mnt_drop_write_file(file);
 458	sb_end_write(file_inode(file)->i_sb);
 459}
 460EXPORT_SYMBOL(mnt_drop_write_file);
 461
 462static int mnt_make_readonly(struct mount *mnt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 463{
 464	int ret = 0;
 465
 466	lock_mount_hash();
 467	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 468	/*
 469	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
 470	 * should be visible before we do.
 471	 */
 472	smp_mb();
 473
 474	/*
 475	 * With writers on hold, if this value is zero, then there are
 476	 * definitely no active writers (although held writers may subsequently
 477	 * increment the count, they'll have to wait, and decrement it after
 478	 * seeing MNT_READONLY).
 479	 *
 480	 * It is OK to have counter incremented on one CPU and decremented on
 481	 * another: the sum will add up correctly. The danger would be when we
 482	 * sum up each counter, if we read a counter before it is incremented,
 483	 * but then read another CPU's count which it has been subsequently
 484	 * decremented from -- we would see more decrements than we should.
 485	 * MNT_WRITE_HOLD protects against this scenario, because
 486	 * mnt_want_write first increments count, then smp_mb, then spins on
 487	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
 488	 * we're counting up here.
 489	 */
 490	if (mnt_get_writers(mnt) > 0)
 491		ret = -EBUSY;
 492	else
 493		mnt->mnt.mnt_flags |= MNT_READONLY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 494	/*
 495	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
 496	 * that become unheld will see MNT_READONLY.
 497	 */
 498	smp_wmb();
 499	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 500	unlock_mount_hash();
 501	return ret;
 502}
 503
 504static int __mnt_unmake_readonly(struct mount *mnt)
 505{
 506	lock_mount_hash();
 507	mnt->mnt.mnt_flags &= ~MNT_READONLY;
 508	unlock_mount_hash();
 509	return 0;
 
 
 
 510}
 511
 512int sb_prepare_remount_readonly(struct super_block *sb)
 513{
 514	struct mount *mnt;
 515	int err = 0;
 516
 517	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
 518	if (atomic_long_read(&sb->s_remove_count))
 519		return -EBUSY;
 520
 521	lock_mount_hash();
 522	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 523		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
 524			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 525			smp_mb();
 526			if (mnt_get_writers(mnt) > 0) {
 527				err = -EBUSY;
 528				break;
 529			}
 530		}
 531	}
 532	if (!err && atomic_long_read(&sb->s_remove_count))
 533		err = -EBUSY;
 534
 535	if (!err) {
 536		sb->s_readonly_remount = 1;
 537		smp_wmb();
 538	}
 539	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 540		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
 541			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 542	}
 543	unlock_mount_hash();
 544
 545	return err;
 546}
 547
 548static void free_vfsmnt(struct mount *mnt)
 549{
 
 550	kfree_const(mnt->mnt_devname);
 551#ifdef CONFIG_SMP
 552	free_percpu(mnt->mnt_pcp);
 553#endif
 554	kmem_cache_free(mnt_cache, mnt);
 555}
 556
 557static void delayed_free_vfsmnt(struct rcu_head *head)
 558{
 559	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
 560}
 561
 562/* call under rcu_read_lock */
 563int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 564{
 565	struct mount *mnt;
 566	if (read_seqretry(&mount_lock, seq))
 567		return 1;
 568	if (bastard == NULL)
 569		return 0;
 570	mnt = real_mount(bastard);
 571	mnt_add_count(mnt, 1);
 572	smp_mb();			// see mntput_no_expire()
 573	if (likely(!read_seqretry(&mount_lock, seq)))
 574		return 0;
 575	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
 576		mnt_add_count(mnt, -1);
 577		return 1;
 578	}
 579	lock_mount_hash();
 580	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
 581		mnt_add_count(mnt, -1);
 582		unlock_mount_hash();
 583		return 1;
 584	}
 585	unlock_mount_hash();
 586	/* caller will mntput() */
 587	return -1;
 588}
 589
 590/* call under rcu_read_lock */
 591bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 592{
 593	int res = __legitimize_mnt(bastard, seq);
 594	if (likely(!res))
 595		return true;
 596	if (unlikely(res < 0)) {
 597		rcu_read_unlock();
 598		mntput(bastard);
 599		rcu_read_lock();
 600	}
 601	return false;
 602}
 603
 604/*
 605 * find the first mount at @dentry on vfsmount @mnt.
 606 * call under rcu_read_lock()
 607 */
 608struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
 609{
 610	struct hlist_head *head = m_hash(mnt, dentry);
 611	struct mount *p;
 612
 613	hlist_for_each_entry_rcu(p, head, mnt_hash)
 614		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
 615			return p;
 616	return NULL;
 617}
 618
 619/*
 620 * lookup_mnt - Return the first child mount mounted at path
 621 *
 622 * "First" means first mounted chronologically.  If you create the
 623 * following mounts:
 624 *
 625 * mount /dev/sda1 /mnt
 626 * mount /dev/sda2 /mnt
 627 * mount /dev/sda3 /mnt
 628 *
 629 * Then lookup_mnt() on the base /mnt dentry in the root mount will
 630 * return successively the root dentry and vfsmount of /dev/sda1, then
 631 * /dev/sda2, then /dev/sda3, then NULL.
 632 *
 633 * lookup_mnt takes a reference to the found vfsmount.
 634 */
 635struct vfsmount *lookup_mnt(const struct path *path)
 636{
 637	struct mount *child_mnt;
 638	struct vfsmount *m;
 639	unsigned seq;
 640
 641	rcu_read_lock();
 642	do {
 643		seq = read_seqbegin(&mount_lock);
 644		child_mnt = __lookup_mnt(path->mnt, path->dentry);
 645		m = child_mnt ? &child_mnt->mnt : NULL;
 646	} while (!legitimize_mnt(m, seq));
 647	rcu_read_unlock();
 648	return m;
 649}
 650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 651/*
 652 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
 653 *                         current mount namespace.
 654 *
 655 * The common case is dentries are not mountpoints at all and that
 656 * test is handled inline.  For the slow case when we are actually
 657 * dealing with a mountpoint of some kind, walk through all of the
 658 * mounts in the current mount namespace and test to see if the dentry
 659 * is a mountpoint.
 660 *
 661 * The mount_hashtable is not usable in the context because we
 662 * need to identify all mounts that may be in the current mount
 663 * namespace not just a mount that happens to have some specified
 664 * parent mount.
 665 */
 666bool __is_local_mountpoint(struct dentry *dentry)
 667{
 668	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
 669	struct mount *mnt;
 670	bool is_covered = false;
 671
 672	if (!d_mountpoint(dentry))
 673		goto out;
 674
 675	down_read(&namespace_sem);
 
 676	list_for_each_entry(mnt, &ns->list, mnt_list) {
 
 
 677		is_covered = (mnt->mnt_mountpoint == dentry);
 678		if (is_covered)
 679			break;
 680	}
 
 681	up_read(&namespace_sem);
 682out:
 683	return is_covered;
 684}
 685
 686static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
 687{
 688	struct hlist_head *chain = mp_hash(dentry);
 689	struct mountpoint *mp;
 690
 691	hlist_for_each_entry(mp, chain, m_hash) {
 692		if (mp->m_dentry == dentry) {
 693			mp->m_count++;
 694			return mp;
 695		}
 696	}
 697	return NULL;
 698}
 699
 700static struct mountpoint *get_mountpoint(struct dentry *dentry)
 701{
 702	struct mountpoint *mp, *new = NULL;
 703	int ret;
 704
 705	if (d_mountpoint(dentry)) {
 706		/* might be worth a WARN_ON() */
 707		if (d_unlinked(dentry))
 708			return ERR_PTR(-ENOENT);
 709mountpoint:
 710		read_seqlock_excl(&mount_lock);
 711		mp = lookup_mountpoint(dentry);
 712		read_sequnlock_excl(&mount_lock);
 713		if (mp)
 714			goto done;
 715	}
 716
 717	if (!new)
 718		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
 719	if (!new)
 720		return ERR_PTR(-ENOMEM);
 721
 722
 723	/* Exactly one processes may set d_mounted */
 724	ret = d_set_mounted(dentry);
 725
 726	/* Someone else set d_mounted? */
 727	if (ret == -EBUSY)
 728		goto mountpoint;
 729
 730	/* The dentry is not available as a mountpoint? */
 731	mp = ERR_PTR(ret);
 732	if (ret)
 733		goto done;
 734
 735	/* Add the new mountpoint to the hash table */
 736	read_seqlock_excl(&mount_lock);
 737	new->m_dentry = dget(dentry);
 738	new->m_count = 1;
 739	hlist_add_head(&new->m_hash, mp_hash(dentry));
 740	INIT_HLIST_HEAD(&new->m_list);
 741	read_sequnlock_excl(&mount_lock);
 742
 743	mp = new;
 744	new = NULL;
 745done:
 746	kfree(new);
 747	return mp;
 748}
 749
 750/*
 751 * vfsmount lock must be held.  Additionally, the caller is responsible
 752 * for serializing calls for given disposal list.
 753 */
 754static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
 755{
 756	if (!--mp->m_count) {
 757		struct dentry *dentry = mp->m_dentry;
 758		BUG_ON(!hlist_empty(&mp->m_list));
 759		spin_lock(&dentry->d_lock);
 760		dentry->d_flags &= ~DCACHE_MOUNTED;
 761		spin_unlock(&dentry->d_lock);
 762		dput_to_list(dentry, list);
 763		hlist_del(&mp->m_hash);
 764		kfree(mp);
 765	}
 766}
 767
 768/* called with namespace_lock and vfsmount lock */
 769static void put_mountpoint(struct mountpoint *mp)
 770{
 771	__put_mountpoint(mp, &ex_mountpoints);
 772}
 773
 774static inline int check_mnt(struct mount *mnt)
 775{
 776	return mnt->mnt_ns == current->nsproxy->mnt_ns;
 777}
 778
 779/*
 780 * vfsmount lock must be held for write
 781 */
 782static void touch_mnt_namespace(struct mnt_namespace *ns)
 783{
 784	if (ns) {
 785		ns->event = ++event;
 786		wake_up_interruptible(&ns->poll);
 787	}
 788}
 789
 790/*
 791 * vfsmount lock must be held for write
 792 */
 793static void __touch_mnt_namespace(struct mnt_namespace *ns)
 794{
 795	if (ns && ns->event != event) {
 796		ns->event = event;
 797		wake_up_interruptible(&ns->poll);
 798	}
 799}
 800
 801/*
 802 * vfsmount lock must be held for write
 803 */
 804static struct mountpoint *unhash_mnt(struct mount *mnt)
 805{
 806	struct mountpoint *mp;
 807	mnt->mnt_parent = mnt;
 808	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 809	list_del_init(&mnt->mnt_child);
 810	hlist_del_init_rcu(&mnt->mnt_hash);
 811	hlist_del_init(&mnt->mnt_mp_list);
 812	mp = mnt->mnt_mp;
 813	mnt->mnt_mp = NULL;
 814	return mp;
 815}
 816
 817/*
 818 * vfsmount lock must be held for write
 819 */
 820static void umount_mnt(struct mount *mnt)
 821{
 822	put_mountpoint(unhash_mnt(mnt));
 823}
 824
 825/*
 826 * vfsmount lock must be held for write
 827 */
 828void mnt_set_mountpoint(struct mount *mnt,
 829			struct mountpoint *mp,
 830			struct mount *child_mnt)
 831{
 832	mp->m_count++;
 833	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
 834	child_mnt->mnt_mountpoint = mp->m_dentry;
 835	child_mnt->mnt_parent = mnt;
 836	child_mnt->mnt_mp = mp;
 837	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
 838}
 839
 840static void __attach_mnt(struct mount *mnt, struct mount *parent)
 841{
 842	hlist_add_head_rcu(&mnt->mnt_hash,
 843			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
 844	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
 845}
 846
 847/*
 848 * vfsmount lock must be held for write
 849 */
 850static void attach_mnt(struct mount *mnt,
 851			struct mount *parent,
 852			struct mountpoint *mp)
 853{
 854	mnt_set_mountpoint(parent, mp, mnt);
 855	__attach_mnt(mnt, parent);
 856}
 857
 858void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
 859{
 860	struct mountpoint *old_mp = mnt->mnt_mp;
 861	struct mount *old_parent = mnt->mnt_parent;
 862
 863	list_del_init(&mnt->mnt_child);
 864	hlist_del_init(&mnt->mnt_mp_list);
 865	hlist_del_init_rcu(&mnt->mnt_hash);
 866
 867	attach_mnt(mnt, parent, mp);
 868
 869	put_mountpoint(old_mp);
 870	mnt_add_count(old_parent, -1);
 871}
 872
 873/*
 874 * vfsmount lock must be held for write
 875 */
 876static void commit_tree(struct mount *mnt)
 877{
 878	struct mount *parent = mnt->mnt_parent;
 879	struct mount *m;
 880	LIST_HEAD(head);
 881	struct mnt_namespace *n = parent->mnt_ns;
 882
 883	BUG_ON(parent == mnt);
 884
 885	list_add_tail(&head, &mnt->mnt_list);
 886	list_for_each_entry(m, &head, mnt_list)
 887		m->mnt_ns = n;
 888
 889	list_splice(&head, n->list.prev);
 890
 891	n->mounts += n->pending_mounts;
 892	n->pending_mounts = 0;
 893
 894	__attach_mnt(mnt, parent);
 895	touch_mnt_namespace(n);
 896}
 897
 898static struct mount *next_mnt(struct mount *p, struct mount *root)
 899{
 900	struct list_head *next = p->mnt_mounts.next;
 901	if (next == &p->mnt_mounts) {
 902		while (1) {
 903			if (p == root)
 904				return NULL;
 905			next = p->mnt_child.next;
 906			if (next != &p->mnt_parent->mnt_mounts)
 907				break;
 908			p = p->mnt_parent;
 909		}
 910	}
 911	return list_entry(next, struct mount, mnt_child);
 912}
 913
 914static struct mount *skip_mnt_tree(struct mount *p)
 915{
 916	struct list_head *prev = p->mnt_mounts.prev;
 917	while (prev != &p->mnt_mounts) {
 918		p = list_entry(prev, struct mount, mnt_child);
 919		prev = p->mnt_mounts.prev;
 920	}
 921	return p;
 922}
 923
 924/**
 925 * vfs_create_mount - Create a mount for a configured superblock
 926 * @fc: The configuration context with the superblock attached
 927 *
 928 * Create a mount to an already configured superblock.  If necessary, the
 929 * caller should invoke vfs_get_tree() before calling this.
 930 *
 931 * Note that this does not attach the mount to anything.
 932 */
 933struct vfsmount *vfs_create_mount(struct fs_context *fc)
 934{
 935	struct mount *mnt;
 936
 937	if (!fc->root)
 938		return ERR_PTR(-EINVAL);
 939
 940	mnt = alloc_vfsmnt(fc->source ?: "none");
 941	if (!mnt)
 942		return ERR_PTR(-ENOMEM);
 943
 944	if (fc->sb_flags & SB_KERNMOUNT)
 945		mnt->mnt.mnt_flags = MNT_INTERNAL;
 946
 947	atomic_inc(&fc->root->d_sb->s_active);
 948	mnt->mnt.mnt_sb		= fc->root->d_sb;
 949	mnt->mnt.mnt_root	= dget(fc->root);
 950	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
 951	mnt->mnt_parent		= mnt;
 952
 953	lock_mount_hash();
 954	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
 955	unlock_mount_hash();
 956	return &mnt->mnt;
 957}
 958EXPORT_SYMBOL(vfs_create_mount);
 959
 960struct vfsmount *fc_mount(struct fs_context *fc)
 961{
 962	int err = vfs_get_tree(fc);
 963	if (!err) {
 964		up_write(&fc->root->d_sb->s_umount);
 965		return vfs_create_mount(fc);
 966	}
 967	return ERR_PTR(err);
 968}
 969EXPORT_SYMBOL(fc_mount);
 970
 971struct vfsmount *vfs_kern_mount(struct file_system_type *type,
 972				int flags, const char *name,
 973				void *data)
 974{
 975	struct fs_context *fc;
 976	struct vfsmount *mnt;
 977	int ret = 0;
 978
 979	if (!type)
 980		return ERR_PTR(-EINVAL);
 981
 982	fc = fs_context_for_mount(type, flags);
 983	if (IS_ERR(fc))
 984		return ERR_CAST(fc);
 985
 986	if (name)
 987		ret = vfs_parse_fs_string(fc, "source",
 988					  name, strlen(name));
 989	if (!ret)
 990		ret = parse_monolithic_mount_data(fc, data);
 991	if (!ret)
 992		mnt = fc_mount(fc);
 993	else
 994		mnt = ERR_PTR(ret);
 995
 996	put_fs_context(fc);
 997	return mnt;
 998}
 999EXPORT_SYMBOL_GPL(vfs_kern_mount);
1000
1001struct vfsmount *
1002vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1003	     const char *name, void *data)
1004{
1005	/* Until it is worked out how to pass the user namespace
1006	 * through from the parent mount to the submount don't support
1007	 * unprivileged mounts with submounts.
1008	 */
1009	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1010		return ERR_PTR(-EPERM);
1011
1012	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1013}
1014EXPORT_SYMBOL_GPL(vfs_submount);
1015
1016static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1017					int flag)
1018{
1019	struct super_block *sb = old->mnt.mnt_sb;
1020	struct mount *mnt;
1021	int err;
1022
1023	mnt = alloc_vfsmnt(old->mnt_devname);
1024	if (!mnt)
1025		return ERR_PTR(-ENOMEM);
1026
1027	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1028		mnt->mnt_group_id = 0; /* not a peer of original */
1029	else
1030		mnt->mnt_group_id = old->mnt_group_id;
1031
1032	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1033		err = mnt_alloc_group_id(mnt);
1034		if (err)
1035			goto out_free;
1036	}
1037
1038	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1039	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1040
1041	atomic_inc(&sb->s_active);
 
 
1042	mnt->mnt.mnt_sb = sb;
1043	mnt->mnt.mnt_root = dget(root);
1044	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1045	mnt->mnt_parent = mnt;
1046	lock_mount_hash();
1047	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1048	unlock_mount_hash();
1049
1050	if ((flag & CL_SLAVE) ||
1051	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1052		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1053		mnt->mnt_master = old;
1054		CLEAR_MNT_SHARED(mnt);
1055	} else if (!(flag & CL_PRIVATE)) {
1056		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1057			list_add(&mnt->mnt_share, &old->mnt_share);
1058		if (IS_MNT_SLAVE(old))
1059			list_add(&mnt->mnt_slave, &old->mnt_slave);
1060		mnt->mnt_master = old->mnt_master;
1061	} else {
1062		CLEAR_MNT_SHARED(mnt);
1063	}
1064	if (flag & CL_MAKE_SHARED)
1065		set_mnt_shared(mnt);
1066
1067	/* stick the duplicate mount on the same expiry list
1068	 * as the original if that was on one */
1069	if (flag & CL_EXPIRE) {
1070		if (!list_empty(&old->mnt_expire))
1071			list_add(&mnt->mnt_expire, &old->mnt_expire);
1072	}
1073
1074	return mnt;
1075
1076 out_free:
1077	mnt_free_id(mnt);
1078	free_vfsmnt(mnt);
1079	return ERR_PTR(err);
1080}
1081
1082static void cleanup_mnt(struct mount *mnt)
1083{
1084	struct hlist_node *p;
1085	struct mount *m;
1086	/*
1087	 * The warning here probably indicates that somebody messed
1088	 * up a mnt_want/drop_write() pair.  If this happens, the
1089	 * filesystem was probably unable to make r/w->r/o transitions.
1090	 * The locking used to deal with mnt_count decrement provides barriers,
1091	 * so mnt_get_writers() below is safe.
1092	 */
1093	WARN_ON(mnt_get_writers(mnt));
1094	if (unlikely(mnt->mnt_pins.first))
1095		mnt_pin_kill(mnt);
1096	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1097		hlist_del(&m->mnt_umount);
1098		mntput(&m->mnt);
1099	}
1100	fsnotify_vfsmount_delete(&mnt->mnt);
1101	dput(mnt->mnt.mnt_root);
1102	deactivate_super(mnt->mnt.mnt_sb);
1103	mnt_free_id(mnt);
1104	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1105}
1106
1107static void __cleanup_mnt(struct rcu_head *head)
1108{
1109	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1110}
1111
1112static LLIST_HEAD(delayed_mntput_list);
1113static void delayed_mntput(struct work_struct *unused)
1114{
1115	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1116	struct mount *m, *t;
1117
1118	llist_for_each_entry_safe(m, t, node, mnt_llist)
1119		cleanup_mnt(m);
1120}
1121static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1122
1123static void mntput_no_expire(struct mount *mnt)
1124{
1125	LIST_HEAD(list);
 
1126
1127	rcu_read_lock();
1128	if (likely(READ_ONCE(mnt->mnt_ns))) {
1129		/*
1130		 * Since we don't do lock_mount_hash() here,
1131		 * ->mnt_ns can change under us.  However, if it's
1132		 * non-NULL, then there's a reference that won't
1133		 * be dropped until after an RCU delay done after
1134		 * turning ->mnt_ns NULL.  So if we observe it
1135		 * non-NULL under rcu_read_lock(), the reference
1136		 * we are dropping is not the final one.
1137		 */
1138		mnt_add_count(mnt, -1);
1139		rcu_read_unlock();
1140		return;
1141	}
1142	lock_mount_hash();
1143	/*
1144	 * make sure that if __legitimize_mnt() has not seen us grab
1145	 * mount_lock, we'll see their refcount increment here.
1146	 */
1147	smp_mb();
1148	mnt_add_count(mnt, -1);
1149	if (mnt_get_count(mnt)) {
 
 
1150		rcu_read_unlock();
1151		unlock_mount_hash();
1152		return;
1153	}
1154	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1155		rcu_read_unlock();
1156		unlock_mount_hash();
1157		return;
1158	}
1159	mnt->mnt.mnt_flags |= MNT_DOOMED;
1160	rcu_read_unlock();
1161
1162	list_del(&mnt->mnt_instance);
1163
1164	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1165		struct mount *p, *tmp;
1166		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1167			__put_mountpoint(unhash_mnt(p), &list);
1168			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1169		}
1170	}
1171	unlock_mount_hash();
1172	shrink_dentry_list(&list);
1173
1174	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1175		struct task_struct *task = current;
1176		if (likely(!(task->flags & PF_KTHREAD))) {
1177			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1178			if (!task_work_add(task, &mnt->mnt_rcu, true))
1179				return;
1180		}
1181		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1182			schedule_delayed_work(&delayed_mntput_work, 1);
1183		return;
1184	}
1185	cleanup_mnt(mnt);
1186}
1187
1188void mntput(struct vfsmount *mnt)
1189{
1190	if (mnt) {
1191		struct mount *m = real_mount(mnt);
1192		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1193		if (unlikely(m->mnt_expiry_mark))
1194			m->mnt_expiry_mark = 0;
1195		mntput_no_expire(m);
1196	}
1197}
1198EXPORT_SYMBOL(mntput);
1199
1200struct vfsmount *mntget(struct vfsmount *mnt)
1201{
1202	if (mnt)
1203		mnt_add_count(real_mount(mnt), 1);
1204	return mnt;
1205}
1206EXPORT_SYMBOL(mntget);
1207
1208/* path_is_mountpoint() - Check if path is a mount in the current
1209 *                          namespace.
 
1210 *
1211 *  d_mountpoint() can only be used reliably to establish if a dentry is
1212 *  not mounted in any namespace and that common case is handled inline.
1213 *  d_mountpoint() isn't aware of the possibility there may be multiple
1214 *  mounts using a given dentry in a different namespace. This function
1215 *  checks if the passed in path is a mountpoint rather than the dentry
1216 *  alone.
1217 */
1218bool path_is_mountpoint(const struct path *path)
1219{
1220	unsigned seq;
1221	bool res;
1222
1223	if (!d_mountpoint(path->dentry))
1224		return false;
1225
1226	rcu_read_lock();
1227	do {
1228		seq = read_seqbegin(&mount_lock);
1229		res = __path_is_mountpoint(path);
1230	} while (read_seqretry(&mount_lock, seq));
1231	rcu_read_unlock();
1232
1233	return res;
1234}
1235EXPORT_SYMBOL(path_is_mountpoint);
1236
1237struct vfsmount *mnt_clone_internal(const struct path *path)
1238{
1239	struct mount *p;
1240	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1241	if (IS_ERR(p))
1242		return ERR_CAST(p);
1243	p->mnt.mnt_flags |= MNT_INTERNAL;
1244	return &p->mnt;
1245}
1246
1247#ifdef CONFIG_PROC_FS
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1248/* iterator; we want it to have access to namespace_sem, thus here... */
1249static void *m_start(struct seq_file *m, loff_t *pos)
1250{
1251	struct proc_mounts *p = m->private;
 
1252
1253	down_read(&namespace_sem);
1254	if (p->cached_event == p->ns->event) {
1255		void *v = p->cached_mount;
1256		if (*pos == p->cached_index)
1257			return v;
1258		if (*pos == p->cached_index + 1) {
1259			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1260			return p->cached_mount = v;
1261		}
1262	}
1263
1264	p->cached_event = p->ns->event;
1265	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1266	p->cached_index = *pos;
1267	return p->cached_mount;
1268}
1269
1270static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1271{
1272	struct proc_mounts *p = m->private;
 
1273
1274	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1275	p->cached_index = *pos;
1276	return p->cached_mount;
1277}
1278
1279static void m_stop(struct seq_file *m, void *v)
1280{
 
 
 
 
 
 
 
 
 
1281	up_read(&namespace_sem);
1282}
1283
1284static int m_show(struct seq_file *m, void *v)
1285{
1286	struct proc_mounts *p = m->private;
1287	struct mount *r = list_entry(v, struct mount, mnt_list);
1288	return p->show(m, &r->mnt);
1289}
1290
1291const struct seq_operations mounts_op = {
1292	.start	= m_start,
1293	.next	= m_next,
1294	.stop	= m_stop,
1295	.show	= m_show,
1296};
 
 
 
 
 
 
 
 
 
1297#endif  /* CONFIG_PROC_FS */
1298
1299/**
1300 * may_umount_tree - check if a mount tree is busy
1301 * @mnt: root of mount tree
1302 *
1303 * This is called to check if a tree of mounts has any
1304 * open files, pwds, chroots or sub mounts that are
1305 * busy.
1306 */
1307int may_umount_tree(struct vfsmount *m)
1308{
1309	struct mount *mnt = real_mount(m);
1310	int actual_refs = 0;
1311	int minimum_refs = 0;
1312	struct mount *p;
1313	BUG_ON(!m);
1314
1315	/* write lock needed for mnt_get_count */
1316	lock_mount_hash();
1317	for (p = mnt; p; p = next_mnt(p, mnt)) {
1318		actual_refs += mnt_get_count(p);
1319		minimum_refs += 2;
1320	}
1321	unlock_mount_hash();
1322
1323	if (actual_refs > minimum_refs)
1324		return 0;
1325
1326	return 1;
1327}
1328
1329EXPORT_SYMBOL(may_umount_tree);
1330
1331/**
1332 * may_umount - check if a mount point is busy
1333 * @mnt: root of mount
1334 *
1335 * This is called to check if a mount point has any
1336 * open files, pwds, chroots or sub mounts. If the
1337 * mount has sub mounts this will return busy
1338 * regardless of whether the sub mounts are busy.
1339 *
1340 * Doesn't take quota and stuff into account. IOW, in some cases it will
1341 * give false negatives. The main reason why it's here is that we need
1342 * a non-destructive way to look for easily umountable filesystems.
1343 */
1344int may_umount(struct vfsmount *mnt)
1345{
1346	int ret = 1;
1347	down_read(&namespace_sem);
1348	lock_mount_hash();
1349	if (propagate_mount_busy(real_mount(mnt), 2))
1350		ret = 0;
1351	unlock_mount_hash();
1352	up_read(&namespace_sem);
1353	return ret;
1354}
1355
1356EXPORT_SYMBOL(may_umount);
1357
1358static void namespace_unlock(void)
1359{
1360	struct hlist_head head;
1361	struct hlist_node *p;
1362	struct mount *m;
1363	LIST_HEAD(list);
1364
1365	hlist_move_list(&unmounted, &head);
1366	list_splice_init(&ex_mountpoints, &list);
1367
1368	up_write(&namespace_sem);
1369
1370	shrink_dentry_list(&list);
1371
1372	if (likely(hlist_empty(&head)))
1373		return;
1374
1375	synchronize_rcu_expedited();
1376
1377	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1378		hlist_del(&m->mnt_umount);
1379		mntput(&m->mnt);
1380	}
1381}
1382
1383static inline void namespace_lock(void)
1384{
1385	down_write(&namespace_sem);
1386}
1387
1388enum umount_tree_flags {
1389	UMOUNT_SYNC = 1,
1390	UMOUNT_PROPAGATE = 2,
1391	UMOUNT_CONNECTED = 4,
1392};
1393
1394static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1395{
1396	/* Leaving mounts connected is only valid for lazy umounts */
1397	if (how & UMOUNT_SYNC)
1398		return true;
1399
1400	/* A mount without a parent has nothing to be connected to */
1401	if (!mnt_has_parent(mnt))
1402		return true;
1403
1404	/* Because the reference counting rules change when mounts are
1405	 * unmounted and connected, umounted mounts may not be
1406	 * connected to mounted mounts.
1407	 */
1408	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1409		return true;
1410
1411	/* Has it been requested that the mount remain connected? */
1412	if (how & UMOUNT_CONNECTED)
1413		return false;
1414
1415	/* Is the mount locked such that it needs to remain connected? */
1416	if (IS_MNT_LOCKED(mnt))
1417		return false;
1418
1419	/* By default disconnect the mount */
1420	return true;
1421}
1422
1423/*
1424 * mount_lock must be held
1425 * namespace_sem must be held for write
1426 */
1427static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1428{
1429	LIST_HEAD(tmp_list);
1430	struct mount *p;
1431
1432	if (how & UMOUNT_PROPAGATE)
1433		propagate_mount_unlock(mnt);
1434
1435	/* Gather the mounts to umount */
1436	for (p = mnt; p; p = next_mnt(p, mnt)) {
1437		p->mnt.mnt_flags |= MNT_UMOUNT;
1438		list_move(&p->mnt_list, &tmp_list);
1439	}
1440
1441	/* Hide the mounts from mnt_mounts */
1442	list_for_each_entry(p, &tmp_list, mnt_list) {
1443		list_del_init(&p->mnt_child);
1444	}
1445
1446	/* Add propogated mounts to the tmp_list */
1447	if (how & UMOUNT_PROPAGATE)
1448		propagate_umount(&tmp_list);
1449
1450	while (!list_empty(&tmp_list)) {
1451		struct mnt_namespace *ns;
1452		bool disconnect;
1453		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1454		list_del_init(&p->mnt_expire);
1455		list_del_init(&p->mnt_list);
1456		ns = p->mnt_ns;
1457		if (ns) {
1458			ns->mounts--;
1459			__touch_mnt_namespace(ns);
1460		}
1461		p->mnt_ns = NULL;
1462		if (how & UMOUNT_SYNC)
1463			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1464
1465		disconnect = disconnect_mount(p, how);
1466		if (mnt_has_parent(p)) {
1467			mnt_add_count(p->mnt_parent, -1);
1468			if (!disconnect) {
1469				/* Don't forget about p */
1470				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1471			} else {
1472				umount_mnt(p);
1473			}
1474		}
1475		change_mnt_propagation(p, MS_PRIVATE);
1476		if (disconnect)
1477			hlist_add_head(&p->mnt_umount, &unmounted);
1478	}
1479}
1480
1481static void shrink_submounts(struct mount *mnt);
1482
1483static int do_umount_root(struct super_block *sb)
1484{
1485	int ret = 0;
1486
1487	down_write(&sb->s_umount);
1488	if (!sb_rdonly(sb)) {
1489		struct fs_context *fc;
1490
1491		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1492						SB_RDONLY);
1493		if (IS_ERR(fc)) {
1494			ret = PTR_ERR(fc);
1495		} else {
1496			ret = parse_monolithic_mount_data(fc, NULL);
1497			if (!ret)
1498				ret = reconfigure_super(fc);
1499			put_fs_context(fc);
1500		}
1501	}
1502	up_write(&sb->s_umount);
1503	return ret;
1504}
1505
1506static int do_umount(struct mount *mnt, int flags)
1507{
1508	struct super_block *sb = mnt->mnt.mnt_sb;
1509	int retval;
1510
1511	retval = security_sb_umount(&mnt->mnt, flags);
1512	if (retval)
1513		return retval;
1514
1515	/*
1516	 * Allow userspace to request a mountpoint be expired rather than
1517	 * unmounting unconditionally. Unmount only happens if:
1518	 *  (1) the mark is already set (the mark is cleared by mntput())
1519	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1520	 */
1521	if (flags & MNT_EXPIRE) {
1522		if (&mnt->mnt == current->fs->root.mnt ||
1523		    flags & (MNT_FORCE | MNT_DETACH))
1524			return -EINVAL;
1525
1526		/*
1527		 * probably don't strictly need the lock here if we examined
1528		 * all race cases, but it's a slowpath.
1529		 */
1530		lock_mount_hash();
1531		if (mnt_get_count(mnt) != 2) {
1532			unlock_mount_hash();
1533			return -EBUSY;
1534		}
1535		unlock_mount_hash();
1536
1537		if (!xchg(&mnt->mnt_expiry_mark, 1))
1538			return -EAGAIN;
1539	}
1540
1541	/*
1542	 * If we may have to abort operations to get out of this
1543	 * mount, and they will themselves hold resources we must
1544	 * allow the fs to do things. In the Unix tradition of
1545	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1546	 * might fail to complete on the first run through as other tasks
1547	 * must return, and the like. Thats for the mount program to worry
1548	 * about for the moment.
1549	 */
1550
1551	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1552		sb->s_op->umount_begin(sb);
1553	}
1554
1555	/*
1556	 * No sense to grab the lock for this test, but test itself looks
1557	 * somewhat bogus. Suggestions for better replacement?
1558	 * Ho-hum... In principle, we might treat that as umount + switch
1559	 * to rootfs. GC would eventually take care of the old vfsmount.
1560	 * Actually it makes sense, especially if rootfs would contain a
1561	 * /reboot - static binary that would close all descriptors and
1562	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1563	 */
1564	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1565		/*
1566		 * Special case for "unmounting" root ...
1567		 * we just try to remount it readonly.
1568		 */
1569		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1570			return -EPERM;
1571		return do_umount_root(sb);
1572	}
1573
1574	namespace_lock();
1575	lock_mount_hash();
1576
1577	/* Recheck MNT_LOCKED with the locks held */
1578	retval = -EINVAL;
1579	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1580		goto out;
1581
1582	event++;
1583	if (flags & MNT_DETACH) {
1584		if (!list_empty(&mnt->mnt_list))
1585			umount_tree(mnt, UMOUNT_PROPAGATE);
1586		retval = 0;
1587	} else {
1588		shrink_submounts(mnt);
1589		retval = -EBUSY;
1590		if (!propagate_mount_busy(mnt, 2)) {
1591			if (!list_empty(&mnt->mnt_list))
1592				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1593			retval = 0;
1594		}
1595	}
1596out:
1597	unlock_mount_hash();
1598	namespace_unlock();
1599	return retval;
1600}
1601
1602/*
1603 * __detach_mounts - lazily unmount all mounts on the specified dentry
1604 *
1605 * During unlink, rmdir, and d_drop it is possible to loose the path
1606 * to an existing mountpoint, and wind up leaking the mount.
1607 * detach_mounts allows lazily unmounting those mounts instead of
1608 * leaking them.
1609 *
1610 * The caller may hold dentry->d_inode->i_mutex.
1611 */
1612void __detach_mounts(struct dentry *dentry)
1613{
1614	struct mountpoint *mp;
1615	struct mount *mnt;
1616
1617	namespace_lock();
1618	lock_mount_hash();
1619	mp = lookup_mountpoint(dentry);
1620	if (!mp)
1621		goto out_unlock;
1622
1623	event++;
1624	while (!hlist_empty(&mp->m_list)) {
1625		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1626		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1627			umount_mnt(mnt);
1628			hlist_add_head(&mnt->mnt_umount, &unmounted);
1629		}
1630		else umount_tree(mnt, UMOUNT_CONNECTED);
1631	}
1632	put_mountpoint(mp);
1633out_unlock:
1634	unlock_mount_hash();
1635	namespace_unlock();
1636}
1637
1638/*
1639 * Is the caller allowed to modify his namespace?
1640 */
1641static inline bool may_mount(void)
1642{
1643	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1644}
1645
1646#ifdef	CONFIG_MANDATORY_FILE_LOCKING
1647static inline bool may_mandlock(void)
1648{
1649	return capable(CAP_SYS_ADMIN);
 
 
 
 
1650}
1651#else
1652static inline bool may_mandlock(void)
1653{
1654	pr_warn("VFS: \"mand\" mount option not supported");
1655	return false;
 
 
 
 
 
 
 
 
 
 
 
1656}
1657#endif
1658
1659/*
1660 * Now umount can handle mount points as well as block devices.
1661 * This is important for filesystems which use unnamed block devices.
1662 *
1663 * We now support a flag for forced unmount like the other 'big iron'
1664 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1665 */
1666
1667int ksys_umount(char __user *name, int flags)
 
 
 
 
 
 
 
 
 
 
1668{
 
1669	struct path path;
1670	struct mount *mnt;
1671	int retval;
1672	int lookup_flags = 0;
1673
 
1674	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1675		return -EINVAL;
1676
1677	if (!may_mount())
1678		return -EPERM;
1679
1680	if (!(flags & UMOUNT_NOFOLLOW))
1681		lookup_flags |= LOOKUP_FOLLOW;
1682
1683	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1684	if (retval)
1685		goto out;
1686	mnt = real_mount(path.mnt);
1687	retval = -EINVAL;
1688	if (path.dentry != path.mnt->mnt_root)
1689		goto dput_and_out;
1690	if (!check_mnt(mnt))
1691		goto dput_and_out;
1692	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1693		goto dput_and_out;
1694	retval = -EPERM;
1695	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1696		goto dput_and_out;
1697
1698	retval = do_umount(mnt, flags);
1699dput_and_out:
1700	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1701	dput(path.dentry);
1702	mntput_no_expire(mnt);
1703out:
1704	return retval;
1705}
1706
1707SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1708{
1709	return ksys_umount(name, flags);
1710}
1711
1712#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1713
1714/*
1715 *	The 2.0 compatible umount. No flags.
1716 */
1717SYSCALL_DEFINE1(oldumount, char __user *, name)
1718{
1719	return ksys_umount(name, 0);
1720}
1721
1722#endif
1723
1724static bool is_mnt_ns_file(struct dentry *dentry)
1725{
1726	/* Is this a proxy for a mount namespace? */
1727	return dentry->d_op == &ns_dentry_operations &&
1728	       dentry->d_fsdata == &mntns_operations;
1729}
1730
1731struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1732{
1733	return container_of(ns, struct mnt_namespace, ns);
1734}
1735
 
 
 
 
 
1736static bool mnt_ns_loop(struct dentry *dentry)
1737{
1738	/* Could bind mounting the mount namespace inode cause a
1739	 * mount namespace loop?
1740	 */
1741	struct mnt_namespace *mnt_ns;
1742	if (!is_mnt_ns_file(dentry))
1743		return false;
1744
1745	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1746	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1747}
1748
1749struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1750					int flag)
1751{
1752	struct mount *res, *p, *q, *r, *parent;
1753
1754	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1755		return ERR_PTR(-EINVAL);
1756
1757	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1758		return ERR_PTR(-EINVAL);
1759
1760	res = q = clone_mnt(mnt, dentry, flag);
1761	if (IS_ERR(q))
1762		return q;
1763
1764	q->mnt_mountpoint = mnt->mnt_mountpoint;
1765
1766	p = mnt;
1767	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1768		struct mount *s;
1769		if (!is_subdir(r->mnt_mountpoint, dentry))
1770			continue;
1771
1772		for (s = r; s; s = next_mnt(s, r)) {
1773			if (!(flag & CL_COPY_UNBINDABLE) &&
1774			    IS_MNT_UNBINDABLE(s)) {
1775				if (s->mnt.mnt_flags & MNT_LOCKED) {
1776					/* Both unbindable and locked. */
1777					q = ERR_PTR(-EPERM);
1778					goto out;
1779				} else {
1780					s = skip_mnt_tree(s);
1781					continue;
1782				}
1783			}
1784			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1785			    is_mnt_ns_file(s->mnt.mnt_root)) {
1786				s = skip_mnt_tree(s);
1787				continue;
1788			}
1789			while (p != s->mnt_parent) {
1790				p = p->mnt_parent;
1791				q = q->mnt_parent;
1792			}
1793			p = s;
1794			parent = q;
1795			q = clone_mnt(p, p->mnt.mnt_root, flag);
1796			if (IS_ERR(q))
1797				goto out;
1798			lock_mount_hash();
1799			list_add_tail(&q->mnt_list, &res->mnt_list);
1800			attach_mnt(q, parent, p->mnt_mp);
1801			unlock_mount_hash();
1802		}
1803	}
1804	return res;
1805out:
1806	if (res) {
1807		lock_mount_hash();
1808		umount_tree(res, UMOUNT_SYNC);
1809		unlock_mount_hash();
1810	}
1811	return q;
1812}
1813
1814/* Caller should check returned pointer for errors */
1815
1816struct vfsmount *collect_mounts(const struct path *path)
1817{
1818	struct mount *tree;
1819	namespace_lock();
1820	if (!check_mnt(real_mount(path->mnt)))
1821		tree = ERR_PTR(-EINVAL);
1822	else
1823		tree = copy_tree(real_mount(path->mnt), path->dentry,
1824				 CL_COPY_ALL | CL_PRIVATE);
1825	namespace_unlock();
1826	if (IS_ERR(tree))
1827		return ERR_CAST(tree);
1828	return &tree->mnt;
1829}
1830
1831static void free_mnt_ns(struct mnt_namespace *);
1832static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1833
1834void dissolve_on_fput(struct vfsmount *mnt)
1835{
1836	struct mnt_namespace *ns;
1837	namespace_lock();
1838	lock_mount_hash();
1839	ns = real_mount(mnt)->mnt_ns;
1840	if (ns) {
1841		if (is_anon_ns(ns))
1842			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1843		else
1844			ns = NULL;
1845	}
1846	unlock_mount_hash();
1847	namespace_unlock();
1848	if (ns)
1849		free_mnt_ns(ns);
1850}
1851
1852void drop_collected_mounts(struct vfsmount *mnt)
1853{
1854	namespace_lock();
1855	lock_mount_hash();
1856	umount_tree(real_mount(mnt), 0);
1857	unlock_mount_hash();
1858	namespace_unlock();
1859}
1860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1861/**
1862 * clone_private_mount - create a private clone of a path
 
1863 *
1864 * This creates a new vfsmount, which will be the clone of @path.  The new will
1865 * not be attached anywhere in the namespace and will be private (i.e. changes
1866 * to the originating mount won't be propagated into this).
1867 *
1868 * Release with mntput().
1869 */
1870struct vfsmount *clone_private_mount(const struct path *path)
1871{
1872	struct mount *old_mnt = real_mount(path->mnt);
1873	struct mount *new_mnt;
1874
 
1875	if (IS_MNT_UNBINDABLE(old_mnt))
1876		return ERR_PTR(-EINVAL);
 
 
 
 
 
 
1877
1878	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
 
 
1879	if (IS_ERR(new_mnt))
1880		return ERR_CAST(new_mnt);
1881
 
 
 
1882	return &new_mnt->mnt;
 
 
 
 
1883}
1884EXPORT_SYMBOL_GPL(clone_private_mount);
1885
1886int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1887		   struct vfsmount *root)
1888{
1889	struct mount *mnt;
1890	int res = f(root, arg);
1891	if (res)
1892		return res;
1893	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1894		res = f(&mnt->mnt, arg);
1895		if (res)
1896			return res;
1897	}
1898	return 0;
1899}
1900
1901static void lock_mnt_tree(struct mount *mnt)
1902{
1903	struct mount *p;
1904
1905	for (p = mnt; p; p = next_mnt(p, mnt)) {
1906		int flags = p->mnt.mnt_flags;
1907		/* Don't allow unprivileged users to change mount flags */
1908		flags |= MNT_LOCK_ATIME;
1909
1910		if (flags & MNT_READONLY)
1911			flags |= MNT_LOCK_READONLY;
1912
1913		if (flags & MNT_NODEV)
1914			flags |= MNT_LOCK_NODEV;
1915
1916		if (flags & MNT_NOSUID)
1917			flags |= MNT_LOCK_NOSUID;
1918
1919		if (flags & MNT_NOEXEC)
1920			flags |= MNT_LOCK_NOEXEC;
1921		/* Don't allow unprivileged users to reveal what is under a mount */
1922		if (list_empty(&p->mnt_expire))
1923			flags |= MNT_LOCKED;
1924		p->mnt.mnt_flags = flags;
1925	}
1926}
1927
1928static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1929{
1930	struct mount *p;
1931
1932	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1933		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1934			mnt_release_group_id(p);
1935	}
1936}
1937
1938static int invent_group_ids(struct mount *mnt, bool recurse)
1939{
1940	struct mount *p;
1941
1942	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1943		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1944			int err = mnt_alloc_group_id(p);
1945			if (err) {
1946				cleanup_group_ids(mnt, p);
1947				return err;
1948			}
1949		}
1950	}
1951
1952	return 0;
1953}
1954
1955int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1956{
1957	unsigned int max = READ_ONCE(sysctl_mount_max);
1958	unsigned int mounts = 0, old, pending, sum;
1959	struct mount *p;
1960
 
 
 
 
 
 
 
1961	for (p = mnt; p; p = next_mnt(p, mnt))
1962		mounts++;
1963
1964	old = ns->mounts;
1965	pending = ns->pending_mounts;
1966	sum = old + pending;
1967	if ((old > sum) ||
1968	    (pending > sum) ||
1969	    (max < sum) ||
1970	    (mounts > (max - sum)))
1971		return -ENOSPC;
1972
1973	ns->pending_mounts = pending + mounts;
1974	return 0;
1975}
1976
1977/*
1978 *  @source_mnt : mount tree to be attached
1979 *  @nd         : place the mount tree @source_mnt is attached
1980 *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1981 *  		   store the parent mount and mountpoint dentry.
1982 *  		   (done when source_mnt is moved)
1983 *
1984 *  NOTE: in the table below explains the semantics when a source mount
1985 *  of a given type is attached to a destination mount of a given type.
1986 * ---------------------------------------------------------------------------
1987 * |         BIND MOUNT OPERATION                                            |
1988 * |**************************************************************************
1989 * | source-->| shared        |       private  |       slave    | unbindable |
1990 * | dest     |               |                |                |            |
1991 * |   |      |               |                |                |            |
1992 * |   v      |               |                |                |            |
1993 * |**************************************************************************
1994 * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1995 * |          |               |                |                |            |
1996 * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1997 * ***************************************************************************
1998 * A bind operation clones the source mount and mounts the clone on the
1999 * destination mount.
2000 *
2001 * (++)  the cloned mount is propagated to all the mounts in the propagation
2002 * 	 tree of the destination mount and the cloned mount is added to
2003 * 	 the peer group of the source mount.
2004 * (+)   the cloned mount is created under the destination mount and is marked
2005 *       as shared. The cloned mount is added to the peer group of the source
2006 *       mount.
2007 * (+++) the mount is propagated to all the mounts in the propagation tree
2008 *       of the destination mount and the cloned mount is made slave
2009 *       of the same master as that of the source mount. The cloned mount
2010 *       is marked as 'shared and slave'.
2011 * (*)   the cloned mount is made a slave of the same master as that of the
2012 * 	 source mount.
2013 *
2014 * ---------------------------------------------------------------------------
2015 * |         		MOVE MOUNT OPERATION                                 |
2016 * |**************************************************************************
2017 * | source-->| shared        |       private  |       slave    | unbindable |
2018 * | dest     |               |                |                |            |
2019 * |   |      |               |                |                |            |
2020 * |   v      |               |                |                |            |
2021 * |**************************************************************************
2022 * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2023 * |          |               |                |                |            |
2024 * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2025 * ***************************************************************************
2026 *
2027 * (+)  the mount is moved to the destination. And is then propagated to
2028 * 	all the mounts in the propagation tree of the destination mount.
2029 * (+*)  the mount is moved to the destination.
2030 * (+++)  the mount is moved to the destination and is then propagated to
2031 * 	all the mounts belonging to the destination mount's propagation tree.
2032 * 	the mount is marked as 'shared and slave'.
2033 * (*)	the mount continues to be a slave at the new location.
2034 *
2035 * if the source mount is a tree, the operations explained above is
2036 * applied to each mount in the tree.
2037 * Must be called without spinlocks held, since this function can sleep
2038 * in allocations.
2039 */
2040static int attach_recursive_mnt(struct mount *source_mnt,
2041			struct mount *dest_mnt,
2042			struct mountpoint *dest_mp,
2043			bool moving)
2044{
2045	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2046	HLIST_HEAD(tree_list);
2047	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2048	struct mountpoint *smp;
2049	struct mount *child, *p;
2050	struct hlist_node *n;
2051	int err;
2052
2053	/* Preallocate a mountpoint in case the new mounts need
2054	 * to be tucked under other mounts.
2055	 */
2056	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2057	if (IS_ERR(smp))
2058		return PTR_ERR(smp);
2059
2060	/* Is there space to add these mounts to the mount namespace? */
2061	if (!moving) {
2062		err = count_mounts(ns, source_mnt);
2063		if (err)
2064			goto out;
2065	}
2066
2067	if (IS_MNT_SHARED(dest_mnt)) {
2068		err = invent_group_ids(source_mnt, true);
2069		if (err)
2070			goto out;
2071		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2072		lock_mount_hash();
2073		if (err)
2074			goto out_cleanup_ids;
2075		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2076			set_mnt_shared(p);
2077	} else {
2078		lock_mount_hash();
2079	}
2080	if (moving) {
2081		unhash_mnt(source_mnt);
2082		attach_mnt(source_mnt, dest_mnt, dest_mp);
2083		touch_mnt_namespace(source_mnt->mnt_ns);
2084	} else {
2085		if (source_mnt->mnt_ns) {
2086			/* move from anon - the caller will destroy */
2087			list_del_init(&source_mnt->mnt_ns->list);
2088		}
2089		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2090		commit_tree(source_mnt);
2091	}
2092
2093	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2094		struct mount *q;
2095		hlist_del_init(&child->mnt_hash);
2096		q = __lookup_mnt(&child->mnt_parent->mnt,
2097				 child->mnt_mountpoint);
2098		if (q)
2099			mnt_change_mountpoint(child, smp, q);
2100		/* Notice when we are propagating across user namespaces */
2101		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2102			lock_mnt_tree(child);
2103		child->mnt.mnt_flags &= ~MNT_LOCKED;
2104		commit_tree(child);
2105	}
2106	put_mountpoint(smp);
2107	unlock_mount_hash();
2108
2109	return 0;
2110
2111 out_cleanup_ids:
2112	while (!hlist_empty(&tree_list)) {
2113		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2114		child->mnt_parent->mnt_ns->pending_mounts = 0;
2115		umount_tree(child, UMOUNT_SYNC);
2116	}
2117	unlock_mount_hash();
2118	cleanup_group_ids(source_mnt, NULL);
2119 out:
2120	ns->pending_mounts = 0;
2121
2122	read_seqlock_excl(&mount_lock);
2123	put_mountpoint(smp);
2124	read_sequnlock_excl(&mount_lock);
2125
2126	return err;
2127}
2128
2129static struct mountpoint *lock_mount(struct path *path)
2130{
2131	struct vfsmount *mnt;
2132	struct dentry *dentry = path->dentry;
2133retry:
2134	inode_lock(dentry->d_inode);
2135	if (unlikely(cant_mount(dentry))) {
2136		inode_unlock(dentry->d_inode);
2137		return ERR_PTR(-ENOENT);
2138	}
2139	namespace_lock();
2140	mnt = lookup_mnt(path);
2141	if (likely(!mnt)) {
2142		struct mountpoint *mp = get_mountpoint(dentry);
2143		if (IS_ERR(mp)) {
2144			namespace_unlock();
2145			inode_unlock(dentry->d_inode);
2146			return mp;
2147		}
2148		return mp;
2149	}
2150	namespace_unlock();
2151	inode_unlock(path->dentry->d_inode);
2152	path_put(path);
2153	path->mnt = mnt;
2154	dentry = path->dentry = dget(mnt->mnt_root);
2155	goto retry;
2156}
2157
2158static void unlock_mount(struct mountpoint *where)
2159{
2160	struct dentry *dentry = where->m_dentry;
2161
2162	read_seqlock_excl(&mount_lock);
2163	put_mountpoint(where);
2164	read_sequnlock_excl(&mount_lock);
2165
2166	namespace_unlock();
2167	inode_unlock(dentry->d_inode);
2168}
2169
2170static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2171{
2172	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2173		return -EINVAL;
2174
2175	if (d_is_dir(mp->m_dentry) !=
2176	      d_is_dir(mnt->mnt.mnt_root))
2177		return -ENOTDIR;
2178
2179	return attach_recursive_mnt(mnt, p, mp, false);
2180}
2181
2182/*
2183 * Sanity check the flags to change_mnt_propagation.
2184 */
2185
2186static int flags_to_propagation_type(int ms_flags)
2187{
2188	int type = ms_flags & ~(MS_REC | MS_SILENT);
2189
2190	/* Fail if any non-propagation flags are set */
2191	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2192		return 0;
2193	/* Only one propagation flag should be set */
2194	if (!is_power_of_2(type))
2195		return 0;
2196	return type;
2197}
2198
2199/*
2200 * recursively change the type of the mountpoint.
2201 */
2202static int do_change_type(struct path *path, int ms_flags)
2203{
2204	struct mount *m;
2205	struct mount *mnt = real_mount(path->mnt);
2206	int recurse = ms_flags & MS_REC;
2207	int type;
2208	int err = 0;
2209
2210	if (path->dentry != path->mnt->mnt_root)
2211		return -EINVAL;
2212
2213	type = flags_to_propagation_type(ms_flags);
2214	if (!type)
2215		return -EINVAL;
2216
2217	namespace_lock();
2218	if (type == MS_SHARED) {
2219		err = invent_group_ids(mnt, recurse);
2220		if (err)
2221			goto out_unlock;
2222	}
2223
2224	lock_mount_hash();
2225	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2226		change_mnt_propagation(m, type);
2227	unlock_mount_hash();
2228
2229 out_unlock:
2230	namespace_unlock();
2231	return err;
2232}
2233
2234static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2235{
2236	struct mount *child;
2237	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2238		if (!is_subdir(child->mnt_mountpoint, dentry))
2239			continue;
2240
2241		if (child->mnt.mnt_flags & MNT_LOCKED)
2242			return true;
2243	}
2244	return false;
2245}
2246
2247static struct mount *__do_loopback(struct path *old_path, int recurse)
2248{
2249	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2250
2251	if (IS_MNT_UNBINDABLE(old))
2252		return mnt;
2253
2254	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2255		return mnt;
2256
2257	if (!recurse && has_locked_children(old, old_path->dentry))
2258		return mnt;
2259
2260	if (recurse)
2261		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2262	else
2263		mnt = clone_mnt(old, old_path->dentry, 0);
2264
2265	if (!IS_ERR(mnt))
2266		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2267
2268	return mnt;
2269}
2270
2271/*
2272 * do loopback mount.
2273 */
2274static int do_loopback(struct path *path, const char *old_name,
2275				int recurse)
2276{
2277	struct path old_path;
2278	struct mount *mnt = NULL, *parent;
2279	struct mountpoint *mp;
2280	int err;
2281	if (!old_name || !*old_name)
2282		return -EINVAL;
2283	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2284	if (err)
2285		return err;
2286
2287	err = -EINVAL;
2288	if (mnt_ns_loop(old_path.dentry))
2289		goto out;
2290
2291	mp = lock_mount(path);
2292	if (IS_ERR(mp)) {
2293		err = PTR_ERR(mp);
2294		goto out;
2295	}
2296
2297	parent = real_mount(path->mnt);
2298	if (!check_mnt(parent))
2299		goto out2;
2300
2301	mnt = __do_loopback(&old_path, recurse);
2302	if (IS_ERR(mnt)) {
2303		err = PTR_ERR(mnt);
2304		goto out2;
2305	}
2306
2307	err = graft_tree(mnt, parent, mp);
2308	if (err) {
2309		lock_mount_hash();
2310		umount_tree(mnt, UMOUNT_SYNC);
2311		unlock_mount_hash();
2312	}
2313out2:
2314	unlock_mount(mp);
2315out:
2316	path_put(&old_path);
2317	return err;
2318}
2319
2320static struct file *open_detached_copy(struct path *path, bool recursive)
2321{
2322	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2323	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2324	struct mount *mnt, *p;
2325	struct file *file;
2326
2327	if (IS_ERR(ns))
2328		return ERR_CAST(ns);
2329
2330	namespace_lock();
2331	mnt = __do_loopback(path, recursive);
2332	if (IS_ERR(mnt)) {
2333		namespace_unlock();
2334		free_mnt_ns(ns);
2335		return ERR_CAST(mnt);
2336	}
2337
2338	lock_mount_hash();
2339	for (p = mnt; p; p = next_mnt(p, mnt)) {
2340		p->mnt_ns = ns;
2341		ns->mounts++;
2342	}
2343	ns->root = mnt;
2344	list_add_tail(&ns->list, &mnt->mnt_list);
2345	mntget(&mnt->mnt);
2346	unlock_mount_hash();
2347	namespace_unlock();
2348
2349	mntput(path->mnt);
2350	path->mnt = &mnt->mnt;
2351	file = dentry_open(path, O_PATH, current_cred());
2352	if (IS_ERR(file))
2353		dissolve_on_fput(path->mnt);
2354	else
2355		file->f_mode |= FMODE_NEED_UNMOUNT;
2356	return file;
2357}
2358
2359SYSCALL_DEFINE3(open_tree, int, dfd, const char *, filename, unsigned, flags)
2360{
2361	struct file *file;
2362	struct path path;
2363	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2364	bool detached = flags & OPEN_TREE_CLONE;
2365	int error;
2366	int fd;
2367
2368	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2369
2370	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2371		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2372		      OPEN_TREE_CLOEXEC))
2373		return -EINVAL;
2374
2375	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2376		return -EINVAL;
2377
2378	if (flags & AT_NO_AUTOMOUNT)
2379		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2380	if (flags & AT_SYMLINK_NOFOLLOW)
2381		lookup_flags &= ~LOOKUP_FOLLOW;
2382	if (flags & AT_EMPTY_PATH)
2383		lookup_flags |= LOOKUP_EMPTY;
2384
2385	if (detached && !may_mount())
2386		return -EPERM;
2387
2388	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2389	if (fd < 0)
2390		return fd;
2391
2392	error = user_path_at(dfd, filename, lookup_flags, &path);
2393	if (unlikely(error)) {
2394		file = ERR_PTR(error);
2395	} else {
2396		if (detached)
2397			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2398		else
2399			file = dentry_open(&path, O_PATH, current_cred());
2400		path_put(&path);
2401	}
2402	if (IS_ERR(file)) {
2403		put_unused_fd(fd);
2404		return PTR_ERR(file);
2405	}
2406	fd_install(fd, file);
2407	return fd;
2408}
2409
2410/*
2411 * Don't allow locked mount flags to be cleared.
2412 *
2413 * No locks need to be held here while testing the various MNT_LOCK
2414 * flags because those flags can never be cleared once they are set.
2415 */
2416static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2417{
2418	unsigned int fl = mnt->mnt.mnt_flags;
2419
2420	if ((fl & MNT_LOCK_READONLY) &&
2421	    !(mnt_flags & MNT_READONLY))
2422		return false;
2423
2424	if ((fl & MNT_LOCK_NODEV) &&
2425	    !(mnt_flags & MNT_NODEV))
2426		return false;
2427
2428	if ((fl & MNT_LOCK_NOSUID) &&
2429	    !(mnt_flags & MNT_NOSUID))
2430		return false;
2431
2432	if ((fl & MNT_LOCK_NOEXEC) &&
2433	    !(mnt_flags & MNT_NOEXEC))
2434		return false;
2435
2436	if ((fl & MNT_LOCK_ATIME) &&
2437	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2438		return false;
2439
2440	return true;
2441}
2442
2443static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2444{
2445	bool readonly_request = (mnt_flags & MNT_READONLY);
2446
2447	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2448		return 0;
2449
2450	if (readonly_request)
2451		return mnt_make_readonly(mnt);
2452
2453	return __mnt_unmake_readonly(mnt);
 
2454}
2455
2456/*
2457 * Update the user-settable attributes on a mount.  The caller must hold
2458 * sb->s_umount for writing.
2459 */
2460static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2461{
2462	lock_mount_hash();
2463	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2464	mnt->mnt.mnt_flags = mnt_flags;
2465	touch_mnt_namespace(mnt->mnt_ns);
2466	unlock_mount_hash();
2467}
2468
2469static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2470{
2471	struct super_block *sb = mnt->mnt_sb;
2472
2473	if (!__mnt_is_readonly(mnt) &&
 
2474	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2475		char *buf = (char *)__get_free_page(GFP_KERNEL);
2476		char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2477		struct tm tm;
2478
2479		time64_to_tm(sb->s_time_max, 0, &tm);
2480
2481		pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2482			sb->s_type->name,
2483			is_mounted(mnt) ? "remounted" : "mounted",
2484			mntpath,
2485			tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2486
2487		free_page((unsigned long)buf);
 
2488	}
2489}
2490
2491/*
2492 * Handle reconfiguration of the mountpoint only without alteration of the
2493 * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2494 * to mount(2).
2495 */
2496static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2497{
2498	struct super_block *sb = path->mnt->mnt_sb;
2499	struct mount *mnt = real_mount(path->mnt);
2500	int ret;
2501
2502	if (!check_mnt(mnt))
2503		return -EINVAL;
2504
2505	if (path->dentry != mnt->mnt.mnt_root)
2506		return -EINVAL;
2507
2508	if (!can_change_locked_flags(mnt, mnt_flags))
2509		return -EPERM;
2510
2511	down_write(&sb->s_umount);
 
 
 
 
 
2512	ret = change_mount_ro_state(mnt, mnt_flags);
2513	if (ret == 0)
2514		set_mount_attributes(mnt, mnt_flags);
2515	up_write(&sb->s_umount);
 
2516
2517	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2518
2519	return ret;
2520}
2521
2522/*
2523 * change filesystem flags. dir should be a physical root of filesystem.
2524 * If you've mounted a non-root directory somewhere and want to do remount
2525 * on it - tough luck.
2526 */
2527static int do_remount(struct path *path, int ms_flags, int sb_flags,
2528		      int mnt_flags, void *data)
2529{
2530	int err;
2531	struct super_block *sb = path->mnt->mnt_sb;
2532	struct mount *mnt = real_mount(path->mnt);
2533	struct fs_context *fc;
2534
2535	if (!check_mnt(mnt))
2536		return -EINVAL;
2537
2538	if (path->dentry != path->mnt->mnt_root)
2539		return -EINVAL;
2540
2541	if (!can_change_locked_flags(mnt, mnt_flags))
2542		return -EPERM;
2543
2544	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2545	if (IS_ERR(fc))
2546		return PTR_ERR(fc);
2547
 
2548	err = parse_monolithic_mount_data(fc, data);
2549	if (!err) {
2550		down_write(&sb->s_umount);
2551		err = -EPERM;
2552		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2553			err = reconfigure_super(fc);
2554			if (!err)
 
2555				set_mount_attributes(mnt, mnt_flags);
 
 
2556		}
2557		up_write(&sb->s_umount);
2558	}
2559
2560	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2561
2562	put_fs_context(fc);
2563	return err;
2564}
2565
2566static inline int tree_contains_unbindable(struct mount *mnt)
2567{
2568	struct mount *p;
2569	for (p = mnt; p; p = next_mnt(p, mnt)) {
2570		if (IS_MNT_UNBINDABLE(p))
2571			return 1;
2572	}
2573	return 0;
2574}
2575
2576/*
2577 * Check that there aren't references to earlier/same mount namespaces in the
2578 * specified subtree.  Such references can act as pins for mount namespaces
2579 * that aren't checked by the mount-cycle checking code, thereby allowing
2580 * cycles to be made.
2581 */
2582static bool check_for_nsfs_mounts(struct mount *subtree)
2583{
2584	struct mount *p;
2585	bool ret = false;
2586
2587	lock_mount_hash();
2588	for (p = subtree; p; p = next_mnt(p, subtree))
2589		if (mnt_ns_loop(p->mnt.mnt_root))
2590			goto out;
2591
2592	ret = true;
2593out:
2594	unlock_mount_hash();
2595	return ret;
2596}
2597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2598static int do_move_mount(struct path *old_path, struct path *new_path)
2599{
2600	struct mnt_namespace *ns;
2601	struct mount *p;
2602	struct mount *old;
2603	struct mount *parent;
2604	struct mountpoint *mp, *old_mp;
2605	int err;
2606	bool attached;
2607
2608	mp = lock_mount(new_path);
2609	if (IS_ERR(mp))
2610		return PTR_ERR(mp);
2611
2612	old = real_mount(old_path->mnt);
2613	p = real_mount(new_path->mnt);
2614	parent = old->mnt_parent;
2615	attached = mnt_has_parent(old);
2616	old_mp = old->mnt_mp;
2617	ns = old->mnt_ns;
2618
2619	err = -EINVAL;
2620	/* The mountpoint must be in our namespace. */
2621	if (!check_mnt(p))
2622		goto out;
2623
2624	/* The thing moved must be mounted... */
2625	if (!is_mounted(&old->mnt))
2626		goto out;
2627
2628	/* ... and either ours or the root of anon namespace */
2629	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2630		goto out;
2631
2632	if (old->mnt.mnt_flags & MNT_LOCKED)
2633		goto out;
2634
2635	if (old_path->dentry != old_path->mnt->mnt_root)
2636		goto out;
2637
2638	if (d_is_dir(new_path->dentry) !=
2639	    d_is_dir(old_path->dentry))
2640		goto out;
2641	/*
2642	 * Don't move a mount residing in a shared parent.
2643	 */
2644	if (attached && IS_MNT_SHARED(parent))
2645		goto out;
2646	/*
2647	 * Don't move a mount tree containing unbindable mounts to a destination
2648	 * mount which is shared.
2649	 */
2650	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2651		goto out;
2652	err = -ELOOP;
2653	if (!check_for_nsfs_mounts(old))
2654		goto out;
2655	for (; mnt_has_parent(p); p = p->mnt_parent)
2656		if (p == old)
2657			goto out;
2658
2659	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2660				   attached);
2661	if (err)
2662		goto out;
2663
2664	/* if the mount is moved, it should no longer be expire
2665	 * automatically */
2666	list_del_init(&old->mnt_expire);
2667	if (attached)
2668		put_mountpoint(old_mp);
2669out:
2670	unlock_mount(mp);
2671	if (!err) {
2672		if (attached)
2673			mntput_no_expire(parent);
2674		else
2675			free_mnt_ns(ns);
2676	}
2677	return err;
2678}
2679
2680static int do_move_mount_old(struct path *path, const char *old_name)
2681{
2682	struct path old_path;
2683	int err;
2684
2685	if (!old_name || !*old_name)
2686		return -EINVAL;
2687
2688	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2689	if (err)
2690		return err;
2691
2692	err = do_move_mount(&old_path, path);
2693	path_put(&old_path);
2694	return err;
2695}
2696
2697/*
2698 * add a mount into a namespace's mount tree
2699 */
2700static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
 
2701{
2702	struct mountpoint *mp;
2703	struct mount *parent;
2704	int err;
2705
2706	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2707
2708	mp = lock_mount(path);
2709	if (IS_ERR(mp))
2710		return PTR_ERR(mp);
2711
2712	parent = real_mount(path->mnt);
2713	err = -EINVAL;
2714	if (unlikely(!check_mnt(parent))) {
2715		/* that's acceptable only for automounts done in private ns */
2716		if (!(mnt_flags & MNT_SHRINKABLE))
2717			goto unlock;
2718		/* ... and for those we'd better have mountpoint still alive */
2719		if (!parent->mnt_ns)
2720			goto unlock;
2721	}
2722
2723	/* Refuse the same filesystem on the same mount point */
2724	err = -EBUSY;
2725	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2726	    path->mnt->mnt_root == path->dentry)
2727		goto unlock;
2728
2729	err = -EINVAL;
2730	if (d_is_symlink(newmnt->mnt.mnt_root))
2731		goto unlock;
2732
2733	newmnt->mnt.mnt_flags = mnt_flags;
2734	err = graft_tree(newmnt, parent, mp);
2735
2736unlock:
2737	unlock_mount(mp);
2738	return err;
2739}
2740
2741static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2742
2743/*
2744 * Create a new mount using a superblock configuration and request it
2745 * be added to the namespace tree.
2746 */
2747static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2748			   unsigned int mnt_flags)
2749{
2750	struct vfsmount *mnt;
 
2751	struct super_block *sb = fc->root->d_sb;
2752	int error;
2753
2754	error = security_sb_kern_mount(sb);
2755	if (!error && mount_too_revealing(sb, &mnt_flags))
2756		error = -EPERM;
2757
2758	if (unlikely(error)) {
2759		fc_drop_locked(fc);
2760		return error;
2761	}
2762
2763	up_write(&sb->s_umount);
2764
2765	mnt = vfs_create_mount(fc);
2766	if (IS_ERR(mnt))
2767		return PTR_ERR(mnt);
2768
2769	mnt_warn_timestamp_expiry(mountpoint, mnt);
2770
2771	error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags);
 
 
 
 
 
 
2772	if (error < 0)
2773		mntput(mnt);
2774	return error;
2775}
2776
2777/*
2778 * create a new mount for userspace and request it to be added into the
2779 * namespace's tree
2780 */
2781static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2782			int mnt_flags, const char *name, void *data)
2783{
2784	struct file_system_type *type;
2785	struct fs_context *fc;
2786	const char *subtype = NULL;
2787	int err = 0;
2788
2789	if (!fstype)
2790		return -EINVAL;
2791
2792	type = get_fs_type(fstype);
2793	if (!type)
2794		return -ENODEV;
2795
2796	if (type->fs_flags & FS_HAS_SUBTYPE) {
2797		subtype = strchr(fstype, '.');
2798		if (subtype) {
2799			subtype++;
2800			if (!*subtype) {
2801				put_filesystem(type);
2802				return -EINVAL;
2803			}
2804		}
2805	}
2806
2807	fc = fs_context_for_mount(type, sb_flags);
2808	put_filesystem(type);
2809	if (IS_ERR(fc))
2810		return PTR_ERR(fc);
2811
2812	if (subtype)
2813		err = vfs_parse_fs_string(fc, "subtype",
2814					  subtype, strlen(subtype));
2815	if (!err && name)
2816		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2817	if (!err)
2818		err = parse_monolithic_mount_data(fc, data);
2819	if (!err && !mount_capable(fc))
2820		err = -EPERM;
2821	if (!err)
2822		err = vfs_get_tree(fc);
2823	if (!err)
2824		err = do_new_mount_fc(fc, path, mnt_flags);
2825
2826	put_fs_context(fc);
2827	return err;
2828}
2829
2830int finish_automount(struct vfsmount *m, struct path *path)
2831{
2832	struct mount *mnt = real_mount(m);
 
 
2833	int err;
 
 
 
 
 
 
 
2834	/* The new mount record should have at least 2 refs to prevent it being
2835	 * expired before we get a chance to add it
2836	 */
2837	BUG_ON(mnt_get_count(mnt) < 2);
2838
2839	if (m->mnt_sb == path->mnt->mnt_sb &&
2840	    m->mnt_root == path->dentry) {
2841		err = -ELOOP;
2842		goto fail;
2843	}
2844
2845	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2846	if (!err)
2847		return 0;
2848fail:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2849	/* remove m from any expiration list it may be on */
2850	if (!list_empty(&mnt->mnt_expire)) {
2851		namespace_lock();
2852		list_del_init(&mnt->mnt_expire);
2853		namespace_unlock();
2854	}
2855	mntput(m);
2856	mntput(m);
2857	return err;
2858}
2859
2860/**
2861 * mnt_set_expiry - Put a mount on an expiration list
2862 * @mnt: The mount to list.
2863 * @expiry_list: The list to add the mount to.
2864 */
2865void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2866{
2867	namespace_lock();
2868
2869	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2870
2871	namespace_unlock();
2872}
2873EXPORT_SYMBOL(mnt_set_expiry);
2874
2875/*
2876 * process a list of expirable mountpoints with the intent of discarding any
2877 * mountpoints that aren't in use and haven't been touched since last we came
2878 * here
2879 */
2880void mark_mounts_for_expiry(struct list_head *mounts)
2881{
2882	struct mount *mnt, *next;
2883	LIST_HEAD(graveyard);
2884
2885	if (list_empty(mounts))
2886		return;
2887
2888	namespace_lock();
2889	lock_mount_hash();
2890
2891	/* extract from the expiration list every vfsmount that matches the
2892	 * following criteria:
2893	 * - only referenced by its parent vfsmount
2894	 * - still marked for expiry (marked on the last call here; marks are
2895	 *   cleared by mntput())
2896	 */
2897	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2898		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2899			propagate_mount_busy(mnt, 1))
2900			continue;
2901		list_move(&mnt->mnt_expire, &graveyard);
2902	}
2903	while (!list_empty(&graveyard)) {
2904		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2905		touch_mnt_namespace(mnt->mnt_ns);
2906		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2907	}
2908	unlock_mount_hash();
2909	namespace_unlock();
2910}
2911
2912EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2913
2914/*
2915 * Ripoff of 'select_parent()'
2916 *
2917 * search the list of submounts for a given mountpoint, and move any
2918 * shrinkable submounts to the 'graveyard' list.
2919 */
2920static int select_submounts(struct mount *parent, struct list_head *graveyard)
2921{
2922	struct mount *this_parent = parent;
2923	struct list_head *next;
2924	int found = 0;
2925
2926repeat:
2927	next = this_parent->mnt_mounts.next;
2928resume:
2929	while (next != &this_parent->mnt_mounts) {
2930		struct list_head *tmp = next;
2931		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2932
2933		next = tmp->next;
2934		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2935			continue;
2936		/*
2937		 * Descend a level if the d_mounts list is non-empty.
2938		 */
2939		if (!list_empty(&mnt->mnt_mounts)) {
2940			this_parent = mnt;
2941			goto repeat;
2942		}
2943
2944		if (!propagate_mount_busy(mnt, 1)) {
2945			list_move_tail(&mnt->mnt_expire, graveyard);
2946			found++;
2947		}
2948	}
2949	/*
2950	 * All done at this level ... ascend and resume the search
2951	 */
2952	if (this_parent != parent) {
2953		next = this_parent->mnt_child.next;
2954		this_parent = this_parent->mnt_parent;
2955		goto resume;
2956	}
2957	return found;
2958}
2959
2960/*
2961 * process a list of expirable mountpoints with the intent of discarding any
2962 * submounts of a specific parent mountpoint
2963 *
2964 * mount_lock must be held for write
2965 */
2966static void shrink_submounts(struct mount *mnt)
2967{
2968	LIST_HEAD(graveyard);
2969	struct mount *m;
2970
2971	/* extract submounts of 'mountpoint' from the expiration list */
2972	while (select_submounts(mnt, &graveyard)) {
2973		while (!list_empty(&graveyard)) {
2974			m = list_first_entry(&graveyard, struct mount,
2975						mnt_expire);
2976			touch_mnt_namespace(m->mnt_ns);
2977			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2978		}
2979	}
2980}
2981
2982/*
2983 * Some copy_from_user() implementations do not return the exact number of
2984 * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2985 * Note that this function differs from copy_from_user() in that it will oops
2986 * on bad values of `to', rather than returning a short copy.
2987 */
2988static long exact_copy_from_user(void *to, const void __user * from,
2989				 unsigned long n)
2990{
2991	char *t = to;
2992	const char __user *f = from;
2993	char c;
2994
2995	if (!access_ok(from, n))
2996		return n;
2997
2998	while (n) {
2999		if (__get_user(c, f)) {
3000			memset(t, 0, n);
3001			break;
3002		}
3003		*t++ = c;
3004		f++;
3005		n--;
3006	}
3007	return n;
3008}
3009
3010void *copy_mount_options(const void __user * data)
3011{
3012	int i;
3013	unsigned long size;
3014	char *copy;
 
3015
3016	if (!data)
3017		return NULL;
3018
3019	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3020	if (!copy)
3021		return ERR_PTR(-ENOMEM);
3022
3023	/* We only care that *some* data at the address the user
3024	 * gave us is valid.  Just in case, we'll zero
3025	 * the remainder of the page.
3026	 */
3027	/* copy_from_user cannot cross TASK_SIZE ! */
3028	size = TASK_SIZE - (unsigned long)untagged_addr(data);
3029	if (size > PAGE_SIZE)
3030		size = PAGE_SIZE;
 
 
 
 
 
 
 
3031
3032	i = size - exact_copy_from_user(copy, data, size);
3033	if (!i) {
3034		kfree(copy);
3035		return ERR_PTR(-EFAULT);
3036	}
3037	if (i != PAGE_SIZE)
3038		memset(copy + i, 0, PAGE_SIZE - i);
3039	return copy;
3040}
3041
3042char *copy_mount_string(const void __user *data)
3043{
3044	return data ? strndup_user(data, PATH_MAX) : NULL;
3045}
3046
3047/*
3048 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3049 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3050 *
3051 * data is a (void *) that can point to any structure up to
3052 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3053 * information (or be NULL).
3054 *
3055 * Pre-0.97 versions of mount() didn't have a flags word.
3056 * When the flags word was introduced its top half was required
3057 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3058 * Therefore, if this magic number is present, it carries no information
3059 * and must be discarded.
3060 */
3061long do_mount(const char *dev_name, const char __user *dir_name,
3062		const char *type_page, unsigned long flags, void *data_page)
3063{
3064	struct path path;
3065	unsigned int mnt_flags = 0, sb_flags;
3066	int retval = 0;
3067
3068	/* Discard magic */
3069	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3070		flags &= ~MS_MGC_MSK;
3071
3072	/* Basic sanity checks */
3073	if (data_page)
3074		((char *)data_page)[PAGE_SIZE - 1] = 0;
3075
3076	if (flags & MS_NOUSER)
3077		return -EINVAL;
3078
3079	/* ... and get the mountpoint */
3080	retval = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3081	if (retval)
3082		return retval;
3083
3084	retval = security_sb_mount(dev_name, &path,
3085				   type_page, flags, data_page);
3086	if (!retval && !may_mount())
3087		retval = -EPERM;
3088	if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
3089		retval = -EPERM;
3090	if (retval)
3091		goto dput_out;
3092
3093	/* Default to relatime unless overriden */
3094	if (!(flags & MS_NOATIME))
3095		mnt_flags |= MNT_RELATIME;
3096
3097	/* Separate the per-mountpoint flags */
3098	if (flags & MS_NOSUID)
3099		mnt_flags |= MNT_NOSUID;
3100	if (flags & MS_NODEV)
3101		mnt_flags |= MNT_NODEV;
3102	if (flags & MS_NOEXEC)
3103		mnt_flags |= MNT_NOEXEC;
3104	if (flags & MS_NOATIME)
3105		mnt_flags |= MNT_NOATIME;
3106	if (flags & MS_NODIRATIME)
3107		mnt_flags |= MNT_NODIRATIME;
3108	if (flags & MS_STRICTATIME)
3109		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3110	if (flags & MS_RDONLY)
3111		mnt_flags |= MNT_READONLY;
 
 
3112
3113	/* The default atime for remount is preservation */
3114	if ((flags & MS_REMOUNT) &&
3115	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3116		       MS_STRICTATIME)) == 0)) {
3117		mnt_flags &= ~MNT_ATIME_MASK;
3118		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
3119	}
3120
3121	sb_flags = flags & (SB_RDONLY |
3122			    SB_SYNCHRONOUS |
3123			    SB_MANDLOCK |
3124			    SB_DIRSYNC |
3125			    SB_SILENT |
3126			    SB_POSIXACL |
3127			    SB_LAZYTIME |
3128			    SB_I_VERSION);
3129
3130	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3131		retval = do_reconfigure_mnt(&path, mnt_flags);
3132	else if (flags & MS_REMOUNT)
3133		retval = do_remount(&path, flags, sb_flags, mnt_flags,
3134				    data_page);
3135	else if (flags & MS_BIND)
3136		retval = do_loopback(&path, dev_name, flags & MS_REC);
3137	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3138		retval = do_change_type(&path, flags);
3139	else if (flags & MS_MOVE)
3140		retval = do_move_mount_old(&path, dev_name);
3141	else
3142		retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
3143				      dev_name, data_page);
3144dput_out:
 
 
 
 
 
 
 
 
 
 
3145	path_put(&path);
3146	return retval;
3147}
3148
3149static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3150{
3151	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3152}
3153
3154static void dec_mnt_namespaces(struct ucounts *ucounts)
3155{
3156	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3157}
3158
3159static void free_mnt_ns(struct mnt_namespace *ns)
3160{
3161	if (!is_anon_ns(ns))
3162		ns_free_inum(&ns->ns);
3163	dec_mnt_namespaces(ns->ucounts);
3164	put_user_ns(ns->user_ns);
3165	kfree(ns);
3166}
3167
3168/*
3169 * Assign a sequence number so we can detect when we attempt to bind
3170 * mount a reference to an older mount namespace into the current
3171 * mount namespace, preventing reference counting loops.  A 64bit
3172 * number incrementing at 10Ghz will take 12,427 years to wrap which
3173 * is effectively never, so we can ignore the possibility.
3174 */
3175static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3176
3177static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3178{
3179	struct mnt_namespace *new_ns;
3180	struct ucounts *ucounts;
3181	int ret;
3182
3183	ucounts = inc_mnt_namespaces(user_ns);
3184	if (!ucounts)
3185		return ERR_PTR(-ENOSPC);
3186
3187	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3188	if (!new_ns) {
3189		dec_mnt_namespaces(ucounts);
3190		return ERR_PTR(-ENOMEM);
3191	}
3192	if (!anon) {
3193		ret = ns_alloc_inum(&new_ns->ns);
3194		if (ret) {
3195			kfree(new_ns);
3196			dec_mnt_namespaces(ucounts);
3197			return ERR_PTR(ret);
3198		}
3199	}
3200	new_ns->ns.ops = &mntns_operations;
3201	if (!anon)
3202		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3203	atomic_set(&new_ns->count, 1);
3204	INIT_LIST_HEAD(&new_ns->list);
3205	init_waitqueue_head(&new_ns->poll);
 
3206	new_ns->user_ns = get_user_ns(user_ns);
3207	new_ns->ucounts = ucounts;
3208	return new_ns;
3209}
3210
3211__latent_entropy
3212struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3213		struct user_namespace *user_ns, struct fs_struct *new_fs)
3214{
3215	struct mnt_namespace *new_ns;
3216	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3217	struct mount *p, *q;
3218	struct mount *old;
3219	struct mount *new;
3220	int copy_flags;
3221
3222	BUG_ON(!ns);
3223
3224	if (likely(!(flags & CLONE_NEWNS))) {
3225		get_mnt_ns(ns);
3226		return ns;
3227	}
3228
3229	old = ns->root;
3230
3231	new_ns = alloc_mnt_ns(user_ns, false);
3232	if (IS_ERR(new_ns))
3233		return new_ns;
3234
3235	namespace_lock();
3236	/* First pass: copy the tree topology */
3237	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3238	if (user_ns != ns->user_ns)
3239		copy_flags |= CL_SHARED_TO_SLAVE;
3240	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3241	if (IS_ERR(new)) {
3242		namespace_unlock();
3243		free_mnt_ns(new_ns);
3244		return ERR_CAST(new);
3245	}
3246	if (user_ns != ns->user_ns) {
3247		lock_mount_hash();
3248		lock_mnt_tree(new);
3249		unlock_mount_hash();
3250	}
3251	new_ns->root = new;
3252	list_add_tail(&new_ns->list, &new->mnt_list);
3253
3254	/*
3255	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3256	 * as belonging to new namespace.  We have already acquired a private
3257	 * fs_struct, so tsk->fs->lock is not needed.
3258	 */
3259	p = old;
3260	q = new;
3261	while (p) {
3262		q->mnt_ns = new_ns;
3263		new_ns->mounts++;
3264		if (new_fs) {
3265			if (&p->mnt == new_fs->root.mnt) {
3266				new_fs->root.mnt = mntget(&q->mnt);
3267				rootmnt = &p->mnt;
3268			}
3269			if (&p->mnt == new_fs->pwd.mnt) {
3270				new_fs->pwd.mnt = mntget(&q->mnt);
3271				pwdmnt = &p->mnt;
3272			}
3273		}
3274		p = next_mnt(p, old);
3275		q = next_mnt(q, new);
3276		if (!q)
3277			break;
 
3278		while (p->mnt.mnt_root != q->mnt.mnt_root)
3279			p = next_mnt(p, old);
3280	}
3281	namespace_unlock();
3282
3283	if (rootmnt)
3284		mntput(rootmnt);
3285	if (pwdmnt)
3286		mntput(pwdmnt);
3287
3288	return new_ns;
3289}
3290
3291struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3292{
3293	struct mount *mnt = real_mount(m);
3294	struct mnt_namespace *ns;
3295	struct super_block *s;
3296	struct path path;
3297	int err;
3298
3299	ns = alloc_mnt_ns(&init_user_ns, true);
3300	if (IS_ERR(ns)) {
3301		mntput(m);
3302		return ERR_CAST(ns);
3303	}
3304	mnt->mnt_ns = ns;
3305	ns->root = mnt;
3306	ns->mounts++;
3307	list_add(&mnt->mnt_list, &ns->list);
3308
3309	err = vfs_path_lookup(m->mnt_root, m,
3310			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3311
3312	put_mnt_ns(ns);
3313
3314	if (err)
3315		return ERR_PTR(err);
3316
3317	/* trade a vfsmount reference for active sb one */
3318	s = path.mnt->mnt_sb;
3319	atomic_inc(&s->s_active);
3320	mntput(path.mnt);
3321	/* lock the sucker */
3322	down_write(&s->s_umount);
3323	/* ... and return the root of (sub)tree on it */
3324	return path.dentry;
3325}
3326EXPORT_SYMBOL(mount_subtree);
3327
3328int ksys_mount(const char __user *dev_name, const char __user *dir_name,
3329	       const char __user *type, unsigned long flags, void __user *data)
3330{
3331	int ret;
3332	char *kernel_type;
3333	char *kernel_dev;
3334	void *options;
3335
3336	kernel_type = copy_mount_string(type);
3337	ret = PTR_ERR(kernel_type);
3338	if (IS_ERR(kernel_type))
3339		goto out_type;
3340
3341	kernel_dev = copy_mount_string(dev_name);
3342	ret = PTR_ERR(kernel_dev);
3343	if (IS_ERR(kernel_dev))
3344		goto out_dev;
3345
3346	options = copy_mount_options(data);
3347	ret = PTR_ERR(options);
3348	if (IS_ERR(options))
3349		goto out_data;
3350
3351	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3352
3353	kfree(options);
3354out_data:
3355	kfree(kernel_dev);
3356out_dev:
3357	kfree(kernel_type);
3358out_type:
3359	return ret;
3360}
3361
3362SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3363		char __user *, type, unsigned long, flags, void __user *, data)
 
 
 
 
 
 
 
 
 
3364{
3365	return ksys_mount(dev_name, dir_name, type, flags, data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3366}
3367
3368/*
3369 * Create a kernel mount representation for a new, prepared superblock
3370 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3371 */
3372SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3373		unsigned int, attr_flags)
3374{
3375	struct mnt_namespace *ns;
3376	struct fs_context *fc;
3377	struct file *file;
3378	struct path newmount;
3379	struct mount *mnt;
3380	struct fd f;
3381	unsigned int mnt_flags = 0;
3382	long ret;
3383
3384	if (!may_mount())
3385		return -EPERM;
3386
3387	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3388		return -EINVAL;
3389
3390	if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3391			   MOUNT_ATTR_NOSUID |
3392			   MOUNT_ATTR_NODEV |
3393			   MOUNT_ATTR_NOEXEC |
3394			   MOUNT_ATTR__ATIME |
3395			   MOUNT_ATTR_NODIRATIME))
3396		return -EINVAL;
3397
3398	if (attr_flags & MOUNT_ATTR_RDONLY)
3399		mnt_flags |= MNT_READONLY;
3400	if (attr_flags & MOUNT_ATTR_NOSUID)
3401		mnt_flags |= MNT_NOSUID;
3402	if (attr_flags & MOUNT_ATTR_NODEV)
3403		mnt_flags |= MNT_NODEV;
3404	if (attr_flags & MOUNT_ATTR_NOEXEC)
3405		mnt_flags |= MNT_NOEXEC;
3406	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3407		mnt_flags |= MNT_NODIRATIME;
3408
3409	switch (attr_flags & MOUNT_ATTR__ATIME) {
3410	case MOUNT_ATTR_STRICTATIME:
3411		break;
3412	case MOUNT_ATTR_NOATIME:
3413		mnt_flags |= MNT_NOATIME;
3414		break;
3415	case MOUNT_ATTR_RELATIME:
3416		mnt_flags |= MNT_RELATIME;
3417		break;
3418	default:
3419		return -EINVAL;
3420	}
3421
3422	f = fdget(fs_fd);
3423	if (!f.file)
3424		return -EBADF;
3425
3426	ret = -EINVAL;
3427	if (f.file->f_op != &fscontext_fops)
3428		goto err_fsfd;
3429
3430	fc = f.file->private_data;
3431
3432	ret = mutex_lock_interruptible(&fc->uapi_mutex);
3433	if (ret < 0)
3434		goto err_fsfd;
3435
3436	/* There must be a valid superblock or we can't mount it */
3437	ret = -EINVAL;
3438	if (!fc->root)
3439		goto err_unlock;
3440
3441	ret = -EPERM;
3442	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3443		pr_warn("VFS: Mount too revealing\n");
3444		goto err_unlock;
3445	}
3446
3447	ret = -EBUSY;
3448	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3449		goto err_unlock;
3450
3451	ret = -EPERM;
3452	if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3453		goto err_unlock;
3454
3455	newmount.mnt = vfs_create_mount(fc);
3456	if (IS_ERR(newmount.mnt)) {
3457		ret = PTR_ERR(newmount.mnt);
3458		goto err_unlock;
3459	}
3460	newmount.dentry = dget(fc->root);
3461	newmount.mnt->mnt_flags = mnt_flags;
3462
3463	/* We've done the mount bit - now move the file context into more or
3464	 * less the same state as if we'd done an fspick().  We don't want to
3465	 * do any memory allocation or anything like that at this point as we
3466	 * don't want to have to handle any errors incurred.
3467	 */
3468	vfs_clean_context(fc);
3469
3470	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3471	if (IS_ERR(ns)) {
3472		ret = PTR_ERR(ns);
3473		goto err_path;
3474	}
3475	mnt = real_mount(newmount.mnt);
3476	mnt->mnt_ns = ns;
3477	ns->root = mnt;
3478	ns->mounts = 1;
3479	list_add(&mnt->mnt_list, &ns->list);
3480	mntget(newmount.mnt);
3481
3482	/* Attach to an apparent O_PATH fd with a note that we need to unmount
3483	 * it, not just simply put it.
3484	 */
3485	file = dentry_open(&newmount, O_PATH, fc->cred);
3486	if (IS_ERR(file)) {
3487		dissolve_on_fput(newmount.mnt);
3488		ret = PTR_ERR(file);
3489		goto err_path;
3490	}
3491	file->f_mode |= FMODE_NEED_UNMOUNT;
3492
3493	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3494	if (ret >= 0)
3495		fd_install(ret, file);
3496	else
3497		fput(file);
3498
3499err_path:
3500	path_put(&newmount);
3501err_unlock:
3502	mutex_unlock(&fc->uapi_mutex);
3503err_fsfd:
3504	fdput(f);
3505	return ret;
3506}
3507
3508/*
3509 * Move a mount from one place to another.  In combination with
3510 * fsopen()/fsmount() this is used to install a new mount and in combination
3511 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3512 * a mount subtree.
3513 *
3514 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3515 */
3516SYSCALL_DEFINE5(move_mount,
3517		int, from_dfd, const char *, from_pathname,
3518		int, to_dfd, const char *, to_pathname,
3519		unsigned int, flags)
3520{
3521	struct path from_path, to_path;
3522	unsigned int lflags;
3523	int ret = 0;
3524
3525	if (!may_mount())
3526		return -EPERM;
3527
3528	if (flags & ~MOVE_MOUNT__MASK)
3529		return -EINVAL;
3530
3531	/* If someone gives a pathname, they aren't permitted to move
3532	 * from an fd that requires unmount as we can't get at the flag
3533	 * to clear it afterwards.
3534	 */
3535	lflags = 0;
3536	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3537	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3538	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3539
3540	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3541	if (ret < 0)
3542		return ret;
3543
3544	lflags = 0;
3545	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3546	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3547	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3548
3549	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3550	if (ret < 0)
3551		goto out_from;
3552
3553	ret = security_move_mount(&from_path, &to_path);
3554	if (ret < 0)
3555		goto out_to;
3556
3557	ret = do_move_mount(&from_path, &to_path);
 
 
 
3558
3559out_to:
3560	path_put(&to_path);
3561out_from:
3562	path_put(&from_path);
3563	return ret;
3564}
3565
3566/*
3567 * Return true if path is reachable from root
3568 *
3569 * namespace_sem or mount_lock is held
3570 */
3571bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3572			 const struct path *root)
3573{
3574	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3575		dentry = mnt->mnt_mountpoint;
3576		mnt = mnt->mnt_parent;
3577	}
3578	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3579}
3580
3581bool path_is_under(const struct path *path1, const struct path *path2)
3582{
3583	bool res;
3584	read_seqlock_excl(&mount_lock);
3585	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3586	read_sequnlock_excl(&mount_lock);
3587	return res;
3588}
3589EXPORT_SYMBOL(path_is_under);
3590
3591/*
3592 * pivot_root Semantics:
3593 * Moves the root file system of the current process to the directory put_old,
3594 * makes new_root as the new root file system of the current process, and sets
3595 * root/cwd of all processes which had them on the current root to new_root.
3596 *
3597 * Restrictions:
3598 * The new_root and put_old must be directories, and  must not be on the
3599 * same file  system as the current process root. The put_old  must  be
3600 * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3601 * pointed to by put_old must yield the same directory as new_root. No other
3602 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3603 *
3604 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3605 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3606 * in this situation.
3607 *
3608 * Notes:
3609 *  - we don't move root/cwd if they are not at the root (reason: if something
3610 *    cared enough to change them, it's probably wrong to force them elsewhere)
3611 *  - it's okay to pick a root that isn't the root of a file system, e.g.
3612 *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3613 *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3614 *    first.
3615 */
3616SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3617		const char __user *, put_old)
3618{
3619	struct path new, old, root;
3620	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3621	struct mountpoint *old_mp, *root_mp;
3622	int error;
3623
3624	if (!may_mount())
3625		return -EPERM;
3626
3627	error = user_path_at(AT_FDCWD, new_root,
3628			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3629	if (error)
3630		goto out0;
3631
3632	error = user_path_at(AT_FDCWD, put_old,
3633			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3634	if (error)
3635		goto out1;
3636
3637	error = security_sb_pivotroot(&old, &new);
3638	if (error)
3639		goto out2;
3640
3641	get_fs_root(current->fs, &root);
3642	old_mp = lock_mount(&old);
3643	error = PTR_ERR(old_mp);
3644	if (IS_ERR(old_mp))
3645		goto out3;
3646
3647	error = -EINVAL;
3648	new_mnt = real_mount(new.mnt);
3649	root_mnt = real_mount(root.mnt);
3650	old_mnt = real_mount(old.mnt);
3651	ex_parent = new_mnt->mnt_parent;
3652	root_parent = root_mnt->mnt_parent;
3653	if (IS_MNT_SHARED(old_mnt) ||
3654		IS_MNT_SHARED(ex_parent) ||
3655		IS_MNT_SHARED(root_parent))
3656		goto out4;
3657	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3658		goto out4;
3659	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3660		goto out4;
3661	error = -ENOENT;
3662	if (d_unlinked(new.dentry))
3663		goto out4;
3664	error = -EBUSY;
3665	if (new_mnt == root_mnt || old_mnt == root_mnt)
3666		goto out4; /* loop, on the same file system  */
3667	error = -EINVAL;
3668	if (root.mnt->mnt_root != root.dentry)
3669		goto out4; /* not a mountpoint */
3670	if (!mnt_has_parent(root_mnt))
3671		goto out4; /* not attached */
3672	if (new.mnt->mnt_root != new.dentry)
3673		goto out4; /* not a mountpoint */
3674	if (!mnt_has_parent(new_mnt))
3675		goto out4; /* not attached */
3676	/* make sure we can reach put_old from new_root */
3677	if (!is_path_reachable(old_mnt, old.dentry, &new))
3678		goto out4;
3679	/* make certain new is below the root */
3680	if (!is_path_reachable(new_mnt, new.dentry, &root))
3681		goto out4;
3682	lock_mount_hash();
3683	umount_mnt(new_mnt);
3684	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
3685	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3686		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3687		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3688	}
3689	/* mount old root on put_old */
3690	attach_mnt(root_mnt, old_mnt, old_mp);
3691	/* mount new_root on / */
3692	attach_mnt(new_mnt, root_parent, root_mp);
3693	mnt_add_count(root_parent, -1);
3694	touch_mnt_namespace(current->nsproxy->mnt_ns);
3695	/* A moved mount should not expire automatically */
3696	list_del_init(&new_mnt->mnt_expire);
3697	put_mountpoint(root_mp);
3698	unlock_mount_hash();
3699	chroot_fs_refs(&root, &new);
3700	error = 0;
3701out4:
3702	unlock_mount(old_mp);
3703	if (!error)
3704		mntput_no_expire(ex_parent);
3705out3:
3706	path_put(&root);
3707out2:
3708	path_put(&old);
3709out1:
3710	path_put(&new);
3711out0:
3712	return error;
3713}
3714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3715static void __init init_mount_tree(void)
3716{
3717	struct vfsmount *mnt;
3718	struct mount *m;
3719	struct mnt_namespace *ns;
3720	struct path root;
3721
3722	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
3723	if (IS_ERR(mnt))
3724		panic("Can't create rootfs");
3725
3726	ns = alloc_mnt_ns(&init_user_ns, false);
3727	if (IS_ERR(ns))
3728		panic("Can't allocate initial namespace");
3729	m = real_mount(mnt);
3730	m->mnt_ns = ns;
3731	ns->root = m;
3732	ns->mounts = 1;
3733	list_add(&m->mnt_list, &ns->list);
3734	init_task.nsproxy->mnt_ns = ns;
3735	get_mnt_ns(ns);
3736
3737	root.mnt = mnt;
3738	root.dentry = mnt->mnt_root;
3739	mnt->mnt_flags |= MNT_LOCKED;
3740
3741	set_fs_pwd(current->fs, &root);
3742	set_fs_root(current->fs, &root);
3743}
3744
3745void __init mnt_init(void)
3746{
3747	int err;
3748
3749	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3750			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3751
3752	mount_hashtable = alloc_large_system_hash("Mount-cache",
3753				sizeof(struct hlist_head),
3754				mhash_entries, 19,
3755				HASH_ZERO,
3756				&m_hash_shift, &m_hash_mask, 0, 0);
3757	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3758				sizeof(struct hlist_head),
3759				mphash_entries, 19,
3760				HASH_ZERO,
3761				&mp_hash_shift, &mp_hash_mask, 0, 0);
3762
3763	if (!mount_hashtable || !mountpoint_hashtable)
3764		panic("Failed to allocate mount hash table\n");
3765
3766	kernfs_init();
3767
3768	err = sysfs_init();
3769	if (err)
3770		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3771			__func__, err);
3772	fs_kobj = kobject_create_and_add("fs", NULL);
3773	if (!fs_kobj)
3774		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3775	shmem_init();
3776	init_rootfs();
3777	init_mount_tree();
3778}
3779
3780void put_mnt_ns(struct mnt_namespace *ns)
3781{
3782	if (!atomic_dec_and_test(&ns->count))
3783		return;
3784	drop_collected_mounts(&ns->root->mnt);
3785	free_mnt_ns(ns);
3786}
3787
3788struct vfsmount *kern_mount(struct file_system_type *type)
3789{
3790	struct vfsmount *mnt;
3791	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
3792	if (!IS_ERR(mnt)) {
3793		/*
3794		 * it is a longterm mount, don't release mnt until
3795		 * we unmount before file sys is unregistered
3796		*/
3797		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3798	}
3799	return mnt;
3800}
3801EXPORT_SYMBOL_GPL(kern_mount);
3802
3803void kern_unmount(struct vfsmount *mnt)
3804{
3805	/* release long term mount so mount point can be released */
3806	if (!IS_ERR_OR_NULL(mnt)) {
3807		real_mount(mnt)->mnt_ns = NULL;
3808		synchronize_rcu();	/* yecchhh... */
3809		mntput(mnt);
3810	}
3811}
3812EXPORT_SYMBOL(kern_unmount);
3813
 
 
 
 
 
 
 
 
 
 
 
 
 
3814bool our_mnt(struct vfsmount *mnt)
3815{
3816	return check_mnt(real_mount(mnt));
3817}
3818
3819bool current_chrooted(void)
3820{
3821	/* Does the current process have a non-standard root */
3822	struct path ns_root;
3823	struct path fs_root;
3824	bool chrooted;
3825
3826	/* Find the namespace root */
3827	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3828	ns_root.dentry = ns_root.mnt->mnt_root;
3829	path_get(&ns_root);
3830	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3831		;
3832
3833	get_fs_root(current->fs, &fs_root);
3834
3835	chrooted = !path_equal(&fs_root, &ns_root);
3836
3837	path_put(&fs_root);
3838	path_put(&ns_root);
3839
3840	return chrooted;
3841}
3842
3843static bool mnt_already_visible(struct mnt_namespace *ns,
3844				const struct super_block *sb,
3845				int *new_mnt_flags)
3846{
3847	int new_flags = *new_mnt_flags;
3848	struct mount *mnt;
3849	bool visible = false;
3850
3851	down_read(&namespace_sem);
 
3852	list_for_each_entry(mnt, &ns->list, mnt_list) {
3853		struct mount *child;
3854		int mnt_flags;
3855
 
 
 
3856		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
3857			continue;
3858
3859		/* This mount is not fully visible if it's root directory
3860		 * is not the root directory of the filesystem.
3861		 */
3862		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3863			continue;
3864
3865		/* A local view of the mount flags */
3866		mnt_flags = mnt->mnt.mnt_flags;
3867
3868		/* Don't miss readonly hidden in the superblock flags */
3869		if (sb_rdonly(mnt->mnt.mnt_sb))
3870			mnt_flags |= MNT_LOCK_READONLY;
3871
3872		/* Verify the mount flags are equal to or more permissive
3873		 * than the proposed new mount.
3874		 */
3875		if ((mnt_flags & MNT_LOCK_READONLY) &&
3876		    !(new_flags & MNT_READONLY))
3877			continue;
3878		if ((mnt_flags & MNT_LOCK_ATIME) &&
3879		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3880			continue;
3881
3882		/* This mount is not fully visible if there are any
3883		 * locked child mounts that cover anything except for
3884		 * empty directories.
3885		 */
3886		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3887			struct inode *inode = child->mnt_mountpoint->d_inode;
3888			/* Only worry about locked mounts */
3889			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3890				continue;
3891			/* Is the directory permanetly empty? */
3892			if (!is_empty_dir_inode(inode))
3893				goto next;
3894		}
3895		/* Preserve the locked attributes */
3896		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3897					       MNT_LOCK_ATIME);
3898		visible = true;
3899		goto found;
3900	next:	;
3901	}
3902found:
 
3903	up_read(&namespace_sem);
3904	return visible;
3905}
3906
3907static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
3908{
3909	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3910	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3911	unsigned long s_iflags;
3912
3913	if (ns->user_ns == &init_user_ns)
3914		return false;
3915
3916	/* Can this filesystem be too revealing? */
3917	s_iflags = sb->s_iflags;
3918	if (!(s_iflags & SB_I_USERNS_VISIBLE))
3919		return false;
3920
3921	if ((s_iflags & required_iflags) != required_iflags) {
3922		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3923			  required_iflags);
3924		return true;
3925	}
3926
3927	return !mnt_already_visible(ns, sb, new_mnt_flags);
3928}
3929
3930bool mnt_may_suid(struct vfsmount *mnt)
3931{
3932	/*
3933	 * Foreign mounts (accessed via fchdir or through /proc
3934	 * symlinks) are always treated as if they are nosuid.  This
3935	 * prevents namespaces from trusting potentially unsafe
3936	 * suid/sgid bits, file caps, or security labels that originate
3937	 * in other namespaces.
3938	 */
3939	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3940	       current_in_userns(mnt->mnt_sb->s_user_ns);
3941}
3942
3943static struct ns_common *mntns_get(struct task_struct *task)
3944{
3945	struct ns_common *ns = NULL;
3946	struct nsproxy *nsproxy;
3947
3948	task_lock(task);
3949	nsproxy = task->nsproxy;
3950	if (nsproxy) {
3951		ns = &nsproxy->mnt_ns->ns;
3952		get_mnt_ns(to_mnt_ns(ns));
3953	}
3954	task_unlock(task);
3955
3956	return ns;
3957}
3958
3959static void mntns_put(struct ns_common *ns)
3960{
3961	put_mnt_ns(to_mnt_ns(ns));
3962}
3963
3964static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3965{
3966	struct fs_struct *fs = current->fs;
 
3967	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
 
3968	struct path root;
3969	int err;
3970
3971	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3972	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3973	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3974		return -EPERM;
3975
3976	if (is_anon_ns(mnt_ns))
3977		return -EINVAL;
3978
3979	if (fs->users != 1)
3980		return -EINVAL;
3981
3982	get_mnt_ns(mnt_ns);
3983	old_mnt_ns = nsproxy->mnt_ns;
3984	nsproxy->mnt_ns = mnt_ns;
3985
3986	/* Find the root */
3987	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3988				"/", LOOKUP_DOWN, &root);
3989	if (err) {
3990		/* revert to old namespace */
3991		nsproxy->mnt_ns = old_mnt_ns;
3992		put_mnt_ns(mnt_ns);
3993		return err;
3994	}
3995
3996	put_mnt_ns(old_mnt_ns);
3997
3998	/* Update the pwd and root */
3999	set_fs_pwd(fs, &root);
4000	set_fs_root(fs, &root);
4001
4002	path_put(&root);
4003	return 0;
4004}
4005
4006static struct user_namespace *mntns_owner(struct ns_common *ns)
4007{
4008	return to_mnt_ns(ns)->user_ns;
4009}
4010
4011const struct proc_ns_operations mntns_operations = {
4012	.name		= "mnt",
4013	.type		= CLONE_NEWNS,
4014	.get		= mntns_get,
4015	.put		= mntns_put,
4016	.install	= mntns_install,
4017	.owner		= mntns_owner,
4018};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/namespace.c
   4 *
   5 * (C) Copyright Al Viro 2000, 2001
   6 *
   7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
   8 * Heavily rewritten.
   9 */
  10
  11#include <linux/syscalls.h>
  12#include <linux/export.h>
  13#include <linux/capability.h>
  14#include <linux/mnt_namespace.h>
  15#include <linux/user_namespace.h>
  16#include <linux/namei.h>
  17#include <linux/security.h>
  18#include <linux/cred.h>
  19#include <linux/idr.h>
  20#include <linux/init.h>		/* init_rootfs */
  21#include <linux/fs_struct.h>	/* get_fs_root et.al. */
  22#include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
  23#include <linux/file.h>
  24#include <linux/uaccess.h>
  25#include <linux/proc_ns.h>
  26#include <linux/magic.h>
  27#include <linux/memblock.h>
  28#include <linux/proc_fs.h>
  29#include <linux/task_work.h>
  30#include <linux/sched/task.h>
  31#include <uapi/linux/mount.h>
  32#include <linux/fs_context.h>
  33#include <linux/shmem_fs.h>
  34#include <linux/mnt_idmapping.h>
  35
  36#include "pnode.h"
  37#include "internal.h"
  38
  39/* Maximum number of mounts in a mount namespace */
  40static unsigned int sysctl_mount_max __read_mostly = 100000;
  41
  42static unsigned int m_hash_mask __read_mostly;
  43static unsigned int m_hash_shift __read_mostly;
  44static unsigned int mp_hash_mask __read_mostly;
  45static unsigned int mp_hash_shift __read_mostly;
  46
  47static __initdata unsigned long mhash_entries;
  48static int __init set_mhash_entries(char *str)
  49{
  50	if (!str)
  51		return 0;
  52	mhash_entries = simple_strtoul(str, &str, 0);
  53	return 1;
  54}
  55__setup("mhash_entries=", set_mhash_entries);
  56
  57static __initdata unsigned long mphash_entries;
  58static int __init set_mphash_entries(char *str)
  59{
  60	if (!str)
  61		return 0;
  62	mphash_entries = simple_strtoul(str, &str, 0);
  63	return 1;
  64}
  65__setup("mphash_entries=", set_mphash_entries);
  66
  67static u64 event;
  68static DEFINE_IDA(mnt_id_ida);
  69static DEFINE_IDA(mnt_group_ida);
  70
  71static struct hlist_head *mount_hashtable __read_mostly;
  72static struct hlist_head *mountpoint_hashtable __read_mostly;
  73static struct kmem_cache *mnt_cache __read_mostly;
  74static DECLARE_RWSEM(namespace_sem);
  75static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
  76static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
  77
  78struct mnt_idmap {
  79	struct user_namespace *owner;
  80	refcount_t count;
  81};
  82
  83/*
  84 * Carries the initial idmapping of 0:0:4294967295 which is an identity
  85 * mapping. This means that {g,u}id 0 is mapped to {g,u}id 0, {g,u}id 1 is
  86 * mapped to {g,u}id 1, [...], {g,u}id 1000 to {g,u}id 1000, [...].
  87 */
  88struct mnt_idmap nop_mnt_idmap = {
  89	.owner	= &init_user_ns,
  90	.count	= REFCOUNT_INIT(1),
  91};
  92EXPORT_SYMBOL_GPL(nop_mnt_idmap);
  93
  94struct mount_kattr {
  95	unsigned int attr_set;
  96	unsigned int attr_clr;
  97	unsigned int propagation;
  98	unsigned int lookup_flags;
  99	bool recurse;
 100	struct user_namespace *mnt_userns;
 101	struct mnt_idmap *mnt_idmap;
 102};
 103
 104/* /sys/fs */
 105struct kobject *fs_kobj;
 106EXPORT_SYMBOL_GPL(fs_kobj);
 107
 108/*
 109 * vfsmount lock may be taken for read to prevent changes to the
 110 * vfsmount hash, ie. during mountpoint lookups or walking back
 111 * up the tree.
 112 *
 113 * It should be taken for write in all cases where the vfsmount
 114 * tree or hash is modified or when a vfsmount structure is modified.
 115 */
 116__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
 117
 118static inline void lock_mount_hash(void)
 119{
 120	write_seqlock(&mount_lock);
 121}
 122
 123static inline void unlock_mount_hash(void)
 124{
 125	write_sequnlock(&mount_lock);
 126}
 127
 128static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
 129{
 130	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
 131	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
 132	tmp = tmp + (tmp >> m_hash_shift);
 133	return &mount_hashtable[tmp & m_hash_mask];
 134}
 135
 136static inline struct hlist_head *mp_hash(struct dentry *dentry)
 137{
 138	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
 139	tmp = tmp + (tmp >> mp_hash_shift);
 140	return &mountpoint_hashtable[tmp & mp_hash_mask];
 141}
 142
 143static int mnt_alloc_id(struct mount *mnt)
 144{
 145	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
 146
 147	if (res < 0)
 148		return res;
 149	mnt->mnt_id = res;
 150	return 0;
 151}
 152
 153static void mnt_free_id(struct mount *mnt)
 154{
 155	ida_free(&mnt_id_ida, mnt->mnt_id);
 156}
 157
 158/*
 159 * Allocate a new peer group ID
 160 */
 161static int mnt_alloc_group_id(struct mount *mnt)
 162{
 163	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
 164
 165	if (res < 0)
 166		return res;
 167	mnt->mnt_group_id = res;
 168	return 0;
 169}
 170
 171/*
 172 * Release a peer group ID
 173 */
 174void mnt_release_group_id(struct mount *mnt)
 175{
 176	ida_free(&mnt_group_ida, mnt->mnt_group_id);
 177	mnt->mnt_group_id = 0;
 178}
 179
 180/*
 181 * vfsmount lock must be held for read
 182 */
 183static inline void mnt_add_count(struct mount *mnt, int n)
 184{
 185#ifdef CONFIG_SMP
 186	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
 187#else
 188	preempt_disable();
 189	mnt->mnt_count += n;
 190	preempt_enable();
 191#endif
 192}
 193
 194/*
 195 * vfsmount lock must be held for write
 196 */
 197int mnt_get_count(struct mount *mnt)
 198{
 199#ifdef CONFIG_SMP
 200	int count = 0;
 201	int cpu;
 202
 203	for_each_possible_cpu(cpu) {
 204		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
 205	}
 206
 207	return count;
 208#else
 209	return mnt->mnt_count;
 210#endif
 211}
 212
 213/**
 214 * mnt_idmap_owner - retrieve owner of the mount's idmapping
 215 * @idmap: mount idmapping
 216 *
 217 * This helper will go away once the conversion to use struct mnt_idmap
 218 * everywhere has finished at which point the helper will be unexported.
 219 *
 220 * Only code that needs to perform permission checks based on the owner of the
 221 * idmapping will get access to it. All other code will solely rely on
 222 * idmappings. This will get us type safety so it's impossible to conflate
 223 * filesystems idmappings with mount idmappings.
 224 *
 225 * Return: The owner of the idmapping.
 226 */
 227struct user_namespace *mnt_idmap_owner(const struct mnt_idmap *idmap)
 228{
 229	return idmap->owner;
 230}
 231EXPORT_SYMBOL_GPL(mnt_idmap_owner);
 232
 233/**
 234 * mnt_user_ns - retrieve owner of an idmapped mount
 235 * @mnt: the relevant vfsmount
 236 *
 237 * This helper will go away once the conversion to use struct mnt_idmap
 238 * everywhere has finished at which point the helper will be unexported.
 239 *
 240 * Only code that needs to perform permission checks based on the owner of the
 241 * idmapping will get access to it. All other code will solely rely on
 242 * idmappings. This will get us type safety so it's impossible to conflate
 243 * filesystems idmappings with mount idmappings.
 244 *
 245 * Return: The owner of the idmapped.
 246 */
 247struct user_namespace *mnt_user_ns(const struct vfsmount *mnt)
 248{
 249	struct mnt_idmap *idmap = mnt_idmap(mnt);
 250
 251	/* Return the actual owner of the filesystem instead of the nop. */
 252	if (idmap == &nop_mnt_idmap &&
 253	    !initial_idmapping(mnt->mnt_sb->s_user_ns))
 254		return mnt->mnt_sb->s_user_ns;
 255	return mnt_idmap_owner(idmap);
 256}
 257EXPORT_SYMBOL_GPL(mnt_user_ns);
 258
 259/**
 260 * alloc_mnt_idmap - allocate a new idmapping for the mount
 261 * @mnt_userns: owning userns of the idmapping
 262 *
 263 * Allocate a new struct mnt_idmap which carries the idmapping of the mount.
 264 *
 265 * Return: On success a new idmap, on error an error pointer is returned.
 266 */
 267static struct mnt_idmap *alloc_mnt_idmap(struct user_namespace *mnt_userns)
 268{
 269	struct mnt_idmap *idmap;
 270
 271	idmap = kzalloc(sizeof(struct mnt_idmap), GFP_KERNEL_ACCOUNT);
 272	if (!idmap)
 273		return ERR_PTR(-ENOMEM);
 274
 275	idmap->owner = get_user_ns(mnt_userns);
 276	refcount_set(&idmap->count, 1);
 277	return idmap;
 278}
 279
 280/**
 281 * mnt_idmap_get - get a reference to an idmapping
 282 * @idmap: the idmap to bump the reference on
 283 *
 284 * If @idmap is not the @nop_mnt_idmap bump the reference count.
 285 *
 286 * Return: @idmap with reference count bumped if @not_mnt_idmap isn't passed.
 287 */
 288static inline struct mnt_idmap *mnt_idmap_get(struct mnt_idmap *idmap)
 289{
 290	if (idmap != &nop_mnt_idmap)
 291		refcount_inc(&idmap->count);
 292
 293	return idmap;
 294}
 295
 296/**
 297 * mnt_idmap_put - put a reference to an idmapping
 298 * @idmap: the idmap to put the reference on
 299 *
 300 * If this is a non-initial idmapping, put the reference count when a mount is
 301 * released and free it if we're the last user.
 302 */
 303static inline void mnt_idmap_put(struct mnt_idmap *idmap)
 304{
 305	if (idmap != &nop_mnt_idmap && refcount_dec_and_test(&idmap->count)) {
 306		put_user_ns(idmap->owner);
 307		kfree(idmap);
 308	}
 309}
 310
 311static struct mount *alloc_vfsmnt(const char *name)
 312{
 313	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
 314	if (mnt) {
 315		int err;
 316
 317		err = mnt_alloc_id(mnt);
 318		if (err)
 319			goto out_free_cache;
 320
 321		if (name) {
 322			mnt->mnt_devname = kstrdup_const(name,
 323							 GFP_KERNEL_ACCOUNT);
 324			if (!mnt->mnt_devname)
 325				goto out_free_id;
 326		}
 327
 328#ifdef CONFIG_SMP
 329		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
 330		if (!mnt->mnt_pcp)
 331			goto out_free_devname;
 332
 333		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
 334#else
 335		mnt->mnt_count = 1;
 336		mnt->mnt_writers = 0;
 337#endif
 338
 339		INIT_HLIST_NODE(&mnt->mnt_hash);
 340		INIT_LIST_HEAD(&mnt->mnt_child);
 341		INIT_LIST_HEAD(&mnt->mnt_mounts);
 342		INIT_LIST_HEAD(&mnt->mnt_list);
 343		INIT_LIST_HEAD(&mnt->mnt_expire);
 344		INIT_LIST_HEAD(&mnt->mnt_share);
 345		INIT_LIST_HEAD(&mnt->mnt_slave_list);
 346		INIT_LIST_HEAD(&mnt->mnt_slave);
 347		INIT_HLIST_NODE(&mnt->mnt_mp_list);
 348		INIT_LIST_HEAD(&mnt->mnt_umounting);
 349		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
 350		mnt->mnt.mnt_idmap = &nop_mnt_idmap;
 351	}
 352	return mnt;
 353
 354#ifdef CONFIG_SMP
 355out_free_devname:
 356	kfree_const(mnt->mnt_devname);
 357#endif
 358out_free_id:
 359	mnt_free_id(mnt);
 360out_free_cache:
 361	kmem_cache_free(mnt_cache, mnt);
 362	return NULL;
 363}
 364
 365/*
 366 * Most r/o checks on a fs are for operations that take
 367 * discrete amounts of time, like a write() or unlink().
 368 * We must keep track of when those operations start
 369 * (for permission checks) and when they end, so that
 370 * we can determine when writes are able to occur to
 371 * a filesystem.
 372 */
 373/*
 374 * __mnt_is_readonly: check whether a mount is read-only
 375 * @mnt: the mount to check for its write status
 376 *
 377 * This shouldn't be used directly ouside of the VFS.
 378 * It does not guarantee that the filesystem will stay
 379 * r/w, just that it is right *now*.  This can not and
 380 * should not be used in place of IS_RDONLY(inode).
 381 * mnt_want/drop_write() will _keep_ the filesystem
 382 * r/w.
 383 */
 384bool __mnt_is_readonly(struct vfsmount *mnt)
 385{
 386	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
 387}
 388EXPORT_SYMBOL_GPL(__mnt_is_readonly);
 389
 390static inline void mnt_inc_writers(struct mount *mnt)
 391{
 392#ifdef CONFIG_SMP
 393	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
 394#else
 395	mnt->mnt_writers++;
 396#endif
 397}
 398
 399static inline void mnt_dec_writers(struct mount *mnt)
 400{
 401#ifdef CONFIG_SMP
 402	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
 403#else
 404	mnt->mnt_writers--;
 405#endif
 406}
 407
 408static unsigned int mnt_get_writers(struct mount *mnt)
 409{
 410#ifdef CONFIG_SMP
 411	unsigned int count = 0;
 412	int cpu;
 413
 414	for_each_possible_cpu(cpu) {
 415		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
 416	}
 417
 418	return count;
 419#else
 420	return mnt->mnt_writers;
 421#endif
 422}
 423
 424static int mnt_is_readonly(struct vfsmount *mnt)
 425{
 426	if (mnt->mnt_sb->s_readonly_remount)
 427		return 1;
 428	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
 429	smp_rmb();
 430	return __mnt_is_readonly(mnt);
 431}
 432
 433/*
 434 * Most r/o & frozen checks on a fs are for operations that take discrete
 435 * amounts of time, like a write() or unlink().  We must keep track of when
 436 * those operations start (for permission checks) and when they end, so that we
 437 * can determine when writes are able to occur to a filesystem.
 438 */
 439/**
 440 * __mnt_want_write - get write access to a mount without freeze protection
 441 * @m: the mount on which to take a write
 442 *
 443 * This tells the low-level filesystem that a write is about to be performed to
 444 * it, and makes sure that writes are allowed (mnt it read-write) before
 445 * returning success. This operation does not protect against filesystem being
 446 * frozen. When the write operation is finished, __mnt_drop_write() must be
 447 * called. This is effectively a refcount.
 448 */
 449int __mnt_want_write(struct vfsmount *m)
 450{
 451	struct mount *mnt = real_mount(m);
 452	int ret = 0;
 453
 454	preempt_disable();
 455	mnt_inc_writers(mnt);
 456	/*
 457	 * The store to mnt_inc_writers must be visible before we pass
 458	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
 459	 * incremented count after it has set MNT_WRITE_HOLD.
 460	 */
 461	smp_mb();
 462	might_lock(&mount_lock.lock);
 463	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
 464		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
 465			cpu_relax();
 466		} else {
 467			/*
 468			 * This prevents priority inversion, if the task
 469			 * setting MNT_WRITE_HOLD got preempted on a remote
 470			 * CPU, and it prevents life lock if the task setting
 471			 * MNT_WRITE_HOLD has a lower priority and is bound to
 472			 * the same CPU as the task that is spinning here.
 473			 */
 474			preempt_enable();
 475			lock_mount_hash();
 476			unlock_mount_hash();
 477			preempt_disable();
 478		}
 479	}
 480	/*
 481	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
 482	 * be set to match its requirements. So we must not load that until
 483	 * MNT_WRITE_HOLD is cleared.
 484	 */
 485	smp_rmb();
 486	if (mnt_is_readonly(m)) {
 487		mnt_dec_writers(mnt);
 488		ret = -EROFS;
 489	}
 490	preempt_enable();
 491
 492	return ret;
 493}
 494
 495/**
 496 * mnt_want_write - get write access to a mount
 497 * @m: the mount on which to take a write
 498 *
 499 * This tells the low-level filesystem that a write is about to be performed to
 500 * it, and makes sure that writes are allowed (mount is read-write, filesystem
 501 * is not frozen) before returning success.  When the write operation is
 502 * finished, mnt_drop_write() must be called.  This is effectively a refcount.
 503 */
 504int mnt_want_write(struct vfsmount *m)
 505{
 506	int ret;
 507
 508	sb_start_write(m->mnt_sb);
 509	ret = __mnt_want_write(m);
 510	if (ret)
 511		sb_end_write(m->mnt_sb);
 512	return ret;
 513}
 514EXPORT_SYMBOL_GPL(mnt_want_write);
 515
 516/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 517 * __mnt_want_write_file - get write access to a file's mount
 518 * @file: the file who's mount on which to take a write
 519 *
 520 * This is like __mnt_want_write, but if the file is already open for writing it
 521 * skips incrementing mnt_writers (since the open file already has a reference)
 522 * and instead only does the check for emergency r/o remounts.  This must be
 523 * paired with __mnt_drop_write_file.
 524 */
 525int __mnt_want_write_file(struct file *file)
 526{
 527	if (file->f_mode & FMODE_WRITER) {
 528		/*
 529		 * Superblock may have become readonly while there are still
 530		 * writable fd's, e.g. due to a fs error with errors=remount-ro
 531		 */
 532		if (__mnt_is_readonly(file->f_path.mnt))
 533			return -EROFS;
 534		return 0;
 535	}
 536	return __mnt_want_write(file->f_path.mnt);
 537}
 538
 539/**
 540 * mnt_want_write_file - get write access to a file's mount
 541 * @file: the file who's mount on which to take a write
 542 *
 543 * This is like mnt_want_write, but if the file is already open for writing it
 544 * skips incrementing mnt_writers (since the open file already has a reference)
 545 * and instead only does the freeze protection and the check for emergency r/o
 546 * remounts.  This must be paired with mnt_drop_write_file.
 547 */
 548int mnt_want_write_file(struct file *file)
 549{
 550	int ret;
 551
 552	sb_start_write(file_inode(file)->i_sb);
 553	ret = __mnt_want_write_file(file);
 554	if (ret)
 555		sb_end_write(file_inode(file)->i_sb);
 556	return ret;
 557}
 558EXPORT_SYMBOL_GPL(mnt_want_write_file);
 559
 560/**
 561 * __mnt_drop_write - give up write access to a mount
 562 * @mnt: the mount on which to give up write access
 563 *
 564 * Tells the low-level filesystem that we are done
 565 * performing writes to it.  Must be matched with
 566 * __mnt_want_write() call above.
 567 */
 568void __mnt_drop_write(struct vfsmount *mnt)
 569{
 570	preempt_disable();
 571	mnt_dec_writers(real_mount(mnt));
 572	preempt_enable();
 573}
 574
 575/**
 576 * mnt_drop_write - give up write access to a mount
 577 * @mnt: the mount on which to give up write access
 578 *
 579 * Tells the low-level filesystem that we are done performing writes to it and
 580 * also allows filesystem to be frozen again.  Must be matched with
 581 * mnt_want_write() call above.
 582 */
 583void mnt_drop_write(struct vfsmount *mnt)
 584{
 585	__mnt_drop_write(mnt);
 586	sb_end_write(mnt->mnt_sb);
 587}
 588EXPORT_SYMBOL_GPL(mnt_drop_write);
 589
 590void __mnt_drop_write_file(struct file *file)
 591{
 592	if (!(file->f_mode & FMODE_WRITER))
 593		__mnt_drop_write(file->f_path.mnt);
 594}
 595
 596void mnt_drop_write_file(struct file *file)
 597{
 598	__mnt_drop_write_file(file);
 599	sb_end_write(file_inode(file)->i_sb);
 600}
 601EXPORT_SYMBOL(mnt_drop_write_file);
 602
 603/**
 604 * mnt_hold_writers - prevent write access to the given mount
 605 * @mnt: mnt to prevent write access to
 606 *
 607 * Prevents write access to @mnt if there are no active writers for @mnt.
 608 * This function needs to be called and return successfully before changing
 609 * properties of @mnt that need to remain stable for callers with write access
 610 * to @mnt.
 611 *
 612 * After this functions has been called successfully callers must pair it with
 613 * a call to mnt_unhold_writers() in order to stop preventing write access to
 614 * @mnt.
 615 *
 616 * Context: This function expects lock_mount_hash() to be held serializing
 617 *          setting MNT_WRITE_HOLD.
 618 * Return: On success 0 is returned.
 619 *	   On error, -EBUSY is returned.
 620 */
 621static inline int mnt_hold_writers(struct mount *mnt)
 622{
 
 
 
 623	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 624	/*
 625	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
 626	 * should be visible before we do.
 627	 */
 628	smp_mb();
 629
 630	/*
 631	 * With writers on hold, if this value is zero, then there are
 632	 * definitely no active writers (although held writers may subsequently
 633	 * increment the count, they'll have to wait, and decrement it after
 634	 * seeing MNT_READONLY).
 635	 *
 636	 * It is OK to have counter incremented on one CPU and decremented on
 637	 * another: the sum will add up correctly. The danger would be when we
 638	 * sum up each counter, if we read a counter before it is incremented,
 639	 * but then read another CPU's count which it has been subsequently
 640	 * decremented from -- we would see more decrements than we should.
 641	 * MNT_WRITE_HOLD protects against this scenario, because
 642	 * mnt_want_write first increments count, then smp_mb, then spins on
 643	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
 644	 * we're counting up here.
 645	 */
 646	if (mnt_get_writers(mnt) > 0)
 647		return -EBUSY;
 648
 649	return 0;
 650}
 651
 652/**
 653 * mnt_unhold_writers - stop preventing write access to the given mount
 654 * @mnt: mnt to stop preventing write access to
 655 *
 656 * Stop preventing write access to @mnt allowing callers to gain write access
 657 * to @mnt again.
 658 *
 659 * This function can only be called after a successful call to
 660 * mnt_hold_writers().
 661 *
 662 * Context: This function expects lock_mount_hash() to be held.
 663 */
 664static inline void mnt_unhold_writers(struct mount *mnt)
 665{
 666	/*
 667	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
 668	 * that become unheld will see MNT_READONLY.
 669	 */
 670	smp_wmb();
 671	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 
 
 672}
 673
 674static int mnt_make_readonly(struct mount *mnt)
 675{
 676	int ret;
 677
 678	ret = mnt_hold_writers(mnt);
 679	if (!ret)
 680		mnt->mnt.mnt_flags |= MNT_READONLY;
 681	mnt_unhold_writers(mnt);
 682	return ret;
 683}
 684
 685int sb_prepare_remount_readonly(struct super_block *sb)
 686{
 687	struct mount *mnt;
 688	int err = 0;
 689
 690	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
 691	if (atomic_long_read(&sb->s_remove_count))
 692		return -EBUSY;
 693
 694	lock_mount_hash();
 695	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 696		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
 697			err = mnt_hold_writers(mnt);
 698			if (err)
 
 
 699				break;
 
 700		}
 701	}
 702	if (!err && atomic_long_read(&sb->s_remove_count))
 703		err = -EBUSY;
 704
 705	if (!err) {
 706		sb->s_readonly_remount = 1;
 707		smp_wmb();
 708	}
 709	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 710		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
 711			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 712	}
 713	unlock_mount_hash();
 714
 715	return err;
 716}
 717
 718static void free_vfsmnt(struct mount *mnt)
 719{
 720	mnt_idmap_put(mnt_idmap(&mnt->mnt));
 721	kfree_const(mnt->mnt_devname);
 722#ifdef CONFIG_SMP
 723	free_percpu(mnt->mnt_pcp);
 724#endif
 725	kmem_cache_free(mnt_cache, mnt);
 726}
 727
 728static void delayed_free_vfsmnt(struct rcu_head *head)
 729{
 730	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
 731}
 732
 733/* call under rcu_read_lock */
 734int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 735{
 736	struct mount *mnt;
 737	if (read_seqretry(&mount_lock, seq))
 738		return 1;
 739	if (bastard == NULL)
 740		return 0;
 741	mnt = real_mount(bastard);
 742	mnt_add_count(mnt, 1);
 743	smp_mb();			// see mntput_no_expire()
 744	if (likely(!read_seqretry(&mount_lock, seq)))
 745		return 0;
 746	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
 747		mnt_add_count(mnt, -1);
 748		return 1;
 749	}
 750	lock_mount_hash();
 751	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
 752		mnt_add_count(mnt, -1);
 753		unlock_mount_hash();
 754		return 1;
 755	}
 756	unlock_mount_hash();
 757	/* caller will mntput() */
 758	return -1;
 759}
 760
 761/* call under rcu_read_lock */
 762static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 763{
 764	int res = __legitimize_mnt(bastard, seq);
 765	if (likely(!res))
 766		return true;
 767	if (unlikely(res < 0)) {
 768		rcu_read_unlock();
 769		mntput(bastard);
 770		rcu_read_lock();
 771	}
 772	return false;
 773}
 774
 775/*
 776 * find the first mount at @dentry on vfsmount @mnt.
 777 * call under rcu_read_lock()
 778 */
 779struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
 780{
 781	struct hlist_head *head = m_hash(mnt, dentry);
 782	struct mount *p;
 783
 784	hlist_for_each_entry_rcu(p, head, mnt_hash)
 785		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
 786			return p;
 787	return NULL;
 788}
 789
 790/*
 791 * lookup_mnt - Return the first child mount mounted at path
 792 *
 793 * "First" means first mounted chronologically.  If you create the
 794 * following mounts:
 795 *
 796 * mount /dev/sda1 /mnt
 797 * mount /dev/sda2 /mnt
 798 * mount /dev/sda3 /mnt
 799 *
 800 * Then lookup_mnt() on the base /mnt dentry in the root mount will
 801 * return successively the root dentry and vfsmount of /dev/sda1, then
 802 * /dev/sda2, then /dev/sda3, then NULL.
 803 *
 804 * lookup_mnt takes a reference to the found vfsmount.
 805 */
 806struct vfsmount *lookup_mnt(const struct path *path)
 807{
 808	struct mount *child_mnt;
 809	struct vfsmount *m;
 810	unsigned seq;
 811
 812	rcu_read_lock();
 813	do {
 814		seq = read_seqbegin(&mount_lock);
 815		child_mnt = __lookup_mnt(path->mnt, path->dentry);
 816		m = child_mnt ? &child_mnt->mnt : NULL;
 817	} while (!legitimize_mnt(m, seq));
 818	rcu_read_unlock();
 819	return m;
 820}
 821
 822static inline void lock_ns_list(struct mnt_namespace *ns)
 823{
 824	spin_lock(&ns->ns_lock);
 825}
 826
 827static inline void unlock_ns_list(struct mnt_namespace *ns)
 828{
 829	spin_unlock(&ns->ns_lock);
 830}
 831
 832static inline bool mnt_is_cursor(struct mount *mnt)
 833{
 834	return mnt->mnt.mnt_flags & MNT_CURSOR;
 835}
 836
 837/*
 838 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
 839 *                         current mount namespace.
 840 *
 841 * The common case is dentries are not mountpoints at all and that
 842 * test is handled inline.  For the slow case when we are actually
 843 * dealing with a mountpoint of some kind, walk through all of the
 844 * mounts in the current mount namespace and test to see if the dentry
 845 * is a mountpoint.
 846 *
 847 * The mount_hashtable is not usable in the context because we
 848 * need to identify all mounts that may be in the current mount
 849 * namespace not just a mount that happens to have some specified
 850 * parent mount.
 851 */
 852bool __is_local_mountpoint(struct dentry *dentry)
 853{
 854	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
 855	struct mount *mnt;
 856	bool is_covered = false;
 857
 
 
 
 858	down_read(&namespace_sem);
 859	lock_ns_list(ns);
 860	list_for_each_entry(mnt, &ns->list, mnt_list) {
 861		if (mnt_is_cursor(mnt))
 862			continue;
 863		is_covered = (mnt->mnt_mountpoint == dentry);
 864		if (is_covered)
 865			break;
 866	}
 867	unlock_ns_list(ns);
 868	up_read(&namespace_sem);
 869
 870	return is_covered;
 871}
 872
 873static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
 874{
 875	struct hlist_head *chain = mp_hash(dentry);
 876	struct mountpoint *mp;
 877
 878	hlist_for_each_entry(mp, chain, m_hash) {
 879		if (mp->m_dentry == dentry) {
 880			mp->m_count++;
 881			return mp;
 882		}
 883	}
 884	return NULL;
 885}
 886
 887static struct mountpoint *get_mountpoint(struct dentry *dentry)
 888{
 889	struct mountpoint *mp, *new = NULL;
 890	int ret;
 891
 892	if (d_mountpoint(dentry)) {
 893		/* might be worth a WARN_ON() */
 894		if (d_unlinked(dentry))
 895			return ERR_PTR(-ENOENT);
 896mountpoint:
 897		read_seqlock_excl(&mount_lock);
 898		mp = lookup_mountpoint(dentry);
 899		read_sequnlock_excl(&mount_lock);
 900		if (mp)
 901			goto done;
 902	}
 903
 904	if (!new)
 905		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
 906	if (!new)
 907		return ERR_PTR(-ENOMEM);
 908
 909
 910	/* Exactly one processes may set d_mounted */
 911	ret = d_set_mounted(dentry);
 912
 913	/* Someone else set d_mounted? */
 914	if (ret == -EBUSY)
 915		goto mountpoint;
 916
 917	/* The dentry is not available as a mountpoint? */
 918	mp = ERR_PTR(ret);
 919	if (ret)
 920		goto done;
 921
 922	/* Add the new mountpoint to the hash table */
 923	read_seqlock_excl(&mount_lock);
 924	new->m_dentry = dget(dentry);
 925	new->m_count = 1;
 926	hlist_add_head(&new->m_hash, mp_hash(dentry));
 927	INIT_HLIST_HEAD(&new->m_list);
 928	read_sequnlock_excl(&mount_lock);
 929
 930	mp = new;
 931	new = NULL;
 932done:
 933	kfree(new);
 934	return mp;
 935}
 936
 937/*
 938 * vfsmount lock must be held.  Additionally, the caller is responsible
 939 * for serializing calls for given disposal list.
 940 */
 941static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
 942{
 943	if (!--mp->m_count) {
 944		struct dentry *dentry = mp->m_dentry;
 945		BUG_ON(!hlist_empty(&mp->m_list));
 946		spin_lock(&dentry->d_lock);
 947		dentry->d_flags &= ~DCACHE_MOUNTED;
 948		spin_unlock(&dentry->d_lock);
 949		dput_to_list(dentry, list);
 950		hlist_del(&mp->m_hash);
 951		kfree(mp);
 952	}
 953}
 954
 955/* called with namespace_lock and vfsmount lock */
 956static void put_mountpoint(struct mountpoint *mp)
 957{
 958	__put_mountpoint(mp, &ex_mountpoints);
 959}
 960
 961static inline int check_mnt(struct mount *mnt)
 962{
 963	return mnt->mnt_ns == current->nsproxy->mnt_ns;
 964}
 965
 966/*
 967 * vfsmount lock must be held for write
 968 */
 969static void touch_mnt_namespace(struct mnt_namespace *ns)
 970{
 971	if (ns) {
 972		ns->event = ++event;
 973		wake_up_interruptible(&ns->poll);
 974	}
 975}
 976
 977/*
 978 * vfsmount lock must be held for write
 979 */
 980static void __touch_mnt_namespace(struct mnt_namespace *ns)
 981{
 982	if (ns && ns->event != event) {
 983		ns->event = event;
 984		wake_up_interruptible(&ns->poll);
 985	}
 986}
 987
 988/*
 989 * vfsmount lock must be held for write
 990 */
 991static struct mountpoint *unhash_mnt(struct mount *mnt)
 992{
 993	struct mountpoint *mp;
 994	mnt->mnt_parent = mnt;
 995	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 996	list_del_init(&mnt->mnt_child);
 997	hlist_del_init_rcu(&mnt->mnt_hash);
 998	hlist_del_init(&mnt->mnt_mp_list);
 999	mp = mnt->mnt_mp;
1000	mnt->mnt_mp = NULL;
1001	return mp;
1002}
1003
1004/*
1005 * vfsmount lock must be held for write
1006 */
1007static void umount_mnt(struct mount *mnt)
1008{
1009	put_mountpoint(unhash_mnt(mnt));
1010}
1011
1012/*
1013 * vfsmount lock must be held for write
1014 */
1015void mnt_set_mountpoint(struct mount *mnt,
1016			struct mountpoint *mp,
1017			struct mount *child_mnt)
1018{
1019	mp->m_count++;
1020	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
1021	child_mnt->mnt_mountpoint = mp->m_dentry;
1022	child_mnt->mnt_parent = mnt;
1023	child_mnt->mnt_mp = mp;
1024	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1025}
1026
1027static void __attach_mnt(struct mount *mnt, struct mount *parent)
1028{
1029	hlist_add_head_rcu(&mnt->mnt_hash,
1030			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
1031	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1032}
1033
1034/*
1035 * vfsmount lock must be held for write
1036 */
1037static void attach_mnt(struct mount *mnt,
1038			struct mount *parent,
1039			struct mountpoint *mp)
1040{
1041	mnt_set_mountpoint(parent, mp, mnt);
1042	__attach_mnt(mnt, parent);
1043}
1044
1045void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1046{
1047	struct mountpoint *old_mp = mnt->mnt_mp;
1048	struct mount *old_parent = mnt->mnt_parent;
1049
1050	list_del_init(&mnt->mnt_child);
1051	hlist_del_init(&mnt->mnt_mp_list);
1052	hlist_del_init_rcu(&mnt->mnt_hash);
1053
1054	attach_mnt(mnt, parent, mp);
1055
1056	put_mountpoint(old_mp);
1057	mnt_add_count(old_parent, -1);
1058}
1059
1060/*
1061 * vfsmount lock must be held for write
1062 */
1063static void commit_tree(struct mount *mnt)
1064{
1065	struct mount *parent = mnt->mnt_parent;
1066	struct mount *m;
1067	LIST_HEAD(head);
1068	struct mnt_namespace *n = parent->mnt_ns;
1069
1070	BUG_ON(parent == mnt);
1071
1072	list_add_tail(&head, &mnt->mnt_list);
1073	list_for_each_entry(m, &head, mnt_list)
1074		m->mnt_ns = n;
1075
1076	list_splice(&head, n->list.prev);
1077
1078	n->mounts += n->pending_mounts;
1079	n->pending_mounts = 0;
1080
1081	__attach_mnt(mnt, parent);
1082	touch_mnt_namespace(n);
1083}
1084
1085static struct mount *next_mnt(struct mount *p, struct mount *root)
1086{
1087	struct list_head *next = p->mnt_mounts.next;
1088	if (next == &p->mnt_mounts) {
1089		while (1) {
1090			if (p == root)
1091				return NULL;
1092			next = p->mnt_child.next;
1093			if (next != &p->mnt_parent->mnt_mounts)
1094				break;
1095			p = p->mnt_parent;
1096		}
1097	}
1098	return list_entry(next, struct mount, mnt_child);
1099}
1100
1101static struct mount *skip_mnt_tree(struct mount *p)
1102{
1103	struct list_head *prev = p->mnt_mounts.prev;
1104	while (prev != &p->mnt_mounts) {
1105		p = list_entry(prev, struct mount, mnt_child);
1106		prev = p->mnt_mounts.prev;
1107	}
1108	return p;
1109}
1110
1111/**
1112 * vfs_create_mount - Create a mount for a configured superblock
1113 * @fc: The configuration context with the superblock attached
1114 *
1115 * Create a mount to an already configured superblock.  If necessary, the
1116 * caller should invoke vfs_get_tree() before calling this.
1117 *
1118 * Note that this does not attach the mount to anything.
1119 */
1120struct vfsmount *vfs_create_mount(struct fs_context *fc)
1121{
1122	struct mount *mnt;
1123
1124	if (!fc->root)
1125		return ERR_PTR(-EINVAL);
1126
1127	mnt = alloc_vfsmnt(fc->source ?: "none");
1128	if (!mnt)
1129		return ERR_PTR(-ENOMEM);
1130
1131	if (fc->sb_flags & SB_KERNMOUNT)
1132		mnt->mnt.mnt_flags = MNT_INTERNAL;
1133
1134	atomic_inc(&fc->root->d_sb->s_active);
1135	mnt->mnt.mnt_sb		= fc->root->d_sb;
1136	mnt->mnt.mnt_root	= dget(fc->root);
1137	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
1138	mnt->mnt_parent		= mnt;
1139
1140	lock_mount_hash();
1141	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1142	unlock_mount_hash();
1143	return &mnt->mnt;
1144}
1145EXPORT_SYMBOL(vfs_create_mount);
1146
1147struct vfsmount *fc_mount(struct fs_context *fc)
1148{
1149	int err = vfs_get_tree(fc);
1150	if (!err) {
1151		up_write(&fc->root->d_sb->s_umount);
1152		return vfs_create_mount(fc);
1153	}
1154	return ERR_PTR(err);
1155}
1156EXPORT_SYMBOL(fc_mount);
1157
1158struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1159				int flags, const char *name,
1160				void *data)
1161{
1162	struct fs_context *fc;
1163	struct vfsmount *mnt;
1164	int ret = 0;
1165
1166	if (!type)
1167		return ERR_PTR(-EINVAL);
1168
1169	fc = fs_context_for_mount(type, flags);
1170	if (IS_ERR(fc))
1171		return ERR_CAST(fc);
1172
1173	if (name)
1174		ret = vfs_parse_fs_string(fc, "source",
1175					  name, strlen(name));
1176	if (!ret)
1177		ret = parse_monolithic_mount_data(fc, data);
1178	if (!ret)
1179		mnt = fc_mount(fc);
1180	else
1181		mnt = ERR_PTR(ret);
1182
1183	put_fs_context(fc);
1184	return mnt;
1185}
1186EXPORT_SYMBOL_GPL(vfs_kern_mount);
1187
1188struct vfsmount *
1189vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1190	     const char *name, void *data)
1191{
1192	/* Until it is worked out how to pass the user namespace
1193	 * through from the parent mount to the submount don't support
1194	 * unprivileged mounts with submounts.
1195	 */
1196	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1197		return ERR_PTR(-EPERM);
1198
1199	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1200}
1201EXPORT_SYMBOL_GPL(vfs_submount);
1202
1203static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1204					int flag)
1205{
1206	struct super_block *sb = old->mnt.mnt_sb;
1207	struct mount *mnt;
1208	int err;
1209
1210	mnt = alloc_vfsmnt(old->mnt_devname);
1211	if (!mnt)
1212		return ERR_PTR(-ENOMEM);
1213
1214	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1215		mnt->mnt_group_id = 0; /* not a peer of original */
1216	else
1217		mnt->mnt_group_id = old->mnt_group_id;
1218
1219	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1220		err = mnt_alloc_group_id(mnt);
1221		if (err)
1222			goto out_free;
1223	}
1224
1225	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1226	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1227
1228	atomic_inc(&sb->s_active);
1229	mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1230
1231	mnt->mnt.mnt_sb = sb;
1232	mnt->mnt.mnt_root = dget(root);
1233	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1234	mnt->mnt_parent = mnt;
1235	lock_mount_hash();
1236	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1237	unlock_mount_hash();
1238
1239	if ((flag & CL_SLAVE) ||
1240	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1241		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1242		mnt->mnt_master = old;
1243		CLEAR_MNT_SHARED(mnt);
1244	} else if (!(flag & CL_PRIVATE)) {
1245		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1246			list_add(&mnt->mnt_share, &old->mnt_share);
1247		if (IS_MNT_SLAVE(old))
1248			list_add(&mnt->mnt_slave, &old->mnt_slave);
1249		mnt->mnt_master = old->mnt_master;
1250	} else {
1251		CLEAR_MNT_SHARED(mnt);
1252	}
1253	if (flag & CL_MAKE_SHARED)
1254		set_mnt_shared(mnt);
1255
1256	/* stick the duplicate mount on the same expiry list
1257	 * as the original if that was on one */
1258	if (flag & CL_EXPIRE) {
1259		if (!list_empty(&old->mnt_expire))
1260			list_add(&mnt->mnt_expire, &old->mnt_expire);
1261	}
1262
1263	return mnt;
1264
1265 out_free:
1266	mnt_free_id(mnt);
1267	free_vfsmnt(mnt);
1268	return ERR_PTR(err);
1269}
1270
1271static void cleanup_mnt(struct mount *mnt)
1272{
1273	struct hlist_node *p;
1274	struct mount *m;
1275	/*
1276	 * The warning here probably indicates that somebody messed
1277	 * up a mnt_want/drop_write() pair.  If this happens, the
1278	 * filesystem was probably unable to make r/w->r/o transitions.
1279	 * The locking used to deal with mnt_count decrement provides barriers,
1280	 * so mnt_get_writers() below is safe.
1281	 */
1282	WARN_ON(mnt_get_writers(mnt));
1283	if (unlikely(mnt->mnt_pins.first))
1284		mnt_pin_kill(mnt);
1285	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1286		hlist_del(&m->mnt_umount);
1287		mntput(&m->mnt);
1288	}
1289	fsnotify_vfsmount_delete(&mnt->mnt);
1290	dput(mnt->mnt.mnt_root);
1291	deactivate_super(mnt->mnt.mnt_sb);
1292	mnt_free_id(mnt);
1293	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1294}
1295
1296static void __cleanup_mnt(struct rcu_head *head)
1297{
1298	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1299}
1300
1301static LLIST_HEAD(delayed_mntput_list);
1302static void delayed_mntput(struct work_struct *unused)
1303{
1304	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1305	struct mount *m, *t;
1306
1307	llist_for_each_entry_safe(m, t, node, mnt_llist)
1308		cleanup_mnt(m);
1309}
1310static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1311
1312static void mntput_no_expire(struct mount *mnt)
1313{
1314	LIST_HEAD(list);
1315	int count;
1316
1317	rcu_read_lock();
1318	if (likely(READ_ONCE(mnt->mnt_ns))) {
1319		/*
1320		 * Since we don't do lock_mount_hash() here,
1321		 * ->mnt_ns can change under us.  However, if it's
1322		 * non-NULL, then there's a reference that won't
1323		 * be dropped until after an RCU delay done after
1324		 * turning ->mnt_ns NULL.  So if we observe it
1325		 * non-NULL under rcu_read_lock(), the reference
1326		 * we are dropping is not the final one.
1327		 */
1328		mnt_add_count(mnt, -1);
1329		rcu_read_unlock();
1330		return;
1331	}
1332	lock_mount_hash();
1333	/*
1334	 * make sure that if __legitimize_mnt() has not seen us grab
1335	 * mount_lock, we'll see their refcount increment here.
1336	 */
1337	smp_mb();
1338	mnt_add_count(mnt, -1);
1339	count = mnt_get_count(mnt);
1340	if (count != 0) {
1341		WARN_ON(count < 0);
1342		rcu_read_unlock();
1343		unlock_mount_hash();
1344		return;
1345	}
1346	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1347		rcu_read_unlock();
1348		unlock_mount_hash();
1349		return;
1350	}
1351	mnt->mnt.mnt_flags |= MNT_DOOMED;
1352	rcu_read_unlock();
1353
1354	list_del(&mnt->mnt_instance);
1355
1356	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1357		struct mount *p, *tmp;
1358		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1359			__put_mountpoint(unhash_mnt(p), &list);
1360			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1361		}
1362	}
1363	unlock_mount_hash();
1364	shrink_dentry_list(&list);
1365
1366	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1367		struct task_struct *task = current;
1368		if (likely(!(task->flags & PF_KTHREAD))) {
1369			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1370			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1371				return;
1372		}
1373		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1374			schedule_delayed_work(&delayed_mntput_work, 1);
1375		return;
1376	}
1377	cleanup_mnt(mnt);
1378}
1379
1380void mntput(struct vfsmount *mnt)
1381{
1382	if (mnt) {
1383		struct mount *m = real_mount(mnt);
1384		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1385		if (unlikely(m->mnt_expiry_mark))
1386			m->mnt_expiry_mark = 0;
1387		mntput_no_expire(m);
1388	}
1389}
1390EXPORT_SYMBOL(mntput);
1391
1392struct vfsmount *mntget(struct vfsmount *mnt)
1393{
1394	if (mnt)
1395		mnt_add_count(real_mount(mnt), 1);
1396	return mnt;
1397}
1398EXPORT_SYMBOL(mntget);
1399
1400/**
1401 * path_is_mountpoint() - Check if path is a mount in the current namespace.
1402 * @path: path to check
1403 *
1404 *  d_mountpoint() can only be used reliably to establish if a dentry is
1405 *  not mounted in any namespace and that common case is handled inline.
1406 *  d_mountpoint() isn't aware of the possibility there may be multiple
1407 *  mounts using a given dentry in a different namespace. This function
1408 *  checks if the passed in path is a mountpoint rather than the dentry
1409 *  alone.
1410 */
1411bool path_is_mountpoint(const struct path *path)
1412{
1413	unsigned seq;
1414	bool res;
1415
1416	if (!d_mountpoint(path->dentry))
1417		return false;
1418
1419	rcu_read_lock();
1420	do {
1421		seq = read_seqbegin(&mount_lock);
1422		res = __path_is_mountpoint(path);
1423	} while (read_seqretry(&mount_lock, seq));
1424	rcu_read_unlock();
1425
1426	return res;
1427}
1428EXPORT_SYMBOL(path_is_mountpoint);
1429
1430struct vfsmount *mnt_clone_internal(const struct path *path)
1431{
1432	struct mount *p;
1433	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1434	if (IS_ERR(p))
1435		return ERR_CAST(p);
1436	p->mnt.mnt_flags |= MNT_INTERNAL;
1437	return &p->mnt;
1438}
1439
1440#ifdef CONFIG_PROC_FS
1441static struct mount *mnt_list_next(struct mnt_namespace *ns,
1442				   struct list_head *p)
1443{
1444	struct mount *mnt, *ret = NULL;
1445
1446	lock_ns_list(ns);
1447	list_for_each_continue(p, &ns->list) {
1448		mnt = list_entry(p, typeof(*mnt), mnt_list);
1449		if (!mnt_is_cursor(mnt)) {
1450			ret = mnt;
1451			break;
1452		}
1453	}
1454	unlock_ns_list(ns);
1455
1456	return ret;
1457}
1458
1459/* iterator; we want it to have access to namespace_sem, thus here... */
1460static void *m_start(struct seq_file *m, loff_t *pos)
1461{
1462	struct proc_mounts *p = m->private;
1463	struct list_head *prev;
1464
1465	down_read(&namespace_sem);
1466	if (!*pos) {
1467		prev = &p->ns->list;
1468	} else {
1469		prev = &p->cursor.mnt_list;
1470
1471		/* Read after we'd reached the end? */
1472		if (list_empty(prev))
1473			return NULL;
1474	}
1475
1476	return mnt_list_next(p->ns, prev);
 
 
 
1477}
1478
1479static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1480{
1481	struct proc_mounts *p = m->private;
1482	struct mount *mnt = v;
1483
1484	++*pos;
1485	return mnt_list_next(p->ns, &mnt->mnt_list);
 
1486}
1487
1488static void m_stop(struct seq_file *m, void *v)
1489{
1490	struct proc_mounts *p = m->private;
1491	struct mount *mnt = v;
1492
1493	lock_ns_list(p->ns);
1494	if (mnt)
1495		list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1496	else
1497		list_del_init(&p->cursor.mnt_list);
1498	unlock_ns_list(p->ns);
1499	up_read(&namespace_sem);
1500}
1501
1502static int m_show(struct seq_file *m, void *v)
1503{
1504	struct proc_mounts *p = m->private;
1505	struct mount *r = v;
1506	return p->show(m, &r->mnt);
1507}
1508
1509const struct seq_operations mounts_op = {
1510	.start	= m_start,
1511	.next	= m_next,
1512	.stop	= m_stop,
1513	.show	= m_show,
1514};
1515
1516void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1517{
1518	down_read(&namespace_sem);
1519	lock_ns_list(ns);
1520	list_del(&cursor->mnt_list);
1521	unlock_ns_list(ns);
1522	up_read(&namespace_sem);
1523}
1524#endif  /* CONFIG_PROC_FS */
1525
1526/**
1527 * may_umount_tree - check if a mount tree is busy
1528 * @m: root of mount tree
1529 *
1530 * This is called to check if a tree of mounts has any
1531 * open files, pwds, chroots or sub mounts that are
1532 * busy.
1533 */
1534int may_umount_tree(struct vfsmount *m)
1535{
1536	struct mount *mnt = real_mount(m);
1537	int actual_refs = 0;
1538	int minimum_refs = 0;
1539	struct mount *p;
1540	BUG_ON(!m);
1541
1542	/* write lock needed for mnt_get_count */
1543	lock_mount_hash();
1544	for (p = mnt; p; p = next_mnt(p, mnt)) {
1545		actual_refs += mnt_get_count(p);
1546		minimum_refs += 2;
1547	}
1548	unlock_mount_hash();
1549
1550	if (actual_refs > minimum_refs)
1551		return 0;
1552
1553	return 1;
1554}
1555
1556EXPORT_SYMBOL(may_umount_tree);
1557
1558/**
1559 * may_umount - check if a mount point is busy
1560 * @mnt: root of mount
1561 *
1562 * This is called to check if a mount point has any
1563 * open files, pwds, chroots or sub mounts. If the
1564 * mount has sub mounts this will return busy
1565 * regardless of whether the sub mounts are busy.
1566 *
1567 * Doesn't take quota and stuff into account. IOW, in some cases it will
1568 * give false negatives. The main reason why it's here is that we need
1569 * a non-destructive way to look for easily umountable filesystems.
1570 */
1571int may_umount(struct vfsmount *mnt)
1572{
1573	int ret = 1;
1574	down_read(&namespace_sem);
1575	lock_mount_hash();
1576	if (propagate_mount_busy(real_mount(mnt), 2))
1577		ret = 0;
1578	unlock_mount_hash();
1579	up_read(&namespace_sem);
1580	return ret;
1581}
1582
1583EXPORT_SYMBOL(may_umount);
1584
1585static void namespace_unlock(void)
1586{
1587	struct hlist_head head;
1588	struct hlist_node *p;
1589	struct mount *m;
1590	LIST_HEAD(list);
1591
1592	hlist_move_list(&unmounted, &head);
1593	list_splice_init(&ex_mountpoints, &list);
1594
1595	up_write(&namespace_sem);
1596
1597	shrink_dentry_list(&list);
1598
1599	if (likely(hlist_empty(&head)))
1600		return;
1601
1602	synchronize_rcu_expedited();
1603
1604	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1605		hlist_del(&m->mnt_umount);
1606		mntput(&m->mnt);
1607	}
1608}
1609
1610static inline void namespace_lock(void)
1611{
1612	down_write(&namespace_sem);
1613}
1614
1615enum umount_tree_flags {
1616	UMOUNT_SYNC = 1,
1617	UMOUNT_PROPAGATE = 2,
1618	UMOUNT_CONNECTED = 4,
1619};
1620
1621static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1622{
1623	/* Leaving mounts connected is only valid for lazy umounts */
1624	if (how & UMOUNT_SYNC)
1625		return true;
1626
1627	/* A mount without a parent has nothing to be connected to */
1628	if (!mnt_has_parent(mnt))
1629		return true;
1630
1631	/* Because the reference counting rules change when mounts are
1632	 * unmounted and connected, umounted mounts may not be
1633	 * connected to mounted mounts.
1634	 */
1635	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1636		return true;
1637
1638	/* Has it been requested that the mount remain connected? */
1639	if (how & UMOUNT_CONNECTED)
1640		return false;
1641
1642	/* Is the mount locked such that it needs to remain connected? */
1643	if (IS_MNT_LOCKED(mnt))
1644		return false;
1645
1646	/* By default disconnect the mount */
1647	return true;
1648}
1649
1650/*
1651 * mount_lock must be held
1652 * namespace_sem must be held for write
1653 */
1654static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1655{
1656	LIST_HEAD(tmp_list);
1657	struct mount *p;
1658
1659	if (how & UMOUNT_PROPAGATE)
1660		propagate_mount_unlock(mnt);
1661
1662	/* Gather the mounts to umount */
1663	for (p = mnt; p; p = next_mnt(p, mnt)) {
1664		p->mnt.mnt_flags |= MNT_UMOUNT;
1665		list_move(&p->mnt_list, &tmp_list);
1666	}
1667
1668	/* Hide the mounts from mnt_mounts */
1669	list_for_each_entry(p, &tmp_list, mnt_list) {
1670		list_del_init(&p->mnt_child);
1671	}
1672
1673	/* Add propogated mounts to the tmp_list */
1674	if (how & UMOUNT_PROPAGATE)
1675		propagate_umount(&tmp_list);
1676
1677	while (!list_empty(&tmp_list)) {
1678		struct mnt_namespace *ns;
1679		bool disconnect;
1680		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1681		list_del_init(&p->mnt_expire);
1682		list_del_init(&p->mnt_list);
1683		ns = p->mnt_ns;
1684		if (ns) {
1685			ns->mounts--;
1686			__touch_mnt_namespace(ns);
1687		}
1688		p->mnt_ns = NULL;
1689		if (how & UMOUNT_SYNC)
1690			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1691
1692		disconnect = disconnect_mount(p, how);
1693		if (mnt_has_parent(p)) {
1694			mnt_add_count(p->mnt_parent, -1);
1695			if (!disconnect) {
1696				/* Don't forget about p */
1697				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1698			} else {
1699				umount_mnt(p);
1700			}
1701		}
1702		change_mnt_propagation(p, MS_PRIVATE);
1703		if (disconnect)
1704			hlist_add_head(&p->mnt_umount, &unmounted);
1705	}
1706}
1707
1708static void shrink_submounts(struct mount *mnt);
1709
1710static int do_umount_root(struct super_block *sb)
1711{
1712	int ret = 0;
1713
1714	down_write(&sb->s_umount);
1715	if (!sb_rdonly(sb)) {
1716		struct fs_context *fc;
1717
1718		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1719						SB_RDONLY);
1720		if (IS_ERR(fc)) {
1721			ret = PTR_ERR(fc);
1722		} else {
1723			ret = parse_monolithic_mount_data(fc, NULL);
1724			if (!ret)
1725				ret = reconfigure_super(fc);
1726			put_fs_context(fc);
1727		}
1728	}
1729	up_write(&sb->s_umount);
1730	return ret;
1731}
1732
1733static int do_umount(struct mount *mnt, int flags)
1734{
1735	struct super_block *sb = mnt->mnt.mnt_sb;
1736	int retval;
1737
1738	retval = security_sb_umount(&mnt->mnt, flags);
1739	if (retval)
1740		return retval;
1741
1742	/*
1743	 * Allow userspace to request a mountpoint be expired rather than
1744	 * unmounting unconditionally. Unmount only happens if:
1745	 *  (1) the mark is already set (the mark is cleared by mntput())
1746	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1747	 */
1748	if (flags & MNT_EXPIRE) {
1749		if (&mnt->mnt == current->fs->root.mnt ||
1750		    flags & (MNT_FORCE | MNT_DETACH))
1751			return -EINVAL;
1752
1753		/*
1754		 * probably don't strictly need the lock here if we examined
1755		 * all race cases, but it's a slowpath.
1756		 */
1757		lock_mount_hash();
1758		if (mnt_get_count(mnt) != 2) {
1759			unlock_mount_hash();
1760			return -EBUSY;
1761		}
1762		unlock_mount_hash();
1763
1764		if (!xchg(&mnt->mnt_expiry_mark, 1))
1765			return -EAGAIN;
1766	}
1767
1768	/*
1769	 * If we may have to abort operations to get out of this
1770	 * mount, and they will themselves hold resources we must
1771	 * allow the fs to do things. In the Unix tradition of
1772	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1773	 * might fail to complete on the first run through as other tasks
1774	 * must return, and the like. Thats for the mount program to worry
1775	 * about for the moment.
1776	 */
1777
1778	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1779		sb->s_op->umount_begin(sb);
1780	}
1781
1782	/*
1783	 * No sense to grab the lock for this test, but test itself looks
1784	 * somewhat bogus. Suggestions for better replacement?
1785	 * Ho-hum... In principle, we might treat that as umount + switch
1786	 * to rootfs. GC would eventually take care of the old vfsmount.
1787	 * Actually it makes sense, especially if rootfs would contain a
1788	 * /reboot - static binary that would close all descriptors and
1789	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1790	 */
1791	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1792		/*
1793		 * Special case for "unmounting" root ...
1794		 * we just try to remount it readonly.
1795		 */
1796		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1797			return -EPERM;
1798		return do_umount_root(sb);
1799	}
1800
1801	namespace_lock();
1802	lock_mount_hash();
1803
1804	/* Recheck MNT_LOCKED with the locks held */
1805	retval = -EINVAL;
1806	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1807		goto out;
1808
1809	event++;
1810	if (flags & MNT_DETACH) {
1811		if (!list_empty(&mnt->mnt_list))
1812			umount_tree(mnt, UMOUNT_PROPAGATE);
1813		retval = 0;
1814	} else {
1815		shrink_submounts(mnt);
1816		retval = -EBUSY;
1817		if (!propagate_mount_busy(mnt, 2)) {
1818			if (!list_empty(&mnt->mnt_list))
1819				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1820			retval = 0;
1821		}
1822	}
1823out:
1824	unlock_mount_hash();
1825	namespace_unlock();
1826	return retval;
1827}
1828
1829/*
1830 * __detach_mounts - lazily unmount all mounts on the specified dentry
1831 *
1832 * During unlink, rmdir, and d_drop it is possible to loose the path
1833 * to an existing mountpoint, and wind up leaking the mount.
1834 * detach_mounts allows lazily unmounting those mounts instead of
1835 * leaking them.
1836 *
1837 * The caller may hold dentry->d_inode->i_mutex.
1838 */
1839void __detach_mounts(struct dentry *dentry)
1840{
1841	struct mountpoint *mp;
1842	struct mount *mnt;
1843
1844	namespace_lock();
1845	lock_mount_hash();
1846	mp = lookup_mountpoint(dentry);
1847	if (!mp)
1848		goto out_unlock;
1849
1850	event++;
1851	while (!hlist_empty(&mp->m_list)) {
1852		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1853		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1854			umount_mnt(mnt);
1855			hlist_add_head(&mnt->mnt_umount, &unmounted);
1856		}
1857		else umount_tree(mnt, UMOUNT_CONNECTED);
1858	}
1859	put_mountpoint(mp);
1860out_unlock:
1861	unlock_mount_hash();
1862	namespace_unlock();
1863}
1864
1865/*
1866 * Is the caller allowed to modify his namespace?
1867 */
1868bool may_mount(void)
1869{
1870	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1871}
1872
1873static void warn_mandlock(void)
 
1874{
1875	pr_warn_once("=======================================================\n"
1876		     "WARNING: The mand mount option has been deprecated and\n"
1877		     "         and is ignored by this kernel. Remove the mand\n"
1878		     "         option from the mount to silence this warning.\n"
1879		     "=======================================================\n");
1880}
1881
1882static int can_umount(const struct path *path, int flags)
1883{
1884	struct mount *mnt = real_mount(path->mnt);
1885
1886	if (!may_mount())
1887		return -EPERM;
1888	if (path->dentry != path->mnt->mnt_root)
1889		return -EINVAL;
1890	if (!check_mnt(mnt))
1891		return -EINVAL;
1892	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1893		return -EINVAL;
1894	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1895		return -EPERM;
1896	return 0;
1897}
 
1898
1899// caller is responsible for flags being sane
1900int path_umount(struct path *path, int flags)
1901{
1902	struct mount *mnt = real_mount(path->mnt);
1903	int ret;
 
 
1904
1905	ret = can_umount(path, flags);
1906	if (!ret)
1907		ret = do_umount(mnt, flags);
1908
1909	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1910	dput(path->dentry);
1911	mntput_no_expire(mnt);
1912	return ret;
1913}
1914
1915static int ksys_umount(char __user *name, int flags)
1916{
1917	int lookup_flags = LOOKUP_MOUNTPOINT;
1918	struct path path;
1919	int ret;
 
 
1920
1921	// basic validity checks done first
1922	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1923		return -EINVAL;
1924
 
 
 
1925	if (!(flags & UMOUNT_NOFOLLOW))
1926		lookup_flags |= LOOKUP_FOLLOW;
1927	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1928	if (ret)
1929		return ret;
1930	return path_umount(&path, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1931}
1932
1933SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1934{
1935	return ksys_umount(name, flags);
1936}
1937
1938#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1939
1940/*
1941 *	The 2.0 compatible umount. No flags.
1942 */
1943SYSCALL_DEFINE1(oldumount, char __user *, name)
1944{
1945	return ksys_umount(name, 0);
1946}
1947
1948#endif
1949
1950static bool is_mnt_ns_file(struct dentry *dentry)
1951{
1952	/* Is this a proxy for a mount namespace? */
1953	return dentry->d_op == &ns_dentry_operations &&
1954	       dentry->d_fsdata == &mntns_operations;
1955}
1956
1957static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1958{
1959	return container_of(ns, struct mnt_namespace, ns);
1960}
1961
1962struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1963{
1964	return &mnt->ns;
1965}
1966
1967static bool mnt_ns_loop(struct dentry *dentry)
1968{
1969	/* Could bind mounting the mount namespace inode cause a
1970	 * mount namespace loop?
1971	 */
1972	struct mnt_namespace *mnt_ns;
1973	if (!is_mnt_ns_file(dentry))
1974		return false;
1975
1976	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1977	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1978}
1979
1980struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1981					int flag)
1982{
1983	struct mount *res, *p, *q, *r, *parent;
1984
1985	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1986		return ERR_PTR(-EINVAL);
1987
1988	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1989		return ERR_PTR(-EINVAL);
1990
1991	res = q = clone_mnt(mnt, dentry, flag);
1992	if (IS_ERR(q))
1993		return q;
1994
1995	q->mnt_mountpoint = mnt->mnt_mountpoint;
1996
1997	p = mnt;
1998	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1999		struct mount *s;
2000		if (!is_subdir(r->mnt_mountpoint, dentry))
2001			continue;
2002
2003		for (s = r; s; s = next_mnt(s, r)) {
2004			if (!(flag & CL_COPY_UNBINDABLE) &&
2005			    IS_MNT_UNBINDABLE(s)) {
2006				if (s->mnt.mnt_flags & MNT_LOCKED) {
2007					/* Both unbindable and locked. */
2008					q = ERR_PTR(-EPERM);
2009					goto out;
2010				} else {
2011					s = skip_mnt_tree(s);
2012					continue;
2013				}
2014			}
2015			if (!(flag & CL_COPY_MNT_NS_FILE) &&
2016			    is_mnt_ns_file(s->mnt.mnt_root)) {
2017				s = skip_mnt_tree(s);
2018				continue;
2019			}
2020			while (p != s->mnt_parent) {
2021				p = p->mnt_parent;
2022				q = q->mnt_parent;
2023			}
2024			p = s;
2025			parent = q;
2026			q = clone_mnt(p, p->mnt.mnt_root, flag);
2027			if (IS_ERR(q))
2028				goto out;
2029			lock_mount_hash();
2030			list_add_tail(&q->mnt_list, &res->mnt_list);
2031			attach_mnt(q, parent, p->mnt_mp);
2032			unlock_mount_hash();
2033		}
2034	}
2035	return res;
2036out:
2037	if (res) {
2038		lock_mount_hash();
2039		umount_tree(res, UMOUNT_SYNC);
2040		unlock_mount_hash();
2041	}
2042	return q;
2043}
2044
2045/* Caller should check returned pointer for errors */
2046
2047struct vfsmount *collect_mounts(const struct path *path)
2048{
2049	struct mount *tree;
2050	namespace_lock();
2051	if (!check_mnt(real_mount(path->mnt)))
2052		tree = ERR_PTR(-EINVAL);
2053	else
2054		tree = copy_tree(real_mount(path->mnt), path->dentry,
2055				 CL_COPY_ALL | CL_PRIVATE);
2056	namespace_unlock();
2057	if (IS_ERR(tree))
2058		return ERR_CAST(tree);
2059	return &tree->mnt;
2060}
2061
2062static void free_mnt_ns(struct mnt_namespace *);
2063static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2064
2065void dissolve_on_fput(struct vfsmount *mnt)
2066{
2067	struct mnt_namespace *ns;
2068	namespace_lock();
2069	lock_mount_hash();
2070	ns = real_mount(mnt)->mnt_ns;
2071	if (ns) {
2072		if (is_anon_ns(ns))
2073			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
2074		else
2075			ns = NULL;
2076	}
2077	unlock_mount_hash();
2078	namespace_unlock();
2079	if (ns)
2080		free_mnt_ns(ns);
2081}
2082
2083void drop_collected_mounts(struct vfsmount *mnt)
2084{
2085	namespace_lock();
2086	lock_mount_hash();
2087	umount_tree(real_mount(mnt), 0);
2088	unlock_mount_hash();
2089	namespace_unlock();
2090}
2091
2092static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2093{
2094	struct mount *child;
2095
2096	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2097		if (!is_subdir(child->mnt_mountpoint, dentry))
2098			continue;
2099
2100		if (child->mnt.mnt_flags & MNT_LOCKED)
2101			return true;
2102	}
2103	return false;
2104}
2105
2106/**
2107 * clone_private_mount - create a private clone of a path
2108 * @path: path to clone
2109 *
2110 * This creates a new vfsmount, which will be the clone of @path.  The new mount
2111 * will not be attached anywhere in the namespace and will be private (i.e.
2112 * changes to the originating mount won't be propagated into this).
2113 *
2114 * Release with mntput().
2115 */
2116struct vfsmount *clone_private_mount(const struct path *path)
2117{
2118	struct mount *old_mnt = real_mount(path->mnt);
2119	struct mount *new_mnt;
2120
2121	down_read(&namespace_sem);
2122	if (IS_MNT_UNBINDABLE(old_mnt))
2123		goto invalid;
2124
2125	if (!check_mnt(old_mnt))
2126		goto invalid;
2127
2128	if (has_locked_children(old_mnt, path->dentry))
2129		goto invalid;
2130
2131	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2132	up_read(&namespace_sem);
2133
2134	if (IS_ERR(new_mnt))
2135		return ERR_CAST(new_mnt);
2136
2137	/* Longterm mount to be removed by kern_unmount*() */
2138	new_mnt->mnt_ns = MNT_NS_INTERNAL;
2139
2140	return &new_mnt->mnt;
2141
2142invalid:
2143	up_read(&namespace_sem);
2144	return ERR_PTR(-EINVAL);
2145}
2146EXPORT_SYMBOL_GPL(clone_private_mount);
2147
2148int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2149		   struct vfsmount *root)
2150{
2151	struct mount *mnt;
2152	int res = f(root, arg);
2153	if (res)
2154		return res;
2155	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2156		res = f(&mnt->mnt, arg);
2157		if (res)
2158			return res;
2159	}
2160	return 0;
2161}
2162
2163static void lock_mnt_tree(struct mount *mnt)
2164{
2165	struct mount *p;
2166
2167	for (p = mnt; p; p = next_mnt(p, mnt)) {
2168		int flags = p->mnt.mnt_flags;
2169		/* Don't allow unprivileged users to change mount flags */
2170		flags |= MNT_LOCK_ATIME;
2171
2172		if (flags & MNT_READONLY)
2173			flags |= MNT_LOCK_READONLY;
2174
2175		if (flags & MNT_NODEV)
2176			flags |= MNT_LOCK_NODEV;
2177
2178		if (flags & MNT_NOSUID)
2179			flags |= MNT_LOCK_NOSUID;
2180
2181		if (flags & MNT_NOEXEC)
2182			flags |= MNT_LOCK_NOEXEC;
2183		/* Don't allow unprivileged users to reveal what is under a mount */
2184		if (list_empty(&p->mnt_expire))
2185			flags |= MNT_LOCKED;
2186		p->mnt.mnt_flags = flags;
2187	}
2188}
2189
2190static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2191{
2192	struct mount *p;
2193
2194	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2195		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2196			mnt_release_group_id(p);
2197	}
2198}
2199
2200static int invent_group_ids(struct mount *mnt, bool recurse)
2201{
2202	struct mount *p;
2203
2204	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2205		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2206			int err = mnt_alloc_group_id(p);
2207			if (err) {
2208				cleanup_group_ids(mnt, p);
2209				return err;
2210			}
2211		}
2212	}
2213
2214	return 0;
2215}
2216
2217int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2218{
2219	unsigned int max = READ_ONCE(sysctl_mount_max);
2220	unsigned int mounts = 0;
2221	struct mount *p;
2222
2223	if (ns->mounts >= max)
2224		return -ENOSPC;
2225	max -= ns->mounts;
2226	if (ns->pending_mounts >= max)
2227		return -ENOSPC;
2228	max -= ns->pending_mounts;
2229
2230	for (p = mnt; p; p = next_mnt(p, mnt))
2231		mounts++;
2232
2233	if (mounts > max)
 
 
 
 
 
 
2234		return -ENOSPC;
2235
2236	ns->pending_mounts += mounts;
2237	return 0;
2238}
2239
2240/*
2241 *  @source_mnt : mount tree to be attached
2242 *  @nd         : place the mount tree @source_mnt is attached
2243 *  @parent_nd  : if non-null, detach the source_mnt from its parent and
2244 *  		   store the parent mount and mountpoint dentry.
2245 *  		   (done when source_mnt is moved)
2246 *
2247 *  NOTE: in the table below explains the semantics when a source mount
2248 *  of a given type is attached to a destination mount of a given type.
2249 * ---------------------------------------------------------------------------
2250 * |         BIND MOUNT OPERATION                                            |
2251 * |**************************************************************************
2252 * | source-->| shared        |       private  |       slave    | unbindable |
2253 * | dest     |               |                |                |            |
2254 * |   |      |               |                |                |            |
2255 * |   v      |               |                |                |            |
2256 * |**************************************************************************
2257 * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2258 * |          |               |                |                |            |
2259 * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2260 * ***************************************************************************
2261 * A bind operation clones the source mount and mounts the clone on the
2262 * destination mount.
2263 *
2264 * (++)  the cloned mount is propagated to all the mounts in the propagation
2265 * 	 tree of the destination mount and the cloned mount is added to
2266 * 	 the peer group of the source mount.
2267 * (+)   the cloned mount is created under the destination mount and is marked
2268 *       as shared. The cloned mount is added to the peer group of the source
2269 *       mount.
2270 * (+++) the mount is propagated to all the mounts in the propagation tree
2271 *       of the destination mount and the cloned mount is made slave
2272 *       of the same master as that of the source mount. The cloned mount
2273 *       is marked as 'shared and slave'.
2274 * (*)   the cloned mount is made a slave of the same master as that of the
2275 * 	 source mount.
2276 *
2277 * ---------------------------------------------------------------------------
2278 * |         		MOVE MOUNT OPERATION                                 |
2279 * |**************************************************************************
2280 * | source-->| shared        |       private  |       slave    | unbindable |
2281 * | dest     |               |                |                |            |
2282 * |   |      |               |                |                |            |
2283 * |   v      |               |                |                |            |
2284 * |**************************************************************************
2285 * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2286 * |          |               |                |                |            |
2287 * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2288 * ***************************************************************************
2289 *
2290 * (+)  the mount is moved to the destination. And is then propagated to
2291 * 	all the mounts in the propagation tree of the destination mount.
2292 * (+*)  the mount is moved to the destination.
2293 * (+++)  the mount is moved to the destination and is then propagated to
2294 * 	all the mounts belonging to the destination mount's propagation tree.
2295 * 	the mount is marked as 'shared and slave'.
2296 * (*)	the mount continues to be a slave at the new location.
2297 *
2298 * if the source mount is a tree, the operations explained above is
2299 * applied to each mount in the tree.
2300 * Must be called without spinlocks held, since this function can sleep
2301 * in allocations.
2302 */
2303static int attach_recursive_mnt(struct mount *source_mnt,
2304			struct mount *dest_mnt,
2305			struct mountpoint *dest_mp,
2306			bool moving)
2307{
2308	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2309	HLIST_HEAD(tree_list);
2310	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2311	struct mountpoint *smp;
2312	struct mount *child, *p;
2313	struct hlist_node *n;
2314	int err;
2315
2316	/* Preallocate a mountpoint in case the new mounts need
2317	 * to be tucked under other mounts.
2318	 */
2319	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2320	if (IS_ERR(smp))
2321		return PTR_ERR(smp);
2322
2323	/* Is there space to add these mounts to the mount namespace? */
2324	if (!moving) {
2325		err = count_mounts(ns, source_mnt);
2326		if (err)
2327			goto out;
2328	}
2329
2330	if (IS_MNT_SHARED(dest_mnt)) {
2331		err = invent_group_ids(source_mnt, true);
2332		if (err)
2333			goto out;
2334		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2335		lock_mount_hash();
2336		if (err)
2337			goto out_cleanup_ids;
2338		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2339			set_mnt_shared(p);
2340	} else {
2341		lock_mount_hash();
2342	}
2343	if (moving) {
2344		unhash_mnt(source_mnt);
2345		attach_mnt(source_mnt, dest_mnt, dest_mp);
2346		touch_mnt_namespace(source_mnt->mnt_ns);
2347	} else {
2348		if (source_mnt->mnt_ns) {
2349			/* move from anon - the caller will destroy */
2350			list_del_init(&source_mnt->mnt_ns->list);
2351		}
2352		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2353		commit_tree(source_mnt);
2354	}
2355
2356	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2357		struct mount *q;
2358		hlist_del_init(&child->mnt_hash);
2359		q = __lookup_mnt(&child->mnt_parent->mnt,
2360				 child->mnt_mountpoint);
2361		if (q)
2362			mnt_change_mountpoint(child, smp, q);
2363		/* Notice when we are propagating across user namespaces */
2364		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2365			lock_mnt_tree(child);
2366		child->mnt.mnt_flags &= ~MNT_LOCKED;
2367		commit_tree(child);
2368	}
2369	put_mountpoint(smp);
2370	unlock_mount_hash();
2371
2372	return 0;
2373
2374 out_cleanup_ids:
2375	while (!hlist_empty(&tree_list)) {
2376		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2377		child->mnt_parent->mnt_ns->pending_mounts = 0;
2378		umount_tree(child, UMOUNT_SYNC);
2379	}
2380	unlock_mount_hash();
2381	cleanup_group_ids(source_mnt, NULL);
2382 out:
2383	ns->pending_mounts = 0;
2384
2385	read_seqlock_excl(&mount_lock);
2386	put_mountpoint(smp);
2387	read_sequnlock_excl(&mount_lock);
2388
2389	return err;
2390}
2391
2392static struct mountpoint *lock_mount(struct path *path)
2393{
2394	struct vfsmount *mnt;
2395	struct dentry *dentry = path->dentry;
2396retry:
2397	inode_lock(dentry->d_inode);
2398	if (unlikely(cant_mount(dentry))) {
2399		inode_unlock(dentry->d_inode);
2400		return ERR_PTR(-ENOENT);
2401	}
2402	namespace_lock();
2403	mnt = lookup_mnt(path);
2404	if (likely(!mnt)) {
2405		struct mountpoint *mp = get_mountpoint(dentry);
2406		if (IS_ERR(mp)) {
2407			namespace_unlock();
2408			inode_unlock(dentry->d_inode);
2409			return mp;
2410		}
2411		return mp;
2412	}
2413	namespace_unlock();
2414	inode_unlock(path->dentry->d_inode);
2415	path_put(path);
2416	path->mnt = mnt;
2417	dentry = path->dentry = dget(mnt->mnt_root);
2418	goto retry;
2419}
2420
2421static void unlock_mount(struct mountpoint *where)
2422{
2423	struct dentry *dentry = where->m_dentry;
2424
2425	read_seqlock_excl(&mount_lock);
2426	put_mountpoint(where);
2427	read_sequnlock_excl(&mount_lock);
2428
2429	namespace_unlock();
2430	inode_unlock(dentry->d_inode);
2431}
2432
2433static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2434{
2435	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2436		return -EINVAL;
2437
2438	if (d_is_dir(mp->m_dentry) !=
2439	      d_is_dir(mnt->mnt.mnt_root))
2440		return -ENOTDIR;
2441
2442	return attach_recursive_mnt(mnt, p, mp, false);
2443}
2444
2445/*
2446 * Sanity check the flags to change_mnt_propagation.
2447 */
2448
2449static int flags_to_propagation_type(int ms_flags)
2450{
2451	int type = ms_flags & ~(MS_REC | MS_SILENT);
2452
2453	/* Fail if any non-propagation flags are set */
2454	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2455		return 0;
2456	/* Only one propagation flag should be set */
2457	if (!is_power_of_2(type))
2458		return 0;
2459	return type;
2460}
2461
2462/*
2463 * recursively change the type of the mountpoint.
2464 */
2465static int do_change_type(struct path *path, int ms_flags)
2466{
2467	struct mount *m;
2468	struct mount *mnt = real_mount(path->mnt);
2469	int recurse = ms_flags & MS_REC;
2470	int type;
2471	int err = 0;
2472
2473	if (path->dentry != path->mnt->mnt_root)
2474		return -EINVAL;
2475
2476	type = flags_to_propagation_type(ms_flags);
2477	if (!type)
2478		return -EINVAL;
2479
2480	namespace_lock();
2481	if (type == MS_SHARED) {
2482		err = invent_group_ids(mnt, recurse);
2483		if (err)
2484			goto out_unlock;
2485	}
2486
2487	lock_mount_hash();
2488	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2489		change_mnt_propagation(m, type);
2490	unlock_mount_hash();
2491
2492 out_unlock:
2493	namespace_unlock();
2494	return err;
2495}
2496
 
 
 
 
 
 
 
 
 
 
 
 
 
2497static struct mount *__do_loopback(struct path *old_path, int recurse)
2498{
2499	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2500
2501	if (IS_MNT_UNBINDABLE(old))
2502		return mnt;
2503
2504	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2505		return mnt;
2506
2507	if (!recurse && has_locked_children(old, old_path->dentry))
2508		return mnt;
2509
2510	if (recurse)
2511		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2512	else
2513		mnt = clone_mnt(old, old_path->dentry, 0);
2514
2515	if (!IS_ERR(mnt))
2516		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2517
2518	return mnt;
2519}
2520
2521/*
2522 * do loopback mount.
2523 */
2524static int do_loopback(struct path *path, const char *old_name,
2525				int recurse)
2526{
2527	struct path old_path;
2528	struct mount *mnt = NULL, *parent;
2529	struct mountpoint *mp;
2530	int err;
2531	if (!old_name || !*old_name)
2532		return -EINVAL;
2533	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2534	if (err)
2535		return err;
2536
2537	err = -EINVAL;
2538	if (mnt_ns_loop(old_path.dentry))
2539		goto out;
2540
2541	mp = lock_mount(path);
2542	if (IS_ERR(mp)) {
2543		err = PTR_ERR(mp);
2544		goto out;
2545	}
2546
2547	parent = real_mount(path->mnt);
2548	if (!check_mnt(parent))
2549		goto out2;
2550
2551	mnt = __do_loopback(&old_path, recurse);
2552	if (IS_ERR(mnt)) {
2553		err = PTR_ERR(mnt);
2554		goto out2;
2555	}
2556
2557	err = graft_tree(mnt, parent, mp);
2558	if (err) {
2559		lock_mount_hash();
2560		umount_tree(mnt, UMOUNT_SYNC);
2561		unlock_mount_hash();
2562	}
2563out2:
2564	unlock_mount(mp);
2565out:
2566	path_put(&old_path);
2567	return err;
2568}
2569
2570static struct file *open_detached_copy(struct path *path, bool recursive)
2571{
2572	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2573	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2574	struct mount *mnt, *p;
2575	struct file *file;
2576
2577	if (IS_ERR(ns))
2578		return ERR_CAST(ns);
2579
2580	namespace_lock();
2581	mnt = __do_loopback(path, recursive);
2582	if (IS_ERR(mnt)) {
2583		namespace_unlock();
2584		free_mnt_ns(ns);
2585		return ERR_CAST(mnt);
2586	}
2587
2588	lock_mount_hash();
2589	for (p = mnt; p; p = next_mnt(p, mnt)) {
2590		p->mnt_ns = ns;
2591		ns->mounts++;
2592	}
2593	ns->root = mnt;
2594	list_add_tail(&ns->list, &mnt->mnt_list);
2595	mntget(&mnt->mnt);
2596	unlock_mount_hash();
2597	namespace_unlock();
2598
2599	mntput(path->mnt);
2600	path->mnt = &mnt->mnt;
2601	file = dentry_open(path, O_PATH, current_cred());
2602	if (IS_ERR(file))
2603		dissolve_on_fput(path->mnt);
2604	else
2605		file->f_mode |= FMODE_NEED_UNMOUNT;
2606	return file;
2607}
2608
2609SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2610{
2611	struct file *file;
2612	struct path path;
2613	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2614	bool detached = flags & OPEN_TREE_CLONE;
2615	int error;
2616	int fd;
2617
2618	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2619
2620	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2621		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2622		      OPEN_TREE_CLOEXEC))
2623		return -EINVAL;
2624
2625	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2626		return -EINVAL;
2627
2628	if (flags & AT_NO_AUTOMOUNT)
2629		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2630	if (flags & AT_SYMLINK_NOFOLLOW)
2631		lookup_flags &= ~LOOKUP_FOLLOW;
2632	if (flags & AT_EMPTY_PATH)
2633		lookup_flags |= LOOKUP_EMPTY;
2634
2635	if (detached && !may_mount())
2636		return -EPERM;
2637
2638	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2639	if (fd < 0)
2640		return fd;
2641
2642	error = user_path_at(dfd, filename, lookup_flags, &path);
2643	if (unlikely(error)) {
2644		file = ERR_PTR(error);
2645	} else {
2646		if (detached)
2647			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2648		else
2649			file = dentry_open(&path, O_PATH, current_cred());
2650		path_put(&path);
2651	}
2652	if (IS_ERR(file)) {
2653		put_unused_fd(fd);
2654		return PTR_ERR(file);
2655	}
2656	fd_install(fd, file);
2657	return fd;
2658}
2659
2660/*
2661 * Don't allow locked mount flags to be cleared.
2662 *
2663 * No locks need to be held here while testing the various MNT_LOCK
2664 * flags because those flags can never be cleared once they are set.
2665 */
2666static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2667{
2668	unsigned int fl = mnt->mnt.mnt_flags;
2669
2670	if ((fl & MNT_LOCK_READONLY) &&
2671	    !(mnt_flags & MNT_READONLY))
2672		return false;
2673
2674	if ((fl & MNT_LOCK_NODEV) &&
2675	    !(mnt_flags & MNT_NODEV))
2676		return false;
2677
2678	if ((fl & MNT_LOCK_NOSUID) &&
2679	    !(mnt_flags & MNT_NOSUID))
2680		return false;
2681
2682	if ((fl & MNT_LOCK_NOEXEC) &&
2683	    !(mnt_flags & MNT_NOEXEC))
2684		return false;
2685
2686	if ((fl & MNT_LOCK_ATIME) &&
2687	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2688		return false;
2689
2690	return true;
2691}
2692
2693static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2694{
2695	bool readonly_request = (mnt_flags & MNT_READONLY);
2696
2697	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2698		return 0;
2699
2700	if (readonly_request)
2701		return mnt_make_readonly(mnt);
2702
2703	mnt->mnt.mnt_flags &= ~MNT_READONLY;
2704	return 0;
2705}
2706
 
 
 
 
2707static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2708{
 
2709	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2710	mnt->mnt.mnt_flags = mnt_flags;
2711	touch_mnt_namespace(mnt->mnt_ns);
 
2712}
2713
2714static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2715{
2716	struct super_block *sb = mnt->mnt_sb;
2717
2718	if (!__mnt_is_readonly(mnt) &&
2719	   (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2720	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2721		char *buf = (char *)__get_free_page(GFP_KERNEL);
2722		char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2723		struct tm tm;
2724
2725		time64_to_tm(sb->s_time_max, 0, &tm);
2726
2727		pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2728			sb->s_type->name,
2729			is_mounted(mnt) ? "remounted" : "mounted",
2730			mntpath,
2731			tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2732
2733		free_page((unsigned long)buf);
2734		sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
2735	}
2736}
2737
2738/*
2739 * Handle reconfiguration of the mountpoint only without alteration of the
2740 * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2741 * to mount(2).
2742 */
2743static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2744{
2745	struct super_block *sb = path->mnt->mnt_sb;
2746	struct mount *mnt = real_mount(path->mnt);
2747	int ret;
2748
2749	if (!check_mnt(mnt))
2750		return -EINVAL;
2751
2752	if (path->dentry != mnt->mnt.mnt_root)
2753		return -EINVAL;
2754
2755	if (!can_change_locked_flags(mnt, mnt_flags))
2756		return -EPERM;
2757
2758	/*
2759	 * We're only checking whether the superblock is read-only not
2760	 * changing it, so only take down_read(&sb->s_umount).
2761	 */
2762	down_read(&sb->s_umount);
2763	lock_mount_hash();
2764	ret = change_mount_ro_state(mnt, mnt_flags);
2765	if (ret == 0)
2766		set_mount_attributes(mnt, mnt_flags);
2767	unlock_mount_hash();
2768	up_read(&sb->s_umount);
2769
2770	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2771
2772	return ret;
2773}
2774
2775/*
2776 * change filesystem flags. dir should be a physical root of filesystem.
2777 * If you've mounted a non-root directory somewhere and want to do remount
2778 * on it - tough luck.
2779 */
2780static int do_remount(struct path *path, int ms_flags, int sb_flags,
2781		      int mnt_flags, void *data)
2782{
2783	int err;
2784	struct super_block *sb = path->mnt->mnt_sb;
2785	struct mount *mnt = real_mount(path->mnt);
2786	struct fs_context *fc;
2787
2788	if (!check_mnt(mnt))
2789		return -EINVAL;
2790
2791	if (path->dentry != path->mnt->mnt_root)
2792		return -EINVAL;
2793
2794	if (!can_change_locked_flags(mnt, mnt_flags))
2795		return -EPERM;
2796
2797	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2798	if (IS_ERR(fc))
2799		return PTR_ERR(fc);
2800
2801	fc->oldapi = true;
2802	err = parse_monolithic_mount_data(fc, data);
2803	if (!err) {
2804		down_write(&sb->s_umount);
2805		err = -EPERM;
2806		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2807			err = reconfigure_super(fc);
2808			if (!err) {
2809				lock_mount_hash();
2810				set_mount_attributes(mnt, mnt_flags);
2811				unlock_mount_hash();
2812			}
2813		}
2814		up_write(&sb->s_umount);
2815	}
2816
2817	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2818
2819	put_fs_context(fc);
2820	return err;
2821}
2822
2823static inline int tree_contains_unbindable(struct mount *mnt)
2824{
2825	struct mount *p;
2826	for (p = mnt; p; p = next_mnt(p, mnt)) {
2827		if (IS_MNT_UNBINDABLE(p))
2828			return 1;
2829	}
2830	return 0;
2831}
2832
2833/*
2834 * Check that there aren't references to earlier/same mount namespaces in the
2835 * specified subtree.  Such references can act as pins for mount namespaces
2836 * that aren't checked by the mount-cycle checking code, thereby allowing
2837 * cycles to be made.
2838 */
2839static bool check_for_nsfs_mounts(struct mount *subtree)
2840{
2841	struct mount *p;
2842	bool ret = false;
2843
2844	lock_mount_hash();
2845	for (p = subtree; p; p = next_mnt(p, subtree))
2846		if (mnt_ns_loop(p->mnt.mnt_root))
2847			goto out;
2848
2849	ret = true;
2850out:
2851	unlock_mount_hash();
2852	return ret;
2853}
2854
2855static int do_set_group(struct path *from_path, struct path *to_path)
2856{
2857	struct mount *from, *to;
2858	int err;
2859
2860	from = real_mount(from_path->mnt);
2861	to = real_mount(to_path->mnt);
2862
2863	namespace_lock();
2864
2865	err = -EINVAL;
2866	/* To and From must be mounted */
2867	if (!is_mounted(&from->mnt))
2868		goto out;
2869	if (!is_mounted(&to->mnt))
2870		goto out;
2871
2872	err = -EPERM;
2873	/* We should be allowed to modify mount namespaces of both mounts */
2874	if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2875		goto out;
2876	if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2877		goto out;
2878
2879	err = -EINVAL;
2880	/* To and From paths should be mount roots */
2881	if (from_path->dentry != from_path->mnt->mnt_root)
2882		goto out;
2883	if (to_path->dentry != to_path->mnt->mnt_root)
2884		goto out;
2885
2886	/* Setting sharing groups is only allowed across same superblock */
2887	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2888		goto out;
2889
2890	/* From mount root should be wider than To mount root */
2891	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2892		goto out;
2893
2894	/* From mount should not have locked children in place of To's root */
2895	if (has_locked_children(from, to->mnt.mnt_root))
2896		goto out;
2897
2898	/* Setting sharing groups is only allowed on private mounts */
2899	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2900		goto out;
2901
2902	/* From should not be private */
2903	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2904		goto out;
2905
2906	if (IS_MNT_SLAVE(from)) {
2907		struct mount *m = from->mnt_master;
2908
2909		list_add(&to->mnt_slave, &m->mnt_slave_list);
2910		to->mnt_master = m;
2911	}
2912
2913	if (IS_MNT_SHARED(from)) {
2914		to->mnt_group_id = from->mnt_group_id;
2915		list_add(&to->mnt_share, &from->mnt_share);
2916		lock_mount_hash();
2917		set_mnt_shared(to);
2918		unlock_mount_hash();
2919	}
2920
2921	err = 0;
2922out:
2923	namespace_unlock();
2924	return err;
2925}
2926
2927static int do_move_mount(struct path *old_path, struct path *new_path)
2928{
2929	struct mnt_namespace *ns;
2930	struct mount *p;
2931	struct mount *old;
2932	struct mount *parent;
2933	struct mountpoint *mp, *old_mp;
2934	int err;
2935	bool attached;
2936
2937	mp = lock_mount(new_path);
2938	if (IS_ERR(mp))
2939		return PTR_ERR(mp);
2940
2941	old = real_mount(old_path->mnt);
2942	p = real_mount(new_path->mnt);
2943	parent = old->mnt_parent;
2944	attached = mnt_has_parent(old);
2945	old_mp = old->mnt_mp;
2946	ns = old->mnt_ns;
2947
2948	err = -EINVAL;
2949	/* The mountpoint must be in our namespace. */
2950	if (!check_mnt(p))
2951		goto out;
2952
2953	/* The thing moved must be mounted... */
2954	if (!is_mounted(&old->mnt))
2955		goto out;
2956
2957	/* ... and either ours or the root of anon namespace */
2958	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2959		goto out;
2960
2961	if (old->mnt.mnt_flags & MNT_LOCKED)
2962		goto out;
2963
2964	if (old_path->dentry != old_path->mnt->mnt_root)
2965		goto out;
2966
2967	if (d_is_dir(new_path->dentry) !=
2968	    d_is_dir(old_path->dentry))
2969		goto out;
2970	/*
2971	 * Don't move a mount residing in a shared parent.
2972	 */
2973	if (attached && IS_MNT_SHARED(parent))
2974		goto out;
2975	/*
2976	 * Don't move a mount tree containing unbindable mounts to a destination
2977	 * mount which is shared.
2978	 */
2979	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2980		goto out;
2981	err = -ELOOP;
2982	if (!check_for_nsfs_mounts(old))
2983		goto out;
2984	for (; mnt_has_parent(p); p = p->mnt_parent)
2985		if (p == old)
2986			goto out;
2987
2988	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2989				   attached);
2990	if (err)
2991		goto out;
2992
2993	/* if the mount is moved, it should no longer be expire
2994	 * automatically */
2995	list_del_init(&old->mnt_expire);
2996	if (attached)
2997		put_mountpoint(old_mp);
2998out:
2999	unlock_mount(mp);
3000	if (!err) {
3001		if (attached)
3002			mntput_no_expire(parent);
3003		else
3004			free_mnt_ns(ns);
3005	}
3006	return err;
3007}
3008
3009static int do_move_mount_old(struct path *path, const char *old_name)
3010{
3011	struct path old_path;
3012	int err;
3013
3014	if (!old_name || !*old_name)
3015		return -EINVAL;
3016
3017	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3018	if (err)
3019		return err;
3020
3021	err = do_move_mount(&old_path, path);
3022	path_put(&old_path);
3023	return err;
3024}
3025
3026/*
3027 * add a mount into a namespace's mount tree
3028 */
3029static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
3030			const struct path *path, int mnt_flags)
3031{
3032	struct mount *parent = real_mount(path->mnt);
 
 
3033
3034	mnt_flags &= ~MNT_INTERNAL_FLAGS;
3035
 
 
 
 
 
 
3036	if (unlikely(!check_mnt(parent))) {
3037		/* that's acceptable only for automounts done in private ns */
3038		if (!(mnt_flags & MNT_SHRINKABLE))
3039			return -EINVAL;
3040		/* ... and for those we'd better have mountpoint still alive */
3041		if (!parent->mnt_ns)
3042			return -EINVAL;
3043	}
3044
3045	/* Refuse the same filesystem on the same mount point */
 
3046	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
3047	    path->mnt->mnt_root == path->dentry)
3048		return -EBUSY;
3049
 
3050	if (d_is_symlink(newmnt->mnt.mnt_root))
3051		return -EINVAL;
3052
3053	newmnt->mnt.mnt_flags = mnt_flags;
3054	return graft_tree(newmnt, parent, mp);
 
 
 
 
3055}
3056
3057static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3058
3059/*
3060 * Create a new mount using a superblock configuration and request it
3061 * be added to the namespace tree.
3062 */
3063static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
3064			   unsigned int mnt_flags)
3065{
3066	struct vfsmount *mnt;
3067	struct mountpoint *mp;
3068	struct super_block *sb = fc->root->d_sb;
3069	int error;
3070
3071	error = security_sb_kern_mount(sb);
3072	if (!error && mount_too_revealing(sb, &mnt_flags))
3073		error = -EPERM;
3074
3075	if (unlikely(error)) {
3076		fc_drop_locked(fc);
3077		return error;
3078	}
3079
3080	up_write(&sb->s_umount);
3081
3082	mnt = vfs_create_mount(fc);
3083	if (IS_ERR(mnt))
3084		return PTR_ERR(mnt);
3085
3086	mnt_warn_timestamp_expiry(mountpoint, mnt);
3087
3088	mp = lock_mount(mountpoint);
3089	if (IS_ERR(mp)) {
3090		mntput(mnt);
3091		return PTR_ERR(mp);
3092	}
3093	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
3094	unlock_mount(mp);
3095	if (error < 0)
3096		mntput(mnt);
3097	return error;
3098}
3099
3100/*
3101 * create a new mount for userspace and request it to be added into the
3102 * namespace's tree
3103 */
3104static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3105			int mnt_flags, const char *name, void *data)
3106{
3107	struct file_system_type *type;
3108	struct fs_context *fc;
3109	const char *subtype = NULL;
3110	int err = 0;
3111
3112	if (!fstype)
3113		return -EINVAL;
3114
3115	type = get_fs_type(fstype);
3116	if (!type)
3117		return -ENODEV;
3118
3119	if (type->fs_flags & FS_HAS_SUBTYPE) {
3120		subtype = strchr(fstype, '.');
3121		if (subtype) {
3122			subtype++;
3123			if (!*subtype) {
3124				put_filesystem(type);
3125				return -EINVAL;
3126			}
3127		}
3128	}
3129
3130	fc = fs_context_for_mount(type, sb_flags);
3131	put_filesystem(type);
3132	if (IS_ERR(fc))
3133		return PTR_ERR(fc);
3134
3135	if (subtype)
3136		err = vfs_parse_fs_string(fc, "subtype",
3137					  subtype, strlen(subtype));
3138	if (!err && name)
3139		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3140	if (!err)
3141		err = parse_monolithic_mount_data(fc, data);
3142	if (!err && !mount_capable(fc))
3143		err = -EPERM;
3144	if (!err)
3145		err = vfs_get_tree(fc);
3146	if (!err)
3147		err = do_new_mount_fc(fc, path, mnt_flags);
3148
3149	put_fs_context(fc);
3150	return err;
3151}
3152
3153int finish_automount(struct vfsmount *m, const struct path *path)
3154{
3155	struct dentry *dentry = path->dentry;
3156	struct mountpoint *mp;
3157	struct mount *mnt;
3158	int err;
3159
3160	if (!m)
3161		return 0;
3162	if (IS_ERR(m))
3163		return PTR_ERR(m);
3164
3165	mnt = real_mount(m);
3166	/* The new mount record should have at least 2 refs to prevent it being
3167	 * expired before we get a chance to add it
3168	 */
3169	BUG_ON(mnt_get_count(mnt) < 2);
3170
3171	if (m->mnt_sb == path->mnt->mnt_sb &&
3172	    m->mnt_root == dentry) {
3173		err = -ELOOP;
3174		goto discard;
3175	}
3176
3177	/*
3178	 * we don't want to use lock_mount() - in this case finding something
3179	 * that overmounts our mountpoint to be means "quitely drop what we've
3180	 * got", not "try to mount it on top".
3181	 */
3182	inode_lock(dentry->d_inode);
3183	namespace_lock();
3184	if (unlikely(cant_mount(dentry))) {
3185		err = -ENOENT;
3186		goto discard_locked;
3187	}
3188	rcu_read_lock();
3189	if (unlikely(__lookup_mnt(path->mnt, dentry))) {
3190		rcu_read_unlock();
3191		err = 0;
3192		goto discard_locked;
3193	}
3194	rcu_read_unlock();
3195	mp = get_mountpoint(dentry);
3196	if (IS_ERR(mp)) {
3197		err = PTR_ERR(mp);
3198		goto discard_locked;
3199	}
3200
3201	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3202	unlock_mount(mp);
3203	if (unlikely(err))
3204		goto discard;
3205	mntput(m);
3206	return 0;
3207
3208discard_locked:
3209	namespace_unlock();
3210	inode_unlock(dentry->d_inode);
3211discard:
3212	/* remove m from any expiration list it may be on */
3213	if (!list_empty(&mnt->mnt_expire)) {
3214		namespace_lock();
3215		list_del_init(&mnt->mnt_expire);
3216		namespace_unlock();
3217	}
3218	mntput(m);
3219	mntput(m);
3220	return err;
3221}
3222
3223/**
3224 * mnt_set_expiry - Put a mount on an expiration list
3225 * @mnt: The mount to list.
3226 * @expiry_list: The list to add the mount to.
3227 */
3228void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3229{
3230	namespace_lock();
3231
3232	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3233
3234	namespace_unlock();
3235}
3236EXPORT_SYMBOL(mnt_set_expiry);
3237
3238/*
3239 * process a list of expirable mountpoints with the intent of discarding any
3240 * mountpoints that aren't in use and haven't been touched since last we came
3241 * here
3242 */
3243void mark_mounts_for_expiry(struct list_head *mounts)
3244{
3245	struct mount *mnt, *next;
3246	LIST_HEAD(graveyard);
3247
3248	if (list_empty(mounts))
3249		return;
3250
3251	namespace_lock();
3252	lock_mount_hash();
3253
3254	/* extract from the expiration list every vfsmount that matches the
3255	 * following criteria:
3256	 * - only referenced by its parent vfsmount
3257	 * - still marked for expiry (marked on the last call here; marks are
3258	 *   cleared by mntput())
3259	 */
3260	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3261		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3262			propagate_mount_busy(mnt, 1))
3263			continue;
3264		list_move(&mnt->mnt_expire, &graveyard);
3265	}
3266	while (!list_empty(&graveyard)) {
3267		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3268		touch_mnt_namespace(mnt->mnt_ns);
3269		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3270	}
3271	unlock_mount_hash();
3272	namespace_unlock();
3273}
3274
3275EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3276
3277/*
3278 * Ripoff of 'select_parent()'
3279 *
3280 * search the list of submounts for a given mountpoint, and move any
3281 * shrinkable submounts to the 'graveyard' list.
3282 */
3283static int select_submounts(struct mount *parent, struct list_head *graveyard)
3284{
3285	struct mount *this_parent = parent;
3286	struct list_head *next;
3287	int found = 0;
3288
3289repeat:
3290	next = this_parent->mnt_mounts.next;
3291resume:
3292	while (next != &this_parent->mnt_mounts) {
3293		struct list_head *tmp = next;
3294		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3295
3296		next = tmp->next;
3297		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3298			continue;
3299		/*
3300		 * Descend a level if the d_mounts list is non-empty.
3301		 */
3302		if (!list_empty(&mnt->mnt_mounts)) {
3303			this_parent = mnt;
3304			goto repeat;
3305		}
3306
3307		if (!propagate_mount_busy(mnt, 1)) {
3308			list_move_tail(&mnt->mnt_expire, graveyard);
3309			found++;
3310		}
3311	}
3312	/*
3313	 * All done at this level ... ascend and resume the search
3314	 */
3315	if (this_parent != parent) {
3316		next = this_parent->mnt_child.next;
3317		this_parent = this_parent->mnt_parent;
3318		goto resume;
3319	}
3320	return found;
3321}
3322
3323/*
3324 * process a list of expirable mountpoints with the intent of discarding any
3325 * submounts of a specific parent mountpoint
3326 *
3327 * mount_lock must be held for write
3328 */
3329static void shrink_submounts(struct mount *mnt)
3330{
3331	LIST_HEAD(graveyard);
3332	struct mount *m;
3333
3334	/* extract submounts of 'mountpoint' from the expiration list */
3335	while (select_submounts(mnt, &graveyard)) {
3336		while (!list_empty(&graveyard)) {
3337			m = list_first_entry(&graveyard, struct mount,
3338						mnt_expire);
3339			touch_mnt_namespace(m->mnt_ns);
3340			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3341		}
3342	}
3343}
3344
3345static void *copy_mount_options(const void __user * data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3346{
 
 
3347	char *copy;
3348	unsigned left, offset;
3349
3350	if (!data)
3351		return NULL;
3352
3353	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3354	if (!copy)
3355		return ERR_PTR(-ENOMEM);
3356
3357	left = copy_from_user(copy, data, PAGE_SIZE);
3358
3359	/*
3360	 * Not all architectures have an exact copy_from_user(). Resort to
3361	 * byte at a time.
3362	 */
3363	offset = PAGE_SIZE - left;
3364	while (left) {
3365		char c;
3366		if (get_user(c, (const char __user *)data + offset))
3367			break;
3368		copy[offset] = c;
3369		left--;
3370		offset++;
3371	}
3372
3373	if (left == PAGE_SIZE) {
 
3374		kfree(copy);
3375		return ERR_PTR(-EFAULT);
3376	}
3377
 
3378	return copy;
3379}
3380
3381static char *copy_mount_string(const void __user *data)
3382{
3383	return data ? strndup_user(data, PATH_MAX) : NULL;
3384}
3385
3386/*
3387 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3388 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3389 *
3390 * data is a (void *) that can point to any structure up to
3391 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3392 * information (or be NULL).
3393 *
3394 * Pre-0.97 versions of mount() didn't have a flags word.
3395 * When the flags word was introduced its top half was required
3396 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3397 * Therefore, if this magic number is present, it carries no information
3398 * and must be discarded.
3399 */
3400int path_mount(const char *dev_name, struct path *path,
3401		const char *type_page, unsigned long flags, void *data_page)
3402{
 
3403	unsigned int mnt_flags = 0, sb_flags;
3404	int ret;
3405
3406	/* Discard magic */
3407	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3408		flags &= ~MS_MGC_MSK;
3409
3410	/* Basic sanity checks */
3411	if (data_page)
3412		((char *)data_page)[PAGE_SIZE - 1] = 0;
3413
3414	if (flags & MS_NOUSER)
3415		return -EINVAL;
3416
3417	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3418	if (ret)
3419		return ret;
3420	if (!may_mount())
3421		return -EPERM;
3422	if (flags & SB_MANDLOCK)
3423		warn_mandlock();
 
 
 
 
 
 
3424
3425	/* Default to relatime unless overriden */
3426	if (!(flags & MS_NOATIME))
3427		mnt_flags |= MNT_RELATIME;
3428
3429	/* Separate the per-mountpoint flags */
3430	if (flags & MS_NOSUID)
3431		mnt_flags |= MNT_NOSUID;
3432	if (flags & MS_NODEV)
3433		mnt_flags |= MNT_NODEV;
3434	if (flags & MS_NOEXEC)
3435		mnt_flags |= MNT_NOEXEC;
3436	if (flags & MS_NOATIME)
3437		mnt_flags |= MNT_NOATIME;
3438	if (flags & MS_NODIRATIME)
3439		mnt_flags |= MNT_NODIRATIME;
3440	if (flags & MS_STRICTATIME)
3441		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3442	if (flags & MS_RDONLY)
3443		mnt_flags |= MNT_READONLY;
3444	if (flags & MS_NOSYMFOLLOW)
3445		mnt_flags |= MNT_NOSYMFOLLOW;
3446
3447	/* The default atime for remount is preservation */
3448	if ((flags & MS_REMOUNT) &&
3449	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3450		       MS_STRICTATIME)) == 0)) {
3451		mnt_flags &= ~MNT_ATIME_MASK;
3452		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3453	}
3454
3455	sb_flags = flags & (SB_RDONLY |
3456			    SB_SYNCHRONOUS |
3457			    SB_MANDLOCK |
3458			    SB_DIRSYNC |
3459			    SB_SILENT |
3460			    SB_POSIXACL |
3461			    SB_LAZYTIME |
3462			    SB_I_VERSION);
3463
3464	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3465		return do_reconfigure_mnt(path, mnt_flags);
3466	if (flags & MS_REMOUNT)
3467		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3468	if (flags & MS_BIND)
3469		return do_loopback(path, dev_name, flags & MS_REC);
3470	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3471		return do_change_type(path, flags);
3472	if (flags & MS_MOVE)
3473		return do_move_mount_old(path, dev_name);
3474
3475	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3476			    data_page);
3477}
3478
3479long do_mount(const char *dev_name, const char __user *dir_name,
3480		const char *type_page, unsigned long flags, void *data_page)
3481{
3482	struct path path;
3483	int ret;
3484
3485	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3486	if (ret)
3487		return ret;
3488	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3489	path_put(&path);
3490	return ret;
3491}
3492
3493static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3494{
3495	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3496}
3497
3498static void dec_mnt_namespaces(struct ucounts *ucounts)
3499{
3500	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3501}
3502
3503static void free_mnt_ns(struct mnt_namespace *ns)
3504{
3505	if (!is_anon_ns(ns))
3506		ns_free_inum(&ns->ns);
3507	dec_mnt_namespaces(ns->ucounts);
3508	put_user_ns(ns->user_ns);
3509	kfree(ns);
3510}
3511
3512/*
3513 * Assign a sequence number so we can detect when we attempt to bind
3514 * mount a reference to an older mount namespace into the current
3515 * mount namespace, preventing reference counting loops.  A 64bit
3516 * number incrementing at 10Ghz will take 12,427 years to wrap which
3517 * is effectively never, so we can ignore the possibility.
3518 */
3519static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3520
3521static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3522{
3523	struct mnt_namespace *new_ns;
3524	struct ucounts *ucounts;
3525	int ret;
3526
3527	ucounts = inc_mnt_namespaces(user_ns);
3528	if (!ucounts)
3529		return ERR_PTR(-ENOSPC);
3530
3531	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3532	if (!new_ns) {
3533		dec_mnt_namespaces(ucounts);
3534		return ERR_PTR(-ENOMEM);
3535	}
3536	if (!anon) {
3537		ret = ns_alloc_inum(&new_ns->ns);
3538		if (ret) {
3539			kfree(new_ns);
3540			dec_mnt_namespaces(ucounts);
3541			return ERR_PTR(ret);
3542		}
3543	}
3544	new_ns->ns.ops = &mntns_operations;
3545	if (!anon)
3546		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3547	refcount_set(&new_ns->ns.count, 1);
3548	INIT_LIST_HEAD(&new_ns->list);
3549	init_waitqueue_head(&new_ns->poll);
3550	spin_lock_init(&new_ns->ns_lock);
3551	new_ns->user_ns = get_user_ns(user_ns);
3552	new_ns->ucounts = ucounts;
3553	return new_ns;
3554}
3555
3556__latent_entropy
3557struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3558		struct user_namespace *user_ns, struct fs_struct *new_fs)
3559{
3560	struct mnt_namespace *new_ns;
3561	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3562	struct mount *p, *q;
3563	struct mount *old;
3564	struct mount *new;
3565	int copy_flags;
3566
3567	BUG_ON(!ns);
3568
3569	if (likely(!(flags & CLONE_NEWNS))) {
3570		get_mnt_ns(ns);
3571		return ns;
3572	}
3573
3574	old = ns->root;
3575
3576	new_ns = alloc_mnt_ns(user_ns, false);
3577	if (IS_ERR(new_ns))
3578		return new_ns;
3579
3580	namespace_lock();
3581	/* First pass: copy the tree topology */
3582	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3583	if (user_ns != ns->user_ns)
3584		copy_flags |= CL_SHARED_TO_SLAVE;
3585	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3586	if (IS_ERR(new)) {
3587		namespace_unlock();
3588		free_mnt_ns(new_ns);
3589		return ERR_CAST(new);
3590	}
3591	if (user_ns != ns->user_ns) {
3592		lock_mount_hash();
3593		lock_mnt_tree(new);
3594		unlock_mount_hash();
3595	}
3596	new_ns->root = new;
3597	list_add_tail(&new_ns->list, &new->mnt_list);
3598
3599	/*
3600	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3601	 * as belonging to new namespace.  We have already acquired a private
3602	 * fs_struct, so tsk->fs->lock is not needed.
3603	 */
3604	p = old;
3605	q = new;
3606	while (p) {
3607		q->mnt_ns = new_ns;
3608		new_ns->mounts++;
3609		if (new_fs) {
3610			if (&p->mnt == new_fs->root.mnt) {
3611				new_fs->root.mnt = mntget(&q->mnt);
3612				rootmnt = &p->mnt;
3613			}
3614			if (&p->mnt == new_fs->pwd.mnt) {
3615				new_fs->pwd.mnt = mntget(&q->mnt);
3616				pwdmnt = &p->mnt;
3617			}
3618		}
3619		p = next_mnt(p, old);
3620		q = next_mnt(q, new);
3621		if (!q)
3622			break;
3623		// an mntns binding we'd skipped?
3624		while (p->mnt.mnt_root != q->mnt.mnt_root)
3625			p = next_mnt(skip_mnt_tree(p), old);
3626	}
3627	namespace_unlock();
3628
3629	if (rootmnt)
3630		mntput(rootmnt);
3631	if (pwdmnt)
3632		mntput(pwdmnt);
3633
3634	return new_ns;
3635}
3636
3637struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3638{
3639	struct mount *mnt = real_mount(m);
3640	struct mnt_namespace *ns;
3641	struct super_block *s;
3642	struct path path;
3643	int err;
3644
3645	ns = alloc_mnt_ns(&init_user_ns, true);
3646	if (IS_ERR(ns)) {
3647		mntput(m);
3648		return ERR_CAST(ns);
3649	}
3650	mnt->mnt_ns = ns;
3651	ns->root = mnt;
3652	ns->mounts++;
3653	list_add(&mnt->mnt_list, &ns->list);
3654
3655	err = vfs_path_lookup(m->mnt_root, m,
3656			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3657
3658	put_mnt_ns(ns);
3659
3660	if (err)
3661		return ERR_PTR(err);
3662
3663	/* trade a vfsmount reference for active sb one */
3664	s = path.mnt->mnt_sb;
3665	atomic_inc(&s->s_active);
3666	mntput(path.mnt);
3667	/* lock the sucker */
3668	down_write(&s->s_umount);
3669	/* ... and return the root of (sub)tree on it */
3670	return path.dentry;
3671}
3672EXPORT_SYMBOL(mount_subtree);
3673
3674SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3675		char __user *, type, unsigned long, flags, void __user *, data)
3676{
3677	int ret;
3678	char *kernel_type;
3679	char *kernel_dev;
3680	void *options;
3681
3682	kernel_type = copy_mount_string(type);
3683	ret = PTR_ERR(kernel_type);
3684	if (IS_ERR(kernel_type))
3685		goto out_type;
3686
3687	kernel_dev = copy_mount_string(dev_name);
3688	ret = PTR_ERR(kernel_dev);
3689	if (IS_ERR(kernel_dev))
3690		goto out_dev;
3691
3692	options = copy_mount_options(data);
3693	ret = PTR_ERR(options);
3694	if (IS_ERR(options))
3695		goto out_data;
3696
3697	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3698
3699	kfree(options);
3700out_data:
3701	kfree(kernel_dev);
3702out_dev:
3703	kfree(kernel_type);
3704out_type:
3705	return ret;
3706}
3707
3708#define FSMOUNT_VALID_FLAGS                                                    \
3709	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
3710	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
3711	 MOUNT_ATTR_NOSYMFOLLOW)
3712
3713#define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3714
3715#define MOUNT_SETATTR_PROPAGATION_FLAGS \
3716	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3717
3718static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3719{
3720	unsigned int mnt_flags = 0;
3721
3722	if (attr_flags & MOUNT_ATTR_RDONLY)
3723		mnt_flags |= MNT_READONLY;
3724	if (attr_flags & MOUNT_ATTR_NOSUID)
3725		mnt_flags |= MNT_NOSUID;
3726	if (attr_flags & MOUNT_ATTR_NODEV)
3727		mnt_flags |= MNT_NODEV;
3728	if (attr_flags & MOUNT_ATTR_NOEXEC)
3729		mnt_flags |= MNT_NOEXEC;
3730	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3731		mnt_flags |= MNT_NODIRATIME;
3732	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3733		mnt_flags |= MNT_NOSYMFOLLOW;
3734
3735	return mnt_flags;
3736}
3737
3738/*
3739 * Create a kernel mount representation for a new, prepared superblock
3740 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3741 */
3742SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3743		unsigned int, attr_flags)
3744{
3745	struct mnt_namespace *ns;
3746	struct fs_context *fc;
3747	struct file *file;
3748	struct path newmount;
3749	struct mount *mnt;
3750	struct fd f;
3751	unsigned int mnt_flags = 0;
3752	long ret;
3753
3754	if (!may_mount())
3755		return -EPERM;
3756
3757	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3758		return -EINVAL;
3759
3760	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
 
 
 
 
 
3761		return -EINVAL;
3762
3763	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
 
 
 
 
 
 
 
 
 
3764
3765	switch (attr_flags & MOUNT_ATTR__ATIME) {
3766	case MOUNT_ATTR_STRICTATIME:
3767		break;
3768	case MOUNT_ATTR_NOATIME:
3769		mnt_flags |= MNT_NOATIME;
3770		break;
3771	case MOUNT_ATTR_RELATIME:
3772		mnt_flags |= MNT_RELATIME;
3773		break;
3774	default:
3775		return -EINVAL;
3776	}
3777
3778	f = fdget(fs_fd);
3779	if (!f.file)
3780		return -EBADF;
3781
3782	ret = -EINVAL;
3783	if (f.file->f_op != &fscontext_fops)
3784		goto err_fsfd;
3785
3786	fc = f.file->private_data;
3787
3788	ret = mutex_lock_interruptible(&fc->uapi_mutex);
3789	if (ret < 0)
3790		goto err_fsfd;
3791
3792	/* There must be a valid superblock or we can't mount it */
3793	ret = -EINVAL;
3794	if (!fc->root)
3795		goto err_unlock;
3796
3797	ret = -EPERM;
3798	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3799		pr_warn("VFS: Mount too revealing\n");
3800		goto err_unlock;
3801	}
3802
3803	ret = -EBUSY;
3804	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3805		goto err_unlock;
3806
3807	if (fc->sb_flags & SB_MANDLOCK)
3808		warn_mandlock();
 
3809
3810	newmount.mnt = vfs_create_mount(fc);
3811	if (IS_ERR(newmount.mnt)) {
3812		ret = PTR_ERR(newmount.mnt);
3813		goto err_unlock;
3814	}
3815	newmount.dentry = dget(fc->root);
3816	newmount.mnt->mnt_flags = mnt_flags;
3817
3818	/* We've done the mount bit - now move the file context into more or
3819	 * less the same state as if we'd done an fspick().  We don't want to
3820	 * do any memory allocation or anything like that at this point as we
3821	 * don't want to have to handle any errors incurred.
3822	 */
3823	vfs_clean_context(fc);
3824
3825	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3826	if (IS_ERR(ns)) {
3827		ret = PTR_ERR(ns);
3828		goto err_path;
3829	}
3830	mnt = real_mount(newmount.mnt);
3831	mnt->mnt_ns = ns;
3832	ns->root = mnt;
3833	ns->mounts = 1;
3834	list_add(&mnt->mnt_list, &ns->list);
3835	mntget(newmount.mnt);
3836
3837	/* Attach to an apparent O_PATH fd with a note that we need to unmount
3838	 * it, not just simply put it.
3839	 */
3840	file = dentry_open(&newmount, O_PATH, fc->cred);
3841	if (IS_ERR(file)) {
3842		dissolve_on_fput(newmount.mnt);
3843		ret = PTR_ERR(file);
3844		goto err_path;
3845	}
3846	file->f_mode |= FMODE_NEED_UNMOUNT;
3847
3848	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3849	if (ret >= 0)
3850		fd_install(ret, file);
3851	else
3852		fput(file);
3853
3854err_path:
3855	path_put(&newmount);
3856err_unlock:
3857	mutex_unlock(&fc->uapi_mutex);
3858err_fsfd:
3859	fdput(f);
3860	return ret;
3861}
3862
3863/*
3864 * Move a mount from one place to another.  In combination with
3865 * fsopen()/fsmount() this is used to install a new mount and in combination
3866 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3867 * a mount subtree.
3868 *
3869 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3870 */
3871SYSCALL_DEFINE5(move_mount,
3872		int, from_dfd, const char __user *, from_pathname,
3873		int, to_dfd, const char __user *, to_pathname,
3874		unsigned int, flags)
3875{
3876	struct path from_path, to_path;
3877	unsigned int lflags;
3878	int ret = 0;
3879
3880	if (!may_mount())
3881		return -EPERM;
3882
3883	if (flags & ~MOVE_MOUNT__MASK)
3884		return -EINVAL;
3885
3886	/* If someone gives a pathname, they aren't permitted to move
3887	 * from an fd that requires unmount as we can't get at the flag
3888	 * to clear it afterwards.
3889	 */
3890	lflags = 0;
3891	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3892	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3893	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3894
3895	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3896	if (ret < 0)
3897		return ret;
3898
3899	lflags = 0;
3900	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3901	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3902	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3903
3904	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3905	if (ret < 0)
3906		goto out_from;
3907
3908	ret = security_move_mount(&from_path, &to_path);
3909	if (ret < 0)
3910		goto out_to;
3911
3912	if (flags & MOVE_MOUNT_SET_GROUP)
3913		ret = do_set_group(&from_path, &to_path);
3914	else
3915		ret = do_move_mount(&from_path, &to_path);
3916
3917out_to:
3918	path_put(&to_path);
3919out_from:
3920	path_put(&from_path);
3921	return ret;
3922}
3923
3924/*
3925 * Return true if path is reachable from root
3926 *
3927 * namespace_sem or mount_lock is held
3928 */
3929bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3930			 const struct path *root)
3931{
3932	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3933		dentry = mnt->mnt_mountpoint;
3934		mnt = mnt->mnt_parent;
3935	}
3936	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3937}
3938
3939bool path_is_under(const struct path *path1, const struct path *path2)
3940{
3941	bool res;
3942	read_seqlock_excl(&mount_lock);
3943	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3944	read_sequnlock_excl(&mount_lock);
3945	return res;
3946}
3947EXPORT_SYMBOL(path_is_under);
3948
3949/*
3950 * pivot_root Semantics:
3951 * Moves the root file system of the current process to the directory put_old,
3952 * makes new_root as the new root file system of the current process, and sets
3953 * root/cwd of all processes which had them on the current root to new_root.
3954 *
3955 * Restrictions:
3956 * The new_root and put_old must be directories, and  must not be on the
3957 * same file  system as the current process root. The put_old  must  be
3958 * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3959 * pointed to by put_old must yield the same directory as new_root. No other
3960 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3961 *
3962 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3963 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3964 * in this situation.
3965 *
3966 * Notes:
3967 *  - we don't move root/cwd if they are not at the root (reason: if something
3968 *    cared enough to change them, it's probably wrong to force them elsewhere)
3969 *  - it's okay to pick a root that isn't the root of a file system, e.g.
3970 *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3971 *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3972 *    first.
3973 */
3974SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3975		const char __user *, put_old)
3976{
3977	struct path new, old, root;
3978	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3979	struct mountpoint *old_mp, *root_mp;
3980	int error;
3981
3982	if (!may_mount())
3983		return -EPERM;
3984
3985	error = user_path_at(AT_FDCWD, new_root,
3986			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3987	if (error)
3988		goto out0;
3989
3990	error = user_path_at(AT_FDCWD, put_old,
3991			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3992	if (error)
3993		goto out1;
3994
3995	error = security_sb_pivotroot(&old, &new);
3996	if (error)
3997		goto out2;
3998
3999	get_fs_root(current->fs, &root);
4000	old_mp = lock_mount(&old);
4001	error = PTR_ERR(old_mp);
4002	if (IS_ERR(old_mp))
4003		goto out3;
4004
4005	error = -EINVAL;
4006	new_mnt = real_mount(new.mnt);
4007	root_mnt = real_mount(root.mnt);
4008	old_mnt = real_mount(old.mnt);
4009	ex_parent = new_mnt->mnt_parent;
4010	root_parent = root_mnt->mnt_parent;
4011	if (IS_MNT_SHARED(old_mnt) ||
4012		IS_MNT_SHARED(ex_parent) ||
4013		IS_MNT_SHARED(root_parent))
4014		goto out4;
4015	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4016		goto out4;
4017	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4018		goto out4;
4019	error = -ENOENT;
4020	if (d_unlinked(new.dentry))
4021		goto out4;
4022	error = -EBUSY;
4023	if (new_mnt == root_mnt || old_mnt == root_mnt)
4024		goto out4; /* loop, on the same file system  */
4025	error = -EINVAL;
4026	if (root.mnt->mnt_root != root.dentry)
4027		goto out4; /* not a mountpoint */
4028	if (!mnt_has_parent(root_mnt))
4029		goto out4; /* not attached */
4030	if (new.mnt->mnt_root != new.dentry)
4031		goto out4; /* not a mountpoint */
4032	if (!mnt_has_parent(new_mnt))
4033		goto out4; /* not attached */
4034	/* make sure we can reach put_old from new_root */
4035	if (!is_path_reachable(old_mnt, old.dentry, &new))
4036		goto out4;
4037	/* make certain new is below the root */
4038	if (!is_path_reachable(new_mnt, new.dentry, &root))
4039		goto out4;
4040	lock_mount_hash();
4041	umount_mnt(new_mnt);
4042	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
4043	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4044		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4045		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4046	}
4047	/* mount old root on put_old */
4048	attach_mnt(root_mnt, old_mnt, old_mp);
4049	/* mount new_root on / */
4050	attach_mnt(new_mnt, root_parent, root_mp);
4051	mnt_add_count(root_parent, -1);
4052	touch_mnt_namespace(current->nsproxy->mnt_ns);
4053	/* A moved mount should not expire automatically */
4054	list_del_init(&new_mnt->mnt_expire);
4055	put_mountpoint(root_mp);
4056	unlock_mount_hash();
4057	chroot_fs_refs(&root, &new);
4058	error = 0;
4059out4:
4060	unlock_mount(old_mp);
4061	if (!error)
4062		mntput_no_expire(ex_parent);
4063out3:
4064	path_put(&root);
4065out2:
4066	path_put(&old);
4067out1:
4068	path_put(&new);
4069out0:
4070	return error;
4071}
4072
4073static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4074{
4075	unsigned int flags = mnt->mnt.mnt_flags;
4076
4077	/*  flags to clear */
4078	flags &= ~kattr->attr_clr;
4079	/* flags to raise */
4080	flags |= kattr->attr_set;
4081
4082	return flags;
4083}
4084
4085static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4086{
4087	struct vfsmount *m = &mnt->mnt;
4088	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4089
4090	if (!kattr->mnt_idmap)
4091		return 0;
4092
4093	/*
4094	 * Creating an idmapped mount with the filesystem wide idmapping
4095	 * doesn't make sense so block that. We don't allow mushy semantics.
4096	 */
4097	if (mnt_idmap_owner(kattr->mnt_idmap) == fs_userns)
4098		return -EINVAL;
4099
4100	/*
4101	 * Once a mount has been idmapped we don't allow it to change its
4102	 * mapping. It makes things simpler and callers can just create
4103	 * another bind-mount they can idmap if they want to.
4104	 */
4105	if (is_idmapped_mnt(m))
4106		return -EPERM;
4107
4108	/* The underlying filesystem doesn't support idmapped mounts yet. */
4109	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4110		return -EINVAL;
4111
4112	/* We're not controlling the superblock. */
4113	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4114		return -EPERM;
4115
4116	/* Mount has already been visible in the filesystem hierarchy. */
4117	if (!is_anon_ns(mnt->mnt_ns))
4118		return -EINVAL;
4119
4120	return 0;
4121}
4122
4123/**
4124 * mnt_allow_writers() - check whether the attribute change allows writers
4125 * @kattr: the new mount attributes
4126 * @mnt: the mount to which @kattr will be applied
4127 *
4128 * Check whether thew new mount attributes in @kattr allow concurrent writers.
4129 *
4130 * Return: true if writers need to be held, false if not
4131 */
4132static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4133				     const struct mount *mnt)
4134{
4135	return (!(kattr->attr_set & MNT_READONLY) ||
4136		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
4137	       !kattr->mnt_idmap;
4138}
4139
4140static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4141{
4142	struct mount *m;
4143	int err;
4144
4145	for (m = mnt; m; m = next_mnt(m, mnt)) {
4146		if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4147			err = -EPERM;
4148			break;
4149		}
4150
4151		err = can_idmap_mount(kattr, m);
4152		if (err)
4153			break;
4154
4155		if (!mnt_allow_writers(kattr, m)) {
4156			err = mnt_hold_writers(m);
4157			if (err)
4158				break;
4159		}
4160
4161		if (!kattr->recurse)
4162			return 0;
4163	}
4164
4165	if (err) {
4166		struct mount *p;
4167
4168		/*
4169		 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4170		 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4171		 * mounts and needs to take care to include the first mount.
4172		 */
4173		for (p = mnt; p; p = next_mnt(p, mnt)) {
4174			/* If we had to hold writers unblock them. */
4175			if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4176				mnt_unhold_writers(p);
4177
4178			/*
4179			 * We're done once the first mount we changed got
4180			 * MNT_WRITE_HOLD unset.
4181			 */
4182			if (p == m)
4183				break;
4184		}
4185	}
4186	return err;
4187}
4188
4189static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4190{
4191	if (!kattr->mnt_idmap)
4192		return;
4193
4194	/*
4195	 * Pairs with smp_load_acquire() in mnt_idmap().
4196	 *
4197	 * Since we only allow a mount to change the idmapping once and
4198	 * verified this in can_idmap_mount() we know that the mount has
4199	 * @nop_mnt_idmap attached to it. So there's no need to drop any
4200	 * references.
4201	 */
4202	smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4203}
4204
4205static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4206{
4207	struct mount *m;
4208
4209	for (m = mnt; m; m = next_mnt(m, mnt)) {
4210		unsigned int flags;
4211
4212		do_idmap_mount(kattr, m);
4213		flags = recalc_flags(kattr, m);
4214		WRITE_ONCE(m->mnt.mnt_flags, flags);
4215
4216		/* If we had to hold writers unblock them. */
4217		if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4218			mnt_unhold_writers(m);
4219
4220		if (kattr->propagation)
4221			change_mnt_propagation(m, kattr->propagation);
4222		if (!kattr->recurse)
4223			break;
4224	}
4225	touch_mnt_namespace(mnt->mnt_ns);
4226}
4227
4228static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4229{
4230	struct mount *mnt = real_mount(path->mnt);
4231	int err = 0;
4232
4233	if (path->dentry != mnt->mnt.mnt_root)
4234		return -EINVAL;
4235
4236	if (kattr->mnt_userns) {
4237		struct mnt_idmap *mnt_idmap;
4238
4239		mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4240		if (IS_ERR(mnt_idmap))
4241			return PTR_ERR(mnt_idmap);
4242		kattr->mnt_idmap = mnt_idmap;
4243	}
4244
4245	if (kattr->propagation) {
4246		/*
4247		 * Only take namespace_lock() if we're actually changing
4248		 * propagation.
4249		 */
4250		namespace_lock();
4251		if (kattr->propagation == MS_SHARED) {
4252			err = invent_group_ids(mnt, kattr->recurse);
4253			if (err) {
4254				namespace_unlock();
4255				return err;
4256			}
4257		}
4258	}
4259
4260	err = -EINVAL;
4261	lock_mount_hash();
4262
4263	/* Ensure that this isn't anything purely vfs internal. */
4264	if (!is_mounted(&mnt->mnt))
4265		goto out;
4266
4267	/*
4268	 * If this is an attached mount make sure it's located in the callers
4269	 * mount namespace. If it's not don't let the caller interact with it.
4270	 * If this is a detached mount make sure it has an anonymous mount
4271	 * namespace attached to it, i.e. we've created it via OPEN_TREE_CLONE.
4272	 */
4273	if (!(mnt_has_parent(mnt) ? check_mnt(mnt) : is_anon_ns(mnt->mnt_ns)))
4274		goto out;
4275
4276	/*
4277	 * First, we get the mount tree in a shape where we can change mount
4278	 * properties without failure. If we succeeded to do so we commit all
4279	 * changes and if we failed we clean up.
4280	 */
4281	err = mount_setattr_prepare(kattr, mnt);
4282	if (!err)
4283		mount_setattr_commit(kattr, mnt);
4284
4285out:
4286	unlock_mount_hash();
4287
4288	if (kattr->propagation) {
4289		namespace_unlock();
4290		if (err)
4291			cleanup_group_ids(mnt, NULL);
4292	}
4293
4294	return err;
4295}
4296
4297static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4298				struct mount_kattr *kattr, unsigned int flags)
4299{
4300	int err = 0;
4301	struct ns_common *ns;
4302	struct user_namespace *mnt_userns;
4303	struct file *file;
4304
4305	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4306		return 0;
4307
4308	/*
4309	 * We currently do not support clearing an idmapped mount. If this ever
4310	 * is a use-case we can revisit this but for now let's keep it simple
4311	 * and not allow it.
4312	 */
4313	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4314		return -EINVAL;
4315
4316	if (attr->userns_fd > INT_MAX)
4317		return -EINVAL;
4318
4319	file = fget(attr->userns_fd);
4320	if (!file)
4321		return -EBADF;
4322
4323	if (!proc_ns_file(file)) {
4324		err = -EINVAL;
4325		goto out_fput;
4326	}
4327
4328	ns = get_proc_ns(file_inode(file));
4329	if (ns->ops->type != CLONE_NEWUSER) {
4330		err = -EINVAL;
4331		goto out_fput;
4332	}
4333
4334	/*
4335	 * The initial idmapping cannot be used to create an idmapped
4336	 * mount. We use the initial idmapping as an indicator of a mount
4337	 * that is not idmapped. It can simply be passed into helpers that
4338	 * are aware of idmapped mounts as a convenient shortcut. A user
4339	 * can just create a dedicated identity mapping to achieve the same
4340	 * result.
4341	 */
4342	mnt_userns = container_of(ns, struct user_namespace, ns);
4343	if (initial_idmapping(mnt_userns)) {
4344		err = -EPERM;
4345		goto out_fput;
4346	}
4347
4348	/* We're not controlling the target namespace. */
4349	if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) {
4350		err = -EPERM;
4351		goto out_fput;
4352	}
4353
4354	kattr->mnt_userns = get_user_ns(mnt_userns);
4355
4356out_fput:
4357	fput(file);
4358	return err;
4359}
4360
4361static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4362			     struct mount_kattr *kattr, unsigned int flags)
4363{
4364	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4365
4366	if (flags & AT_NO_AUTOMOUNT)
4367		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4368	if (flags & AT_SYMLINK_NOFOLLOW)
4369		lookup_flags &= ~LOOKUP_FOLLOW;
4370	if (flags & AT_EMPTY_PATH)
4371		lookup_flags |= LOOKUP_EMPTY;
4372
4373	*kattr = (struct mount_kattr) {
4374		.lookup_flags	= lookup_flags,
4375		.recurse	= !!(flags & AT_RECURSIVE),
4376	};
4377
4378	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4379		return -EINVAL;
4380	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4381		return -EINVAL;
4382	kattr->propagation = attr->propagation;
4383
4384	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4385		return -EINVAL;
4386
4387	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4388	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4389
4390	/*
4391	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4392	 * users wanting to transition to a different atime setting cannot
4393	 * simply specify the atime setting in @attr_set, but must also
4394	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4395	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4396	 * @attr_clr and that @attr_set can't have any atime bits set if
4397	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4398	 */
4399	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4400		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4401			return -EINVAL;
4402
4403		/*
4404		 * Clear all previous time settings as they are mutually
4405		 * exclusive.
4406		 */
4407		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4408		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4409		case MOUNT_ATTR_RELATIME:
4410			kattr->attr_set |= MNT_RELATIME;
4411			break;
4412		case MOUNT_ATTR_NOATIME:
4413			kattr->attr_set |= MNT_NOATIME;
4414			break;
4415		case MOUNT_ATTR_STRICTATIME:
4416			break;
4417		default:
4418			return -EINVAL;
4419		}
4420	} else {
4421		if (attr->attr_set & MOUNT_ATTR__ATIME)
4422			return -EINVAL;
4423	}
4424
4425	return build_mount_idmapped(attr, usize, kattr, flags);
4426}
4427
4428static void finish_mount_kattr(struct mount_kattr *kattr)
4429{
4430	put_user_ns(kattr->mnt_userns);
4431	kattr->mnt_userns = NULL;
4432
4433	if (kattr->mnt_idmap)
4434		mnt_idmap_put(kattr->mnt_idmap);
4435}
4436
4437SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4438		unsigned int, flags, struct mount_attr __user *, uattr,
4439		size_t, usize)
4440{
4441	int err;
4442	struct path target;
4443	struct mount_attr attr;
4444	struct mount_kattr kattr;
4445
4446	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4447
4448	if (flags & ~(AT_EMPTY_PATH |
4449		      AT_RECURSIVE |
4450		      AT_SYMLINK_NOFOLLOW |
4451		      AT_NO_AUTOMOUNT))
4452		return -EINVAL;
4453
4454	if (unlikely(usize > PAGE_SIZE))
4455		return -E2BIG;
4456	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4457		return -EINVAL;
4458
4459	if (!may_mount())
4460		return -EPERM;
4461
4462	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4463	if (err)
4464		return err;
4465
4466	/* Don't bother walking through the mounts if this is a nop. */
4467	if (attr.attr_set == 0 &&
4468	    attr.attr_clr == 0 &&
4469	    attr.propagation == 0)
4470		return 0;
4471
4472	err = build_mount_kattr(&attr, usize, &kattr, flags);
4473	if (err)
4474		return err;
4475
4476	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4477	if (!err) {
4478		err = do_mount_setattr(&target, &kattr);
4479		path_put(&target);
4480	}
4481	finish_mount_kattr(&kattr);
4482	return err;
4483}
4484
4485static void __init init_mount_tree(void)
4486{
4487	struct vfsmount *mnt;
4488	struct mount *m;
4489	struct mnt_namespace *ns;
4490	struct path root;
4491
4492	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4493	if (IS_ERR(mnt))
4494		panic("Can't create rootfs");
4495
4496	ns = alloc_mnt_ns(&init_user_ns, false);
4497	if (IS_ERR(ns))
4498		panic("Can't allocate initial namespace");
4499	m = real_mount(mnt);
4500	m->mnt_ns = ns;
4501	ns->root = m;
4502	ns->mounts = 1;
4503	list_add(&m->mnt_list, &ns->list);
4504	init_task.nsproxy->mnt_ns = ns;
4505	get_mnt_ns(ns);
4506
4507	root.mnt = mnt;
4508	root.dentry = mnt->mnt_root;
4509	mnt->mnt_flags |= MNT_LOCKED;
4510
4511	set_fs_pwd(current->fs, &root);
4512	set_fs_root(current->fs, &root);
4513}
4514
4515void __init mnt_init(void)
4516{
4517	int err;
4518
4519	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4520			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
4521
4522	mount_hashtable = alloc_large_system_hash("Mount-cache",
4523				sizeof(struct hlist_head),
4524				mhash_entries, 19,
4525				HASH_ZERO,
4526				&m_hash_shift, &m_hash_mask, 0, 0);
4527	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4528				sizeof(struct hlist_head),
4529				mphash_entries, 19,
4530				HASH_ZERO,
4531				&mp_hash_shift, &mp_hash_mask, 0, 0);
4532
4533	if (!mount_hashtable || !mountpoint_hashtable)
4534		panic("Failed to allocate mount hash table\n");
4535
4536	kernfs_init();
4537
4538	err = sysfs_init();
4539	if (err)
4540		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4541			__func__, err);
4542	fs_kobj = kobject_create_and_add("fs", NULL);
4543	if (!fs_kobj)
4544		printk(KERN_WARNING "%s: kobj create error\n", __func__);
4545	shmem_init();
4546	init_rootfs();
4547	init_mount_tree();
4548}
4549
4550void put_mnt_ns(struct mnt_namespace *ns)
4551{
4552	if (!refcount_dec_and_test(&ns->ns.count))
4553		return;
4554	drop_collected_mounts(&ns->root->mnt);
4555	free_mnt_ns(ns);
4556}
4557
4558struct vfsmount *kern_mount(struct file_system_type *type)
4559{
4560	struct vfsmount *mnt;
4561	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4562	if (!IS_ERR(mnt)) {
4563		/*
4564		 * it is a longterm mount, don't release mnt until
4565		 * we unmount before file sys is unregistered
4566		*/
4567		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4568	}
4569	return mnt;
4570}
4571EXPORT_SYMBOL_GPL(kern_mount);
4572
4573void kern_unmount(struct vfsmount *mnt)
4574{
4575	/* release long term mount so mount point can be released */
4576	if (!IS_ERR_OR_NULL(mnt)) {
4577		real_mount(mnt)->mnt_ns = NULL;
4578		synchronize_rcu();	/* yecchhh... */
4579		mntput(mnt);
4580	}
4581}
4582EXPORT_SYMBOL(kern_unmount);
4583
4584void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4585{
4586	unsigned int i;
4587
4588	for (i = 0; i < num; i++)
4589		if (mnt[i])
4590			real_mount(mnt[i])->mnt_ns = NULL;
4591	synchronize_rcu_expedited();
4592	for (i = 0; i < num; i++)
4593		mntput(mnt[i]);
4594}
4595EXPORT_SYMBOL(kern_unmount_array);
4596
4597bool our_mnt(struct vfsmount *mnt)
4598{
4599	return check_mnt(real_mount(mnt));
4600}
4601
4602bool current_chrooted(void)
4603{
4604	/* Does the current process have a non-standard root */
4605	struct path ns_root;
4606	struct path fs_root;
4607	bool chrooted;
4608
4609	/* Find the namespace root */
4610	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4611	ns_root.dentry = ns_root.mnt->mnt_root;
4612	path_get(&ns_root);
4613	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4614		;
4615
4616	get_fs_root(current->fs, &fs_root);
4617
4618	chrooted = !path_equal(&fs_root, &ns_root);
4619
4620	path_put(&fs_root);
4621	path_put(&ns_root);
4622
4623	return chrooted;
4624}
4625
4626static bool mnt_already_visible(struct mnt_namespace *ns,
4627				const struct super_block *sb,
4628				int *new_mnt_flags)
4629{
4630	int new_flags = *new_mnt_flags;
4631	struct mount *mnt;
4632	bool visible = false;
4633
4634	down_read(&namespace_sem);
4635	lock_ns_list(ns);
4636	list_for_each_entry(mnt, &ns->list, mnt_list) {
4637		struct mount *child;
4638		int mnt_flags;
4639
4640		if (mnt_is_cursor(mnt))
4641			continue;
4642
4643		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4644			continue;
4645
4646		/* This mount is not fully visible if it's root directory
4647		 * is not the root directory of the filesystem.
4648		 */
4649		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4650			continue;
4651
4652		/* A local view of the mount flags */
4653		mnt_flags = mnt->mnt.mnt_flags;
4654
4655		/* Don't miss readonly hidden in the superblock flags */
4656		if (sb_rdonly(mnt->mnt.mnt_sb))
4657			mnt_flags |= MNT_LOCK_READONLY;
4658
4659		/* Verify the mount flags are equal to or more permissive
4660		 * than the proposed new mount.
4661		 */
4662		if ((mnt_flags & MNT_LOCK_READONLY) &&
4663		    !(new_flags & MNT_READONLY))
4664			continue;
4665		if ((mnt_flags & MNT_LOCK_ATIME) &&
4666		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4667			continue;
4668
4669		/* This mount is not fully visible if there are any
4670		 * locked child mounts that cover anything except for
4671		 * empty directories.
4672		 */
4673		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4674			struct inode *inode = child->mnt_mountpoint->d_inode;
4675			/* Only worry about locked mounts */
4676			if (!(child->mnt.mnt_flags & MNT_LOCKED))
4677				continue;
4678			/* Is the directory permanetly empty? */
4679			if (!is_empty_dir_inode(inode))
4680				goto next;
4681		}
4682		/* Preserve the locked attributes */
4683		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4684					       MNT_LOCK_ATIME);
4685		visible = true;
4686		goto found;
4687	next:	;
4688	}
4689found:
4690	unlock_ns_list(ns);
4691	up_read(&namespace_sem);
4692	return visible;
4693}
4694
4695static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4696{
4697	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4698	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4699	unsigned long s_iflags;
4700
4701	if (ns->user_ns == &init_user_ns)
4702		return false;
4703
4704	/* Can this filesystem be too revealing? */
4705	s_iflags = sb->s_iflags;
4706	if (!(s_iflags & SB_I_USERNS_VISIBLE))
4707		return false;
4708
4709	if ((s_iflags & required_iflags) != required_iflags) {
4710		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4711			  required_iflags);
4712		return true;
4713	}
4714
4715	return !mnt_already_visible(ns, sb, new_mnt_flags);
4716}
4717
4718bool mnt_may_suid(struct vfsmount *mnt)
4719{
4720	/*
4721	 * Foreign mounts (accessed via fchdir or through /proc
4722	 * symlinks) are always treated as if they are nosuid.  This
4723	 * prevents namespaces from trusting potentially unsafe
4724	 * suid/sgid bits, file caps, or security labels that originate
4725	 * in other namespaces.
4726	 */
4727	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4728	       current_in_userns(mnt->mnt_sb->s_user_ns);
4729}
4730
4731static struct ns_common *mntns_get(struct task_struct *task)
4732{
4733	struct ns_common *ns = NULL;
4734	struct nsproxy *nsproxy;
4735
4736	task_lock(task);
4737	nsproxy = task->nsproxy;
4738	if (nsproxy) {
4739		ns = &nsproxy->mnt_ns->ns;
4740		get_mnt_ns(to_mnt_ns(ns));
4741	}
4742	task_unlock(task);
4743
4744	return ns;
4745}
4746
4747static void mntns_put(struct ns_common *ns)
4748{
4749	put_mnt_ns(to_mnt_ns(ns));
4750}
4751
4752static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4753{
4754	struct nsproxy *nsproxy = nsset->nsproxy;
4755	struct fs_struct *fs = nsset->fs;
4756	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4757	struct user_namespace *user_ns = nsset->cred->user_ns;
4758	struct path root;
4759	int err;
4760
4761	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4762	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4763	    !ns_capable(user_ns, CAP_SYS_ADMIN))
4764		return -EPERM;
4765
4766	if (is_anon_ns(mnt_ns))
4767		return -EINVAL;
4768
4769	if (fs->users != 1)
4770		return -EINVAL;
4771
4772	get_mnt_ns(mnt_ns);
4773	old_mnt_ns = nsproxy->mnt_ns;
4774	nsproxy->mnt_ns = mnt_ns;
4775
4776	/* Find the root */
4777	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4778				"/", LOOKUP_DOWN, &root);
4779	if (err) {
4780		/* revert to old namespace */
4781		nsproxy->mnt_ns = old_mnt_ns;
4782		put_mnt_ns(mnt_ns);
4783		return err;
4784	}
4785
4786	put_mnt_ns(old_mnt_ns);
4787
4788	/* Update the pwd and root */
4789	set_fs_pwd(fs, &root);
4790	set_fs_root(fs, &root);
4791
4792	path_put(&root);
4793	return 0;
4794}
4795
4796static struct user_namespace *mntns_owner(struct ns_common *ns)
4797{
4798	return to_mnt_ns(ns)->user_ns;
4799}
4800
4801const struct proc_ns_operations mntns_operations = {
4802	.name		= "mnt",
4803	.type		= CLONE_NEWNS,
4804	.get		= mntns_get,
4805	.put		= mntns_put,
4806	.install	= mntns_install,
4807	.owner		= mntns_owner,
4808};
4809
4810#ifdef CONFIG_SYSCTL
4811static struct ctl_table fs_namespace_sysctls[] = {
4812	{
4813		.procname	= "mount-max",
4814		.data		= &sysctl_mount_max,
4815		.maxlen		= sizeof(unsigned int),
4816		.mode		= 0644,
4817		.proc_handler	= proc_dointvec_minmax,
4818		.extra1		= SYSCTL_ONE,
4819	},
4820	{ }
4821};
4822
4823static int __init init_fs_namespace_sysctls(void)
4824{
4825	register_sysctl_init("fs", fs_namespace_sysctls);
4826	return 0;
4827}
4828fs_initcall(init_fs_namespace_sysctls);
4829
4830#endif /* CONFIG_SYSCTL */